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Preface

A warm welcome to Learning Modern Linux! I’m glad that we will walk this journey
together for a bit. This book is for you if you’ve already been using Linux and are
looking for a structured, hands-on approach to dive in deeper, or if you already have
experience and want to get some tips and tricks to improve your flow when working
with Linux—for example, in a professional setup, such as development or operations.

We’ll focus on using Linux for your everyday needs, from development to office-
related tasks, rather than on the system administration side of things. Also, we’ll focus
on the command line, not visual UIs. So, while 2022 might be the year of Linux on
the desktop after all, we’ll use the terminal as the main way to interact with Linux.
This has the additional advantage that you can equally apply your knowledge in many
different setups, from a Raspberry Pi to the virtual machine of your cloud provider of
choice.

Before we start, I’d like to provide some context by sharing my own journey: my first
hands-on experience with an operating system was not with Linux. The first operat‐
ing system I used was AmigaOS (in the late 80s), and after that, in technical high
school, I mainly used Microsoft DOS and the then-new Microsoft Windows, specifi‐
cally around the event system and user interface–related development. Then, in the
mid- to late 1990s, during my studies at university, I mainly used Unix-based Solaris
and Silicon Graphics machines in the university labs. I really only got into Linux in
the mid-2000s in the context of big data and then when I started working with con‐
tainers, first in 2015 in the context of Apache Mesos (working at Mesosphere), and
then with Kubernetes (initially at Red Hat on the OpenShift team and then at AWS on
the container service team). That’s where I realized that one needs to master Linux to
be effective in this space. Linux is different. Its background, worldwide community of
users, and versatility and flexibility make it unique.

Linux is an interesting, ever-growing ecosystem of open source individuals and ven‐
dors. It runs on pretty much anything under the sun, from the $50 Raspberry Pi to
the virtual machines of your favorite cloud provider to a Mars vehicle. After 30 years
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in the making, Linux will likely stick around for some time, so now is a good time to
get into Linux a bit deeper.

Let’s first set some ground rules and expectations. In the preface, I’ll share how you
can get the most out of this book as well as some administrative things, like where
and how you can try out the topics we’ll work through together.

About You
This book is for those who want or need to use Linux in a professional setup, such as
software developers, software architects, QA testing engineers, DevOps and SRE
roles, and similar roles. I’ll assume that if you’re a hobbyist encountering Linux when
pursuing an activity such as 3D printing or home improvement, you have very little
to no knowledge about operating systems in general or Linux/UNIX in particular.
You will get the most out of the book if you work through it from beginning to end,
as the chapters tend to build on one another; however, you can also use it as a refer‐
ence if you’re already familiar with Linux.

How to Use the Book
The focus of this book is enabling you to use Linux, not administer it. There are
plenty of great books about Linux administration out there.

By the end of this book, you will understand what Linux is (Chapter 1) and what its
critical components are (Chapters 2 and 3). You’ll be able to enumerate and use
essential access control mechanisms (Chapter 4). You’ll also understand the role of
filesystems (Chapter 5) as a fundamental building block in Linux as well as know
what apps (Chapter 6) are.

Then, you’ll get some hands-on experience with the Linux networking stack and tool‐
ing (Chapter 7). Further, you’ll learn about modern operating system observability
(Chapter 8) and how to apply it to manage your workloads.

You’ll understand how to run Linux applications in modern ways by using containers
as well as immutable distros such as Bottlerocket and also how to securely communi‐
cate (download files, etc.) and share data using Secure Shell (SSH) and advanced tool‐
ing like peer-to-peer and cloud sync mechanisms (Chapter 9).

Following are suggestions for ways you can try things out and follow along (and I
strongly recommend you do; learning Linux is like learning a language—you want to
practice a lot):
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• Get a Linux desktop or laptop. For example, I have a very nice machine called
StarBook from Star Labs. Alternatively, you could use a desktop or laptop that no
longer runs a recent Windows version and install Linux on it.

• If you want to experiment on a different (host) operating system—say, your Mac‐
Book or iMac—you could use a virtual machine (VM). For example, on macOS
you could use the excellent Linux-on-Mac.

• Use your cloud provider of choice to spin up a Linux-based VM.
• If you’re into tinkering and want to try out a non-Intel processor architecture

such as ARM, you could buy a single-board computer such as the wonderful
Raspberry Pi.

In any case, you should have an environment at hand and practice a lot. Don’t just
read: try out commands and experiment. Try to “break” things, for example, by pro‐
viding nonsensical or deliberately strange inputs. Before you execute the command,
form a hypothesis about the outcome.

Another tip: always ask why. When you see a command or a certain output, try to
figure out where it came from and what the underlying component responsible for
it is.

Conventions
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/learning-modern-linux-code.

If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Modern Linux
by Michael Hausenblas (O’Reilly). Copyright 2022 Michael Hausenblas,
978-1-098-10894-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learning-modern-linux.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia
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CHAPTER 1

Introduction to Linux

Linux is the most widely used operating system, used in everything from mobile devi‐
ces to the cloud.

You might not be familiar with the concept of an operating system. Or you might be
using an operating system such as Microsoft Windows without giving it too much
thought. Or maybe you are new to Linux. To set the scene and get you in the right
mindset, we’ll take a bird’s-eye view of operating systems and Linux in this chapter.

We’ll first discuss what modern means in the context of the book. Then we’ll review a
high-level Linux backstory, looking at important events and phases over the past 30
years. Further, in this chapter you’ll learn what the role of an operating system is in
general and how Linux fills this role. We also take a quick look at what Linux distri‐
butions are and what resource visibility means.

If you’re new to operating systems and Linux, you’ll want to read the entire chapter. If
you’re already experienced with Linux, you might want to jump to “A Ten-Thousand-
Foot View of Linux” on page 8, which provides a visual overview as well as mapping
to the book’s chapters.

But before we get into the technicalities, let’s first step back a bit and focus on what
we mean when we say “modern Linux.” This is, surprisingly, a nontrivial matter.

What Are Modern Environments?
The book title specifies modern, but what does that really mean? Well, in the context
of this book, it can mean anything from cloud computing to a Raspberry Pi. In addi‐
tion, the recent rise of Docker and related innovations in infrastructure has dramati‐
cally changed the landscape for developers and infrastructure operators alike.

1



Let’s take a closer look at some of these modern environments and the prominent role
Linux plays in them:

Mobile devices
When I say “mobile phone” to our kids, they say, “In contrast to what?” In all
fairness and seriousness, these days many phones—depending on who you ask,
up to 80% or more—as well as tablets run Android, which is a Linux variant.
These environments have aggressive requirements around power consumption
and robustness, as we depend on them on a daily basis. If you’re interested in
developing Android apps, consider visiting the Android developer site for more
information.

Cloud computing
With the cloud, we see at scale a similar pattern as in the mobile and micro space.
There are new, powerful, secure, and energy-saving CPU architectures such as
the successful ARM-based AWS Graviton offerings, as well as the established
heavy-lifting outsourcing to cloud providers, especially in the context of open
source software.

Internet of (Smart) Things
I’m sure you’ve seen a lot of Internet of Things (IoT)–related projects and prod‐
ucts, from sensors to drones. Many of us have already been exposed to smart
appliances and smart cars. These environments have even more challenging
requirements around power consumption than mobile devices. In addition, they
might not even be running all the time but, for example, only wake up once a day
to transmit some data. Another important aspect of these environments is real-
time capabilities. If you’re interested in getting started with Linux in the IoT con‐
text, consider the AWS IoT EduKit.

Diversity of processor architectures
For the past 30 years or so, Intel has been the leading CPU manufacturer, domi‐
nating the microcomputer and personal computer space. Intel’s x86 architecture
was considered the gold standard. The open approach that IBM took (publishing
the specifications and enabling others to offer compatible devices) was promis‐
ing, resulting in x86 clones that also used Intel chips, at least initially.

While Intel is still widely used in desktop and laptop systems, with the rise of
mobile devices we’ve seen the increasing uptake of the ARM architecture and
recently RISC-V. At the same time, multi-arch programming languages and tool‐
ing, such as Go or Rust, are becoming more and more widespread, creating a
perfect storm.

All of these environments are examples of what I consider modern environments.
And most, if not all of them, run on or use Linux in one form or another.
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Now that we know about the modern (hardware) systems, you might wonder how we
got here and how Linux came into being.

The Linux Story (So Far)
Linux celebrated its 30th birthday in 2021. With billions of users and thousands of
developers, the Linux project is, without doubt, a worldwide (open source) success
story. But how did it all this start, and how did we get here?

1990s
We can consider Linus Torvalds’s email on August 25, 1991, to the
comp.os.minix newsgroup as the birth of the Linux project, at least in terms of
the public record. This hobby project soon took off, both in terms of lines of code
(LOC) and in terms of adoption. For example, after less than three years, Linux
1.0.0 was released with over 176,000 LOCs. By that time, the original goal of
being able to run most Unix/GNU software was already well reached. Also, the
first commercial offering appeared in the 1990s: Red Hat Linux.

2000 to 2010
As a “teenager,” Linux was not only maturing in terms of features and supported
hardware but was also growing beyond what UNIX could do. In this time period,
we also witnessed a huge and ever-increasing buy-in of Linux by the big players,
that is, adoption by Google, Amazon, IBM, and so on. It was also the peak of the
distro wars, resulting in businesses changing their directions.

2010s to now
Linux established itself as the workhorse in data centers and the cloud, as well as
for any types of IoT devices and phones. In a sense, one can consider the distro
wars as being over (nowadays, most commercial systems are either Red Hat or
Debian based), and in a sense, the rise of containers (from 2014/15 on) is respon‐
sible for this development.

With this super-quick historic review, necessary to set the context and understand the
motivation for the scope of this book, we move on to a seemingly innocent question:
Why does anyone need Linux, or an operating system at all?

Why an Operating System at All?
Let’s say you do not have an operating system (OS) available or cannot use one for
whatever reason. You would then end up doing pretty much everything yourself:
memory management, interrupt handling, talking with I/O devices, managing files,
configuring and managing the network stack—the list goes on.
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Technically speaking, an OS is not strictly needed. There are sys‐
tems out there that do not have an OS. These are usually embedded
systems with a tiny footprint: think of an IoT beacon. They simply
do not have the resources available to keep anything else around
other than one application. For example, with Rust you can use its
Core and Standard Library to run any app on bare metal.

An operating system takes on all this undifferentiated heavy lifting, abstracting away
the different hardware components and providing you with a (usually) clean and
nicely designed Application Programming Interface (API), such as is the case with
the Linux kernel that we will have a closer look at in Chapter 2. We usually call these
APIs that an OS exposes system calls, or syscalls for short. Higher-level programming
languages such as Go, Rust, Python, or Java build on top of those syscalls, potentially
wrapping them in libraries.

All of this allows you to focus on the business logic rather than having to manage the
resources yourself, and also takes care of the different hardware you want to run your
app on.

Let’s have a look at a concrete example of a syscall. Let’s say we want to identify (and
print) the ID of the current user.

First, we look at the Linux syscall getuid(2):

...
getuid() returns the real user ID of the calling process.
...

OK, so this getuid syscall is what we could use programmatically, from a library. We
will discuss Linux syscalls in greater detail in “syscalls” on page 22.

You might be wondering what the (2) means in getuid(2). It’s a
terminology that the man utility (think built-in help pages) uses to
indicate the section of the command assigned in man, akin to a
postal or country code. This is one example where the Unix legacy
is apparent; you can find its origin in the Unix Programmer’s Man‐
ual, seventh edition, volume 1 from 1979.

On the command line (shell), we would be using the equivalent id command that in
turn uses the getuid syscall:

$ id --user
638114

Now that you have a basic idea of why using an operating system, in most cases,
makes sense, let’s move on to the topic of Linux distributions.
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Linux Distributions
When we say “Linux,” it might not be immediately clear what we mean. In this book,
we will say “Linux kernel,” or just “kernel,” when we mean the set of syscalls and
device drivers. Further, when we refer to Linux distributions (or distros, for short), we
mean a concrete bundling of kernel and related components, including package man‐
agement, file system layout, init system, and a shell, preselected for you.

Of course, you could do all of this yourself: you could download and compile the ker‐
nel, choose a package manager, and so on, and create (or roll) your own distro. And
that’s what many folks did in the beginning. Over the years, people figured out that it
is a better use of their time to leave this packaging (and also security patching) to
experts, private or commercial, and simply use the resulting Linux distro.

If you are inclined to build your own distribution, maybe because
you are a tinkerer or because you have to due to certain business
restrictions, I recommend you take a closer look at Arch Linux,
which puts you in control and, with a little effort, allows you to cre‐
ate a very customized Linux distro.

To get a feeling for the vastness of the distro space, including traditional distros
(Ubuntu, Red Hat Enterprise Linux [RHEL], CentOS, etc., as discussed in Chapter 6)
and modern distros (such as Bottlerocket and Flatcar; see Chapter 9), take a look at
DistroWatch.

With the distro topic out of the way, let’s move on to a totally different topic:
resources and their visibility and isolation.

Resource Visibility
Linux has had, in good UNIX tradition, a by-default global view on resources. This
leads us to the question: what does global view mean (in contrast to what?), and what
are said resources?

Why are we talking about resource visibility here in the first place?
The main reason is to raise awareness about this topic and to get
you in the right state of mind for one of the important themes in
the context of modern Linux: containers. Don’t worry if you don’t
get all of the details now; we will come back to this topic through‐
out the book and specifically in Chapter 6, in which we discuss
containers and their building blocks in greater detail.

You might have heard the saying that in Unix, and by extension Linux, everything is a
file. In the context of this book, we consider resources to be anything that can be used

Resource Visibility | 5

https://oreil.ly/U9luq
https://oreil.ly/UBSHM
https://oreil.ly/DWmrr


to aid the execution of software. This includes hardware and its abstractions (such as
CPU and RAM, files), filesystems, hard disk drives, solid-state drives (SSDs), pro‐
cesses, networking-related stuff like devices or routing tables, and credentials repre‐
senting users.

Not all resources in Linux are files or represented through a file
interface. However, there are systems out there, such as Plan 9, that
take this much further.

Let’s have a look at a concrete example of some Linux resources. First, we want to
query a global property (the Linux version) and then specific hardware information
about the CPUs in use (output edited to fit space):

$ cat /proc/version 
Linux version 5.4.0-81-generic (buildd@lgw01-amd64-051)
(gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04))
#91~18.04.1-Ubuntu SMP Fri Jul 23 13:36:29 UTC 2021

$ cat /proc/cpuinfo | grep "model name" 
model name      : Intel Core Processor (Haswell, no TSX, IBRS)
model name      : Intel Core Processor (Haswell, no TSX, IBRS)
model name      : Intel Core Processor (Haswell, no TSX, IBRS)
model name      : Intel Core Processor (Haswell, no TSX, IBRS)

Print the Linux version.

Print CPU-related information, filtering for model.

With the preceding commands, we learned that this system has four Intel i7 cores at
its disposal. When you log in with a different user, would you expect to see the same
number of CPUs?

Let’s consider a different type of resource: files. For example, if the user troy creates a
file under /tmp/myfile with permission to do so (“Permissions” on page 80), would
another user, worf, see the file or even be able to write to it?

Or, take the case of a process, that is, a program in memory that has all the necessary
resources available to run, such as CPU and memory. Linux identifies a process using
its process ID, or PID for short (“Process Management” on page 17):

$ cat /proc/$$/status | head -n6 
Name:   bash
Umask:  0002
State:  S (sleeping)
Tgid:   2056
Ngid:   0
Pid:    2056
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Print process status—that is, details about the current process—and limit output
to show only the first six lines.

What Is $$?
You might have noticed the $$ and wondered what this means. This is a special vari‐
able that is referring to the current process (see “Variables” on page 37 for details).
Note that in the context of a shell, $$ is the process ID of the shell (such as bash) in
which you typed the command.

Can there be multiple processes with the same PID in Linux? What may sound like a
silly or useless question turns out to be the basis for containers (see “Containers” on
page 131). The answer is yes, there can be multiple processes with the same PID, in
different contexts called namespaces (see “Linux Namespaces” on page 133). This
happens, for example, in a containerized setup, such as when you’re running your app
in Docker or Kubernetes.

Every single process might think that it is special, having PID 1, which in a more tra‐
ditional setup is reserved for the root of the user space process tree (see “The Linux
Startup Process” on page 117 for more details).

What we can learn from these observations is that there can be a global view on a
given resource (two users see a file at the exact same location) as well as a local or
virtualized view, such as the process example. This raises the question: is everything
in Linux by default global? Spoiler: it’s not. Let’s have a closer look.

Part of the illusion of having multiple users or processes running in parallel is the
(restricted) visibility onto resources. The way to provide a local view on (certain sup‐
ported) resources in Linux is via namespaces (see “Linux Namespaces” on page 133).

A second, independent dimension is that of isolation. When I use the term isolation
here, I don’t necessarily qualify it—that is, I make no assumptions about how well
things are isolated. For example, one way to think about process isolation is to restrict
the memory consumption so that one process cannot starve other processes. For
example, I give your app 1 GB of RAM to use. If it uses more, it gets out-of-memory
killed. This provides a certain level of protection. In Linux we use a kernel feature
called cgroups to provide this kind of isolation, and in “Linux cgroups” on page 135
you will learn more about it.

On the other hand, a fully isolated environment gives the appearance that the app is
entirely on its own. For example, a virtual machine (VM; see also “Virtual Machines”
on page 217) can be used to provide you with full isolation.
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A Ten-Thousand-Foot View of Linux
Whoa, we went quite deep into the weeds already. Time to take a deep breath and re-
focus. In Figure 1-1, I’ve tried to provide you with a high-level overview of the Linux
operating system, mapping it to the book chapters.

Figure 1-1. Mapping the Linux operating system to book chapters

At its core, any Linux distro has the kernel, providing the API that everything else
builds on. The three core topics of files, networking, and observability follow you
everywhere, and you can consider them the most basic building blocks above the ker‐
nel. From a pure usage perspective, you will soon learn that you will most often be
dealing with the shell (Where is the output file for this app?) and things related to
access control (Why does this app crash? Ah, the directory is read-only, doh!).

As an aside: I’ve collected some interesting topics, from virtual machines to modern
distros, in Chapter 9. I call these topics “advanced” mainly because I consider them
optional. That is, you could get away without learning them. But if you really, really,
really want to benefit from the full power that modern Linux can provide you, I
strongly recommend that you read Chapter 9. I suppose it goes without saying that,
by design, the rest of the book—that is Chapter 2 to Chapter 8—are essential chapters
you should most definitely study and apply the content as you go.
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Portable Operating System Interface
We will come across the term POSIX, short for Portable Operating System Interface,
every now and then in this book. Formally, POSIX is an IEEE standard to define ser‐
vice interfaces for UNIX operating systems. The motivation was to provide portability
between different implementations. So, if you read things like “POSIX-compliant,”
think of a set of formal specifications that are especially relevant in official procure‐
ment context and less so in everyday usage.

Linux was built to be POSIX-compliant as well as to be compliant with the UNIX Sys‐
tem V Interface Definition (SVID), which gave it the flavor of old-time AT&T UNIX
systems, as opposed to Berkeley Software Distribution (BSD)-style systems.

If you want to learn more about POSIX, check out “POSIX Abstractions in Modern
Operating Systems: The Old, the New, and the Missing”, which provides a great intro‐
duction and comments on uptake and challenges around this topic.

Conclusion
When we call something “modern” in the context of this book, we mean using Linux
in modern environments, including phones, data centers (of public cloud providers),
and embedded systems such as a Raspberry Pi.

In this chapter, I shared a high-level version of the Linux backstory. We discussed the
role of an operating system in general—to abstract the underlying hardware and pro‐
vide a set of basic functions such as process, memory, file, and network management
to applications—and how Linux goes about this task, specifically regarding visibility
of resources.

The following resources will help you continue getting up to speed as well as dive
deeper into concepts discussed in this chapter:

O’Reilly titles
• Linux Cookbook by Carla Schroder
• Understanding the Linux Kernel by Daniel P. Bovet and Marco Cesati
• Efficient Linux at the Command Line by Daniel J. Barrett
• Linux System Programming by Robert Love
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Other resources
• Advanced Programming in the UNIX Environment is a complete course that

offers introductory material and hands-on exercises.
• “The Birth of UNIX” with Brian Kernighan is a great resource for learning about

Linux’s legacy and provides context for a lot of the original UNIX concepts.

And now, without further ado: let’s start our journey into modern Linux with the
core, erm, kernel, of the matter!
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CHAPTER 2

The Linux Kernel

In “Why an Operating System at All?” on page 3, we learned that the main function
of an operating system is to abstract over different hardware and provide us with an
API. Programming against this API allows us to write applications without having to
worry about where and how they are executed. In a nutshell, the kernel provides such
an API to programs.

In this chapter, we discuss what the Linux kernel is and how you should be thinking
about it as a whole as well as about its components. You will learn about the overall
Linux architecture and the essential role the Linux kernel plays. One main takeaway
of this chapter is that while the kernel provides all the core functionality, on its own it
is not the operating system but only a very central part of it.

First, we take a bird’s-eye view, looking at how the kernel fits in and interacts with the
underlying hardware. Then, we review the computational core, discussing different
CPU architectures and how they relate to the kernel. Next, we zoom in on the indi‐
vidual kernel components and discuss the API the kernel provides to programs you
can run. Finally, we look at how to customize and extend the Linux kernel.

The purpose of this chapter is to equip you with the necessary terminology, make you
aware of the interfacing between programs and the kernel, and give you a basic idea
what the functionality is. The chapter does not aim to turn you into a kernel devel‐
oper or even a sysadmin configuring and compiling kernels. If, however, you want to
dive into that, I’ve put together some pointers at the end of the chapter.

Now, let’s jump into the deep end: the Linux architecture and the central role the ker‐
nel plays in this context.
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Linux Architecture
At a high level, the Linux architecture looks as depicted in Figure 2-1. There are three
distinct layers you can group things into:

Hardware
From CPUs and main memory to disk drives, network interfaces, and peripheral
devices such as keyboards and monitors.

The kernel
The focus of the rest of this chapter. Note that there are a number of components
that sit between the kernel and user land, such as the init system and system serv‐
ices (networking, etc.), but that are, strictly speaking, not part of the kernel.

User land
Where the majority of apps are running, including operating system components
such as shells (discussed in Chapter 3), utilities like ps or ssh, and graphical user
interfaces such as X Window System–based desktops.

We focus in this book on the upper two layers of Figure 2-1, that is, the kernel and
user land. We only touch on the hardware layer in this and a few other chapters,
where relevant.

The interfaces between the different layers are well defined and part of the Linux
operating system package. Between the kernel and user land is the interface called
system calls (syscalls for short). We will explore this in detail in “syscalls” on page 22.

The interface between the hardware and the kernel is, unlike the syscalls, not a single
one. It consists of a collection of individual interfaces, usually grouped by hardware:

1. The CPU interface (see “CPU Architectures” on page 14)
2. The interface with the main memory, covered in “Memory Management” on

page 19
3. Network interfaces and drivers (wired and wireless; see “Networking” on page

20)
4. Filesystem and block devices driver interfaces (see “Filesystems” on page 21)
5. Character devices, hardware interrupts, and device drivers, for input devices like

keyboards, terminals, and other I/O (see “Device Drivers” on page 21)
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Figure 2-1. A high-level view of the Linux architecture

As you can see, many of the things we usually consider part of the Linux operating
system, such as shell or utilities such as grep, find, and ping, are in fact not part of
the kernel but, very much like an app you download, part of user land.

On the topic of user land, you will often read or hear about user versus kernel mode.
This effectively refers to how privileged the access to hardware is and how restricted
the abstractions available are.

In general, kernel mode means fast execution with limited abstraction, whereas user
mode means comparatively slower but safer and more convenient abstractions.
Unless you are a kernel developer, you can almost always ignore kernel mode, since
all your apps will run in user land. Knowing how to interact with the kernel (“sys‐
calls” on page 22), on the other hand, is vital and part of our considerations.

With this Linux architecture overview out of the way, let’s work our way up from the
hardware.
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CPU Architectures
Before we discuss the kernel components, let’s review a basic concept: computer
architectures or CPU families, which we will use interchangeably. The fact that Linux
runs on a large number of different CPU architectures is arguably one of the reasons
it is so popular.

Next to generic code and drivers, the Linux kernel contains architecture-specific
code. This separation allows it to port Linux and make it available on new hardware
quickly.

There are a number of ways to figure out what CPU your Linux is running. Let’s have
a look at a few in turn.

The BIOS and UEFI
Traditionally, UNIX and Linux used the Basic I/O System (BIOS) for bootstrapping
itself. When you power on your Linux laptop, it is entirely hardware-controlled. First
off, the hardware is wired to run the Power On Self Test (POST), part of the BIOS.
POST makes sure that the hardware (RAM, etc.) function as specified. We will get
into the details of the mechanics in “The Linux Startup Process” on page 117.

In modern environments, the BIOS functions have been effectively replaced by the
Unified Extensible Firmware Interface (UEFI), a public specification that defines a
software interface between an operating system and platform firmware. You will still
come across the term BIOS in documentation and articles, so I suggest you simply
replace it with UEFI in your head and move on.

One way is a dedicated tool called dmidecode that interacts with the BIOS. If this
doesn’t yield results, you could try the following (output shortened):

$ lscpu
Architecture:                x86_64 
CPU op-mode(s):              32-bit, 64-bit
Byte Order:                  Little Endian
Address sizes:               40 bits physical, 48 bits virtual
CPU(s):                      4 
On-line CPU(s) list:         0-3
Thread(s) per core:          1
Core(s) per socket:          4
Socket(s):                   1
NUMA node(s):                1
Vendor ID:                   GenuineIntel
CPU family:                  6
Model:                       60
Model name:                  Intel Core Processor (Haswell, no TSX, IBRS) 
Stepping:                    1
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CPU MHz:                     2592.094
...

The architecture we’re looking at here is x86_64.

It looks like there are four CPUs available.

The CPU model name is Intel Core Processor (Haswell).

In the previous command, we saw that the CPU architecture was reported to be
x86_64, and the model was reported as “Intel Core Processor (Haswell).” We will
learn more about how to decode this in a moment.

Another way to glean similar architecture information is by using cat /proc/

cpuinfo, or, if you’re only interested in the architecture, by simply calling uname -m.

Now that we have a handle on querying the architecture information on Linux, let’s
see how to decode it.

x86 Architecture
x86 is an instruction set family originally developed by Intel and later licensed to
Advanced Micro Devices (AMD). Within the kernel, x64 refers to the Intel 64-bit
processors, and x86 stands for Intel 32-bit. Further, amd64 refers to AMD 64-bit pro‐
cessors.

Today, you’ll mostly find the x86 CPU family in desktops and laptops, but it’s also
widely used in servers. Specifically, x86 forms the basis of the public cloud. It is a
powerful and widely available architecture but isn’t very energy efficient. Partially due
to its heavy reliance on out-of-order execution, it recently received a lot of attention
around security issues such as Meltdown.

For further details, for example the Linux/x86 boot protocol or Intel and AMD spe‐
cific background, see the x86-specific kernel documentation.

ARM Architecture
More than 30 years old, ARM is a family of Reduced Instruction Set Computing
(RISC) architectures. RISC usually consists of many generic CPU registers along with
a small set of instructions that can be executed faster.

Because the designers at Acorn—the original company behind ARM—focused from
the get-go on minimal power consumption, you find ARM-based chips in a number
of portable devices such as iPhones. They are also in most Android-based phones and
in embedded systems found in IoT, such as in the Raspberry Pi.
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Given that they are fast, cheap, and produce less heat than x86 chips, you shouldn’t be
surprised to increasingly find ARM-based CPUs—such as AWS Graviton—in the
data center. While simpler than x86, ARM is not immune to vulnerabilities, such as
Spectre. For further details, see the ARM-specific kernel documentation.

RISC-V Architecture
An up-and-coming player, RISC-V (pronounced risk five) is an open RISC standard
that was originally developed by the University of California, Berkeley. As of 2021, a
number of implementations exist, ranging from Alibaba Group and Nvidia to start-
ups such as SiFive. While exciting, this is a relatively new and not widely used (yet)
CPU family, and to get an idea how it look and feels, you may want to research it a
little—a good start is Shae Erisson’s article “Linux on RISC-V”.

For further details, see the RISC-V kernel documentation.

Kernel Components
Now that you know the basics of CPU architectures, it’s time to dive into the kernel.
While the Linux kernel is a monolithic one—that is, all the components discussed are
part of a single binary—there are functional areas in the code base that we can iden‐
tify and ascribe dedicated responsibilities.

As we’ve discussed in “Linux Architecture” on page 12, the kernel sits between the
hardware and the apps you want to run. The main functional blocks you find in the
kernel code base are as follows:

• Process management, such as starting a process based on an executable file
• Memory management, such as allocating memory for a process or map a file into

memory
• Networking, like managing network interfaces or providing the network stack
• Filesystems providing file management and supporting the creation and deletion

of files
• Management of character devices and device drivers

These functional components often come with interdependencies, and it’s a truly
challenging task to make sure that the kernel developer motto “Kernel never breaks
user land” holds true.

With that, let’s have a closer look at the kernel components.
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Process Management
There are a number of process management–related parts in the kernel. Some of
them deal with CPU architecture–specific things, such as interrupts, and others focus
on the launching and scheduling of programs.

Before we get to Linux specifics, let’s note that commonly, a process is the user-facing
unit, based on an executable program (or binary). A thread, on the other hand, is a
unit of execution in the context of a process. You might have come across the term
multithreading, which means that a process has a number of parallel executions going
on, potentially running on different CPUs.

With this general view out of the way, let’s see how Linux goes about it. From most
granular to smallest unit, Linux has the following:

Sessions
Contain one or more process groups and represent a high-level user-facing unit
with optional tty attached. The kernel identifies a session via a number called
session ID (SID).

Process groups
Contain one or more processes, with at most one process group in a session as
the foreground process group. The kernel identifies a process group via a number
called process group ID (PGID).

Processes
Abstractions that group multiple resources (address space, one or more threads,
sockets, etc.), which the kernel exposes to you via /proc/self for the current pro‐
cess. The kernel identifies a process via a number called process ID (PID).

Threads
Implemented by the kernel as processes. That is, there are no dedicated data
structures representing threads. Rather, a thread is a process that shares certain
resources (such as memory or signal handlers) with other processes. The kernel
identifies a thread via thread IDs (TID) and thread group IDs (TGID), with the
semantics that a shared TGID value means a multithreaded process (in user land;
there are also kernel threads, but that’s beyond our scope).

Tasks
In the kernel there is a data structure called task_struct—defined in sched.h—
that forms the basis of implementing processes and threads alike. This data struc‐
ture captures scheduling-related information, identifiers (such as PID and
TGID), and signal handlers, as well as other information, such as that related to
performance and security. In a nutshell, all of the aforementioned units are
derived and/or anchored in tasks; however, tasks are not exposed as such outside
of the kernel.

Kernel Components | 17

https://oreil.ly/nIgz8


We will see sessions, process groups, and processes in action and learn how to man‐
age them in Chapter 6, and they’ll appear again in the context of containers in
Chapter 9.

Let’s see some of these concepts in action:

$ ps -j
PID    PGID   SID   TTY     TIME CMD
6756   6756   6756  pts/0   00:00:00 bash 
6790   6790   6756  pts/0   00:00:00 ps 

The bash shell process has PID, PGID, and SID of 6756. From ls -al /proc/
6756/task/6756/, we can glean the task-level information.

The ps process has PID/PGID 6790 and the same SID as the shell.

We mentioned earlier on that in Linux the task data structure has some scheduling-
related information at the ready. This means that at any given time a process is in a
certain state, as shown in Figure 2-2.

Figure 2-2. Linux process states

Strictly speaking, the process states are a little more complicated;
for example, Linux distinguishes between interruptible and unin‐
terruptible sleep, and there is also the zombie state (in which it has
lost its parent process). If you’re interested in the details, check out
the article “Process States in Linux”.

Different events cause state transitions. For example, a running process might transi‐
tion to the waiting state when it carries out some I/O operation (such as reading from
a file) and can’t proceed with execution (off CPU).

Having taken a quick look at process management, let’s examine a related topic:
memory.
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Memory Management
Virtual memory makes your system appear as if it has more memory than it physi‐
cally has. In fact, every process gets a lot of (virtual) memory. This is how it works:
both physical memory and virtual memory are divided into fixed-length chunks we
call pages.

Figure 2-3 shows the virtual address spaces of two processes, each with its own page
table. These page tables map virtual pages of the process into physical pages in main
memory (aka RAM).

Figure 2-3. Virtual memory management overview

Multiple virtual pages can point to the same physical page via their respective
process-level page tables. This is, in a sense, the core of memory management: how to
effectively provide each process with the illusion that its page actually exists in RAM
while using the existing space optimally.

Every time the CPU accesses a process’s virtual page, the CPU would in principle
have to translate the virtual address a process uses to the corresponding physical
address. To speed up this process—which can be multilevel and hence slow—modern
CPU architectures support a lookup on-chip called translation lookaside buffer
(TLB). The TLB is effectively a small cache that, in case of a miss, causes the CPU to
go via the process page table(s) to calculate the physical address of a page and update
the TLB with it.

Traditionally, Linux had a default page size of 4 KB, but since kernel v2.6.3, it sup‐
ports huge pages, to better support modern architectures and workloads. For exam‐
ple, 64-bit Linux allows you to use up to 128 TB of virtual address space (with virtual
being the theoretical addressable number of memory addresses) per process, with an
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approximate 64 TB of physical memory (with physical being the amount of RAM you
have in your machine) in total.

OK, that was a lot of theoretical information. Let’s have a look at it from a more prac‐
tical point of view. A very useful tool to figure out memory-related information such
as how much RAM is available to you is the /proc/meminfo interface:

$ grep MemTotal /proc/meminfo 
MemTotal:        4014636 kB

$ grep VmallocTotal /proc/meminfo 
VmallocTotal:   34359738367 kB

$ grep Huge /proc/meminfo 
AnonHugePages:         0 kB
ShmemHugePages:        0 kB
FileHugePages:         0 kB
HugePages_Total:       0
HugePages_Free:        0
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       2048 kB
Hugetlb:               0 kB

List details on physical memory (RAM); that’s 4 GB there.

List details on virtual memory; that’s a bit more than 34 TB there.

List huge pages information; apparently here the page size is 2 MB.

With that, we move on to the next kernel function: networking.

Networking
One important function of the kernel is to provide networking functionality.
Whether you want to browse the web or copy data to a remote system, you depend
on the network.

The Linux network stack follows a layered architecture:

Sockets
For abstracting communication

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
For connection-oriented communication and connectionless communication,
respectively

Internet Protocol (IP)
For addressing machines
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These three actions are all that the kernel takes care of. The application layer proto‐
cols such as HTTP or SSH are, usually, implemented in user land.

You can get an overview of your network interfaces using (output edited):

$ ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
   DEFAULT group default qlen 1000 link/loopback 00:00:00:00:00:00
   brd 00:00:00:00:00:00
2: enp0s1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
   UP mode DEFAULT group default qlen 1000 link/ether 52:54:00:12:34:56
   brd ff:ff:ff:ff:ff:ff

Further, ip route provides you with routing information. Since we have a dedicated
networking chapter (Chapter 7) where we will dive deep into the networking stack,
the supported protocols, and typical operations, we keep it at this and move on to the
next kernel component, block devices and filesystems.

Filesystems
Linux uses filesystems to organize files and directories on storage devices such as
hard disk drives (HDDs) and solid-state drives (SSDs) or flash memory. There are
many types of filesystems, such as ext4 and btrfs or NTFS, and you can have multi‐
ple instances of the same filesystem in use.

Virtual File System (VFS) was originally introduced to support multiple filesystem
types and instances. The highest layer in VFS provides a common API abstraction of
functions such as open, close, read, and write. At the bottom of VFS are filesystem
abstractions called plug-ins for the given filesystem.

We will go into greater detail on filesystems and file operations in Chapter 5.

Device Drivers
A driver is a bit of code that runs in the kernel. Its job is to manage a device, which
can be actual hardware—like a keyboard, a mouse, or hard disk drives—or it can be a
pseudo-device such as a pseudo-terminal under /dev/pts/ (which is not a physical
device but can be treated like one).

Another interesting class of hardware are graphics processing units (GPUs), which tra‐
ditionally were used to accelerate graphics output and ease the load on the CPU. In
recent years, GPUs have found a new use case in the context of machine learning, and
hence they are not exclusively relevant in desktop environments.

The driver may be built statically into the kernel, or it can be built as a kernel module
(see “Modules” on page 26) so that it can be dynamically loaded when needed.
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If you’re interested in an interactive way to explore device drivers
and how kernel components interact, check out the Linux kernel
map.

The kernel driver model is complicated and out of scope for this book. However, fol‐
lowing are a few hints for interacting with it, just enough so that you know where to
find what.

To get an overview of the devices on your Linux system, you can use the following:

$ ls -al /sys/devices/
total 0
drwxr-xr-x 15 root root 0 Aug 17 15:53 .
dr-xr-xr-x 13 root root 0 Aug 17 15:53 ..
drwxr-xr-x  6 root root 0 Aug 17 15:53 LNXSYSTM:00
drwxr-xr-x  3 root root 0 Aug 17 15:53 breakpoint
drwxr-xr-x  3 root root 0 Aug 17 17:41 isa
drwxr-xr-x  4 root root 0 Aug 17 15:53 kprobe
drwxr-xr-x  5 root root 0 Aug 17 15:53 msr
drwxr-xr-x 15 root root 0 Aug 17 15:53 pci0000:00
drwxr-xr-x 14 root root 0 Aug 17 15:53 platform
drwxr-xr-x  8 root root 0 Aug 17 15:53 pnp0
drwxr-xr-x  3 root root 0 Aug 17 15:53 software
drwxr-xr-x 10 root root 0 Aug 17 15:53 system
drwxr-xr-x  3 root root 0 Aug 17 15:53 tracepoint
drwxr-xr-x  4 root root 0 Aug 17 15:53 uprobe
drwxr-xr-x 18 root root 0 Aug 17 15:53 virtual

Further, you can use the following to list mounted devices:

$ mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620, \
ptmxmode=000)
...
tmpfs on /run/snapd/ns type tmpfs (rw,nosuid,nodev,noexec,relatime,\
size=401464k,mode=755,inode64)
nsfs on /run/snapd/ns/lxd.mnt type nsfs (rw)

With this, we have covered the Linux kernel components and move to the interface
between the kernel and user land.

syscalls
Whether you sit in front of a terminal and type touch test.txt or whether one of
your apps wants to download the content of a file from a remote system, at the end of
the day you ask Linux to turn the high-level instruction, such as “create a file” or
“read all bytes from address so and so,” into a set of concrete, architecture-dependent
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steps. In other words, the service interface the kernel exposes and that user land enti‐
ties call is the set of system calls, or syscalls for short.

Linux has hundreds of syscalls: around three hundred or more, depending on the
CPU family. However, you and your programs don’t usually invoke these syscalls
directly but via what we call the C standard library. The standard library provides
wrapper functions and is available in various implementations, such as glibc or musl.

These wrapper libraries perform an important task. They take care of the repetitive
low-level handling of the execution of a syscall. System calls are implemented as soft‐
ware interrupts, causing an exception that transfers the control to an exception han‐
dler. There are a number of steps to take care of every time a syscall is invoked, as
depicted in Figure 2-4:

Figure 2-4. syscall execution steps in Linux

1. Defined in syscall.h and architecture-dependent files, the kernel uses a so-called
syscall table, effectively an array of function pointers in memory (stored in a vari‐
able called sys_call_table) to keep track of syscalls and their corresponding
handlers.

2. With the system_call() function acting like a syscall multiplexer, it first saves
the hardware context on the stack, then performs checks (like if tracing is per‐
formed), and then jumps to the function pointed to by the respective syscall
number index in the sys_call_table.

3. After the syscall is completed with sysexit, the wrapper library restores the
hardware context, and the program execution resumes in user land.

Notable in the previous steps is the switching between kernel mode and user land
mode, an operation that costs time.
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OK, that was a little dry and theoretical, so to better appreciate how syscalls look and
feel in practice, let’s have a look at a concrete example. We will use strace to look
behind the curtain, a tool useful for troubleshooting, for example, if you don’t have
the source code of an app but want to learn what it does.

Let’s assume you wonder what syscalls are involved when you execute the innocent-
looking ls command. Here’s how you can find it out using strace:

$ strace ls 
execve("/usr/bin/ls", ["ls"], 0x7ffe29254910 /* 24 vars */) = 0 
brk(NULL)                           = 0x5596e5a3c000 
...
access("/etc/ld.so.preload", R_OK)  = -1 ENOENT (No such file or directory) 
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3 
...
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0 p\0\0\0\0\0\0"..., \
832) = 832 
...

With strace ls, we ask strace to capture the syscall that ls uses. Note that I
edited the output since strace generates some 162 lines on my system (this num‐
ber varies between different distros, architectures, and other factors). Further, the
output you see there comes via stderr, so if you want to redirect it, you have to
use 2> here. You’ll learn more about this in Chapter 3.

The syscall execve executes /usr/bin/ls, causing the shell process to be replaced.

The brk syscall is an outdated way to allocate memory; it’s safer and more
portable to use malloc. Note that malloc is not a syscall but a function that in
turn uses mallocopt to decide if it needs to use the brk syscall or the mmap syscall
based on the amount of memory accessed.

The access syscall checks if the process is allowed to access a certain file.

Syscall openat opens the file /etc/ld.so.cache relative to a directory file descriptor
(here the first argument, AT_FDCWD, which stands for the current directory) and
using flags O_RDONLY|O_CLOEXEC (last argument).

The read syscall reads from a file descriptor (first argument, 3) 832 bytes (last
argument) into a buffer (second argument).

strace is useful to see exactly what syscalls have been called—in which order and
with which arguments—effectively hooking into the live stream of events between
user land and kernel. It’s also good for performance diagnostics. Let’s see where a
curl command spends most of its time (output shortened):
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$ strace -c \ 
         curl -s https://mhausenblas.info > /dev/null 
% time     seconds  usecs/call     calls    errors syscall
------ ----------- ----------- --------- --------- ----------------
 26.75    0.031965         148       215           mmap
 17.52    0.020935         136       153         3 read
 10.15    0.012124         175        69           rt_sigaction
  8.00    0.009561         147        65         1 openat
  7.61    0.009098         126        72           close
  ...
  0.00    0.000000           0         1           prlimit64
------ ----------- ----------- --------- --------- ----------------
100.00    0.119476         141       843        11 total

Use the -c option to generate overview stats of the syscalls used.

Discard all output of curl.

Interestingly, the curl command here spends almost half of its time with mmap and
read syscalls, and the connect syscall takes 0.3 ms—not bad.

To help you get a feeling for the coverage, I’ve put together Table 2-1, which lists
examples of widely used syscalls across kernel components as well as system-wide
ones. You can look up details of syscalls, including their parameters and return val‐
ues, via section 2 of the man pages.

Table 2-1. Example syscalls

Category Example syscalls
Process
management

clone, fork, execve, wait, exit, getpid, setuid, setns, getrusage, capset,
ptrace

Memory
management

brk, mmap, munmap, mremap, mlock, mincore

Networking socket, setsockopt, getsockopt, bind, listen, accept, connect, shutdown,
recvfrom, recvmsg, sendto, sethostname, bpf

Filesystems open, openat, close, mknod, rename, truncate, mkdir, rmdir, getcwd, chdir,
chroot, getdents, link, symlink, unlink, umask, stat, chmod, utime, access,
ioctl, flock, read, write, lseek, sync, select, poll, mount,

Time time, clock_settime, timer_create, alarm, nanosleep

Signals kill, pause, signalfd, eventfd,

Global uname, sysinfo, syslog, acct, _sysctl, iopl, reboot

There is a nice interactive syscall table available online with source
code references.
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Now that you have a basic idea of the Linux kernel, its main components, and inter‐
face, let’s move on to the question of how to extend it.

Kernel Extensions
In this section, we will focus on how to extend the kernel. In a sense, the content here
is advanced and optional. You won’t need it for your day-to-day work, in general.

Configuring and compiling your own Linux kernel is out of scope
for this book. For information on how to do it, I recommend Linux
Kernel in a Nutshell (O’Reilly) by Greg Kroah-Hartman, one of the
main Linux maintainers and project lead. He covers the entire
range of tasks, from downloading the source code to configuration
and installation steps, to kernel options at runtime.

Let’s start with something easy: how do you know what kernel version you’re using?
You can use the following command to determine this:

$ uname -srm
Linux 5.11.0-25-generic x86_64 

From the uname output here, you can tell that at the time of writing, I’m using a
5.11 kernel on an x86_64 machine (see also “x86 Architecture” on page 15).

Now that we know the kernel version, we can address the question of how to extend
the kernel out-of-tree—that is, without having to add features to the kernel source
code and then build it. For this extension we can use modules, so let’s have a look at
that.

Modules
In a nutshell, a module is a program that you can load into a kernel on demand. That
is, you do not necessarily have to recompile the kernel and/or reboot the machine.
Nowadays, Linux detects most of the hardware automatically, and with it Linux loads
its modules automatically. But there are cases where you want to manually load a
module. Consider the following case: the kernel detects a video card and loads a
generic module. However, the video card manufacturer offers a better third-party
module (not available in the Linux kernel) that you may choose to use instead.

To list available modules, run the following command (output has been edited down,
as there are over one thousand lines on my system):

$ find /lib/modules/$(uname -r) -type f -name '*.ko*'
/lib/modules/5.11.0-25-generic/kernel/ubuntu/ubuntu-host/ubuntu-host.ko
/lib/modules/5.11.0-25-generic/kernel/fs/nls/nls_iso8859-1.ko
/lib/modules/5.11.0-25-generic/kernel/fs/ceph/ceph.ko
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/lib/modules/5.11.0-25-generic/kernel/fs/nfsd/nfsd.ko
...
/lib/modules/5.11.0-25-generic/kernel/net/ipv6/esp6.ko
/lib/modules/5.11.0-25-generic/kernel/net/ipv6/ip6_vti.ko
/lib/modules/5.11.0-25-generic/kernel/net/sctp/sctp_diag.ko
/lib/modules/5.11.0-25-generic/kernel/net/sctp/sctp.ko
/lib/modules/5.11.0-25-generic/kernel/net/netrom/netrom.ko

That’s great! But which modules did the kernel actually load? Let’s take a look (output
shortened):

$ lsmod
Module                  Size  Used by
...
linear                 20480  0
crct10dif_pclmul       16384  1
crc32_pclmul           16384  0
ghash_clmulni_intel    16384  0
virtio_net             57344  0
net_failover           20480  1 virtio_net
ahci                   40960  0
aesni_intel           372736  0
crypto_simd            16384  1 aesni_intel
cryptd                 24576  2 crypto_simd,ghash_clmulni_intel
glue_helper            16384  1 aesni_intel

Note that the preceding information is available via /proc/modules. This is thanks to
the kernel exposing this information via a pseudo-filesystem interface; more on this
topic is presented in Chapter 6.

Want to learn more about a module or have a nice way to manipulate kernel mod‐
ules? Then modprobe is your friend. For example, to list the dependencies:

$ modprobe --show-depends async_memcpy
insmod /lib/modules/5.11.0-25-generic/kernel/crypto/async_tx/async_tx.ko
insmod /lib/modules/5.11.0-25-generic/kernel/crypto/async_tx/async_memcpy.ko

Next up: an alternative, modern way to extend the kernel.

A Modern Way to Extend the Kernel: eBPF
An increasingly popular way to extend kernel functionality is eBPF. Originally known
as Berkeley Packet Filter (BPF), nowadays the kernel project and technology is com‐
monly known as eBPF (a term that does not stand for anything).

Technically, eBPF is a feature of the Linux kernel, and you’ll need the Linux kernel
version 3.15 or above to benefit from it. It enables you to safely and efficiently extend
the Linux kernel functions by using the bpf syscall. eBPF is implemented as an in-
kernel virtual machine using a custom 64-bit RISC instruction set.
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If you want to learn more about what is enabled in which kernel
version for eBPF, you can use the iovisor/bcc docs on GitHub.

In Figure 2-5 you see a high-level overview taken from Brendan Gregg’s book BPF
Performance Tools: Linux System and Application Observability (Addison Wesley).

Figure 2-5. eBPF overview in the Linux kernel

eBPF is already used in a number of places and for use cases such as the following:

As a CNI plug-in to enable pod networking in Kubernetes
For example, in Cilium and Project Calico. Also, for service scalability.

For observability
For Linux kernel tracing, such as with iovisor/bpftrace, as well as in a clustered
setup with Hubble (see Chapter 8).

As a security control
For example, to perform container runtime scanning as you can use with projects
such as CNCF Falco.

For network load balancing
Such as in Facebook’s L4 katran library.

In mid-2021, the Linux Foundation announced that Facebook, Google, Isovalent,
Microsoft, and Netflix joined together to create the eBPF Foundation, and with it giv‐
ing the eBPF project a vendor-neutral home. Stay tuned!

If you want to stay on top of things, have a look at ebpf.io.
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Conclusion
The Linux kernel is the core of the Linux operating system, and no matter what dis‐
tribution or environment you are using Linux in—be it on your desktop or in the
cloud—you should have a basic idea of its components and functionality.

In this chapter, we reviewed the overall Linux architecture, the role of the kernel, and
its interfaces. Most importantly, the kernel abstracts away the differences of the hard‐
ware—CPU architectures and peripheral devices—and makes Linux very portable.
The most important interface is the syscall interface, through which the kernel expo‐
ses its functionality—be it opening a file, allocating memory, or listing network
interfaces.

We have also looked a bit at the inner workings of the kernel, including modules and
eBPF. If you want to extend the kernel functionality or implement performant tasks
in the kernel (controlled from the user space), then eBPF is definitely worth taking a
closer look at.

If you want to learn more about certain aspects of the kernel, the following resources
should provide you with some starting points:

General
• The Linux Programming Interface by Michael Kerrisk (No Starch Press).
• Linux Kernel Teaching provides a nice introduction with deep dives across the

board.
• “Anatomy of the Linux Kernel” gives a quick high-level intro.
• “Operating System Kernels” has a nice overview and comparison of kernel design

approaches.
• KernelNewbies is a great resource if you want to dive deeper into hands-on top‐

ics.
• kernelstats shows some interesting distributions over time.
• The Linux Kernel Map is a visual representation of kernel components and

dependencies.

Memory management
• Understanding the Linux Virtual Memory Manager
• “The Slab Allocator in the Linux Kernel”
• Kernel docs

Device drivers
• Linux Device Drivers by Jonathan Corbet
• “How to Install a Device Driver on Linux”
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• Character Device Drivers
• Linux Device Drivers: Tutorial for Linux Driver Development

syscalls
• “Linux Interrupts: The Basic Concepts”
• The Linux Kernel: System Calls
• Linux System Call Table
• syscalls.h source code
• syscall lookup for x86 and x86_64

eBPF
• “Introduction to eBPF” by Matt Oswalt
• eBPF maps documentation

Equipped with this knowledge, we’re now ready to climb up the abstraction ladder a
bit and move to the primary user interface we consider in this book: the shell, both in
manual usage as well as automation through scripts.
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CHAPTER 3

Shells and Scripting

In this chapter, we’ll focus on interacting with Linux on the terminal, that is, via the
shell that exposes a command-line interface (CLI). It is vitally important to be able to
use the shell effectively to accomplish everyday tasks, and to that end we focus on
usability here.

First, we review some terminology and provide a gentle and concise introduction to
shell basics. Then we have a look at modern, human-friendly shells, such as the Fish
shell. We’ll also look at configuration and common tasks in the shell. Then, we move
on to the topic of how to effectively work on the CLI using a terminal multiplexer,
enabling you to work with multiple sessions, local or remote. In the last part of this
chapter, we switch gears and focus on automating tasks in the shell using scripts,
including best practices for writing scripts in a safe, secure, and portable manner and
also how to lint and test scripts.

There are two major ways to interact with Linux, from a CLI perspective. The first
way is manually—that is, a human user sits in front of the terminal, interactively typ‐
ing commands and consuming the output. This ad-hoc interaction works for most of
the things you want to do in the shell on a day-to-day basis, including the following:

• Listing directories, finding files, or looking for content in files
• Copying files between directories or to remote machines
• Reading emails or the news or sending a Tweet from the terminal

Further, we’ll learn how to conveniently and efficiently work with multiple shell ses‐
sions at the same time.

The other mode of operation is the automated processing of a series of commands in
a special kind of file that the shell interprets for you and in turn executes. This mode
is usually called shell scripting or just scripting. You typically want to use a script rather
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than manually repeating certain tasks. Also, scripts are the basis of many config and
install systems. Scripts are indeed very convenient. However, they can also pose a
danger if used without precautions. So, whenever you think about writing a script,
keep the XKCD web comic shown in Figure 3-1 in mind.

Figure 3-1. XKCD on automation. Credit: Randall Munroe (shared under CC BY-NC
2.5 license)

I strongly recommend that you have a Linux environment available and try out the
examples shown here right away. With that, are you ready for some (inter)action? If
so, then let’s start with some terminology and basic shell usage.

Basics
Before we get into different options and configurations, let’s focus on some basic
terms such as terminal and shell. In this section I’ll define the terminology and show
you how to accomplish everyday tasks in the shell. We’ll also review modern com‐
mands and see them in action.
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Terminals
We start with the terminal, or terminal emulator, or soft terminal, all of which refer to
the same thing: a terminal is a program that provides a textual user interface. That is,
a terminal supports reading characters from the keyboard and displaying them on the
screen. Many years ago, these used to be integrated devices (keyboard and screen
together), but nowadays terminals are simply apps.

In addition to the basic character-oriented input and output, terminals support so-
called escape sequences, or escape codes, for cursor and screen handling and poten‐
tially support for colors. For example, pressing Ctrl+H causes a backspace, which
deletes the character to the left of the cursor.

The environment variable TERM has the terminal emulator in use, and its configura‐
tion is available via infocmp as follows (note that the output has been shortened):

$ infocmp 
#       Reconstructed via infocmp from file: /lib/terminfo/s/screen-256color
screen-256color|GNU Screen with 256 colors,
        am, km, mir, msgr, xenl,
        colors#0x100, cols#80, it#8, lines#24, pairs#0x10000,
        acsc=++\,\,--..00``aaffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
        bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z, civis=\E[?25l,
        clear=\E[H\E[J, cnorm=\E[34h\E[?25h, cr=\r,
        ...

The output of infocmp is not easy to digest. If you want to learn about the capa‐
bilities in detail, consult the terminfo database. For example, in my concrete out‐
put, the terminal supports 80 columns (cols#80) and 24 lines (lines#24) for
output as well as 256 colors (colors#0x100, in hexadecimal notation).

Examples of terminals include not only xterm, rxvt, and the Gnome terminator but
also new generation ones that utilize the GPU, such as Alacritty, kitty, and warp.

In “Terminal Multiplexer” on page 55, we will come back to the topic of the terminal.

Shells
Next up is the shell, a program that runs inside the terminal and acts as a command
interpreter. The shell offers input and output handling via streams, supports vari‐
ables, has some built-in commands you can use, deals with command execution and
status, and usually supports both interactive usage as well as scripted usage (“Script‐
ing” on page 62).

The shell is formally defined in sh, and we often come across the term POSIX shell,
which will become more important in the context of scripts and portability.
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Originally, we had the Bourne shell sh, named after the author, but nowadays it’s usu‐
ally replaced with the bash shell—a wordplay on the original version, short for
“Bourne Again Shell”—which is widely used as the default.

If you are curious about what you’re using, use the file -h /bin/sh command to
find out, or if that fails, try echo $0 or echo $SHELL.

In this section, we assume the bash shell (bash), unless we call it
out explicitly.

There are many more implementations of sh as well as other variants, such as the
Korn shell, ksh, and C shell, csh, which are not widely used today. We will, however,
review modern bash replacements in “Human-Friendly Shells” on page 48.

Let’s start our shell basics with two fundamental features: streams and variables.

Streams
Let’s start with the topic of input (streams) and output (streams), or I/O for short.
How can you feed a program some input? How do you control where the output of a
program lands, say, on the terminal or in a file?

First off, the shell equips every process with three default file descriptors (FDs) for
input and output:

• stdin (FD 0)
• stdout (FD 1)
• stderr (FD 2)

These FDs are, as depicted in Figure 3-2, by default connected to your screen and
keyboard, respectively. In other words, unless you specify something else, a command
you enter in the shell will take its input (stdin) from your keyboard, and it will
deliver its output (stdout) to your screen.

The following shell interaction demonstrates this default behavior:

$ cat
This is some input I type on the keyboard and read on the screen^C

In the preceding example using cat, you see the defaults in action. Note that I used
Ctrl+C (shown as ^C) to terminate the command.
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Figure 3-2. Shell I/O default streams

If you don’t want to use the defaults the shell gives you—for example, you don’t want
stderr to be outputted on the screen but want to save it in a file—you can redirect
the streams.

You redirect the output stream of a process using $FD> and <$FD, with $FD being the
file descriptor—for example, 2> means redirect the stderr stream. Note that 1> and >
are the same since stdout is the default. If you want to redirect both stdout and
stderr, use &>, and when you want to get rid of a stream, you can use /dev/null.

Let’s see how that works in the context of a concrete example, downloading some
HTML content via curl:

$ curl https://example.com &> /dev/null 

$ curl https://example.com > /tmp/content.txt 2> /tmp/curl-status 
$ head -3 /tmp/content.txt
<!doctype html>
<html>
<head>
$ cat /tmp/curl-status
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  1256  100  1256    0     0   3187      0 --:--:-- --:--:-- --:--:--  3195

$ cat > /tmp/interactive-input.txt 
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$ tr < /tmp/curl-status [A-Z] [a-z] 
  % total    % received % xferd  average speed   time    time     time  current
                                 dload  upload   total   spent    left  speed
100  1256  100  1256    0     0   3187      0 --:--:-- --:--:-- --:--:--  3195

Discard all output by redirecting both stdout and stderr to /dev/null.

Redirect the output and status to different files.

Interactively enter input and save to file; use Ctrl+D to stop capturing and store
the content.

Lowercase all words, using the tr command that reads from stdin.

Shells usually understand a number of special characters, such as:

Ampersand (&)
Placed at the end of a command, executes the command in the background (see
also “Job control” on page 40)

Backslash (\)
Used to continue a command on the next line, for better readability of long
commands

Pipe (|)
Connects stdout of one process with the stdin of the next process, allowing you
to pass data without having to store it in files as a temporary place

Pipes and the UNIX Philosophy
While pipes might seem not too exciting at first glance, there’s much more to them. I
once had a nice interaction with Doug McIlroy, the inventor of pipes. I wrote an arti‐
cle, “Revisiting the Unix Philosophy in 2018”, in which I drew parallels between
UNIX and microservices. Someone commented on the article, and that comment led
to Doug sending me an email (very unexpectedly, and I had to verify to believe it) to
clarify things.

Again, let’s see some of the theoretical content in action. Let’s try to figure out how
many lines an HTML file contains by downloading it using curl and then piping the
content to the wc tool:

$ curl https://example.com 2> /dev/null | \ 
  wc -l 
46
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Use curl to download the content from the URL, and discard the status that it
outputs on stderr. (Note: in practice, you’d use the -s option of curl, but we
want to learn how to apply our hard-gained knowledge, right?)

The stdout of curl is fed to stdin of wc, which counts the number of lines with
the -l option.

Now that you have a basic understanding of commands, streams, and redirection,
let’s move on to another core shell feature, the handling of variables.

Variables
A term you will come across often in the context of shells is variables. Whenever you
don’t want to or cannot hardcode a value, you can use a variable to store and change a
value. Use cases include the following:

• When you want to handle configuration items that Linux exposes—for example,
the place where the shell looks for executables captured in the $PATH variable.
This is kind of an interface where a variable might be read/write.

• When you want to interactively query the user for a value, say, in the context of a
script.

• When you want to shorten input by defining a long value once—for example, the
URL of an HTTP API. This use case roughly corresponds to a const value in a
program language since you don’t change the value after you have declared the
variable.

We distinguish between two kinds of variables:

Environment variables
Shell-wide settings; list them with env.

Shell variables
Valid in the context of the current execution; list with set in bash. Shell variables
are not inherited by subprocesses.

You can, in bash, use export to create an environment variable. When you want to
access the value of a variable, put a $ in front of it, and when you want to get rid of it,
use unset.

OK, that was a lot of information. Let’s see how that looks in practice (in bash):

$ set MY_VAR=42 
$ set | grep MY_VAR 
_=MY_VAR=42

$ export MY_GLOBAL_VAR="fun with vars" 
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$ set | grep 'MY_*' 
MY_GLOBAL_VAR='fun with vars'
_=MY_VAR=42

$ env | grep 'MY_*' 
MY_GLOBAL_VAR=fun with vars

$ bash 
$ echo $MY_GLOBAL_VAR 
fun with vars

$ set | grep 'MY_*' 
MY_GLOBAL_VAR='fun with vars'

$ exit 
$ unset $MY_VAR
$ set | grep 'MY_*'
MY_GLOBAL_VAR='fun with vars'

Create a shell variable called MY_VAR, and assign a value of 42.

List shell variables and filter out MY_VAR. Note the _=, indicating it’s not exported.

Create a new environment variable called MY_GLOBAL_VAR.

List shell variables and filter out all that start with MY_. We see, as expected, both
of the variables we created in the previous steps.

List environment variables. We see MY_GLOBAL_VAR, as we would hope.

Create a new shell session—that is, a child process of the current shell session
that doesn’t inherit MY_VAR.

Access the environment variable MY_GLOBAL_VAR.

List the shell variables, which gives us only MY_GLOBAL_VAR since we’re in a child
process.

Exit the child process, remove the MY_VAR shell variable, and list our shell vari‐
ables. As expected, MY_VAR is gone.
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In Table 3-1 I put together common shell and environment variables. You will find
those variables almost everywhere, and they are important to understand and to use.
For any of the variables, you can have a look at the respective value using echo $XXX,
with XXX being the variable name.

Table 3-1. Common shell and environment variables

Variable Type Semantics

EDITOR Environment The path to program used by default to edit files

HOME POSIX The path of the home directory of the current user

HOSTNAME bash shell The name of the current host

IFS POSIX List of characters to separate fields; used when the shell splits words on expansion

PATH POSIX Contains a list of directories in which the shell looks for executable programs (binaries or scripts)

PS1 Environment The primary prompt string in use

PWD Environment The full path of the working directory

OLDPWD bash shell The full path of the directory before the last cd command

RANDOM bash shell A random integer between 0 and 32767

SHELL Environment Contains the currently used shell

TERM Environment The terminal emulator used

UID Environment Current user unique ID (integer value)

USER Environment Current user name

_ bash shell Last argument to the previous command executed in the foreground

? bash shell Exit status; see “Exit status” on page 39

$ bash shell The ID of the current process (integer value)

0 bash shell The name of the current process

Further, check out the full list of bash-specific variables, and also note that the vari‐
ables from Table 3-1 will come in handy again in the context of “Scripting” on page
62.

Exit status
The shell communicates the completion of a command execution to the caller using
what is called the exit status. In general, it is expected that a Linux command returns
a status when it terminates. This can either be a normal termination (happy path) or
an abnormal termination (something went wrong). A 0 exit status means that the
command was successfully run, without any errors, whereas a nonzero value between
1 and 255 signals a failure. To query the exit status, use echo $?.
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Be careful with exit status handling in a pipeline, since some shells make only the last
status available. You can work around that limitation by using $PIPESTATUS.

Built-in commands

Shells come with a number of built-in commands. Some useful examples are yes,
echo, cat, or read (depending on the Linux distro, some of those commands might
not be built-ins but located in /usr/bin). You can use the help command to list built-
ins. Do remember, however, that everything else is a shell-external program that you
usually can find in /usr/bin (for user commands) or in /usr/sbin (for administrative
commands).

How do you know where to find an executable? Here are some ways:

$ which ls
/usr/bin/ls

$ type ls
ls is aliased to `ls --color=auto'

One of the technical reviewers of this book rightfully pointed out
that which is a non-POSIX, external program that may not always
be available. Also, they suggested using command -v rather than
which to get the program path and or shell alias/function. See also
the shellcheck docs for further details on the matter.

Job control
A feature most shells support is called job control. By default, when you enter a com‐
mand, it takes control of the screen and the keyboard, which we usually call running
in the foreground. But what if you don’t want to run something interactively, or, in
case of a server, what if there is no input from stdin at all? Enter job control and
background jobs: to launch a process in the background, put an & at the end, or to
send a foreground process to the background, press Ctrl+Z.

The following example shows this in action, giving you a rough idea:

$ watch -n 5 "ls" & 

$ jobs 
Job     Group   CPU     State   Command
1       3021    0%      stopped watch -n 5 "ls" &

$ fg 
Every 5.0s: ls                                         Sat Aug 28 11:34:32 2021

Dockerfile
app.yaml
example.json
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main.go
script.sh
test

By putting the & at the end, we launch the command in the background.

List all jobs.

With the fg command, we can bring a process to the foreground. If you want to
quit the watch command, use Ctrl+C.

If you want to keep a background process running, even after you close the shell you
can prepend the nohup command. Further, for a process that is already running and
wasn’t prepended with nohup, you can use disown after the fact to achieve the same
effect. Finally, if you want to get rid of a running process, you can use the kill com‐
mand with various levels of forcefulness (see “Signals” on page 214 for more details).

Rather than job control, I recommend using terminal multiplexer, as discussed in
“Terminal Multiplexer” on page 55. These programs take care of the most common
use cases (shell closes, multiple processes running and need coordination, etc.) and
also support working with remote systems.

Let’s move on to discuss modern replacements for frequently used core commands
that have been around forever.

Modern Commands
There are a handful of commands you will find yourself using over and over again on
a daily basis. These include commands for navigating directories (cd), listing the con‐
tent of a directory (ls), finding files (find), and displaying the content of files (cat,
less). Given that you are using these commands so often, you want to be as efficient
as possible—every keystroke counts.

Modern variations exist for some of these often-used commands. Some of them are
drop-in replacements, and others extend the functionality. All of them offer some‐
what sane default values for common operations and rich output that is generally eas‐
ier to comprehend, and they usually lead to you typing less to accomplish the same
task. This reduces the friction when you work with the shell, making it more enjoya‐
ble and improving the flow. If you want to learn more about modern tooling, check
out Appendix B. In this context, a word of caution, especially if you’re applying this
knowledge in an enterprise environment: I have no stake in any of these tools and
purely recommend them because I have found them useful myself. A good way to go
about installing and using any of these tools is to use a version of the tool that has
been vetted by your Linux distro of choice.
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Listing directory contents with exa

Whenever you want to know what a directory contains, you use ls or one of its var‐
iants with parameters. For example, in bash I used to have l aliased to ls -GAhltr.
But there’s a better way: exa, a modern replacement for ls, written in Rust, with built-
in support for Git and tree rendering. In this context, what would you guess is the
most often used command after you’ve listed the directory content? In my experience
it’s to clear the screen, and very often people use clear. That’s typing five characters
and then hitting ENTER. You can have the same effect much faster—simply use Ctrl+L.

Viewing file contents with bat
Let’s assume that you listed a directory’s contents and found a file you want to inspect.
You’d use cat, maybe? There’s something better I recommend you have a look at: bat.
The bat command, shown in Figure 3-3, comes with syntax highlighting, shows non‐
printable characters, supports Git, and has an integrated pager (the page-wise viewing
of files longer than what can be displayed on the screen).

Finding content in files with rg

Traditionally, you would use grep to find something in a file. However, there’s a
modern command, rg, that is fast and powerful.

We’re going to compare rg to a find and grep combination in this example, where we
want to find YAML files that contain the string “sample”:

$ find . -type f -name "*.yaml" -exec grep "sample" '{}' \; -print 
      app: sample
        app: sample
./app.yaml

$ rg -t "yaml" sample 
app.yaml
9:      app: sample
14:        app: sample

Use find and grep together to find a string in YAML files.

Use rg for the same task.

If you compare the commands and the results in the previous example, you see that
not only is rg easier to use but the results are more informative (providing context, in
this case the line number).
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Figure 3-3. Rendering of a Go file (top) and a YAML file (bottom) by bat
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JSON data processing with jq

And now for a bonus command. This one, jq, is not an actual replacement but more
like a specialized tool for JSON, a popular textual data format. You find JSON in
HTTP APIs and configuration files alike.

So, use jq rather than awk or sed to pick out certain values. For example, by using a
JSON generator to generate some random data, I have a 2.4 kB JSON file example.json
that looks something like this (only showing the first record here):

[
  {
    "_id": "612297a64a057a3fa3a56fcf",
    "latitude": -25.750679,
    "longitude": 130.044327,
    "friends": [
      {
        "id": 0,
        "name": "Tara Holland"
      },
      {
        "id": 1,
        "name": "Giles Glover"
      },
      {
        "id": 2,
        "name": "Pennington Shannon"
      }
    ],
    "favoriteFruit": "strawberry"
  },
...

Let’s say we’re interested in all “first” friends—that is, entry 0 in the friends array—of
people whose favorite fruit is “strawberry.” With jq you would do the following:

$ jq 'select(.[].favoriteFruit=="strawberry") | .[].friends[0].name' example.json
"Tara Holland"
"Christy Mullins"
"Snider Thornton"
"Jana Clay"
"Wilma King"

That was some CLI fun, right? If you’re interested in finding out more about the topic
of modern commands and what other candidates there might be for you to replace,
check out the modern-unix repo, which lists suggestions. Let’s now move our focus to
some common tasks beyond directory navigation and file content viewing and how
to go about them.
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Common Tasks
There are a number of things you likely find yourself doing often, and there are cer‐
tain tricks you can use to speed up your tasks in the shell. Let’s review these common
tasks and see how we can be more efficient.

Shorten often-used commands
One fundamental insight with interfaces is that commands that you are using very
often should take the least effort—they should be quick to enter. Now apply this idea
to the shell: rather than git diff --color-moved, I type d (a single character), since
I’m viewing changes in my repositories many hundreds of times per day. Depending
on the shell, there are different ways to achieve this: in bash this is called an alias, and
in Fish (“Fish Shell” on page 49) there are abbreviations you can use.

Navigating
When you enter commands on the shell prompt, there are a number of things you
might want to do, such as navigating the line (for example, moving the cursor to the
start) or manipulating the line (say, deleting everything left of the cursor). Table 3-2
lists common shell shortcuts.

Table 3-2. Shell navigation and editing shortcuts

Action Command Note
Move cursor to start of line Ctrl+a -

Move cursor to end of line Ctrl+e -

Move cursor forward one character Ctrl+f -

Move cursor back one character Ctrl+b -

Move cursor forward one word Alt+f Works only with left Alt

Move cursor back one word Alt+b -

Delete current character Ctrl+d -

Delete character left of cursor Ctrl+h -

Delete word left of cursor Ctrl+w -

Delete everything right of cursor Ctrl+k -

Delete everything left of cursor Ctrl+u -

Clear screen Ctrl+l -

Cancel command Ctrl+c -

Undo Ctrl+_ bash only

Search history Ctrl+r Some shells

Cancel search Ctrl+g Some shells
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Note that not all shortcuts may be supported in all shells, and certain actions such as
history management may be implemented differently in certain shells. In addition,
you might want to know that these shortcuts are based on Emacs editing keystrokes.
Should you prefer vi, you can use set -o vi in your .bashrc file, for example, to per‐
form command-line editing based on vi keystrokes. Finally, taking Table 3-2 as a
starting point, try out what your shell supports and see how you can configure it to
suit your needs.

File content management

You don’t always want to fire up an editor such as vi to add a single line of text. And
sometimes you can’t do it—for example, in the context of writing a shell script
(“Scripting” on page 62).

So, how can you manipulate textual content? Let’s have a look at a few examples:

$ echo "First line" > /tmp/something 

$ cat /tmp/something 
First line

$ echo "Second line" >> /tmp/something && \ 
  cat /tmp/something
First line
Second line

$ sed 's/line/LINE/' /tmp/something 
First LINE
Second LINE

$ cat << 'EOF' > /tmp/another 
First line
Second line
Third line
EOF

$ diff -y /tmp/something /tmp/another 
First line                                                      First line
Second line                                                     Second line
                                                              > Third line

Create a file by redirecting the echo output.

View content of file.

Append a line to file using the >> operator and then view content.

Replace content from file using sed and output to stdout.
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Create a file using the here document.

Show differences between the files we created.

Now that you know the basic file content manipulation techniques, let’s have a look at
the advanced viewing of file contents.

Viewing long files
For long files—that is, files that have more lines than the shell can display on your
screen—you can use pagers like less or bat (bat comes with a built-in pager). With
paging, a program splits the output into pages where each page fits into what the
screen can display and some commands to navigate the pages (view next page, previ‐
ous page, etc.).

Another way to deal with long files is to display only a select region of the file, like the
first few lines. There are two handy commands for this: head and tail.

For example, to display the beginning of a file:

$ for i in {1..100} ; do echo $i >> /tmp/longfile ; done 

$ head -5 /tmp/longfile 
1
2
3
4
5

Create a long file (100 lines here).

Display the first five lines of the long file.

Or, to get live updates of a file that is constantly growing, we could use:

$ sudo tail -f /var/log/Xorg.0.log 
[ 36065.898] (II) event14 - ALPS01:00 0911:5288 Mouse: device is a pointer
[ 36065.900] (II) event15 - ALPS01:00 0911:5288 Touchpad: device is a touchpad
[ 36065.901] (II) event4  - Intel HID events: is tagged by udev as: Keyboard
[ 36065.901] (II) event4  - Intel HID events: device is a keyboard
...

Display the end of a log file using tail, with the -f option meaning to follow, or
to update automatically.

Lastly, in this section we look at dealing with date and time.
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Date and time handling

The date command can be a useful way to generate unique file names. It allows you
to generate dates in various formats, including the Unix time stamp, as well as to con‐
vert between different date and time formats.

$ date +%s 
1629582883

$ date -d @1629742883 '+%m/%d/%Y:%H:%M:%S' 
08/21/2021:21:54:43

Create a UNIX time stamp.

Convert a UNIX time stamp to a human-readable date.

On the UNIX Epoch Time
The UNIX epoch time (or simply UNIX time) is the number of seconds elapsed since
1970-01-01T00:00:00Z. UNIX time treats every day as exactly 86,400 seconds long.

If you’re dealing with software that stores UNIX time as a signed 32-bit integer, you
might want to pay attention since this will cause issues on 2038-01-19, as then the
counter will overflow, which is also known as the Year 2038 problem.

You can use online converters for more advanced operations, supporting microsec‐
onds and milliseconds resolutions.

With that we wrap up the shell basics section. By now you should have a good under‐
standing of what terminals and shells are and how to use them to do basic tasks such
as navigating the filesystem, finding files, and more. We now move on to the topic of
human-friendly shells.

Human-Friendly Shells
While the bash shell is likely still the most widely used shell, it is not necessarily the
most human-friendly one. It has been around since the late 1980s, and its age some‐
times shows. There are a number of modern, human-friendly shells I strongly recom‐
mend you evaluate and use instead of bash.

We’ll first examine in detail one concrete example of a modern, human-friendly shell
called the Fish shell and then briefly discuss others, just to make sure you have an
idea about the range of choices. We wrap up this section with a quick recommenda‐
tion and conclusion in “Which Shell Should I Use?” on page 55.
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Fish Shell
The Fish shell describes itself as a smart and user-friendly command-line shell. Let’s
have a look at some basic usage first and then move on to configuration topics.

Basic usage
For many daily tasks, you won’t notice a big difference from bash in terms of input;
most of the commands provided in Table 3-2 are valid. However, there are two areas
where fish is different from and much more convenient than bash:

There is no explicit history management.
You simply type and you get previous executions of a command shown. You can
use the up and down key to select one (see Figure 3-4).

Autosuggestions are available for many commands.
This is shown in Figure 3-5. In addition, when you press Tab, the Fish shell will
try to complete the command, argument, or path, giving you visual hints such as
coloring your input red if it doesn’t recognize the command.

Figure 3-4. Fish history handling in action

Figure 3-5. Fish autosuggestion in action
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Table 3-3 lists some common fish commands. In this context, note specifically the
handling of environment variables.

Table 3-3. Fish shell reference

Task Command

Export environment variable KEY with value VAL set -x KEY VAL

Delete environment variable KEY set -e KEY

Inline env var KEY for command cmd env KEY=VAL cmd

Change path length to 1 set -g fish_prompt_pwd_dir_length 1

Manage abbreviations abbr

Manage functions functions and funcd

Unlike other shells, fish stores the exit status of the last command in a variable called
$status instead of in $?.

If you’re coming from bash, you may also want to consult the Fish FAQ, which
addresses most of the gotchas.

Configuration

To configure the Fish shell, you simply enter the fish_config command (you might
need to add the browse subcommand, depending on your distro), and fish will
launch a server via http://localhost:8000 and automatically open your default browser
with a fancy UI, shown in Figure 3-6, which allows you to view and change settings.

Figure 3-6. Fish shell configuration via browser

50 | Chapter 3: Shells and Scripting

https://oreil.ly/Nk2S2
https://oreil.ly/FCSne
http://localhost:8000


To switch between vi and Emacs (default) key bindings for
command-line navigation, use the fish_vi_key_bindings to start
vi mode, and use fish_default_key_bindings to reset it to
Emacs. Note that the changes will take place in all active shell ses‐
sions immediately.

Let’s now see how I have configured my environment. In fact, my config is rather
short; in config.fish I have the following:

set -x FZF_DEFAULT_OPTS "-m --bind='ctrl-o:execute(nvim {})+abort'"
set -x FZF_DEFAULT_COMMAND 'rg --files'
set -x EDITOR nvim
set -x KUBE_EDITOR nvim
set -ga fish_user_paths /usr/local/bin

My prompt, defined in fish_prompt.fish, looks as follows:

function fish_prompt
    set -l retc red
    test $status = 0; and set retc blue

    set -q __fish_git_prompt_showupstream
    or set -g __fish_git_prompt_showupstream auto

    function _nim_prompt_wrapper
        set retc $argv[1]
        set field_name $argv[2]
        set field_value $argv[3]

        set_color normal
        set_color $retc
        echo -n '─'
        set_color -o blue
        echo -n '['
        set_color normal
        test -n $field_name
        and echo -n $field_name:
        set_color $retc
        echo -n $field_value
        set_color -o blue
        echo -n ']'
    end

    set_color $retc
    echo -n '┬─'
    set_color -o blue
    echo -n [
    set_color normal
    set_color c07933
    echo -n (prompt_pwd)
    set_color -o blue
    echo -n ']'
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     # Virtual Environment
    set -q VIRTUAL_ENV_DISABLE_PROMPT
    or set -g VIRTUAL_ENV_DISABLE_PROMPT true
    set -q VIRTUAL_ENV
    and _nim_prompt_wrapper $retc V (basename "$VIRTUAL_ENV")

    # git
    set prompt_git (fish_git_prompt | string trim -c ' ()')
    test -n "$prompt_git"
    and _nim_prompt_wrapper $retc G $prompt_git

    # New line
    echo

    # Background jobs
    set_color normal
    for job in (jobs)
        set_color $retc
        echo -n '│ '
        set_color brown
        echo $job
    end
    set_color blue
    echo -n '╰─> '
        set_color -o blue
    echo -n '$ '
    set_color normal
end

The preceding prompt definition yields the prompt shown in Figure 3-7; note the dif‐
ference between a directory that contains a Git repo and one that does not, a built-in
visual cue to speed up your flow. Also, notice the current time on the righthand side.

Figure 3-7. Fish shell prompt

My abbreviations—think of these as alias replacements, as found in other shells—
look as follows:

$ abbr
abbr -a -U -- :q exit
abbr -a -U -- cat bat
abbr -a -U -- d 'git diff --color-moved'
abbr -a -U -- g git
abbr -a -U -- grep 'grep --color=auto'
abbr -a -U -- k kubectl
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abbr -a -U -- l 'exa --long --all --git'
abbr -a -U -- ll 'ls -GAhltr'
abbr -a -U -- m make
abbr -a -U -- p 'git push'
abbr -a -U -- pu 'git pull'
abbr -a -U -- s 'git status'
abbr -a -U -- stat 'stat -x'
abbr -a -U -- vi nvim
abbr -a -U -- wget 'wget -c'

To add a new abbreviation, use abbr --add. Abbreviations are handy for simple com‐
mands that take no arguments. What if you have a more complicated construct you
want to shorten? Say you want to shorten a sequence involving git that also takes an
argument. Meet functions in Fish.

Let’s now take a look at an example function, which is defined in the file named c.fish.
We can use the functions command to list all defined functions, the function com‐
mand to create a new function, and in this case the command function c to edit it as
follows:

function c
    git add --all
    git commit -m "$argv"
end

With that we have reached the end of the Fish section, in which we walked through a
usage tutorial and configuration tips. Now let’s have a quick look at other modern
shells.

Z-shell
Z-shell, or zsh, is a Bourne-like shell with a powerful completion system and rich
theming support. With Oh My Zsh, you can pretty much configure and use zsh in the
way you’ve seen earlier on with fish while retaining wide backward compatibility
with bash.

zsh uses five startup files, as shown in the following example (note that if $ZDOTDIR is
not set, zsh uses $HOME instead):

$ZDOTDIR/.zshenv 
$ZDOTDIR/.zprofile 
$ZDOTDIR/.zshrc 
$ZDOTDIR/.zlogin 
$ZDOTDIR/.zlogout 

Sourced on all invocations of the shell. It should contain commands to set the
search path, plus other important environment variables. But it should not con‐
tain commands that produce output or assume the shell is attached to a tty.
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Meant as an alternative to .zlogin for ksh fans (these two are not intended to be
used together); similar to .zlogin, except that it is sourced before .zshrc.

Sourced in interactive shells. It should contain commands to set up aliases, func‐
tions, options, key bindings, and so on.

Sourced in login shells. It should contain commands that should be executed
only in login shells. Note that .zlogin is not the place for alias definitions, options,
environment variable settings, and the like.

Sourced when login shells exit.

For more zsh plug-ins, see also the awesome-zsh-plugins repo on GitHub. If you
want to learn zsh, consider reading “An Introduction to the Z Shell” by Paul Falstad
and Bas de Bakker.

Other Modern Shells
In addition to fish and zsh, there are a number of other interesting—but not neces‐
sarily always bash-compatible—shells available out there. When you have a look at
those, ask yourself what the focus of the respective shell is (interactive usage vs.
scripting) and how active the community around it is.

Some examples of modern shells for Linux I came across and can recommend you
have a look at include the following:

Oil shell
Targets Python and JavaScript users. Put in other words, the focus is less on
interactive use but more on scripting.

murex
A POSIX shell that sports interesting features such as an integrated testing frame‐
work, typed pipelines, and event-driven programming.

Nushell
An experimental new shell paradigm, featuring tabular output with a powerful
query language. Learn more via the detailed Nu Book.

PowerShell
A cross-platform shell that started off as a fork of the Windows PowerShell and
offers a different set of semantics and interactions than POSIX shells.

There are many more options out there. Keep looking and see what works best for
you. Try thinking beyond bash and optimize for your use case.
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Which Shell Should I Use?
At this point in time, every modern shell—other than bash—seems like a good
choice, from a human-centric perspective. Smooth auto-complete, easy config, and
smart environments are no luxury in 2022, and given the time you usually spend on
the command line, you should try out different shells and pick the one you like most.
I personally use the Fish shell, but many of my peers are super happy with the Z-shell.

You may have issues that make you hesitant to move away from bash, such as the
following:

• You work in remote systems and/or cannot install your own shell.
• You’ve stayed with bash due to compatibility and/or muscle memory. It can be

hard to get rid of certain habits.
• Almost all instructions (implicitly) assume bash. For example, you’ll see instruc‐

tions like export FOO=BAR, which is bash specific.

It turns out that these issues are by and large not relevant to most users. While you
may have to temporarily use bash in a remote system, most of the time you will be
working in an environment that you control. There is a learning curve, but the invest‐
ment pays off in the long run.

With that, let’s focus on another way to boost your productivity in the terminal:
multiplexer.

Terminal Multiplexer
We came across terminals at the beginning of this chapter, in “Terminals” on page 33.
Now let’s dive deeper into the topic of how to improve your terminal usage, building
on a concept that is both simple and powerful: multiplexing.

Think of it in this way: you usually work on different things that can be grouped
together. For example, you may work on an open source project, author a blog post or
docs, access a server remotely, interact with an HTTP API to test things, and so forth.
These tasks may each require one or more terminal windows, and often you want or
need to do potentially interdependent tasks in two windows at the same time. For
example:

• You are using the watch command to periodically execute a directory listing and
at the same time edit a file.

• You start a server process (a web server or application server) and want to have it
running in the foreground (see also “Job control” on page 40) to keep an eye on
the logs.

Terminal Multiplexer | 55



• You want to edit a file using vi and at the same time use git to query the status
and commit changes.

• You have a VM running in the public cloud and want to ssh into it while having
the possibility to manage files locally.

Think of all these examples as things that logically belong together and that in terms
of time duration can range from short term (a few minutes) to long term (days and
weeks). The grouping of those tasks is usually called a session.

Now, there are a number of challenges if you want to achieve this grouping:

• You need multiple windows, so one solution is to launch multiple terminals or, if
the UI supports it, multiple instances (tabs).

• You would like to have all the windows and paths around, even if you close the
terminal or the remote side closes down.

• You want to expand or zoom in and out to focus on certain tasks while keeping
an overview of all your sessions and being able to navigate between them.

To enable these tasks, people came up with the idea of overlaying a terminal with
multiple windows (and sessions, to group windows)—in other words, multiplexing
the terminal I/O.

Let’s have a brief look at the original implementation of terminal multiplexing, called
screen. Then we’ll focus in-depth on a widely used implement called tmux and wrap
up with other options in this space.

screen
screen is the original terminal multiplexer and is still used. Unless you’re in a remote
environment where nothing else is available and/or you can’t install another multi‐
plexer, you should probably not be using screen. One reason is that it’s not actively
maintained anymore, and another is that it’s not very flexible and lacks a number of
features modern terminal multiplexers have.

tmux
tmux is a flexible and rich terminal multiplexer that you can bend to your needs. As
you can see in Figure 3-8, there are three core elements you’re interacting with in
tmux, from coarse-grained to fine-grained units:
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Figure 3-8. The tmux elements: sessions, windows, and panes

Sessions
A logical unit that you can think of as a working environment dedicated to a spe‐
cific task such as “working on project X” or “writing blog post Y.” It’s the con‐
tainer for all other units.

Windows
You can think of a window as a tab in a browser, belonging to a session. It’s
optional to use, and often you only have one window per session.

Panes
These are your workhorses, effectively a single shell instance running. A pane is
part of a window, and you can easily split it vertically or horizontally, as well as
expand/collapse it (think: zoom) and close panes as you need them.

Just like screen, in tmux you have the ability to attach and detach a session. Let’s
assume we start from scratch, let’s launch it with a session called test:

$ tmux new -s test

With the preceding command, tmux is running as a server, and you find yourself in a
shell you’ve configured in tmux, running as the client. This client/server model allows
you to create, enter, leave, and destroy sessions and use the shells running in it
without having to think of the processes running (or failing) in it.

tmux uses Ctrl+b as the default keyboard shortcut, also called prefix or trigger. So for
example, to list all windows, you would press Ctrl+b and then w, or to expand the
current (active) pane, you would use Ctrl+b and then z.
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In tmux the default trigger is Ctrl+b. To improve the flow, I mapped
the trigger to an unused key, so a single keystroke is sufficient. I did
this by first mapping the trigger to the Home key in tmux and
then mapping that Home key to the Caps Lock key by changing
its mapping in /usr/share/X11/xkb/symbols/pc to key <CAPS>

{ [ Home ] };.
This double-mapping was a workaround I needed to do. Depend‐
ing on your target key or terminal, you might not have to do this,
but I encourage you to map Ctrl+b to an unused key you can easily
reach since you will press it many times a day.

You can now use any of the commands listed in Table 3-4 to manage further sessions,
windows, and panes. Also, when pressing Ctrl+b+d, you can detach sessions. This
means effectively that you put tmux into the background.

When you then start a new terminal instance or, say, you ssh to your machine from a
remote place, you can then attach to an existing session, so let’s do that with the test
session we created earlier:

$ tmux attach -t test 

Attach to existing session called test. Note that if you want to detach the session
from its previous terminal, you would also supply the -d parameter.

Table 3-4 lists common tmux commands grouped by the units discussed, from widest
scope (session) to narrowest (pane).

Table 3-4. tmux reference

Target Task Command
Session Create new :new -s NAME

Session Rename trigger + $

Session List all trigger + s

Session Close trigger

Window Create new trigger + c

Window Rename trigger + ,

Window Switch to trigger + 1 … 9

Window List all trigger + w

Window Close trigger + &

Pane Split horizontal trigger + "

Pane Split vertical trigger + %

Pane Toggle trigger + z

Pane Close trigger + x
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Now that you have a basic idea of how to use tmux, let’s turn our attention to config‐
uring and customizing it. My .tmux.conf looks as follows:

unbind C-b 
set -g prefix Home
bind Home send-prefix
bind r source-file ~/.tmux.conf \; display "tmux config reloaded :)" 
bind \\ split-window -h -c "#{pane_current_path}" 
bind - split-window -v -c "#{pane_current_path}"
bind X confirm-before kill-session 
set -s escape-time 1 
set-option -g mouse on 
set -g default-terminal "screen-256color" 
set-option -g status-position top 
set -g status-bg colour103
set -g status-fg colour215
set -g status-right-length 120
set -g status-left-length 50
set -g window-status-style fg=colour215
set -g pane-active-border-style fg=colour215
set -g @plugin 'tmux-plugins/tmux-resurrect' 
set -g @plugin 'tmux-plugins/tmux-continuum'
set -g @continuum-restore 'on'
run '~/.tmux/plugins/tpm/tpm'

This line and the next two lines change the trigger to Home.

Reload config via trigger + r.

This line and the next redefine pane splitting; retain current directory of existing
pane.

Adds shortcuts for new and kill sessions.

No delays.

Enable mouse selections.

Set the default terminal mode to 256-color mode.

Theme settings (next six lines).

From here to the end: plug-in management.

First install tpm, the tmux plug-in manager, and then trigger + I for the plug-ins. The
plug-ins used here are the following:
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tmux-resurrect
Allows you to restore sessions with Ctrl+s (save) and Ctrl+r (restore)

tmux-continuum
Automatically saves/restores a session (15-minute interval)

Figure 3-9 shows my Alacritty terminal running tmux. You can see the sessions with
the shortcuts 0 to 9, located in the left upper corner.

Figure 3-9. An example tmux instance in action, showing available sessions

While tmux certainly is an excellent choice, there are indeed other options than tmux,
so let’s have a peek.

Other Multiplexers
Other terminal multiplexers you can have a look at and try out include the following:

tmuxinator
A meta-tool allowing you to manage tmux sessions

Byobu
A wrapper around either screen or tmux; it’s especially interesting if you’re using
the Ubuntu- or Debian-based Linux distros

Zellij
Calls itself a terminal workspace, is written in Rust, and goes beyond what tmux
offers, including a layout engine and a powerful plug-in system
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dvtm
Brings the concept of tiling window management to the terminal; it’s powerful
but has a learning curve like tmux

3mux
A simple terminal multiplexer written in Go; it’s easy to use but not as powerful
as tmux

With this quick review of multiplexer options out of the way, let’s talk about selecting
one.

Bringing It All Together: Terminal, tmux, and shell
I’m using Alacritty as my terminal. It’s fast, and best of all, to configure it I’m using a
YAML configuration file that I can version in Git, allowing me to use it on any target
system in seconds. This config file called alacritty.yml defines all my settings for the
terminal, from colors to key bindings to font sizes.

Most of the settings apply right away (hot-reload), others when I save the file. One
setting, called shell, defines the integration between the terminal multiplexer I use
(tmux) and the shell I use (fish) and looks as follows:

...
shell:
  program: /usr/local/bin/fish
  args:
  - -l
  - -i
  - -c
  - "tmux new-session -A -s zzz"
...

In the preceding snippet, I configure Alacritty to use fish as the default shell, but
also, when I launch the terminal, it automatically attaches to a specific session.
Together with the tmux-continuum plug-in, this gives me peace of mind. Even if I
switch off the computer, once I restart I find my terminal with all its sessions, win‐
dows, and panes (almost) exactly in the state it was in before a crash, besides the shell
variables.

Which Multiplexer Should I Use?
Unlike with shells for human users, I do have a concrete preference here in the con‐
text of terminal multiplexer: use tmux. The reasons are manifold: it is mature, stable,
rich (has many available plug-ins), and flexible. Many folks are using it, so there’s
plenty of material out there to read up on as well as help available. The other
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multiplexers are exciting but relatively new or are, as is the case with screen, no
longer in their prime.

With that, I hope I was able to convince you to consider using a terminal multiplexer
to improve your terminal and shell experience, speed up your tasks, and make the
overall flow smoother.

Now, we turn our attention to the last topic in this chapter, automating tasks with
shell scripts.

Scripting
In the previous sections of this chapter, we focused on the manual, interactive usage
of the shell. Once you’ve done a certain task over and over again manually on the
prompt, it’s likely time to automate the task. This is where scripts come in.

Here we focus on writing scripts in bash. This is due to two reasons:

• Most of the scripts out there are written in bash, and hence you will find a lot of
examples and help available for bash scripts.

• The likelihood of finding bash available on a target system is high, making your
potential user base bigger than if you used a (potentially more powerful but eso‐
teric or not widely used) alternative to bash.

Just to provide you with some context before we start, there are shell scripts out there
that clock in at several thousands of lines of code. Not that I encourage you to aim for
this—quite the opposite: if you find yourself writing long scripts, ask yourself if a
proper scripting language such as Python or Ruby is the better choice.

Let’s step back now and develop a short but useful example, applying good practices
along the way. Let’s assume we want to automate the task of displaying a single state‐
ment on the screen that, given a user’s GitHub handle, shows when the user joined,
using their full name, something along the lines of the following:

XXXX XXXXX joined GitHub in YYYY

How do we go about automating this task with a script? Let’s start with the basics,
then review portability, and work our way up to the “business logic” of the script.

Scripting Basics
The good news is that by interactively using a shell, you already know most of the
relevant terms and techniques. In addition to variables, streams and redirection, and
common commands, there are a few specific things you want to be familiar with in
the context of scripts, so let’s review them.
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Advanced data types
While shells usually treat everything as strings (if you want to perform some more
complicated numerical tasks, you should probably not use a shell script), they do sup‐
port some advanced data types such as arrays.

Let’s have a look at arrays in action:

os=('Linux' 'macOS' 'Windows') 
echo "${os[0]}" 
numberofos="${#os[@]}" 

Define an array with three elements.

Access the first element; this would print Linux.

Get the length of the array, resulting in numberofos being 3.

Flow control

Flow control allows you to branch (if) or repeat (for and while) in your script, mak‐
ing the execution dependent on a certain condition.

Some usage examples of flow control:

for afile in /tmp/* ; do 
  echo "$afile"
done

for i in {1..10}; do 
    echo "$i"
done

while true; do
  ...
done 

Basic loop iterating over a directory, printing each file name

Range loop

Forever loop; break out with Ctrl+C

Functions
Functions allow you to write more modular and reusable scripts. You have to define
the function before you use it since the shell interprets the script from top to bottom.

A simple function example:

Scripting | 63



sayhi() { 
    echo "Hi $1 hope you are well!"
}

sayhi "Michael" 

Function definition; parameters implicitly passed via $n

Function invocation; the output is “Hi Michael hope you are well!”

Advanced I/O

With read you can read user input from stdin that you can use to elicit runtime
input—for example, with a menu of options. Further, rather than using echo, con‐
sider printf, which allows you fine-grained control over the output, including colors.
printf is also more portable than echo.

Following is an example usage of the advanced I/O in action:

read name 
printf "Hello %s" "$name" 

Read value from user input.

Output value read in the previous step.

There are other, more advanced concepts available for you, such as signals and traps.
Given that we want to provide only an overview and introduction to the scripting
topic here, I will refer you to the excellent bash Scripting Cheatsheet for a compre‐
hensive reference of all the relevant constructs. If you are serious about writing shell
scripts, I recommend you read bash Cookbook by Carl Albing, JP Vossen, and
Cameron Newham, which contains lots and lots of great snippets you can use as a
starting point.

Writing Portable bash Scripts
We’ll now look at what it means to write portable scripts in bash. But wait. What does
portable mean, and why should you care?

At the beginning of “Shells” on page 33, we defined what POSIX means, so let’s build
on that. When I say “portable,” I mean that we are not making too many assumptions
—implicitly or explicitly—about the environment a script will be executed in. If a
script is portable, it runs on many different systems (shells, Linux distros, etc.).

But remember that, even if you pin down the type of shell, in our case to bash, not all
features work the same way across different versions of a shell. At the end of the day,
it boils down to the number of different environments you can test your script in.
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Executing portable scripts
How are scripts executed? First, let’s state that scripts really are simply text files; the
extension doesn’t matter, although often you find .sh used as a convention. But there
are two things that turn a text file into a script that is executable and able to be run by
the shell:

• The text file needs to declare the interpreter in the first line, using what is called
shebang (or hashbang), which is written as #! (see also the first line of the tem‐
plate that follows).

• Then, you need to make the script executable using, for example, chmod +x,
which allows everyone to run it, or, even better, chmod 750, which is more along
the lines of the least privileges principle, as it allows only the user and group
associated with the script to run it. We’ll dive deep into this topic in Chapter 4.

Now that you know the basics, let’s have a look at a concrete template we can use as a
starting point.

A skeleton template
A skeleton template for a portable bash shell script that you can use as a seed looks as
follows:

#!/usr/bin/env bash 
set -o errexit 
set -o nounset 
set -o pipefail 

firstargument="${1:-somedefaultvalue}" 

echo "$firstargument"

The hashbang instructs the program loader that we want it to use bash to inter‐
pret this script.

Define that we want to stop the script execution if an error happens.

Define that we treat unset variables as an error (so the script is less likely to fail
silently).

Define that when one part of a pipe fails, the whole pipe should be considered
failed. This helps to avoid silent failures.

An example command-line parameter with a default value.

We will use this template later in this section to implement our GitHub info script.

Scripting | 65

https://oreil.ly/88BcE
https://oreil.ly/l6xNO


Good practices
I’m using good practices instead of best practices because what you should do depends
on the situation and how far you want to go. There is a difference between a script
you write for yourself and one that you ship to thousands of users, but in general,
high-level good practices writing scripts are as follows:

Fail fast and loud
Avoid silent fails, and fail fast; things like errexit and pipefail do that for you.
Since bash tends to fail silently by default, failing fast is almost always a good
idea.

Sensitive information
Don’t hardcode any sensitive information such as passwords into the script. Such
information should be provided at runtime, via user input or calling out to an
API. Also, consider that a ps reveals program parameters and more, which is
another way that sensitive information can be leaked.

Input sanitization
Set and provide sane defaults for variables where possible, and sanitize the input
you receive from users or other sources. For example, launch parameters pro‐
vided or interactively ingested via the read command to avoid situations where
an innocent-looking rm -rf "$PROJECTHOME/"* wipes your drive because the
variable wasn’t set.

Check dependencies
Don’t assume that a certain tool or command is available, unless it’s a build-in or
you know your target environment. Just because your machine has curl installed
doesn’t mean the target machine has. If possible, provide fallbacks—for example,
if no curl is available, use wget.

Error handling
When your script fails (and it’s not a matter of if but when and where), provide
actionable instructions for your users. For example, rather than Error 123, say
what has failed and how your user can fix the situation, such as Tried to write
to /project/xyz/ but seems this is read-only for me.

Documentation
Document your scripts inline (using # Some doc here) for main blocks, and try
to stick to 80-column width for readability and diffing.

Versioning
Consider versioning your scripts using Git.
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Testing
Lint and test the scripts. Since this is such an important practice, we will discuss it
in greater detail in the next section.

Let’s now move on to making scripts safe(r) by linting them while developing and
testing them before you distribute them.

Linting and Testing Scripts
While you’re developing, you want to check and lint your scripts, making sure that
you’re using commands and instructions correctly. There’s a nice way to do that,
depicted in Figure 3-10, with the program ShellCheck; you can download and install
it locally, or you can also use the online version via shellcheck.net. Also, consider for‐
matting your script with shfmt. It automatically fixes issues that can be reported later
by shellcheck.

Figure 3-10. A screenshot of the online ShellCheck tool
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And further, before you check your script into a repo, consider using bats to test it.
bats, short for Bash Automated Testing System, allows you to define test files as a
bash script with special syntax for test cases. Each test case is simply a bash function
with a description, and you would typically invoke these scripts as part of a CI pipe‐
line—for example, as a GitHub action.

Now we’ll put our good practices for script writing, linting, and testing into use. Let’s
implement the example script we specified in the beginning of this section.

End-to-End Example: GitHub User Info Script
In this end-to-end example, we bring all of the preceding tips and tooling together to
implement our example script that is supposed to take a GitHub user handle and
print out a message that contains what year the user joined, along with their full
name.

This is how one implementation looks, taking the good practices into account. Store
the following in a file called gh-user-info.sh, and make it executable:

#!/usr/bin/env bash

set -o errexit
set -o errtrace
set -o nounset
set -o pipefail

### Command line parameter:
targetuser="${1:-mhausenblas}" 

### Check if our dependencies are met:
if ! [ -x "$(command -v jq)" ]
then
  echo "jq is not installed" >&2
  exit 1
fi

### Main:
githubapi="https://api.github.com/users/"
tmpuserdump="/tmp/ghuserdump_$targetuser.json"

result=$(curl -s $githubapi$targetuser) 
echo $result > $tmpuserdump

name=$(jq .name $tmpuserdump -r) 
created_at=$(jq .created_at $tmpuserdump -r)

joinyear=$(echo $created_at | cut -f1 -d"-") 
echo $name joined GitHub in $joinyear 
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Provide a default value to use if user doesn’t supply one.

Using curl, access the GitHub API to download the user information as a JSON
file, and store it in a temporary file (next line).

Using jq, pull out the fields we need. Note that the created_at field has a value
that looks something like "2009-02-07T16:07:32Z".

Using cut, extract the year from the created_at field in the JSON file.

Assemble the output message and print to screen.

Now let’s run it with the defaults:

$ ./gh-user-info.sh
Michael Hausenblas joined GitHub in 2009

Congratulations, you now have everything at your disposal to use the shell, both
interactively on the prompt and for scripting. Before we wrap up, take a moment to
think about the following concerning our gh-user-info.sh script:

• What if the JSON blob the GitHub API returns is not valid? What if we
encounter a 500 HTTP error? Maybe adding a message along the lines of “try
later” is more useful if there’s nothing the user can do themselves.

• For the script to work, you need network access, otherwise the curl call will fail.
What could you do about a lack of network access? Informing the user about it
and suggesting what they can do to check networking may be an option.

• Think about improvements around dependency checks—for example, we implic‐
itly assume here that curl is installed. Can you maybe add a check that makes the
binary variable and falls back to wget?

• How about adding some usage help? If the script is called with an -h or --help
parameter, perhaps show a concrete usage example and the options that users can
use to influence the execution (ideally, including defining default values used).

You see now that, although this script looks good and works in most cases, there’s
always something you can improve, such as making the script more robust and pro‐
viding actionable error messages. In this context, consider using frameworks such as
bashing, rerun, or rr to improve modularity.
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Conclusion
In this chapter, we focused on working with Linux in the terminal, a textual user
interface. We discussed shell terminology, provided a hands-on introduction to using
the shell basics, and reviewed common tasks and how you can improve your shell
productivity using modern variants of certain commands (such as exa rather than
ls).

Then, we looked at modern, human-friendly shells, specifically at fish, and how to
configure and use them. Further, we covered the terminal multiplexer by using tmux
as the hands-on example, enabling you to work with multiple local or remote ses‐
sions. Using modern shells and multiplexers can dramatically improve your efficiency
on the command line, and I strongly recommend you consider adopting them.

Lastly, we discussed automating tasks by writing safe and portable shell scripts,
including linting and testing said scripts. Remember that shells are effectively com‐
mand interpreters, and as with any kind of language, you have to practice to get flu‐
ent. Having said this, now that you’re equipped with the basics of using Linux from
the command line, you can already work with the majority of Linux-based systems
out there, be it an embedded system or a cloud VM. In any case, you’ll find a way to
get hold of a terminal and issue commands interactively or via executing scripts.

If you want to dive deeper into the topics discussed in this chapter, here are some
additional resources:

Terminals
• “Anatomy of a Terminal Emulator”
• “The TTY Demystified”
• “The Terminal, the Console and the Shell—What Are They?”
• “What Is a TTY on Linux? (and How to Use the tty Command)”
• “Your Terminal Is Not a Terminal: An Introduction to Streams”

Shells
• “Unix Shells: bash, Fish, ksh, tcsh, zsh”
• “Comparison of Command Shells”
• “bash vs zsh” thread on reddit
• “Ghost in the Shell—Part 7—ZSH Setup”
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Terminal multiplexer
• “A tmux Crash Course”
• “A Quick and Easy Guide to tmux”
• “How to Use tmux on Linux (and Why It’s Better Than screen)”
• The Tao of tmux
• tmux 2: Productive Mouse-Free Development
• Tmux Cheat Sheet & Quick Reference website

Shell scripts
• “Shell Style Guide”
• “bash Style Guide”
• “bash Best Practices”
• “bash Scripting Cheatsheet”
• “Writing bash Scripts That Are Not Only bash: Checking for bashisms and Test‐

ing with Dash”

With the shell basics at our disposal, we now turn our focus to access control and
enforcement in Linux.
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CHAPTER 4

Access Control

After the wide scope in the previous chapter on all things shell and scripting, we now
focus on one specific and crucial security aspect in Linux. In this chapter, we discuss
the topic of users and controlling access to resources in general and files in particular.

One question that immediately comes to mind in such a multiuser setup is owner‐
ship. A user may own, for example, a file. They are allowed to read from the file, write
to the file, and also, say, delete it. Given that there are other users on the system as
well, what are those users allowed to do, and how is this defined and enforced? There
are also activities that you might not necessarily associate with files in the first place.
For example, a user may (or may not) be allowed to change networking-related
settings.

To get a handle on this topic, we’ll first take a look at the fundamental relationship
between users, processes, and files, from an access perspective. We’ll also review
sandboxing and access control types. Next, we’ll focus on the definition of a Linux
user, what users can do, and how to manage users either locally or alternatively from
a central place.

Then, we’ll move on to the topic of permissions, where we’ll look at how to control
access to files and how processes are impacted by such restrictions.

We’ll wrap up this chapter covering a range of advanced Linux features in the access
control space, including capabilities, seccomp profiles, and ACLs. To round things
off, we’ll provide some security good practices around permissions and access
control.

With that, let’s jump right into the topic of users and resource ownership, laying the
basis for the rest of the chapter.
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Basics
Before we get into access control mechanisms, let’s step back a little and take a bird’s-
eye view on the topic. This will help us to establish some terminology and clarify rela‐
tionships between the main concepts.

Resources and Ownership
Linux is a multiuser operating system and as such has inherited the concept of a user
(see “Users” on page 76) from UNIX. Each user account is associated with a user ID
that can be given access to executables, files, devices, and other Linux assets. A
human user can log in with a user account, and a process can run as a user account.
Then, there are resources (which we will simply refer to as files), which are any hard‐
ware or software components available to the user. In the general case, we will refer to
resources as files, unless we explicitly talk about access to other kinds of resources,
such as with syscalls. In Figure 4-1 and the passage that follows, you see the high-level
relationships between users, processes, and files in Linux.

Figure 4-1. Users, processes, and files in Linux

Users
Launch processes and own files. A process is a program (executable file) that the
kernel has loaded into main memory and runs.

Files
Have owners; by default, the user who creates the file owns it.

Processes
Use files for communication and persistency. Of course, users indirectly also use
files, but they need to do so via processes.

This depiction of the relationships between users, processes, and files is of course a
very simplistic view, but it allows us to understand the actors and their relationships
and will come in handy later on when we discuss the interaction between these differ‐
ent players in greater detail.

Let’s first look at the execution context of a process, addressing the question of how
restricted the process is. A term that we often come across when talking about access
to resources is sandboxing.
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Sandboxing
Sandboxing is a vaguely defined term and can refer to a range of different methods,
from jails to containers to virtual machines, which can be managed either in the ker‐
nel or in user land. Usually there is something that runs in the sandbox—typically
some application—and the supervising mechanism enforces a certain degree of isola‐
tion between the sandboxed process and the hosting environment. If all of that
sounds rather theoretical, I ask you for a little bit of patience. We will see sandboxing
in action later in this chapter, in “seccomp Profiles” on page 89, and then again in
Chapter 9 when we talk about VMs and containers.

With a basic understanding of resources, ownership, and access to said resources in
your mind, let’s talk briefly about some conceptual ways to go about access control.

Types of Access Control
One aspect of access control is the nature of the access itself. Does a user or process
directly access a resource, maybe in an unrestricted manner? Or maybe there is a
clear set of rules about what kind of resources (files or syscalls) a process can access,
under what circumstances. Or maybe the access itself is even recorded.

Conceptually, there are different access control types. The two most important and
relevant to our discussion in the context of Linux are discretionary and mandatory
access control:

Discretionary access control
With discretionary access control (DAC), the idea is to restrict access to
resources based on the identity of the user. It’s discretionary in the sense that a
user with certain permissions can pass them on to other users.

Mandatory access control
Mandatory access control is based on a hierarchical model representing security
levels. Users are assigned a clearance level, and resources are assigned a security
label. Users can only access resources corresponding to a clearance level equal to
(or lower than) their own. In a mandatory access control model, an admin
strictly and exclusively controls access, setting all permissions. In other words,
users cannot set permissions themselves, even when they own the resource.

In addition, Linux traditionally has an all-or-nothing attitude—that is, you are either
a superuser who has the power to change everything or you are a normal user with
limited access. Initially, there was no easy and flexible way to assign a user or process
certain privileges. For example, in the general case, to enable that “process X is
allowed to change networking settings,” you had to give it root access. This, naturally,
has a concrete impact on a system that is breached: an attacker can misuse these wide
privileges easily.
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To qualify the “all-or-nothing attitude” in Linux a bit: the defaults
in most Linux systems allow read access to almost every file and
executable by “others”—that is, all users on the system. For exam‐
ple, with SELinux enabled, mandatory access control restricts
access to only those assets that are explicitly given permission. So,
for example, a web server can only use ports 80 and 443, only share
files and scripts from specific directories, only write logs to specific
places, and so on.

We’ll revisit this topic in “Advanced Permission Management” on page 87 and see
how modern Linux features can help overcome this binary worldview, allowing for
more fine-grained management of privileges.

Probably the best-known implementation of mandatory access control for Linux is
SELinux. It was developed to meet the high security requirements of government
agencies and is usually used in these environments since the usability suffers from the
strict rules. Another option for mandatory access control, included in the Linux ker‐
nel since version 2.6.36 and rather popular in the Ubuntu family of Linux distribu‐
tions, is AppArmor.

Let’s now move on to the topic of users and how to manage them in Linux.

Users
In Linux we often distinguish between two types of user accounts, from a purpose or
intended usage point of view:

So-called system users, or system accounts
Typically, programs (sometimes called daemons) use these types of accounts to
run background processes. The services provided by these programs can be part
of the operating system, such as networking (sshd, for example), or on the appli‐
cation layer (for example, mysql, in the case of a popular relational database).

Regular users
For example, a human user that interactively uses Linux via the shell.

The distinction between system and regular users is less of a technical one and more
an organizational construct. To understand that, we first have to introduce the con‐
cept of a user ID (UID), a 32-bit numerical value managed by Linux.

Linux identifies users via a UID, with a user belonging to one or more groups identi‐
fied via a group ID (GID). There is a special kind of user with the UID 0, usually
called root. This “superuser” is allowed to do anything, that is, no restriction apply.
Usually, you want to avoid working as the root user, because it’s just too much power
to have. You can easily destroy a system if you’re not careful (believe me, I’ve done
this). We’ll get back to this later in the chapter.
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Different Linux distributions have their own ways to decide how to manage the UID
range. For example, systemd-powered distributions (see “systemd” on page 119),
have the following convention (simplified here):

UID 0
Is root

UID 1 to 999
Are reserved for system users

UID 65534
Is user nobody—used, for example, for mapping remote users to some well-
known ID, as is the case with “Network File System” on page 181

UID 1000 to 65533 and 65536 to 4294967294
Are regular users

To figure out your own UIDs, you can use the (surprise!) id command like so:

$ id -u
2016796723

Now that you know the basics about Linux users, let’s see how you can manage users.

Managing Users Locally
The first option, and traditionally the only one available, is managing users locally.
That is, only information local to the machine is used, and user-related information is
not shared across a network of machines.

For local user management, Linux uses a simple file-based interface with a somewhat
confusing naming scheme that is a historic artifact we have to live with, unfortu‐
nately. Table 4-1 lists the four files that, together, implement user management.

Table 4-1. Reference of local user management files

Purpose File
User database /etc/passwd

Group database /etc/group

User passwords /etc/shadow

Group passwords /etc/gshadow

Think of /etc/passwd as a kind of mini user database keeping track of user names,
UIDs, group membership, and other data, such as home directory and login shell
used, for regular users. Let’s have a look at a concrete example:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash 

Users | 77

https://oreil.ly/c0DuO


daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin 
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
syslog:x:104:110::/home/syslog:/usr/sbin/nologin
mh9:x:1000:1001::/home/mh9:/usr/bin/fish 

The root user has UID 0.

A system account (the nologin gives it away; see more below).

My user account.

Let’s have a closer look at one of the lines in /etc/passwd to understand the structure
of a user entry in detail:

root:x:0:0:root:/root:/bin/bash
^    ^ ^ ^ ^    ^     ^
|    | | | |    |     └──  
|    | | | |    └──  
|    | | | └──  
|    | | └── 
|    | └──  
|    └──  
└──  

The login shell to use. To prevent interactive logins, use /sbin/nologin.

The user’s home directory; this defaults to /.

User information such as full name or contact data like phone number. Often
also known as GECOS field. Note that GECOS formatting is not used, but rather
the field itself is used typically for the full name of the person associated with the
account.

The user’s primary group (GID); see also /etc/group.

The UID. Note that Linux reserves UIDs below 1000 for system usage.

The user’s password, with the x character meaning that the (encrypted) password
is stored in /etc/shadow, which is the default these days.

The username, which must be 32 characters or fewer.

One thing we notice is absent in /etc/passwd is the one thing we would expect to find
there, based on its name: the password. Passwords are, for historic reasons, stored in
a file called /etc/shadow. While every user can read /etc/passwd, you usually need root
privileges to read for /etc/shadow.
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To add a user, you can use the adduser command as follows:

$ sudo adduser mh9
Adding user `mh9' ...
Adding new group `mh9' (1001) ...
Adding new user `mh9' (1000) with group `mh9' ...
Creating home directory `/home/mh9' ... 
Copying files from `/etc/skel' ... 
New password: 
Retype new password:
passwd: password updated successfully
Changing the user information for mh9
Enter the new value, or press ENTER for the default 
        Full Name []: Michael Hausenblas
        Room Number []:
        Work Phone []:
        Home Phone []:
        Other []:
Is the information correct? [Y/n] Y

The adduser command creates a home directory.

It also copies a bunch of default config files into the home directory.

Need to define a password.

Provide optional GECOS information.

If you want to create a system account, pass in the -r option. This will disable the
ability to use a login shell and also avoid home directory creation. For configuration
details, see also /etc/adduser.conf, including options such as the UID/GID range to be
used.

In addition to users, Linux also has the concept of groups, which in a sense is just a
collection of one or more users. Any regular user belongs to one default group but
can be a member of additional groups. You can find out about groups and mappings
via the /etc/group file:

$ cat /etc/group 
root:x:0:
daemon:x:1:
bin:x:2:
sys:x:3:
adm:x:4:syslog
...
ssh:x:114:
landscape:x:115:
admin:x:116:
netdev:x:117:
lxd:x:118:
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systemd-coredump:x:999:
mh9:x:1001: 

Display the content of the group mapping file.

An example group of my user with the GID 1001. Note that you can add a
comma-separated list of user names after the last colon to allow multiple users to
have that group permission.

With this basic user concept and management under our belt, we move on to a
potentially better way to manage users in a professional setup, allowing for scale.

Centralized User Management
If you have more than one machine or server for which you have to manage users—
say, in a professional setup—then managing users locally quickly becomes old. You
want a centralized way to manage users that you can apply locally, to one specific
machine. There are a few approaches available to you, depending on your require‐
ments and (time) budget:

Directory based
Lightweight Directory Access Protocol (LDAP), a decades-old suite of protocols
now formalized by IETF, defines how to access and maintain a distributed direc‐
tory over Internet Protocol (IP). You can run an LDAP server yourself—for
example, using projects like Keycloak—or outsource this to a cloud provider,
such as Azure Active Directory.

Via a network
Users can be authenticated in this manner with Kerberos. We’ll look at Kerberos
in detail in “Kerberos” on page 222.

Using config management systems
These systems, which include Ansible, Chef, Puppet, or SaltStack, can be used to
consistently create users across machines.

The actual implementation is often dictated by the environment. That is, a company
might already be using LDAP, and hence the choices might be limited. The details of
the different approaches and pros and cons are, however, beyond the scope of this
book.

Permissions
In this section, we first go into detail concerning Linux file permissions, which are
central to how access control works, and then we look at permissions around pro‐
cesses. That is, we review runtime permissions and how they are derived from file
permissions.
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File Permissions
File permissions are core to Linux’s concept of access to resources, since everything is
a file in Linux, more or less. Let’s first review some terminology and then discuss the
representation of the metadata around file access and permissions in detail.

There are three types or scopes of permissions, from narrow to wide:

User
The owner of the file

Group
Has one or more members

Other
The category for everyone else

Further, there are three types of access:

Read (r)
For a normal file, this allows a user to view the contents of the file. For a direc‐
tory, it allows a user to view the names of files in the directory.

Write (w)
For a normal file, this allows a user to modify and delete the file. For a directory,
it allows a user to create, rename, and delete files in the directory.

Execute (x)
For a normal file, this allows a user to execute the file if the user also has read
permissions on it. For a directory, it allows a user to access file information in the
directory, effectively permitting them to change into it (cd) or list its content
(ls).

Other File Access Bits
I listed r/w/x as the three file access types, but in practice you will find others as well
when you do an ls:

• s is the setuid/setgid permission applied to an executable file. A user running it
inherits the effective privileges of the owner or group of the file.

• t is the sticky bit, which is only relevant for directories. If set, it prevents nonroot
users from deleting files in it, unless said user owns the directory/file.

There are also special settings in Linux available via the chattr (change attribute)
command, but this is beyond the scope of this chapter.
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Let’s see file permissions in action (note that the spaces you see here in the output of
the ls command have been expanded for better readability):

$ ls -al
total 0
-rw-r--r--  1  mh9  devs  9  Apr 12 11:42  test
^           ^  ^    ^     ^  ^             ^
|           |  |    |     |  |             └──  
|           |  |    |     |  └──  
|           |  |    |     └──  
|           |  |    └── 
|           |  └──  
|           └──  
└──  

File name

Last modified time stamp

File size in bytes

Group the file belongs to

File owner

Number of hard links

File mode

When zooming in on the file mode—that is, the file type and permissions referred to
as  in the preceding snippet—we have fields with the following meaning:

. rwx rwx rwx
^ ^   ^   ^
| |   |   └──  
| |   └──  
| └──  
└── 

Permissions for others

Permissions for the group

Permissions for the file owner

The file type (Table 4-2)
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The first field in the file mode represents the file type; see Table 4-2 for details. The
remainder of the file mode encodes the permissions set for various targets, from
owner to everyone, as listed in Table 4-3.

Table 4-2. File types used in mode

Symbol Semantics

- A regular file (such as when you do touch abc)

b Block special file

c Character special file

C High-performance (contiguous data) file

d A directory

l A symbolic link

p A named pipe (create with mkfifo)

s A socket

? Some other (unknown) file type

There are some other (older or obsolete) characters such as M or P used in the posi‐
tion 0, which you can by and large ignore. If you’re interested in what they mean, run
info ls -n "What information is listed".

In combination, these permissions in the file mode define what is allowed for each
element of the target set (user, group, everyone else), as shown in Table 4-3, checked
and enforced through access.

Table 4-3. File permissions

Pattern Effective permission Decimal representation

--- None 0

--x Execute 1

-w- Write 2

-wx Write and execute 3

r-- Read 4

r-x Read and execute 5

rw- Read and write 6

rwx Read, write, execute 7

Let’s have a look at a few examples:
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755

Full access for its owner; read and execute for everyone else

700

Full access by its owner; none for everyone else

664

Read/write access for owner and group; read-only for others

644

Read/write for owner; read-only for everyone else

400

Read-only by its owner

The 664 has a special meaning on my system. When I create a file, that’s the default
permission it gets assigned. You can check that with the umask command, which in
my case gives me 0002.

The setuid permissions are used to tell the system to run an executable as the owner,
with the owner’s permissions. If a file is owned by root, that can cause issues.

You can change the permissions of a file using chmod. Either you specify the desired
permission settings explicitly (such as 644) or you use shortcuts (for example, +x to
make it executable). But how does that look in practice?

Let’s make a file executable with chmod:

$ ls -al /tmp/masktest
-rw-r--r-- 1 mh9 dev 0 Aug 28 13:07 /tmp/masktest 

$ chmod +x /tmp/masktest 

$ ls -al /tmp/masktest
-rwxr-xr-x 1 mh9 dev 0 Aug 28 13:07 /tmp/masktest 

Initially the file permissions are r/w for the owner and read-only for everyone
else, aka 644.

Make the file executable.

Now the file permissions are r/w/x for the owner and r/x for everyone else, aka
755.

In Figure 4-2 you see what is going on under the hood. Note that you might not want
to give everyone the right to execute the file, so a chmod 744 might have been better
here, giving only the owner the correct permissions while not changing it for the rest.
We will discuss this topic further in “Good Practices” on page 89.
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Figure 4-2. Making a file executable and how the file permissions change with it

You can also change the ownership using chown (and chgrp for the group):

$ touch myfile
$ ls -al myfile
-rw-rw-r-- 1 mh9 mh9 0 Sep 4 09:26 myfile 

$ sudo chown root myfile 
-rw-rw-r-- 1 root mh9 0 Sep 4 09:26 myfile

The file myfile, which I created and own.

After chown, root owns that file.

Having discussed basic permission management, let’s take a look at some more
advanced techniques in this space.

Process Permissions
So far we’ve focused on how human users access files and what the respective permis‐
sions in play are. Now we shift the focus to processes. In “Resources and Ownership”
on page 74, we talked about how users own files as well as how processes use files.
This raises the question: what are the relevant permissions, from a process point of
view?

As documented on the credentials(7) manual page, there are different user IDs rel‐
evant in the context of runtime permissions:

Real UID
The real UID is the UID of the user that launched the process. It represents pro‐
cess ownership in terms of human user. The process itself can obtain its real UID
via getuid(2), and you can query it via the shell using stat -c "%u %g" /proc/
$pid/.
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Effective UID
The Linux kernel uses the effective UID to determine permissions the process has
when accessing shared resources such as message queues. On traditional UNIX
systems, they are also used for file access. Linux, however, previously used a dedi‐
cated filesystem UID (see the following discussion) for file access permissions.
This is still supported for compatibility reasons. A process can obtain its effective
UID via geteuid(2).

Saved set-user-ID
Saved set-user-IDs are used in suid cases where a process can assume privileges
by switching its effective UID between the real UID and the saved set-user-ID.
For example, in order for a process to be allowed to use certain network ports
(see “Ports” on page 160), it needs elevated privileges, such as being run as root.
A process can get its saved set-user-IDs via getresuid(2).

Filesystem UID
These Linux-specific IDs are used to determine permissions for file access. This
UID was initially introduced to support use cases where a file server would act on
behalf of a regular user while isolating the process from signals by said user. Pro‐
grams don’t usually directly manipulate this UID. The kernel keeps track of when
the effective UID is changed and automatically changes the filesystem UID with
it. This means that usually the filesystem UID is the same as the effective UID but
can be changed via setfsuid(2). Note that technically this UID is no longer nec‐
essary since kernel v2.0 but is still supported, for compatibility.

Initially, when a child process is created via fork(2), it inherits copies of its parent’s
UIDs, and during an execve(2) syscall, the process’s real UID is preserved, whereas
the effective UID and saved set-user-ID may change.

For example, when you run the passwd command, your effective UID is your UID,
let’s say 1000. Now, passwd has suid set enabled, which means when you run it, your
effective UID is 0 (aka root). There are also other ways to influence the effective UID
—for example, using chroot and other sandboxing techniques.

POSIX threads require that credentials are shared by all threads in
a process. However, at the kernel level, Linux maintains separate
user and group credentials for each thread.

In addition to file access permissions, the kernel uses process UIDs for other things,
including but not limited to the following:
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• Establishing permissions for sending signals—for example, to determine what
happens when you do a kill -9 for a certain process ID. We’ll get back to this in
Chapter 6.

• Permission handling for scheduling and priorities (for example, nice).
• Checking resource limits, which we’ll discuss in detail in the context of contain‐

ers in Chapter 9.

While it can be straightforward to reason with effective UID in the context of suid,
once capabilities come into play it can be more challenging.

Advanced Permission Management
While so far we’ve focused on widely used mechanisms, the topics in this section are
in a sense advanced and not necessarily something you would consider in a casual or
hobby setup. For professional usage—that is, production use cases where business
critical workloads are deployed—you should definitely be at least aware of the follow‐
ing advanced permission management approaches.

Capabilities
In Linux, as is traditionally the case in UNIX systems, the root user has no restric‐
tions when running processes. In other words, the kernel only distinguishes between
two cases:

• Privileged processes, bypassing the kernel permission checks, with an effective
UID of 0 (aka root)

• Unprivileged processes, with a nonzero effective UID, for which the kernel does
permission checks, as discussed in “Process Permissions” on page 85

With the introduction of the capabilities syscall in kernel v2.2, this binary worldview
has changed: the privileges traditionally associated with root are now broken down
into distinct units that can be independently assigned on a per-thread level.

In practice, the idea is that a normal process has zero capabilities, controlled by the
permissions discussed in the previous section. You can assign capabilities to executa‐
bles (binaries and shell scripts) as well as processes to gradually add privileges neces‐
sary to carry out a task (see the discussion in “Good Practices” on page 89).

Now, a word of caution: capabilities are generally relevant only for system-level tasks.
In other words: most of the time you won’t necessarily depend on them.

In Table 4-4 you can see some of the more widely used capabilities.
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Table 4-4. Examples of useful capabilities

Capability Semantics

CAP_CHOWN Allows user to make arbitrary changes to files’ UIDs/GIDs

CAP_KILL Allows sending of signals to processes belonging to other users

CAP_SETUID Allows changing the UID

CAP_SETPCAP Allows setting the capabilities of a running process

CAP_NET_ADMIN Allows various network-related actions, such as interface config

CAP_NET_RAW Allows using RAW and PACKET sockets

CAP_SYS_CHROOT Allows calling chroot

CAP_SYS_ADMIN Allows system admin operations, including mounting filesystems

CAP_SYS_PTRACE Allows using strace to debug processes

CAP_SYS_MODULE Allows loading kernel modules

Let’s now see the capabilities in action. For starters, to view the capabilities, you can
use commands as shown in the following (output edited to fit):

$ capsh --print 
Current: =
Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,
cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,
...

$ grep Cap /proc/$$/status 
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: 000001ffffffffff
CapAmb: 0000000000000000

Overview of all capabilities on the system

Capabilities for the current process (the shell)

You can manage capabilities in a fine-grained manner—that is, on a per-file basis—
with getcap and setcap (the details and good practices are beyond the scope of this
chapter).

Capabilities help to transition from an all-or-nothing approach to finer-grained privi‐
leges on a file basis. Let’s now move on to a different advanced access control topic:
the sandboxing technique of seccomp.
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seccomp Profiles
Secure computing mode (seccomp) is a Linux kernel feature available since 2005. The
basic idea behind this sandboxing technique is that, using a dedicated syscall called
seccomp(2), you can restrict the syscalls a process can use.

While you might find it inconvenient to manage seccomp yourself directly, there are
ways to use it without too much hassle. For example, in the context of containers (see
“Containers” on page 131), both Docker and Kubernetes support seccomp.

Let’s now have a look at an extension of the traditional, granular file permission.

Access Control Lists
With access control lists (ACLs), we have a flexible permission mechanism in Linux
that you can use on top of or in addition to the more “traditional” permissions dis‐
cussed in “File Permissions” on page 81. ACLs address a shortcoming of traditional
permissions in that they allow you to grant permissions for a user or a group not in
the group list of a user.

To check if your distribution supports ACLs, you can use grep -i acl /boot/
config* where you’d hope to find a POSIX_ACL=Y somewhere in the output to con‐
firm it. In order to use ACL for a filesystem, it must be enabled at mount time, using
the acl option. The docs reference on acl has a lot of useful details.

We won’t go into greater detail here on ACLs since they’re slightly outside the scope
of this book; however, being aware of them and knowing where to start can be benefi‐
cial, should you come across them in the wild.

With that, let’s review some good practices for access control.

Good Practices
Here are some security “good practices” in the wider context of access control. While
some of them might be more applicable in professional environments, everyone
should at least be aware of them.

Least privileges
The least privileges principle says, in a nutshell, that a person or process should
only have the necessary permissions to achieve a given task. For example, if an
app doesn’t write to a file, then it only needs read access. In the context of access
control, you can practice least privileges in two ways:

• In “File Permissions” on page 81, we saw what happens when using chmod
+x. In addition to the permissions you intended, it also assigns some addi‐
tional permissions to other users. Using explicit permissions via the numeral
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mode is better than symbolic mode. In other words: while the latter is more
convenient, it’s less strict.

• Avoid running as root as much as you can. For example, when you need to
install something, you should be using sudo rather than logging in as root.

Note that if you’re writing an application, you can use an SELinux policy to
restrict access to only selected files, directories, and other features. In contrast,
the default Linux model could potentially give the application access to any files
left open on the system.

Avoid setuid
Take advantage of capabilities rather than relying on setuid, which is like a
sledgehammer and offers attackers a great way to take over your system.

Auditing
Auditing is the idea that you record actions (along with who carried them out) in
a way that the resulting log can’t be tampered with. You can then use this read-
only log to verify who did what, when. We’ll dive into this topic in Chapter 8.

Conclusion
Now that you know how Linux manages users, files, and access to resources, you have
everything at your disposal to carry out routine tasks safely and securely.

For any practical work with Linux, remember the relationship between users, pro‐
cesses, and files. This is crucial, in the context of the multiuser operating system that
Linux is, for a safe and secure operation and to avoid damages.

We reviewed access control types, defined what users in Linux are, what they can do,
and how to manage them both locally and centrally. The topic of file permissions and
how to manage them can be tricky, and mastering it is mostly a matter of practice.

Advanced permissions techniques including capabilities and seccomp profiles are
super relevant in the context of containers.

In the last section, we discussed good practices around access control–related secu‐
rity, especially applying least privileges.

If you want to dive deeper into the topics discussed in this chapter, here are some
resources:
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General
• “A Survey of Access Control Policies” by Amanda Crowell
• Lynis, an auditing and compliance testing tool

Capabilities
• “Linux Capabilities in Practice”
• “Linux Capabilities: Making Them Work”

seccomp
• “A seccomp Overview”
• “Sandboxing in Linux with Zero Lines of Code”

Access Control Lists
• “POSIX Access Control Lists on Linux”
• “Access Control Lists” via ArchLinux
• “An Introduction to Linux Access Control Lists (ACLs)” via Red Hat

Remember that security is an ongoing process, so you want to make sure to keep an
eye on users and files, something we’ll go into greater detail on in Chapters 8 and 9,
but for now let’s move on to the topic of filesystems.
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CHAPTER 5

Filesystems

In this chapter, we focus on files and filesystems. The UNIX concept of “everything is
a file” lives on in Linux, and while that’s not true 100% of the time, most resources in
Linux are indeed files. Files can be everything from the content of the letter you write
to your school to the funny GIF you download (from an obviously safe and trusted
site).

There are other things that are also exposed as files in Linux—for example, devices
and pseudo-devices such as in echo "Hello modern Linux users" > /dev/pts/0,
which prints “Hello modern Linux users” to the screen. While you may not associate
these resources with files, you can access them with the same methods and tools you
know from regular files. For example, the kernel exposes certain runtime information
(as discussed in “Process Management” on page 17) about a process, such as its PID
or the binary used to run the process.

What all these things have in common is a standardized, uniform interface: opening a
file, gathering information about a file, writing to a file, and so forth. In Linux, filesys‐
tems provide this uniform interface. This interface, together with the fact that Linux
treats files as a stream of bytes, without any expectations about the structure, enables
us to build tools that work with a range of different file types.

In addition, the uniform interface that filesystems provide reduces your cognitive
load, making it faster for you to learn how to use Linux.

In this chapter, we first define some relevant terms. Then, we look at how Linux
implements the “everything is a file” abstraction. Next, we review special-purpose file‐
systems the kernel uses to expose information about processes or devices. We then
move on to regular files and filesystems, something you would typically associate
with documents, data, and programs. We compare filesystem options and discuss
common operations.
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Basics
Before we get into the filesystem terminology, let’s first make some implicit assump‐
tions and expectations about filesystems more explicit:

• While there are exceptions, most of the widely used filesystems today are hier‐
archical. That is, they provide the user with a single filesystem tree, starting at the
root (/).

• In the filesystem tree, you find two different types of objects: directories and files.
Think of directories as an organizational unit, allowing you to group files. If
you’d like to apply the tree analogy, directories are the nodes in the tree, whereas
the leaves are either files or directories.

• You can navigate a filesystem by listing the content of a directory (ls), changing
into that directory (cd), and printing the current working directory (pwd).

• Permissions are built-in: as discussed in “Permissions” on page 80, one of the
attributes a filesystem captures is ownership. Consequently, ownership enforces
access to files and directories via the assigned permissions.

• Generally, filesystems are implemented in the kernel.

While filesystems are usually, for performance reasons, imple‐
mented in the kernel space, there’s also an option to implement
them in user land. See the Filesystem in Userspace (FUSE) docu‐
mentation and the libfuse project site.

With this informal high-level explanation out of the way, we now focus on some
more crisp definitions of terms that you’ll need to understand:

Drive
A (physical) block device such as a hard disk drive (HDD) or a solid-state drive
(SSD). In the context of virtual machines, a drive also can be emulated—for
example, /dev/sda (SCSI device) or /dev/sdb (SATA device) or /dev/hda (IDE
device).

Partition
You can logically split up drives into partitions, a set of storage sectors. For exam‐
ple, you may decide to create two partitions on your HDD, which then would
show up as /dev/sdb1 and /dev/sdb2.
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Volume
A volume is somewhat similar to a partition, but it is more flexible, and it is also
formatted for a specific filesystem. We’ll discuss volumes in detail in “Logical
Volume Manager” on page 99.

Super block
When formatted, filesystems have a special section in the beginning that captures
the metadata of the filesystem. This includes things like filesystem type, blocks,
state, and how many inodes per block.

Inodes
In a filesystem, inodes store metadata about files, such as size, owner, location,
date, and permissions. However, inodes do not store the filename and the actual
data. This is kept in directories, which really are just a special kind of regular file,
mapping inodes to filenames.

That was a lot of theory, so let’s see these concepts in action. First, here’s how to see
what drives, partitions, and volumes are present in your system:

$ lsblk --exclude 7 
NAME                      MAJ:MIN RM   SIZE RO TYPE MOUNTPOINTS
sda                         8:0    0 223.6G  0 disk              
├─sda1                      8:1    0   512M  0 part /boot/efi    
└─sda2                      8:2    0 223.1G  0 part              
  ├─elementary--vg-root   253:0    0 222.1G  0 lvm  /
  └─elementary--vg-swap_1 253:1    0   976M  0 lvm  [SWAP]

List all block devices but exclude pseudo (loop) devices.

We have a disk drive called sda with some 223 GB overall.

There are two partitions here, with sda1 being the boot partition.

The second partition, called sda2, contains two volumes (see “Logical Volume
Manager” on page 99 for details).

Now that we have an overall idea of the physical and logical setup, let’s have a closer
look at the filesystems in use:

$ findmnt -D -t nosquashfs 
SOURCE                          FSTYPE     SIZE  USED  AVAIL USE% TARGET
udev                            devtmpfs   3.8G     0   3.8G   0% /dev
tmpfs                           tmpfs    778.9M  1.6M 777.3M   0% /run
/dev/mapper/elementary--vg-root ext4     217.6G 13.8G 192.7G   6% /
tmpfs                           tmpfs      3.8G 19.2M   3.8G   0% /dev/shm
tmpfs                           tmpfs        5M    4K     5M   0% /run/lock
tmpfs                           tmpfs      3.8G     0   3.8G   0% /sys/fs/cgroup
/dev/sda1                       vfat       511M    6M 504.9M   1% /boot/efi
tmpfs                           tmpfs    778.9M   76K 778.8M   0% /run/user/1000
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List filesystems but exclude squashfs types (specialized read-only compressed
filesystem originally developed for CDs, now also for snapshots).

We can go a step further and look at individual filesystem objects such as directories
or files:

$ stat myfile
  File: myfile
  Size: 0               Blocks: 0          IO Block: 4096   regular empty file 
Device: fc01h/64513d    Inode: 555036      Links: 1 
Access: (0664/-rw-rw-r--)  Uid: ( 1000/     mh9)   Gid: ( 1001/     mh9)
Access: 2021-08-29 09:26:36.638447261 +0000
Modify: 2021-08-29 09:26:36.638447261 +0000
Change: 2021-08-29 09:26:36.638447261 +0000
 Birth: 2021-08-29 09:26:36.638447261 +0000

File type information

Information about device and inode

In the previous command, if we used stat . (note the dot), we would have gotten
the respective directory file information, including its inode, number of blocks used,
and so forth.

Table 5-1 lists some basic filesystem commands that allow you to explore the con‐
cepts we introduced earlier.

Table 5-1. Selection of low-level filesystem and block device commands

Command Use case

lsblk List all block devices

fdisk, parted Manage disk partitions

blkid Show block device attributes such as UUID

hwinfo Show hardware information

file -s Show filesystem and partition information

stat, df -i, ls -i Show and list inode-related information

Another term you’ll come across in the context of filesystems is that of links. Some‐
times you want to refer to files with different names or provide shortcuts. There are
two types of links in Linux:

96 | Chapter 5: Filesystems

https://oreil.ly/vS88y


Hard links
Reference inodes and can’t refer to directories. They also do not work across
filesystems.

Symbolic links, or symlinks
Special files with their content being a string representing the path of another file.

Now let’s see links in action (some outputs shortened):

$ ln myfile somealias 
$ ln -s myfile somesoftalias 

$ ls -al *alias 
-rw-rw-r-- 2 mh9 mh9 0 Sep  5 12:15 somealias
lrwxrwxrwx 1 mh9 mh9 6 Sep  5 12:45 somesoftalias -> myfile

$ stat somealias 
  File: somealias
  Size: 0               Blocks: 0          IO Block: 4096   regular empty file
Device: fd00h/64768d    Inode: 6302071     Links: 2
...
$ stat somesoftalias 
  File: somesoftalias -> myfile
  Size: 6               Blocks: 0          IO Block: 4096   symbolic link
Device: fd00h/64768d    Inode: 6303540     Links: 1
...

Create a hard link to myfile.

Create a soft link to the same file (notice the -s option).

List the files. Notice the different file types and the rendering of the name. We
could also have used ls -ali *alias, which would show that the inodes were
the same on the two names associated with the hard link.

Show the file details of the hard link.

Show the file details of the soft link.

Now that you’re familiar with filesystem terminology let’s explore how Linux makes it
possible to treat any kind of resource as a file.

The Virtual File System
Linux manages to provide a file-like access to many sorts of resources (in-memory,
locally attached, or networked storage) through an abstraction called the virtual file
system (VFS). The basic idea is to introduce a layer of indirection between the clients
(syscalls) and the individual filesystems implementing operations for a concrete
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device or other kind of resource. This means that VFS separates the generic operation
(open, read, seek) from the actual implementation details.

VFS is an abstraction layer in the kernel that provides clients a common way to access
resources, based on the file paradigm. A file, in Linux, doesn’t have any prescribed
structure; it’s just a stream of bytes. It’s up to the client to decide what the bytes mean.
As shown in Figure 5-1, VFS abstracts access to different kinds of filesystems:

Local filesystems, such as ext3, XFS, FAT, and NTFS
These filesystems use drivers to access local block devices such as HDDs or SSDs.

In-memory filesystems, such as tmpfs, that are not backed by long-term storage devices
but live in main memory (RAM)

We’ll cover these and the previous category in “Regular Files” on page 108.

Pseudo filesystems like procfs, as discussed in “Pseudo Filesystems” on page 104
These filesystems are also in-memory in nature. They’re used for kernel interfac‐
ing and device abstractions.

Networked filesystems, such as NFS, Samba, Netware (nee Novell), and others
These filesystems also use a driver; however, the storage devices where the actual
data resides is not locally attached but remote. This means that the driver
involves network operations. For this reason, we’ll cover them in Chapter 7.

Figure 5-1. Linux VFS overview

Describing the makeup of the VFS isn’t easy. There are over 100 syscalls related to
files; however, in its core, the operations can be grouped into a handful of categories,
as listed in Table 5-2.
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Table 5-2. Select syscalls making up the VFS interface

Category Example syscalls
Inodes chmod, chown, stat

Files open, close, seek, truncate, read, write

Directories chdir, getcwd, link, unlink, rename, symlink

Filesystems mount, flush, chroot

Others mmap, poll, sync, flock

Many VFS syscalls dispatch to the filesystem-specific implementation. For other sys‐
calls, there are VFS default implementations. Further, the Linux kernel defines rele‐
vant VFS data structures—see include/linux/fs.h—such as the following:

inode

The core filesystem object, capturing type, ownership, permissions, links, point‐
ers to blocks containing the file data, creation and access statistics, and more

file

Representing an open file (including path, current position, and inode)

dentry (directory entry)
Stores its parent and children

super_block

Representing a filesystem including mount information

Others
Including vfsmount and file_system_type

With the VFS overview done, let’s have a closer look at the details, including volume
management, filesystem operations, and common file system layouts.

Logical Volume Manager
We previously talked about carving up drives using partitions. While doing this is
possible, partitions are hard to use, especially when resizing (changing the amount of
storage space) is necessary.

Logical volume manager (LVM) uses a layer of indirection between physical entities
(such as drives or partitions) and the file system. This yields a setup that allows for
risk-free, zero-downtime expanding and automatic storage extension through the
pooling of resources. The way LVM works is depicted in Figure 5-2, with key con‐
cepts explained in the passage that follows.
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Figure 5-2. Linux LVM overview

Physical volumes (PV)
Can be a disk partition, an entire disk drive, and other devices.

Logical volumes (LV)
Are block devices created from VGs. These are conceptually comparable to parti‐
tions. You have to create a filesystem on an LV before you can use it. You can
easily resize LVs while in use.

Volume groups (VG)
Are a go-between between a set of PVs and LVs. Think of a VG as pools of PVs
collectively providing resources.

To manage volumes with LVM, a number of tools are required; however, they are
consistently named and relatively easy to use:

PV management tools
• lvmdiskscan

• pvdisplay

• pvcreate

• pvscan

VG management tools
• vgs

• vgdisplay

• vgcreate

• vgextend
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LV management tools
• lvs

• lvscan

• lvcreate

Let’s see some LVM commands in action, using a concrete setup:

$ sudo lvscan 
  ACTIVE            '/dev/elementary-vg/root' [<222.10 GiB] inherit
  ACTIVE            '/dev/elementary-vg/swap_1' [976.00 MiB] inherit

$ sudo vgs 
  VG            #PV #LV #SN Attr   VSize    VFree
  elementary-vg   1   2   0 wz--n- <223.07g 16.00m

$ sudo pvdisplay 
  --- Physical volume ---
  PV Name               /dev/sda2
  VG Name               elementary-vg
  PV Size               <223.07 GiB / not usable 3.00 MiB
  Allocatable           yes
  PE Size               4.00 MiB
  Total PE              57105
  Free PE               4
  Allocated PE          57101
  PV UUID               2OrEfB-77zU-jun3-a0XC-QiJH-erDP-1ujfAM

List logical volumes; we have two here (root and swap_1) using volume group
elementary-vg.

Display volume groups; we have one here called elementary-vg.

Display physical volumes; we have one here (/dev/sda2) that’s assigned to the vol‐
ume group elementary-vg.

Whether you use a partition or an LV, two more steps, which we’ll cover next, are
necessary to use a filesystem.

Filesystem Operations
In the following section, we’ll discuss how to create a filesystem, given a partition or a
logical volume (created using LVM). There are two steps involved: creating the file‐
system—in other non-Linux operating systems, this step is sometimes called format‐
ting—and then mounting it, or inserting it into the filesystem tree.
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Creating filesystems
In order to use a filesystem, the first step is to create one. This means that you’re set‐
ting up the management pieces that make up a filesystem, taking a partition or a vol‐
ume as the input. Consult Table 5-1 if you’re unsure how to gather the necessary
information about the input, and once you have everything together, use mkfs to cre‐
ate a filesystem.

mkfs takes two primary inputs: the type of filesystem you want to create (see one of
the options we discuss in “Common Filesystems” on page 109) and the device you
want to create the filesystem on (for example, a logical volume):

mkfs -t ext4 \ 
    /dev/some_vg/some_lv 

Create a filesystem of type ext4.

Create the filesystem on the logical volume /dev/some_vg/some_lv.

As you can see from the previous command, there’s not much to it to create a filesys‐
tem, so the main work for you is to figure out what filesystem type to use.

Once you have created the filesystem with mkfs, you can then make it available in the
filesystem tree.

Mounting filesystems
Mounting a filesystem means attaching it to the filesystem tree (which starts at /). Use
the mount command to attach a filesystem. mount takes two main inputs: the device
you want to attach and the place in the filesystem tree. In addition, you can provide
other inputs, including mount options (via -o) such as read-only, and bind mounts—
via --bind—for mounting directories into the filesystem tree. We’ll revisit this latter
option in the context of containers.

You can use mount on its own as well. Here’s how to list existing mounts:

$ mount -t ext4,tmpfs 
tmpfs on /run type tmpfs (rw,nosuid,noexec,relatime,size=797596k,mode=755)
/dev/mapper/elementary--vg-root on / type ext4 (rw,relatime,errors=remount-ro) 
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
tmpfs on /run/lock type tmpfs (rw,nosuid,nodev,noexec,relatime,size=5120k)
tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755)

List mounts but only show certain filesystem types (ext4 and tmpfs here).

An example mount: the LVM VG /dev/mapper/elementary--vg-root of type ext4
is mounted at the root.
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You must make sure that you mount a filesystem using the type it has been created
with. For example, if you’re trying to mount an SD card using mount -t vfat /dev/
sdX2 /media, you have to know the SD card is formatted using vfat. You can let
mount try all filesystems until one works using the -a option.

Further, the mounts are valid only for as long as the system is running, so in order to
make it permanent, you need to use the fstab file (/etc/fstab). For example, here is
mine (output slightly edited to fit):

$ cat /etc/fstab
# /etc/fstab: static file system information.
#
# Use 'blkid' to print the universally unique identifier for a
# device; this may be used with UUID= as a more robust way to name devices
# that works even if disks are added and removed. See fstab(5).
#
# <file system> <mount point> <type> <options> <dump> <pass>
/dev/mapper/elementary--vg-root / ext4 errors=remount-ro 0 1
# /boot/efi was on /dev/sda1 during installation
UUID=2A11-27C0  /boot/efi vfat umask=0077 0 1
/dev/mapper/elementary--vg-swap_1 none swap sw 0 0

Now you know how to manage partitions, volumes, and filesystems. Next up, we
review common ways to organize filesystems.

Common Filesystem Layouts
Once you have a filesystem in place, an obvious challenge is to come up with a way to
organize its content. You may want to organize things like where programs are stored,
configuration data, system data, and user data. We will refer to this organization of
directories and their content as the filesystem layout. Formally, the layout is called the
Filesystem Hierarchy Standard (FHS). It defines directories, including their structure
and recommended content. The Linux Foundation maintains the FHS, and it’s a good
starting point for Linux distributions to follow.

The idea behind FHS is laudable. However, in practice you will find that the filesys‐
tem layout very much depends on the Linux distribution you’re using. Thus, I
strongly recommend you use the man hier command to learn about your concrete
setup.

To provide you with a high-level idea of what you can expect when you see certain
top-level directories, I compiled a list of common ones in Table 5-3.

Table 5-3. Common top-level directories

Directory Semantics
bin, sbin System programs and commands (usually links to /usr/bin and /usr/sbin)

boot Kernel images and related components
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Directory Semantics
dev Devices (terminals, drives, etc.)

etc System configuration files

home User home directories

lib Shared system libraries

mnt, media Mount points for removable media (e.g., USB sticks)

opt Distro specific; can host package manager files

proc, sys Kernel interfaces; see also “Pseudo Filesystems” on page 104

tmp For temporary files

usr User programs (usually read-only)

var User programs (logs, backups, network caches, etc.)

With that, let’s move on to some special kinds of filesystems.

Pseudo Filesystems
Filesystems are a great way to structure and access information. By now you have
likely already internalized the Linux motto that “everything is a file.” We looked at
how Linux provides a uniform interface via VFS in “The Virtual File System” on page
97. Now, let’s take a closer look at how an interface is provided in cases where the VFS
implementor is not a block device (such as an SD card or an SSD drive).

Meet pseudo filesystems: they only pretend to be filesystems so that we can interact
with them in the usual manner (ls, cd, cat), but really they are wrapping some kernel
interface. The interface can be a range of things, including the following:

• Information about a process
• An interaction with devices such as keyboards
• Utilities such as special devices you can use as data sources or sinks

Let’s have a closer look at the three major pseudo filesystems Linux has, starting with
the oldest.

procfs
Linux inherited the /proc filesystem (procfs) from UNIX. The original intention was
to publish process-related information from the kernel, to make it consumable for
system commands such as ps or free. It has very few rules around structure, allows
read-write access, and over time many things found their way into it. In general, you
find two types of information there:
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• Per-process information in /proc/PID/. This is process-relevant information that
the kernel exposes via directories with the PID as the directory name. Details
concerning the information available there are listed in Table 5-4.

• Other information such as mounts, networking-related information, TTY driv‐
ers, memory information, system version, and uptime.

You can glean per-process information as listed in Table 5-4 simply by using com‐
mands like cat. Note that most are read-only; the write semantics depend on the
underlying resource.

Table 5-4. Per-process information in procfs (most notable)

Entry Type Information

attr Directory Security attributes

cgroup File Control groups

cmdline File Command line

cwd Link Current working directory

environ File Environment variables

exe Link Executable of the process

fd Directory File descriptors

io File Storage I/O (bytes/char read and written)

limits File Resource limits

mem File Memory used

mounts File Mounts used

net Directory Network stats

stat File Process status

syscall File Syscall usage

task Directory Per-task (thread) information

timers File Timers information

To see this in action, let’s inspect the process status. We’re using status here rather
than stat, which doesn’t come with human-readable labels:

$ cat /proc/self/status | head -10 
Name:   cat
Umask:  0002
State:  R (running) 
Tgid:   12011
Ngid:   0
Pid:    12011 
PPid:   3421 
TracerPid:      0
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Uid:    1000    1000    1000    1000
Gid:    1000    1000    1000    1000

Get the process status about the currently running command, showing only the
first 10 lines.

The current state (running, on-CPU).

The PID of the current process.

The process ID of the parent process of the command; in this case, it’s the shell
where I ran the cat command in.

Here is one more example of using procfs to glean information, this time from the
networking space:

$ cat /proc/self/net/arp
IP address       HW type     Flags       HW address            Mask     Device
192.168.178.1    0x1         0x2         3c:a6:2f:8e:66:b3     *        wlp1s0
192.168.178.37   0x1         0x2         dc:54:d7:ef:90:9e     *        wlp1s0

As shown in the previous command, we can glean ARP information about the cur‐
rent process from this special /proc/self/net/arp.

procfs is very useful if you’re low-level debugging or developing system tooling. It is
relatively messy, so you’ll need the kernel docs or, even better, the kernel source code
at hand to understand what each file represents and how to interpret the information
in it.

Let’s move on to a more recent, more orderly way the kernel exposes information.

sysfs
Where procfs is pretty Wild West, the /sys filesystem (sysfs) is a Linux-specific,
structured way for the kernel to expose select information (such as about devices)
using a standardized layout.

Here are the directories in sysfs:

block/
This directory symbolic links to discovered block devices.

bus/
In this directory, you find one subdirectory for each physical bus type supported
in the kernel.

class/
This directory contains device classes.
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dev/
This directory contains two subdirectories: block/ for block devices and char/ for
character devices on the system, structured with major-ID:minor-ID.

devices/
In this directory, the kernel provides a representation of the device tree.

firmware/
Via these directories, you can manage firmware-specific attributes.

fs/
This directory contains subdirectories for some filesystems.

module/
In these directories you find subdirectories for each module loaded in the kernel.

There are more subdirectories in sysfs, but some are newish and/or would benefit
from better documentation. You’ll find certain information duplicated in sysfs that
is also available in procfs, but other information (such as memory information) is
only available in procfs.

Let’s see sysfs in action (output edited to fit):

$ ls -al /sys/block/sda/ | head -7 
total 0
drwxr-xr-x 11 root root    0 Sep  7 11:49 .
drwxr-xr-x  3 root root    0 Sep  7 11:49 ..
-r--r--r--  1 root root 4096 Sep  8 16:22 alignment_offset
lrwxrwxrwx  1 root root    0 Sep  7 11:51 bdi ->  ../../../virtual/bdi/8:0 
-r--r--r--  1 root root 4096 Sep  8 16:22 capability 
-r--r--r--  1 root root 4096 Sep  7 11:49 dev 

List information about block device sda, showing only the first seven lines.

The backing_dev_info link using MAJOR:MINOR format.

Captures device capabilities, such as if it is removable.

Contains the device major and minor number (8:0); see also the block device
drivers reference for what the numbers mean.

Next up in our little pseudo filesystem review are devices.

devfs
The /dev filesystem (devfs) hosts device special files, representing devices ranging
from physical devices to things like a random number generator or a write-only data
sink.
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The devices available and managed via devfs are:

Block devices
Handle data in blocks—for example, storage devices (drives)

Character devices
Handle things character by character, such as a terminal, a keyboard, or a mouse

Special devices
Generate data or allow you to manipulate it, including the famous /dev/null
or /dev/random

Let’s now see devfs in action. For example, assume you want to get a random string.
You could do something like the following:

tr -dc A-Za-z0-9 < /dev/urandom | head -c 42

The previous command generates a 42-character random sequence containing
uppercase and lowercase as well as numerical characters. And while /dev/urandom
looks like a file and can be used like one, it indeed is a special file that, using a num‐
ber of sources, generates (more or less) random output.

What do you think about the following command:

echo "something" > /dev/tty

That’s right! The string “something” appeared on your display, and that is by
design. /dev/tty stands for the terminal, and with that command we sent something
(quite literally) to it.

With a good understanding of filesystems and their features, let’s now turn our atten‐
tion to filesystems that you want to use to manage regular files such as documents
and data files.

Regular Files
In this section, we focus on regular files and filesystems for such file types. Most of
the day-to-day files we’re dealing with when working fall into this category: office
documents, YAML and JSON configuration files, images (PNG, JPEG, etc.), source
code, plain text files, and so on.

Linux comes with a wealth of options. We’ll focus on local filesystems, both those
native for Linux as well as those in other operating systems (such as Windows/DOS)
that Linux allows you to use. First, let’s have a look at some common filesystems.
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Common Filesystems
The term common filesystem doesn’t have a formal definition. It’s simply an umbrella
term for filesystems that are either the defaults used in Linux distributions or widely
used in storage devices such as removable devices (USB sticks and SD cards) or read-
only devices, like CDs and DVDs.

In Table 5-5 I provide a quick overview and comparison of some common filesystems
that enjoy in-kernel support. Later in this section, we’ll review some popular filesys‐
tems in greater detail.

Table 5-5. Common filesystems for regular files

Filesystem Linux support since File size Volume size Number of files Filename length

ext2 1993 2 TB 32 TB 1018 255 characters

ext3 2001 2 TB 32 TB variable 255 characters

ext4 2008 16 TB 1 EB 4 billion 255 characters

btrfs 2009 16 EB 16 EB 218 255 characters

XFS 2001 8 EB 8 EB 264 255 characters

ZFS 2006 16 EB 2128 Bytes 1014 files per directory 255 characters

NTFS 1997 16 TB 256 TB 232 255 characters

vfat 1995 2 GB N/A 216 per directory 255 characters

The information provided in Table 5-5 is meant to give you a
rough idea about the filesystems. Sometimes it’s hard to pinpoint
the exact time a filesystem would be officially considered part of
Linux; sometimes the numbers make sense only with the relevant
context applied. For example, there are differences between theo‐
retical limits and implementation.

Now let’s take a closer look at some widely used filesystems for regular files:

ext4

A widely used filesystem, used by default in many distributions nowadays. It’s a
backward-compatible evolution of ext3. Like ext3, it offers journaling—that is,
changes are recorded in a log so that in the worst-case scenario (think: power
outage), the recovery is fast. It’s a great general-purpose choice. See the ext4
manual for usage.

XFS
A journaling filesystem that was originally designed by Silicon Graphics (SGI) for
their workstations in the early 1990s. Offering support for large files and high-
speed I/O, it’s now used, for example, in the Red Hat distributions family.
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ZFS
Originally developed by Sun Microsystems in 2001, ZFS combines filesystem and
volume manager functionality. While now there is the OpenZFS project, offering
a path forward in an open source context, there are some concerns about ZFS’s
integration with Linux.

FAT
This is really a family of FAT filesystems for Linux, with vfat being used most
often. The main use case is interoperability with Windows systems, as well as
removable media that uses FAT. Many of the native considerations around vol‐
umes do not apply.

Drives are not the only place one can store data, so let’s have a look at in-memory
options.

In-Memory Filesystems
There are a number of in-memory filesystems available; some are general purpose
and others have very specific use cases. In the following, we list some widely used in-
memory filesystems (in alphabetical order):

debugfs

A special-purpose filesystem used for debugging; usually mounted with mount -t
debugfs none /sys/kernel/debug.

loopfs

Allows mapping a filesystem to blocks rather than devices. See also a mail thread
on the background.

pipefs

A special (pseudo) filesystem mounted on pipe: that enables pipes.

sockfs

Another special (pseudo) filesystem that makes network sockets look like files,
sitting between the syscalls and the sockets.

swapfs

Used to realize swapping (not mountable).

tmpfs

A general-purpose filesystem that keeps file data in kernel caches. It’s fast but
nonpersistent (power off means data is lost).

Let’s move on to a special category of filesystems, specifically relevant in the context
of “Containers” on page 131.
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Copy-on-Write Filesystems
Copy-on-write (CoW) is a nifty concept to increase I/O speed and at the same time
use less space. The way it works is depicted in Figure 5-3, with further explanation in
the passage that follows.

Figure 5-3. The CoW principle in action

1. The original file, File 1, consisting of blocks A, B, and C, is copied to a file called
File 2. Rather than copying the actual blocks, only the metadata (pointers to the
blocks) is copied. This is fast and doesn’t use up much space since only metadata
is created.

2. When File 2 is modified (let’s say something in block C is changed), only then is
block C copied: a new block called C′ is created, and while File 2 still points to
(uses) the unmodified blocks A and B, it now uses a new block (C′) to capture
new data.

Before we get to implementations, we need to understand a second concept relevant
in this context: union mounts. This is the idea that you can combine (mount) multi‐
ple directories into one location so that, to the user of the resulting directory, it
appears that said directory contains the combined content (or: union) of all the par‐
ticipating directories. With union mounts, you often come across the terms upper
filesystem and lower filesystem, hinting at the layering order of the mounts. You’ll find
more details in the article “Unifying Filesystems with Union Mounts”.

With union mounts, the devil is in the details. You have to come up with rules around
what happens when a file exists in multiple places or what writing to or removing files
means.
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Let’s have a quick look at implementations of CoW in the context of Linux filesys‐
tems. We’ll have a closer look at some of these in the context of Chapter 6, when we
discuss their use as a building block for container images.

Unionfs
Originally developed at Stony Brook University, Unionfs implements a union
mount for CoW filesystems. It allows you to transparently overlay files and direc‐
tories from different filesystems using priorities at mount time. It was widely
popular and used in the context of CD-ROMs and DVDs.

OverlayFS
A union mount filesystem implementation for Linux introduced in 2009 and
added to the kernel in 2014. With OverlayFS, once a file is opened, all operations
are directly handled by the underlying (lower or upper) filesystems.

AUFS
Another attempt to implement an in-kernel union mount, AUFS (short for
advanced multilayered unification filesystem; originally AnotherUnionFS) has
not been merged into the kernel yet. It is used to default in Docker (see “Docker”
on page 138; nowadays Docker defaults to OverlayFS with storage driver
overlay2).

btrfs

Short for b-tree filesystem (and pronounced butterFS or betterFS), btrfs is a
CoW initially designed by Oracle Corporation. Today, a number of companies
contribute to the btrfs development, including Facebook, Intel, SUSE, and Red
Hat.

It comes with a number of features such as snapshots (for software-based RAID)
and automatic detection of silent data corruptions. This makes btrfs very suit‐
able for professional environments—for example, on a server.

Conclusion
In this chapter, we discussed files and filesystems in Linux. Filesystems are a great and
flexible way to organize access to information in a hierarchical manner. Linux has
many technologies and projects around filesystems. Some are open source based, but
there is also a range of commercial offerings.

We discussed the basic building blocks, from drives to partitions and volumes. Linux
realizes the “everything is a file” abstraction using VFS, supporting virtually any kind
of filesystem, local or remote.
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The kernel uses pseudo filesystems such as /proc and /sys to expose information about
processes or devices. You can interact with these (in-memory) filesystems that repre‐
sent kernel APIs just like with filesystems such as ext4 (that you use to store files).

We then moved on to regular files and filesystems, where we compared common
local filesystem options, as well as in-memory and CoW filesystem basics. Linux’s
filesystem support is comprehensive, allowing you to use (at least read) a range of file‐
systems, including those originating from other operating systems such as Windows.

You can dive deeper into the topics covered in this chapter with the following
resources:

Basics
• “UNIX File Systems: How UNIX Organizes and Accesses Files on Disk”
• “KHB: A Filesystems Reading List”

VFS
• “Overview of the Linux Virtual File System”
• “Introduction to the Linux Virtual Filesystem (VFS)”
• “LVM” on ArchWiki
• “LVM2 Resource Page”
• “How to Use GUI LVM Tools”
• “Linux Filesystem Hierarchy”
• “Persistent BPF Objects”

Regular files
• “Filesystem Efficiency—Comparison of EXT4, XFS, BTRFS, and ZFS” thread on

reddit
• “Linux Filesystem Performance Tests”
• “Comparison of File Systems for an SSD” thread on Linux.org
• “Kernel Korner—Unionfs: Bringing Filesystems Together”
• “Getting Started with btrfs for Linux”

Equipped with knowledge around filesystems, we’re now ready to bring things
together and focus on how to manage and launch applications.
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CHAPTER 6

Applications, Package Management,
and Containers

In this chapter, we talk about applications in Linux. Sometimes, the term application
(or simply app) is used interchangeably with program, binary, or executable. We’ll
explain the differences between these terms and initially will be focusing on terminol‐
ogy, including the definition of applications and packages.

We discuss how Linux starts up and brings all the services we depend on into being.
This is also known as the boot process. We will focus on init systems, specifically on
the de-facto standard, the systemd ecosystem.

We then move on to package management, where we first review the application sup‐
ply chain in general terms and see what the different moving parts are about. Then, to
give you some context about existing mechanisms and challenges, we focus on how
apps were traditionally distributed and installed. We discuss package management in
traditional Linux distros, from Red Hat to Debian-based systems, and also have a
peek at programming language–specific package managers such as Python or Rust.

In the next part of the chapter, we focus on containers: what they are and how they
work. We’ll review the building blocks of containers, what tooling you have available,
and good practices around using containers.

To round off this chapter, we look at modern ways to manage Linux apps, especially
in desktop environments. Most of those modern package manager solutions are also
making use of containers in some form or another.
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Running Example: greeter
To demonstrate certain technologies in this chapter, we’ll use a running example
called greeter. It’s a simple shell script that echoes the name provided or a fallback
greeting if nothing is provided.

If you want to follow along, now is a good time to paste the following bash script into
a file called greeter.sh. Make it executable using chmod 750 greeter.sh (and if you
don’t recall what this means, read up on it in “File Permissions” on page 81):

#!/usr/bin/env bash

set -o errexit
set -o errtrace
set -o pipefail

name="${1}"

if [ -z "$name" ]
then
  printf "You are awesome!\n"
else
  printf "Hello %s, you are awesome!\n" ${name}
fi

And now, without further ado, let’s see what an application is and what other related
terms there are.

Basics
Before we get into the nitty-gritty details of application management, init systems,
and containers, let’s start with relevant definitions for this chapter and beyond. The
reason why we only now go into details concerning apps is that there are a number of
prerequisites (such as the Linux kernel, shell, filesystems, and security aspects) that
you need to fully understand apps, and now that we’re in a position to build on what
we’ve learned so far, we can tackle apps:

Program
This is usually either a binary file or a shell script that Linux can load into mem‐
ory and execute. Another way to refer to this entity is executable. The type of the
executable determines what exactly takes care of running it—for example, a shell
(see “Shells” on page 33) would interpret and execute a shell script.
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Process
A running entity based on a program, loaded into main memory and either using
the CPU or I/O, when not sleeping. See also “Process Management” on page 17
and Chapter 3.

Daemon
Short for daemon process, sometimes called service, this is a background process
that provides a certain function to other processes. For example, a printer dae‐
mon allows you to print. There are also daemons for web services, logging, time,
and many more utilities you rely on on a daily basis.

Application
A program including its dependencies. Usually a substantial program, including
a user interface. We usually associate the term application with the entire life
cycle of a program, its configuration, and its data: from finding and installing to
upgrading to removing it.

Package
A file that contains programs and configurations; used to distribute software
applications.

Package manager
A program that takes a package as an input and, based on its content and the user
instruction, installs it, upgrades it, or removes it from a Linux environment.

Supply Chain
A collection of software producers and distributors that enable you to find and
use applications based on packages; see “Linux Application Supply Chains” on
page 124 for details.

Booting
The startup sequence in Linux that involves hardware and operating system initi‐
alization steps, including loading the kernel and launching service (or daemon)
programs with the goal to bring Linux into a state that it can be used; see “The
Linux Startup Process” on page 117 for details.

Equipped with these high-level definitions, we quite literally start at the beginning:
let’s have a look at how Linux starts up and how all the daemons get launched so that
we can use Linux to do our work.

The Linux Startup Process
The Linux boot process is typically a multiphase effort in which hardware and the
kernel work together.

In Figure 6-1, you can see the boot process end to end, with the following five steps:
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Figure 6-1. The Linux startup process

1. In modern environments, the Unified Extensible Firmware Interface (UEFI) spec
defines the boot configuration (stored in NVRAM) and the boot loader. In older
systems, in this step, after the Power On Self Test (POST) is completed, the Basic
I/O System (BIOS; see “The BIOS and UEFI” on page 14) would initialize hard‐
ware (managing I/O ports and interrupts) and hand over control to the boot
loader.

2. The boot loader has one goal: to bootstrap the kernel. Depending on the boot
medium, the details may differ slightly. There are a range of boot loader options,
both current (e.g., GRUB 2, systemd-boot, SYSLINUX, rEFInd) and legacy (e.g.,
LILO, GRUB 1).

3. The kernel is usually located in the /boot directory in a compressed form. That
means the first step is to extract and load the kernel into main memory. After the
initialization of its subsystems, filesystems, and drivers (as discussed in Chapter 2
and “Mounting filesystems” on page 102), the kernel hands over control to the
init system, and with that the boot process proper ends.

4. The init system is responsible for launching daemons (service processes) system-
wide. This init process is the root of the process hierarchy and with it has the
process ID (PID) 1. In other words, the process with PID 1 runs until you power
off the system. Besides being responsible for launching other daemons, the PID 1
process traditionally also takes care of orphaned processes (processes that don’t
have a parent process anymore).

5. Usually, some other user-space-level initialization takes place after this, depend‐
ing on the environment:
• There is usually a terminal, environment, and shell initialization going on, as

discussed in Chapter 3.
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• Display manager, graphical server, and the like, for desktop environments with
a GUI are launched, taking user preferences and configurations into account.

With this high-level overview of the Linux startup process, we conclude our intro‐
ductory section and focus on a vital, user-facing component: the init systems. This
part (the preceding steps 4 and 5) is the most relevant for you, in the context of this
book, allowing you to customize and extend your Linux installation.

There is a good comparison of init systems available via the Gentoo wiki. We’ll
restrict our discussion to systemd, which almost all current Linux distributions are
using.

System V Init
System V–style init programs (or SysV init for short) were the traditional init system in
Linux. Linux inherited SysV from Unix, which defines so-called runlevels (think: sys‐
tem states such as halt, single-user, multi-user mode, or GUI mode) with the con‐
figuration usually stored in /etc/init.d. However, the sequential way of starting up
daemons and the distro-specific handling of the configuration made this a not-very-
portable option.

Here’s a fun fact: one of the book reviewers, Chris, was the first person to document
SysV init in about 1984 (which an engineer designed over a weekend, reportedly).

systemd
systemd was initially an init system, a replacement for initd, but today it’s a powerful
supervisor that includes functions such as logging, network configuration, and net‐
work time synchronization. It provides for a flexible, portable way to define daemons
and their dependencies, and a uniform interface to control the configuration.

Almost all current Linux distributions are using systemd, including Fedora since May
2011, openSUSE since September 2012, CentOS since April 2014, RHEL since June
2014, SUSE Linux since October 2014, Debian since April 2015, and Ubuntu since
April 2015.

In particular, systemd addresses the shortcomings of previous init systems by doing
the following:

• Providing a uniform way to manage startup across distros
• Implementing a faster, more comprehensible service configuration
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• Offering a modern management suite including monitoring, resource usage con‐
trol (via cgroups), and built-in auditing

Additionally, init starts services at initialization time in sequence (that is, in alpha‐
numeric order), while systemd can start any service that has had its dependencies
met, potentially speeding up the startup time.

The way you tell systemd what to run, when to run, and how to run is via units.

Units
A unit in systemd is a logical grouping with different semantics depending on its
function and/or the resource it targets. systemd distinguishes a number of units,
depending on the target resource:

service units
Describe how to manage a service or application

target units
Capture dependencies

mount units
Define a mountpoint

timer units
Define timers for cron jobs and the like

Other, less important unit types include the following:

socket

Describes a network or IPC socket

device

For udev or sysfs filesystems

automount

Configures automatic mountpoints

swap

Describes swap space

path

For path-based activation

snapshot

Allows for reconstructing the current state of the system after changes
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slice

Associated with cgroups (see “Linux cgroups” on page 135)

scope

Manages sets of system processes created externally

To be known to systemd, a unit needs to be serialized into a file. systemd looks for
unit files in multiple locations. The three most important filepaths are the following:

/lib/systemd/system
Package-installed units

/etc/systemd/system
System admin–configured units

/run/systemd/system
Nonpersistent runtime modifications

With the basic unit of work (no pun intended) in systemd defined, let’s move on to
how you control it via the command line.

Management with systemctl
The tool you use to interact with systemd to manage services is systemctl.

In Table 6-1 I’ve compiled a list of often-used systemctl commands.

Table 6-1. Useful systemd commands

Command Use case

systemctl enable XXXXX.service Enable the service; ready to be started

systemctl daemon-reload Reload all unit files and re-create entire dependency tree

systemctl start XXXXX.service Start the service

systemctl stop XXXXX.service Stop the service

systemctl restart XXXXX.service Stop and then start the service

systemctl reload XXXXX.service Issue reload command to service; falls back to restart

systemctl kill XXXXX.service Stop service execution

systemctl status XXXXX.service Get a short summary of service state including some log lines

Note that there are many more commands that systemctl offers, from dependency
management and query to controlling the overall system (reboot, for example).

The systemd ecosystem has a number of other command-line tools you may find
handy and that you should at least be aware of. This includes but is not limited to the
following:
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bootctl

Allows you to check the boot loader status and manage available boot loaders.

timedatectl

Allows you to set and view time- and date-related information.

coredumpctl

Enables you to process saved core dumps. Consider this tool when you’re
troubleshooting.

Monitoring with journalctl
The journal is a component of systemd; technically it is a binary file managed by the
systemd-journald daemon, providing a centralized location for all messages logged
by systemd components. We’ll cover it in detail in “journalctl” on page 196. All you
need to know for now is that this is the tool that allows you to view systemd-managed
logs.

Example: scheduling greeter
After all that theory, let’s see systemd in action. As a simple use case example, let’s
assume we want to launch our greeter app (see “Running Example: greeter” on page
116) every hour.

First, we define a systemd unit file of type service. This tells systemd how to start
the greeter app; store the following in a file called greeter.service (in any directory,
could be a temporary one):

[Unit]
Description=My Greeting Service 

[Service]
Type=oneshot
ExecStart=/home/mh9/greeter.sh 

The description of our services, shown when we use systemctl status

The location of our app

Next, we define a timer unit to launch the greeter service every hour. Store the follow‐
ing in a file called greeter.timer:

[Unit]
Description=Runs Greeting service at the top of the hour

[Timer]
OnCalendar=hourly 
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Defines the schedule using the systemd time and date format

Now we copy both unit files to /run/systemd/system so that systemd recognizes them:

$ sudo ls -al /run/systemd/system/
total 8
drwxr-xr-x  2 root root  80 Sep 12 13:08 .
drwxr-xr-x 21 root root 500 Sep 12 13:09 ..
-rw-r--r--  1 root root 117 Sep 12 13:08 greeter.service
-rw-r--r--  1 root root 107 Sep 12 13:08 greeter.timer

We’re now in a position to use the greeter timer, since systemd automatically picked it
up when we copied it into the respective directory.

Debian-based systems such as Ubuntu enable and start service
units by default. Red Hat family systems won’t start the service
without an explicit systemctl start greeter.timer. This is also
true for enabling services on boot, where Debian-based distros
enable services by default, whereas Red Hat distros require an
explicit confirmation in the form of systemctl enable.

Let’s check the status of our greeter timer:

$ sudo systemctl status greeter.timer
● greeter.timer - Runs Greeting service at the top of the hour
   Loaded: loaded (/run/systemd/system/greeter.timer; static; \
   vendor preset: enabled)
   Active: active (waiting) since Sun 2021-09-12 13:10:35 IST; 2s ago
  Trigger: Sun 2021-09-12 14:00:00 IST; 49min left
Sep 12 13:10:35 starlite systemd[1]: \
Started Runs Greeting service at the top of the hour.

So systemd confirms that it knows about our greeter and that it’s scheduled to run.
But how do you know if it worked? Let’s check the logs (note that the output was
edited and that the stdout output is going directly to the logs):

$ journalctl -f -u greeter.service 
-- Logs begin at Sun 2021-01-24 14:36:30 GMT. --
Sep 12 14:00:01 starlite systemd[1]: Starting My Greeting Service...
Sep 12 14:00:01 starlite greeter.sh[21071]: You are awesome!
...

Using journalctl to look at and follow (-f) the logs of the greeter.service unit
(selected with -u)

With this high-level systemd overview, let’s move on to how to manage applications
the traditional way, with general-purpose package managers. But before we get into
the technicalities of packages, let’s step back a bit and discuss apps, packages, and
package managers in the context of a broader concept: supply chains.
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Linux Application Supply Chains
Let’s start with what we mean by supply chain: a system of organizations and individ‐
uals supplying a product to a consumer. While you may not think about supply
chains a lot, you’re dealing with them on a daily basis—for example, when you buy
food or fuel your car. In our discussion, the products are applications made up of
software artifacts, and you can think of the consumer as either yourself as the person
using an app or as a tool that manages the apps for you.

On a conceptual level, Figure 6-2 shows the main actors and phases of a typical Linux
application supply chain.

Figure 6-2. Linux app supply chain

The three distinct areas in a Linux application supply are as follows:

Software maintainers
These include individual developers, open source projects, and companies, such
as independent software vendors (ISVs), that produce software artifacts and pub‐
lish them, for example, as packages to a repository (repo).

Repository
This lists the package that contains all or part of an app together with metadata.
The package usually captures the dependencies of an app. Dependencies are
other packages that an app needs in order to function. This can be a library, some
kind of exporters or importers, or other service programs. Keeping these depen‐
dencies up to date is hard.
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Tooling (a package manager)
On the target-system side, this can look up packages in the repository and install,
update, and remove apps as instructed by the human user. Note that one or more
packages can represent the app and its dependencies.

While the details may differ from distribution to distribution and depend on the
environment (server, desktop, etc.), the app supply chains all have the elements
shown in Figure 6-2 in common.

There are many options available for package and dependency management, such as
traditional package managers, container-based solutions, and more recent
approaches.

In Figure 6-3, I’ve tried to give you a high-level overview, without claiming this is a
complete picture.

Figure 6-3. The Linux package management and application dependency management
universe

A few notes on the three primary categories of options for package and dependency
management:
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Traditional package managers
Within this category, we usually differentiate between low-level and high-level
tooling. If a package manager can resolve dependencies and provides a high-level
interface (install, update, remove), we call it a high-level package manager.

Container-based solutions
These initially came out of the server and cloud computing realm. Given their
capabilities, one use case, but not necessarily their primary one, is application
management. In other words, as a developer you’ll love containers since they
enable you to easily test things and make it straightforward to ship your
production-ready app. See also “Containers” on page 131.

Modern package managers
These have their roots in desktop environments, and the main goal here is to
make it as easy as possible for the end user to consume apps. See also “Modern
Package Managers” on page 143.

Packages and Package Managers
In this section, we discuss package formats and package managers that have been in
use for a long time, in some cases decades. These usually stem from two major Linux
distribution families: Red Hat (RHEL, Fedora, CentOS, etc.) and Debian-based sys‐
tems (Debian, Ubuntu, etc.).

The two concepts relevant to our discussions here are the following:

The packages themselves
Technically a file that usually is zipped and may contain metadata.

The tooling (called package managers)
Deals with those packages on the target system, to install and maintain apps. A
package manager usually interacts with the repo on your behalf and maintains a
local cache of packages.

The target system may be a desktop environment on your laptop or a server VM
instance in the cloud, for example. Depending on the environment, packages may be
more or less applicable—for example, a GUI app on a server is not necessarily some‐
thing that makes sense.

RPM Package Manager
RPM Package Manager (for which the recursive acronym RPM is used) was originally
created by Red Hat but is now widely used in various distros. The .rpm file format is
used in Linux Standard Base and can contain binary or source files. The packages can
be cryptographically verified and support delta updates via patch files.
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Package managers that use RPM include the following:

yum

In Amazon Linux, CentOS, Fedora, and RHEL

DNF
In CentOS, Fedora, and RHEL

Zypper
In openSUSE and SUSE Linux Enterprise

Let’s see RPM in action: let’s say we have a fresh developer environment and want to
install the Go programming language tool chain using yum.

Note that the output in the following shell sessions has been edited and shortened to
fit the space (there are many lines in the output that are not relevant to understand‐
ing the usage).

First off, we need to find the package for Go:

# yum search golang 
Loaded plugins: ovl, priorities
================= N/S matched: golang =================
golang-bin.x86_64 : Golang core compiler tools
golang-docs.noarch : Golang compiler docs
...
golang-googlecode-net-devel.noarch : Supplementary Go networking libraries
golang-googlecode-sqlite-devel.x86_64 : Trivial sqlite3 binding for Go

Search for the Go package. Note the # prompt, suggesting we’re logged in as root.
Perhaps a better way would be to use sudo yum.

Equipped with this info about the package, we can now install it using the following:

# yum install golang 
Loaded plugins: ovl, priorities
Resolving Dependencies 
--> Running transaction check
---> Package golang.x86_64 0:1.15.14-1.amzn2.0.1 will be installed
--> Processing Dependency: golang-src = 1.15.14-1.amzn2.0.1 for package:
    golang-1.15.14-1.amzn2.0.1.x86_64
...
Transaction Summary
===============================================================================
Install  1 Package (+101 Dependent packages)

Total download size: 183 M
Installed size: 624 M
Is this ok [y/d/N]: y 
Dependencies Resolved

===============================================================================
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 Package                     Arch    Version             Repository    Size
===============================================================================
Installing:
 golang                      x86_64  1.15.14-1.amzn2.0.1 amzn2-core    705 k
Installing for dependencies:
 acl                         x86_64  2.2.51-14.amzn2     amzn2-core     82 k
 apr                         x86_64  1.6.3-5.amzn2.0.2   amzn2-core    118 k
 ...

  Verifying  : groff-base-1.22.2-8.amzn2.0.2.x86_64                     101/102
  Verifying  : perl-Text-ParseWords-3.29-4.amzn2.noarch                 102/102

Installed: 
  golang.x86_64 0:1.15.14-1.amzn2.0.1

Dependency Installed:
  acl.x86_64 0:2.2.51-14.amzn2   apr.x86_64 0:1.6.3-5.amzn2.0.2
  ...

Complete!

Install the Go package.

yum’s first step is to determine Go’s dependencies.

Here yum provides us with a summary of what it found in terms of dependencies
and tells us what it plans to do. I need to confirm here interactively by entering a
y. However, in a script I would use the yum install golang -y form of the com‐
mand to automatically accept this.

After verifying that all dependencies and the main package are installed, yum
reports success.

Last but not least, we want to verify the package, checking exactly what we have
installed and where:

# yum info golang
Loaded plugins: ovl, priorities
Installed Packages
Name        : golang
Arch        : x86_64
Version     : 1.15.14
Release     : 1.amzn2.0.1
Size        : 7.8 M
Repo        : installed
From repo   : amzn2-core
Summary     : The Go Programming Language
URL         : http://golang.org/
License     : BSD and Public Domain
Description : The Go Programming Language.
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Next, let’s have a look at the other widely used package manager using Debian
packages.

Debian deb
deb packages and the .deb file format originate from the Debian distro. The deb pack‐
ages can also contain binary or source files. Multiple package managers use deb,
including low-level, no-dependency-management ones such as dpkg, and high-level
ones such as apt-get, apt, and aptitude. Given that Ubuntu is a Debian-based dis‐
tro, deb packages are widely used, on the desktop and server alike.

To see deb packages in action, let’s assume we want to install the curl utility with apt.
This is a useful tool to interact with HTTP APIs and to download files from a range
of locations. Note that we again edited the output to make it fit.

First, we search for the curl package:

# apt search curl 
Sorting... Done
Full Text Search... Done
curl/focal-updates,focal-security 7.68.0-1ubuntu2.6 amd64
  command line tool for transferring data with URL syntax

curlftpfs/focal 0.9.2-9build1 amd64
  filesystem to access FTP hosts based on FUSE and cURL

flickcurl-doc/focal 1.26-5 all
  utilities to call the Flickr API from command line - documentation

flickcurl-utils/focal 1.26-5 amd64
  utilities to call the Flickr API from command line

gambas3-gb-net-curl/focal 3.14.3-2ubuntu3.1 amd64
  Gambas advanced networking component
...

Search for the curl package with apt. Note that there were overall dozens of
more search results shown, most of them libraries and language-specific bindings
(Python, Ruby, Go, Rust, etc.).

Next, we install the curl package like so:

# apt install curl 
Reading package lists... Done
Building dependency tree 
Reading state information... Done
The following additional packages will be installed:
  ca-certificates krb5-locales libasn1-8-heimdal libbrotli1 ...

Packages and Package Managers | 129

https://oreil.ly/sctS1


Suggested packages:
  krb5-doc krb5-user libsasl2-modules-gssapi-mit ...

The following NEW packages will be installed:
  ca-certificates curl krb5-locales libasn1-8-heimdal ...

0 upgraded, 32 newly installed, 0 to remove and 2 not upgraded.
Need to get 5447 kB of archives.
After this operation, 16.7 MB of additional disk space will be used.
Do you want to continue? [Y/n] 

Get:1 http://archive.ubuntu.com/ubuntu focal-updates/main amd64
      libssl1.1 amd64 1.1.1f-1ubuntu2.8 [1320 kB]
Get:2 http://archive.ubuntu.com/ubuntu focal-updates/main amd64
      openssl amd64 1.1.1f-1ubuntu2.8 [620 kB]
...
Fetched 5447 kB in 1s (3882 kB/s)
Selecting previously unselected package libssl1.1:amd64.
(Reading database ... 4127 files and directories currently installed.)
Preparing to unpack .../00-libssl1.1_1.1.1f-1ubuntu2.8_amd64.deb ...
Unpacking libssl1.1:amd64 (1.1.1f-1ubuntu2.8) ...
...
Setting up libkeyutils1:amd64 (1.6-6ubuntu1) ...
...
Processing triggers for ca-certificates (20210119~20.04.1) ...
Updating certificates in /etc/ssl/certs...
1 added, 0 removed; done. 
Running hooks in /etc/ca-certificates/update.d...
Done.

Install the curl package.

apt’s first step is to determine the dependencies.

Here apt provides us with a dependencies summary and tells us what it will
install. Interactive confirmation is needed here; in a script I would use apt
install curl -y to automatically accept it.

After verifying that all dependencies and the main package are installed, apt
reports success.

And finally we verify the curl package:

# apt show curl
Package: curl
Version: 7.68.0-1ubuntu2.6
Priority: optional
Section: web
Origin: Ubuntu
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
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Original-Maintainer: Alessandro Ghedini <ghedo@debian.org>
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 411 kB
Depends: libc6 (>= 2.17), libcurl4 (= 7.68.0-1ubuntu2.6), zlib1g (>= 1:1.1.4)
Homepage: http://curl.haxx.se
Task: server, cloud-image, ubuntu-budgie-desktop
Download-Size: 161 kB
APT-Manual-Installed: yes
APT-Sources: http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages
Description: command line tool for transferring data with URL syntax

N: There is 1 additional record. Please use the '-a' switch to see it

Let’s now move on to programming language–specific package managers.

Language-Specific Package Managers
There are also programming language–specific package managers, such as the
following:

C/C++
Have many different package managers, including Conan and vcpkg

Go
Has package management built in (go get, go mod)

Node.js
Has npm and others

Java
Has maven and nuts and others

Python
Has pip and PyPM

Ruby
Has rubygems and Rails

Rust
Has cargo

With that, let’s look at containers and how you can manage applications with them.

Containers
In the context of this book, we understand a container as a Linux process group that
uses Linux namespaces, cgroups, and optionally CoW filesystems to provide
application-level dependency management. Use cases for containers range from local
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testing and development to working with distributed systems—for example, working
with containerized microservices in Kubernetes.

While containers are very useful for developers and sys admins, as an end user you
will more likely be comfortable using higher-level tooling to manage applications—
for example, the ones discussed in “Modern Package Managers” on page 143.

If Only I Had Containers
In a previous job, I once had to put together a proof of concept that involved a time
series database called InfluxDB. The overall setup required a number of prerequisites
(directories created, data copied) as well as dependencies installed. When it came to
handing it over to a colleague for demonstration to the customer, I ended up writing
up a detailed document that enumerated all the steps and checks to make sure every‐
thing worked as planned.

If only at that time container solutions such as Docker had been available, I could
have saved myself and my colleague a lot of time by simply packaging up everything
into a container. This would not only have made it easy to use for my colleague, but I
could also guarantee that it would run in their environment exactly as it did on my
laptop.

Containers are, per se, nothing new in Linux. However, they’ve enjoyed mainstream
adoption only due to Docker, starting in roughly 2014. Before that, we had a number
of attempts to introduce containers, often targeting system administrators rather than
developers, including the following:

• Linux-VServer (2001)
• OpenVZ (2005)
• LXC (2008)
• Let Me Contain That for You (lmctfy) (2013)

What all of these approaches have in common is that they use the basic building
blocks the Linux kernel provides, such as namespaces or cgroups, to allow users to
run applications.

Docker innovated on the concept and introduced two groundbreaking elements: a
standardized way to define the packaging via container images and a human-friendly
user interface (for example, docker run). The way container images are defined and
distributed, as well as how containers are executed, formed the basis for what is now
known as the Open Container Initiative (OCI) core specifications. When we talk
about containers here, we focus on OCI-compliant implementations.
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The three core OCI container specifications are as follows:

Runtime specification
Defines what a runtime needs to support, including operations and life-cycle
phases

Image format specification
Defines how container images are constructed, based on metadata and layers

Distribution specification
Defines how container images are shipped, effectively the way repositories work
in the context of containers

Another idea associated with containers is immutability. This means that once a con‐
figuration is put together, you cannot change it during its usage. In other words,
changes require creating a new (static) configuration and a new resource (such as a
process) with it. We will revisit this in the context of container images.

Now that you’re aware of what containers are on a conceptual level, let’s have a closer
look at the building blocks of OCI-compliant containers.

Linux Namespaces
As we discussed in Chapter 1, Linux initially had a global view on resources. To allow
processes to have a local view on a resource (such as a filesystem, networking, or even
users), Linux introduced namespaces.

In other words, Linux namespaces are all about resource visibility and can be used to
isolate different aspects of the operating system resources. Isolation in this context is
mostly about what a process sees, not necessarily a hard boundary (from a security
perspective).

To create namespaces, you have three relevant syscalls at your disposal:

clone

Used to create a child process that can share parts of its execution context with
the parent process

unshare

Used to remove a shared execution context from an existing process

setns

Used to join an existing process to an existing namespace

The preceding syscalls take a range of flags as parameters, enabling you to have fine-
grained control over the namespaces you want to create, join, or leave:
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CLONE_NEWNS

Use for filesystem mount points. Visible via /proc/$PID/mounts. Supported since
Linux 2.4.19.

CLONE_NEWUTS

Use to create hostname and (NIS) domain name isolation. Visible via uname -n
and hostname -f. Supported since Linux 2.6.19.

CLONE_NEWIPC

Use to do interprocess communication (IPC) resource isolation like System V
IPC objects or POSIX message queues. Visible via /proc/sys/fs/mqueue, /proc/sys/
kernel, and /proc/sysvipc. Supported since Linux 2.6.19.

CLONE_NEWPID

Use for PID number space isolation (PID inside/PID outside the namespace).
You can gather details about it via /proc/$PID/status. Supported since Linux
2.6.24.

CLONE_NEWNET

Use to control visibility of network system resources such as network devices, IP
addresses, IP routing tables, and port numbers. You can view it via ip netns
list, /proc/net, and /sys/class/net. Supported since Linux 2.6.29.

CLONE_NEWUSER

Use to map UID+GIDs inside/outside the namespace. You can query UIDs and
GIDs and their mappings via the id command and /proc/$PID/uid_map
and /proc/$PID/gid_map. Supported since Linux 3.8.

CLONE_NEWCGROUP

Use to manage cgroups in a namespace. You can see it via /sys/fs/cgroup, /proc/
cgroups, and /proc/$PID/cgroup. Supported since Linux 4.6.

One way to view namespaces in use on your system is as follows (output edited to fit):

$ sudo lsns
        NS TYPE   NPROCS   PID USER             COMMAND
4026531835 cgroup    251     1 root             /sbin/init splash
4026531836 pid       245     1 root             /sbin/init splash
4026531837 user      245     1 root             /sbin/init splash
4026531838 uts       251     1 root             /sbin/init splash
4026531839 ipc       251     1 root             /sbin/init splash
4026531840 mnt       241     1 root             /sbin/init splash
4026531860 mnt         1    33 root             kdevtmpfs
4026531992 net       244     1 root             /sbin/init splash
4026532233 mnt         1   432 root             /lib/systemd/systemd-udevd
4026532250 user        1  5319 mh9              /opt/google/chrome/nacl_helper
4026532316 mnt         1   684 systemd-timesync /lib/systemd/systemd-timesyncd
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4026532491 mnt         1   688 systemd-resolve  /lib/systemd/systemd-resolved
...

The next container building block focuses on resource consumption limits and
reporting on resource usage.

Linux cgroups
Where namespaces are about visibility, cgroups provide a different kind of functional‐
ity: they are a mechanism to organize process groups. Along with the hierarchical
organization, you can use cgroups to control system resources usage. In addition,
cgroups provide resource usage tracking; for example, they show how much RAM or
CPU seconds a process (group) is using. Think of cgroups as the declarative unit and
the controller as a piece of kernel code that enforces a certain resource limitation or
reports on its usage.

At this time of writing, there are two versions of cgroups available in the kernel:
cgroups v1 and v2. cgroup v1 is still widely used, but v2 will eventually replace v1, so
you should focus on v2.

cgroup v1
With cgroup v1, the community had an ad hoc approach, adding new cgroups and
controllers as needed. The following v1 cgroups and controllers exist (ordered from
oldest to newest; note that the docs are all over the place and inconsistent):

CFS bandwidth control
Used via the cpu cgroup. Supported since Linux 2.6.24.

CPU accounting controller
Used via the cpuacct cgroup. Supported since Linux 2.6.24.

cpusets cgroup
Allows you to assign CPU and memory to a task. Supported since Linux 2.6.24.

Memory resource controller
Allows you to isolate the memory behavior of tasks. Supported since Linux
2.6.25.

Device whitelist controller
Allows you to control device file usage. Supported since Linux 2.6.26.

freezer cgroup
Used for batch job management. Supported since Linux 2.6.28.

Network classifier cgroup
Used to assign different priorities to packets. Supported since Linux 2.6.29.
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Block IO controller
Allows you to throttle block I/O. Supported since Linux 2.6.33.

perf_event command
Allows you to collect performance data. Supported since Linux 2.6.39.

Network priority cgroup
Allows you to dynamically set the priority of network traffic. Supported since
Linux 3.3.

HugeTLB controller
Allows you to limit HugeTLB usage. Supported since Linux 3.5.

Process number controller
Used to allow a cgroup hierarchy to stop creating new processes after a certain
limit is reached. Supported since Linux 4.3.

cgroup v2
cgroup v2 is a total rewrite of cgroups with the lessons learned from v1. This is true
both in terms of consistent configuration and use of the cgroups as well as the (cen‐
tralized and uniform) documentation. Unlike the per-process cgroup v1 design,
cgroup v2 has only single hierarchy, and all controllers are managed the same way.
Here are the v2 controllers:

CPU controller
Regulates distribution of CPU cycles, supporting different models (weight, max)
and includes usage reporting

Memory controller
Regulates distribution of memory with a range of control parameters, supporting
user-space memory, kernel data structures such as dentries and inodes, and TCP
socket buffers

I/O controller
Regulates the distribution of I/O resources with both weight-based and absolute
bandwidth or I/O operations per second (IOPS) limits, reporting on bytes and
IOPS read/writes

Process number (PID) controller
Is similar to the v1 version

cpuset controller
Is similar to the v1 version

device controller
Manages access to device files, implemented on top of eBPF
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rdma controller
Regulates the distribution and accounting of remote direct memory access
(RDMA) resources

HugeTLB controller
Is similar to the v1 version

There are also miscellaneous cgroups in v2 that allow resource limits and tracking
mechanisms for scalar resources (which can’t be abstracted like other cgroup
resources).

You can view all of the v2 cgroups in your Linux system in a nice tree rendering via
the systemctl command, as shown in the following example (output shortened and
edited to fit):

$ systemctl status 
starlite
    State: degraded
     Jobs: 0 queued
   Failed: 1 units
    Since: Tue 2021-09-07 11:49:08 IST; 1 weeks 1 days ago
   CGroup: /
           ├─22160 bpfilter_umh
           ├─user.slice
           │ └─user-1000.slice 
           │   ├─user@1000.service
           │   │ ├─gvfs-goa-volume-monitor.service
           │   │ │ └─14497 /usr/lib/gvfs/gvfs-goa-volume-monitor
   ...

Using the systemctl tool to render cgroups

An example of a specific cgroup that systemd manages

Another useful view on cgroups is interactive resource usage, as shown in the follow‐
ing (output edited to fit):

$ systemd-cgtop
Control Group                        Tasks   %CPU   Memory  Input/s Output/s
/                                      623   15.7     5.8G        -        -
/docker                                  -      -    48.3M        -        -
/system.slice                          122    6.2     1.6G        -        -
/system.slice/ModemManager.service       3      -   748.0K        -        -
...
/system.slice/rsyslog.service            4      -   420.0K        -        -
/system.slice/snapd.service             17      -     5.1M        -        -

Going forward, you can expect that, as modern kernel versions are more widely used,
the cgroups v2 will become the standard. There are indeed certain distros, such as
Arch, Fedora 31+, and Ubuntu 21.10, that already have v2 by default.
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Copy-on-Write Filesystems
The third building block of containers are CoW filesystems, as discussed in greater
detail in “Copy-on-Write Filesystems” on page 111. These are used at build time.
They package the application and all of its dependencies into a single, self-contained
file that you can distribute. Usually the CoW filesystems are used in combination
with bind mounts to layer the content of the different dependencies on top of each
other in an efficient manner.

Docker
Docker is a human-friendly container implementation developed and popularized by
Docker Inc. in 2014. With Docker, it’s easy to package up programs and their depen‐
dencies and launch them in a range of environments, from desktops to the cloud.
What’s so unique about Docker is not the building blocks (namespaces, cgroups,
CoW filesystems, and bind mounts). These existed a while before Docker came into
being. What’s so special is that Docker combined these building blocks in a way that
makes them easy to use by hiding the complexity of managing the low-level bits like
namespaces and cgroups.

As shown in Figure 6-4 and described in the passage that follows, there are two main
concepts in Docker: the image and the running container.

Figure 6-4. High-level Docker architecture
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The container image
A compressed archive file that contains metadata in JSON files and the layers,
which are effectively directories. The Docker daemon pulls the container images
as needed from a container registry.

The container as the runtime artifact (for example, app A/B/C)
You can start, stop, kill, and remove it. You interact with the Docker daemon
using a client CLI tool (docker). This CLI tool sends commands to the daemon,
which in turn executes the respective operation, such as building or running a
container.

Table 6-2 presents a short reference of often-used Docker CLI commands, covering
both the build-time and the runtime phases. To get the full reference, including use
cases, refer to the Docker docs.

Table 6-2. Often-used Docker commands

Command Description Example

run Launch a container Run NGINX as a daemon and remove container on exit: docker run -d 
--rm nginx:1.21

ps List containers List all containers (including nonrunning): docker ps -a

inspect Display low-level info To query the container IP: docker inspect -f '{{.Network
Settings.IPAddress}}'

build Generate a container image
locally

Build image based on current directory and tag: docker build -t 
some:tag .

push Upload a container image to a
registry

Push to AWS registry: docker push public.ecr.aws/some:tag

pull Download a container image
from a registry

Pull from AWS registry: docker pull public.ecr.aws/some:tag

images List local container images List images from a certain registry: docker images ubuntu

image Manage container images Remove all unused images: docker image prune -all

Let’s now have a closer look at the build-time artifact: the container image that
Docker uses.

Container Images
To define the instructions on how to build a container image, you use a plain text file
format called Dockerfile.

There are different directives you can have in a Dockerfile:
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Base images
FROM; can be multiple for build/run phases

Metadata
LABEL for lineage

Arguments and environment variables
ARGS, ENV

Build-time specifications
COPY, RUN, etc., which define how the image is constructed, layer for layer

Runtime specifications
CMD and ENTRYPOINT, which define how the container can be run

Using the docker build command, you turn a collection of files that represent your
application (either as source or in binary format), along with the Dockerfile, into a
container image. This container image is the artifact that you can then run or push to
a registry, in order to distribute it for others to pull and eventually run.

Running containers
You can run containers with interactive input (terminal attached) or as daemons
(background). The docker run command takes a container image and a set of run‐
time inputs, such as environment variables, ports to expose, and volumes to mount.
With this information, Docker creates the necessary namespaces and cgroups and
launches the application defined in the container image (CMD or ENTRYPOINT).

With the Docker theory out of the way, let’s see it in action.

Example: containerized greeter

Let’s now put our greeter app (see “Running Example: greeter” on page 116) into a
container and run it.

First off, we need to define the Dockerfile, which contains the instructions to build
the container image:

FROM ubuntu:20.04 
LABEL org.opencontainers.image.authors="Michael Hausenblas" 
COPY greeter.sh /app/ 
WORKDIR /app 
RUN chown -R 1001:1 /app 
USER 1001
ENTRYPOINT ["/app/greeter.sh"] 
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Define the base image using an explicit tag (20.04).

Assign some metadata via a label.

Copy shell script. This could be a binary, a JAR file, or a Python script.

Set the working directory.

This and the next line define the user running the app. If you don’t do this, it will
unnecessarily run as root.

Define what to run, in our case the shell script. The way we defined it, using
ENTRYPOINT, it is possible to pass a parameter by running docker run greeter:1
_SOME_PARAMETER_.

Next, we build the container image:

$ sudo docker build -t greeter:1 . 
Sending build context to Docker daemon  3.072kB
Step 1/7 : FROM ubuntu:20.04 
20.04: Pulling from library/ubuntu
35807b77a593: Pull complete
Digest: sha256:9d6a8699fb5c9c39cf08a0871bd6219f0400981c570894cd8cbea30d3424a31f
Status: Downloaded newer image for ubuntu:20.04
 ---> fb52e22af1b0
Step 2/7 : LABEL org.opencontainers.image.authors="Michael Hausenblas"
 ---> Running in 6aa921276c3b
Removing intermediate container 6aa921276c3b
 ---> def717e3352b
Step 3/7 : COPY greeter.sh /app/
 ---> 5f3eb160fea3
Step 4/7 : WORKDIR /app
 ---> Running in 698c29938a96
Removing intermediate container 698c29938a96
 ---> d73572886c13
Step 5/7 : RUN chown -R 1001:1 /app
 ---> Running in 5b5eb5d1935a
Removing intermediate container 5b5eb5d1935a
 ---> 42c35a6db6e2
Step 6/7 : USER 1001
 ---> Running in bec92deaac6e
Removing intermediate container bec92deaac6e
 ---> b6e0e27f253b
Step 7/7 : CMD ["/app/greeter.sh"]
 ---> Running in 6d3b439f7e50
Removing intermediate container 6d3b439f7e50
 ---> 433a5f10d84e
Successfully built 433a5f10d84e
Successfully tagged greeter:1
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Build the container image and label it (with -t greeter:1). The . means that it
uses the current directory and assumes that a Dockerfile is present there.

This and the next lines pull the base image and build it layer by layer.

Let’s check if the container image is there:

$ sudo docker images
REPOSITORY   TAG       IMAGE ID       CREATED          SIZE
greeter      1         433a5f10d84e   35 seconds ago   72.8MB
ubuntu       20.04     fb52e22af1b0   2 weeks ago      72.8MB

Now we can run a container based on the greeter:1 image, like so:

 $ sudo docker run greeter:1
You are awesome!

That wraps up our Docker 101. We’ll now take a quick look at related tooling.

Other Container Tooling
You don’t have to use Docker to work with OCI containers; as an alternative, you can
use a Red Hat–led and –sponsored combo: podman and buildah. These daemon-less
tools allow you to build OCI container images (buildah) and run them (podman).

In addition, there are a number of tools that make working with OCI containers,
namespaces, and cgroups easier, including but not limited to the following:

containerd

A daemon that manages the OCI container life cycle, from image transfer and
storage to container runtime supervision

skopeo

For container image manipulation (copying, inspecting manifest, etc.)

systemd-cgtop

A kind of cgroups-aware variant of top that shows resource usage interactively

nsenter

Allows you to execute a program in a specified, existing namespace

unshare

Allows you to run a program with specific namespaces (opt in via flags)

lsns

Lists information about Linux namespaces
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cinf

Lists information about Linux namespaces and cgroups associated with process
IDs

With this we end our containers tour. Let’s now look at modern package managers
and how they utilize containers to isolate applications from each other.

Modern Package Managers
In addition to the more traditional package managers that often are distribution-
specific, there is a new sort of package manager. These modern solutions often make
use of containers and aim to be cross-distribution or target specific environments.
For example, they can make it easy for Linux desktop users to install GUI apps.

Snap
A Canonical Ltd.–designed and –promoted software packaging and deployment
system. It comes with a refined sandboxing setup and can be used in desktop,
cloud, and IoT environments.

Flatpak
Optimized for Linux desktop environments, using cgroups, namespaces, bind
mounts, and seccomp as its building blocks. While initially from the Red Hat
part of the Linux distro universe, it is now available for dozens of distros, includ‐
ing Fedora, Mint, Ubuntu, Arch, Debian, openSUSE, and Chrome OS.

AppImage
Has been around for years and promotes the idea that one app equals one file;
that is, it requires no dependencies other than what is included in the targeted
Linux system. Over time, a number of interesting features have found their way
into AppImage, from efficient updates to desktop integration to software
catalogs.

Homebrew
Originally from the macOS world but available for Linux and enjoying increasing
popularity. It’s written in Ruby and has a powerful yet intuitive user interface.

Conclusion
In this chapter, we covered a wide range of topics, all related to how to install, main‐
tain, and use applications on Linux.

We first defined basic application terms, then we looked at the Linux startup process,
discussing systemd, the now standard way of managing startup and components.

To distribute applications, Linux uses packages and package managers. We discussed
various managers in this context and how you can use containers for development
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and testing as well as dependency management. Docker containers use Linux primi‐
tives (cgroups, namespaces, CoW filesystems) to provide you with application-level
dependency management (via container images).

Finally, we looked at custom solutions for app management, including Snap and
others.

If you’re interested in further reading on the topics in this chapter, have a look at the
following resources:

Startup process and init systems
• “Analyzing the Linux Boot Process”
• “Stages of Linux Booting Process”
• “How to Configure a Linux Service to Start Automatically After a Crash or

Reboot”

Package management
• “2021 State of the Software Supply Chain”
• “Linux Package Management”
• “Understanding RPM Package Management Tutorial”
• Debian packages

Containers
• “A Practical Introduction to Container Terminology”
• “From Docker to OCI: What Is a Container?”
• “Building Containers Without Docker”
• “Why Red Hat Is Investing in CRI-O and Podman”
• “Demystifying Containers”
• “Rootless Containers”
• “Docker Storage Drivers Deep Dive”
• “The Hunt for a Better Dockerfile”

Now that you know all the basics around applications let’s move on from the scope of
a single Linux system to an interconnected setup and its necessary precondition:
networking.
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CHAPTER 7

Networking

In this chapter, we go into detail about Linux networking. In modern environments,
the network stack that Linux provides is an essential component. Without it, few
things are possible. Whether you want to access an instance in your cloud provider,
browse the web, or install a new app, you need connectivity, and you need a way to
interact with it.

We’ll first have a look at common network terms, from the hardware level all the way
up to user-facing components such as HTTP and SSH. We’ll also discuss the network
stack, protocols, and interfaces. Specifically, we’ll spend time on the naming center
piece of the web and the wider internet, the so-called Domain Name System (DNS).
Interestingly, this system is found not only in wide-area deployments but is also a
central component used for service discovery in container environments such as
Kubernetes.

Next, we’ll look at application layer network protocols and tooling. This includes file
sharing, the web, networked filesystems, and other methods to share data over the
network.

In the last part of the chapter, we’ll review some advanced network topics, from geo‐
mapping to managing time over the network.

To set the expectations for the content in this chapter: you can spend a lot of time
with the topic of Linux networking; in fact, entire books are dedicated to the topic.
We’ll take a pragmatic stance here, jumping into hands-on topics from an end-user
point of view. Admin topics around networking, such as configuration and setup of
network devices, are by and large out of scope here.

Now, let’s turn our attention to the networking basics.
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Basics
Let’s first discuss why networking is relevant for a number of use cases and define
some common network terminology.

In modern environments, networking plays a central role. This ranges from tasks
such as installing apps, browsing the web, and viewing mail or social media to work‐
ing with remote machines (from the embedded system you’re connecting to over a
local network to servers that run in data centers of your cloud providers). Given a
network’s many moving parts and layers, it can be difficult to figure out if a problem
is hardware-related or originates in the software stack.

Another challenge Linux networking addresses comes from abstractions: many of the
things we’ll cover in this chapter provide a high-level user interface, making it appear
that files or applications that in reality run on a remote machine are accessible or can
be manipulated on your local machine. While providing an abstraction that makes
remote resources seem to be local is a useful feature, we should not forget that at the
end of the day, all of this boils down to bits traveling over the wire and through the
air. Keep this in mind when troubleshooting or testing.

Figure 7-1 shows how, on a high level, networking works in Linux. There is some
kind of networking hardware, such as Ethernet or wireless cards; then a number of
kernel-level components, such as the TCP/IP stack; and finally, in the user space, a
range of tools to configure, query, and use networking.

Figure 7-1. An overview of Linux networking

Let’s now dive into the TCP/IP stack, the core of networking in Linux.
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Unlike in other areas of Linux, where you need to either consult the
source code or hope for properly documented design assumptions
behind interfaces and protocols, in the networking space, almost
every protocol and interface is based on publicly available specifi‐
cations. The Internet Engineering Task Force (IETF) makes all of
those requests for comments (RFCs) freely available via data
tracker.ietf.org.
Make a habit out of simply reading these RFCs before you get into
the details of implementations. Those RFCs are written by practi‐
tioners for practitioners and document good practices and how to
implement stuff. Don’t be afraid of working through them; you’ll
gain a much better understanding about the motivation, use cases,
and reasons why things are the way they are.

The TCP/IP Stack
The TCP/IP stack, shown in Figure 7-2, is a layered network model made of a num‐
ber of protocols and tools, mostly defined by IETF specs. Each layer must be aware of
and able to communicate with only the layers right above and below itself. The data is
encapsulated in packets, and each layer typically wraps the data in a header that con‐
tains information relevant for its function. So, if an app wants to send data, it would
interact directly with the highest layer that would add a header and so on down the
stack (the send path). Conversely, if an app wants to receive data, it would arrive at
the lowest layer, and each layer in turn would process it based on the header informa‐
tion it finds and pass the payload on to the layer above (the receive path).

Figure 7-2. The TCP/IP layers working together to enable communication
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Starting at the bottom of the stack, the four layers of the TCP/IP stack are the
following:

The link layer
Lowest in the stack, this layer covers the hardware (Ethernet, WiFi) and kernel
drivers and focuses on how packets are sent between physical devices. See “The
Link Layer” on page 149 for details.

The internet layer
With the Internet Protocol (IP), this layer focuses on routing; that is, it supports
sending packets between machines across networks. We’ll discuss it in “The
Internet Layer” on page 152.

The transport layer
This layer controls end-to-end communications between (virtual or physical)
hosts, with the Transmission Control Protocol (TCP) for session-based, reliable
communication and User Datagram Protocol (UDP) for connection-less com‐
munication. It mainly deals with how packets are transmitted, including address‐
ing individual services on a machine via ports as well as data integrity. Further,
Linux supports sockets as communication endpoints. See “The Transport Layer”
on page 160.

The application layer
This layer deals with user-facing tooling and apps, such as the web, SSH, and
mail. We’ll discuss it in “DNS” on page 165 and “Application Layer Networking”
on page 173.

The Internet and OSI
The internet has its roots in a US Department of Defense project started in the 1960s
that had the goal to create a communication network that couldn’t easily be destroyed.
The internet is a network of networks—that is, many local networks hooked up with a
backend infrastructure enabling communication between different systems.

You’ll likely come across the Open Systems Interconnection (OSI) model, a theoreti‐
cal model of networking that uses seven layers, with the seventh, the top-most layer,
being the application layer. The TCP/IP model has only four layers, but the TCP/IP
stack is what is used everywhere in practice.

Don’t get confused by the layer numbering. Usually, since the hardware counts as
layer 1, the link layer would be 2, the internet layer 3, the transport layer 4, and (for
historical reasons, to be OSI model-aligned), the application layer would be 7.

The layering means that the header and the payload of a layer make up the payload
for the next layer. For example, looking at Figure 7-2, the payload in the internet layer
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is the transport layer header HT and its payload. In other words, the internet layer
takes the packet it gets from the transport layer, treats it as an opaque chunk of bytes,
and can focus on its function, the routing of the packet to the target machine.

Let’s now work our way up the TCP/IP stack, starting with the lowest layer, the link
layer.

The Link Layer
In the link layer of the TCP/IP stack, it’s all about hardware or near-hardware stuff,
such as bytes, wires, electromagnetic waves, device drivers, and network interfaces.
You’ll come across the following terms in this context:

Ethernet
A family of networking technologies using wires to connect machines; often used
in local area networks (LANs).

Wireless
Also known as WiFi, a class of communication protocols and methods that,
rather than using wires, uses some electromagnetic waves to transport data.

MAC addresses
Short for media access control, MAC is a unique 48-bit identifier for hardware,
used to identify your machine (to be precise, the network interface; see the fol‐
lowing term). The MAC address encodes the manufacturer (of the interface) via
the organizationally unique identifier (OUI), usually occupying the first 24 bits.

Interface
A network connection. It can be a physical interface (see “Network interface con‐
troller” on page 149 for details) or a virtual (software) interface, like the loopback
interface lo.

Equipped with these basics, let’s have a closer look at the link layer.

Network interface controller
One essential piece of hardware equipment is the network interface controller (NIC),
sometimes also called the network interface card. The NIC provides the physical con‐
nectivity to a network through either a wired standard—for example, the IEEE
802.3-2018 standard for Ethernet—or one of the many wireless standards from the
IEEE 802.11 family. Once part of a network, the NIC turns the digital representation
of the bytes you want to send into electrical or electromagnetic signals. The reverse is
true for the receive path, where the NIC turns whatever physical signals it receives
into bits and bytes that the software can deal with.

Let’s have a look at NICs in action. Traditionally, one would use the (now widely con‐
sidered deprecated) ifconfig command to query information on the NICs available
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on the system (we show it here first for educational purposes; in practice, it’s better to
use ip, as shown in the next example):

$ ifconfig
lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536 
        inet 127.0.0.1  netmask 255.0.0.0
        inet6 ::1  prefixlen 128  scopeid 0x10<host>
        loop  txqueuelen 1000  (Local Loopback)
        RX packets 7218  bytes 677714 (677.7 KB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 7218  bytes 677714 (677.7 KB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

wlp1s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500 
        inet 192.168.178.40  netmask 255.255.255.0  broadcast 192.168.178.255
        inet6 fe80::be87:e600:7de7:e08f  prefixlen 64  scopeid 0x20<link>
        ether 38:de:ad:37:32:0f  txqueuelen 1000  (Ethernet)
        RX packets 2398756  bytes 3003287387 (3.0 GB)
        RX errors 0  dropped 7  overruns 0  frame 0
        TX packets 504087  bytes 85467550 (85.4 MB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

The first interface here is lo, the loopback interface with the IP address
127.0.0.1 (see “IPv4” on page 153). The maximum transmission unit (MTU) is
the packet size, here 65,536 bytes (with larger sizes meaning higher throughput);
for historical reasons, the default for Ethernet was 1,500 bytes, but you can use
jumbo frames that are 9,000 bytes in size.

The second interface reported is wlp1s0, with an IPv4 address of
192.168.178.40 assigned. This interface is an NIC and has a MAC address
(ether is 38:de:ad:37:32:0f). When looking at the flags (<UP,BROADCAST,RUN
NING,MULTICAST>), it seems to be operational.

For a more modern approach of doing the same thing (querying interfaces and
checking on their status), use the ip command. We’ll use this approach most often in
this chapter (output edited to fit):

$ ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue 
   state UNKNOWN mode DEFAULT group default qlen 1000
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: wlp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue 
   state UP mode DORMANT group default qlen 1000
    link/ether 38:de:ad:37:32:0f brd ff:ff:ff:ff:ff:ff
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The loopback interface.

My NIC, with a MAC address of 38:de:ad:37:32:0f. Note that the name
(wlp1s0) here tells you something about the interface: it’s a wireless interface (wl)
in PCI bus 1 (p1) and slot 0 (s0). This naming makes the interface names more
predictable. In other words, if you had two old-style interfaces (say, eth0 and
eth1), there was no guarantee that a reboot or adding a new card wouldn’t cause
Linux to rename those interfaces.

For both ifconfig and ip link, you might be interested in the meaning of flags such
as LOWER_UP or MULTICAST; these are documented in the netdevice man pages.

Address Resolution Protocol
The Address Resolution Protocol (ARP) maps MAC addresses to IP addresses. In a
sense, it bridges the link layer with the layer above it, the internet layer.

Let’s see it in action:

$ arp 
Address                  HWtype  HWaddress           Flags Mask            Iface
mh9-imac.fritz.box       ether   00:25:4b:9b:64:49   C                     wlp1s0
fritz.box                ether   3c:a6:2f:8e:66:b3   C                     wlp1s0

Use the arp command to show the cache of mapping MAC addresses to host‐
names or IP addresses. Note that you can use arp -n to prevent hostname reso‐
lution and show IP addresses instead of DNS names.

Or, using a more modern approach with ip:

$ ip neigh 
192.168.178.34 dev wlp1s0 lladdr 00:25:4b:9b:64:49 STALE
192.168.178.1 dev wlp1s0 lladdr 3c:a6:2f:8e:66:b3 REACHABLE

Use the ip command to show the cache of mapping MAC addresses to IP
addresses.

To display, configure, and troubleshoot wireless devices, you want to use the iw com‐
mand. For example, I know that my wireless NIC is called wlp1s0, so I can query it:

$ iw dev wlp1s0 info 
Interface wlp1s0
        ifindex 2
        wdev 0x1
        addr 38:de:ad:37:32:0f
        ssid FRITZ!Box 7530 QJ 
        type managed
        wiphy 0
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        channel 5 (2432 MHz), width: 20 MHz, center1: 2432 MHz 
        txpower 20.00 dBm

Show base information about wireless interface wlp1s0.

The router the interface is connected to (see also the next example).

The WiFi frequency band the interface is using.

Further, I can gather router- and traffic-related information like so:

$ iw dev wlp1s0 link 
Connected to 74:42:7f:67:ca:b5 (on wlp1s0)
        SSID: FRITZ!Box 7530 QJ
        freq: 2432
        RX: 28003606 bytes (45821 packets) 
        TX: 4993401 bytes (15605 packets)
        signal: -67 dBm
        tx bitrate: 65.0 MBit/s MCS 6 short GI

        bss flags:      short-preamble short-slot-time
        dtim period:    1
        beacon int:     100

Show connection information about wireless interface wlp1s0.

This and the next line send (TX stands for “transmit”) and receive (RX) statistics—
that is, bytes and packets sent and received via this interface.

Now that we have a good handle on what’s going on in the lowest layer of the TCP/IP
stack, the (data) link layer, let’s move up the stack.

The Internet Layer
The second-lowest layer of the TCP/IP stack, the internet layer, is concerned with
routing packets from one machine on the network to another. The design of the
internet layer assumes that the available network infrastructure is unreliable and that
the participants (such as nodes in the network or the connections between them)
change frequently.

The internet layer provides best-effort delivery (that is, no guarantees concerning
performance) and treats every packet as independent. As a consequence, higher lay‐
ers, typically the transport layer, take care of addressing reliability issues, including
packet order, retries, or delivery guarantees.
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How Routing Is Like Surface Mail
Think of an internet layer address as similar to your postal address. This postal
address is made up of a number of parts, from the most coarse grained (the country)
down to the street-level information, including house number.

That postal address is all I need to know to make sure that I can send, say, a postcard
to you from anywhere in the world. Note also that I don’t need to know the details of
the transportation (such as when my postcard travels via ship or plane, or what exact
path is taken). The contract between me and the post office is simple: if I put the cor‐
rect address on it and pay the correct amount (via the right stamp), the post office
promises to deliver it.

Likewise, your machine is identified by the internet layer via a logical address.

In this layer, the dominating protocol for logically identifying machines uniquely,
worldwide, is the Internet Protocol (IP), which comes in two flavors, IP version 4
(IPv4) and IP version 6 (IPv6).

IPv4
IPv4 defines unique 32-bit numbers identifying a host or process acting as an end‐
point in a TCP/IP communication.

One way to write IPv4 addresses is to split up the 32-bit into four 8-bit segments sep‐
arated by a period, each segment in the 0 to 255 range, called an octet (hinting at that
the segment covers 8 bits). Let’s have a look at a concrete example:

 63.32.106.149
\_/\_/ \_/ \_/
 |  |   |   └─ 
 |  |   └───── 
 |  └───────── 
 └──────────── 

First octet in binary form: 00111111

Second octet in binary form: 00100000

Third octet in binary form: 01101010

Fourth octet in binary form: 10010101

The IP header (Figure 7-3), as defined in RFC 791 and related IETF specs, has a num‐
ber of fields, but the following are the most important ones that you should be aware
of:
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Source address (32 bits)
The IP address of the sender

Destination address (32 bits)
The IP address of the receiver

Protocol (8 bits)
The payload type (next-higher layer type), as per RFC 790—for example, TCP,
UDP, or ICMP

Time to live, aka TTL (8 bits)
The maximal time the packet is allowed to exist

Type of service (8 bits)
Can be used for quality of service (QoS) purposes

Figure 7-3. The IP header format as per RFC 791

Given that the internet is a network of networks, it seems natural to distinguish
between networks and single machines (hosts) in the networks. IP address ranges are
assigned to networks and within those networks to individual hosts.

Today, the Classless Inter-Domain Routing (CIDR) is the only relevant method for
assigning IP addresses. The CIDR format consists of two parts:

• The first part represents the network address. This looks like a normal IP address
—for example, 10.0.0.0.

• The second part defines how many bits (and with that, IP addresses) fall within
the address range—for example, /24.
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So, a complete CIDR range example looks like the following:

10.0.0.0/24

In the preceding example, the first 24 bits (or three octets) represent the network, and
the last 8 bits (32 bits overall minus the 24 bits for the network) are the IP addresses
available for the 256 hosts (28). The first IP address in this CIDR range is 10.0.0.0,
and the last IP address is 10.0.0.255. Strictly speaking, only the addresses 10.0.0.1
to 10.0.0.254 can be assigned to hosts since the .0 and .255 addresses are reserved
for special purposes. In addition, we can say that the netmask is 255.255.255.0 since
that’s the first 24 bits representing the network.

In practice, you don’t need to remember all the math here. If you’re dealing with
CIDR ranges on a daily basis, then you just know, and if you’re a casual user, you may
want to use some tooling. If you want to do CIDR range calculations, such as deter‐
mining how many IPs are in a range, the following are available:

• Online tools such as those at https://cidr.xyz and https://ipaddressguide.com/cidr
• Command-line tools like mapcidr and cidrchk (by yours truly)

There are also some notable reserved IPv4 addresses you should know:

127.0.0.0

This subnet is reserved for local addresses, with the most prominent one being
the loopback address 127.0.0.1.

169.254.0.0/16 (169.254.0.0 to 169.254.255.255)
These are link local addresses, meaning packets sent there should not be forwar‐
ded to other parts of the network. Some cloud providers such as Amazon Web
Services use this for special services (metadata).

224.0.0.0/24 (224.0.0.0 to 239.255.255.255)
This range is reserved for multicast.

RFC 1918 defines private IP ranges. A private IP range means that the IP addresses in
it are not routable on the public internet; hence, it is safe to assign them internally
(for example, in the context of your company):

• 10.0.0.0 to 10.255.255.255 (the 10/8 prefix)
• 172.16.0.0 to 172.31.255.255 (172.16/12 prefix)
• 192.168.0.0 to 192.168.255.255 (192.168/16 prefix)
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Another interesting IPv4 address is 0.0.0.0. It is a nonroutable address that has dif‐
ferent use cases and different meanings depending on the context, but the most
important one, from a server perspective, is that 0.0.0.0 refers to all IPv4 addresses
present in the machine. That’s a great way to say “listen on all available IP addresses”
as a source until it turns into a known IP.

That was a lot of dry theory; let’s see it in action. We’ll start by querying the machine
for IP-related things (output edited):

$ ip addr show 
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
    state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo 
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: wlp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
    noqueue state UP group default qlen 1000
    link/ether 38:de:ad:37:32:0f brd ff:ff:ff:ff:ff:ff
    inet 192.168.178.40/24 brd 192.168.178.255 scope global dynamic 
    noprefixroute wlp1s0
       valid_lft 863625sec preferred_lft 863625sec
    inet6 fe80::be87:e600:7de7:e08f/64 scope link noprefixroute
       valid_lft forever preferred_lft forever

List addresses of all interfaces.

The IP address of the loopback interface (127.0.0.1, as expected).

The (private) IP address of the wireless NIC. Note that this is the LAN-local IP
address of the machine, which isn’t publicly routable since it falls in the
192.168/16 range.

The IPv4 address space is already exhausted, and given that there are many more
endpoints today than the internet designers thought there would be (for example, due
to mobile devices and IoT), a sustainable solution is needed.

Luckily, with IPv6 there is a solution for the address-exhaustion issue. Unfortunately,
at this time of writing, the ecosystem at large has still not made the move to IPv6,
partly for infrastructure reasons but also due to a lack of tooling that supports IPv6.
This means that for the time being you’ll still have to deal with IPv4 and its limita‐
tions and workarounds.

Let’s have a look at the (hopefully not-too-distant) future: IPv6.
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IPv6
Internet Protocol version 6 (IPv6) is a 128-bit number identifying an endpoint in a
TCP/IP communication. This means that with IPv6 we can assign on the order of
1038 individual machines (devices). In contrast to IPv4, IPv6 uses a hexadecimal rep‐
resentation, eight groups of 16 bits each, separating the groups by a colon (:).

There are a few rules for shortening IPv6 addresses, such as removing leading zeros
or compressing consecutive sections of zeros by replacing them with two colons (::).
For example, the IPv6 loopback address can be written abbreviated as ::1 (the IPv4
variant would be 127.0.0.1).

Just like IPv4, IPv6 has a number of special and reserved addresses; see APNIC’s list‐
ing of IPv6 address types for examples.

It’s important to note that IPv4 and IPv6 are not compatible. This means that IPv6
support needs to be built into each and every network participant, from edge devices
(like your phone) to routers to server software. This IPv6 support has, at least in the
context of Linux, already shown to be pretty wide. For example, the ip addr com‐
mand we saw in the section “IPv4” on page 153 would already by default show us the
IPv6 addresses.

Internet Control Message Protocol
The RFC 792 defines the Internet Control Message Protocol (ICMP), which is used
for lower-level components to send error messages and operational information like
availability.

Let’s see ICMP in action by testing the reachability of a website with ping:

$ ping mhausenblas.info
PING mhausenblas.info (185.199.109.153): 56 data bytes
64 bytes from 185.199.109.153: icmp_seq=0 ttl=38 time=23.140 ms
64 bytes from 185.199.109.153: icmp_seq=1 ttl=38 time=23.237 ms
64 bytes from 185.199.109.153: icmp_seq=2 ttl=38 time=23.989 ms
64 bytes from 185.199.109.153: icmp_seq=3 ttl=38 time=24.028 ms
64 bytes from 185.199.109.153: icmp_seq=4 ttl=38 time=24.826 ms
64 bytes from 185.199.109.153: icmp_seq=5 ttl=38 time=23.579 ms
64 bytes from 185.199.109.153: icmp_seq=6 ttl=38 time=22.984 ms
^C
--- mhausenblas.info ping statistics ---
7 packets transmitted, 7 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 22.984/23.683/24.826/0.599 ms

Alternatively, you can use gping, which can ping multiple targets at the same time
and plot a graph on the command line (see Figure 7-4).
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Figure 7-4. Pinging two websites with gping

Note that an equivalent tool is available for IPv6: the aptly named ping6.

Routing
Part of the network stack in Linux is concerned with routing—that is, deciding on a
per-packet basis where to send a packet. The destination could be a process on the
same machine, or it could be an IP address on a different machine.

While the exact implementation details of routing are beyond the scope of this chap‐
ter, we’ll provide a high-level overview: iptables, a widely used tool that allows you to
manipulate the routing tables—for example, to reroute packets on certain conditions
or implement a firewall—uses netfilter to intercept and manipulate packets.

What you should know is how to query and display routing information, as follows:

$ sudo route -n 
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
0.0.0.0         192.168.178.1   0.0.0.0         UG    600    0        0 wlp1s0
169.254.0.0     0.0.0.0         255.255.0.0     U     1000   0        0 wlp1s0
192.168.178.0   0.0.0.0         255.255.255.0   U     600    0        0 wlp1s0

Use the route command with -n, forcing numerical IP addresses.

The detailed meaning of the tabular output in the previous route command is as
follows:
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Destination

The IP address of the destination; 0.0.0.0 means it’s unspecified or unknown,
potentially sending it to the gateway.

Gateway

For packets not on the same network, the gateway address.

Genmask

The subnet mask used.

Flags

UG means the network is up and is a gateway.

Iface

The network interface the packet is going to use.

A modern way is using ip like so:

$ sudo ip route
default via 192.168.178.1 dev wlp1s0 proto dhcp metric 600
169.254.0.0/16 dev wlp1s0 scope link metric 1000
192.168.178.0/24 dev wlp1s0 proto kernel scope link src 192.168.178.40 metric 600

Is it down? We can check connectivity as follows:

$ traceroute mhausenblas.info
traceroute to mhausenblas.info (185.199.108.153), 30 hops max, 60 byte packets
 1  _gateway (192.168.5.2)  1.350 ms  1.306 ms  1.293 ms

Note that we will discuss a number of TCP/IP-related troubleshooting and perfor‐
mance tools in “Monitoring” on page 197.

To round things off, I’ll also briefly mention the Border Gateway Protocol (BGP) as
defined in RFC 4271 and other IETF specs. While it’s unlikely that you’ll interact
directly with BGP (unless you work at a network provider or admin a network), it’s
crucial to be aware of its existence and understand at a high level what it does.

Facebook Disappears from the Internet
In late 2021, we saw the impact that BGP misconfiguration can have. Read the back‐
story and lessons learned in “Understanding How Facebook Disappeared from the
Internet”.

We said earlier on that the internet really is a network of networks. In BGP terminol‐
ogy, a network is called an autonomous system (AS). For IP routing to work, these ASs
need to share their routing and reachability data, announcing routes to deliver pack‐
ets across the internet.

The TCP/IP Stack | 159

https://oreil.ly/QMc1v
https://oreil.ly/iwRNE
https://oreil.ly/UTwSk
https://oreil.ly/UTwSk


Now that you know the fundamental workings of the internet layer—how addresses
and routing work—let’s move up the stack.

The Transport Layer
In this layer, it’s all about the nature of the communication between endpoints. There
are connection-oriented protocols and connection-less ones. Reliability, QoS, and in-
order delivery may be a concern.

There are attempts in modern protocol design—HTTP/3 is an
example—to combine functionality, such as moving parts of TCP
into higher-level protocols.

Ports
One core concept in this layer is that of ports. No matter which protocol is used in
this layer, each requires ports. A port is a unique 16-bit number identifying a service
available at an IP address. Think of it this way: a single (virtual) machine may have a
number of services (see “Application Layer Networking” on page 173) running, and
you need to be able to identify each in the context of the machine’s IP.

We differentiate between the following:

Well-known ports (from 0 to 1023)
These are for daemons such as an SSH server or a web server. Using (binding to)
one of them requires elevated privileges (root or CAP_NET_BIND_SERVICE capa‐
bility, as discussed in “Capabilities” on page 87).

Registered ports (from 1024 to 49151)
These are managed by Internet Assigned Numbers Authority (IANA) through a
publicly documented process.

Ephemeral ports (from 49152 to 65535)
These cannot be registered. They can be used for automatically allocating a tem‐
porary port (for example, if your app connects to a web server, it needs a port
itself, as the other endpoint of the communication) as well as for private (say,
company-internal) services.

You can see the ports and mapping in /etc/services, and further, there is a comprehen‐
sive list of TCP and UDP port numbers you might want to consult if you’re unsure.
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If you want to see what’s in use on your local machine (do not do this on someone
else’s machine/against a nonlocal IP):

$ nmap -A localhost 

Starting Nmap 7.60 ( https://nmap.org ) at 2021-09-19 14:53 IST
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00025s latency).
Not shown: 999 closed ports
PORT    STATE SERVICE VERSION
631/tcp open  ipp     CUPS 2.2 
| http-methods:
|_  Potentially risky methods: PUT
| http-robots.txt: 1 disallowed entry
|_/
|_http-server-header: CUPS/2.2 IPP/2.1
|_http-title: Home - CUPS 2.2.7

Service detection performed. Please report any incorrect results
at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 6.93 seconds

Scan ports on local machine.

Found one open port, 631, which is the Internet Printing Protocol (IPP).

With the general idea of ports explained, let’s now have a look how these ports are
used in different transport layer protocols.

Transmission Control Protocol
The Transmission Control Protocol (TCP) is a connection-oriented transport layer
protocol that is used by a number of higher-level protocols, including HTTP and SSH
(see “Application Layer Networking” on page 173). It is a session-based protocol that
guarantees delivery of the packets in order and supports retransmission in case of
errors.

The TCP header (Figure 7-5), as defined in RFC 793 and related IETF specs, has
these most important fields:

Source port (16 bits)
The port used by the sender.

Destination port (16 bits)
The port used by the receiver.

Sequence number (32 bits)
Used to manage in-order delivery.
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Acknowledgment number (32 bits)
This number and the SYN and ACK flags are the core of the so-called TCP/IP three-
way handshake.

Flags (9 bits)
Most important, the SYN (synchronize) and the ACK (acknowledgement) bits.

Window (16 bits)
The receive window size.

Checksum (16 bits)
A checksum of the TCP-header, used for error checking.

Data
The payload to transport.

Figure 7-5. The TCP header format as per RFC 793

TCP tracks the state of the connection from establishment to termination, with both
the sender and the receiver having to negotiate certain things, from how much data to
send (TCP window size) to QoS.

From a security perspective, TCP is without any defense mechanisms. In other
words, the payload is sent in plain text, and anyone between the sender and the
receiver (and there are by design many hops) can inspect the packet; see “Wireshark
and tshark” on page 183 for details on using Wireshark and tshark to inspect the
payload. To enable encryption of the message, you need to use the Transport Layer
Security (TLS) protocol, ideally in version 1.3 as per RFC 8446.
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With that, let’s move on to the most important stateless transport layer protocol:
UDP.

User Datagram Protocol
User Datagram Protocol (UDP) is a connection-less transport layer protocol allowing
you to send messages, called datagrams in UDP, without communication setups (such
as TCP does with the handshake). It does, however, support datagram checksums to
ensure integrity. There are a number of application-level protocols, such as NTP and
DHCP (see “Application Layer Networking” on page 173) as well as DNS (see “DNS”
on page 165), that use UDP.

The RFC 768 defines the UDP header format as shown in Figure 7-6. Its most impor‐
tant fields are the following:

Source port (16 bits)
The port used by the sender; optional, and if not, use 0

Destination port (16 bits)
The port used by the receiver

Length (16 bits)
The total length of the UDP header and data

Checksum (16 bits)
Can optionally be used for error checking

Data
The payload of the datagram

Figure 7-6. The UDP header format as per RFC 768

UDP is a very simple protocol and requires the higher-level protocol that works on
top of it to take care of many of the things that TCP would handle itself. On the other
hand, UDP has very little overhead and can achieve high throughput. It’s very simple
to use; see also the UDP manual page.
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Sockets
A high-level communication interface that Linux provides are sockets. Think of them
as endpoints in a communication, with their distinct identity: a tuple made up of the
TCP or UDP port and the IP address.

It’s likely that you’ll only use sockets if you want to develop network-related tooling
or apps, but you should at least be aware of how to query them. For example, in the
context of the Docker daemon, you at least need to know about the required permis‐
sions for the socket.

Let’s have a look at how to use the ss command to display socket-related information.

Let’s assume we want to get an overview of the TCP sockets in use on the system:

$ ss -s 
Total: 913 (kernel 0)
TCP:   10 (estab 4, closed 1, orphaned 0, synrecv 0, timewait 1/0), ports 0 

Transport Total     IP        IPv6 
*         0         -         -
RAW       1         0         1
UDP       10        8         2
TCP       9         8         1
INET      20        16        4
FRAG      0         0         0

Use the ss command to query ports (with -s, we ask for a summary).

The summary for TCP; overall, 10 sockets in use.

A more detailed overview, breaking down by type and IP version.

Now, what about UDP? Can we get this information, maybe with some more details,
such as endpoint IP addresses? Turns out this is also possible with ss (output edited):

$ ss -ulp 
State    Recv-Q  Send-Q   Local Address:Port     Peer Address:Port
UNCONN   0       0              0.0.0.0:60360         0.0.0.0:*
UNCONN   0       0        127.0.0.53%lo:domain        0.0.0.0:*
UNCONN   0       0              0.0.0.0:bootpc        0.0.0.0:*
UNCONN   0       0              0.0.0.0:ipp           0.0.0.0:*
UNCONN   0       0              0.0.0.0:mdns          0.0.0.0:*
UNCONN   0       0                 [::]:mdns             [::]:*
UNCONN   0       0                 [::]:38359            [::]:*

Use ss: the -u parameter restricts to UDP sockets, -l is for selecting listening
sockets, and -p also shows the process information (none in our case).
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Another tool you might find handy in this context (sockets and processes) is lsof.
For example, let’s see what UDP sockets Chrome uses on my machine (output
edited):

 $ lsof -c chrome -i udp | head -5 
COMMAND   PID USER   FD  TYPE   DEVICE     NODE NAME
chrome   3131  mh9  cwd   DIR      0,5   265463 /proc/5321/fdinfo
chrome   3131  mh9  rtd   DIR      0,5   265463 /proc/5321/fdinfo
chrome   3131  mh9  txt   REG    253,0  3673554 /opt/google/chrome/chrome
chrome   3131  mh9  mem   REG    253,0  3673563 /opt/google/chrome/icudtl.dat
chrome   3131  mh9  mem   REG    253,0 12986737 /usr/lib/locale/locale-archive

Use lsof with -c to specifically select a process by name as well as limit to UDP
with -i. Note that the overall output would be many dozens of lines; that’s why I
cut it down to five with the head -5 command in the pipe.

With that we’ve covered the three lower layers of the TCP/IP stack. Since the applica‐
tion layer has so much going on, I’ve dedicated two sections to it: first, we’re looking
into the global-scale naming system, and then we’ll look into a number of application
layer (or layer 7) protocols and applications, such as the web.

DNS
We learned that the internet layer of the TCP/IP stack defines so-called IP addresses
whose main function it is to identify machines, virtual or physical alike. In the con‐
text of “Containers” on page 131, we go so far as to assign IP addresses to individual
containers. There are two challenges with numerical IP addresses, no matter if IPv4
or IPv6:

• As humans, we generally remember names better than we do (long) numbers.
For example, if you want to share a website with a friend, you can just say it’s
ietf.org they should check out rather than 4.31.198.44.

• Due to the way the internet and its applications are built, IP addresses often
change. You might get a new server with a new IP address in a more traditional
setup. Or, in the context of containers, you may be rescheduled onto a different
host, in which case the container automatically gets a new IP address assigned.

So, in a nutshell, IP addresses are hard to remember and can change, while a name
(for a server or a service) remains the same. This challenge has existed since the
beginning of the internet and since UNIX supported the TCP/IP stack.

The way to address this was to locally (in the context of a single machine) maintain a
mapping between names and IP addresses via /etc/hosts. The Network Information
Center (NIC) would share a single file called HOSTS.TXT via FTP with all participat‐
ing hosts.
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Very soon it became clear that this centralized approach could not keep up with the
growing internet, and in the early 1980s, a distributed system was designed. Paul
Mockapetris was the lead architect.

The DNS is a worldwide, hierarchical naming system for hosts and services on the
internet. While there are many related RFCs, the original one, RFC 1034, and its
implementation guidance via RFC 1035 are still valid, and I strongly recommend you
read them if you want to learn more about the motivation and design.

The DNS uses a number of terms, but the following are the main concepts:

Domain name space
A tree structure with . as the root and each tree node and leaf containing infor‐
mation about a certain space. The labels (63 bytes maximum length) along the
path from a leaf to the root is what we call a fully qualified domain name
(FQDN). For example, demo.mhausenblas.info. is an FQDN with the so-called
top-level domain .info. Note that the right-most dot, the root, is often left off.

Resource records
The payload in the nodes or leaves of the domain name space (see “DNS
Records” on page 168).

Name servers
Server programs that hold information about the domain tree’s structure. If a
name server has the complete information about a space, it’s called an authorita‐
tive name server. Authoritative information is organized into zones.

Resolvers
Programs that extract information from name servers in response to client
requests. They are machine local, and no explicit protocol is defined for the
interaction between a resolver and a client. Often there are library calls sup‐
ported for resolving the DNS.

Figure 7-7 shows a complete setup of a DNS system, including user program,
resolver, and name server(s), as described in RFC 1035. In the query process, the
resolver would iteratively query authoritative name servers (NS) starting from the
root or, if supported, using a recursive query where an NS queries others on behalf of
a resolver.
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Figure 7-7. A complete DNS example setup

Although they’re still around, we usually don’t use the DNS
resolver configuration in /etc/resolv.conf in modern systems, espe‐
cially when DHCP (see “Dynamic Host Configuration Protocol”
on page 182) is deployed.

The DNS is a hierarchical naming system, and at its root sit 13 root servers that man‐
age the records for the top-level domains. Directly beneath the root are the top-level
domains (TLD):

Infrastructure top-level domain
Managed by IANA on behalf of the IETF and including, for example, example
and localhost

Generic top-level domains (gTLD)
Generic domains having three or more characters, such as .org or .com

Country-code top-level domains (ccTLD)
For countries or territories assigned two-letter ISO country codes

Sponsored top-level domains (sTLD)
For private agencies or organizations that establish and enforce rules restricting
the eligibility to use the TLD—for example, .aero and .gov
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Let’s have a closer look at some moving parts of the DNS and how to use it in
practice.

DNS Records
A name server manages records that capture the type, the payload, and other fields,
including things like the time to live (TTL), the time period after which the record is
supposed to be discarded. You can think of the FQDN as the address of the node and
the resource record (RR) as the payload, the data in the node.

DNS has a number of record types, including the following most important ones (in
alphabetical order):

A records (RFC 1035) and AAAA records (RFC 3596)
IPv4 and IPv6 address records, respectively; usually used to map hostnames to an
IP address of the host.

CNAME records (RFC 1035)
Canonical name records providing an alias of one name to another.

NS records (RFC 1035)
Name server records delegating a DNS zone to use the authoritative name
servers.

PTR records (RFC 1035)
Pointer records used for performing reverse DNS lookups; the opposite of A
records.

SRV records (RFC 2782)
Service locator records. They are a generalized discovery mechanism, rather than
hardcoded (as traditionally was the case with the MX record type for mail
exchange).

TXT records (RFC 1035)
Text records. These were originally meant for arbitrary human-readable text but
over time found a new use case. Today, these records often have machine-
readable data in the context of security-related DNS extensions.

There are also wildcard records starting with the asterisk label (*)—for example,
*.mhausenblas.info—as a catch-all to match requests for nonexistent names.
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Let’s see how these records look in practice. The DNS records are represented in a
textual form in a zone file that a name server—such as bind—reads in and makes part
of its database:

$ORIGIN example.com. 
$TTL 3600 
@ SOA nse.example.com. nsmaster.example.com. (
  1234567890 ; serial number
  21600      ; refresh after 6 hours
  3600       ; retry after 1 hour
  604800     ; expire after 1 week
  3600 )     ; minimum TTL of 1 hour
example.com.  IN  NS    nse 
example.com.  IN  MX    10 mail.example.com. 
example.com.  IN  A     1.2.3.4 
nse           IN  A     5.6.7.8 
www           IN  CNAME example.com. 
mail          IN  A     9.0.0.9 

The start of this zone file in the namespace.

Default expiration time in seconds of all RRs that don’t define their own TTL.

The nameserver for this domain.

The mailserver for this domain.

The IPv4 address for this domain.

The IPv4 address for the nameserver.

Make www.example.com an alias for this domain—that is, example.com.

The IPv4 address for the mail server.

Putting all the concepts discussed together, we can now understand the example
shown in Figure 7-8. This shows a part of the global domain name space and a con‐
crete example FQDN, demo.mhausenblas.info:

.info
A generic TLD managed by a company called Afilias.

mhausenblas.info
A domain I bought. Within this zone I can assign subdomains as I please.

demo.mhausenblas.info
The subdomain I assigned for demo purposes.
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Figure 7-8. The domain name space and an example path (FQDN)

Consider how in the previous example each entity (Afilias or me) only looks after its
part, and no coordination is required. For example, to create the demo subdomain, I
only had to change my DNS settings for the zone, without asking anyone at Afilias for
support or permissions. This seemingly simple fact is the core of the decentralized
nature of DNS and is what makes it so scalable.

Now that we know how the domain name space is structured and the information in
the nodes is represented, let’s see how you can query them.

DNS Lookups
With all the infrastructure in place, mainly nameservers and resolvers, we now look
at performing DNS queries. There is a lot of logic in the evaluation and construction
of the resolution (mostly covered in RFC 1034 and 1035), but this is beyond the scope
of the book. Let’s have a look at how you can do the query without having to under‐
stand the internals.

You can use the host command to query local (and global) names to resolve them to
IP addresses and the other way around:

$ host -a localhost 
Trying "localhost.fritz.box"
Trying "localhost"
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;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49150
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;localhost.                     IN      ANY

;; ANSWER SECTION:
localhost.              0       IN      A       127.0.0.1
localhost.              0       IN      AAAA    ::1

Received 71 bytes from 127.0.0.53#53 in 0 ms

$ host mhausenblas.info 
mhausenblas.info has address 185.199.110.153
mhausenblas.info has address 185.199.109.153
mhausenblas.info has address 185.199.111.153
mhausenblas.info has address 185.199.108.153

$ host 185.199.110.153 
153.110.199.185.in-addr.arpa domain name pointer cdn-185-199-110-153.github.com.

Look up local IP addresses.

Look up FQDN.

Reverse lookup of IP address to find an FQDN; looks like the GitHub CDN.

A more powerful way to look up the DNS records is using the dig command:

$ dig mhausenblas.info 
; <<>> DiG 9.10.6 <<>> mhausenblas.info
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 43159
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 2, ADDITIONAL: 5

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;mhausenblas.info.              IN      A

;; ANSWER SECTION: 
mhausenblas.info.       1799    IN      A       185.199.111.153
mhausenblas.info.       1799    IN      A       185.199.108.153
mhausenblas.info.       1799    IN      A       185.199.109.153
mhausenblas.info.       1799    IN      A       185.199.110.153

;; AUTHORITY SECTION: 
mhausenblas.info.       1800    IN      NS      dns1.registrar-servers.com.
mhausenblas.info.       1800    IN      NS      dns2.registrar-servers.com.
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;; ADDITIONAL SECTION:
dns1.registrar-servers.com. 47950 IN    A       156.154.132.200
dns2.registrar-servers.com. 47950 IN    A       156.154.133.200
dns1.registrar-servers.com. 28066 IN    AAAA    2610:a1:1024::200
dns2.registrar-servers.com. 28066 IN    AAAA    2610:a1:1025::200

;; Query time: 58 msec
;; SERVER: 172.16.173.64#53(172.16.173.64)
;; WHEN: Wed Sep 15 19:22:26 IST 2021
;; MSG SIZE  rcvd: 256

Using dig, look up the DNS records of the FQDN mhausenblas.info.

The DNS A records.

The authoritative nameserver.

There are alternatives to the dig command available, notably dog and nslookup; see
Appendix B.

One saying you will come across often is: “It’s always DNS.” But
what does this mean? It’s about troubleshooting and understanding
that DNS is a distributed database with many moving parts. When
debugging DNS-related issues, consider the TTL of records and
that there are many caches, from local ones in your app to resolver,
to anything between you and the nameservers.

In “DNS Records” on page 168, we mentioned the SRV record type and that it serves
as a generic discovery mechanism. So, rather than defining a new record type for a
new service in an RFC, the community came up with a generic way to address any
upcoming service type. This mechanism, described in RFC 2782, explains how SRV
records can be used to communicate the IP address and port of a service via DNS.

Let’s see that in practice. Say we want to know what chat services—more specifically,
Extensible Messaging and Presence Protocol (XMPP) services—if any, are available:

$ dig +short _xmpp-client._tcp.gmail.com. SRV 
20 0 5222 alt3.xmpp.l.google.com.
5 0 5222 xmpp.l.google.com. 
20 0 5222 alt4.xmpp.l.google.com.
20 0 5222 alt2.xmpp.l.google.com.
20 0 5222 alt1.xmpp.l.google.com.
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Use the dig command with the +short option to display only the relevant answer
section. The _xmpp-client._tcp part is the format RFC 2782 prescribes, and the
SRV at the end of this command specifies what record type we’re interested in.

Overall there are five answers. An example service instance is available at
xmpp.l.google.com:5222 with a TTL of 5 seconds. If you have an XMPP such as
Jabber, you could use this address for configuration input.

With this, we’ve reached the end of the DNS section. Now we’ll have a look at other
application layer protocols and tooling.

Application Layer Networking
In this section, we focus on user space or application layer network protocols, tooling,
and apps. As an end user, you’ll likely spend most of your time here, using things
such as web browsers or mail clients for your daily tasks.

The Web
The web, originally developed by Sir Tim Berners-Lee in the early 1990s, has three
core components:

Uniform Resource Locators (URL)
As per RFC 1738 originally and a number of updates and related RFCs. A URL
defines both the identity and the location of a resource on the web. A resource
could be a static page or a process that generates content dynamically.

Hypertext Transfer Protocol (HTTP)
HTTP defines an application layer protocol and how to interact with content
available via URLs. As per RFC 2616 for v1.1, but there are also more modern
versions, such as HTTP/2, defined in RFC 7540, and the HTTP/3 draft (which at
the time of this writing was still in the works). Core HTTP concepts are:

HTTP methods
Including GET for read operations and, among others, POST for write opera‐
tions, these define a CRUD-like interface.

Resource naming
This dictates how to form URLs.
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HTTP status codes
With the 2xx range for success, 3xx for redirects, 4xx for client errors, and
5xx for server errors.

Hyper Text Markup Language (HTML)
Initially a W3C specification, HTML is now a living standard available via
WHATWG. A hypertext markup allows you to define page elements such as
headers or inputs.

W3C and standards
Technically neither IETF nor W3C (World Wide Web Consortium) do standards.
They create specifications through formal processes that the community accepts as de
facto standards. I strongly recommend that you read these specifications and try to
understand what’s going in there. For me, in 2006, after using and building web sites
and applications for almost a decade, I started to take this seriously (when I got
involved in W3C efforts), and the payoff was enormous.

Let’s have a closer look at how URIs (the generic version of URLs) are constructed (as
per RFC 3986) and how that maps to HTTP URLs:

michaelh:12345678@http://example.com:4242/this/is/the/way?orisit=really#another
\______/ \______/ \__/   \_____________/\______________/ \___________/ \_____/
   |        |       |          |                |              |          |
   v        v       v          v                v              v          v
user password  scheme  authority             path          query   fragment

The components are as follows:

user and password (both optional)
Initially used for basic authentication, these components should not be used any‐
more. Instead, for HTTP, you should be using a proper authentication mecha‐
nism together with HTTPS for encryption on the wire.

scheme

Refers to the URL scheme, an IETF specification defining its meaning. For
HTTP, that scheme is called http, which really is a family of HTTP specifications,
such as RFC 2616.

authority

The hierarchical naming part. For HTTP, this is:

Hostname
Either as a DNS FQDN or an IP address.
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Port
With a default of 80 (so example.com:80 and example.com are the same).

path

A scheme-specific part for further resource details.

query and fragment (both optional)
The former appears after the ? for nonhierarchical data (for example, to express
tags or form data), and the latter appears after the # for secondary resources (in
the context of HTML, that could be a section).

Today, the web has advanced far beyond its humble 1990s roots, with a number of
technologies such as JavaScript/ECMAScript and Cascading Style Sheets (CSS) con‐
sidered core. Those additions, JavaScript for dynamic client-side content and CSS for
styling, have eventually led to single-page web apps. While this topic is beyond the
scope of the book, it’s important to remember that knowing the basics (URL, HTTP,
and HTML) well goes a long way in terms of understanding how things work and
troubleshooting issues you may have.

Let’s now see web specifications in action by simulating the flow end to end, starting
at the HTTP server end.

You can rather easily run a simple HTTP server that only serves the content of a
directory in two ways: by using Python or by using netcat (nc).

With Python, to serve the content of a directory, you would do the following:

$ python3 -m http.server 
Serving HTTP on :: port 8000 (http://[::]:8000/) ... 
::ffff:127.0.0.1 - - [21/Sep/2021 08:53:53] "GET / HTTP/1.1" 200 - 

Use the built-in Python module http.server to serve the content of the current
directory (that is, the directory from which you launched this command).

It confirms that it’s ready to serve via port 8000. This means that you could enter
http://localhost:8000 into your browser and you would see the content of your
directory there.

This shows that an HTTP request against the root (/) has been issued and served
successfully (the 200 HTTP response code).
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If you want to do more advanced stuff, beyond serving a static
directory, consider using a proper web server such as NGINX. You
could, for example, run NGINX using Docker (see “Docker” on
page 138) with the following command:

$ docker run --name mywebserver \ 
             --rm -d \ 
             –v  "$PWD":/usr/share/nginx/html:ro \ 
             -p 8042:80 \ 
             nginx:1.21 

Call the running container mywebserver; you should see that
when you issue a docker ps command to list running
containers.

The --rm removes the container on exit, and the -d turns it
into a daemon (detach from terminal, run in background).

Mounts the current directory ($PWD) into the container as the
NGINX source content directory. Note that $PWD is a bash way
to address the current directory. In Fish you would use (pwd)
instead.

Makes the container-internal port 80 available on the host via
8042. That means you would be able to access the web server
via http://localhost:8042 on your machine.

The container image to use (nginx:1.21), and implicitly using
Docker Hub since we didn’t specify the registry part.

Now let’s see how we can use curl, a powerful and popular tool to interact with any
kind of URLs, to get the content of the web server we launched in the previous exam‐
ple (make sure it’s still running, or launch it again in a separate session if you termi‐
nated it already):

$ curl localhost:8000
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
                      "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Directory listing for /</title>
</head>
<body>
<h1>Directory listing for /</h1>
<hr>
<ul>
<li><a href="app.yaml">app.yaml</a></li>
<li><a href="Dockerfile">Dockerfile</a></li>
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<li><a href="example.json">example.json</a></li>
<li><a href="gh-user-info.sh">gh-user-info.sh</a></li>
<li><a href="main.go">main.go</a></li>
<li><a href="script.sh">script.sh</a></li>
<li><a href="test">test</a></li>
</ul>
<hr>
</body>

In Table 7-1 you see some common options for curl that you may find useful. The
selection is based on my usage history for a range of tasks, from developing to system
administration.

Table 7-1. Useful options for curl

Option Long-form option Description and use case

-v --verbose For verbose output, use for debugging.

-s --silent Silence curl: do not show the progress meter or error messages.

-L --location Follow page redirects (3XX HTTP response codes).

-o --output By default, the content goes to stdout; if you want to directly store it in a file, specify it via
this option.

-m --max-time Maximum time (in seconds) you are willing to wait for the operation to take.

-I --head Fetch the headers only (careful: not every HTTP server supports the HEAD method for a path).

-k --insecure By default, HTTPS calls are verified. Use this option to ignore the errors for cases where that’s
not possible.

If curl is not available, you can fall back to wget, which is more limited but sufficient
for simple HTTP-related interactions.

Secure Shell
Secure Shell (SSH) is a cryptographic network protocol for securely offering network
services on an unsecured network. For example, as a replacement for telnet, you can
use ssh to log into a remote machine and also move data securely between (virtual)
machines.

Let’s see SSH in action. I’ve provisioned a virtual machine in the cloud with an IP
address of 63.32.106.149, and the user name provided by default is ec2-user. To log
into the machine, I can do the following (note that the output is edited and assumes
that you or someone else created credentials in ~/.ssh/lml.pem beforehand):

$ ssh \ 
    -i ~/.ssh/lml.pem \ 
    ec2-user@63.32.106.149 

...
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https://aws.amazon.com/amazon-linux-2/
11 package(s) needed for security, out of 35 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-26-8-138 ~]$ 

Use the ssh command to log into a remote machine.

Use the identity file ~/.ssh/lml.pem rather than a password. Explicitly providing
that file is a good practice but in our case would strictly speaking not be neces‐
sary as it resides in the default location ~/.ssh.

The SSH target machine in the format username@host.

Once the login process is completed, I can tell from the prompt that I’m on the
target machine and can use it just as if it were local.

Some general SSH usage tips:

• If you run an SSH server, that is, allow others to ssh into your machine, then you
absolutely should disable password authentication. This forces users to create a
key pair and share the public key with you that you then add to ~/.ssh/author‐
ized_keys and allow to log in via this mechanism.

• Use ssh -tt to force pseudo-tty allocation.
• Do export TERM=xterm when you ssh into a machine, in case you are having dis‐

play issues.
• Configure timeouts for ssh sessions in your client. On a per-user basis, this is

usually via ~/.ssh/config, where you can set ServerAliveInterval and Server
AliveCountMax options to keep your connections alive.

• If you’re having issues, and you’ve excluded local permission issues with the
key(s), then you can try launching ssh with the -v option, giving you details
about what’s going on under the hood (also, try multiple instances of v, like -vvv
for finer-grained debug info).

SSH is not only used directly by humans, but it is also used as a building block under
the hood—for example, in file-transfer tooling.

File Transfer
One very common task involving the network is transferring files. You can do this
from your local machine to a server in the cloud or from another machine in the local
network.

To copy to and from remote systems, you can use one basic tool. scp (short for
“secure copy”) works on top of SSH. Given that scp defaults to ssh, we need to make
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sure that we have the password (or even better, key-based authentication) in place for
it to work.

Let’s assume we have a remote machine with the IPv4 address 63.32.106.149, and
we want to copy a file there from our local machine:

$ scp copyme \ 
      ec2-user@63.32.106.149:/home/ec2-user/ 
copyme                       100%    0     0.0KB/s   00:00

Source is the file copyme in the current directory.

Destination is the /home/ec2-user/ directory on machine 63.32.106.149.

Synchronizing files with rsync is much more convenient and faster than scp. Under
the hood, rsync uses SSH by default.

Let’s now see how we can use rsync to transfer files from the ~/data/ from the local
machine to the host at 63.32.106.149:

$ rsync -avz \ 
        ~/data/ \ 
        mh9@:63.32.106.149: 
building file list ... done
./
example.txt

sent 155 bytes  received 48 bytes  135.33 bytes/sec
total size is 10  speedup is 0.05

$ ssh ec2-user@63.32.106.149 -- ls 
example.txt

Options meaning -a for archive (incremental, preserve), -v for verbose so that
we see something, and -z for using compression.

Source directories (since -a includes -r which is recursive).

Destination in user@host format.

Verify if the data has arrived by executing an ls on the remote machine. The next
line shows that it indeed worked—the data arrived in good order.

If you’re unsure what rsync will do, use the --dry-run option in addition to the other
ones. It will essentially tell you what it will do without actually carrying out the opera‐
tion, so it’s safe.

rsync is also a great tool to perform directory backups because it can be set to copy
only files that have been added or changed.
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Don’t forget the : after the host! Without it, rsync will happily go
ahead and interpret the source or destination as a local directory.
That is, the command will work fine, but rather than copying the
files to the remote machine, it will end up on your local machine.
For example, user@example.com as the destination would be a sub‐
directory of the current directory called user@example.com/.

Last but not least, one use case you often come across is when someone provides files
in an Amazon S3 bucket. To download those files, you can use the AWS CLI with the
s3 subcommand as follows. We’re using a dataset from the Open Data registry in a
public S3 bucket (output edited to fit):

$ aws s3 sync \ 
      s3://commoncrawl/contrib/c4corpus/CC-MAIN-2016-07/ \ 
      .\ 
      --no-sign-request 
download: s3://commoncrawl/contrib/c4corpus/CC-MAIN-2016-07/
Lic_by-nc-nd_Lang_af_NoBoilerplate_true_MinHtml_true-r-00009.seg-00000.warc.gz to
./Lic_by-nc-nd_Lang_af_NoBoilerplate_true_MinHtml_true-r-00009.seg-00000.warc.gz
download: s3://commoncrawl/contrib/c4corpus/CC-MAIN-2016-07/
Lic_by-nc-nd_Lang_bn_NoBoilerplate_true_MinHtml_true-r-00017.seg-00000.warc.gz to
./Lic_by-nc-nd_Lang_bn_NoBoilerplate_true_MinHtml_true-r-00017.seg-00000.warc.gz
download: s3://commoncrawl/contrib/c4corpus/CC-MAIN-2016-07/
Lic_by-nc-nd_Lang_da_NoBoilerplate_true_MinHtml_true-r-00004.seg-00000.warc.gz to
./Lic_by-nc-nd_Lang_da_NoBoilerplate_true_MinHtml_true-r-00004.seg-00000.warc.gz
...

Use the AWS S3 command to synchronize files from a public bucket.

This is the source bucket, s3://commoncrawl, and the exact path of the source we
want to sync. Warning: there are more than 8 GB of data in that directory, so try
this only if you don’t mind the bandwidth.

The destination is the current directory, signaled by a single period (.).

Ignore/skip authentication since this is a publicly available bucket (and thus the
data in it).

The File Transfer Protocol (FTP) as per RFC 959 is still in use, but we don’t recom‐
mend using it anymore. Not only are these insecure, but there are also many better
alternatives, such as the ones we discussed in this section. So, there’s no actual need
for FTP anymore.

180 | Chapter 7: Networking

https://oreil.ly/mqQcr
https://oreil.ly/cbYMH
https://oreil.ly/Okegf


Network File System
A widely supported and used way to share files from a central location over the net‐
work is via network file system (NFS), originally developed by Sun Microsystems in
the early 1980s. It saw multiple iterations as per RFC 7530 and other related IETF
specs and is very stable.

You would usually have an NFS server maintained by a cloud provider or central IT
in a professional setup. All you would need to do is install the client (usually through
a package called nfs-common). Then, you can mount a source directory from the NFS
server as follows:

$ sudo mount nfs.example.com:/source_dir /opt/target_mount_dir

Many cloud providers, such as AWS and Azure, now offer NFS as a service. It’s a nice
way to provide your storage-hungry application with a lot of space in a way that looks
and feels almost like local attached storage. For media applications, however, a
network-attached storage (NAS) setup is likely the better choice.

Sharing with Windows
If you have Windows machines in your local network and want to share it, you can
use the Server Message Block (SMB), a protocol initially developed at IBM in the
1980s, or its Microsoft-owned successor, Common Internet File System (CIFS).

You would typically use Samba, the standard Windows interoperability suite of pro‐
grams for Linux, to achieve the file sharing.

Advanced Network Topics
In this section, we discuss some advanced network protocols and tooling across the
TCP/IP stack. Their usage is normally beyond the scope of a casual user. However, if
you’re a developer or sys admin, you probably will want to be at least aware of them.

whois
whois is a client for the whois directory service that you can use to look up registra‐
tion and user information. For example, if I want to find out who is behind the
ietf.org domain (note that you can pay your domain registrar to keep that information
private), I would do the following:
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$ whois ietf.org 
% IANA WHOIS server
% for more information on IANA, visit http://www.iana.org
% This query returned 1 object

refer:        whois.pir.org

domain:       ORG

organisation: Public Interest Registry (PIR)
address:      11911 Freedom Drive 10th Floor,
address:      Suite 1000
address:      Reston, VA 20190
address:      United States

contact:      administrative
name:         Director of Operations, Compliance and Customer Support
organisation: Public Interest Registry (PIR)
address:      11911 Freedom Drive 10th Floor,
address:      Suite 1000
address:      Reston, VA 20190
address:      United States
phone:        +1 703 889 5778
fax-no:       +1 703 889 5779
e-mail:       ops@pir.org
...

Use whois to look up registration information about domain.

Dynamic Host Configuration Protocol
The Dynamic Host Configuration Protocol (DHCP) is a network protocol that ena‐
bles automatic assignment of an IP address to a host. It’s a client /server setup that
removes the need for manually configuring network devices.

Setting up and managing a DHCP server is outside our scope, but you can use
dhcpdump to scan for DHCP packets. For this, a device in your local network needs to
join, trying to acquire an IP address, so you may need to be a bit patient to see some‐
thing here (output shortened):

$ sudo dhcpdump -i wlp1s0 
  TIME: 2021-09-19 17:26:24.115
    IP: 0.0.0.0 (88:cb:87:c9:19:92) > 255.255.255.255 (ff:ff:ff:ff:ff:ff)
    OP: 1 (BOOTPREQUEST)
 HTYPE: 1 (Ethernet)
  HLEN: 6
  HOPS: 0
   XID: 7533fb70
   ...
OPTION:  57 (  2) Maximum DHCP message size 1500
OPTION:  61 (  7) Client-identifier         01:88:cb:87:c9:19:92
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OPTION:  50 (  4) Request IP address        192.168.178.42
OPTION:  51 (  4) IP address leasetime      7776000 (12w6d)
OPTION:  12 ( 15) Host name                 MichaelminiiPad
...

Using dhcpdump, sniff DHCP packets on interface wlp1s0.

Network Time Protocol
The Network Time Protocol (NTP) is for synchronizing clocks of computers over a
network. For example, using the ntpq command, a standard NTP query program,
you could make an explicit time server query like so:

 $ ntpq -p 
     remote           refid      st t when poll reach   delay   offset  jitter
==============================================================================
 0.ubuntu.pool.n .POOL.          16 p    -   64    0    0.000    0.000   0.000
 1.ubuntu.pool.n .POOL.          16 p    -   64    0    0.000    0.000   0.000
 2.ubuntu.pool.n .POOL.          16 p    -   64    0    0.000    0.000   0.000
 3.ubuntu.pool.n .POOL.          16 p    -   64    0    0.000    0.000   0.000
 ntp.ubuntu.com  .POOL.          16 p    -   64    0    0.000    0.000   0.000
 ...
 ntp17.kashra-se 90.187.148.77    2 u    7   64    1   27.482   -3.451   2.285
 golem.canonical 17.253.34.123    2 u   13   64    1   20.338    0.057   0.000
 chilipepper.can 17.253.34.123    2 u   12   64    1   19.117   -0.439   0.000
 alphyn.canonica 140.203.204.77   2 u   14   64    1   91.462   -0.356   0.000
 pugot.canonical 145.238.203.14   2 u   13   64    1   20.788    0.226   0.000

With the -p option, show a list of peers known to the machine, including their
state.

Usually, NTP works in the background, managed by systemd and other daemons, so
you are unlikely to need to manually query it.

Wireshark and tshark
If you want to do low-level network traffic analysis—that is, you want to see exactly
the packets across the stack—you can use either the command-line tool tshark or its
GUI-based version, wireshark.

For example, after finding out via ip link that I have a network interface called
wlp1s0, I capture traffic there (output edited to fit):

$ sudo tshark -i wlp1s0 tcp 
Running as user "root" and group "root". This could be dangerous.
Capturing on 'wlp1s0'
    1 0.000000000 192.168.178.40 → 34.196.251.55 TCP 66 47618 → 443
    [ACK] Seq=1 Ack=1 Win=501 Len=0 TSval=3796364053 TSecr=153122458
    2 0.111215098 34.196.251.55 → 192.168.178.40 TCP 66
    [TCP ACKed unseen segment] 443 → 47618 [ACK] Seq=1 Ack=2 Win=283
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    Len=0 TSval=153167579 TSecr=3796227866
    ...
    8 7.712741925 192.168.178.40 → 185.199.109.153 HTTP 146 GET / HTTP/1.1 
    9 7.776535946 185.199.109.153 → 192.168.178.40 TCP 66 80 → 42000 [ACK]
    Seq=1 Ack=81 Win=144896 Len=0 TSval=2759410860 TSecr=4258870662
   10 7.878721682 185.199.109.153 → 192.168.178.40 TCP 2946 HTTP/1.1 200 OK
   [TCP segment of a reassembled PDU]
   11 7.878722366 185.199.109.153 → 192.168.178.40 TCP 2946 80 → 42000
   [PSH, ACK] Seq=2881 Ack=81 Win=144896 Len=2880 TSval=2759410966 \
   TSecr=4258870662
   [TCP segment of a reassembled PDU]
   ...

Use tshark to capture network traffic on network interface wlp1s0 and only look
at TCP traffic.

In another session, I issued a curl command to trigger an HTTP session, in
which application layer interaction starts. You could also use the less powerful
but on the other hand more widely available tcpdump for this task.

Other Advanced Tooling
There are a number of advanced network-related tools out there you may find useful,
including but not limited to the following:

socat

Establishes two bidirectional byte streams and enables the transferring of data
between the endpoint.

geoiplookup

Allows you to map an IP to a geographic region.

Tunnels
An easy-to-use alternative to VPNs and other site-to-site networking solutions.
Enabled by such tools as inlets.

BitTorrent
A peer-to-peer system that groups files into a package called a torrent. Check out
some clients to decide if this is something for your toolbox.
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Conclusion
In this chapter, we defined common network terms, from the hardware level, such as
NICs, to the TCP/IP stack, to application-layer, user-facing components, such as
HTTP.

Linux provides a powerful, standards-based implementation of the TCP/IP stack that
you can use programmatically (for example, sockets) and in the context of setting up
and querying (usually with the ip command).

We further discussed application-layer protocols and interfaces that make up most of
the daily (network-related) flows. Your command-line friends here include curl for
transfer and dig for DNS lookups.

If you want to dive deeper into networking topics, check out the following resources:

The TCP/IP stack
• Understanding Linux Network Internals by Christian Benvenuti (O’Reilly)
• “A Protocol for Packet Network Intercommunication”
• DHCP server setup webpage
• “Hello IPv6: A Minimal Tutorial for IPv4 Users”
• “Understanding IPv6—7 Part Series”
• Collection of IPv6 articles by Johannes Weber
• Iljitsch van Beijnum’s BGP Expert website
• “Everything You Ever Wanted to Know About UDP Sockets but Were Afraid to

Ask”

DNS
• “An Introduction to DNS Terminology, Components, and Concepts”
• “How to Install and Configure DNS Server in Linux”
• “Anatomy of a Linux DNS Lookup”
• “TLDs—Putting the .fun in the Top of the DNS”
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Application layer and advanced networking
• “SSH Tunneling Explained”
• Everything curl
• “What Is DHCP and How to Configure DHCP Server in Linux”
• “How to Install and Configure Linux NTP Server and Client”
• NFS wiki
• “Use Wireshark at the Linux Command Line with TShark”
• “Getting Started with socat”
• “Geomapping Network Traffic”

With that, we’re ready to move on to the next topic in the book: using observability to
avoid flying blind.
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CHAPTER 8

Observability

You need visibility into what’s going on across the stack—from the kernel to user-
facing parts. Often, you get that visibility by knowing the right tool for the task.

This chapter is all about gathering and using different signals that Linux and its appli‐
cations generate so that you can make informed decisions. For example, you’ll see
how you can do the following:

• Figure out how much memory a process consumes
• Understand how soon you will run out of disk space
• Get an alert on custom events for security reasons

To establish a common vocabulary, we’ll first review different signal types you might
come across, such as system or application logs, metrics, and process traces. We’ll also
have a look at how to go about troubleshooting and measuring performance. Next,
we’ll focus on logs specifically, reviewing different options and semantics. Then, we’ll
cover monitoring for different resource types, such as CPU cycles, memory, or I/O
traffic. We’ll review different tools that you can use and show certain end-to-end
setup you may wish to adopt.

You’ll learn that observability is often reactionary. That is, something crashes or runs
slowly, and you start looking at processes and their CPU or memory usage, or dig
into the logs. But there are also times when observability has more of an investigative
nature—for example, when you want to figure out how long certain algorithms take.
Last but not least, you can use predictive (rather than reactive) observability. For
example, you can be alerted on a condition in the future, extrapolating the current
behavior (disk usage for a predictable load is a good example where that might work
well).
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Likely the best visual overview on observability comes from performance maestro
Brendan Gregg. Figure 8-1, taken from his Linux Performance site, gives you a feeling
for the wealth of moving parts and tooling available.

Figure 8-1. Linux observability overview. Credit: Brendan Gregg (shared under CC BY-
SA 4.0 license)

Observability is an exciting topic with many use cases and lots of (open source) tool‐
ing available, so let’s first establish a strategy and look at some common terms used.

Basics
Before we get into the observability terminology, let’s step back a bit and look at how
you turn the information provided into actionable insights and use it to fix an issue
or optimize an app in a structured manner.

Observability Strategy
One widely established strategy in the observability context is the OODA loop
(observe–orient–decide–act). It offers a structured way to test a hypothesis based on
observed data and act upon it—that is, a way to get actionable insights from signals.
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1 Observability is also sometimes referred to with the numeronym o11y, as there are 11 letters between the o
and the y.

For example, let’s say an application is slow. Let’s further assume there are multiple
possible reasons for this (not enough memory, too few CPU cycles, network I/O
insufficient, etc.). First, you want to be able to measure each resource consumption.
Then you would change each resource allocation individually (keeping the others
unchanged) and measure the outcome.

Does the performance improve after you provided more RAM to the app? If so, you
may have found the reason. If not, you continue with a different resource, always
measuring the consumption and trying to relate to the observed impact on the
situation.

Terminology
There are a range of terms in the observability space,1 and not all have formal defini‐
tions. In addition, the meanings might slightly differ if you’re looking at a single
machine or are in a networked (distributed) setup:

Observability
Assessing the internal state of a system (such as Linux) by measuring external
information, usually with the goal of acting upon it. For example, if you notice
that your system reacts sluggishly, and measure how much main memory is
available, you might find that a particular app hogs all the memory, and you may
decide to terminate it to remedy the situation.

Signal types
Different ways to represent and emit information about the state of a system,
either via symbolic means (payload is text, such as the case with logs) or numeri‐
cal values (as with metrics) or combinations thereof. See also “Signal Types” on
page 190.

Source
Generates signals, potentially of different types. Sources can be the Linux operat‐
ing system or an application.

Destination
Where you consume, store, and further process signals. We call a destination that
exposes a user interface (GUI, TUI, or CLI) a frontend. For example, a log viewer
or a dashboard plotting time series is a frontend, whereas an S3 bucket is not (but
can still act as a destination for, say, logs).
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Telemetry
The process of extracting signals from sources and transporting (or routing,
shipping) the signals to destinations, often employing agents that collect and/or
preprocess signals (for example, filter or downsample).

Signal Types
Signals are how we communicate the state of a system for further processing or inter‐
pretation. By and large we distinguish between text payload (which is most suited for
a human to search and interpret) and numerical payload (good for both machines
and, in processed form, for humans). The three basic and common signal types rele‐
vant to our discussion in this chapter are: logs, metrics, and traces.

Logs
Logs are a fundamental signal type that every system, to some extent, generates. Logs
are discrete events with a textual payload, meant for human consumption. Typically,
these events are timestamped. Ideally, the logs are structured so that there is a clear
meaning defined for each part of the log message. This meaning is potentially
expressed through a formal schema so that validation can be automatically
performed.

Interestingly, while every log has some structure (even if it’s not well defined and
parsing is hard, potentially due to delimiter or edge cases), you will often hear the
term structured logging. When people say that, they actually mean that the log is
structured using JSON.

While automating log content is hard (given its textual nature), logs are still very use‐
ful for humans, and thus they will likely stay the dominating signal type for some
time. We’ll dig deeper into handling logs in “Logging” on page 191. Logs are the most
important signal type (for our considerations), and that’s why we’ll spend most of the
time in this chapter dealing with them.

Metrics
Metrics are (usually regularly) sampled numerical data points, forming a time series.
The individual data points can have additional context in the form of dimensions or
identifying metadata. Normally, you don’t directly consume the raw metrics; instead,
you use some sort of aggregation or graphical representation, or you get notified if a
certain condition is met. Metrics can be useful both for operational tasks and for
troubleshooting to answer questions like how many transactions an app completed or
how long a certain operation took (in the past X minutes).

We distinguish between different types of metrics:
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Counter
The value of a counter can only ever go up (besides resetting a counter to zero).
An example of a counter metric is the total number of requests handled by a ser‐
vice or the bytes sent via an interface over a time period.

Gauges
A gauge value can go up or down. For example, you gauge the currently available
overall main memory or the number of processes running.

Histograms
A sophisticated way to build a distribution of values. Using buckets, histograms
allow you to assess how the data overall is structured. They also enable you to
make flexible statements (such as 50% or 90% of the values fall into a certain
range).

In “Monitoring” on page 197, we have a look at a range of tools that you can use for
simple use cases, and in “Prometheus and Grafana” on page 207, you see an advanced
example setup for metrics.

Traces
Traces are a dynamic collection of runtime information (for example, information
about what syscalls a process uses, or the sequence of events in the kernel, for a given
cause). Traces are often used not only for debugging but also for performance assess‐
ments. We have a look at this advanced topic in “Tracing and Profiling” on page 205.

Logging
As mentioned before, logs are (a collection of) discrete events with a textual payload,
optimized for human consumption. Let’s decompose this statement to understand it
better:

Discrete events
Think of a discrete event in the context of the codebase. You want to share infor‐
mation about what is going on in the code using an (atomic) log item. For exam‐
ple, you emit a log line that a database connection has been established
successfully. Another log item might be to flag an error because a file is missing.
Keep the scope of the log message small and specific, so it’s easier for someone
consuming the message to find the respective location in the code.

Textual payload
The payload of a log message is of textual nature. The default consumers are
humans. In other words, no matter if you’re using a log viewer on the command
line, or a fancy log-processing system with visual UI, a human reads and inter‐
prets the content of the log message and decides on an action based on it.
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From a structural perspective, overall, a log comprises the following:

A collection of log items, messages, or lines
Captures information about a discrete event.

Metadata or context
Can be present on a per-message basis as well as on a global scope (the entire log
file, for example).

A format for how an individual log message is to be interpreted
Defines the log’s parts and meanings. Examples are line-oriented, space-separated
messages or a JSON schema.

In Table 8-1, you can see some common log formats. There are many (more-specific,
narrower-scoped) formats and frameworks—for example, for database or program‐
ming languages.

Table 8-1. Common log formats

Format Note
Common event format Developed by ArcSight; used for devices, security use cases

Common log format For web servers; see also extended log format

Graylog extended log format Developed by Graylog; improves Syslog

Syslog For operating systems, apps, devices; see “Syslog” on page
194

Embedded metric format Developed by Amazon (both logs and metrics)

As a good practice, you want to avoid overhead with logs (enabling fast lookups and a
small footprint—that is, not taking up too much disk space). In this context, log rota‐
tion, for example, via logrotate, is used. An advanced concept called data tempera‐
ture may also be useful, moving older log files to cheaper and slower storage (attached
disk, S3 bucket, Glacier).

There’s one case where you need to be careful about logging infor‐
mation, especially in production environments. Whenever you
decide to emit a log line in your app, ask yourself if you could
potentially leak sensitive information. This sensitive information
could be a password, an API key, or even simply user-identifying
information (email, account ID).
The problem is that the logs are usually stored in a persistent form
(say, on local disk or even in an S3 bucket). This means that even
long after the process has terminated, someone could get access to
the sensitive information and use it for an attack.
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To signal the importance or intended target consumer of a log item, logs often define
levels (for example DEBUG for development, INFO for normal status, or ERROR for
unexpected situations that may require human intervention).

Now it’s time to get our hands dirty: let’s start with something simple and, as an over‐
view, have a look at Linux’s central log directory (output shortened for readability):

$ ls -al /var/log
drwxrwxr-x   8 root      syslog               4096 Jul 13 06:16 .
drwxr-xr-x  13 root      root                 4096 Jun  3 07:52 ..
drwxr-xr-x   2 root      root                 4096 Jul 12 11:38 apt/ 
-rw-r-----   1 syslog    adm                  7319 Jul 13 07:17 auth.log 
-rw-rw----   1 root      utmp                 1536 Sep 21 14:07 btmp 
drwxr-xr-x   2 root      root                 4096 Sep 26 08:35 cups/ 
-rw-r--r--   1 root      root                28896 Sep 21 16:59 dpkg.log 
-rw-r-----   1 root      adm                 51166 Jul 13 06:16 dmesg 
drwxrwxr-x   2 root      root                 4096 Jan 24  2021 installer/ 
drwxr-sr-x+  3 root      systemd-journal      4096 Jan 24  2021 journal/ 
-rw-r-----   1 syslog    adm                  4437 Sep 26 13:30 kern.log 
-rw-rw-r--   1 root      utmp               292584 Sep 21 15:01 lastlog 
drwxr-xr-x   2 ntp       ntp                  4096 Aug 18  2020 ntpstats/ 
-rw-r-----   1 syslog    adm                549081 Jul 13 07:57 syslog 

Logs of the apt package manager

Logs of all login attempts (successful and failed) and authentication processes

Failed login attempts

Printing related logs

Logs of the dpkg package manager

Device driver logs; use dmesg to inspect

System install logs (when the Linux distro was originally installed)

The journalctl location; see “journalctl” on page 196 for details

The kernel logs

All last logins of all users; use lastlog to inspect

NTP-related logs (see also “Network Time Protocol” on page 183)

The syslogd location; see “Syslog” on page 194 for details
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One common pattern for consuming logs live (that is, as it happens) is to follow logs;
that is, you watch the end of the log as new log lines are added (edited to fit):

$ tail -f /var/log/syslog 
Sep 26 15:06:41 starlite nm-applet[31555]: ... 'GTK_IS_WIDGET (widget)' failed
Sep 26 15:06:41 starlite nm-dispatcher: ... new request (3 scripts)
Sep 26 15:06:41 starlite systemd[1]: Starting PackageKit Daemon...
Sep 26 15:06:41 starlite nm-dispatcher: ... start running ordered scripts...
Sep 26 15:06:42 starlite PackageKit: daemon start 
^C

Follow the logs of the syslogd process with the -f option.

An example log line; see “Syslog” on page 194 for the format.

If you want to see the log output of a process and at the same time
store it in a file, you can use the tee command:

$ someprocess | tee -a some.log

Now you’d see the output of someprocess in your terminal, and the
output would at the same time be stored in some.log. Note that
we’re using the -a option to append to the log file, otherwise it
would be truncated.

Let’s now have a look at the two most commonly used Linux logging systems.

Syslog
Syslog is a logging standard for a range of sources, from the kernel to daemons to
user space. It has its roots in networked environments, and today the protocol com‐
prises a textual format defined in RFC 5424, along with deployment scenarios and
security considerations. Figure 8-2 shows the high-level format of Syslog, but be
aware that there are many seldom-used optional fields.

Figure 8-2. Syslog format as per RFC 5424
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The Syslog format as defined in RFC 5424 has the following header fields (with TS
and HN the most often used):

PRI

The message facility/severity

VER

The Syslog protocol number (usually left out since it can only be 1)

TS

Contains the time when the message was generated using ISO 8601 format

HN

Identifies the machine that sent the message

APP

Identifies the application (or a device) that sent the message

PID

Identifies the process that sent the message

MID

An optional message ID

The format also includes structured data, which is the payload in a structured (key/
value-based) list where each element is bounded by [ ].

Usually, one would use the syslogd binary to take care of the log management. Over
time, other options have become available that you should be aware of:

syslog-ng

An enhanced log daemon that you can use as a drop-in replacement for syslogd
and that in addition supports TLS, content-based filtering, and logging into data‐
bases such as PostgreSQL and MongoDB. Available since late 1990.

rsyslog

Extends the Syslog protocol and can also be used with systemd. Available since
2004.

Despite its age, the Syslog family of protocols and tools is still around and widely
available. With systemd becoming the de facto standard of init systems, used in every
major Linux distro, there is, however, a new way to go about logging: meet the
systemd journal.
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journalctl
In “systemd” on page 119, we briefly touched upon a component that is part of the
systemd ecosystem, responsible for log management: journalctl. In contrast to
Syslog and the other systems we’ve used so far, journalctl uses a binary format to
store the log items. This allows faster access and better storage footprints.

The binary storage format did attract some criticism when it was introduced since
people are not able to continue to use the familiar tail, cat, and grep commands to
view and search logs. Having said that, while one has to learn a new way to interact
with logs when using journalctl, the learning curve is not too bad.

Let’s have a look at some common tasks. If you launch journalctl without parame‐
ters, it will present itself as an interactive pager (you can use the arrow keys or space
bar to scroll through it and exit with q) for all the logs.

To restrict the time range, you can, for example, use the following:

$ journalctl --since "3 hours ago" 

$ journalctl --since "2021-09-26 15:30:00" --until "2021-09-26 18:30:00" 

Restrict the time range to what happened in the past three hours.

Another way to restrict the time range, with explicit start and stop times.

You can limit the output to specific systemd units like so (assuming there is a service
called abc.service):

$ journalctl -u abc.service

The journalctl tool has a powerful way to format the output of
the log items. Using the --output (or -o for short) parameter, you
can optimize the output for a certain use case. Important values are
the following:

cat

Short form, without time stamp or source

short

The default, emulating Syslog output

json

One JSON-formatted entry per line (for automation)
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You can have the same experience to follow the logs as you’d have with tail -f using
the following:

$ journalctl -f

Let’s put all the preceding information together into a concrete example. Assume you
want to relaunch a security component of the Linux distro, managed by systemd:
AppArmor. That is, in one terminal we restart the service using systemctl restart
apparmor, and in another we execute the following command (output edited; the
actual output is one log item per line):

$ journalctl -f -u apparmor.service 
-- Logs begin at Sun 2021-01-24 14:36:30 GMT. --
Sep 26 17:10:02 starlite apparmor[13883]: All profile caches have been cleared,
                                          but no profiles have been unloaded.
Sep 26 17:10:02 starlite apparmor[13883]: Unloading profiles will leave already
                                          running processes permanently
...
Sep 26 17:10:02 starlite systemd[1]: Stopped AppArmor initialization.
Sep 26 17:10:02 starlite systemd[1]: Starting AppArmor initialization... 
Sep 26 17:10:02 starlite apparmor[13904]:  * Starting AppArmor profiles
Sep 26 17:10:03 starlite apparmor[13904]: Skipping profile in
                                     /etc/apparmor.d/disable: usr.sbin.rsyslogd
Sep 26 17:10:09 starlite apparmor[13904]:    ...done.
Sep 26 17:10:09 starlite systemd[1]: Started AppArmor initialization.

Follow the logs of the AppArmor service.

After systemd has stopped the service, here it comes back up again.

With that we are at the end of the logging section and move on to numerical values
with metrics and the wider topic of monitoring.

Monitoring
Monitoring is the capturing of system and application metrics for a variety of reasons.
For example, you may be interested in how long something takes or how many
resources a process consumes (performance monitoring), or you may be trouble‐
shooting an unhealthy system. The two types of activities you’ll carry out most often
in the context of monitoring are as follows:

• Tracking one or more metrics (over time)
• Alerting on a condition

In this section, we first focus on some foundations and tools you should be aware of,
and as we move further into the section, we get into more advanced techniques that
may be relevant only in certain situations.
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Let’s look at a simple example that displays some basic metrics, such as how long a
system is running, memory usage, and more, using the uptime command:

$ uptime 
08:48:29 up 21 days, 20:59,  1 user,  load average: 0.76, 0.20, 0.09 

Use the uptime command to display some basic system metrics.

Separated by commas, the output tells us how long the system is running, the
number of users logged in, and then (in the load average section) three gauges:
the 1-minute, 5-minute, and 15-minute average. These averages are the number
of jobs in the run queue or waiting for disk I/O; the numbers are normalized and
indicate how busy the CPUs are. For example, here the load average for the past 5
minutes was 0.2 (which in isolation doesn’t tell you much, so you have to com‐
pare it with the other values and track it over time).

Next, let’s monitor some basic memory utilization, using the free command (output
compressed to fit):

$ free -h 
              total    used   free  shared  buff/cache   available
Mem:           7.6G    1.3G   355M    395M        6.0G        5.6G 
Swap:          975M    1.2M   974M  

Show memory usage using a human-friendly output.

The memory stats: total/used/free/shared memory, memory used in buffers and
used for caching (use -w if you don’t want the combined value), and the available
memory.

The total/used/free amount of swap space—that is, physical memory moved out
to a swap disk space.

A more sophisticated way to look at memory usage is using the vmstat (short for vir‐
tual memory stats) command. The following example uses vmstat in a self-updating
manner (output edited to fit):

$ vmstat 1 
procs -----------memory--------- ---swap-- ----io---- -system- -----cpu-----
r  b  swpd   free   buff  cache   si   so   bi    bo   in   cs us sy id wa st 
4  0  1184 482116 682388 5447048   0    0   12   105   28  191  6  3 91  0  0
0  0  1184 483444 682388 5446600   0    0   0      0  369  522  1  0 99  0  0
0  0  1184 483696 682392 5446600   0    0   0    104  278  374  1  1 99  0  0
^C

Show memory stats. The argument 1 means to print a new summary line every
second.
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Some important column headers: r is for the number of processes running or
waiting for CPU (should be less than or equal to the number of CPUs you have),
free is the free main memory in KB, in is the number of interrupts per second,
cs is the number of context switches per second, and us to st are percentages of
total CPU time across user space, kernel, idle, and the like.

To see how long a certain operation takes, you can use the time command:

$ time (ls -R /etc 2&> /dev/null) 

real    0m0.022s 
user    0m0.012s 
sys     0m0.007s 

Measure how long recursively listing all /etc subdirectories takes (we throw away
all output, including errors, with 2&> /dev/null).

The total (wall clock) time it took (not really useful other than for performance).

How long ls itself spent on-CPU (user space).

How long ls was waiting for Linux to do something (kernel space).

In the previous example, if you’re interested in how long an operation took, taking
the sum of user and sys is a good approximation, and the ratio of the two gives you a
good idea where it spends most of the execution time.

Now we focus on some more specific topics: network interfaces and block devices.

Device I/O and Network Interfaces
With iostat you can monitor I/O devices (output edited):

$ iostat -z --human 
Linux 5.4.0-81-generic (starlite)   09/26/21     _x86_64_      (4 CPU)

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           5.8%    0.0%    2.7%    0.1%    0.0%   91.4%

Device             tps    kB_read/s    kB_wrtn/s    kB_read    kB_wrtn
loop0             0.00         0.0k         0.0k     343.0k       0.0k
loop1             0.00         0.0k         0.0k       2.8M       0.0k
...
sda               0.38         1.4k        12.4k       2.5G      22.5G 
dm-0              0.72         1.3k        12.5k       2.4G      22.7G
...
loop12            0.00         0.0k         0.0k       1.5M       0.0k
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Use iostat to show I/O device metrics. With -z, we tell it to show only devices
where there was some activity, and the --human makes the output nicer (units are
in human-readable form).

Example row: tps is the number of transfers (I/O requests) per second for that
device, read is data volume, and wrtn is written data.

Next up: network interfaces with the ss command that can dump socket statistics (see
also “Sockets” on page 164). The following command lists both TCP and UDP sock‐
ets along with process IDs (output edited to fit):

$ ss -atup 
Netid State   Recv-Q  Send-Q  Local Address:Port       Peer Address:Port
udp   UNCONN  0       0             0.0.0.0:60360           0.0.0.0:*
...
udp   UNCONN  0       0             0.0.0.0:ipp             0.0.0.0:*
udp   UNCONN  0       0             0.0.0.0:789             0.0.0.0:*
udp   UNCONN  0       0         224.0.0.251:mdns            0.0.0.0:*
udp   UNCONN  0       0             0.0.0.0:mdns            0.0.0.0:*
udp   ESTAB   0       0      192.168.178.40:51008    74.125.193.113:443
...
tcp   LISTEN  0       128           0.0.0.0:sunrpc          0.0.0.0:*
tcp   LISTEN  0       128     127.0.0.53%lo:domain          0.0.0.0:*
tcp   LISTEN  0       5           127.0.0.1:ipp             0.0.0.0:*
tcp   LISTEN  0       4096        127.0.0.1:45313           0.0.0.0:*
tcp   ESTAB   0       0      192.168.178.40:57628    74.125.193.188:5228 
tcp   LISTEN  0       128              [::]:sunrpc             [::]:*
tcp   LISTEN  0       5               [::1]:ipp                [::]:*

Use ss with the following options: with -a, we select all (that is, both listening
and nonlistening sockets); the -t and -u select TCP and UDP, respectively; and
-p shows the processes using the sockets.

An example socket in use. It’s an established TCP connection between local IPv4
address 192.168.178.40 and remote 74.125.193.188 that seems idle: both data
queued for receive (Recv-Q) and transmit (Send-Q) report zero.

An outdated way to gather and display interface stats is using
netstat. For example, if you want to have a continuously updated
view on TCP and UDP, including process ID and using IP
addresses rather than FQDNs, you could use netstat -ctulpn.

lsof stands for “list open files” and is a versatile tool with many use cases. The fol‐
lowing example shows lsof used in the context of network connections (output
edited to fit):
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$ sudo lsof -i TCP:1-1024 
COMMAND     PID            USER   FD   TYPE DEVICE SIZE/OFF NODE NAME
...
rpcbind   26901            root    8u  IPv4 615970    0t0  TCP *:sunrpc (LISTEN)
rpcbind   26901            root   11u  IPv6 615973    0t0  TCP *:sunrpc (LISTEN)

List privileged TCP ports (needs root privileges).

Another usage example for lsof is a process-centric view: if you know the PID of a
process (here, Chrome), you can use lsof to track file descriptors, I/O, etc. (output
edited to fit):

$ lsof -p 5299
COMMAND  PID USER   FD TYPE  DEVICE  SIZE/OFF     NODE NAME
chrome  5299  mh9  cwd  DIR   253,0      4096  6291458 /home/mh9
chrome  5299  mh9  rtd  DIR   253,0      4096        2 /
chrome  5299  mh9  txt  REG   253,0 179093936  3673554 /opt/google/chrome/chrome
...

There are many more tools for (performance) monitoring available—for example,
sar (covering a range of counters, nice for scripts) and perf—some of which we will
discuss in “Advanced Observability” on page 205.

Now that you have a handle on individual tools, let’s move on to integrated tools that
allow you to interactively monitor Linux.

Integrated Performance Monitors
Using the tooling we discussed in the previous section, such as lsof or vmstat, is a
good starting point and also useful in scripts. For more convenient monitoring, you
may prefer integrated solutions. These typically come with a textual user interface
(TUI), sometimes in color, and offer the following features:

• Support for multiple resource types (CPU, RAM, I/O)
• Interactive sorting and filtering (by process, user, resource)
• Live updates and drill-down into details such as a process group or even cgroups

and namespaces

For example, the widely available top provides an overview in the header—akin to
what we saw in the uptime output—and then a tabular rendering of CPU and mem‐
ory details, followed by a list of processes you can track (output edited):

top - 12:52:54 up 22 days,  1:04,  1 user,  load average: 0.23, 0.26, 0.23 
Tasks: 263 total,   1 running, 205 sleeping,   0 stopped,   0 zombie 
%Cpu(s):  0.2 us,  0.4 sy,  0.0 ni, 99.3 id,  0.0 wa,  0.0 hi,  0.0 si, \
  0.0 st% 
KiB Mem :  7975928 total,   363608 free,  1360348 used,  6251972 buff/cache
KiB Swap:   999420 total,   998236 free,     1184 used.  5914992 avail Mem
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PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND 
  1 root      20   0  225776   9580   6712 S   0.0  0.1   0:25.84 systemd
...
433 root      20   0  105908   1928   1700 S   0.0  0.0   0:00.05  `- lvmetad
...
775 root      20   0   36552   4240   3880 S   0.0  0.1   0:00.16  `- bluetoothd
789 syslog    20   0  263040   4384   3616 S   0.0  0.1   0:01.98  `- rsyslogd

Summary of system (compare with uptime output)

Task statistics

CPU usage statistics (user, kernel, etc.; similar to vmstat output)

The dynamic process list, including details on a per-process level; comparable to
ps aux output

The following are the most important keys to remember in top:

?

To list the help (including key mappings)

V

To toggle to and from process tree view

m

To sort by memory usage

P

To sort by CPU consumption

k

To send a signal (like to kill)

q

To quit

While top is available in virtually any environment, there are a number of alternatives
available, including the following:

htop (Figure 8-3)
An incremental top improvement that is faster than top and has a nicer user
interface.

atop (Figure 8-4)
A powerful alternative to top. In addition to CPU and memory, it covers
resources such as I/O and network stats in great detail.

202 | Chapter 8: Observability

https://oreil.ly/P9elE
https://oreil.ly/luRoU


below

A relatively new tool that is notable especially because it is cgroups v2–aware (see
“Linux cgroups” on page 135). Other tools do not understand cgroups and hence
provide only a global resource view.

Figure 8-3. A screenshot of the htop tool

Figure 8-4. A screenshot of the atop tool

There are a number of other integrated monitoring tools available that go beyond the
basic sources or that specialize in certain use cases. These include but are not limited
to the following:
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glances
A powerful hybrid that covers devices in addition to the usual resources

guider
An integrated performance analyzer that allows you to display and graph a range
of metrics

neoss
For network traffic monitoring; an ss replacement that offers a nice TUI

mtr
For network traffic monitoring; a more powerful alternative to traceroute (see
“Routing” on page 158 for details on traceroute)

Now that you have a broad understanding of the tooling to consume system metrics,
let’s see how you can expose those from your own code.

Instrumentation
So far we’ve focused on signals coming from the kernel or existing applications (that
is, code that you don’t own). Now we move to the topic of how you can, similar to
logs, equip your code to emit metrics.

The process of inserting code to emit signals, especially metrics, is mainly relevant if
you’re developing software. This process is usually referred to as instrumentation, and
there are two common instrumentation strategies: autoinstrumentation (no additional
effort for you as a developer) and custom instrumentation, where you manually insert
code snippets to, for example, emit a metric at a certain point in your code base.

You can use StatsD, with client-side libraries available for a number of programming
languages, such as Ruby, Node.js, Python, and Go. StatsD is nice, but it has a few lim‐
itations, especially in dynamic environments such as Kubernetes or IoT. In those
environments, a different approach—sometimes called pull-based or scraping—is usu‐
ally a better choice. With scraping, applications expose metrics (usually via an HTTP
endpoint), and an agent then calls this endpoint to retrieve metrics, rather than con‐
figuring the app with where to send the metrics to. We’ll return to this topic in
“Prometheus and Grafana” on page 207.
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Advanced Observability
Now that you know the basics of Linux observability, let’s have a look at some more
advanced topics in this space.

Tracing and Profiling
The term tracing is overloaded: in the context of Linux, on a single machine, tracing
means capturing the process execution (function calls in user space, syscalls, etc.)
over time.

In a distributed setup like containerized microservices in Kuber‐
netes or a bunch of Lambda functions that are part of a serverless
app, we sometimes shorten distributed tracing (for example, with
OpenTelemetry and Jaeger) to tracing. This type of tracing is out of
scope for this book.

There are a number of data sources in the context of a single Linux machine. You can
use the following as sources for tracing:

The Linux kernel
Traces can come from functions in the kernel or be triggered by syscalls. Exam‐
ples include kernel probes (kprobes) or kernel tracepoints.

User space
Application function calls, for example via user space probes (uprobes), can act
as a source for traces.

Use cases for tracing include the following:

• Debugging a program using, for example, the strace tracing tool
• Performance analysis with a frontend, using perf

You may be tempted to use strace everywhere; however, you
should be aware of the overhead it causes. This is particularly rele‐
vant for production environments. Read “strace Wow Much
Syscall” by Brendan Gregg to understand the background.

See Figure 8-5 for an example output of sudo perf top, which generates a summary
by process.
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Figure 8-5. A screenshot of the perf tracing tool

Going forward, it seems that eBPF (see “A Modern Way to Extend the Kernel: eBPF”
on page 27) will become the de facto standard to implement tracing, especially for
custom cases. It has a rich ecosystem and growing vendor support, so if you’re look‐
ing for a future-proof tracing method, make sure it’s using eBPF.

One particular use case for tracing is profiling—that is, to identify frequently called
code sections. Some relevant low-level tooling for profiling include pprof, Valgrind,
and flame graph visualizations.

There are many options to consume perf output interactively and visualize traces; for
example, see Mark Hansen’s blog post “Linux perf Profiler UIs”.

Continuous profiling is an advanced variant of profiling, which captures traces (kernel
and user space) over time. Once these timestamped traces are collected, you can plot
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and compare them and drill down into interesting segments. One very promising
example is the eBPF-based open source project parca, shown in Figure 8-6.

Figure 8-6. A screenshot of parca, a continuous profiling tool

Prometheus and Grafana
If you’re dealing with metrics over time (time series data), using the Prometheus and
Grafana combo is something you may want to consider for advanced observability.

I’ll show you a simple, single-machine setup that you can use to dashboard and even
alert on things going on in your Linux machine.

We’ll use the node exporter to expose a range of system metrics, from CPU to mem‐
ory and network. We’ll then use Prometheus to scrape the node exporter. Scraping
means that Prometheus calls an HTTP endpoint that the node exporter offers via the
URL path /metrics, returning the metrics in OpenMetrics format. For that to happen,
we need to configure Prometheus with the URL of the node exporter’s HTTP end‐
point. The final step in our setup is using Prometheus as a datasource in Grafana,
where you can see the time series data (metrics over time) in dashboards and can
even alert on certain conditions, such as low disk space or CPUs overloading.
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So, as a first step, download and untar the node exporter, and have it run the binary
with ./node_exporter & in the background. You can check if it’s running properly
with the following (output edited):

$ curl localhost:9100/metrics
...
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 7.2575e-05
go_gc_duration_seconds{quantile="0.25"} 0.00011246
go_gc_duration_seconds{quantile="0.5"} 0.000227351
go_gc_duration_seconds{quantile="0.75"} 0.000336613
go_gc_duration_seconds{quantile="1"} 0.002659194
go_gc_duration_seconds_sum 0.126529838
go_gc_duration_seconds_count 390
...

Now that we have the signal data source set up, we run both Prometheus and Grafana
as containers. For the following, you’ll need Docker (see “Docker” on page 138)
installed and configured.

Create a Prometheus configuration file called prometheus.yml with the following
content:

global:
  scrape_interval: 15s
  evaluation_interval: 15s
  external_labels:
      monitor: 'mymachine'
scrape_configs:
  - job_name: 'prometheus' 
    static_configs:
    - targets: ['localhost:9090']
  - job_name: 'machine' 
    static_configs:
    - targets: ['172.17.0.1:9100']

Prometheus itself exposes metrics, so we include this (self-monitoring).

That’s our node exporter. Since we’re running Prometheus in Docker, we can’t use
localhost but rather use the IP address Docker uses by default.

We use the Prometheus configuration file we created in the previous step and mount
it into the container via a volume, like so:

$ docker run --name prometheus \
         --rm -d -p 9090:9090 \ 
         -v /home/mh9/lml/o11y/prometheus.yml:/etc/prometheus/prometheus.yml \ 
         prom/prometheus:main
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The parameters here make Docker remove the container on exit (--rm), run as a
daemon (-d), and expose the port 9090 (-p) so we can use it from our machine.

Mapping our config file as a volume into the container. Note that here you will
have to replace /home/mh9/lml/o11y/ with the path where you stored it. Also, this
has to be an absolute path. So, if you want to keep this flexible, you could use
$PWD in bash or (pwd) in Fish rather than the hardcoded path.

After you’ve executed the previous command, open localhost:9000 in your browser,
then click Targets in the Status dropdown menu at the top. You should, after a few
seconds, see something like the screen shown in Figure 8-7, confirming that Prome‐
theus has successfully scraped metrics from itself and the node exporter.

Figure 8-7. A screenshot of Prometheus targets in the Web UI

Next, we launch Grafana:

$ docker run --name grafana \
         --rm -d -p 3000:3000 \
         grafana/grafana:8.0.3

After you’ve executed the preceding command, open localhost:3000 in your browser
and use admin for both the username and password. Next, we need to do two things:

1. Add Prometheus as a datasource in Grafana, using 172.17.0.1:9100 as the URL
2. Import the Node Exporter Full dashboard

Once you’ve done this, you should see something akin to Figure 8-8.
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Figure 8-8. A screenshot of the Grafana UI with the Node Exporter Full dashboard

That was some exciting advanced observability for Linux, using modern tooling.
Given that the Prometheus/Grafana setup is more elaborate and has a number of
moving parts, you’ll likely not use it for a trivial task. In other words, the Linux native
tooling we discussed in this section should go a long way; however, there are more
advanced use cases—for example, home automation or a media server—where you
want to have a more complete solution, in which case Prometheus/Grafana makes a
lot of sense.

Conclusion
In this chapter, we looked at making sure you’re not flying blind when you’re running
into issues with your Linux system. The main signal types you’d typically use for diag‐
nostics are logs (textual) and metrics (numerical). For advanced cases, you can apply
profiling techniques, rendering resource usage of processes along with the execution
context (source file and lines of the source code that is being executed).

If you want to learn more and dive deeper into this topic, have a look at these
resources:

Basics
• Systems Performance: Enterprise and the Cloud, second edition, by Brendan

Gregg (Addison-Wesley)
• “Linux Performance Analysis in 60,000 Milliseconds”
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Logging
• “Linux Logging Complete Guide”
• “Unix/Linux—System Logging”
• “syslog-ng” on ArchWiki
• fluentd website

Monitoring
• “80+ Linux Monitoring Tools for SysAdmins”
• “Monitoring StatsD: Metric Types, Format and Code Examples”

Advanced
• “Linux Performance”
• “Linux Tracing Systems & How They Fit Together”
• “Profilerpedia: A Map of the Software Profiling Ecosystem”
• “On the State of Continuous Profiling”
• eBPF website
• “Monitoring Linux Host Metrics with the Node Exporter”

Having completed this chapter and those that preceded it, you now know the basics
of Linux, from kernel to shell to filesystems and networking. The last chapter of this
book is a collection of advanced topics that didn’t quite fit in other chapters. You may
find them interesting and useful, depending on your goals, but for most day-to-day
tasks, you now know everything you need to get by.
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CHAPTER 9

Advanced Topics

This final chapter is a bit of a mixed bag. We cover a range of topics, from virtual
machines to security to new ways to use Linux. What the topics in this chapter have
in common is that most of them are relevant for you only if you have a specific use
case in mind, or if you require them in a professional setup.

We start off the chapter with how processes on a single machine can communicate
and share data. There is a wealth of interprocess communication (IPC) mechanisms
available, and here we focus on well-established and -used features: signals, named
pipes, and Unix domain sockets.

Then, we look at virtual machines (VMs). In contrast to the containers we discussed
in “Containers” on page 131 (which are good for application-level dependency man‐
agement), VMs provide strong isolation for your workloads. You come across VMs
most often in the context of the public cloud and in the general case in data centers.
Having said that, using VMs locally can also be useful, such as for testing or to simu‐
late distributed systems.

The next section in this chapter focuses on modern Linux distributions, which are
usually container-centric and assume immutability. You’ll often find said distros in
the context of distributed systems such as Kubernetes.

We then move on to selected security topics, covering Kerberos, a widely used
authentication suite, and pluggable authentication modules (PAM), an extension
mechanism Linux provides for authentication.

In the last part of this chapter, we review Linux solutions and use cases that, at the
time of writing, are not yet mainstream. But they could be relevant to you and are
worth exploring.
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Interprocess Communication
In Linux there is a long list of interprocess communication (IPC) options available,
ranging from pipes to sockets to shared memory. IPC enables processes to communi‐
cate, synchronize activities, and share data. For example, the Docker daemon uses
configurable sockets to manage containers. In this section, we review some popular
IPC options and their use cases.

Signals
Signals were originally developed as a way for the kernel to notify user space pro‐
cesses about a certain event. Think of signals as an asynchronous notification sent to
a process. There are many signals available (use the man 7 signal command to learn
more), and most of them come with a default action, such as stop or terminate the
process.

With most signals, you define a custom handler, rather than letting Linux carry on
with the default action. This is useful when you want to, for example, do some clean-
up work or simply ignore certain signals. Table 9-1 shows the most common signals
that you should be familiar with.

Table 9-1. Common signals

Signal Meaning Default action Handle option Key combination

SIGHUP Tell a daemon process to reread its
config file

Terminate process nohup or custom
handler

N/A

SIGINT User interruption from keyboard Terminate process Custom handler Ctrl+C

SIGQUIT User quit from keyboard core dump and terminate
process

Custom handler Ctrl+\

SIGKILL Kill signal Terminate process Cannot be handled N/A

SIGSTOP Stop process Stop process Cannot be handled N/A

SIGTSTP User caused stop from keyboard Stop process Custom handler Ctrl+Z

SIGTERM Graceful termination Terminate process Custom handler N/A

There are also signals that don’t have defined meanings (SIGUSR1 and SIGUSR2) that
processes can use to communicate with each other, sending asynchronous notifica‐
tion, if both parties agree on the semantics of the signal.

One typical way to send a signal to a process is the somewhat strangely named kill
command (due to its default behavior to cause processes to terminate):

$ while true ; do sleep 1 ; done & 
[1] 17030 

$ ps 
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  PID TTY          TIME CMD
16939 pts/2    00:00:00 bash
17030 pts/2    00:00:00 bash 
17041 pts/2    00:00:00 sleep
17045 pts/2    00:00:00 ps

$ kill 17030 
[1]+  Terminated              while true; do
    sleep 1;
done

We set up a very simple program here that simply sleeps. With &, we put it into
the background.

The shell job control confirms that our program runs as a job with ID 1 in the
background and reports its PID (17030).

Using ps, we check if the program is still running.

Here is our program (compare PID).

By default, kill sends the SIGTERM to the process, and the default action is to ter‐
minate the process gracefully. We provide kill with the PID of our process
(17030), and since we didn’t register a custom handler, it is terminated.

Now we’ll look at how to handle a signal with trap. This allows us to define a custom
handler in a shell environment (command line or script):

$ trap "echo kthxbye" SIGINT ; while true ; do sleep 1 ; done 
^Ckthxbye 

With trap "echo kthxbye" SIGINT, we register a handler, telling Linux that
when the user presses Ctrl+C (causing a SIGINT signal to be sent to our process),
Linux should execute echo kthxbye before the default action (terminate).

We see the user interruption (^C is the same as Ctrl+C) and then our custom
handler getting executed, printing kthxbye, as expected.

Signals are a simple yet powerful IPC mechanism, and now you know the basics of
how to send and handle signals in Linux. Next up, we discuss two more elaborate and
powerful IPC mechanisms—named pipes and UNIX domain sockets.
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Named Pipes
In “Streams” on page 34, we talked about pipes (|) that you can use to pass data from
one process to another by connecting the stdout of one process with stdin of
another process. We call these pipes unnamed. Taking this idea a step further, named
pipes are pipes to which you can assign custom names.

Just like unnamed pipes, named pipes work with normal file I/O (open, write, etc.)
and provide first in, first out (FIFO) delivery. Unlike unnamed pipes, the lifetime of a
named pipe is not limited to the processes it’s used with. Technically, named pipes are
a wrapper around pipes, using the pipefs pseudo filesystem (see “Pseudo Filesys‐
tems” on page 104).

Let’s see a named pipe in action to better appreciate what you can do with them. We
create a named pipe called examplepipe in the following, along with one publisher
and one consumer process:

$ mkfifo examplepipe 

$ ls -l examplepipe
prw-rw-r-- 1 mh9 mh9 0 Oct  2 14:04 examplepipe 

$ while true ; do echo "x" > examplepipe ; sleep 5 ; done & 
[1] 19628

$ while true ; do cat < examplepipe ; sleep 5 ; done & 
[2] 19636
x 
x
...

We create a named pipe called examplepipe.

Looking at the pipe with ls reveals its type: the first letter is a p, indicating it’s a
named pipe we’re looking at.

Using a loop, we publish the character x into our pipe. Note that unless some
other process reads from examplepipe, the pipe is blocked. No further writing
into it is possible.

We launch a second process that reads from the pipe in a loop.

As a result of our setup we see x appearing on the terminal, roughly every five
seconds. In other words, it appears every time the process with PID 19636 is able
to read from the named pipe with cat.
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Named pipes are easy to use. Thanks to their design, they look and feel like normal
files. But they’re also limited, since they support only one direction and one con‐
sumer. The next IPC mechanism we look at addresses these limitations.

UNIX Domain Sockets
We’ve already talked about sockets in the context of networking. There are also other
kinds of sockets that work exclusively in the context of a single machine, and one
such kind is called UNIX domain sockets: these are bidirectional, multiway commu‐
nication endpoints. This means you can have multiple consumers.

Domain sockets come in three flavors: stream-oriented (SOCK_STREAM), datagram-
oriented (SOCK_DGRAM), and sequenced-packet (SOCK_SEQPACKET). The addressing
works based on filesystem pathnames. Rather than having IP addresses and ports, a
simple file path is sufficient.

Usually, you would be using domain sockets programmatically. However, you might
find yourself in a situation where you need to troubleshoot a system and want to use,
for example, the socat tool from the command line to interact manually with a
socket.

Virtual Machines
This section is about an established technique that allows us to emulate multiple VMs
using a physical machine such as your laptop or a server in a data center. This yields a
more flexible and powerful way to run different workloads, potentially from different
tenants in a strongly isolated manner. We focus on hardware-assisted virtualization
for x86 architectures.

In Figure 9-1, you see the virtualization architecture on a conceptual level, compris‐
ing the following (starting from the bottom):

The CPU
Must support hardware virtualization.

The kernel-based virtual machine
Found in the Linux kernel; discussed in “Kernel-Based Virtual Machine” on page
218.

Components in the user space
Components in the user space include the following:

A Virtual Machine Monitor (VMM)
Manages VMs and emulates virtual devices, such as QEMU and Firecracker
(see “Firecracker” on page 219). There is also libvirt, a library that exposes a
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generic API aiming to standardize VMM, which you can use programmati‐
cally (not explicitly shown in the figure; consider it part of the VMM block).

The guest kernel
Typically also a Linux kernel but could also be Windows.

The guest processes
Running on the guest kernel.

Figure 9-1. Virtualization architecture

The processes that run natively on the host kernel (in Figure 9-1, process 1 and pro‐
cess 2) are isolated from the guest processes. This means that in general the physical
CPU and memory of the host are not affected by guest activities. For example, if
there’s an attack going on in the VM, the host kernel and processes are unaffected (as
long as the VM is not given special access to the host system). Note that there may be
exceptions to this in practice, such as rowhammer or Meltdown and Spectre.

Kernel-Based Virtual Machine
The Kernel-based Virtual Machine (KVM) is a Linux-native virtualization solution
for x86 hardware that supports virtualization extensions, such as the case with
AMD-V or Intel VT.

There are two parts to the KVM kernel modules: the core module (kvm.ko) and CPU
architecture-specific modules (kvm-intel.ko/kvm-amd.ko). With KVM, the Linux
kernel is the hypervisor, taking care of most of the heavy lifting. In addition, there are
drivers such as the integrated Virtio that allow for I/O virtualization.
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Today, hardware usually supports virtualization and KVM is already available, but in
order to see if your system is capable of using KVM, you can do the following check
(output edited):

$ grep 'svm\|vmx' /proc/cpuinfo 
flags           : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb
rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology
tsc_reliable nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64
ds_cpl vmx tm2 ssse3 sdbg cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt 
tsc_deadline_timer aes xsave rdrand lahf_lm 3dnowprefetch cpuid_fault cat_l2
ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust
smep erms mpx rdt_a rdseed smap clflushopt intel_pt sha_ni xsaveopt xsavec
xgetbv1 xsaves dtherm ida arat pln pts md_clear arch_capabilities
...

$ lsmod | grep kvm 

kvm_intel             253952  0 
kvm                   659456  1 kvm_intel

Search for svm or vmx in the CPU information (note that it reports on a per-CPU
basis, so if you have eight cores, you would see this flags block repeated eight
times).

We see vmx is listed, so we’re good concerning hardware-assisted virtualization.

Here we check if the KVM kernel modules are available.

This tells us that we have the kvm_intel kernel module loaded, so we’re all set
concerning KVM usage.

One modern way to manage KVMs is with Firecracker.

Firecracker
Firecracker is a VMM that can manage KVM instances. It is written in Rust and was
developed at Amazon Web Services primarily for serverless offerings, such as AWS
Lambda and AWS Fargate.

Firecracker is designed to safely run multitenant workloads on the same physical
machine. The Firecracker VMM manages so-called microVMs that expose an HTTP
API to the host, allowing you to launch, query, and stop the microVMs. It emulates
network interfaces by using TUN/TAP devices on the host, and block devices are
backed by files on the host, supporting Virtio devices.
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From a security perspective, in addition to the virtualization discussed so far, Fire‐
cracker by default uses seccomp filters (see “seccomp Profiles” on page 89) to limit
the host system calls it can use. cgroups can also be used. From an observability point
of view, you can gather logs and metrics from Firecracker, via named pipes.

With that we move on to modern Linux distributions that focus on immutability and
leverage containers.

Modern Linux Distros
The most prominent traditional Linux distributions include the following:

• The Red Hat family (RHEL, Fedora, and CentOS/Rocky)
• The Debian-based family (Ubuntu, Mint, Kali, Parrot OS, elementary OS, etc.)
• The SUSE family (openSUSE and Enterprise)
• Gentoo
• Arch Linux

These are all perfectly fine distros. Depending on your needs and preferences, you
can choose from being fully in control and taking care of everything yourself (from
installation to patching) to having a fully managed offering where the distro takes
care of most of the tasks.

With the rise of containers, as discussed in “Containers” on page 131, the role of the
host operating system has changed. In the context of containers, traditional package
managers (see “Packages and Package Managers” on page 126) play a different role:
most base container images tend to be built from particular Linux distros, and depen‐
dencies are met within the containers with .deb or .rpm packages, while the container
images package up all the application-level dependencies on top of them.

Further, making incremental changes to a system turns out to be a big challenge. This
is especially true when you need to do it at scale, such as when you need to adminis‐
trate a fleet of machines. Hence, for modern distros, the focus is increasingly on
immutability. The idea is that any change in the configuration or code (think: a patch
that fixes a security issue or a new feature) causes the creation of a new artifact, such
as a container image that gets launched (in contrast to changing the running system).

When I say “modern Linux distros,” I mean distros that are container-centric, with
immutability and auto-upgrading (pioneered by Chrome) front and center. Let’s have
a look at some examples of modern distros.
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Red Hat Enterprise Linux CoreOS
In 2013, a young start-up called CoreOS made CoreOS Linux (later renamed Con‐
tainer Linux) available. Its main features included a dual-partition scheme for system
updates and the lack of a package manager. In other words, all apps would run as
containers natively. In the ecosystem, a number of tools were developed that are still
in use (such as etcd; think: a distributed version of the /etc directory for configura‐
tion tasks).

After Red Hat acquired CoreOS (the company), it announced the intention to merge
the CoreOS Linux with Red Hat’s own Project Atomic (that had similar goals). This
merger led to Red Hat Enterprise Linux CoreOS (RHCOS), which is not meant to be
used on its own but in the context of the Red Hat Kubernetes distribution called
OpenShift Container Platform.

Flatcar Container Linux
A little bit after Red Hat announced its plans around Container Linux, a German
startup called Kinvolk GmbH (now part of Microsoft) announced that it would fork
and continue to develop Container Linux under the new brand name Flatcar Con‐
tainer Linux.

Flatcar describes itself as a container-native, lightweight operating system with use
cases in container orchestrators such as Kubernetes and IoT/edge computing. It con‐
tinues the CoreOS tradition of auto-upgrades (optional with its own update manager,
Nebraska) and has a powerful yet simple-to-use provisioning utility called Ignition
that enables you to have fine-grained control over boot devices (also used by RHCOS
for that purpose). Further, there is no package manager; everything is running in
containers. You can manage the life cycle of the containerized apps with systemctl
on a single machine or more typically with Kubernetes.

Bottlerocket
Bottlerocket is a Linux-based operating system developed by AWS and meant for
hosting containers. Written in Rust, it is used in a number of their offerings, such as
Amazon EKS and Amazon ECS.

Akin to Flatcar and CoreOS, instead of a package manager, Bottlerocket uses an OCI
image-based model for app upgrades and rollbacks. Bottlerocket uses a (by and large)
read-only, integrity-checked filesystem based on dm-verity. To gain access (via SSH,
although discouraged) and control Bottlerocket, it runs a so-called control container,
in a separate containerd instance.
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RancherOS
RancherOS is a Linux distro where everything is a container managed by Docker.
Sponsored by Rancher (now SUSE), it is optimized for container workloads as in
their Kubernetes distro. It runs two Docker instances: the system Docker, which runs
as the first process, and the user Docker, which is used to create application contain‐
ers. RancherOS has a small footprint, which makes it really great to use in the context
of embedded systems and edge computing.

Selected Security Topics
In Chapter 4, we discussed a number of access control mechanisms. We discussed
authentication (authn, for short), which verifies the identity of a user and is a precon‐
dition for any sort of authorization (authz, for short). In this section, we briefly dis‐
cuss two widely used authn tools that you should be aware of.

Kerberos
Kerberos is an authn suite developed by the Massachusetts Institute of Technology in
the 1980s. Today, it’s formally specified in RFC 4120 and related IETF documents.
The core idea of Kerberos is that we’re usually dealing with insecure networks, but we
want a secure way for clients and services to prove their identity to one another.

Conceptually, the Kerberos authn process, shown in Figure 9-2, works as follows:

Figure 9-2. Kerberos protocol concept

1. A client (for example, a program on your laptop) sends a request to a Kerberos
component called the Key Distribution Center (KDC), asking for credentials for
a given service, such as printing or a directory.

2. The KDC responds with the requested credentials—that is, a ticket for the service
and a temporary encryption key (session key).
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3. The client transmits the ticket (which contains the client’s identity and a copy of
the session key) to the service.

4. The session key, shared by the client and service, is used to authenticate the client
and may optionally be used to authenticate the service.

There are also challenges with Kerberos, such as the central role that the KDC plays
(a single point of failure) and its strict time requirements (it requires clock synchroni‐
zation between the client and the server via NTP). Overall, while not simple to oper‐
ate and administrate, Kerberos is widely used and supported in the enterprise and
cloud providers.

Pluggable Authentication Modules
Historically, a program would manage the user authentication process itself. With
pluggable authentication modules (PAM), a flexible way to develop programs that are
independent of a concrete authentication scheme has arrived in Linux (PAM has been
around since the end of the 1990s in the wider UNIX ecosystem). PAM uses a modu‐
lar architecture, providing developers a powerful library to interface with it. It also
allows system administrators to plug in different modules, such as the following:

pam_localuser

Requires that a user is listed in /etc/passwd

pam_keyinit

For session keyrings

pam_krb5

For Kerberos 5 password-based checks

With that, we’ve reached the end of the advanced security topics and now turn to
more aspirational topics.

Other Modern and Future Offerings
In this section, we look at exciting Linux offerings, including new ways to set up
Linux and ways to work with Linux in new environments. In the server world (be it
an on-premises data center or the public cloud), Linux is already the de facto stan‐
dard, and Linux is under the hood in many mobile devices.

What the topics here in this section have in common is that at the time of writing,
they have not yet entered the mainstream. However, if you’re curious about what
future developments might look like or where there’s still high growth potential for
Linux, read on.
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NixOS
NixOS is a source-based Linux distro, taking a functional approach to package man‐
agement and system configuration as well as rollbacks for upgrades. I call this a
“functional approach” because the artifacts are based on immutability.

The Nix package manager builds the entire operating system, from the kernel to sys‐
tem packages and apps. Nix offers multiuser package management and even allows
you to install and use multiple versions of the same package.

Unlike most other Linux distros, NixOS does not follow the Linux Standard Base file‐
system layout as discussed in “Common Filesystem Layouts” on page 103 (with sys‐
tem programs located in /usr/bin, /usr/lib, and so on, and the configuration usually
located in /etc).

There are a number of interesting ideas in NixOS and its ecosystem, making it espe‐
cially relevant for CI pipelines. Even if you don’t want to go all in, you can, for exam‐
ple, use the Nix package manager standalone (outside of NixOS).

Linux on the Desktop
While the viability of Linux on the desktop is subject to ongoing discussions, there is
without doubt plenty of choice concerning desktop-friendly distros and with them a
selection of window managers.

In good UNIX tradition, the Graphical User Interface (GUI) part is separated from
the rest of the operating system. Usually, an X window manager takes care of the GUI
responsibilities (from window management to styling and rendering) with the help of
a display manager.

On top of the window manager, implementing a desktop experience (such as icons,
widgets, and toolbars), sit the desktop environments, such as KDE or MATE.

There are many beginner-friendly desktop Linux distros available nowadays, making
it easy to switch from Windows or macOS. The same is true for a range of open
source applications, from office apps (writing docs or working with spreadsheets,
such as LibreOffice) to drawing and image editing (Gimp), to all major web browsers,
games, media players, and utilities, to development environments.
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The catalyst for Linux on the desktop might in fact come from a rather unexpected
direction: with Windows 11 allowing you to run graphical Linux apps out of the box,
this might change the incentives and uptake for good. Time will tell.

Linux on Embedded Systems
Linux on embedded systems is a wide field, with implementations ranging from cars
to networking equipment (such as routers), to smart home devices (for example
fridges) and media devices/smart TVs.

One particularly interesting generic platform you can acquire for little money is a
Raspberry Pi (RPI). It comes with its own Linux distro called Raspberry Pi OS (a
Debian-based system) and lets you install this and other Linux distros simply via a
microSD card. The RPI has a number of General Purpose Input/Outputs (GPIOs),
making it straightforward to use external sensors and circuits via a breadboard. You
can experiment with, and learn electronics and program the hardware with, for
example, Python.

Linux in Cloud IDE
In recent years, the viability of cloud-based development environments has made
enormous progress to a point where now (commercial) offerings exist that combine
an IDE (usually Visual Studio Code), Git, and a range of programming languages in a
Linux environment. All you as a developer need is a web browser and network access,
and you can edit, test, and run code “in the cloud.”

Two notable examples of Cloud IDEs, at the time of writing, are Gitpod, which is
available either as a managed offering or as an open source to host yourself, and
Codespaces, which is deeply integrated into GitHub.

Conclusion
This chapter covered advanced topics and refined your knowledge of basic tech‐
niques and tooling. If you want to enable IPC, you can use signals and named pipes.
For isolating workloads, you can use VMs, especially modern variants such as Fire‐
cracker. We also discussed modern Linux distributions: if you plan to run containers
(Docker), you may want to consider these container-centric distros that enforce
immutability. We then moved on to selected security topics, specially Kerberos and
PAM for flexible and/or large-scale authentication. Finally, we reviewed not-yet-
mainstream Linux solutions such as Linux on the desktop and how you can get
started with Linux on embedded systems, such as the Raspberry Pi, for local experi‐
mentation or development.
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Some further reading for this chapter:

IPC
• “An Introduction to Linux IPC”
• “Inter-process Communication in Linux: Using Pipes and Message Queues”
• “The Linux Kernel Implementation of Pipes and FIFOs”
• “Socat Cheatsheet”

VMs
• “What Is a Virtual Machine?” (VMware)
• “What Is a Virtual Machine (VM)?” (Red Hat/IBM)
• “How to Create and Manage KVM Virtual Machines from CLI”
• “KVM” via Debian Wiki
• QEMU machine emulator and virtualizer website
• Firecracker website

Modern distros
• “Containers and Clustering”
• “Immutability & Loose Coupling: A Match Made in Heaven”
• “Tutorial: Install Flatcar Container Linux on Remote Bare Metal Servers”
• List of image-based Linux distributions and associated tooling
• “Security Features of Bottlerocket, an Open Source Linux-Based Operating

System”
• “RancherOS: A Simpler Linux for Docker Lovers”
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Selected security
• “Kerberos: The Network Authentication Protocol”
• “PAM Tutorial”

Other modern and future offerings
• “How X Window Managers Work, and How to Write One”
• “Purely Functional Linux with NixOS”
• “NixOS: Purely Functional System Configuration Management”
• “What Is a Raspberry Pi?”
• “Kubernetes on Raspberry Pi 4b with 64-bit OS from Scratch”

We’ve reached the end of the book. I hope this is the start of your own Linux journey.
Thanks for staying with me, and if you have feedback, I’m always interested to hear
from you, either via Twitter or via good old email: modern-linux@pm.me.
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APPENDIX A

Helpful Recipes

In this appendix, I’ve compiled a list of recipes for common tasks. This is just a selec‐
tion of recipes that I’ve gathered over time, tasks that I often carry out and like to
have handy as a reference. By no means is this a complete or deep coverage of Linux
usage and admin tasks. For a comprehensive collection of recipes, I strongly recom‐
mend you check out Carla Schroder’s Linux Cookbook (O’Reilly), covering a range of
recipes in great detail.

Gathering System Information
To learn about the Linux version, kernel, and other related information, use any of
the following commands:

cat /etc/*-release
cat /proc/version
uname -a

To learn about basic hardware equipment (CPU, RAM, disks), do:

cat /proc/cpuinfo
cat /proc/meminfo
cat /proc/diskstats

To learn more about the hardware of your system, such as about the BIOS, use:

sudo dmidecode -t bios

Note for the previous command: other interesting options for -t include system and
memory.

To query overall main memory and swap usage, do:

free -ht
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To query how many file descriptors a process can have, use:

ulimit -n

Working with Users and Processes
You can list logged-in users with either who or w (more detailed output).

To show system metrics (CPU, memory, etc.) on a per-process basis for a specific
user, SOMEUSER, use the following command:

top -U SOMEUSER

List all processes (for all users) in tree format with details by using:

ps faux

Find a specific process (python here):

ps -e | grep python

To terminate a process, use its PID if you know it (and add -9 as a parameter if the
process ignores this signal):

kill PID

Alternatively, you can terminate a process by name using killall.

Gathering File Information
To query file details (including filesystem information such as inodes):

stat somefile

To learn about a command, how the shell interprets it, and where the executable file
is located, use:

type somecommand
which somebinary

Working with Files and Directories
To display the content of a text file called afile:

cat afile

To list the contents of a directory, use ls, and you may wish to further use the output.
For example, to count the number of files in a directory, use:

ls -l /etc |  wc -l
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Finding files and file content:

find /etc -name "*.conf" 
find . -type f -exec grep -H FINDME {} \; 

Find files ending in .conf in directory /etc.

Find “FINDME” in current directory by executing grep.

To show the differences in files, use:

diff -u somefile anotherfile

To replace characters, use tr like so:

echo 'Com_Acme_Library' | tr '_A-Z' '.a-z'

Another way to replace parts of a string is with sed (note that the delimiter doesn’t
have to be /, which is handy for cases where you replace content in a path or URL):

cat 'foo bar baz' | sed -e 's/foo/quux/'

To create a file of a specific size (for testing), you can use the dd command, as shown
here:

dd if=/dev/zero of=output.dat bs=1024 count=1000 

This creates a 1 MB file (1,000 times 1 KB blocks) called output.dat that is filled
with zeros.

Working with Redirection and Pipes
In “Streams” on page 34, we discussed file descriptors and streams. Here are a few
recipes around this topic.

File I/O redirection:

command 1> file 
command 2> file 
command &> file 
command >file 2>&1 
command > /dev/null 
command < file 

Redirect stdout of command into file.

Redirect stderr of command into file.

Redirect both stdout and stderr of command into file.

An alternative way to redirect stdout and stderr of command into file.
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Discard output of command (by redirecting it to /dev/null).

Redirect stdin (inputs file to command).

To connect stdout of one process to stdin of another process, use a pipe (|):

cmd1 | cmd2 | cmd3

To show the exit codes of each command in a pipe:

echo ${PIPESTATUS[@]}

Working with Time and Dates
To query time-related information, such as local and UTC time as well as synchroni‐
zation status, use:

timedatectl status

Working with dates, you usually want to either get a date or timestamp for the current
time or convert existing timestamps from one format to another.

To get the date in the format YYYY-MM-DD—for example, 2021-10-09—use the
following:

date +"%Y-%m-%d"

To generate a Unix epoch timestamp (such as 1633787676), do:

date +%s

To create an ISO 8601 timestamp for UTC (something like 2021-10-09T13:55:47Z),
you can use:

date -u +"%Y-%m-%dT%H:%M:%SZ"

Same ISO 8601 timestamp format but for local time:

date +%FT%TZ

Working with Git
To clone a Git repo—that is, to make a local copy on your Linux system—use the
following:

git clone https://github.com/exampleorg/examplerepo.git

After the previous git clone command is completed, the Git repo will be in the
directory examplerepo, and you should execute the rest of the following commands in
this directory.
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To view local changes in color and show where lines have been added and removed
side by side, use:

git diff --color-moved

To see what has changed locally (files edited, new files, removed files), do:

git status

To add all local changes and commit them:

git add --all && git commit -m "adds a super cool feature"

To find out the commit ID of the current commit, use:

git rev-parse HEAD

To tag a commit with ID HASH using the tag ATAG, do:

git tag ATAG HASH

To push the local changes to a remote (upstream) repo with a tag ATAG:

git push origin ATAG

To see the commit history use git log; specifically, to get a summary, do:

git log (git describe --tags --abbrev=0)..HEAD --oneline

System Performance
Sometimes you need to see how fast a device is or how your Linux system performs
under load. Here some ways to generate system load.

Simulate memory load (and also burn some CPU cycles) with the following
command:

yes | tr \\n x | head -c 450m | grep z

In the preceding pipe, yes generates an endless supply of y characters, each on its
own line, and then the tr command converts it into a continuous stream of yx that
the head command chops off at 450 million bytes (ca. 450 MB). Last but not least, we
let grep consume the resulting yx block for something that doesn’t exist (z), and
hence we see no output, but it is still generating load.

More detailed disk usage for a directory:

du -h /home

Listing free disk space (globally, in this case):

df -h

Load test a disk and measure I/O throughput with:

dd if=/dev/zero of=/home/some/file bs=1G count=1 oflag=direct
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APPENDIX B

Modern Linux Tools

In this appendix, we focus on modern Linux tools and commands. Some of the com‐
mands are drop-in replacements of existing commands; others are new ones. Most of
the tools listed here improve on the user experience (UX), including simpler usage
and making use of colored output, resulting in a more efficient flow.

I’ve compiled a list of relevant tools in Table B-1, showing features and potential
replacement scenarios.

Table B-1. Modern Linux tools and commands

Command License Features Can replace or enhance:

bat MIT License and Apache License 2.0 Display, page, syntax highlighting cat

envsubst MIT License Template-based env variables N/A

exa MIT License Meaningful colored output, sane defaults ls

dog European Union Public Licence v1.2 Simple, powerful DNS lookups dig

fx MIT License JSON processing tool jq

fzf MIT License Command-line fuzzy finder ls + find + grep

gping MIT License Multitarget, graphing ping

httpie BSD 3-Clause “New” or “Revised”
License

Simple UX curl (also note there is
curlie)

jo GPL Generate JSON N/A

jq MIT License Native JSON processor sed, awk

rg MIT License Fast, sane defaults find, grep

sysz The Unlicense fzf user interface for systemctl systemctl

tldr CC-BY (content) and MIT License
(scripts)

Focus on usage examples of commands man

zoxide MIT License Quickly change directories cd
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To learn more about the background and usage of many of the tools listed in this
appendix, you can make use of the following resources:

• Check out the podcast episode on modern UNIX tools from The Changelog: Soft‐
ware Development, Open Source.

• There is an active list of modern tools available via the GitHub repo Modern
UNIX.
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Symbols
& (ampersand), 36
\ (backslash), 36
| (pipe), 36

A
access control, 73-91

basics, 74-76
centralized user management, 80
good practices, 89
managing users locally, 77-80
permissions, 80-87
resources and ownership, 74
sandboxing, 75
types of, 75
users, 76-80

ACLs (access control lists), 89
Address Resolution Protocol (ARP), 106,

151-152
advanced multilayered unification filesystem

(AUFS), 112
Alacritty, 61
ampersand (&), 36
AppImage, 143
application layer networking, 173-181

file transfer, 178-180
NFS, 181
sharing with Windows, 181
SSH, 177
web and, 173-177

applications
defined, 117
managing (see package managers)
supply chain, 124-126

terminology, 115
ARM architecture, 15
ARP (Address Resolution Protocol), 106,

151-152
auditing, 90
AUFS (advanced multilayered unification file‐

system), 112
authentication

Kerberos, 222
PAM, 223

autonomous system, 159

B
backslash (\), 36
bash

fish versus, 49
origins, 34
scripting in, 62

bash scripts
linting/testing, 67
writing portable scripts, 64-67

bat, 42
bats (Bash Automated Testing System), 68
BGP (Border Gateway Protocol), 159
bind mounts, 102
BIOS (Basic I/O System), 14, 16
BitTorrent, 184
boot process, 117-119
booting, defined, 117
Border Gateway Protocol (BGP), 159
Bottlerocket, 221
btrfs (b-tree filesystem), 112
buildah, 142
Byobu, 60
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C
capabilities, 87
cgroups, 135-137
Classless Inter-Domain Routing (CIDR), 154
cloud computing, 2
Cloud IDEs, 225
commands, modern (see modern commands)
containers, 131-143

(see also modern distros)
alternatives to Docker, 142
cgroups, 135-137
CoW filesystems and, 138
Docker, 138-142
namespaces, 133-135

continuous profiling, 206
copy on write (CoW) filesystems, 111-112, 138
CoreOS, 221
counters, 191
CPU architectures, 14-16

ARM, 15
RISC-V, 16
x86, 15

D
DAC (Discretionary Access Control), 75
daemon, 117
data temperature, 192
datagrams, 163
date command, 48
deb package manager, 129-131
debugfs, 110
desktop, Linux on, 224
/dev filesystem (devfs), 107
devfs, 107
device drivers, 21
DHCP (Dynamic Host Configuration Proto‐

col), 182
directories, working with, 230
Discretionary Access Control (DAC), 75
distros

basics, 5
modern (see modern distros)

DNS (Domain Name System), 165-173
lookups, 170-173
records, 168-170

Docker, 138-142
container images, 139
containerized greeter example, 140-142
running containers, 140

Dockerfile, 139
domain sockets, 217
drive, defined, 94
drivers, 21
dvtim, 61
Dynamic Host Configuration Protocol

(DHCP), 182

E
eBPF, 27
effective UID, 86
embedded systems, Linux on, 225
environment variables, 37-39
environments for hands-on experience, x
escape sequences, 33
exa, 42
exit status, 39
ext4 filesystem, 109

F
FAT filesystems, 110
FHS (Filesystem Hierarchy Standard), 103
file content management, 46
file information, gathering, 230
file permissions, 81-85
file transfer, 178-180
File Transfer Protocol (FTP), 180
files, working with, 230
filesystem, 93-113

AUFS, 112
basics, 94-97
btrfs, 112
common, 109-110
common layouts, 103
CoW, 111-112
creating, 102
devfs, 107
ext4, 109
FAT, 110
in-memory, 110
kernel and, 21
LVM, 99-101
mounting, 102
operations, 101-103
OverlayFS, 112
procfs, 104-106
pseudo, 104-108
regular files, 108-112
sysfs, 106
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Unionfs, 112
VFS, 97-104
XFS, 109
ZFS, 110

Filesystem Hierarchy Standard (FHS), 103
filesystem layout, 103
filesystem UID, 86
Firecracker, 219
Fish shell, 49-53

basic usage, 49
configuration, 50-53

Flatcar Container Linux, 221
Flatpak, 143
flow control, 63
formatting, 101
FTP (File Transfer Protocol), 180
functions, in scripting, 63

G
gauges, 191
geoiplookup, 184
Git, working with, 232
Grafana, 207-210
graphics processing units (GPUs), 21

H
hard links, 97
histograms, 191
Homebrew, 143
Hyper Text Markup Language (HTML), 174
Hypertext Transfer Protocol (HTTP), 173

I
I/O devices, monitoring, 199-201
I/O streams, 34-37
ICMP (Internet Control Message Protocol), 157
immutability, 133
in-memory filesystems, 110
init systems

and boot process, 118
System V, 119
systemd, 119-123

inodes, defined, 95
integrated performance monitoring, 201-204
Internet Control Message Protocol (ICMP), 157
Internet of Things (IoT), 2
interprocess communication (IPC), 214-217

named pipes, 216

signals, 214
UNIX domain sockets, 217

IP address, 148
IPv4, 153-156
IPv6, 157
isolation, 7

J
job control, 40
journalctl, 122, 196
jq, 44
JSON, 44

K
Kerberos, 222
kernel, 11-30

boot process and, 118
components, 16-25
CPU architectures and, 14-16
device drivers, 21
eBPF and, 27
extensions, 26-28
Linux architecture and, 12
memory management, 19-20
modules, 26
networking functionality, 20
process management, 17-18
syscalls, 22-25

kernel mode, 13
kernel-based virtual machine (KVM), 218

L
language-specific package managers, 131
least privileges principle, 89
Lightweight Directory Access Protocol (LDAP),

80
Linux (generally)

architecture, 12
brief history of, 3
distributions, 5, 220-222
high-level overview, 8
kernel (see kernel)
modern tools and commands, 235-236
resource visibility, 5-7
startup process (see boot process)

logging, 191-197
journalctl, 196
syslog, 194
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Logical Volume Manager (LVM), 99-101
logs, defined, 190
loopfs, 110

M
mandatory access control, 75
maximum transmission unit (MTU), 150
media access control (MAC), 149
memory management, 19-20
metrics, defined, 190
microVMs, 219
mobile devices, 2
modern commands, 41-44, 235-236

finding content in files with rg, 42
JSON data processing with jq, 44
listing directory contents with exa, 42
viewing file contents with bat, 42

modern distros, 220-222
Bottlerocket, 221
CoreOS, 221
Flatcar, 221
RancherOS, 222

modern environments, 1-3
modern tools, 235-236
modern, defined, 1
module, kernel and, 26
monitoring, 197-204

device I/O and network interfaces, 199-201
instrumentation, 204
integrated performance monitors, 201-204

MTU (maximum transmission unit), 150
multithreading, 17
murex, 54

N
named pipes, 216
namespaces, 7, 133-135
navigation shortcuts, 45
Network File System (NFS), 181
network interface controller (NIC), 149
network interfaces, 146, 199-201
Network Time Protocol (NTP), 183
networking, 145-186

basics, 146
DHCP, 182
kernel and, 20
NTP, 183
protocols, 147-165
TCP/IP stack, 147-165

whois, 181
wireshark and tshark, 183

NFS (Network File System), 181
NIC (network interface controller), 149
NixOS, 224
NTP (Network Time Protocol), 183
Nushell, 54

O
observability, 187-211

basics, 188-191
defined, 189
I/O, 199-201
logging, 191-197
metrics, 207-210
monitoring, 197-204
network, 199-201
OODA loop, 188
profiling, 206
signal types, 190
terminology, 189
tracing, 205-207

OCI (Open Container Initiative), 132
Oil shell, 54
OODA (observe-orient-decide-act) loop, 188
Open Container Initiative (OCI), 132
Open Systems Interconnection (OSI) model,

148
operating system, reasons for having, 3
OverlayFS, 112
ownership, access control and, 74

P
package managers, 126-131

Debian deb, 129-131
language-specific, 131
modern, 143
RPM, 126-129

package, defined, 117
PAM (Pluggable Authentication Modules), 223
partition, defined, 94
passwords, 77-80
permissions, 80-87

ACLs, 89
advanced permission management, 87-89
capabilities, 87
file permissions, 81-85
process permissions, 85-87
seccomp profiles, 89
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PID (process id), 6
pipefs, 110
pipes (|), 36, 232

and UNIX philosophy, 36
named, 216

Pluggable Authentication Modules (PAM), 223
podman, 142
portable bash scripts, 64-67

executing, 65
good practices, 66
skeleton template, 65

ports, 160
POSIX (Portable Operating System Interface),

9, 33, 86
PowerShell, 54
prefix, 57
/proc filesystem (procfs), 104-106
process

defined, 117
listing, 230

process id (PID), 6
process management, 17-18
process permissions, 85-87
process states, 18
procfs, 104-106
profiling, 206
program, defined, 116
Prometheus, 207-210
pseudo filesystems, 104-108

R
RancherOS, 222
Raspberry Pi (RPI), 225
real UID, 85
Red Hat Enterprise Linux CoreOS, 221
redirection, 231
resource visibility, 5-7
resources, access control and, 74
rg, 42
RISC-V architecture, 16
root, 76
routing, 152-159
RPI (Raspberry Pi), 225
RPM Package Manager, 126-129
rsync, 179
Rsyslog, 195

S
sandboxing, 75

seccomp, 89
saved set-user-ID, 86
scp, 178
scraping, 204
screen (terminal multiplexer), 56
scripting, 62-69

advanced data types, 63
advanced I/O, 64
basics, 62-64
defined, 31
end-to-end example: GitHub user info

script, 68-69
flow control, 63
functions, 63

seccomp, 89, 220
Secure Shell (SSH), 177
security, 222-223

(see also access control)
Firecracker and, 220
Kerberos, 222
PAM, 223
scripting good practices, 66
sensitive information in logs, 192
SSH, 177

SELinux, 76, 90
setuid, 90
shell, 33-41

and streams, 34-37
built-in commands, 40
choosing a shell, 55
common tasks, 45-48
date/time handling, 48
elements of, 33-41
exit status, 39
file content management, 46
Fish shell, 49-53
human-friendly, 48-55
job control, 40
modern commands, 41-44
navigating, 45
scripting (see scripting)
shortening often-used commands, 45
variables, 37-39
viewing long files, 47
Z-shell, 53

shell scripting (see scripting)
shell variables, 37-39
ShellCheck, 67
shortcuts, 45
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signals
about, 214
defined, 189

Snap, 143
socat, 184
sockets, 164
sockfs, 110
SSH (Secure Shell), 177
standards, W3C and, 174
streams, 34-37
structured logging, 190
sudo, 90
super block, defined, 95
supply chain, 124-126

defined, 117
swapfs, 110
symbolic links (symlinks), 97
/sys filesystem (sysfs), 106
sysfs, 106
syslog, 194
syslog-ng, 195
system calls (syscalls), 4, 22-25
system information, gathering, 229
system performance, testing, 233
System V–style init programs, 119
systemctl, 121
systemd, 119-123

journalctl, 122
scheduling greeter example, 122-123
systemctl, 121
units, 120

T
TCP (Transmission Control Protocol), 161-162
TCP/IP stack, 147-165

application layer, 173-181
ARP, 151-152
BGP, 159
DNS, 165-173
ICMP, 157
internet layer, 152-159
IPv4, 153-156
IPv6, 157
link layer, 149-152
NIC, 149
ports, 160
routing, 158-159
sockets, 164
TCP layer, 161-162

transport layer, 160-163
UDP, 163

terminal, 33
terminal multiplexer, 55-61

choosing a multiplexer, 61
screen, 56
tmux, 56-60

text, manipulating, 46
3mux, 61
time/date handling, 48, 232
TLB (translation lookaside buffer), 19
tmpfs, 110
tmux (terminal mulitplexer), 56-60

reasons to use, 61
tmuxinator, 60
top-level domains (TLD), 167
traces, defined, 191
tracing, 205-207
translation lookaside buffer (TLB), 19
Transmission Control Protocol (TCP), 161-162
trigger, 57
tshark, 183
Tunnels, 184

U
UDP (User Datagram Protocol), 163
UEFI (Unified Extensible Firmware Interface),

14, 118
Uniform Resource Locator (URL), 173
union mounts, 111
Unionfs, 112
unit, in systemd, 120
UNIX domain sockets, 217
UNIX epoch time, 48
URL (Uniform Resource Locator), 173
user account, 74
User Datagram Protocol (UDP), 163
user directory, 80
user ID (UID), 76
user land, 12, 13
users

access control, 76-80
centralized user management, 80
listing, 230
managing locally, 77-80

V
variables, in shell, 37-39
Virtual File System (VFS), 21, 97-104
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virtual machines (VMs), 217-220
Firecracker, 219
KVM, 218

volume, defined, 95

W
W3C (World Wide Web Consortium), 174
web, 173-177
whois, 181
Windows, application layer networking and,

181
Wireshark, 183

X
x86 architecture, 15
XFS, 109

Y
yum, 127-129

Z
Z-shell, 53
Zellij, 60
ZFS, 110
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