
Steve Suehring

Learning
 DevSecOps
A Practical Guide to Processes and Tools

Suehring

SECURIT Y

Learning DevSecOps

linkedin.com/company/oreilly-media
youtube.com/oreillymedia

How do some organizations maintain 24-7 internet-scale
operations? How can organizations integrate security while
continuously deploying new features? How do organizations
increase security within their DevOps processes?

This practical guide helps you answer those questions
and more. Author Steve Suehring provides unique content
to help practitioners and leadership successfully implement
DevOps and DevSecOps. Learning DevSecOps emphasizes
prerequisites that lead to success through best practices
and then takes you through some of the tools and software
used by successful DevSecOps-enabled organizations.

You’ll learn how DevOps and DevSecOps can eliminate
the walls that stand between development, operations,
and security so that you can tackle the needs of other
teams early in the development lifecycle.

This book helps you:

• Learn why DevSecOps is about culture and processes,
with tools to support the processes

• Understand why DevSecOps practices are key elements
to deploying software in a 24-7 environment

• Deploy software using a DevSecOps toolchain
and create scripts to assist

• Integrate processes from other teams earlier
in the software development lifecycle

• Help team members learn the processes important
for successful software development

Steve Suehring has worked in
academia and the tech industry
in a variety of roles related to
DevSecOps. He has also written
several technology books
and has served as an editor
for LinuxWorld Magazine.

9 7 8 1 0 9 8 1 4 4 8 6 9

5 5 5 9 9

US $55.99 CAN $69.99
ISBN: 978-1-098-14486-9

“Learning DevSecOps
expertly weaves
theory with real-life
applications to provide
a comprehensive yet
accessible roadmap
to this critical f ield
in today’s software
development arena.
With emphasis on
cultural shift and
strategic planning, this
book is indispensable
in grasping the pivotal
principles of successfully
implementing DevSecOps
in any organization.”

—David Volm
Application security engineer,

FanDuel Group

Suehring

Steve Suehring

Learning DevSecOps
A Practical Guide to Processes and Tools

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14486-9

[LSI]

Learning DevSecOps
by Steve Suehring

Copyright © 2024 Steve Suehring. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Simina Calin
Development Editor: Melissa Potter
Production Editors: Jonathon Owen and Clare Laylock
Copyeditor: nSight, Inc.
Proofreader: Piper Editorial Consulting, LLC

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

May 2024: First Edition

Revision History for the First Edition
2024-05-15: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098144869 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning DevSecOps, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098144869

Table of Contents

Preface. vii

1. The Need for DevSecOps. 1
Developing Software 2

Developing Agility 4
Developing Broken Software 6
Operating in a Darkroom 7
Security as an Afterthought 8

Culture First 9
Processes over Tools 10

Promoting the Right Skills 10
DevSecOps as Process 11

The DevSecOps SDLC 13
Summary 15

2. Foundational Knowledge in 25 Pages or Less. 17
The Command-Line Interface 18

Command Line Versus Terminal Versus Shell 18
Why Do I Need the Command Line? 19
Getting Started with the Command Line 20

Protocols: A High-Level Overview 20
Protocol Layers 21
Two Protocols Plus Another 22
Basic Internet Protocols 23

Data Security: Confidentiality, Integrity, and Availability 31
Development Overview for Scripting 33

Commands and Built-ins 34
Basic Programmatic Constructs: Variables, Data, and Data Types 34

iii

Making Decisions with Conditionals 35
Looping 38
Lists and Arrays 39

Summary 39

3. Integrating Security. 41
Integrating Security Practices 41

Implementing Least Privilege 42
Maintaining Confidentiality 44
Data in Flight 45
Data at Rest 48

Verifying Integrity 50
Checksums 50
Verifying Email 52

Providing Availability 53
Service-Level Agreements and Service-Level Objectives 54
Identifying Stakeholders 54
Identifying Availability Needs 54
Defining Availability and Estimating Costs 55

What About Accountability? 57
Site Reliability Engineering 57
Code Traceability and Static Analysis 59

Becoming Security Aware 61
Finding Formal Training 61
Obtaining Free Knowledge 62
Enlightenment Through Log Analysis 63

Practical Implementation: OWASP ZAP 63
Creating a Target 64
Installing ZAP 65
Getting Started with ZAP: Manual Scan 66

Summary 74

4. Managing Code and Testing. 77
Examining Development 77

Be Intentional and Deliberate 78
Don’t Repeat Yourself 78

Managing Source Code with Git 79
A Simple Setup for Git 79
Using Git (Briefly) 82
Branching and Merging 86
Examining the Gitflow Pattern 87
Examining the Trunk-Based Pattern 89

iv | Table of Contents

Testing Code 90
Unit Testing 90
Integration Testing 91
System Testing 91
Automating Tests 91

Summary 94

5. Moving Toward Deployment. 97
Managing Configuration as Code and Software Bill of Materials (SBOM) 97
Using Docker 101

Container and Image Concepts 102
Obtaining Images 103

Deploying Safely with Blue-Green Deployment 112
Summary 113

6. Deploy, Operate, and Monitor. 115
Continuous Integration and Continuous Deployment 115

Building and Maintaining Environments with Ansible 116
Using Jenkins for Deployment 117
Creating a Pipeline 126

Monitoring 131
Summary 134

7. Plan and Expand. 137
Scaling Up with Kubernetes 137

Understanding Basic Kubernetes Terms 138
Installing Kubernetes 138

Deploying with Kubernetes 144
Defining a Deployment 144
Defining a Service 147
Moving Toward Microservices 149
Connecting the Resources 150

Integrating Helm 153
Summary 154

8. Beyond DevSecOps. 155
DevSecOps Patterns 155

Shifting Left and Adding CI/CD 156
Multicloud Integration 156
Integrated and Automatic Security 156
Linux Everywhere 157
Refactor and Redeploy 157

Table of Contents | v

Summary 157

A. Ports and Protocols. 159

B. Command Reference. 161

Index. 173

vi | Table of Contents

Preface

DevSecOps jobs are abundant, but looking at the requirements for those jobs, it’s
quickly evident that there is no agreement on what DevSecOps actually entails. That’s
what made this book quite difficult to write. I’ve written books on everything from
MySQL to JavaScript to Windows Server to Linux Firewalls. Each of those technolo‐
gies has a well-defined scope. Writing on Linux firewalls does not require covering
several different technologies and skills in the same book. But DevSecOps is not as
well-defined. Writing on DevSecOps exposes the fissures in how we define technolo‐
gies, between the actual hands-on work and the hype. Even the term “DevSecOps” is
not as widely used as the term “DevOps.” Granted, “DevSecOps” does not roll off the
tongue as easily as “DevOps,” but it’s more than that. Simply lending a voice to the
definition of DevSecOps is one of the reasons that I wrote this book.

The goal of this book is not to be a comprehensive step-by-step guide to implement‐
ing DevSecOps, whatever the term means. That book is impossible to write because
of the rapid changes in tools and the highly customized needs of each organization
moving toward DevSecOps. Rather, the goal of this book is to provide patterns
of success while also exposing some of the technologies and practices involved in
large DevSecOps deployments. The book does not cover every software tool that
an organization might use in DevSecOps. This is not an omission, or if it is, the
omission is intentional so that the focus can remain on processes and people rather
than technology and tools. Tech and tooling will change, but having the best people
implementing the best processes will always work.

What Is DevSecOps?
What is DevSecOps? It depends on who you ask. As defined in this book, DevSecOps
is a set of agile and iterative practices that help to deliver software and technology
systems rapidly, accurately, and repeatedly, emphasizing processes and people above
tools.

vii

DevSecOps is about culture first. I’ve worked for organizations that were so far away
from agile and iterative as to be spinning backward in the software development life‐
cycle. In such organizations, technologies are chosen by unqualified people without
any consideration for workflow, productivity, or best practices, much less the end
user. Deadlines are chosen before we even know what we’re building. Contrast, then,
DevSecOps cultures, where testing and security are natural extensions within the
development process rather than additions later on. Automation and scripting are
heavily emphasized in DevOps and DevSecOps.

Computing has a great way of reinventing itself over and over again. Many of the
practices shown in this book have been around since the early days of computing.
Mainframes allowed for slices of computing time and resources, and that’s what we do
today with cloud provisioning, just on a grander scale. Many of the things we do today
as modern DevSecOps practices have been around for decades on Linux. Scripting and
automation is not new, but formalizing it and getting buy-in from everyone involved in
an organization is the value brought by DevSecOps. That’s the essence of DevSecOps:
enabling people to use processes and tools to rapidly and repeatedly improve the
quality of software.

Who Is This Book For?
This book is for anyone interested in learning about DevSecOps and its predecessor,
DevOps. You might be involved in development, operations, or security and want
to learn about the melding of all three into a set of tools and processes for making
production-level deployments easier. To get maximum value from the entire book,
you should have a computing background, but everyone interested in DevSecOps will
benefit from Chapter 1, even those without a computing background.

Being able to write code, commit and push the code, and have tests automatically
executed on that code is one such practice in DevSecOps. Scaling across multiple
cloud providers is common as well. All of this is done seamlessly. Of course, all of that
automation needs people who understand not only the goals of the automation but
how to configure it. With that in mind, if you’re interested in learning about the pro‐
cesses involved in DevSecOps while also being exposed to some of the technologies
involved, then this book should be helpful.

How This Book Is Organized
This book is organized into eight chapters. With a few exceptions, the chapters
are largely standalone, meaning that you can read only the chapters or sections of
chapters that you find valuable.

Chapter 1, “The Need for DevSecOps”, helps to frame the story for the rest of the
book. The chapter demonstrates how software was developed with methodologies

viii | Preface

like Waterfall and Agile and how software is developed with DevSecOps. Chapter 1
also discusses the need to tear down departmental silos and places an emphasis on
the importance of culture in DevSecOps.

Chapter 2, “Foundational Knowledge in 25 Pages or Less”, condenses some of the
most basic knowledge needed to be successful at DevSecOps—or at least lays the
foundation for gaining such knowledge. If there was a way to condense weeks’ worth
of computing course material into one place, this is hopefully that place.

Chapter 3, “Integrating Security”, continues with some of the foundational material
from Chapter 2 but with a focus on security. Building on that foundation, we’ll
discuss the OWASP ZAP tool in Chapter 3.

Chapter 4, “Managing Code and Testing”, looks at git and the Gitflow pattern in
DevSecOps. The chapter also covers the various levels of testing.

Chapter 5, “Moving Toward Deployment”, introduces management of configuration
as code along with Docker. We’ll also build a local registry for Docker.

Chapter 6, “Deploy, Operate, and Monitor”, examines Ansible and Jenkins for
deployment and code building. Both of these technologies are widely used, though
they’re certainly not the only technologies that perform deployment and build
tasks. Chapter 6 also discusses monitoring, with an emphasis on best practices for
monitoring.

Chapter 7, “Plan and Expand”, integrates Kubernetes into the DevSecOps coverage,
clustering and expanding the deployment of software in an organization.

Chapter 8, “Beyond DevSecOps”, wraps up the book with coverage of five patterns
and takeaways from successful DevSecOps organizations.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Preface | ix

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

x | Preface

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/LearningDevSecOps.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
Thank you to the technical reviewers, Patrick Dubois, David Volm, Swapnil Shevate,
and Vladislav Bilay, for their time, effort, and feedback. They helped identify areas
that needed additional coverage and gave their expertise in other areas of the book.
Thanks to Rob, Jim, and Jaclyn at Partners and to Tim for the assistance with review
questions.

Preface | xi

https://oreil.ly/LearningDevSecOps
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

CHAPTER 1

The Need for DevSecOps

Software is created to solve problems. However, too often, creating software comes
with its own set of problems, sometimes even creating new problems along the way.
An organization makes a decision whether to develop customized software or to
purchase prebuilt software. The prebuilt option is most economical for commodity
software like an office productivity suite. But custom development is often needed for
development of advanced solutions in business functional areas. Custom solutions
are created in pursuit of the ultimate goals of gaining competitive advantage or
increasing efficiency.

The process of developing software changed significantly in the late 1990s and into
the early 2000s. That major shift went from an intense focus on gathering require‐
ments to a focus on iteration and speed. The iterative manner in which software is
developed features repeatable processes and automation that enable rapid delivery
of new features, incorporating feedback loops throughout the development lifecycle.
Together with organizational cultural changes that promote an open source, transpar‐
ent mentality, the result is cross-functional teams concerned more with quality than
territory and merging of multiple teams: Development, Operations, and Security—
DevSecOps.

This chapter looks at the drivers behind the DevSecOps movement. The process of
software development is the initial focus. The evolution of software development
methodologies provides the background needed to fully understand, and thus be
successful at, DevSecOps. The chapter continues with an emphasis on the importance
of cultural changes for organizations moving toward DevSecOps.

1

Developing Software
To achieve their goals, organizations allocate some of their resources to create soft‐
ware. It’s important to consider that these resources could be invested elsewhere
where the resources might gain a higher return. For example, investing $100,000
into marketing might result in more customers than investing those funds into
streamlining the customer sign-up process on the website.

Even if money is not a concern, speed is. The ability to create and then deploy
software quickly is a limiting factor on any effort to gain competitive advantage or
increase efficiency. After a certain point, adding more developers to a project does
not get that project done any faster. Just the opposite. As more developers are added,
coherent communication becomes impossible.

Software starts as an idea. Taking that idea and turning it into working software
requires forethought and planning. A software development project can be managed
using several processes, depending in part on the type of software being developed.
Software development involves defining the requirements, designing the solution,
developing and coding, and finally testing the software just prior to release. This
process is illustrated in Figure 1-1.

Figure 1-1. A process for software development

The four stages, sometimes called a software development lifecycle (SDLC), can be
conceptualized as a waterfall, with each stage producing one or more artifacts, which
are then passed or fall to the next stage, more like Figure 1-2.

Figure 1-2. Completing each phase of a project in waterfall development

2 | Chapter 1: The Need for DevSecOps

When using a methodology like waterfall to create software, each stage is completed
prior to moving on to the next stage. This is illustrated within Figure 1-1 where
requirements are gathered and documented before moving on to the design phase,
labeled “Design solution” in Figure 1-1. If a new requirement is discovered during
the design phase or additional questions lead to new requirements, those elements are
frequently added into a follow-on project.

At the end of the requirements-gathering phase, the project formally has a scope
defined, which includes all of the features of the software. These features incorporate
the primary functions of the software along with additional features that aren’t tech‐
nically required for the software to function but are expected. These nonfunctional
requirements are items like responsiveness or speed, security, and other behaviors of
the application. Without capturing and adding the nonfunctional requirements, the
resulting software product will leave users frustrated and underwhelmed.

Consider a business requirement: enabling a customer to find a product and place an
order. Prior to computers, this business requirement was fulfilled in any number of
ways, including the customer walking into a store, finding, and then purchasing the
product or using a catalog to find the product, calling the company, and placing the
order via telephone. With computers and the internet, this business requirement is
now frequently accomplished through the web.

Fulfilling the business requirement of enabling a customer to find a product and
place an order using a website leaves significant space to find a solution. Uploading a
PDF of the catalog to the website and providing a form that enables the customer to
email their order fulfills the minimal functional requirements for the site. However,
even though the requirement is fulfilled, most users would expect something different
and probably wouldn’t order with such a clumsy process that lacks many of the fea‐
tures that customers take for granted within the user experience of ordering products
online.

Instead, nonfunctional requirements also need to be captured. A few exploratory
questions to the stakeholder or project sponsor would reveal rich detail about the
intent for the solution. For example:

• How will products be represented on the site (photos, narrative, technical specifi‐•
cations, and so on)?

• Who will take product photos and produce them for the web, and who will write•
the narrative production description?

• How will inventory be updated so that customers can’t order products that are•
out of stock?

• How will orders be placed?•
• How will employees be alerted when a new order is placed?•

Developing Software | 3

• Who will maintain the online catalog with new products?•
• What forms of payment are accepted?•
• Do customers need to create accounts, track order history, track shipping?•

These questions represent just a small fraction of the questions that would need to be
answered during an initial exploratory or feasibility meeting. Some of these questions
are already or will quickly become functional requirements during the feasibility
phase or during the requirements-gathering phase. However, absent someone in the
meeting who has deployed a project such as this, there would surely be missed
requirements.

The scope of the project, then, defines those elements that are included and delineates
other elements that are not meant to be included within a project. Anything not
specifically included is assumed to be excluded and thus out of scope for the project.
If a fundamental requirement was missed, the project sponsor will face the unhappy
choice of redefining scope or moving forward without that requirement and then
adding the missed feature in a later follow-up project.

Months or even years of calendar time can elapse between the idea and the imple‐
mentation. The delay between idea and released software product makes waiting for
a missed feature even more painful for the project sponsor. Within that delay, any
competitive advantage that might have been realized can quickly evaporate when a
competitor who didn’t miss the requirement releases their own version.

The following sections examine some of the problems and associated solutions sur‐
rounding modern software development.

Developing Agility
In response to the lag between project definition and completion, organizations
have turned toward iterative processes like Agile and Scrum as a means to rapidly
deliver value to the stakeholder. With an iterative software development process, all
four stages described earlier (requirements, design, development, and testing) are
performed. Rather than attempting to capture all requirements for all possible aspects
of the project, iterative development focuses on the features that are of the highest
value to the stakeholder. The highest-value features are then expanded through
a round of requirements gathering before being designed, developed, tested, and
released, with a short cycle of two to four weeks. Figure 1-3 shows how each phase of
the SDLC is handled with an iterative process like Agile.

4 | Chapter 1: The Need for DevSecOps

Figure 1-3. Iterating through each phase and then starting over with an Agile-like
process

As illustrated in Figure 1-3, each phase is completed, but there is no attempt to
gather full requirements because of the learning process associated with iterative
development. If a requirement is missed, the stakeholder can choose to not release
the feature or add the missed requirement in the next iteration. With an iterative
development process, the next release is only weeks away rather than months or years
away. Contrast that to a missed requirement in a waterfall process, where the next
release may be months or years away, and you can see the clear benefit of this process.

Iterative development also enables rapid response to changing market conditions. For
example, you might have the best idea for the next killer app, start development on
that app, but then have your competitor release essentially the same app. In a waterfall
model, you would need to scrap the project entirely. With an iterative process, focus
can be shifted toward features that might be missing from the competitor’s app.

Agile software development features several ceremonies such as sprint planning,
daily stand-up, sprint review, sprint retrospective, and backlog grooming. An overall
backlog or list of all of the possible features known at a given moment is created
and prioritized. From that prioritized list of features, a sprint backlog is created. The
sprint backlog is a commitment from the development team of which features will
be implemented during the current iteration. The sprint backlog is created based on
availability of team members and their estimation of effort, also called level of effort
(LOE), for each individual item on the backlog.

At the end of the sprint, a sprint review is conducted where the team shows off what
it has accomplished during that iteration. After the sprint review has been completed,
the team examines what might have been done differently during the sprint within
the retrospective. A team might answer three questions during the retrospective:

• What should we start doing?•
• What should we stop doing?•
• What should we continue doing?•

Developing Software | 5

These three questions enable the team to reflect on what worked, what didn’t work,
and what they might change moving into the next iteration. With the retrospective
complete, the team can move toward backlog grooming, where the product backlog is
refined and reprioritized. The stakeholder or product owner is usually involved in the
backlog refinement process to set priority for the team.

Developing Broken Software
Flawed requirements lead to flawed software, or software that doesn’t meet the orig‐
inal requirement. Flawed software can happen regardless of whether that original
requirement was successfully elicited from the project sponsor. The end result is
dissatisfaction, broken functionality, and security problems.

When examining the requirements, developers are often left with questions. These
questions range from the mundane, such as where to place the curly braces for a
conditional in some languages, to the critical, such as obtaining credentials for a
database connection. In the latter case, development may need to stop while those
credentials are obtained. In other cases, developers simply answer the question to the
best of their ability and keep moving forward.

Developing software in a silo, devoid of interaction with anyone other than develop‐
ers, leads to broken software. In the siloed development style, using a waterfall or
similar methodology, the developers examine and interpret requirements to the best
of their ability. Consider the following question: “In which web browsers should
the site work?” along with a common answer: “Browsers? I’ve been developing
using Chrome; I didn’t think about the site working in other browsers.” Figure 1-4
illustrates development in a silo, where developers, operations staff, and security
engineers don’t communicate well.

Figure 1-4. Siloed development in an organization leads to lack of visibility

6 | Chapter 1: The Need for DevSecOps

Deadlines dictate the number of features and the quality of those features. The
deadline for delivery may be such that there is no time to even identify the issues that
might occur when testing using a different browser or different viewport such as a
phone, much less fix those issues. If cross-browser testing was not included as a step
in the project and the browsers in which the site must work were not specified in the
requirements, then it’s anyone’s guess as to which browsers the site will work in.

Deadlines, or the timeline of the project, is one of the three levers that can be
controlled within a software development project. The other two levers are cost and
features. The adage is that a given project can choose two of the three, meaning that if
the project needs to be done quickly and with many features, then costs will increase.
Likewise, if a project needs many features but low costs, then completing the project
will take longer. Finally, if costs must be kept as low as possible while still meeting the
deadline, then features are the first thing to be sacrificed.

Figure 1-5 illustrates the concept of the software development triangle.

Figure 1-5. Choose two of the three elements at any one time

The next problem I’ll address is the handoff between development and QA.

Operating in a Darkroom
Somewhere between development and testing lies an all-too-often awkward handoff
between those who developed the software and those who are now charged with
deploying, operating, and supporting the software in its production environment: the
operations team. The operations team may be known by many names, including net‐
work administrators, system administrators, or engineering (site reliability engineer
[SRE], production engineers, and the like), among others.

The operations team needs to take software that may never have been tested on
a computing environment like the one in production and run it according to the
service-level agreement (SLA) needed by the organization. That software may have
only been tested on developer workstations and then a small quality assurance (QA)
environment. The QA environment may have an entirely different configuration—for
example, it may be lacking a load balancer, may be deployed in a different region,

Developing Software | 7

and may be significantly less busy than its production counterpart. Nevertheless, the
software is deployed into production, and the operations team needs to support it.

Consider this scenario: up until the moment that the software was deployed, every‐
thing worked well. There was virtually no latency for any requests, and even when
all of the developers were working on the site, response times were unremarkable.
Unnoticed was that the developers were using a server that was physically located on
the same local area network (LAN) as they were and that the data being used by the
application came from a nonproduction replica that rarely receives any requests.

When the software was deployed to production by the operations team, the site was
instantly underperforming to the point of being unusable. Users logging in were
unable to continue because sessions were spread across multiple servers instead of
just the one that the developers were using during the entire development lifecycle.
And then you have the security problem.

Security as an Afterthought
A “ship at any cost” mentality can exist in some organizations along with a “mini‐
mally viable product” (MVP) attitude. While in theory such a development paradigm
might work, the assumption is that there will be time allocated to circle around and
fix the issues that made the software “minimally viable” in the first place. That time
rarely exists.

When deadlines loom, security seems to be the first requirement to be sacrificed,
assuming security was thought of at all. Much like math, security is hard. Security
analysts need to be right every time, while an attacker only needs to be right once.

Too often, the data security department within an organization is seen as the depart‐
ment that says “no.” Whether you’re talking about a request for a new application, a
firewall change, or relaxing rules on database access, the people tasked with maintain‐
ing security necessarily lean toward saying no when a change request comes through.

The inherent problem both with operations and data security is that they are invis‐
ible until something goes wrong. In the case of data security, much time is spent
responding to compliance audits that seemingly add very little value to day-to-day
security for many organizations. Make no mistake, legal and regulatory compliance
is essential, but regulations often lag reality, meaning that the regulations capture
compliance against yesterday’s vulnerability while the attackers are using the latest
zero-day.

8 | Chapter 1: The Need for DevSecOps

In the context of DevSecOps, security integration is necessary early so that firewall
changes or noncompliant methods of accessing and storing data are never even con‐
sidered. Without security integration, a developer might use unencrypted passwords
or store credentials in the source code management system, potentially exposing
them to individuals who are not authorized to view the data.

This section addressed many of the issues associated with software development,
some of which are solved with DevOps and DevSecOps. Next, I’ll dive into how your
organization’s culture can determine your success with DevSecOps.

Culture First
Organizational culture is the primary factor that determines whether DevSecOps
will be successful. A control-oriented, top-down organization will struggle with the
changes necessary to truly implement DevSecOps. Such an organization may use
technology that feels like DevSecOps, but the cultural shift toward cross-team polli‐
nation will prevent true success.

A certain appreciation for the importance of cultural fit is not possible unless and
until you’ve experienced trying to implement Agile-like practices in a rigid control-
oriented organization. In such an organization, the best solution is less important
than subordination and maintaining separation to keep control at the top. Without
that experience, it might be possible to believe that culture plays no role in DevSec‐
Ops success.

Of course, anarchy and chaos isn’t the goal of DevSecOps. Instead, DevSecOps facil‐
itates a problem-solving approach even if the solution comes from someone in a
different department. Some may believe that DevSecOps thrives when used with a
startup mentality (historically a much more flexible culture), but the movement is
much more nuanced than that.

A startup mentality implies both competitiveness and innovation, breaking new
ground without regard to hierarchy. The founder of a startup frequently works
alongside employees as their peer, possibly mentor, to drive the product forward. In a
startup, job titles are less important than ensuring that the work is accomplished.

Within DevSecOps, people work together across job functions, using their skills
where needed. Like a startup, the team is transparent about their work, focusing
on the end goal of accomplishing useful work. In such an environment, potential
problems can be identified and addressed early, well before that problem becomes
visible.

Culture First | 9

DevOps Without Sec
Before DevSecOps, there was DevOps (Development and Operations). However, the
realization soon occurred that development and operations cannot be successful
without meaningful integration of security best practices. By integrating security
discussions at project inception, security can become pervasive but not invasive.

DevOps can exist and be helpful even if the organization is not ready to fully integrate
security. However, the same problems that led to the DevOps movement, where
problems with a deployment are not found until too late, can happen because of
the (necessary) security controls in place within the production or live environment.
When that occurs, momentum builds toward DevSecOps as a cultural change.

The next section looks at the core of DevOps, which is an emphasis on processes
versus the tools used to implement those processes.

Processes over Tools
DevOps and DevSecOps are more about processes than the tools used to implement
those processes. Without the cultural fit and changes to process, the tooling used
in DevSecOps often gets in the way of progress and sometimes slows development
down. Even if an organization isn’t ready to make the cultural changes needed
for true DevSecOps, some benefit is possible by using a few of the best practices
underlying DevSecOps. Let’s explore a few of those now, starting with knowing how
to recognize the talent who will embrace DevSecOps.

Promoting the Right Skills
Management buy-in and visible commitment to DevSecOps processes is the absolute
final arbiter over whether DevSecOps will be successful. Merely having teams talk to
one another is a first step, though likely more symbolic than productive. Managers
can’t expect to bring people together who have interests that sometimes clash and
expect magic to happen.

The processes involved in finding value with DevSecOps require varied skill sets that
cut across functional areas. For example, a developer that also deploys their own
clusters and can articulate the difference between DNS and DHCP is a candidate for a
DevSecOps pilot program within an organization. Therefore, identifying the employ‐
ees who have cross-functional experience is the true first step. Those individuals can
be used to champion efforts around DevSecOps.

Identifying eclectic skills and then enabling employees with those skills to cross
functional boundaries is the first step of the process and illustrates the importance of

10 | Chapter 1: The Need for DevSecOps

management and executive buy-in for DevSecOps. Developers will need access to, or
at least visibility into, server and network areas that may have been solely under the
purview of Operations. Operations and Security staff will need to have substantive
early input within the project lifecycle so that they can provide feedback to improve
downstream processes. For example, a change for a project in development will
increase disk utilization immensely. However, with a slight change to the project,
utilization can be shifted onto a different system. The opportunity to implement
that change would only be available early in the development process, which is why
having Operations staff substantively involved in every project is important.

DevSecOps as Process
The process of DevSecOps brings people from different functional areas together.
Once together, the goal is to produce better software—software that meets require‐
ments and is delivered rapidly and accurately. The process of delivering this software
can, and frequently does, involve tooling. Let’s explore some of the processes in this
next section.

Hammers and screwdrivers
Tools are essential to complete some jobs efficiently. A roofer used a nail gun attached
to a compressed air tank to attach shingles to my roof. That same job could have been
done using a hammer but would have been much more difficult to accomplish with a
screwdriver. Sure, the contractor could’ve used the handle of the screwdriver to drive
the nails through, but doing so would have been slow and inefficient and would have
resulted in nails being bent and shingles being damaged. Put me on the roof trying
to handle the nail gun, and there would have been at least one trip to the emergency
room.

DevSecOps is similar. Just as properly roofing a building takes a combination of
skilled workers and tools, DevSecOps requires tools and the know-how to use the
tools properly. Just as a powerful nail gun is the right tool when used by a qualified
person, DevSecOps tooling can provide huge efficiency gains when used by the right
people.

The tool should help complete the job, but the tool does not define the job.

Repeatability
DevSecOps focuses on building repeatable processes, which then facilitates auto‐
mation. Or perhaps it is the other way around. Automation facilitates repeatable
processes. Yes, both are true. Automating the creation of environments and the
deployment of code enables those processes to be repeated, time and again, with the
same result. Automated testing relieves the burden of needing to manually test and
retest the same areas of code, even after changes or bug fixes have been implemented.

Processes over Tools | 11

When implementing processes and tools to assist in repeatability, an “as Code” para‐
digm comes to the foreground in organizations practicing DevSecOps. “Infrastruc‐
ture as Code,” “Configuration as Code,” “Everything as Code” are terms that all refer
to the same concept: manage as much as possible using source code management
tools and processes.

Most servers use text files or text-like files to store configuration elements. These text
files can be stored in a source code management tool such as Git. Doing so enables
versioning of configuration changes. For example, other administrators can look back
through the commit history and see that I used an underscore in a DNS hostname
once and took thousands of domains offline. At least that repository is not publicly
available, so no one will find my mistake. In seriousness, versioning configuration
changes makes for rapid recovery if there is an issue caused by a configuration
change. Source code management practices for server configurations also facilitate
versioning, meaning that developers can deploy a certain set of configurations to
re-create a bug being reported using the same environment.

The same set of configurations with the same versions of software makes software
deployment repeatable. Repeatable deployment is directly connected to continuous
integration/continuous deployment (CI/CD) scenarios, where code is automatically
tested and promoted through a series of environments before being promoted to
the production environment. An administrator changes a configuration element for
a service, commits the configuration file, and pushes the change to the remote
repository where the change is noticed and deployment is automatically started to the
appropriate servers.

I’m purposefully ignoring the numerous formats that are used
to store configurations such as Yet Another Markup Language
(YAML), INI file structure, Extensible Markup Language (XML),
JavaScript Object Notation, brew scripts, m4 commands, and any
other structure that can be edited with a text editor like Vim. For
the purposes of this book, and unless doing so would cause undue
confusion, you’ll see all of these formats simply referred to as text
files. Here’s an example of YAML:

- name: add docker apt key
 apt_key:
 url: https://download.docker.com/linux/debian/gpg
 state: present

- name: add docker repo
 apt_repository:
 repo: deb [arch=amd64] \
https://download.docker.com/linux/debian stretch stable
 state: present

12 | Chapter 1: The Need for DevSecOps

Visibility
DevSecOps also serves to enable visibility throughout the development process. Not
only is there frequent visibility through an Agile ceremony like Daily Standup, but
there’s also visibility through the tooling that deploys code automatically to environ‐
ments on demand. Members of a DevSecOps team can see exactly which code and
configurations exist in which environments and can deploy new environments as
needed.

Reliability, speed, and scale
Repeatability and visibility lead to reliability. Code and environments can be deployed
consistently, time and again, in the same way. If there is an error during deployment,
that error is found immediately because of the visibility inherent in the deployment
tools and processes. With reliability then comes speed, or the ability to quickly
react to changing needs. That change may be a need to scale up or down based
on demand, which is possible and no longer difficult because of the repeatable and
reliable processes involved in deployment.

Microservices and architectural features
Though not directly required for DevSecOps, the use of microservices can serve as
an enabler of speed and scale. With microservices, small functional areas of code
are identified and separated such that those functional areas can stand on their own,
providing a consistent application programming interface (API) to other services
within the architecture. The API is frequently expressed through an HTTP web
service. Being standalone, microservices can be developed and deployed separately
from other services or functional areas, thereby further increasing overall speed and
development momentum.

This section looked at some of the processes involved in DevOps and DevSecOps.
The next section expands on the SDLC shown earlier in the chapter, incorporating
the ideas behind the processes to create an expanded SDLC for DevSecOps.

The DevSecOps SDLC
By this point, hopefully you have a feel for some of the problems inherent in software
development; even relatively new methods of development like Agile foster a silo
mentality. Instead of the four-phase model shown in Figure 1-2, an eight-phase
model has been created. This model incorporates planning, development, and testing
along with other tasks and is shown in Figure 1-6.

The DevSecOps SDLC | 13

Figure 1-6. Creating a new SDLC for DevOps

The primary advantage to the DevOps SDLC is that it more closely reflects what
actually happens for software development. Much more time is spent coding and
testing the software than planning to code and test the software, but the interim
“build” step reflects the assembly stage where the various pieces that comprise a
modern application are connected to one another. Likewise, the “release” step reflects
the need for multiple components along with potential approval gates through which
the software must pass to begin deployment. Not captured in the SDLCs covered in
this chapter is the need to both operate and monitor the software after it goes live.
Without the “operate” and “monitor” phases, the Operations team becomes invisible
again.

You may have noticed that “Sec” has been temporarily dropped in the last paragraph
and in Figure 1-6. That’s because DevOps was its own movement prior to adding
security in the middle. It’s clear that there is a need for security, but where should
it go? Conceptually and practically, it would be difficult to implement security as
its own phase. If “add security” is a new phase and is done after planning, then
what happens when a security issue is introduced during coding? Adding the security
phase after or during testing or to the release phase is also difficult. What happens
if a serious security issue arises? Does the entire project grind to a halt to remediate
the problem? Relegating security even later, to operations and monitoring, effectively
means that the issue will occur in the production environment, with the inherent
danger brought by a live production security problem.

Instead, security is usually shown as underlying each phase. You may see security
illustrated as in Figure 1-7.

14 | Chapter 1: The Need for DevSecOps

Figure 1-7. Security is part of every phase of a DevSecOps SDLC

Security is usually depicted in this way to highlight the need to incorporate security
and security-oriented processes at every phase of software development. This allevi‐
ates the need to determine where a security phase should appear or what to do when
a security issue is found.

The expansion of the SDLC from the four-phase model to the newer eight-phase
model, wrapped by security, enables practitioners of DevSecOps to reflect the pro‐
cesses that encompass modern software development. Importantly, the tasks com‐
pleted in each phase were happening behind the scenes anyway. The DevSecOps
SDLC merely highlights those tasks. These phases will be examined throughout the
remainder of the book.

Summary
DevSecOps comes as a natural progression of software development. From Agile
processes and a transparent open source mentality, DevSecOps works to break down
silos that slow down development and make development less reliable. Cultural
changes, started at the top of an organization, are the primary key element to achiev‐
ing the most benefit from DevSecOps. Barring the commitment from management,
DevSecOps can devolve into more tooling that is only half-used. However, with
cultural changes and a breakdown of barriers between teams, tools can be added to
facilitate the repeatability, visibility, reliability, speed, and scaling needed by modern
organizations.

Summary | 15

From here, the book examines common DevSecOps practices using the content
from Figure 1-7 as a guide. Each chapter covers one or more of the phases in the
DevSecOps SDLC. There is a specific focus on processes and practices and coverage
of select tools used within those phases. Prior to beginning on the infinite path of
DevSecOps, Chapter 2 contains foundational knowledge that will be helpful for the
later chapters of the book. Many readers will already have much, if not more, of this
knowledge already. Likewise, many readers will have notions of some of the areas
covered in Chapter 2, depending on their background. Of course, the technologies
covered in Chapter 2 may also be entirely new. But as the book goes deeper into
DevSecOps, having a common and shared definition for often-overloaded technical
terms will be helpful for all.

16 | Chapter 1: The Need for DevSecOps

CHAPTER 2

Foundational Knowledge in
25 Pages or Less

During the latter part of my career, I have taught on the beautiful campus of Univer‐
sity of Wisconsin–Stevens Point. The computing program at UWSP enables students
to pursue degrees in multiple subjects and emphases. The classroom experience
demonstrated the need for students to gain exposure to topics outside of their major
or emphasis. For example, students within a development-focused major found value
from experience with command-line tools and traditionally operations-focused areas
like DNS. Likewise, students within networking and server tracks were helped by
learning programmatic techniques for scripting.

If there is a common technological skill that all DevSecOps practitioners need to
be familiar with, it’s working in a shell or terminal, also known as a command-line
environment. Whether creating scripts and configuration files, running commands,
or troubleshooting errors in logfiles, the command line is central to becoming adept
at DevSecOps and even in your specific role as a developer, security admin, or
operator. Command-line skills are a differentiator toward going to the next level with
DevSecOps.

This chapter provides a high-level overview of many of the subjects that many
organizations encounter while working toward and with DevSecOps practices and
processes. If I polled 100 people with some computing experience, there would be
at least 101 different responses for subject matter coverage. With that in mind, the
chapter will not attempt to cover the breadth of subjects that you might need at some
point during your career or your DevSecOps journey. The chapter will also not be
able to provide the depth of coverage needed on each subject. Entire degree programs
are designed to provide that depth.

17

The chapter begins with an introduction to the command-line interface before con‐
tinuing with coverage of the basic networking models in use today. DNS is included
in the chapter due to its importance for troubleshooting and for some knowledge
sharing that will be helpful as discussions between teams occur in DevSecOps.

The Command-Line Interface
If there was a single differentiator between computing professionals, those who hold
a job role related to computing, and hardcore hobbyists, that differentiator would be
the use of the command-line interface (CLI). Many network and computing devices
have CLIs through which the devices can be managed quickly and efficiently. The vast
majority of the busiest sites on the internet and backbone services of the internet are
BSD- or Linux-based, and desktop graphical user interfaces (GUIs) are not used or
even installed. This makes the CLI an essential part of the job. Automation, configu‐
ration, and scripting are all centered around the CLI in most modern environments.

Command Line Versus Terminal Versus Shell
What I’ve been referring to as the command-line interface goes by many names. You
may hear command line, command-line interface, command prompt, command-line
environment, shell, shell prompt, shell environment, terminal, SSH, or some variation
thereof. While there are some key differences, the large majority of these differences
are unimportant to the DevSecOps practitioner.

The shell is a program that provides a CLI into a computing device. Just as there
are many programs that seem to do the same thing, so too are there many shell
programs. A common shell is known as Bourne-again shell or bash. It is common
enough and widely available, and thus I will assume bash unless specified otherwise
for the remainder of the book. If you’re using a Mac or Linux, then you have a shell
installed, available through Terminal. It’s worth noting that depending on the version
of macOS, the default shell could be bash or Z shell.

Capitalization is an issue when writing about bash. When the word
“bash” appears at the beginning of a sentence, you need to capital‐
ize it. However, when referring to bash as a command, it should be
lowercase because it will be lowercase on whatever system you’re
using the command or shell on. Here’s my advice: ignore any
differences in capitalization that you see when referring to bash.
I promise not to use that as a license to capitalize “bash” in new
ways, but you may see “Bash” on occasion, both in this book and
on the internet. “Bash” and “bash” are the same in this format, but
the command itself will always be lowercase when using it. Luckily,
you will typically only use the word “Bash” as the opening line to
scripts that you write.

18 | Chapter 2: Foundational Knowledge in 25 Pages or Less

Not All CLIs Are Created Equal
The command prompt in Windows provides an interface based on DOS (Disk
Operating System) and has severely limited capability when compared with a more
robust shell environment of the type found on Linux. PowerShell for Windows is an
improvement over the command prompt and enables full scripted access to the Win‐
dows environment. However, in recognition of the importance of Linux, Microsoft
created the Windows Subsystem for Linux (WSL), which provides a nearly full Linux
experience and enables Windows users to utilize a CLI by installing one or more
popular Linux distributions.

The process for installing WSL has evolved over the last several years, and WSL itself
is now known as WSL 2. I haven’t yet found a consistent “this always works” means
to install WSL on a Windows build due to the many different configurations and
features that may be installed on a given Windows system. Even a Windows installer
that I received from Bill Gates didn’t work to install WSL 2 on the first try and
without a series of reboots. With that out of the way, you’ll find the instructions for
installing WSL 2 in the WSL documentation.

Why Do I Need the Command Line?
I’ve heard variations of the question “Why do I need the command line [or SSH or
Terminal]?” for many years. The answer is simple: speed. Much (possibly all) of the
work of a DevSecOps practitioner can be done faster and more efficiently from a CLI.
When using a CLI, your hands never need to leave the keyboard in order to click a
menu or button.

When programming, an editor like Vim can be used entirely from the home position
on the keyboard, and the software involved in security and operations will have a
command to run, whether in addition to a GUI or whether as its sole means to
execute the program.

A very simple use case for the CLI, including a WSL Linux install, is to create
a backup of important files. The rsync command can be used to synchronize or
transfer files from your local machine to a shared storage or a backup USB drive. I
maintain a music library for DJs that is somewhere under 20,000 files across a deep
hierarchy of directories. The files are stored in both a large/uncompressed version
and then in several other formats that have smaller file sizes. The rsync command is
used to create backups of these files. If something happens to the network connection
or the process stops for some reason, rsync will pick up from where it left off. When
files are added, rsync will only send the changed files rather than all of the files again.

The Command-Line Interface | 19

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install

Getting Started with the Command Line
If you’re using Mac or Linux, you already have a full-featured CLI at your disposal
through a Terminal window. If you’re on a Mac, then the Terminal, found under
Applications → Utilities, will place you directly into a CLI. Accessing the CLI on
Linux varies depending on distribution and means of access. If there’s a desktop
environment, then you will typically find a terminal program. Otherwise, using
Secure Shell (SSH) to connect to the Linux computer will also work.

If you’re on a Microsoft Windows 10 or 11 computer, then installing WSL 2 is an easy
way to get started. If you’re on an earlier version of Windows or cannot install WSL 2,
then virtualization software like VirtualBox will enable you to install a full copy of a
Linux distribution.

Later in this chapter and throughout the book, the command line will be used
frequently. In addition, Appendix B contains a select group of commands to help nav‐
igate in the command line. Now let’s move from the command line into a high-level
overview of protocols.

Protocols: A High-Level Overview
The internet communicates through a series of protocols. When thinking of commu‐
nication, protocol is merely an agreement on how each party will act. Consider
a voice conversation on a telephone. One party places the call, which causes the
receiving party to answer with some form of “Hello” or similar statement. The party
who placed the call then responds with a greeting, maybe also “Hello.” The calling
party may follow their greeting with an introduction and may also state the purpose
of the call.

That narrative describes the typical protocol for a voice call, where each side is
expected to act in a certain way. Consider what happens when the protocol breaks
for whatever reason. Sometimes an incoming call may arrive just as the receiver is
picking up the handset, in which case they may not know that there was an incoming
call and therefore won’t say “Hello” to initiate the conversation. More common with
robocallers is for the receiver to answer “Hello,” which is then followed by a long
pause while the robocalling software connects to a real person on their side. This
introduces the concept of a timeout to protocols. When the receiver answers with
“Hello,” they typically expect a response within a short timeframe. If not, then there’s
a strong indication that the call is a robocall.

The discussion of protocols around telephone conversations can be extended to
many human interactions on a daily basis. Without protocols, there would be chaos.
Computers, especially network communications, are built around conformance to
protocols. Just as with human interaction, those protocols ensure interoperability.
Without protocols, each vendor would have their own implementation of every form

20 | Chapter 2: Foundational Knowledge in 25 Pages or Less

https://learn.microsoft.com/en-us/windows/wsl/install
https://www.virtualbox.org

of communication, and rarely would those communication methods be compatible.
Want to send an email to someone who uses products from a different vendor? You’d
need to sign up for that network and use proprietary software to do so.

Instead of the nightmare of noninteroperable software, the internet is built on com‐
mon, shared, and open protocols—mostly. The basis of communication is Internet
Protocol (IP), which has various means to be transported from point to point, from
device to device. Many other common and foundational network services are similar
and rely on IP as the basis of communication. This section examines protocol layers
and related models for networking.

Protocol Layers
Communication related to networks is typically represented by one of two models,
the Open Systems Interconnect (OSI) model or the TCP/IP model. The OSI model is
depicted in Figure 2-1.

Figure 2-1. The layers of the OSI model

The TCP/IP model is similar, except that the session, presentation, and application
layers are converted into a single application layer, and the data link and physical
layers are combined into a single local Link or local network layer. This is depicted in
Figure 2-2.

Protocols: A High-Level Overview | 21

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Internet_protocol_suite

Figure 2-2. Comparing the TCP/IP model (left) to the OSI model (right)

When devices communicate over a network, the data is passed down the layers from
an application such as a web browser and eventually onto a physical medium such
as wired Ethernet or radio signals for WiFi. The receiver then passes the data up
through the layers to the corresponding application on the receiving side.

Two Protocols Plus Another
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the
most common protocols that you will encounter on a daily basis. TCP is connection-
oriented, and UDP is connectionless. This difference means that applications using
TCP should receive packets in an orderly sequence, whereas applications using UDP
are responsible for ensuring that packets have arrived and for asking for retransmis‐
sion when packets have not arrived. Much of what will matter to the DevSecOps
practitioner relies on TCP, with a notable exception around the Domain Name
System (DNS) protocol, which is covered later in this chapter.

An outlier protocol that doesn’t quite fit is Internet Control Message Protocol
(ICMP). ICMP is the protocol behind the ping command that you might use to
verify connectivity. This chapter will not deep-dive into ICMP beyond the superficial.
However, within the context of ICMP, there are various message types that are
used by routers and network devices to note network states. When using the ping
command, you are sending ICMP message type 8, “Echo Request,” and, if the device

22 | Chapter 2: Foundational Knowledge in 25 Pages or Less

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

under test responds, it will respond with “Echo Reply,” also known as ICMP message
type 0.

Why Does This Matter?
If you’re a developer looking to learn about DevSecOps, you may have already asked,
“Why does any of this matter?” or “How will it help me?” These are valid questions
to ask. Learning protocols and protocol layers matters because DevSecOps is the
most successful when each team understands more about the other teams. Security
analysts and operations staff must be familiar with protocols, if for nothing else than
to be able to open ports in the firewall. Developers can get those ports open faster
by expressing the need in a way that makes sense to security analysts, such as, “This
application requires tcp/443 outbound” rather than “It needs to connect to their
server to activate.”

Basic Internet Protocols
The previous section provided a brief definition of a protocol followed by a closer
inspection of two models that represent the layered nature of communication for
the internet. This section continues the exploration of protocols by covering some
of the basic internet-related protocols that will be encountered regularly by those
working in DevSecOps organizations. The section begins with DNS, which provides
the foundation on which other services rely. It is notable that this section and indeed
this book intentionally skip coverage of protocol headers. Though there will be
coverage of IP addressing, and I cover simplistic differences between TCP and UDP,
being able to recite the TCP three-way handshake is not necessary.

Throughout this section and the remainder of the book, you will see the term “RFC”
or its plural, “RFCs.” RFCs, or Requests for Comments, are the standards by which
the internet operates. Created by the Internet Engineering Task Force (IETF), RFCs
are responsible for codifying the expected behavior of software and hardware. More
information on RFCs and the process behind them can be found on the IETF website.

DNS
The Domain Name System (DNS) is the reason that we do not need to remember
IP addresses to communicate and obtain information on the internet. Technically,
name resolution itself does that, and there are other means for providing name
resolution. But maintaining a text file containing every possible host that I might
want to communicate with would be cumbersome. Therefore, DNS is the focal point
for name resolution on the internet.

Protocols: A High-Level Overview | 23

https://ietf.org/standards/rfcs

DNS is defined by RFCs 1034 and 1035 and provides a hierarchical method for
sharing responsibility for domains of control and the naming of nodes or hosts. At
the root of the DNS is a single dot that branches out to several top-level domains
(TLDs). TLDs are general, such as com, net, edu, and numerous others. TLDs can also
be country code top-level domains (ccTLDs), such as uk or de. Figure 2-3 shows the
hierarchical nature of the DNS.

Figure 2-3. DNS hierarchy

Prior to the opening of TLDs to the public, there were just a handful of general TLDs.
Now there are many generic TLDs. The Root Zone Database contains a list of current
TLDs.

Domains are registered by individuals and organizations within the desired TLD
and according to the rules of the registrar who has been delegated the authority for
that TLD. A typical registration of a domain in the com TLD lasts for a year and
has a small cost associated with it. Registration of a domain requires at least two
authoritative name servers, with the term “authoritative” having special meaning in
this context.

When a domain is registered, control of the naming within that domain is delegated
to the registrant, the person or organization who has registered the domain. The DNS
servers associated with that domain are authoritative, meaning that when a query is
sent about a host in that domain, the query is sent to one of the authoritative servers,
which then responds accordingly.

Hostname resolution
Assuming that the host has a valid IP address and one or more DNS servers available,
when that host would like to begin communicating on a network, the host needs to
translate the friendly name to an IP address to determine where to send the message.
Most computers and servers will first examine a file stored locally called “hosts.”
The hosts file is stored in /etc/ on macOS and Linux systems and is found in the
%SystemRoot%\System32\Drivers\etc directory on newer versions of Windows. The

24 | Chapter 2: Foundational Knowledge in 25 Pages or Less

https://www.iana.org/domains/root/db

contents of the hosts file vary but generally contain information about the localhost
address. For example, the file /etc/hosts on macOS Big Sur contains the following:

##
Host Database
#
localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.
##
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost

Both Android and iOS systems also contain hosts files, but editing those files is more
difficult and not typically something done by a DevSecOps engineer.

Because the hosts file is queried first, there is an opportunity to hijack or bypass
the normal name resolution process. Doing so can be helpful for development and
testing when the developer would like requests to be sent to their local computer
or a computer different than the one defined in DNS. However, assuming that the
destination computer is not defined within the hosts file, the DNS is queried next.

In broad terms, each device that receives an IP address typically also receives one
or more DNS servers that act on behalf of those devices to obtain hostnames from
other DNS servers. The words “typically” and “receives” both have special meaning.
There is no requirement that DNS servers are included or used. A host can receive
an IP address without a DNS server and communicate without issue, assuming that
the host either has a local hosts file or does not use hostnames for communication.
In addition, the word “receives” can mean anything from manually assigning IP
information or obtaining it through an automated means such as Dynamic Host
Configuration Protocol (DHCP).

These DNS servers are known as resolvers because they provide hostname resolution.
If you’re reading this on a device connected to a WiFi network, then you may have
a DNS server on your local network that is responsible for obtaining the IP address
when you attempt to go to google.com.

Note the difference between a resolver and an authoritative name server. A resolver is
responsible for obtaining answers to queries from client devices, even if that resolver
is not responsible or authoritative for the domain in question. An authoritative name
server is the owner or authority for one or more domains. It’s possible for a resolver
to be authoritative for one or more domains too, but logically, hostname resolution
and authoritative name resolution are two different things. Technically, “recursive
resolution” or “recursive resolver” is the term you might hear for a DNS resolver that
goes and gets the answer for you, but for the purposes of this chapter, knowing that
there is a difference between a resolver and an authoritative nameserver is sufficient.

Protocols: A High-Level Overview | 25

Figure 2-4 shows a DNS resolution from a client computer to its local resolver, which
then queries the authoritative google.com server for the IP address of google.com. The
reply is returned to the resolver, which then passes the answer back to the client.

Figure 2-4. DNS resolution

26 | Chapter 2: Foundational Knowledge in 25 Pages or Less

Figure 2-5 demonstrates what happens when the local resolver is also authoritative
for a domain. While this situation is rare for a home user, it is much more common
for an enterprise scenario and thus more important to understand for the DevSecOps
engineer.

Figure 2-5. Receiving an answer from a local authoritative DNS server

Additionally, in an enterprise scenario, there may be a split authority that results in
a hostname resolving to an internal IP address when queried from internally but
resolving to a different IP address when queried externally. There are several reasons
for this scenario, including ease of testing and the ability to control traffic flows.
Figure 2-6 illustrates this scenario; note the different answers for the same query
depending on who is asking.

Figure 2-6. Split DNS

The figures should help to illustrate the complexity involved in DNS and why
DNS can be responsible for difficulty when moving from development to testing
to production.

Start of Authority and time-to-live
Before this turns into a book on DNS, of which there are many—including an
authoritative work called DNS and BIND by Cricket Liu and Paul Albitz (O’Reilly,
2006)—there is one more thing to briefly cover. Each DNS zone contains a Start
of Authority (SOA) record that defines domain metadata. Some of the highlights
relevant to the DevSecOps practitioner include:

Protocols: A High-Level Overview | 27

https://learning.oreilly.com/library/view/dns-and-bind/0596100574/

Serial number
An integer value that is incremented for each change to the zone

Refresh
The amount of time in seconds that a secondary DNS server waits before asking
for updates

Retry
The amount of time in seconds that a secondary server should wait between
requests to an unresponsive server

Expire
The amount of time in seconds that a primary server can be down before it is no
longer considered authoritative for the domain

NX
The amount of time in seconds that a negative or not-found answer should be
cached before a recursive server checks again

In addition to the values stored in the SOA itself, there is a time-to-live (TTL) value
that is configured for the entire domain and can also be configured on a per-record
basis. The TTL controls how long a recursive server will cache the information about
a given record before asking again. The longer the TTL, the less load there is on the
authoritative nameserver. However, the longer the TTL, the longer the amount of
time that may elapse before a change is noticed by recursive servers.

From the standpoint of DevSecOps, DNS TTLs come to the foreground when there
is either downtime or a configuration change that requires DNS changes. When
you know of a pending deployment that requires changes to DNS records, a best
practice is to lower the TTL for the affected records such that it will take less time
for the change to propagate. The trade-off between higher load on the DNS server is
typically offset by shorter downtime associated with a smaller TTL.

By lowering the TTL you are forcing resolvers everywhere to ask for the new IP
address information. Lowering the TTL requires planning because the existing TTL
value needs to expire before the new one goes into effect. For example, if the TTL for
an A record is 604,800 seconds, or 7 days, then it won’t matter much if you change
the TTL the night before the deployment because any resolvers that asked for name
resolution have another 6 days before they might ask again. Therefore, knowing the
existing TTL and planning for deployments that require DNS changes is required.

Appendix B contains some helpful commands to use when troubleshooting DNS.
Included within the appendix, you’ll find the dig command for determining the TTL
for a given DNS record, along with basic Linux commands, among other things.

28 | Chapter 2: Foundational Knowledge in 25 Pages or Less

HTTP
Hypertext Transfer Protocol (HTTP) is a core protocol for the DevSecOps practi‐
tioner. HTTP is the language of the web and is used for transferring web pages and
remote programmatic access between services. HTTP is defined by several RFCs
but primarily RFC 9110 along with RFC 9112; for the purposes of this section,
I will ignore encryption-related matters because those are largely irrelevant at the
protocol-specific level.

HTTP is a stateless protocol, meaning that the client, such as your computer, makes
a request to a web server, a server that speaks HTTP. The server does not remember
one request to the next; each request is new. When a client makes a request, that
request follows the protocol defined in the RFCs. HTTP exchanges, or messages,
consist of control data, headers, content, and trailers. In practice, you will most likely
encounter control data, headers, and content when working with HTTP, and you will
most likely hear of control data as part of the HTTP headers, which provides an
important distinction.

Protocol elements that belong in the header section may not be allowed in the con‐
tent. Therefore, when the header section is closed within a response, no additional
headers can be sent. This can sometimes be a point of confusion for developers
working with sessions, cookies, and other elements to build a more complex web
application.

The beginning of an HTTP exchange starts with the client sending a request to the
server for a certain resource such as a web page. That request will include a method
or a verb in addition to several other pieces of metadata for the request itself. A
commonly used HTTP method is GET, where the client is asking to retrieve, or “get,”
a resource from the server. If the server has that resource, then it will respond to
the client with a message followed by the page or resource being requested. Here’s an
example:

GET /devops.php HTTP/1.1
Host: www.example.com

In this basic example, an HTTP method of GET is used to request a file called
devops.php located at / or the document root. The version of HTTP being used for the
request is included and is 1.1 for the example. The next line of the request is the host
header. The host header was added to HTTP version 1.1 as a means to host multiple
websites on a single IP address.

The server receiving this request verifies that it can service the request and then
determines whether there is a resource called devops.php located in the document
root. Assuming that the server is not too busy to handle the request, an HTTP
response will be sent. If the file exists and the request was successful, the server begins
responding with an HTTP status code of 200 and a reason phrase of OK. If an error
occurred, then other status codes and reason phrases may be sent back, depending on

Protocols: A High-Level Overview | 29

the situation. For example, if there is no file called devops.php in the document root,
then the server would respond with status code 404 and reason phrase of Not Found.

The other possible status codes are included in RFC 9110. A GET request may some‐
times include a query string. A query string is a name-value pair that appears within
the request after a question mark—for example:

GET /devops.php?date=20230803

In this example, the value 20230803 is sent to the server, which can act on that value,
or not act on that value, depending on the contents of devops.php.

A request that uses the POST method looks largely the same as a GET request, although
the request headers for POST will typically include Content-Length and Content-Type
fields.

From the perspective of the DevSecOps practitioner, much of what happens with
HTTP will be rather unimportant. However, when things go wrong, it is frequently
because of a misconfigured server or because of a misunderstanding around protocol
rules. For example, I once worked with a consulting firm that was designing a web
application for my employer. Rather than use HTTP cookies and sessions, they placed
session browsing information into the query string, which made it appear in the
address bar of the browser. As a user navigated the application, the query string
grew and grew. When deployed to production, real-world use cases of the application
caused the query string to grow to over 10,000 characters and thus fail because that
length was greater than that supported by most browsers.

When developing applications that face the web or utilize standard web browsers,
developers are familiar with caching and the challenges surrounding cached Java‐
Script and Cascading Style Sheets. As with the TTL in DNS, the best that can be done
is to ask the browser to not cache certain elements. It’s up to the browser to honor
the request. One brute-force method to avoid caching is to place a timestamp in the
query string such that the browser believes it is requesting a new resource and thus
won’t evaluate the cache to use an old copy. The obvious implication of this practice is
higher load on the server because it needs to service each request that might normally
have been cached.

Other protocols
There are numerous other protocols that a DevSecOps practitioner will encounter
during their career and even on a daily basis. Covering just two protocols, DNS and
HTTP, leaves much room for additional learning on the part of the reader. The choice
of DNS and HTTP was made purposefully based on career experience working with
many levels of technical ability.

Even if I chose to cover six other protocols in depth, there will always be someone
who will say, “What about...” for their favorite protocol. I read a lot of material on

30 | Chapter 2: Foundational Knowledge in 25 Pages or Less

Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX) networking in
my early days of learning computing concepts. Even after it was clear that IP-based
networks were here to stay, the IPX material was included in that material. While
there’s nothing wrong with IPX/SPX networks, including that material in books of the
time was not a great use of trees.

With that in mind, rather than write specifically about several other protocols, I’ll
share a list of protocols that should be helpful for a DevSecOps practitioner to know:

File Transfer Protocol(s) (FTP)
FTP is not secure. Credentials and data are sent in the clear. Just the same, FTP is
still used internally at many organizations. Knowing the differences between FTP,
SFTP (Secure File Transfer Protocol), FTPS (FTP over SSL), and SCP (Secure
Copy Protocol) would be useful knowledge, along with knowing which protocols
your organization can support.

Secure Shell (SSH)
There is simultaneously much to learn and really not much to learn about SSH.
Someone on a DevSecOps team will use SSH to configure servers remotely.
Knowing how to use SSH keys and port forwarding would be quite helpful, but
knowing the inner workings of the protocol itself is likely not necessary.

Knowing how to restart an SSH server safely from a remote loca‐
tion can save you hours of travel time.

Simple Network Management Protocol (SNMP)
You may never encounter SNMP, but the monitoring infrastructure that can
appear within a DevSecOps team might use SNMP. Like SSH, there is everything
to learn and not much to learn with SNMP.

Next, let’s dig into some basics about data security.

Data Security: Confidentiality, Integrity, and Availability
The classic security triad includes confidentiality, integrity, and availability (CIA).
When problems arise related to computer and data security, those problems can be
traced back to one (or more) of the three. The person sitting next to you on the train,
looking at your phone along with you, is violating the principle of confidentiality.
Same for the eavesdropper, listening to a conversation of which they are not a
participant.

Data Security: Confidentiality, Integrity, and Availability | 31

Each layer of each protocol model described in the previous section represents an
opportunity for an attack that violates one or more of confidentiality, integrity, and
availability. Likewise, each layer represents a point at which security processes can
be added or utilized to reduce the likelihood of an attack, mitigate the impact of an
attack, or sometimes eliminate the attack entirely.

Of the three principles, confidentiality receives a significant amount of attention,
likely due to the effects when confidentiality is lost. Integrity and availability are no
less important. In particular, availability, or the lack thereof, is prominent in many
ransomware attacks where data is encrypted and can only be unlocked with a secret
key. Let’s look at each principle in more detail:

Confidentiality
The examples earlier in this section, with a person looking at your phone or
listening to your conversation, are trivial real-world situations where confiden‐
tiality is broken. Places like the United States do not typically have an expectation
of privacy when in public locations, although shoulder-surfing someone’s phone
and similar issues may be handled differently depending on the situation. When
indoors in a private space, there is an expectation of privacy.

Confidentiality applies to both data in transit and data at rest. Data in transit is
typically thought of as data while it is traversing a network. Prior to the advent
and ubiquity of WiFi, accessing large amounts of confidential data while in
transit was significantly more difficult and involved gaining physical access to a
facility through which the data passed.

Integrity
Contrast confidentiality, which is focused on others viewing data, with integrity,
which is focused on ensuring that data is maintained in a known-good state.
Unlike with confidentiality, there is no assumption that an attacker needs to view
the data. Instead, merely being able to change the data itself is enough to violate
integrity. For example, consider a scenario where the attacker can’t see the result
but is able to randomly flip bits within the data stream by overwhelming the
receiver with fake traffic. The attacker can therefore randomly change things like
results of a medical test or other important parts of the data being transferred or
stored.

Availability
Availability, or the lack thereof, refers to situations where you cannot access or
use computer systems, facilities, and data in the way that you would like to use
them. This definition accounts for both physical attacks, where someone steals
your laptop, and issues like a denial of service (DoS) attack, where computing
services may be technically reachable but the performance is such that the service
is effectively unusable for its intended purpose.

32 | Chapter 2: Foundational Knowledge in 25 Pages or Less

To the wider point of providing CIA, there is only so much that a member of the
DevSecOps team can do to provide physical security or other elements required for
ensuring security is maintained outside of the application development perspective.
A starting point for those new to security concepts is the OWASP (Open Web
Application Security Project) Top 10.

Though primarily focused on web applications, the OWASP Top 10 is a list of
vulnerability categories that are commonly encountered by developers, operations
personnel, and security analysts. The OWASP Top 10 includes things like broken
authentication, cross-site scripting, insufficient logging, data exposure, and six others
that may change by the time you read this. Anyone wishing to understand more
about computer security, especially those tasked with creating applications, should
find value in the OWASP categories—ideally, carrying that knowledge back to the
application development process in ways that are specific to the languages and envi‐
ronment at their organization.

Chapter 3 provides more detailed information specific to each of the elements in the
triad, and, like DevSecOps itself, coverage of issues related to security are integrated
throughout the book. The next section transitions to a discussion of development as
it relates to DevSecOps.

Development Overview for Scripting
The remainder of this chapter focuses on development constructs that will help lead
toward scripting, or creation of small programs that perform one or more operations
such as moving files, validating connectivity, or skimming logfiles. The goal is not
to replace other learning opportunities or knowledge but rather to provide a starting
point or stepping stone toward a deeper understanding of the concepts around
programming.

A program is a series of instructions that cause the computer to perform an opera‐
tion. At a very high level, a program is meant to solve a problem. In an organizational
context, a program performs a business function. In many cases, the function could
be performed without a computer. However, a computer can perform that function
more efficiently, and thus the need to write a program. For example, taxes were
calculated long before computers existed. However, computers can be programmed
to make the calculation of taxes easier and more accurate.

From the highest level to the lowest, a computer processor relies on an instruction
set that is used to perform the operations required by the higher-level program. In
effect, developers can write their programs directly as instructions for the processor,
or they can use a language that is then interpreted into the instruction set required
by the processor. The concern in this book is around those higher-level programming
languages.

Development Overview for Scripting | 33

https://owasp.org/www-project-top-ten
https://owasp.org/www-project-top-ten

PHP, JavaScript, Python, Perl, C++, and C are common higher-level programming
languages that you might use today. In the case of languages like PHP and Python,
you may write a full-stack web application or backend program, or you may write a
smaller program.

This section specifically looks at the language components involved in creating a bash
script. I assume that you have a shell environment available, specifically bash. If not,
refer to “The Command-Line Interface” on page 18 for more details.

Commands and Built-ins
When working in the shell environment such as from the command line, you will
use two elements: external commands and built-in commands. External commands
are those that exist regardless of the shell program you’re using. For example, the cp
program is used to copy files. The cp program is usually located in the /bin directory.
If you’re using bash, zsh, ash, tcsh, or some other shell, the cp program will be
available for your use. When executed, the cp command creates a new process on the
computer to complete its task.

Contrast the cp program, an external command, with a built-in command such as
the whence command. The whence command provides information about how a shell
will interpret a given command. For example, you would use whence to determine
the location from which a command will execute. This helps to determine if the
command is a built-in or an external command. In bash, the whence command has
a -t option, but there is no -t option in zsh. Thus, a primary difference between an
external command and a shell built-in is that the external command will work the
same in all shell environments, whereas a built-in might not.

Basic Programmatic Constructs: Variables, Data, and Data Types
The goal of this section is to write a shell script. However, many of the concepts in
this section are applicable to general programming irrespective of the language being
used. In fact, some of the concepts will not work in bash.

When creating a program, more than likely that program will need to work with data
of some variety. Variables are one means to store data for later use within a program.
In bash, a variable is defined and assigned using the following syntax:

variable=value

For example, creating a variable called username containing the username of an
account called rob would look like this:

username="rob"

Notice that there is no space between the name of the variable, the equals sign, and
the value. Adding spaces will cause the script to fail.

34 | Chapter 2: Foundational Knowledge in 25 Pages or Less

Accessing variables in bash is accomplished by prepending a dollar sign onto the
variable. For example, printing the contents of the username variable is done with the
echo command and looks like this:

echo $username

In Linux and macOS, a shell script is not executable by default.
Rather, the file needs to have its execution bit set. Without getting
into the complexities of Unix permissions, in the case of the exam‐
ple code, the command to add execute permissions for your user is
chmod u+x <filename>, where <filename> is the name of the file
being changed.

Variables are meant to hold data that might change. Contrast a variable with a
constant. In programming terms, a constant is used to hold values that should never
change throughout the lifetime of the application execution. An example is database
credentials. While the software is running, the credentials should not change. Using
a constant within the program has other benefits, like being able to inject the cre‐
dentials from an outside source such as a configuration file. In bash, a constant is
declared with the readonly built-in:

readonly username="rob"

Many languages use variables that can only hold one type of data, such as a number
or a string of characters. Some languages are strongly typed, meaning that the lan‐
guage prevents variables from holding more than one sort of data. For example, a
strongly typed language like Java requires that the programmer declare the type of
variable, which can then never change. If a variable is declared to hold integers only,
then it can never hold a string of characters.

Bash is not strongly typed. In fact, bash isn’t typed at all. That means variables can
hold a string or a number or anything else. The assumption is that the programmer
knows what they are doing and intentionally changed the type of variable within the
program. The requirement to program with intent is a topic for a different book. For
the purposes of this book, when you create a variable to hold data, bash will allow you
to change what that variable holds, should you need to do so.

Making Decisions with Conditionals
Some programs, especially scripts, will only need to perform a single operation where
everything is known at the time of execution—for example, a bash script to create
a backup or to import a comma-separated-value (CSV) file into a database. Even cer‐
tain scripted programs will need to make decisions based on input or some external
factor such as day of the week or time of day, weather condition, or something else
that cannot be known when creating the program.

Development Overview for Scripting | 35

Conditionals are used to make decisions within programs. The if statement is a
basic construct used for this purpose. An if statement evaluates whether or not a
condition is true. If the condition is true, then the corresponding code executes. If the
condition is not true, then the corresponding code does not execute.

Creating an if conditional with bash involves some of the more unique elements of
bash when compared with other languages. In the program example, the username
variable was created with a value of rob. If we wanted to take an action, such as print
“Hello rob” based on that username, the code would look like this:

username="rob"
if [$username == "rob"]
then
 echo "Hello $username"
fi

Notice the new elements of syntax that are needed to create the conditional statement
in bash. The if condition itself is enclosed within hard brackets. The comparison also
uses double equals signs rather than a single equals sign. Although a single equals
sign is valid in certain cases with bash, many languages only use the double-equals
syntax, and thus to avoid confusion, I recommend using the double equals unless a
compelling reason exists otherwise. To determine if a variable is not equal to, the !
operator is used, as in this example:

if [$username != "rob"]
then
 echo "Go Away"
fi

Bash comparison operators are special in that comparing numbers is accomplished
using different terminology. Specifically, when comparing for equality for numeric
values, the operator is -eq for equal and -ne for not equal. Various forms of greater
than, less than, greater than or equal to, and less than or equal to use the two-letter
syntax. The traditional greater than and less than signs, > and <, are used in bash, but
those characters are used for comparing the sorting order of strings rather than for
comparing numbers. Table 2-1 shows common operators in bash.

Table 2-1. Common operators in bash

Operator Description
== Compare strings for equality

!= Negation, or not equal, for strings

> Compare sort order of strings, greater than

< Compare sort order of strings, less than

-eq Equal, for numbers

-ne Not equal, for numbers

36 | Chapter 2: Foundational Knowledge in 25 Pages or Less

Operator Description
-lt Less than, for numbers

-gt Greater than, for numbers

-le Less than or equal to, for numbers

-ge Greater than or equal to, for numbers

Bash also includes several operators to test the properties of files and directories, as
shown in Table 2-2. These operators are quite useful in the context of bash scripting
because of the frequent use of bash scripts to solve filesystem-related issues.

Table 2-2. Select operators in bash

Operator Description
-d Tests if the file is a directory

-e Tests if the file exists

-f Tests if the file is a regular file and not a directory or special file

-r Evaluates whether the user running the test has read permission on the file

-w Evaluates whether the user running the test has write permission on the file

-x Evaluates whether the user running the test has execute permission on the file

Numerous other file tests exist and are described in the Advanced Bash-Scripting
Guide.

Thus far, coverage of conditionals has been limited to the if statement. However,
bash and other languages also provide a means for executing code if the test fails by
means of an else condition. A real-world example: if the temperature is greater than
85 degrees (Fahrenheit), then wear shorts, else wear pants.

The else condition provides code that will execute if the primary test fails. But
what if you need to perform more than one test? You can use the elif statement to
perform another test. Carrying on with the weather example: if the temperature is
greater than 85 degrees, then wear shorts, else if the temperature is greater than 50
degrees then wear pants, else wear pants and bring a jacket. In code:

if [$temperature -gt 85]
then
 echo "Wear shorts"
elif [$temperature -gt 50]
then
 echo "Wear pants"
else
 echo "Wear pants and bring a jacket"

Development Overview for Scripting | 37

https://tldp.org/LDP/abs/html/fto.html
https://tldp.org/LDP/abs/html/fto.html

After a few if/elif combinations, code can be somewhat more cumbersome to
troubleshoot and maintain. Bash and other languages have a case statement that
enables several options to be evaluated efficiently and an execution path chosen based
on the result of the evaluation. case or case/switch will not be covered further in
this book. See Bash Guide for Beginners for more information.

Looping
Thus far, I’ve covered using variables to store data within a program, as well as
making decisions within the code on which path to execute based on the contents of
those variables or other tests. Next up is looping, or performing the same operation
more than once.

Most languages include at least two means for looping, with several other ways
available depending on the language. Bash includes both a for loop and a while loop
along with its closely related cousin, an until loop.

The for loop iterates through a block of code a certain number of times, where that
number depends on the need of the program. The for loop is frequently used to
iterate over a list of items, performing an operation on each item in the list. Here is
a for loop that uses a list of files and provides output if the file is a regular file as
opposed to a directory or special character device or similar:

files=$(ls)
for file in $files
do
 if [-f "$file"]
 then
 echo "$file is a regular file"
 fi
done

Within the example code, there is a new element that we haven’t covered yet. The
first line of the code assigns the output from the ls command to a variable within
the script. There are other methods for capturing output, including enclosing the
command in run quotes, or ` ` (also known as backticks). The syntax shown, $(),
can be helpful for cases where spaces may be involved in the output, like filenames
gathered with ls.

A while loop iterates through a block of code only when a condition remains true.
If the condition isn’t true to begin with, the while loop will never execute the code
within. The until loop is like the while loop except that the code will only be
executed when a condition remains false. If the condition is true to begin with, then
the code within the until loop will never execute.

38 | Chapter 2: Foundational Knowledge in 25 Pages or Less

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_03.html

You may hear the term DRY, or Don’t Repeat Yourself. The DRY
principle is intended as a reminder to avoid repetitive code or the
same block of code in multiple locations in a program. While not
exactly related to looping, when the DRY principle is violated, code
becomes more difficult to maintain.
Consider the example of code to calculate sales tax. The same cal‐
culation may need to be performed in multiple places in the code.
If something changes about how the tax needs to be calculated, the
developer tasked with making the change needs to find all of the
locations where that same code exists.

Lists and Arrays
In the previous section, a list of files was gathered by running the ls command.
Lists are another commonly used programmatic construct. Lists may also be called
arrays, and sometimes you might hear lists referred to as dictionaries or by other
similar terms. Lists, arrays, and dictionaries differ, but those differences are beyond
the scope of this book. Consider a list to be a simpler form of an array in bash, and
the previous section showed a common creation and use of a list. Arrays in bash
can be numerically indexed or indexed by a string, also called an associative array or
dictionary. As you read through more examples later in the book, the use of arrays
and lists will become more evident.

Summary
This chapter provided an overview of several concepts relevant to people and organ‐
izations moving toward DevSecOps. The coverage was intentionally broad, as it is
impossible to fully cover all of the necessary foundational concepts in just 25 pages or
even in 250 pages. Entire books have been written about subsections of this chapter
alone. My hope, then, was to enable you to at least have some sense of the broad
knowledge base needed for a DevSecOps practitioner. Just as with playing a musical
instrument, the more you practice, the more you will add both depth and breadth to
the skills needed in all three areas: development, security, and operations.

The chapter began with an appeal to learn the command line regardless of operating
system. For years to come, learning the command line, especially a Unix-based
command line like Linux or macOS, will help you to automate tasks and gain speed
in day-to-day work. Ports and protocols were covered next in the chapter, with a look
at the OSI and internet models for representing communication. Protocol coverage
included DNS and HTTP, focusing especially on DNS and HTTP as base-level proto‐
cols that should just work but sometimes don’t.

Next I introduced the security triad of confidentiality, integrity, and availability
(CIA)—though much security coverage is found in Chapter 3. Finally, with the

Summary | 39

programmatic constructs section, the goal was simply to introduce the reader to key‐
words around programming. Noting the centrality of bash scripting for DevSecOps,
much focus was around examples in bash, but the same programmatic constructs
exist in many other languages today.

The focus of Chapter 3 is foundational security knowledge. The chapter includes
coverage of the basic CIA triad and related security concepts with the goal of infusing
those concepts across the development lifecycle. The chapter also shows some hands-
on tooling with OWASP.

40 | Chapter 2: Foundational Knowledge in 25 Pages or Less

CHAPTER 3

Integrating Security

Chapter 2 provided some of the foundational aspects for establishing the technical
skills related to DevSecOps, including a brief introduction to the security triad of
confidentiality, integrity, and availability (CIA). This chapter adds depth around those
three concepts. The chapter begins with an overview of security practice integration
and wraps up with a hands-on practical implementation related to security through a
demonstration of the OWASP ZAP tool.

Integrating Security Practices
In DevSecOps, security is an integral element contained within each step of the soft‐
ware development lifecycle. Importantly, rather than having a single team dedicated
to security, the processes and tools are available to and used by all members of a
DevSecOps team. This section examines security practices in the context of DevSecOps.
It begins with the concept of least privilege and then circles back to issues around
CIA. The section does not cover every computer security practice and tool. Specifically
not included in this section are items that any organization should be doing already,
regardless of their stance on DevSecOps. For example, the following is an inexhaustive
list of processes and tools that should exist regardless of DevSecOps:

• Patch and update process should be well-established and implemented.•
• Threat modeling and identification of attack vectors and attack surface should be•

ongoing.
• Smart and useful security training should have been implemented where needed.•
• Compliance has been ensured for relevant legal and regulatory requirements.•

41

• Disaster recovery policies have been implemented.•
• Incident response and recovery should be based on best practices.•

The CIA triad provides a base that you can refer to when considering options around
processes and technologies for DevSecOps. It is possible to map key concepts in
DevSecOps to one or more of the three elements of the triad:

• Implementing least privilege → confidentiality, integrity, availability•
• Role-based authentication → confidentiality, integrity, availability•
• Visibility and security testing → confidentiality, integrity, availability•
• Using key- and certificate-based authentication → confidentiality, integrity,•

availability
• Code traceability → confidentiality, integrity•
• Establishing decommissioning processes → confidentiality•

Let’s dig into the idea of implementing least privilege.

Implementing Least Privilege
In my role as advisor for the campus radio station, I have many physical keys. There
are so many keys that I keep them on multiple keyrings, which is to say that I have
one keyring for normal days and then a gigantic ring of rings containing enough
keys to make a locksmith jealous. Even with all of those keys, I can’t get into every
building and room on campus. I don’t need to do so. I have the minimum number of
keys required for my role, enabling me to have the least amount of access needed to
accomplish the tasks involved in the job. This is the concept of least privilege.

Applying this to the concept of computing, it isn’t necessary for everyone to have
full administrator privileges on every server or even on their own computer. Certain
software will require elevated privileges in order to be installed, but beyond the instal‐
lation, day-to-day work doesn’t require a higher level of access. Least privilege can
be frustrating at times, because of the context switching required when a developer
finds that they can’t access certain data. Least privilege can also be helpful when data
goes missing or a server is misconfigured because the individuals who don’t have
permission can’t be the ones who deleted the data!

In practical terms, granting the minimum rights needed for database users is one easy
method for implementing least privilege. For example, if the user connecting to the
database only needs to read (select) data, then there is no reason to grant the ability
to update or delete data. Likewise, if the user only needs to create new records, then
privileges for viewing data or deleting data should not be granted.

42 | Chapter 3: Integrating Security

Setting file and directory access in Linux
Though additional variations exist like setuid/setgid, on a day-to-day basis there are
three levels of access and three permissions that can be granted for file and directory
permissions on a Linux system. The three levels are user, group, and other. The
“other” in this case is sometimes also referred to as “world.” Permissions applied
to “other” apply separately from user and group permissions. If you’d like more
information on the other uses of chmod, see its manual page. “Basic Command-Line
Navigation” on page 161 in Appendix B provides more information about the manual
pages in Linux.

The three permissions are read, write, and execute. For example, a user would
typically have read and write privileges on a text file within their home directory on
a Linux system, whereas those in the same group or elsewhere on the server may
have the ability to read but not write to the file. Group permissions and “other”
permissions can be set separately and control access differently than for the user.

You can change permissions with the chmod command in Linux using a numeric
octal format or letter-based format known as symbolic notation. In octal notation,
the number 4 represents read privileges, 2 represents write, and 1 represents execute.
In symbolic notation, r represents read, w represents write, and x represents execute.
This is shown in Table 3-1.

Table 3-1. Linux permission system

Octal Symbolic Letter Description
4 r Read
2 w Write
1 x Execute

When assigning permissions with a three-digit octal notation, the user is the first
number, the group is the second, and other is the third. For example, assigning read
privileges to all users on a file called data.txt looks like this:

chmod 444 data.txt

The octal notation is additive, meaning that assigning the ability for the user to read
and write but group and other to only read is 644, as in this example:

chmod 644 data.txt

With symbolic notation, the user is represented by the letter u, group is represented
by g, other is represented by o, and all three are represented by a letter a. Effecting the
same 644 permissions with symbolic notation would be:

chmod u+rw,go+r data.txt

Integrating Security Practices | 43

Whether you choose numeric or symbolic depends on the need or situation in which
you’re making the change. For example, it may be easier programmatically to use
octal permissions because of the special characters needed (the plus sign and comma)
when using symbolic notation.

This entire section thus far has been a lead-in to preventing you from invoking a
solution that you will sometimes see on the internet: adding read, write, and execute
permission for the world, the infamous “777” permission. With the knowledge that
you have from this section, you now know that granting everyone the ability to read,
write, and execute a data file almost certainly violates the concept of least privilege
and will make accountability more difficult as well. It is exceedingly rare that chmod
777 is the correct solution, and if a vendor or consultant recommends 777 as a
solution, then it’s time to find a new vendor or consultant.

Role-based access control (RBAC)
The concepts of least privilege and role-based access control (RBAC) work together
to make management easier while improving security. RBAC can be thought of as
group-based permissions. At a higher level, RBAC is the process of granting permis‐
sions based on the role or job duties. For example, a new developer has different
responsibilities than the person who hired them. The role of hiring manager necessi‐
tates access to data about the candidates, salaries, and other details that someone
hired into a developer role wouldn’t need to do their job. Therefore, the access control
needs are different for the two individuals.

Managing permissions based on roles saves significant time versus granting permis‐
sions to individuals. When those individuals change roles or leave the company,
someone must go through each data element and system to make sure that the
permissions have been revoked. With RBAC, the person only needs to be removed
from nonessential groups, which then alleviates the need to work through every
system.

Maintaining Confidentiality
It is necessary to maintain confidentiality of data at several levels. First, while data is
at rest or in storage, it needs to be protected. This is true whether that data is stored
as files on a disk or stored as files in a filing cabinet. It is also necessary to protect
data while it travels between storage and use. Like the at-rest protection, in-flight
protection for data includes electronic transactions such as visiting a bank web page
but also instances when the data is being physically moved such as with an offsite
backup. Finally, data in use is another level within which data must be protected.

44 | Chapter 3: Integrating Security

Data in Flight
Among the most common methods for protecting confidentiality with computer
systems is encryption. Secure Sockets Layer (SSL) or Transport Layer Security (TLS)
provides encryption for transactions on the web. The https:// protocol scheme is an
indicator that an SSL/TLS connection is being used for the communication between a
client web browser and a server. With HTTPS connections, an attacker can view the
traffic, but the contents of that traffic will be encrypted.

You might think of this as mailing a letter versus mailing a postcard. When you
mail a postcard, anyone who has access to the postcard can view not only who sent
the postcard and the details of the intended recipient but also the contents of the
postcard. If you’re vacationing in Hawaii and send a postcard back to your relatives
in snowy Wisconsin, all of the postal workers between Hawaii and Wisconsin can see
that you’re having a great time and read about your beach adventures. There’s nothing
particularly confidential about those details.

Contrast a letter being sent in an envelope from Hawaii to Wisconsin. The postal
worker can see the sender and the recipient but nothing more. For now, it’s OK
to ignore the ability to look through the envelope or even open the letter. Instead,
assume that the letter is enclosed in a security envelope and that the postal worker is
less interested in your mail because it’s easier and more enjoyable to view postcards.

When using standard HTTP, without the “S,” the request, response, and the data
itself can be viewed by anyone in between the HTTP server and the client making
the request. In practical terms, anyone on the same WiFi network could see this
traffic. In that scenario, the WiFi network being eavesdropped is equivalent to the
postal worker, and the HTTP request is equivalent to the postcard. When a form of
encryption is added, the transaction becomes more like mailing a letter. While the
eavesdropper can see the traffic and some elements of the request, they cannot see the
contents or data of that traffic.

Adding the ability to peek inside the network traffic while it is traversing the network,
even if that traffic is encrypted, is the equivalent of the postal worker seeing through
or opening the envelope. Vulnerabilities have been found in the protocols used to
protect HTTP traffic. Notably, the Heartbleed attack from the early 2010s enabled
attackers to view traffic destined for web servers that used certain versions of software
meant to protect the transactions. The problems went undetected for several months.
The equivalent would be not only opening an envelope but steaming the envelope
open and then resealing it. With no reason to believe otherwise, the recipient would
open the envelope just like normal.

Integrating Security Practices | 45

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

DNS over HTTPS Breaks the Internet
Confidentiality goes beyond the opportunity to eavesdrop or capture data. Recall
from Chapter 2 that requests for web pages or other resources typically use a friendly
name rather than an IP address. When the request involves a name, a name-to-IP
lookup takes place. Normally this lookup is done through a DNS (Domain Name
System) request that is sent by the client to a DNS resolver. This is illustrated in
Figure 3-1.

Figure 3-1. A DNS lookup to a local DNS resolver that ends up being sent to an
authoritative name server

For home users, typically a broadband customer, their consumer-level router obtains
a list of IP addresses of DNS resolvers from their internet service provider (ISP).
These DNS resolvers, more commonly called DNS servers, are located at the internet
provider. When a computer, phone, or other device performs a DNS lookup, the
request eventually ends up at the DNS server operated by the ISP. The effect of using
this path for DNS resolution is that the ISP can see and log the DNS requests coming
from each customer who uses the ISP’s DNS servers. The ISP then has a view into the
browsing habits and usage of its customers, even for connections and protocols that
are otherwise secure, like HTTPS.

DNS over HTTPS (DoH) uses centralized DNS resolvers to perform lookups. In this
way, the resolution no longer occurs at the ISP level but rather at the centralized
set of DNS servers chosen by large tech companies such as Google and Apple. The
premise is to prevent the ISP from seeing the DNS request. However, not only
does DoH merely move the privacy implications to a central location, but the word
“centralization” is anathema to the decentralized design of the internet. Rather than
DNS requests being spread among the ISPs, those DNS requests can now be easily
combined with other browsing habits at a central or aggregated location. Worse yet,
DoH also operates over TCP, thus requiring more resources and generally being
slower than a standard DNS request.

46 | Chapter 3: Integrating Security

Eavesdropping on email
Simple Mail Transfer Protocol (SMTP) is the default, unencrypted means for email to
be exchanged between servers on the internet. The effect of email being unencrypted
means that anyone who can interject themselves between two SMTP servers can
view all of the email messages being sent between those servers. While it is certainly
plausible for an eavesdropper to place themselves in the right spot to obtain email,
both the difficulty in gaining access to interject themselves without being detected
and the sheer amount of storage required to effectively sift through those email
messages makes this attack vector less likely than others. In addition, the increasing
use of encrypted SMTP exchanges further reduces the attack surface of SMTP.

The same vulnerability (of being unencrypted) exists for the two primary email
retrieval protocols, POP3 (Post Office Protocol v3) and IMAP (Internet Message
Access Protocol). Both POP3 and IMAP are unencrypted. There is a greater chance
of an attacker being able to view messages with POP3 and IMAP, though the scale
is smaller. Like HTTP, the attacker can interject themselves by eavesdropping on the
same WiFi network.

Ideally, the attacker would eavesdrop from a location that contains a lot of email.
The same difficulties that apply to SMTP also apply to eavesdropping on POP3 and
IMAP at a large scale. The attacker needs to gain access, avoid detection, and have
enough capacity to store the emails. You might think of this as the Ocean’s Eleven
(2001 version) scenario. The team needs to gain access to the vault, avoid detection,
and then somehow get a significant amount of money out.

SMTP, POP3, and IMAP can all be encrypted by adding or integrating SSL/TLS into
the mix. It’s likely that your email is encrypted between you and the server on which
it is stored, and sometimes the exchange of that email will also be encrypted between
servers. As with HTTP, a successful attack against the encryption means that the
attacker gains full access to the traffic being exchanged.

Other protocols use encryption for keeping the contents of the traffic away from
eavesdroppers. Secure Shell (SSH) is a widely used protocol for data transfer and
remote administration. Data exchanged with SSH is encrypted. An encryption layer
can also be added onto File Transfer Protocol (FTP), making it more difficult for an
attacker to view the data being exchanged.

Wired versus WiFi versus offline
The mode of transport also matters for data while it is moving. Data that traverses
a network from end to end on wires is less susceptible to eavesdropping than data
that travels wirelessly at any point. In this context, wirelessly can mean anything from
WiFi to cellular/LTE to radio to carrier pigeon (see RFC 1149). Wireless communica‐
tion enables an attacker to eavesdrop without exerting much effort, with an exception

Integrating Security Practices | 47

https://datatracker.ietf.org/doc/html/rfc1149

being point-to-point wireless communication—where some effort would need to be
exerted but not nearly the same as trying to eavesdrop on a wired network.

As related to both the OSI and IP models shown in Chapter 2, both Ethernet and
WiFi are represented at the physical layer. The physical layer is tangible and visible
when holding an Ethernet cable, and the attacks on the physical layer are evident
if you apply a sharp pair scissors to the Ethernet cable. A single cut of the cable is
enough to make any connected devices become unavailable.

WiFi is more difficult to visualize and is impossible to cut with scissors. WiFi net‐
works use radio waves to communicate, just like FM and AM radio, TV, satellites,
cellular phones and data, and other forms of wireless communication. The frequen‐
cies vary from technology to technology, which explains why you don’t get cellular
signals on an FM radio but also why running a microwave oven can sometimes affect
other nearby signals like cordless phones and older WiFi. Microwave ovens operate
around 2,450 megahertz (MHz), which is within the range used by WiFi.

WiFi and cellular data are both encrypted, or more accurately, WiFi traffic can be
encrypted. Like encryption applied to a wired connection, the encryption on WiFi
and cellular does not prevent eavesdropping. Rather, the encryption raises the cost
to access useful data within the encrypted packets. Assuming other vulnerabilities do
not exist, the attacker needs to capture the traffic and then decrypt it.

Wireless communication lowers the cost of capturing the traffic, but upper-layer
protocols remain in place to encrypt the data as well. For example, even if the attacker
can break the encryption of the wireless communication, they must still decrypt the
HTTP traffic protected by SSL/TLS. The related methods for obtaining information
through DNS requests still exist and can also reveal information that violates user
confidentiality.

A final instance where data needs to be protected while in transit is when that data
is stored on a physical medium and that physical medium is being transported or
moved. Backup media are an example where data is being transported and might be
stolen while in transport. If the data on the backup media is not encrypted, then it
will be fully available to the attacker, assuming they have hardware that is appropriate
to connect the media.

Data at Rest
Thus far, the focus has been on data while “in flight,” or being sent through the
network, with a special case noted when the data is stored on a physical medium and
is being physically transported from one location to another. The data itself is being
transferred in aggregate form but is also “at rest” or in storage, such as on a backup
tape, USB drive, or other format.

48 | Chapter 3: Integrating Security

Files and databases stored on a hard drive or other form of storage are also subject
to vulnerabilities that could compromise the confidentiality of that data. An attacker
may download an entire database while it is online, or a thief may physically steal the
hard drives or other media, both of which increase the scale and potential impact of
the compromised data.

When an attacker obtains a database, they have the ability to examine all of its
contents at once. Contrast this to in-flight compromises, where the attacker may
gain access to many transactions but then must filter those transactions to find the
interesting traffic. Rather than a transaction-based compromise, stealing data at rest
often enables the attacker to sell large amounts of data in aggregate form.

A primary means to mitigate the risk from such a compromise is database-level
encryption. Like SSL and other encrypted means of communication, encrypting data
at rest will usually stop an attacker from obtaining the actual data. At the least,
encryption will act as a delay while the attacker works to decrypt the contents. There
is an implication that the encryption is of a reasonably strong cipher as opposed to
an obfuscation or a cipher created by someone within the organization who is simply
good at math.

As with SSL/TLS encryption, using standard ciphers such as Advanced Encryption
Standard (AES) comes with a risk that there is a known means to quickly and
cost-effectively decipher the contents. Rumors of state actors having such backdoors
do exist, but there is little, if any, proof of the same. Regardless, a targeted attack with
significant resources may be able to simply brute-force the encryption.

Therefore, while it’s good to know that these problems exist, those problems should
not prevent you from using database- or file-level encryption when possible. Know‐
ing that a door lock can be picked by a skilled locksmith isn’t sufficient reason for
leaving the door open. Thinking around locks, there is another line of thinking
around encryption.

Envision a scenario in a particularly dangerous parking lot. A would-be thief is walk‐
ing through the parking lot randomly testing car doors to see if they are unlocked.
When the doors are unlocked, the potential thief simply moves on to the next vehicle
under the premise that there must not be anything of value in the car if the owner left
the doors unlocked. If the car doors are locked, efforts are made to unlock the car or
otherwise simply brute-force their way in with a brick through the door window. If
the owner locked the car doors, then there must be something of value.

Likewise, if an attacker finds encrypted files and/or data, they may increase their
efforts to decrypt on the basis that there must be something valuable inside simply
because the data is encrypted. The key difference between this and the car door
scenario is that the attacker has already gained at least some access in order to get to
the encrypted files. Ultimately, if the encryption is sufficiently strong and it becomes

Integrating Security Practices | 49

obvious that the attacker will need to expend significant resources to access the
unencrypted contents, there is a good chance that they will move to the next target.

The fundamental problem is that computers get faster and vulnerabilities become
available in the ciphers themselves. This decreases the cost of decrypting the data.
This is less of a concern for time-sensitive data that would not have value if
deciphered in 10 years but is problematic for long-lived data like Social Security
numbers and medical records.

Verifying Integrity
Maintaining and verifying integrity is somewhat more difficult or cumbersome to
accomplish than maintaining confidentiality and availability. To maintain integrity
implies there is or was a verifiable source of original truth from which a given bit of
data can be verified. The verifiability of the original source of truth is a key element.
As an attacker, if I can change both the integrity of data and the source of verification,
then there will not be a method for verifying integrity. Even worse, because the
verification source now matches the data that I maliciously changed, the problem
may not be found immediately, if at all. Such is the difficulty with maintaining
integrity.

Checksums
Checksums or one-way hashes are a common method to verify integrity. Take a data
file or random string of characters on a computer and execute a hash function on it,
returning the hashed string. The string of characters returned provides a fingerprint
of the input, essentially a string of characters that represent the input data. The
fingerprint can be used as a means to determine if the current data file has been
altered from its original, assuming that a fingerprint was taken of the original file
and that the fingerprint itself has been kept secure. Figure 3-2 shows a file with the
phrase “file with super secret data” along with the hash as produced by the sha256sum
command.

Figure 3-2. A file checksum is a unique value based on the contents of the file

Notice what happens to the hash when the letter “f ” in “file” is changed to an
uppercase “F,” shown in Figure 3-3.

50 | Chapter 3: Integrating Security

Figure 3-3. A file checksum; compare to Figure 3-2, noting that the file contents have
changed

By changing a single letter, the hash produced by sha256sum is completely different.
Seeing this would indicate that something has changed within the file, though it is not
proof of malice. There are many reasons a file might change, including normal use
but also disk errors and other anomalies.

It’s worth noting that changing the uppercase “F” back to lowercase
“f ” in the word file from the previous example also then changes
the hash value back to its original. The hashing functions used to
verify integrity do not verify or validate that the file has not been
temporarily changed and then put back in place or back to its
original state.

The examples shared in this section show the sha256sum hash function being exe‐
cuted on a small, 28-byte file. Hash functions also work on larger files and perform
the same operation. While it’s not obvious from the 28-byte example here, the hash
produced by sha256sum when run against a multigigabyte file will also produce a
64-byte hexadecimal string. The term “one-way” that is sometimes associated with
hash functions means that it is impossible to re-create the source file by using the
hash value itself.

In practice, one-way hash functions provide a data point in the integrity verification
process. While it’s difficult to obtain the same hash value from two different files,
collisions do occur, and there is no guarantee of a fingerprint being globally unique.
Additionally, the hash functions themselves can be broken or altered in such a way
to cause the fingerprint to be the same. Attackers will also use malicious programs in
place of the normal hash function programs, thus causing their files to pass the hash
fingerprint tests.

Many software vendors provide checksums as a means to verify that the file you
downloaded is the original, trusted copy of that file. For example, Microsoft currently
provides SHA256 values for downloads of Windows 10. However, if attackers gain
access to critical infrastructure, they can (and will) not only replace the source files
with their own versions but also replace the valid checksum values with their own.
Thus, even if you take the step of verifying the checksum, you can still receive
malicious software.

Verifying Integrity | 51

Hash functions have evolved as computers have become more powerful and as
methods to attack hash functions have become widely known. Message digest–based
hash functions had been used until recently when Secure Hashing Algorithm–based
functions became more widely used. It is common to see the hash values produced
with the SHA256 algorithm today, but that may change to SHA512 or some other
algorithm by the time you’re reading this.

Further depth of coverage around hashing algorithms and crypto‐
graphic strength is beyond the scope of this book. Further read‐
ing can be found in Bruce Schneier’s book Applied Cryptography
(Wiley, 2015), among others.

Both key-based and certificate-based authentication can be used to remove the ability
for an attacker to guess or brute-force a password. Rather than prompting for a
password, a client presents a certificate that was signed by a certificate authority
(CA) that is trusted by the server. For example, the SSH protocol is used extensively
in DevSecOps processes for remote administration and file transfer. The OpenSSH
implementation of the protocol can use various forms of authentication, including
key-based and certificate-based. With certificate-based authentication, a CA is created
and each SSH server then trusts certificates signed by that CA. Key-based authenti‐
cation is similar insofar as configuration needs to be performed on the server to
establish the trust relationship to accept the key that is presented. There is additional
overhead with key-based authentication, but in terms of DevSecOps, the process for
key distribution will be automated regardless of whether key- or certificate-based
authentication is used. The specific advantage to certificate-based authentication is
that the necessary OpenSSH configuration can be distributed when the environment
is being built.

Verifying Email
A few technologies help to facilitate verification of the source of emails: SPF, DKIM,
and DMARC. Sender Policy Framework (SPF) provides a way to indicate that emails
for a given domain should only originate from certain IP addresses. For example, an
SPF record can be created to indicate that the IP address 10.4.2.65 is the only valid
IP from which emails claiming to be from example.com can originate. If an email
claiming to be from example.com arrives from a different IP address, then it can be
considered invalid.

DomainKeys Identified Mail (DKIM) is another method for helping to validate that
an email was sent from the sender that claims to have sent it. Whereas SPF provides
indication of the valid IPs that can send email for a domain, DKIM uses public-key
cryptography to add a digital signature of the sender to the email. The receiving

52 | Chapter 3: Integrating Security

server can verify the digital signature originates from the sending domain server
through a DNS record.

Both SPF and DKIM can be used as data points in helping to determine the validity
of a message. Like checksums for files, SPF and DKIM are subject to various vulner‐
abilities, and thus verification accomplished or rejected because of SPF and DKIM
should be considered one of many facets that indicate the message is valid or invalid.

DMARC, or Domain-based Message Authentication, Reporting, and Conformance,
works in conjunction with both SPF and DKIM to provide message handling and
reporting capabilities. Like SPF and DKIM, DMARC uses a DNS record to help
validate the From header (RFC 5322) and signal what to do if the message is not
valid, such as reject the message or quarantine it. With the combination of DMARC,
SPF, and DKIM, the attack vector of phishing becomes more challenging but not
impossible.

SPF, DKIM, and DMARC rely on DNS to function. As an attacker, knowing that DNS
records create a single point of failure for SPF, DKIM, and DMARC, successfully
exploiting an organization’s DNS infrastructure enables me to add an extra author‐
ized IP for SPF, change the DKIM signature to one of my own, or change the policy
for DMARC.

DNS also provides an interesting attack surface for other records that could affect
integrity as well. There are numerous examples of attackers successfully transferring
domains away from their rightful owner through any number of shady tactics. But
even if the attacker doesn’t steal the entire domain, simply being able to log in to a
DNS control panel and change records or being able to spoof DNS responses enables
the attacker to create a man-in-the-middle (MITM) attack.

Providing Availability
Availability is a broad subject encompassing both the virtual and physical realms.
Availability means ensuring that the system is available when needed and at the
expected performance level. This necessitates identifying single points of failure and
then taking steps to provide redundancy for those points of failure. Sometimes the
costs of eliminating a single point of failure is simply too high, and the organization
needs to accept the risk. Space launches are a prime example. Aside from building
two or three of everything, the risk of catastrophic failure must be accepted at certain
times.

At other times, the cost of providing availability can be shifted. Organizations can
avoid capital investments for redundant data centers and provide physical security for
those data centers by utilizing cloud-based deployments. The cost of providing avail‐
ability for computing has decreased with the advent of automated cloud deployment
capabilities. Applications can be deployed across multiple cloud providers and across

Providing Availability | 53

multiple regions of the world such that if one cloud provider has a problem or there
is a natural disaster affecting a data center, the load for that application can be shifted
to another provider in another part of the world instantly and automatically.

Service-Level Agreements and Service-Level Objectives
A service-level agreement (SLA) may exist between an organization and its providers.
The SLA dictates how much downtime is acceptable during a given period, such as
a month, a quarter, or a year. The criteria for determining acceptable service is also
included in an SLA. A simple ping to indicate server availability will miss scenarios
where the web server is too busy to handle HTTP requests.

An SLA may also exist internally, with the technology department needing to provide
a certain level of service to business function departments. An SLA may use a
service-level objective (SLO) for each service. At other times, you may hear the term
“service-level objective” instead of the more formalized connotation of an agreement.
An SLO has the same goal as an SLA: to create an understanding of when a service
will be available.

Defining an SLA involves several steps:

1. Identify stakeholders who require the system to be available.1.
2. Identify needs around uptime or availability of the system.2.
3. Define availability.3.
4. Estimate costs for providing the requested uptime.4.

Let’s dig into each of these steps in more detail.

Identifying Stakeholders
At times, stakeholder identification is straightforward. The users of the application
are stakeholders, and those who paid for the application to be developed or paid
for using the application are stakeholders. A modern web application will have
numerous stakeholders. In some cases, stakeholders are not directly represented,
such as with a public website where users don’t have a direct influence on decisions
about the application or its availability. Some methods for addressing this deficiency
include utilizing user groups or representatives from the internal customer service
department who work with end users and can represent the needs of the users.

Identifying Availability Needs
Stakeholders can provide information on when the system is used. This information
can be gathered through interviews/meetings and through observation. Of the two,
interviews and observation, the latter is more accurate as to how and when the

54 | Chapter 3: Integrating Security

system is being used. Regardless of whether interviews or observation is used, you
should also gather supplemental information through system usage logs. This may
be network-related traffic logs or request logs for a web server. You may gather
information through interviews and observation only to find something new in the
system logs that requires another round of interviews.

Seasonal or cyclical activities may also be missed and should be incorporated as part
of any interview or log analysis exercise for identifying availability needs of a system.
For example, a monthly reconciliation activity that runs overnight on the last day of
the month might not be thought of by stakeholders during interviews and wouldn’t
be observed. If you choose an availability level that included only normal business
hours, then this process may be adversely affected by downtime.

Defining Availability and Estimating Costs
Availability of a system exists from the perspective of the user of that system. But
what does “availability” mean? Is responding to a ping sufficient evidence of availabil‐
ity, or does the service need to respond at the protocol level, such as by serving an
HTTP request? What time interval is acceptable for a response time—subseconds,
seconds, minutes? That answer depends on the system and process.

Monitoring software is able to examine various metrics to determine availability.
Some software, like Prometheus, requires software to be installed on the device to be
monitored. Other software, like Zabbix and Icinga, can use SSH to run commands
on the client device. There are also proprietary solutions for monitoring. Rather than
attempting to be prescriptive or choosing one over another, you can use the criteria in
Table 3-2 when considering monitoring software solutions.

Table 3-2. Evaluation criteria for monitoring software

Criteria Description
Protocols to be
monitored

What protocols can be monitored? Are there specific checks for higher-level protocols like HTTP, SSH,
and others, along with TCP, UDP, ICMP?

Complexity of
checks

Assuming that an HTTP check is going to be used, can the software look for text on the page and also
provide metrics for response time?

Additional
monitoring

Can the software monitor host both compute resources and network devices (such as with SNMP)?

Dependency
monitoring

Can the software create host and service dependencies, such as making sure an outbound gateway
connection is available prior to marking services as being down?

Agentless
monitoring

Does the software require additional client software to be installed on each device, or can it utilize
standard protocols and commands for monitoring?

Limited access Whether or not an agent is required on the client, is the client portion able to work with limited
access/least privilege rather than needing administrator/root privileges on the client?

Alerting flexibility Are there multiple methods for sending alerts such that escalations can be defined and
acknowledgments can be sent back while a problem is being corrected?

Providing Availability | 55

Criteria Description
Scaling How does the monitoring software perform at scale? Is there an upper limit of services and hosts that

can be monitored, or can the monitoring software itself be deployed in ways to spread the monitoring
load?

Performance
metrics

Does the software store data in such a way that multiple types of performance reports can be defined,
created, and gathered, or are the reports already defined?

Monitoring
redundancy

Can the software work in a redundant manner, such that more than one instance of the monitoring
software can be deployed in case the primary monitoring resources become unavailable?

Open source Is the source code normally available for viewing, whether or not licensed under a “free” license?
Export of data Can monitoring and performance data be exported easily and in a standard format such that it can be

consumed by other systems for reporting or other purposes?

Defining availability leads directly to enhanced monitoring of systems along with
identification of intermediary systems and single points of failure. A single point of
failure is a component that, if missing or unavailable, causes the entire system to
break down. For example, having three web servers in a load-balanced configuration
provides redundancy for web requests. Should something happen to web server 1,
then web servers 2 and 3 can handle the load while web server 1 is repaired. However,
in the configuration depicted in Figure 3-4, there is only one load balancer. Thus,
the load balancer itself represents a single point of failure. If the load balancer has a
problem, then all requests are stopped.

Figure 3-4. A load balancer as a single point of failure

Cost estimation can be accomplished in several ways, depending on how an organiza‐
tion handles overhead costs such as building and facilities. For some organizations,
each square foot of a building will be accounted for internally and a cost factor
associated with it. For example, if the marketing department uses 30% of the space
in the building, then 30% of the costs associated with operating the building will
be allocated as a cost to the marketing budget. As redundancy and SLAs/SLOs are
being considered, if additional space is needed for a redundant data center, then there

56 | Chapter 3: Integrating Security

may be additional hidden costs such as those internal operational costs. Again, how
operational costs are allocated is handled differently between organizations. When
using cloud-based resources to meet SLA/SLO goals, such internal overhead costs
will be minimized.

Regardless of internal allocations, meeting certain levels of performance becomes
increasingly costly as additional levels of performance are desired.

At times, the costs to provide the requested level of uptime will be prohibitive. A
customer may request 24/7/365 uptime for an application that is really only used
during business hours. Therefore, patching and updating along with backup creation
could be done after business hours. The “five nines” of uptime, or 99.999% uptime,
requires less than six minutes of downtime per year. That level of service is possible,
but it will be much more costly than a business-hours performance objective.

What About Accountability?
In the context of this chapter, accountability refers to being able to track who, what,
and when—in other words, being able to provide the answer to the questions “Who
did what, and when did they do it?” In computing, the answer is found through
activity logging.

Prior to systemd, logging on to a Linux server was accomplished in plain text files,
usually located in /var/log. This system, also known as syslog, was well documented
and easy to use but had some challenges when scaled up. Server administrators could
script many solutions based on the contents of logfiles, monitor the logfiles in real
time, import log entries into a database, and automatically archive old logs. Systemd
ruined the simplicity of logging while not really solving any relevant problems. How‐
ever, in practical terms, administrators can still accomplish what’s needed through
workarounds or by integrating the limited systemd toolset.

Before this chapter turns into a treatise against systemd or allowing people to solve
problems that don’t exist, the focus for a DevSecOps practitioner should be aimed
toward enabling visibility and transparency throughout the software development
lifecycle. That focus moves the discussion toward overall reliability of an application.
A role within a DevSecOps organization that has touchpoints in all three areas is the
site reliability engineer.

Site Reliability Engineering
Visibility and transparency are the goals for the site reliability engineer (SRE), and
monitoring and logging/log analysis are the methods used to meet those goals. Other
methods such as traceability of tests and code are also important. The problem is that
visibility and transparency sometimes decrease performance or the efficient use of
resources. For example, logging significant detail about every request on a moderately

What About Accountability? | 57

busy application reduces performance because compute and memory resources need
to be allocated for the logging. At the same time, cost is increased not only because of
the need for additional compute and memory but also because of the costs associated
with storing the captured data.

Varying levels of information have to be captured without needing to restart or
reinitialize services. This can be accomplished through feature flags that are exam‐
ined while the system is running—for example, a feature flag that is queried on
every request and enables more information to be logged about that request. Feature
flags also become prominent around release and deployment of new versions of an
application. A feature flag can enable a new feature after the code has been deployed
through the continuous integration/continuous deployment (CI/CD) pipeline.

Table 3-2 earlier in this chapter contained criteria to help facilitate a choice around
monitoring software. Ideal monitoring software can be deployed in such a way that
new clients are added to and removed from the monitoring infrastructure automati‐
cally at time of deployment or decommissioning. From the perspective of an SRE, it
will be practically impossible to add and remove individual hosts in a scaled DevSec‐
Ops organization. Therefore, the metrics to be monitored and how those metrics are
monitored come into focus. Software like Ansible can add the new resource to the
monitored device configuration automatically.

The level of detail to be monitored will vary. For example, whether there are two or
two hundred compute resources responding to microservice API calls is irrelevant as
long as the response time criteria are met. Further, the resources are deployed and
decommissioned so rapidly that it may not make sense to monitor individual nodes
or specific pieces of individual nodes such as disk allocation or used space on each
node.

The answer to the timeless question “How much monitoring should we have?” is
typically “As much as we can get.” In reality, the answer will depend on the service,
its use, and the longevity of each node. However, gathering more metrics and storing
them is generally better than having fewer metrics, all things being equal.

Using disk input/output (I/O) as an example, if you are gathering I/O on each node
and notice that suddenly with the latest software release you now need to deploy
more nodes to service the same number of requests, it will be helpful to look back
historically and see that I/O was much lower a week ago or a year ago or whatever
timeframe.

The ability to drill down into increasingly granular data is a feature that some
monitoring packages have. That feature wasn’t included in Table 3-2 because the
preference should be on security, ease of deployment, and flexibility around the
primary mission of monitoring rather than reporting. All of the pretty graphs in

58 | Chapter 3: Integrating Security

the world aren’t worth much if the client agent software caused a successful security
attack to occur, something that has happened with agent-based monitoring software.

Many organizations will have a separate internal team that investigates security-
related incidents. From the perspective of DevSecOps, observability and metrics
captured through the standard DevSecOps practices help immensely in both discov‐
ery of incidents and then analysis and ultimately recovery from a security incident.
Preservation of both environment and logged data are key elements of success for
incident response and recovery.

Code Traceability and Static Analysis
Though deeper coverage of software testing appears in Chapter 4, I’ve included code
traceability here because of its importance to security. Like many terms in computing,
code traceability is overloaded, with different meanings in different contexts. For
example, you might hear of code traceability in terms of tracing a line of code back‐
ward through the source code management history to the original change request
that caused the developer to write it. You might also hear of code traceability referring
to a developer or quality assurance tester being able to step through the code line
by line, watching in-memory data as it changes. Other meanings also exist for code
traceability.

For the purposes of this section, “code traceability” refers to the DevSecOps practi‐
tioner being able to step through the code to validate and verify its operation. Doing
so may require the use of build-time flags to add more debugging instrumentation
and logging. Consider an example of a microservice that is slow to respond. The per‐
son tasked with investigating the issue can “turn up” logging such that performance-
based timings are recorded at key intervals within the code, such as an interaction
with a data store. Now the investigator can see that the data store is slow to respond
and take action accordingly.

Static analysis and code review
At a high level, “static analysis” refers to testing of software execution paths to identify
problems within the code. From the perspective of DevSecOps, static analysis is part
of a code review process where adherence to the coding style of an organization
along with analysis for software errors and security vulnerabilities is measured. There
are three primary types of issues that you can find through static analysis and code
review:

• Errors and unexpected behavior (bugs)•
• Security vulnerabilities that aren’t error-like behaviors•
• Code maintainability problems•

What About Accountability? | 59

An error can be found through testing of the code, using both positive and negative
tests, both of which are discussed in Chapter 4. Whereas with testing, code is typically
not used, with static analysis, the code is available to be examined. You may hear
of this as “white box” testing, where the tester can see the code and other material.
Having access to the code enables the tester to target specific areas where problems
may occur. Merely getting the application to do something unexpected is evidence of
an error that should be handled programmatically.

Causing the application to behave in an unexpected manner, allowing escalation of
privilege, and improper data validation are examples of potential security vulnerabil‐
ities that can be found with static analysis. From the perspective of the developer,
the code may work perfectly fine. Users can authenticate or an order is entered
successfully. Only on closer inspection will you find that users don’t need to be
authenticated in order to view account details or view the shopping cart of another
user.

Code maintainability is analyzed during code review and somewhat overlaps with
the coding style of an organization. For example, a ternary is one method for imple‐
menting a condition (if-else) set in many languages. However, some organizations
choose to avoid ternaries as they cause confusion for developers when compared
to the more expressive syntax. As it pertains to analysis, then, an automated tool
can be configured to flag ternaries as potentially difficult to maintain, while other
organizations may not use that rule. Sometimes these types of issues are referred to as
“code smells,” though the term seems inexact, at best.

There are various tools to help with static analysis, and the DevSecOps workflow can
be integrated such that static analysis is performed at the time of code check-in, or
when the developer commits and pushes their code to a shared repository through
the source code management (SCM) tool.

Compliance and regulatory issues
Static analysis and vulnerability scanning have become a normal part of the regular
routine for a security analyst. These scans help to identify potential issues within
the organizational infrastructure that may have come up through deployment of new
software or through software updates. The scans can only go so far, and organizations
may work only to the level of minimal compliance with necessary regulations, the
letter of the law instead of the spirit of the law.

False positives are issues flagged by an automated scanner or other tool that aren’t
really issues at all. For example, a vulnerability scan noting an open port when that
port is necessary for the underlying business application to function is an example
of a false positive. Yes, an open port is technically an opportunity for an attacker
to exploit a vulnerability. However, closing the port means that the business can no
longer accept orders. Therefore, the issue isn’t really relevant.

60 | Chapter 3: Integrating Security

False positives waste time and resources because each will need to be documented so
that a compliance officer will be happy. In the meantime, the tool did not notice sev‐
eral other issues that are truly going to cause problems and lead to successful attacks.
When missed, these are called false negatives. The issues should have been noticed
but were not. Finding false negatives currently takes some amount of expertise and
human intervention. However, artificial intelligence will be able to replace much of
this expertise in the coming years.

Becoming Security Aware
Years of industry experience combined with teaching programming courses for sev‐
eral years leads me to the conclusion that computer security problems frequently,
though not always, can be traced back to two reasons. The first is lack of awareness
on the part of the developer. For example, the developer was unaware that reflecting
form data back to the user was a security problem.

The second reason for security problems is urgency imposed by often-artificial dead‐
lines. I was part of a project that had been delayed for months and then years due to
technical difficulties. The deadline for the project to be launched kept getting delayed
and pushed further and further out. Somewhere within there, more than a year in
advance, I booked a weeks-long trip to Europe. The trip was approved as official
vacation time by the company and was nowhere near the deadline for the major
project launch. You can probably guess where this is going. Sure enough, the project
launch date was moved and overlapped with the vacation time. There was nothing
special about the launch date. The date wasn’t tied to any regulatory or compliance
need or to a client or anything else and had been moved enough times that another
move of a couple weeks wouldn’t cause any difference. But the story has a happy
ending. The launch date was moved yet again and didn’t overlap, and the project
eventually went live.

As alluded to, sometimes true deadlines do exist. Legal and regulatory compliance
dates prevent proper security from being implemented. More often than not, it’s sim‐
ply trying to meet an artificial deadline. This book cannot hope to address the latter
reason because the people who need to understand the effect of artificial deadlines
won’t read it anyway.

Finding Formal Training
Security training comes in many forms, from on-site to virtual, from classroom to
hands-on. There will be no single class, video series, or book that could possibly
ingrain all of the knowledge and put it in context of everyday use for a developer.
Solving the problem of developers not being security aware should be individualized,
based on their needs and prior experience. Ideally, this includes training that is
customized for the organization and specific to the programming languages and

Becoming Security Aware | 61

infrastructure being used. However, barring a custom solution, a generalized training
approach can be used.

Both SANS and ISC2 are well-known organizations that offer cybersecurity training.
Both also have certification programs. In the case of ISC2, the Certified Information
Systems Security Professional (CISSP) has been the gold standard for security certifi‐
cations for a long time. The CISSP is aimed toward those with the word “Security”
in their job title, but other certifications exist from both organizations. Even if
certification isn’t the goal, both organizations offer introductory training and learning
paths that would be directly helpful for DevSecOps practitioners.

Obtaining Free Knowledge
The previous chapter alluded to the OWASP Top 10 as a resource for DevSecOps to
learn about the types of attacks that are successful and how to mitigate those attacks.
For example, the 2021 OWASP Top 10 list has Broken Access Control as the top
item. Essentially everything identified within the realm of broken access control is
within the purview of a DevSecOps team. The primary exception would be when
integrating with third-party software or when using external/outsourced portions of a
web application. There is limited recourse when good vendors go bad.

The number one access control vulnerability identified by OWASP is violating the
concept of least privilege. Other issues include lack of authentication controls around
API access, the ability for a user to escalate privilege or act as an administrator
by changing the URL, and related issues. As a developer, preventing these types of
vulnerabilities should be part of the development process.

Increasing awareness of the best practices for security during development is a conve‐
nient but far too cliché phrase. No one has ever said, “I’d like to decrease awareness
of security” or “I’d like to increase awareness of worst practices for security.” However,
the contrast is the key detail: if there are best practices for security, then there must
be worst practices or less-than-best, at least. That realization leads to interesting
comparisons.

Developers who integrate security into the development process assume that all input
is broken and that all external data is incorrect and may have been entered with
malicious intent. This assumption then leads directly to validating all input against
their version of the truth or the business rules for what is and is not valid data. For
example, if a legacy system limits city names to 15 characters, then it is imperative
to ensure that city names longer than 15 characters cannot be entered. A user may
be entering a long city name to try to get the application to act in unknown or
unhandled ways, or they could just live in Wisconsin Rapids, but it’s up to the
developer to assume that the city name will be longer and then truncate the city name
or display an error, depending on the needs of the application.

62 | Chapter 3: Integrating Security

https://owasp.org/www-project-top-ten

Going beyond invalid data, what if the data doesn’t exist at all? If it’s a simple web
application, HTML attributes and JavaScript provide client-side validation, but only if
the end user has those enabled. The developer must always validate on the server side,
meaning once the data has been submitted. In the case of an API, the developer must
assume that the caller of the API has not sent in all data. When consuming data from
an API, the developer must assume that not all fields were returned. Any and all data
from external sources should be validated for existence and appropriateness.

The Common Vulnerabilities and Exposures (CVE) website is an authoritative source
for vulnerabilities as they are announced. This site should be required reading or at
least required skimming on a daily basis for DevSecOps practitioners.

Enlightenment Through Log Analysis
If you have the opportunity to get access to logfiles from a server operating on
the internet, these can be valuable for learning about vulnerabilities and also how
frequently servers are under attack. Granted, most of the attacks are fly-by attacks
that are automated and looking for open ports or common issues. These “bot” attacks
are usually merely annoyances, assuming that the system is up to date and has
followed best practices for security.

We examine logfiles in some of the courses that I teach, specifically web server
logfiles, email logs, and general access logs. Students are often surprised that bot
attacks occur as often and with as much sophistication as is shown in the logfiles.
For example, the web server access log shows thousands of lines of scans looking for
vulnerable software and sometimes attempting to exploit that software. Examining
the logfile helps students to understand why it’s important to change settings away
from their defaults when possible. If an automated scan finds an administrative
account with the default password, it will be exploited.

At minimum, examining logfiles should prove enlightening to the types of vulnerabil‐
ities that are being sought, which should help avoid some of those common issues.
Another potential benefit is finding an actual problem that attackers are exploiting on
the system and then being able to stop the attack. A side effect of logfile analysis may
also be an appreciation for the jobs done by server administrators!

Practical Implementation: OWASP ZAP
The term “DevSecOps” was originally just “DevOps,” bringing development and
operations closer to one another. A primary problem being solved with DevOps was
the “throw it over the wall and forget about it” mentality that frequently occurred
after a project was launched. Developers would test their code and launch it to
production only to find that there were problems operating the software in the

Practical Implementation: OWASP ZAP | 63

https://cve.org

production environment. DevOps has helped to solve that problem by shifting opera‐
tional needs left, or earlier in the development lifecycle.

Without the “Sec” in DevSecOps, the same problem could still occur. Security and
compliance issues were not discovered until very late in the development lifecycle.
Severe security problems would prevent the software from being released, thus
causing confusion and delay. Even worse, security problems that went unnoticed
would then lead to successful attacks against that software. Therefore, we’ve arrived at
DevSecOps to integrate security earlier and throughout the development lifecycle.

As alluded to in the previous section, becoming security aware is a challenge of both
knowledge and timeline, where developers may not know what they don’t know and
stakeholders may arrive at unrealistic deadlines, both of which are direct causes of
security issues. Gaining knowledge takes experience, which is only earned by invest‐
ing time and effort, and sometimes by being directly involved in a security-related
issue. Gaining knowledge is generally under your own control because so many
resources are free. However, the challenge of timeline is not as easily overcome. No
solution has been discovered that will prevent a vice president of the company from
overcommitting on a project. Therefore, tools have been created to help reduce the
burden related to security validation.

OWASP Zed Attack Proxy (ZAP) is cross-platform software used for vulnerability
scanning of web applications. ZAP provides a graphical interface and trivially easy
method for DevSecOps organizations to scan for common problems highlighted on
the OWASP website. Installing the graphical version of ZAP is a good starting place,
but a word of caution: by default, even a scan by ZAP can be interpreted as an
attack. Don’t use ZAP if you’re not authorized to scan a site, including internally. As
an organization matures along the DevSecOps implementation, automation of ZAP
scans should become part of the CI/CD pipeline.

Creating a Target
I own a chainsaw that came with an actual printed manual. The beginning of that
manual is dedicated to the safety warnings commensurate with such a tool. I received
the chainsaw as a gift, and after reading the manual and adhering to the proper safety
protocol, I wanted to use that chainsaw to cut something. Not finding fallen trees
on my own property, I decided to cut down a tree that was still standing, although
generally unhealthy and leaning heavily. In retrospect, it was only sheer luck that
made the tree fall in nearly the right place and without kicking back toward me. No
amount of safety warnings make gravity disappear.

Just like a chainsaw, the tool I’m introducing in this section can be used incorrectly
and with unintended consequences. Even though there are safety mechanisms in
place to prevent problems, it is possible to remove those safeties and do actual
damage to servers maintained by others. When using OWASP ZAP, you will load

64 | Chapter 3: Integrating Security

websites and potentially break them. Knowing that possibility exists, OWASP created
“Juice Shop.”

Juice Shop from OWASP is a demo web application that runs on a variety of platforms,
including Node.js, Docker, and Vagrant, or as an instance on Amazon Web Services
(AWS) Elastic Compute Cloud (EC2), Azure, or Google Compute Engine. The exam‐
ples in this section will point toward an instance of the Juice Shop that I have running
locally. Figure 3-5 shows the Juice Shop site, which even has a cookie notice!

Figure 3-5. The OWASP Juice Shop site that can be used as a target for the ZAP tool

Go to OWASP Juice Shop to find out more information, including how to download
and install the Juice Shop site. The next section will examine some of the functional‐
ity of ZAP.

Installing ZAP
Installation of ZAP will depend on the platform that you’re using: Linux, macOS, or
Windows. See the ZAP download packages along with the installation instructions on
the ZAP website. Once you’ve started ZAP, you will be prompted for how to handle
persistence, meaning whether you want to be able to pick up where you left off at a
later date. Figure 3-6 shows the prompt.

Practical Implementation: OWASP ZAP | 65

https://owasp.org/www-project-juice-shop
https://www.zaproxy.org/download
https://www.zaproxy.org/download

Figure 3-6. Persistence prompt when starting ZAP

If you’re unsure, then selecting “Yes, I want to persist this session with name based on
the current timestamp” is a safe option. You can also check the “Remember my choice
and do not ask me again” checkbox if you’d like, though doing so is not required. If
you select “No, I do not want to persist this session at this moment in time,” then
you can always change your mind and save the session by clicking File and selecting
Persist Session later.

Getting Started with ZAP: Manual Scan
At a basic level, scanning a website for common vulnerabilities is accomplished using
the Automated Scan button from the main area of the ZAP user interface, shown in
Figure 3-7.

Figure 3-7. The main user interface within ZAP

66 | Chapter 3: Integrating Security

However, when you do so, the option to enter a URL may be grayed out, as shown in
Figure 3-8.

Figure 3-8. The URL to attack text box is grayed out due to the ZAP mode

ZAP modes
ZAP operates in one of four modes, which provide some protection against inad‐
vertently pointing ZAP toward a site that you do not own or performing another
action that may be detrimental to one of your production web applications. Table 3-3
describes the four modes of operation for ZAP.

Table 3-3. Modes of operation for ZAP

Mode Description
Safe Mode Items considered dangerous are not allowed.
Protected Mode Limited ability to scan unverified URLs.
Standard Mode All actions are allowed.
ATTACK Mode All actions are allowed, and when scanning, newly discovered items are also scanned.

As you may have gathered from the names of the four modes, ATTACK Mode could
be viewed as an attack and can have ramifications beyond the URL to which the
software was originally pointed. I’d recommend not using ATTACK Mode unless
you’ve already gained significant experience with the inner workings of the software
through the other modes. For now, if ZAP is not in Safe Mode, set it to Safe Mode by
clicking the drop-down in the upper left of the ZAP toolbar, depicted in Figure 3-9.
The mode can also be changed by clicking Mode from within the Edit menu.

Figure 3-9. The upper-left corner of the ZAP window is where you will find the Mode
drop-down

Practical Implementation: OWASP ZAP | 67

Safe Mode does not allow for automated scans, but you can manually explore a
site this way. Click on Manual Explore from within the Quick Start tab of ZAP.
When you do, you’ll be presented with the Manual Explore screen. You can then
point ZAP at the site of your choice. In the case of Figure 3-10, I am pointing at
http://localhost:5150, which corresponds to the instance of the Juice Shop site that I
am running.

Figure 3-10. Manually exploring a site with ZAP

Other options available within the Manual Explore dialog are whether to enable the
Heads Up Display (HUD) and which browser to launch. These options have been left
at their default in Figure 3-10. Clicking Launch Browser starts Firefox through the
proxy of ZAP.

As is evident in Figure 3-11, the ZAP HUD launches with an overlay that gives you
two choices: “Take the HUD Tutorial” or “Continue to your target.”

68 | Chapter 3: Integrating Security

Figure 3-11. The ZAP HUD intro screen

I recommend taking the HUD Tutorial, which will help navigate the features of the
HUD, but for now, click “Continue to your target.” Like the HUD, the Juice Shop
site will also present an overlay with informative information and options, shown in
Figure 3-12.

Practical Implementation: OWASP ZAP | 69

Figure 3-12. The Welcome overlay when running the Juice Shop site

Click Dismiss on the overlay and you’ll see the Juice Shop site along with buttons on
the left and right, which are part of the ZAP HUD. The buttons on the left side are
related to issues found on this particular page, while the buttons on the right side are
related to issues that affect the site as a whole. Clicking an individual button reveals
more detail. Figure 3-13 shows alerts classified as Medium severity that affect the
page.

Figure 3-13. Medium-severity issues that affect this particular page, as shown through
the ZAP HUD

You can drill down to more information about the specific alert by clicking on one of
the alerts from Figure 3-13. For example, Figure 3-14 shows additional detail about
Cross-Domain Misconfiguration. Scrolling within that dialog box reveals additional
information and a suggested solution.

70 | Chapter 3: Integrating Security

Figure 3-14. Additional detail about an issue found with ZAP

Exploring a site manually is a good way to learn about ZAP while in the relatively
safe confines of clicking through and interacting with the site as you normally might.
However, doing so repeatedly as part of development and testing becomes both time-
consuming and mind-numbing. Therefore, a more automated method is needed.

Using an automated scan
This section shows how to perform an automated scan against the local Juice Shop
site with ZAP. I would not run this scan on a site that I didn’t own or one that was
hosted on a server that I didn’t own, and I recommend against doing so. The first
thing to do is change to Standard Mode by selecting it from the drop-down in the
toolbar.

With Standard Mode enabled, click Automated Scan and enter the URL. Figure 3-15
shows the Automated Scan window with the URL for my local instance of the Juice
Shop site.

Practical Implementation: OWASP ZAP | 71

Figure 3-15. Starting an automated scan against a local copy of the Juice Shop site

Clicking Attack begins the process of an automated scan. When the scan begins,
you may notice confetti appearing within the Juice Shop page. The confetti and
subsequent alerts on the Juice Shop site indicate that you have solved some of the
challenges that are included in the Juice Shop code. Figure 3-16 shows four such
successes, including provoking an error that wasn’t handled well by the site, access‐
ing a confidential document, viewing someone else’s shopping cart, and repeating
registrations.

72 | Chapter 3: Integrating Security

Figure 3-16. Successfully breaking the Juice Shop site with a ZAP automated scan

The ZAP automated scan will continue for quite some time against the Juice Shop
site, with thousands of requests as the spider crawls through each page and discovers
new resources, which then lead to more pages, which then leads to more resources. If
you’d like to stop the scan for any reason, such as maybe pointing the tool toward a
live site, you can do so by clicking the square that is found toward the bottom section
of the ZAP interface, as shown in Figure 3-17.

Figure 3-17. Stop the active scan by clicking the square toward the bottom half of the
ZAP interface

Practical Implementation: OWASP ZAP | 73

When complete or when stopped, ZAP displays the Alerts tab, containing more
information about the problems found on the site. Like the alerts shown with the
HUD interface, alerts can be expanded to reveal more detail. Figure 3-18 shows a
severe problem of SQL injection. In addition to information about the issue itself, this
also shows the page and/or data that triggered the alert.

Figure 3-18. The results of a scan with additional information about the problem itself

The two scans, manual and automated, are some of the most basic usages of ZAP. The
next phase of ZAP implementation would be to customize it for your web application
and site while in development. Doing so is beyond the scope of this book, though.
Another path—or further along on the same path—toward implementing automation
within DevSecOps is to integrate ZAP scans as part of the testing process, as early as
possible in that testing. ZAP can be executed from the command line and thus can be
integrated into the CI/CD pipeline.

Summary
Much of computer security is merely theater, where a facade of security is all that
people care about—right up until their business is attacked. It’s not as though anyone
in HR would know the difference, but computer security is not achieved by bullying

74 | Chapter 3: Integrating Security

employees into taking phishing training. Things like multifactor authentication pro‐
vide proof that the attackers have already won. Rather than monitoring for and
reacting to targeted attacks and attempts to compromise passwords, making everyone
carry another form of verification only increases the attack footprint.

The focus of this chapter was on security, with the goal of integrating security
throughout DevOps to create DevSecOps. The chapter expanded on the CIA triad
with examples of each of the three and ended with a demonstration of the OWASP
ZAP tool. The next chapter looks at development, with coverage intended to show
tools and processes for delivering successful software.

Summary | 75

CHAPTER 4

Managing Code and Testing

Three stages within the DevSecOps lifecycle focus on traditionally developer-related
tasks. These include the development or coding itself, building the resulting code
into an executable application, and testing the application. Full testing would involve
other teams such as quality assurance (QA), but at least some tests are done at
the developer level. The build step is significantly customized depending on the
programming language in use. Some languages require compiling of artifacts, while
others can be deployed in an uncompiled state. The chapter begins with a focus on
development and wraps up with concepts and tools for testing software. Along the
way, the chapter also introduces Git for source code management and two patterns
for using Git when developing software.

Examining Development
With the number of programming languages available, it is impossible to provide
a single section, a single chapter, or maybe even a single book that distills all of
the knowledge needed to be a successful developer in that language. There are also
numerous books covering high-level programming design and architectural concerns
as well. Though it will seem self-serving, a general rule that I’ve followed in my career
is to look for books published by O’Reilly, because the books have thorough coverage.
In the area of software design and architecture, Martin Fowler has written several
books that are canonical in their respective areas in the same way that the TCP/IP
Illustrated series by W. Richard Stevens was the go-to source for many years. With
respect given to those and other related works, there are a few ideas that I try to relate
to my students working on production-style programming. Also noteworthy is that
these ideas are themselves distillations of the ideas of the aforementioned and others,
but I have found them eminently helpful and approachable for students.

77

Be Intentional and Deliberate
Even before artificial intelligence enabled people to receive viable-looking answers to
coding problems, developers were borrowing code from others. Whether the code
worked exactly correctly or fit the design was sometimes a distant second place
to simply completing the task. This is where being intentional and deliberate are
relevant. A developer could technically complete the task with nested loops and
hardcoded values, but doing so would introduce technical debt and may not work
correctly beyond the narrow focus of the current task and with limited testing.
Consider this code that assumes there will always be 50 states in the United States and
that their alphabetical order will always remain the same:

for (i = 0; i < 50; i++):
 if (i == 49):
 state_name = "Wisconsin"

While the example may be somewhat extreme, this type of hardcoding exists when
there are time pressures or other factors that cause a developer to consider the code
to be complete when it may not be fully developed.

“Technical debt” is a term used to describe borrowing time from
future development or advancement of an application or system.
Hardcoding values in a program rather than abstracting the values
to a variable or constant may save time for this one single task with
a single value of test data, but the next time that value is needed,
it will have to be hardcoded again. If the value ever changes in the
future, then all of those locations where the value was hardcoded
will need to be changed, potentially introducing errors. While the
time was saved for the single instance in the one file, that time will
be repaid later, just as a monetary debt would be repaid at a later
date.

Don’t Repeat Yourself
Consider this code that is used to calculate the total for an order by multiplying the
subtotal by the tax rate (5.5%):

order_tax = subtotal * 0.055

If the tax rate never changes and does not need to be used anywhere else in the
application, this code meets the criteria for a minimally viable product (MVP).
However, another developer is also working on a portion of the application that needs
the tax rate. Instead of using the decimal representation of the tax percentage, they
choose to use the percentage itself. Their code looks like this:

order_tax = subtotal * 5.5

78 | Chapter 4: Managing Code and Testing

These two pieces of code will produce wildly different values. The developer may not
notice the problem because the math is technically correct, as in the value produced
by the multiplication operator produces a correct result.

Instead of relying on hardcoded values, a constant could be used for the tax rate:
const TAX_RATE = 0.055
order_tax = subtotal * TAX_RATE

There is less confusion with the use of a constant. In addition to less confusion, there
is now only one place to change the tax rate when the rate increases in the future.

Managing Source Code with Git
Whether developing as part of a team or as a soloist, tracking changes to source code
enables you to look back at the history of changes to the code. You can then revert
back to an old version of the code should something break with a newly introduced
code. Source code management (SCM) tools such as CVS, SVN, Mercurial, Git, and
others provide the ability to track changes.

In an organizational setting, there’s a good chance that code from different parts
of a project is shared and worked on by multiple developers simultaneously. Each
developer makes changes, which are tracked by the SCM. When the code is uploaded
to a common SCM server, the changes from each developer are merged with one
another, producing a single coherent set of software files containing all of the changes
from those developers. Linus Torvalds, creator of the Linux kernel, created the Git
SCM tool. Git is a popular open source SCM that is widely used. This section looks
at two methods for managing source code with Git: the Gitflow pattern and the
trunk-based pattern. But first, we’ll establish a baseline or minimal pattern.

A Simple Setup for Git
This section outlines a method for using Git on a private and independent server,
such as a server housed on premises in an organization. The obvious advantages
include privacy and cost. There would be no need for hosting the source code
repository at a third party, and there is no cost for Git regardless of the number of
developers who use it within an organization. The disadvantage is a slightly more
difficult integration, depending on the number of users who need access.

This section assumes that you have a Linux server running and have installed Git
and an SSH server. If you have not, then a Linux instance can be deployed on AWS
or another cloud provider. Both Git and an SSH server are available through the
package management tools of most major Linux distributions.

Managing Source Code with Git | 79

Referring to a Git server is somewhat of a misnomer. A Git server
does not run any special software other than the same Git-related
commands that run on a client. The “server” is merely an agree‐
ment that you will use a central location from which source code
will be uploaded and downloaded. For many, that central location
is GitHub, but for others, it’s an internal server.
One of the protocols that you can use for communication between
client and “server” with Git is SSH. Because SSH is a key technol‐
ogy behind many other DevSecOps processes, using SSH for Git
also makes sense because the software has typically been installed
for other reasons.

The Git usage patterns in this section both rely on role-based access control through
groups. In other words, users are added to the Linux server, and those users are
then added to groups. For example, a group called gitusers is created. Members of
that group have access to the Git repositories. The following example demonstrates
sharing of a repository by two users. The assumption is that the users already exist.
Afterward, the users will both be able to commit to and fetch changes from the other
user. The two usernames are suehring and rkonkol for the example, and they will both
be added to the gitusers group. The repository in the example is named devsecops and
is stored in the /opt/git/ directory on the server. More complex scenarios are available
for sharing, whether with Git or with other software such as GitHub.

Add a user called gituser:
adduser gituser

Change the shell of the gituser account. When prompted, change the shell to /usr/bin/
git-shell:

chsh gituser

Create a .ssh directory within the home directory of gituser:
cd /home/gituser && mkdir .ssh

Change ownership of the .ssh directory as well as its permissions:
chown gituser.gituser .ssh && chmod 700 .ssh

Add an authorized_keys file within the .ssh directory and change its permissions.
Technically this step isn’t required right now but will save a step later:

touch .ssh/authorized_keys
chmod 600 .ssh/authorized_keys

Add a group called gitusers:
groupadd gitusers

Add the two accounts for your developers:

80 | Chapter 4: Managing Code and Testing

adduser suehring
adduser rkonkol

Add each user to the gitusers group:
usermod -G gitusers suehring
usermod -G gitusers rkonkol

Have each of the developers generate SSH keys using the ssh-keygen command. You
can also do this for the developers by becoming them, or assuming their identity, by
using the su command, such as:

su - suehring

For completeness, if you are logged in as (or have assumed) the suehring user:
mkdir .ssh
chmod 700 .ssh
cd .ssh
ssh-keygen

accept the defaults for filename and determine whether you would like to add a
passphrase to the key.

When an SSH key is generated, a pair of files will be created. By default the files are
called id_rsa and id_rsa.pub. The id_rsa file is a private key, and the id_rsa.pub file
is a public key. The private key should be kept private and not shared with anyone,
while the public key can be shared.

To that end, copy the contents of the public key for each user to a file called
authorized_keys within the gituser home directory. This step enables both of the
developers to SSH as gituser. Be sure to use two greater-than signs for this command,
otherwise the contents of authorized_keys will be overwritten.

Assuming that your current working directory contains the file id_rsa.pub, which it
will if you followed the previous set of commands, run the following to add the key
to the authorized_keys file for gituser. This command should be run for each of the
developers using the contents of their individual public-key file:

cat id_rsa.pub >> ~gituser/.ssh/authorized_keys

The steps completed thus far are one-time foundational steps that need to be comple‐
ted to prepare the server. In the future, only the developer accounts will be created
and an SSH key generated and added to the authorized_keys file. It gets easier after
the initial setup!

With these steps complete, it’s time to create a Git repository. On the Git server, run
this command to create the directory that will hold the repository:

mkdir /opt/git/devsecops.git && cd /opt/git/devsecops.git

As noted before, this server uses /opt/git as the base for Git repositories. You might
store the repositories elsewhere based on your organizational standard.

Managing Source Code with Git | 81

Create the repository:
git init --bare --shared=group

Change ownership and permissions:
chown -R gituser.gitusers /opt/git/devsecops.git
chmod 770 /opt/git/devsecops.git

That’s it. The next time you need to add a repository, you can simply run the
commands to initialize the repository and change its ownership and permissions,
because the gituser account and the developer accounts were already created.

At this point, the developer should be able to clone the Git repository to
their local development environment. This command assumes a server name of
source.example.com. Change that according to your server naming convention:

git clone gituser@source.example.com:/opt/git/devsecops.git

If this is the first time that the developer has SSHed into the server, they will be
prompted to accept the host key from the server. Assuming that the host key is valid
and correct, typing “yes” will result in a clone of the Git repository being downloaded
into a directory called devsecops in the current directory.

Now that the setup has been done, it’s time to look at using Git.

Using Git (Briefly)
There are a handful of commands that you will use frequently with Git. The basic
idea is:

1. Clone repository.1.
2. Write code.2.
3. Commit code.3.
4. Push code.4.

If you are working with other developers, then you’d add an additional step:

5. Merge code.5.

It is that final step, merge code, where all of life’s problems occur and which is a major
contributing factor for why DevSecOps is needed. More on merging later.

You’ve already seen two Git commands, git init and git clone. Initializing a
repository is done once per repository, so the git init command will be used
infrequently. Cloning a repository will occur more often, every time you need to
download a new copy of the repository. However, once the repository is cloned, you

82 | Chapter 4: Managing Code and Testing

will use other commands to interact with it to send your code to the server and to
retrieve code from others in that same repository.

There is no Git-specific command for the step labeled “write code” that I mentioned
earlier. However, after the code is written, those changes should be committed to
the repository. There are two primary paths through which code is tracked within a
repository:

• Adding a new file with new code•
• Adding code to a file that already exists in the repository•

When a new file is added within a Git repository, that file needs to be tracked so
that changes are noted and a history of those changes is maintained. The git add
command is used to add a new file to be tracked by a Git repository. This command
adds a file called README.md to an existing repository:

git add README.md

From that point forward, changes to the file README.md will be tracked by Git
within this repository.

When a file already exists within the repository, which is equivalent to saying, “Git
knows about the file,” then changes are tracked but need to be committed to the
repository. Another way to think of a commit is as a checkpoint or a point-in-time
snapshot of the contents of the file or files at that moment. An important conceptual
difference between Git and other SCM tools is that the git add command will also
be executed every time you want to commit changes to the file. This concept can be
confusing and bears additional explanation.

Recall that a repository called devsecops was created in the previous section. That
repository contains nothing; it is empty except for a .git directory that contains
metadata managed by Git itself. When a file is added to the devsecops directory, the
file is in an untracked state, meaning that Git is aware that the file exists within the
devsecops directory but that the file will be ignored.

Untracked is one of two states in which files exist within a Git repository. Another
state for a file within a repository is the tracked state. When files become known
to Git within a repository, they are referred to as tracked. But those two states tell
only part of the story. When a file becomes tracked, Git begins monitoring that file
for changes. It’s here that conceptual problems begin around the terms “state” versus
“status.” For practical purposes, untracked files are irrelevant to the repository, and
therefore that’s where we will leave them and focus instead on tracked files.

Managing Source Code with Git | 83

Is “Untracked” Really a Status Then?
The source code for Git contains this:

static const char *wt_status_diff_status_string(int status)
{
 switch (status) {
 case DIFF_STATUS_ADDED:
 return _("new file:");
 case DIFF_STATUS_COPIED:
 return _("copied:");
 case DIFF_STATUS_DELETED:
 return _("deleted:");
 case DIFF_STATUS_MODIFIED:
 return _("modified:");
 case DIFF_STATUS_RENAMED:
 return _("renamed:");
 case DIFF_STATUS_TYPE_CHANGED:
 return _("typechange:");
 case DIFF_STATUS_UNKNOWN:
 return _("unknown:");
 case DIFF_STATUS_UNMERGED:
 return _("unmerged:");
 default:
 return NULL;
 }
}

When a file is tracked, it will be forever tracked by Git. The file exists in one of these
statuses:

• Unmodified•
• Modified•
• Staged•

An unmodified file is one that has not changed since the last commit. With existing
repositories that were just cloned, all files are unmodified because they were just
downloaded from the remote repository. However, when a tracked file is changed, Git
refers to the file as having a modified status.

Simply being modified does not mean that the file will be committed or able to be
seen by other developers. To be committed and eventually seen by other developers,
the file needs to be staged. A staged file is one that will be included in the next
commit.

The difference between modified and staged is as fundamental as the difference
between tracked and untracked. Having modified versus staged files enables you to
choose which specific files to commit. You might also make multiple commits so that

84 | Chapter 4: Managing Code and Testing

each commit creates its own snapshot with its own files. You might never need to
separate commits in such a way, but the flexibility of having modified versus staged is
available, should you ever need it.

Committing changes to the repository is accomplished with the git commit com‐
mand. Assume that a file called index.php already exists in the repository.

If you make changes to the file, you still need to add the file to the staging for this
commit using git add. After git add has been executed, the next step is to commit
the staged changes:

git commit

The code itself is saved as a checkpoint and added to the history metadata tracked
by Git. When you execute git commit, you are prompted to add a commit message.
The commit message is a short message about the commit itself. For example, if you
added a new title to index.php, then you might add the message “Added new title.”
This message is then viewable within the commit history of the repository (more on
this later).

If you don’t want to be prompted for a commit message and also don’t want to exe‐
cute git add for every change to a tracked file, you can add a couple of command-
line options that alleviate the need for both. The following command is the equivalent
of executing git add and git commit and then adding the previous message through
a text editor:

git commit -a -m "Added new title"

The -a option adds files to the commit that have previously been added or made
known to the repository. The -m option adds a message.

Even though the changes have been committed to the repository, those changes are
only stored on your local machine. This means that the changes are not viewable by
other developers and, importantly, are not being backed up in any way other than
backups that you might have set up for your local development machine. The final
step is to send the code back to the server. This is accomplished with the git push
command, simply:

git push

Code is uploaded to the server from which the repository was first cloned.

If you aren’t sure where the code will be going, use the following
command:

git remote show origin

Doing so will display the destination for the git push command.

Managing Source Code with Git | 85

You can view the commit history of the repository with the git log command.
When you execute git log, the commits that are known within the repository are
shown. It’s worth noting that the commit history does not communicate with the
server, so the history shown is limited to that which has been downloaded or cloned
from the repository.

Branching and Merging
In an ideal world, a single developer is responsible for all of the code for an applica‐
tion. That developer never misunderstands a requirement, requirements are never
missed, their code is perfect, and there are never bugs or other errors beyond their
control.

In the real world, developers work in teams, requirements are missed and misinter‐
preted, bugs are introduced, and bugs are found that are outside of the control of
the developers. When developers work in teams, the shared code can sometimes be
a source of errors. If the developers implement a data structure differently or simply
misspell a variable, errors occur when the code is merged. The later the merge occurs,
the more impact the error will have on prior steps.

Restated, there is a greater chance of a bug impacting the release date when code is
brought together and tested later. For example, fixing the bug means that previously
tested code needs to be retested. If another part of the code relied on the bug or
worked around the bug, then that other code may need to be rewritten.

Branching in SCM provides a means to work on code in parallel without affecting
others. When a repository is cloned, the master or main branch is cloned. From this
main branch, a developer may create a new branch to work on the code for a new
feature. Simultaneously, other developers may be doing the same thing, each creating
their own branch of the code, all separate from one another.

Creating a branch within a Git repository is accomplished with the git branch
command. For example, if you wanted to create a branch called project5 to work on
changes related to the new website title, you use the following command:

git branch project5

The branch is then created, using the current code as its base. While the branch has
been created, any changes that you make will remain within the current branch until
you switch to the newly created branch. This is accomplished with the git checkout
command, as in:

git checkout project5

Just like the options added onto the git commit command earlier, so too can you add
a command-line option to the git checkout command that will create the branch
and switch to it all at once:

86 | Chapter 4: Managing Code and Testing

git checkout -b project5

Changes to code and the commits related to those changes will now be sent to the
project5 branch. The git merge command is used when code needs to be brought
back into the main branch. Merging examines each object in the repository to
determine if there are changes to be included between the two branches of code. Git
does its best to determine which object is the latest version and to resolve conflicts
between two files that have changed between the branches. For more information,
see the Basic Branching and Merging section within the official Git documentation,
where you can find further details on merging and what can be done if a merge
conflict occurs.

While branching keeps code from multiple developers logically separate, it does not
solve the issue of late merges introducing bugs and untested behaviors. Multiple
methods exist for managing team-based development. One such method is the Git‐
flow pattern, which we’ll look at next.

Examining the Gitflow Pattern
Gitflow describes a process for sharing code through Git that uses separate develop‐
ment paths. Gitflow uses branching. Figure 4-1 shows the Gitflow pattern.

Figure 4-1. Typical Gitflow SCM pattern

As Figure 4-1 shows, there are several swimlanes within which active development
takes place, while other swimlanes are reserved for the main line of production
or released code. A walk-through of code through Gitflow helps to illustrate how
changes are applied and then brought back into a release before being sent to
production. Consider some code for a website. On Day 1 when the code is released, a

Managing Source Code with Git | 87

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

bug is found. The bug needs to be fixed immediately. Therefore, a developer creates a
branch to apply a hotfix. In Figure 4-1, the hotfix appears within the Hotfix swimlane.
However, the developer finds that the bug is somewhat larger than anticipated and
thus continues to determine how to fix it.

Meanwhile, development begins on enhancements to the site. This is reflected by a
Develop swimlane and corresponding branch. The development branch is further
split into feature branches so that multiple developers can work together on this
development iteration or sprint. As features are completed, the code is merged back
into the Develop branch. Eventually, the features and hotfixes (just one Hotfix in
Figure 4-1) are merged with a Release branch.

The Release branch contains code that is ready to be deployed. Various elements are
brought together at this final stage, though the exact components and processes vary
from organization to organization and from release to release. For example, some
organizations will have a formal build process, where code is compiled and final tests
are executed. Other organizations may have a longer beta testing phase with a release
candidate.

During the merge process between each swimlane in the Gitflow architecture, there
can be one or more layers of approval prior to the merge being allowed. These
gatekeeping processes serve as a checkpoint to ensure that unwanted code and side
effects for that code are not introduced into the release or main branches or out to
the production environment. A larger problem is that development branches tend to
remain active for a long time. Features and hotfixes are merged into the development
branch, but sometimes a hotfix isn’t applied or is overwritten by later code that then
reintroduces the issue for which the hotfix was originally applied.

With DevOps and then DevSecOps, an emphasis was placed on continuous integra‐
tion/continuous deployment (CI/CD) and the automated testing that is necessary
to deploy code to production with minimal checks. The premise is to move testing
earlier and more often, essentially shifting the testing phase more to the left in a
traditional waterfall SDLC model.

When you read or hear “shift left,” the shift is referring to moving
testing and other elements of software development earlier so that
problems are captured and addressed before being compounded.

With an emphasis on automation and de-emphasis of formal and manual approval
processes, a new method for branching was developed. This new method is simplified
from the Gitflow pattern, and that is the focus of the next section.

88 | Chapter 4: Managing Code and Testing

Examining the Trunk-Based Pattern
The premise behind the trunk-based pattern is to do away with long-lived develop‐
ment branches in favor of committing and frequently pushing code to a main branch,
often called the trunk, so that the code can be tested and deployed. Figure 4-2 shows
an example of the trunk-based pattern.

Figure 4-2. The trunk-based pattern for managing source code

Comparing the trunk-based pattern to the Gitflow pattern, you’ll notice fewer swim‐
lanes: just Trunk, Features, and Hotfixes. The idea is to promote from the Trunk,
which is necessarily short-lived in order to avoid large merges. It’s worth noting that
both the Releases and Main branches can sometimes exist, but that’s more so a logical
or process-related necessity instead of a requirement for trunk-based development.

“Promote early, promote often” is the main idea for trunk-based development. That
sounds great in theory, but in practice the implication is that a mature and thorough
testing infrastructure exists and is capable of testing the application. This is the
concept of code coverage. Code coverage describes the ratio of code to tests of that
code. For example, consider this simple conditional statement:

if ($productType == "grocery") {
 $taxable = false;
}

A positive test for this code is to set the contents of the $productType variable
to grocery and then examine whether $taxable is true, false, or unset afterward.
Another test is to set $productType to anything other than the string of characters
grocery and then examine the contents of the variable $taxable afterward. It would
be tempting to indicate that the code coverage is 100% for this code. However, what
if $productType is not set? The answer depends largely on the code that would be
above the example shown here. Some languages will also not allow $productType to

Managing Source Code with Git | 89

be unset and would provide an error during the compile process. Therefore, code
coverage will depend on language and context.

The turn toward code coverage leads the chapter toward the concept of testing, which
coincidentally is the next section. Choosing a branching strategy is not a permanent
decision. I recommend trying (or continuing with) more formalized and deliberate
patterns for code management to better understand where gaps exist in development,
testing, and deployment. As you improve development practices, testing coverage,
and deployment, simplify the code management processes to keep them from getting
in the way of progress.

Testing Code
Examining an application for defects is accomplished at various stages throughout
the SDLC. At the most basic level, a developer tests their own code. Consider the
conditional statement from the previous section. A developer would likely test their
code for the cases described in that section, testing both the positive case with the
product type set to grocery and at least one negative case with the product type set to
something other than grocery.

This section examines several aspects of testing, from basic developer tests to QA
testing by end users. Included in the discussion of testing are both functional and
nonfunctional requirements. Recall from Chapter 1 that a nonfunctional requirement
is something like security or transaction speed. While it’s possible that these are
highlighted as specific requirements, it’s more likely that requirements gathering will
not include questions like “How fast would you like the application to load?” Instead,
nonfunctional requirements may rely on service-level agreements.

Unit Testing
The conditional code shared earlier in this chapter would be part of a larger block
of code that is tested by the developer as they write the code. When tested in small
units, at the function level or similarly small pieces of code, this is called unit testing.
There is no strict rule as to how small or how large a block of code can be and still be
considered a unit test. However, as the number of dependencies increases, it becomes
less likely that the test would be considered a unit test. Put another way, if the code
being tested depends on several other files and preconditions, then the test is more
akin to an integration test, where multiple elements are combined.

A basic goal of unit testing is 100% coverage of all conditions, such as the condition
shared earlier. In addition, static analysis should be performed on the code. Static
analysis describes a means to examine the code without executing it. Static analysis
is frequently used for verifying adherence to coding standards and to validate basic
application security.

90 | Chapter 4: Managing Code and Testing

Unit testing exists regardless of DevSecOps processes. However, moving toward
DevSecOps means automating as many unit tests as possible. Ideally, all unit tests
should be executed in an automated manner. Doing so facilitates the CI/CD processes
needed to fully leverage DevSecOps.

Integration Testing
Integration testing brings together units of code to verify that those units work
together to achieve the functional requirements of the application. Reaching the
level of integration testing implies that unit tests are complete and successful. Where
connections between units of code exist, integration testing verifies that those con‐
nections are working as intended.

System Testing
The third level of testing is commonly referred to as system testing. The goal with
system testing is to combine all components in an environment that is as close to a
production environment as possible. Both functional and nonfunctional tests should
be performed in system testing, and ideally the data used will be a de-identified
version of production data or a subset thereof. The caveat around whether a subset
of data is acceptable is that using only a fraction of the data may hide performance-
related problems. For example, if the normal production dataset is a multiterabyte
legacy database and one of the features of the application requires querying that data,
then using only a few gigabytes may mask a problem with the query. In the testing
environment, the query may return results with acceptable performance, but when
the entire dataset is queried, the results take minutes to return.

Automating Tests
Automation is a key factor in determining the success of any DevSecOps efforts.
There are numerous tools available that help automate testing of code. One such
tool is Selenium. Selenium provides a full-featured test suite that can be scaled to
distribute tests from multiple locations, and an IDE to help with creation of tests.
There are also Python bindings for the underlying Selenium web driver.

Retrieving a page using Selenium and Firefox
You can execute Selenium tests from the command line using Python. Doing so
enables you to build a simple means to test during development but also to create
a sophisticated bot that can crawl the site as you create it, taking screenshots along
the way to prove that a page exists and was rendered without error. This section
shows Selenium with a headless Firefox browser running on Debian Linux. Later in
the book, I’ll show you a more complex example using Docker. The simple example
shown in Example 4-1 seems to be missing from many of the tutorials that exist

Testing Code | 91

https://www.selenium.dev

online. While the example lacks some of the debugging options and other niceties
that you might want, such as a try/catch block, those can be added later.

Example 4-1. Basic Python code to retrieve a web page and capture the results

#!/usr/bin/env python

from selenium import webdriver

proto_scheme = "https://"
url = "www.braingia.org"

opts = webdriver.FirefoxOptions()
opts.add_argument('--headless')

driver = webdriver.Firefox(options=opts)
driver.implicitly_wait(10)

driver.get(proto_scheme + url)
driver.get_screenshot_as_file('screenshot.png')

result_file = 'page-source_' + url

with open(result_file,'w') as f:
 f.write(driver.page_source)
 f.close()
driver.close()
driver.quit()

Within Example 4-1, the first line interrogates the environment for a Python exe‐
cutable and enables execution of the file as a normal command rather than needing
to preface the filename with “python” on the command line. For example, you’ll see
numerous examples online where programs written in Python are executed like this:

python3 program.py

Instead, by including the interpreter on the first line as shown, the file can be
executed like this:

./program.py

The assumption is that the file is executable; if not, then you can
chmod u+x program.py to add the executable bit.

Python 3 should be the default. If not, or if you receive errors regarding the version
of Python in use on your system, you can remove this line completely and execute the
file as shown earlier, by prefacing with the Python 3 interpreter.

92 | Chapter 4: Managing Code and Testing

The webdriver from Selenium is imported next, followed by two variables to establish
both the protocol scheme and hostname to be tested. The next three lines set an
option to execute Firefox in a headless manner. The headless option is used so that
an X Window system or desktop environment does not need to be installed for this
program to work. Firefox simply executes behind the scenes without need for the
graphical interface.

The following line sets a wait time of 10 seconds. This can be adjusted as necessary
for your environment. Ten seconds was chosen arbitrarily for this example. The
web page is retrieved with the next line, and a screenshot is captured and named
screenshot.png. The last section of the program opens a local file for writing and
places the page source into that file. Finally, the session is closed and the browser
quits executing.

It is worth noting that the program executes a copy of Firefox in the background. If
the final call to quit() is not executed because of an earlier error, then there will be
orphaned Firefox processes running on the system. A reboot of the computer would
solve it, but because this is Linux, a reboot shouldn’t be necessary. You can find the
leftover Firefox processes with this command:

ps auwx | grep -i firefox

The resulting output will look something like this, although the username and pro‐
cess IDs will be different:

suehring 1982868 51.9 16.3 2868572 330216 pts/1 Sl
 12:12 25:43 firefox-esr --marionette --headless --remote

Issuing the kill command on the process ID will stop the process from running. In
the example, the process ID is 1982868. Therefore, the following command should be
issued in order to stop this process:

kill 1982868

As noted earlier, an obvious improvement would be to include much of the process‐
ing within a try/catch block, which will alleviate some of the chance of orphaned
processes being left over after an error. Another improvement would be to capture
the initial URL as a command-line option along with the ability to crawl the site,
collecting links found on the site and visiting those. Some may not consider those to
be necessary or even an improvement. Therefore, simple is better, and this example
shows the basics of retrieving a page.

Retrieving text with Selenium and Python
The previous example shows the use of Python, Selenium, and Firefox to retrieve the
source from a web page and take a screenshot of that page. As part of testing, you
may want to be alerted to a page not rendering correctly or with the correct elements
or text within those elements. For example, if you’ve written tests to log in to a page

Testing Code | 93

and then expect a greeting on the next page that should contain your name, you can
write a test to retrieve the specified HTML element and verify that the correct name is
displayed within that element.

Text can be retrieved using a few methods. Example 4-2 shows a means to retrieve the
copyright notice from a page if that notice is contained within a <p> element, as it is
on my site currently.

Example 4-2. Retrieving a web page and displaying the copyright notice

#!/usr/bin/env python

from selenium import webdriver

proto_scheme = "https://"

url = "www.braingia.org"
opts = webdriver.FirefoxOptions()
opts.add_argument('--headless')
driver = webdriver.Firefox(options=opts)

driver.implicitly_wait(10)
driver.get(proto_scheme + url)
driver.get_screenshot_as_file('screenshot.png')
copyright = driver.find_element("xpath", "//p[contains(text(),'Copyright')]")
print(copyright.text)
result_file = 'page-source_' + url
with open(result_file,'w') as f:
 f.write(driver.page_source)
 f.close()
driver.close()
driver.quit()

The two substantive changes are shown in bold within the listing for Example 4-2.
You could also simply print the text on one line, like so:

print(driver.find_element("xpath","//p[contains(text(),'Copyright')]").text)

However, I lean toward the version shown in Example 4-2 because that version
enables manipulation of the element for uses other than showing the text.

Summary
This chapter provided information on development and testing. Being intentional
and deliberate is understated among development paradigms and patterns. However,
the phrase “intentional and deliberate” captures the essence behind knowing why
you’re using a pattern or even a line of code in a certain location. We also examined
the Git SCM tool, along with the Gitflow and trunk-based architectures for managing
code from creation through deployment. Finally, I discussed three levels of testing
and provided test automation examples using Selenium and Python. My goal with

94 | Chapter 4: Managing Code and Testing

the examples was to provide a simple baseline or foundation to which you can add
additional complexity.

Chapter 5 continues to focus on DevSecOps practices with management of config‐
uration as code. Developing with containerization techniques is frequently part of
DevSecOps and modern development. Chapter 5 also demonstrates Docker.

Summary | 95

CHAPTER 5

Moving Toward Deployment

This chapter examines some of the elements involved in releasing and deploying
code. The chapter begins with an overview of managing configuration files as code.
Doing so provides the same benefits as source code management (SCM) in creating
a centralized repository that contains the necessary files for a project or service.
When considering DevSecOps, managing configuration as code is fundamental to
shifting left. Configuration files can be used across environments, from development
to production.

The chapter continues with coverage of containerization, specifically Docker. Con‐
tainerization facilitates a decoupled, microservice architecture, where testing and
deployment are inherently reproducible. As with managing configuration as code,
containerization makes repeatability quick and easy. The same configuration and
container that is deployed in dev can be deployed into test and production. Finally,
the chapter briefly describes the blue-green deployment strategy and next steps
involved in moving an organization forward in DevSecOps maturity.

Managing Configuration as Code and Software Bill of
Materials (SBOM)
Code created by developers as part of a project is managed using an SCM tool like
Git. Managing code with an SCM tool enables tracking changes to the code as new
features are added and bugs are fixed. At its most basic, code is simply a text file,
regardless of the language in which the code is written. Code written in Rust, Perl,
Pascal, or any language begins life as a text file.

Just as source code is a text file, so too are the files that configure the behavior of
services in a modern infrastructure. For example, the configuration file for a web
server such as nginx or Apache is a text file with specific syntax and keywords that

97

determine how the server will behave, the port that it will listen on, the sites available,
and other behaviors. Just like source code changes, configuration of services also
changes as new features are added and as changes are requested from developers or
other similar reasons for a configuration change. Managing configuration files using
an SCM has the same benefits as managing source code. Changes can be tracked
across time, managed using deployment tools, and rolled back to a known-good
version if needed.

Structuring repositories for configuration files varies significantly depending on the
operating environment and infrastructure. For example, there may be quality assur‐
ance environments that need some of the same configuration file content as the
production environment, with the exception of things like credentials for production
databases and hostnames, among others.

One method for repository structure involves storing configuration files per environ‐
ment. This structure can lead to configuration files that unintentionally differ. For
example, if a change is necessary within the web server configuration in a testing
environment, that change will need to be manually propagated to other environ‐
ments. If that change is not included, then it might lead to downtime for other
environments as the project moves toward production.

A per-application repository structure can be used to alleviate the environmental
concerns with per-environment repositories. For example, managing a web server
configuration with the top level as webserver and using branching and tagging for
changes to the file takes advantage of the strength of the SCM plus the simplicity
of a single file. The result is that when a new version of the file is needed for a
project, that file can be tagged. As the project moves through development to testing
to production, that tag can be intentionally used as the configuration. Consider this
directory structure:

configs/
 webserver/
 common/
 host-specific/
 databaseserver/
 common/
 host-specific/
 firewall/
 common/
 host-specific/

An example of a file that would be stored within the common web server config‐
uration directory is the apache2.conf file found on Debian installations that con‐
tains common configuration items and references to other configuration files and
directories:

Mutex file:${APACHE_LOCK_DIR} default
PidFile ${APACHE_PID_FILE}
Timeout 300

98 | Chapter 5: Moving Toward Deployment

KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 5
User ${APACHE_RUN_USER}
Group ${APACHE_RUN_GROUP}
HostnameLookups Off
ErrorLog ${APACHE_LOG_DIR}/error.log
LogLevel warn
IncludeOptional mods-enabled/*.load
IncludeOptional mods-enabled/*.conf
Include ports.conf
<Directory />
 Options FollowSymLinks
 AllowOverride None
 Require all denied
</Directory>
<Directory /usr/share>
 AllowOverride None
 Require all granted
</Directory>
<Directory /var/www/>
 Options Indexes FollowSymLinks
 AllowOverride None
 Require all granted
</Directory>
AccessFileName .htaccess
<FilesMatch "^\.ht">
 Require all denied
</FilesMatch>
LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" \
 vhost_combined
LogFormat "%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %O" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent
IncludeOptional conf-enabled/*.conf
IncludeOptional sites-enabled/*.conf

The elements found in the apache2.conf file can be deployed to any web server being
deployed. For example, adding an additional field to the logfile format to capture the
IP address from which the request was received is sometimes necessary when using
load balancing or cloud providers. In that case, a new LogFormat directive would
be added and would contain the %{X-Forwarded-For}i directive. Also note the use
of the %D option, which records the time taken to serve the request. This value can
be important as you move through deployment to track whether a new change has
changed the response time. The directive could be added to the apache2.conf file so
that the format is available to any virtual host using that same apache2.conf file:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %D %v \
 %{X-Forwarded-For}i" xforward

However, there may be specific configurations for different servers and microservices
within the infrastructure. The configuration files needed for individual sites or types
of servers are stored in host-specific directories. For example, within the host-specific
directory, there might be separate directories for the configuration related to the

Managing Configuration as Code and Software Bill of Materials (SBOM) | 99

public-facing web server, an authentication web service, and a product web service,
with others based on the organization and the web servers being used:

host-specific/
 public-web/
 authentication-ws/
 product-ws/

A configuration file for a web server from a default Debian install is an example of an
application-specific configuration that benefits from the hierarchy:

<VirtualHost *:80>
 ServerName www.example.com
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html
 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

Within this configuration file, which would be found within the public-web/ direc‐
tory, we’ll use the ServerName configuration. That option would be different for
the authentication web service server found in the authentication-ws/ directory. The
ServerName, DocumentRoot, ErrorLog, and CustomLog directives would change:

<VirtualHost *:80>
 ServerName ws-auth.example.com
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/ws-auth
 ErrorLog ${APACHE_LOG_DIR}/ws-auth-error.log
 CustomLog ${APACHE_LOG_DIR}/ws-auth-access.log combined
</VirtualHost>

When placed under SCM, such as Git, any changes to these configuration files would
be tracked. This enables rollback and history capabilities. However, the structure
shown does not address per-environment differences, such as the differences found
between a development environment and its production counterpart.

Details related to testing environments can be handled in two ways, depending on
the level and sophistication of automation involved in the process. A manual process
involves creating another layer of directories within each of the application-specific
directory structure, one for each environment, such as:

host-specific/
 public-web/
 dev/
 internal-test/
 integration/
 user-qa/
 production/
 authentication-ws/
 dev/
 internal-test/
 integration/
 user-qa/
 production/

100 | Chapter 5: Moving Toward Deployment

As I previously noted, the drawback to the per-environment structure is an increased
chance of configuration skew or substantive differences between environment config‐
uration. For example, you may need to add more verbosity to logging in a develop‐
ment environment, or performance tuning options might be enabled in development
and test. In this scenario, you’d add a configuration change only to the appropriate
nonproduction environment, and it would not be propagated to the configuration
files used for other environments. The next project that moves through the pipeline
toward production may accidentally include the debugging option, thus causing
problems that are unrelated to the project being moved to production. The hope is
always to “remember” to remove that extra debugging, but hoping doesn’t always
work.

Avoiding configuration skew is the goal. Achieving that goal leads toward additional
levels of automation and variable-based configuration management. The configura‐
tion files are stored in a source code–managed repository, but instead of hardcoding
values, any environment-specific information is gathered at time of deployment.
Many modern configuration management tools have the necessary capabilities to
build dynamic configuration files.

Configuration files are part of a deployment of software, typically in the form of a
series of packages that need to be installed together to make an application work.
A software bill of materials (SBOM) is used to track dependencies and create a
secure software supply chain. An SBOM contains information about each software
component, such as the name of the supplier or creator of that software component,
the name of the component itself, the version and other identifiers of the software,
dependency tracking for this component, and information about the SBOM itself.

An SBOM can be used to verify and validate each piece of a larger application. When a
vulnerability is released, it’s possible to use the SBOM to verify whether the vulnerable
component is used within the application. See “Securing the Software Supply Chain”
for more information on SBOM and other practices related to software security.

Using Docker
Docker provides for containerization of applications. Containerization, whether
using Docker or another tool, is one of the primary tools that helps organizations
move toward automated DevSecOps. Containerizing sometimes requires a paradigm
shift away from monolithic, all-in-one applications toward small, purpose-built
micro-applications that do one thing and one thing only. While the term “microser‐
vices” is popular, the term “micro-application” can be helpful when trying to concep‐
tualize the shift from a larger application to one comprised of smaller applications.

The following sections provide an overview of Docker, including important con‐
cepts and some vocabulary. Note that I’ve written the upcoming material with the

Using Docker | 101

https://oreil.ly/dfiBv

assumption that you are familiar with virtualization and some cloud-based concepts.
If you are approaching everything fresh, the Docker documentation and tutorials are
quite good. However, if you are attempting to integrate existing infrastructure and the
concepts related to that infrastructure into a containerized world, then this section
should be helpful.

Container and Image Concepts
A container is a collection of resources that is used as a computing environment.
You might think of a container as a virtual machine insofar as there is abstraction
of hardware resources into software. With a container, the compute resources are
executed from a file on a filesystem, known as an image. The image contains the
operating system and software to be virtualized. Just as virtual machines can be
isolated when needed or have access to shared resources, containers can utilize shared
disks and other resources on the network.

The paradigm shift toward containerization occurs at a higher level, in how contain‐
ers are constructed and their intended use. Whereas creating a virtual machine
typically involves installing a base operating system from an installer, a container is
constructed from an image that already exists. In other words, the typical use case for
Docker and other containerization technologies does not include the installation step
but rather uses an image of a virtual machine that someone else has installed.

The security-minded and operations-minded may note that using an image of an
operating system that someone else has installed is inherently flawed because there is
no way of knowing what’s on the image or whether the binaries and other files have
been modified or tampered with. The counterargument is one of scale and many eyes,
meaning that if one of the base container images for Docker was tampered with, the
community would be made aware immediately.

From an operational standpoint, the highest performance is obtained when the oper‐
ating system is installed in a purpose-built manner. The only software on the server
is the minimum necessary to accomplish the task of that server. Taking performance
a step further, compiling custom binaries of base software like a web server optimizes
the system for its purpose. Compiling the kernel itself can also enhance performance.

In an automated, cloud-based world, obtaining this next level of performance is
reserved for the highest-need, busiest applications, where microseconds matter. Most
business-line, customer-facing applications won’t need that type of performance,
though, and therefore a shared container image provides performance that’s good
enough for most needs. The greater performance gains are found through horizontal
scaling, strategic regional caching, and data flattening. As performance gains begin to
diminish through scaling or other means, an inward focus on core infrastructure can
yield additional performance.

102 | Chapter 5: Moving Toward Deployment

https://docs.docker.com
https://www.docker.com/101-tutorial

Those familiar with virtualization concepts will note that you could use a template or
snapshot to mirror the image-to-container experience. In those terms, think of the
image being the snapshot. Many virtual machines can be cloned and built from one
snapshot in a virtualized infrastructure, and many containers can be built from an
image in a containerized infrastructure.

Another concept that differentiates containers from virtual machines is longevity.
Virtual machines may be purpose-built but are used in a hosted manner. For exam‐
ple, a virtual machine is built and a version of code is uploaded to that virtual
machine and tested there. The virtual machine continues in its current state, awaiting
the next version of code to be uploaded and tested.

With a container, the image and software are gathered at runtime, tests are executed,
and the container stops. Put another way, the container runs only when there are
tasks to execute. It is this concept that can be a stumbling block when learning
Docker from a virtualized perspective. Docker makes it easy to download and run
an image, but, depending on the image, the container may run and then exit immedi‐
ately. In a virtual server scenario, the virtual server would continue to run and an
administrator would log in to the container to perform configuration and related
tasks.

If you need persistence between executions of a container, then you should create a
volume. A volume is akin to disk space that is mounted within the container on each
execution. Data that changes on the volume is maintained in a frozen state until next
use, much like turning a computer off. The data stored on disk is persistent, as is the
data stored in a Docker volume.

Obtaining Images
Prior to running a container, you’ll need to download an image. In Docker terms,
this is known as a “pull.” Images can be sourced from a number of locations but most
commonly from Docker Hub or from a local registry. This section examines both.

Docker Hub
Docker Hub is an official online registry for images that is integrated with the release
of Docker. Docker Hub contains images created by Docker and also the wider com‐
munity, both vendors and individual contributors alike. Docker Hub is the place to
start when learning Docker because you can download a tutorial image and container
to begin learning in a hands-on way.

Alpine Linux is a popular variant of Linux used on Docker. Alpine provides a very
small installation of Linux and is available on Docker Hub by searching for Alpine.
As Figure 5-1 shows, there are numerous Alpine-related images available.

Using Docker | 103

Figure 5-1. The Alpine Linux images available on Docker Hub

The top hit, which has been downloaded over one billion times, has the small ribbon
next to it (shown in Figure 5-1 next to the result for “alpine”), indicating that it is a
Docker Official Image.

Clicking Pull downloads the image, whereas clicking Run downloads and then exe‐
cutes the image. Running the image reveals the “Run a new container” dialog, shown
in Figure 5-2.

104 | Chapter 5: Moving Toward Deployment

Figure 5-2. Running the container

Clicking Run again executes the image in a new container. Docker will choose a ran‐
dom name for the container. If you’d like to customize the name, click on “Optional
settings.” For now, I merely clicked Run, which brought up the Containers page,
showing the new container (randomly named blissful_greider) and showing the status
of the container. This is illustrated in Figure 5-3. In addition to the name, whether
named manually or randomly, a container identifier (ID) is also produced. This string
of characters enables a canonical method for accessing the container.

Figure 5-3. Displaying a container and its status in Docker Desktop

Using Docker | 105

As Figure 5-3 shows, the container has exited. The status indication is located in the
upper right, and in case it’s difficult to read, Figure 5-4 shows that upper-right section
zoomed in closer.

Figure 5-4. Zoomed version of the status that is shown for a container in Docker Desktop

The status of a container is a notable difference from a virtual machine. Rather
than continuing to run in the background, the container has stopped because there
were no more tasks to run. Put another way, a virtual machine would continue to
run, whereas a container stops when there are no more processes to run. In the
next section, I’ll show a method for keeping the container running and allowing
command-line or terminal access.

Using the Docker command
While Docker Desktop is an excellent interface for managing images and containers,
the cool kids use the command-line interface (CLI) for interacting with Docker. As
with just about everything else, the command line makes computer work faster and
more efficient. Docker-related commands begin with the docker command, followed
by a subcommand and usually some options. Typing docker from the command line
(Terminal on macOS/Linux or command prompt on Windows) reveals the various
subcommands and options. Typing docker followed by a subcommand will generally
display context-sensitive help for that subcommand. Let’s take a look at an example.

Run this command:
docker search

The docker command will then display help that is related to the search subcom‐
mand:

"docker search" requires exactly 1 argument.
See 'docker search --help'.
Usage: docker search [OPTIONS] TERM
Search Docker Hub for images

Earlier, Figure 5-1 showed the results from a search for alpine. That search can also
be performed from the command line with:

docker search alpine

Doing so displays the list of images containing the word “alpine”:
NAME DESCRIPTION STARS OFFICIAL
alpine A minimal Docker... 10315 [OK]
alpinelinux/do Simple and light... 9
alpinelinux/al Build Alpine Lin... 3

106 | Chapter 5: Moving Toward Deployment

alpinelinux/gi Helper image con... 4
alpinelinux/un 4

The results are divided into columns. The first column is the name of the image.
The second column contains a description. The third column indicates the number
of times that the image has been starred. This is a good indication of the popularity
of the image. The fourth column provides an indication of whether the image is an
official image, released by Docker. In the listing shown, the first result is the alpine
image, which has been starred 10,315 times and is flagged as being an official image.

There is also a fifth column titled AUTOMATED, which is not
shown but indicates whether the image can be used as part of an
automation workflow.

You can also filter based on whether the official flag is true or false, based on the
number of stars that an image has obtained, or based on whether the automated flag
is true or false. In the example shown, filtering only for official images looks like this:

docker search alpine --filter is-official=true

After logging in with the login subcommand, you can download or pull the image:
docker pull alpine

The image can be executed into a container with:
docker run alpine

Just as the pull step can be skipped through the Desktop, so too can this step be
skipped from the command line. Instead of running docker pull first, you can
simply execute docker run and Docker will download the image if needed prior to
running it.

Also similar to the behavior of Docker Desktop, when running a container from the
command line, Docker will choose a name for the container and will also use default
values for other parameters. You can change these parameters through the command
line or the Desktop interface. The optional settings available when running a Docker
container through Docker Desktop are limited. However, many more options are
available through the command line. For example, running a container while man‐
ually setting the name while also allocating a terminal, running the container in the
background, and allocating a pseudo terminal is accomplished with this command
line:

docker run --name ch5contain -dit alpine

This command uses a friendly name of ch5contain rather than the randomly chosen
name. The command also uses the -d option to detach from the command line or
run in the background. The -i option indicates that standard input (STDIN) should

Using Docker | 107

be kept open and interactive. The -t option allocates a pseudo TTY (teletypewriter),
which enables command line access within the container itself.

The ps subcommand shows container status:
docker ps

A list of running containers is returned. In the case of the previous docker run
command, the output from docker ps is:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
28ae7048c1d3 alpine "/bin/sh" 8 min... Up 8 min... ch5contain
Assuming that a pseudo TTY has been allocated (using the -dit options shown earlier),
you can connect to a shell prompt within the container using the attach subcommand
followed by the container ID. For example, the container ID
of the container that was just created begins with 28ae7048c1d3. Connecting, or attaching,
to that container is accomplished with the following command:
docker attach 28ae7048c1d3

The result is a shell prompt, as the root or superuser, located at the root of the
filesystem in Alpine Linux. From there, commands are then within the container,
remembering that any changes made within the container filesystem will not persist
after the container process stops.

You may also be able to connect with the following command:
docker exec -it <container_id> /bin/bash

This command will explicitly run a shell within the container.

If you’re familiar with working through the command line in Linux, you may be
tempted to type “exit” to end your terminal session. However, typing “exit” within the
Alpine Linux Docker container that is running a shell will stop the container process.
Instead of typing “exit,” use the Ctrl-P + Q escape sequence to effectively exit from the
terminal without stopping the container process entirely.

The start subcommand is used to restart the container:
docker start ch5contain

Alternatively, you could also use the container ID:
docker start 28ae7048c1d3

See the documentation for information related to the Getting Started tutorial that is
available with Docker Desktop.

Using a local network registry
With the ability to run a container in the background, you can create a local registry,
if needed. There are two primary reasons for hosting a local Docker registry. First,
an organization can create its own custom containers that are only shared within
the organization itself. A second reason to host a local registry is to be able to work

108 | Chapter 5: Moving Toward Deployment

https://docs.docker.com/get-started

semi-offline or in a semi-disconnected state. If the internet connection is down,
containers and images can continue to be pulled from the local registry. The focus of
this section is creating a locally hosted registry that can be accessed by others within
your organization.

The core of a local registry is the aptly titled registry image from Docker. You will
also need to allow connections to the container, which is accomplished using the -p
option at runtime. Depending on the level of security needed, you may also choose to
use SSL to encrypt registry-related communication between the local client machine
and the local registry server, and you may also choose to add authentication for the
registry as well.

The following commands assume that there is a local server that will be used as
a central location for Docker images within the organization. The examples use a
virtual machine running Debian Linux. Docker was installed on the Debian instance
using the instructions in the Docker documentation.

While this isn’t the place to argue the efficacy of using SSL for communication that
occurs over wires within a building, adding the SSL capabilities isn’t too cumbersome.
The most cumbersome or time-consuming part of adding SSL to the local registry
is obtaining an SSL certificate. If the organization does not already have a certificate
available, then a self-signed certificate can be generated for use with the local registry.

If you have a valid SSL certificate signed by a recognized certificate authority (CA),
then you will not need to run the openssl command shown later. Subsequent exam‐
ples assume that you have the public and private certificates within a directory
structure called docker/ssl located within your current directory on the server that will
be used as the registry.

If you’re using a self-signed certificate, create a directory to hold the certificate and
key, and then generate the certificate pair. The newly created certificate and key will
be stored in a directory on the host computer called docker/ssl. This path is relative to
the directory from which you ran the mkdir command. You might consider creating
an absolute path on the host computer, such as /etc/ssl/, for storing the certificate and
key.

Note also that the openssl command shown uses a hostname that I created for
this example (dockreg.braingia.org). Change that hostname and domain for your
organization:

mkdir -p docker/ssl

openssl req -x509 -nodes -days 365 \
 -subj "/C=US/ST=WI/O=Book/CN=dockreg.braingia.org"
 -addext "subjectAltName=DNS:dockreg.braingia.org" -newkey rsa:4096 -nodes
 -keyout docker/ssl/example.key -out docker/ssl/example.crt

Using Docker | 109

https://docs.docker.com/engine/install/debian

You can also add authentication for another layer of security on a local registry. As
with adding SSL, authentication is easy to add to the container. On the registry server,
generate an htpasswd file containing credentials for each user who will access the
registry. This is accomplished with the following command. The username will be
reginald, and the password will be regpass in the command. Change according to your
needs:

mkdir -p docker/auth && cd docker/auth

docker run --rm --entrypoint htpasswd registry:2.7.0 \
 -Bbn reginald regpass >> htpasswd

At this point, you’ve generated a private key and certificate file for SSL and you’ve
created an htpasswd file for authentication. These files are located on the server
and placed within the docker/ directory, located within your home directory on that
server. Certificate-related files are located in docker/ssl, and the authentication-related
file is located within docker/auth. Docker itself has been installed on the server and is
running.

The next step is to make those files available within the container at runtime. The
easiest option is a bind mount, which is a filesystem that exists on the host machine
and gets mounted into the container. With a bind mount, you specify the location of
the local file or directory and you also specify the location where that directory will
be mounted in the container. For example, if you wanted to make the local docker/ssl
directory available within the container in a directory called /ssl, you could do so with
this option:

-v ./docker/ssl:/ssl

It’s worth noting that the example shown uses the ./ path to indicate that the path
is located in the current directory. You can also use `pwd` (note the run quotes, or
backticks) as in:

-v `pwd`/docker/ssl:/ssl

When the container is running, the contents of the docker/ssl directory on the local
computer is then available to the container process in a directory called /ssl.

With the certificate and key created, the next step is to trust them on each of the
client computers that will access the registry. The instructions for doing so are spe‐
cific to the operating system and version of that operating system that you’re using.
For example, on a Mac you will go to Applications → Utilities → Keychain Access
and import an item, selecting the certificate that you created on the registry server.
If you executed the openssl command, then you’ll need to transfer the certificate
to each client computer (copy and paste the contents of the .crt file, for instance).
If importing into a Mac client, be sure to select “Always Trust” to avoid an error
regarding an unknown CA. See the Microsoft documentation for an overview of
working with Docker and certificates on Microsoft Windows.

110 | Chapter 5: Moving Toward Deployment

https://learn.microsoft.com/en-us/aspnet/core/security/docker-https?view=aspnetcore-8.0

You may see advice or instructions for adding an “insecure regis‐
try” option. If you have imported and trusted the certificate, then
you will not need to follow that advice or instruction.

All of that background work leads to finally being able to run the container for the
local server-based registry.

Several environment variables are used to configure the local registry for HTTPS and
authentication. Environment variables are exported using the -e option to the docker
run command. The necessary environment variables for this example are described in
Table 5-1.

Table 5-1. Docker environment variables for HTTPS and authentication

Variable Description
REGISTRY_AUTH The type of authentication to be used.

REGISTRY_AUTH_HTPASSWD_REALM The realm for authentication. This value would typically be displayed in the
authentication dialog.

REGISTRY_AUTH_HTPASSWD_PATH The location of the htpasswd file, relative to the container process.

REGISTRY_HTTP_ADDR Provides the IP address and port on which the registry will be found. Use in
combination with the -p option to actually listen on the port as well.

REGISTRY_HTTP_TLS_CERTIFICATE Path to the public certificate used for SSL communication with the registry. This
path is relative to the container itself, not the host computer.

REGISTRY_HTTP_TLS_KEY Path to the private key used for SSL communication with the registry. This path
is relative to the container itself, not the host computer.

The final command uses the -d option, indicating a detached process, and uses the
--restart=always option so that the container runs (or restarts) automatically. The
name of the container is set to registry. This is followed by two -v options to create
bind mounts. Each of the environment variables described in Table 5-1 is included.
The container will listen on the default port for HTTPS (TCP port 443). Because of
this, the docker process on the server needs to be executed with sudo or executed as
root:

sudo docker run -d --restart=always --name registry \
 -v `pwd`/docker/auth:/auth -v `pwd`/docker/ssl:/ssl \
 -e REGISTRY_AUTH=htpasswd -e REGISTRY_AUTH_HTPASSWD_REALM="Example Registry" \
 -e REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd -e REGISTRY_HTTP_ADDR=0.0.0.0:443 \
 -e REGISTRY_HTTP_TLS_CERTIFICATE=/ssl/example.crt \
 -e REGISTRY_HTTP_TLS_KEY=/ssl/example.key -p 443:443 registry:2.7.0

The local server-based registry process should now be running, the certificate should
be trusted on client computers that will access it, and at least one user should have
credentials to the registry server.

Using Docker | 111

Log in to the newly created registry server with the docker login command, fol‐
lowed by the hostname. For example, if the registry is named dockreg.braingia.org,
then the command is:

docker login dockreg.braingia.org

You will be prompted for the username and password. If you used the command
shown earlier in this chapter for creating the htpasswd file, then the username is
reginald and the password is regpass.

To upload an image to the local registry, you must first download or pull that image
to your local computer. For example, to store Alpine Linux on the local registry
server instead of needing to retrieve it from Docker Hub every time, you run the
following commands. As before, the commands use dockreg.braingia.org as the host‐
name. Change that hostname for your environment:

docker pull alpine
docker tag alpine dockreg.braingia.org/alpine
docker push dockreg.braingia.org/alpine
docker rm alpine
docker rm dockreg.braingia.org/alpine
docker pull dockreg.braingia.org/alpine

You may note the docker rm commands. The commands remove the locally cached
versions; neither command removes the images from the upstream servers.

From this point, the locally hosted registry server will have the alpine image. The
image can be pulled by others in the organization. At this point, hopefully you have
already started managing configuration as code. You could create a directory within
your Git repository called docker, and within that directory you could store the
contents of both the ssl and auth directories. I also suggest creating a readme.txt file or
even a Markdown-formatted readme.md file to store the commands that you ran in
order to get the local registry working.

This section demonstrated pulling from and pushing to a local Docker registry.
The local registry contains authentication information, and all data is protected in
flight by SSL. More complex scenarios for scaling authentication can be found in
the registry documentation on the Docker website. It is also relevant that certain
container images are marked as nondistributable. Luckily, the most useful container
images are not limited in such a way. Regardless, if you need to work around a
nondistributable image, you can find instructions for doing so on the Docker website.

Deploying Safely with Blue-Green Deployment
Deploying code to the next environment is the focus of this section. The “next
environment” can be anything from basic initial system testing following developer
commit/push all the way to and including the production or live environment. As
code progresses from developer workstation to production, the potential impact of

112 | Chapter 5: Moving Toward Deployment

https://docs.docker.com/registry/#considerations-for-air-gapped-registries

a problem in the code increases. Therefore, safe deployment is needed. You can use
additional tools like Kubernetes to enhance deployments by providing a means to
manage containers across providers.

Blue-green deployment is a strategy for moving code through environments in a safe
manner by using two sets of infrastructure. The current production environment is
noted as the blue environment, while the to-be-production environment is the green
environment. Assuming that no problems are identified with the green environment,
production traffic can be pointed toward the green environment with the new code.
The deployment cycle repeats with the next project coming through the deployment
pipeline. Traffic is switched to the new environment after it has been tested.

Obviously, automated testing becomes even more important when moving toward
continuous integration/continuous deployment (CI/CD). Tools like Jenkins can help
with the CI/CD aspects involved in managing a DevSecOps pipeline. However, even
before continuous deployment is integrated, some form of monitoring needs to be in
place for the production application.

Monitoring, or being able to verify that requests are being fulfilled successfully and in
a timely manner, should be in place even without blue-green deployment. Chapter 6
looks more closely at monitoring.

Summary
This chapter provided an overview of best practices around configuration file man‐
agement using an SCM tool like Git. The chapter also promoted the use of containeri‐
zation techniques for facilitating a DevSecOps CI/CD deployment pipeline. Included
in that section was coverage of Docker, although other containerization software and
tools can also be used. Finally, I provided a brief overview of blue-green deployment,
noting the importance of automated testing and monitoring while progressing on a
DevSecOps path.

The ideas behind configuration as code have been around for decades but more
formally expressed as such relatively recently. I distinctly remember managing DNS
zones with CVS before Git was created. The move toward containerization started
quite some time ago as well. Migrating entire applications to containers can take
time and courage because of inherent danger when decoupling monolithic applica‐
tions. Technical debt that has been incurred over the years while maintaining that
monolithic app gets repaid in a hurry, all while hoping that some behind-the-scenes
cyclical activity that runs only once every four years wasn’t hidden away in that
application. No amount of DevSecOps will help for that case.

The focus of the next chapter is deployment and monitoring. The chapter uses
Jenkins as a base for demonstrating the concepts surrounding deployment. Some
might argue that Jenkins is not modern enough for new DevSecOps organizations.

Summary | 113

However, Jenkins conveys the concepts of deployment in a consistent way that is
stable, reproducible, and accessible for readers. In addition, Jenkins has the advantage
of being mature and able to integrate with legacy technologies that frequently are the
most urgent platforms in need of migration to DevSecOps.

114 | Chapter 5: Moving Toward Deployment

CHAPTER 6

Deploy, Operate, and Monitor

By the time an application reaches the production environment, the code behind
that application should have been reviewed and tested multiple times and in multi‐
ple ways. The deployment of the code, whether in a container, in the cloud, or a
combination of legacy, cloud, and container, should have been done multiple times,
leaving little room for surprises when the code was promoted to the production
environment. This shifting left of work is a central theme of DevOps and DevSecOps.
Deploying, operating, and monitoring in a repeatable manner very early in the
software development lifecycle (SDLC) helps DevSecOps practitioners to discover
problems earlier rather than later, when the problems are less impactful to timelines
and end users.

This chapter looks at CI/CD with the idea that automated CI/CD is a goal that is
first achieved on the left side of the SDLC before moving into quality assurance and
production environments. The chapter also highlights monitoring as a contributing
factor in the success of DevSecOps.

Continuous Integration and Continuous Deployment
The level of complexity needed for deployment of a modern application has increased
significantly over the past two decades. In many organizations, no downtime can
be incurred as a result of needing to deploy an application to the production environ‐
ment. Where a deployment might have occurred in the wee hours of the morning,
causing backend applications like the database servers to go down while the schema
was changed, now feature flags and blue-green deployment are normal.

This section starts with building and maintaining environments with Ansible and
then demonstrates the use of Jenkins for deployment. We’ll use Jenkins to build a
simple but extendable code delivery pipeline. Some organizations will have matured

115

into multicontainer environments. Those organizations may outgrow the deployment
model and software demonstrated in this chapter. For instance, organizations using
Kubernetes may utilize something like Argo CD or another deployment tool. In
addition, organizations using multiple cloud providers may use cloud native tools
or an integration of multiple tools as part of their DevSecOps processes. Both the
number of software tools and the number of potential combinations of software tools
needed makes it impossible to cover in a single book, much less a single chapter.
Therefore, my goal is to demonstrate the process through a real-world example that is
extendable to other tools as DevSecOps matures within an organization.

Building and Maintaining Environments with Ansible
Ansible is one of a handful of technologies that helps with automation of complex
infrastructures, including bare metal deployment of an entire application stack. Ansi‐
ble differs in that it is lightweight, can operate in an agentless manner, and uses
plain-text configuration file formats such as YAML and INI. Ansible uses SSH and
Python. That makes one less attack vector, agent software, in favor of standardized
software such as SSH that’s installed or available on modern operating systems.

Ansible operates around the concept of inventories and playbooks, where an inven‐
tory defines the devices being managed by Ansible and the playbook defines the
desired state of the device. For example, a group of servers that need to have DNS-
related configurations applied to them might be grouped as such:

[dns_servers]
dns1.example.com
dns2.example.com
dns3.example.com

You could then install DNS-related software and customized configuration using
Ansible. For example, a list of tasks could be created for these hosts:

 - name: ensure installed- bind9
 apt: name=bind9 state=present
 - name: sync named.conf
 copy: src={{ config_dir }}/dns/named.conf

dest=/etc/bind/named.conf group=bind backup=yes
 notify:
 - restart named
 tags:
 - bindconfigs

I’ve shown two configuration options within this example, ensuring that the BIND
DNS server is installed and then synchronizing the configuration file by copying
it over to the device under management. The apt command will be used for the
installation, and Ansible enables a state to be set for the package. In the example
shown, the value for state is present, meaning that Ansible will install the software

116 | Chapter 6: Deploy, Operate, and Monitor

if it’s not there already. But this state attribute also effectively means that if you
wanted to ensure that certain software was uninstalled or not present, a simple
change to the value of state will ensure that the software is not present.

The other configuration option shown in the example takes a local file (named.conf),
found in the directory defined as {{ config_dir }} (a local variable that you can create),
and copies the file to a destination within /etc/bind on the remote device. Group
ownership is set for the file, and a backup copy of the file is made on the remote
device, just in case changes have been made to that file on the remote device.
Numerous other options, such as setting the permissions and user ownership, among
other things, can be done with the copy module as well.

Using Ansible, you can create a desired state for environments in a DevSecOps infra‐
structure and then deploy to those environments with a single command, ansible-
playbook. From a security perspective, Ansible and other automation tools facilitate a
known-state. The same configurations can be used to verify that the server is using a
known-good set of configurations for its services.

Ansible provides the underlying, repeatable infrastructure support that DevSecOps
teams need. Other software can be used for specialized line-of-business application
deployment beyond the service configurations that Ansible provides. Jenkins and
similar software are used for deployment of line-of-business application code, and
conveniently enough, the next section covers Jenkins.

Using Jenkins for Deployment
Jenkins is an automation service written in Java that can connect many disparate
parts of a modern application into a single coherent deployment. Jenkins is both pow‐
erful and extensive in its ability, and entire careers can be made out of simply training
others on Jenkins. Therefore, this section will be limited solely to the creation of a
pipeline for deployment of an application. The deployment can be built out further
and extended into a more complex architecture.

Overall, the architecture includes a Debian server running Docker. This server is
responsible for the local registry built in Chapter 5. That Docker server will orches‐
trate builds with Jenkins by also running a Jenkins container. The server does not
need to run Debian, but I recommend creating a server that will be responsible for
DevSecOps tools. This may turn out to be more than one server, depending on your
needs. However, rather than trying to configure Jenkins on a local computer and then
migrating to a server, it will be easiest and fastest to simply install a server, whether
virtual or real, that will run container processes.

Jenkins can be installed as a Docker container. When doing so, you will need to
include persistent storage so that the Jenkins configuration details remain available

Continuous Integration and Continuous Deployment | 117

even if the container process ends. Using the dockreg server we built in Chapter 5, you
can install Jenkins using this command:

mkdir jenkins_home
docker run -v ./jenkins_home:/var/jenkins_home -p 8080:8080 -p 50000:50000 \
 --restart=on-failure --name=jenkins jenkins/jenkins:lts-jdk17

This will download and run a container for Jenkins, listening on port 8080. The
directory jenkins_home will be made available as /var/jenkins_home within the con‐
tainer. When the image is downloaded and the container begins to run, a password
will be displayed to the console/terminal window:

Jenkins initial setup is required. An admin user has been created
and a password generated.
Please use the following password to proceed to installation:

8629142b85534c39924a45150eaa7fe5
This may also be found at: /var/jenkins_home/secrets/initialAdminPassword

That password is used for the administrator account, called admin, and you’ll need to
remember it until you can change it. The path to the password is also included, just in
case you forget it. The path shown is relative to the container.

With the container installed, the next step is to connect to Jenkins using a web
browser. Point the browser toward the IP or hostname of the server where the con‐
tainer is running, on port 8080. For example, I have installed the Jenkins container on
the Debian server that I used in Chapter 5, called dockreg.braingia.org. Therefore, the
URL to which I point the browser is:

https://dockreg.braingia.org:8080/

118 | Chapter 6: Deploy, Operate, and Monitor

Figure 6-1 shows the initial screen, prompting for the password for the admin
account.

Figure 6-1. Logging into Jenkins for the first time

Continuous Integration and Continuous Deployment | 119

On first run, Jenkins will prompt whether to install common plug-ins or whether to
customize the list of plug-ins that will be installed; see Figure 6-2.

Figure 6-2. Choosing the suggested plug-ins as a starting point for Jenkins

120 | Chapter 6: Deploy, Operate, and Monitor

The suggested plug-ins are a good starting point until you’ve had a chance to deter‐
mine which plug-ins are needed in your infrastructure. Figure 6-3 shows the plug-ins
being installed on the Jenkins container deployed as part of this chapter.

Figure 6-3. On first run, Jenkins can install some common plug-ins

Continuous Integration and Continuous Deployment | 121

Next, the Setup Wizard for Jenkins prompts you to create a new user rather than
using the admin account. Figure 6-4 shows this screen. You can also choose to skip
the creation of an admin user and just continue as the normal admin account.

Figure 6-4. Creating an admin user within Jenkins

122 | Chapter 6: Deploy, Operate, and Monitor

You’ll see the Instance Configuration screen next, which is shown in Figure 6-5. In
this case, the default value was fine. However, if you did not have a DNS name or
needed to change the port due to being behind a proxy or load balancer, this would
be the location to make that change.

Figure 6-5. Configure the URL for Jenkins within the Instance Configuration screen

Continuous Integration and Continuous Deployment | 123

Clicking Save and Finish reveals the success screen, shown in Figure 6-6. Click “Start
using Jenkins” to proceed to the Jenkins dashboard.

Figure 6-6. This screen is shown when the Setup Wizard is complete

124 | Chapter 6: Deploy, Operate, and Monitor

Figure 6-7 shows the Welcome to Jenkins page. After you’ve created a job or started
to work with Jenkins, this dashboard will display the status of those jobs along with
other relevant information. The next section includes details on creating a job.

Figure 6-7. The Jenkins dashboard is used to find out current job status and administer
the Jenkins server

On future executions of Jenkins through Docker, you may find it beneficial to start
in detached mode. To do so, you’ll first need to stop the Jenkins container and then
remove it. From another terminal window, stop the container with the following
command:

docker stop jenkins

Note that this assumes you’ve used the --name option and that the name of the
container is jenkins. If you didn’t use the --name option or if the container is called
something different, then you’ll need to adjust the command accordingly. You can
always use the canonical container ID, which can be found with the docker ps
command.

Continuous Integration and Continuous Deployment | 125

With the container stopped, you can remove the container with this command:
docker rm jenkins

Next, running in detached mode adds the -d option, and the entire command
becomes:

docker run -d -v ./jenkins_home:/var/jenkins_home -p 8080:8080 -p 50000:50000 \
 --restart=on-failure --name=jenkins jenkins/jenkins:lts-jdk17

If you’re running in detached mode and need to view the logs or console output, use
the docker logs command. For example, assuming the container is named jenkins,
this command would display logs from that container:

docker logs jenkins

As a reminder, you can see the names of the running containers with the docker ps
command.

Creating a Pipeline
The internet tubes are overflowing with examples of complex pipelines using Jenkins.
These pipelines pull code, build code, and deploy code. But the complex pipelines are
also quite specialized. Rather than adding unnecessary complexity, this section shows
how to create a simple pipeline with Jenkins. The example can be extended to add the
complexity necessary for your infrastructure.

Even with the goal of creating a simple example, there are a few initial tasks that
need to be completed. This example will deploy a file to a web server. While that may
sound trivial, the foundation of many deployments is moving files between servers
securely. If the source file was located on a different server or hosted through Git,
then we’d need to add a step to first retrieve the file. If the source code needed to be
built, then we’d add a step to build. Transferring the files to the destination is nearly
always needed, though, and thus represents a logical place to begin.

The transfer will use the could use the rsync command as well, especially in cases
where there are multiple files. The scp command relies on underlying SSH infrastruc‐
ture such as host key exchange and authentication. In an automated deployment
scenario, key-based authentication is used to move files because doing so does not
require manual intervention.

By default, the “home” directory of Jenkins is /var/jenkins_home. This filesystem is
hosted on the local server and then exported or mounted to the container. Therefore,
you can interact with and make changes to files even if the container is not running.
One such change is to create a .ssh directory—note the dot preceding the name—
within the jenkins_home directory. If you’ve been following earlier examples, there
will be a directory called jenkins_home within your current directory, likely within
your own home directory.

126 | Chapter 6: Deploy, Operate, and Monitor

SSH, and by extension scp, attempts to verify the host key of the server to which you
are connecting. A file called known_hosts is then used to store the host keys of servers
to which you’ve connected and accepted the host key. When copying files between
servers in an automated manner, a person is not present to type “yes” or “no” to
indicate whether to accept or reject the host key.

Failure to account for the host key verification step will result in an error indicating
that the host key verification failed, shown in Figure 6-8 from Jenkins.

Figure 6-8. Host key verification failed because the SSH host key was not known to the
Jenkins user

While there are numerous methods for working around host key verification and also
for transferring the host key, I’ve found that copying the key is frequently the lesser
of two evils. That method is not without its drawbacks. First, manually accepting the
key once does not scale well for anything above maybe three servers, although you
may have a higher tolerance for the mundane. More importantly, in an automated
DevSecOps world, you may not know the host key until deployment time.

When deploying a new server as part of a release, the deployment tooling can obtain
a copy of the host key. This key can be placed into the known_hosts file, simply
as another step in the deployment process. Therefore, in the interests of moving for‐
ward with a simple example, I will describe how to manually copy the key, knowing
that these steps can be automated later.

From the host server running the Jenkins container, make an SSH connection to the
destination server. For example, I would like to deploy the website to a server named
cwa, but I need to obtain the key for that server. Therefore:

ssh cwa
The authenticity of host 'cwa (192.168.1.4)' can't be established.
ED25519 key fingerprint is SHA256:4sYWNFdOU812rc/vh5150yQbfWE+Y6/1C/0ANuBs0Nik.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'cwa' (ED25519) to the list of known hosts.

That key will be added to the known_hosts file within my own .ssh directory.
But I need to place the contents of that key into the known_hosts file in the

Continuous Integration and Continuous Deployment | 127

jenkins_home/.ssh directory. The first step is to create the .ssh directory in jenkins_
home:

mkdir jenkins_home/.ssh

Next, open ~/.ssh/known_hosts with a text editor or simply the cat com‐
mand and copy the key into a new known_hosts file. The file will be loca‐
ted in jenkins_home/.ssh/. As an alternative, you could also brute-force all of
the known_hosts from your home directory into the version found in the
jenkins_home/.ssh directory. I don’t generally recommend that, because doing so will
overwrite the known_hosts file for Jenkins, which could have unintended side effects.

At this point, you should have a jenkins_home directory that contains many other
files and directories, including a new directory that you just created called .ssh.
Within the jenkins_home/.ssh/ directory should be a file called known_hosts. The
contents of the known_hosts file should be the host key of the server to which you’ll
connect.

Next, there needs to be a method for authentication as it relates to the scp command.
This involves ensuring that the Jenkins user has a valid SSH key and that the key
exists in the authorized_keys file for the user on the server to which files will be
copied. In the example we’re building for this chapter, there is a user called synchro
that is located on the cwa server.

We need to generate a key pair for the Jenkins user and place the public key
within the authorized_keys file on cwa for the synchro user. The following com‐
mand generates the key (this command is executed on the server running Jenkins,
dockreg.braingia.org in this example):

ssh-keygen

Assuming the default values are accepted, the ssh-keygen command will gener‐
ate two files, id_rsa and id_rsa.pub. You should place both of these files within
jenkins_home/.ssh/, and both should have limited permissions:

cp ~/.ssh/id_rsa* jenkins_home/.ssh/
chmod 600 jenkins_home/.ssh/id_rsa*

If you’re unfamiliar with key-based SSH authentication or how to
create a key, see “How to Use ssh-keygen to Generate a New SSH
Key?”.

Pipeline creation begins by giving the pipeline a name and choosing the type (Pipe‐
line) from the Jenkins New Item screen. This is shown in Figure 6-9.

128 | Chapter 6: Deploy, Operate, and Monitor

https://www.ssh.com/academy/ssh/keygen
https://www.ssh.com/academy/ssh/keygen

Figure 6-9. Creating a pipeline in Jenkins

Within Figure 6-9, I have used the name IndexCopy and selected Pipeline. I will then
click OK. The General configuration page for the pipeline will be displayed. Scroll
to the bottom of the page to reveal the Pipeline section. Within the Pipeline section,
place the following:

pipeline {
 agent any
 stages {
 stage('Deploy') {
 steps {
 sh "scp index.php synchro@cwa:~/web/index.php"
 }
 }
 }
}

Continuous Integration and Continuous Deployment | 129

The only step within this pipeline is to execute the scp command to copy a file called
index.php to a server named cwa as the username synchro. The file will be placed in a
directory called web located within the home directory for the synchro user.

The last step is to create the index.php file. The file should contain:
<?php
print "Index Page";
?>

You need to place the file in the workspace for the pipeline, which is found in the
jenkins_home/workspace/IndexCopy directory. With that done, you can execute the
pipeline. From the Pipeline page within Jenkins, click Build Now. When you do so,
the build will be scheduled. The status of the build will be displayed on completion.
In the case of this example, the build succeeded, as shown in Figure 6-10.

Figure 6-10. A successful build within Jenkins

When working with Git, there is an option found within the Manage Jenkins →
Security page that configures how to handle keys. This is shown in Figure 6-11.
However, for other use cases and tools, we need another method for handling host
keys.

130 | Chapter 6: Deploy, Operate, and Monitor

Figure 6-11. Configuring the host key management strategy for Git within Jenkins

If your build did not succeed, you can view the logs by hovering over the red- or
green-shaded box on the Pipeline page and selecting Logs. Figure 6-8 from earlier in
this chapter is a log view created when I had placed the known_hosts file in the wrong
location due to an errant mistyped path.

With a single deployment complete, you can now extend into multiple steps to build
an entire orchestrated end-to-end deployment from environment to environment.
When backing up the configuration related to Jenkins, the Jenkins job information is
found in the jenkins_home/jobs/ hierarchy.

Jenkins has plug-ins for popular cloud providers like AWS, Azure, Google Cloud
Platform, and others. You can add pipeline tasks to deploy to EC2 instances on AWS,
for example. As currently configured, the pipeline needs to be started manually. This
is a step but not the final answer for CI/CD in DevSecOps. Instead, the pipeline
should be kicked off automatically, triggered by a code commit or other milestone
that then not only builds the infrastructure but also deploys the code itself. The final
stage is automated switching of the production workloads toward the newly deployed
code. To achieve that goal, you’ll need to make sure monitoring is in place.

Monitoring
The level of complexity needed for deployment of a modern application has increased
significantly over the past two decades. In many organizations, no downtime can
be incurred as a result of needing to deploy an application to the production envi‐
ronment. If that sounds familiar, then you obviously read the introduction to the
previous section.

Monitoring | 131

Keeping complexity under control is a constant challenge. Meeting the challenge
requires visibility throughout the deployment and operational cycle of an application.
For example, knowing that last week the average response time for a request was
41 milliseconds but today that response time is 484 milliseconds, the DevSecOps
practitioner can begin to examine changes to determine where the increased latency
is coming from.

Among the tools available for monitoring are everything from a simple ping com‐
mand to complex cloud-based monitoring suites. Whereas Docker, Kubernetes, and
Jenkins have mindshare, if not market share, in their respective areas, there is no one
single monitoring tool that stands above all. With that in mind, this section examines
some best practices for monitoring:

Visibility generally means fixability
If you can see an issue occurring, then you have a much greater chance of
addressing the issue when compared with a random report that an end user
called in to the help desk. Having worked in the industry from Level 1 tech sup‐
port through technical architecture, I’m convinced that many technical problems
could be fixed if the correct person examined the problem. Too often, the answer
is “Turn it off and then back on again” when that “solution” should rarely be
needed.

At the DevSecOps level, knowing that there is a problem before the tech support
call center starts lighting up can shorten the time for a fix to be implemented. For
example, seeing an entire regional data center suddenly go offline enables traffic
and workloads to be shifted quickly while the cause of the outage is investigated.

Triage is important
Using the data center suddenly disappearing from the internet as an example, it
may not be you or anyone on your team who will ultimately reconnect the fiber
that was cut and caused the data center to go offline, but it can be you who shifts
that traffic and works around the problem. Likewise, if there is a spike in calls
about slowness of application response time, knowing that the shifting of traffic
could cause a slowdown for others will help to identify the issue as related but
unimportant.

It’s a triage mentality that can be helpful when outages happen. The help desk
ticket about uploading a photo that affects one user is less important and should
receive less attention than the backhoe cutting through the fiber-optic commu‐
nication cable and the resulting need to reroute traffic. Finding the root cause
of an outage may take time. If workarounds are available, you should consider
those with the goal of reducing impact on end users and meeting service-level
agreements.

132 | Chapter 6: Deploy, Operate, and Monitor

Shift downtime left with instrumentation enabled
As alluded to in the introduction to this chapter, shifting left is a core DevOps
and DevSecOps philosophy. Problems that might have only occurred when the
project was deployed to production can occur earlier in the SDLC, in earlier non‐
production environments. If problems arise in a nonproduction environment,
those problems will necessarily be less impactful than if they occurred later in the
lifecycle of the code.

Further, you can enable instrumentation in the form of additional debugging and
logging in the nonproduction environment. Not only can the additional visibility
help solve problems, but it can also help spot issues that may otherwise have
been hidden. Take care not to leave additional logging enabled in the production
environment. Aside from potentially leading to poor performance, there could be
regulatory impacts if things like personal or credit card information are captured
in a production environment.

Focus on important metrics
Not every metric is equal. Knowing the disk input/output (I/O) latency for a
database server is an important metric related to its performance. The disk I/O
for a firewall should be less important than the network interface throughput,
though. That doesn’t mean disk I/O should not be recorded for the firewall
but that focusing on disk I/O for the firewall may lead the team on the wrong
troubleshooting path.

With that in mind, focusing on the overall goal and how the individual metrics
contribute to that goal is the important element of monitoring key metrics. The
number of requests that can be serviced per second and the time taken to service
a request are two metrics for a web server. Knowing that there are numerous
contributing factors such as disk I/O, compute, memory, and network latency
can help direct any efforts toward correcting problems.

Don’t forget dependencies
Network latency is a good example of an area where a false alert can occur. If
the web server was responding to a ping in 38 milliseconds and is suddenly
now responding in 2,842 milliseconds, any number of issues could be the root
cause. If there are two routers and a wide area network (WAN) link between the
monitoring computer and the web server, then knowing that a router is causing
the issue would be important. Therefore, using related metrics where possible
can help pinpoint whether there is an issue worth investigating or whether the
upstream provider has an issue.

Alerts need to be actionable
One of the worst experiences of my career occurred at an employer where part
of the job was being after-hours/late-night on call. The employer had a scheduled
job that ran overnight on one of the legacy systems, and every night after 11 p.m.

Monitoring | 133

that system would send out a message indicating that the job completed. Not that
the job completed abnormally, just that the job completed. There was no task that
needed to happen as a result of that alert.

I spoke with my manager regarding the nightly alert, and they indicated that the
alert was sent by design so that we would know that the job completed. If the
job didn’t complete or encountered an error, then I would need to alert someone
else so they could stop other jobs from running. What happened next was like
the scene from the movie Spinal Tap where Nigel explains that his amp goes to
volume “11” and Marty asks why they couldn’t just make volume “10” be that
much louder. You can see the wheels turning for Nigel, but ultimately he points
out that this amp goes to 11. In much the same way, I pointed out that we should
just alert if the job doesn’t complete correctly and then only alert the person that
needed to fix the issue. After briefly contemplating that vexatious thought, my
manager assured me that the alert was needed and was working as designed.

Alerts need to be actionable. If an alert is not actionable, then just record it
in a logfile or somewhere else that makes sense for your infrastructure. In this
context, actionable means that as a result of receiving the alert, I need to do
work, usually on a computer, to correct the cause of the issue. If the alert comes
through and I don’t need to do anything, then the alert should’ve been muted
until I sought it out or until it became actionable.

Locating the difference between actionable and nonactionable can take time, and
I usually err on the side of getting a nonactionable alert until I figure out where
that threshold is located. As time goes by, the action-to-noise ratio needs to lean
heavily toward actionable. Every alert that comes through means something is
actually wrong and I’m the right person to fix it.

This section covered some of the elements involved in monitoring within DevSecOps.
Adding visibility through logging and instrumentation is one of the more helpful
additions in a DevSecOps organization. Monitoring key performance metrics includ‐
ing their dependencies facilitates the left-shift needed to move toward DevSecOps
capabilities. Alerting only on actionable issues enables everyone to focus on core
issues and improve the overall deliverability of an application.

Summary
This chapter focused on operating and monitoring, including deployment of an
application. The chapter began with detailed coverage of Jenkins for creating a repro‐
ducible CI/CD strategy. Jenkins was deployed as a Docker container with persistent
storage. The basic ideas behind DevSecOps monitoring wrapped up the chapter.
These include enabling as much logging and instrumentation as possible, as early as
possible, to promote visible infrastructure. Visibility enables problems to be found

134 | Chapter 6: Deploy, Operate, and Monitor

earlier in the application development lifecycle. All the while, keep in mind that
adding logging and instrumentation can sometimes have performance implications.
The trick is to find the right balance between logging and using all of the disk space
in the world. There reaches a point where being able to trace backward through a
user interaction is not realistic or helpful because the user has since rebooted or done
something else to fix or at least temporarily fix whatever issue was being encountered.
Monitoring key performance indicators in aggregate form can be helpful, though.
Knowing that response times have suddenly doubled would be something worth
noting, and then having logging automatically enable itself after that threshold so that
a human can look at the issue later would also be nice!

Looking ahead, Chapter 7 shows a means for expanding the efforts around container‐
ization with a demonstration of Kubernetes. While there are countless Kubernetes
demonstrations, many of those tutorials and demonstrations assume that you have a
lot of background in Kubernetes already. The aim with Chapter 7 is to show a simple
implementation such that you might build on it as you learn more about Kubernetes
and where it fits within the DevSecOps journey.

Summary | 135

CHAPTER 7

Plan and Expand

The previous chapter introduced and reinforced concepts around configuration man‐
agement, deployment, and monitoring. The focus of this chapter is on expanding
beyond development-related processes and into scaled-up deployments. The speed
with which DevSecOps deployment-related technology is moving makes it difficult to
justify printing instructions for its use. Therefore, my primary goal for this chapter
is to demonstrate the current state of one of the more mature products, Kubernetes.
Reaching that goal means creating a Kubernetes installation, which is where the
chapter begins.

Scaling Up with Kubernetes
Docker helps to move application development from a virtual server or cloud-based
server infrastructure toward a service-based, process-level paradigm where individu‐
alized microcomponents and microservices make up a larger application. Kubernetes
takes this shift even further by providing scalable container management. Kubernetes
helps with application-level scaling, container orchestration, and ultimately microser‐
vice architectures at scale.

Coming from a physical server or virtual server to Kubernetes may appear as overkill
at first, when some of the same solutions can be found with Docker Compose.
However, Kubernetes provides a level of abstraction that would be cumbersome with
Docker Compose when deploying thousands or tens of thousands of servers. By
the end of the section, you will have a running Kubernetes cluster with two worker
nodes.

137

Understanding Basic Kubernetes Terms
The architecture of Kubernetes is divided into a control plane and worker nodes.
The control plane contains several services such as a key/value store, an application
programming interface (API), a scheduler, and a controller manager. The controller
manager is responsible for node and job management, among other duties. On the
nodes, an agent called a kubelet ensures that containers are running, while a proxy
called kube-proxy is responsible for network communication. The container runtime
also runs on a node. Together, a collection of containers is known as a “pod” in
Kubernetes, and the term “cluster” is used to describe the collection of services that
constitutes an entire Kubernetes installation.

Kubernetes also defines Services (note the uppercase “S”) in a special way. A Service
in Kubernetes can be thought of as a network-based listening service, like a web
server.

Installing Kubernetes
Creating a working Kubernetes can be challenging at first. I recommend using a
virtual server template or base installation of a Linux distribution that you can
revert back to and start over without needing to install the operating system again.
This section uses Debian 12 as its base operating system. The goal is to create an
expandable cluster manager along with two nodes. The primary controller will have
a hostname of k8s. The first worker node will be named k8s-node1 and the second
named k8s-node2. Either add those hosts to your local DNS server or add them to
the /etc/hosts file on each of the machines involved. Those names are used as part
of the configuration process and within Kubernetes. Therefore, a prerequisite step
before continuing is to set up the hostnames.

Kubernetes requires several operating system–level changes, including disabling swap
and the usage of overlay networking. Assuming you’ve installed Debian, the following
two commands (executed as root) will turn off swap and permanently disable it on
restart:

swapoff -a
sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab

Create a modules load file for containerd with the following two commands:
echo overlay >> /etc/modules-load.d/containerd.conf
echo br_netfilter >> /etc/modules-load.d/containerd.conf

Next, load the modules immediately:
modprobe overlay
modprobe br_netfilter

Kernel options need to be added through sysctl. Create a file called 99-k8s.conf
within the /etc/sysctl.d directory. The file should have the following contents:

138 | Chapter 7: Plan and Expand

net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1

Run the sysctl command as follows to effect the changes just made to the file:
sysctl --system

Next, begin installing software. There will be two rounds of software installation:
apt update && apt -y install containerd curl \
 gnupg gnupg2 software-properties-common

You’ll need to make a configuration change manually to the containerd configuration
file. But first, you’ll create the configuration file with this command:

containerd config default > /etc/containerd/config.toml

Edit the configuration file /etc/containerd/config.toml. Within the file, locate the fol‐
lowing line:

SystemdCgroup = false

Change the value to true. When complete, the line should look like this:
SystemdCgroup = true

Save the file and restart and enable containerd:
systemctl restart containerd
systemctl enable containerd

Next, obtain the key so that you can install the software using the Debian apt
command. Note that you may need to change the version from v1.28 to the latest
version (or whatever version you’re trying to install):

curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key | \
 gpg --dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gpg

Add the repository with the following command, changing the v1.28 version if
needed to match the previous command:

echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] \
 https://pkgs.k8s.io/core:/stable:/v1.28/deb/ /' | \
 tee /etc/apt/sources.list.d/kubernetes.list

Update the list of packages and install Kubernetes, marking those packages as “held”:
apt update
apt -y install kubelet kubeadm kubectl
apt-mark hold kubelet kubeadm kubectl

Finally, I recommend rebooting to ensure the changes have taken effect. The previous
sentence is something that I never thought I would write in regard to a Linux system.
Then systemd happened. Rebooting should not be necessary but unfortunately some‐
times is necessary when systemd is involved. Therefore, reboot. While the system
is rebooting, recall fondly the days when Linux servers never needed rebooting and

Scaling Up with Kubernetes | 139

logfiles were plain text and stored in one location. You might also try the command
systemctl daemon-reexec instead of rebooting, but I had mixed success with this
method, and it really shouldn’t be needed but for the inherently flawed architectural
decisions that work against the Unix way for no substantive benefit for a server use
case.

From this point forward, you will use a normal, nonprivileged user account but will
invoke sudo, thus running some commands as a privileged user. If you do not have
sudo installed, you can do so with this command:

apt install -y sudo

See the documentation for sudoers for information on how to add your user account
to the sudoers configuration file.

The documentation for sudoers and many other Linux commands
is found using the manual pages, accessed through the man com‐
mand, as in:

man sudoers

With the prerequisite work done and software installed, it’s time to initialize the
Kubernetes cluster:

sudo kubeadm init --control-plane-endpoint=k8s --upload-certs

The init subcommand of kubeadm will perform several tasks related to creating the
cluster. If this step fails, a possible reason is that the DNS or /etc/hosts file was not
updated to add an address for the host named k8s. When complete, you will see
output similar to the following:

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

 mkdir -p $HOME/.kube
 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
 sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run:

 export KUBECONFIG=/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
 https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of the control-plane node running the
following command on each as root:

 kubeadm join k8s:6443 --token n8hb0z.6zzh095e175kskc8 \
 --discovery-token-ca-cert-hash sha256:8a9b[...]c714 \
 --control-plane --certificate-key 0fe7[...]1a19

140 | Chapter 7: Plan and Expand

Please note that the certificate-key gives access to cluster
sensitive data, keep it secret!
As a safeguard, uploaded-certs will be deleted in two hours;
If necessary, you can use
"kubeadm init phase upload-certs --upload-certs"
to reload certs afterward.

Then you can join any number of worker nodes by running
the following on each as root:
kubeadm join k8s:6443 --token n8hb0z.ezzh095e175kskc8 \
 --discovery-token-ca-cert-hash sha256:8a9b[...]c714

Note that the cryptographic elements such as tokens and cert hashes will be different
in your output. See “Re-creating the join command” on page 143 if you forget the
token or other cryptographic elements. The output is informative of what you need to
do next, specifically:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Adding networking
You’ll need to add a virtual network layer to the Kubernetes cluster. There are several
methods for accomplishing this task. This chapter uses Project Calico.

Apply the network layer with the following command:
kubectl apply \
 -f https://raw.githubusercontent.com/projectcalico/calico/master/manifests/calico.yaml

Alternately, if you experience problems with the previous command, you can down‐
load the calico.yaml file and apply it locally instead:

wget https://raw.githubusercontent.com/projectcalico/calico/master/manifests/calico.yaml
kubectl apply -f calico.yaml

The final step is to join other Kubernetes computers to the cluster. You can add
those computers as control-plane nodes, thereby creating a full-blown clustered and
redundant control plane, or you can add the computers as worker nodes. In either
case, the command will be kubeadm join along with several options (shown in the
output of the init command executed earlier). To create a control-plane node, add
the --control-plane option. The goal of this section is to add two worker nodes,
which means that we will not be using the --control-plane option.

Prior to executing the kubeadm join command, each node requires the prerequisite
steps shown earlier in this section. I have distilled those commands here with a
reminder that two manual steps are required. First, create a file called /etc/sysctl.d/
99-k8s.conf containing the configuration shown, and second, edit the containerd con‐
figuration file to change the Cgroup to true. Both steps are noted with a # comment
in the listing:

Scaling Up with Kubernetes | 141

https://github.com/projectcalico

swapoff -a
sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab
echo overlay >> /etc/modules-load.d/containerd.conf
echo br_netfilter >> /etc/modules-load.d/containerd.conf
modprobe overlay
modprobe br_netfilter
Create /etc/sysctl.d/99-k8s.conf with the following:
 net.bridge.bridge-nf-call-iptables = 1
 net.ipv4.ip_forward = 1
 net.bridge.bridge-nf-call-ip6tables = 1

sysctl --system
apt update && apt -y install containerd curl gnupg \
 gnupg2 software-properties-common
containerd config default > /etc/containerd/config.toml

#Edit the configuration file /etc/containerd/config.toml:
SystemdCgroup = true
systemctl restart containerd
systemctl enable containerd
curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key | \
 gpg --dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gpg

echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg]
 https://pkgs.k8s.io/core:/stable:/v1.28/deb/ /' | \
 tee /etc/apt/sources.list.d/kubernetes.list

apt update && apt -y install kubelet kubeadm kubectl && \
 apt-mark hold kubelet kubeadm kubectl

Note that the echo command had to be broken onto multiple lines
in the previous code listing. Include everything within the single
quotes as one line when entering this command.

With the prerequisites complete, join a worker node with the following command
(change the --token value and the --ca-cert-hash value to match the values shown
for your installation):

kubeadm join k8s:6443 --token u1ewom.iqk6hefg99y0ivu7 \
 --discovery-token-ca-cert-hash sha256:cc03[...]c714

At this point, the node will attempt to contact the cluster control plane. If something
goes wrong at this stage, the problem is often hostname related. Attempting to ping
the control-plane node from the worker node is a primary (and easy) troubleshooting
step. If the control-plane node, which is called k8s in the examples here, does not
respond, then that is the first issue to correct. If the control-plane node responds to
ping on its IP but not by the name k8s, then the issue is hostname related.

If successful, you’ll see the following output:
[preflight] Running pre-flight checks
[preflight] Reading configuration from the cluster...
[preflight] FYI: You can look at this config file with

142 | Chapter 7: Plan and Expand

'kubectl -n kube-system get cm kubeadm-config -o yaml'
[kubelet-start] Writing kubelet configuration to file
"/var/lib/kubelet/config.yaml"
[kubelet-start] Writing kubelet environment file with flags
to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Starting the kubelet
[kubelet-start] Waiting for the kubelet to perform the TLS Bootstrap...

This node has joined the cluster:
* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

The next task is to execute the same join command on k8s-node2. When complete,
you will be able to run kubectl get nodes on the control-plane node and see both of
the worker nodes joined to the cluster. As shown in the following output, the status of
all three hosts is Ready. The host k8s has the control-plane role, while the other two
nodes currently have no roles:

NAME STATUS ROLES AGE VERSION
k8s Ready control-plane 15h v1.28.2
k8s-node1 Ready <none> 74m v1.28.2
k8s-node2 Ready <none> 89s v1.28.2

Re-creating the join command
When a Kubernetes cluster is initialized, some important pieces of information are
shown, such as the token to join the cluster. If you forget the token or the crypto‐
graphic pieces that are shown in the success message, you can re-create those or view
them later.

On the cluster controller, run the following command to re-create the join command
in its entirety:

kubeadm token create --print-join-command

You can also obtain individual elements. For example, run the following command to
view the token:

kubeadm token list

Combine the output of the token and the CA certificate hash to create the join
command.

Run this command to view the hash:
openssl x509 -pubkey -in /etc/kubernetes/pki/ca.crt | \
openssl rsa -pubin -outform der 2>/dev/null | \
openssl dgst -sha256 -hex | sed 's/^.* //'

There are quite a few special characters in that command. Take care if you’re typing
it manually, and also take care if copying and pasting it because sometimes copy and
paste will try to be super helpful and change characters on your behalf.

Scaling Up with Kubernetes | 143

In this section, you installed Kubernetes on Debian, including a control-plane node
and two worker nodes. The cluster is managed on the host k8s. The cluster is
configured in such a way that multiple nodes can take on a control-plane role, thus
enabling some redundancy for the cluster and avoiding a single point of failure in
the control plane. If you’d like to change a role from worker to control plane, first
remove the node from the cluster with the kubectl drain command and then reset
the node and join the node with the --control-plane option added to the kubectl
join command along with the certificate. The following commands, executed from
the control-plane node, are helpful:

kubectl drain <node>

Alternately, a more thorough and graceful approach adds the following options:
kubectl drain <node> --ignore-daemonsets --delete-local-data

Delete the node with the command:
kubectl delete node <node>

On the node itself, run the reset command:
kubeadm reset

When complete, run the kubeadm join command again with the --control-plane
option added.

Deploying with Kubernetes
Containers are deployed as pods within Kubernetes, but the value of Kubernetes
comes in its ability to manage deployments or applications as a single unit with
redundancy built in. Where you can use Docker Compose to deploy applications
as a single unit, Kubernetes adds redundancy in the form of replicas. This section
examines Kubernetes deployment of a simple load-balanced application. As with
other examples in the book, the goal is to demonstrate an implementation with only
a few moving parts, which can then be expanded and customized as needed for your
environment.

As with Docker, configuration for Kubernetes is stored in one or more configuration
files. Storing configuration as files brings with it the advantages of Configuration as
Code found in DevSecOps. Kubernetes configuration files are YAML-formatted.

Defining a Deployment
Consider an application that consists of a web frontend along with web services that
then call to data stores. Testing the application involves spinning up web servers and
database servers or at least mocked-up versions of those data stores containing test
data. When running, the application should always have at least five frontend servers

144 | Chapter 7: Plan and Expand

ready to serve client requests, and other microservices ready to service calls to the
data stores.

A Kubernetes Deployment (uppercase “D”) enables you to define that end state of
the application, with as many frontend servers and whatever other components are
needed to deploy the application. Kubernetes will ensure that the pods are running
and bring in other resources as specified in the configuration file or files.

Using a ConfigMap
Among the many options available with Kubernetes is a ConfigMap. A ConfigMap
is a configuration file used to store pod-specific configuration, making that configu‐
ration information available within the pod itself. For this simple example, a Config‐
Map with an HTML page is as follows:

apiVersion: v1
kind: ConfigMap
metadata:
 name: configmap-chapter7-1
data:
 index.html: |
 <!doctype html>
 <html>
 <head>
 <title>Deployment 1</title>
 </head>
 <body>
 <h1>Served from Deployment 1</h1>
 </body>
 </html>

Within the ConfigMap file, which I will save as configmap1.yaml, the kind and data
fields are of immediate interest. The kind field indicates that this is a ConfigMap. As
you’ll see later, other kinds of files exist too. The data field contains an index.html file
with the contents of a simple HTML web page as plain text. It’s also worth noting that
the metadata field and associated elements within the metadata field will change in
other files but are important to the inner workings of deployments.

Save the file as configmap1.yaml. If you haven’t worked with YAML before, pay
particular attention to tab/whitespace characters. Indenting is everything with YAML.

Creating the Deployment file
The Deployment file is also YAML-formatted. For this example, the Deployment file
is as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployment-chapter7-1
spec:
 replicas: 2

Deploying with Kubernetes | 145

 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: config-chapter7-1
 mountPath: /usr/share/nginx/html
 volumes:
 - name: config-chapter7-1
 configMap:
 name: configmap-chapter7-1

You’ll notice the kind field is set to Deployment and the metadata field also contains
a name key, set to deployment-chapter7-1 in this file. The spec field, an abbreviation
of the word “specification,” is the main part of the deployment configuration. The
replicas key defines the number of replicas that Kubernetes will attempt to execute
at all times. The selector key connects elements of a deployment. Kubernetes uses
this selector, when present, to marshal various parts of a deployment into a coherent
whole.

Within the template specification, note the use of volumeMounts and volumes. These
sections connect the deployment to the ConfigMap created earlier in this chapter.
Thus, the name field configmap-chapter7-1 needs to match the metadata name
found in the configmap1.yaml file created earlier.

Save the file as deploy1.yaml. The end result of this file along with the config‐
map1.yaml file creates an nginx deployment serving the contents of the HTML that
was included in the ConfigMap file.

Running the Deployment
At this point, you can load the ConfigMap and Deployment with the following
commands:

kubectl apply -f configmap1.yaml
kubectl apply -f deploy1.yaml

If everything goes according to plan, you will receive the following output:
configmap/configmap-chapter7-1 created
deployment.apps/deployment-chapter7-1 created

If you receive errors, there’s a good chance that something is wrong in the YAML.
Check indenting. When in doubt, retype manually.

146 | Chapter 7: Plan and Expand

Verifying the Deployment
The following commands can be helpful to gain visibility into the current status of a
deployment.

View the current status of a deployment:
kubectl get deployments

View the current status of pods:
kubectl get pods

View additional information about pods:
kubectl get pods -o wide

View detailed information about a pod:
kubectl describe pod <podname-id>

View current status of ConfigMaps:
kubectl get configmaps

View detailed information about a ConfigMap:
kubectl describe configmap <configmap>

View all deployments:
kubectl get deployments -A

Defining a Service
Up until this point, the deployment has not been made available to the outside world
or anything beyond localhost. A Kubernetes Service is required for that purpose.
Like other parts of the deployment, a Service is defined by a configuration file:

apiVersion: v1
kind: Service
metadata:
 name: service-chapter7
spec:
 selector:
 app: nginx
 type: NodePort
 ports:
 - name: http
 port: 80
 targetPort: 80
 nodePort: 30515
 externalIPs:
 - 192.168.1.158

As before, note the kind key has changed, this time to Service. Note also the
selector field, which matches that from the deploy1.yaml file. Finally, note the use
of the externalIPs key. In the example, that is set to a specific IP address of the

Deploying with Kubernetes | 147

Kubernetes controller. The IP that you set here will almost certainly be different.
In some cases, you won’t need to define the externalIP, and in other cases that
externalIP will be auto-assigned because of the type of service being used.

Save the file as service.yaml and apply the file with the command:
kubectl apply -f service.yaml

At this point, you should be able to go to another computer on the network and
reach the deployment through the “external” IP that was defined within the external
IPs configuration field. For example, the external IP configured in the example is
192.168.1.158. I have another computer on the same 192.168.1. network. From
that other machine, I ran the following command:

curl http://192.168.1.158

The result was:
<!doctype html>
<html>
 <head>
 <title>Deployment 1</title>
 </head>
 <body>
 <h1>Served from Deployment 1</h1>
 </body>
</html>

A few things can go wrong that would prevent the curl command from returning
the output shown. Troubleshooting begins with the ping command. Rather than
attempting an HTTP request, simply pinging the IP address can reveal that basic
connectivity is not available. Without being able to ping the IP, HTTP will almost
certainly not work (the following note explains why “almost certainly” exists in the
sentence).

The phrase “almost certainly” in relation to the ping command not
working is there because the protocol underlying ping, ICMP, may
be blocked but TCP connections for serving web pages may be
allowed. Therefore, you can sometimes retrieve web pages from an
IP address but not be able to ping that IP.

Connectivity may not be available because the pod isn’t running or because the
network layer is not running. See “Adding networking” on page 141. Finally, the
problem could be as simple as having the wrong IP address. The 192.168.1.158
address is a valid private IP address and happens to be how my test network is
configured. If your network uses different IP addresses, then the curl command will
need to be adjusted accordingly.

148 | Chapter 7: Plan and Expand

Moving Toward Microservices
We’ve now deployed a web server to serve a static web page. If that seems anticlimac‐
tic, it probably is. The year 1996 called and wants its thunder back. In seriousness,
we’ve deployed processes on top of virtual computing that serve web pages and
manage themselves. That’s at least 2010s magic.

Expanding the problem is one of my three superpowers. Therefore, another Deploy‐
ment and another ConfigMap will prove out some of the strengths of Kubernetes.
This section assumes that you have deploy1.yaml, configmap1.yaml, and service.yaml
running correctly.

Create a file called deploy2.yaml with the following contents:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployment-chapter7-2
spec:
 replicas: 5
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: config-chapter7-2
 mountPath: /usr/share/nginx/html
 volumes:
 - name: config-chapter7-2
 configMap:
 name: configmap-chapter7-2

Create a file called configmap2.yaml with the following contents:
apiVersion: v1
kind: ConfigMap
metadata:
 name: configmap-chapter7-2
data:
 index.html: |
 <!doctype html>
 <html>
 <head>
 <title>Deployment 2</title>
 </head>
 <body>
 <h1>Served from Deployment 2</h1>

Deploying with Kubernetes | 149

 </body>
 </html>

Apply both:
kubectl apply -f configmap2.yaml
kubectl apply -f deploy2.yaml

The configmap2.yaml file is referenced within deploy2.yaml. Notice that the
<title> and <h1> contents are different in configmap2.yaml when compared with
configmap1.yaml. Notice also that there are 5 replicas configured within deploy2.yaml.
This effectively means that 2.5 times as many “Deployment 2” pages should be
served, although that’s not strictly guaranteed.

View the external IP again and reload to see both “pages” being loaded. You’ll know
that you’re receiving the page from this new deployment when you see the <title>
and <h1> contents change:

<!doctype html>
<html>
 <head>
 <title>Deployment 2</title>
 </head>
 <body>
 <h1>Served from Deployment 2</h1>
 </body>
</html>

You can also execute kubectl get pods to see the current state:
NAME READY STATUS RESTARTS AGE
deployment-chapter7-1-765bff56bf-gcd4f 1/1 Running 0 31s
deployment-chapter7-1-765bff56bf-v5hxr 1/1 Running 0 31s
deployment-chapter7-2-86cb66499d-bklfx 1/1 Running 0 21s
deployment-chapter7-2-86cb66499d-hcglb 1/1 Running 0 21s
deployment-chapter7-2-86cb66499d-kk4p5 1/1 Running 0 21s
deployment-chapter7-2-86cb66499d-m5qf9 1/1 Running 0 21s
deployment-chapter7-2-86cb66499d-nhvl4 1/1 Running 0 21s

If something goes wrong at this level, a typographical error could be to blame.
Begin troubleshooting by ensuring that the earlier examples were running. If those
examples were not running, then adding more complexity will not usually fix the
problem.

Connecting the Resources
You can keep Deployment files and associated ConfigMap, Service, and other related
files separate, as in the examples in this chapter. You may also join those files into a
single file. You can use and manage other parts like namespaces in the single file or
multifile format. An informal and unscientific survey of organization patterns reveals
equal numbers of single-file and multifile management.

150 | Chapter 7: Plan and Expand

If you choose to use a single file to manage all elements of a deployment, the different
parts of the YAML file need to be separated with three dashes. The final single-file
example that includes all resources from this chapter is included here. If you use this
single file, be sure to change the value found within externalIPs at the end of the
file:

apiVersion: v1
kind: ConfigMap
metadata:
 name: configmap-chapter7-1
data:
 index.html: |
 <!doctype html>
 <html>
 <head>
 <title>Deployment 1</title>
 </head>
 <body>
 <h1>Served from Deployment 1</h1>
 </body>
 </html>

apiVersion: v1
kind: ConfigMap
metadata:
 name: configmap-chapter7-2
data:
 index.html: |
 <!doctype html>
 <html>
 <head>
 <title>Deployment 2</title>
 </head>
 <body>
 <h1>Served from Deployment 2</h1>
 </body>
 </html>

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployment-chapter7-1
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:

Deploying with Kubernetes | 151

 - name: config-chapter7-1
 mountPath: /usr/share/nginx/html
 volumes:
 - name: config-chapter7-1
 configMap:
 name: configmap-chapter7-1

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployment-chapter7-2
spec:
 replicas: 5
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: config-chapter7-2
 mountPath: /usr/share/nginx/html
 volumes:
 - name: config-chapter7-2
 configMap:
 name: configmap-chapter7-2

apiVersion: v1
kind: Service
metadata:
 name: service-chapter7
spec:
 selector:
 app: nginx
 type: NodePort
 ports:
 - name: http
 port: 80
 targetPort: 80
 nodePort: 30515
 externalIPs:
 - 192.168.1.158

If you choose to utilize multiple files for a deployment rather than the single file
shown here, I recommend choosing a naming standard for the metadata and the
files themselves. It’s debatable how to structure or format that convention, whether
prefixing with the kind or type of resource or prefixing with the application name so
that all resources are grouped together in a listing.

152 | Chapter 7: Plan and Expand

Integrating Helm
In the bad old days when we had to walk uphill both ways to school in the snow,
adding software involved downloading a tar archive, typically gzipped. That file
would be decompressed and unarchived, and the dance of ./configure && make &&
make install followed. If anything went wrong, then removing the config.cache file
and possibly running make clean was next.

Today, the industry uses package managers to install software and dependencies.
Everything from apt/dpkg on Debian and derivatives to Homebrew on a Mac or even
entire container images on Docker are managed as packages. So, too, are packages
available with Kubernetes through Helm. Even more meta than package management
is that you can use a package manager to install Helm, itself a package manager.
The installation process is covered on the Helm site and can be accomplished across
various operating systems.

Helm collects the configuration files and directories into something called a chart.
Charts describe the desired state of an application, including all of the prerequisites
needed to run it. Charts contain a mix of YAML-formatted files, JSON-formatted
files, and optional text files, among others. For example, the typical layout for a chart
is described in Table 7-1.

Table 7-1. A typical chart layout for Helm

File/Directory Description
Chart.yaml Basic information about the chart itself, YAML-formatted
charts/ A directory that contains dependencies of this chart
crds/ A directory containing custom resource definitions
LICENSE Optional text file containing license terms
templates/ A directory containing template files that work in conjunction with the values.yaml/values.schema.json

files to generate Kubernetes files
README.md An optional text file with helpful information about this chart
values.yaml A YAML-formatted file containing defaults for this chart
values.schema.json An optional JSON-formatted file that contains structure-related information for the values.yaml file

The Chart.yaml file itself contains several required fields. These fields are described in
the Charts documentation on the Helm website.

Helm charts are found in repositories. There is a default repository called the Artifact
Hub that gets installed with the Helm package, and new repositories can be added
if necessary. Searching the default Artifact Hub repository is accomplished with this
command:

helm search hub

Integrating Helm | 153

https://helm.sh
https://helm.sh/docs/intro/install
https://helm.sh/docs/topics/charts

For example, to search for a MariaDB chart, the command is:
helm search hub mariadb

As of this writing, 52 charts are returned with that search. A current challenge with
the interface and structure is that it’s difficult to determine which, if any, of the
returned charts are official releases or from known/trusted authors. The Artifact
Hub interface on the web helps with this problem. When searching, you can sort by
“Stars,” which may provide an indication of popularity.

When installed, a chart becomes a release in Helm terms. An installation of a chart
that becomes a release can be repeated multiple times. This is a differentiation
between Helm and a more common package manager experience. For example, when
MariaDB is installed on a computer running Debian, the software is installed just
that one time. However, with Helm, a chart can be installed multiple times, thereby
creating multiple releases.

Helm can be helpful in facilitating use of Kubernetes and as a kick start to some of
the more advanced configurations and software available through Kubernetes as an
organization shifts processes to the left.

Summary
This chapter has only scratched the surface of Kubernetes and what it can do for
DevSecOps. Cloud integration, backend integration, and dynamic content are three
areas to study as you expand use of Kubernetes. Google Cloud is a natural fit for
Kubernetes, but AWS and Azure, along with other cloud providers, all play nice with
Kubernetes and integrate with hybrid cloud configurations.

The focus of this chapter was expanding DevSecOps by employing Kubernetes.
Kubernetes manages significant portions of operational deployment and abstracts
several application layers at the same time. Learning to deploy with and troubleshoot
Kubernetes will help to shift left processes related to managing service discovery and
deployment. The natural progression of DevSecOps within an organization does not
end with Kubernetes, but Kubernetes plays a central role in containerized microser‐
vice architectures.

Thus far, the book has combined theory and practice, both foundational and current
material. The last few chapters emphasized hands-on experience deploying some of
the popular tech frequently involved in DevSecOps organizations. The next chapter
shifts back toward theory, summarizing many of the paradigm shifts that occur with
DevSecOps.

154 | Chapter 7: Plan and Expand

https://artifacthub.io
https://artifacthub.io

CHAPTER 8

Beyond DevSecOps

Determining the contents for a book on DevSecOps is more about determining
what not to put in a book about DevSecOps. The primary problem is the term
“DevSecOps” itself. It means different things to different people depending not only
on context but also on experience and organizational need. The technology has not
matured to the point where a true recipe for success is available. There are patterns
to follow and pieces of tech to use—which I’ll describe here—but the exact details
of what to type and where to type it are impossible to prescribe. Importantly, DevSec‐
Ops is not an end goal but rather an iterative improvement process that evolves as
new technologies become available that can make software delivery faster and more
reliable.

DevSecOps Patterns
This section includes several patterns of success followed by organizations, whether
on the path toward DevSecOps or using a mature DevSecOps SDLC:

• Shifting left toward CI/CD•
• Multicloud deployments for redundancy•
• Less emphasis on post-deployment security; security is shifted left and automatic•
• Linux, specifically command-line-based not GUI, but the rest of the stack inter‐•

changeable
• Less emphasis on troubleshooting and optimizing in favor of refactor and•

redeploy

Let’s start by discussing shifting left toward CI/CD.

155

Shifting Left and Adding CI/CD
Continuous integration/continuous deployment (CI/CD) is really the ultimate goal
of DevSecOps. A developer should be able to write code and have that code pass
through several gates toward the production environment. Getting to true CI/CD
requires significant customization of the pipeline.

Software like Argo CD is designed with DevSecOps in mind. Argo CD has graphical
components to help with visibility but also a modern backend that takes advantage of
the tools covered in previous chapters, such as Kubernetes and Helm, among others.
You can leverage Argo CD either as is or as a source of information on how to get to a
more modern pipeline.

Multicloud Integration
Containerization is the current state of the art in DevSecOps, as of this writing. The
three main cloud providers, AWS, Google Cloud, and Azure, all provide containeri‐
zation that integrates well with Kubernetes, noting that Google Cloud has a natural
affinity to Kubernetes due to its history. Running containers and workloads in the
cloud should be seamless, with the organization being able to deploy to any of the
three cloud providers based on need, geographic demand, or redundancy.

Integrated and Automatic Security
Security measures that are difficult to apply or difficult to use will not be imple‐
mented. Successful DevSecOps emphasizes “secure by default” but also unobtrusive
security. Role-based access control is used in a ubiquitous manner. Finding a security
problem after go-live is good, assuming that attackers have not yet found it. But find‐
ing that security problem after go-live is not optimal. Scanning tools are necessary
post-production, but security needs to be shifted left and automatic.

Flagging security issues when code is committed and pushed and then opening
tickets with the developer for remediation shifts the responsibility for security to the
left side of the development pipeline. An easy example is storage of credentials or
secrets within code or configuration that is potentially visible to those who should not
see those secrets.

Instead of even getting to the point of needing to store secrets, the type of informa‐
tion stored as secrets should be made available to the developer through the tooling
itself. Kubernetes handles secrets in a way that enables an administrator to configure
access to view and use the secrets, for example.

156 | Chapter 8: Beyond DevSecOps

https://argoproj.github.io/cd

Linux Everywhere
Whether serverful or serverless, Linux is the backend driver for DevSecOps. From
a practical standpoint, that means promoting tools that are either Linux-based or
work seamlessly with Linux. An example of an antipattern is monitoring software
that requires an agent to run on the host. The agent itself is a security vulnerability.
Rather, we favor software that utilizes least privilege and integrated tools like SSH to
gather information. Linux-related skills, like utilizing the command line and under‐
standing the architecture of Linux, should be promoted within an organization.

Refactor and Redeploy
When there were only a few physical hardware servers running many different serv‐
ices, significant value was placed on optimizing resource usage and troubleshooting
problems as needed because deploying another instance was simply not possible
without significant delay to acquire new hardware. Today, less emphasis is placed on
optimization and troubleshooting in favor of refactoring during the next iteration.

Efficient use of resources is still important, but time spent doing so is often more
costly than a ground-up rebuild. Resources like memory and processor are enough
of a low-cost commodity that deployment of another instance is also less costly than
determining the root cause of the failure. Evidence of this is no further than anyone
who has ever had to “turn it off and then back on again” in response to a problem
with a computer or device. Make no mistake: rebooting should not be a solution and
is an indication that something is wrong within the underlying software or operating
system. But rebooting is frequently easier than finding the root cause for one-off
problems.

Summary
This chapter shared patterns that are frequently found at organizations as they jour‐
ney along the DevSecOps path. Organizations striving to add DevSecOps practices
sometimes add bits and pieces of technology in hopes that the tech will solve the
problem. But culture needs to come first, and then add tech where it makes sense.
Tech can always be added, but it can be difficult to extract processes from tech once
that tech becomes embedded. Avoid adding technical debt to solve technical debt.

Summary | 157

APPENDIX A

Ports and Protocols

Some common ports and protocols are described in Table A-1. See Internet Assigned
Numbers Authority (IANA) for the definitive reference. It’s worth noting that IANA
will frequently assign both the TCP and UDP ports to the same protocol even though
the protocol only uses one or the other. DNS is a common exception because it uses
both UDP and TCP in regular operations. Unless otherwise noted, I’ve included the
more common protocol (TCP or UDP) here.

Table A-1. Common ports and protocols

Protocol Port(s) Description
SMTP TCP/25, TCP/

465, TCP/587
Simple Mail Transfer Protocol used for transferring mail between Mail Transfer Agents (MTAs)
such as mail servers. Ports 465 and 587 are SSL-protected (SMTPS) ports.

DNS UDP/53 and
TCP/53

Domain Name System protocol is responsible for hostname to IP and IP to hostname resolution
along with providing information for a domain such as its mail exchange (MX) records for email
and other information. TCP is typically used for zone transfers between authoritative primary
and secondary DNS servers. The /etc/hosts file overrides DNS resolution on a given machine.

HTTP/
HTTPS

TCP/80 and
TCP/443

Hypertext Transfer Protocol without SSL uses port 80, while the SSL/TLS version uses port 443.

DHCP UDP/67 and
UDP/68

Dynamic Host Configuration Protocol is used to assign IP address, netmask, and other basic
network stack information to clients on the local network.

SSH TCP/22 Secure Shell is the primary means for administering servers and equipment across the internet.
Provides end-to-end encryption.

ICMP None Internet Control Message Protocol is typically manifest through the ping command, but
traceroute also sometimes uses ICMP. ICMP is frequently used to determine if a host is alive
and responding but can be blocked by a firewall and thus is not always accurate.

ARP None Address Resolution Protocol is used to translate MAC (Media Access Control) addresses to IP
addresses. Like DNS with an /etc/hosts file, you may need to fake an ARP entry for testing.

159

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

APPENDIX B

Command Reference

This appendix includes commands that will be helpful for the DevSecOps practi‐
tioner. The commands included here are not meant to be an exhaustive list of every
command that you will ever need, but rather some commands that might be useful
for troubleshooting. Some commands covered in this appendix are built into the
shell, while others are dependent on other software being installed.

Basic Command-Line Navigation
For those coming from a graphical world, facing a blinking cursor at the command
line can be slightly terrifying. Even knowing how to navigate to get a file list or how
to get back to your home directory can be helpful, though. When you’re using an
interactive shell program like bash or zsh, the prompt itself is usually informative and
can be configured from system to system.

The command prompt will typically include some type of indication of the current
directory. The tilde character (~) is usually an indication that the current directory is
your home directory. You can always find out what directory you’re in with the pwd
command. You can always get home by typing:

cd ~

View the manual for these or other commands with the man command. Certain
commands, like cd, are built into the shell itself. In these cases, view the manual for
the shell. For example, to view the manual for zsh, type:

man zsh

If you’re unsure what shell you’re using, there are a few ways to find out. First, the env
command should have a line indicating SHELL=. Another way to find out what shell
you have is to view the /etc/passwd file on Linux. Yet another way is by using the chsh

161

command. When you type chsh, you will be shown the current shell. Press Ctrl-c to
exit out of the chsh command, otherwise you might change your shell!

If you need to determine what username you’re logged in with, type:
whoami

Directory Listing
Obtain a list of files and directories with the ls command. The ls command has
many options that are useful and necessary depending on the situation. The -la
option is useful because the options cause the ls command to show all files, including
dot files or those that begin with a . in their name. The output also includes file
permissions and ownership.

ls -la

It’s also helpful to display files in a certain order at times, like the most recently edited
file. For that, I typically execute:

ls -latr

The -t option sorts by time, and -r sorts in reverse. The combination then displays
the most recently edited file at the bottom of the listing, thus saving the need to scroll
or use a pager.

Pager
While on the subject of pagers, Microsoft Windows includes the more command,
but a better option found on macOS and Linux is the less command. Less is more,
except better. Use the less command to stop output from scrolling. With less, you
can move backward and forward within the output, search backward and forward,
and many other tasks. View the man page for the less command to see all options
and their explanation.

Command Recall and Tab Completion
Use the up arrow to recall the last command that you ran. Continue pressing the
up arrow to move through the history of commands. Depending on the system, you
may only see the commands that you ran during the current session or you may see
commands from a previous session as well. The down arrow scrolls forward.

If you find a command that you previously ran but now need to change one single
option at the beginning of the line, you could use the left arrow to move character
by character backward through the command or use Ctrl-a to move the cursor to the
beginning of the command line. Ctrl-e moves the cursor to the end of the line.

162 | Appendix B: Command Reference

As you’re typing, use the Tab key to complete commands, files, and folders. Be
mindful as you do so because the shell will do its best to disambiguate objects but
may not always choose the one that you want.

As it relates to command recall, the history command shows a certain number of
commands that were previously executed, where that “certain number” is dependent
on system and configuration. Some systems are configured to clear history on exit,
while others keep history seemingly from the beginning of time.

Creating Directories
The mkdir command is used to create directories. Add the -p option to create an
entire hierarchy of directories at once rather than creating each directory one by one.

Changing Permissions and Ownership
As shown previously, the ls -la command and options show ownership and permis‐
sions for files and directories. Change permissions with the chmod command. You’ll
see combinations of two ways to change permissions, either octal or symbolic. Which
you choose is somewhat a matter of preference.

Regardless, if you see advice to change permissions to 777 (octal) or ugo+rwx (sym‐
bolic), then you can be reasonably assured something is wrong. That permission set
enables user, group, and other the ability to overwrite/delete the file or directory.
There is almost always a better solution, noting that sometimes you might change
something to 777 for troubleshooting temporarily.

See the manual for chmod for information on setuid and setgid bits.

Changing ownership is done with the chown command. On most systems, you can set
both the user and group at once, as follows:

chown suehring.users test.txt

That command changes the owner to suehring and the group to users for a file called
test.txt in the current directory.

Screen Is Your Friend
A long time ago, a senior network engineer said, “Screen is your friend,” and that
phrase stuck with me, and now I pass it along to you. The screen command and its
cousin tmux are two commands that can be game changers when they are discovered.
Both enable long-running interactive shell sessions to run in the background.

I will leave it to you to further research each command.

Command Reference | 163

Using grep
The grep command helps to locate specific information in output. There are numer‐
ous ways to do so, but grep is fairly common when searching files for specific
strings. For example, if I want to search for Kubernetes YAML files that use a custom
namespace, I could use grep as follows:

grep namespace *.yaml

That command will search every .yaml file in the current directory for the word
“namespace.” Add the -r option to make the search recursive, into directories below
the current:

grep -r namespace *.yaml

Finally, make the search case-insensitive with the -i option:
grep -ri namespace *.yaml

Note that you might use the find command to enable a more granular file search.

Using touch
While writing this section, I also used the touch command to create a file. The touch
command creates a file, if the file is not already present, or changes the timestamp of
the file if the file already exists.

DNS with dig
The dig command can be used to help troubleshoot several different types of DNS
issues. This section contains the commands along with expected output. The full
output is included in the first example and is truncated for certain other examples
where the full output isn’t needed. In addition, line numbers have been added to the
first example to help identify the line in the narrative explanation.

The output that you receive will vary in several ways. Notably, the version of dig that
is returned may be different, but so can answer identifiers, response times, message
sizes, IP address, and other ephemeral data.

Determine Address for a Host
This command determines the address for a host.

Command
dig.www.example.com

Output
 1 ; <<>> DiG 9.16.37-Debian <<>> www.example.com
 2 ;; global options: +cmd
 3 ;; Got answer:

164 | Appendix B: Command Reference

 4 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 46608
 5 ;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
 6
 7 ;; OPT PSEUDOSECTION:
 8 ; EDNS: version: 0, flags:; udp: 4096
 9 ;; QUESTION SECTION:
10 ;www.example.com. IN A
11
12 ;; ANSWER SECTION:
13 www.example.com. 300 IN A 93.184.216.34
14
15 ;; Query time: 4 msec
16 ;; SERVER: 172.31.0.2#53(172.31.0.2)
17 ;; WHEN: Mon Jun 05 14:35:04 UTC 2023
18 ;; MSG SIZE rcvd: 60

Explanation
The output from this and other dig commands will include the version number
as shown in line 1. Lines 2 and 3 display a summary of the options used or
implied on the command line and the header text for the response. Line 4 is the
first line of interest for troubleshooting. Specifically, the status field response
contains NOERROR, indicating that the query was successful. When the host or
domain isn’t found, the status field response will be NXDOMAIN. Line 5 contains
other useful information, including the various fields, typically two letters each,
called flags on line 5.

The flags contain indicators about the query and its response, such as whether
the response came from an authoritative nameserver for that domain. In the
example output, the flags are qr, rd, and ra. The qr field is used to indicate
if this is a query (0) or a response (1). The rd and ra flags indicate recursion
desired and recursion available. More information on the header fields can be
found in RFC 1035. The commands for determining authoritative nameservers
are included later in this appendix.

Lines 6 through 11 are related to Extended DNS (EDNS) and are not relevant to
the appendix. Refer to RFC Editor for more information on EDNS.

As you might have gleaned from the output, line 12 begins the answer section.
Line 13 contains the hostname that was queried, www.example.com, the time-to-
live (TTL), the type of record (A for address), and the IP address. If this same
query were executed again, the TTL value would be lower because of the time
elapsed.

With two important caveats, the TTL being used by this local resolver will reset
on the next query after 300 seconds elapses. The first caveat pertains to a change
in the TTL. After this TTL expires, another query will be sent to the authoritative
nameserver. If the owner of the domain changes the TTL, the next query after the
300 seconds elapses will then obtain the new TTL. The second caveat is related to

Command Reference | 165

https://www.rfc-editor.org/info/rfc6891

other queries. If someone else queries this local resolver for the same record, then
your results around the TTL may vary accordingly.

As it relates to DevSecOps, the authoritative nameserver controls the TTL. If you
control a domain and need to lower the TTL, then you need to ensure ample
time so that existing cached responses expire and those other resolvers all over
the internet then re-query for the authoritative answer.

Line 16 is the next relevant line within the output of a typical dig command.
Line 16 contains the IP of the server that provided the response. There are times
when you want to query a particular server, whether a local resolver is providing
incorrect answers or whether you want to query the authoritative nameserver.

Changing the Server to Be Queried
dig enables easy server changes through the @ symbol. This section shows the syntax
for querying a different nameserver for www.example.com.

Command
dig www.example.com @8.8.8.8

Output
The full output will not be included here, but note that the server changed. This
is displayed toward the bottom of the output:

SERVER: 8.8.8.8#53(8.8.8.8)

Explanation
The @ symbol changes the server to which the query will be sent. It’s worth
noting that you can @ any server, but servers will typically only respond to queries
related to domains for which the server is authoritative. Exceptions are resolvers
such as 8.8.8.8 and others.

Finding the Authoritative Nameserver
There are two methods for finding the authoritative nameserver, both of which
are helpful for troubleshooting and can find different answers at times. The first
command is whois, which queries databases of registered names. A portion of the
output from whois contains the nameservers as registered. This is the same data that
is then queried by the root servers for DNS. Therefore, if the whois data is incorrect,
then queries will not be sent to the correct DNS servers.

Another portion of the output from whois is the expiration for
a domain. If the domain wasn’t renewed in time, then it may be
reported as an outage. This happens more often than you might
think and only takes a moment to troubleshoot and solve.

166 | Appendix B: Command Reference

The second method for finding the authoritative nameserver assumes that everything
is correct with the registrar through whois. The dig command can be used to query
for NS records, that is, nameserver records for a domain.

Command
dig example.com ns

Output
Within the output, notice that there are two answers, and the ANSWER flag indi‐
cates as such:

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

Note also that the flags are the same, and there is no aa flag, indicating that
the answer received is not authoritative or did not come from the authoritative
nameservers for this domain.

The answer section is as follows:
;; ANSWER SECTION:
example.com. 300 IN NS a.iana-servers.net.
example.com. 300 IN NS b.iana-servers.net.

Explanation
Within the answer section, the TTL is familiar from an earlier explanation
within this appendix. The record type is NS, indicating that a.iana-servers.net and
b.iana-servers.net are NS records within the example.com domain.

But misconfigurations happen, and sometimes the NS records that exist in a
domain can be slightly misleading. The method used in this section simply looks
for NS records in the domain. A more complete answer can be found by using
the +nssearch option or querying for the Start of Authority (SOA) record. Here
are examples of both.

Command
dig example.com +nssearch

Output
SOA ns.icann.org. noc.dns.icann.org. 2022091294
 7200 3600 1209600 3600 from server 199.43.133.53 in 47 ms.
SOA ns.icann.org. noc.dns.icann.org. 2022091294
 7200 3600 1209600 3600 from server 199.43.135.53 in 55 ms.

Explanation
The output from the +nssearch query displays the SOA record information
for a given domain. Notice that the SOA record indicates ns.icann.org is the
authoritative nameserver for example.com. The SOA query type can be used as
well.

Command
dig example.com soa

Command Reference | 167

Output
example.com. 3600 IN SOA ns.icann.org. noc.dns.icann.org. 2022091294
 7200 3600 1209600 3600

Explanation
The output when querying an SOA record type contains the domain serial
number along with the various caching time values explained in Chapter 2 and in
the DNS-related RFCs.

An additional note about the output in this section and for all dig commands.
You can add the +short option to shorten the response output, like this example:

dig example.com soa +short

Personal preference and the task that you’re trying to complete with dig will
dictate whether you use +short. From my own personal experience, if I’m using
dig to troubleshoot a DNS problem that others couldn’t figure out, then I’ll
typically leave the full output enabled.

Querying the Authoritative Nameserver
Combining the previous two examples, querying a different server and finding the
authoritative nameserver is helpful for obtaining an authoritative response. If you
are on a troubleshooting path that has taken you here, then you should also plan
on querying both (or all) nameservers because there are times when the nameserv‐
ers provide different answers, usually due to error or misconfiguration. However,
as noted in an earlier section, the NS records within example.com point to a.iana-
servers.net and b.iana-servers.net, but the SOA record indicates ns.icann.org.

Querying a.iana-servers.net looks like this, which should look familiar from earlier in
the appendix.

Command
dig www.example.com @a.iana-servers.net

Output
The output contains the status flags related to the query along with other infor‐
mation. Output has been truncated to the lines relevant to this section.

;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; ANSWER SECTION:
www.example.com. 86400 IN A 93.184.216.34

Explanation
First, examine the flags and note that the aa flag is present, indicating that this is
an authoritative answer for the query. Notice, too, the new WARNING line that the

168 | Appendix B: Command Reference

query asked the iana-servers.net server to recurse but the server refused to do so.
An answer for the query was provided, though.

Another method to find or verify the authoritative answer requires querying the
other host that was found through the SOA record, ns.icann.org. The authorita‐
tive answer flag aa is also present in the response.

Finding Mail Servers
The dig command is helpful for troubleshooting email delivery issues. The MX
record type contains the mail servers for a given domain. This example uses the
oreilly.com domain. Best practice is typically to use the example.com (or example.net
or example.org) domain, but the MX records are not configured for the example
domains, which would cause confusion.

Command
dig oreilly.com mx

Output
;; ANSWER SECTION:
oreilly.com. 300 IN MX 5 alt1.aspmx.l.google.com.
oreilly.com. 300 IN MX 5 alt2.aspmx.l.google.com.
oreilly.com. 300 IN MX 10 aspmx3.googlemail.com.
oreilly.com. 300 IN MX 1 aspmx.l.google.com.
oreilly.com. 300 IN MX 10 aspmx2.googlemail.com.

Explanation
In this example, the oreilly.com domain has five MX records. MX records are
unique in that there is the normal TTL, type, and host but also an extra number
just prior to the hostname in the response. In the output, that number varies and
is 5 for the first two responses, 10 for the third response, 1 for aspmx.l.google.com,
and 10 for the final host. These numbers represent a cost factor and are config‐
ured by the operator of the domain. Lower cost is preferred, and multiple MX
records are typically used for redundancy.

If the host aspmx.l.google.com is not available, a mail server that has email
destined for someone@oreilly.com will then try the next highest cost, either
alt1.aspmx.l.google.com or alt2.aspmx.l.google.com. If neither of those hosts are
available, one of aspmx3.googlemail.com or aspmx2.googlemail.com will be tried.
Finally, the order of the answers will change from query to query, but the costs
associated with each host will only change if the operator of oreilly.com changes
them.

Finding SPF and TXT Records
The final type of record to be queried is a TXT record. TXT records contain things
like Sender Policy Framework (SPF) records, among other things.

Command Reference | 169

Command
dig example.com txt

Output
;; ANSWER SECTION:
example.com. 86400 IN TXT "v=spf1 -all"
example.com. 86400 IN TXT "wgyf8z8cgvm2qmxpnbnldrcltvk4xqfn"

Explanation
In this example output, an SPF record is shown along with another TXT record.

Examining the Root
At its most basic, simply running the dig command will display a list of root servers
for your resolver:

dig

; <<>> DiG 9.10.6 <<>>
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40011
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 27

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;. IN NS

;; ANSWER SECTION:
. 371846 IN NS h.root-servers.net.
. 371846 IN NS f.root-servers.net.
. 371846 IN NS a.root-servers.net.
. 371846 IN NS d.root-servers.net.
. 371846 IN NS i.root-servers.net.
. 371846 IN NS b.root-servers.net.
. 371846 IN NS k.root-servers.net.
. 371846 IN NS l.root-servers.net.
. 371846 IN NS e.root-servers.net.
. 371846 IN NS j.root-servers.net.
. 371846 IN NS c.root-servers.net.
. 371846 IN NS g.root-servers.net.
. 371846 IN NS m.root-servers.net.

;; ADDITIONAL SECTION:
a.root-servers.net. 371846 IN A 198.41.0.4
b.root-servers.net. 371846 IN A 199.9.14.201
c.root-servers.net. 371846 IN A 192.33.4.12
d.root-servers.net. 371846 IN A 199.7.91.13
e.root-servers.net. 371846 IN A 192.203.230.10
f.root-servers.net. 371846 IN A 192.5.5.241
g.root-servers.net. 371846 IN A 192.112.36.4
h.root-servers.net. 371846 IN A 198.97.190.53
i.root-servers.net. 371846 IN A 192.36.148.17
j.root-servers.net. 371846 IN A 192.58.128.30
k.root-servers.net. 371846 IN A 193.0.14.129
l.root-servers.net. 371846 IN A 199.7.83.42

170 | Appendix B: Command Reference

m.root-servers.net. 371846 IN A 202.12.27.33
a.root-servers.net. 371846 IN AAAA 2001:503:ba3e::2:30
b.root-servers.net. 371846 IN AAAA 2001:500:200::b
c.root-servers.net. 371846 IN AAAA 2001:500:2::c
d.root-servers.net. 371846 IN AAAA 2001:500:2d::d
e.root-servers.net. 371846 IN AAAA 2001:500:a8::e
f.root-servers.net. 371846 IN AAAA 2001:500:2f::f
g.root-servers.net. 371846 IN AAAA 2001:500:12::d0d
h.root-servers.net. 371846 IN AAAA 2001:500:1::53
i.root-servers.net. 371846 IN AAAA 2001:7fe::53
j.root-servers.net. 371846 IN AAAA 2001:503:c27::2:30
k.root-servers.net. 371846 IN AAAA 2001:7fd::1
l.root-servers.net. 371846 IN AAAA 2001:500:9f::42
m.root-servers.net. 371846 IN AAAA 2001:dc3::35

;; Query time: 1 msec
;; SERVER: 192.168.1.4#53(192.168.1.4)
;; WHEN: Thu Aug 3 11:29:12 CDT 2023
;; MSG SIZE rcvd: 823

Command Reference | 171

Index

Symbols
! operator, 36

A
accountability, 57

code traceability, 59-61
compliance and, 60-61
regulatory standards, 60-61
site reliability, 57-59
static analysis, 59

code review and, 59-60
Address Resolution Protocol (ARP), 159
AES (Advanced Encryption Standard), 49
Agile, 4
agile development, 4-6
alerts, monitoring, 133
Alpine Linux, 103, 108
Ansible, 116-117

Python, 116
SSH (Secure Shell), 116

API (application programming interface), 13
ARP (Address Resolution Protocol), 159
arrays, 39
authentication

CA (certificate authority), 52
SSL (Secure Sockets Layer), 109

certificate-based, 52
key-based, 52

authoritative nameserver, 166-169
automatic security, 156
availability, 32, 53

cost estimate, 55-57
defining, 55-57
needs identification, 54

SLAs, 54
SLOs, 54
stakeholders, 54

B
bash (Bourne-again shell), 18

arrays, 39
built-ins, 34
commands, 34
comparison operators, 36-37
conditionals

! operator, 36
if statement, 36

data, 34-35
lists, 39
loops

for loop, 38
while loop, 38

variables, 34-35
blue-green deployment, 112
broken software, 6-7
build-time flags, 59
built-ins, 34

C
CA (certificate authority), 52

SSL (Secure Sockets Layer), 109
ccTLDs (country code top-level domains), 24
certificate-based authentication, 52
Certified Information Systems Security Profes‐

sional (CISSP), 62
checksums, 50-52
CI/CD (continuous integration/continuous

deployment), 12, 115

173

Jenkins and, 113
shift left, 156

CISSP (Certified Information Systems Security
Professional), 62

CLI (command-line interface)
benefits, 19
Docker, 106-108
Terminal, 20

cloud computing, 156
code maintainability, 60
code review, static analysis, 59-60
code testing

automating, 91
Firefox, 91-94
Selenium, 91-94

integration testing, 91
system testing, 91
unit testing, 90

code traceability, 59-61
code, configuration as, 97
command prompt, Windows, 19
command-line environment, 17
command-line interface (see CLI)
command-line tools, 161-164
commands, 34

command-line navigation, 161-164
DNS issues, 164-170
recalling, 162
tab completion, 162

comparison operators, 36-37
compliance, 60-61
conditionals

! operator, 36
if statement, 36

confidentiality, 32, 44
ConfigMap, Kubernetes, 145
configuration as code, 97
configuration files

directory structure, 98-99
host-specific directories, 99
repositories, structuring, 98
text files, 12

configuration skew, 101
containerization, 97, 101

(see also Docker)
containers

images, 102
versus virtual machines, 103

continuous integration/continuous deployment
(see CI/CD)

country code top-level domains (ccTLDs), 24
culture (see organizational culture)
CVE (Common Vulnerabilities and Exposures),

63

D
data, 34-35
data at rest

databases, 49-50
files, 49-50

data in flight, 45, 47
eavesdropping in email, 47
wired networks, 47-48
wireless networks, 47-48

data types, 34-35
database security, 49-50
dependencies, monitoring, 133
deployment

Ansible, 116-117
blue-green deployment, 112
Jenkins, 117-126
Kubernetes Deployment

defining, 144-147
microservices and, 149-150

Kubernetes Services, 147-148
monitoring and, 131

alerts, 133
dependencies, 133
downtime, 133
metrics, 133
triage, 132
visibility, 132

Deployment file, Kubernetes, 145
development, 77

deliberateness, 78
Don't Repeat Yourself (DRY), 78-79
intentionality, 78
SCM (source code management), Git and,

79-90
testing

automating, 91-94
integration testing, 91
system testing, 91
unit testing, 90

DevOps (Development and Operations), 10
DevOps SDLC, 14

174 | Index

DHCP (Dynamic Host Configuration Proto‐
col), 25, 159

dig command, 164-170
directories

creating, 163
listing, 162

Disk Operating System (DOS), Windows com‐
mand prompt, 19

DKIM (DomainKeys Identified Mail), 52
DMARC (Domain-based Message Authentica‐

tion, Reporting, and Conformance), 53
DNS (Domain Name System), 23-24, 46, 159

dig command, 164-170
DoH (DNS over HTTP), 46

DNS resolvers, 46
DNS servers, 46
Docker

Alpine Linux, 103, 108
CLI (command-line interface), 106-108
containerization, 101, 102-103
docker command, 106-108
images, Docker Hub, 103-106
Jenkins and, 117
local registry, 108-112

Docker Hub, 103-106
DoH (DNS over HTTPS), 46
Domain Name System (see DNS)
Don't Repeat Yourself (DRY), 39, 78-79
DOS (Disk Operating System), Windows com‐

mand prompt, 19
downtime, monitoring and, 133
DRY (Don't Repeat Yourself), 39, 78-79
Dynamic Host Configuration Protocol

(DHCP), 25, 159

F
feature flags, 58
file security, 49-50
File Transfer Protocol (FTP), 31
Firefox, 91-94
flawed software, 6-7
for loop, 38
FTP (File Transfer Protocol), 31
FTPS (FTP over SSL), 31

G
Git, 79, 97

authorized_keys file, 81
branching, 86-87

commands, 82
Gitflow, 87-88
merging, 87
private keys, 81
public keys, 81
servers, 80
setup, 79-82
SSH (Secure Shell), 80

key generation, 81
tracking files, 83-84
trunk-based pattern, 89-90
usage patterns, 80
users, adding, 80

grep command, 164
GUIs (graphical user interfaces), 18

H
hash functions, message digest-based, 52
hashes

checksums, 50-52
Secure Hashing Algorithm–based functions,

52
Helm, 153-154
host-specific directories, 99
hostname resolution, 24-27
hosts files, 25
HTTP (HyperText Transfer Protocol), 29-30,

159

I
IANA (Internet Assigned Numbers Authority),

ports and protocols, 159
ICMP (Internet Control Message Protocol), 22,

159
if statement, 36
images, containers, 102
IMAP (Internet Message Access Protocol), 47
integrated security, 156
integration testing, 91
integrity, 32

certificate-based authentication, 52
checksums, 50-52
email verification, 52-53
key-based authentication, 52

Internetwork Packet Exchange/Sequenced
packet Exchange (IPX/SPX), 31

IP (Internet Protocol), 21
IPX/SPX (Internetwork Packet Exchange/

Sequenced packet Exchange), 31

Index | 175

ISC2, training, 62
iteration, 4-6

J
Jenkins, 113, 117-126

as Docker container, 117
pipelines, 126-131

Juice Shop, 65

K
key-based authentication, 52
Kubernetes, 137

API (application programming interface),
138

control plane, 138
controller manager, 138
installation, 138-144

join command, 143-144
networking, 141-143
rebooting, 139

kubeadm join, 141
kubelets, 138
microservices and, 149-150
operating system-level changes, 138
pods, 138
sudo, 140
swap, disabling, 138
worker nodes, 138

Kubernetes Deployment, 144
ConfigMap, 145
Deployment file, 145
running, 146
verifying, 147

Kubernetes Services, 147-148

L
least privilege

implementing, 42-44
permissions, Linux, 43-44
RBAC (role-based access control), 44

Linux, 157
Alpine Linux, 103, 108
least privilege, 43-44
permissions, 43-44

changing, 43
lists, 39
local registries, Docker, 108-112
logs, security awareness and, 63

loops
for loop, 38
while loop, 38

M
message digest–based hash functions, 52
metrics monitoring, 133
microservices, 13

Kubernetes, 149-150
monitoring, 131

alerts, 133
dependencies, 133
downtime, 133
metrics, 133
triage, 132
visibility, 132

MTAs (Mail Transfer Agents), 159
multicloud integration, 156
MVP (minimally viable product), 78

O
operations team, 7
organizational culture, 9
OSI model, 21
OWASP (Open Web Application Security

Project)
Juice Shop, 65
Top 10, 33
Top Ten, 62
ZAP (Zed Attack Proxy) (see ZAP (Zed

Attack Proxy))
ownership, changing, 163

P
package managers, 153-154
pagers, 162
patterns, 155

automatic security, 156
integrated security, 156
Linux everywhere, 157
multicloud integration, 156
refactor and redeploy, 157
shift left and add CI/CD, 156

per-application repository structure, 98
permissions

changing, 163
octal notation, 43-44

pipelines, Jenkins and, 126-131

176 | Index

POP3 (Post Office Protocol v3), 47
ports, 159
PowerShell, 19
private keys, Git, 81
processes

microservices, 13
reliability, 13
repeatability, 11-12
scale, 13
skills promotion, 10
speed, 13
tools, 11
visibility, 13

protocol layers
OSI model, 21
TCP/IP model, 21

protocols, 20, 159
ARP (Address Resolution Protocol), 159
DHCP (Dynamic Host Configuration Pro‐

tocol), 159
DNS (Domain Name System), 23-24, 159
FTP (File Transfer Protocol), 31
FTPS (FTP over SSL), 31
hostname resolution, 24-27
HTTP, 29-30, 159
HTTPS, 159
ICMP (Internet Control Message Protocol),

22, 159
IP (Internet Protocol), 21
IPX/SPX (Internetwork Packet Exchange/

Sequenced packet Exchange), 31
phone conversation analogy, 20
SCP (Secure Copy Protocol), 31
SFTP (Secure File Transfer Protocol), 31
SMTP (Simple Mail Transfer Protocol), 47,

159
SNMP (Simple Network Management Pro‐

tocol), 31
SOA record, 27-28
SSH (Secure Shell), 31, 159
TCP (Transmission Control Protocol), 22
UDP (User Datagram Protocol), 22

public keys, Git, 81

Q
QA (quality assurance), 7

R
RBAC (role-based access control), 44

recalling commands, 162
refactor and redeploy, 157
registries, local (Docker), 108-112
regulatory standards, 60-61
reliability, 13
repeatability, 11-12
repository structure, 98

per-application, 98
RFCs (Requests for Comments), 23

S
SANS, training, 62
SBOM (Software Bill of Materials), 101
scale, 13
SCM (source code management)

Git and
branching, 86-87
commands, 82
Gitflow, 87-88
merging, 87
setup, 79-82
tracking files, 83-84
trunk-based pattern, 89-90

tools, 60
SCM (source code management), Git and, 79
SCP (Secure Copy Protocol), 31
screen command, 163
scripting, 33
Scrum, 4
SDLC (software development lifecycle), 2-4

DevOps, 14
Secure Copy Protocol (SCP), 31
Secure File Transfer Protocol (SFTP), 31
Secure Hashing Algorithm–based functions, 52
Secure Shell (see SSH)
security

as afterthought, 8-9
automatic, 156
integrated, 156

security awareness, 61
free knowledge, 62-63
log analysis and, 63
training, formal, 61

security practices, 41
accountability, 57

code traceability, 59-61
site reliability, 57-59
static analysis, 59-61

availability, 53

Index | 177

cost estimate, 55-57
defining, 55-57
needs identification, 54
SLAs, 54
SLOs, 54
stakeholders, 54

confidentiality, 44
data at rest

databases, 49-50
files, 49-50

data in flight, 45
eavesdropping on email, 47
wired networks, 47-48

encryption, 45, 47
SSH, 47

integrity verification
certificate-based authentication, 52
checksums, 50-52
email, 52-53
key-based authentication, 52

least privilege, 42
permissions, Linux, 43-44
RBAC (role-based access control), 44

wireless networks, 47-48
security triad, 31

availability, 32
confidentiality, 32
integrity, 32

Selenium, 91-94
service level agreements (SLAs), 7
SFTP (Secure File Transfer Protocol), 31
shells, 17, 18

bash (Bourne-again shell), 18
PowerShell, 19
SSH (Secure Shell), 20

Simple Mail Transfer Protocol (SMTP), 159
Simple Network Management Protocol

(SNMP), 31
site reliability engineer (SRE), 7
site reliability engineering, 57-59
SLAs (service level agreements), 7, 54
SLOs (service level objectives), 54
SMTP (Simple Mail Transfer Protocol), 47, 159
SNMP (Simple Network Management Proto‐

col), 31
SOA (Start of Authority) record, 27-28
Software Bill of Materials (SBOM), 101
software development

agile, 4-6

business requirements, 3
flawed, 6-7
iterative, 4-6
operations team, 7
process, 2
security as afterthought, 8-9
waterfall methodology, 3

software development lifecycle (see SDLC)
software, broken, 6-7
source code management (see SCM)
speed, 13
SPF (Sender Policy Framework), 52
SRE (site reliability engineer), 7, 57-59
SSH (Secure Shell), 20, 31, 159

Ansible, 116
encryption, 47
Git, 80

key generation, 81
SSL (Secure Sockets Layer), 45

CA (certificate authority), 109
certificates, 109

stakeholders, 54
Start of Authority (SOA) record, 27-28
static analysis, 59

code review and, 59-60
sudo, 140
syslog, 57
system testing, 91
systemd, 57

T
tab completion, 162
TCP (Transmission Control Protocol), 22
TCP/IP model, 21
technical debt, 78
Terminal, 18
terminals, 17
testing

automating, 91
Firefox, 91-94
Selenium, 91-94

integration testing, 91
system testing, 91
unit testing, 90

text files, 97
configuration elements, 12

time-to-live (TTL), 28
TLDs (top-level domains), 24
TLS (Transport Layer Security), 45

178 | Index

tmux command, 163
tools, 11
top-level domains (TLDs), 24
touch command, 164
training in security awareness, 61
Transmission Control Protocol (TCP), 22
triage, monitoring and, 132
TTL (time-to-live), 28

U
UDP (User Datagram Protocol), 22
unit testing, 90

V
variables, 34-35
visibility, 13

monitoring, 132

W
while loop, 38
Windows command prompt, 19
wired networks, 47-48
wireless networks, 47-48
WSL (Windows Subsystem for Linux), 19

Z
ZAP (Zed Attack Proxy), 63

Automated Scan, 71-74
HUD (Heads Up Display), 68
installation, 65
manual scan, 66

ATTACK Mode, 67
Safe mode, 67

targets, creating, 64

Index | 179

About the Author
Dr. Steve Suehring is an associate professor of computing at the University of
Wisconsin–Stevens Point, where he teaches courses on a variety of topics, from devel‐
opment to networking to cybersecurity. Prior to joining the faculty, Steve worked in
several roles, including as a technical architect, systems engineer, and data security
analyst. Steve was an editor for LinuxWorld Magazine and has written several tech‐
nology books.

Colophon
The animal on the cover of Learning DevSecOps is a dik-dik (genus Madoqua). They
are native to eastern Africa and parts of southern Africa and are among the world’s
smallest antelopes, standing 12 to 16 inches at the shoulder, reaching 20 to 28 inches
long, and weighing up to 13 pounds. Their upper bodies range from yellowish gray to
reddish brown, while their bellies range from white to tan. Males have ridged horns
that grow up to 3 inches long. Dik-diks are named for the alarm calls that females
make.

Dik-diks generally live in monogamous pairs and are very shy, spending most of their
time hiding in brush. They sleep during most of the day to conserve water, and their
long snouts are filled with specially adapted blood vessels that help them shed excess
heat as they breathe. Dik-diks have black scent glands below the inside corner of each
eye that produce a sticky secretion used to mark their territories.

Dik-diks are considered species of least concern. Many of the animals on O’Reilly
covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique black-and-white
engraving from The Pictorial Museum of Animated Nature. The series design is by
Edie Freedman, Ellie Volckhausen, and Karen Montgomery. The cover fonts are
Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://www.oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Preface
	What Is DevSecOps?
	Who Is This Book For?
	How This Book Is Organized
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. The Need for DevSecOps
	Developing Software
	Developing Agility
	Developing Broken Software
	Operating in a Darkroom
	Security as an Afterthought

	Culture First
	Processes over Tools
	Promoting the Right Skills
	DevSecOps as Process

	The DevSecOps SDLC
	Summary

	Chapter 2. Foundational Knowledge in 25 Pages or Less
	The Command-Line Interface
	Command Line Versus Terminal Versus Shell
	Why Do I Need the Command Line?
	Getting Started with the Command Line

	Protocols: A High-Level Overview
	Protocol Layers
	Two Protocols Plus Another
	Basic Internet Protocols

	Data Security: Confidentiality, Integrity, and Availability
	Development Overview for Scripting
	Commands and Built-ins
	Basic Programmatic Constructs: Variables, Data, and Data Types
	Making Decisions with Conditionals
	Looping
	Lists and Arrays

	Summary

	Chapter 3. Integrating Security
	Integrating Security Practices
	Implementing Least Privilege
	Maintaining Confidentiality
	Data in Flight
	Data at Rest

	Verifying Integrity
	Checksums
	Verifying Email

	Providing Availability
	Service-Level Agreements and Service-Level Objectives
	Identifying Stakeholders
	Identifying Availability Needs
	Defining Availability and Estimating Costs

	What About Accountability?
	Site Reliability Engineering
	Code Traceability and Static Analysis

	Becoming Security Aware
	Finding Formal Training
	Obtaining Free Knowledge
	Enlightenment Through Log Analysis

	Practical Implementation: OWASP ZAP
	Creating a Target
	Installing ZAP
	Getting Started with ZAP: Manual Scan

	Summary

	Chapter 4. Managing Code and Testing
	Examining Development
	Be Intentional and Deliberate
	Don’t Repeat Yourself

	Managing Source Code with Git
	A Simple Setup for Git
	Using Git (Briefly)
	Branching and Merging
	Examining the Gitflow Pattern
	Examining the Trunk-Based Pattern

	Testing Code
	Unit Testing
	Integration Testing
	System Testing
	Automating Tests

	Summary

	Chapter 5. Moving Toward Deployment
	Managing Configuration as Code and Software Bill of Materials (SBOM)
	Using Docker
	Container and Image Concepts
	Obtaining Images

	Deploying Safely with Blue-Green Deployment
	Summary

	Chapter 6. Deploy, Operate, and Monitor
	Continuous Integration and Continuous Deployment
	Building and Maintaining Environments with Ansible
	Using Jenkins for Deployment
	Creating a Pipeline

	Monitoring
	Summary

	Chapter 7. Plan and Expand
	Scaling Up with Kubernetes
	Understanding Basic Kubernetes Terms
	Installing Kubernetes

	Deploying with Kubernetes
	Defining a Deployment
	Defining a Service
	Moving Toward Microservices
	Connecting the Resources

	Integrating Helm
	Summary

	Chapter 8. Beyond DevSecOps
	DevSecOps Patterns
	Shifting Left and Adding CI/CD
	Multicloud Integration
	Integrated and Automatic Security
	Linux Everywhere
	Refactor and Redeploy

	Summary

	Appendix A. Ports and Protocols
	Appendix B. Command Reference
	Basic Command-Line Navigation
	Directory Listing
	Pager
	Command Recall and Tab Completion
	Creating Directories
	Changing Permissions and Ownership
	Screen Is Your Friend
	Using grep
	Using touch

	DNS with dig
	Determine Address for a Host
	Changing the Server to Be Queried
	Finding the Authoritative Nameserver
	Querying the Authoritative Nameserver
	Finding Mail Servers
	Finding SPF and TXT Records
	Examining the Root

	Index
	About the Author
	Colophon

