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Preface

Kubernetes would like to thank every sysadmin who has woken up at 3 a.m. to restart
a process. Every developer who pushed code to production only to find that it didn’t
run like it did on their laptop. Every systems architect who mistakenly pointed a load
test at the production server because of a leftover hostname that they hadn’t updated.
It was the pain, the weird hours, and the weird errors that inspired the development
of Kubernetes. In a single sentence: Kubernetes intends to radically simplify the task
of building, deploying, and maintaining distributed systems. It has been inspired by
decades of real-world experience building reliable systems, and it has been designed
from the ground up to make that experience if not euphoric, at least pleasant. We
hope you enjoy the book!

Who Should Read This Book
Whether you are new to distributed systems or have been deploying cloud native
systems for years, containers and Kubernetes can help you achieve new levels of
velocity, agility, reliability, and efficiency. This book describes the Kubernetes cluster
orchestrator and how its tools and APIs can be used to improve the development,
delivery, security, and maintenance of distributed applications. Though no previous
experience with Kubernetes is assumed, to make maximal use of the book, you should
be comfortable building and deploying server-based applications. Familiarity with
concepts like load balancers and network storage will be useful, though not required.
Likewise, experience with Linux, Linux containers, and Docker, though not essential,
will help you make the most of this book.

xiii



Why We Wrote This Book
We have been involved with Kubernetes since its very beginnings. It has been truly
remarkable to watch it transform from a curiosity largely used in experiments to
a crucial production-grade infrastructure that powers large-scale production applica‐
tions in varied fields, from machine learning to online services. As this transition
occurred, it became increasingly clear that a book that captured both how to use the
core concepts in Kubernetes and the motivations behind the development of those
concepts would be an important contribution to the state of cloud native application
development. We hope that in reading this book, you not only learn how to build
reliable, scalable applications on top of Kubernetes but also receive insight into the
core challenges of distributed systems that led to its development.

Why We Updated This Book
The Kubernetes ecosystem has continued to grow and evolve since the first and
second editions of this book. There have been many Kubernetes releases, and many
more tools and patterns for using Kubernetes have become de facto standards. In the
third edition, we focused on the addition of topics that have grown in interest in the
Kubernetes ecosystem including security, accessing Kubernetes from programming
languages, as well as multicluster application deployments. We also updated all of the
existing chapters to reflect the changes and evolution in Kubernetes since the first
and second editions. We fully expect to revise this book again in a few years (and look
forward to doing so) as Kubernetes continues to evolve.

A Word on Cloud Native Applications Today
From the first programming languages, to object-oriented programming, to the
development of virtualization and cloud infrastructure, the history of computer
science is a history of the development of abstractions that hide complexity and
empower you to build ever more sophisticated applications. Despite this, the devel‐
opment of reliable, scalable applications is still dramatically more challenging than
it ought to be. In recent years, containers and container orchestration APIs like
Kubernetes have proven to be an important abstraction that radically simplifies the
development of reliable, scalable distributed systems. Containers and orchestrators
enable developers to build and deploy applications with a speed, agility, and reliability
that would have seemed like science fiction only a few years ago.

xiv | Preface



Navigating This Book
This book is organized as follows. Chapter 1 outlines the high-level benefits of
Kubernetes without diving too deeply into the details. If you are new to Kubernetes,
this is a great place to start to understand why you should read the rest of the book.

Chapter 2 provides a detailed introduction to containers and containerized applica‐
tion development. If you’ve never really played around with Docker before, this
chapter will be a useful introduction. If you are already a Docker expert, it will likely
be mostly review.

Chapter 3 covers how to deploy Kubernetes. While most of this book focuses on how
to use Kubernetes, you need to get a cluster up and running before you start using
it. Although running a cluster for production is outside the scope of this book, this
chapter presents a couple of easy ways to create a cluster so that you can understand
how to use Kubernetes. Chapter 4 covers a selection of common commands used to
interact with a Kubernetes cluster.

Starting with Chapter 5, we dive into the details of deploying an application using
Kubernetes. We cover Pods (Chapter 5), labels and annotations (Chapter 6), services
(Chapter 7), Ingress (Chapter 8), and ReplicaSets (Chapter 9). These form the core
basics of what you need to deploy your service in Kubernetes. We then cover deploy‐
ments (Chapter 10), which tie together the life cycle of a complete application.

After those chapters, we cover some more specialized objects in Kubernetes: Dae‐
monSets (Chapter 11), Jobs (Chapter 12), and ConfigMaps and Secrets (Chapter 13).
While these chapters are essential for many production applications, if you are just
learning Kubernetes, you can skip them and return to them later, after you gain more
experience and expertise.

Next we introduce role-based access control (Chapter 14) and cover service meshes
(Chapter 15) and integrating storage (Chapter 16) into Kubernetes. We discuss
extending Kubernetes (Chapter 17) and accessing Kubernetes from programming
languages (Chapter 18). We then focus on securing Pods (Chapter 19) along with
Kubernetes policy and governance (Chapter 20).

Finally, we conclude with some examples of how to develop and deploy multicluster
applications (Chapter 21) and a discussion of how to organize your applications in
source control (Chapter 22).
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Online Resources
You will want to install Docker. You likely will also want to familiarize yourself with
the Docker documentation if you have not already done so.

Likewise, you will want to install the kubectl command-line tool. You may also want
to join the Kubernetes Slack channel, where you will find a large community of users
who are willing to talk and answer questions at nearly any hour of the day.

Finally, as you grow more advanced, you may want to engage with the open source
Kubernetes repository on GitHub.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xvi | Preface
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Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/kubernetes-up-and-running/examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
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CHAPTER 1

Introduction

Kubernetes is an open source orchestrator for deploying containerized applications.
It was originally developed by Google, inspired by a decade of experience deploying
scalable, reliable systems in containers via application-oriented APIs.1

Since its introduction in 2014, Kubernetes has grown to be one of the largest and
most popular open source projects in the world. It has become the standard API for
building cloud native applications, present in nearly every public cloud. Kubernetes
is a proven infrastructure for distributed systems that is suitable for cloud native
developers of all scales, from a cluster of Raspberry Pi computers to a datacenter full
of the latest machines. It provides the software necessary to successfully build and
deploy reliable, scalable distributed systems.

You may be wondering what we mean when we say “reliable, scalable distributed
systems.” More and more services are delivered over the network via APIs. These
APIs are often delivered by a distributed system, the various pieces that implement
the API running on different machines, connected via the network and coordinating
their actions via network communication. Because we increasingly rely on these APIs
for all aspects of our daily lives (e.g., finding directions to the nearest hospital), these
systems must be highly reliable. They cannot fail, even if a part of the system crashes
or otherwise stops working. Likewise, they must maintain availability even during
software rollouts or other maintenance events. Finally, because more and more of
the world is coming online and using such services, they must be highly scalable
so that they can grow their capacity to keep up with ever-increasing usage without
radical redesign of the distributed system that implements the services. In many
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cases this also means growing (and shrinking) the capacity automatically so that your
application can be maximally efficient.

Depending on when and why you have come to hold this book in your hands, you
may have varying degrees of experience with containers, distributed systems, and
Kubernetes. You may be planning on building your application on top of public cloud
infrastructure, in private data centers, or in some hybrid environment. Regardless of
your experience, this book should enable you to make the most of Kubernetes.

There are many reasons people come to use containers and container APIs like
Kubernetes, but we believe they can all be traced back to one of these benefits:

• Development velocity•
• Scaling (of both software and teams)•
• Abstracting your infrastructure•
• Efficiency•
• Cloud native ecosystem•

In the following sections, we describe how Kubernetes can help provide each of these
features.

Velocity
Velocity is the key component in nearly all software development today. The software
industry has evolved from shipping products as boxed CDs or DVDs to software that
is delivered over the network via web-based services that are updated hourly. This
changing landscape means that the difference between you and your competitors
is often the speed with which you can develop and deploy new components and
features, or the speed with which you can respond to innovations developed by
others.

It is important to note, however, that velocity is not defined in terms of simply raw
speed. While your users are always looking for iterative improvements, they are more
interested in a highly reliable service. Once upon a time, it was OK for a service to be
down for maintenance at midnight every night. But today, all users expect constant
uptime, even if the software they are running is changing constantly.

Consequently, velocity is measured not in terms of the raw number of features you
can ship per hour or day, but rather in terms of the number of things you can ship
while maintaining a highly available service.

In this way, containers and Kubernetes can provide the tools that you need to move
quickly, while staying available. The core concepts that enable this are:
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• Immutability•
• Declarative configuration•
• Online self-healing systems•
• Shared reusable libraries and tools•

These ideas all interrelate to radically improve the speed with which you can reliably
deploy new software.

The Value of Immutability
Containers and Kubernetes encourage developers to build distributed systems that
adhere to the principles of immutable infrastructure. With immutable infrastructure,
once an artifact is created in the system, it does not change via user modifications.

Traditionally, computers and software systems have been treated as mutable infra‐
structure. With mutable infrastructure, changes are applied as incremental updates to
an existing system. These updates can occur all at once, or spread out across a long
period of time. A system upgrade via the apt-get update tool is a good example
of an update to a mutable system. Running apt sequentially downloads any updated
binaries, copies them on top of older binaries, and makes incremental updates to
configuration files. With a mutable system, the current state of the infrastructure is
not represented as a single artifact, but rather as an accumulation of incremental
updates and changes over time. On many systems, these incremental updates come
not just from system upgrades, but operator modifications as well. Furthermore, in
any system run by a large team, it is highly likely that these changes will have been
performed by many different people and, in many cases, will not have been recorded
anywhere.

In contrast, in an immutable system, rather than a series of incremental updates and
changes, an entirely new, complete image is built, where the update simply replaces
the entire image with the newer image in a single operation. There are no incremental
changes. As you can imagine, this is a significant shift from the more traditional
world of configuration management.

To make this more concrete in the world of containers, consider two different ways to
upgrade your software:

• You can log in to a container, run a command to download your new software,•
kill the old server, and start the new one.

• You can build a new container image, push it to a container registry, kill the•
existing container, and start a new one.
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At first blush, these two approaches might seem largely indistinguishable. So what is
it about the act of building a new container that improves reliability?

The key differentiation is the artifact that you create, and the record of how you
created it. These records make it easy to understand exactly the differences in some
new version and, if something goes wrong, to determine what has changed and how
to fix it.

Additionally, building a new image rather than modifying an existing one means the
old image is still around, and can quickly be used for a rollback if an error occurs. In
contrast, once you copy your new binary over an existing binary, such a rollback is
nearly impossible.

Immutable container images are at the core of everything that you will build in
Kubernetes. It is possible to imperatively change running containers, but this is an
antipattern to be used only in extreme cases where there are no other options (e.g.,
if it is the only way to temporarily repair a mission-critical production system). And
even then, the changes must also be recorded through a declarative configuration
update at some later time, after the fire is out.

Declarative Configuration
Immutability extends beyond containers running in your cluster to the way you
describe your application to Kubernetes. Everything in Kubernetes is a declarative
configuration object that represents the desired state of the system. It is the job of
Kubernetes to ensure that the actual state of the world matches this desired state.

Much like mutable versus immutable infrastructure, declarative configuration is an
alternative to imperative configuration, where the state of the world is defined by
the execution of a series of instructions rather than a declaration of the desired state
of the world. While imperative commands define actions, declarative configurations
define state.

To understand these two approaches, consider the task of producing three replicas of
a piece of software. With an imperative approach, the configuration would say “run
A, run B, and run C.” The corresponding declarative configuration would be “replicas
equals three.”

Because it describes the state of the world, declarative configuration does not have
to be executed to be understood. Its impact is concretely declared. Since the effects
of declarative configuration can be understood before they are executed, declara‐
tive configuration is far less error-prone. Further, the traditional tools of software
development, such as source control, code review, and unit testing, can be used in
declarative configuration in ways that are impossible for imperative instructions. The
idea of storing declarative configuration in source control is often referred to as
“infrastructure as code.”
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Lately the idea of GitOps has begun to formalize the practice of infrastructure as code
with source control as the source of truth. When you adopt GitOps, changes to pro‐
duction are made entirely via pushes to a Git repository, which are then reflected into
your cluster via automation. Indeed, your production Kubernetes cluster is viewed
as effectively a read-only environment. Additionally, GitOps is being increasingly
integrated into cloud-provided Kubernetes services as the easiest way to declaratively
manage your cloud native infrastructure.

The combination of declarative state stored in a version control system and the
ability of Kubernetes to make reality match this declarative state makes rollback of a
change trivially easy. It is simply restating the previous declarative state of the system.
This is usually impossible with imperative systems, because although the imperative
instructions describe how to get you from point A to point B, they rarely include the
reverse instructions that can get you back.

Self-Healing Systems
Kubernetes is an online, self-healing system. When it receives a desired state configu‐
ration, it does not simply take a set of actions to make the current state match the
desired state a single time. It continuously takes actions to ensure that the current state
matches the desired state. This means that not only will Kubernetes initialize your
system, but it will guard it against any failures or perturbations that might destabilize
the system and affect reliability.

A more traditional operator repair involves a manual series of mitigation steps, or
human intervention, performed in response to some sort of alert. Imperative repair
like this is more expensive (since it generally requires an on-call operator to be
available to enact the repair). It is also generally slower, since a human must often
wake up and log in to respond. Furthermore, it is less reliable because the imperative
series of repair operations suffers from all of the problems of imperative management
described in the previous section. Self-healing systems like Kubernetes both reduce
the burden on operators and improve the overall reliability of the system by perform‐
ing reliable repairs more quickly.

As a concrete example of this self-healing behavior, if you assert a desired state of
three replicas to Kubernetes, it does not just create three replicas—it continuously
ensures that there are exactly three replicas. If you manually create a fourth replica,
Kubernetes will destroy one to bring the number back to three. If you manually
destroy a replica, Kubernetes will create one to again return you to the desired state.

Online self-healing systems improve developer velocity because the time and energy
you might otherwise have spent on operations and maintenance can instead be spent
on developing and testing new features.
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In a more advanced form of self-healing, there has been significant recent work in
the operator paradigm for Kubernetes. With operators, more advanced logic needed
to maintain, scale, and heal a specific piece of software (MySQL, for example) is
encoded into an operator application that runs as a container in the cluster. The
code in the operator is responsible for more targeted and advanced health detection
and healing than can be achieved via Kubernetes’s generic self-healing. Often this is
packaged up as “operators,” which are discussed in Chapter 17.

Scaling Your Service and Your Teams
As your product grows, it’s inevitable that you will need to scale both your software
and the teams that develop it. Fortunately, Kubernetes can help with both of these
goals. Kubernetes achieves scalability by favoring decoupled architectures.

Decoupling
In a decoupled architecture, each component is separated from other components
by defined APIs and service load balancers. APIs and load balancers isolate each
piece of the system from the others. APIs provide a buffer between implementer and
consumer, and load balancers provide a buffer between running instances of each
service.

Decoupling components via load balancers makes it easy to scale the programs that
make up your service, because increasing the size (and therefore the capacity) of the
program can be done without adjusting or reconfiguring any of the other layers of
your service.

Decoupling servers via APIs makes it easier to scale the development teams because
each team can focus on a single, smaller microservice with a comprehensible surface
area. Crisp APIs between microservices limit the amount of cross-team communica‐
tion overhead required to build and deploy software. This communication overhead
is often the major restricting factor when scaling teams.

Easy Scaling for Applications and Clusters
Concretely, when you need to scale your service, the immutable, declarative nature
of Kubernetes makes this scaling trivial to implement. Because your containers are
immutable, and the number of replicas is merely a number in a declarative config,
scaling your service upward is simply a matter of changing a number in a configura‐
tion file, asserting this new declarative state to Kubernetes, and letting it take care of
the rest. Alternatively, you can set up autoscaling and let Kubernetes do it for you.

Of course, that sort of scaling assumes that there are resources available in your
cluster to consume. Sometimes you actually need to scale up the cluster itself. Again,
Kubernetes makes this task easier. Because many machines in a cluster are entirely
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identical to other machines in that set and the applications themselves are decoupled
from the details of the machine by containers, adding additional resources to the
cluster is simply a matter of imaging a new machine of the same class and joining
it into the cluster. This can be accomplished via a few simple commands or via a
prebaked machine image.

One of the challenges of scaling machine resources is predicting their use. If you are
running on physical infrastructure, the time to obtain a new machine is measured
in days or weeks. On both physical and cloud infrastructures, predicting future costs
is difficult because it is hard to predict the growth and scaling needs of specific
applications.

Kubernetes can simplify forecasting future compute costs. To understand why this is
true, consider scaling up three teams: A, B, and C. Historically you have seen that
each team’s growth is highly variable and thus hard to predict. If you are provisioning
individual machines for each service, you have no choice but to forecast based on the
maximum expected growth for each service, since machines dedicated to one team
cannot be used for another team. If, instead, you use Kubernetes to decouple the
teams from the specific machines they are using, you can forecast growth based on
the aggregate growth of all three services. Combining three variable growth rates into
a single growth rate reduces statistical noise and produces a more reliable forecast of
expected growth. Furthermore, decoupling the teams from specific machines means
that teams can share fractional parts of one another’s machines, reducing even further
the overheads associated with forecasting growth of computing resources.

Finally, Kubernetes makes it possible to achieve automatic scaling (both up and
down) of resources. Especially in a cloud environment where new machines can be
created via APIs, combining Kubernetes with autoscaling for both the applications
and the clusters themselves means that you can always rightsize your costs for the
current load.

Scaling Development Teams with Microservices
As noted in a variety of research, the ideal team size is the “two-pizza team,” or
roughly six to eight people. This group size often results in good knowledge sharing,
fast decision making, and a common sense of purpose. Larger teams tend to suffer
from issues of hierarchy, poor visibility, and infighting, which hinder agility and
success.

However, many projects require significantly more resources to be successful and
achieve their goals. Consequently, there is a tension between the ideal team size for
agility and the necessary team size for the product’s end goals.

The common solution to this tension has been the development of decoupled,
service-oriented teams that each build a single microservice. Each small team is
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responsible for the design and delivery of a service that is consumed by other small
teams. The aggregation of all of these services ultimately provides the implementation
of the overall product’s surface area.

Kubernetes provides numerous abstractions and APIs that make it easier to build
these decoupled microservice architectures:

• Pods, or groups of containers, can group together container images developed by•
different teams into a single deployable unit.

• Kubernetes services provide load balancing, naming, and discovery to isolate one•
microservice from another.

• Namespaces provide isolation and access control, so that each microservice can•
control the degree to which other services interact with it.

• Ingress objects provide an easy-to-use frontend that can combine multiple micro‐•
services into a single externalized API surface area.

Finally, decoupling the application container image and machine means that differ‐
ent microservices can colocate on the same machine without interfering with one
another, reducing the overhead and cost of microservice architectures. The health-
checking and rollout features of Kubernetes guarantee a consistent approach to appli‐
cation rollout and reliability, which ensures that a proliferation of microservice teams
does not also result in a proliferation of different approaches to service production
life cycle and operations.

Separation of Concerns for Consistency and Scaling
In addition to the consistency that Kubernetes brings to operations, the decoupling
and separation of concerns produced by the Kubernetes stack lead to significantly
greater consistency for the lower levels of your infrastructure. This enables you to
scale infrastructure operations to manage many machines with a single small, focused
team. We have talked at length about the decoupling of application container and
machine/operating system (OS), but an important aspect of this decoupling is that
the container orchestration API becomes a crisp contract that separates the responsi‐
bilities of the application operator from the cluster orchestration operator. We call
this the “not my monkey, not my circus” line. The application developer relies on the
service-level agreement (SLA) delivered by the container orchestration API, without
worrying about the details of how this SLA is achieved. Likewise, the container
orchestration API reliability engineer focuses on delivering the orchestration API’s
SLA without worrying about the applications that are running on top of it.

Decoupling concerns means that a small team running a Kubernetes cluster can
be responsible for supporting hundreds or even thousands of teams running applica‐
tions within that cluster (Figure 1-1). Likewise, a small team can be responsible for
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dozens (or more) of clusters running around the world. It’s important to note that the
same decoupling of containers and OS enables the OS reliability engineers to focus
on the SLA of the individual machine’s OS. This becomes another line of separate
responsibility, with the Kubernetes operators relying on the OS SLA, and the OS
operators worrying solely about delivering that SLA. Again, this enables you to scale a
small team of OS experts to a fleet of thousands of machines.

Figure 1-1. An illustration of how different operations teams are decoupled using APIs

Of course, devoting even a small team to managing an OS is beyond the scope
of many organizations. In these environments, a managed Kubernetes-as-a-Service
(KaaS) provided by a public cloud provider is a great option. As Kubernetes has
become increasingly ubiquitous, KaaS has become increasingly available as well, to
the point where it is now offered on nearly every public cloud. Of course, using
KaaS has some limitations, since the operator makes decisions for you about how
the Kubernetes clusters are built and configured. For example, many KaaS platforms
disable alpha features because they can destabilize the managed cluster.

In addition to a fully managed Kubernetes service, there is a thriving ecosystem of
companies and projects that help to install and manage Kubernetes. There is a full
spectrum of solutions between doing it “the hard way” and a fully managed service.

Consequently, whether to use KaaS or manage it yourself (or something in between)
is a decision each user needs to make based on the skills and demands of their
situation. Often for small organizations, KaaS provides an easy-to-use solution that
enables them to focus their time and energy on building the software to support
their work rather than managing a cluster. For larger organizations that can afford a
dedicated team for managing its Kubernetes cluster, managing it that way may make
sense since it enables greater flexibility in terms of cluster capabilities and operations.
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Abstracting Your Infrastructure
The goal of the public cloud is to provide easy-to-use, self-service infrastructure
for developers to consume. However, too often cloud APIs are oriented around
mirroring the infrastructure that IT expects (e.g., “virtual machines”), not the con‐
cepts (e.g., “applications”) that developers want to consume. Additionally, in many
cases the cloud comes with particular details in implementation or services that are
specific to the cloud provider. Consuming these APIs directly makes it difficult to
run your application in multiple environments, or spread between cloud and physical
environments.

The move to application-oriented container APIs like Kubernetes has two concrete
benefits. First, as we described previously, it separates developers from specific
machines. This makes the machine-oriented IT role easier, since machines can simply
be added in aggregate to scale the cluster, and in the context of the cloud it also
enables a high degree of portability since developers are consuming a higher-level
API that is implemented in terms of the specific cloud infrastructure APIs.

When your developers build their applications in terms of container images and
deploy them in terms of portable Kubernetes APIs, transferring your application
between environments, or even running in hybrid environments, is simply a matter of
sending the declarative config to a new cluster. Kubernetes has a number of plug-ins
that can abstract you from a particular cloud. For example, Kubernetes services know
how to create load balancers on all major public clouds as well as several different
private and physical infrastructures. Likewise, Kubernetes PersistentVolumes and
PersistentVolumeClaims can be used to abstract your applications away from specific
storage implementations. Of course, to achieve this portability, you need to avoid
cloud-managed services (e.g., Amazon’s DynamoDB, Azure’s Cosmos DB, or Google’s
Cloud Spanner), which means that you will be forced to deploy and manage open
source storage solutions like Cassandra, MySQL, or MongoDB.

Putting it all together, building on top of Kubernetes application-oriented abstrac‐
tions ensures that the effort you put into building, deploying, and managing your
application is truly portable across a wide variety of environments.

Efficiency
In addition to the developer and IT management benefits that containers and Kuber‐
netes provide, there is also a concrete economic benefit to the abstraction. Because
developers no longer think in terms of machines, their applications can be colocated
on the same machines without impacting the applications themselves. This means
that tasks from multiple users can be packed tightly onto fewer machines.
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Efficiency can be measured by the ratio of the useful work performed by a machine
or process to the total amount of energy spent doing so. When it comes to deploying
and managing applications, many of the available tools and processes (e.g., bash
scripts, apt updates, or imperative configuration management) are somewhat ineffi‐
cient. When discussing efficiency, it’s often helpful to think of both the monetary cost
of running a server and the human cost required to manage it.

Running a server incurs a cost based on power usage, cooling requirements, data-
center space, and raw compute power. Once a server is racked and powered on
(or clicked and spun up), the meter literally starts running. Any idle CPU time is
money wasted. Thus, it becomes part of the system administrator’s responsibilities
to keep utilization at acceptable levels, which requires ongoing management. This is
where containers and the Kubernetes workflow come in. Kubernetes provides tools
that automate the distribution of applications across a cluster of machines, ensuring
higher levels of utilization than are possible with traditional tooling.

A further increase in efficiency comes from the fact that a developer’s test environ‐
ment can be quickly and cheaply created as a set of containers running in a personal
view of a shared Kubernetes cluster (using a feature called namespaces). In the past,
turning up a test cluster for a developer might have meant turning up three machines.
With Kubernetes, it is simple to have all developers share a single test cluster, aggre‐
gating their usage onto a much smaller set of machines. Reducing the overall number
of machines used in turn drives up the efficiency of each system: since more of the
resources (CPU, RAM, etc.) on each individual machine are used, the overall cost of
each container becomes much lower.

Reducing the cost of development instances in your stack enables development
practices that might previously have been cost-prohibitive. For example, with your
application deployed via Kubernetes, it becomes conceivable to deploy and test every
single commit contributed by every developer throughout your entire stack.

When the cost of each deployment is measured in terms of a small number of
containers, rather than multiple complete virtual machines (VMs), the cost you incur
for such testing is dramatically lower. Returning to the original value of Kubernetes,
this increased testing also increases velocity, since you have strong signals as to the
reliability of your code as well as the granularity of detail required to quickly identify
where a problem may have been introduced.

Finally, as mentioned in previous sections, the use of automatic scaling to add
resources when needed, but remove them when they are not, can also be used to
drive the overall efficiency of your applications while maintaining their required
performance characteristics.
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Cloud Native Ecosystem
Kubernetes was designed from the ground up to be an extensible environment
and a broad and welcoming community. These design goals and its ubiquity in so
many compute environments have led to a vibrant and large ecosystem of tools and
services that have grown up around Kubernetes. Following the lead of Kubernetes
(and Docker and Linux before it), most of these projects are also open source. This
means that a developer beginning to build does not have to start from scratch. In
the years since it was released, tools for nearly every task, from machine learning
to continuous development and serverless programming models have been built for
Kubernetes. Indeed, in many cases the challenge isn’t finding a potential solution, but
rather deciding which of the many solutions is best suited to the task. The wealth
of tools in the cloud native ecosystem has itself become a strong reason for many
people to adopt Kubernetes. When you leverage the cloud native ecosystem, you can
use community-built and supported projects for nearly every part of your system,
allowing you to focus on the development of the core business logic and services that
are uniquely yours.

As with any open source ecosystem, the primary challenge is the variety of possible
solutions and the fact that there is often a lack of end-to-end integration. One
possible way to navigate this complexity is the technical guidance of the Cloud Native
Computing Foundation (CNCF). The CNCF acts as a industry-neutral home for
cloud native projects’ code and intellectual property. It has three levels of project
maturity to help guide your adoption of cloud native projects. The majority of
projects in the CNCF are in the sandbox stage. Sandbox indicates that a project is
still in early development, and adoption is not recommended unless you are an early
adopter and/or interested in contributing to the development of the project. The
next stage in maturity is incubating. Incubating projects are ones that have proven
their utility and stability via adoption and production usage; however, they are still
developing and growing their communities. While there are hundreds of sandbox
projects, there are barely more than 20 incubating projects. The final stage of CNCF
projects is graduated. These projects are fully mature and widely adopted. There are
only a few graduated projects, including Kubernetes itself.

Another way to navigate the cloud native ecosystem is via integration with
Kubernetes-as-a-Service. At this point, most of the KaaS offerings also have addi‐
tional services via open source projects from the cloud native ecosystem. Because
these services are integrated into cloud-supported products, you can be assured that
the projects are mature and production ready.

12 | Chapter 1: Introduction



Summary
Kubernetes was built to radically change the way that applications are built and
deployed in the cloud. Fundamentally, it was designed to give developers more veloc‐
ity, efficiency, and agility. At this point, many of the internet services and applications
that you use every day are running on top of Kubernetes. You are probably already
a Kubernetes user, you just didn’t know it! We hope this chapter has given you an
idea of why you should deploy your applications using Kubernetes. Now that you
are convinced of that, the following chapters will teach you how to deploy your
applications.
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CHAPTER 2

Creating and Running Containers

Kubernetes is a platform for creating, deploying, and managing distributed applica‐
tions. These applications come in many different shapes and sizes, but ultimately, they
are all comprised of one or more programs that run on individual machines. These
programs accept input, manipulate data, and then return the results. Before we can
even consider building a distributed system, we must first consider how to build the
application container images that contain these programs and make up the pieces of
our distributed system.

Application programs are typically comprised of a language runtime, libraries, and
your source code. In many cases, your application relies on external shared libraries
such as libc and libssl. These external libraries are generally shipped as shared
components in the OS that you have installed on a particular machine.

This dependency on shared libraries causes problems when an application developed
on a programmer’s laptop has a dependency on a shared library that isn’t available
when the program is rolled out to the production OS. Even when the development
and production environments share the exact same version of the OS, problems can
occur when developers forget to include dependent asset files inside a package that
they deploy to production.

The traditional methods of running multiple programs on a single machine require
that all of these programs share the same versions of shared libraries on the system.
If the different programs are developed by different teams or organizations, these
shared dependencies add needless complexity and coupling between these teams.

A program can only execute successfully if it can be reliably deployed onto the
machine where it should run. Too often the state of the art for deployment involves
running imperative scripts, which inevitably have twisty and byzantine failure cases.
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This makes the task of rolling out a new version of all or parts of a distributed system
a labor-intensive and difficult task.

In Chapter 1, we argued strongly for the value of immutable images and infrastruc‐
ture. This immutability is exactly what the container image provides. As we will see,
it easily solves all the problems of dependency management and encapsulation just
described.

When working with applications, it’s often helpful to package them in a way that
makes sharing them with others easy. Docker, the default tool most people use for
containers, makes it easy to package an executable and push it to a remote registry
where it can later be pulled by others. At the time of writing, container registries
are available in all of the major public clouds, and services to build images in the
cloud are also available in many of them. You can also run your own registry using
open source or commercial systems. These registries make it easy for users to manage
and deploy private images, while image-builder services provide easy integration with
continuous delivery systems.

For this chapter, and the remainder of the book, we are going to work with a simple
example application that we built to help show this workflow in action. You can find
the application on GitHub.

Container images bundle a program and its dependencies into a single artifact under
a root filesystem. The most popular container image format is the Docker image
format, which has been standardized by the Open Container Initiative to the OCI
image format. Kubernetes supports both Docker- and OCI-compatible images via
Docker and other runtimes. Docker images also include additional metadata used by
a container runtime to start a running application instance based on the contents of
the container image.

This chapter covers the following topics:

• How to package an application using the Docker image format•
• How to start an application using the Docker container runtime•

Container Images
For nearly everyone, their first interaction with any container technology is with a
container image. A container image is a binary package that encapsulates all of the
files necessary to run a program inside of an OS container. Depending on how you
first experiment with containers, you will either build a container image from your
local filesystem or download a preexisting image from a container registry. In either
case, once the container image is present on your computer, you can run that image
to produce a running application inside an OS container.
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The most popular and widespread container image format is the Docker image
format, which was developed by the Docker open source project for packaging,
distributing, and running containers using the docker command. Subsequently, work
has begun by Docker, Inc., and others to standardize the container image format via
the Open Container Initiative (OCI) project. While the OCI standard achieved a 1.0
release milestone in mid-2017, adoption of these standards is proceeding slowly. The
Docker image format continues to be the de facto standard and is made up of a series
of filesystem layers. Each layer adds, removes, or modifies files from the preceding
layer in the filesystem. This is an example of an overlay filesystem. The overlay system
is used both when packaging up the image and when the image is actually being used.
During runtime, there are a variety of different concrete implementations of such
filesystems, including aufs, overlay, and overlay2.

Container Layering
The phrases “Docker image format” and “container images” may be a bit confusing.
The image isn’t a single file but rather a specification for a manifest file that points to
other files. The manifest and associated files are often treated by users as a unit. The
level of indirection allows for more efficient storage and transmittal. Associated with
this format is an API for uploading and downloading images to an image registry.

Container images are constructed with a series of filesystem layers, where each layer
inherits and modifies the layers that came before it. To help explain this in detail, let’s
build some containers. Note that for correctness, the ordering of the layers should be
bottom up, but for ease of understanding, we take the opposite approach:

.
└── container A: a base operating system only, such as Debian
    └── container B: build upon #A, by adding Ruby v2.1.10
    └── container C: build upon #A, by adding Golang v1.6

At this point we have three containers: A, B, and C. B and C are forked from A and
share nothing besides the base container’s files. Taking it further, we can build on top
of B by adding Ruby on Rails (version 4.2.6). We may also want to support a legacy
application that requires an older version of Ruby on Rails (e.g., version 3.2.x). We
can build a container image to support that application based on B also, planning to
someday migrate the app to version 4:

. (continuing from above)
└── container B: build upon #A, by adding Ruby v2.1.10
    └── container D: build upon #B, by adding Rails v4.2.6
    └── container E: build upon #B, by adding Rails v3.2.x

Conceptually, each container image layer builds upon a previous one. Each parent
reference is a pointer. While the example here is a simple set of containers, other
real-world containers can be part of a larger extensive directed acyclic graph.
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Container images are typically combined with a container configuration file, which
provides instructions on how to set up the container environment and execute
an application entry point. The container configuration often includes information
on how to set up networking, namespace isolation, resource constraints (cgroups),
and what syscall restrictions should be placed on a running container instance.
The container root filesystem and configuration file are typically bundled using the
Docker image format.

Containers fall into two main categories:

• System containers•
• Application containers•

System containers seek to mimic virtual machines and often run a full boot process.
They often include a set of system services typically found in a VM, such as ssh,
cron, and syslog. When Docker was new, these types of containers were much more
common. Over time, they have come to be seen as poor practice and application
containers have gained favor.

Application containers differ from system containers in that they commonly run a
single program. While running a single program per container might seem like an
unnecessary constraint, it provides the perfect level of granularity for composing
scalable applications and is a design philosophy that is leveraged heavily by Pods. We
will examine how Pods work in detail in Chapter 5.

Building Application Images with Docker
In general, container orchestration systems like Kubernetes are focused on building
and deploying distributed systems made up of application containers. Consequently,
we will focus on application containers for the remainder of this chapter.

Dockerfiles
A Dockerfile can be used to automate the creation of a Docker container image.

Let’s start by building an application image for a simple Node.js program. This
example would be very similar for many other dynamic languages, like Python or
Ruby.

The simplest of npm/Node/Express apps has two files: package.json (Example 2-1)
and server.js (Example 2-2). Put these in a directory and then run npm install
express --save to establish a dependency on Express and install it.
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Example 2-1. package.json

{
  "name": "simple-node",
  "version": "1.0.0",
  "description": "A sample simple application for Kubernetes Up & Running",
  "main": "server.js",
  "scripts": {
    "start": "node server.js"
  },
  "author": ""
}

Example 2-2. server.js

var express = require('express');

var app = express();
app.get('/', function (req, res) {
  res.send('Hello World!');
});
app.listen(3000, function () {
  console.log('Listening on port 3000!');
  console.log('  http://localhost:3000');
});

To package this up as a Docker image, create two additional files: .dockerignore
(Example 2-3) and the Dockerfile (Example 2-4). The Dockerfile is a recipe for how
to build the container image, while .dockerignore defines the set of files that should
be ignored when copying files into the image. A full description of the syntax of the
Dockerfile is available on the Docker website.

Example 2-3. .dockerignore

node_modules

Example 2-4. Dockerfile

# Start from a Node.js 16 (LTS) image 
FROM node:16

# Specify the directory inside the image in which all commands will run 
WORKDIR /usr/src/app

# Copy package files and install dependencies 
COPY package*.json ./
RUN npm install
RUN npm install express
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# Copy all of the app files into the image 
COPY . .

# The default command to run when starting the container 
CMD [ "npm", "start" ]

Every Dockerfile builds on other container images. This line specifies that we
are starting from the node:16 image on the Docker Hub. This is a preconfigured
image with Node.js 16.

This line sets the work directory in the container image for all following
commands.

These three lines initialize the dependencies for Node.js. First, we copy the
package files into the image. This will include package.json and package-lock.json.
The RUN command then runs the correct command in the container to install the
necessary dependencies.

Now we copy the rest of the program files into the image. This will include
everything except node_modules, as that is excluded via the .dockerignore file.

Finally, we specify the command that should be run when the container is run.

Run the following command to create the simple-node Docker image:

$ docker build -t simple-node .

When you want to run this image, you can do it with the following command.
Navigate to http://localhost:3000 to access the program running in the container:

$ docker run --rm -p 3000:3000 simple-node

At this point, our simple-node image lives in the local Docker registry where the
image was built and is only accessible to a single machine. The true power of Docker
comes from the ability to share images across thousands of machines and the broader
Docker community.

Optimizing Image Sizes
There are several gotchas people encounter when they begin to experiment with
container images that lead to overly large images. The first thing to remember is that
files that are removed by subsequent layers in the system are actually still present in
the images; they’re just inaccessible. Consider the following situation:

.
└── layer A: contains a large file named 'BigFile'
    └── layer B: removes 'BigFile'
        └── layer C: builds on B by adding a static binary
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You might think that BigFile is no longer present in this image. After all, when you
run the image, it is no longer accessible. But in fact it is still present in layer A, which
means that whenever you push or pull the image, BigFile is still transmitted through
the network, even if you can no longer access it.

Another pitfall revolves around image caching and building. Remember that each
layer is an independent delta from the layer below it. Every time you change a layer,
it changes every layer that comes after it. Changing the preceding layers means that
they need to be rebuilt, repushed, and repulled to deploy your image to development.

To understand this more fully, consider two images:

.
└── layer A: contains a base OS
    └── layer B: adds source code server.js
        └── layer C: installs the 'node' package

versus:

.
└── layer A: contains a base OS
    └── layer B: installs the 'node' package
        └── layer C: adds source code server.js

It seems obvious that both of these images will behave identically, and indeed the
first time they are pulled, they do. However, consider what happens when server.js
changes. In the second case, it is only that change that needs to be pulled or pushed,
but in the first case, both server.js and the layer providing the node package need to be
pulled and pushed, since the node layer is dependent on the server.js layer. In general,
you want to order your layers from least likely to change to most likely to change in
order to optimize the image size for pushing and pulling. This is why, in Example 2-4,
we copy the package*.json files and install dependencies before copying the rest of
the program files. A developer is going to update and change the program files much
more often than the dependencies.

Image Security
When it comes to security, there are no shortcuts. When building images that will
ultimately run in a production Kubernetes cluster, be sure to follow best practices
for packaging and distributing applications. For example, don’t build containers with
passwords baked in—and this includes not just in the final layer, but any layers in
the image. One of the counterintuitive problems introduced by container layers is
that deleting a file in one layer doesn’t delete that file from preceding layers. It still
takes up space, and it can be accessed by anyone with the right tools—an enterprising
attacker can simply create an image that only consists of the layers that contain the
password.
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Secrets and images should never be mixed. If you do so, you will be hacked, and you
will bring shame to your entire company or department. We all want to be on TV
someday, but there are better ways to go about that.

Additionally, because container images are narrowly focused on running individual
applications, a best practice is to minimize the files within the container image. Every
additional library in an image provides a potential vector for vulnerabilities to appear
in your application. Depending on the language, you can achieve very small images
with a very tight set of dependencies. This smaller set ensures that your image isn’t
exposed to vulnerabilities in libraries it would never use.

Multistage Image Builds
One of the most common ways to accidentally build large images is to do the actual
program compilation as part of the construction of the application container image.
Compiling code as part of the image build feels natural, and it is the easiest way to
build a container image from your program. The trouble with doing this is that it
leaves all of the unnecessary development tools, which are usually quite large, lying
around inside your image and slowing down your deployments.

To resolve this problem, Docker introduced multistage builds. With multistage builds,
rather than producing a single image, a Docker file can actually produce multiple
images. Each image is considered a stage. Artifacts can be copied from preceding
stages to the current stage.

To illustrate this concretely, we will look at how to build our example application,
kuard. This is a somewhat complicated application that involves a React.js frontend
(with its own build process) that then gets embedded into a Go program. The Go
program runs a backend API server that the React.js frontend interacts with.

A simple Dockerfile might look like this:

FROM golang:1.17-alpine

# Install Node and NPM
RUN apk update && apk upgrade && apk add --no-cache git nodejs bash npm

# Get dependencies for Go part of build
RUN go get -u github.com/jteeuwen/go-bindata/...
RUN go get github.com/tools/godep
RUN go get github.com/kubernetes-up-and-running/kuard

WORKDIR /go/src/github.com/kubernetes-up-and-running/kuard

# Copy all sources in
COPY . .

# This is a set of variables that the build script expects
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ENV VERBOSE=0
ENV PKG=github.com/kubernetes-up-and-running/kuard
ENV ARCH=amd64
ENV VERSION=test

# Do the build. This script is part of incoming sources.
RUN build/build.sh

CMD [ "/go/bin/kuard" ]

This Dockerfile produces a container image containing a static executable, but it also
contains all of the Go development tools and the tools to build the React.js frontend
and the source code for the application, neither of which are needed by the final
application. The image, across all layers, adds up to over 500 MB.

To see how we would do this with multistage builds, examine the following multi‐
stage Dockerfile:

# STAGE 1: Build
FROM golang:1.17-alpine AS build

# Install Node and NPM
RUN apk update && apk upgrade && apk add --no-cache git nodejs bash npm

# Get dependencies for Go part of build
RUN go get -u github.com/jteeuwen/go-bindata/...
RUN go get github.com/tools/godep

WORKDIR /go/src/github.com/kubernetes-up-and-running/kuard

# Copy all sources in
COPY . .

# This is a set of variables that the build script expects
ENV VERBOSE=0
ENV PKG=github.com/kubernetes-up-and-running/kuard
ENV ARCH=amd64
ENV VERSION=test

# Do the build. Script is part of incoming sources.
RUN build/build.sh

# STAGE 2: Deployment
FROM alpine

USER nobody:nobody
COPY --from=build /go/bin/kuard /kuard

CMD [ "/kuard" ]

This Dockerfile produces two images. The first is the build image, which contains the
Go compiler, React.js toolchain, and source code for the program. The second is the
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deployment image, which simply contains the compiled binary. Building a container
image using multistage builds can reduce your final container image size by hundreds
of megabytes and thus dramatically speed up your deployment times, since generally,
deployment latency is gated on network performance. The final image produced
from this Dockerfile is somewhere around 20 MB.

These scripts are present in the kuard repository on GitHub and you can build and
run this image with the following commands:

# Note: if you are running on Windows you may need to fix line-endings using:
# --config core.autocrlf=input
$ git clone https://github.com/kubernetes-up-and-running/kuard
$ cd kuard
$ docker build -t kuard .
$ docker run --rm -p 8080:8080 kuard

Storing Images in a Remote Registry
What good is a container image if it’s only available on a single machine?

Kubernetes relies on the fact that images described in a Pod manifest are available
across every machine in the cluster. One option for getting this image to all machines
in the cluster would be to export the kuard image and import it on each of them.
We can’t think of anything more tedious than managing Docker images this way.
The process of manually importing and exporting Docker images has human error
written all over it. Just say no!

The standard within the Docker community is to store Docker images in a remote
registry. There are tons of options when it comes to Docker registries, and what you
choose will be largely based on your needs in terms of security and collaboration
features.

Generally speaking, the first choice you need to make regarding a registry is whether
to use a private or a public registry. Public registries allow anyone to download
images stored in the registry, while private registries require authentication to down‐
load images. In choosing public versus private, it’s helpful to consider your use case.

Public registries are great for sharing images with the world because they allow for
easy, unauthenticated use of the container images. You can easily distribute your
software as a container image and have confidence that users everywhere will have
the exact same experience.

In contrast, a private registry is best for storing applications that are private to your
service and that you don’t want the world to use. Additionally, private registries often
provide better availability and security guarantees because they are specific to you
and your images rather than serving the world.
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Regardless, to push an image, you need to authenticate to the registry. You can gener‐
ally do this with the docker login command, though there are some differences for
certain registries. In the examples in this book we are pushing to the Google Cloud
Platform registry, called the Google Container Registry (GCR); other clouds, includ‐
ing Azure and Amazon Web Services (AWS), also have hosted container registries.
For new users hosting publicly readable images, the Docker Hub is a great place to
start.

Once you are logged in, you can tag the kuard image by prepending the target Docker
registry. You can also append an identifier that is usually used for the version or
variant of that image, separated by a colon (:):

$ docker tag kuard gcr.io/kuar-demo/kuard-amd64:blue

Then you can push the kuard image:

$ docker push gcr.io/kuar-demo/kuard-amd64:blue

Now that the kuard image is available on a remote registry, it’s time to deploy it using
Docker. When we pushed the image to GCR, it was marked as public, so it will be
available everywhere without authentication.

The Container Runtime Interface
Kubernetes provides an API for describing an application deployment, but relies on
a container runtime to set up an application container using the container-specific
APIs native to the target OS. On a Linux system that means configuring cgroups
and namespaces. The interface to this container runtime is defined by the Container
Runtime Interface (CRI) standard. The CRI API is implemented by a number of
different programs, including the containerd-cri built by Docker and the cri-o
implementation contributed by Red Hat. When you install the Docker tooling, the
containerd runtime is also installed and used by the Docker daemon.

Starting with release 1.25 of Kubernetes, only container runtimes that support the
CRI will work with Kubernetes. Fortunately, managed Kubernetes providers have
made this transition nearly automatic for users of managed Kubernetes.

Running Containers with Docker
In Kubernetes, containers are usually launched by a daemon on each node called
the kubelet; however, it’s easier to get started with containers using the Docker
command-line tool. The Docker CLI tool can be used to deploy containers. To deploy
a container from the gcr.io/kuar-demo/kuard-amd64:blue image, run the following
command:
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$ docker run -d --name kuard \
  --publish 8080:8080 \
  gcr.io/kuar-demo/kuard-amd64:blue

This command starts the kuard container and maps ports 8080 on your local
machine to 8080 in the container. The --publish option can be shortened to -p.
This forwarding is necessary because each container gets its own IP address, so listen‐
ing on localhost inside the container doesn’t cause you to listen on your machine.
Without the port forwarding, connections will be inaccessible to your machine. The
-d option specifies that this should run in the background (daemon), while --name
kuard gives the container a friendly name.

Exploring the kuard Application
kuard exposes a simple web interface, which you can load by pointing your browser
at http://localhost:3000 or via the command line:

$ curl http://localhost:8080

kuard also exposes a number of interesting functions that we will explore later on in
this book.

Limiting Resource Usage
Docker enables applications to use fewer resources by exposing the underlying
cgroup technology provided by the Linux kernel. These capabilities are likewise used
by Kubernetes to limit the resources each Pod uses.

Limiting memory resources
One of the key benefits to running applications within a container is the ability to
restrict resource utilization. This allows multiple applications to coexist on the same
hardware and ensures fair usage.

To limit kuard to 200 MB of memory and 1 GB of swap space, use the --memory and
--memory-swap flags with the docker run command.

Stop and remove the current kuard container:

$ docker stop kuard
$ docker rm kuard

Then start another kuard container using the appropriate flags to limit memory
usage:

$ docker run -d --name kuard \
  --publish 8080:8080 \
  --memory 200m \
  --memory-swap 1G \
  gcr.io/kuar-demo/kuard-amd64:blue
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If the program in the container uses too much memory, it will be terminated.

Limiting CPU resources
Another critical resource on a machine is the CPU. Restrict CPU utilization using the
--cpu-shares flag with the docker run command:

$ docker run -d --name kuard \
  --publish 8080:8080 \
  --memory 200m \
  --memory-swap 1G \
  --cpu-shares 1024 \
  gcr.io/kuar-demo/kuard-amd64:blue

Cleanup
Once you are done building an image, you can delete it with the docker rmi

command:

docker rmi <tag-name>

or:

docker rmi <image-id>

Images can either be deleted via their tag name (e.g., gcr.io/kuar-demo/kuard-
amd64:blue) or via their image ID. As with all ID values in the docker tool, the
image ID can be shortened as long as it remains unique. Generally only three or four
characters of the ID are necessary.

It’s important to note that unless you explicitly delete an image, it will live on your
system forever, even if you build a new image with an identical name. Building this
new image simply moves the tag to the new image; it doesn’t delete or replace the old
image.

Consequently, as you iterate while you are creating a new image, you will often create
many, many different images that take up unnecessary space on your computer. To
see the images currently on your machine, you can use the docker images command.
You can then delete tags you are no longer using.

Docker provides a tool called docker system prune for doing general cleanup. This
will remove all stopped containers, all untagged images, and all unused image layers
cached as part of the build process. Use it carefully.

A slightly more sophisticated approach is to set up a cron job to run an image
garbage collector. For example, you can easily run docker system prune as a recur‐
ring cron job, once per day or once per hour, depending on how many images you
are creating.
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Summary
Application containers provide a clean abstraction for applications, and when pack‐
aged in the Docker image format, applications become easy to build, deploy, and
distribute. Containers also provide isolation between applications running on the
same machine, which helps avoid dependency conflicts.

In future chapters, we’ll see how the ability to mount external directories means
we can run not only stateless applications in a container, but also applications like
MySQL and others that generate lots of data.
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CHAPTER 3

Deploying a Kubernetes Cluster

Now that you have successfully built an application container, the next step is to
learn how to transform it into a complete, reliable, scalable distributed system. To
do that, you need a working Kubernetes cluster. At this point, there are cloud-based
Kubernetes services in most public clouds that make it easy to create a cluster with
a few command-line instructions. We highly recommend this approach if you are
just getting started with Kubernetes. Even if you are ultimately planning on running
Kubernetes on bare metal, it’s a good way to quickly get started with Kubernetes,
learn about Kubernetes itself, and then learn how to install it on physical machines.
Furthermore, managing a Kubernetes cluster is a complicated task in itself, and, for
most people, it makes sense to defer this management to the cloud—especially when
the management service is free in most clouds.

Of course, using a cloud-based solution requires paying for those cloud-based
resources as well as having an active network connection to the cloud. For these
reasons, local development can be more attractive, and in that case, the minikube tool
provides an easy-to-use way to get a local Kubernetes cluster up and running in a VM
on your local laptop or desktop. Though this is a nice option, minikube only creates
a single-node cluster, which doesn’t quite demonstrate all of the aspects of a complete
Kubernetes cluster. For that reason, we recommend people start with a cloud-based
solution, unless it really doesn’t work for their situation. A more recent alternative is
to run a Docker-in-Docker cluster, which can spin up a multinode cluster on a single
machine. This project is still in beta, though, so keep in mind that you may encounter
unexpected issues.

If you truly insist on starting on bare metal, see the Appendix at the end of this book
for instructions for building a cluster from a collection of Raspberry Pi single-board
computers. These instructions use the kubeadm tool and can be adapted to other
machines beyond Raspberry Pis.
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Installing Kubernetes on a Public Cloud Provider
This chapter covers installing Kubernetes on the three major cloud providers: the
Google Cloud Platform, Microsoft Azure, and Amazon Web Services.

If you choose to use a cloud provider to manage Kubernetes, you need to install
only one of these options; once you have a cluster configured and ready to go, you
can skip to “The Kubernetes Client” on page 32, unless you would prefer to install
Kubernetes elsewhere.

Installing Kubernetes with Google Kubernetes Engine
The Google Cloud Platform (GCP) offers a hosted Kubernetes-as-a-Service called
Google Kubernetes Engine (GKE). To get started with GKE, you need a Google Cloud
Platform account with billing enabled and the gcloud tool installed.

Once you have gcloud installed, set a default zone:

$ gcloud config set compute/zone us-west1-a

Then you can create a cluster:

$ gcloud container clusters create kuar-cluster --num-nodes=3

This will take a few minutes. When the cluster is ready, you can get credentials for the
cluster using:

$ gcloud container clusters get-credentials kuar-cluster

If you run into trouble, you can find the complete instructions for creating a GKE
cluster in the Google Cloud Platform documentation.

Installing Kubernetes with Azure Kubernetes Service
Microsoft Azure offers a hosted Kubernetes-as-a-Service as part of the Azure Con‐
tainer Service. The easiest way to get started with Azure Container Service is to use
the built-in Azure Cloud Shell in the Azure portal. You can activate the shell by
clicking the shell icon in the upper-right toolbar:

The shell has the az tool automatically installed and configured to work with your
Azure environment.

Alternatively, you can install the az CLI on your local machine.

When you have the shell up and working, you can run:

$ az group create --name=kuar --location=westus
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Once the resource group is created, you can create a cluster using:

$ az aks create --resource-group=kuar --name=kuar-cluster

This will take a few minutes. Once the cluster is created, you can get credentials for
the cluster with:

$ az aks get-credentials --resource-group=kuar --name=kuar-cluster

If you don’t already have the kubectl tool installed, you can install it using:

$ az aks install-cli

You can find complete instructions for installing Kubernetes on Azure in the Azure
documentation.

Installing Kubernetes on Amazon Web Services
Amazon offers a managed Kubernetes service called Elastic Kubernetes Service
(EKS). The easiest way to create an EKS cluster is via the open source eksctl
command-line tool.

Once you have eksctl installed and in your path, you can run the following com‐
mand to create a cluster:

$ eksctl create cluster

For more details on installation options (such as node size and more), view the help
using this command:

$ eksctl create cluster --help

The cluster installation includes the right configuration for the kubectl command-
line tool. If you don’t already have kubectl installed, follow the instructions in the
documentation.

Installing Kubernetes Locally Using minikube
If you need a local development experience, or you don’t want to pay for cloud
resources, you can install a simple single-node cluster using minikube. Alternatively,
if you have already installed Docker Desktop, it comes bundled with a single-machine
installation of Kubernetes.

While minikube (or Docker Desktop) is a good simulation of a Kubernetes cluster,
it’s really intended for local development, learning, and experimentation. Because
it only runs in a VM on a single node, it doesn’t provide the reliability of a
distributed Kubernetes cluster. In addition, certain features described in this book
require integration with a cloud provider. These features are either not available or
work in a limited way with minikube.
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You need to have a hypervisor installed on your machine to use
minikube. For Linux and macOS, this is generally VirtualBox. On
Windows, the Hyper-V hypervisor is the default option. Make sure
you install the hypervisor before using minikube.

You can find the minikube tool on GitHub. There are binaries for Linux, macOS, and
Windows that you can download. Once you have the minikube tool installed, you can
create a local cluster using:

$ minikube start

This will create a local VM, provision Kubernetes, and create a local kubectl config‐
uration that points to that cluster. As mentioned previously, this cluster only has
a single node, so while it is useful, it has some differences with most production
deployments of Kubernetes.

When you are done with your cluster, you can stop the VM with:

$ minikube stop

If you want to remove the cluster, you can run:

$ minikube delete

Running Kubernetes in Docker
A different approach to running a Kubernetes cluster, which has been developed
more recently, uses Docker containers to simulate multiple Kubernetes nodes instead
of running everything in a virtual machine. The kind project provides a great experi‐
ence for launching and managing test clusters in Docker. (kind stands for Kubernetes
IN Docker.) kind is still a work in progress (pre 1.0), but is widely used by those
building Kubernetes for fast and easy testing.

Installation instructions for your platform can be found at the kind site. Once you get
it installed, creating a cluster is as easy as:

$ kind create cluster --wait 5m
$ export KUBECONFIG="$(kind get kubeconfig-path)"
$ kubectl cluster-info
$ kind delete cluster

The Kubernetes Client
The official Kubernetes client is kubectl: a command-line tool for interacting with
the Kubernetes API. kubectl can be used to manage most Kubernetes objects, such
as Pods, ReplicaSets, and Services. kubectl can also be used to explore and verify the
overall health of the cluster.
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We’ll use the kubectl tool to explore the cluster you just created.

Checking Cluster Status
The first thing you can do is check the version of the cluster that you are running:

$ kubectl version

This will display two different versions: the version of the local kubectl tool, as well
as the version of the Kubernetes API server.

Don’t worry if these versions are different. The Kubernetes tools
are backward- and forward-compatible with different versions of
the Kubernetes API as long as you stay within two minor versions
for both the tools and the cluster and don’t try to use newer fea‐
tures on an older cluster. Kubernetes follows the semantic version‐
ing specification, where the minor version is the middle number
(e.g., the 18 in 1.18.2). However, you will want to make sure that
you are within the supported version skew, which is three versions.
If you are not, you may run into problems.

Now that we’ve established that you can communicate with your Kubernetes cluster,
we’ll explore the cluster in more depth.

First, you can get a simple diagnostic for the cluster. This is a good way to verify that
your cluster is generally healthy:

$ kubectl get componentstatuses

The output should look like this:

NAME                 STATUS    MESSAGE              ERROR
scheduler            Healthy   ok
controller-manager   Healthy   ok
etcd-0               Healthy   {"health": "true"}

As Kubernetes changes and improves over time, the output of the
kubectl command sometimes changes. Don’t worry if the output
doesn’t look exactly identical to what is shown in the examples in
this book.

You can see here the components that make up the Kubernetes cluster. The
controller-manager is responsible for running various controllers that regulate
behavior in the cluster; for example, ensuring that all of the replicas of a service are
available and healthy. The scheduler is responsible for placing different Pods onto
different nodes in the cluster. Finally, the etcd server is the storage for the cluster
where all of the API objects are stored.
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Listing Kubernetes Nodes
Next, you can list out all of the nodes in your cluster:

$ kubectl get nodes
NAME     STATUS   ROLES                  AGE     VERSION
kube0    Ready    control-plane,master   45d     v1.22.4
kube1    Ready    <none>                 45d     v1.22.4
kube2    Ready    <none>                 45d     v1.22.4
kube3    Ready    <none>                 45d     v1.22.4

You can see this is a four-node cluster that’s been up for 45 days. In Kubernetes, nodes
are separated into control-plane nodes that contain containers like the API server,
scheduler, etc., which manage the cluster, and worker nodes where your containers
will run. Kubernetes won’t generally schedule work onto control-plane nodes to
ensure that user workloads don’t harm the overall operation of the cluster.

You can use the kubectl describe command to get more information about a
specific node, such as kube1:

$ kubectl describe nodes kube1

First, you see basic information about the node:

Name:                   kube1
Role:
Labels:                 beta.kubernetes.io/arch=arm
                        beta.kubernetes.io/os=linux
                        kubernetes.io/hostname=node-1

You can see that this node is running the Linux OS on an ARM processor.

Next, you see information about the operation of kube1 itself (dates have been
removed from this output for concision):

Conditions:
  Type                 Status  ...   Reason                       Message
 -----                 ------        ------                       -------
  NetworkUnavailable   False   ...   FlannelIsUp                  Flannel...
  MemoryPressure       False   ...   KubeletHasSufficientMemory   kubelet...
  DiskPressure         False   ...   KubeletHasNoDiskPressure     kubelet...
  PIDPressure          False   ...   KubeletHasSufficientPID      kubelet...
  Ready                True    ...   KubeletReady                 kubelet...

These statuses show that the node has sufficient disk and memory space and is
reporting that it is healthy to the Kubernetes master. Next, there is information about
the capacity of the machine:

Capacity:
 alpha.kubernetes.io/nvidia-gpu:        0
 cpu:                                   4
 memory:                                882636Ki
 pods:                                  110
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Allocatable:
 alpha.kubernetes.io/nvidia-gpu:        0
 cpu:                                   4
 memory:                                882636Ki
 pods:                                  110

Then there is information about the software on the node, including the version of
Docker that is running, the versions of Kubernetes and the Linux kernel, and more:

System Info:
  Machine ID:                 44d8f5dd42304af6acde62d233194cc6
  System UUID:                c8ab697e-fc7e-28a2-7621-94c691120fb9
  Boot ID:                    e78d015d-81c2-4876-ba96-106a82da263e
  Kernel Version:             4.19.0-18-amd64
  OS Image:                   Debian GNU/Linux 10 (buster)
  Operating System:           linux
  Architecture:               amd64
  Container Runtime Version:  containerd://1.4.12
  Kubelet Version:            v1.22.4
  Kube-Proxy Version:         v1.22.4
PodCIDR:                      10.244.1.0/24
PodCIDRs:                     10.244.1.0/24

Finally, there is information about the Pods that are currently running on this node:

Non-terminated Pods:            (3 in total)
  Namespace   Name        CPU Requests CPU Limits Memory Requests Memory Limits
  ---------   ----        ------------ ---------- --------------- -------------
  kube-system kube-dns...  260m (6%)    0 (0%)     140Mi (16%)     220Mi (25%)
  kube-system kube-fla...  0 (0%)       0 (0%)     0 (0%)          0 (0%)
  kube-system kube-pro...  0 (0%)       0 (0%)     0 (0%)          0 (0%)
Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.
  CPU Requests  CPU Limits      Memory Requests Memory Limits
  ------------  ----------      --------------- -------------
  260m (6%)     0 (0%)          140Mi (16%)     220Mi (25%)
No events.

From this output, you can see the Pods on the node (e.g., the kube-dns Pod that sup‐
plies DNS services for the cluster), the CPU and memory that each Pod is requesting
from the node, as well as the total resources requested. It’s worth noting here that
Kubernetes tracks both the requests and the upper limits for resources for each Pod
that runs on a machine. The difference between requests and limits is described in
detail in Chapter 5, but in a nutshell, resources requested by a Pod are guaranteed
to be present on the node, while a Pod’s limit is the maximum amount of a given
resource that a Pod can consume. A Pod’s limit can be higher than its request, in
which case the extra resources are supplied on a best-effort basis. They are not
guaranteed to be present on the node.
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1 As you’ll learn in the next chapter, a namespace in Kubernetes is an entity for organizing Kubernetes
resources. You can think of it like a folder in a filesystem.

Cluster Components
One of the interesting aspects of Kubernetes is that many of the components that
make up the Kubernetes cluster are actually deployed using Kubernetes itself. We’ll
take a look at a few of these. These components use a number of the concepts that
we’ll introduce in later chapters. All of these components run in the kube-system
namespace.1

Kubernetes Proxy
The Kubernetes proxy is responsible for routing network traffic to load-balanced
services in the Kubernetes cluster. To do its job, the proxy must be present on every
node in the cluster. Kubernetes has an API object named DaemonSet, which you will
learn about in Chapter 11, that is used in many clusters to accomplish this. If your
cluster runs the Kubernetes proxy with a DaemonSet, you can see the proxies by
running:

$ kubectl get daemonSets --namespace=kube-system kube-proxy
NAME         DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR
kube-proxy   5         5         5       5            5           ...   45d

Depending on how your cluster is set up, the DaemonSet for the kube-proxy may be
named something else, or it’s possible that it won’t use a DaemonSet at all. Regardless,
the kube-proxy container should be running on all nodes in a cluster.

Kubernetes DNS
Kubernetes also runs a DNS server, which provides naming and discovery for the
services that are defined in the cluster. This DNS server also runs as a replicated
service on the cluster. Depending on the size of your cluster, you may see one or
more DNS servers running in your cluster. The DNS service is run as a Kubernetes
deployment, which manages these replicas (this may also be named coredns or some
other variant):

$ kubectl get deployments --namespace=kube-system core-dns
NAME       DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
core-dns   1         1         1            1           45d

There is also a Kubernetes service that performs load balancing for the DNS server:

$ kubectl get services --namespace=kube-system core-dns
NAME       CLUSTER-IP   EXTERNAL-IP   PORT(S)         AGE
core-dns   10.96.0.10   <none>  53/UDP,53/TCP   45d
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This shows that the DNS service for the cluster has the address 10.96.0.10. If you
log in to a container in the cluster, you’ll see that this has been populated into the /etc/
resolv.conf file for the container.

Kubernetes UI
If you want to visualize your cluster in a graphical user interface, most of the cloud
providers integrate such a visualization into the GUI for their cloud. If your cloud
provider doesn’t provide such a UI, or you prefer an in-cluster GUI, there is a
community supported GUI that you can install. See the documentation on how to
install the dashboard for these clusters. You can also use extensions for development
environments like Visual Studio Code to see the state of your cluster at a glance.

Summary
Hopefully at this point you have a Kubernetes cluster (or three) up and running and
you’ve used a few commands to explore the cluster you have created. Next, we’ll
spend some more time exploring the CLI to that Kubernetes cluster and teach you
how to master the kubectl tool. Throughout the rest of the book, you’ll be using
kubectl and your test cluster to explore the various objects in the Kubernetes API.
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CHAPTER 4

Common kubectl Commands

The kubectl command-line utility is a powerful tool, and in the following chapters,
you will use it to create objects and interact with the Kubernetes API. Before that,
however, it makes sense to go over the basic kubectl commands that apply to all
Kubernetes objects.

Namespaces
Kubernetes uses namespaces to organize objects in the cluster. You can think of
each namespace as a folder that holds a set of objects. By default, the kubectl
command-line tool interacts with the default namespace. If you want to use a
different namespace, you can pass kubectl the --namespace flag. For example,
kubectl --namespace=mystuff references objects in the mystuff namespace. You
can also use the shorthand -n flag if you’re feeling concise. If you want to interact
with all namespaces—for example, to list all Pods in your cluster—you can pass the
--all-namespaces flag.

Contexts
If you want to change the default namespace more permanently, you can use
a context. This gets recorded in a kubectl configuration file, usually located at
$HOME/.kube/config. This configuration file also stores how to both find and authen‐
ticate to your cluster. For example, you can create a context with a different default
namespace for your kubectl commands using:

$ kubectl config set-context my-context --namespace=mystuff
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This creates a new context, but it doesn’t actually start using it yet. To use this newly
created context, you can run:

$ kubectl config use-context my-context

Contexts can also be used to manage different clusters or different users for authenti‐
cating to those clusters using the --users or --clusters flags with the set-context
command.

Viewing Kubernetes API Objects
Everything contained in Kubernetes is represented by a RESTful resource. Through‐
out this book, we refer to these resources as Kubernetes objects. Each Kubernetes
object exists at a unique HTTP path; for example, https://your-k8s.com/api/v1/name‐
spaces/default/pods/my-pod leads to the representation of a Pod in the default name‐
space named my-pod. The kubectl command makes HTTP requests to these URLs to
access the Kubernetes objects that reside at these paths.

The most basic command for viewing Kubernetes objects via kubectl is get. If you
run kubectl get <resource-name>, you will get a listing of all resources in the
current namespace. If you want to get a specific resource, you can use kubectl get
<resource-name> <obj-name>.

By default, kubectl uses a human-readable printer for viewing the responses from
the API server, but this human-readable printer removes many of the details of
the objects to fit each object on one terminal line. One way to get slightly more
information is to add the -o wide flag, which gives more details, on a longer line. If
you want to view the complete object, you can also view the objects as raw JSON or
YAML using the -o json or -o yaml flags, respectively.

A common option for manipulating the output of kubectl is to remove the headers,
which is often useful when combining kubectl with Unix pipes (e.g., kubectl ... |
awk ...). If you specify the --no-headers flag, kubectl will skip the headers at the
top of the human-readable table.

Another common task is extracting specific fields from the object. kubectl uses the
JSONPath query language to select fields in the returned object. The complete details
of JSONPath are beyond the scope of this chapter, but as an example, this command
will extract and print the IP address of the specified Pod:

$ kubectl get pods my-pod -o jsonpath --template={.status.podIP}

You can also view multiple objects of different types by using a comma separated list
of types, for example:

$ kubectl get pods,services
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This will display all Pods and services for a given namespace.

If you are interested in more detailed information about a particular object, use the
describe command:

$ kubectl describe <resource-name> <obj-name>

This will provide a rich multiline human-readable description of the object as well as
any other relevant, related objects and events in the Kubernetes cluster.

If you would like to see a list of supported fields for each supported type of Kuber‐
netes object, you can use the explain command:

$ kubectl explain pods

Sometimes you want to continually observe the state of a particular Kubernetes
resource to see changes to the resource when they occur. For example, you might be
waiting for your application to restart. The --watch flag enables this. You can add this
flag to any kubectl get command to continuously monitor the state of a particular
resource.

Creating, Updating, and Destroying Kubernetes Objects
Objects in the Kubernetes API are represented as JSON or YAML files. These files are
either returned by the server in response to a query or posted to the server as part
of an API request. You can use these YAML or JSON files to create, update, or delete
objects on the Kubernetes server.

Let’s assume that you have a simple object stored in obj.yaml. You can use kubectl to
create this object in Kubernetes by running:

$ kubectl apply -f obj.yaml

Notice that you don’t need to specify the resource type of the object; it’s obtained
from the object file itself.

Similarly, after you make changes to the object, you can use the apply command
again to update the object:

$ kubectl apply -f obj.yaml

The apply tool will only modify objects that are different from the current objects in
the cluster. If the objects you are creating already exist in the cluster, it will simply
exit successfully without making any changes. This makes it useful for loops where
you want to ensure the state of the cluster matches the state of the filesystem. You can
repeatedly use apply to reconcile state.
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If you want to see what the apply command will do without actually making the
changes, you can use the --dry-run flag to print the objects to the terminal without
actually sending them to the server.

If you feel like making interactive edits instead of editing a local
file, you can instead use the edit command, which will download
the latest object state and then launch an editor that contains the
definition:

$ kubectl edit <resource-name> <obj-name>

After you save the file, it will be automatically uploaded back to the
Kubernetes cluster.

The apply command also records the history of previous configurations in an
annotation within the object. You can manipulate these records with the edit-last-
applied, set-last-applied, and view-last-applied commands. For example:

$ kubectl apply -f myobj.yaml view-last-applied

will show you the last state that was applied to the object.

When you want to delete an object, you can simply run:

$ kubectl delete -f obj.yaml

It is important to note that kubectl will not prompt you to confirm the deletion.
Once you issue the command, the object will be deleted.

Likewise, you can delete an object using the resource type and name:

$ kubectl delete <resource-name> <obj-name>

Labeling and Annotating Objects
Labels and annotations are tags for your objects. We’ll discuss the differences in
Chapter 6, but for now, you can update the labels and annotations on any Kubernetes
object using the label and annotate commands. For example, to add the color=red
label to a Pod named bar, you can run:

$ kubectl label pods bar color=red

The syntax for annotations is identical.

By default, label and annotate will not let you overwrite an existing label. To do this,
you need to add the --overwrite flag.

If you want to remove a label, you can use the <label-name>- syntax:

$ kubectl label pods bar color-

42 | Chapter 4: Common kubectl Commands



This will remove the color label from the Pod named bar.

Debugging Commands
kubectl also makes a number of commands available for debugging your containers.
You can use the following to see the logs for a running container:

$ kubectl logs <pod-name>

If you have multiple containers in your Pod, you can choose the container to view
using the -c flag.

By default, kubectl logs lists the current logs and exits. If you instead want to
continuously stream the logs back to the terminal without exiting, you can add the -f
(follow) command-line flag.

You can also use the exec command to execute a command in a running container:

$ kubectl exec -it <pod-name> -- bash

This will provide you with an interactive shell inside the running container so that
you can perform more debugging.

If you don’t have bash or some other terminal available within your container, you
can always attach to the running process:

$ kubectl attach -it <pod-name>

The attach command is similar to kubectl logs but will allow you to send input to
the running process, assuming that process is set up to read from standard input.

You can also copy files to and from a container using the cp command:

$ kubectl cp <pod-name>:</path/to/remote/file> </path/to/local/file>

This will copy a file from a running container to your local machine. You can also
specify directories, or reverse the syntax to copy a file from your local machine back
out to the container.

If you want to access your Pod via the network, you can use the port-forward com‐
mand to forward network traffic from the local machine to the Pod. This enables you
to securely tunnel network traffic through to containers that might not be exposed
anywhere on the public network. For example, the following command:

$ kubectl port-forward <pod-name> 8080:80

opens up a connection that forwards traffic from the local machine on port 8080 to
the remote container on port 80.
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You can also use the port-forward command with services by
specifying services/<service-name> instead of <pod-name>, but
note that if you do port-forward to a service, the requests will only
ever be forwarded to a single Pod in that service. They will not go
through the service load balancer.

If you want to view Kubernetes events, you can use the kubectl get events com‐
mand to see a list of the latest 10 events on all objects in a given namespace:

$ kubectl get events

You can also stream events as they happen by adding --watch to the kubectl get
events command. You may also wish to include -A to see events in all namespaces.

Finally, if you are interested in how your cluster is using resources, you can use
the top command to see the list of resources in use by either nodes or Pods. This
command:

$ kubectl top nodes

will display the total CPU and memory in use by the nodes in terms of both absolute
units (e.g., cores) and percentage of available resources (e.g., total number of cores).
Similarly, this command:

$ kubectl top pods

will show all Pods and their resource usage. By default it only displays Pods in the
current namespace, but you can add the --all-namespaces flag to see resource usage
by all Pods in the cluster.

These top commands only work if a metrics server is running in your cluster. Metrics
servers are present in nearly every managed Kubernetes environment and many
unmanaged environments as well. But if these commands fail, it may be because you
need to install a metrics server.

Cluster Management
The kubectl tool can also be used to manage the cluster itself. The most common
action that people take to manage their cluster is to cordon and drain a particular
node. When you cordon a node, you prevent future Pods from being scheduled onto
that machine. When you drain a node, you remove any Pods that are currently
running on that machine. A good example use case for these commands would be
removing a physical machine for repairs or upgrades. In that scenario, you can use
kubectl cordon followed by kubectl drain to safely remove the machine from the
cluster. Once the machine is repaired, you can use kubectl uncordon to re-enable
Pods scheduling onto the node. There is no undrain command; Pods will naturally
get scheduled onto the empty node as they are created. For something quick affecting
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a node (e.g., a machine reboot), it is generally unnecessary to cordon or drain; it’s
only necessary if the machine will be out of service long enough that you want the
Pods to move to a different machine.

Command Autocompletion
kubectl supports integration with your shell to enable tab completion for both
commands and resources. Depending on your environment, you may need to install
the bash-completion package before you activate command autocompletion. You
can do this using the appropriate package manager:

# macOS
$ brew install bash-completion

# CentOS/Red Hat
$ yum install bash-completion

# Debian/Ubuntu
$ apt-get install bash-completion

When installing on macOS, make sure to follow the instructions from brew about
how to activate tab completion using your ${HOME}/.bash_profile.

Once bash-completion is installed, you can temporarily activate it for your terminal
using:

$ source <(kubectl completion bash)

To make this automatic for every terminal, add it to your ${HOME}/.bashrc file:

$ echo "source <(kubectl completion bash)" >> ${HOME}/.bashrc

If you use zsh, you can find similar instructions online.

Alternative Ways of Viewing Your Cluster
In addition to kubectl, there are other tools for interacting with your Kubernetes
cluster. For example, there are plug-ins for several editors that integrate Kubernetes
and the editor environment, including:

• Visual Studio Code•
• IntelliJ•
• Eclipse•

If you are using a managed Kubernetes service, most of them also feature a graphical
interface to Kubernetes integrated into their web-based user experience. Managed
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Kubernetes in the public cloud also integrates with sophisticated monitoring tools
that can help you gain insights into how your applications are running.

There are also several open source graphical interfaces for Kubernetes including
Rancher Dashboard and the Headlamp project.

Summary
kubectl is a powerful tool for managing your applications in your Kubernetes cluster.
This chapter has illustrated many of the common uses for the tool, but kubectl has a
great deal of built-in help available. You can start viewing this help with:

$ kubectl help

or:

$ kubectl help <command-name>
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CHAPTER 5

Pods

In earlier chapters, we discussed how you might go about containerizing your appli‐
cation, but in real-world deployments of containerized applications, you will often
want to colocate multiple applications into a single atomic unit, scheduled onto a
single machine.

A canonical example of such a deployment is illustrated in Figure 5-1, which consists
of a container serving web requests and a container synchronizing the filesystem with
a remote Git repository.

Figure 5-1. An example Pod with two containers and a shared filesystem

At first, it might seem tempting to wrap both the web server and the Git synchronizer
into a single container. After closer inspection, however, the reasons for the separa‐
tion become clear. First, the two containers have significantly different requirements
in terms of resource usage. Take, for example, memory: because the web server is
serving user requests, we want to ensure that it is always available and responsive. On
the other hand, the Git synchronizer isn’t really user-facing and has a “best effort”
quality of service.
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Suppose that our Git synchronizer has a memory leak. We need to ensure that the
Git synchronizer cannot use up memory that we want to use for our web server, since
this can affect performance or even crash the server.

This sort of resource isolation is exactly the sort of thing that containers are designed
to accomplish. By separating the two applications into two separate containers, we
can ensure reliable web server operation.

Of course, the two containers are quite symbiotic; it makes no sense to schedule
the web server on one machine and the Git synchronizer on another. Consequently,
Kubernetes groups multiple containers into a single atomic unit called a Pod. (The
name goes with the whale theme of Docker containers, since a pod is also a group of
whales.)

Though the grouping of multiple containers into a single Pod
seemed controversial or confusing when it was first introduced in
Kubernetes, it has subsequently been adopted by a variety of differ‐
ent applications to deploy their infrastructure. For example, several
service mesh implementations use a second sidecar container to
inject network management into an application’s Pod.

Pods in Kubernetes
A Pod is a collection of application containers and volumes running in the same
execution environment. Pods, not containers, are the smallest deployable artifact in a
Kubernetes cluster. This means all of the containers in a Pod always land on the same
machine.

Each container within a Pod runs in its own cgroup, but they share a number of
Linux namespaces.

Applications running in the same Pod share the same IP address and port space
(network namespace), have the same hostname (UTS namespace), and can commu‐
nicate using native interprocess communication channels over System V IPC or
POSIX message queues (IPC namespace). However, applications in different Pods
are isolated from each other; they have different IP addresses, hostnames, and more.
Containers in different Pods running on the same node might as well be on different
servers.

Thinking with Pods
One of the most common questions people ask when adopting Kubernetes is “What
should I put in a Pod?”
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Sometimes people see Pods and think, “Aha! A WordPress container and a MySQL
database container join together to make a WordPress instance. They should be in
the same Pod.” However, this kind of Pod is actually an example of an antipattern for
Pod construction. There are two reasons for this. First, WordPress and its database
are not truly symbiotic. If the WordPress container and the database container land
on different machines, they still can work together quite effectively, since they com‐
municate over a network connection. Secondly, you don’t necessarily want to scale
WordPress and the database as a unit. WordPress itself is mostly stateless, so you
may want to scale your WordPress frontends in response to frontend load by creating
more WordPress Pods. Scaling a MySQL database is much trickier, and you would be
much more likely to increase the resources dedicated to a single MySQL Pod. If you
group the WordPress and MySQL containers together in a single Pod, you are forced
to use the same scaling strategy for both containers, which doesn’t fit well.

In general, the right question to ask yourself when designing Pods is “Will these
containers work correctly if they land on different machines?” If the answer is no,
a Pod is the correct grouping for the containers. If the answer is yes, using multiple
Pods is probably the correct solution. In the example at the beginning of this chapter,
the two containers interact via a local filesystem. It would be impossible for them to
operate correctly if the containers were scheduled on different machines.

In the remaining sections of this chapter, we will describe how to create, introspect,
manage, and delete Pods in Kubernetes.

The Pod Manifest
Pods are described in a Pod manifest, which is just a text-file representation of
the Kubernetes API object. Kubernetes strongly believes in declarative configuration,
which means that you write down the desired state of the world in a configuration
file and then submit that configuration to a service that takes actions to ensure the
desired state becomes the actual state.

Declarative configuration is different from imperative configuration,
where you simply take a series of actions (for example, apt-get
install foo) to modify the state of a system. Years of production
experience have taught us that maintaining a written record of
the system’s desired state leads to a more manageable, reliable
system. Declarative configuration has numerous advantages, such
as enabling code review for configurations and documenting the
current state of the system for distributed teams. Additionally, it
is the basis for all of the self-healing behaviors in Kubernetes that
keep applications running without user action.
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The Kubernetes API server accepts and processes Pod manifests before storing them
in persistent storage (etcd). The scheduler also uses the Kubernetes API to find Pods
that haven’t been scheduled to a node. It then places the Pods onto nodes depending
on the resources and other constraints expressed in the Pod manifests. The scheduler
can place multiple Pods on the same machine as long as there are sufficient resources.
However, scheduling multiple replicas of the same application onto the same machine
is worse for reliability, since the machine is a single failure domain. Consequently,
the Kubernetes scheduler tries to ensure that Pods from the same application are
distributed onto different machines for reliability in the presence of such failures.
Once scheduled to a node, Pods don’t move and must be explicitly destroyed and
rescheduled.

Multiple instances of a Pod can be deployed by repeating the workflow described
here. However, ReplicaSets (Chapter 9) are better suited for running multiple instan‐
ces of a Pod. (It turns out they’re also better at running a single Pod, but we’ll get into
that later.)

Creating a Pod
The simplest way to create a Pod is via the imperative kubectl run command. For
example, to run our same kuard server, use:

$ kubectl run kuard --generator=run-pod/v1 \
  --image=gcr.io/kuar-demo/kuard-amd64:blue

You can see the status of this Pod by running:

$ kubectl get pods

You may initially see the container as Pending, but eventually you will see it transition
to Running, which means that the Pod and its containers have been successfully
created.

For now, you can delete this Pod by running:

$ kubectl delete pods/kuard

We will now move on to writing a complete Pod manifest by hand.

Creating a Pod Manifest
You can write Pod manifests using YAML or JSON, but YAML is generally preferred
because it is slightly more human-editable and supports comments. Pod manifests
(and other Kubernetes API objects) should really be treated in the same way as source
code, and things like comments help explain the Pod to new team members.

50 | Chapter 5: Pods



Pod manifests include a couple of key fields and attributes: namely, a metadata
section for describing the Pod and its labels, a spec section for describing volumes,
and a list of containers that will run in the Pod.

In Chapter 2, we deployed kuard using the following Docker command:

$ docker run -d --name kuard \
  --publish 8080:8080 \
  gcr.io/kuar-demo/kuard-amd64:blue

You can achieve a similar result by instead writing Example 5-1 to a file named kuard-
pod.yaml and then using kubectl commands to load that manifest to Kubernetes.

Example 5-1. kuard-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
spec:
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP

Though it may initially seem more cumbersome to manage your application in this
manner, this written record of desired state is the best practice in the long run,
especially for large teams with many applications.

Running Pods
In the previous section, we created a Pod manifest that can be used to start a Pod
running kuard. Use the kubectl apply command to launch a single instance of
kuard:

$ kubectl apply -f kuard-pod.yaml

The Pod manifest will be submitted to the Kubernetes API server. The Kubernetes
system will then schedule that Pod to run on a healthy node in the cluster, where the
kubelet daemon will monitor it. Don’t worry if you don’t understand all the moving
parts of Kubernetes right now; we’ll get into more details throughout the book.
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Listing Pods
Now that we have a Pod running, let’s go find out some more about it. Using the
kubectl command-line tool, we can list all Pods running in the cluster. For now, this
should only be the single Pod that we created in the previous step:

$ kubectl get pods
NAME       READY     STATUS    RESTARTS   AGE
kuard      1/1       Running   0          44s

You can see the name of the Pod (kuard) that we gave it in the previous YAML file.
In addition to the number of ready containers (1/1), the output also shows the status,
the number of times the Pod was restarted, and the age of the Pod.

If you ran this command immediately after the Pod was created, you might see:

NAME       READY     STATUS    RESTARTS   AGE
kuard      0/1       Pending   0          1s

The Pending state indicates that the Pod has been submitted but hasn’t been sched‐
uled yet. If a more significant error occurs, such as an attempt to create a Pod with a
container image that doesn’t exist, it will also be listed in the status field.

By default, the kubectl command-line tool is concise in the infor‐
mation it reports, but you can get more information via command-
line flags. Adding -o wide to any kubectl command will print out
slightly more information (while still keeping the information to a
single line). Adding -o json or -o yaml will print out the complete
objects in JSON or YAML, respectively. If you ever want to see
an exhaustive, verbose logging of what kubectl is doing, you can
add the --v=10 flag for comprehensive logging at the expense of
readability.

Pod Details
Sometimes, the single-line view is insufficient because it is too terse. Additionally,
Kubernetes maintains numerous events about Pods that are present in the event
stream, not attached to the Pod object.

To find out more information about a Pod (or any Kubernetes object), you can use
the kubectl describe command. For example, to describe the Pod we previously
created, you can run:

$ kubectl describe pods kuard

This outputs a bunch of information about the Pod in different sections. At the top is
basic information about the Pod:
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Name:           kuard
Namespace:      default
Node:           node1/10.0.15.185
Start Time:     Sun, 02 Jul 2017 15:00:38 -0700
Labels:         <none>
Annotations:    <none>
Status:         Running
IP:             192.168.199.238
Controllers:    <none>

Then there is information about the containers running in the Pod:

Containers:
  kuard:
    Container ID:  docker://055095...
    Image:         gcr.io/kuar-demo/kuard-amd64:blue
    Image ID:      docker-pullable://gcr.io/kuar-demo/kuard-amd64@sha256:a580...
    Port:          8080/TCP
    State:         Running
      Started:     Sun, 02 Jul 2017 15:00:41 -0700
    Ready:         True
    Restart Count: 0
    Environment:   <none>
    Mounts:
      /var/run/secrets/kubernetes.io/serviceaccount from default-token-cg5f5 (ro)

Finally, there are events related to the Pod, such as when it was scheduled, when its
image was pulled, and if/when it had to be restarted because of failing health checks:

Events:
  Seen From              SubObjectPath           Type      Reason    Message
  ---- ----              -------------           --------  ------    -------
  50s  default-scheduler                         Normal    Scheduled Success...
  49s  kubelet, node1    spec.containers{kuard}  Normal    Pulling   pulling...
  47s  kubelet, node1    spec.containers{kuard}  Normal    Pulled    Success...
  47s  kubelet, node1    spec.containers{kuard}  Normal    Created   Created...
  47s  kubelet, node1    spec.containers{kuard}  Normal    Started   Started...

Deleting a Pod
When it is time to delete a Pod, you can delete it either by name:

$ kubectl delete pods/kuard

or you can use the same file that you used to create it:

$ kubectl delete -f kuard-pod.yaml

When a Pod is deleted, it is not immediately killed. Instead, if you run kubectl
get pods, you will see that the Pod is in the Terminating state. All Pods have a
termination grace period. By default, this is 30 seconds. When a Pod is transitioned
to Terminating, it no longer receives new requests. In a serving scenario, the grace
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period is important for reliability because it allows the Pod to finish any active
requests that it may be in the middle of processing before it is terminated.

When you delete a Pod, any data stored in the containers associ‐
ated with that Pod will be deleted as well. If you want to persist
data across multiple instances of a Pod, you need to use Persistent
Volumes, described at the end of this chapter.

Accessing Your Pod
Now that your Pod is running, you’re going to want to access it for a variety of
reasons. You may want to load the web service that is running in the Pod. You may
want to view its logs to debug a problem that you are seeing, or even execute other
commands inside the Pod to help debug. The following sections detail various ways
you can interact with the code and data running inside your Pod.

Getting More Information with Logs
When your application needs debugging, it’s helpful to be able to dig deeper than
describe to understand what the application is doing. Kubernetes provides two com‐
mands for debugging running containers. The kubectl logs command downloads
the current logs from the running instance:

$ kubectl logs kuard

Adding the -f flag will cause the logs to stream continuously.

The kubectl logs command always tries to get logs from the currently running
container. Adding the --previous flag will get logs from a previous instance of the
container. This is useful, for example, if your containers are continuously restarting
due to a problem at container startup.

While using kubectl logs is useful for occasional debugging of
containers in production environments, it’s generally useful to use
a log aggregation service. There are several open source log aggre‐
gation tools, like Fluentd and Elasticsearch, as well as numerous
cloud logging providers. These log aggregation services provide
greater capacity for storing a longer duration of logs as well as
rich log searching and filtering capabilities. Many also provide the
ability to aggregate logs from multiple Pods into a single view.
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Running Commands in Your Container with exec
Sometimes logs are insufficient, and to truly determine what’s going on, you need to
execute commands in the context of the container itself. To do this, you can use:

$ kubectl exec kuard -- date

You can also get an interactive session by adding the -it flag:

$ kubectl exec -it kuard -- ash

Copying Files to and from Containers
In the previous chapter, we showed how to use the kubectl cp command to access
files in a Pod. Generally speaking, copying files into a container is an antipattern. You
really should treat the contents of a container as immutable. But occasionally it’s the
most immediate way to stop the bleeding and restore your service to health, since it
is quicker than building, pushing, and rolling out a new image. Once you stop the
bleeding, however, it is critically important that you immediately go and do the image
build and rollout, or you are guaranteed to forget the local change that you made to
your container and overwrite it in the subsequent regularly scheduled rollout.

Health Checks
When you run your application as a container in Kubernetes, it is automatically kept
alive for you using a process health check. This health check simply ensures that the
main process of your application is always running. If it isn’t, Kubernetes restarts it.

However, in most cases, a simple process check is insufficient. For example, if your
process has deadlocked and is unable to serve requests, a process health check will
still believe that your application is healthy since its process is still running.

To address this, Kubernetes introduced health checks for application liveness.
Liveness health checks run application-specific logic, like loading a web page, to
verify that the application is not just still running, but is functioning properly. Since
these liveness health checks are application-specific, you have to define them in your
Pod manifest.

Liveness Probe
Once the kuard process is up and running, we need a way to confirm that it is
actually healthy and shouldn’t be restarted. Liveness probes are defined per container,
which means each container inside a Pod is health checked separately. In Exam‐
ple 5-2, we add a liveness probe to our kuard container, which runs an HTTP request
against the /healthy path on our container.
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Example 5-2. kuard-pod-health.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
spec:
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      livenessProbe:
        httpGet:
          path: /healthy
          port: 8080
        initialDelaySeconds: 5
        timeoutSeconds: 1
        periodSeconds: 10
        failureThreshold: 3
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP

The preceding Pod manifest uses an httpGet probe to perform an HTTP GET request
against the /healthy endpoint on port 8080 of the kuard container. The probe sets
an initialDelaySeconds of 5, and thus will not be called until 5 seconds after all
the containers in the Pod are created. The probe must respond within the 1-second
timeout, and the HTTP status code must be equal to or greater than 200 and less than
400 to be considered successful. Kubernetes will call the probe every 10 seconds. If
more than three consecutive probes fail, the container will fail and restart.

You can see this in action by looking at the kuard status page. Create a Pod using this
manifest and then port-forward to that Pod:

$ kubectl apply -f kuard-pod-health.yaml
$ kubectl port-forward kuard 8080:8080

Point your browser to http://localhost:8080. Click the “Liveness Probe” tab. You
should see a table that lists all of the probes that this instance of kuard has received. If
you click the “Fail” link on that page, kuard will start to fail health checks. Wait long
enough, and Kubernetes will restart the container. At that point, the display will reset
and start over again. Details of the restart can be found by running the command
kubectl describe pods kuard. The “Events” section will have text similar to the
following:

Killing container with id docker://2ac946...:pod "kuard_default(9ee84...)"
container "kuard" is unhealthy, it will be killed and re-created.

56 | Chapter 5: Pods



While the default response to a failed liveness check is to restart the
Pod, the actual behavior is governed by the Pod’s restartPolicy.
There are three options for the restart policy: Always (the default),
OnFailure (restart only on liveness failure or nonzero process exit
code), or Never.

Readiness Probe
Of course, liveness isn’t the only kind of health check we want to perform. Kuber‐
netes makes a distinction between liveness and readiness. Liveness determines if an
application is running properly. Containers that fail liveness checks are restarted.
Readiness describes when a container is ready to serve user requests. Containers that
fail readiness checks are removed from service load balancers. Readiness probes are
configured similarly to liveness probes. We explore Kubernetes services in detail in
Chapter 7.

Combining the readiness and liveness probes helps ensure only healthy containers
are running within the cluster.

Startup Probe
Startup probes have recently been introduced to Kubernetes as an alternative way of
managing slow-starting containers. When a Pod is started, the startup probe is run
before any other probing of the Pod is started. The startup probe proceeds until it
either times out (in which case the Pod is restarted) or it succeeds, at which time the
liveness probe takes over. Startup probes enable you to poll slowly for a slow-starting
container while also enabling a responsive liveness check once the slow-starting
container has initialized.

Advanced Probe Configuration
Probes in Kubernetes have a number of advanced options, including how long to wait
after Pod startup to start probing, how many failures should be considered a true
failure, and how many successes are necessary to reset the failure count. All of these
configurations receive default values when left unspecified, but they may be necessary
for more advanced use cases such as applications that are inherently flaky or take a
long time to start up.

Other Types of Health Checks
In addition to HTTP checks, Kubernetes also supports tcpSocket health checks that
open a TCP socket; if the connection succeeds, the probe succeeds. This style of
probe is useful for non-HTTP applications, such as databases or other non–HTTP-
based APIs.
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Finally, Kubernetes allows exec probes. These execute a script or program in the
context of the container. Following typical convention, if this script returns a zero exit
code, the probe succeeds; otherwise, it fails. exec scripts are often useful for custom
application validation logic that doesn’t fit neatly into an HTTP call.

Resource Management
Most people move into containers and orchestrators like Kubernetes because of the
radical improvements in image packaging and reliable deployment they provide. In
addition to application-oriented primitives that simplify distributed system develop‐
ment, equally important is that they allow you to increase the overall utilization of
the compute nodes that make up the cluster. The basic cost of operating a machine,
either virtual or physical, is basically constant regardless of whether it is idle or fully
loaded. Consequently, ensuring that these machines are maximally active increases
the efficiency of every dollar spent on infrastructure.

Generally speaking, we measure this efficiency with the utilization metric. Utilization
is defined as the amount of a resource actively being used divided by the amount of a
resource that has been purchased. For example, if you purchase a one-core machine,
and your application uses one-tenth of a core, then your utilization is 10%. With
scheduling systems like Kubernetes managing resource packing, you can drive your
utilization to greater than 50%. To achieve this, you have to tell Kubernetes about the
resources your application requires so that Kubernetes can find the optimal packing
of containers onto machines.

Kubernetes allows users to specify two different resource metrics. Resource requests
specify the minimum amount of a resource required to run the application. Resource
limits specify the maximum amount of a resource that an application can consume.
Let’s look at these in greater detail in the following sections.

Kubernetes recognizes a large number of different notations for specifying resources,
from literals (“12345”) to millicores (“100m”). Of important note is the distinction
between MB/GB/PB and MiB/GiB/PiB. The former is the familiar power of two units
(e.g., 1 MB == 1,024 KB) while the latter is power of 10 units (1MiB == 1000KiB).

A common source of errors is specifying milliunits via a lowercase
m versus megaunits via an uppercase M. Concretely, “400m” is 0.4
MB, not 400Mb, a significant difference!
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Resource Requests: Minimum Required Resources
When a Pod requests the resources required to run its containers, Kubernetes guar‐
antees that these resources are available to the Pod. The most commonly requested
resources are CPU and memory, but Kubernetes supports other resource types as
well, such as GPUs. For example, to request that the kuard container land on a
machine with half a CPU free and get 128 MB of memory allocated to it, we define
the Pod as shown in Example 5-3.

Example 5-3. kuard-pod-resreq.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
spec:
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      resources:
        requests:
          cpu: "500m"
          memory: "128Mi"
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP

Resources are requested per container, not per Pod. The total
resources requested by the Pod is the sum of all resources reques‐
ted by all containers in the Pod because the different containers
often have very different CPU requirements. For example, if a Pod
contains a web server and data synchronizer, the web server is
user-facing and likely needs a great deal of CPU, while the data
synchronizer can make do with very little.

Requests are used when scheduling Pods to nodes. The Kubernetes scheduler will
ensure that the sum of all requests of all Pods on a node does not exceed the capacity
of the node. Therefore, a Pod is guaranteed to have at least the requested resources
when running on the node. Importantly, “request” specifies a minimum. It does not
specify a maximum cap on the resources a Pod may use. To explore what this means,
let’s look at an example.

Imagine a container whose code attempts to use all available CPU cores. Suppose that
we create a Pod with this container that requests 0.5 CPU. Kubernetes schedules this
Pod onto a machine with a total of 2 CPU cores. As long as it is the only Pod on
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the machine, it will consume all 2.0 of the available cores, despite only requesting 0.5
CPU.

If a second Pod with the same container and the same request of 0.5 CPU lands
on the machine, then each Pod will receive 1.0 cores. If a third, identical Pod is
scheduled, each Pod will receive 0.66 cores. Finally, if a fourth identical Pod is
scheduled, each Pod will receive the 0.5 core it requested, and the node will be at
capacity.

CPU requests are implemented using the cpu-shares functionality in the Linux
kernel.

Memory requests are handled similarly to CPU, but there is an
important difference. If a container is over its memory request, the
OS can’t just remove memory from the process, because it’s been
allocated. Consequently, when the system runs out of memory,
the kubelet terminates containers whose memory usage is greater
than their requested memory. These containers are automatically
restarted, but with less available memory on the machine for the
container to consume.

Since resource requests guarantee resource availability to a Pod, they are critical to
ensuring that containers have sufficient resources in high-load situations.

Capping Resource Usage with Limits
In addition to setting the resources required by a Pod, which establishes the mini‐
mum resources available to it, you can also set a maximum on a its resource usage via
resource limits.

In our previous example, we created a kuard Pod that requested a minimum of 0.5 of
a core and 128 MB of memory. In the Pod manifest in Example 5-4, we extend this
configuration to add a limit of 1.0 CPU and 256 MB of memory.

Example 5-4. kuard-pod-reslim.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
spec:
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      resources:
        requests:
          cpu: "500m"
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          memory: "128Mi"
        limits:
          cpu: "1000m"
          memory: "256Mi"
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP

When you establish limits on a container, the kernel is configured to ensure that
consumption cannot exceed these limits. A container with a CPU limit of 0.5 cores
will only ever get 0.5 cores, even if the CPU is otherwise idle. A container with a
memory limit of 256 MB will not be allowed additional memory; for example, malloc
will fail if its memory usage exceeds 256 MB.

Persisting Data with Volumes
When a Pod is deleted or a container restarts, any and all data in the container’s
filesystem is also deleted. This is often a good thing, since you don’t want to leave
around cruft that happened to be written by your stateless web application. In other
cases, having access to persistent disk storage is an important part of a healthy
application. Kubernetes models such persistent storage.

Using Volumes with Pods
To add a volume to a Pod manifest, there are two new stanzas to add to our configu‐
ration. The first is a new spec.volumes section. This array defines all of the volumes
that may be accessed by containers in the Pod manifest. It’s important to note that
not all containers are required to mount all volumes defined in the Pod. The second
addition is the volumeMounts array in the container definition. This array defines
the volumes that are mounted into a particular container and the path where each
volume should be mounted. Note that two different containers in a Pod can mount
the same volume at different mount paths.

The manifest in Example 5-5 defines a single new volume named kuard-data, which
the kuard container mounts to the /data path.

Example 5-5. kuard-pod-vol.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
spec:
  volumes:
    - name: "kuard-data"
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      hostPath:
        path: "/var/lib/kuard"
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      volumeMounts:
        - mountPath: "/data"
          name: "kuard-data"
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP

Different Ways of Using Volumes with Pods
There are a variety of ways you can use data in your application. The following are
some of these ways and the recommended patterns for Kubernetes:

Communication/synchronization
In the first example of a Pod, we saw how two containers used a shared volume to
serve a site while keeping it synchronized to a remote Git location (Figure 5-1).
To achieve this, the Pod uses an emptyDir volume. Such a volume is scoped to the
Pod’s lifespan, but it can be shared between two containers, forming the basis for
communication between our Git sync and web serving containers.

Cache
An application may use a volume that is valuable for performance, but not
required for correct operation of the application. For example, perhaps the appli‐
cation keeps prerendered thumbnails of larger images. Of course, they can be
reconstructed from the original images, but that makes serving the thumbnails
more expensive. You want such a cache to survive a container restart due to a
health-check failure, and thus emptyDir works well for the cache use case as well.

Persistent data
Sometimes you will use a volume for truly persistent data—data that is independ‐
ent of the lifespan of a particular Pod, and should move between nodes in the
cluster if a node fails or a Pod moves to a different machine. To achieve this,
Kubernetes supports a wide variety of remote network storage volumes, includ‐
ing widely supported protocols like NFS and iSCSI as well as cloud provider
network storage like Amazon Elastic Block Store, Azure File and Azure Disk, and
Google’s Persistent Disk.

Mounting the host filesystem
Other applications don’t actually need a persistent volume, but they do need
some access to the underlying host filesystem. For example, they may need access
to the /dev filesystem to perform raw block-level access to a device on the system.
For these cases, Kubernetes supports the hostPath volume, which can mount
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arbitrary locations on the worker node into the container. Example 5-5 uses the
hostPath volume type. The volume created is /var/lib/kuard on the host.

Here is an example of using an NFS server:

...
# Rest of pod definition above here
volumes:
    - name: "kuard-data"
      nfs:
        server: my.nfs.server.local
        path: "/exports"

Persistent volumes are a deep topic. Chapter 16 has a more in-depth examination of
the subject.

Putting It All Together
Many applications are stateful, and as such we must preserve any data and ensure
access to the underlying storage volume regardless of what machine the application
runs on. As we saw earlier, this can be achieved using a persistent volume backed
by network-attached storage. We also want to ensure that a healthy instance of the
application is running at all times, which means we want to make sure the container
running kuard is ready before we expose it to clients.

Through a combination of persistent volumes, readiness and liveness probes, and
resource restrictions, Kubernetes provides everything needed to run stateful applica‐
tions reliably. Example 5-6 pulls this all together into one manifest.

Example 5-6. kuard-pod-full.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
spec:
  volumes:
    - name: "kuard-data"
      nfs:
        server: my.nfs.server.local
        path: "/exports"
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP
      resources:
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        requests:
          cpu: "500m"
          memory: "128Mi"
        limits:
          cpu: "1000m"
          memory: "256Mi"
      volumeMounts:
        - mountPath: "/data"
          name: "kuard-data"
      livenessProbe:
        httpGet:
          path: /healthy
          port: 8080
        initialDelaySeconds: 5
        timeoutSeconds: 1
        periodSeconds: 10
        failureThreshold: 3
      readinessProbe:
        httpGet:
          path: /ready
          port: 8080
        initialDelaySeconds: 30
        timeoutSeconds: 1
        periodSeconds: 10
        failureThreshold: 3

The definition of the Pod has grown over the course of this chapter. Each new
capability added to your application also adds a new section to its definition.

Summary
Pods represent the atomic unit of work in a Kubernetes cluster. They are comprised
of one or more containers working together symbiotically. To create one, you write a
Pod manifest and submit it to the Kubernetes API server by using the command-line
tool or (less frequently) by making HTTP and JSON calls to the server directly.

Once you’ve submitted the manifest to the API server, the Kubernetes scheduler
finds a machine where the Pod can fit and schedules the Pod to that machine.
After it’s scheduled, the kubelet daemon on that machine is responsible for creating
the containers that correspond to the Pod, as well as performing any health checks
defined in the Pod manifest.

Once a Pod is scheduled to a node, no rescheduling occurs if that node fails. Addi‐
tionally, to create multiple replicas of the same Pod, you have to create and name
them manually. In Chapter 9, we introduce the ReplicaSet object and show how
you can automate the creation of multiple identical Pods and ensure that they are
re-created in the event of a node machine failure.
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CHAPTER 6

Labels and Annotations

Kubernetes was made to grow with you as your application scales in both size and
complexity. Labels and annotations are fundamental concepts in Kubernetes that let
you work in sets of things that map to how you think about your application. You
can organize, mark, and cross-index all of your resources to represent the groups that
make the most sense for your application.

Labels are key/value pairs that can be attached to Kubernetes objects such as Pods
and ReplicaSets. They can be arbitrary and are useful for attaching identifying infor‐
mation to Kubernetes objects. Labels provide the foundation for grouping objects.

Annotations, on the other hand, provide a storage mechanism that resembles labels:
key/value pairs designed to hold nonidentifying information that tools and libraries
can leverage. Unlike labels, annotations are not meant for querying, filtering, or
otherwise differentiating Pods from each other.

Labels
Labels provide identifying metadata for objects. These are fundamental qualities of
the object that will be used for grouping, viewing, and operating. The motivations for
labels grew out of Google’s experience in running large and complex applications. A
couple of lessons emerged from this experience:

• Production abhors a singleton. When deploying software, users often start with•
a single instance. However, as the application matures, these singletons often
multiply and become sets of objects. With this in mind, Kubernetes uses labels to
deal with sets of objects instead of single instances.

• Any hierarchy imposed by the system will fall short for many users. In addition,•
user groupings and hierarchies change over time. For instance, a user may start
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out with the idea that all apps are made up of many services. However, over
time, a service may be shared across multiple apps. Kubernetes labels are flexible
enough to adapt to these situations and more.

See the great site reliability book Site Reliability Engineering by Betsy Beyer et al.
(O’Reilly) for deeper background on how Google approaches production systems.

Labels have simple syntax. They are key/value pairs, where both the key and value
are represented by strings. Label keys can be broken down into two parts: an optional
prefix and a name, separated by a slash. The prefix, if specified, must be a DNS
subdomain with a 253-character limit. The key name is required and have a maxi‐
mum length of 63 characters. Names must also start and end with an alphanumeric
character and permit the use of dashes (-), underscores (_), and dots (.) between
characters.

Label values are strings with a maximum length of 63 characters. The contents of the
label values follow the same rules as label keys. Table 6-1 shows some valid label keys
and values.

Table 6-1. Label examples

Key Value

acme.com/app-version 1.0.0

appVersion 1.0.0

app.version 1.0.0

kubernetes.io/cluster-service true

When domain names are used in labels and annotations, they are expected to be
aligned to that particular entity in some way. For example, a project might define a
canonical set of labels used to identify the various stages of application deployment
such as staging, canary, and production. Or a cloud provider might define provider-
specific annotations that extend Kubernetes objects to activate features specific to
their service.

Applying Labels
Here we create a few deployments (a way to create an array of Pods) with some
interesting labels. We’ll take two apps (called alpaca and bandicoot) and have two
environments and two versions for each.

First, create the alpaca-prod deployment and set the ver, app, and env labels:

$ kubectl run alpaca-prod \
  --image=gcr.io/kuar-demo/kuard-amd64:blue \
  --replicas=2 \
  --labels="ver=1,app=alpaca,env=prod"
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Next, create the alpaca-test deployment and set the ver, app, and env labels with
the appropriate values:

$ kubectl run alpaca-test \
  --image=gcr.io/kuar-demo/kuard-amd64:green \
  --replicas=1 \
  --labels="ver=2,app=alpaca,env=test"

Finally, create two deployments for bandicoot. Here we name the environments prod
and staging:

$ kubectl run bandicoot-prod \
  --image=gcr.io/kuar-demo/kuard-amd64:green \
  --replicas=2 \
  --labels="ver=2,app=bandicoot,env=prod"
$ kubectl run bandicoot-staging \
  --image=gcr.io/kuar-demo/kuard-amd64:green \
  --replicas=1 \
  --labels="ver=2,app=bandicoot,env=staging"

At this point, you should have four deployments—alpaca-prod, alpaca-test,
bandicoot-prod, and bandicoot-staging:

$ kubectl get deployments --show-labels

NAME                ... LABELS
alpaca-prod         ... app=alpaca,env=prod,ver=1
alpaca-test         ... app=alpaca,env=test,ver=2
bandicoot-prod      ... app=bandicoot,env=prod,ver=2
bandicoot-staging   ... app=bandicoot,env=staging,ver=2

We can visualize this as a Venn diagram based on the labels (Figure 6-1).

Figure 6-1. Visualization of labels applied to our deployments
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Modifying Labels
You can also apply or update labels on objects after you create them:

$ kubectl label deployments alpaca-test "canary=true"

There is a caveat here. In this example, the kubectl label com‐
mand will only change the label on the deployment itself; it won’t
affect any objects that the deployment creates, such as ReplicaSets
and Pods. To change those, you’ll need to change the template
embedded in the deployment (see Chapter 10).

You can also use the -L option to kubectl get to show a label value as a column:

$ kubectl get deployments -L canary

NAME                DESIRED   CURRENT   ... CANARY
alpaca-prod         2         2         ... <none>
alpaca-test         1         1         ... true
bandicoot-prod      2         2         ... <none>
bandicoot-staging   1         1         ... <none>

You can remove a label by applying a dash-suffix:

$ kubectl label deployments alpaca-test "canary-"

Label Selectors
Label selectors are used to filter Kubernetes objects based on a set of labels. Selectors
use a simple syntax for Boolean expressions. They are used both by end users (via
tools like kubectl) and by different types of objects (such as how a ReplicaSet relates
to its Pods).

Each deployment (via a ReplicaSet) creates a set of Pods using the labels specified in
the template embedded in the deployment. This is configured by the kubectl run
command.

Running the kubectl get pods command should return all the Pods currently
running in the cluster. We should have a total of six kuard Pods across our three
environments:

$ kubectl get pods --show-labels

NAME                              ... LABELS
alpaca-prod-3408831585-4nzfb      ... app=alpaca,env=prod,ver=1,...
alpaca-prod-3408831585-kga0a      ... app=alpaca,env=prod,ver=1,...
alpaca-test-1004512375-3r1m5      ... app=alpaca,env=test,ver=2,...
bandicoot-prod-373860099-0t1gp    ... app=bandicoot,env=prod,ver=2,...
bandicoot-prod-373860099-k2wcf    ... app=bandicoot,env=prod,ver=2,...
bandicoot-staging-1839769971-3ndv ... app=bandicoot,env=staging,ver=2,...
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You may see a new label that you haven’t seen before: pod-
template-hash. This label is applied by the deployment so it can
keep track of which Pods were generated from which template
versions. This allows the deployment to manage updates cleanly, as
will be covered in depth in Chapter 10.

If we want to list only Pods that have the ver label set to 2, we could use the
--selector flag:

$ kubectl get pods --selector="ver=2"

NAME                                 READY     STATUS    RESTARTS   AGE
alpaca-test-1004512375-3r1m5         1/1       Running   0          3m
bandicoot-prod-373860099-0t1gp       1/1       Running   0          3m
bandicoot-prod-373860099-k2wcf       1/1       Running   0          3m
bandicoot-staging-1839769971-3ndv5   1/1       Running   0          3m

If we specify two selectors separated by a comma, only the objects that satisfy both
will be returned. This is a logical AND operation:

$ kubectl get pods --selector="app=bandicoot,ver=2"

NAME                                 READY     STATUS    RESTARTS   AGE
bandicoot-prod-373860099-0t1gp       1/1       Running   0          4m
bandicoot-prod-373860099-k2wcf       1/1       Running   0          4m
bandicoot-staging-1839769971-3ndv5   1/1       Running   0          4m

We can also ask if a label is one of a set of values. Here we ask for all Pods where the
app label is set to alpaca or bandicoot (which will be all six Pods):

$ kubectl get pods --selector="app in (alpaca,bandicoot)"

NAME                                 READY     STATUS    RESTARTS   AGE
alpaca-prod-3408831585-4nzfb         1/1       Running   0          6m
alpaca-prod-3408831585-kga0a         1/1       Running   0          6m
alpaca-test-1004512375-3r1m5         1/1       Running   0          6m
bandicoot-prod-373860099-0t1gp       1/1       Running   0          6m
bandicoot-prod-373860099-k2wcf       1/1       Running   0          6m
bandicoot-staging-1839769971-3ndv5   1/1       Running   0          6m

Finally, we can ask if a label is set at all. Here we are asking for all of the deployments
with the canary label set to anything:

$ kubectl get deployments --selector="canary"

NAME          DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
alpaca-test   1         1         1            1           7m

There are also “negative” versions of each of these, as shown in Table 6-2.
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Table 6-2. Selector operators

Operator Description

key=value key is set to value

key!=value key is not set to value

key in (value1, value2) key is one of value1 or value2

key notin (value1, value2) key is not one of value1 or value2

key key is set

!key key is not set

For example, asking if a key, in this case canary, is not set can look like:

$ kubectl get deployments --selector='!canary'

You can combine positive and negative selectors:

$ kubectl get pods -l 'ver=2,!canary'

Label Selectors in API Objects
A Kubernetes object uses a label selector to refer to a set of other Kubernetes objects.
Instead of a simple string as described in the previous section, we use a parsed
structure.

For historical reasons (Kubernetes doesn’t break API compatibility!), there are two
forms. Most objects support a newer, more powerful set of selector operators. A
selector of app=alpaca,ver in (1, 2) would be converted to this:

selector:
  matchLabels:
    app: alpaca
  matchExpressions:
    - {key: ver, operator: In, values: [1, 2]}

This example uses compact YAML syntax. This is an item in a list
(matchExpressions) that is a map with three entries. The last entry (values) has
a value that is a list with two items. All of the terms are evaluated as a logical AND.
The only way to represent the != operator is to convert it to a NotIn expression with a
single value.

The older form of specifying selectors (used in ReplicationControllers and serv‐
ices) only supports the = operator. The = operator selects target objects where its
set of key/value pairs all match the object. The selector app=alpaca,ver=1 would be
represented like this:

selector:
  app: alpaca
  ver: 1
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Labels in the Kubernetes Architecture
In addition to enabling users to organize their infrastructure, labels play a critical role
in linking various related Kubernetes objects. Kubernetes is a purposefully decoupled
system. There is no hierarchy and all components operate independently. However, in
many cases, objects need to relate to one another, and these relationships are defined
by labels and label selectors.

For example, ReplicaSets, which create and maintain multiple replicas of a Pod, find
the Pods that they are managing via a selector. Likewise, a service load balancer finds
the Pods to which it should bring traffic via a selector query. When a Pod is created,
it can use a node selector to identify a particular set of nodes onto which it can be
scheduled. When people want to restrict network traffic in their cluster, they use
Network Policy in conjunction with specific labels to identify Pods that should or
should not be allowed to communicate with each other.

Labels are a powerful and ubiquitous glue that holds a Kubernetes application
together. Though your application will likely start out with a simple set of labels
and queries, you should expect it to grow in size and sophistication with time.

Annotations
Annotations provide a place to store additional metadata for Kubernetes objects
where the sole purpose of the metadata is assisting tools and libraries. They are a
way for other programs driving Kubernetes via an API to store some opaque data
with an object. Annotations can be used for the tool itself or to pass configuration
information between external systems.

While labels are used to identify and group objects, annotations are used to provide
extra information about where an object came from, how to use it, or policy around
that object. There is overlap, and it is a matter of taste as to when to use an annotation
or a label. When in doubt, add information to an object as an annotation and
promote it to a label if you find yourself wanting to use it in a selector.

Annotations are used to:

• Keep track of a “reason” for the latest update to an object.•
• Communicate a specialized scheduling policy to a specialized scheduler.•
• Extend data about the last tool to update the resource and how it was updated•

(used for detecting changes by other tools and doing a smart merge).
• Attach build, release, or image information that isn’t appropriate for labels (may•

include a Git hash, timestamp, pull request number, etc.).
• Enable the Deployment object (see Chapter 10) to keep track of ReplicaSets that•

it is managing for rollouts.
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• Provide extra data to enhance the visual quality or usability of a UI. For example,•
objects could include a link to an icon (or a base64-encoded version of an icon).

• Prototype alpha functionality in Kubernetes (instead of creating a first-class API•
field, the parameters for that functionality are encoded in an annotation).

Annotations are used in various places in Kubernetes, with the primary use case
being rolling deployments. During rolling deployments, annotations are used to
track rollout status and provide the necessary information required to roll back a
deployment to a previous state.

Avoid using the Kubernetes API server as a general-purpose database. Annotations
are good for small bits of data that are highly associated with a specific resource. If
you want to store data in Kubernetes but you don’t have an obvious object to associate
it with, consider storing that data in some other, more appropriate database.

Annotation keys use the same format as label keys. However, because they are often
used to communicate information between tools, the “namespace” part of the key
is more important. Example keys include deployment.kubernetes.io/revision or
kubernetes.io/change-cause.

The value component of an annotation is a free-form string field. While this allows
maximum flexibility as users can store arbitrary data, because this is arbitrary text,
there is no validation of any format. For example, it is not uncommon for a JSON
document to be encoded as a string and stored in an annotation. It is important
to note that the Kubernetes server has no knowledge of the required format of
annotation values. If annotations are used to pass or store data, there is no guarantee
the data is valid. This can make tracking down errors more difficult.

Annotations are defined in the common metadata section in every Kubernetes object:

...
metadata:
  annotations:
    example.com/icon-url: "https://example.com/icon.png"
...

Annotations are very convenient and provide powerful loose cou‐
pling, but use them judiciously to avoid an untyped mess of data.
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Cleanup
It is easy to clean up all of the deployments that we started in this chapter:

$ kubectl delete deployments --all

If you want to be more selective, you can use the --selector flag to choose which
deployments to delete.

Summary
Labels are used to identify and optionally group objects in a Kubernetes cluster. They
are also used in selector queries to provide flexible runtime grouping of objects, such
as Pods.

Annotations provide object-scoped key/value metadata storage used by automation
tooling and client libraries. They can also be used to hold configuration data for
external tools such as third-party schedulers and monitoring tools.

Labels and annotations are vital to understanding how key components in a Kuber‐
netes cluster work together to ensure the desired cluster state. Using them properly
unlocks the true power of Kubernetes’s flexibility and provides a starting point for
building automation tools and deployment workflows.
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CHAPTER 7

Service Discovery

Kubernetes is a very dynamic system. The system is involved in placing Pods on
nodes, making sure they are up and running, and rescheduling them as needed.
There are ways to automatically change the number of Pods based on load (such
as Horizontal Pod Autoscaling [see “Autoscaling a ReplicaSet” on page 110]). The
API-driven nature of the system encourages others to create higher and higher levels
of automation.

While the dynamic nature of Kubernetes makes it easy to run a lot of things, it creates
problems when it comes to finding those things. Most of the traditional network
infrastructure wasn’t built for the level of dynamism that Kubernetes presents.

What Is Service Discovery?
The general name for this class of problems and solutions is service discovery. Service-
discovery tools help solve the problem of finding which processes are listening at
which addresses for which services. A good service-discovery system will enable users
to resolve this information quickly and reliably. A good system is also low-latency;
clients are updated soon after the information associated with a service changes.
Finally, a good service-discovery system can store a richer definition of what that
service is. For example, perhaps there are multiple ports associated with the service.

The Domain Name System (DNS) is the traditional system of service discovery on
the internet. DNS is designed for relatively stable name resolution with wide and
efficient caching. It is a great system for the internet but falls short in the dynamic
world of Kubernetes.

Unfortunately, many systems (for example, Java, by default) look up a name in DNS
directly and never re-resolve it. This can lead to clients caching stale mappings and
talking to the wrong IP. Even with a short TTL (time-to-live) and a well-behaved
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client, there is a natural delay between when a name resolution changes and when the
client notices. There are natural limits to the amount and type of information that can
be returned in a typical DNS query too. Things start to break past 20 to 30 address
(A) records for a single name. Service (SRV) records solve some problems, but are
often very hard to use. Finally, the way that clients handle multiple IPs in a DNS
record is usually to take the first IP address and rely on the DNS server to randomize
or round-robin the order of records. This is no substitute for more purpose-built load
balancing.

The Service Object
Real service discovery in Kubernetes starts with a Service object. A Service object is
a way to create a named label selector. As we will see, the Service object does some
other nice things for us too.

Just as the kubectl run command is an easy way to create a Kubernetes deployment,
we can use kubectl expose to create a service. We’ll talk about Deployments in
detail in Chapter 10, but for now you can think of a Deployment as an instance of
a microservice. Let’s create some deployments and services so we can see how they
work:

$ kubectl create deployment alpaca-prod \
  --image=gcr.io/kuar-demo/kuard-amd64:blue \
  --port=8080
$ kubectl scale deployment alpaca-prod --replicas 3
$ kubectl expose deployment alpaca-prod
$ kubectl create deployment bandicoot-prod \
  --image=gcr.io/kuar-demo/kuard-amd64:green \
  --port=8080
$ kubectl scale deployment bandicoot-prod --replicas 2
  kubectl expose deployment bandicoot-prod
$ kubectl get services -o wide

NAME             CLUSTER-IP    ... PORT(S)  ... SELECTOR
alpaca-prod      10.115.245.13 ... 8080/TCP ... app=alpaca
bandicoot-prod   10.115.242.3  ... 8080/TCP ... app=bandicoot
kubernetes       10.115.240.1  ... 443/TCP  ... <none>

After running these commands, we have three services. The ones we just created are
alpaca-prod and bandicoot-prod. The kubernetes service is automatically created
for you so that you can find and talk to the Kubernetes API from within the app.

If we look at the SELECTOR column, we see that the alpaca-prod service simply gives
a name to a selector and specifies which ports to talk to for that service. The kubectl
expose command will conveniently pull both the label selector and the relevant ports
(8080, in this case) from the deployment definition.
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Furthermore, that service is assigned a new type of virtual IP called a cluster IP. This
is a special IP address the system will load balance across all of the Pods that are
identified by the selector.

To interact with services, we are going to port-forward to one of the alpaca Pods.
Start this command and leave it running in a terminal window. You can see the
port-forward working by accessing the alpaca Pod at http://localhost:48858:

$ ALPACA_POD=$(kubectl get pods -l app=alpaca \
    -o jsonpath='{.items[0].metadata.name}')
$ kubectl port-forward $ALPACA_POD 48858:8080

Service DNS
Because the cluster IP is virtual, it is stable, and it is appropriate to give it a DNS
address. All of the issues around clients caching DNS results no longer apply. Within
a namespace, it is as easy as just using the service name to connect to one of the Pods
identified by a service.

Kubernetes provides a DNS service exposed to Pods running in the cluster. This
Kubernetes DNS service was installed as a system component when the cluster was
first created. The DNS service is, itself, managed by Kubernetes and is a great example
of Kubernetes building on Kubernetes. The Kubernetes DNS service provides DNS
names for cluster IPs.

You can try this out by expanding the “DNS Query” section on the kuard server
status page. Query the A record for alpaca-prod. The output should look something
like this:

;; opcode: QUERY, status: NOERROR, id: 12071
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;alpaca-prod.default.svc.cluster.local. IN  A

;; ANSWER SECTION:
alpaca-prod.default.svc.cluster.local. 30 IN A 10.115.245.13

The full DNS name here is alpaca-prod.default.svc.cluster.local.. Let’s break
this down:

alpaca-prod

The name of the service in question.

default

The namespace that this service is in.
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svc

Recognizing that this is a service. This allows Kubernetes to expose other types of
things as DNS in the future.

cluster.local.

The base domain name for the cluster. This is the default and what you will see
for most clusters. Administrators may change this to allow unique DNS names
across multiple clusters.

When referring to a service in your own namespace, you can just use the service
name (alpaca-prod). You can also refer to a service in another namespace with
alpaca-prod.default. And, of course, you can use the fully qualified service name
(alpaca-prod.default.svc.cluster.local.). Try each of these out in the “DNS
Query” section of kuard.

Readiness Checks
Often, when an application first starts up, it isn’t ready to handle requests. There is
usually some amount of initialization that can take anywhere from under a second to
several minutes. One nice thing the Service object does is track which of your Pods
are ready via a readiness check. Let’s modify our deployment to add a readiness check
that is attached to a Pod, as we discussed in Chapter 5:

$ kubectl edit deployment/alpaca-prod

This command will fetch the current version of the alpaca-prod deployment and
bring it up in an editor. After you save and quit your editor, it’ll write the object back
to Kubernetes. This is a quick way to edit an object without saving it to a YAML file.

Add the following section:

spec:
  ...
  template:
    ...
    spec:
      containers:
        ...
        name: alpaca-prod
        readinessProbe:
          httpGet:
            path: /ready
            port: 8080
          periodSeconds: 2
          initialDelaySeconds: 0
          failureThreshold: 3
          successThreshold: 1
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This sets up the Pods this deployment will create so that they will be checked for
readiness via an HTTP GET to /ready on port 8080. This check is done every two
seconds starting as soon as the Pod comes up. If three successive checks fail, then the
Pod will be considered not ready. However, if only one check succeeds, the Pod will
again be considered ready.

Only ready Pods are sent traffic.

Updating the deployment definition like this will delete and re-create the alpaca
Pods. As such, we need to restart our port-forward command from earlier:

$ ALPACA_POD=$(kubectl get pods -l app=alpaca-prod \
    -o jsonpath='{.items[0].metadata.name}')
$ kubectl port-forward $ALPACA_POD 48858:8080

Point your browser to http://localhost:48858, and you should see the debug page for
that instance of kuard. Expand the “Readiness Probe” section. You should see this
page update every time there is a new readiness check from the system, which should
happen every two seconds.

In another terminal window, start a watch command on the endpoints for the
alpaca-prod service. Endpoints are a lower-level way of finding what a service is
sending traffic to and are covered later in this chapter. The --watch option here
causes the kubectl command to hang around and output any updates. This is an easy
way to see how a Kubernetes object changes over time:

$ kubectl get endpoints alpaca-prod --watch

Now return to your browser and hit the “Fail” link for the readiness check. You
should see that the server is now returning errors with codes in the 500s. After three
of these, this server is removed from the list of endpoints for the service. Hit the
“Succeed” link and notice that after a single readiness check, the endpoint is added
back.

This readiness check is a way for an overloaded or sick server to signal to the system
that it doesn’t want to receive traffic anymore. This is a great way to implement
graceful shutdown. The server can signal that it no longer wants traffic, wait until
existing connections are closed, and then cleanly exit.

Press Ctrl-C to exit out of both the port-forward and watch commands in your
terminals.

Looking Beyond the Cluster
So far, everything we’ve covered in this chapter has been about exposing services
inside of a cluster. Oftentimes, the IPs for Pods are only reachable from within the
cluster. At some point, we have to allow new traffic in!
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The most portable way to do this is to use a feature called NodePorts, which enhance
a service even further. In addition to a cluster IP, the system picks a port (or the user
can specify one), and every node in the cluster then forwards traffic to that port to
the service.

With this feature, if you can reach any node in the cluster, you can contact a service.
You can use the NodePort without knowing where any of the Pods for that service are
running. This can be integrated with hardware or software load balancers to expose
the service further.

Try this out by modifying the alpaca-prod service:

$ kubectl edit service alpaca-prod

Change the spec.type field to NodePort. You can also do this when creating the
service via kubectl expose by specifying --type=NodePort. The system will assign a
new NodePort:

$ kubectl describe service alpaca-prod

Name:                   alpaca-prod
Namespace:              default
Labels:                 app=alpaca
Annotations:            <none>
Selector:               app=alpaca
Type:                   NodePort
IP:                     10.115.245.13
Port:                   <unset> 8080/TCP
NodePort:               <unset> 32711/TCP
Endpoints:              10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080
Session Affinity:       None
No events.

Here we see that the system assigned port 32711 to this service. Now we can hit any
of our cluster nodes on that port to access the service. If you are sitting on the same
network, you can access it directly. If your cluster is in the cloud someplace, you can
use SSH tunneling with something like this:

$ ssh <node> -L 8080:localhost:32711

Now if you point your browser to http://localhost:8080, you will be connected to that
service. Each request that you send to the service will be randomly directed to one of
the Pods that implements the service. Reload the page a few times, and you will see
that you are randomly assigned to different Pods.

When you are done, exit the SSH session.
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Load Balancer Integration
If you have a cluster that is configured to integrate with external load balancers, you
can use the LoadBalancer type. This builds on the NodePort type by additionally
configuring the cloud to create a new load balancer and direct it at nodes in your
cluster. Most cloud-based Kubernetes clusters offer load balancer integration, and
there are a number of projects that implement load balancer integration for common
physical load balancers as well, although these may require more manual integration
with your cluster.

Edit the alpaca-prod service again (kubectl edit service alpaca-prod) and
change spec.type to LoadBalancer.

Creating a service of type LoadBalancer exposes that service to
the public internet. Before you do this, you should make certain
that it is something that is secure to be exposed to everyone in
the world. We will discuss security risks further in this section.
Additionally, Chapters 9 and 20 provide guidance on how to secure
your application.

If you do a kubectl get services right away, you’ll see that the EXTERNAL-IP
column for alpaca-prod now says <pending>. Wait a bit and you should see a public
address assigned by your cloud. You can look in the console for your cloud account
and see the configuration work that Kubernetes did for you:

$ kubectl describe service alpaca-prod

Name:                   alpaca-prod
Namespace:              default
Labels:                 app=alpaca
Selector:               app=alpaca
Type:                   LoadBalancer
IP:                     10.115.245.13
LoadBalancer Ingress:   104.196.248.204
Port:                   <unset> 8080/TCP
NodePort:               <unset> 32711/TCP
Endpoints:              10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080
Session Affinity:       None
Events:
  FirstSeen ... Reason                Message
  --------- ... ------                -------
  3m        ... Type                  NodePort -> LoadBalancer
  3m        ... CreatingLoadBalancer  Creating load balancer
  2m        ... CreatedLoadBalancer   Created load balancer

Here we see that we have an address of 104.196.248.204 now assigned to the alpaca-
prod service. Open up your browser and try!
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This example is from a cluster launched and managed on the Goo‐
gle Cloud Platform via GKE. The way a load balancer is configured
is specific to a cloud. Some clouds have DNS-based load balancers
(e.g., AWS Elastic Load Balancing [ELB]). In this case, you’ll see a
hostname here instead of an IP. Depending on the cloud provider,
it may still take a little while for the load balancer to be fully
operational.

Creating a cloud-based load balancer can take some time. Don’t be surprised if it
takes a few minutes on most cloud providers.

The examples that we have seen so far use external load balancers; that is, load
balancers that are connected to the public internet. While this is great for exposing
services to the world, you’ll often want to expose your application within only your
private network. To achieve this, use an internal load balancer. Unfortunately, because
support for internal load balancers was added to Kubernetes more recently, it is
done in a somewhat ad hoc manner via object annotations. For example, to create
an internal load balancer in an Azure Kubernetes Service cluster, you add the anno‐
tation service.beta.kubernetes.io/azure-load-balancer-internal: "true" to
your Service resource. Here are the settings for some popular clouds:

Microsoft Azure
service.beta.kubernetes.io/azure-load-balancer-internal: "true"

Amazon Web Services
service.beta.kubernetes.io/aws-load-balancer-internal: "true"

Alibaba Cloud
service.beta.kubernetes.io/alibaba-cloud-loadbalancer-address-type:

"intranet"

Google Cloud Platform
cloud.google.com/load-balancer-type: "Internal"

When you add this annotation to your Service, it should look like this:

...
metadata:
    ...
    name: some-service
    annotations:
        service.beta.kubernetes.io/azure-load-balancer-internal: "true"
...

When you create a service with one of these annotations, an internally exposed
service will be created instead of one on the public internet.
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There are several other annotations that extend LoadBalancer
behavior, including ones for using a preexisiting IP address. The
specific extensions for your provider should be documented on its
website.

Advanced Details
Kubernetes is built to be an extensible system. As such, there are layers that allow
for more advanced integrations. Understanding the details of how a sophisticated
concept like services is implemented may help you troubleshoot or create more
advanced integrations. This section goes a bit below the surface.

Endpoints
Some applications (and the system itself) want to be able to use services without
using a cluster IP. This is done with another type of object called an Endpoints object.
For every Service object, Kubernetes creates a buddy Endpoints object that contains
the IP addresses for that service:

$ kubectl describe endpoints alpaca-prod

Name:           alpaca-prod
Namespace:      default
Labels:         app=alpaca
Subsets:
  Addresses:            10.112.1.54,10.112.2.84,10.112.2.85
  NotReadyAddresses:    <none>
  Ports:
    Name        Port    Protocol
    ----        ----    --------
    <unset>     8080    TCP

No events.

To use a service, an advanced application can talk to the Kubernetes API directly
to look up endpoints and call them. The Kubernetes API even has the capability to
“watch” objects and be notified as soon as they change. In this way, a client can react
immediately as soon as the IPs associated with a service change.

Let’s demonstrate this. In a terminal window, start the following command and leave
it running:

$ kubectl get endpoints alpaca-prod --watch

It will output the current state of the endpoint and then “hang”:

NAME          ENDPOINTS                                            AGE
alpaca-prod   10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080   1m
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Now open up another terminal window and delete and re-create the deployment
backing alpaca-prod:

$ kubectl delete deployment alpaca-prod
$ kubectl create deployment alpaca-prod \
  --image=gcr.io/kuar-demo/kuard-amd64:blue \
  --port=8080
$ kubectl scale deployment alpaca-prod --replicas=3

If you look back at the output from the watched endpoint, you will see that as you
deleted and re-created these Pods, the output of the command reflected the most
up-to-date set of IP addresses associated with the service. Your output will look
something like this:

NAME          ENDPOINTS                                            AGE
alpaca-prod   10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080   1m
alpaca-prod   10.112.1.54:8080,10.112.2.84:8080                    1m
alpaca-prod   <none>                                               1m
alpaca-prod   10.112.2.90:8080                                     1m
alpaca-prod   10.112.1.57:8080,10.112.2.90:8080                    1m
alpaca-prod   10.112.0.28:8080,10.112.1.57:8080,10.112.2.90:8080   1m

The Endpoints object is great if you are writing new code that is built to run on
Kubernetes from the start. But most projects aren’t in this position! Most existing
systems are built to work with regular old IP addresses that don’t change that often.

Manual Service Discovery
Kubernetes services are built on top of label selectors over Pods. That means that
you can use the Kubernetes API to do rudimentary service discovery without using a
Service object at all! Let’s demonstrate.

With kubectl (and via the API) we can easily see what IPs are assigned to each Pod in
our example deployments:

$ kubectl get pods -o wide --show-labels

NAME                            ... IP          ... LABELS
alpaca-prod-12334-87f8h    ... 10.112.1.54 ... app=alpaca
alpaca-prod-12334-jssmh    ... 10.112.2.84 ... app=alpaca
alpaca-prod-12334-tjp56    ... 10.112.2.85 ... app=alpaca
bandicoot-prod-5678-sbxzl  ... 10.112.1.55 ... app=bandicoot
bandicoot-prod-5678-x0dh8  ... 10.112.2.86 ... app=bandicoot

This is great, but what if you have a ton of Pods? You’ll probably want to filter this
based on the labels applied as part of the deployment. Let’s do that for just the alpaca
app:

$ kubectl get pods -o wide --selector=app=alpaca

NAME                         ... IP          ...
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alpaca-prod-3408831585-bpzdz ... 10.112.1.54 ...
alpaca-prod-3408831585-kncwt ... 10.112.2.84 ...
alpaca-prod-3408831585-l9fsq ... 10.112.2.85 ...

At this point, you have the basics of service discovery! You can always use labels to
identify the set of Pods you are interested in, get all of the Pods for those labels, and
dig out the IP address. But keeping the correct set of labels to use in sync can be
tricky. This is why the Service object was created.

kube-proxy and Cluster IPs
Cluster IPs are stable virtual IPs that load balance traffic across all of the endpoints
in a service. This magic is performed by a component running on every node in the
cluster called the kube-proxy (Figure 7-1).

Figure 7-1. Configuring and using a cluster IP

In Figure 7-1, the kube-proxy watches for new services in the cluster via the API
server. It then programs a set of iptables rules in the kernel of that host to rewrite
the destinations of packets so they are directed at one of the endpoints for that
service. If the set of endpoints for a service changes (due to Pods coming and going
or due to a failed readiness check), the set of iptables rules is rewritten.

The cluster IP itself is usually assigned by the API server as the service is created.
However, when creating the service, the user can specify a specific cluster IP. Once
set, the cluster IP cannot be modified without deleting and re-creating the Service
object.

The Kubernetes service address range is configured using
the --service-cluster-ip-range flag on the kube-apiserver
binary. The service address range should not overlap with the IP
subnets and ranges assigned to each Docker bridge or Kubernetes
node. In addition, any explicit cluster IP requested must come
from that range and not already be in use.
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Cluster IP Environment Variables
While most users should be using the DNS services to find cluster IPs, there are
some older mechanisms that may still be in use. One of these is injecting a set of
environment variables into Pods as they start up.

To see this in action, let’s look at the console for the bandicoot instance of kuard.
Enter the following commands in your terminal:

$ BANDICOOT_POD=$(kubectl get pods -l app=bandicoot \
    -o jsonpath='{.items[0].metadata.name}')
$ kubectl port-forward $BANDICOOT_POD 48858:8080

Now point your browser to http://localhost:48858 to see the status page for this server.
Expand the “Server Env” section and note the set of environment variables for the
alpaca service. The status page should show a table similar to Table 7-1.

Table 7-1. Service environment variables

Key Value

ALPACA_PROD_PORT tcp://10.115.245.13:8080

ALPACA_PROD_PORT_8080_TCP tcp://10.115.245.13:8080

ALPACA_PROD_PORT_8080_TCP_ADDR 10.115.245.13

ALPACA_PROD_PORT_8080_TCP_PORT 8080

ALPACA_PROD_PORT_8080_TCP_PROTO tcp

ALPACA_PROD_SERVICE_HOST 10.115.245.13

ALPACA_PROD_SERVICE_PORT 8080

The two main environment variables to use are ALPACA_PROD_SERVICE_HOST and
ALPACA_PROD_SERVICE_PORT. The other environment variables are created to be com‐
patible with (now deprecated) Docker link variables.

A problem with the environment variable approach is that it requires resources to be
created in a specific order. The services must be created before the Pods that reference
them. This can introduce quite a bit of complexity when deploying a set of services
that make up a larger application. In addition, using just environment variables seems
strange to many users. For this reason, DNS is probably a better option.

Connecting with Other Environments
While it is great to have service discovery within your own cluster, many real-
world applications actually require that you integrate more cloud native applications
deployed in Kubernetes with applications deployed to more legacy environments.
Additionally, you may need to integrate a Kubernetes cluster in the cloud with
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infrastructure that has been deployed on-premise. This is an area of Kubernetes that
is still undergoing a fair amount of exploration and development of solutions.

Connecting to Resources Outside of a Cluster
When you are connecting Kubernetes to legacy resources outside of the cluster, you
can use selector-less services to declare a Kubernetes service with a manually assigned
IP address that is outside of the cluster. That way, Kubernetes service discovery via
DNS works as expected, but the network traffic itself flows to an external resource.
To create a selector-less service, you remove the spec.selector field from your
resource, while leaving the metadata and the ports sections unchanged. Because
your service has no selector, no endpoints are automatically added to the service. This
means that you must add them manually. Typically the endpoint that you will add
will be a fixed IP address (e.g., the IP address of your database server) so you only
need to add it once. But if the IP address that backs the service ever changes, you
will need to update the corresponding endpoint resource. To create or update the
endpoint resource, you use an endpoint that looks something like the following:

apiVersion: v1
kind: Endpoints
metadata:
  # This name must match the name of your service
  name: my-database-server
subsets:
  - addresses:
      # Replace this IP with the real IP of your server
      - ip: 1.2.3.4
    ports:
      # Replace this port with the port(s) you want to expose
      - port: 1433

Connecting External Resources to Services Inside a Cluster
Connecting external resources to Kubernetes services is somewhat trickier. If your
cloud provider supports it, the easiest thing to do is to create an “internal” load
balancer, as described above, that lives in your virtual private network and can
deliver traffic from a fixed IP address into the cluster. You can then use traditional
DNS to make this IP address available to the external resource. If an internal load
balancer isn’t available, you can use a NodePort service to expose the service on the
IP addresses of the nodes in the cluster. You can then either program a physical load
balancer to serve traffic to those nodes, or use DNS-based load-balancing to spread
traffic between the nodes.

If neither of those solutions works for your use case, more complex options include
running the full kube-proxy on an external resource and programming that machine
to use the DNS server in the Kubernetes cluster. Such a setup is significantly more
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difficult to get right and should really only be used in on-premise environments.
There are also a variety of open source projects (for example, HashiCorp’s Consul)
that can be used to manage connectivity between in-cluster and out-of-cluster
resources. Such options require significant knowledge of both networking and
Kubernetes to get right and should really be considered a last resort.

Cleanup
Run the following command to clean up all of the objects created in this chapter:

$ kubectl delete services,deployments -l app

Summary
Kubernetes is a dynamic system that challenges traditional methods of naming and
connecting services over the network. The Service object provides a flexible and pow‐
erful way to expose services both within the cluster and beyond. With the techniques
covered here, you can connect services to each other and expose them outside the
cluster.

While using the dynamic service discovery mechanisms in Kubernetes introduces
some new concepts and may, at first, seem complex, understanding and adapting
these techniques is key to unlocking the power of Kubernetes. Once your application
can dynamically find services and react to the dynamic placement of those applica‐
tions, you are free to stop worrying about where things are running and when they
move. Thinking about services in a logical way and letting Kubernetes take care of the
details of container placement is a critical piece of the puzzle.

Of course, service discovery is just the beginning of how application networking
works with Kubernetes. Chapter 8 covers Ingress networking, which is dedicated
to Layer 7 (HTTP) load balancing and routing, and Chapter 15 is about service
meshes, which are a more recently developed approach to cloud native networking
that provide many additional capabilities in addition to service discovery and load
balancing.

88 | Chapter 7: Service Discovery



1 The Open Systems Interconnection (OSI) model is a standard way to describe how different networking
layers build on each other. TCP and UDP are considered to be Layer 4, while HTTP is Layer 7.

CHAPTER 8

HTTP Load Balancing with Ingress

A critical part of any application is getting network traffic to and from that applica‐
tion. As described in Chapter 7, Kubernetes has a set of capabilities to enable services
to be exposed outside of the cluster. For many users and simple use cases, these
capabilities are sufficient.

But the Service object operates at Layer 4 (according to the OSI model).1 This means
that it only forwards TCP and UDP connections and doesn’t look inside of those con‐
nections. Because of this, hosting many applications on a cluster uses many different
exposed services. In the case where these services are type: NodePort, you’ll have to
have clients connect to a unique port per service. In the case where these services are
type: LoadBalancer, you’ll be allocating (often expensive or scarce) cloud resources
for each service. But for HTTP (Layer 7)-based services, we can do better.

When solving a similar problem in non-Kubernetes situations, users often turn to the
idea of “virtual hosting.” This is a mechanism to host many HTTP sites on a single IP
address. Typically, the user uses a load balancer or reverse proxy to accept incoming
connections on HTTP (80) and HTTPS (443) ports. That program then parses the
HTTP connection and, based on the Host header and the URL path that is requested,
proxies the HTTP call to some other program. In this way, that load balancer or
reverse proxy directs traffic for decoding and directing incoming connections to the
right “upstream” server.

Kubernetes calls its HTTP-based load-balancing system Ingress. Ingress is a
Kubernetes-native way to implement the “virtual hosting” pattern we just discussed.
One of the more complex aspects of the pattern is that the user has to manage the

89

https://oreil.ly/czfCd


load balancer configuration file. In a dynamic environment and as the set of virtual
hosts expands, this can be very complex. The Kubernetes Ingress system works to
simplify this by (a) standardizing that configuration, (b) moving it to a standard
Kubernetes object, and (c) merging multiple Ingress objects into a single config for
the load balancer.

The typical software base implementation looks something like what is depicted in
Figure 8-1. The Ingress controller is a software system made up of two parts. The
first is the Ingress proxy, which is exposed outside the cluster using a service of
type: LoadBalancer. This proxy sends requests to “upstream” servers. The other
component is the Ingress reconciler, or operator. The Ingress operator is responsible
for reading and monitoring Ingress objects in the Kubernetes API and reconfiguring
the Ingress proxy to route traffic as specified in the Ingress resource. There are many
different Ingress implementations. In some, these two components are combined in a
single container; in others, they are distinct components that are deployed separately
in the Kubernetes cluster. In Figure 8-1, we introduce one example of an Ingress
controller.

Figure 8-1. The typical software Ingress controller configuration

Ingress Spec Versus Ingress Controllers
While conceptually simple, at an implementation level, Ingress is very different from
pretty much every other regular resource object in Kubernetes. Specifically, it is split
into a common resource specification and a controller implementation. There is no
“standard” Ingress controller that is built into Kubernetes, so the user must install one
of many optional implementations.

Users can create and modify Ingress objects just like every other object. But, by
default, there is no code running to actually act on those objects. It is up to the users
(or the distribution they are using) to install and manage an outside controller. In this
way, the controller is pluggable.
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There are a couple of reasons that Ingress ended up like this. First of all, there is no
one single HTTP load balancer that can be used universally. In addition to many soft‐
ware load balancers (both open source and proprietary), there are also load-balancing
capabilities provided by cloud providers (e.g., ELB on AWS), and hardware-based
load balancers. The second reason is that the Ingress object was added to Kubernetes
before any of the common extensibility capabilities were added (see Chapter 17). As
Ingress progresses, it is likely that it will evolve to use these mechanisms.

Installing Contour
While there are many available Ingress controllers, for the examples here, we use
an Ingress controller called Contour. This is a controller built to configure the open
source (and CNCF project) load balancer called Envoy. Envoy is built to be dynami‐
cally configured via an API. The Contour Ingress controller takes care of translating
the Ingress objects into something that Envoy can understand.

The Contour project was created by Heptio in collaboration with
real-world customers and is used in production settings but is now
an independent open source project.

You can install Contour with a simple one-line invocation:

$ kubectl apply -f https://projectcontour.io/quickstart/contour.yaml

Note that this requires execution by a user who has cluster-admin permissions.

This one line works for most configurations. It creates a namespace called project
contour. Inside of that namespace it creates a deployment (with two replicas) and an
external-facing service of type: LoadBalancer. In addition, it sets up the correct
permissions via a service account and installs a CustomResourceDefinition (see
Chapter 17) for some extended capabilities discussed in “The Future of Ingress” on
page 101.

Because it is a global install, you need to ensure that you have wide admin permis‐
sions on the cluster you are installing into. After you install it, you can fetch the
external address of Contour via:

$  kubectl get -n projectcontour service envoy -o wide
NAME      CLUSTER-IP     EXTERNAL-IP          PORT(S)      ...
contour   10.106.53.14   a477...amazonaws.com 80:30274/TCP ...

Look at the EXTERNAL-IP column. This can be either an IP address (for GCP and
Azure) or a hostname (for AWS). Other clouds and environments may differ. If your
Kubernetes cluster doesn’t support services of type: LoadBalancer, you’ll have to
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change the YAML for installing Contour to use type: NodePort and route traffic to
machines on the cluster via a mechanism that works in your configuration.

If you are using minikube, you probably won’t have anything listed for EXTERNAL-IP.
To fix this, you need to open a separate terminal window and run minikube tunnel.
This configures networking routes such that you have unique IP addresses assigned
to every service of type: LoadBalancer.

Configuring DNS
To make Ingress work well, you need to configure DNS entries to the external address
for your load balancer. You can map multiple hostnames to a single external endpoint
and the Ingress controller will direct incoming requests to the appropriate upstream
service based on that hostname.

For this chapter, we assume that you have a domain called example.com. You need
to configure two DNS entries: alpaca.example.com and bandicoot.example.com.
If you have an IP address for your external load balancer, you’ll want to create A
records. If you have a hostname, you’ll want to configure CNAME records.

The ExternalDNS project is a cluster add-on that you can use to manage DNS
records for you. ExternalDNS monitors your Kubernetes cluster and synchronizes
IP addresses for Kubernetes Service resources with an external DNS provider. Exter‐
nalDNS supports a wide variety of DNS providers including traditional domain
registrars as well as public cloud providers.

Configuring a Local hosts File
If you don’t have a domain or if you are using a local solution such as minikube, you
can set up a local configuration by editing your /etc/hosts file to add an IP address.
You need admin/root privileges on your workstation. The location of the file may
differ on your platform, and making it take effect may require extra steps. For exam‐
ple, on Windows the file is usually at C:\Windows\System32\drivers\etc\hosts, and for
recent versions of macOS, you need to run sudo killall -HUP mDNSResponder after
changing the file.

Edit the file to add a line like the following:

<ip-address> alpaca.example.com bandicoot.example.com

For <ip-address>, fill in the external IP address for Contour. If all you have is a
hostname (like from AWS), you can get an IP address (that may change in the future)
by executing host -t a <address>.

Don’t forget to undo these changes when you are done!
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Using Ingress
Now that we have an Ingress controller configured, let’s put it through its paces. First,
we’ll create a few upstream (also sometimes referred to as “backend”) services to play
with by executing the following commands:

$ kubectl create deployment be-default \
  --image=gcr.io/kuar-demo/kuard-amd64:blue \
  --replicas=3 \
  --port=8080
$ kubectl expose deployment be-default
$ kubectl create deployment alpaca \
  --image=gcr.io/kuar-demo/kuard-amd64:green \
  --replicas=3 \
  --port=8080
$ kubectl expose deployment alpaca
$ kubectl create deployment bandicoot \
  --image=gcr.io/kuar-demo/kuard-amd64:purple \
  --replicas=3 \
  --port=8080
$ kubectl expose deployment bandicoot
$ kubectl get services -o wide

NAME             CLUSTER-IP    ... PORT(S)  ... SELECTOR
alpaca           10.115.245.13 ... 8080/TCP ... run=alpaca
bandicoot        10.115.242.3  ... 8080/TCP ... run=bandicoot
be-default       10.115.246.6  ... 8080/TCP ... run=be-default
kubernetes       10.115.240.1  ... 443/TCP  ... <none>

Simplest Usage
The simplest way to use Ingress is to have it just blindly pass everything that it sees
through to an upstream service. There is limited support for imperative commands to
work with Ingress in kubectl, so we’ll start with a YAML file (see Example 8-1).

Example 8-1. simple-ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: simple-ingress
spec:
  defaultBackend:
    service:
      name: alpaca
      port:
        number: 8080
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Create this Ingress with kubectl apply:

$ kubectl apply -f simple-ingress.yaml
ingress.extensions/simple-ingress created

You can verify that it was set up correctly using kubectl get and kubectl describe:

$ kubectl get ingress
NAME             HOSTS   ADDRESS   PORTS   AGE
simple-ingress   *                 80      13m

$ kubectl describe ingress simple-ingress
Name:             simple-ingress
Namespace:        default
Address:
Default backend:  alpaca:8080
(172.17.0.6:8080,172.17.0.7:8080,172.17.0.8:8080)
Rules:
  Host  Path  Backends
  ----  ----  --------
  *     *     alpaca:8080 (172.17.0.6:8080,172.17.0.7:8080,172.17.0.8:8080)
Annotations:
  ...

Events:  <none>

This sets things up so that any HTTP request that hits the Ingress controller is
forwarded on to the alpaca service. You can now access the alpaca instance of
kuard on any of the raw IPs/CNAMEs of the service; in this case, either alpaca.exam
ple.com or bandicoot.example.com. This doesn’t, at this point, add much value over
a simple service of type: LoadBalancer. The following sections experiment with
more complex configurations.

Using Hostnames
Things start to get interesting when we direct traffic based on properties of the
request. The most common example of this is to have the Ingress system look at the
HTTP host header (which is set to the DNS domain in the original URL) and direct
traffic based on that header. Let’s add another Ingress object for directing traffic to the
alpaca service for any traffic directed to alpaca.example.com (see Example 8-2).

Example 8-2. host-ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: host-ingress
spec:
  defaultBackend:
    service:
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      name: be-default
      port:
        number: 8080
  rules:
  - host: alpaca.example.com
    http:
      paths:
      - pathType: Prefix
        path: /
        backend:
          service:
            name: alpaca
            port:
              number: 8080

Create this Ingress with kubectl apply:

$ kubectl apply -f host-ingress.yaml
ingress.extensions/host-ingress created

We can verify that things are set up correctly as follows:

$ kubectl get ingress
NAME             HOSTS               ADDRESS   PORTS   AGE
host-ingress     alpaca.example.com            80      54s
simple-ingress   *                             80      13m

$ kubectl describe ingress host-ingress
Name:             host-ingress
Namespace:        default
Address:
Default backend:  be-default:8080 (<none>)
Rules:
  Host                Path  Backends
  ----                ----  --------
  alpaca.example.com
                      /   alpaca:8080 (<none>)
Annotations:
  ...

Events:  <none>

There are a couple of confusing things here. First, there is a reference to the default-
http-backend. This is a convention that only some Ingress controllers use to handle
requests that aren’t handled in any other way. These controllers send those requests
to a service called default-http-backend in the kube-system namespace. This con‐
vention is surfaced client-side in kubectl. Next, there are no endpoints listed for the
alpaca backend service. This is a bug in kubectl that is fixed in Kubernetes v1.14.
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Regardless, you should now be able to address the alpaca service via http://
alpaca.example.com. If instead you reach the service endpoint via other methods,
you should get the default service.

Using Paths
The next interesting scenario is to direct traffic based on not just the hostname, but
also the path in the HTTP request. We can do this easily by specifying a path in
the paths entry (see Example 8-3). In this example, we direct everything coming
into http://bandicoot.example.com to the bandicoot service, but we also send http://
bandicoot.example.com/a to the alpaca service. This type of scenario can be used to
host multiple services on different paths of a single domain.

Example 8-3. path-ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: path-ingress
spec:
  rules:
  - host: bandicoot.example.com
    http:
      paths:
      - pathType: Prefix
        path: "/"
        backend:
          service:
            name: bandicoot
            port:
              number: 8080
      - pathType: Prefix
        path: "/a/"
        backend:
          service:
            name: alpaca
            port:
              number: 8080

When there are multiple paths on the same host listed in the Ingress system, the
longest prefix matches. So, in this example, traffic starting with /a/ is forwarded to
the alpaca service, while all other traffic (starting with /) is directed to the bandicoot
service.

As requests get proxied to the upstream service, the path remains unmodified. That
means a request to bandicoot.example.com/a/ shows up to the upstream server
that is configured for that request hostname and path. The upstream service needs
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to be ready to serve traffic on that subpath. In this case, kuard has special code for
testing, where it responds on the root path (/) along with a predefined set of subpaths
(/a/, /b/, and /c/).

Cleanup
To clean up, execute the following:

$ kubectl delete ingress host-ingress path-ingress simple-ingress
$ kubectl delete service alpaca bandicoot be-default
$ kubectl delete deployment alpaca bandicoot be-default

Advanced Ingress Topics and Gotchas
Ingress supports some other fancy features. The level of support for these features
differs based on the Ingress controller implementation, and two controllers may
implement a feature in slightly different ways.

Many of the extended features are exposed via annotations on the Ingress object. Be
careful; these annotations can be hard to validate and are easy to get wrong. Many
of these annotations apply to the entire Ingress object and so can be more general
than you might like. To scope the annotations down, you can always split a single
Ingress object into multiple Ingress objects. The Ingress controller should read them
and merge them together.

Running Multiple Ingress Controllers
There are multiple Ingress controller implementations, and you may want to run
multiple Ingress controllers on a single cluster. To solve this case, the IngressClass
resource exists so that an Ingress resource can request a particular implementation.
When you create an Ingress resource, you use the spec.ingressClassName field to
specify the specific Ingress resource.

In Kubernetes prior to version 1.18, the IngressClassName field
did not exist and the kubernetes.io/ingress.class annotation
was used instead. While this is still supported by many controllers,
it is recommended that people move away from the annotation as it
will likely be deprecated by controllers in the future.

If the spec.ingressClassName annotation is missing, a default Ingress controller is
used. It is specified by adding the ingressclass.kubernetes.io/is-default-class
annotation to the correct IngressClass resource.
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Multiple Ingress Objects
If you specify multiple Ingress objects, the Ingress controllers should read them
all and try to merge them into a coherent configuration. However, if you specify
duplicate and conflicting configurations, the behavior is undefined. It is likely that
different Ingress controllers will behave differently. Even a single implementation
may do different things depending on nonobvious factors.

Ingress and Namespaces
Ingress interacts with namespaces in some nonobvious ways. First, due to an abun‐
dance of security caution, an Ingress object can refer to only an upstream service
in the same namespace. This means that you can’t use an Ingress object to point a
subpath to a service in another namespace.

However, multiple Ingress objects in different namespaces can specify subpaths for
the same host. These Ingress objects are then merged to come up with the final config
for the Ingress controller.

This cross-namespace behavior means that coordinating Ingress globally across the
cluster is necessary. If not coordinated carefully, an Ingress object in one namespace
could cause problems (and undefined behavior) in other namespaces.

Typically there are no restrictions built into the Ingress controller around which
namespaces are allowed to specify which hostnames and paths. Advanced users may
try to enforce a policy for this using a custom admission controller. There are also
evolutions of Ingress described in “The Future of Ingress” on page 101 that address
this problem.

Path Rewriting
Some Ingress controller implementations support, optionally, doing path rewriting.
This can be used to modify the path in the HTTP request as it gets proxied.
This is usually specified by an annotation on the Ingress object and applies to
all requests that are specified by that object. For example, if we were using
the NGINX Ingress controller, we could specify an annotation of nginx.ingress
.kubernetes.io/rewrite-target: /. This can sometimes make upstream services
work on a subpath even if they weren’t built to do so.

There are multiple implementations that not only implement path rewriting, but
also support regular expressions when specifying the path. For example, the NGINX
controller allows regular expressions to capture parts of the path and then use that
captured content when doing rewriting. How this is done (and what variant of regular
expressions is used) is implementation-specific.
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Path rewriting isn’t a silver bullet, though, and can often lead to bugs. Many web
applications assume that they can link within themselves using absolute paths. In that
case, the app in question may be hosted on /subpath but have requests show up to
it on /. It may then send a user to /app-path. There is then the question of whether
that is an “internal” link for the app (in which case it should instead be /subpath/
app-path) or a link to some other app. For this reason, it is probably best to avoid
subpaths for any complicated applications if you can help it.

Serving TLS
When serving websites, it is becoming increasingly necessary to do so securely using
TLS and HTTPS. Ingress supports this (as do most Ingress controllers).

First, users need to specify a Secret with their TLS certificate and keys—something
like what is outlined in Example 8-4. You can also create a Secret imperatively with
kubectl create secret tls <secret-name> --cert <certificate-pem-file>

--key <private-key-pem-file>.

Example 8-4. tls-secret.yaml

apiVersion: v1
kind: Secret
metadata:
  creationTimestamp: null
  name: tls-secret-name
type: kubernetes.io/tls
data:
  tls.crt: <base64 encoded certificate>
  tls.key: <base64 encoded private key>

Once you have the certificate uploaded, you can reference it in an Ingress object. This
specifies a list of certificates along with the hostnames that those certificates should be
used for (see Example 8-5). Again, if multiple Ingress objects specify certificates for
the same hostname, the behavior is undefined.

Example 8-5. tls-ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: tls-ingress
spec:
  tls:
  - hosts:
    - alpaca.example.com
    secretName: tls-secret-name
  rules:
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  - host: alpaca.example.com
    http:
      paths:
      - backend:
          serviceName: alpaca
          servicePort: 8080

Uploading and managing TLS secrets can be difficult. In addition, certificates can
often come at a significant cost. To help solve this problem, there is a nonprofit called
“Let’s Encrypt” running a free Certificate Authority that is API-driven. Since it is
API-driven, it is possible to set up a Kubernetes cluster that automatically fetches
and installs TLS certificates for you. It can be tricky to set up, but when working, it’s
very simple to use. The missing piece is an open source project called cert-manager
created by Jetstack, a UK startup, onboarded to the CNCF. The cert-manager.io
website or GitHub repository has details on how to install cert-manager and get
started.

Alternate Ingress Implementations
There are many different implementations of Ingress controllers, each building on
the base Ingress object with unique features. It is a vibrant ecosystem.

First, each cloud provider has an Ingress implementation that exposes the specific
cloud-based L7 load balancer for that cloud. Instead of configuring a software load
balancer running in a Pod, these controllers take Ingress objects and use them to
configure, via an API, the cloud-based load balancers. This reduces the load on the
cluster and the management burden for the operators, but can often come at a cost.

The most popular generic Ingress controller is probably the open source NGINX
Ingress controller. Be aware that there is also a commercial controller based on the
proprietary NGINX Plus. The open source controller essentially reads Ingress objects
and merges them into an NGINX configuration file. It then signals to the NGINX
process to restart with the new configuration (while responsibly serving existing
in-flight connections). The open source NGINX controller has an enormous number
of features and options exposed via annotations.

Emissary and Gloo are two other Envoy-based Ingress controllers that are focused on
being API gateways.

Traefik is a reverse proxy implemented in Go that also can function as an Ingress
controller. It has a set of features and dashboards that are very developer-friendly.

This just scratches the surface. The Ingress ecosystem is very active, and there are
many new projects and commercial offerings that build on the humble Ingress object
in unique ways.
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The Future of Ingress
As you have seen, the Ingress object provides a very useful abstraction for configur‐
ing L7 load balancers—but it hasn’t scaled to all the features that users want and
various implementations are looking to offer. Many of the features in Ingress are
underdefined. Implementations can surface these features in different ways, reducing
the portability of configurations between implementations.

Another problem is that it is easy to misconfigure Ingress. The way that multiple
objects compbine opens the door for conflicts that are resolved differently by differ‐
ent implementations. In addition, the way that these are merged across namespaces
breaks the idea of namespace isolation.

Ingress was also created before the idea of a service mesh (exemplified by projects
such as Istio and Linkerd) was well known. The intersection of Ingress and ser‐
vice meshes is still being defined. Service meshes are covered in greater detail in
Chapter 15.

The future of HTTP load balancing for Kubernetes looks to be the Gateway API,
which is in the midst of development by the Kubernetes special interest group (SIG)
dedicated to networking. The Gateway API project is intended to develop a more
modern API for routing in Kubernetes. Though it is more focused on HTTP balanc‐
ing, Gateway also includes resources for controlling Layer 4 (TCP) balancing. The
Gateway APIs are still very much under development, so it is strongly recommended
that people stick to the existing Ingress and Service resources that are currently
present in Kubernetes. The current state of the Gateway API can be found online.

Summary
Ingress is a unique system in Kubernetes. It is simply a schema, and the implementa‐
tions of a controller for that schema must be installed and managed separately. But it
is also a critical system for exposing services to users in a practical and cost-efficient
way. As Kubernetes continues to mature, expect to see Ingress become more and
more relevant.
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CHAPTER 9

ReplicaSets

We have covered how to run individual containers as Pods, but these Pods are
essentially one-off singletons. More often than not, you want multiple replicas of a
container running at a particular time for a variety of reasons:

Redundancy
Failure toleration by running multiple instances.

Scale
Higher request-processing capacity by running multiple instances.

Sharding
Different replicas can handle different parts of a computation in parallel.

Of course, you could manually create multiple copies of a Pod using multiple dif‐
ferent (though largely similar) Pod manifests, but doing so is both tedious and
error-prone. Logically, a user managing a replicated set of Pods considers them as a
single entity to be defined and managed—and that’s precisely what a ReplicaSet is.
A ReplicaSet acts as a cluster-wide Pod manager, ensuring that the right types and
numbers of Pods are running at all times.

Because ReplicaSets make it easy to create and manage replicated sets of Pods,
they are the building blocks for common application deployment patterns and for
self-healing applications at the infrastructure level. Pods managed by ReplicaSets are
automatically rescheduled under certain failure conditions, such as node failures and
network partitions.

The easiest way to think of a ReplicaSet is that it combines a cookie cutter and a
desired number of cookies into a single API object. When we define a ReplicaSet,
we define a specification for the Pods we want to create (the “cookie cutter”) and a
desired number of replicas. Additionally, we need to define a way of finding Pods that
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the ReplicaSet should control. The actual act of managing the replicated Pods is an
example of a reconciliation loop. Such loops are fundamental to most of the design
and implementation of Kubernetes.

Reconciliation Loops
The central concept behind a reconciliation loop is the notion of desired state versus
observed or current state. Desired state is the state you want. With a ReplicaSet, it is
the desired number of replicas and the definition of the Pod to replicate. For example,
“the desired state is that there are three replicas of a Pod running the kuard server.” In
contrast, the current state is the currently observed state of the system. For example,
“there are only two kuard Pods currently running.”

The reconciliation loop is constantly running, observing the current state of the
world and taking action to try to make the observed state match the desired state.
For instance, with the previous examples, the reconciliation loop would create a new
kuard Pod in an effort to make the observed state match the desired state of three
replicas.

There are many benefits to the reconciliation-loop approach to managing state. It is
an inherently goal-driven, self-healing system, yet it can often be easily expressed in a
few lines of code. For example, the reconciliation loop for ReplicaSets is a single loop,
yet it handles user actions to scale up or scale down the ReplicaSet as well as node
failures or nodes rejoining the cluster after being absent.

We’ll see numerous examples of reconciliation loops in action throughout the rest of
the book.

Relating Pods and ReplicaSets
Decoupling is a key theme in Kubernetes. In particular, it’s important that all of the
core concepts of Kubernetes are modular with respect to each other and that they
are swappable and replaceable with other components. In this spirit, the relationship
between ReplicaSets and Pods is loosely coupled. Though ReplicaSets create and
manage Pods, they do not own the Pods they create. ReplicaSets use label queries to
identify the set of Pods they should be managing. They then use the exact same Pod
API that you used directly in Chapter 5 to create the Pods that they are managing.
This notion of “coming in the front door” is another central design concept in Kuber‐
netes. In a similar decoupling, ReplicaSets that create multiple Pods and the services
that load balance to those Pods are also totally separate, decoupled API objects. In
addition to supporting modularity, decoupling Pods and ReplicaSets enables several
important behaviors, discussed in the following sections.
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Adopting Existing Containers
Although declarative configuration is valuable, there are times when it is easier to
build something up imperatively. In particular, early on you may be simply deploying
a single Pod with a container image without a ReplicaSet managing it. You might
even define a load balancer to serve traffic to that single Pod.

But at some point, you may want to expand your singleton container into a replicated
service and create and manage an array of similar containers. If ReplicaSets owned
the Pods they created, then the only way to start replicating your Pod would be to
delete it and relaunch it via a ReplicaSet. This might be disruptive, as there would
be a moment when there would be no copies of your container running. However,
because ReplicaSets are decoupled from the Pods they manage, you can simply create
a ReplicaSet that will “adopt” the existing Pod and scale out additional copies of those
containers. In this way, you can seamlessly move from a single imperative Pod to a
replicated set of Pods managed by a ReplicaSet.

Quarantining Containers
Oftentimes, when a server misbehaves, Pod-level health checks will automatically
restart that Pod. But if your health checks are incomplete, a Pod can be misbehaving
but still be part of the replicated set. In these situations, while it would work to simply
kill the Pod, that would leave your developers with only logs to debug the problem.
Instead, you can modify the set of labels on the sick Pod. Doing so will disassociate
it from the ReplicaSet (and service) so that you can debug the Pod. The ReplicaSet
controller will notice that a Pod is missing and create a new copy, but because the
Pod is still running, it is available to developers for interactive debugging, which is
significantly more valuable than debugging from logs.

Designing with ReplicaSets
ReplicaSets are designed to represent a single, scalable microservice inside your
architecture. Their key characteristic is that every Pod the ReplicaSet controller
creates is entirely homogeneous. Typically, these Pods are then fronted by a Kuber‐
netes service load balancer, which spreads traffic across the Pods that make up the
service. Generally speaking, ReplicaSets are designed for stateless (or nearly stateless)
services. The elements they create are interchangeable; when a ReplicaSet is scaled
down, an arbitrary Pod is selected for deletion. Your application’s behavior shouldn’t
change because of such a scale-down operation.
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Typically you will see applications use the Deployment object
because it allows you to manage the release of new versions.
ReplicaSets power Deployments under the hood, and it’s important
to understand how they operate so that you can debug them should
you need to troubleshoot.

ReplicaSet Spec
Like all objects in Kubernetes, ReplicaSets are defined using a specification. All
ReplicaSets must have a unique name (defined using the metadata.name field), a
spec section that describes the number of Pods (replicas) that should be running
cluster-wide at any given time, and a Pod template that describes the Pod to be cre‐
ated when the defined number of replicas is not met. Example 9-1 shows a minimal
ReplicaSet definition. Pay attention to the replicas, selector, and template sections of
the definition because they provide more insight into how ReplicaSets operate.

Example 9-1. kuard-rs.yaml

apiVersion: apps/v1
kind: ReplicaSet
metadata:
  labels:
    app: kuard
    version: "2"
  name: kuard
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kuard
      version: "2"
  template:
    metadata:
      labels:
        app: kuard
        version: "2"
    spec:
      containers:
        - name: kuard
          image: "gcr.io/kuar-demo/kuard-amd64:green"

Pod Templates
As mentioned previously, when the number of Pods in the current state is less than
the number of Pods in the desired state, the ReplicaSet controller will create new Pods
using a template contained in the ReplicaSet specification. The Pods are created in
exactly the same manner as when you created a Pod from a YAML file in previous
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chapters, but instead of using a file, the Kubernetes ReplicaSet controller creates and
submits a Pod manifest based on the Pod template directly to the API server. Here is
an example of a Pod template in a ReplicaSet:

template:
  metadata:
    labels:
      app: helloworld
      version: v1
  spec:
    containers:
      - name: helloworld
        image: kelseyhightower/helloworld:v1
        ports:
          - containerPort: 80

Labels
In any reasonably sized cluster, many different Pods are running simultaneously—so
how does the ReplicaSet reconciliation loop discover the set of Pods for a particular
ReplicaSet? ReplicaSets monitor cluster state using a set of Pod labels to filter Pod
listings and track Pods running within a cluster. When initially created, a ReplicaSet
fetches a Pod listing from the Kubernetes API and filters the results by labels. Based
on the number of Pods the query returns, the ReplicaSet deletes or creates Pods
to meet the desired number of replicas. These filtering labels are defined in the
ReplicaSet spec section and are the key to understanding how ReplicaSets work.

The selector in the ReplicaSet spec should be a proper subset of the
labels in the Pod template.

Creating a ReplicaSet
ReplicaSets are created by submitting a ReplicaSet object to the Kubernetes API. In
this section, we will create a ReplicaSet using a configuration file and the kubectl
apply command.

The ReplicaSet configuration file in Example 9-1 will ensure one copy of the gcr.io/
kuar-demo/kuard-amd64:green container is running at any given time. Use the
kubectl apply command to submit the kuard ReplicaSet to the Kubernetes API:

$ kubectl apply -f kuard-rs.yaml
replicaset "kuard" created
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Once the kuard ReplicaSet has been accepted, the ReplicaSet controller will detect
that there are no kuard Pods running that match the desired state and create a new
kuard Pod based on the contents of the Pod template:

$ kubectl get pods
NAME          READY     STATUS    RESTARTS   AGE
kuard-yvzgd   1/1       Running   0          11s

Inspecting a ReplicaSet
As with Pods and other Kubernetes API objects, if you are interested in further details
about a ReplicaSet, you can use the describe command to provide much more
information about its state. Here is an example of using describe to obtain the details
of the ReplicaSet we previously created:

$ kubectl describe rs kuard
Name:         kuard
Namespace:    default
Selector:     app=kuard,version=2
Labels:       app=kuard
              version=2
Annotations:  <none>
Replicas:     1 current / 1 desired
Pods Status:  1 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:

You can see the label selector for the ReplicaSet, as well as the state of all of the
replicas it manages.

Finding a ReplicaSet from a Pod
Sometimes you may wonder if a Pod is being managed by a ReplicaSet, and if it
is, which one. To enable this kind of discovery, the ReplicaSet controller adds an
ownerReferences section to every Pod that it creates. If you run the following, look
for the ownerReferences section:

$ kubectl get pods <pod-name> -o=jsonpath='{.metadata.ownerReferences[0].name}'

If applicable, this will list the name of the ReplicaSet that is managing this Pod.

Finding a Set of Pods for a ReplicaSet
You can also determine the set of Pods managed by a ReplicaSet. First, get the set
of labels using the kubectl describe command. In the previous example, the label
selector was app=kuard,version=2. To find the Pods that match this selector, use the
--selector flag or the shorthand -l:

$ kubectl get pods -l app=kuard,version=2
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This is exactly the same query that the ReplicaSet executes to determine the current
number of Pods.

Scaling ReplicaSets
You can scale ReplicaSets up or down by updating the spec.replicas key on the
ReplicaSet object stored in Kubernetes. When you scale up a ReplicaSet, it submits
new Pods to the Kubernetes API using the Pod template defined on the ReplicaSet.

Imperative Scaling with kubectl scale
The easiest way to achieve this is using the scale command in kubectl. For example,
to scale up to four replicas, you could run:

$ kubectl scale replicasets kuard --replicas=4

While such imperative commands are useful for demonstrations and quick reactions
to emergency situations (such as a sudden increase in load), it is important to also
update any text file configurations to match the number of replicas that you set via
the imperative scale command. The reason for this becomes obvious when you
consider the following scenario.

Alice is on call, when suddenly there is a large increase in load on the service
she is managing. Alice uses the scale command to increase the number of servers
responding to requests to 10, and the situation is resolved. However, Alice forgets to
update the ReplicaSet configurations checked into source control.

Several days later, Bob is preparing the weekly rollouts. Bob edits the ReplicaSet
configurations stored in version control to use the new container image, but he
doesn’t notice that the number of replicas in the file is currently 5, not the 10 that
Alice set in response to the increased load. Bob proceeds with the rollout, which both
updates the container image and reduces the number of replicas by half. This causes
an immediate overload, which leads to an outage.

This fictional case study illustrates the need to ensure that any imperative changes are
immediately followed by a declarative change in source control. Indeed, if the need is
not acute, we generally recommend only making declarative changes as described in
the following section.

Declaratively Scaling with kubectl apply
In a declarative world, you make changes by editing the configuration file in version
control and then applying those changes to your cluster. To scale the kuard Replica‐
Set, edit the kuard-rs.yaml configuration file and set the replicas count to 3:
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...
spec:
  replicas: 3
...

In a multiuser setting, you would likely have a documented code review of this
change and eventually check the changes into version control. Either way, you can
then use the kubectl apply command to submit the updated kuard ReplicaSet to the
API server:

$ kubectl apply -f kuard-rs.yaml
replicaset "kuard" configured

Now that the updated kuard ReplicaSet is in place, the ReplicaSet controller will
detect that the number of desired Pods has changed and that it needs to take action to
realize that desired state. If you used the imperative scale command in the previous
section, the ReplicaSet controller will destroy one Pod to get the number to three.
Otherwise, it will submit two new Pods to the Kubernetes API using the Pod template
defined on the kuard ReplicaSet. Regardless, use the kubectl get pods command to
list the running kuard Pods. You should see output similar to the following with three
Pods in running state; two will have a smaller age because they were recently started:

$ kubectl get pods
NAME          READY     STATUS    RESTARTS   AGE
kuard-3a2sb   1/1       Running   0          26s
kuard-wuq9v   1/1       Running   0          26s
kuard-yvzgd   1/1       Running   0          2m

Autoscaling a ReplicaSet
While there will be times when you want to have explicit control over the number
of replicas in a ReplicaSet, often you simply want to have “enough” replicas. The
definition varies depending on the needs of the containers in the ReplicaSet. For
example, with a web server like NGINX, you might want to scale due to CPU usage.
For an in-memory cache, you might want to scale with memory consumption. In
some cases, you might want to scale in response to custom application metrics.
Kubernetes can handle all of these scenarios via Horizontal Pod Autoscaling (HPA).

“Horizontal Pod Autoscaling” is kind of a mouthful, and you might wonder why
it is not simply called “autoscaling.” Kubernetes makes a distinction between hori‐
zontal scaling, which involves creating additional replicas of a Pod, and vertical
scaling, which involves increasing the resources required for a particular Pod (such
as increasing the CPU required for the Pod). Many solutions also enable cluster
autoscaling, where the number of machines in the cluster is scaled in response to
resource needs, but that solution is outside the scope of this chapter.
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Autoscaling requires the presence of the metrics-server in your
cluster. The metrics-server keeps track of metrics and provides
an API for consuming metrics that HPA uses when making scal‐
ing decisions. Most installations of Kubernetes include metrics-
server by default. You can validate its presence by listing the Pods
in the kube-system namespace:

$ kubectl get pods --namespace=kube-system

You should see a Pod with a name that starts with metrics-server
somewhere in that list. If you do not see it, autoscaling will not
work correctly.

Scaling based on CPU usage is the most common use case for Pod autoscaling. You
can also scale based on memory usage. CPU-based autoscaling is most useful for
request-based systems that consume CPU proportionally to the number of requests
they are receiving, while using a relatively static amount of memory.

To scale a ReplicaSet, you can run a command like the following:

$ kubectl autoscale rs kuard --min=2 --max=5 --cpu-percent=80

This command creates an autoscaler that scales between two and five replicas with
a CPU threshold of 80%. To view, modify, or delete this resource, you can use
the standard kubectl commands and the horizontalpodautoscalers resource. It is
quite a bit to type horizontalpodautoscalers, but it can be shortened to hpa:

$ kubectl get hpa

Because of the decoupled nature of Kubernetes, there is no direct
link between the HPA and the ReplicaSet. While this is great for
modularity and composition, it also enables some antipatterns. In
particular, it’s a bad idea to combine autoscaling with imperative or
declarative management of the number of replicas. If both you and
an autoscaler are attempting to modify the number of replicas, it’s
highly likely that you will clash, resulting in unexpected behavior.

Deleting ReplicaSets
When a ReplicaSet is no longer required, it can be deleted using the kubectl delete
command. By default, this also deletes the Pods that are managed by the ReplicaSet:

$ kubectl delete rs kuard
replicaset "kuard" deleted

Running the kubectl get pods command shows that all the kuard Pods created by
the kuard ReplicaSet have also been deleted:

$ kubectl get pods

Deleting ReplicaSets | 111



If you don’t want to delete the Pods that the ReplicaSet is managing, you can set the
--cascade flag to false to ensure only the ReplicaSet object is deleted and not the
Pods:

$ kubectl delete rs kuard --cascade=false

Summary
Composing Pods with ReplicaSets provides the foundation for building robust appli‐
cations with automatic failover, and makes deploying those applications a breeze by
enabling scalable and sane deployment patterns. Use ReplicaSets for any Pod you care
about, even if it is a single Pod! Some people even default to using ReplicaSets instead
of Pods. A typical cluster will have many ReplicaSets, so apply them liberally to the
affected area.
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CHAPTER 10

Deployments

So far, you have seen how to package your applications as containers, create replica‐
ted sets of containers, and use Ingress controllers to load balance traffic to your
services. You can use all of these objects (Pods, ReplicaSets, and Services) to build a
single instance of your application. However, they do little to help you manage the
daily or weekly cadence of releasing new versions of your application. Indeed, both
Pods and ReplicaSets are expected to be tied to specific container images that don’t
change.

The Deployment object exists to manage the release of new versions. Deployments
represent deployed applications in a way that transcends any particular version. Addi‐
tionally, Deployments enable you to easily move from one version of your code to the
next. This “rollout” process is specifiable and careful. It waits for a user-configurable
amount of time between upgrading individual Pods. It also uses health checks to
ensure that the new version of the application is operating correctly and stops the
deployment if too many failures occur.

Using Deployments, you can simply and reliably roll out new software versions
without downtime or errors. The actual mechanics of the software rollout performed
by a Deployment are controlled by a Deployment controller that runs in the Kuber‐
netes cluster itself. This means you can let a Deployment proceed unattended and
it will still operate correctly and safely. This makes it easy to integrate Deployments
with numerous continuous delivery tools and services. Further, running server-side
makes it safe to perform a rollout from places with poor or intermittent internet
connectivity. Imagine rolling out a new version of your software from your phone
while riding on the subway. Deployments make this possible and safe!
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When Kubernetes was first released, one of the most popular dem‐
onstrations of its power was the “rolling update,” which showed
how you could use a single command to seamlessly update a
running application without any downtime and without losing
requests. This original demo was based on the kubectl rolling-
update command, which is still available in the command-line
tool, although its functionality has largely been subsumed by the
Deployment object.

Your First Deployment
Like all objects in Kubernetes, a Deployment can be represented as a declarative
YAML object that provides the details about what you want to run. In the following
case, the Deployment is requesting a single instance of the kuard application:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: kuard
  labels:
    run: kuard
spec:
  selector:
    matchLabels:
      run: kuard
  replicas: 1
  template:
    metadata:
      labels:
        run: kuard
    spec:
      containers:
      - name: kuard
        image: gcr.io/kuar-demo/kuard-amd64:blue

Save this YAML file as kuard-deployment.yaml, then you can create it using:

$ kubectl create -f kuard-deployment.yaml

Let’s explore how Deployments actually work. Just as we learned that ReplicaSets
manage Pods, Deployments manage ReplicaSets. As with all relationships in Kuber‐
netes, this relationship is defined by labels and a label selector. You can see the label
selector by looking at the Deployment object:

$ kubectl get deployments kuard \
  -o jsonpath --template {.spec.selector.matchLabels}

{"run":"kuard"}
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From this you can see that the Deployment is managing a ReplicaSet with the label
run=kuard. You can use this in a label selector query across ReplicaSets to find that
specific ReplicaSet:

$ kubectl get replicasets --selector=run=kuard

NAME              DESIRED   CURRENT   READY     AGE
kuard-1128242161  1         1         1         13m

Now let’s look at the relationship between a Deployment and a ReplicaSet in action.
We can resize the Deployment using the imperative scale command:

$ kubectl scale deployments kuard --replicas=2

deployment.apps/kuard scaled

Now if we list that ReplicaSet again, we should see:

$ kubectl get replicasets --selector=run=kuard

NAME              DESIRED   CURRENT   READY     AGE
kuard-1128242161  2         2         2         13m

Scaling the Deployment has also scaled the ReplicaSet it controls.

Now let’s try the opposite, scaling the ReplicaSet:

$ kubectl scale replicasets kuard-1128242161 --replicas=1

replicaset.apps/kuard-1128242161 scaled

Now get that ReplicaSet again:

$ kubectl get replicasets --selector=run=kuard

NAME              DESIRED   CURRENT   READY     AGE
kuard-1128242161  2         2         2         13m

That’s odd. Despite scaling the ReplicaSet to one replica, it still has two replicas as its
desired state. What’s going on?

Remember, Kubernetes is an online, self-healing system. The top-level Deployment
object is managing this ReplicaSet. When you adjust the number of replicas to one, it
no longer matches the desired state of the Deployment, which has replicas set to 2.
The Deployment controller notices this and takes action to ensure the observed state
matches the desired state, in this case readjusting the number of replicas back to two.

If you ever want to manage that ReplicaSet directly, you need to delete the Deploy‐
ment. (Remember to set --cascade to false, or else it will delete the ReplicaSet and
Pods as well!)
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Creating Deployments
Of course, as stated in the introduction, you should have a preference for declarative
management of your Kubernetes configurations. This means maintaining the state of
your Deployments in YAML or JSON files on disk.

As a starting point, download this Deployment into a YAML file:

$ kubectl get deployments kuard -o yaml > kuard-deployment.yaml
$ kubectl replace -f kuard-deployment.yaml --save-config

If you look in the file, you will see something like this (note that we’ve removed a lot
of read-only and default fields for readability). Pay attention to the annotations, selec‐
tor, and strategy fields as they provide insight into Deployment-specific functionality:

apiVersion: apps/v1
kind: Deployment
metadata:
  annotations:
    deployment.kubernetes.io/revision: "1"
  creationTimestamp: null
  generation: 1
  labels:
    run: kuard
  name: kuard
spec:
  progressDeadlineSeconds: 600
  replicas: 1
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      run: kuard
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
    type: RollingUpdate
  template:
    metadata:
      creationTimestamp: null
      labels:
        run: kuard
    spec:
      containers:
      - image: gcr.io/kuar-demo/kuard-amd64:blue
        imagePullPolicy: IfNotPresent
        name: kuard
        resources: {}
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: File
      dnsPolicy: ClusterFirst
      restartPolicy: Always
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      schedulerName: default-scheduler
      securityContext: {}
      terminationGracePeriodSeconds: 30
status: {}

You also need to run kubectl replace --save-config. This
adds an annotation so that, when applying changes in the future,
kubectl will know what the last applied configuration was for
smarter merging of configs. If you always use kubectl apply, this
step is only required after the first time you create a Deployment
using kubectl create -f.

The Deployment spec has a very similar structure to the ReplicaSet spec. There is a
Pod template, which contains a number of containers that are created for each replica
managed by the Deployment. In addition to the Pod specification, there is also a
strategy object:

...
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
    type: RollingUpdate
...

The strategy object dictates the different ways in which a rollout of new software
can proceed. There are two strategies supported by Deployments: Recreate and
RollingUpdate. These are discussed in detail later in this chapter.

Managing Deployments
As with all Kubernetes objects, you can get detailed information about your Deploy‐
ment via the kubectl describe command. This command provides an overview
of the Deployment configuration, which includes interesting fields like the Selector,
Replicas, and Events:

$ kubectl describe deployments kuard

Name:                   kuard
Namespace:              default
CreationTimestamp:      Tue, 01 Jun 2021 21:19:46 -0700
Labels:                 run=kuard
Annotations:            deployment.kubernetes.io/revision: 1
Selector:               run=kuard
Replicas:               1 desired | 1 updated | 1 total | 1 available | 0 ...
StrategyType:           RollingUpdate
MinReadySeconds:        0
RollingUpdateStrategy:  25% max unavailable, 25% max surge
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Pod Template:
  Labels:  run=kuard
  Containers:
   kuard:
    Image:        gcr.io/kuar-demo/kuard-amd64:blue
    Port:         <none>
    Host Port:    <none>
    Environment:  <none>
    Mounts:       <none>
  Volumes:        <none>
Conditions:
  Type           Status  Reason
  ----           ------  ------
  Available      True    MinimumReplicasAvailable
OldReplicaSets:  <none>
NewReplicaSet:   kuard-6d69d9fc5c (2/2 replicas created)
Events:
  Type    Reason             Age                   From                 Message
  ----    ------             ----                  ----                 -------
  Normal  ScalingReplicaSet  4m6s                  deployment-con...    ...
  Normal  ScalingReplicaSet  113s (x2 over 3m20s)  deployment-con...    ...

In the output of describe, there is a great deal of important information. Two of
the most important pieces of information in the output are OldReplicaSets and New
ReplicaSet. These fields point to the ReplicaSet objects this Deployment is currently
managing. If a Deployment is in the middle of a rollout, both fields will be set to a
value. If a rollout is complete, OldReplicaSets will be set to <none>.

In addition to the describe command, there is also the kubectl rollout command
for Deployments. We will go into this command in more detail later on, but for
now, know that you can use kubectl rollout history to obtain the history of
rollouts associated with a particular Deployment. If you have a current Deployment
in progress, you can use kubectl rollout status to obtain the current status of that
rollout.

Updating Deployments
Deployments are declarative objects that describe a deployed application. The two
most common operations on a Deployment are scaling and application updates.

Scaling a Deployment
Although we previously showed how to imperatively scale a Deployment using the
kubectl scale command, the best practice is to manage your Deployments declara‐
tively via the YAML files, then use those files to update your Deployment. To scale up
a Deployment, you would edit your YAML file to increase the number of replicas:
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...
spec:
  replicas: 3
...

Once you have saved and committed this change, you can update the Deployment
using the kubectl apply command:

$ kubectl apply -f kuard-deployment.yaml

This will update the desired state of the Deployment, causing it to increase the
size of the ReplicaSet it manages and eventually create a new Pod managed by the
Deployment:

$ kubectl get deployments kuard

NAME    READY   UP-TO-DATE   AVAILABLE   AGE
kuard   3/3     3            3           10m

Updating a Container Image
The other common use case for updating a Deployment is to roll out a new version of
the software running in one or more containers. To do this, you should likewise edit
the Deployment YAML file, though in this case you are updating the container image,
rather than the number of replicas:

...
      containers:
      - image: gcr.io/kuar-demo/kuard-amd64:green
        imagePullPolicy: Always
...

Annotate the template for the Deployment to record some information about the
update:

...
spec:
  ...
  template:
    metadata:
      annotations:
        kubernetes.io/change-cause: "Update to green kuard"
...

Make sure you add this annotation to the template and not the
Deployment itself, since the kubectl apply command uses this
field in the Deployment object. Also, do not update the change-
cause annotation when doing simple scaling operations. A modifi‐
cation of change-cause is a significant change to the template and
will trigger a new rollout.
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Again, you can use kubectl apply to update the Deployment:

$ kubectl apply -f kuard-deployment.yaml

After you update the Deployment, it will trigger a rollout, which you can then
monitor via the kubectl rollout command:

$ kubectl rollout status deployments kuard
deployment "kuard" successfully rolled out

You can see the old and new ReplicaSets managed by the Deployment along with the
images being used. Both the old and new ReplicaSets are kept around in case you
want to roll back:

$ kubectl get replicasets -o wide

NAME               DESIRED   CURRENT   READY   ...   IMAGE(S)            ...
kuard-1128242161   0         0         0       ...   gcr.io/kuar-demo/   ...
kuard-1128635377   3         3         3       ...   gcr.io/kuar-demo/   ...

If you are in the middle of a rollout and you want to temporarily pause it (e.g., if you
start seeing weird behavior in your system that you want to investigate), you can use
the pause command:

$ kubectl rollout pause deployments kuard
deployment.apps/kuard paused

If, after investigation, you believe the rollout can safely proceed, you can use the
resume command to start up where you left off:

$ kubectl rollout resume deployments kuard
deployment.apps/kuard resumed

Rollout History
Kubernetes Deployments maintain a history of rollouts, which can be useful both for
understanding the previous state of the Deployment and for rolling back to a specific
version.

You can see the Deployment history by running:

$ kubectl rollout history deployment kuard

deployment.apps/kuard
REVISION  CHANGE-CAUSE
1         <none>
2         Update to green kuard

The revision history is given in oldest to newest order. A unique revision number is
incremented for each new rollout. So far we have two: the initial Deployment and the
update of the image to kuard:green.
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If you are interested in more details about a particular revision, you can add the
--revision flag to view details about that specific revision:

$ kubectl rollout history deployment kuard --revision=2

deployment.apps/kuard with revision #2
Pod Template:
  Labels:       pod-template-hash=54b74ddcd4
        run=kuard
  Annotations:  kubernetes.io/change-cause: Update to green kuard
  Containers:
   kuard:
    Image:      gcr.io/kuar-demo/kuard-amd64:green
    Port:       <none>
    Host Port:  <none>
    Environment:        <none>
    Mounts:     <none>
  Volumes:      <none>

Let’s do one more update for this example. Update the kuard version back to blue by
modifying the container version number and updating the change-cause annotation.
Apply it with kubectl apply. The history should now have three entries:

$ kubectl rollout history deployment kuard

deployment.apps/kuard
REVISION  CHANGE-CAUSE
1         <none>
2         Update to green kuard
3         Update to blue kuard

Let’s say there is an issue with the latest release and you want to roll back while you
investigate. You can simply undo the last rollout:

$ kubectl rollout undo deployments kuard
deployment.apps/kuard rolled back

The undo command works regardless of the stage of the rollout. You can undo both
partially completed and fully completed rollouts. An undo of a rollout is actually
simply a rollout in reverse (for example from v2 to v1, instead of from v1 to v2), and
all of the same policies that control the rollout strategy apply to the undo strategy as
well. You can see that the Deployment object simply adjusts the desired replica counts
in the managed ReplicaSets:

$ kubectl get replicasets -o wide

NAME               DESIRED   CURRENT   READY   ...   IMAGE(S)            ...
kuard-1128242161   0         0         0       ...   gcr.io/kuar-demo/   ...
kuard-1570155864   0         0         0       ...   gcr.io/kuar-demo/   ...
kuard-2738859366   3         3         3       ...   gcr.io/kuar-demo/   ...
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When using declarative files to control your production systems,
you should, as much as possible, ensure that the checked-in mani‐
fests match what is actually running in your cluster. When you do a
kubectl rollout undo, you are updating the production state in a
way that isn’t reflected in your source control.
An alternative (and perhaps preferable) way to undo a rollout is to
revert your YAML file and kubectl apply the previous version. In
this way, your “change tracked configuration” more closely tracks
what is really running in your cluster.

Let’s look at the Deployment history again:

$ kubectl rollout history deployment kuard

deployment.apps/kuard
REVISION  CHANGE-CAUSE
1         <none>
3         Update to blue kuard
4         Update to green kuard

Revision 2 is missing! It turns out that when you roll back to a previous revision,
the Deployment simply reuses the template and renumbers it so that it is the latest
revision. What was revision 2 before is now revision 4.

We previously saw that you can use the kubectl rollout undo command to roll
back to a previous version of a Deployment. Additionally, you can roll back to a
specific revision in the history using the --to-revision flag:

$ kubectl rollout undo deployments kuard --to-revision=3
deployment.apps/kuard rolled back
$ kubectl rollout history deployment kuard
deployment.apps/kuard
REVISION  CHANGE-CAUSE
1         <none>
4         Update to green kuard
5         Update to blue kuard

Again, the undo took revision 3, applied it, and renumbered it as revision 5.

Specifying a revision of 0 is a shorthand way of specifying the previous revision.
In this way, kubectl rollout undo is equivalent to kubectl rollout undo --to-
revision=0.

By default, the last 10 revisions of a Deployment are kept attached to the Deployment
object itself. It is recommended that if you have Deployments that you expect to keep
around for a long time, you set a maximum history size for the Deployment revision
history. For example, if you do a daily update, you may limit your revision history to
14, to keep a maximum of two weeks’ worth of revisions (if you don’t expect to need
to roll back beyond two weeks).
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To accomplish this, use the revisionHistoryLimit property in the Deployment
specification:

...
spec:
  # We do daily rollouts, limit the revision history to two weeks of
  # releases as we don't expect to roll back beyond that.
  revisionHistoryLimit: 14
...

Deployment Strategies
When it comes time to change the version of the software implementing your service,
a Kubernetes deployment supports two different rollout strategies, Recreate and
RollingUpdate. Let’s look at each in turn.

Recreate Strategy
The Recreate strategy is the simpler of the two. It simply updates the ReplicaSet it
manages to use the new image and terminates all of the Pods associated with the
Deployment. The ReplicaSet notices that it no longer has any replicas and re-creates
all Pods using the new image. Once the Pods are re-created, they are running the new
version.

While this strategy is fast and simple, it will result in workload downtime. Because of
this, the Recreate strategy should be used only for test Deployments where a service
downtime is acceptable.

RollingUpdate Strategy
The RollingUpdate strategy is the generally preferable strategy for any user-facing
service. While it is slower than Recreate, it is also significantly more sophisticated
and robust. Using RollingUpdate, you can roll out a new version of your service
while it is still receiving user traffic, without any downtime.

As you might infer from the name, the RollingUpdate strategy works by updating a
few Pods at a time, moving incrementally until all of the Pods are running the new
version of your software.

Managing multiple versions of your service
Importantly, this means that for a while, both the new and the old version of your
service will be receiving requests and serving traffic. This has important implications
for how you build your software. Namely, it is critically important that each version
of your software, and each of its clients, is capable of talking interchangeably with
both a slightly older and a slightly newer version of your software.
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Consider the following scenario: you are in the middle of rolling out your frontend
software; half of your servers are running version 1, and half are running version 2.
A user makes an initial request to your service and downloads a client-side JavaScript
library that implements your UI. This request is serviced by a version 1 server, and
thus the user receives the version 1 client library. This client library runs in the user’s
browser and makes subsequent API requests to your service. These API requests
happen to be routed to a version 2 server; thus, version 1 of your JavaScript client
library is talking to version 2 of your API server. If you haven’t ensured compatibility
between these versions, your application won’t function correctly.

At first, this might seem like an extra burden. But in truth, you always had this
problem; you may just not have noticed. Concretely, a user can make a request at
time t just before you initiate an update. This request is serviced by a version 1 server.
At t_1, you update your service to version 2. At t_2, the version 1 client code running
on the user’s browser runs and hits an API endpoint being operated by a version 2
server. No matter how you update your software, you have to maintain backward and
forward compatibility for reliable updates. The nature of the RollingUpdate strategy
simply makes that more clear and explicit.

This doesn’t just apply to JavaScript clients—it’s true of client libraries that are com‐
piled into other services that make calls to your service. Just because you updated
doesn’t mean they have updated their client libraries. This sort of backward compati‐
bility is critical to decoupling your service from systems that depend on your service.
If you don’t formalize your APIs and decouple yourself, you are forced to carefully
manage your rollouts with all of the other systems that call into your service. This
kind of tight coupling makes it extremely hard to produce the necessary agility to
be able to push out new software every week, let alone every hour or every day. In
the decoupled architecture shown in Figure 10-1, the frontend is isolated from the
backend via an API contract and a load balancer, whereas in the coupled architecture,
a thick client compiled into the frontend is used to connect directly to the backends.

Figure 10-1. Diagrams of decoupled (left) and coupled (right) application architectures
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Configuring a rolling update

RollingUpdate is a fairly generic strategy; it can be used to update a variety of
applications in a variety of settings. Consequently, the rolling update itself is quite
configurable; you can tune its behavior to suit your particular needs. There are two
parameters you can use to tune the rolling update behavior: maxUnavailable and
maxSurge.

The maxUnavailable parameter sets the maximum number of Pods that can be
unavailable during a rolling update. It can either be set to an absolute number (e.g., 3,
meaning a maximum of three Pods can be unavailable) or to a percentage (e.g., 20%,
meaning a maximum of 20% of the desired number of replicas can be unavailable).
Generally speaking, using a percentage is a good approach for most services, since the
value is correctly applied regardless of the desired number of replicas in the Deploy‐
ment. However, there are times when you may want to use an absolute number (e.g.,
limiting the maximum unavailable Pods to one).

At its core, the maxUnavailable parameter helps tune how quickly a rolling update
proceeds. For example, if you set maxUnavailable to 50%, then the rolling update will
immediately scale the old ReplicaSet down to 50% of its original size. If you have four
replicas, it will scale it down to two replicas. The rolling update will then replace the
removed Pods by scaling the new ReplicaSet up to two replicas, for a total of four
replicas (two old, two new). It will then scale the old ReplicaSet down to zero replicas,
for a total size of two new replicas. Finally, it will scale the new ReplicaSet up to four
replicas, completing the rollout. Thus, with maxUnavailable set to 50%, the rollout
completes in four steps, but with only 50% of the service capacity at times.

Consider what happens if we instead set maxUnavailable to 25%. In this situation,
each step is only performed with a single replica at a time and thus it takes twice
as many steps for the rollout to complete, but availability only drops to a minimum
of 75% during the rollout. This illustrates how maxUnavailable allows us to trade
rollout speed for availability.

The observant among you will notice that the Recreate strategy is
identical to the RollingUpdate strategy with maxUnavailable set to
100%.

Using reduced capacity to achieve a successful rollout is useful either when your
service has cyclical traffic patterns (for example, if there’s much less traffic at night)
or when you have limited resources, so scaling to larger than the current maximum
number of replicas isn’t possible.
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However, there are situations where you don’t want to fall below 100% capacity,
but you are willing to temporarily use additional resources to perform a rollout. In
these situations, you can set the maxUnavailable parameter to 0, and instead control
the rollout using the maxSurge parameter. Like maxUnavailable, maxSurge can be
specified either as a specific number or a percentage.

The maxSurge parameter controls how many extra resources can be created to achieve
a rollout. To illustrate how this works, imagine a service with 10 replicas. We set
maxUnavailable to 0 and maxSurge to 20%. The first thing the rollout will do is scale
the new ReplicaSet up by 2 replicas, for a total of 12 (120%) in the service. It will
then scale the old ReplicaSet down to 8 replicas, for a total of 10 (8 old, 2 new) in the
service. This process proceeds until the rollout is complete. At any time, the capacity
of the service is guaranteed to be at least 100% and the maximum extra resources
used for the rollout are limited to an additional 20% of all resources.

Setting maxSurge to 100% is equivalent to a blue/green Deployment.
The Deployment controller first scales the new version up to 100%
of the old version. Once the new version is healthy, it immediately
scales the old version down to 0%.

Slowing Rollouts to Ensure Service Health
Staged rollouts are meant to ensure that the rollout results in a healthy, stable service
running the new software version. To do this, the Deployment controller always waits
until a Pod reports that it is ready before moving on to update the next Pod.

The Deployment controller examines the Pod’s status as deter‐
mined by its readiness checks. Readiness checks are part of the
Pod’s health checks, described in detail in Chapter 5. If you want
to use Deployments to reliably roll out your software, you have
to specify readiness health checks for the containers in your
Pod. Without these checks, the Deployment controller is running
without knowing the Pod’s status.

Sometimes, however, simply noticing that a Pod has become ready doesn’t give you
sufficient confidence that the Pod is actually behaving correctly. Some error condi‐
tions don’t occur immediately. For example, you could have a serious memory leak
that takes a few minutes to show up, or you could have a bug that is only triggered by
1% of all requests. In most real-world scenarios, you want to wait a period of time to
have high confidence that the new version is operating correctly before you move on
to updating the next Pod.
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For Deployments, this time to wait is defined by the minReadySeconds parameter:

...
spec:
  minReadySeconds: 60
...

Setting minReadySeconds to 60 indicates that the Deployment must wait for 60
seconds after seeing a Pod become healthy before moving on to updating the next
Pod.

In addition to waiting for a Pod to become healthy, you also want to set a timeout that
limits how long the system will wait. Suppose, for example, the new version of your
service has a bug and immediately deadlocks. It will never become ready, and in the
absence of a timeout, the Deployment controller will stall your rollout forever.

The correct behavior in such a situation is to time out the rollout. This in turn marks
the rollout as failed. This failure status can be used to trigger alerting that can indicate
to an operator that there is a problem with the rollout.

At first blush, timing out a rollout might seem like an unneces‐
sary complication. However, increasingly, things like rollouts are
being triggered by fully automated systems with little to no human
involvement. In such a situation, timing out becomes a critical
exception, which can either trigger an automated rollback of the
release or create a ticket/event that triggers human intervention.

In order to set the timeout period, you will use the Deployment parameter progress
DeadlineSeconds:

...
spec:
  progressDeadlineSeconds: 600
...

This example sets the progress deadline to 10 minutes. If any particular stage in the
rollout fails to progress in 10 minutes, then the Deployment is marked as failed, and
all attempts to move the Deployment forward are halted.

It is important to note that this timeout is given in terms of Deployment progress, not
the overall length of a Deployment. In this context, progress is defined as any time
the Deployment creates or deletes a Pod. When that happens, the timeout clock is
reset to zero. Figure 10-2 shows the Deployment life cycle.
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Figure 10-2. The Kubernetes Deployment life cycle

Deleting a Deployment
If you ever want to delete a Deployment, you can do it with the imperative command:

$ kubectl delete deployments kuard

You can also do it using the declarative YAML file you created earlier:

$ kubectl delete -f kuard-deployment.yaml

In either case, by default, deleting a Deployment deletes the entire service. The means
it will delete not just the Deployment, but also any ReplicaSets it manages, as well
as any Pods the ReplicaSets manage. As with ReplicaSets, if this is not the desired
behavior, you can use the --cascade=false flag to delete only the Deployment
object.

Monitoring a Deployment
If a Deployment fails to make progress after a specified amount of time, it will time
out. When this happens, the status of the Deployment will transition to a failed
state. This status can be obtained from the status.conditions array, where there
will be a Condition whose Type is Progressing and whose Status is False. A
Deployment in such a state has failed and will not progress further. To set how long
the Deployment controller should wait before transitioning into this state, use the
spec.progressDeadlineSeconds field.

Summary
Ultimately, the primary goal of Kubernetes is to make it easy for you to build and
deploy reliable distributed systems. This means not just instantiating the application
once, but managing the regularly scheduled rollout of new versions of that software
service. Deployments are a critical piece of reliable rollouts and rollout management
for your services. In the next chapter we will cover DaemonSets, which ensure only a
single copy of a Pod is running across a set of nodes in a Kubernetes cluster.
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CHAPTER 11

DaemonSets

Deployments and ReplicaSets are generally about creating a service (such as a web
server) with multiple replicas for redundancy. But that is not the only reason to
replicate a set of Pods within a cluster. Another reason is to schedule a single Pod
on every node within the cluster. Generally, the motivation for replicating a Pod to
every node is to land some sort of agent or daemon on each node, and the Kubernetes
object for achieving this is the DaemonSet.

A DaemonSet ensures that a copy of a Pod is running across a set of nodes in a
Kubernetes cluster. DaemonSets are used to deploy system daemons such as log col‐
lectors and monitoring agents, which typically must run on every node. DaemonSets
share similar functionality with ReplicaSets; both create Pods that are expected to be
long-running services and ensure that the desired state and the observed state of the
cluster match.

Given the similarities between DaemonSets and ReplicaSets, it’s important to under‐
stand when to use one over the other. ReplicaSets should be used when your applica‐
tion is completely decoupled from the node and you can run multiple copies on a
given node without special consideration. DaemonSets should be used when a single
copy of your application must run on all or a subset of the nodes in the cluster.

You should generally not use scheduling restrictions or other parameters to ensure
that Pods do not colocate on the same node. If you find yourself wanting a single Pod
per node, then a DaemonSet is the correct Kubernetes resource to use. Likewise, if
you find yourself building a homogeneous replicated service to serve user traffic, then
a ReplicaSet is probably the right Kubernetes resource to use.

You can use labels to run DaemonSet Pods on specific nodes; for example, you may
want to run specialized intrusion-detection software on nodes that are exposed to the
edge network.
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You can also use DaemonSets to install software on nodes in a cloud-based cluster.
For many cloud services, an upgrade or scaling of a cluster can delete and/or re-create
new virtual machines. This dynamic immutable infrastructure approach can cause
problems if you want (or are required by central IT) to have specific software on
every node. To ensure that specific software is installed on every machine despite
upgrades and scale events, a DaemonSet is the right approach. You can even mount
the host filesystem and run scripts that install RPM/DEB packages onto the host
operating system. In this way, you can have a cloud native cluster that still meets the
enterprise requirements of your IT department.

DaemonSet Scheduler
By default, a DaemonSet will create a copy of a Pod on every node unless a node
selector is used, which will limit eligible nodes to those with a matching set of labels.
DaemonSets determine which node a Pod will run on at Pod creation time by specify‐
ing the nodeName field in the Pod spec. As a result, Pods created by DaemonSets are
ignored by the Kubernetes scheduler.

Like ReplicaSets, DaemonSets are managed by a reconciliation control loop that
measures the desired state (a Pod is present on all nodes) with the observed state
(is the Pod present on a particular node?). Given this information, the DaemonSet
controller creates a Pod on each node that doesn’t currently have a matching Pod.

If a new node is added to the cluster, then the DaemonSet controller notices that it is
missing a Pod and adds the Pod to the new node.

DaemonSets and ReplicaSets are a great demonstration of the value
of decoupled architecture. It might seem that the right design
would be for a ReplicaSet to own the Pods it manages, and for Pods
to be subresources of a ReplicaSet. Likewise, the Pods managed by
a DaemonSet would be subresources of that DaemonSet. However,
this kind of encapsulation would require that tools for dealing
with Pods be written twice: once for DaemonSets and once for
ReplicaSets. Instead, Kubernetes uses a decoupled approach where
Pods are top-level objects. This means that every tool you have
learned for introspecting Pods in the context of ReplicaSets (e.g.,
kubectl logs <pod-name>) is equally applicable to Pods created
by DaemonSets.
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Creating DaemonSets
DaemonSets are created by submitting a DaemonSet configuration to the Kubernetes
API server. The DaemonSet in Example 11-1 will create a fluentd logging agent on
every node in the target cluster.

Example 11-1. fluentd.yaml

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd
  labels:
    app: fluentd
spec:
  selector:
    matchLabels:
      app: fluentd
  template:
    metadata:
      labels:
        app: fluentd
    spec:
      containers:
      - name: fluentd
        image: fluent/fluentd:v0.14.10
        resources:
          limits:
            memory: 200Mi
          requests:
            cpu: 100m
            memory: 200Mi
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: varlibdockercontainers
          mountPath: /var/lib/docker/containers
          readOnly: true
      terminationGracePeriodSeconds: 30
      volumes:
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /var/lib/docker/containers

DaemonSets require a unique name across all DaemonSets in a given Kubernetes
namespace. Each DaemonSet must include a Pod template spec, which will be used
to create Pods as needed. This is where the similarities between ReplicaSets and
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DaemonSets end. Unlike ReplicaSets, DaemonSets will create Pods on every node in
the cluster by default unless a node selector is used.

Once you have a valid DaemonSet configuration in place, you can use the kubectl
apply command to submit the DaemonSet to the Kubernetes API. In this section,
we will create a DaemonSet to ensure the fluentd HTTP server is running on every
node in our cluster:

$ kubectl apply -f fluentd.yaml
daemonset.apps/fluentd created

Once the fluentd DaemonSet has been successfully submitted to the Kubernetes
API, you can query its current state using the kubectl describe command:

$ kubectl describe daemonset fluentd
Name:           fluentd
Selector:       app=fluentd
Node-Selector:  <none>
Labels:         app=fluentd
Annotations:    deprecated.daemonset.template.generation: 1
Desired Number of Nodes Scheduled: 3
Current Number of Nodes Scheduled: 3
Number of Nodes Scheduled with Up-to-date Pods: 3
Number of Nodes Scheduled with Available Pods: 3
Number of Nodes Misscheduled: 0
Pods Status:  3 Running / 0 Waiting / 0 Succeeded / 0 Failed
...

This output indicates a fluentd Pod was successfully deployed to all three nodes in
our cluster. We can verify this using the kubectl get pods command with the -o flag
to print the nodes where each fluentd Pod was assigned:

$ kubectl get pods -l app=fluentd -o wide
NAME            READY   STATUS    RESTARTS   AGE   IP             NODE
fluentd-1q6c6   1/1     Running   0          13m   10.240.0.101   k0-default...
fluentd-mwi7h   1/1     Running   0          13m   10.240.0.80    k0-default...
fluentd-zr6l7   1/1     Running   0          13m   10.240.0.44    k0-default...

With the fluentd DaemonSet in place, adding a new node to the cluster will result in
a fluentd Pod being deployed to that node automatically:

$ kubectl get pods -l app=fluentd -o wide
NAME            READY   STATUS    RESTARTS   AGE   IP             NODE
fluentd-1q6c6   1/1     Running   0          13m   10.240.0.101   k0-default...
fluentd-mwi7h   1/1     Running   0          13m   10.240.0.80    k0-default...
fluentd-oipmq   1/1     Running   0          43s   10.240.0.96    k0-default...
fluentd-zr6l7   1/1     Running   0          13m   10.240.0.44    k0-default...

This is exactly the behavior you want when managing logging daemons and other
cluster-wide services. No action was required from our end; this is how the Kuber‐
netes DaemonSet controller reconciles its observed state with our desired state.
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Limiting DaemonSets to Specific Nodes
The most common use case for DaemonSets is to run a Pod across every node in a
Kubernetes cluster. However, there are some cases where you want to deploy a Pod
to only a subset of nodes. For example, maybe you have a workload that requires a
GPU or access to fast storage only available on a subset of nodes in your cluster. In
cases like these, node labels can be used to tag specific nodes that meet workload
requirements.

Adding Labels to Nodes
The first step in limiting DaemonSets to specific nodes is to add the desired set of
labels to a subset of nodes. This can be achieved using the kubectl label command.

The following command adds the ssd=true label to a single node:

$ kubectl label nodes k0-default-pool-35609c18-z7tb ssd=true
node/k0-default-pool-35609c18-z7tb labeled

Just like with other Kubernetes resources, listing nodes without a label selector
returns all nodes in the cluster:

$ kubectl get nodes
NAME                            STATUS   ROLES    AGE   VERSION
k0-default-pool-35609c18-0xnl   Ready    agent    23m   v1.21.1
k0-default-pool-35609c18-pol3   Ready    agent    1d    v1.21.1
k0-default-pool-35609c18-ydae   Ready    agent    1d    v1.21.1
k0-default-pool-35609c18-z7tb   Ready    agent    1d    v1.21.1

Using a label selector, we can filter nodes based on labels. To list only the nodes
that have the ssd label set to true, use the kubectl get nodes command with the
--selector flag:

$ kubectl get nodes --selector ssd=true
NAME                            STATUS   ROLES   AGE   VERSION
k0-default-pool-35609c18-z7tb   Ready    agent   1d    v1.21.1

Node Selectors
Node selectors can be used to limit what nodes a Pod can run on in a given Kuber‐
netes cluster. Node selectors are defined as part of the Pod spec when creating a Dae‐
monSet. The DaemonSet configuration in Example 11-2 limits NGINX to running
only on nodes with the ssd=true label set.
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Example 11-2. nginx-fast-storage.yaml

apiVersion: apps/v1
kind: "DaemonSet"
metadata:
  labels:
    app: nginx
    ssd: "true"
  name: nginx-fast-storage
spec:
  selector:
    matchLabels:
      app: nginx
      ssd: "true"
  template:
    metadata:
      labels:
        app: nginx
        ssd: "true"
    spec:
      nodeSelector:
        ssd: "true"
      containers:
        - name: nginx
          image: nginx:1.10.0

Let’s see what happens when we submit the nginx-fast-storage DaemonSet to the
Kubernetes API:

$ kubectl apply -f nginx-fast-storage.yaml
daemonset.apps/nginx-fast-storage created

Since there is only one node with the ssd=true label, the nginx-fast-storage Pod
will only run on that node:

$ kubectl get pods -l app=nginx -o wide
NAME                       READY   STATUS    RESTARTS   AGE   IP            NODE
nginx-fast-storage-7b90t   1/1     Running   0          44s   10.240.0.48   ...

Adding the ssd=true label to additional nodes will cause the nginx-fast-storage
Pod to be deployed on those nodes. The inverse is also true: if a required label is
removed from a node, the Pod will be removed by the DaemonSet controller.

Removing labels from a node that are required by a DaemonSet’s
node selector will cause the Pod being managed by that DaemonSet
to be removed from the node.
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Updating a DaemonSet
DaemonSets are great for deploying services across an entire cluster, but what about
upgrades? Prior to Kubernetes 1.6, the only way to update Pods managed by a
DaemonSet was to update the DaemonSet and then manually delete each Pod that
was managed by the DaemonSet so that it would be re-created with the new configu‐
ration. With the release of Kubernetes 1.6, DaemonSets gained an equivalent to the
Deployment object that manages a ReplicaSet rollout inside the cluster.

DaemonSets can be rolled out using the same RollingUpdate strategy that
Deployments use. You can configure the update strategy using the spec.update
Strategy.type field, which should have the value RollingUpdate. When a Daemon‐
Set has an update strategy of RollingUpdate, any change to the spec.template field
(or subfields) in the DaemonSet will initiate a rolling update.

As with rolling updates of Deployments (see Chapter 10), the RollingUpdate strategy
gradually updates members of a DaemonSet until all of the Pods are running the
new configuration. There are two parameters that control the rolling update of a
DaemonSet:

spec.minReadySeconds

Determines how long a Pod must be “ready” before the rolling update proceeds
to upgrade subsequent Pods

spec.updateStrategy.rollingUpdate.maxUnavailable

Indicates how many Pods may be simultaneously updated by the rolling update

You will likely want to set spec.minReadySeconds to a reasonably long value, for
example 30–60 seconds, to ensure that your Pod is truly healthy before the rollout
proceeds.

The setting for spec.updateStrategy.rollingUpdate.maxUnavailable is more
likely to be application-dependent. Setting it to 1 is a safe, general-purpose strategy,
but it also takes a while to complete the rollout (number of nodes × minReady
Seconds). Increasing the maximum unavailability will make your rollout move faster,
but increases the “blast radius” of a failed rollout. The characteristics of your appli‐
cation and cluster environment dictate the relative values of speed versus safety. A
good approach might be to set maxUnavailable to 1 and only increase it if users or
administrators complain about DaemonSet rollout speed.

Once a rolling update has started, you can use the kubectl rollout commands to
see the current status of a DaemonSet rollout. For example, kubectl rollout status
daemonSets my-daemon-set will show the current rollout status of a DaemonSet
named my-daemon-set.
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Deleting a DaemonSet
Deleting a DaemonSet using the kubectl delete command is pretty straightfoward.
Just be sure to supply the correct name of the DaemonSet you would like to delete:

$ kubectl delete -f fluentd.yaml

Deleting a DaemonSet will also delete all the Pods being managed
by that DaemonSet. Set the --cascade flag to false to ensure only
the DaemonSet is deleted and not the Pods.

Summary
DaemonSets provide an easy-to-use abstraction for running a set of Pods on every
node in a Kubernetes cluster, or, if the case requires it, on a subset of nodes based
on labels. The DaemonSet provides its own controller and scheduler to ensure key
services like monitoring agents are always up and running on the right nodes in your
cluster.

For some applications, you simply want to schedule a certain number of replicas;
you don’t really care where they run as long as they have sufficient resources and
distribution to operate reliably. However, there is a different class of applications,
like agents and monitoring applications, that needs to be present on every machine
in a cluster to function properly. These DaemonSets aren’t really traditional serving
applications, but rather add additional capabilities and features to the Kubernetes
cluster itself. Because the DaemonSet is an active declarative object managed by a
controller, it makes it easy to declare your intent that an agent run on every machine
without explicitly placing it on every machine. This is especially useful in the context
of an autoscaled Kubernetes cluster where nodes may constantly be coming and
going without user intervention. In such cases, the DaemonSet automatically adds the
proper agents to each node as the autoscaler adds the node to the cluster.
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CHAPTER 12

Jobs

So far we have focused on long-running processes, such as databases and web appli‐
cations. These types of workloads run until they are either upgraded or the service
is no longer needed. While long-running processes make up the large majority of
workloads that run on a Kubernetes cluster, there is often a need to run short-lived,
one-off tasks. The Job object is made for handling these types of tasks.

A Job creates Pods that run until successful termination (for instance, exit with 0).
In contrast, a regular Pod will continually restart regardless of its exit code. Jobs are
useful for things you only want to do once, such as database migrations or batch jobs.
If run as a regular Pod, your database migration task would run in a loop, continually
repopulating the database after every exit.

In this chapter, we’ll explore the most common job patterns Kubernetes affords. We
will also show you how to leverage these patterns in real-life scenarios.

The Job Object
The Job object is responsible for creating and managing Pods defined in a template in
the job specification. These Pods generally run until successful completion. The Job
object coordinates running a number of Pods in parallel.

If the Pod fails before a successful termination, the job controller will create a new
Pod based on the Pod template in the job specification. Given that Pods have to be
scheduled, there is a chance that your job will not execute if the scheduler does not
find the required resources. Also, due to the nature of distributed systems, there is
a small chance that duplicate Pods will be created for a specific task during certain
failure scenarios.
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Job Patterns
Jobs are designed to manage batch-like workloads where work items are processed
by one or more Pods. By default, each job runs a single Pod once until successful ter‐
mination. This job pattern is defined by two primary attributes of a job: the number
of job completions and the number of Pods to run in parallel. In the case of the “run
once until completion” pattern, the completions and parallelism parameters are set
to 1. Table 12-1 highlights job patterns based on the combination of completions and
parallelism for a job configuration.

Table 12-1. Job patterns

Type Use case Behavior comple

tions

paral

lelism

One shot Database migrations A single Pod running once until successful
termination

1 1

Parallel fixed
completions

Multiple Pods processing a set
of work in parallel

One or more Pods running one or more
times until reaching a fixed completion
count

1+ 1+

Work queue:
parallel jobs

Multiple Pods processing from
a centralized work queue

One or more Pods running once until
successful termination

1 2+

One Shot
One-shot jobs provide a way to run a single Pod once until successful termination.
While this may sound like an easy task, there is some work involved in pulling this
off. First, a Pod must be created and submitted to the Kubernetes API. This is done
using a Pod template defined in the job configuration. Once a job is up and running,
the Pod backing the job must be monitored for successful termination. A job can
fail for any number of reasons, including an application error, an uncaught exception
during runtime, or a node failure before the job has a chance to complete. In all cases,
the job controller is responsible for re-creating the Pod until a successful termination
occurs.

There are multiple ways to create a one-shot job in Kubernetes. The easiest is to use
the kubectl command-line tool:

$ kubectl run -i oneshot \
  --image=gcr.io/kuar-demo/kuard-amd64:blue \
  --restart=OnFailure \
  --command /kuard \
  -- --keygen-enable \
     --keygen-exit-on-complete \
     --keygen-num-to-gen 10

...
(ID 0) Workload starting
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(ID 0 1/10) Item done: SHA256:nAsUsG54XoKRkJwyN+OShkUPKew3mwq7OCc
(ID 0 2/10) Item done: SHA256:HVKX1ANns6SgF/er1lyo+ZCdnB8geFGt0/8
(ID 0 3/10) Item done: SHA256:irjCLRov3mTT0P0JfsvUyhKRQ1TdGR8H1jg
(ID 0 4/10) Item done: SHA256:nbQAIVY/yrhmEGk3Ui2sAHuxb/o6mYO0qRk
(ID 0 5/10) Item done: SHA256:CCpBoXNlXOMQvR2v38yqimXGAa/w2Tym+aI
(ID 0 6/10) Item done: SHA256:wEY2TTIDz4ATjcr1iimxavCzZzNjRmbOQp8
(ID 0 7/10) Item done: SHA256:t3JSrCt7sQweBgqG5CrbMoBulwk4lfDWiTI
(ID 0 8/10) Item done: SHA256:E84/Vze7KKyjCh9OZh02MkXJGoty9PhaCec
(ID 0 9/10) Item done: SHA256:UOmYex79qqbI1MhcIfG4hDnGKonlsij2k3s
(ID 0 10/10) Item done: SHA256:WCR8wIGOFag84Bsa8f/9QHuKqF+0mEnCADY
(ID 0) Workload exiting

There are some things to note here:

• The -i option to kubectl indicates that this is an interactive command. kubectl•
will wait until the job is running and then show the log output from the first (and
in this case only) Pod in the job.

• --restart=OnFailure is the option that tells kubectl to create a Job object.•
• All of the options after -- are command-line arguments to the container image.•

These instruct our test server (kuard) to generate ten 4,096-bit SSH keys and
then exit.

• Your output may not match this exactly. kubectl often misses the first couple of•
lines of output with the -i option.

After the job has completed, the Job object and related Pod are retained so that you
can inspect the log output. Note that this job won’t show up in kubectl get jobs
unless you pass the -a flag. Without this flag, kubectl hides completed jobs. Delete
the job before continuing:

$ kubectl delete pods oneshot

The other option for creating a one-shot job is using a configuration file, as shown in
Example 12-1.

Example 12-1. job-oneshot.yaml

apiVersion: batch/v1
kind: Job
metadata:
  name: oneshot
spec:
  template:
    spec:
      containers:
      - name: kuard
        image: gcr.io/kuar-demo/kuard-amd64:blue
        imagePullPolicy: Always
        command:
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        - "/kuard"
        args:
        - "--keygen-enable"
        - "--keygen-exit-on-complete"
        - "--keygen-num-to-gen=10"
      restartPolicy: OnFailure

Submit the job using the kubectl apply command:

$ kubectl apply -f job-oneshot.yaml
job.batch/oneshot created

Then describe the oneshot job:

$ kubectl describe jobs oneshot

Name:           oneshot
Namespace:      default
Selector:       controller-uid=a2ed65c4-cfda-43c8-bb4a-707c4ed29143
Labels:         controller-uid=a2ed65c4-cfda-43c8-bb4a-707c4ed29143
                job-name=oneshot
Annotations:    <none>
Parallelism:    1
Completions:    1
Start Time:     Wed, 02 Jun 2021 21:23:23 -0700
Completed At:   Wed, 02 Jun 2021 21:23:51 -0700
Duration:       28s
Pods Statuses:  0 Running / 1 Succeeded / 0 Failed
Pod Template:
  Labels:  controller-uid=a2ed65c4-cfda-43c8-bb4a-707c4ed29143
           job-name=oneshot
Events:
  ... Reason             Message
  ... ------             -------
  ... SuccessfulCreate   Created pod: oneshot-4kfdt

You can view the results of the job by looking at the logs of the Pod that was created:

$ kubectl logs oneshot-4kfdt

...
Serving on :8080
(ID 0) Workload starting
(ID 0 1/10) Item done: SHA256:+r6b4W81DbEjxMcD3LHjU+EIGnLEzbpxITKn8IqhkPI
(ID 0 2/10) Item done: SHA256:mzHewajaY1KA8VluSLOnNMk9fDE5zdn7vvBS5Ne8AxM
(ID 0 3/10) Item done: SHA256:TRtEQHfflJmwkqnNyGgQm/IvXNykSBIg8c03h0g3onE
(ID 0 4/10) Item done: SHA256:tSwPYH/J347il/mgqTxRRdeZcOazEtgZlA8A3/HWbro
(ID 0 5/10) Item done: SHA256:IP8XtguJ6GbWwLHqjKecVfdS96B17nnO21I/TNc1j9k
(ID 0 6/10) Item done: SHA256:ZfNxdQvuST/6ZzEVkyxdRG98p73c/5TM99SEbPeRWfc
(ID 0 7/10) Item done: SHA256:tH+CNl/IUl/HUuKdMsq2XEmDQ8oAvmhMO6Iwj8ZEOj0
(ID 0 8/10) Item done: SHA256:3GfsUaALVEHQcGNLBOu4Qd1zqqqJ8j738i5r+I5XwVI
(ID 0 9/10) Item done: SHA256:5wV4L/xEiHSJXwLUT2fHf0SCKM2g3XH3sVtNbgskCXw
(ID 0 10/10) Item done: SHA256:bPqqOonwSbjzLqe9ZuVRmZkz+DBjaNTZ9HwmQhbdWLI
(ID 0) Workload exiting
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Congratulations, your job has run successfully!

Notice that we didn’t specify any labels when creating the Job
object. Like with other controllers (such as DaemonSets, Replica‐
Sets, and Deployments) that use labels to identify a set of Pods,
unexpected behaviors can occur if a Pod is reused across objects.
Because jobs have a finite beginning and ending, users often create
many of them. This makes picking unique labels more difficult and
more critical. For this reason, the Job object will automatically pick
a unique label and use it to identify the Pods it creates. In advanced
scenarios (such as swapping out a running job without killing the
Pods it is managing), users can choose to turn off this automatic
behavior and manually specify labels and selectors.

We just saw how a job can complete successfully. But what happens if something
fails? Let’s try that out and see what happens. Modify the arguments to kuard in our
configuration file to cause it to fail with a nonzero exit code after generating three
keys, as shown in Example 12-2.

Example 12-2. job-oneshot-failure1.yaml

...
spec:
  template:
    spec:
      containers:
        ...
        args:
        - "--keygen-enable"
        - "--keygen-exit-on-complete"
        - "--keygen-exit-code=1"
        - "--keygen-num-to-gen=3"
...

Now launch this with kubectl apply -f job-oneshot-failure1.yaml. Let it run
for a bit and then look at the Pod status:

$ kubectl get pod -l job-name=oneshot

NAME            READY     STATUS             RESTARTS   AGE
oneshot-3ddk0   0/1       CrashLoopBackOff   4          3m

Here we see that the same Pod has restarted four times. Kubernetes is in CrashLoop
BackOff for this Pod. It is not uncommon to have a bug someplace that causes a
program to crash as soon as it starts. In that case, Kubernetes will wait a bit before
restarting the Pod to avoid a crash loop that would eat resources on the node. This is
all handled local to the node by the kubelet without the job being involved at all.

Job Patterns | 141



Kill the job (kubectl delete jobs oneshot), and let’s try something else. Modify the
config file again and change the restartPolicy from OnFailure to Never. Launch
this with kubectl apply -f jobs-oneshot-failure2.yaml.

If we let this run for a bit and then look at related Pods, we’ll find something
interesting:

$ kubectl get pod -l job-name=oneshot -a

NAME            READY     STATUS    RESTARTS   AGE
oneshot-0wm49   0/1       Error     0          1m
oneshot-6h9s2   0/1       Error     0          39s
oneshot-hkzw0   1/1       Running   0          6s
oneshot-k5swz   0/1       Error     0          28s
oneshot-m1rdw   0/1       Error     0          19s
oneshot-x157b   0/1       Error     0          57s

What we see is that we have multiple Pods here that have errored out. By setting
restartPolicy: Never, we are telling the kubelet not to restart the Pod on failure,
but rather just declare the Pod as failed. The Job object then notices and creates a
replacement Pod. If you aren’t careful, this’ll create a lot of “junk” in your cluster. For
this reason, we suggest you use restartPolicy: OnFailure so failed Pods are rerun
in place. Clean this up with kubectl delete jobs oneshot.

So far we’ve seen a program fail by exiting with a nonzero exit code. But workers can
fail in other ways. Specifically, they can get stuck and not make any forward progress.
To help cover this case, you can use liveness probes with jobs. If the liveness probe
policy determines that a Pod is dead, it’ll be restarted or replaced for you.

Parallelism
Generating keys can be slow. Let’s start a bunch of workers together to make
key generation faster. We’re going to use a combination of the completions and
parallelism parameters. Our goal is to generate 100 keys by having 10 runs of
kuard, with each run generating 10 keys. But we don’t want to swamp our cluster, so
we’ll limit ourselves to only five Pods at a time.

This translates to setting completions to 10 and parallelism to 5. The config is
shown in Example 12-3.

Example 12-3. job-parallel.yaml

apiVersion: batch/v1
kind: Job
metadata:
  name: parallel
  labels:
    chapter: jobs
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spec:
  parallelism: 5
  completions: 10
  template:
    metadata:
      labels:
        chapter: jobs
    spec:
      containers:
      - name: kuard
        image: gcr.io/kuar-demo/kuard-amd64:blue
        imagePullPolicy: Always
        command:
        - "/kuard"
        args:
        - "--keygen-enable"
        - "--keygen-exit-on-complete"
        - "--keygen-num-to-gen=10"
      restartPolicy: OnFailure

Start it up:

$ kubectl apply -f job-parallel.yaml
job.batch/parallel created

Now watch as the Pods come up, do their thing, and exit. New Pods are created until
10 have completed altogether. Here we use the --watch flag to have kubectl stay
around and list changes as they happen:

$ kubectl get pods -w
NAME             READY     STATUS              RESTARTS  AGE
parallel-55tlv   1/1       Running             0         5s
parallel-5s7s9   1/1       Running             0         5s
parallel-jp7bj   1/1       Running             0         5s
parallel-lssmn   1/1       Running             0         5s
parallel-qxcxp   1/1       Running             0         5s
NAME             READY     STATUS              RESTARTS  AGE
parallel-jp7bj   0/1       Completed           0         26s
parallel-tzp9n   0/1       Pending             0         0s
parallel-tzp9n   0/1       Pending             0         0s
parallel-tzp9n   0/1       ContainerCreating   0         1s
parallel-tzp9n   1/1       Running             0         1s
parallel-tzp9n   0/1       Completed           0         48s
parallel-x1kmr   0/1       Pending             0         0s
...

Feel free to study the completed jobs and check out their logs to see the fingerprints
of the keys they generated. Clean up by deleting the finished Job object with kubectl
delete job parallel.
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Work Queues
A common use case for jobs is to process work from a work queue. In this scenario,
some task creates a number of work items and publishes them to a work queue. A
worker job can be run to process each work item until the work queue is empty
(Figure 12-1).

Figure 12-1. Parallel jobs

Starting a work queue

We start by launching a centralized work queue service. kuard has a simple memory-
based work queue system built in. We will start an instance of kuard to act as a
coordinator for all the work.

Next, we create a simple ReplicaSet to manage a singleton work queue daemon. We
are using a ReplicaSet to ensure that a new Pod will get created in the face of machine
failure, as shown in Example 12-4.

Example 12-4. rs-queue.yaml

apiVersion: apps/v1
kind: ReplicaSet
metadata:
  labels:
    app: work-queue
    component: queue
    chapter: jobs
  name: queue
spec:
  replicas: 1
  selector:
    matchLabels:
      app: work-queue
      component: queue
      chapter: jobs
  template:
    metadata:
      labels:
        app: work-queue
        component: queue
        chapter: jobs
    spec:
      containers:
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      - name: queue
        image: "gcr.io/kuar-demo/kuard-amd64:blue"
        imagePullPolicy: Always

Run the work queue with the following command:

$ kubectl apply -f rs-queue.yaml
replicaset.apps/queue created

At this point, the work queue daemon should be up and running. Let’s use port-
forwarding to connect to it. Leave this command running in a terminal window:

$ kubectl port-forward rs/queue 8080:8080
Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080

You can open your browser to http://localhost:8080 and see the kuard interface.
Switch to the “MemQ Server” tab to keep an eye on what is going on.

With the work queue server in place, the next step is to expose it using a service. This
will make it easy for producers and consumers to locate the work queue via DNS, as
Example 12-5 shows.

Example 12-5. service-queue.yaml

apiVersion: v1
kind: Service
metadata:
  labels:
    app: work-queue
    component: queue
    chapter: jobs
  name: queue
spec:
  ports:
  - port: 8080
    protocol: TCP
    targetPort: 8080
  selector:
    app: work-queue
    component: queue

Create the queue service with kubectl:

$ kubectl apply -f service-queue.yaml
service/queue created

Loading up the queue
We are now ready to put a bunch of work items in the queue. For the sake of
simplicity, we’ll just use curl to drive the API for the work queue server and insert a
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bunch of work items. curl will communicate to the work queue through the kubectl
port-forward we set up earlier, as shown in Example 12-6.

Example 12-6. load-queue.sh

# Create a work queue called 'keygen'
curl -X PUT localhost:8080/memq/server/queues/keygen

# Create 100 work items and load up the queue.
for i in work-item-{0..99}; do
  curl -X POST localhost:8080/memq/server/queues/keygen/enqueue \
    -d "$i"
done

Run these commands, and you should see 100 JSON objects output to your terminal
with a unique message identifier for each work item. You can confirm the status of
the queue by looking at the “MemQ Server” tab in the UI, or you can ask the work
queue API directly:

$ curl 127.0.0.1:8080/memq/server/stats
{
    "kind": "stats",
    "queues": [
        {
            "depth": 100,
            "dequeued": 0,
            "drained": 0,
            "enqueued": 100,
            "name": "keygen"
        }
    ]
}

Now we are ready to kick off a job to consume the work queue until it’s empty.

Creating the consumer job

This is where things get interesting! kuard can also act in consumer mode. We can set
it up to draw work items from the work queue, create a key, and then exit once the
queue is empty, as shown in Example 12-7.

Example 12-7. job-consumers.yaml

apiVersion: batch/v1
kind: Job
metadata:
  labels:
    app: message-queue
    component: consumer
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    chapter: jobs
  name: consumers
spec:
  parallelism: 5
  template:
    metadata:
      labels:
        app: message-queue
        component: consumer
        chapter: jobs
    spec:
      containers:
      - name: worker
        image: "gcr.io/kuar-demo/kuard-amd64:blue"
        imagePullPolicy: Always
        command:
        - "/kuard"
        args:
        - "--keygen-enable"
        - "--keygen-exit-on-complete"
        - "--keygen-memq-server=http://queue:8080/memq/server"
        - "--keygen-memq-queue=keygen"
      restartPolicy: OnFailure

Here, we are telling the job to start up five Pods in parallel. As the completions
parameter is unset, we put the job into worker-pool mode. Once the first Pod exits
with a zero exit code, the job will start winding down and will not start any new Pods.
This means that none of the workers should exit until the work is done and they are
all in the process of finishing up.

Now, create the consumers job:

$ kubectl apply -f job-consumers.yaml
job.batch/consumers created

Then you can view the Pods backing the job:

$ kubectl get pods
NAME              READY     STATUS    RESTARTS   AGE
queue-43s87       1/1       Running   0          5m
consumers-6wjxc   1/1       Running   0          2m
consumers-7l5mh   1/1       Running   0          2m
consumers-hvz42   1/1       Running   0          2m
consumers-pc8hr   1/1       Running   0          2m
consumers-w20cc   1/1       Running   0          2m

Note there are five Pods running in parallel. These Pods will continue to run until the
work queue is empty. You can watch as it happens in the UI on the work queue server.
As the queue empties, the consumer Pods will exit cleanly and the consumers job will
be considered complete.
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Cleanup
Using labels, we can clean up all of the stuff we created in this section:

$ kubectl delete rs,svc,job -l chapter=jobs

CronJobs
Sometimes you want to schedule a job to be run at a certain interval. To achieve this,
you can declare a CronJob in Kubernetes, which is responsible for creating a new Job
object at a particular interval. Example 12-8 is an example CronJob declaration:

Example 12-8. job-cronjob.yaml

apiVersion: batch/v1
kind: CronJob
metadata:
  name: example-cron
spec:
  # Run every fifth hour
  schedule: "0 */5 * * *"
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: batch-job
            image: my-batch-image
          restartPolicy: OnFailure

Note the spec.schedule field, which contains the interval for the CronJob in stan‐
dard cron format.

You can save this file as job-cronjob.yaml, and create the CronJob with kubectl
create -f cron-job.yaml. If you are interested in the current state of a CronJob,
you can use kubectl describe <cron-job> to get the details.

Summary
On a single cluster, Kubernetes can handle both long-running workloads such as web
applications and short-lived workloads such as batch jobs. The job abstraction allows
you to model batch job patterns ranging from simple, one-time tasks to parallel jobs
that process many items until the work has been exhausted.

Jobs are a low-level primitive and can be used directly for simple workloads. How‐
ever, Kubernetes is built from the ground up to be extensible by higher-level objects.
Jobs are no exception; higher-level orchestration systems can easily use them to take
on more complex tasks.
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CHAPTER 13

ConfigMaps and Secrets

It’s good practice to make container images as reusable as possible. The same image
should be able to be used for development, staging, and production. It’s even better
if the same image is general-purpose enough to be used across applications and
services. Testing and versioning are more risky and complicated if images need to
be re-created for each new environment. How then do we specialize the use of that
image at runtime?

This is where ConfigMaps and Secrets come into play. ConfigMaps are used to
provide configuration information for workloads. This can be either fine-grained
information like a string or a composite value in the form of a file. Secrets are similar
to ConfigMaps but focus on making sensitive information available to the workload.
They can be used for things like credentials or TLS certificates.

ConfigMaps
One way to think of a ConfigMap is as a Kubernetes object that defines a small
filesystem. Another way is as a set of variables that can be used when defining the
environment or command line for your containers. The key thing to note is that
the ConfigMap is combined with the Pod right before it is run. This means that the
container image and the Pod definition can be reused by many workloads just by
changing the ConfigMap that is used.

Creating ConfigMaps
Let’s jump right in and create a ConfigMap. Like many objects in Kubernetes, you can
create these in an immediate, imperative way, or you can create them from a manifest
on disk. We’ll start with the imperative method.
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First, suppose we have a file on disk (called my-config.txt) that we want to make
available to the Pod in question, as shown in Example 13-1.

Example 13-1. my-config.txt

# This is a sample config file that I might use to configure an application
parameter1 = value1
parameter2 = value2

Next, let’s create a ConfigMap with that file. We’ll also add a couple of simple key/
value pairs here. These are referred to as literal values on the command line:

$ kubectl create configmap my-config \
  --from-file=my-config.txt \
  --from-literal=extra-param=extra-value \
  --from-literal=another-param=another-value

The equivalent YAML for the ConfigMap object we just created is as follows:

$ kubectl get configmaps my-config -o yaml

apiVersion: v1
data:
  another-param: another-value
  extra-param: extra-value
  my-config.txt: |
    # This is a sample config file that I might use to configure an application
    parameter1 = value1
    parameter2 = value2
kind: ConfigMap
metadata:
  creationTimestamp: ...
  name: my-config
  namespace: default
  resourceVersion: "13556"
  selfLink: /api/v1/namespaces/default/configmaps/my-config
  uid: 3641c553-f7de-11e6-98c9-06135271a273

As you can see, the ConfigMap is just some key/value pairs stored in an object. The
interesting part is when you try to use a ConfigMap.

Using a ConfigMap
There are three main ways to use a ConfigMap:

Filesystem
You can mount a ConfigMap into a Pod. A file is created for each entry based on
the key name. The contents of that file are set to the value.
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Environment variable
A ConfigMap can be used to dynamically set the value of an environment
variable.

Command-line argument
Kubernetes supports dynamically creating the command line for a container
based on ConfigMap values.

Let’s create a manifest for kuard that pulls all of these together, as shown in
Example 13-2.

Example 13-2. kuard-config.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard-config
spec:
  containers:
    - name: test-container
      image: gcr.io/kuar-demo/kuard-amd64:blue
      imagePullPolicy: Always
      command:
        - "/kuard"
        - "$(EXTRA_PARAM)"
      env:
        # An example of an environment variable used inside the container
        - name: ANOTHER_PARAM
          valueFrom:
            configMapKeyRef:
              name: my-config
              key: another-param
        # An example of an environment variable passed to the command to start
        # the container (above).
        - name: EXTRA_PARAM
          valueFrom:
            configMapKeyRef:
              name: my-config
              key: extra-param
      volumeMounts:
        # Mounting the ConfigMap as a set of files
        - name: config-volume
          mountPath: /config
  volumes:
    - name: config-volume
      configMap:
        name: my-config
  restartPolicy: Never
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For the filesystem method, we create a new volume inside the Pod and give it the
name config-volume. We then define this volume to be a ConfigMap volume and
point at the ConfigMap to mount. We have to specify where this gets mounted into
the kuard container with a volumeMount. In this case, we are mounting it at /config.

Environment variables are specified with a special valueFrom member. This refer‐
ences the ConfigMap and the data key to use within that ConfigMap. Command-line
arguments build on environment variables. Kubernetes will perform the correct sub‐
stitution with a special $(<env-var-name>) syntax.

Run this Pod, and let’s port-forward to examine how the app sees the world:

$ kubectl apply -f kuard-config.yaml
$ kubectl port-forward kuard-config 8080

Now point your browser to http://localhost:8080. We can look at how we’ve injected
configuration values into the program in all three ways. Click the “Server Env” tab on
the left. This will show the command line that the app was launched with along with
its environment, as shown in Figure 13-1.

Figure 13-1. kuard, showing its environment
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Here we can see that we’ve added two environment variables (ANOTHER_PARAM and
EXTRA_PARAM) whose values are set via the ConfigMap. We’ve also added an argument
to the command line of kuard based on the EXTRA_PARAM value.

Next, click the “File system browser” tab (Figure 13-2). This lets you explore the
filesystem as the application sees it. You should see an entry called /config. This is
a volume created based on our ConfigMap. If you navigate into that, you’ll see that
a file has been created for each entry of the ConfigMap. You’ll also see some hidden
files (prepended with ..) that are used to do a clean swap of new values when the
ConfigMap is updated.

Figure 13-2. The /config directory as seen through kuard

Secrets
While ConfigMaps are great for most configuration data, there is certain data that
is extra sensitive. This includes passwords, security tokens, or other types of private
keys. Collectively, we call this type of data “Secrets.” Kubernetes has native support for
storing and handling this data with care.

Secrets enable container images to be created without bundling sensitive data. This
allows containers to remain portable across environments. Secrets are exposed to
Pods via explicit declaration in Pod manifests and the Kubernetes API. In this way,
the Kubernetes Secrets API provides an application-centric mechanism for exposing
sensitive configuration information to applications in a way that’s easy to audit and
leverages native OS isolation primitives.

The remainder of this section will explore how to create and manage Kubernetes
Secrets, and also lay out best practices for exposing Secrets to Pods that require them.
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By default, Kubernetes Secrets are stored in plain text in the etcd
storage for the cluster. Depending on your requirements, this may
not be sufficient security for you. In particular, anyone who has
cluster administration rights in your cluster will be able to read all
of the Secrets in the cluster.
In recent versions of Kubernetes, support has been added for
encrypting the Secrets with a user-supplied key, generally integra‐
ted into a cloud key store. Additionally, most cloud key stores have
integration with Kubernetes Secrets Store CSI Driver volumes, ena‐
bling you to skip Kubernetes Secrets entirely and rely exclusively
on the cloud provider’s key store. All of these options should pro‐
vide you with sufficient tools to craft a security profile that suits
your needs.

Creating Secrets
Secrets are created using the Kubernetes API or the kubectl command-line tool.
Secrets hold one or more data elements as a collection of key/value pairs.

In this section, we will create a Secret to store a TLS key and certificate for the kuard
application that meets the storage requirements listed previously.

The kuard container image does not bundle a TLS certificate
or key. This allows the kuard container to remain portable
across environments and distributable through public Docker
repositories.

The first step in creating a Secret is to obtain the raw data we want to store. The
TLS key and certificate for the kuard application can be downloaded by running the
following commands:

$ curl -o kuard.crt  https://storage.googleapis.com/kuar-demo/kuard.crt
$ curl -o kuard.key https://storage.googleapis.com/kuar-demo/kuard.key

These certificates are shared with the world and they provide no
actual security. Please do not use them except as a learning tool in
these examples.

With the kuard.crt and kuard.key files stored locally, we are ready to create a Secret.
Create a Secret named kuard-tls using the create secret command:

$ kubectl create secret generic kuard-tls \
  --from-file=kuard.crt \
  --from-file=kuard.key
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The kuard-tls Secret has been created with two data elements. Run the following
command to get details:

$ kubectl describe secrets kuard-tls

Name:         kuard-tls
Namespace:    default
Labels:       <none>
Annotations:  <none>

Type:         Opaque

Data
====
kuard.crt:    1050 bytes
kuard.key:    1679 bytes

With the kuard-tls Secret in place, we can consume it from a Pod by using a Secrets
volume.

Consuming Secrets
Secrets can be consumed using the Kubernetes REST API by applications that know
how to call that API directly. However, our goal is to keep applications portable. Not
only should they run well in Kubernetes, but they should run, unmodified, on other
platforms.

Instead of accessing Secrets through the API server, we can use a Secrets volume.
Secret data can be exposed to Pods using the Secrets volume type. Secrets volumes are
managed by the kubelet and are created at Pod creation time. Secrets are stored on
tmpfs volumes (aka RAM disks), and as such are not written to disk on nodes.

Each data element of a Secret is stored in a separate file under the target mount point
specified in the volume mount. The kuard-tls Secret contains two data elements:
kuard.crt and kuard.key. Mounting the kuard-tls Secrets volume to /tls results in
the following files:

/tls/kuard.crt
/tls/kuard.key

The Pod manifest in Example 13-3 demonstrates how to declare a Secrets volume,
which exposes the kuard-tls Secret to the kuard container under /tls.

Example 13-3. kuard-secret.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard-tls
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spec:
  containers:
    - name: kuard-tls
      image: gcr.io/kuar-demo/kuard-amd64:blue
      imagePullPolicy: Always
      volumeMounts:
      - name: tls-certs
        mountPath: "/tls"
        readOnly: true
  volumes:
    - name: tls-certs
      secret:
        secretName: kuard-tls

Create the kuard-tls Pod using kubectl and observe the log output from the run‐
ning Pod:

$ kubectl apply -f kuard-secret.yaml

Connect to the Pod by running:

$ kubectl port-forward kuard-tls 8443:8443

Now navigate your browser to https://localhost:8443. You should see some invalid
certificate warnings because this is a self-signed certificate for kuard.example.com. If
you navigate past this warning, you should see the kuard server hosted via HTTPS.
Use the “File system browser” tab to find the certificates on disk in the /tls directory.

Private Container Registries
A special use case for Secrets is to store access credentials for private container
registries. Kubernetes supports using images stored on private registries, but access
to those images requires credentials. Private images can be stored across one or more
private registries. This presents a challenge for managing credentials for each private
registry on every possible node in the cluster.

Image pull Secrets leverage the Secrets API to automate the distribution of private
registry credentials. Image pull Secrets are stored just like regular Secrets but are
consumed through the spec.imagePullSecrets Pod specification field.

Use kubectl create secret docker-registry to create this special kind of Secret:

$ kubectl create secret docker-registry my-image-pull-secret \
  --docker-username=<username> \
  --docker-password=<password> \
  --docker-email=<email-address>

Enable access to the private repository by referencing the image pull secret in the
Pod manifest file, as shown in Example 13-4.

156 | Chapter 13: ConfigMaps and Secrets



Example 13-4. kuard-secret-ips.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard-tls
spec:
  containers:
    - name: kuard-tls
      image: gcr.io/kuar-demo/kuard-amd64:blue
      imagePullPolicy: Always
      volumeMounts:
      - name: tls-certs
        mountPath: "/tls"
        readOnly: true
  imagePullSecrets:
  - name:  my-image-pull-secret
  volumes:
    - name: tls-certs
      secret:
        secretName: kuard-tls

If you are repeatedly pulling from the same registry, you can add the Secrets to the
default service account associated with each Pod to avoid having to specify the Secrets
in every Pod you create.

Naming Constraints
The key names for data items inside of a Secret or ConfigMap are defined to map to
valid environment variable names. They may begin with a dot, then are followed by
a letter or number, followed by characters including dots, dashes, and underscores.
Dots cannot be repeated, and dots and underscores or dashes cannot be adjacent to
each other. More formally, this means that they must conform to the regular expres‐
sion ^[.]?[a-zAZ0-9]([.]?[a-zA-Z0-9]+[-_a-zA-Z0-9]?)*$. Some examples of
valid and invalid names for ConfigMaps and Secrets are given in Table 13-1.

Table 13-1. ConfigMap and Secret key examples

Valid key name Invalid key name

.auth_token Token..properties

Key.pem auth file.json

config_file _password.txt
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When selecting a key name, remember that these keys can be
exposed to Pods via a volume mount. Pick a name that is going
to make sense when specified on a command line or in a config
file. Storing a TLS key as key.pem is clearer than tls-key when
configuring applications to access Secrets.

ConfigMap data values are simple UTF-8 text specified directly in the manifest.
Secret data values hold arbitrary data encoded using base64. The use of base64
encoding makes it possible to store binary data. This does, however, make it more
difficult to manage Secrets that are stored in YAML files as the base64-encoded value
must be put in the YAML. Note that the maximum size for a ConfigMap or Secret is
1 MB.

Managing ConfigMaps and Secrets
ConfigMaps and Secrets are managed through the Kubernetes API. The usual create,
delete, get, and describe commands work for manipulating these objects.

Listing
You can use the kubectl get secrets command to list all Secrets in the current
namespace:

$ kubectl get secrets

NAME                  TYPE                                  DATA      AGE
default-token-f5jq2   kubernetes.io/service-account-token   3         1h
kuard-tls             Opaque                                2         20m

Similarly, you can list all of the ConfigMaps in a namespace:

$ kubectl get configmaps

NAME        DATA      AGE
my-config   3         1m

kubectl describe can be used to get more details on a single object:

$ kubectl describe configmap my-config

Name:           my-config
Namespace:      default
Labels:         <none>
Annotations:    <none>

Data
====
another-param:  13 bytes
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extra-param:    11 bytes
my-config.txt:  116 bytes

Finally, you can see the raw data (including values in Secrets!) by using a command
similar to the following: kubectl get configmap my-config -o yaml or kubectl
get secret kuard-tls -o yaml.

Creating
The easiest way to create a Secret or a ConfigMap is via kubectl create secret
generic or kubectl create configmap. There are a variety of ways to specify the
data items that go into the Secret or ConfigMap. These can be combined in a single
command:

--from-file=<filename>

Load from the file with the Secret data key that’s the same as the filename.

--from-file=<key>=<filename>

Load from the file with the Secret data key explicitly specified.

--from-file=<directory>

Load all the files in the specified directory where the filename is an acceptable
key name.

--from-literal=<key>=<value>

Use the specified key/value pair directly.

Updating
You can update a ConfigMap or Secret and have it reflected in running applications.
There is no need to restart if the application is configured to reread configuration
values. Next, we will describe three ways to update ConfigMaps or Secrets.

Update from file
If you have a manifest for your ConfigMap or Secret, you can just edit it directly
and replace it with a new version using kubectl replace -f <filename>. You can
also use kubectl apply -f <filename> if you previously created the resource with
kubectl apply.

Due to the way that datafiles are encoded into these objects, updating a configuration
can be a bit cumbersome; there is no kubectl command that supports loading data
from an external file. The data must be stored directly in the YAML manifest.

The most common use case is when the ConfigMap is defined as part of a directory
or list of resources and everything is created and updated together. Oftentimes these
manifests will be checked into source control.

Managing ConfigMaps and Secrets | 159



It is generally a bad idea to check Secret YAML files into source
control because it is too easy to inadvertently push these files some‐
place public and leak your Secrets.

Re-create and update
If you store the inputs into your ConfigMaps or Secrets as separate files on disk (as
opposed to embedded into YAML directly), you can use kubectl to re-create the
manifest and then use it to update the object, which will look something like this:

$ kubectl create secret generic kuard-tls \
  --from-file=kuard.crt --from-file=kuard.key \
  --dry-run -o yaml | kubectl replace -f -

This command line first creates a new Secret with the same name as our existing
Secret. If we just stopped there, the Kubernetes API server would return an error
complaining that we are trying to create a Secret that already exists. Instead, we tell
kubectl not to actually send the data to the server but instead to dump the YAML
that it would have sent to the API server to stdout. We then pipe that to kubectl
replace and use -f - to tell it to read from stdin. In this way, we can update a Secret
from files on disk without having to manually base64-encode data.

Edit current version

The final way to update a ConfigMap is to use kubectl edit to bring up a version
of the ConfigMap in your editor so you can tweak it (you could also do this with a
Secret, but you’d be stuck managing the base64 encoding of values on your own):

$ kubectl edit configmap my-config

You should see the ConfigMap definition in your editor. Make your desired changes
and then save and close your editor. The new version of the object will be pushed to
the Kubernetes API server.

Live updates
Once a ConfigMap or Secret is updated using the API, it’ll be automatically pushed
to all volumes that use that ConfigMap or Secret. It may take a few seconds, but
the file listing and contents of the files, as seen by kuard, will be updated with
these new values. Using this live update feature, you can update the configuration of
applications without restarting them.

Currently there is no built-in way to signal an application when a new version of a
ConfigMap is deployed. It is up to the application (or some helper script) to look for
the config files to change and reload them.
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Using the file browser in kuard (accessed through kubectl port-forward) is a great
way to interactively play with dynamically updating Secrets and ConfigMaps.

Summary
ConfigMaps and Secrets are a great way to provide dynamic configuration in your
application. They allow you to create a container image (and Pod definition) once
and reuse it in different contexts. This can include using the exact same image as you
move from development to staging to production. It can also include using a single
image across multiple teams and services. Separating configuration from application
code will make your applications more reliable and reusable.
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CHAPTER 14

Role-Based Access Control for Kubernetes

At this point, nearly every Kubernetes cluster you encounter has role-based access
control (RBAC) enabled. So you have likely encountered RBAC before. Perhaps you
initially couldn’t access your cluster until you used some magical command to add a
RoleBinding to map a user to a role. Even though you may have had some exposure
to RBAC, you may not have had a great deal of experience understanding RBAC in
Kubernetes, including what it is for and how to use it.

Role-based access control provides a mechanism for restricting both access to and
actions on Kubernetes APIs to ensure that only authorized users have access. RBAC
is a critical component to both harden access to the Kubernetes cluster where you are
deploying your application and (possibly more importantly) prevent unexpected acci‐
dents where one person in the wrong namespace mistakenly takes down production
when they think they are destroying their test cluster.

While RBAC can be quite useful in limiting access to the Kuber‐
netes API, it’s important to remember that anyone who can run
arbitrary code inside the Kubernetes cluster can effectively obtain
root privileges on the entire cluster. There are approaches that
you can take to make such attacks harder and more expensive,
and a correct RBAC setup is part of this defense. But if you are
focused on hostile multitenant security, RBAC by itself is sufficient
to protect you. You must isolate the Pods running in your cluster to
provide effective multitenant security. Generally this is done using
hypervisor isolated containers or a container sandbox.

Before we dive into the details of RBAC in Kubernetes, it’s valuable to have a high-
level understanding of RBAC as a concept, as well as authentication and authoriza‐
tion more generally.
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Every request to Kubernetes is first authenticated. Authentication provides the iden‐
tity of the caller issuing the request. It could be as simple as saying that the request is
unauthenticated, or it could integrate deeply with a pluggable authentication provider
(e.g., Azure Active Directory) to establish an identity within that third-party system.
Interestingly enough, Kubernetes does not have a built-in identity store, focusing
instead on integrating other identity sources within itself.

Once users have been authenticated, the authorization phase determines whether
they are authorized to perform the request. Authorization is a combination of the
identity of the user, the resource (effectively the HTTP path), and the verb or action
the user is attempting to perform. If the particular user is authorized to perform that
action on that resource, then the request is allowed to proceed. Otherwise, an HTTP
403 error is returned. Let’s dive into this process.

Role-Based Access Control
To properly manage access in Kubernetes, it’s critical to understand how identity,
roles, and role bindings interact to control who can do what with which resources. At
first, RBAC can seem like a challenge to understand, with a series of interconnected,
abstract concepts; but once it’s understood, you can be confident in your ability to
manage cluster access.

Identity in Kubernetes
Every request to Kubernetes is associated with some identity. Even a request with no
identity is associated with the system:unauthenticated group. Kubernetes makes a
distinction between user identities and service account identities. Service accounts
are created and managed by Kubernetes itself and are generally associated with com‐
ponents running inside the cluster. User accounts are all other accounts associated
with actual users of the cluster, and often include automation like continuous delivery
services that run outside the cluster.

Kubernetes uses a generic interface for authentication providers. Each of the provid‐
ers supplies a username and, optionally, the set of groups to which the user belongs.
Kubernetes supports a number of authentication providers, including:

• HTTP Basic Authentication (largely deprecated)•
• x509 client certificates•
• Static token files on the host•
• Cloud authentication providers, such as Azure Active Directory and AWS Iden‐•

tity and Access Management (IAM)
• Authentication webhooks•
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While most managed Kubernetes installations configure authentication for you, if
you are deploying your own authentication, you will need to configure flags on the
Kubernetes API server appropriately.

You should always use different identities for different applications in your cluster.
For example, you should have one identity for your production frontends, a different
identity for the production backends, and all production identities should be distinct
from development identities. You should also have different identities for different
clusters. All of these identities should be machine identities that are not shared with
users. You can either use Kubernetes Service Accounts for achieving this, or you can
use a Pod identity provider supplied by your identity system; for example, Azure
Active Directory supplies an open source identity provider for Pods as do other
popular identity providers.

Understanding Roles and Role Bindings
Identity is just the beginning of authorization in Kubernetes. Once Kubernetes knows
the identity of the request, it needs to determine if the request is authorized for that
user. To achieve this, it uses roles and role bindings.

A role is a set of abstract capabilities. For example, the appdev role might represent
the ability to create Pods and Services. A role binding is an assignment of a role to one
or more identities. Thus, binding the appdev role to the user identity alice indicates
that Alice has the ability to create Pods and Services.

Roles and Role Bindings in Kubernetes
In Kubernetes, two pairs of related resources represent roles and role bindings. One
pair is scoped to a namespace (Role and RoleBinding), while the other pair is scoped
to the cluster (ClusterRole and ClusterRoleBinding).

Let’s examine Role and RoleBinding first. Role resources are namespaced and repre‐
sent capabilities within that single namespace. You cannot use namespaced roles for
nonnamespaced resources (e.g., CustomResourceDefinitions), and binding a Role‐
Binding to a role only provides authorization within the Kubernetes namespace that
contains both the Role and the RoleBinding.

As a concrete example, here is a simple role that gives an identity the ability to create
and modify Pods and Services:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  namespace: default
  name: pod-and-services
rules:
- apiGroups: [""]
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  resources: ["pods", "services"]
  verbs: ["create", "delete", "get", "list", "patch", "update", "watch"]

To bind this Role to the user alice, we need to create a RoleBinding that looks as
follows. This role binding also binds the group mydevs to the same role:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  namespace: default
  name: pods-and-services
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: User
  name: alice
- apiGroup: rbac.authorization.k8s.io
  kind: Group
  name: mydevs
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: pod-and-services

Sometimes you need to create a role that applies to the entire cluster, or you want to
limit access to cluster-level resources. To achieve this, you use the ClusterRole and
ClusterRoleBinding resources. They are largely identical to their namespaced peers,
but are cluster-scoped.

Verbs for Kubernetes roles
Roles are defined in terms of both a resource (e.g., Pods) and a verb that describes
an action that can be performed on that resource. The verbs correspond roughly
to HTTP methods. The commonly used verbs in Kubernetes RBAC are listed in
Table 14-1.

Table 14-1. Common Kubernetes RBAC verbs

Verb HTTP method Description

create POST Create a new resource.

delete DELETE Delete an existing resource.

get GET Get a resource.

list GET List a collection of resources.

patch PATCH Modify an existing resource via a partial change.

update PUT Modify an existing resource via a complete object.

watch GET Watch for streaming updates to a resource.

proxy GET Connect to resource via a streaming WebSocket proxy.
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Using built-in roles
Designing your own roles can be complicated and time-consuming. Kubernetes has
a large number of built-in cluster roles for well-known system identities (e.g., a
scheduler) that require a known set of capabilities. You can view these by running:

$ kubectl get clusterroles

While most of these built-in roles are for system utilities, four are designed for
generic end users:

• The cluster-admin role provides complete access to the entire cluster.•
• The admin role provides complete access to a complete namespace.•
• The edit role allows an end user to modify resources in a namespace.•
• The view role allows for read-only access to a namespace.•

Most clusters already have numerous ClusterRole bindings set up, and you can view
these bindings with kubectl get clusterrolebindings.

Auto-reconciliation of built-in roles
When the Kubernetes API server starts up, it automatically installs a number of
default ClusterRoles that are defined in the code of the API server itself. This
means that if you modify any built-in cluster role, those modifications are transient.
Whenever the API server is restarted (e.g., for an upgrade), your changes will be
overwritten.

To prevent this from happening, before you make any other modifications, you
need to add the rbac.authorization.kubernetes.io/autoupdate annotation with a
value of false to the built-in ClusterRole resource. If this annotation is set to false,
the API server will not overwrite the modified ClusterRole resource.

By default, the Kubernetes API server installs a cluster role that
allows system:unauthenticated users access to the API server’s
API discovery endpoint. For any cluster exposed to a hostile envi‐
ronment (e.g., the public internet) this is a bad idea, and there has
been at least one serious security vulnerability via this exposure.
If you are running a Kubernetes service on the public internet
or an other hostile environment, you should ensure that the --
anonymous-auth=false flag is set on your API server.
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Techniques for Managing RBAC
Managing RBAC for a cluster can be complicated and frustrating. Possibly more
concerning is that misconfigured RBAC can lead to security issues. Fortunately, there
are several tools and techniques that make managing RBAC easier.

Testing Authorization with can-i
The first useful tool is the auth can-i command for kubectl. This tool is used for
testing whether a specific user can perform a specific action. You can use can-i to
validate configuration settings as you configure your cluster, or you can ask users to
use the tool to validate their access when filing errors or bug reports.

In its simplest usage, the can-i command takes a verb and a resource. For example,
this command will indicate if the current kubectl user is authorized to create Pods:

$ kubectl auth can-i create pods

You can also test subresources like logs or port-forwarding with the --subresource
command-line flag:

$ kubectl auth can-i get pods --subresource=logs

Managing RBAC in Source Control
Like all resources in Kubernetes, RBAC resources are modeled using YAML. Given
this text-based representation, it makes sense to store these resources in version
control, which allows for accountability, auditability, and rollback.

The kubectl command-line tool provides a reconcile command that operates
somewhat like kubectl apply and will reconcile a set of roles and role bindings
with the current state of the cluster. You can run:

$ kubectl auth reconcile -f some-rbac-config.yaml

If you want to see changes before they are made, you can add the --dry-run flag to
the command to output, but not apply, the changes.

Advanced Topics
Once you orient to the basics of role-based access control, it is relatively easy to
manage access to a Kubernetes cluster. But when managing a large number of users
or roles, there are additional advanced capabilities you can use to manage RBAC at
scale.
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Aggregating ClusterRoles
Sometimes you want to be able to define roles that are combinations of other roles.
One option would be to simply clone all of the rules from one ClusterRole into
another ClusterRole, but this is complicated and error-prone, since changes to one
ClusterRole aren’t automatically reflected in the other. Instead, Kubernetes RBAC
supports the usage of an aggregation rule to combine multiple roles in a new role.
This new role combines all of the capabilities of all of the aggregate roles, and any
changes to any of the constituent subroles will automatically be propogated back into
the aggregate role.

As with other aggregations or groupings in Kubernetes, the ClusterRoles to be aggre‐
gated are specified using label selectors. In this particular case, the aggregationRule
field in the ClusterRole resource contains a clusterRoleSelector field, which in
turn is a label selector. All ClusterRole resources that match this selector are dynami‐
cally aggregated into the rules array in the aggregate ClusterRole resource.

A best practice for managing ClusterRole resources is to create a number of fine-
grained cluster roles and then aggregate them to form higher-level or broader cluster
roles. This is how the built-in cluster roles are defined. For example, you can see that
the built-in edit role looks like this:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: edit
  ...
aggregationRule:
  clusterRoleSelectors:
  - matchLabels:
      rbac.authorization.k8s.io/aggregate-to-edit: "true"
...

This means that the edit role is defined to be the aggregate of all ClusterRole objects
that have a label of rbac.authorization.k8s.io/aggregate-to-edit set to true.

Using Groups for Bindings
When managing a large number of people in different organizations with similar
access to the cluster, it’s generally a best practice to use groups to manage the roles
that define access, rather than individually adding bindings to specific identities.
When you bind a group to a Role or ClusterRole, anyone who is a member of that
group gains access to the resources and verbs defined by that role. Thus, to enable any
individual to gain access to the group’s role, that individual needs to be added to the
group.
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Using groups is a preferred strategy for managing access at scale for several reasons.
The first is that in any large organization, access to the cluster is defined in terms
of the team that someone is part of, rather than their specific identity. For example,
someone who is part of the frontend operations team will need access to both view
and edit the resources associated with the frontends, while they may only need view/
read access to resources associated with the backend. Granting privileges to a group
makes the association between the specific team and its capabilities clear. When
granting roles to individuals, it’s much harder to clearly understand the appropriate
(i.e., minimal) privileges required for each team, especially when an individual may
be part of multiple teams.

Additional benefits of binding roles to groups instead of individuals are simplicity
and consistency. When someone joins or leaves a team, it is straightforward to simply
add or remove them to or from a group in a single operation. If you instead have to
remove a number of different role bindings for their identity, you may either remove
too few or too many bindings, resulting in unnecessary access or preventing them
from being able to do necessary actions. Additionally, because there is only a single
set of group role bindings to maintain, you don’t have to do lots of work to ensure
that all team members have the same, consistent set of permissions.

Many cloud providers support integrations onto their identity and
access management platforms so that users and groups from those
platforms can be used in conjunction with Kubernetes RBAC.

Many group systems enable “just in time” (JIT) access, such that people are only
temporarily added to a group in response to an event (say, a page in the middle of the
night) rather than having standing access. This means that you can both audit who
had access at any particular time and ensure that, in general, even a compromised
identity can’t have access to your production infrastructure.

Finally, in many cases, these same groups are used to manage access to other
resources, from facilities to documents and machine logins. Thus, using the same
groups for access control to Kubernetes dramatically simplifies management.

To bind a group to a ClusterRole, use a Group kind for the subject in the binding:

...
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: Group
  name: my-great-groups-name
...
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In Kubernetes, groups are supplied by authentication providers. There is no strong
notion of a group within Kubernetes, only that an identity can be part of one or more
groups, and those groups can be associated with a Role or ClusterRole via a binding.

Summary
When you begin with a small cluster and a small team, it is sufficient to have every
member of the team have equivalent access to the cluster. But as teams grow and
products become more mission critical, limiting access to parts of the cluster is
crucial. In a well-designed cluster, access is limited to the minimal set of people and
capabilities needed to efficiently manage the applications in the cluster.

Understanding how Kubernetes implements RBAC and how those capabilities can be
used to control access to your cluster is important for both developers and cluster
administrators. As with building out testing infrastructure, best practice is to set up
RBAC earlier rather than later. It’s far easier to start with the right foundation than to
try to retrofit it later on. Hopefully, the information in this chapter has provided the
necessary grounding for adding RBAC to your cluster.
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CHAPTER 15

Service Meshes

Perhaps second only to containers, the term service mesh has become synonymous
with cloud native development. However, just like containers, service mesh is a broad
term that encompasses a variety of open source projects as well as commercial prod‐
ucts. Understanding the general role of a service mesh in a cloud native architecture
is useful. This chapter will show you what a service mesh is, how different software
projects implement them, and finally (and most importantly) when it makes sense to
incorporate a service mesh, versus a less complex architecture, into your application.

In many abstract cloud native architecture diagrams, it seems that
a service mesh is necessary for a cloud native architecture. This is
very much not true. When considering adopting a service mesh,
you have to balance the complexity of adding a new component
(generally provided by a third party) to your list of dependencies.
In many cases, it is easier and more reliable to simply depend on
the existing Kubernetes resources, if they meet the needs of your
application.

We have previously discussed other networking primitives in Kubernetes like Services
and Ingress. Given the presence of these networking capabilities in the core of
Kubernetes, why is there a need to inject additional capabilities (and complexities)
into the networking layer? Fundamentally it comes down to the needs of the software
application that is using these networking primitives.

Networking in the core of Kubernetes is really only aware of the application as a
destination. Both Service and Ingress resources have label selectors that route traffic
to a particular set of Pods, but beyond that there is comparatively little in the way of
additional capabilities that these resources bring. As an HTTP load balancer, Ingress
goes a little beyond this, but the challenge of defining a common API that fits a wide
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variety of different existing implementations limits the capabilities in the Ingress API.
How can a truly “cloud native” HTTP-routing API be compatible with load balancers
and proxies ranging from bare-metal networking devices through to public cloud
APIs that were built without thinking about cloud native development?

In a very real way, the development of service mesh APIs outside the core of Kuber‐
netes is a result of this challenge. The Ingress APIs bring HTTP(S) traffic from
the outside world into a cloud native application. Within a cloud native application
in Kubernetes, freed of the need to be compatible with existing infrastructure, the
service mesh APIs provide additional cloud native networking capabilities. So what
are these capabilities? There are three general capabilities provided by most service
mesh implementations: network encryption and authorization, traffic shaping, and
observability. The following sections look at each of these in turn.

Encryption and Authentication with Mutal TLS
Encryption of network traffic between Pods is a key component to security in a
microservice architecture. Encryptions provided by Mutual Transport Layer Security,
or mTLS, is one of the most popular use cases for a service mesh. While it is possible
for developers to implement this encryption themselves, certificate handling and
traffic encryption is complicated and hard to get right. Leaving the implementation
of encryption to individual development teams leads to developers forgetting to add
encryption at all, or doing it poorly. When poorly implemented, encryption can
negatively impact both reliability and, in the worst case, provide no real security. By
contrast, installing a service mesh on your Kubernetes cluster automatically provides
encryption to network traffic between every Pod in the cluster. The service mesh
adds a sidecar container to every Pod, which transparently intercepts all network
communication. In addition to securing the communication, mTLS adds identity to
the encryption using client certificates so your application securely knows the identity
of every network client.

Traffic Shaping
When you first think about your application design, it is typically a clean diagram
with a single box for each microservice or layer in the system (e.g., the frontend
service, user preferences service, etc). When implemented in practice, there are
actually often multiple instances of any particular microservice running within the
application. For example, when you are doing a rollout from version X of your
service to version Y, there is a point in the middle of the rollout when you are
simultaneously running two different versions of that service. While the middle of
a rollout is a temporary state, there are many times when you need to create a
longer-running experiment that persists for an extended period. A common model
used in the software industry is “dog-fooding” your own software, meaning that a
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new version of the software is tried internally before anywhere else. In a dog-fooding
model, you may run version Y of your service for a day to a week (or longer) for a
subset of users before you roll it out broadly to your full set of users.

Such experiments require the ability to do traffic shaping, or routing of requests
to different service implementations based on the characteristics of the request. In
this example, you would create an experiment where all traffic from your company’s
internal users went to service Y, while all traffic from the rest of the world still went to
service X.

Experiments are useful for a variety of scenarios, including development, where a
programmer can send a limited set (typically 1% or less) of real-world traffic to an
experimental backend, or you can run an A/B experiment where 50% of users get
one experience and 50% of users get another, so that you can build statistical models
of which approach is more effective. Experiments are an incredibly useful way to
add reliability, agility, and insight to your application, but they are often difficult to
implement in practice and thus not used as often as they might otherwise be.

Service meshes change this by building experimentation into the mesh itself. Instead
of writing code to implement your experiment, or deploying an entirely new copy
of your application on new infrastructure, you declaratively define the parameters
of the experiment (10% of traffic to version Y, 90% of traffic to version X), and the
service mesh implements it for you. Although, as a developer, you are involved in
defining the experiment, the implementation is transparent and automatic, meaning
that many more experiments will be run with a corresponding increase in reliability,
agility, and insight.

Introspection
If you are like most programmers, once you write a program, you repeatedly debug
it as new errors manifest themselves. Finding errors in your code is a large part
of how most developers spend their days. Debugging is even more difficult when
applications are spread across multiple microservices. It is hard to stitch together a
single request when it spans multiple Pods. The information needed for debugging
must be stitched back together from multiple sources, assuming that the relevant
information was collected in the first place.

Automatic introspection is another important capability provided by a service mesh.
Because it is involved in all communication between Pods, the service mesh knows
where requests were routed, and it can keep track of the information required to put
a complete request trace back together. Instead of seeing a flurry of requests to a
bunch of different microservices, the developer can see a single aggregate request that
defines the user experience of their complete application. Furthermore, the service
mesh is implemented once for an entire cluster. This means that the same request
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tracing works no matter which team developed the service. The monitoring data is
entirely consistent across all of the different services joined together by a cluster-wide
service mesh.

Do You Really Need a Service Mesh?
The advantages described here may have you eager to start installing a service mesh
on your cluster. However, before you do that, it’s worth considering whether a service
mesh is really necessary for your application. A service mesh is a distributed system
that adds complexity to your application design. The service mesh is deeply integra‐
ted into the core communication of your microservices. When a service mesh fails,
your entire application stops working. Before you adopt a service mesh, you must
be confident that you can fix problems when they occur. You must also be ready to
monitor the software releases for the service mesh to make sure that you pick up the
latest security and bug fixes, and, of course, when fixes become available, you must
also be ready to roll out the new version without impacting your application. This
additional operational overhead means that for many small applications, a service
mesh is an unnecessary complexity.

If you are using Kubernetes provided as a managed service that also provides a
service mesh, it is much easier to use that mesh, knowing that the cloud provider will
provide the support, debugging, and seamless new releases for the service mesh. But
even with a service mesh supplied by a cloud provider, there is additional complexity
for your developers to learn. Ultimately, weighing the costs versus benefits of a
service mesh is something each application or platform team needs to do at a cluster
level. To maximize the benefits of a service mesh, it’s helpful for all microservices in
the cluster to adopt it at the same time.

Introspecting a Service Mesh Implementation
There are many different service mesh projects and implementations in the cloud
native ecosystem, but most share many of the same design patterns and technology.
Because the service mesh is transparently intercepting network traffic from your
application Pod, modifying it and rerouting it through the cluster, a part of the ser‐
vice mesh needs to be present within every one of your Pods. Forcing developers to
add something to each container image would introduce significant friction as well as
make it much more difficult to centrally manage the service mesh version. As a result,
most service mesh implementations add a sidecar container to every Pod in the mesh.
Because the sidecar sits in the same network stack as the application Pod, it can use
tools like iptables or, more recently, eBPF to introspect and intercept network traffic
coming from your application container and process it into the service mesh.
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Of course, requiring every developer to add a container image to their Pod definition
introduces nearly as much friction as requiring them to modify their container image.
To address this, most service mesh implementations depend on a mutating admission
controller to automatically add the service mesh sidecar to all Pods that are created
in a particular cluster. Any REST API request to create a Pod is first routed to
this admission controller. The service mesh admission controller modifies the Pod
definition by adding the sidecar. Because this admission controller is installed by the
cluster administrator, it transparently and consistently implements a service mesh for
an entire cluster.

But the service mesh isn’t just about modifying the Pod network. You also need to be
able to control how the service mesh behaves; for example, by defining routing rules
for experiments or access restrictions for services in the mesh. Like everything else in
Kubernetes, these resource definitions are declaratively specified via JSON or YAML
object definitions that you create using kubectl or other tools that communicate
with the Kubernetes API server. Service mesh implementations take advantages of
custom resource definitions (CRDs) to add specialized resources to your Kubernetes
cluster that are not part of the default installation. In most cases, the specific custom
resources are tightly tied to the service mesh itself. An ongoing effort in the CNCF is
defining a standard vendor-neutral Service Mesh Interface (SMI) that many different
service meshes can implement.

Service Mesh Landscape
The most daunting aspect of the service mesh landscape may be figuring out which
mesh to choose. So far, no one mesh has emerged as the de facto standard. Though
concrete statistics are hard to come by, the most popular service mesh is likely the
Istio project. In addition to Istio, there are many other open source meshes, including
Linkerd, Consul Connect, Open Service Mesh, and others. There are also proprietary
meshes like AWS App Mesh. We expect efforts to standardize these interfaces to
continue in the coming years in the cloud native community.

How is a developer or cluster administrator to choose? The truth is that the best
service mesh for you is likely the one that your cloud provider supplies for you.
Adding operating a service mesh to the already complicated duties of your cluster
operators is generally unnecessary. It is much better to let a cloud provider manage it
for you.

If that isn’t an option for you, do your research. Don’t be drawn in by flashy demos
and promises of functionality. A service mesh lives deep within your infrastructure,
and any failures can significantly impact the availability of your application. Addi‐
tionally, because service mesh APIs tend to be implementation specific, it is difficult
to change your choice of service mesh once you have spent time developing applica‐
tions around it. In the end, you may find that the right mesh for you is no mesh at all.
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Summary
Service meshes contain powerful functionality that adds security and flexibility to
your application. At the same time, a service mesh adds complexity to the operations
of your cluster and is another potential source of outages for your application.
Carefully consider the pros and cons of adding service meshes to your infrastructure.
If you have the choice, use a managed service mesh where someone else takes
responsibility for the operational details while enabling your applications access to
service mesh capabilities.
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CHAPTER 16

Integrating Storage Solutions
and Kubernetes

In many cases, decoupling state from applications and building your microservices to
be as stateless as possible results in maximally reliable, manageable systems.

However, nearly every system that has any complexity has state in the system some‐
where, from the records in a database to the index shards that serve results for a web
search engine. At some point, you have to have data stored somewhere.

Integrating this data with containers and container orchestration solutions is often
the most complicated aspect of building a distributed system. This complexity largely
stems from the fact that the move to containerized architectures is also a move
toward decoupled, immutable, and declarative application development. These pat‐
terns are relatively easy to apply to stateless web applications, but even “cloud native”
storage solutions like Cassandra or MongoDB involve some sort of manual or imper‐
ative steps to set up a reliable, replicated solution.

As an example of this, consider setting up a ReplicaSet in MongoDB, which involves
deploying the Mongo daemon and then running an imperative command to identify
the leader, as well as the participants, in the Mongo cluster. Of course, these steps
can be scripted, but in a containerized world, it is difficult to see how to integrate
such commands into a deployment. Likewise, even getting DNS-resolvable names for
individual containers in a replicated set of containers is challenging.

Additional complexity comes from the fact that there is data gravity. Most container‐
ized systems aren’t built in a vacuum; they are usually adapted from existing systems
deployed onto VMs, and these systems likely include data that has to be imported or
migrated.
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Finally, evolution to the cloud often means that storage is an externalized cloud
service, and, in that context, it can never really exist inside of the Kubernetes cluster.

This chapter covers a variety of approaches for integrating storage into containerized
microservices in Kubernetes. First, we cover how to import existing external storage
solutions (either cloud services or running on VMs) into Kubernetes. Next, we
explore how to run reliable singletons inside of Kubernetes that enable you to have
an environment that largely matches the VMs where you previously deployed storage
solutions. Finally, we cover StatefulSets, which are the Kubernetes resource most
people use for stateful workloads in Kubernetes.

Importing External Services
In many cases, you have an existing machine running in your network that has some
sort of database running on it. In this situation, you may not want to immediately
move that database into containers and Kubernetes. Perhaps it is run by a different
team, or you are doing a gradual move, or the task of migrating the data is simply
more trouble than it’s worth.

Regardless of the reasons for staying put, this legacy server and service are not
going to move into Kubernetes—but it’s still worthwhile to represent this server in
Kubernetes. When you do this, you get to take advantage of all the built-in naming
and service-discovery primitives provided by Kubernetes. Additionally, this enables
you to configure all your applications so that it looks like the database that is running
on a machine somewhere is actually a Kubernetes service. This means that it is
trivial to replace it with a database that is a Kubernetes service. For example, in
production, you may rely on your legacy database that is running on a machine,
but for continuous testing, you may deploy a test database as a transient container.
Since it is created and destroyed for each test run, data persistence isn’t important
in the continuous testing case. Representing both databases as Kubernetes services
enables you to maintain identical configurations in both testing and production.
High fidelity between test and production ensures that passing tests will lead to
successful deployment in production.

To see concretely how you maintain high fidelity between development and produc‐
tion, remember that all Kubernetes objects are deployed into namespaces. Imagine
that we have test and production namespaces defined. The test service is imported
using an object like this:

kind: Service
metadata:
  name: my-database
  # note 'test' namespace here
  namespace: test
...
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The production service looks the same, except it uses a different namespace:

kind: Service
metadata:
  name: my-database
  # note 'prod' namespace here
  namespace: prod
...

When you deploy a Pod into the test namespace and it looks up the service named
my-database, it will receive a pointer to my-database.test.svc.cluster.internal,
which in turn points to the test database. In contrast, when a Pod deployed in the
prod namespace looks up the same name (my-database), it will receive a pointer to
my-database.prod.svc.cluster.internal, which is the production database. Thus,
the same service name, in two different namespaces, resolves to two different serv‐
ices. For more details on how this works, see Chapter 7.

The following techniques all use database or other storage services,
but these approaches can be used equally well with other services
that aren’t running inside your Kubernetes cluster.

Services Without Selectors
When we first introduced services, we talked at length about label queries and how
they were used to identify the dynamic set of Pods that were the backends for a par‐
ticular service. With external services, however, there is no such label query. Instead,
you generally have a DNS name that points to the specific server running the data‐
base. For our example, let’s assume that this server is named database.company.com.
To import this external database service into Kubernetes, we start by creating a
service without a Pod selector that references the DNS name of the database server
(Example 16-1).

Example 16-1. dns-service.yaml

kind: Service
apiVersion: v1
metadata:
  name: external-database
spec:
  type: ExternalName
  externalName: database.company.com

When a typical Kubernetes service is created, an IP address is also created, and the
Kubernetes DNS service is populated with an A record that points to that IP address.
When you create a service of type ExternalName, the Kubernetes DNS service is
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instead populated with a CNAME record that points to the external name you speci‐
fied (database.company.com in this case). When an application in the cluster does a
DNS lookup for the hostname external-database.svc.default.cluster, the DNS
protocol aliases that name to database.company.com. This then resolves to the IP
address of your external database server. In this way, all containers in Kubernetes
believe that they are talking to a service that is backed with other containers, when in
fact they are being redirected to an external database.

Note that this is not restricted to databases you are running on your own infrastruc‐
ture. Many cloud databases and other services provide you with a DNS name to use
when accessing the database (e.g., my-database.databases.cloudprovider.com).
You can use this DNS name as the externalName. This imports the cloud-provided
database into the namespace of your Kubernetes cluster.

Sometimes, however, you don’t have a DNS address for an external database service,
just an IP address. In such cases, it is still possible to import this service as a
Kubernetes service, but the operation is a little different. First, you create a Service
without a label selector, but also without the ExternalName type we used before
(Example 16-2).

Example 16-2. external-ip-service.yaml

kind: Service
apiVersion: v1
metadata:
  name: external-ip-database

Kubernetes will allocate a virtual IP address for this service and populate an A record
for it. However, because there is no selector for the service, there will be no endpoints
populated for the load balancer to redirect traffic to.

Given that this is an external service, the user is responsible for populating the
endpoints manually with an Endpoints resource (Example 16-3).

Example 16-3. external-ip-endpoints.yaml

kind: Endpoints
apiVersion: v1
metadata:
  name: external-ip-database
subsets:
  - addresses:
    - ip: 192.168.0.1
    ports:
    - port: 3306
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If you have more than one IP address for redundancy, you can repeat them in
the addresses array. Once the endpoints are populated, the load balancer will start
redirecting traffic from your Kubernetes service to the IP address endpoint(s).

Because the user has assumed responsibility for keeping the IP
address of the server up-to-date, you need to either ensure that it
never changes or make sure that some automated process updates
the Endpoints record.

Limitations of External Services: Health Checking
External services in Kubernetes have one significant restriction: they do not perform
any health checking. The user is responsible for ensuring that the endpoint or DNS
name supplied to Kubernetes is as reliable as necessary for the application.

Running Reliable Singletons
The challenge of running storage solutions in Kubernetes is often that primitives
like ReplicaSet expect that every container is identical and replaceable, but for most
storage solutions, this isn’t the case. One option to address this is to use Kubernetes
primitives, but not attempt to replicate the storage. Instead, simply run a single Pod
that runs the database or other storage solution. In this way, the challenges of running
replicated storage in Kubernetes don’t occur because there is no replication.

At first blush, this might seem to run counter to the principles of building reliable
distributed systems, but in general, it is no less reliable than running your database
or storage infrastructure on a single virtual or physical machine, which is how many
systems are currently built. Indeed, in reality, if you structure the system properly,
the only thing you are sacrificing is potential downtime for upgrades or in case of
machine failure. While for large-scale or mission-critical systems this may not be
acceptable, for many smaller-scale applications, this kind of limited downtime is a
reasonable trade-off for the reduced complexity. If this is not true for you, feel free
to skip this section and either import existing services as described in the previous
section, or move on to “Kubernetes-Native Storage with StatefulSets” on page 188.
For everyone else, we’ll review how to build reliable singletons for data storage.

Running a MySQL Singleton
In this section, we’ll describe how to run a reliable singleton instance of the MySQL
database as a Pod in Kubernetes and how to expose that singleton to other applica‐
tions in the cluster. To do this, we are going to create three basic objects:
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• A persistent volume to manage the lifespan of the on-disk storage independently•
from the lifespan of the running MySQL application

• A MySQL Pod that will run the MySQL application•
• A service that will expose this Pod to other containers in the cluster•

In Chapter 5, we described persistent volumes: storage locations that have a lifetime
independent of any Pod or container. Persistent volume is useful in the case of persis‐
tent storage solutions where the on-disk representation of a database should survive
even if the containers running the database application crash, or move to different
machines. If the application moves to a different machine, the volume should move
with it, and data should be preserved. Separating the data storage out as a persistent
volume makes this possible.

To begin, we’ll create a persistent volume for our MySQL database to use. This
example uses NFS for maximum portability, but Kubernetes supports many different
persistent volume driver types. For example, there are persistent volume drivers
for all major public cloud providers as well as many private cloud providers. To
use these solutions, simply replace nfs with the appropriate cloud provider volume
type (e.g., azure, awsElasticBlockStore, or gcePersistentDisk). In all cases, this
change is all you need. Kubernetes knows how to create the appropriate storage
disk in the respective cloud provider. This is a great example of how Kubernetes
simplifies the development of reliable distributed systems. Example 16-4 shows the
PersistentVolume object.

Example 16-4. nfs-volume.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
  name: database
  labels:
    volume: my-volume
spec:
  accessModes:
  - ReadWriteMany
  capacity:
    storage: 1Gi
  nfs:
    server: 192.168.0.1
    path: "/exports"

This defines an NFS PersistentVolume object with 1 GB of storage space. We can
create this persistent volume as usual with:

$ kubectl apply -f nfs-volume.yaml
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Now that we have created a persistent volume, we need to claim that persistent
volume for our Pod. We do this with a PersistentVolumeClaim object (Example 16-5).

Example 16-5. nfs-volume-claim.yaml

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: database
spec:
  accessModes:
  - ReadWriteMany
  resources:
    requests:
      storage: 1Gi
  selector:
    matchLabels:
      volume: my-volume

The selector field uses labels to find the matching volume we defined previously.

This kind of indirection may seem overly complicated, but it has a purpose—it serves
to isolate our Pod definition from our storage definition. You can declare volumes
directly inside a Pod specification, but this locks that Pod specification to a particular
volume provider (e.g., a specific public or private cloud). By using volume claims,
you can keep your Pod specifications cloud-agnostic; simply create different volumes,
specific to the cloud, and use a PersistentVolumeClaim to bind them together. Fur‐
thermore, in many cases, the persistent volume controller will actually automatically
create a volume for you. There are more details of this process in the following
section.

Now that we’ve claimed our volume, we can use a ReplicaSet to construct our single‐
ton Pod. It might seem odd that we are using a ReplicaSet to manage a single Pod,
but it is necessary for reliability. Remember that once scheduled to a machine, a bare
Pod is bound to that machine forever. If the machine fails, then any Pods that are on
that machine that are not being managed by a higher-level controller like a ReplicaSet
vanish along with the machine and are not rescheduled elsewhere. Consequently, to
ensure that our database Pod is rescheduled in the presence of machine failures, we
use the higher-level ReplicaSet controller, with a replica size of 1, to manage our
database (Example 16-6).

Example 16-6. mysql-replicaset.yaml

apiVersion: extensions/v1
kind: ReplicaSet
metadata:
  name: mysql
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  # Labels so that we can bind a Service to this Pod
  labels:
    app: mysql
spec:
  replicas: 1
  selector:
    matchLabels:
      app: mysql
  template:
    metadata:
      labels:
        app: mysql
    spec:
      containers:
      - name: database
        image: mysql
        resources:
          requests:
            cpu: 1
            memory: 2Gi
        env:
        # Environment variables are not a best practice for security,
        # but we're using them here for brevity in the example.
        # See Chapter 11 for better options.
        - name: MYSQL_ROOT_PASSWORD
          value: some-password-here
        livenessProbe:
          tcpSocket:
            port: 3306
        ports:
        - containerPort: 3306
        volumeMounts:
          - name: database
            # /var/lib/mysql is where MySQL stores its databases
            mountPath: "/var/lib/mysql"
      volumes:
      - name: database
        persistentVolumeClaim:
          claimName: database

Once we create the ReplicaSet, it will, in turn, create a Pod running MySQL using the
persistent disk we originally created. The final step is to expose this as a Kubernetes
service (Example 16-7).

Example 16-7. mysql-service.yaml

apiVersion: v1
kind: Service
metadata:
  name: mysql
spec:
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  ports:
  - port: 3306
    protocol: TCP
  selector:
    app: mysql

Now we have a reliable singleton MySQL instance running in our cluster and
exposed as a service named mysql, which we can access at the full domain name
mysql.svc.default.cluster.

Similar instructions can be used for a variety of data stores, and if your needs are
simple and you can survive limited downtime in the face of a machine failure or
when you need to upgrade the database software, a reliable singleton may be the right
approach to storage for your application.

Dynamic Volume Provisioning
Many clusters also include dynamic volume provisioning. With dynamic volume
provisioning, the cluster operator creates one or more StorageClass objects. In
Kubernetes, a StorageClass encapsulates the characteristics of a particular type of
storage. A cluster can have multiple different storage classes installed. For example,
you might have a storage class for an NFS server on your network and a storage class
for iSCSI block store. Storage classes can also encapsulate different levels of reliability
or performance. Example 16-8 shows a default storage class that automatically provi‐
sions disk objects on the Microsoft Azure platform.

Example 16-8. storageclass.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: default
  annotations:
    storageclass.beta.kubernetes.io/is-default-class: "true"
  labels:
    kubernetes.io/cluster-service: "true"
provisioner: kubernetes.io/azure-disk

Once a storage class has been created for a cluster, you can refer to this storage class
in your persistent volume claim, rather than referring to any specific persistent vol‐
ume. When the dynamic provisioner sees this storage claim, it uses the appropriate
volume driver to create the volume and bind it to your persistent volume claim.

Example 16-9 shows an example of a PersistentVolumeClaim that uses the default
storage class we just defined to claim a newly created persistent volume.
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Example 16-9. dynamic-volume-claim.yaml

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: my-claim
  annotations:
    volume.beta.kubernetes.io/storage-class: default
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi

The volume.beta.kubernetes.io/storage-class annotation is what links this claim
back up to the storage class we created.

Automatic provisioning of a persistent volume is a great feature
that makes it significantly easier to build and manage stateful appli‐
cations in Kubernetes. However, the lifespan of these persistent
volumes is dictated by the reclamation policy of the PersistentVolu‐
meClaim, and the default is to bind that lifespan to the lifespan of
the Pod that creates the volume.
This means that if you happen to delete the Pod (e.g., via a scale-
down or other event), then the volume is deleted as well. While this
may be what you want in certain circumstances, you need to be
careful to ensure that you don’t accidentally delete your persistent
volumes.

Persistent volumes are great for traditional applications that require storage, but if
you need to develop high-availability, scalable storage in a Kubernetes-native fashion,
the newly released StatefulSet object can be used instead. We’ll describe how to
deploy MongoDB using StatefulSets in the next section.

Kubernetes-Native Storage with StatefulSets
When Kubernetes was first developed, there was a heavy emphasis on homogeneity
for all replicas in a replicated set. In this design, no replica had an individual identity
or configuration. It was up to the application developer to determine a design that
could establish this identity for their application.

While this approach provides a great deal of isolation for the orchestration system,
it also makes it quite difficult to develop stateful applications. After significant input
from the community and a great deal of experimentation with various existing state‐
ful applications, StatefulSets were introduced in Kubernetes version 1.5.
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Properties of StatefulSets
StatefulSets are replicated groups of Pods, similar to ReplicaSets. But unlike a Replica‐
Set, they have certain unique properties:

• Each replica gets a persistent hostname with a unique index (e.g., database-0,•
database-1, etc.).

• Each replica is created in order from lowest to highest index, and creation will•
pause until the Pod at the previous index is healthy and available. This also
applies to scaling up.

• When a StatefulSet is deleted, each of the managed replica Pods is also deleted•
in order from highest to lowest. This also applies to scaling down the number of
replicas.

It turns out that this simple set of requirements makes it drastically easier to deploy
storage applications on Kubernetes. For example, the combination of stable host‐
names (e.g., database-0) and the ordering constraints mean that all replicas, other
than the first one, can reliably reference database-0 for the purposes of discovery
and establishing a replication quorum.

Manually Replicated MongoDB with StatefulSets
In this section, we’ll deploy a replicated MongoDB cluster. For now, the replication
setup itself will be done manually to give you a feel for how StatefulSets work.
Eventually, we will automate this setup as well.

To start, we’ll create a replicated set of three MongoDB Pods using a StatefulSet object
(Example 16-10).

Example 16-10. mongo-simple.yaml

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: mongo
spec:
  serviceName: "mongo"
  replicas: 3
  selector:
    matchLabels:
      app: mongo
  template:
    metadata:
      labels:
        app: mongo
    spec:
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      containers:
      - name: mongodb
        image: mongo:3.4.24
        command:
        - mongod
        - --replSet
        - rs0
        ports:
        - containerPort: 27017
          name: peer

As you can see, the definition is similar to the ReplicaSet definitions we’ve seen
previously. The only changes are in the apiVersion and kind fields.

Create the StatefulSet:

$ kubectl apply -f mongo-simple.yaml

Once created, the differences between a ReplicaSet and a StatefulSet become appa‐
rent. Run kubectl get pods and you will likely see this:

NAME      READY     STATUS            RESTARTS   AGE
mongo-0   1/1       Running           0          1m
mongo-1   0/1       ContainerCreating 0          10s

There are two important differences between this and what you would see with a
ReplicaSet. The first is that each replicated Pod has a numeric index (0, 1, …), instead
of the random suffix that is added by the ReplicaSet controller. The second is that
the Pods are being slowly created in order, not all at once as they would be with a
ReplicaSet.

After the StatefulSet is created, we also need to create a “headless” service to manage
the DNS entries for the StatefulSet. In Kubernetes, a service is called “headless” if
it doesn’t have a cluster virtual IP address. Since with StatefulSets, each Pod has a
unique identity, it doesn’t really make sense to have a load-balancing IP address for
the replicated service. You can create a headless service using clusterIP: None in the
service specification (Example 16-11).

Example 16-11. mongo-service.yaml

apiVersion: v1
kind: Service
metadata:
  name: mongo
spec:
  ports:
  - port: 27017
    name: peer
  clusterIP: None
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  selector:
    app: mongo

Once you create that service, four DNS entries are usually populated. As usual,
mongo.default.svc.cluster.local is created, but unlike with a standard service,
doing a DNS lookup on this hostname provides all the addresses in the StatefulSet.
In addition, entries are created for mongo-0.mongo.default.svc.cluster.local as
well as mongo-1.mongo and mongo-2.mongo. Each of these resolves to the specific
IP address of the replica index in the StatefulSet. Thus, with StatefulSets you get
well-defined, persistent names for each replica in the set. This is often very useful
when you are configuring a replicated storage solution. You can see these DNS entries
in action by running the following command in one of the Mongo replicas:

$ kubectl run -it --rm --image busybox busybox ping mongo-1.mongo

Next, we’re going to manually set up Mongo replication using these per-Pod
hostnames. We’ll choose mongo-0.mongo to be our initial primary. Run the mongo
tool in that Pod:

$ kubectl exec -it mongo-0 mongo
> rs.initiate( {
  _id: "rs0",
  members:[ { _id: 0, host: "mongo-0.mongo:27017" } ]
 });
 OK

This command tells mongodb to initiate the ReplicaSet rs0 with mongo-0.mongo as the
primary replica.

The rs0 name is arbitrary. You can use whatever you’d like, but
you’ll need to change it in the mongo-simple.yaml StatefulSet defi‐
nition as well.

Once you have initiated the Mongo ReplicaSet, you can add the remaining replicas by
running the following commands in the mongo tool on the mongo-0.mongo Pod:

> rs.add("mongo-1.mongo:27017");
> rs.add("mongo-2.mongo:27017");

As you can see, we are using the replica-specific DNS names to add them as replicas
in our Mongo cluster. At this point, we’re done. Our replicated MongoDB is up and
running. But it’s really not as automated as we’d like it to be—in the next section, we’ll
see how to use scripts to automate the setup.
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Automating MongoDB Cluster Creation
To automate the deployment of our StatefulSet-based MongoDB cluster, we’re going
to add a container to our Pods to perform the initialization. To configure this Pod
without having to build a new Docker image, we’re going to use a ConfigMap to add a
script into the existing MongoDB image.

We are going to run this script using an initialization container. Initialization contain‐
ers (or “init” containers) are specialized containers that run once at the startup of
a Pod. They are generally used for cases like this, where there is a small amount of
setup work to do before the main application runs. In the Pod definition, there is
a separate initContainers list where init containers can be defined. An example of
this is given here:

...
      initContainers:
      - name: init-mongo
        image: mongo:3.4.24
        command:
        - bash
        - /config/init.sh
        volumeMounts:
        - name: config
          mountPath: /config
 ...
      volumes:
      - name: config
        configMap:
          name: "mongo-init"

Note that it is mounting a ConfigMap volume whose name is mongo-init. This
ConfigMap holds a script that performs our initialization. First, the script determines
whether it is running on mongo-0 or not. If it is on mongo-0, it creates the ReplicaSet
using the same command we ran imperatively previously. If it is on a different Mongo
replica, it waits until the ReplicaSet exists, and then it registers itself as a member of
that ReplicaSet.

Example 16-12 has the complete ConfigMap object.

Example 16-12. mongo-configmap.yaml

apiVersion: v1
kind: ConfigMap
metadata:
  name: mongo-init
data:
  init.sh: |
    #!/bin/bash
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    # Need to wait for the readiness health check to pass so that the
    # Mongo names resolve. This is kind of wonky.
    until ping -c 1 ${HOSTNAME}.mongo; do
      echo "waiting for DNS (${HOSTNAME}.mongo)..."
      sleep 2
    done

    until /usr/bin/mongo --eval 'printjson(db.serverStatus())'; do
      echo "connecting to local mongo..."
      sleep 2
    done
    echo "connected to local."

    HOST=mongo-0.mongo:27017

    until /usr/bin/mongo --host=${HOST} --eval 'printjson(db.serverStatus())'; do
      echo "connecting to remote mongo..."
      sleep 2
    done
    echo "connected to remote."

    if [[ "${HOSTNAME}" != 'mongo-0' ]]; then
      until /usr/bin/mongo --host=${HOST} --eval="printjson(rs.status())" \
            | grep -v "no replset config has been received"; do
        echo "waiting for replication set initialization"
        sleep 2
      done
      echo "adding self to mongo-0"
      /usr/bin/mongo --host=${HOST} \
         --eval="printjson(rs.add('${HOSTNAME}.mongo'))"
    fi

    if [[ "${HOSTNAME}" == 'mongo-0' ]]; then
      echo "initializing replica set"
      /usr/bin/mongo --eval="printjson(rs.initiate(\
          {'_id': 'rs0', 'members': [{'_id': 0, \
           'host': 'mongo-0.mongo:27017'}]}))"
    fi
    echo "initialized"

You’ll notice that this script immediately exits. This is important when using init
Containers. Each initialization container waits until the previous container has fin‐
ished, before running. The main application container waits until all of the initializa‐
tion containers are done. If this script didn’t exit, the main Mongo server would never
start up.

Putting it all together, Example 16-13 is the complete StatefulSet that uses the
ConfigMap.
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Example 16-13. mongo.yaml

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: mongo
spec:
  serviceName: "mongo"
  replicas: 3
  selector:
    matchLabels:
      app: mongo
  template:
    metadata:
      labels:
        app: mongo
    spec:
      containers:
      - name: mongodb
        image: mongo:3.4.24
        command:
        - mongod
        - --replSet
        - rs0
        ports:
        - containerPort: 27017
          name: web
      # This container initializes the MongoDB server, then sleeps.
      - name: init-mongo
        image: mongo:3.4.24
        command:
        - bash
        - /config/init.sh
        volumeMounts:
        - name: config
          mountPath: /config
      volumes:
      - name: config
        configMap:
          name: "mongo-init"

Given all of these files, you can create a Mongo cluster with:

$ kubectl apply -f mongo-config-map.yaml
$ kubectl apply -f mongo-service.yaml
$ kubectl apply -f mongo-simple.yaml

Or, if you want, you can combine them all into a single YAML file where the individ‐
ual objects are separated by ---. Ensure that you keep the same ordering, since the
StatefulSet definition relies on the ConfigMap definition existing.
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Persistent Volumes and StatefulSets
For persistent storage, you need to mount a persistent volume into the /data/db
directory. In the Pod template, you need to update it to mount a persistent volume
claim to that directory:

...
        volumeMounts:
        - name: database
          mountPath: /data/db

While this approach is similar to the one we saw with reliable singletons, because the
StatefulSet replicates more than one Pod, you cannot simply reference a persistent
volume claim. Instead, you need to add a persistent volume claim template. You can
think of the claim template as identical to the Pod template, but instead of creating
Pods, it creates volume claims. You need to add the following to the bottom of your
StatefulSet definition:

  volumeClaimTemplates:
  - metadata:
      name: database
      annotations:
        volume.alpha.kubernetes.io/storage-class: anything
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 100Gi

When you add a volume claim template to a StatefulSet definition, each time the
StatefulSet controller creates a Pod that is part of the StatefulSet, it will create a
persistent volume claim based on this template as part of that Pod.

For these replicated persistent volumes to work correctly, you need
to either set up autoprovisioning for persistent volumes or prepo‐
pulate a collection of persistent volume objects for the StatefulSet
controller to draw from. If there are no claims that can be created,
the StatefulSet controller will not be able to create the correspond‐
ing Pods.

One Final Thing: Readiness Probes
The final piece in productionizing our MongoDB cluster is to add liveness checks
to our Mongo-serving containers. As we learned in “Health Checks” on page 55, the
liveness probe is used to determine if a container is operating correctly.
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For the liveness checks, we can use the mongo tool itself by adding the following to the
Pod template in the StatefulSet object:

...
 livenessProbe:
   exec:
     command:
     - /usr/bin/mongo
     - --eval
     - db.serverStatus()
   initialDelaySeconds: 10
   timeoutSeconds: 10
 ...

Summary
Once we have combined StatefulSets, persistent volume claims, and liveness probing,
we have a hardened, scalable cloud native MongoDB installation running on Kuber‐
netes. While this example dealt with MongoDB, the steps for creating StatefulSets to
manage other storage solutions are quite similar and similar patterns can be followed.
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CHAPTER 17

Extending Kubernetes

From the beginning, it was clear that Kubernetes was going to be more than its core
set of APIs; once an application is orchestrated within the cluster, there are countless
other useful tools and utilities that can be represented and deployed as API objects in
the Kubernetes cluster. The challenge was how to embrace this explosion of objects
and use cases without having an API that sprawled without bound.

To resolve this tension between extended use cases and API sprawl, significant effort
was put into making the Kubernetes API extensible. This extensibility meant that
cluster operators could customize their clusters with the additional components that
suited their needs. This extensibility enables people to augment their clusters them‐
selves, consume community-developed cluster add-ons, and even develop extensions
that are bundled and sold in an ecosystem of cluster plug-ins. Extensibility has also
given rise to whole new patterns of managing systems, such as the operator pattern.

Regardless of whether you are building your own extensions or consuming operators
from the ecosystem, understanding how the Kubernetes API server is extended and
how extensions can be built and delivered is a key component to unlocking the
complete power of Kubernetes and its ecosystem. As more and more advanced tools
and platforms are built on top of Kubernetes using these extensibility mechanisms,
a working knowledge of how they operate is critical to understanding how to build
applications in a modern Kubernetes cluster.

What It Means to Extend Kubernetes
In general, extensions to the Kubernetes API server either add new functionality to a
cluster or limit and tweak the ways that users can interact with their clusters. There
is a rich ecosystem of plug-ins that cluster administrators can use to add services
and capabilities to their clusters. It’s worth noting that extending the cluster is a
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very high-privilege thing to do. It is not a capability that should be extended to
arbitrary users or arbitrary code because cluster administrator privileges are required
to extend a cluster. Even cluster administrators should be careful and use diligence
when installing third-party tools. Some extensions, like admission controllers, can be
used to view all objects being created in the cluster, and could easily be used as a
vector to steal Secrets or run malicious code. Additionally, extending a cluster makes
it different than stock Kubernetes. When running on multiple clusters, it is very
valuable to build tooling to maintain consistency of experience across the clusters,
and this includes the extensions that are installed.

Points of Extensibility
There are many ways to extend Kubernetes, from CustomResourceDefinitions to
Container Network Interface plug-ins. This chapter is going to focus on extending
the API server by adding new resource types or admission controllers to API
requests. We will not cover CNI/CSI/CRI (Container Network Interface/Container
Storage Interface/Container Runtime Interface) extensions, as they are more com‐
monly used by Kubernetes cluster providers rather than by the Kubernetes end users,
for whom this book was written.

In addition to admission controllers and API extensions, there are actually a number
of ways to “extend” your cluster without ever modifying the API server at all. These
include DaemonSets that install automatic logging and monitoring, tools that scan
your services for cross-site scripting (XSS) vulnerabilities, and more. Before embark‐
ing on extending your cluster yourself, however, it’s worth considering the landscape
of things that are possible within the confines of the existing Kubernetes APIs.

To understand the role of admission controllers and CustomResourceDefinitions, it
helps to review the flow of requests through the Kubernetes API server, shown in
Figure 17-1.

Figure 17-1. API server request flow

Admission controllers are called prior to the API object being written into the backing
storage. Admission controllers can reject or modify API requests. Several admission
controllers are built into the Kubernetes API server; for example, the limit range
admission controller that sets default limits for Pods without them. Many other
systems use custom admission controllers to auto-inject sidecar containers into all
Pods created on the system to enable “auto-magic” experiences.
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The other form of extension, which can also be used in conjunction with admission
controllers, is custom resources. With custom resources, whole new API objects are
added to the Kubernetes API surface area. These new API objects can be added
to namespaces, are subject to RBAC, and can be accessed with existing tools like
kubectl as well as via the Kubernetes API.

The following sections describe these Kubernetes extension points in greater detail
and give both use cases and hands-on examples of how to extend your cluster.

The first thing to do to create a custom resource is to create a CustomResourceDefi‐
nition. This object is actually a meta-resource; that is, a resource that is the definition
of another resource.

As a concrete example, consider defining a new resource to represent load tests in
your cluster. When a new LoadTest resource is created, a load test is spun up in your
Kubernetes cluster and drives traffic to a service.

The first step in creating this new resource is defining it through a CustomResource‐
Definition. An example definition looks as follows:

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: loadtests.beta.kuar.com
spec:
  group: beta.kuar.com
  versions:
    - name: v1
      served: true
      storage: true
  scope: Namespaced
  names:
    plural: loadtests
    singular: loadtest
    kind: LoadTest
    shortNames:
    - lt

You can see that this is a Kubernetes object like any other. It has a metadata
sub-object, and within that sub-object, the resource is named. However, in the
case of custom resources, the name is special. It has to be the format <resource-
plural>.<api-group> to ensure that each resource definition is unique in the cluster,
because the name of each CustomResourceDefinition has to match this pattern, and
no two objects in the cluster can have the same name. We are thus guaranteed that no
two CustomResourceDefinitions define the same resource.

In addition to metadata, the CustomResourceDefinition has a spec sub-object. This
is where the resource itself is defined. In that spec object, there is an apigroup field
that supplies the API group for the resource. As mentioned previously, it must match
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the suffix of the CustomResourceDefinition’s name. Additionally, there is a list of
versions for the resource, which includes the name of the version (e.g., v1, v2, etc.),
as well as fields that indicate if that version is served by the API server and which
version is used for storing data in the backing storage for the API server. The storage
field must be true for only a single version for the resource. There is also a scope
field to indicate whether the resource is namespaced (the default is namespaced), and
a names field that allows for the definition of the singular, plural, and kind values
for the resource. It also allows the definition of convenience “short names” for the
resource for use in kubectl and elsewhere.

Given this definition, you can create the resource in the Kubernetes API server. But
first, to show the true nature of dynamic resource types, try to list our loadtests
resource using kubectl:

$ kubectl get loadtests

You’ll see that there is no such resource currently defined. Now use loadtest-
resource.yaml to create this resource:

$ kubectl create -f loadtest-resource.yaml

Then get the loadtests resource again:

$ kubectl get loadtests

This time you’ll see that there is a LoadTest resource type defined, though there are
still no instances of this resource type. Let’s change that by creating a new LoadTest
resource.

As with all built-in Kubernetes API objects, you can use YAML or JSON to define a
custom resource (in this case our LoadTest). See the following definition:

apiVersion: beta.kuar.com/v1
kind: LoadTest
metadata:
  name: my-loadtest
spec:
  service: my-service
  scheme: https
  requestsPerSecond: 1000
  paths:
  - /index.html
  - /login.html
  - /shares/my-shares/

One thing you’ll note is that we never defined the schema for the custom resource in
the CustomResourceDefinition. It actually is possible to provide an OpenAPI specifi‐
cation (known previously as Swagger) for a custom resource, but this complexity is
generally not worth it for simple resource types. If you do want to perform validation,
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you can register a validating admission controller, as described in the following
sections.

You can now use this loadtest.yaml file to create a resource just like you would with
any built-in type:

$ kubectl create -f loadtest.yaml

Now when you list the loadtests resource, you’ll see your newly created resource:

$ kubectl get loadtests

This may be exciting, but it doesn’t really do anything yet. Sure, you can use this
simple CRUD (Create/Read/Update/Delete) API to manipulate the data for LoadTest
objects, but no actual load tests are created in response to this new API we defined
because there is no controller present in the cluster to react and take action when
a LoadTest object is defined. The LoadTest custom resource is only half of the
infrastructure needed to add LoadTests to our cluster. The other half is a piece of code
that will continuously monitor the custom resources and create, modify, or delete
LoadTests as necessary to implement the API.

Just like the user of the API, the controller interacts with the API server to list
LoadTests and watches for any changes that might occur. This interaction between
controller and API server is shown in Figure 17-2.

Figure 17-2. CustomResourceDefinition interactions

The code for such a controller can range from simple to complex. The simplest
controllers run a for loop and repeatedly poll for new custom objects, and then take
actions to create or delete the resources that implement those custom objects (e.g., the
LoadTest worker Pods).

However, this polling-based approach is inefficient: the period of the polling loop
adds unnecessary latency, and the overhead of polling may add unnecessary load
on the API server. A more efficient approach is to use the watch API on the API
server, which provides a stream of updates when they occur, eliminating both the
latency and overhead of polling. However, using this API correctly in a bug-free way
is complicated. As a result, if you want to use watches, it is highly recommended that
you use a well-supported mechanism such as the Informer pattern exposed in the
client-go library.
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Now that we have created a custom resource and implemented it via a controller,
we have the basic functionality of a new resource in our cluster. However, many
parts of what it means to be a well-functioning resource are missing. The two
most important are validation and defaulting. Validation is the process of ensuring
that LoadTest objects sent to the API server are well formed and can be used to
create load tests, while defaulting makes it easier for people to use our resources by
providing automatic, commonly used values by default. We’ll now cover adding these
capabilities to our custom resource.

As mentioned earlier, one option for adding validation is via an OpenAPI specifica‐
tion for our objects. This can be useful for basic validation of the presence of required
fields or the absence of unknown fields. A complete OpenAPI tutorial is beyond the
scope of this book, but there are lots of resources online, including the complete
Kubernetes API specification.

Generally speaking, an API schema is actually insufficient for validation of API
objects. For example, in our loadtests example, we may want to validate that the
LoadTest object has a valid scheme (e.g., http or https) or that requestsPerSecond is a
nonzero positive number.

To accomplish this, we will use a validating admission controller. As discussed pre‐
viously, admission controllers intercept requests to the API server before they are
processed and can reject or modify the requests in flight. Admission controllers
can be added to a cluster via the dynamic admission control system. A dynamic
admission controller is a simple HTTP application. The API server connects to the
admission controller via either a Kubernetes Service object or an arbitrary URL.
This means that admission controllers can optionally run outside of the cluster—for
example, in a cloud provider’s Function-as-a-Service offering, like Azure Functions
or AWS Lambda.

To install our validating admission controller, we need to specify it as a Kuber‐
netes ValidatingWebhookConfiguration. This object specifies the endpoint where the
admission controller runs, as well as the resource (in this case LoadTest) and the
action (in this case CREATE) where the admission controller should be run. You can
see the full definition for the validating admission controller in the following code:

apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingWebhookConfiguration
metadata:
  name: kuar-validator
webhooks:
- name: validator.kuar.com
  rules:
  - apiGroups:
    - "beta.kuar.com"
    apiVersions:
    - v1
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    operations:
    - CREATE
    resources:
    - loadtests
  clientConfig:
    # Substitute the appropriate IP address for your webhook
    url: https://192.168.1.233:8080
    # This should be the base64-encoded CA certificate for your cluster,
    # you can find it in your ${KUBECONFIG} file
    caBundle: REPLACEME

Fortunately for security, but unfortunately for complexity, webhooks that are accessed
by the Kubernetes API server can only be accessed via HTTPS. So we need to
generate a certificate to serve the webhook. The easiest way to do this is to use the
cluster’s ability to generate new certificates using its own certificate authority (CA).

First, we need a private key and a certificate signing request (CSR). Here’s a simple Go
program that generates these:

package main

import (
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/pem"
"net/url"
"os"

)

func main() {
host := os.Args[1]
name := "server"

key, err := rsa.GenerateKey(rand.Reader, 1024)
if err != nil {

panic(err)
}
keyDer := x509.MarshalPKCS1PrivateKey(key)
keyBlock := pem.Block{

Type:  "RSA PRIVATE KEY",
Bytes: keyDer,

}
keyFile, err := os.Create(name + ".key")
if err != nil {

panic(err)
}
pem.Encode(keyFile, &keyBlock)
keyFile.Close()
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commonName := "myuser"
emailAddress := "someone@myco.com"

org := "My Co, Inc."
orgUnit := "Widget Farmers"
city := "Seattle"
state := "WA"
country := "US"

subject := pkix.Name{
CommonName:         commonName,
Country:            []string{country},
Locality:           []string{city},
Organization:       []string{org},
OrganizationalUnit: []string{orgUnit},
Province:           []string{state},

}

uri, err := url.ParseRequestURI(host)
if err != nil {

panic(err)
}

asn1, err := asn1.Marshal(subject.ToRDNSequence())
if err != nil {

panic(err)
}
csr := x509.CertificateRequest{

RawSubject:         asn1,
EmailAddresses:     []string{emailAddress},
SignatureAlgorithm: x509.SHA256WithRSA,
URIs:               []*url.URL{uri},

}

bytes, err := x509.CreateCertificateRequest(rand.Reader, &csr, key)
if err != nil {

panic(err)
}
csrFile, err := os.Create(name + ".csr")
if err != nil {

panic(err)
}

pem.Encode(csrFile, &pem.Block{Type: "CERTIFICATE REQUEST", Bytes: bytes})
csrFile.Close()

}

You can run this program with:

$ go run csr-gen.go <URL-for-webhook>

and it will generate two files, server.csr and server-key.pem.

204 | Chapter 17: Extending Kubernetes



You can then create a certificate signing request for the Kubernetes API server using
the following YAML:

apiVersion: certificates.k8s.io/v1beta1
kind: CertificateSigningRequest
metadata:
  name: validating-controller.default
spec:
  groups:
  - system:authenticated
  request: REPLACEME
  usages:
  usages:
  - digital signature
  - key encipherment
  - key agreement
  - server auth

You will notice for the request field the value is REPLACEME; this needs to be replaced
with the base64-encoded certificate signing request we produced in the preceding
code:

$ perl -pi -e s/REPLACEME/$(base64 server.csr | tr -d '\n')/ \
admission-controller-csr.yaml

Now that your certificate signing request is ready, you can send it to the API server to
get the certificate:

$ kubectl create -f admission-controller-csr.yaml

Next, you need to approve that request:

$ kubectl certificate approve validating-controller.default

Once approved, you can download the new certificate:

$ kubectl get csr validating-controller.default -o json | \
  jq -r .status.certificate | base64 -d > server.crt

With the certificate, you are finally ready to create an SSL-based admission controller
(phew!). When the admission controller code receives a request, it contains an object
of type AdmissionReview, which contains metadata about the request as well as
the body of the request itself. In our validating admission controller, we have only
registered for a single resource type and a single action (CREATE), so we don’t need
to examine the request metadata. Instead, we dive directly into the resource itself
and validate that requestsPerSecond is positive and the URL scheme is valid. If they
aren’t, we return a JSON body disallowing the request.

Implementing an admission controller to provide defaulting is similar to the steps
just described, but instead of using a ValidatingWebhookConfiguration, you use a
MutatingWebhookConfiguration, and you need to provide a JSON Patch object to
mutate the request object before it is stored.
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Here’s a TypeScript snippet that you can add to your validating admission controller
to add defaulting. If the paths field in the loadtest is of length zero, add a single
path for /index.html:

        if (needsPatch(loadtest)) {
            const patch = [
                { 'op': 'add', 'path': '/spec/paths', 'value': ['/index.html'] },
            ]
            response['patch'] = Buffer.from(JSON.stringify(patch))
                .toString('base64');
            response['patchType'] = 'JSONPatch';
        }

You can then register this webhook as a MutatingWebhookConfiguration by sim‐
ply changing the kind field in the YAML object and saving the file as mutating-
controller.yaml. Then create the controller by running:

$ kubectl create -f mutating-controller.yaml

At this point, you’ve seen a complete example of how to extend the Kubernetes
API server using custom resources and admission controllers. The following section
describes some general patterns for various extensions.

Patterns for Custom Resources
Not all custom resources are identical. There are a variety of reasons for extending
the Kubernetes API surface area, and the following sections discuss some general
patterns you may want to consider.

Just Data
The easiest pattern for API extension is the notion of “just data.” In this pattern,
you are simply using the API server for storage and retrieval of information for
your application. It is important to note that you should not use the Kubernetes
API server for application data storage. The Kubernetes API server is not designed
to be a key/value store for your app; instead, API extensions should be control
or configuration objects that help you manage the deployment or runtime of your
application. An example use case for the “just data” pattern might be configuration
for canary deployments of your application—for example, directing 10% of all traffic
to an experimental backend. While in theory such configuration information could
also be stored in a ConfigMap, ConfigMaps are essentially untyped, and sometimes
using a more strongly typed API extension object provides clarity and ease of use.

Extensions that are just data don’t need a corresponding controller to activate them,
but they may have validating or mutating admission controllers to ensure that they
are well formed. For example, in the canary use case, a validating controller might
ensure that all percentages in the canary object sum to 100%.
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Compilers
A slightly more complicated pattern is the “compiler” or “abstraction” pattern. In this
pattern, the API extension object represents a higher-level abstraction that is “com‐
piled” into a combination of lower-level Kubernetes objects. The LoadTest extension
in the previous example is an example of this compiler abstraction pattern. A user
consumes the extension as a high-level concept, in this case a loadtest, but it comes
into being by being deployed as a collection of Kubernetes Pods and services. To ach‐
ieve this, a compiled abstraction requires an API controller to be running somewhere
in the cluster to watch the current LoadTests and create the “compiled” representation
(and likewise delete representations that no longer exist). In contrast to the operator
pattern described next, however, there is no online health maintenance for compiled
abstractions; it is delegated down to the lower-level objects (e.g., Pods).

Operators
While compiler extensions provide easy-to-use abstractions, extensions that use the
“operator” pattern provide online, proactive management of the resources created by
the extensions. These extensions likely provide a higher-level abstraction (for exam‐
ple, a database) that is compiled down to a lower-level representation, but they also
provide online functionality, such as snapshot backups of the database or upgrade
notifications when a new version of the software is available. To achieve this, the
controller not only monitors the extension API to add or remove things as necessary,
but also monitors the running state of the application supplied by the extension (e.g.,
a database) and takes actions to remediate unhealthy databases, take snapshots, or
restore from a snapshot if a failure occurs.

Operators are the most complicated pattern for API extension of Kubernetes, but
they are also the most powerful, enabling users to get easy access to “self-driving”
abstractions that are responsible not just for deployment, but also health checking
and repair.

Getting Started
Getting started extending the Kubernetes API can be a daunting and exhausting
experience. Fortunately, there is a great deal of code to help you out. The Kubebuilder
project contains a library of code intended to help you easily build reliable Kuber‐
netes API extensions. It’s a great resource to help you bootstrap your extension.
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Summary
One of the great “superpowers” of Kubernetes is its ecosystem, and one of the most
significant things powering this ecosystem is the extensibility of the Kubernetes API.
Whether you’re designing your own extensions to customize your cluster or consum‐
ing off-the-shelf extensions as utilities, cluster services, or operators, API extensions
are the key to making your cluster your own and building the right environment for
the rapid development of reliable applications.

208 | Chapter 17: Extending Kubernetes



CHAPTER 18

Accessing Kubernetes from Common
Programming Languages

Though most of this book is dedicated to using declarative YAML configurations,
either directly via kubectl or through tools like Helm, there are situations when it is
necessary to interact with the Kubernetes API directly from a programming language.
For example, the authors of the Helm tool itself needed to write that application
in a programming language. More generally, this is common if you need to write
some additional tool, like a kubectl plug-in, or a more complex piece of code, like a
Kubernetes operator.

Much of the Kubernetes ecosystem is written in the Go programming language. As
a result, the Go language has the richest and most extensive client. However, there
are a high-quality clients for most common programming languages (and even some
uncommon ones as well). Because there is already so much documentation and so
many examples of how to use the Go client, this chapter will cover the basics of
interacting with the Kubernetes API server with examples in Python, Java, and .NET.

The Kubernetes API: A Client’s Perspective
At the end of the day, the Kubernetes API server is just an HTTP(S) server and that is
exactly how each client library perceives it, though each client has a lot of additional
logic that implements the various API calls and serializes to and from JSON. Given
this, you might be tempted to simply use a plain HTTP client to work with the
Kubernetes APIs, but the client libraries wrap these various HTTP calls into mean‐
ingful APIs that make your code more readable (e.g., readNamespacedPod(...)),
and meaningful typed object-models that facilitate static type checking and there‐
fore result in fewer bugs (e.g., Deployment). Perhaps more importantly, the client
libraries also implement Kubernetes-specific capabilities, like loading authorization
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information from a kubeconfig file or from a Pod’s environment. The clients also
provide implementations of the non-RESTful parts of the Kubernetes API surface
area like port-forward, logs, and watches. We’ll describe these advanced capabilities
in later sections.

OpenAPI and Generated Client Libraries
The set of resources and functions in the Kubernetes API is huge. There are many
different resources in different API groups and many different operations on each of
these resources. Keeping up with all of these different resources and resource versions
would be a massive (and unmistakably boring) undertaking if developers had to
hand-author all of these API calls. Especially when considering that clients have to
be handwritten across each of the programming languages. Instead, the clients take a
different approach, and the basics of interacting with the Kubernetes API server are
all generated by a computer program that is sort of like a compiler in reverse. The
code generator for the API clients takes a data specification for the Kubernetes API
and uses this specification to generate a client for a specific language.

The Kubernetes API is expressed in a format known as OpenAPI, which is the most
common schema for representing RESTful APIs. To give you a sense of the size of the
Kubernetes API, the OpenAPI specification found on GitHub is over four megabytes
in size. That’s a pretty big text file! The official Kubernetes client libraries are all
generated using the same core code generation logic, which can be found on GitHub.
It is unlikely that you will actually have to generate the client libraries yourself, but
nonetheless, it is useful to understand the process by which these libraries are created.
In particular, because most of the client code is generated, updates and fixes can’t be
made directly in the generated client code, since it would be overwritten the next
time the API was generated. Instead, when an error in a client is found, fixes need to
be made to either the OpenAPI specification (if the error is in the specification itself)
or the code generator (if the error is in the generated code). Although this process can
seem excessively complex, it is the only way that a small number of Kubernetes client
authors can keep up with the breadth of the Kubernetes API.

But What About kubectl x?
When you start implementing your own logic for interacting with the Kubernetes
API, it probably won’t be long before you find yourself asking how to do kubectl
x. Most people start with the kubectl tool when they learn Kubernetes and con‐
sequently expect that there is a 1-1 mapping between the capabilities in kubectl
and the Kubernetes API. While some commands are directly represented in the
Kubernetes API (e.g., kubectl get pods), most of the more sophisticated features
are actually a larger number of API calls with complex logic in the kubectl tool.
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This balance between client-side and server-side features has been a design trade-off
since the beginning of Kubernetes. Many features that are now present in the API
server began as client-side implementations in kubectl. For example, the rollout
capabilities now implemented on the server by the Deployment resource were previ‐
ously implemented in the client. Likewise, until recently, kubectl apply ... was
only available within the command-line tool, but was migrated to the server as the
server-side apply capabilities that will be discussed later in this chapter.

Despite the general trajectory toward server-side implementations, there are still
significant capabilities that remain in the client. Each of these capabilities must be
reimplemented in each client library. Parity with the kubectl command line tool
varies between languages. The Java client in particular has built a thick client that
emulates much of the kubectl functionality.

If you can’t find the functionality that you are looking for in your client library,
a useful trick is to add the --v=10 flag to your kubectl command. That will turn
on verbose logging, including all of the HTTP requests and responses sent to the
Kubernetes API server. You can use this logging to reconstruct much of what kubectl
is doing. If you still need to dig deeper, the kubectl source code is also available
within the Kubernetes repository.

Programming the Kubernetes API
Now you have a deeper perspective about how the Kubernetes API works and how
the client and server interact. In the following sections, we’ll go through how to
authenticate to the Kubernetes API server and interact with resources. We’ll close
with advanced topics from writing operators to interacting with Pods for interactive
operations.

Installing the Client Libraries
Before you can start programming with the Kubernetes API, you need to find the cli‐
ent libraries. We will be using the official client libraries produced by the Kubernetes
project itself, though there are also a number of high-quality clients developed as
independent projects. The client libraries are all hosted under the kubernetes-client
repository on GitHub:

• Python•
• Java•
• .NET•
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1 We did not include JavaScript examples for brevity, but it is also actively developed.

Each of these projects features a compatibility matrix to show which versions of the
client work with which versions of the Kubernetes API and also give instructions
for installing the libraries using the package managers (e.g., npm) associated with a
particular programming language.1

Authenticating to the Kubernetes API
The Kubernetes API server wouldn’t be very safe if it allowed anyone in the world
to access it and read or write the resources that it orchestrates. Consequently, the
first step in programming the Kubernetes API is connecting to it and identifying
yourself for authentication. Because the API server is an HTTP server at its core,
these methods of authentication are core HTTP authentication methods. The very
first implementations of Kubernetes used basic HTTP authentication via a user and
password combination, but this approach has been deprecated in favor of more
modern authentication infrastructure.

If you have been using the kubectl command-line tool for your interactions with
Kubernetes, you may not have considered the implementation details of authentica‐
tion. Fortunately, the client libraries generally make it easy to connect to the API.
However, a basic understanding of how Kubernetes authentication works is still
useful for debugging when things go wrong.

There are two basic ways that the kubectl tool and clients obtain authentication
information: from a kubeconfig file and from the context of a Pod within the Kuber‐
netes cluster.

Code that is not running inside a Kubernetes cluster requires a kubeconfig file to
provide the necessary information for authentication. By default, the client searches
for this file in ${HOME}/.kube/config or the $KUBECONFIG environment variables. If
the KUBECONFIG variable is present, it takes precedence over any config file located
in the default home location. The kubeconfig file contains all of the information
necessary to access the Kubernetes API server. The clients all have easy-to-use calls to
create a client either from the default locations or from a kubeconfig file supplied in
the code itself:

Python
config.load_kube_config()

Java
ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);
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.NET
var config = KubernetesClientConfiguration.BuildDefaultConfig();
var client = new Kubernetes(config);

Authentication for many cloud providers occurs via an external
executable that knows how to generate a token for the Kubernetes
cluster. This executable is often installed as part of the cloud pro‐
vider’s command-line tooling. When you write code to interact
with the Kubernetes API, you need to make sure that this exe‐
cutable is also available in the context where the code is running so
that it can be executed to obtain the token.

Within the context of a Pod in a Kubernetes cluster, the code running in the Pod
has access to a Kubernetes service account that is associated with that Pod. The files
containing the relevant token and certificate authority are placed into the Pod by
Kubernetes as a volume when the Pod is created. Within a Kubernetes cluster, the
API server is always available at a fixed DNS name, generally kubernetes. Because
all of the necessary data is present in the Pod, a kubeconfig file is unnecessary
and the client can synthesize its configuration from its context. The clients all have
easy-to-use calls to create such an “in cluster” client:

Python
config.load_incluster_config()

Java
ApiClient client = ClientBuilder.cluster().build();
Configuration.setDefaultApiClient(client);

.NET
var config = KubernetesClientConfiguration.InClusterConfig()
var client = new Kubernetes(config);

The default service account associated with Pods has minimal roles
(RBAC) granted to it. This means that by default, the code running
in a Pod can’t do much with the Kubernetes API. If you are getting
authorization errors, you may need to adjust the service account
to one that is specific to your code and has access to the necessary
roles in the cluster.
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Accessing the Kubernetes API
The most common ways that people interact with the Kubernetes API is via basic
operations like creating, listing, and deleting resources. Because all of the clients
are generated from the same OpenAPI specification, they all follow the same rough
pattern. Before diving into the code, there are a couple more details of the Kubernetes
API that are necessary to understand.

In Kubernetes, there is a distinction between namespaced and cluster-level resources.
Namespaced resources exist within a Kubernetes namespace; for example, a Pod or
Deployment may exist in the kube-system namespace. Cluster-level resources exist
only once throughout the entire cluster. The most obvious example of such a resource
is a Namespace, but other cluster-level resources include CustomResourceDefinitions
and ClusterRoleBindings. This distinction is important because it is preserved in
the function calls that you use to access the resources. For example, to list Pods in
the default namespace in Python, you would write api.list_namespaced_pods('de
fault'). To list Namespaces, you would write api.list_namespaces().

The second concept you need to understand is an API group. In Kubernetes, all of
the resources are grouped into different sets of APIs. This is largely hidden from
users of the kubectl tool, though you may have seen it within the apiVersion field
in a YAML specification of a Kubernetes object. When programming against the
Kubernetes API, this grouping becomes important, because often each API group has
its own client for interacting with that set of resources. For example, to create a client
to interact with a Deployment resource (which exists in the apps/v1 API group and
version) you create a new AppsV1Api() object that knows how to interact with all
resources in the apps/v1 API group and version. An example of how to create a client
for an API group is shown in the following section.

Putting It All Together: Listing and Creating Pods
in Python, Java, and .NET
We’re now ready to actually write some code. Begin by creating a client object, then
use that to list the Pods in the “default” namespace; here is code to do that in Python,
Java, and .NET:

Python
config.load_kube_config()
api = client.CoreV1Api()
pod_list = api.list_namespaced_pod('default')

Java
ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);
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CoreV1Api api = new CoreV1Api();
V1PodList list = api.listNamespacedPod("default");

.NET
var config = KubernetesClientConfiguration.BuildDefaultConfig();
var client = new Kubernetes(config);
var list = client.ListNamespacedPod("default");

Once you have figured out how to list, read, and delete objects, the next common
task is creating new objects. The API call to create the object is easy enough to figure
out (e.g., create_namespaced_pod in Python), but actually defining the new Pod
resources can be more complicated.

Here’s how you create a Pod in Python, Java, and .NET:

Python
container = client.V1Container(
     name="myapp",
     image="my_cool_image:v1",
 )

pod = client.V1Pod(
    metadata = client.V1ObjectMeta(
      name="myapp",
    ),
    spec=client.V1PodSpec(containers=[container]),
)

Java
V1Pod pod =
    new V1PodBuilder()
        .withNewMetadata().withName("myapp").endMetadata()
        .withNewSpec()
          .addNewContainer()
            .withName("myapp")
            .withImage("my_cool_image:v1")
          .endContainer()
        .endSpec()
        .build();

.NET
var pod = new V1Pod()
{
    Metadata = new V1ObjectMeta{ Name = "myapp", },
    Spec = new V1PodSpec
    {
        Containers = new[] {
          new V1Container() {
            Name = "myapp", Image = "my_cool_image:v1",
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          },
        },
    }
 };

Creating and Patching Objects
When you explore the client API for Kubernetes, you will notice that there are
seemingly three different ways to manipulate resources, namely create, replace, and
patch. These three verbs represent slightly different semantics for interacting with
resources:

Create
As you can tell from the name, this creates a new resource. However, it will fail if
the resource already exists.

Replace
This replaces an existing resource completely, without looking at the existing
resource. When you use replace, you have to specify a complete resource.

Patch
This modifies an existing resource, leaving untouched the parts of the resource
that did not change. When using patch, you use a special Patch resource rather
than sending the resource (e.g., the Pod) that you are modifying.

Patching a resource can be complicated. In many cases, it is easier
to just replace it. However, in some cases, especially with large
resources, patching the resource can be much more efficient in
terms of network bandwidth and API server processing. Addition‐
ally, multiple actors can patch different parts of the resource simul‐
taneously without worrying about write conflicts, which reduces
overhead.

To patch a Kubernetes resource, you have to create a Patch object representing the
change that you want to make to the resource. There are three formats for this patch
supported by Kubernetes: JSON Patch, JSON Merge Patch, and strategic merge patch.
The first two patch formats are RFC standards used in other places, and the third is
a Kubernetes-developed patch format. Each of the patch formats has advantages and
disadvantages. In these examples, we will use JSON Patch because it is the simplest to
understand.

Here’s how you patch a Deployment to increase the replicas to three:

Python
deployment.spec.replicas = 3
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api_response = api_instance.patch_namespaced_deployment(
    name="my-deployment",
    namespace="some-namespace",
    body=deployment)

Java
// JSON-patch format
static String jsonPatch =
  "[{\"op\":\"replace\",\"path\":\"/spec/replicas\",\"value\":3}]";

V1Deployment patched =
          PatchUtils.patch(
              V1Deployment.class,
              () ->
                  api.patchNamespacedDeploymentCall(
                      "my-deployment",
                      "some-namespace",
                      new V1Patch(jsonPatchStr),
                      null,
                      null,
                      null,
                      null,
                      null),
              V1Patch.PATCH_FORMAT_JSON_PATCH,
              api.getApiClient());

.NET
var jsonPatch = @"
[{
    ""op"": ""replace"",
    ""path"": ""/spec/replicas"",
    ""value"": 3
}]";

client.PatchNamespacedPod(
  new V1Patch(patchStr, V1Patch.PatchType.JsonPatch),
  "my-deployment",
  "some-namespace");

In each of these code samples, the Deployment resource has been patched to set the
number of replicas in the deployment to three.

Watching Kubernetes APIs for Changes
Resources in Kubernetes are declarative. They represent the desired state of the
system. To make that desired state a reality, a program must watch the desired state
for changes and take action to make the current state of the world match the desired
state.
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Because of this pattern, one of the most common tasks when programming against
the Kubernetes API is to watch for changes to a resource and then take some
action based on those changes. The easiest way to do this is through polling. Polling
simply calls the list function described above at a constant interval (such as every
60 seconds) and enumerates all of the resources that the code is interested in. While
this code is easy to write, it has numerous drawbacks for both the client code and
the API server. Polling introduces unnecessary latency, since waiting for the polling
cycle to come around introduces delays for changes that occur just after the previous
poll completed. Additionally, polling causes heavier load on the API server because
it repeatedly returns resources that haven’t changed. While many simple clients begin
by using polling, too many clients polling the API server can overload it and add
latency.

To solve this problem, the Kuberentes API also provides watch, or event-based,
semantics. Using a watch call, you can register interest in specific changes with the
API server and, instead of repeatedly polling, the API server will send notifications
whenever a change occurs. In practical terms, the client performs a hanging GET to
the HTTP API server. The TCP connection that underlies this HTTP request stays
open for the duration of the watch, and the server writes a response to that stream
(but does not close the stream) whenever a change occurs.

From a programmatic perspective, watch semantics enable event-based program‐
ming, changing a while loop that repeatedly polls into a collection of callbacks. Here
are examples of watching Pods for changes:

Python
config.load_kube_config()
api = client.CoreV1Api()
w = watch.Watch()

for event in w.stream(v1.list_namespaced_pods, "some-namespace"):
  print(event)

Java
    ApiClient client = Config.defaultClient();
    CoreV1Api api = new CoreV1Api();

    Watch<V1Namespace> watch =
        Watch.createWatch(
            client,
            api.listNamespacedPodCall(
                "some-namespace",
                null,
                null,
                null,
                null,
                null,
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                Integer.MAX_VALUE,
                null,
                null,
                60,
                Boolean.TRUE);
            new TypeToken<Watch.Response<V1Pod>>() {}.getType());

    try {
      for (Watch.Response<V1Pod> item : watch) {
        System.out.printf(
          "%s : %s%n", item.type, item.object.getMetadata().getName());
      }
    } finally {
      watch.close();
    }

.NET
var config = KubernetesClientConfiguration.BuildConfigFromConfigFile();
var client = new Kubernetes(config);

var watch =
  client.ListNamespacedPodWithHttpMessagesAsync("default", watch: true);
using (watch.Watch<V1Pod, V1PodList>((type, item) =>
{
  Console.WriteLine(item);
}

In each of these examples, rather than a repetitive polling loop, the watch API call
delivers each change to a resource to a callback provided by the user. This both
reduces latency and load on the Kubernetes API server.

Interacting with Pods
The Kubernetes API also provides functions for directly interacting with the appli‐
cations running in a Kubernetes Pod. The kubectl tool provides a number of com‐
mands for interacting with Pods, namely logs, exec, and port-forward, and it is
possible to use each of these from within custom code as well.

Because the logs, exec, and port-forward APIs are nonstandard
in a RESTful sense, they require custom logic in the client libra‐
ries and are thus somewhat less consistent between the different
clients. Unfortunately, there is no option other than learning the
implementation for each language.

When getting the logs for a Pod, you have to decide if you are going to read the Pod
logs to get a snapshot of their current state or if you are going to stream them to
receive new logs as they happen. If you stream the logs (the equivalent of kubectl
logs -f ...), you create an open connection to the API server, and new log lines are
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written to this stream as they are written to the Pod. If not, you simply receive the
current contents of the logs.

Here’s how you both read and stream the logs:

Python
config.load_kube_config()
api = client.CoreV1Api()
log = api_instance.read_namespaced_pod_log(
  name="my-pod", namespace="some-namespace")

Java
V1Pod pod = ...; // some code to define or get a Pod here
PodLogs logs = new PodLogs();
InputStream is = logs.streamNamespacedPodLog(pod);

.NET
IKubernetes client = new Kubernetes(config);
var response = await client.ReadNamespacedPodLogWithHttpMessagesAsync(
    "my-pod", "my-namespace", follow: true);
var stream = response.Body;

Another common task is to execute some command within a Pod and get the
output of running that task. You can use the kubectl exec ... command on the
command line. Under the hood, the API that implements this is creating a WebSocket
connection to the API server. WebSockets enable multiple streams of data (in this
case, stdin, stdout, and stderr) to coexist on the same HTTP connection. If you’ve
never had experience with WebSockets, don’t worry; the details of interacting with
WebSockets are handled by the client libraries.

Here’s how you execute the ls /foo command in a Pod:

Python
cmd = [ 'ls', '/foo' ]
response = stream(
    api_instance.connect_get_namespaced_pod_exec,
    "my-pod",
    "some-namespace",
    command=cmd,
    stderr=True,
    stdin=False,
    stdout=True,
    tty=False)

Java
ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);
Exec exec = new Exec();
final Process proc =
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  exec.exec("some-namespace",
            "my-pod",
            new String[] {"ls", "/foo"},
            true,
            true /*tty*/);

.NET
var config = KubernetesClientConfiguration.BuildConfigFromConfigFile();
IKubernetes client = new Kubernetes(config);
var webSocket =
    await client.WebSocketNamespacedPodExecAsync(
      "my-pod", "some-namespace", "ls /foo", "my-container-name");
var demux = new StreamDemuxer(webSocket);
demux.Start();
var stream = demux.GetStream(1, 1);

In addition to running commands in a Pod, you can also port-forward network
connections from a Pod to code running on the local machine. Like exec, the port-
forwarded traffic goes over a WebSocket. It is up to your code what it does with this
port-forwarded socket. You could simply send a single request and receive a response
as a string of bytes, or you could build a complete proxy server (like what kubectl
port-forward does) to serve arbitrary requests through this proxy.

Regardless of what you intend to do with the connection, here’s how you set up
port-forwarding:

Python
pf = portforward(
    api_instance.connect_get_namespaced_pod_portforward,
    'my-pod', 'some-namespace',
    ports='8080',
)

Java
PortForward fwd = new PortForward();

List<Integer> ports = new ArrayList<>();
int localPort = 8080;
int targetPort = 8080;
ports.add(targetPort);
final PortForward.PortForwardResult result =
    fwd.forward("some-namespace", "my-pod", ports);

.NET
var config = KubernetesClientConfiguration.BuildConfigFromConfigFile();
IKubernetes client = new Kubernetes(config);
var webSocket = await client.WebSocketNamespacedPodPortForwardAsync(
  "some-namespace", "my-pod", new int[] {8080}, "v4.channel.k8s.io");
var demux = new StreamDemuxer(webSocket, StreamType.PortForward);
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demux.Start();
var stream = demux.GetStream((byte?)0, (byte?)0);

Each of these examples creates a connection from port 8080 in a Pod to port 8080 in
your program. The code returns the byte streams necessary, communicating across
this port-forwarding channel. You can use these streams for sending and receiving
messages.

Summary
The Kubernetes API provides rich and powerful functionality for you to write custom
code. Writing your applications in the language that best suits a task or a persona
shares the power of the orchestration API with as many Kubernetes users as possible.
When you’re ready to move beyond scripting calls to the kubectl executable, the
Kubernetes client libraries provide a way to dive deep into the API to build an
operator, a monitoring agent, a new user interface, or whatever your imagination can
dream up.
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CHAPTER 19

Securing Applications in Kubernetes

Providing a secure platform to run your workloads is critical for Kubernetes to
be broadly used in production. Thankfully, Kubernetes ships with many different
security-focused APIs that allow you to construct a secure operating environment.
The challenge is that there are many different security APIs, and you have to declara‐
tively opt-in to use them. Using these security-focused APIs can be cumbersome and
convoluted, which makes it difficult to achieve your desired security goals.

It’s important to understand the following two concepts when securing Pods in
Kubernetes: defense in depth and principle of least privilege. Defense in depth is a
concept where you use multiple layers of security controls across your computing
systems that include Kubernetes. The principle of least privilege means giving your
workloads access only to resources that are required for them to operate. Both these
concepts are not destinations, but constantly applied to the ever-changing computing
system landscape.

In this chapter, we will take a look at security-focused Kubernetes APIs that can be
incrementally applied to help secure your workloads at the Pod level.

Understanding SecurityContext
At the core of securing Pods is SecurityContext, which is an aggregation of all
security-focused fields that may be applied at both the Pod and container specifica‐
tion level. Here are some example security controls covered by SecurityContext:

• User permissions and access control (e.g., setting User ID and Group ID)•
• Read-only root filesystem•
• Allow privilege escalation•
• Seccomp, AppArmor, and SELinux profile and label assignments•
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• Run as privileged or unprivileged•

Let’s take a look at an example Pod with a SecurityContext defined in Example 19-1.

Example 19-1. kuard-pod-securitycontext.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
spec:
  securityContext:
    runAsNonRoot: true
    runAsUser: 1000
    runAsGroup: 3000
    fsGroup: 2000
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      securityContext:
          allowPrivilegeEscalation: false
          readOnlyRootFilesystem: true
          privileged: false
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP

You can see in this example that there is a SecurityContext at both the Pod and the
container level. Many of the security controls can be applied at both of these levels.
In the case that they are applied in both, the container level configuration takes
precedence. Let’s take a look at fields we have defined in the Pod specification in this
example and the impact they have on securing your workload:

runAsNonRoot

The Pod or container must run as a nonroot user. The container will fail to
start if it is running as a root user. Running as a nonroot user is considered
best practice as many misconfigurations and exploits happen via the container
runtime conflating the container process running as the root user with the host
root user. This can be set at both the PodSecurityContext and the SecurityCon‐
text. The kuard container image is configured to run as user “nobody” as defined
in the Dockerfile. It’s always best practice to run your container as a nonroot
user; however, if you are running a container downloaded from another source
that doesn’t explicitly set the container user, you may have to extend the original
Dockerfile to do so. This method doesn’t always work, as the application may
have other requirements that needs to be considered.
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runAsUser/runAsGroup

This setting overrides the user and group that the container process is run as.
Container images may have this configured as part of the Dockerfile.

fsgroup

Configures Kubernetes to change the group of all files in a volume when they are
mounted into a Pod. An additional field, fsGroupChangePolicy, may be used to
configure the exact behavior.

allowPrivilegeEscalation

Configures whether a process in a container can gain more privileges than its
parent. This is a common vector for attack, and it’s important to explicitly set
this to false. It’s also important to understand that this will be set to true if
privileged: true is set.

privileged

Runs the container as privileged, which elevates the container to the same per‐
missions as the host.

readOnlyRootFilesystem

Mounts the container root filesystem to read-only. This is a common attack
vector and is best practice to enable. Any data or logs that the workloads need
write access to can be mounted via a volume.

The fields in this example aren’t a complete list of all the security controls available;
however, they represent a good starting point when working with SecurityContext.
We will cover some more in context later in this chapter.

Let’s now create the Pod by saving this example to a file called kuard-pod-
securitycontext.yaml. We will demonstrate how the SecurityContext configuration is
being applied to a running Pod. Create the Pod using the following command:

$ kubectl create -f kuard-pod-securitycontext.yaml
pod/kuard created

Now we’ll start a shell inside the kuard container and check which user ID and group
ID the processes are running as:

$ kubectl exec -it kuard -- ash
/ $ id
uid=1000 gid=3000 groups=2000
/ $ ps
PID   USER     TIME  COMMAND
    1 1000      0:00 /kuard
   30 1000      0:00 ash
   37 1000      0:00 ps
/ $ touch file
touch: file: Read-only file system
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We can see that the shell that we started, ash, is running as user ID (uid) 1000,
group ID (gid) 3000, and is in group 2000. We can also see that the kuard process
is running as user 1000 as defined by the SecurityContext in the Pod specification.
We also confirmed that we aren’t able to create any new files because the container is
read-only. If you only apply the following changes to you workloads, you’re already
off to a great start.

We will now introduce several other security controls covered by SecurityContext,
which enable even more fine-grained control over what access and privileges your
workloads have. First, we will introduce the operating system level security controls
and then how to configure them via SecurityContext. It’s important to note that many
of these controls are host operating system dependent. This means that they may
only apply to containers running on Linux operating systems as opposed to other
supported Kubernetes operating systems like Windows. Here are a list of the core set
of operating system controls that are covered by SecurityContext:

Capabilities
Allow either the addition or removal of groups of privilege that may be required
for a workload to operate. For example, your workload may configure the host’s
network configuration. Rather than configuring the Pod to be privileged, which
is effectively host root access, you could add the specific capability to config‐
ure the host networking configuration (NET_ADMIN is the specific capability
name). This follows the principal of least privilege.

AppArmor
Controls which files processes can access. AppArmor profiles can be applied
to containers via the addition of an annotation of container.apparmor.secu
rity.beta.kubernetes.io/<container_name>: <profile_ref> to the Pod
specification. Acceptable values for <profile ref> include runtime/default,
localhost/<path to profile>, and unconfined. The default is unconfined,
which explicitly sets no profile to be applied.

Seccomp
Seccomp (secure computing) profiles allow the creation of syscall filters. These
filters allow specific syscalls to be allowed or blocked, which limits the surface
area of the Linux kernel that is exposed to the processes in the Pods.

SELinux
Defines access controls for files and processes. SELinux operators use labels
that are grouped together to create a security context (not to be mistaken with
a Kubernetes SecurityContext), which is used to limit access to a process. By
default, Kubernetes allocates a random SELinux context for each container; how‐
ever, you may choose to set one via SecurityContext.
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Both AppArmor and seccomp have the ability to set the runtime
default profile to be used. Each container runtime ships with
default AppArmor and seccomp profiles that have been carefully
curated to reduce the attack surface area by removing syscalls and
file access that are known to be attack vectors or aren’t commonly
used by applications. These defaults are rarely workload impacting
and offer a great starting point.

To demonstrate how these security controls are applied to a Pod, we will use a
tool called amicontained (“Am I contained”) written by Jess Frazelle. Save the Pod
specification in Example 19-2 to a file called amicontained-pod.yaml. The first Pod
has no SecurityContext applied and will be used to show which security controls
are applied to a Pod by default. Note that your output may look different because
different Kubernetes distributions and managed services provide different defaults.

Example 19-2. amicontained-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: amicontained
spec:
  containers:
    - image: r.j3ss.co/amicontained:v0.4.9
      name: amicontained
      command: [ "/bin/sh", "-c", "--" ]
      args: [ "amicontained" ]

Create the amicontainer Pod:

$ kubectl apply -f amicontained-pod.yaml
pod/amicontained created

Let’s review the Pod logs to examine the output of the amicontained tool:

$ kubectl logs amicontained
Container Runtime: kube
Has Namespaces:

pid: true
user: false

AppArmor Profile: docker-default (enforce)
Capabilities:

BOUNDING -> chown dac_override fowner fsetid kill setgid setuid
setpcap net_bind_service net_raw sys_chroot mknod audit_write
setfcap

Seccomp: disabled
Blocked Syscalls (21):

SYSLOG SETPGID SETSID VHANGUP PIVOT_ROOT ACCT SETTIMEOFDAY UMOUNT2
SWAPON SWAPOFF REBOOT SETHOSTNAME SETDOMAINNAME INIT_MODULE
DELETE_MODULE LOOKUP_DCOOKIE KEXEC_LOAD FANOTIFY_INIT
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OPEN_BY_HANDLE_AT FINIT_MODULE KEXEC_FILE_LOAD
Looking for Docker.sock

From the output above we see that the AppArmor runtime default is being applied.
We also see the capabilities that are allowed by default along with seccomp being dis‐
abled. Finally, we see that a total of 21 syscalls are being blocked by default. Now that
we have a baseline, let’s apply seccomp, AppArmor, and Capabilities security controls
to the Pod specification. Create a file called amicontained-pod-securitycontext.yaml
with the contents of Example 19-3.

Example 19-3. amicontained-pod-securitycontext.yaml

apiVersion: v1
kind: Pod
metadata:
  name: amicontained
  annotations:
    container.apparmor.security.beta.kubernetes.io/amicontained: "runtime/default"
spec:
  securityContext:
    runAsNonRoot: true
    runAsUser: 1000
    runAsGroup: 3000
    fsGroup: 2000
    seccompProfile:
      type: RuntimeDefault
  containers:
    - image: r.j3ss.co/amicontained:v0.4.9
      name: amicontained
      command: [ "/bin/sh", "-c", "--" ]
      args: [ "amicontained" ]
      securityContext:
        capabilities:
            add: ["SYS_TIME"]
            drop: ["NET_BIND_SERVICE"]
        allowPrivilegeEscalation: false
        readOnlyRootFilesystem: true
        privileged: false

First, we need to delete the existing amicontained Pod:

$ kubectl delete pod amicontained
pod "amicontained" deleted

Now we can create the new Pod with the SecurityContext applied. We are specifically
declaring that the runtime default AppArmor and seccomp profiles be applied. In
addition, we have added and dropped a Capability:

$ kubectl apply -f amicontained-pod-securitycontext.yaml
pod/amicontained created
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Let’s again review the Pod logs to examine the output of the amicontained tool:

$ kubectl logs amicontained
Container Runtime: kube
Has Namespaces:

pid: true
user: false

AppArmor Profile: docker-default (enforce)
Capabilities:

BOUNDING -> chown dac_override fowner fsetid kill setgid setuid setpcap
net_raw sys_chroot sys_time mknod audit_write setfcap

Seccomp: filtering
Blocked Syscalls (67):

SYSLOG SETUID SETGID SETPGID SETSID SETREUID SETREGID SETGROUPS
SETRESUID SETRESGID USELIB USTAT SYSFS VHANGUP PIVOT_ROOT_SYSCTL ACCT
SETTIMEOFDAY MOUNT UMOUNT2 SWAPON SWAPOFF REBOOT SETHOSTNAME
SETDOMAINNAME IOPL IOPERM CREATE_MODULE INIT_MODULE DELETE_MODULE
GET_KERNEL_SYMS QUERY_MODULE QUOTACTL NFSSERVCTL GETPMSG PUTPMSG
AFS_SYSCALL TUXCALL SECURITY LOOKUP_DCOOKIE VSERVER MBIND SET_MEMPOLICY
GET_MEMPOLICY KEXEC_LOAD ADD_KEY REQUEST_KEY KEYCTL MIGRATE_PAGES
FUTIMESAT UNSHARE MOVE_PAGES PERF_EVENT_OPEN FANOTIFY_INIT
NAME_TO_HANDLE_AT OPEN_BY_HANDLE_AT SETNS PROCESS_VM_READV
PROCESS_VM_WRITEV KCMP FINIT_MODULE KEXEC_FILE_LOAD BPF USERFAULTFD
PKEY_MPROTECT PKEY_ALLOC PKEY_FREE

Looking for Docker.sock

SecurityContext Challenges
As you can see, there is a lot to understand to use a SecurityContext, and it is not easy
to apply a baseline set of security controls by directly configuring all fields of every
Pod. The creation and management of AppArmor, seccomp, and SELinux profiles
and contexts is not easy and is error prone. The cost of an error is breaking the
ability for an application to perform its function. There are several tools out there
that create a way to generate a seccomp profile from a running Pod, which can then
be applied using SecurityContext. One such project is the Security Profiles Operator,
which makes it easy to generate and manage Seccomp profiles. We will now take a
look at other security APIs that make the management of how SecurityContext is
applied consistent across a cluster.

Pod Security
Now that we’ve taken a look at SecurityContext as a way to manage security controls
applied to Pods and containers, we will cover how to make sure that a set of Security
Context values are applied at scale. Kubernetes has a now-deprecated PodSecurity‐
Policy (PSP) API, which enabled both validation and mutation. Validation will not
allow the creation of Kubernetes resources unless they have a specific SecurityContext
applied. Mutation, on the other hand, will change Kubernetes resources and apply
a specific SecurityContext based on criteria applied via the PSP. Given that PSP is
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deprecated and will be removed in Kubernetes v1.25, we will not cover it in depth
but will instead cover its successor, Pod Security. One of the main differences between
Pod Security and its predecessor is that Pod Security only performs validation and
not mutation. If you want to learn more about mutation, we encourage you to take a
look at Chapter 20.

What Is Pod Security?
Pod Security allows you to declare different security profiles for Pods. These security
profiles are known as Pod Security Standards and are applied at the namespace
level. Pod Security Standards are a collection of security-sensitive fields in a Pod
specification (including, but not limited to, SecurityContext) and their associated
values. There are three different standards that range from restricted to permissive.
The idea is that you can apply a general security posture to all Pods in a given
namespace. The three Pod Security Standards are as follows:

Baseline
Most common privilege escalation while enabling easier onboarding.

Restricted
Highly restricted, covering security best practices. May cause workloads to break.

Privileged
Open and unrestricted.

Pod Security is currently a beta feature as of Kubernetes v1.23 and
may be subject to change.

Each Pod Security Standard defines a list of fields in the Pod specification and their
allowed values. Here are some fields that are covered by these standards:

• spec.securityContext•
• spec.containers[*].securityContext•
• spec.containers[*].ports•
• spec.volumes[*].hostPath•

You can view the complete list of fields covered by each of the Pod Security Standards
in the offical documentation.

Each standard is applied to a namespace using a given mode. There are three modes a
policy may be applied to. They are as follows:
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Enforce
Any Pods that violate the policy will be denied.

Warn
Any Pods that violate the policy will be allowed, and a warning message will be
displayed to the user.

Audit
Any Pods that violate the policy will generate an audit message in the audit log.

Applying Pod Security Standards
Pod Security Standards are applied to a namespace using labels as follows:

• Required: pod-security.kubernetes.io/<MODE>: <LEVEL>•
• Optional: pod-security.kubernetes.io/<MODE>-version: <VERSION> (defaults•

to latest)

The namespace in Example 19-4 illustrates how you may use multiple modes to
enforce at one standard (baseline in this example) and audit and warn at another
(restricted). Using multiple modes allows you to deploy a policy with a lower security
posture and audit which workloads violate a standard with a more restricted policy.
You can then remediate the policy violations before enforcing the more restricted
standard. You can also pin a mode to a specific version, e.g., v1.22. This allows the
policy standards to change with each Kubernetes release and allows you to pin a
specific version. In Example 19-4, we are enforcing the baseline standard and both
warning and auditing the restricted standard. All modes are pinned to v1.22 of the
standard.

Example 19-4. baseline-ns.yaml

apiVersion: v1
kind: Namespace
metadata:
  name: baseline-ns
  labels:
    pod-security.kubernetes.io/enforce: baseline
    pod-security.kubernetes.io/enforce-version: v1.22
    pod-security.kubernetes.io/audit: restricted
    pod-security.kubernetes.io/audit-version: v1.22
    pod-security.kubernetes.io/warn: restricted
    pod-security.kubernetes.io/warn-version: v1.22

Deploying a policy for the first time can be a daunting task. Thankfully, Pod Security
has made it easy to see which existing workloads violate a Pod Security Standard with
a single dry-run command:
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$ kubectl label --dry-run=server --overwrite ns \
  --all pod-security.kubernetes.io/enforce=baseline
Warning: kuard: privileged
namespace/default labeled
namespace/kube-node-lease labeled
namespace/kube-public labeled
Warning: kube-proxy-vxjwb: host namespaces, hostPath volumes, privileged
Warning: kube-proxy-zxqzz: host namespaces, hostPath volumes, privileged
Warning: kube-apiserver-kind-control-plane: host namespaces, hostPath volumes
Warning: etcd-kind-control-plane: host namespaces, hostPath volumes
Warning: kube-controller-manager-kind-control-plane: host namespaces, ...
Warning: kube-scheduler-kind-control-plane: host namespaces, hostPath volumes
namespace/kube-system labeled
namespace/local-path-storage labeled

This command evaluates all Pods on a Kubernetes cluster against the baseline Pod
Security Standard and reports violations as warning messages in the output.

Let’s see Pod Security in action. Create a file called baseline-ns.yaml with the content
in Example 19-5.

Example 19-5. baseline-ns.yaml

apiVersion: v1
kind: Namespace
metadata:
  name: baseline-ns
  labels:
    pod-security.kubernetes.io/enforce: baseline
    pod-security.kubernetes.io/enforce-version: v1.22
    pod-security.kubernetes.io/audit: restricted
    pod-security.kubernetes.io/audit-version: v1.22
    pod-security.kubernetes.io/warn: restricted
    pod-security.kubernetes.io/warn-version: v1.22

$ kubectl apply -f baseline-ns.yaml
namespace/baseline-ns created

Create a file called kuard-pod.yaml with the content in Example 19-6.

Example 19-6. kuard-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
  labels:
    app: kuard
spec:
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
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      name: kuard
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP

Create the Pod and review the output with the following command:

$ kubectl apply -f kuard-pod.yaml --namespace baseline-ns
Warning: would violate "v1.22" version of "restricted" PodSecurity profile:
allowPrivilegeEscalation != false (container "kuard" must set
securityContext.allowPrivilegeEscalation=false), unrestricted capabilities
(container "kuard" must set securityContext.capabilities.drop=["ALL"]),
runAsNonRoot != true (pod or container "kuard" must set securityContext.
runAsNonRoot=true), seccompProfile (pod or container "kuard" must set
securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")
pod/kuard created

In this output, you can see that the Pod was successfully created; however, it violated
the restricted Pod Security Standard, and the details of the violations are provided in
the output so that you can remediate. We can also see the message in the API server
audit log because we configured the audit mode:

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"...

Pod Security is a great way to manage the security posture of your workloads by
applying policy at the namespace level and allowing Pods to be created only if
they don’t violate the policy. It’s flexible and offers different prebuilt policies from
permissive to restricted along with tooling to easily roll out policy changes without
the risk of breaking workloads.

Service Account Management
Service accounts are Kubernetes resources that provide an identity to workloads that
run inside Pods. RBAC can be applied to service accounts to control what resources,
via the Kubernetes API, the identity has access to. Please see Chapter 14 to learn
more. If your application doesn’t require access to the Kubernetes API, you should
disable access following the least privilege principal. By default, Kubernetes creates a
default service account in each namespace, which is automatically set as the service
account for all Pods. This service account contains a token that is automounted in
each Pod and is used to access the Kubernetes API. To disable this behavior, you must
add automountServiceAccountToken: false to the service account configuration.
Example 19-7 demonstrates how this can be done for the default service account.
This must be done in each namespace.
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Example 19-7. service-account.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
  name: default
automountServiceAccountToken: false

Service accounts are often overlooked when considering Pod security; however, they
allow direct access to the Kubernetes API and, without adequate RBAC, could allow
an attacker access to Kubernetes. It’s important to understand how to limit access by
making a simple change to how service account tokens are handled.

Role-Based Access Control
We would be remiss not to mention Kubernetes role-based access control (RBAC)
in a chapter about securing Pods. Everything you need to know about RBAC can
be found in Chapter 14 and can be applied to complement you workload’s security
posture.

RuntimeClass
Kubernetes interacts with the container runtime on the node’s operating system
via the Container Runtime Interface (CRI). The creation and standardization of
this interface has allowed for an ecosystem of container runtimes to exist. These
container runtimes may offer different levels of isolation, which include stronger
security guarantees based on how they are implemented. Projects like Kata Contain‐
ers, Firecracker, and gVisor are based on different isolation mechanisms from nested
virtualization to more sophisticated syscall filtering. These security and isolation
guarantees provide a Kubernetes administrator the flexibility to allow users to select a
container runtime based on their workload type. For example, if your workload needs
stronger security guarantees, then you can choose to run in a Pod that uses a different
container runtime.

The RuntimeClass API was introduced to allow container runtime selection. It allows
users to select one of a supported list of container runtimes in the cluster. Figure 19-1
depicts how RuntimeClass functions.

Different RuntimeClasses must be configured by a cluster adminis‐
trator and may required specific nodeSelectors or tolerations
on your workload to be scheduled to the correct node.
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Figure 19-1. RuntimeClass flow diagram

You can use a RuntimeClass by specifying runtimeClassName in the Pod specifica‐
tion. Example 19-8 is an example Pod that specifies a RuntimeClass.

Example 19-8. kuard-pod-runtimeclass.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
  labels:
    app: kuard
spec:
  runtimeClassName: firecracker
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP

RuntimeClass allows users to select different container runtimes that may have differ‐
ent security isolation. Using RuntimeClass can help complement the overall security
of your workloads, especially if workloads are processing sensitive information or
running untrusted code.
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Network Policy
Kubernetes also has a Network Policy API that allows you to create both ingress and
egress network policies for your workload. Network policies are configured using
labels that allow you to select specific Pods and define how they can communicate
with other Pods and endpoints. A Network Policy like Ingress doesn’t actually ship
with an associated Kubernetes controller. This means that you can create Network
Policy resources but if you haven’t installed a controller that acts upon the creation of
Network Policy resources, then they will not be enforced. Network Policy resources
are implemented by network plug-ins, such as Calico, Cilium, and Weave Net.

The Network Policy resource is namespaced and is structured with the podSelector,
policyTypes, ingress, and egress sections with the only required field being pod
Selector. If the podSelector field is empty, the policy matches all Pods in a name‐
space. This field may also contain a matchLabels section, which functions in the
same way as a Service resource, allowing you to add a set of labels to match a specific
set of Pods.

There are several idiosyncrasies when using Network Policy that you need to be
aware of. If a Pod is matched by any Network Policy resource, then any ingress or
egress communication must be explicitly defined, otherwise it will be blocked. If a
Pod matches multiple Network Policy resources, then the policies are additive. If a
Pod isn’t matched by any Network Policy, then traffic is allowed. This decision was
intentionally made to ease onboarding of new workloads. If you do, however, want
all traffic to be blocked by default, you can create a default deny rule per namespace.
Example 19-9 shows a default deny rule that can be applied per namespace.

Example 19-9. networkpolicy-default-deny.yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-ingress
spec:
  podSelector: {}
  policyTypes:
  - Ingress

Let’s walk through an example set of network policies to demonstrate how you
can use them to secure your workloads. First, create a namespace to test using the
following command:

$ kubectl create ns kuard-networkpolicy
namespace/kuard-networkpolicy created

Create a file named kuard-pod.yaml with the contents of Example 19-10.
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Example 19-10. kuard-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
  labels:
    app: kuard
spec:
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP

Create the kuard Pod in the kuard-networkpolicy namespace:

$ kubectl apply -f kuard-pod.yaml \
  --namespace kuard-networkpolicy
pod/kuard created

Expose the kuard Pod as a service:

$ kubectl expose pod kuard --port=80 --target-port=8080 \
  --namespace kuard-networkpolicy
pod/kuard created

Now we can use kubectl run to spin up a Pod to test as our source and test access to
the kuard Pod without applying any Network Policy:

$ kubectl run test-source --rm -ti --image busybox /bin/sh \
  --namespace kuard-networkpolicy
If you don't see a command prompt, try pressing enter.
/ # wget -q kuard -O -
<!doctype html>

<html lang="en">
<head>
  <meta charset="utf-8">

  <title><KUAR Demo></title>
...

We can successfully connect to the kuard Pod from our test-source Pod. Now let’s
apply a default deny policy and test again. Create a file called networkpolicy-default-
deny.yaml with the contents of Example 19-11.

Network Policy | 237



Example 19-11. networkpolicy-default-deny.yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-ingress
spec:
  podSelector: {}
  policyTypes:
  - Ingress

Now apply the default deny network policy:

$ kubectl apply -f networkpolicy-default-deny.yaml \
  --namespace kuard-networkpolicy
networkpolicy.networking.k8s.io/default-deny-ingress created

Now let’s test access to the kuard Pod from the test-source Pod:

$ kubectl run test-source --rm -ti --image busybox /bin/sh \
  --namespace kuard-networkpolicy
If you don't see a command prompt, try pressing enter.
/ # wget -q --timeout=5 kuard -O -
wget: download timed out

We can no longer access the kuard Pod from the test-source Pod due to the default
deny Network Policy. Create a Network Policy that allows access from the test-source
to the kuard Pod. Create a file called networkpolicy-kuard-allow-test-source.yaml with
the contents of Example 19-12.

Example 19-12. networkpolicy-kuard-allow-test-source.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: access-kuard
spec:
  podSelector:
    matchLabels:
      app: kuard
  ingress:
    - from:
      - podSelector:
          matchLabels:
            run: test-source

Apply the Network Policy:

$ kubectl apply \
  -f code/chapter-security/networkpolicy-kuard-allow-test-source.yaml \
  --namespace kuard-networkpolicy
networkpolicy.networking.k8s.io/access-kuard created
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Again, verify that the test-source Pod can indeed access the kuard Pod:

$ kubectl run test-source --rm -ti --image busybox /bin/sh \
  --namespace kuard-networkpolicy
If you don't see a command prompt, try pressing enter.
/ # wget -q kuard -O -
<!doctype html>

<html lang="en">
<head>
  <meta charset="utf-8">

  <title><KUAR Demo></title>
...

Clean up the namespace by running the following command:

$ kubectl delete namespace kuard-networkpolicy
namespace "kuard-networkpolicy" deleted

Applying Network Policy provides an extra layer of security for your workloads and
continues to build on the defense in depth and principle of least privilege concepts.

Service Mesh
Service mesh can also be used to increase your workload’s security posture. Service
meshes offer access policies, which allow the configuration of protocol-aware poli‐
cies based on services. For example, your access policy might declare that ServiceA
connects to ServiceB via HTTPS on port 443. In addition, service meshes typically
implement mutual TLS on all service-to-service communication, which means that
not only is the communication encrypted but the service identities are also verified.
If you would like to learn more about service meshes and how they can be used to
secure your workloads, check out Chapter 15.

Security Benchmark Tools
There are several open source tools that allow you to run a suite of security bench‐
marks against your Kubernetes cluster to determine if your configuration meets a
predefined set of security baselines. Once such tool is called kube-bench. kube-bench
can be used to run the CIS Benchmarks for Kubernetes. Tools like kube-bench run‐
ning the CIS Benchmarks aren’t specifically focused on Pod security; however, they
can certainly expose any cluster misconfigurations and help identify remediations.
kube-bench can be run using the following command:

$ kubectl apply -f https://raw.githubusercontent.com/aquasecurity/kube-bench...
job.batch/kube-bench created
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You can then review the benchmark output and remediations via the Pod logs:

$ kubectl logs job/kube-bench
[INFO] 4 Worker Node Security Configuration
[INFO] 4.1 Worker Node Configuration Files
[PASS] 4.1.1 Ensure that the kubelet service file permissions are set to 644...
[PASS] 4.1.2 Ensure that the kubelet service file ownership is set to root  ...
[PASS] 4.1.3 If proxy kubeconfig file exists ensure permissions are set to  ...
[PASS] 4.1.4 Ensure that the proxy kubeconfig file ownership is set to root ...
[PASS] 4.1.5 Ensure that the --kubeconfig kubelet.conf file permissions are ...
[PASS] 4.1.6 Ensure that the --kubeconfig kubelet.conf file ownership is set...
[PASS] 4.1.7 Ensure that the certificate authorities file permissions are   ...
[PASS] 4.1.8 Ensure that the client certificate authorities file ownership  ...
[PASS] 4.1.9 Ensure that the kubelet --config configuration file has permiss...
[PASS] 4.1.10 Ensure that the kubelet --config configuration file ownership ...
[INFO] 4.2 Kubelet
[PASS] 4.2.1 Ensure that the anonymous-auth argument is set to false (Automated)
[PASS] 4.2.2 Ensure that the --authorization-mode argument is not set to    ...
[PASS] 4.2.3 Ensure that the --client-ca-file argument is set as appropriate...
[PASS] 4.2.4 Ensure that the --read-only-port argument is set to 0 (Manual)
[PASS] 4.2.5 Ensure that the --streaming-connection-idle-timeout argument is...
[FAIL] 4.2.6 Ensure that the --protect-kernel-defaults argument is set to   ...
[PASS] 4.2.7 Ensure that the --make-iptables-util-chains argument is set to ...
[PASS] 4.2.8 Ensure that the --hostname-override argument is not set (Manual)
[WARN] 4.2.9 Ensure that the --event-qps argument is set to 0 or a level    ...
[WARN] 4.2.10 Ensure that the --tls-cert-file and --tls-private-key-file arg...
[PASS] 4.2.11 Ensure that the --rotate-certificates argument is not set to  ...
[PASS] 4.2.12 Verify that the RotateKubeletServerCertificate argument is set...
[WARN] 4.2.13 Ensure that the Kubelet only makes use of Strong Cryptographic...

== Remediations node ==
4.2.6 If using a Kubelet config file, edit the file to set protectKernel...
If using command line arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf on each worker node and
set the below parameter in KUBELET_SYSTEM_PODS_ARGS variable.
--protect-kernel-defaults=true
Based on your system, restart the kubelet service. For example:
systemctl daemon-reload
systemctl restart kubelet.service

4.2.9 If using a Kubelet config file, edit the file to set eventRecordQPS...
If using command line arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf on each worker node and
set the below parameter in KUBELET_SYSTEM_PODS_ARGS variable.
Based on your system, restart the kubelet service. For example:
systemctl daemon-reload
systemctl restart kubelet.service
...

Using tools like kube-bench with the CIS benchmarks can help identify whether your
Kubernetes cluster meets a security baseline and provide remediations if needed.
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Image Security
Another important part of Pod security is keeping the code and application within
the Pod secure. Securing an application’s code is a complex topic beyond the scope
of this chapter; however, the basics for container image security include making
sure that your container image registry is doing static scanning for known code
vulnerabilities. Additionally, you should have a tool for doing runtime scanning that
identifies vulnerabilities that have been discovered after an image started running
and also looks for potentially malicious activity like intrusions. There are many
scanning tools provided by both open source and proprietary companies. In addition
to security scanning, focusing on minimizing the contents of your container image
to remove unnecessary dependencies minimizes the noise from this scanning. Finally,
image security is another great reason to invest in continuous delivery so that you can
rapidly patch and redeploy an image when vulnerabilities are found.

Summary
In this chapter, we covered many different security-focused APIs and resources that
can be used to improve the security posture of your workloads. By practicing defense
in depth and principle of least privilege, you can incrementally improve the baseline
security of your Kubernetes cluster. It’s never too late to start practicing better secu‐
rity, and this chapter provides everything you need to be confident that you have an
understanding of the security controls Kubernetes offers.
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CHAPTER 20

Policy and Governance
for Kubernetes Clusters

Throughout this book we have introduced many different Kubernetes resource types,
each with a specific purpose. It doesn’t take long before the resources on a Kubernetes
cluster go from several, for a single microservice application, to hundreds and thou‐
sands, for a complete distributed application. In the context of a production cluster it
isn’t hard to imagine the challenges associated with managing thousands of resources.

In this chapter, we introduce the concepts of policy and governance. Policy is a
set of constraints and conditions for how Kubernetes resources can be configured.
Governance provides the ability to verify and enforce organizational policies for all
resources deployed to a Kubernetes cluster, such as ensuring all resources use current
best practices, comply with security policy, or adhere to company conventions. What‐
ever your case may be, your tooling needs to be flexible and scalable so that all
resources defined on a cluster comply with your organization’s defined policies.

Why Policy and Governance Matter
There are many different types of policies in Kubernetes. For example, NetworkPolicy
allows you to specify what network services and endpoints a Pod can connect to.
PodSecurityPolicy enables fine-grained control over the security elements of a Pod.
Both can be used to configure network or container runtimes.

However, you might want to enforce a policy before Kubernetes resources are even
created. This is the problem that policy and governance solve. At this point, you
might be thinking, “Isn’t this what role-based access control does?” However, as
you’ll see in this chapter, RBAC isn’t granular enough to restrict specific fields within
resources from being set.
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Here are some common examples of policies that cluster administrators often
configure:

• All containers must only come from a specific container registry.•
• All Pods must be labeled with the department name and contact information.•
• All Pods must have both CPU and memory resource limits set.•
• All Ingress hostnames must be unique across a cluster.•
• A certain service must not be made available on the internet.•
• Containers must not listen on privileged ports.•

Cluster administrators may also want to audit existing resources on a cluster, perform
dry-run policy evaluations, or even mutate a resource based on a set of conditions—
for example, applying labels to a Pod if they aren’t present.

It’s very important for cluster administrators to be able to define policy and perform
compliance audits without interfering with the developers’ ability to deploy applica‐
tions to Kubernetes. If developers are creating noncompliant resources, you need a
system to make sure they get the feedback and remediation they need to bring their
work into compliance.

Let’s take a look at how to achieve policy and governance by leveraging core extensi‐
bility components of Kubernetes.

Admission Flow
To understand how policy and governance ensures resources are compliant before
they are created in your Kubernetes cluster, you must first understand the request
flow through the Kubernetes API server. Figure 20-1 depicts the flow of an API
request through the API server. Here, we’ll focus on mutating admission, validating
admission, and webhooks.

Figure 20-1. API request flow through the Kubernetes API server
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Admission controllers operate inline as an API request flows through the Kubernetes
API server and are used to either mutate or validate the API request resource
before it’s saved to storage. Mutating admission controllers allow the resource to
be modified; validating admission controllers do not. There are many different types
of admission controllers; this chapter focuses on admission webhooks, which are
dynamically configurable. They allow a cluster administrator to configure an end‐
point to which the API server can send requests for evaluation by creating either
a MutatingWebhookConfiguration or a ValidatingWebhookConfiguration resource.
The admission webhook will respond with an “admit” or “deny” directive to let the
API server know whether to save the resource to storage.

Policy and Governance with Gatekeeper
Let’s dive into how to configure policies and ensure that Kubernetes resources are
compliant. The Kubernetes project doesn’t provide any controllers that enable policy
and governance, but there are open source solutions. Here, we will focus on an open
source ecosystem project called Gatekeeper.

Gatekeeper is a Kubernetes-native policy controller that evaluates resources based on
defined policy and determines whether to allow a Kubernetes resource to be created
or modified. These evaluations happen server-side as the API request flows through
the Kubernetes API server, which means each cluster has a single point of processing.
Processing the policy evaluations server-side means that you can install Gatekeeper
on existing Kubernetes clusters without changing developer tooling, workflows, or
continuous delivery pipelines.

Gatekeeper uses custom resource definitions (CRDs) to define a new set of Kuber‐
netes resources specific to configuring it, which allows cluster administrators to use
familiar tools like kubectl to operate Gatekeeper. In addition, it provides real-time,
meaningful feedback to the user on why a resource was denied and how to remediate
the problem. These Gatekeeper-specific custom resources can be stored in source
control and managed using GitOps workflows.

Gatekeeper also performs resource mutation (resource modification based on defined
conditions) and auditing. It is highly configurable and offers fine-grained control
over what resources to evaluate and in which namespaces.

What Is Open Policy Agent?
At the core of Gatekeeper is Open Policy Agent, a cloud native open source policy
engine that is extensible and allows policy to be portable across different applications.
Open Policy Agent (OPA) is responsible for performing all policy evaluations and
returning either an admit or deny. This gives Gatekeeper access to an ecosystem
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of policy tooling, such as, Conftest, which enables you to write policy tests and
implement them in continuous integration pipelines before deployment.

Open Policy Agent exclusively uses a native query language called Rego for all
policies. One of the core tenets of Gatekeeper is to abstract the inner workings of
Rego from the cluster administrator and present a structured API in the form of
a Kubernetes CRD to create and apply policy. This lets you share parameterized
policies across organizations and the community. The Gatekeeper project maintains a
policy library solely for this purpose (discussed later in this chapter).

Installing Gatekeeper
Before you start configuring policies, you’ll need to install Gatekeeper. Gatekeeper
components run as Pods in the gatekeeper-system namespace and configure a
webhook admission controller.

Do not install Gatekeeper on a Kubernetes cluster without first
understanding how to safely create and disable policy. You should
also review the installation YAML before installing Gatekeeper to
ensure that you are comfortable with the resources it creates.

You can install Gatekeeper using the Helm package manager:

$ helm repo add gatekeeper https://open-policy-agent.github.io/gatekeeper/charts
$ helm install gatekeeper/gatekeeper --name-template=gatekeeper \
  --namespace gatekeeper-system --create-

Gatekeeper installation requires cluster-admin permissions and is
version specific. Please refer to the official documentation for the
latest release of Gatekeeper.

Once the installation is complete, confirm that Gatekeeper is up and running:

$ kubectl get pods -n gatekeeper-system
NAME                                             READY   STATUS    RESTARTS  AGE
gatekeeper-audit-54c9759898-ljwp8                1/1     Running   0         1m
gatekeeper-controller-manager-6bcc7f8fb5-4nbkt   1/1     Running   0         1m
gatekeeper-controller-manager-6bcc7f8fb5-d85rn   1/1     Running   0         1m
gatekeeper-controller-manager-6bcc7f8fb5-f8m8j   1/1     Running   0         1m

You can also review how the webhook is configured using this command:

$ kubectl get validatingwebhookconfiguration -o yaml
apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
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  labels:
    gatekeeper.sh/system: "yes"
  name: gatekeeper-validating-webhook-configuration
webhooks:
- admissionReviewVersions:
  - v1
  - v1beta1
  clientConfig:
    service:
      name: gatekeeper-webhook-service
      namespace: gatekeeper-system
      path: /v1/admit
  failurePolicy: Ignore
  matchPolicy: Exact
  name: validation.gatekeeper.sh
  namespaceSelector:
    matchExpressions:
    - key: admission.gatekeeper.sh/ignore
      operator: DoesNotExist
  rules:
  - apiGroups:
    - '*'
    apiVersions:
    - '*'
    operations:
    - CREATE
    - UPDATE
    resources:
    - '*'
  sideEffects: None
  timeoutSeconds: 3

...

Under the rules section of the output above, we see that all resources are being
sent to the webhook admission controller, running as a service named gatekeeper-
webhook-service in the gatekeeper-system namespace. Only resources from name‐
spaces that aren’t labeled admission.gatekeeper.sh/ignore will be considered for
policy evaluation. Finally, the failurePolicy is set to Ignore, which means that
this is a fail open configuration: if the Gatekeeper service doesn’t respond within the
configured timeout of three seconds, the request will be admitted. 

Configuring Policies
Now that you have Gatekeeper installed, you can start configuring policies. We will
first go through a canonical example and demonstrate how the cluster administrator
creates policies. Then we’ll look at the developer experience when creating compliant
and noncompliant resources. We will then expand on each step to gain a deeper
understanding, and walk you through the process of creating a sample policy stating
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that container images can only come from one specific registry. This example is based
on the Gatekeeper policy library.

First, you’ll need to configure the policy we need to create a custom resource called
a constraint template. This is usually done by a cluster administrator. The constraint
template in Example 20-1 requires you to provide a list of container repositories as
parameters that Kubernetes resources are allowed to use.

Example 20-1. allowedrepos-constraint-template.yaml

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
  name: k8sallowedrepos
  annotations:
    description: Requires container images to begin with a repo string from a
      specified list.
spec:
  crd:
    spec:
      names:
        kind: K8sAllowedRepos
      validation:
        # Schema for the `parameters` field
        openAPIV3Schema:
          properties:
            repos:
              type: array
              items:
                type: string
  targets:
    - target: admission.k8s.gatekeeper.sh
      rego: |
        package k8sallowedrepos

        violation[{"msg": msg}] {
          container := input.review.object.spec.containers[_]
          satisfied := [good | repo = input.parameters.repos[_] ; good = starts...
          not any(satisfied)
          msg := sprintf("container <%v> has an invalid image repo <%v>, allowed...
        }

        violation[{"msg": msg}] {
          container := input.review.object.spec.initContainers[_]
          satisfied := [good | repo = input.parameters.repos[_] ; good = starts...
          not any(satisfied)
          msg := sprintf("container <%v> has an invalid image repo <%v>, allowed...)
        }

Create the constraint template using the following command:
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$ kubectl apply -f allowedrepos-constraint-template.yaml
constrainttemplate.templates.gatekeeper.sh/k8sallowedrepos created

Now you can create a constraint resource to put the policy into effect (again, playing
the role of the cluster administrator). The constraint in Example 20-2 allows all
containers with the prefix of gcr.io/kuar-demo/ in the default namespace. The
enforcementAction is set to “deny”: any noncompliant resources will be denied.

Example 20-2. allowedrepos-constraint.yaml

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
  name: repo-is-kuar-demo
spec:
  enforcementAction: deny
  match:
    kinds:
      - apiGroups: [""]
        kinds: ["Pod"]
    namespaces:
      - "default"
  parameters:
    repos:
      - "gcr.io/kuar-demo/"

$ kubectl create -f allowedrepos-constraint.yaml
k8sallowedrepos.constraints.gatekeeper.sh/repo-is-kuar-demo created

The next step is to create some Pods to test that the policy is indeed working.
Example 20-3 creates a Pod using a container image, gcr.io/kuar-demo/kuard-
amd64:blue, that complies with the constraint we defined in the previous step.
Workload resource creation is typically performed by the developer responsible for
operating the service or a continuous delivery pipeline.

Example 20-3. compliant-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: kuard
spec:
  containers:
    - image: gcr.io/kuar-demo/kuard-amd64:blue
      name: kuard
      ports:
        - containerPort: 8080
          name: http
          protocol: TCP
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$ kubectl apply -f compliant-pod.yaml
pod/kuard created

What happens if we create a noncompliant Pod? Example 20-4 creates a Pod using
a container image, nginx, that is not compliant with the constraint we defined in
the previous step. Workload resource creation would typically be performed by the
developer or continuous delivery pipeline responsible for operating the service. Note
the output in Example 20-4.

Example 20-4. noncompliant-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: nginx-noncompliant
spec:
  containers:
    - name: nginx
      image: nginx

$ kubectl apply -f noncompliant-pod.yaml
Error from server ([repo-is-kuar-demo] container <nginx> has an invalid image
repo <nginx>, allowed repos are ["gcr.io/kuar-demo/"]): error when creating
"noncompliant-pod.yaml": admission webhook "validation.gatekeeper.sh" denied
the request: [repo-is-kuar-demo] container <nginx> has an invalid image
repo <nginx>, allowed repos are ["gcr.io/kuar-demo/"]

Example 20-4 shows that an error is returned to the user with details on why the
resource was not created and how to remediate the issue. Cluster administrators can
configure the error message in the constraint template.

If your constraint’s scope is Pods and you create a resource that
generates Pods, such as ReplicaSets, Gatekeeper will return an
error. However, it won’t be returned to you, the user, but to the
controller trying to create the Pod. To see these error messages,
look in the event log for the relevant resource.

Understanding Constraint Templates
Now that we have walked through a canoncial example, take a closer look at the
constraint template in Example 20-1, which takes a list of container repositories that
are allowed in Kubernetes resources.

This constraint template has an apiVersion and kind that are part of the custom
resources used only by Gatekeeper. Under the spec section, you’ll see the name
K8sAllowedRepos: remember that name, because you’ll use it as the constraint kind
when creating constraints. You’ll also see a schema that defines an array of strings
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for the cluster administrator to configure. This is done by providing a list of allowed
container registries. It also contains the raw Rego policy definition (under the target
section). This policy evaluates containers and initContainers to ensure that the con‐
tainer repository name starts with the values provided by the constraint. The msg
section defines the message that is sent back to the user if the policy is violated.

Creating Constraints
To instantiate a policy, you must create a constraint that provides the template’s
required parameters. There may be many constraints that match the kind of a specific
constraint template. Let’s take a closer look at the constraint we used in Example 20-2,
which allows only container images that originate from gcr.io/kuar-demo/.

You may notice that the constraint is of the kind “K8sAllowedRepos,” which was
defined as part of the constraint template. It also defines an enforcementAction
of “deny,” meaning that noncompliant resources will be denied. enforcementAction
also accepts “dryrun” and “warn”: “dryrun” uses the audit feature to test policies and
verify their impact; “warn” sends a warning back to the user with the associated
message, but allows them to create or update. The match portion defines the scope
of this constraint, all Pods in the default namespace. Finally, the parameters section
is required to satisfy the constraint template (an array of strings). The following
demonstrates the user experience when the enforcementAction is set to “warn”:

$ kubectl apply -f noncompliant-pod.yaml
Warning: [repo-is-kuar-demo] container <nginx> has an invalid image repo...
pod/nginx-noncompliant created

Constraints are only enforced on resource CREATE and UPDATE
events. If you already have workloads running on a cluster, Gate‐
keeper will not reevaluate them until a CREATE or UPDATE event
takes place.
Here is a real-world example to demonstrate: say you create a
policy that only allows containers from a specific registry. All
workloads that are already running on the cluster will continue
to do so. If you scale the workload Deployment from 1 to 2, the
ReplicaSet will attempt to create another Pod. If that Pod doesn’t
have a container from an allowed repository, then it will be denied.
It’s important to set the enforcementAction to “dryrun” and audit
to confirm that any policy violations are known before setting the
enforcementAction to “deny.”
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Audit
Being able to enforce policy on new resources is only one piece of the policy and
governance story. Policies often change over time, and you can also use Gatekeeper
to confirm that everything currently deployed is still compliant. Additionally, you
may already have a cluster full of services and wish to install Gatekeeper to bring
these resources into compliance. Gatekeeper’s audit capabilities allow cluster admin‐
istrators to get a list of current, noncompliant resources on a cluster.

To demonstrate how auditing works, let’s look at an example. We’re going to update
the repo-is-kuar-demo constraint to have an enforcementAction action of “dryrun”
(as shown in Example 20-5). This will allow users to create noncompliant resources.
We will then determine which resources are noncompliant using audit.

Example 20-5. allowedrepos-constraint-dryrun.yaml

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
  name: repo-is-kuar-demo
spec:
  enforcementAction: dryrun
  match:
    kinds:
      - apiGroups: [""]
        kinds: ["Pod"]
    namespaces:
      - "default"
  parameters:
    repos:
      - "gcr.io/kuar-demo/"

Update the constraint by running the following command:

$ kubectl apply -f allowedrepos-constraint-dryrun.yaml
k8sallowedrepos.constraints.gatekeeper.sh/repo-is-kuar-demo configured

Create a noncompliant Pod using the following command:

$ kubectl apply -f noncompliant-pod.yaml
pod/nginx-noncompliant created

To audit the list of noncompliant resources for a given constraint, run a kubectl get
constraint on that constraint and specify that you want the output in YAML format
as follows:

$ kubectl get constraint repo-is-kuar-demo -o yaml
apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
...
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spec:
  enforcementAction: dryrun
  match:
    kinds:
    - apiGroups:
      - ""
      kinds:
      - Pod
    namespaces:
    - default
  parameters:
    repos:
    - gcr.io/kuar-demo/
status:
  auditTimestamp: "2021-07-14T20:05:38Z"

...
  totalViolations: 1
  violations:
  - enforcementAction: dryrun
    kind: Pod
    message: container <nginx> has an invalid image repo <nginx>, allowed repos
      are ["gcr.io/kuar-demo/"]
    name: nginx-noncompliant
    namespace: default

Under the status section, you can see the auditTimestamp, which is the last time
the audit was run. totalViolations lists the number of resources that violate this
constraint. The violations section lists the violations. We can see that the nginx-
noncompliant Pod is in violation and the message with the details why.

Using a constraint enforcementAction of “dryrun” along with
audit is a powerful way to confirm that your policy is having the
desired impact. It also creates a workflow to bring resources into
compliance.

Mutation
So far we have covered how you can use constraints to validate if a resource is com‐
pliant. What about modifying resources to make them compliant? This is handled via
the mutation feature in Gatekeeper. Earlier in this chapter, we discussed two different
type of admission webhooks, mutating and validating. By default, Gatekeeper is only
deployed as a validating admission webhook, but it can be configured to operate as a
mutating admission webhook.
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Mutation features in Gatekeeper are in beta state and may change.
We share them to demonstrate Gatekeeper’s upcoming capabilities.
The installation steps in this chapter do not cover enabling muta‐
tion. Please refer to the Gatekeeper project for more information
on enabling mutation.

Let’s walk through an example to demonstrate the power of mutation. In this exam‐
ple, we will set the imagePullPolicy to “Always” on all Pods. We will assume that
Gatekeeper is configured correctly to support mutation. Example 20-6 defines a
mutation assignment that matches all Pods except those in the “system” namespace,
and assigns a value of “Always” to imagePullPolicy.

Example 20-6. imagepullpolicyalways-mutation.yaml

apiVersion: mutations.gatekeeper.sh/v1alpha1
kind: Assign
metadata:
  name: demo-image-pull-policy
spec:
  applyTo:
  - groups: [""]
    kinds: ["Pod"]
    versions: ["v1"]
  match:
    scope: Namespaced
    kinds:
    - apiGroups: ["*"]
      kinds: ["Pod"]
    excludedNamespaces: ["system"]
  location: "spec.containers[name:*].imagePullPolicy"
  parameters:
    assign:
      value: Always

Create the mutation assignment:

$ kubectl apply -f imagepullpolicyalways-mutation.yaml
assign.mutations.gatekeeper.sh/demo-image-pull-policy created

Now create a Pod. This Pod doesn’t have imagePullPolicy explicitly set, so by default
this field is set to “IfNotPresent.” However, we expect Gatekeeper to mutate this field
to “Always”:

$ kubectl apply -f compliant-pod.yaml
pod/kuard created

Validate that the imagePullPolicy has been successfully mutated to “Always” by
running the following:
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$ kubectl get pods kuard -o=jsonpath="{.spec.containers[0].imagePullPolicy}"

Always

Mutating admission happens before validating admission, so create
constraints that validate the mutations you expect to apply to the
specific resource.

Delete the Pod using the following command:

$ kubectl delete -f compliant-pod.yaml
pod/kuard deleted

Delete the mutation assignment using the following command:

$ kubectl delete -f imagepullpolicyalways-mutation.yaml
assign.mutations.gatekeeper.sh/demo-image-pull-policy deleted

Unlike validation, mutation provides a way to remediate noncompliant resources
automatically on behalf of the cluster administrator.

Data Replication
When writing constraints you may want to compare the value of one field to the
value of a field in another resource. A specific example of when you might need to
do this is making sure that ingress hostnames are unique across a cluster. By default,
Gatekeeper can only evaluate fields within the current resource: if comparisons across
resources are required to fulfill a policy, it must be configured. Gatekeeper can be
configured to cache specific resources into Open Policy Agent to allow comparisons
across resources. The resource in Example 20-7 configures Gatekeeper to cache
Namespace and Pod resources.

Example 20-7. config-sync.yaml

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
  name: config
  namespace: "gatekeeper-system"
spec:
  sync:
    syncOnly:
      - group: ""
        version: "v1"
        kind: "Namespace"
      - group: ""
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        version: "v1"
        kind: "Pod"

You should only cache the specific resources needed to perform
a policy evaluation. Having hundreds or thousands of resources
cached in OPA will require more memory and may also have
security implications.

The constraint template in Example 20-8 demonstrates how to compare something
in the Rego section (in this case, unique ingress hostnames). Specifically, “data.inven‐
tory” refers to the cache resources, as opposed to “input,” which is the resource sent
for evaluation from the Kubernetes API server as part of the admission flow. This
example is based on the Gatekeeper policy library.

Example 20-8. uniqueingresshost-constraint-template.yaml

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
  name: k8suniqueingresshost
  annotations:
    description: Requires all Ingress hosts to be unique.
spec:
  crd:
    spec:
      names:
        kind: K8sUniqueIngressHost
  targets:
    - target: admission.k8s.gatekeeper.sh
      rego: |
        package k8suniqueingresshost

        identical(obj, review) {
          obj.metadata.namespace == review.object.metadata.namespace
          obj.metadata.name == review.object.metadata.name
        }

        violation[{"msg": msg}] {
          input.review.kind.kind == "Ingress"
          re_match("^(extensions|networking.k8s.io)$", input.review.kind.group)
          host := input.review.object.spec.rules[_].host
          other := data.inventory.namespace[ns][otherapiversion]["Ingress"][name]
          re_match("^(extensions|networking.k8s.io)/.+$", otherapiversion)
          other.spec.rules[_].host == host
          not identical(other, input.review)
          msg := sprintf("ingress host conflicts with an existing ingress <%v>"...
        }
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Data replication is a powerful tool that allows you to make comparisons across
Kubernetes resources. We recommend only configuring it if you have policies that
require it to function. If you use it, scope it only to the relevant resources.

Metrics
Gatekeeper emits metrics in Prometheus format to enable continuous resource com‐
pliance monitoring. You can view simple metrics regarding Gatekeeper’s overall
health, such as the numbers of constraints, constraint templates, and requests being
set to Gatekeeper.

In addition, details on policy compliance and governance are also available:

• The total number of audit violations•
• Number of constraints by enforcementAction•
• Audit duration•

Completely automating the policy and governance process is the
ideal goal, so we strongly recommended that you monitor Gate‐
keeper from an external monitoring system and set alerts based on
resource compliance.

Policy Library
One of the core tenets of the Gatekeeper project is to create reusable policy libraries
that can be shared between organizations. Being able to share policies reduces boiler‐
plate policy work and allows cluster administrators to focus on applying policy rather
than writing it. The Gatekeeper project has a great policy library. It contains a general
library with the most common policies as well as a pod-security-policy library that
models the capabilities of the PodSecurityPolicy API as Gatekeeper policy. The great
thing about this library is that it is always expanding and is open source, so feel free
to contribute any policies that you write.

Summary
In this chapter, you’ve learned about policy and governance and why they are
important as more and more resources are deployed to Kubernetes. We covered the
Gatekeeper project, a Kubernetes-native policy controller built on Open Policy Agent,
and showed you to use it to meet your policy and governance requirements. From
writing policies to auditing, you are now equipped with the know-how to meet your
compliance needs.
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CHAPTER 21

Multicluster Application Deployments

Twenty chapters into this book, it should be clear that Kubernetes can be a complex
topic, though of course we hope that if you have made it this far, it is less murky
than it was. Given the complexities of building and running an application in a single
Kubernetes cluster, why would you incur the added complexity of designing and
deploying your application into multiple clusters?

The truth is that the demands of the real world mean that multicluster application
deployment is a reality for most applications. There are many reasons for this, and it
is likely that your application fits under at least one of these requirements.

The first requirement is one of redundancy and resiliency. Whether in the cloud or
on-premise, a single datacenter is generally a single failure domain. Whether it is a
hunter using a fiber-optic cable for target practice, a power outage from an ice storm,
or simply a botched software rollout, any application deployed to a single location
can fail completely and leave your users without recourse. In many cases, a single
Kubernetes cluster is tied to a single location and thus is a single failure domain.

In some cases, especially in cloud environments, the Kubernetes cluster is designed
to be regional. Regional clusters span across multiple independent zones and are
thus resilient to the problems in the underlying infrastructure previously described.
It would be tempting then to assume that such regional clusters are sufficient for
resiliency and they might be except for the fact that Kubernetes itself can be a single
point of failure. Any single Kubernetes cluster is tied to a specific version of Kuber‐
netes (e.g., 1.21.3), and it is very possible for an upgrade of the cluster to break your
application. From time to time Kubernetes deprecates APIs or changes the behavior
of those APIs. These changes are infrequent, and the Kubernetes community takes
care to make sure that they are communicated ahead of time. Additionally, despite
a great deal of testing, bugs do creep into a release from time to time. Though it is
unlikely for any one issue to affect your application, viewed over the lifespan of most
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applications (years), it’s probable that your application will be affected at some point.
For most applications, that’s not aa\n acceptable risk.

In addition to resiliency requirements, another strong driver of multicluster deploy‐
ments is some business or application need for regional affinity. For example, game
servers have a strong need to be near the players to reduce network latency and
improve the playing experience. Other applications may be subject to legal or reg‐
ulatory requirements that demand that data be located within specific geographic
regions. Since any Kubernetes cluster is tied to a specific place, these needs for
application deployment to specific geographies mean that applications must span
multiple clusters.

Finally, though there are numerous ways to isolate users within a single cluster (e.g.,
namespaces, RBAC, node pools—collections of Kubernetes nodes that are organized
for different capabilities or workloads), a Kubernetes cluster is still largely a single
cooperative space. For some teams and some products, the risks of a different team
impacting their application, even by accident, are not worth it, and they would rather
take on the complexity of managing multiple clusters.

At this point, you can see that regardless of your application, it’s very likely that either
now or sometime in the near future, your application will need to span multiple
clusters. The rest of this chapter will help you understand how to accomplish that.

Before You Even Begin
It is critical that you have the right foundations in place in a single cluster deployment
before you consider moving to multiple clusters. There is inevitably a list of to-do
items that everyone has for their setup, but such shortcuts and problems are magni‐
fied in a multicluster deployment. Similarly, fixing foundational problems in your
infrastructure is 10 times harder when you have 10 clusters. Furthermore, if adding
an additional cluster incurs significant extra work, you will resist adding additional
clusters, when (for all of the reasons already given) it is the right thing to do for your
application.

When we say “foundations,” what do we mean? The most important part to get
right is automation. Importantly, this includes both automation to deploy your
application(s), but also automation to create and manage the clusters themselves.
When you have a single cluster, it is consistent with itself by definition. However,
when you add clusters, you add the possibility of version skew between all of the
pieces of your cluster. You could have clusters with different Kubernetes versions,
different versions of your monitoring and logging agents, or even something as
basic as the container runtime. All of this variance should be viewed as something
that makes your life harder. Differences in your infrastructure make your system
“weirder.” Knowledge gained in one cluster does not transfer over to other clusters,
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and problems sometimes occur seemingly at random in certain places because of this
variability. One of the most important parts of maintaining a stable foundation is
maintaining consistency across all of your clusters.

The only way to achieve this consistency is automation. You may think, “I always
create clusters this way,” but experience has taught us that this is simply not true.
The next chapter discusses at length the value of infrastructure as code for managing
your applications, but the same things apply to managing your clusters. Don’t use a
GUI or CLI tool to create your cluster. It may seem cumbersome at first to push all
changes through source control and CI/CD, but the stable foundation pays significant
dividends.

The same is true of the foundational components that you deploy into your clusters.
These components include monitoring, logging, and security scanners, which need to
be present before any application is deployed. These tools also need to be managed
using infrastructure as code tools like Helm and deployed using automation.

Moving beyond the shape of your clusters, there are other aspects of consistency
that are necessary. The first is using a single identity system for all of your clusters.
Though Kubernetes supports simple certificate-based authentication, we strongly
suggest using integrations with a global identity provider, such as Azure Active
Directory or any other OpenID Connect–compatible identity provider. Ensuring that
everyone uses the same identity when accessing all of the clusters is a critical part
of maintaining security best practices and avoiding dangerous behaviors like sharing
certificates. Additionally, most of these identity providers make available additional
security controls like two-factor authentication, which enhance the security of your
clusters.

Just like identity, it is also critical to ensure consistent access control to your clusters.
In most clouds, this means using a cloud-based RBAC, where the RBAC roles and
bindings are stored in a central cloud location rather than in the clusters themselves.
Defining RBAC in a single location prevents mistakes like leaving permissions behind
in one of your clusters or failing to add permissions to some single cluster. Unfortu‐
nately, if you are defining RBAC for on-premise clusters, the situation is somewhat
more complicated than it is for identity. There are some solutions (e.g., Azure Arc
for Kubernetes) that can provide RBAC for on-premise clusters, but if such a service
is not available in your environment, defining RBAC in source control and using
infrastructure as code to apply the rules to all of your clusters can ensure consistent
privileges are applied across your fleet.

Similarly, when you think about defining policy for your clusters, it’s critical to
define those policies in a single place and have a single dashboard for viewing
the compliance state of all clusters. As with RBAC, such global services are often
available via your cloud provider, but for on-premise there are limited options. Using
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infrastructure as code for policies as well can help close this gap and ensure that you
can define your policies in a single place.

Just like setting up the right unit testing and build infrastructure is critical to your
application development, setting up the right foundation for managing multiple
Kubernetes clusters sets the stage for stable application deployments across a broad
fleet of infrastructure. In the coming sections, we’ll talk about how to build your
application to operate successfully in a multicluster environment.

Starting at the Top with a Load-Balancing Approach
Once you begin to think about deploying your application into multiple locations, it
becomes essential to think about how users get access to it. Typically this is through
a domain name (e.g., my.company.com). Though we will spend a great deal of time
discussing how to construct your application for operation in multiple locations, a
more important place to start is how access is implemented. This is both because
obviously enabling people to use your application is essential, but also because the
design of how people access your application can improve your ability to quickly
respond and reroute traffic in the case of unexpected load or failures.

Access to your application starts with a domain name. This means that the start of
your multicluster load-balancing strategy starts with a DNS lookup. This DNS lookup
is the first choice in your load-balancing strategy. In many traditional load-balancing
approaches, this DNS lookup was used for routing traffic to specific locations. This is
generally referred to as “GeoDNS.” In GeoDNS, the IP address returned by the DNS
lookup is tied to the physical location of the client. The IP address is generally the
regional cluster that is closest to the client.

Though GeoDNS is still prevalent in many applications and may be the only possible
approach for on-premise applications, it has a number of drawbacks. The first is that
DNS is cached in various places throughout the internet and though you can set
the time-to-live (TTL) for a DNS lookup, there are many places where this TTL is
ignored in pursuit of higher performance. In a steady state operation, this caching
isn’t a big deal since DNS is generally pretty stable regardless of the TTL. However, it
becomes a very big deal when you need to move traffic from one cluster to another;
for example, in response to an outage in a particular datacenter. In such urgent
cases, the fact that DNS lookups are cached can significantly extend the duration and
impact of the outage. Additionally, since GeoDNS is guessing your physical location
based on your client’s IP address, it is frequently confused and guesses the wrong
locations when many different clients egress their traffic from the same firewall’s IP
address despite being in many different geographic locations.

The other alternative to using DNS to select your cluster is a load-balancing tech‐
nique known as anycast. With anycast networking, a single static IP address is
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advertised from multiple locations around the internet using core routing protocols.
While traditionally we think of an IP address mapping to a single machine, with
anycast networking the IP address is actually a virtual IP address that is routed to a
different location depending on your network location. Your traffic is routed to the
“closest” location based on the distance in terms of network performance rather than
geographic distance. Anycast networking generally produces better results, but it is
not always available in all environments.

One final consideration as you design your load balancing is whether the load
balancing happens at the TCP or HTTP level. So far we have only discussed TCP-
level balancing, but for web-based applications there are significant benefits for
load-balancing at the HTTP layer. If you are writing an HTTP-based application (as
most applications these days are), then using a global HTTP-aware load balancer
enables you to be aware of more details of the client communication. For example,
you can make load-balancing decisions based on cookies that have been set in the
browser. Additionally, a load balancer that is aware of the protocol can make smarter
routing decisions since it sees each HTTP request instead of just a stream of bytes
across a TCP connection.

Regardless of which approach you choose, ultimately the location of your service
is mapped from a global DNS endpoint to a collection of regional IP addresses
representing the entry point to your service. These IP addresses are generally the IP
address of a Kubernetes Service or Ingress resource that you have learned about in
previous chapters of the book. Once the user traffic hits that endpoint, it will flow
through your cluster based on the design of your application.

Building Applications for Multiple Clusters
Once you have load balancing sorted out, the next challenge for designing a multi‐
cluster application is thinking about state. Ideally, your application doesn’t require
state, or all of the state is read-only. In such circumstances, there is little that you
need to do to support multiple cluster deployments. Your application can be deployed
individually to each of your clusters, a load balancer added to the top, and your
multicluster deployment is complete. Unfortunately, for most applications there is
state that must be managed in a consistent way across the replicas of your application.
If you don’t handle state correctly, your users will end up with a confusing, flawed
experience.

To understand how replicated state impacts user experience, let’s use a simple retail
shop as an example. It’s obvious to see that if you only store a customer’s order in
one of your multiple clusters, the customer may have the unsettling experience of
being unable to see their order when their requests move to a different region, either
because of load balancing, or because they physically move geographies. So it is clear
that a user’s state needs to be replicated across regions. It may be somewhat less
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clear that the approach to replication also can impact the customer experience. The
challenges of replicated data and customer experience is succinctly captured by this
question: “Can I read my own write?” It may seem obvious that the answer should
be “Yes,” but achieving this is harder than it seems. Consider for example a customer
who places an order on their computer, but then immediately tries to view it on their
phone. They may be coming at your application from two entirely different networks
and consequently landing on two completly different clusters. A user’s expectation
around their ability to see an order that they just placed is an example of data
consistency.

Consistency governs how you think about replicating data. We assume that we want
our data to be consistent; that is, that we will be able to read the same data regardless
of where we read it from. But the complicating factor is time: how quickly must
our data be consistent? And do we get any sort of error indication when it is not
consistent? There are two basic models of consistency: strong consistency, which
guarantees that a write doesn’t succeed until it has been successfully replicated, and
eventual consistency, where a write always succeeds immediately and is only guaran‐
teed to be successfully replicated at some later point in time. Some systems also
provide the ability for the client to choose their consistency needs per request. For
example, Azure Cosmos DB implements bounded consistency, where there are some
assurances about how stale data may be in an eventually consistent system. Google
Cloud Spanner enables clients to specify that they are willing to tolerate stale reads in
exchange for better performance.

It might seem that everyone would choose strong consistency, as it is clearly an
easier model to reason about because the data is always the same everywhere. But
strong consistency comes at a price. It takes much more effort to guarantee the
replication at the time of the write, and many more writes will fail when replication
isn’t possible. Strong consistency is more expensive and can support many fewer
simultaneous transactions relative to eventual consistency. Eventual consistency is
cheaper and can support a much higher write load, but it is more complicated for
the application developer and may expose some edge conditions to the end user.
Many storage systems support only a single concurrency model. Those that support
multiple concurrency models require that it be specified when the storage system
is created. Your choice of concurrency model also has significant implications for
your application’s design and is difficult to change. Consequently, choosing your
consistency model is an important first step before designing your application for
multiple environments.
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Deploying and managing replicated stateful storage is a compli‐
cated task that requires a dedicated team with domain expertise to
set up, maintain, and monitor. You should strongly consider using
cloud-based storage for a replicated data store so that this burden
is carried by the depth of a large team at the cloud provider rather
than your own teams. In an on-premise environment, you can also
offload support of storage to a company that has focused expertise
on running the storage solution that you choose. Only when you
are at large scale does it make sense to invest in building your own
team to manage storage.

Once you have determined your storage layer, the next step is to build up your
application design.

Replicated Silos: The Simplest Cross-Regional Model
The simplest way to replicate your application across multiple clusters and multiple
regions is simply to copy your application into every region. Each instance of your
application is an exact clone and looks exactly alike no matter which cluster it is
running in. Because there is a load balancer at the top spreading customer requests,
and you have implemented data replication in the places where you need state, your
application doesn’t need to change much to support this model. Depending on the
consistency model that you choose for your data, you will need to deal with the fact
that data may not be replicated quickly between regions, but, especially if you opt for
strong consistency, this won’t require major application refactoring.

When you design your application this way, each region is its own silo. All of the data
that it needs is present within the region, and once a request enters that region, it
is served entirely by the containers running in that one cluster. This has significant
benefits in terms of reduced complexity, but as is always the case, this comes at the
cost of efficiency.

To understand how the silo approach impacts efficiency, consider an application that
is distributed to a large number of geographic regions around the world in order
to deliver very low latency to their users. The reality of the world is that some
geographic regions have large populations and some regions have small populations.
If every silo in each cluster of the application is exactly the same, then every silo has
to be sized to meet the needs of the largest geographic region. The result of this is that
most replicas of the application in regional clusters are massively overprovisioned
and thus cost efficiency for the application is low. The obvious solution to this excess
cost is to reduce the size of the resources used by the application in the smaller
geographic regions. While it might seem easy to resize your application, it’s not
always feasible due to bottlenecks or other requirements (e.g., maintaining at least
three replicas).
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Especially when taking an existing application from single cluster to multicluster, a
replicated silos design is the easiest approach to use, but it is worth understanding
that it comes with costs that may be sustainable initially but eventually will require
your application to be refactored.

Sharding: Regional Data
As your application scales, one of the pain points that you are likely to encounter
with a regional silo approach is that globally replicating all of your data becomes
increasingly expensive and also increasingly wasteful. While replicating data for
reliability is a good thing, it is unlikely that all of the data for your application needs
to be colocated in every cluster where you deploy your application. Most users will
only access your application from a small number of geographic regions.

Additionally, as your application grows around the world you may encounter reg‐
ulatory and other legal requirements around data locality. There may be external
restrictions on where you can store a user’s data depending on their nationality or
other considerations. The combination of these requirements means that eventually
you will need to think about regional data sharding. Sharding your data across
regions means that not all data is present in all of the clusters where your application
is present and this (obviously) impacts the design of your application.

As an example of what this looks like, imagine that our application is deployed into
six regional clusters (A, B, C, D, E, F). We take the dataset for our application and
break the data into three subsets or shards (1, 2, 3).

Our data shard deployment then might look as follows:

A B C D E F

1 ✓ - - ✓ - -

2 - ✓ - - ✓ -

3 - - ✓ - - ✓

Each shard is present in two regions for redundancy, but each regional cluster can
only serve one-third of the data. This means that you have to add an additional
routing layer to your service whenever you need to access the data. The routing
layer is responsible for determining whether the request needs to go to a local or
cross-regional data shard.

While it might be tempting to simply implement this data routing as part of a client
library that is linked into your main application, we strongly recommend that the
data routing be built as a separate microservice. Introducing a new microservice
might seem to introduce complexity, but it actually introduces an abstraction that
simplifies things. Instead of every service in your application worrying about data
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routing, you have a single service that encapsulates those concerns and all other serv‐
ices simply access the data service. Applications that are separated into independent
microservices provide significant flexibility in multicluster environments.

Better Flexibility: Microservice Routing
When we discussed the regional silo approach to multicluster application develop‐
ment, we gave an example of how it might reduce the cost-efficiency of your deployed
multicluster application. But there are other impacts to flexibility as well. In creating
the silo, you are creating at a larger scale the same sort of monoliths that containers
and Kubernetes seek to break up. Furthermore, you are forcing every microservice
within an application to scale at the same time to the same number of regions.

If your application is small and contained, this may make sense, but as your services
become larger, and especially when they may start being shared between multiple
applications, the monolithic approach to multicluster begins to significantly impact
your flexibility. If a cluster is the unit of deployment and all of your CI/CD is tied
to that cluster, you will force every team to adhere to the same rollout process and
schedule even if it is a bad fit.

For a concrete example of this, suppose you have one very large application that is
deployed to thirty clusters, and a small new application under development. It doesn’t
make sense to force the small team developing a new application to immediately
reach the scale of your larger application, but if you are too rigid in your application
design, this can be exactly what happens.

A better approach is to treat each microservice within your application as a public-
facing service in terms of its application design. It may never be expected to actually
be public facing, but it should have its own global load balancer as described in
the previous sections, and it should manage its own data replication service. For
all intents and purposes, the different microservices should be independent of each
other. When a service calls into a different service, its load is balanced in the same
way that an external load would be. With this abstraction in place, each team can
scale and deploy their multicluster service independently, just like they do within a
single cluster.

Of course, doing this for every single microservice within an application can become
a significant burden on your teams and can also increase costs via the maintenance
of a load balancer for each service and also possibly cross-regional network traffic.
Like everything in software design, there is a trade-off between complexity and
performance, and you will need to determine for your application the right places to
add the isolation of a service boundary, and where it makes sense to group services
into a replicated silo. Just like microservices in the single cluster context, this design
is likely to change and adapt as your application changes and grows. Expecting (and
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designing) with this fluidity in mind will help ensure that your application can adapt
without requiring massive refactoring.

Summary
Though deploying your application to multiple clusters adds complexity, the require‐
ments and user expectations in the real world make this complexity necessary for
most applications that you build. Designing your application and your infrastructure
from the ground up to support multicluster application deployments will greatly
increase the reliability of your application and significantly reduce the probability
of a costly refactor as your application grows. One of the most important pieces
of a multicluster deployment is managing the configuration and deployment of the
application to the cluster. Whether your application is regional or multicluster, the
following chapter will help ensure that you can quickly and reliably deploy it.
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CHAPTER 22

Organizing Your Application

Throughout this book we have described various components of an application built
on top of Kubernetes. We have described how to wrap programs up as containers,
place those containers in Pods, replicate those Pods with ReplicaSets, and roll them
out with Deployments. We have even described how to deploy stateful and real-world
applications that collect these objects into a single distributed system. But we have not
covered how to actually work with such an application in a practical way. How can
you lay out, share, manage, and update the various configurations that make up your
application? That is the topic of this chapter.

Principles to Guide Us
Before digging into the concrete details of how to structure your application, it’s
worth considering the goals that drive this structure. Obviously, reliability and agility
are the general goals of developing a cloud native application in Kubernetes, but how
does this relate to how you design your application’s maintenance and deployment?
The following sections describe three principles that can guide you in designing a
structure that best suits these goals. The principles are:

• Treat filesystems as the source of truth•
• Conduct code review to ensure the quality of changes•
• Use feature flags to stage rollouts and rollbacks•

Filesystems as the Source of Truth
When you first begin to explore Kubernetes, as we did in the beginning of this book,
you generally interact with it imperatively. You run commands like kubectl run or
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kubectl edit to create and modify Pods or other objects running in your cluster.
Even when we started exploring how to write and use YAML files, this was presented
in an ad-hoc manner, as if the file itself is just a way station on the road to modifying
the state of the cluster. In reality, in a true productionized application the opposite
should be true.

Rather than viewing the state of the cluster—the data in etcd—as the source of truth,
it is optimal to view the filesystem of YAML objects as the source of truth for your
application. The API objects deployed into your Kubernetes cluster(s) are then a
reflection of the truth stored in the filesystem.

There are numerous reasons why this is the right point of view. The first and
foremost is that it largely enables you to treat your cluster as if it is immutable
infrastructure. As we have moved into cloud native architectures, we have become
increasingly comfortable with the notion that our applications and their containers
are immutable infrastructure, but treating a cluster as such is less common. And yet,
the same reasons for moving our applications to immutable infrastructure apply to
our clusters. If your cluster is a snowflake you made by applying random YAML files
downloaded from the internet ad hoc, it is as dangerous as a virtual machine built
from imperative bash scripts.

Additionally, managing the cluster state via the filesystem makes it very easy to
collaborate with multiple team members. Source-control systems are well understood
and can easily enable multiple people to edit the state of the cluster simultaneously,
while making conflicts (and the resolution of those conflicts) clear to everyone.

It is absolutely a first principle that all applications deployed to
Kubernetes should first be described in files stored in a filesystem. The
actual API objects are then just a projection of this filesystem into a
particular cluster.

The Role of Code Review
It wasn’t long ago that code review for application source code was a novel idea. But it
is clear now that multiple people looking at a piece of code before it is committed to
an application is a best practice for producing high-quality, reliable code.

It is therefore surprising that the same is somewhat less true for the configurations
used to deploy those applications. All of the same reasons for reviewing code apply
directly to application configurations. But when you think about it, it is also obvious
that code review of these configurations is critical to the reliable deployment of
services. In our experience, most service outages are self-inflicted via unexpected
consequences, typos, or other simple mistakes. Ensuring that at least two people look
at any configuration change significantly decreases the probability of such errors.
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The second principle of our application layout is that it must facil‐
itate the review of every change merged into the set of files that
represents the source of truth for our cluster.

Feature Gates
Once your application source code and your deployment configuration files are in
source control, one of the most common questions is how these repositories relate
to one another. Should you use the same repository for application source code and
configuration? This can work for small projects, but in larger projects it often makes
sense to separate the two. Even if the same people are responsible for both building
and deploying the application, the perspectives of the builder versus those of the
deployer are different enough that this separation of concerns makes sense.

If that is the case, then how do you bridge the development of new features in source
control with the deployment of those features into a production environment? This is
where feature gates play an important role.

The idea is that when some new feature is developed, that development takes place
entirely behind a feature flag or gate. This gate looks something like:

if (featureFlags.myFlag) {
    // Feature implementation goes here
}

There are a variety of benefits to this approach. First, it lets the team commit to
the production branch long before the feature is ready to ship. This enables feature
development to stay much more closely aligned with the HEAD of a repository, and
thus you avoid the horrendous merge conflicts of a long-lived branch.

Working behind a feature flag also means that enabling a feature simply involves
making a configuration change to activate the flag. This makes it very clear what
changed in the production environment, and very simple to roll back the feature
activation if it causes problems.

Using feature flags thus both simplifies debugging and ensures that disabling a feature
doesn’t require a binary rollback to an older version of the code that would remove all
of the bug fixes and other improvements made by the newer version.

The third principle of application layout is that code lands in
source control, by default off, behind a feature flag, and is only
activated through a code-reviewed change to configuration files.
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Managing Your Application in Source Control
Now that we have determined that the filesystem should represent the source of
truth for your cluster, the next important question is how to actually lay out the
files in the filesystem. Obviously, filesystems contain hierarchical directories, and a
source-control system adds concepts like tags and branches, so this section describes
how to put these together to represent and manage your application.

Filesystem Layout
This section describes how to lay out an instance of your application for a single
cluster. In later sections, we will describe how to parameterize this layout for multi‐
ple instances. It’s worth getting this organization right when you begin. Much like
modifying the layout of packages in source control, modifying your deployment con‐
figurations after the fact is a complicated and expensive refactor that you’ll probably
never get around to.

The first cardinality on which you want to organize your application is the semantic
component or layer (for instance, frontend or batch work queue). Though early on
this might seem like overkill, since a single team manages all of these components,
it sets the stage for team scaling—eventually, different teams (or subteams) may be
responsible for each of these components.

Thus, for an application with a frontend that uses two services, the filesystem might
look like this:

frontend/
service-1/
service-2/

Within each of these directories, the configurations for each application are stored.
These are the YAML files that directly represent the current state of the cluster. It’s
generally useful to include both the service name and the object type within the same
file.

While Kubernetes allows you to create YAML files with multiple
objects in the same file, this is generally an antipattern. The only
good reason to group several objects in the same file is if they are
conceptually identical. When deciding what to include in a single
YAML file, consider design principles similar to those for defining
a class or struct. If grouping the objects together doesn’t form a
single concept, they probably shouldn’t be in a single file.

Thus, extending our previous example, the filesystem might look like:
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frontend/
   frontend-deployment.yaml
   frontend-service.yaml
   frontend-ingress.yaml
service-1/
   service-1-deployment.yaml
   service-1-service.yaml
   service-1-configmap.yaml
...

Managing Periodic Versions
What about managing releases? It is very useful to be able to look back and see
what your application deployment previously looked like. Similarly, it is very useful
to be able to iterate a configuration forward while still deploying a stable release
configuration.

Consequently, it’s handy to be able to simultaneously store and maintain multiple
revisions of your configuration. There are two different approaches that you can use
with the file and version control systems we’ve outlined here. The first is to use tags,
branches, and source-control features. This is convenient because it maps to the way
people manage revisions in source control, and leads to a more simplified directory
structure. The other option is to clone the configuration within the filesystem and
use directories for different revisions. This makes viewing the configurations simulta‐
neously very straightforward.

These approaches have the same capabilities in terms of managing different release
versions, so it is ultimately an aesthetic choice between the two. We will discuss both
approaches and let you or your team decide which you prefer.

Versioning with branches and tags
When you use branches and tags to manage configuration revisions, the directory
structure does not change from the example in the previous section. When you are
ready for a release, you place a source-control tag (such as git tag v1.0) in the
configuration source-control system. The tag represents the configuration used for
that version, and the HEAD of source control continues to iterate forward.

Updating the release configuration is somewhat more complicated, but the approach
models what you would do in source control. First, you commit the change to the
HEAD of the repository. Then you create a new branch named v1 at the v1.0 tag. You
cherry-pick the desired change onto the release branch (git cherry-pick <edit>),
and finally, you tag this branch with the v1.1 tag to indicate a new point release. This
approach is illustrated in Figure 22-1.
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Figure 22-1. Cherry-pick workflow

One common error when cherry-picking fixes into a release branch
is to only pick the change into the latest release. It’s a good idea to
cherry-pick it into all active releases, in case you need to roll back
versions but the fix is still needed.

Versioning with directories
An alternative to using source-control features is to use filesystem features. In this
approach, each versioned deployment exists within its own directory. For example,
the filesystem for your application might look like this:

frontend/
  v1/
    frontend-deployment.yaml
    frontend-service.yaml
  current/
    frontend-deployment.yaml
    frontend-service.yaml
service-1/
  v1/
     service-1-deployment.yaml
     service-1-service.yaml
  v2/
     service-1-deployment.yaml
     service-1-service.yaml
  current/
     service-1-deployment.yaml
     service-1-service.yaml
...
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Thus, each revision exists in a parallel directory structure within a directory associ‐
ated with the release. All deployments occur from HEAD instead of from specific
revisions or tags. You would add a new configuration to the files in the current
directory.

When creating a new release, you copy the current directory to create a new directory
associated with the new release.

When you’re performing a bug-fix change to a release, your pull request must modify
the YAML file in all the relevant release directories. This is a slightly better experience
than the cherry-picking approach described earlier, since it is clear in a single change
request that all of the relevant versions are being updated with the same change,
instead of requiring a cherry-pick per version.

Structuring Your Application for Development,
Testing, and Deployment
In addition to structuring your application for a periodic release cadence, you also
want to structure your application to enable Agile development, quality testing, and
safe deployment. This allows developers to make and test changes to the distributed
application rapidly and roll those changes out to customers safely.

Goals
There are two goals for your application with regard to development and testing.
The first is that each developer should be able to easily develop new features for the
application. In most cases, the developer is only working on a single component, yet
that component is interconnected to all of the other microservices within the cluster.
Thus, to facilitate development, it is essential that developers be able to work in their
own environment with all services available.

The other goal is to structure your application for easy and accurate testing prior to
deployment. This is essential for rolling out features quickly while maintaining high
reliability.

Progression of a Release
To achieve both of these goals, it is important to relate the stages of development to
the release versions described earlier. The stages of a release are:

HEAD

The bleeding edge of the configuration; the latest changes.
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Development
Largely stable, but not ready for deployment. Suitable for developers to use for
building features.

Staging
The beginnings of testing, unlikely to change unless problems are found.

Canary
The first real release to users, used to test for problems with real-world traffic
and likewise give users a chance to test what is coming next.

Release
The current production release.

Introducing a development tag
Regardless of whether you structure releases using the filesystem or version control,
the right way to model the development stage is via a source-control tag. This is
because development is necessarily fast moving as it tracks stability only slightly
behind HEAD.

To introduce a development stage, you add a new development tag to the source-
control system and use an automated process to move this tag forward. On a periodic
cadence, you’ll test HEAD via automated integration testing. If these tests pass, you
move the development tag forward to HEAD. Thus, developers can track reasonably
close to the latest changes when deploying their own environments, but also be
assured that the deployed configurations have at least passed a limited smoke test.
This approach is illustrated in Figure 22-2.

Figure 22-2. Development tag workflow
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Mapping stages to revisions
It might be tempting to introduce a new set of configurations for each of these stages,
but in reality, every combination of versions and stages would create a mess that
would be very difficult to reason about. Instead, the right practice is to introduce a
mapping between revisions and stages.

Regardless of whether you are using the filesystem or source-control revisions to
represent different configuration versions, it is easy to implement a map from stage to
revision. In the filesystem case, you can use symbolic links to map a stage name to a
revision:

frontend/
   canary/ -> v2/
   release/ -> v1/
   v1/
     frontend-deployment.yaml
...

For version control, it is simply an additional tag at the same revision as the appropri‐
ate version.

In either case, versioning proceeds using the processes described previously, and the
stages are moved forward to new versions separately as appropriate. In effect, this
means that there are two simultaneous processes: the first for cutting new release
versions and the second for qualifying a release version for a particular stage in the
application life cycle.

Parameterizing Your Application with Templates
Once you have a Cartesian product of environments and stages, it becomes imprac‐
tical or impossible to keep them all entirely identical. And yet, it is important to
strive for the environments to be as identical as possible. Variance and drift between
different environments produces snowflakes and systems that are hard to reason
about. If your staging environment is different than your release environment, can
you really trust the load tests that you ran in the staging environment to qualify a
release? To ensure that your environments stay as similar as possible, it is useful to
use parameterized environments. Parameterized environments use templates for the
bulk of their configuration, but they mix in a limited set of parameters to produce
the final configuration. In this way, most of the configuration is contained within a
shared template, while the parameterization is limited in scope and maintained in a
small parameters file for easy visualization of differences between environments.

Parameterizing with Helm and Templates
There are a variety of different languages for creating parameterized configurations.
In general they all divide the files into a template file, which contains the bulk of

Parameterizing Your Application with Templates | 277



the configuration, and a parameters file, which can be combined with the template
to produce a complete configuration. In addition to parameters, most templating
languages allow parameters to have default values if no value is specified.

The following gives examples of how to parameterize configurations using Helm, a
package manager for Kubernetes. Despite what devotees of various languages may
say, all parameterization languages are largely equivalent, and as with programming
languages, which one you prefer is largely a matter of personal or team style. Thus,
the patterns described here for Helm apply regardless of the templating language you
choose.

The Helm template language uses “mustache” syntax:

metadata:
  name: {{ .Release.Name }}-deployment

This indicates that Release.Name should be substituted with the name of a
deployment.

To pass a parameter for this value, you use a values.yaml file with contents like:

Release:
  Name: my-release

After parameter substitution, this results in:

metadata:
  name: my-release-deployment

Filesystem Layout for Parameterization
Now that you understand how to parameterize your configurations, how do you
apply that to the filesystem layouts? Instead of treating each deployment life cycle
stage as a pointer to a version, think of each deployment life cycle as the combination
of a parameters file and a pointer to a specific version. For example, in a directory-
based layout, it might look like this:

frontend/
  staging/
    templates -> ../v2
    staging-parameters.yaml
  production/
    templates -> ../v1
    production-parameters.yaml
  v1/
    frontend-deployment.yaml
    frontend-service.yaml
  v2/
    frontend-deployment.yaml
    frontend-service.yaml
...
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Doing this with version control looks similar, except that the parameters for each life
cycle stage are kept at the root of the configuration directory tree:

frontend/
  staging-parameters.yaml
  templates/
    frontend-deployment.YAML
...

Deploying Your Application Around the World
Now that you have multiple versions of your application moving through multiple
stages of deployment, the final step in structuring your configurations is to deploy
your application around the world. But don’t think that these approaches are only
for large-scale applications. You can use them to scale from two different regions to
tens or hundreds around the world. In the cloud, where an entire region can fail,
deploying to multiple regions (and managing that deployment) is the only way to
achieve sufficient uptime for demanding users.

Architectures for Worldwide Deployment
Generally speaking, each Kubernetes cluster is intended to live in a single region
and to contain a single, complete deployment of your application. Consequently,
worldwide deployment of an application consists of multiple different Kubernetes
clusters, each with its own application configuration. Describing how to actually
build a worldwide application, especially with complex subjects like data replication,
is beyond the scope of this chapter, but we will describe how to arrange the applica‐
tion configurations in the filesystem.

A particular region’s configuration is conceptually the same as a stage in the deploy‐
ment life cycle. Thus, adding multiple regions to your configuration is identical to
adding new life cycle stages. For example, instead of:

• Development•
• Staging•
• Canary•
• Production•

You might have:

• Development•
• Staging•
• Canary•
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• EastUS•
• WestUS•
• Europe•
• Asia•

Modeling this in the filesystem for configuration looks like:

frontend/
  staging/
    templates -> ../v3/
    parameters.yaml
  eastus/
    templates -> ../v1/
    parameters.yaml
  westus/
    templates -> ../v2/
    parameters.yaml
  ...

If you instead are using version control and tags, the filesystem would look like:

frontend/
  staging-parameters.yaml
  eastus-parameters.yaml
  westus-parameters.yaml
  templates/
    frontend-deployment.yaml
...

Using this structure, you would introduce a new tag for each region and use the file
contents at that tag to deploy to that region.

Implementing Worldwide Deployment
Now that you have configurations for each region around the world, the question
becomes how to update those various regions. One of the primary goals of using
multiple regions is to ensure very high reliability and uptime. While it would be
tempting to assume that cloud and datacenter outages are the primary causes of
downtime, the truth is that outages are generally caused by new versions of software
rolling out. Because of this, the key to a highly available system is limiting the effect,
or “blast radius,” of any change that you might make. Thus, as you roll out a version
across a variety of regions, it makes sense to move carefully from region to region,
and to validate and gain confidence in one region before moving on to the next.

Rolling out software across the world generally looks more like a workflow than a
single declarative update: you begin by updating the version in staging to the latest
version and then proceed through all regions until it is rolled out everywhere. But
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how should you structure the various regions, and how long should you wait to
validate between regions?

You can use tools such as GitHub Actions to automate the deploy‐
ment workflow. They provide a declarative syntax to define your
workflow and are also stored in source control.

To determine the length of time between rollouts to regions, consider the “mean time
to smoke” for your software. This is the time it takes on average after a new release
is rolled out to a region for a problem (if it exists) to be discovered. Obviously, each
problem is unique and can take a varying amount of time to make itself known, and
that is why you want to understand the average time. Managing software at scale is
a business of probability, not certainty, so you want to wait for a time that makes
the probability of an error low enough that you are comfortable moving on to the
next region. Something like two to three times the mean time to smoke is probably a
reasonable place to start, but it is highly variable depending on your application.

To determine the order of regions, it is important to consider the characteristics
of various regions. For example, you are likely to have high-traffic regions and
low-traffic regions. Depending on your application, you may have features that are
more popular in one geographic area than another. All of these characteristics should
be considered when putting together a release schedule. You likely want to begin by
rolling out to a low-traffic region. This ensures that any early problems you catch
are limited to an area of little impact. Though it is not a hard-and-fast rule, early
problems are often the most severe, since they manifest quickly enough to be caught
in the first region you roll out to. Thus, minimizing the impact of such problems
on your customers makes sense. Next, roll out to a high-traffic region. Once you
have successfully validated that your release works correctly via the low-traffic region,
validate that it works correctly at scale. The only way to do this is to roll it out to a
single high-traffic region. When you have successfully rolled out to both a low- and
a high-traffic region, you may have confidence that your application can safely roll
out everywhere. However, if there are regional variations, you may want to also test
slowly across a variety of geographies before pushing your release more broadly.

When you put your release schedule together, it is important to follow it completely
for every release, no matter how big or how small. Many outages have been caused
by people accelerating releases, either to fix some other problem or because they
believed it to be “safe.”
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Dashboards and Monitoring for Worldwide Deployments
It may seem an odd concept when you are developing at a small scale, but one
significant problem that you will likely run into at a medium or large scale is having
different versions of your application deployed to different regions. This can happen
for a variety of reasons (such as, because a release has failed, been aborted, or
had problems in a particular region), and if you don’t track things carefully you
can rapidly end up with an unmanageable snowflake of different versions deployed
around the world. Furthermore, as customers inquire about fixes to bugs they are
experiencing, a common question will become: “Is it deployed yet?”

Thus, it is essential to develop dashboards, which can tell you at a glance which
version is running in which region, as well as alerting, which will fire when too many
versions of your application are deployed. A best practice is to limit the number of
active versions to no more than three: one testing, one rolling out, and one being
replaced by the rollout. Any more active versions than this is asking for trouble.

Summary
This chapter provides guidance on how to manage a Kubernetes application through
software versions, deployment stages, and regions around the world. It highlights the
principles at the foundation of organizing your application: relying on the filesystem
for organization, using code review to ensure quality changes, and relying on feature
flags, or gates, to make it easy to incrementally add and remove functionality.

As with everything, the recipes in this chapter should be taken as inspiration, rather
than absolute truth. Read the guidance, and find the mix of approaches that works
best for the particular circumstances of your application. But keep in mind that in
laying out your application for deployment, you are setting a process that you will
likely have to live with for years.
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APPENDIX

Building Your Own Kubernetes Cluster

While Kubernetes is often experienced through the virtual world of public cloud
computing, where the closest you get to your cluster is a web browser or a terminal,
it can be a very rewarding experience to physically build a Kubernetes cluster on bare
metal. Likewise, nothing compares to physically pulling the power or network on a
node and watching how Kubernetes reacts to heal your application to convince you of
its utility.

Building your own cluster might seem like both a challenging and an expensive
effort, but fortunately it is neither. The ability to purchase low-cost, system-on-chip
computer boards, as well as a great deal of work by the community to make Kuber‐
netes easier to install, means that it is possible to build a small Kubernetes cluster in a
few hours.

In the following instructions, we focus on building a cluster of Raspberry Pi
machines, but with slight adaptations, the same instructions could be made to work
with a variety of different single-board machines or any other computers you may
have around.

Parts List
The first thing you need to do is assemble the pieces for your cluster. In all the
examples here, we assume a four-node cluster. You could build a cluster of three
nodes, or even a cluster of a hundred nodes if you wanted to, but four is a pretty good
number. To start, you’ll need to purchase (or scrounge) the various pieces needed to
build the cluster.
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Here is the shopping list, with some approximate prices as of the time of writing:

1. Four Raspberry Pi 4 machines with at least 2 GB of memory—$1801.
2. Four SDHC memory cards, at least 8 GB (buy high-quality ones!)—$30–502.
3. Four 12-inch Cat. 6 Ethernet cables—$103.
4. Four 12-inch USB-A to USB-C cables—$104.
5. One 5-port 10/100 fast Ethernet switch—$105.
6. One 5-port USB charger—$256.
7. One Raspberry Pi stackable case capable of holding four Pis—$40 (or build your7.

own)
8. One USB-to-barrel plug for powering the Ethernet switch (optional)—$58.

The total for the cluster comes to about $300, which you can drop down to $200 by
building a three-node cluster and skipping the case and the USB power cable for the
switch (though the case and the cable really clean up the whole cluster).

One other note on memory cards: do not scrimp here. Low-end memory cards
behave unpredictably and make your cluster really unstable. If you want to save some
money, buy a smaller, high-quality card. High-quality 8 GB cards can be had for
around $7 each online.

Once you have your parts, you’re ready to move on to building the cluster.

These instructions also assume that you have a device capable of
flashing an SDHC card. If you do not, you will need to purchase a
USB memory card reader/writer.

Flashing Images
The default Ubuntu 20.04 image supports Raspberry Pi 4 and also is a common
operating system used by many Kubernetes clusters. The easiest way to install that is
using the Raspberry Pi Imager provided by the Raspberry Pi project:

• macOS•
• Windows•
• Linux•

Use the imager to write the Ubuntu 20.04 image onto each of your memory cards.
Ubuntu may not be the default image choice in the imager, but you can select it as an
option.
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First Boot
The first thing to do is to boot just your API server node. Assemble your cluster, and
decide which is going to be the API server node. Insert the memory card, plug the
board into an HDMI output, and plug a keyboard into the USB port.

Next, attach the power to boot the board.

Log in at the prompt using the username ubuntu and the password ubuntu.

The very first thing you should do with your Raspberry Pi (or
any new device) is to change the default password. The default
password for every type of install everywhere is well known by
people who will misbehave given a default login to a system.
This makes the internet less safe for everyone. Please change your
default passwords!

Repeat these steps for each of the nodes in your cluster.

Setting Up Networking
The next step is to set up networking on the API server. Setting up networking for
a Kubernetes cluster can be complicated. In the following example, we are setting
up a network where a single machine is attached to the internet using wireless
networking; this machine is also connected to a cluster network over wired Ethernet
and provides a DHCP (Dynamic Host Configuration Protocol) server to provide a
network address to the remaining nodes in the cluster. An illustration of this network
is shown here:

Decide which of your boards will host the API server and etcd. It’s often easiest to
remember which one this is by making it the top or bottom node in your stack, but
some sort of label also works.
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To do this, edit the file /etc/netplan/50-cloud-init.yaml. If this file doesn’t exist, you
can create it. The contents of the file should look like:

network:
    version: 2
    ethernets:
        eth0:
            dhcp4: false
            dhcp6: false
            addresses:
            - '10.0.0.1/24'
            optional: true
    wifis:
        wlan0:
            access-points:
                <your-ssid-here>:
                    password: '<your-password-here>'
            dhcp4: true
            optional: true

This sets the main Ethernet interface to have the statically allocated address 10.0.0.1
and sets up the WiFi interface to connect to your local WiFi. You should then run
sudo netplan apply to pick up these new changes.

Reboot the machine to claim the 10.0.0.1 address. You can validate that this is set
correctly by running ip addr and looking at the address for the eth0 interface. Also
validate that the connection to the internet works correctly.

Next, we’re going to install DHCP on this API server so it will allocate addresses to
the worker nodes. Run:

$ apt-get install isc-dhcp-server

Then configure the DHCP server as follows (/etc/dhcp/dhcpd.conf):

# Set a domain name, can basically be anything
option domain-name "cluster.home";

# Use Google DNS by default, you can substitute ISP-supplied values here
option domain-name-servers 8.8.8.8, 8.8.4.4;

# We'll use 10.0.0.X for our subnet
subnet 10.0.0.0 netmask 255.255.255.0 {
    range 10.0.0.1 10.0.0.10;
    option subnet-mask 255.255.255.0;
    option broadcast-address 10.0.0.255;
    option routers 10.0.0.1;
}
default-lease-time 600;
max-lease-time 7200;
authoritative;
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You may also need to edit /etc/default/isc-dhcp-server to set the INTERFACES environ‐
ment variable to eth0. Restart the DHCP server with sudo systemctl restart
isc-dhcp-server. Now your machine should be handing out IP addresses. You can
test this by hooking up a second machine to the switch via Ethernet. This second
machine should get the address 10.0.0.2 from the DHCP server.

Remember to edit the /etc/hostname file to rename this machine to node-1. To help
Kubernetes do its networking, you also need to set up iptables so that it can see
bridged network traffic. Create a file at /etc/modules-load.d/k8s.conf that just contains
br_netfilter. This will load the br_netfilter module into your kernel.

Next you need to enable some systemctl settings for network bridging and address
translation (NAT) so that Kubernetes networking will work, and your nodes can
reach the public internet. Create a file named /etc/sysctl.d/k8s.conf and add:

net.ipv4.ip_forward=1
net.bridge.bridge-nf-call-ip6tables=1
net.bridge.bridge-nf-call-iptables=1

Then edit /etc/rc.local (or the equivalent) and add iptables rules for forwarding
from eth0 to wlan0 (and back):

iptables -t nat -A POSTROUTING -o wlan0 -j MASQUERADE
iptables -A FORWARD -i wlan0 -o eth0 -m state \
  --state RELATED,ESTABLISHED -j ACCEPT
iptables -A FORWARD -i eth0 -o wlan0 -j ACCEPT

At this point, the basic networking setup should be complete. Plug in and power
up the remaining two boards (you should see them assigned the addresses 10.0.0.3
and 10.0.0.4). Edit the /etc/hostname file on each machine to name them node-2 and
node-3, respectively.

Validate this by first looking at /var/lib/dhcp/dhcpd.leases, and then SSH to the nodes
(remember again to change the default password first thing). Validate that the nodes
can connect to the external internet.

Extra Credit
There are a couple of extra steps you can take that will make it easier to manage your
cluster. The first is to edit /etc/hosts on each machine to map the names to the right
addresses. On each machine, add:

...
10.0.0.1 kubernetes
10.0.0.2 node-1
10.0.0.3 node-2
10.0.0.4 node-3
...
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Now you can use those names when connecting to those machines.

The second is to set up passwordless SSH access. To do this, run ssh-keygen and
then copy the $HOME/.ssh/id_rsa.pub file into /home/ubuntu/.ssh/authorized_keys on
node-1, node-2, and node-3.

Installing a Container Runtime
Before you can install Kubernetes, you need to install a container runtime. There are
several possible runtimes you can use, but the most broadly adopted is containerd
from Docker. containerd is provided by the standard Ubuntu package manager, but
its version tends to lag a little bit. It’s a little more work, but we recommend installing
it from the Docker project itself.

The first step is to set up Docker as a repository for installing packages on your
system:

# Add some prerequisites
sudo apt-get install ca-certificates curl gnupg lsb-release

# Install Docker's signing key
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor \
-o /usr/share/keyrings/docker-archive-keyring.gpg

As a final step, create the file /etc/apt/sources.list.d/docker.list with the following
contents:

deb [arch=arm64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] \
https://download.docker.com/linux/ubuntu   focal stable

Now that you have installed the Docker package repository, you can install contain
erd.io by running the following command. It is important to install containerd.io,
not containerd, to get the Docker package instead of the default Ubuntu package:

sudo apt-get update; sudo apt-get install containerd.io

At this point, containerd is installed, but you need to configure it since the configu‐
ration supplied by the package won’t work with Kubernetes:

containerd config default > config.toml
sudo mv config.toml /etc/containerd/config.toml

# Restart to pick up the config
sudo systemctl restart containerd

Now that you have a container runtime installed, you can move on to installing
Kubernetes itself.
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Installing Kubernetes
At this point you should have all nodes up with IP addresses and capable of accessing
the internet. Now it’s time to install Kubernetes on all of the nodes. Using SSH, run
the following commands on all nodes to install the kubelet and kubeadm tools.

First, add the encryption key for the packages:

# curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg \
| sudo apt-key add -

Then add the repository to your list of repositories:

# echo "deb http://apt.kubernetes.io/ kubernetes-xenial main" \
  | sudo tee /etc/apt/sources.list.d/kubernetes.list

Finally, update and install the Kubernetes tools. This will also update all packages on
your system for good measure:

# sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install -y kubelet kubeadm kubectl kubernetes-cni

Setting Up the Cluster
On the API server node (the one running DHCP and connected to the internet), run:

$ sudo kubeadm init --pod-network-cidr 10.244.0.0/16 \
        --apiserver-advertise-address 10.0.0.1 \
        --apiserver-cert-extra-sans kubernetes.cluster.home

Note that you are advertising your internal-facing IP address, not your external
address.

Eventually, this will print out a command for joining nodes to your cluster. It will
look something like:

$ kubeadm join --token=<token> 10.0.0.1

SSH onto each of the worker nodes in your cluster and run that command.

When all of that is done, you should be able to run this command and see your
working cluster:

$ kubectl get nodes

Setting Up Cluster Networking
You have your node-level networking set up, but you still need to set up the Pod-to-
Pod networking. Since all of the nodes in your cluster are running on the same
physical Ethernet network, you can simply set up the correct routing rules in the host
kernels.
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The easiest way to manage this is to use the Flannel tool created by CoreOS and
now supported by the Flannel project. Flannel supports a number of different routing
modes; we will use the host-gw mode. You can download an example configuration
from the Flannel project page:

$ curl https://oreil.ly/kube-flannelyml \
  > kube-flannel.yaml

The default configuration that Flannel supplies uses vxlan mode instead. To fix this,
open up that configuration file in your favorite editor; replace vxlan with host-gw.

You can also do this with the sed tool in place:

$ curl https://oreil.ly/kube-flannelyml \
  | sed "s/vxlan/host-gw/g" \
  > kube-flannel.yaml

Once you have your updated kube-flannel.yaml file, you can create the Flannel net‐
working setup with:

$ kubectl apply -f kube-flannel.yaml

This will create two objects, a ConfigMap used to configure Flannel and a DaemonSet
that runs the actual Flannel daemon. You can inspect these with:

$ kubectl describe --namespace=kube-system configmaps/kube-flannel-cfg
$ kubectl describe --namespace=kube-system daemonsets/kube-flannel-ds

Summary
At this point, you should have a working Kubernetes cluster operating on your
Raspberry Pis. This can be great for exploring Kubernetes. Schedule some jobs, open
up the UI, and try breaking your cluster by rebooting machines or disconnecting the
network.
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