
 Linux
Pocket Guide
Essential Commands

Daniel J. Barrett

20th
Anniversary

Release

Fourth

Edition

Linux Pocket GuideLinux Pocket Guide
If you use Linux in your day-to-day work, then Linux Pocket Guide
is the perfect on-the-job reference. This thoroughly updated 20th
anniversary edition explains more than 200 Linux commands,
including new commands for file handling, package management,
version control, file format conversions, and more.

In this concise guide, author Daniel Barrett provides the most
useful Linux commands grouped by functionality. Whether you’re
a novice or an experienced user, this practical book is an ideal
reference for the most important Linux commands.

You’ll learn:
• Essential concepts—commands, shells, users,

and the filesystem
• File commands—creating, organizing, manipulating,

and processing files of all kinds
• Sysadmin basics—superusers, processes, user management,

and software installation
• Filesystem maintenance—disks, RAID, logical volumes,

backups, and more
• Networking commands—working with hosts, network

connections, email, and the web
• Getting stuff done—everything from math to version

control to graphics and audio

LINUX

9 7 8 1 0 9 8 1 5 7 9 6 8

5 2 9 9 9

US $29.99 CAN $37.99
ISBN: 978-1-098-15796-8

linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Praise for Linux Pocket Guide
Linux Pocket Guide is a must-have book on every

Linux user’s desk, even in this digital age. It’s like a
collection of my favorite bookmarked manual pages that
I keep revisiting for reference, but simpler to understand

and easier to follow.
—Abhishek Prakash,

cofounder of It’s FOSS

One of the beloved features of Linux environments is the
assortment of small utilities that combine in wonderful

ways to solve problems. This book distills that experience
into an accessible reference. Even experienced readers

will rediscover forgotten facets and incredible options on
their favorite tools.

—Jess Males, DevOps
engineer, TriumphPay

This is such a handy reference! It somehow manages to be
both thorough and concise.

—Jerod Santo,
changelog.com

Daniel J. Barrett

Linux Pocket Guide
4TH EDITION

978-1-098-15796-8

[LSI]

Linux Pocket Guide
by Daniel J. Barrett

Copyright © 2024 Daniel J. Barrett. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales pro‐
motional use. Online editions are also available for most titles (https://
oreilly.com). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Ashley Stussy
Copyeditor: Stephanie English
Proofreader: Dwight Ramsey
Indexer: Daniel J. Barrett and BIM Creatives, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

March 2024: Fourth Edition

Revision History for the Fourth Edition
2024-03-01: First Release

See https://oreil.ly/lpg4eERR for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Linux
Pocket Guide, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent
the publisher’s views. While the publisher and the author have used good
faith efforts to ensure that the information and instructions contained in this
work are accurate, the publisher and the author disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples
or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

https://oreilly.com
https://oreilly.com
https://oreil.ly/lpg4eERR

Table of Contents

First Things First ix

Chapter 1: Essential Concepts 19
What’s Linux? 19
The Structure of Commands 24
Users and Superusers 26
The Filesystem 27
Selected Features of Bash 36
Getting Help 59

Chapter 2: File Commands 61
Basic File Operations 61
Directory Operations 68
Viewing Files 71
Creating and Editing Files 78
Properties of Files 83
Locating Files 97
Manipulating Text in Files 107
Compressing, Packaging, and Encrypting 126

v

Comparing Files 135
Converting Files to Other Formats 140
PDF and PostScript File Handling 151
Printing 156
Spellchecking 158

Chapter 3: System Administration Basics 161
Becoming the Superuser 161
Viewing Processes 163
Controlling Processes 169
Scheduling Jobs 175
Logins, Logouts, and Shutdowns 181
Users and Their Environment 184
User Account Management 188
Group Management 192
Installing Software Packages 195
Installing Software from Source Code 209

Chapter 4: Filesystem Maintenance 213
Using Disks and Filesystems 213
Creating and Modifying Filesystems 219
RAID Arrays for Redundancy 224
Logical Volumes for Flexible Storage 229
ZFS: A Modern, Do-It-All Filesystem 235
Backups and Remote Storage 241

Chapter 5: Networking Commands 249
Host Information 249
Host Location 252
Network Connections 256
Email in Daily Use 262

vi | Table of Contents

Email Servers 266
Web Browsing 270

Chapter 6: Getting Stuff Done 275
Screen Output 275
Copy and Paste 281
Math and Calculations 283
Dates and Times 289
Version Control 292
Containers 297
Displaying and Processing Images 301
Audio and Video 303
Programming with Shell Scripts 311
Final Words 328

Index 329

Table of Contents | vii

First Things First

Welcome to Linux! If you’re a new user, this book can serve as a
quick introduction, as well as a guide to common and practical
commands. If you have Linux experience, feel free to skip the
introductory material.

What’s in This Book?
This book is a short guide, not a comprehensive reference. I
cover important, useful aspects of Linux so you can work pro‐
ductively. I do not, however, present every single command
and every last option (my apologies if your favorite was omit‐
ted), nor delve into detail about operating system internals.
Short, sweet, and essential—that’s our motto.

I focus on commands, those pesky little words you type on a
command line to tell a Linux system what to do. Here’s an
example command that counts lines of text in a file, myfile:

wc -l myfile

This book covers important Linux commands for most users,
such as ls (list files), grep (search for text), mplayer (play audio
and video files), and df (measure free disk space). I touch
only briefly on graphical environments like GNOME and KDE
Plasma, each of which could fill a Pocket Guide by itself.

ix

I’ve organized the material by function to provide a concise
learning path. For example, to help you view the contents of a
file, I introduce many file-viewing commands together: cat for
short text files, less for longer ones, od for binary files, and so
on. Then I explain each command in turn, briefly presenting its
common uses and options.

I assume you have access to a Linux system and can log in.
If not, it’s easy to try out Linux on most computers. Just
download and install a “live” Linux distribution onto a USB
thumb drive and boot it. Examples are Ubuntu, Fedora, and
KNOPPIX.

What’s New in the Fourth Edition?
New commands

I’ve added 50 new commands to this edition, such as git
and svn for version control, split and column for text
manipulation, pandoc and ffmpeg for file conversion, snap
and flatpak for package management, mdadm, lvcreate,
and zfs for fancy storage management, gpg for encryp‐
tion, and many others.

Clearer organization
I’ve reorganized the book into chapters on concepts, files,
basic system administration, networking, and other topics.

Goodbye, ancient commands
Some commands from previous editions of this book are
mostly obsolete today, such as write and finger, or depre‐
cated, such as ftp. I’ve replaced them with more relevant
commands for modern Linux systems.

Conventions Used in This Book
Each command I present in this book begins with a standard
heading. Figure P-1 shows the heading for ls, a command
that lists the names and attributes of files. The heading demon‐
strates the command’s general usage in a simple format:

x | First Things First

https://oreil.ly/ralRq
https://oreil.ly/Y3QGZ
https://oreil.ly/Byqeu

ls [options] [files]

which means you’d type “ls” followed, if you choose, by options
and then filenames. Don’t type the square brackets “[” and “]”
—they just indicate their contents are optional. Words in italics
mean you have to fill in your own values, like names of actual
files. If you see a vertical bar between options or arguments,
perhaps grouped by parentheses:

(file | directory)

this indicates choice: you may supply either a filename or
directory name as an argument.

Figure P-1. Standard command heading

The standard heading shown in Figure P-1 also includes six
properties of the command, printed in black (supported) or
gray (unsupported):

stdin
The command reads by default from standard input (i.e.,
your keyboard). See “Input, Output, and Redirection” on
page 43.

stdout
The command writes by default to standard output (i.e.,
your display). See “Input, Output, and Redirection” on
page 43.

- file
A single-dash argument (-), when provided as an input
filename, tells the command to read from standard input
rather than a disk file. Likewise, if the dash is supplied
as an output filename, the command writes to standard
output. For example, the following wc command line reads

First Things First | xi

the files myfile and myfile2, then standard input, then
myfile3:

wc myfile myfile2 - myfile3

-- opt
A double-dash option (--) means “end of options”: any
strings appearing later on the command line are not
treated as options. A double dash is sometimes necessary
to work with a filename that begins with a dash, which
otherwise would be (mistakenly) treated as an option. For
example, if you have a file named -dashfile, the command
wc -dashfile fails because the string -dashfile is treated
as an (invalid) option. Run wc -- -dashfile to indicate
-dashfile is a filename. If a command does not support
“--”, you can still work around the problem by prepending
the current directory path “./” to the filename so the dash
is no longer the first character:

wc ./-dashfile

--help

The option --help makes the command print a help mes‐
sage explaining proper usage, then exit.

--version

The option --version makes the command print its ver‐
sion information and exit.

Commands, Prompts, and Output
The Linux command line, or shell, prints a special symbol,
called a prompt, when it’s waiting for a command. In this book,
the prompt is a right-facing arrow:

→

Prompts come in all shapes and sizes, depending on how
your shell is configured. Your prompt might be a dollar sign
($), a combination of your computer name, username, and
various symbols (myhost:~smith$), or something else. Every

xii | First Things First

prompt means the same thing: the shell is ready for your next
command.

When I show a command line in this book, some parts are
meant to be typed by the user, and other parts are not (like the
prompt and the command’s output). I use boldface to identify
the parts to type. Sometimes I add italic comments to explain
what’s going on:

→ wc -l myfile The command to type at the prompt
18 myfile The output it produces

Your Friend, the echo Command
In many of my examples, I print information to the screen
with the echo command, which I formally describe in “Screen
Output” on page 275. echo is one of the simplest commands—it
merely prints its arguments on standard output, once those
arguments have been processed by the shell:

→ echo My dog has fleas
My dog has fleas
→ echo My name is $USER The shell variable USER
My name is smith

Long Command Lines
Sometimes, a command is longer than the width of a page, so
I split it onto multiple lines. A final backslash character means
“continued on the next line”:

→ echo This is a long command that does not fit on \
 one line
This is a long command that does not fit on one line

If you enter one of my multiline commands in a running shell,
feel free to break it up with backslashes as I did, or just type the
whole command on one line without backslashes.

First Things First | xiii

1 Or, if you are experienced with git and GitHub, download the files
and skip the rest of my instructions. If you clone the repository and
want to restore the files to their original state, don’t run the reset-lpg
script; run git reset --hard instead.

Keystrokes
I use certain symbols for keystrokes. The caret (^) means “hold
down the Control key,” usually labeled Ctrl. For example, ^D
(Ctrl D) means “hold down the Ctrl key and type D.” I also
write ESC to mean “press and release the Escape key.” Keys like
Enter and the space bar should be self-explanatory.

Downloading the Practice Files
I’ve created a collection of files to help you practice with Linux.
Download and install them on any Linux machine, and you
can run most of the example commands in this book verbatim.
To download them for the first time, run the following com‐
mands.1 (Note that -O contains a capital O, not a zero.)

→ cd
→ curl -O https://linuxpocketguide.com/LPG4.tar.gz
→ tar -xf LPG4.tar.gz

The preceding commands create a directory named linuxpock‐
etguide in your home directory. Visit this directory:

→ cd ~/linuxpocketguide

and run commands as you read the book. The output should
match the book’s except for local details like dates and
usernames.

To re-download and install the practice files (say, if you’ve
modified them), simply run the provided reset-lpg script:

→ cd ~/linuxpocketguide
→ bash reset-lpg

xiv | First Things First

https://resources.oreilly.com/oreillymedia/linux_pocket_guide_4

If you’ve placed the practice files in a different directory, supply
it to reset-lpg. The following command creates or refreshes
the directory /tmp/practice/linuxpocketguide:

→ bash reset-lpg /tmp/practice

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs
to refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

First Things First | xv

WARNING

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media
has provided technology and business
training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other pub‐
lishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at https://oreil.ly/linux-pocket-guide-4e.

xvi | First Things First

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/linux-pocket-guide-4e

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-
media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
I am so grateful to the many readers who purchased the first
three editions of this book over the past 20(!) years, making
the fourth edition possible. My heartfelt thanks also go to
my editor Virginia Wilson, acquisitions editor John Devins,
the O’Reilly production team, my awesome technical reviewers
(Abhishek Prakash, Dan Ritter, Doron Beit-Halahmi, Ethan
Schwartz, and Jess Males), Maggie Johnson at Google, and
Kerry and Lesley Minnear at Alucard Music. And all my love to
my wonderful family, Lisa, Sophia, Kay, and Luna.

First Things First | xvii

https://oreilly.com
https://linkedin.com/company/oreilly-media
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

CHAPTER 1

Essential Concepts

What’s Linux?
Linux is a free, open source operating system (OS) that’s an
alternative to Microsoft Windows and Apple macOS. Linux
powers most of the servers on the internet. It operates behind
the scenes on every Android mobile phone and Chromebook,
and on millions of network-connected devices like routers,
firewalls, and robotic cow-milking systems (seriously). It also
runs fine on desktop and laptop computers.

Linux has four major parts, shown in Figure 1-1:

The kernel
Low-level software. It controls the hardware and basic
functions like process scheduling and networking. Few
users interact with the kernel directly.

Supplied programs
Thousands of programs for file handling, text edit‐
ing, software development, web browsing, audio, video,
encryption, mathematics…you name it. These programs
talk to the kernel. Programs that run on the command line
are called commands.

19

1 GNOME, KDE, and other environments are built on a common win‐
dowing system that is either X or Wayland. To see which system you’re
using, run the command echo $XDG_SESSION_TYPE.

The shell
A Linux program for running commands and displaying
the results. Linux has an assortment of shells with differ‐
ent features. This book focuses on a shell called bash,
which is often the default for user accounts. Some other
shells are dash, fish, ksh (Korn shell), tcsh (TC shell, or
T shell), zsh (Z shell), and to a lesser extent, busybox. All
shells have similar functions, though their usage varies.

Graphical desktop environment (optional)
A UI with windows, menus, icons, mouse support, and
other familiar GUI elements. Some popular environments
are GNOME and KDE Plasma. Most applications built for
GNOME can run in KDE and vice versa.1

This book focuses on the command-line parts of Linux, namely
the supplied programs and the shell. Windows and macOS
have command-line interfaces too (cmd and powershell on
Windows, Terminal on the Mac), but most of their users stick
with the GUI and might never see or need a command line. On
Linux, the shell is critical. If you use Linux without the shell,
you are missing out.

Linux is extremely configurable and comes in hundreds of vari‐
eties that serve different needs and tastes. Each variety is called
a distro (short for “distribution”). All distros share some core
components but may look different and include different pro‐
grams and files. Some popular distros include Mint, Ubuntu,
Manjaro, Arch, Gentoo, Red Hat, and OpenSUSE, among oth‐
ers. The core material in this book should apply to every distro.

20 | Chapter 1: Essential Concepts

Figure 1-1. The four major parts of Linux, conceptually. Low-level
kernel functions are called by programs, which are invoked in a shell,
which can be launched by a graphical desktop.

Launching a Shell
Where do shells come from? Sometimes Linux will launch one
for you automatically. This is often the case when you log in
over a network using ssh or a similar tool. The first significant
thing you see is a shell prompt awaiting your command.

Other times, you have to launch a shell manually. This is com‐
mon when using a graphical desktop full of icons and menus
with no shell in sight. In such cases, you need a GUI applica‐
tion called a terminal or terminal program that runs shells in
a window. The sidebar “Shell Versus Terminal” on page 22
clarifies the difference between shells and terminals.

What’s Linux? | 21

Every distro with a graphical desktop includes at least one
terminal program, but you might have to hunt for it. Search for
an application, icon, or menu item named Terminal, Konsole,
xterm, gnome-terminal, uxterm, or something similar, and run
it to open a terminal. Also try pressing Ctrl-Alt-t (hold the
Control and Alt keys and press T), which opens a terminal in
some environments.

Shell Versus Terminal
A shell is a command-line interface for launching Linux com‐
mands by typing plain text. It prints a prompt and waits for
your command:

→

A terminal is a program that opens a window and presents a
running shell, shown in Figure 1-2. It’s like a graphical wrapper
around a shell. A terminal adds menus, scrollbars, copy and
paste, and other GUI features that support the shell.

Figure 1-2. A terminal program opens a window that runs a shell.

Command-Line Warm-Up
To give you a feel for Linux, here are 10 simple commands to
try right now in a shell. Type them exactly, including capital

22 | Chapter 1: Essential Concepts

2 If you see an error message “command not found,” don’t worry: a
command probably isn’t installed on your system. See “Installing Soft‐
ware Packages” on page 195.

and small letters, spaces, and all symbols after the prompt. At
the end of each command, press Enter.2

Display a calendar for November 2023:

→ cal nov 2023
 November 2023
Su Mo Tu We Th Fr Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

List the contents of the /bin directory, which contains many
commands:

→ ls /bin
bash less rm
bunzip2 lessecho rmdir
busybox lessfile rnano
⋮

Count the number of visible items in your home directory
(represented here by a variable, HOME, that I discuss later):

→ ls $HOME | wc -l
8 Your value may be different

See how much space is used on a partition of your hard disk:

→ df -h /
Filesystem Size Used Avail Use% Mounted on
/dev/sdb1 78G 30G 48G 61% /

Watch the processes running on your computer (press “q” to
quit):

→ top -d1

What’s Linux? | 23

Print the file /etc/hosts, which contains names and addresses of
computers, on your default printer if you have one set up:

→ lpr /etc/hosts

See how long you’ve been logged in:

→ last -1 $USER
smith pts/7 :0 Tue Nov 10 20:12 still logged in

Download a file sample.pdf from this book’s website to your
current directory, without needing a web browser:

→ curl -O https://linuxpocketguide.com/sample.pdf

See who owns the domain name oreilly.com (press the space bar
to move forward page by page, and press “q” to quit):

→ whois oreilly.com | less
Domain Name: OREILLY.COM
Registrar: GODADDY.COM, LLC
⋮

Finally, clear your terminal or screen:

→ clear

Congratulations, you are now a Linux user!

The Structure of Commands
A Linux command typically consists of a program name fol‐
lowed by options and arguments:

wc -l myfile

The program name (wc, short for “word count”) refers to a
program somewhere on disk that the shell locates and runs.
Options, which usually begin with a dash, affect the behavior
of the program. In the preceding command, the -l option tells
wc to count lines and not words. The argument myfile specifies
the file that wc should read and process.

Commands can have multiple options and arguments. Options
may be given individually, or combined after a single dash:

24 | Chapter 1: Essential Concepts

3 User “silver,” who is listed twice, is running two interactive shells at
once.

wc -l -w myfile Two individual options
wc -lw myfile Combined options, same as -l -w

though some programs are quirky and do not recognize com‐
bined options. Multiple arguments are also OK:

wc -l myfile myfile2 Count lines in two files

Options are not standardized. They may be a single dash and
one character (say, -l), two dashes and a word (--lines), or
several other formats. The same option may have different
meanings to different programs: in the command wc -l, the
option -l means “lines of text,” but in ls -l it means “long out‐
put.” Two programs also might use different options to mean
the same thing, such as -q for “run quietly” versus -s for “run
silently.” Some options are followed by a value, such as -s 10,
and space between them might not be required (-s10).

Arguments are usually filenames for input or output, but they
can be other things too, like directory names, usernames, host‐
names, IP addresses, regular expressions, or arbitrary strings.

A command that’s just a single program with options and argu‐
ments is called a simple command. Here’s a simple command
that lists users who are logged into a Linux server:3

→ who
silver :0 Sep 23 20:44
byrnes pts/0 Sep 15 13:51
barrett pts/1 Sep 22 21:15
silver pts/2 Sep 22 21:18

A command can also invoke several programs at once and
even connect programs so they interact. Here’s a command that
connects the output of who to the input of wc, which counts
lines of text. The result is the number of lines in the output of
who:

The Structure of Commands | 25

→ who | wc -l
4

The vertical bar, called a pipe, makes the connection between
who and wc. Linux experts use these sorts of combined com‐
mands, called pipelines, all the time.

Commands can also include programming language constructs
like variables, conditionals, and loops, which I cover in “Pro‐
gramming with Shell Scripts” on page 311. For example, a
command might say, “run this program, write its output to a
file of my choosing, and if any errors occur, send me an email
with the results.”

Users and Superusers
Linux is a multiuser OS: multiple people can run programs
on a single Linux computer at the same time. On a given
computer, each user is identified by a username, like smith or
funkydance. Each user has a separate workspace of sorts (see
“Home Directories” on page 29) so they don’t interfere with
one another.

A special user named root—the superuser or administrator—
has the privileges to do anything at all on the system. The
superuser can create, modify, or delete any file and run any
program. Ordinary users are restricted: they can run most
programs, but in general, they can’t mess with other users’ stuff.

Some commands in this book require superuser privileges. I
precede these commands with sudo:

→ sudo superuser command goes here

WARNING

sudo gives you the power to destroy your Linux system.

26 | Chapter 1: Essential Concepts

4 In Linux, all files and directories descend from the root. This is unlike
Windows, in which different devices are accessed by drive letters.

I discuss sudo fully in “Becoming the Superuser” on page 161,
but for now, all you need to know is that sudo gives you super‐
user powers and sometimes prompts for your password. For
example, to count lines in a protected file called /etc/shadow,
with and without sudo, you could run this command:

→ wc -l /etc/shadow This fails
wc: /etc/shadow: Permission denied
→ sudo wc -l /etc/shadow Run with sudo
[sudo] password: xxxxxxxx
51 /etc/shadow It worked!

The Filesystem
To make use of any Linux system, you must become comforta‐
ble with Linux files and directories (a.k.a. folders), collectively
called the filesystem. On a graphical desktop, files and directo‐
ries are obvious on screen. In a command-line interface like
the Linux shell, the same files and directories are still present
but less visible, so at times you must remember which directory
you are “in” and how it relates to other directories. You’ll use
shell commands like cd (change directory) to move between
directories, and commands like pwd (print working directory)
to keep track of where you are in the filesystem.

Let’s cover some terminology. Linux files are collected into
directories. The directories form a hierarchy, or tree, as in Fig‐
ure 1-3. One directory may contain other directories, called
subdirectories, which may themselves contain other files and
subdirectories, and so on, into infinity. The topmost directory
is called the root directory and is denoted by a slash (/).4

The Filesystem | 27

Figure 1-3. A Linux filesystem (partial). The root directory is at the top.
The absolute path to the “dan” directory is /home/dan.

Linux refers to its files and directories using a “names and
slashes” syntax called a path. For instance, the following path:

/one/two/three/four

refers to the root directory /, which contains a directory called
one, which contains a directory two, which contains a directory
three, which contains a final file or directory, four. Any path
that begins with a slash, which descends all the way from the
root, is called an absolute path.

Paths don’t have to be absolute—they can be relative to some
directory other than the root. Figure 1-3 has two different
directories named bin, whose absolute paths are /bin and /usr/
bin. If you simply refer to “the bin directory,” it’s not clear
which one you mean. You need more context. Any path that
doesn’t begin with a slash, like bin, is called a relative path.

To make sense of a relative path, you need to know “where you
are” in the Linux filesystem. This location is called your current
directory (sometimes called “working directory” or “current
working directory”).

Every shell has a current directory, and when you run com‐
mands in that shell, they operate relative to its current direc‐
tory. For example, if your shell is “in” the directory /usr, and
you refer to a relative path bin, it means /usr/bin. In general,

28 | Chapter 1: Essential Concepts

5 Linux filenames are case-sensitive, so upper and lowercase letters are
not equivalent.

if your current directory is /one/two/three, a relative path a/b/c
would imply the absolute path /one/two/three/a/b/c.

Two special relative paths are named . (a single period, or
“dot”) and .. (two periods, or “dot dot”). “Dot” means your
shell’s current directory, and “dot dot” means its parent direc‐
tory, one level above. So if your shell’s current directory
is /one/two/three, then . refers to this directory and .. refers
to /one/two.

To travel from one directory to another, use the cd command,
which changes your shell’s current directory:

→ cd /usr/local/bin Enter the directory /usr/local/bin

The previous cd command used an absolute path. You can
make relative moves with cd as well:

→ cd d Enter subdirectory d of my current directory
→ cd ../mydir Go up to my parent, then into directory mydir

File and directory names may contain most characters you
expect: capital and small letters,5 numbers, periods, dashes,
underscores, and most symbols (but not “/”, which is reserved
for separating directories). For efficiency, however, avoid
spaces, asterisks, dollar signs, parentheses, and other characters
that have special meaning to the shell. These characters require
special treatment in filenames (see “Quoting” on page 46),
which can be inconvenient or tedious.

Home Directories
Users’ personal files are usually kept in the directory /home
(for ordinary users) or /root (for the superuser). Your home
directory is typically /home/<your-username> (/home/smith, /
home/funkydance, etc.). There are several ways to visit or refer
to your home directory:

The Filesystem | 29

cd

With no arguments, the cd command returns you (i.e., sets
the shell’s current directory) to your home directory.

HOME variable
The environment variable HOME (see “Shell Variables” on
page 39) contains the name of your home directory:

→ echo $HOME Print the directory name
/home/smith
→ cd $HOME/linuxpocketguide Visit a subdirectory

~

When used in place of a directory, a lone tilde is expanded
by the shell to the name of your home directory.

→ echo ~ Print the directory name
/home/smith
→ cd ~/linuxpocketguide Visit a subdirectory

When the tilde is followed by a username (as in ~fred), the
shell expands this string to be the user’s home directory:

→ cd ~fred Visit Fred's home directory, if it exists
→ pwd The “print working directory” command
/home/fred

System Directories
A Linux system has tens of thousands of system directories.
They contain OS files, applications, documentation, and just
about everything except personal user files (which typically live
in /home).

Unless you’re a system administrator, you’ll rarely visit most
system directories—but with a little knowledge you can under‐
stand or guess their purposes. Their names often contain three
parts, as shown in Figure 1-4.

30 | Chapter 1: Essential Concepts

6 Some distros no longer make these distinctions. Fedora, for example,
makes /bin a symbolic link to /usr/bin.

Figure 1-4. Directory scope, category, and application

Directory path part 1: scope
The scope of a directory path describes, at a high level, the
purpose of an entire directory tree. Some common ones are:

/ (Pronounced “root”) System files supplied with your distro

/usr (Pronounced “user”) More system files supplied with your distro

/usr/local (Pronounced “user local”) System files that are not supplied with
your distro; they may be unique to your local Linux network or your
individual computer

There isn’t a clear distinction between / and /usr in practice,
but / is considered “lower level” and closer to the OS.

Directory path part 2: category
The category of a directory path in Figure 1-4 describes the
types of files found in a directory. For example, if the category
is lib, you can be reasonably sure that the directory contains
library files for programming. If the category is bin, the con‐
tents are usually binary files—executable programs.

When you precede a category like bin with a scope, you pro‐
duce paths like /bin, /usr/bin, and /usr/local/bin. A distro’s
most fundamental system programs like ls and cat are typi‐
cally in /bin, and other system programs are in /usr/bin.6 /usr/
local/bin contains locally installed programs not included in
your distro. These are not hard-and-fast rules but typical cases.

The Filesystem | 31

Some common categories are as follows:

Categories for programs

bin Programs (usually binary files)

sbin Programs (usually binary files) for superusers

lib Libraries of code used by programs

Categories for documentation

doc Documentation

info Documentation files for emacs’s built-in help system

man Documentation files (manual pages) displayed by the man
command; the files are often compressed and are sprinkled with
typesetting commands for man to interpret

share Program-specific files, such as examples and installation
instructions

Categories for configuration

etc Configuration files for the system (and other miscellaneous stuff)

init.d Configuration files for booting Linux

rc.d Configuration files for booting Linux; also rc1.d, rc2.d, …

Categories for programming

include Header files for programming

src Source code for programs

Categories for web files

cgi-bin Scripts/programs that run on web pages

html Web pages

public_html Web pages, typically in users’ home directories

www Web pages

Categories for display

fonts Fonts (surprise!)

X11 X window system files

32 | Chapter 1: Essential Concepts

Categories for hardware

dev Device files for interfacing with disks and other hardware

media Mount points: directories that provide access to disks

mnt Mount points: directories that provide access to disks

Categories for runtime files

var Files related to the state of the computer, updated frequently

lock Lock files, created by programs to say, “I am running”; the
existence of a lock file may prevent another program, or another
instance of the same program, from performing an action

log Logfiles that track important system events, containing error,
warning, and informational messages

mail Mailboxes for incoming email

run PID files, which contain the IDs of running processes; these files are
often consulted to track or kill particular processes

spool Files queued or in transit, such as outgoing email, print jobs, and
scheduled jobs

tmp Temporary storage for programs and/or people to use

Directory path part 3: application
The application part of a directory path (Figure 1-4), if present,
is usually the name of a program. For example, the direc‐
tory /etc/systemd has scope root (/), category etc (configuration
files), and application systemd. Since systemd is a service for
configuring Linux machines, a good guess is that /etc/systemd
contains configuration files for that service—and it does.

Kernel-Related Directories
Some directories support the Linux kernel, the lowest-level part
of the Linux OS:

The Filesystem | 33

/boot
Files for booting the system. The kernel lives here, typi‐
cally in /boot/vmlinuz or a file of similar name.

/lost+found
Damaged files that were rescued by a disk recovery tool.

/proc
Files for currently running processes; for advanced users.

/sys
Files for kernel internals; for advanced users.

The files in /proc and /sys provide views into the running kernel
and have special properties. Files in /proc always appear to be
zero-sized, read-only, and dated now, but their contents magi‐
cally contain information about the Linux kernel:

→ ls -lG /proc/version
-r--r--r-- 1 root 0 Oct 3 22:55 /proc/version
→ cat /proc/version
Linux version 5.15.0-76-generic ...

Files in /sys also have misleading sizes and magical contents:

→ ls -lG /sys/power/state
-rw-r--r-- 1 root 4096 Jul 8 06:12 /sys/power/state
→ cat /sys/power/state
freeze mem disk

/proc and /sys are used mostly by system programs, but feel free
to view them. Here are some examples:

/proc/ioports A list of your computer’s input/output hardware.

/proc/cpuinfo Information about your computer’s processors.

/proc/version The OS version. The uname command prints the same
information.

/proc/uptime System uptime: seconds elapsed since the system was last booted.
Run uptime for a more human-readable result.

/proc/NNN Information about the Linux process with ID NNN, where NNN is a
positive integer, such as /proc/13542.

34 | Chapter 1: Essential Concepts

/proc/self Information about the current process you’re running; a symbolic
link to a /proc/nnn file, automatically updated. Try running:
→ ls -l /proc/self

several times in a row, and /proc/self changes where it points.

File Permissions
A Linux system may have many user accounts. To maintain
privacy and security, most users can access only some files on
the system, not all. This access control is embodied in two
questions:

Who has permission?
Every file and directory has an owner who can do any‐
thing they want with it. Typically, a file’s owner is the user
who created it. A superuser can change a file’s owner.

Additionally, a predefined group of users may access a
file. Groups are defined by the system administrator and I
cover them in “Group Management” on page 192.

Finally, a file or directory can be opened to all users who
have accounts on the system. You’ll also see this set of
users called the world or simply other.

What kind of permission is granted?
File owners, groups, and the world may each have permis‐
sion to read, write (modify), and execute (run) particular
files. Permissions also extend to directories, which users
may read (view files within the directory), write (create
and delete files within the directory), and execute (enter
the directory with cd).

To see the ownership and permissions of a file named myfile,
run ls -l, described in “Basic File Operations” on page 61:

→ ls -l myfile
-rw-r--r-- 1 smith smith 1168 Oct 28 2015 myfile

The Filesystem | 35

To see the ownership and permissions of a directory named
mydir, add the -d option:

→ ls -ld mydir
drwxr-x--- 3 smith smith 4096 Jan 08 15:02 mydir

In the output, the file permissions are the 10 leftmost charac‐
ters, a string of r (read), w (write), x (execute), other letters, and
dashes. For example:

-rwxr-x---

Here’s what these letters and symbols mean, briefly:

Position Meaning

1 File type: - = file, d = directory, l = symbolic link, p =
named pipe, c = character device, b = block device

2–4 Permissions for the file’s owner: read (r), write (w),
execute (x), or no permission (-).

5–7 Permissions for the file’s group: r, w, x, -

8–10 Permissions for all other users: r, w, x, -

My example -rwxr-x--- means a file that can be read, written,
and executed by the owner; read and executed by the group,
but not written; and not accessed at all by other users. To
change the owner, group, or permissions, use the commands
chown, chgrp, and chmod, respectively, as described in “Proper‐
ties of Files” on page 83.

Selected Features of Bash
A shell does much more than simply run commands. It also
simplifies the running of commands, thanks to powerful fea‐
tures: pattern matching for filenames, a “command history” to
recall previous commands quickly, pipes to send the output of
one command to the input of another, variables to store values
for use by the shell, and more. Take the time to learn these
features, and you will become faster and more productive with

36 | Chapter 1: Essential Concepts

7 Also see my follow-up book, Efficient Linux at the Command Line, to
grow your skills.

Linux.7 Let’s skim the surface and introduce you to these useful
tools. (For full documentation, run info bash.)

Which Shell Are You Running?
This book assumes that your shell is bash. To identify your
shell, run:

→ echo $SHELL
/bin/bash

If your shell isn’t bash and you wish to try it, run the command
bash directly, because bash, like all shells, is just a program. (It’s
located at /bin/bash.)

→ bash

Run the command exit when done to return to your regular
shell. To change your default shell to bash, see the chsh com‐
mand in “User Account Management” on page 188.

Pattern Matching
Pattern matching in the shell, sometimes called wildcards, is a
shorthand to work with sets of files. For example, the pattern a*
refers to files whose names begin with lowercase “a.” The shell
expands a pattern into the full set of filenames it matches. If
you run:

→ ls a*
aardvark adamantium apple

the shell invisibly expands the pattern a* into the filenames that
begin with “a” in your current directory, as if you had typed:

→ ls aardvark adamantium apple

ls never knows you used a pattern: it sees only the final list
of filenames after expansion. This means every Linux program

Selected Features of Bash | 37

https://oreil.ly/mUP9M

you launch from a shell, regardless of its origin, “works” with
patterns and other shell features. This is a critically important
point. A surprising number of Linux users think that programs
expand their own file patterns on the command line. They
don’t. The shell does it before the associated program even runs.

Patterns never match two special characters: a leading period
and the directory slash (/). These characters must be given
literally. A pattern like .bas* matches .bashrc, and /etc/*conf
matches all filenames ending in conf in the /etc directory.

Dot Files
Filenames with a leading period, called dot files, are often hid‐
den from view unless you explicitly request them. An example
is the bash initialization file .bashrc in your home directory.

• ls omits dot files from directory listings, unless you pro‐•
vide the -a option.

• Pattern-matching characters in the shell do not match a•
leading period.

As a result, dot files are often called “hidden files.”

Pattern Meaning

* Zero or more consecutive characters, except a leading dot or a
directory slash.

? Any single character, except a leading dot or a directory slash.

[set] Any single character in the given set. It can be a sequence
of characters, like [aeiouAEIOU] for all vowels, or a
range with a dash, like [A-Z] for all capital letters, or a
combination.

[!set] Any single character not in the given set, such as [!0-9] to
mean any nondigit.

[^set] Same as [!set].

38 | Chapter 1: Essential Concepts

To match a literal dash in a character set, put it first or last
so it’s not part of a range. To include a literal closing square
bracket in the set, put it first in the set, or escape it with a
backslash (\]). To include a ^ or ! symbol literally, place it
somewhere other than first in the set, or escape it.

Brace Expansion
Similar to file patterns, expressions with curly braces also
expand to become multiple arguments to a command. The
comma-separated expression:

{bubble,quick,merge}

expands first to bubble, then quick, and finally merge within a
command line, like this:

→ echo {bubble,quick,merge}sort.java
bubblesort.java quicksort.java mergesort.java

NOTE

The key difference between braces and square brackets is
that braces work with any strings, whereas square bracket
expressions match only existing filenames.

Curly braces can also expand to a sequence of values in a range,
if you separate the endpoints of the range with two dots (..):

→ echo {3..12}
3 4 5 6 7 8 9 10 11 12
→ echo {A..E}
A B C D E
→ echo file{1..5}.py
file1.py file2.py file3.py file4.py file5.py

Shell Variables
You can define variables in a shell and assign them values:

Selected Features of Bash | 39

→ MYVAR=3 Assign the value 3 to variable MYVAR

To refer to a value, simply place a dollar sign in front of the
variable name:

→ echo $MYVAR
3

The shell defines some standard variables when you log in:

Variable Meaning

DISPLAY The name of your X window display

HOME Your home directory, such as /home/smith

LOGNAME Your login name, such as smith

MAIL Your incoming mailbox, such as /var/spool/mail/smith

OLDPWD Your shell’s previous directory, prior to the last cd command

PATH Your shell search path: directories separated by colons

PWD Your shell’s current directory

SHELL The path to your shell (e.g., /bin/bash)

TERM The type of your terminal (e.g., xterm or vt100)

USER Your login name

Variables and their values are limited, by default, to the shell
that defines them. To make a variable and its value available to
other programs your shell invokes (i.e., subprocesses), use the
export command:

→ MYVAR=3
→ export MYVAR

or the shorthand:

→ export MYVAR=3

Your exported variable is now called an environment variable.
To go further and make a variable available to every new shell
you run, not just subprocesses of your current shell, place the

40 | Chapter 1: Essential Concepts

variable definition beforehand in a shell configuration file; see
“Tailoring Shell Behavior” on page 58.

To list a shell’s environment variables, run:

→ printenv

To set an environment variable just for the duration of one
command, prepend variable=value to the command line:

→ printenv HOME
/home/smith
→ HOME=/home/sally printenv HOME
/home/sally
→ printenv HOME
/home/smith The original value is unaffected

Search Path
Programs may be scattered all over the Linux filesystem, mostly
in directories like /bin and /usr/bin. When you run a command
that invokes a program, somehow the shell must locate the
program in the filesystem:

→ who The shell must locate the “who” program to run it

The shell finds the program by consulting the value of the envi‐
ronment variable PATH, which is a list of directories separated
by colons. This list is called the shell’s search path.

→ echo $PATH
/usr/local/bin:/bin:/usr/bin Search path with 3 directories

The shell looks for an executable file named who in each listed
directory in sequence. If it locates who (say, in /usr/bin/who),
it executes the program, and also caches the location for next
time (run hash --help for more on caching). Otherwise, it
reports a failure:

bash: who: command not found

To print a command’s location in your search path, run the
type or which command:

Selected Features of Bash | 41

8 Some setups use ~/.bash_aliases for this purpose.

→ type who
who is /usr/bin/who
→ which who
/usr/bin/who

To add directories to your shell’s search path temporarily, mod‐
ify its PATH variable. For example, append /usr/sbin to your
shell’s search path:

→ PATH=$PATH:/usr/sbin
→ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/sbin

This change affects only the current shell. To make it stick,
modify PATH in a bash configuration file, as explained in “Tai‐
loring Shell Behavior” on page 58. Then log out and log back
in, or run the configuration file by hand in each open shell
window. For example:

→ . $HOME/.bashrc If you modified $HOME/.bashrc

Aliases
The alias command defines a convenient shorthand for
another command. For example, this alias:

→ alias ll='ls -lG'

defines a new command ll that runs ls -lG:

→ ll
total 436
-rw-r--r-- 1 smith 3584 Oct 11 14:59 file1
-rwxr-xr-x 1 smith 72 Aug 6 23:04 file2
⋮

Define aliases in your ~/.bashrc file (see “Tailoring Shell Behav‐
ior” on page 58) to make them available to future shells.8 To
list all your aliases, run alias. If you want more flexibility than

42 | Chapter 1: Essential Concepts

9 For example, you can capture standard output in a file and still have
standard error messages appear on screen.

aliases provide, see “Programming with Shell Scripts” on page
311, run info bash, and read up on “shell functions.”

Built-in Commands
Most Linux commands are programs in the Linux filesystem.
Examples are wc and who, which usually live in the direc‐
tory /usr/bin. The shell locates and runs them using the PATH
variable, as I described in “Search Path” on page 41. Some other
commands, however, are built-in features of the shell, known
as built-in commands. You’ve seen several built-in commands
in this chapter, such as cd, alias, and export. To determine
whether a command is in the filesystem, a built-in command,
or an alias, run the type command:

→ type wc cd ll Print the types of these commands
wc is /usr/bin/wc A program in the filesystem
cd is a shell builtin A built-in shell command
ll is aliased to `ls -lG' An alias

Input, Output, and Redirection
Most Linux commands accept input and/or produce output.
Keyboard input is called standard input or stdin. Output to
your display is called standard output or stdout. Error messages
are treated specially and printed on standard error or stderr,
which also is usually your display, but Linux separates stderr
from stdout internally.9

The shell can redirect standard input, standard output, and
standard error to and from files. In other words, any command
that reads from standard input can have its input come from a
file instead with the shell’s < operator:

→ command < infile

Selected Features of Bash | 43

Likewise, any command that writes to standard output can
write to a file instead:

→ command > outfile Create/overwrite outfile
→ command >> outfile Append to outfile

A command that writes to standard error can have its error
output redirected to a file as well, leaving standard output
unaffected:

→ command 2> errorfile

To redirect both standard output and standard error to files:

→ command > outfile 2> errorfile Separate files
→ command &> outfile Single file (preferred)
→ command >& outfile Single file (less common)

Combined Commands
Bash lets you move beyond simple commands by combining
multiple programs on a single command line.

Sequences of commands
To invoke several commands in sequence on a single command
line, separate them with semicolons:

→ command1 ; command2 ; command3

To run a sequence of commands as before, but stop execution if
any of them fails, separate them with && (“and”) symbols:

→ command1 && command2 && command3

To run a sequence of commands, stopping execution as soon as
one succeeds, separate them with || (“or”) symbols:

→ command1 || command2 || command3

Pipes
You can redirect the standard output of one command to be
the standard input of another, using the shell’s pipe (|) operator.

44 | Chapter 1: Essential Concepts

(On US keyboards, find this symbol just above the Enter key.)
For example, this command:

→ who | sort

sends the output of who into the sort command, printing an
alphabetically sorted list of logged-in users. Multiple pipes
work too. Let’s sort the output of who again, extract the first
column of information (using awk), and display the results one
page at a time (using less):

→ who | sort | awk '{print $1}' | less

Command substitution
If you surround a command with backquotes (“backticks”), the
shell removes the command and substitutes the command’s
output.

→ date +%Y Print the current year
2024
→ echo This year is `date +%Y`
This year is 2024

A dollar sign and parentheses are equivalent to backquotes:

→ echo This year is $(date +%Y)
This year is 2024

but are superior because they can be nested:

→ echo Next year is $(expr $(date +%Y) + 1)
Next year is 2025

Process substitution
Some programs don’t work well with pipes because they don’t
read from standard input, only from disk files. An example
is the diff command that compares two files line by line
and prints their differences. Process substitution is a way to
force a command like diff to read from standard input. It
runs a command and lets its output “masquerade” as a file,
which programs like diff will happily accept. With the process

Selected Features of Bash | 45

substitution operator, <(), you can compare the output of two
commands instead of two disk files.

Suppose you have a directory full of JPEG and text files in
pairs:

→ ls jpegexample
file1.jpg file2.jpg file3.jpg ...
file1.txt file2.txt file3.txt ...

and you want to confirm that every JPEG file has a correspond‐
ing text file and vice versa. Ordinarily, you might create two
temporary files, one containing the JPEG filenames and the
other containing the text filenames, remove the file extensions
with cut, and compare the two temporary files with diff:

→ cd jpegexample
→ ls *.jpg | cut -d. -f1 > /tmp/jpegs
→ ls *.txt | cut -d. -f1 > /tmp/texts
→ diff /tmp/jpegs /tmp/texts
5a6
> file6 No file6.jpg was found
8d8
< file9 No file9.txt was found

Process substitution performs the same task with a single com‐
mand and no temporary files:

→ diff <(ls *.jpg|cut -d. -f1) <(ls *.txt|cut -d. -f1)

Each <() operator stands in for a filename on the command
line, as if that “file” contained the output of ls and cut.

Preventing Evaluation
The shell evaluates every character of a command. To prevent
evaluation, use quoting or escaping.

Quoting
Normally, the shell treats whitespace as a separator for strings
on the command line. To make a string that contains white‐
space (e.g., a filename with a space in it), surround it with

46 | Chapter 1: Essential Concepts

single or double quotes, and the shell treats it as a unit. Single
quotes treat their contents literally, while double quotes permit
variables and other shell constructs to be evaluated:

→ echo 'The variable HOME has value $HOME'
The variable HOME has value $HOME
→ echo "The variable HOME has value $HOME"
The variable HOME has value /home/smith

Escaping
If a character has special meaning to the shell but you want
it used literally (e.g., * as a literal asterisk rather than a file
pattern), precede the character with the backslash “\” character.
This is called escaping the special character:

→ echo a* A file pattern
aardvark adamantium apple
→ echo a* A literal asterisk
a*
→ echo "I live in $HOME" Print a variable value
I live in /home/smith
→ echo "I live in \$HOME" Print a literal dollar sign
I live in $HOME

You can also escape control characters (tabs, newlines, ^D, etc.)
to have them used literally on the command line, if you precede
them with ^V. This is particularly useful for tab characters,
which the shell would otherwise use for filename completion
(see “Filename Completion” on page 49).

→ echo "There is a tab between here^V and here"
There is a tab between here and here

Command-line Editing
Bash lets you edit the command line you’re working on,
using keystrokes inspired by the text editors Emacs and Vim
(see “Creating and Editing Files” on page 78). To enable
command-line editing with Emacs keys, run this command
(and place it in a bash configuration file to make it permanent):

Selected Features of Bash | 47

→ set -o emacs

For vi (or Vim) keys:

→ set -o vi

Emacs keystroke Vim keystroke
(after ESC)

Meaning

^P or up arrow k or up arrow Go to previous command

^N or down arrow j or down arrow Go to next command

^R Search for a previous
command interactively

^F or right arrow l or right arrow Go forward one character

^B or left arrow h or left arrow Go backward one character

^A 0 Go to beginning of line

^E $ Go to end of line

^D x Delete next character

^U ^U Delete to beginning of line

Command History
A shell can recall previous commands and re-execute them, a
feature called command history. Try these useful history-related
commands and expressions:

Command Meaning

history Print your history

history N Print the most recent N commands in your history

history -c Clear (delete) your history

!! Represents your previous command. To re-run it:
→ !! <Enter>

!N Represents command number N in your history

!-N Represents the command you entered N commands ago

48 | Chapter 1: Essential Concepts

Command Meaning

!$ Represents the last argument from the previous
command. Great for checking that files are present before
running a destructive command like rm:
→ ls z*
zebra.txt zipfile.zip zookeeper
→ rm !$ Same as “rm z*”

!* Represents all arguments from the previous command:
→ ls myfile emptyfile hugefile
emptyfile hugefile myfile
→ wc !*
 18 211 1168 myfile
 0 0 0 emptyfile
 333563 2737540 18577839 hugefile
 333581 2737751 18579007 total

Filename Completion
In the middle of typing a filename, press the Tab key and the
shell automatically completes the filename for you. If several
filenames match what you’ve entered so far, the shell beeps,
indicating the match is ambiguous. Immediately press Tab a
second time and the shell presents the alternatives. Try this:

→ cd /usr/bin
→ ls un<Tab><Tab>

The shell displays all files in /usr/bin that begin with un, such
as uniq and unzip. Enter a few more characters to disambiguate
your choice and press Tab again.

Shell Job Control
jobs List your jobs.

& Placed after a command, runs it in the background.

^Z Keystroke to suspend the current (foreground) job.

Selected Features of Bash | 49

suspend Suspend a shell.

fg Unsuspend a job: bring it into the foreground.

bg Make a suspended job run in the background.

disown Forget a job.

All Linux shells have job control: the ability to run commands
in the background (multitasking behind the scenes) and fore‐
ground (the active process at your shell prompt). A job is
simply the shell’s unit of work. When you run a command
interactively, your current shell tracks it as a job. When the
command completes, the associated job disappears. Jobs are
at a higher level than Linux processes; the Linux OS knows
nothing about them. They are merely constructs of the shell.
Here is some important vocabulary about job control:

Foreground job
In a shell, a running job that occupies the shell prompt so
you cannot run another command

Background job
In a shell, a running job that doesn’t occupy the prompt,
so you can run other commands in the same shell

Suspend
To stop a foreground job temporarily

Resume
To cause a suspended job to start running in the fore‐
ground again

Disown
To tell the shell to stop tracking the job; the underlying
processes continue to run

50 | Chapter 1: Essential Concepts

jobs stdin stdout - file -- opt --help --version

The built-in command jobs lists the jobs running in your
current shell by number and name:

→ jobs
[1]- Running emacs myfile & A background job
[2]+ Stopped ssh example.com A suspended job

The integer on the left is the job number, and the plus sign
identifies the default job affected by the fg (foreground) and bg
(background) commands.

&

Placed at the end of a command line, the ampersand causes the
given command to run as a background job:

→ emacs myfile &
[2] 28090

The shell’s response includes the job number (2) and the pro‐
cess ID of the command (28090).

^Z

Typing ^Z in a shell, while a job runs in the foreground,
suspends that job. It simply stops running, but its state is
remembered:

→ sleep 10 Waits for 10 seconds
^Z
[1]+ Stopped sleep 10
→

Selected Features of Bash | 51

Now you’re ready to run bg to put the sleep command into the
background, or fg to resume it in the foreground. You could
also leave it suspended and run other commands.

suspend stdin stdout - file -- opt --help --version

The built-in suspend command pauses the current shell if pos‐
sible, as if you’d applied ^Z to the shell itself. For instance, if you
create a superuser shell with sudo and want to return to your
original shell, suspend pauses the superuser shell:

→ whoami
smith
→ sudo bash Run a superuser shell
[sudo] password: xxxxxxxx
whoami
root
suspend Suspend the superuser shell
[1]+ Stopped sudo bash
→ whoami Back to the original shell
smith

bg stdin stdout - file -- opt --help --version

bg [%job]

The built-in command bg sends a suspended job to run in
the background. With no arguments, bg operates on the most
recently suspended job. To specify a particular job (shown by
the jobs command), supply the job number or name preceded
by a percent sign:

→ bg %2 Send job 2 to the background
→ bg %cat Send job beginning with “cat” to the background

52 | Chapter 1: Essential Concepts

Some types of interactive jobs cannot remain in the back‐
ground—for instance, if they are waiting for input. If you try,
the shell suspends the job and displays:

[2]+ Stopped command line here

Now resume the job (with fg) and continue.

fg stdin stdout - file -- opt --help --version

fg [%job]

The built-in command fg brings a suspended or backgrounded
job into the foreground. With no arguments, it selects a job,
usually the most recently suspended or backgrounded one.
To specify a particular job (as shown by the jobs command),
supply the job number or name preceded by a percent sign:

→ fg %2 Bring job 2 into the foreground
→ fg %cat Bring job beginning with “cat” into the foreground

disown stdin stdout - file -- opt --help --version

disown [-ar] [-h] [%job]

The built-in command disown tells your current shell to “for‐
get” a job. The Linux processes behind the job keep running—
you just can’t control them anymore with bg, fg, jobs, and
other job-related commands. This is useful for long jobs that
you don’t need to interact with, or jobs that should keep run‐
ning after your shell exits. See also nohup in “Controlling Pro‐
cesses” on page 169.

→ disown %2 Forget job #2
→ disown %cat Forget job beginning with “cat”
→ disown -h %2 Mark job #2 to keep running after shell exits
→ disown -r Forget all running jobs
→ disown -a Forget all jobs

Selected Features of Bash | 53

Running Multiple Shells at Once
Job control can manage several commands at once, but only
one can run in the foreground at a time. More powerfully,
you can run multiple shells at once, each with a foreground
command and any number of background commands.

If your Linux computer runs a window system such as KDE
or GNOME, you can easily run many shells at the same time
by opening multiple shell windows (see “Launching a Shell” on
page 21). In addition, certain shell window programs, such as
KDE’s konsole, can open multiple tabs within a single window,
each one running a shell.

Even without a window system—say, over an SSH network
connection—you can manage multiple shells at once. The tmux
command simulates multiple shell windows in an ordinary
ASCII terminal. Using special keystrokes, you can switch from
one virtual window to another at will. (Another such program
is screen, but tmux is better maintained and easier to config‐
ure.) To begin a session with tmux, run:

→ tmux

A new shell launches with an extra status bar at the bottom
of the terminal, indicating that you’re running one virtual win‐
dow. The tmux program provides 10 such windows by default,
labeled from 0 to 9, that you may switch between. Each window
runs a single shell at first, but you can split a window into
multiple “panes” to display multiple shells at once. Try these
keystrokes to get the hang of tmux:

1. In the current tmux window, run ls.1.
2. Press ^Bc (Ctrl-B, then press c). tmux displays a fresh2.

shell prompt in a second virtual window. The status bar
changes to show two virtual windows numbered 0 and 1.

3. In this second window, run a different command (say, df).3.
4. Press ^Bn and you’ll switch back to window 0, where your4.

output from ls is now visible again.

54 | Chapter 1: Essential Concepts

5. Press ^Bn a few more times to toggle between the two5.
virtual windows.

6. Press ^B% to split the current window into two panes side6.
by side.

7. Press ^B" to split the current pane into two, vertically.7.
You’re now viewing three shells in separate panes.

Most aspects of tmux are configurable in the file ~/.tmux_conf,
even the choice of ^B as the prefix key. Here are common
keystroke commands:

Keystroke Meaning

^B? Display online help. Press “q” to quit.

^Bc Create a window.

^B0, ^B1 … ^B9 Switch to window 0 through 9, respectively.

^Bn Switch to the next window, numerically.

^Bp Switch to the previous window, numerically.

^Bl Switch to the most recently used window.

^B% Split into two panes side by side.

^B" Split into two panes top and bottom.

^Bo Jump to the next pane.

^B left arrow Jump to the pane to the left.

^B right arrow Jump to the pane to the right.

^B up arrow Jump to the pane above.

^B down arrow Jump to the pane below.

^Bq Display pane numbers for reference.

^Bx Kill the current pane.

^B^B Send a true Ctrl-B to your shell, ignored by
tmux.

^B^Z Suspend tmux.

Selected Features of Bash | 55

Keystroke Meaning

^Bd “Detach” from a tmux session and return to
your original shell. To return to tmux, run
tmux attach.

^D Terminate a shell in a window or pane.
This is the ordinary “end of file” keystroke,
explained in “Terminating a Shell” on page
58, which closes any shell.

^B:kill-session Kill all windows and terminate tmux.

A few notes about running tmux:

• If shells within tmux are missing your aliases, variables,•
or other shell settings, that’s because tmux runs a login
shell that does not source your .bashrc initialization file.
It only sources your startup file (.bash_profile, .bash_login,
or .profile). To correct this issue, append these lines to
your startup file:
Source my .bashrc file
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

• If you run a text editor, tmux captures all Ctrl-B keystrokes,•
even those intended as editing commands. Press ^B^B to
send a true Ctrl-B to your editor.

• Don’t run tmux locally on a graphical desktop; run multiple•
shell windows instead. It’s easier and avoids a problem: if
you’ve configured your shell to run commands on logout
(for example, in the file ~/.bash_logout), tmux’s shells will
run those commands on exit, even though you haven’t
logged out of the desktop. This may have unwanted effects
on your desktop login session.

56 | Chapter 1: Essential Concepts

Killing a Command in Progress
To kill a foreground command immediately, press ^C. Here I
kill the cat command as it prints a huge file:

→ cat hugefile
Lorem ipsum dolor sit amet, consectetur adipiscing
odio. Praesent libero. Sed cursus ante dapibus diam.
quis sem at nibh elementum blah blah blah ^C
→

To kill a background command, bring it into the foreground
with fg and then press ^C:

→ sleep 50 &
[1] 12752
→ jobs
[1]- Running sleep 50 &
→ fg %1
sleep 50
^C
→

or run the kill command described in “Controlling Processes”
on page 169. The keystroke ^C is a shell feature. It has no effect
on programs that “catch” ^C and do not terminate, like text
editors and GUI applications. Use kill for those.

Surviving a Kill
Killing a command with ^C may leave your shell in an odd
or unresponsive state, because the killed program could not
close itself properly. A common symptom is not displaying the
keystrokes you type. To fix the shell, follow these steps:

1. Press ^J to get a shell prompt. This keystroke may work1.
even if pressing Enter does not.

2. Type the command reset (even if the letters don’t appear2.
while you type) and press ^J to run it. Your shell should
return to normal.

Selected Features of Bash | 57

Terminating a Shell
To terminate a shell, either run the exit command:

→ exit

or press ^D on a line by itself. The keystroke ^D sends an “end of
file” signal to any program reading from standard input. This
includes the shell itself.

Tailoring Shell Behavior
Several files in your home directory control the behavior of
bash shells. The startup files .bash_profile, .bash_login, and .pro‐
file contain commands that run each time you log in. (Choose
just one startup file and stick with it. I recommend .bash_pro‐
file because some other shells also use .profile.) Commands
in the initialization file .bashrc run every time you launch an
interactive shell, and commands in .bash_logout run each time
you log out. All these files can set variables, run programs,
print silly messages, or whatever you like. Other Linux shells
use other configuration files as shown in Table 1-1.

Table 1-1. Shell configuration files in $HOME and when they are read

Shell On login By other interactive shells On logout

bash .bash_profile, .bash_login,
.profile

.bashrc .bash_logout

dash .profile

fish .config/fish/config.fish .config/fish/config.fish

ksha .profile, .kshrc .kshrc

tcsh .tcshrc, .cshrc, .login .tcshrc, .cshrc

zsha .zshenv, .zprofile, .zlogin .zshenv, .zshrc .zlogout

a To override these file paths with environment variables, see the manpage.

Other shell configuration files live in /etc for system-wide con‐
trol; see the respective manual page, or manpage, for each
shell. All these configuration files are examples of shell scripts:

58 | Chapter 1: Essential Concepts

executable files that contain shell commands. I cover this fea‐
ture in more detail in “Programming with Shell Scripts” on
page 311.

Getting Help
If you need more information than this book provides, here are
several ways to get more help:

Run the man command
The man command displays documentation for a given
program. For example, to learn about counting words in a
file with wc, run:

→ man wc

To search for manual pages (manpages) by keyword for
a particular topic, use the -k option followed by the
keyword:

→ man -k database

If the list of manpages is longer than the screen, pipe it to
less to display it in pages (press q to quit):

→ man -k database | less

Run the info command
The info command is an extended, hypertext help system
covering many Linux commands.

→ info ls

While info runs, some useful keystrokes are:

• To get help, press h•
• To quit, press q•
• To page forward and backward, use the space bar and•

Backspace key, respectively
• To jump between hyperlinks, press Tab•
• To follow a hyperlink, press Enter•

Getting Help | 59

If info has no documentation on a given command,
it displays the command’s manpage. For a listing of
available documentation, type info by itself. To learn
how to navigate the info system, run info info.

Use the --help option (if any)
Many Linux commands respond to the option --help or
-h by printing a short help message. Try:

→ wc --help

If the output is longer than the screen, pipe it into less:

→ wc --help | less

Examine the directory /usr/share/doc
This directory contains supporting documents for pro‐
grams, usually organized by name and version. For exam‐
ple, files for the editor Emacs version 28 are likely found
(depending on distro) in /usr/share/doc/emacs28.

Distro-specific websites
Most Linux distros have an official site with documenta‐
tion, discussion forums, and other resources. Search the
web for your distro name (e.g., “Ubuntu”) to find its
website. The Arch Linux wiki is particularly informative
regardless of your distro.

Linux help sites
Ask Linux questions at cunix.stakexchange.org, linuxques‐
tions.org, itsfoss.community, and nixcraft.com.

Web search
To decipher a Linux error message, paste it into a search
engine, verbatim, optionally surrounded by double quotes.

This concludes my basic overview of Linux and the shell. Now
let’s turn to the specifics of Linux commands. The rest of the
book lists and describes the most useful commands to work
with files, processes, users, networking, multimedia, and more.

60 | Chapter 1: Essential Concepts

https://oreil.ly/98iAg
https://oreil.ly/2MEK_
https://oreil.ly/N49GZ
https://oreil.ly/N49GZ
https://oreil.ly/WJhjN
https://oreil.ly/6j1tu

CHAPTER 2

File Commands

Basic File Operations
ls List files in a directory.

cp Copy a file.

mv Move (rename) a file.

rm Remove (delete) a file.

ln Create links (alternative names) to a file.

One of the first things you’ll do on a Linux system is manipu‐
late files: copying, renaming, deleting, and so forth.

ls stdin stdout - file -- opt --help --version

ls [options] [files]

The ls command (pronounced as it is spelled, ell ess) lists
attributes of files and directories. You can list files in the cur‐
rent directory:

→ ls

61

in given directories:

→ ls dir1 dir2 dir3

or individually:

→ ls myfile myfile2 myfile3

TIP

If ls behaves differently than you expect, your distro may
have defined an alias for ls (see “Aliases” on page 42).
Check for an alias by running this command:

→ alias ls
alias ls='/bin/ls -FHN' Yes, there's an alias

To run the original command rather than the alias, pre‐
pend a backslash (\ls). To remove the alias, run unalias
ls. Then look in your shell configuration files for the alias
definition (see “Tailoring Shell Behavior” on page 58) and
remove it. If you don’t see a definition, either add the
command unalias ls or define a new alias that works the
way you want, like alias ls="/bin/ls".

The most important ls options are -a, -l, and -d. By default,
ls hides files whose names begin with a dot, as explained in
the sidebar “Dot Files” on page 38. The -a option displays all
files. Depending on your account settings, ls will list dot files at
the beginning (sorting based on the dot) or mix them into the
listing (sorting based on the character after the dot).

→ ls
myfile myfile2
→ ls -a
.hidden_file myfile myfile2

62 | Chapter 2: File Commands

The -l option produces a long listing:

→ ls -l myfile
-rw-r--r-- 1 smith users 1168 Oct 28 2015 myfile

that includes, from left to right: the file’s permissions (-rw-r--
r--), number of hard links (1), owner (smith), group (users),
size (1168 bytes), last modification date (Oct 28 2015) and
name. See “File Permissions” on page 35 for more information
on these attributes.

The -d option lists information about a directory itself, rather
than descending into the directory to list its files:

→ ls -ld dir1
drwxr-xr-x 1 smith users 4096 Oct 29 2015 dir1

Useful options

-a List all files, including those whose names begin with a dot.

-l Long listing, including file attributes. Add the -h option (human-readable)
to print file sizes in KB, MB, and GB, instead of bytes.

-h In a long listing, print file sizes in friendly KB, MB, and other human-
readable terms, instead of bytes.

-G In a long listing, don’t print the group ownership of the file.

-F Decorate filenames with meaningful symbols, indicating their types.
Appends “/” to directories, “*” to executables, “@” to symbolic links, “|”
to named pipes, and “=” to sockets. These are just visual indicators, not part
of the filenames!

-S Sort files by their size.

-t Sort files by the time they were last modified.

-r Reverse the sorted order.

-R If listing a directory, list its contents recursively.

-d If listing a directory, do not list its contents, just the directory itself.

Basic File Operations | 63

cp stdin stdout - file -- opt --help --version

cp [options] source_file destination_file

cp [options] (files | directories) directory

The cp command copies one file to another:

→ cp myfile anotherfile

or copies multiple files into a directory (say) mydir:

→ cp myfile myfile2 myfile3 mydir

Use the -a or -r option to copy directories recursively, includ‐
ing all subdirectories and their contents. For more sophistica‐
ted copying, see rsync in “Backups and Remote Storage” on
page 241.

Useful options

-p Copy not only the file contents, but also the file’s permissions, timestamps,
and, if you have sufficient permission to do so, its owner and group.
(Otherwise, you own the copies, the timestamp is now, and permissions are
set by applying your umask to the original permissions.)

-a Copy a directory hierarchy recursively, preserving all file attributes and links.

-r Copy a directory hierarchy recursively. This option does not preserve the files’
attributes such as permissions and timestamps. It does preserve symbolic
links.

-i Interactive mode. Ask before overwriting destination files.

-f Force the copy. If a destination file exists, overwrite it unconditionally.

mv stdin stdout - file -- opt --help --version

mv [options] sources target

The mv (move) command renames a file:

→ mv somefile yetanotherfile

64 | Chapter 2: File Commands

or moves files and directories into a destination directory:

→ mv myfile myfile2 dir1 dir2 destination_directory

Useful options

-i Interactive mode. Ask before overwriting destination files.

-f Force the move. If a destination file exists, overwrite it unconditionally.

rm stdin stdout - file -- opt --help --version

rm [options] files | directories

The rm (remove) command deletes files:

→ rm deleteme deleteme2

or recursively deletes directories:

→ rm -r dir1 dir2

WARNING

Use rm -r with caution. It can quickly destroy large num‐
bers of files, especially when combined with -f to suppress
prompts and ignore errors.

Use sudo rm -r with extreme caution. It can destroy your
whole operating system.

Useful options

-i Interactive mode. Ask for confirmation before deleting each file.

-f Force the deletion, ignoring any errors or warnings.

-r Recursively remove a directory and its contents.

Basic File Operations | 65

ln stdin stdout - file -- opt --help --version

ln [options] source target

The ln command creates a link, which lets a file live at more
than one location in the filesystem at once. There are two kinds
of links, illustrated in Figure 2-1. A hard link is a second name
for the same physical file on disk. In tech jargon, both refer to
the same inode, a data structure that locates a file’s content on
disk. The following command creates a hard link, myhardlink,
to the file named myfile:

→ ln myfile myhardlink

Figure 2-1. A hard link points to a file’s data. A symbolic link points to
a file’s path.

66 | Chapter 2: File Commands

A symbolic link (also called a symlink or soft link) is a pointer
to the path (not the inode) of another file or directory. If you’re
familiar with Windows shortcuts or macOS aliases that point
to another file or folder, they are much like symbolic links. To
create a symbolic link, add the -s option:

→ ln -s myfile mysoftlink

Hard and symbolic links have important differences:

• If you rename or delete the original file, a hard link is not•
affected: it still points to the same data that the original file
did. A symbolic link breaks, however. It still points to the
original file’s path, which no longer exists. The symbolic
link is now “dangling,” and if you use it in a command,
you’ll probably receive a “file not found” error.

• Hard links can exist only on the same device as the orig‐•
inal file because inodes have meaning only on a single
device. Symbolic links can point to files on other devices
because they refer to file paths, not file data.

• Symbolic links can point to directories, whereas hard links•
generally cannot. (On some filesystems, the superuser can
create a hard link to a directory with the -d option.)

Useful options

-s Make a symbolic link instead of a hard link.

-i Interactive mode. Ask before overwriting target files.

-f Force the link. If the target already exists, overwrite it unconditionally.

-b Create a backup. If the target already exists, rename it by appending a tilde,
then create the link.

-d Create a hard link to a directory if possible (superusers only).

Basic File Operations | 67

To find out where a symbolic link points, run either of the
following commands, which show that the link examplelink
points to the file myfile:

→ readlink examplelink
myfile
→ ls -l examplelink
lrwxrwxrwx 1 smith ... examplelink -> myfile

Symbolic links can point to other symbolic links. To follow an
entire chain of links to discover where they point in the end,
use readlink -f.

Directory Operations
cd Change your current directory.

pwd Print the name of your current directory.

basename Print the final part of a file path, usually the filename.

dirname Print a file path without its final part.

mkdir Create (make) a directory.

rmdir Delete (remove) an empty directory.

rm -r Delete a nonempty directory and its contents.

I discussed the directory structure of Linux in “The Filesystem”
on page 27. Let’s cover commands that create, modify, delete,
and manipulate directories within that structure.

cd stdin stdout - file -- opt --help --version

cd [directory]

The cd (change directory) command sets the current directory
of your shell:

→ cd /usr/games

68 | Chapter 2: File Commands

With no directory supplied, cd defaults to your home directory:

→ cd

If the supplied directory is a dash (-), cd returns to the previous
directory it visited in the current shell and prints its path.

→ cd /etc Start in /etc
→ cd /bin Go somewhere else
→ cd - Return to /etc
/etc

pwd stdin stdout - file -- opt --help --version

pwd

The pwd command (“print working directory”) prints the abso‐
lute path of your current directory:

→ pwd
/users/smith/linuxpocketguide

basename stdin stdout - file -- opt --help --version

basename path [extension]

The basename command prints the final part of a file path. The
path doesn’t have to exist in your filesystem.

→ basename /users/smith/finances/money.txt
money.txt
→ basename any/string/you/want Arbitrary string
want

If you provide an optional extension, it is stripped from the
result:

→ basename /users/smith/finances/money.txt .txt
money

Directory Operations | 69

dirname stdin stdout - file -- opt --help --version

dirname path

The dirname command prints a file path with its final part
removed:

→ dirname /users/smith/mydir
/users/smith

dirname does not change your shell’s current directory. It
manipulates and prints a string, just like basename does.

mkdir stdin stdout - file -- opt --help --version

mkdir [options] directories

mkdir creates one or more directories:

→ mkdir directory1 directory2 directory3

Useful options

-p Given a directory path (not just a simple directory name), create any
necessary parent directories automatically. The command:
→ mkdir -p one/two/three

creates directories one and one/two and one/two/three if they don’t
already exist.

-m mode Create the directory with the given permissions:
→ mkdir -m 0755 publicdir

By default, your shell’s umask controls the permissions. See the
chmod command in “Properties of Files” on page 83, and “File
Permissions” on page 35.

70 | Chapter 2: File Commands

rmdir stdin stdout - file -- opt --help --version

rmdir [options] directories

The rmdir (remove directory) command deletes one or more
empty directories given as arguments:

→ mkdir /tmp/junk create a directory
→ rmdir /tmp/junk delete it

Useful options

-p If you supply a directory path (not just a simple directory name), delete not
only the given directory, but the specified parent directories automatically,
all of which must be empty. So rmdir -p one/two/three deletes not
only one/two/three, but also one/two and one.

To delete a nonempty directory and its contents, carefully run
rm -r directory. Use rm -ri to delete interactively, or rm -rf to
annihilate whole trees without error messages or confirmation.

Viewing Files
cat View files in their entirety.

less View text files one page at a time.

nl View text files with their lines numbered.

head View the first lines of a text file.

tail View the last lines of a text file.

strings Display text that’s embedded in a binary file.

od View data in octal (base 8) or other formats.

Some files contain readable text, and others contain binary
data. Let’s see how to display their contents in basic ways.

Viewing Files | 71

cat stdin stdout - file -- opt --help --version

cat [options] [files]

The simplest viewer is cat, which just prints its files to standard
output, concatenating them (hence the name):

→ cat myfile Print one file on screen
→ cat myfile* Print many files
→ cat myfile* | wc Concatenate files and pipe the text to wc

If a file contains more lines than your screen can display, use
less to present the output one screenful at a time.

Useful options

-T Print tabs as ^I.

-E Print newlines as $.

-v Print other nonprinting characters in a human-readable format.

-n Prepend line numbers to every line. (The nl command is more powerful.)

-b Prepend line numbers to nonblank lines.

-s Squeeze consecutive blank lines into a single blank line.

less stdin stdout - file -- opt --help --version

less [options] [files]

Use less to view text one “page” at a time (i.e., one window or
screenful at a time):

→ less myfile

It’s great for long text files or as the final command in a shell
pipeline with lengthy output:

→ command1 | command2 | command3 | command4 | less

72 | Chapter 2: File Commands

While running less, press h for a help message describing all
its features. Here are some useful keystrokes for paging:

Keystroke Meaning

h, H View a help page.

Space bar, f, ^V, ^F Move forward one screenful.

Enter Move forward one line.

b, ^B, ESC-v Move backward one screenful.

/ Search mode. Type a regular expression and press Enter,
and less locates the first matching line.

? Same as /, but search backward.

n Next match: Repeat your most recent search forward.

N Repeat your most recent search backward.

v Edit the current file with your default text editor (the
value of environment variable VISUAL, or if not defined,
EDITOR, or if not defined, the system default editor).

<, g Jump to beginning of file.

>, G Jump to end of file.

:n Jump to next file.

:p Jump to previous file.

less has a mind-boggling number of features; I’m presenting
only the most common. (For instance, in many distros, less
can display the contents of a ZIP file: try less zipfile.zip.)
The manpage is recommended reading.

Useful options

-c Clear the screen before displaying the next page. This avoids scrolling and
may be more comfortable on the eyes.

-m Print a verbose prompt showing the percentage of the file displayed so far.

-N Display line numbers.

Viewing Files | 73

-r Display control characters literally; normally less converts them to a
human-readable format.

-s Squeeze multiple, adjacent blank lines into a single blank line.

-S Truncate long lines to the width of the screen, instead of wrapping.

nl stdin stdout - file -- opt --help --version

nl [options] [files]

nl prints files on standard output with line numbers:

→ nl poem
 1 Once upon a time, there was
 2 a little operating system named
 3 Linux, which everybody loved.

nl provides more control over numbering than cat -n.

Useful options

-b [a|t|n|p R] Number all lines (a), nonblank lines (t), no lines (n), or
only lines that contain regular expression R. (Default=a)

-v N Begin numbering with integer N. (Default=1)

-i N Increment by N for each line. For example, print odd
numbers only (-i2) or even numbers only (-v2 -i2).
(Default=1)

-n [ln|rn|rz] Format numbers as left-justified (ln), right-justified (rn),
or right-justified with leading zeros (rz). (Default=ln)

-w N Force the width of the number to be N columns.
(Default=6)

-s S Insert string S between the line number and the text.
(Default=Tab)

74 | Chapter 2: File Commands

head stdin stdout - file -- opt --help --version

head [options] [files]

The head command prints the first 10 lines of a file, which is
great to preview the contents:

→ head myfile
→ head myfile* | less Previewing multiple files

It’s also helpful for previewing output from a pipeline. List the
10 most recently modified files in the current directory:

→ ls -lta | head

Useful options

-n N Print the first N lines instead of 10.

-N Same as -n N.

-c N Print the first N bytes of the file.

-q Quiet mode: when processing more than one file, don’t print a banner
(containing the filename) above each file.

tail stdin stdout - file -- opt --help --version

tail [options] [files]

The tail command prints the last 10 lines of a file:

→ tail myfile
→ nl myfile | tail See line numbers too

The ultra-useful -f option causes tail to watch a file actively
while another program writes to it, displaying new lines as they
are written. This is invaluable for watching a Linux logfile that’s
in active use:

→ tail -f /var/log/syslog Or another logfile

Viewing Files | 75

Useful options

-n N Print the last N lines of the file instead of 10.

-N Same as -n N.

-n +N Print from line N to the end of the file.

+N Same as -n +N.

-c N Print the last N bytes of the file.

-f Keep the file open, and whenever lines are appended to the file, print
them. Add the --retry option if the file doesn’t exist yet. ^C to quit.

-q Quiet mode: when processing more than one file, don’t print a banner
(containing the filename) above each file.

strings stdin stdout - file -- opt --help --version

strings [options] [files]

Binary files, such as compiled programs, usually contain some
readable text, like version information, authors’ names, and file
paths. The strings command extracts that text:

→ strings /bin/bash
/lib64/ld-linux-x86-64.so.2
@(#)Bash version 5.1.16(1) release GNU
comparison operator expected, found ‘%s’
⋮

Combine strings -n and grep to make your exploring more
efficient. Let’s look for email addresses:

→ strings -n 10 /bin/bash | grep @
bash-maintainers@gnu.org

Useful options

-n length Display only strings with length greater than length (default=4).

-f Prepend the filename to each line of output.

76 | Chapter 2: File Commands

od stdin stdout - file -- opt --help --version

od [options] [files]

To view binary files, consider od (octal dump) for the job. It
displays their data in ASCII, octal, decimal, hexadecimal, or
floating point, in various sizes (byte, short, long). For example,
this command:

→ od -w8 /usr/bin/who
0000000 042577 043114 000402 000001
0000010 000000 000000 000000 000000
0000020 000003 000076 000001 000000
⋮

displays the bytes in binary file /usr/bin/who in octal, eight
bytes per line. The leftmost column is the file offset of each
row, again in octal.

If your binary file also contains text, consider the -tc option,
which displays character data. For example, binary executables
like who contain the string “ELF” at the beginning:

→ od -tc -w8 /usr/bin/who | head -3
0000000 177 E L F 002 001 001 \0
0000010 \0 \0 \0 \0 \0 \0 \0 \0
0000020 003 \0 > \0 001 \0 \0 \0

Useful options

-N B Display the first B bytes of each file, specified in decimal,
hexadecimal (by prepending 0x), 512-byte blocks (append
b), KB (append k), or MB (append m).

-j B Begin the output at byte B + 1 of each file; acceptable
formats are the same as for the -N option. (Default=0)

-w [B] Display B bytes per line; acceptable formats are the same
as in the -N option. Using -w by itself is equivalent to
-w32. (Default=16)

Viewing Files | 77

-s [B] Group each row of bytes into sequences of B bytes,
separated by whitespace; acceptable formats are the same
as in the -N option. Using -s by itself is equivalent to
-s3. (Default=2)

-A (d|o|x|n) Display file offsets in the leftmost column, in decimal (d),
octal (o), hexadecimal (x), or not at all (n). (Default=o)

-t(a|c)[z] Display output in a character format, with
nonalphanumeric characters printed as escape sequences
(c) or by name (a).

-t(d|o|u|x)[z] Display output in an integer format: octal (o), signed
decimal (d), unsigned decimal (u), hexadecimal (x).

Appending z to the -t option displays the printable characters
on each line in a column on the right side.

Creating and Editing Files
nano A simple text editor found in virtually all Linux distros.

emacs A powerful text editor from Free Software Foundation.

vim A powerful text editor based on Unix vi.

To get far with Linux, you must become proficient with one
of its text editors. The three major ones are nano, Emacs,
and Vim. Teaching these editors fully is beyond the scope
of this book, but they all have online tutorials, and common
operations are in Table 2-1. To edit a file, run any of these
commands:

→ nano myfile
→ emacs myfile
→ vim myfile

If myfile doesn’t exist, the editor creates it.

Linux also has fine programs to edit Microsoft Office docu‐
ments: LibreOffice (all documents), AbiWord (Word only), and
Gnumeric (Excel only). Some are probably included in your
distro, or you can find them easily through web search.

78 | Chapter 2: File Commands

1 The -n option of echo suppresses the newline character.

Creating a File Quickly
Text editors create files on request, but you can also create
an empty file (for later editing) at the command line with the
touch command:

→ touch newfile Create newfile if it doesn't exist

or use output redirection (see “Input, Output, and Redirection”
on page 43) to create a file with or without contents:1

→ echo -n > newfile2 Echo the empty string to a file
→ > newfile3 Redirect nothing to a file
→ ls > newfile4 Redirect a command's output to a file

Your Default Editor
Various Linux programs run an editor when necessary. For
example, your email program may invoke an editor to compose
a new message, and less invokes an editor if you press “v.”
Usually the default editor is nano or Vim. But what if you want
a different default editor? Set the environment variables VISUAL
and EDITOR to your choice, for example:

→ EDITOR=emacs
→ VISUAL=emacs
→ export EDITOR VISUAL

Both variables are necessary because different programs check
one variable or the other. Set them in a bash configuration file
if you want your choices to stick. Any program can be your
default editor if it accepts a filename as an argument.

Regardless of how you set these variables, I recommend learn‐
ing basic commands for all three editors in case another pro‐
gram unexpectedly invokes one on a critical file.

Creating and Editing Files | 79

nano stdin stdout - file -- opt --help --version

nano [options] [files]

Nano is a basic text editor included in most Linux distros. To
invoke nano to edit a file, run:

→ nano myfile

To list all nano keystrokes and commands, press ^G.

Nano commands generally involve holding down the control
key and typing a letter, such as ^o to save and ^x to quit. Nano
helpfully displays common commands at the bottom of its edit
window, though some of the vocabulary is a little obscure. (For
example, nano uses the term “WriteOut” to mean “save file.”)
Other commands involve the meta key, which is usually the
Escape key or the Alt key. Nano’s own documentation notates
the meta key as M- (as in M-F to mean “use the meta key and
type F”), so this book does the same. For basic keystrokes, see
Table 2-1. For more documentation, visit https://oreil.ly/p_Pvk.

emacs stdin stdout - file -- opt --help --version

emacs [options] [files]

Emacs is an extremely powerful editing environment with
thousands of commands, including a rich programming lan‐
guage to define your own editing features. To invoke Emacs to
edit a file, run:

→ emacs myfile

On a graphical desktop, Emacs opens a window. To launch
Emacs without opening a window, run:

→ emacs -nw myfile

Once Emacs is running, invoke its built-in tutorial by pressing
^h t.

80 | Chapter 2: File Commands

https://oreil.ly/p_Pvk

Most Emacs keystroke commands involve the control key (like
^F) or the meta key, which is usually the Escape key or the Alt
key. Emacs’s own documentation notates the meta key as M- (as
in M-F to mean “use the meta key and type F”), so this book
does the same. For basic keystrokes, see Table 2-1.

vim stdin stdout - file -- opt --help --version

vim [options] [files]

Vim is an enhanced version of the old standard Unix editor vi.
To invoke Vim to edit a file, run:

→ vim myfile

Normally, Vim runs in an existing shell or shell window. To
launch Vim on a graphical desktop in a new window, run:

→ gvim myfile

To run the Vim tutorial from the shell, run:

→ vimtutor

Vim operates in two modes, insert and command, and you
switch between them while editing. Insert mode is for entering
text in the usual manner, while command mode is for deleting
text, copy/paste, and other operations. For basic keystrokes in
command mode, see Table 2-1.

Table 2-1. Basic keystrokes in text editors

Task Emacs Nano Vim

Type text Just type Just type Switch to
insert mode if
necessary, by
typing i, then
type any text

Save and quit ^x^s then
^x^c

^o then ^x :wq

Creating and Editing Files | 81

Task Emacs Nano Vim

Quit without saving ^x^c then
respond “no”
when asked
to save
buffers

^x then
respond “no”
when asked
to save

:q!

Save ^x^s ^o :w

Save As ^x^w ^o, then type
a filename

:w filename

Undo ^/ or ^x u M-u u

Suspend editor (not in X) ^z ^z ^z

Switch to insert mode (N/A) (N/A) i

Switch to command mode (N/A) (N/A) ESC

Switch to command-line mode M-x (N/A) :

Abort command in progress ^g ^c ESC

Move forward ^f or right
arrow

^f or right
arrow

l or right
arrow

Move backward ^b or left
arrow

^b or left
arrow

h or left arrow

Move up ^p or up
arrow

^p or up
arrow

k or up arrow

Move down ^n or down
arrow

^n or down
arrow

j or down
arrow

Move to next word M-f ^SPACE w

Move to previous word M-b M-SPACE b

Move to beginning of line ^a ^a 0

Move to end of line ^e ^e $

Move down one screen ^v ^v ^f

Move up one screen M-v ^y ^b

82 | Chapter 2: File Commands

Task Emacs Nano Vim

Move to beginning of
document

M-< M-\ gg

Move to end of document M-> M-/ G

Delete next character ^d ^d x

Delete previous character BACKSPACE BACKSPACE X

Delete next word M-d (N/A) de

Delete previous word M-

BACKSPACE

(N/A) db

Delete current line ^a^k ^k dd

Delete to end of line ^k ^ka D

Define region (type this
keystroke to mark the
beginning of the region, then
move the cursor to the end of
the desired region)

^SPACE ^^ (Ctrl
caret)

v

Cut region ^w ^k d

Copy region M-w M-^ y

Paste region ^y ^u p

Get help ^h ^g :help

View the manual ^h i ^g :help

a Only if nano’s cut-to-end feature is enabled by pressing M-k.

Properties of Files
stat Display attributes of files and directories.

wc Count bytes, words, and lines in a file.

du Measure disk usage of files and directories.

file Identify (guess) the type of a file.

Properties of Files | 83

mimetype Identify (guess) the MIME type of a file.

touch Change timestamps of files and directories.

chown Change owner of files and directories.

chgrp Change group ownership of files and directories.

chmod Change protection mode of files and directories.

umask Set a default mode for new files and directories.

lsattr List extended attributes of files and directories.

chattr Change extended attributes of files and directories.

When examining a Linux file, keep in mind that the contents
are only half the story. Every file and directory also has
attributes that describe its owner, size, access permissions, and
other information. The ls -l command (see “Basic File Oper‐
ations” on page 61) displays some of these attributes. Other
commands let you view and change these and other attributes.

stat stdin stdout - file -- opt --help --version

stat [options] files

The stat command lists the attributes of files (by default) or
filesystems (-f option):

→ stat myfile
 File: ‘myfile’
 Size: 1168 Blocks: 8
 IO Block: 4096 regular file
Device: 811h/2065d Inode: 37224455 Links: 1
Access: (0644/-rw-r--r--) Uid: (600/lisa)
 Gid: (620/users)
Access: 2015-11-07 11:15:14.766013415 -0500
Modify: 2015-11-07 11:15:14.722012802 -0500
Change: 2015-11-07 11:15:14.722012802 -0500
 Birth: -

84 | Chapter 2: File Commands

2 Most filesystems no longer update access time, or they do so only
when the file is modified.

Output includes the filename, size in bytes (1168), size in
blocks (8), file type (Regular File), permissions in octal (0644),
permissions in the format of “ls -l” (-rw-r--r--), owner’s user
ID (600), owner’s name (lisa), owner’s group ID (620), owner’s
group name (users), device type (811 in hexadecimal, 2065 in
decimal), inode number (37224455), number of hard links (1),
and timestamps of the file’s most recent access,2 modification,
status change (of file permissions or other metadata), and file
creation (“birth”) if available. The output of stat -f for a
filesystem is:

→ stat -f myfile
 File: "myfile"
 ID: f02ed2bb86590cc6 Namelen: 255
Type: ext2/ext3
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 185788077 Free: 108262724
 Available: 98819461
Inodes: Total: 47202304 Free: 46442864

The output includes the filename (myfile), filesystem ID
(f02ed2bb86590cc6), maximum allowable length of a filename
for that filesystem (255 bytes), filesystem type (ext), block size
for the filesystem (4096), the counts of total, free, and available
blocks in the filesystem (185788077, 108262724, and 98819461,
respectively), and the counts of total and free inodes (47202304
and 46442864, respectively).

The -t option presents the same data but on a single line,
without headings. This format is handy for parsing the output:

→ stat -t myfile
myfile 1168 8 81a4 600 620 811 37224455 1 0 0
 1446912914 1446912914 1446912914 0 4096
→ size=$(stat -t myfile | cut -d' ' -f2)
→ echo $size The second value
1168

Properties of Files | 85

Useful options

-L Follow symbolic links and report on the file they point to.

-f Report on the filesystem containing the file, not the file itself.

-t Terse mode: print information on a single line.

wc stdin stdout - file -- opt --help --version

wc [options] [files]

The wc (word count) command prints a count of bytes, words,
and lines in (presumably) a text file:

→ wc myfile
 18 211 1168 myfile

This file has 18 lines, 211 whitespace-delimited words, and
1168 bytes.

Useful options

-l Print the line count only.

-w Print the word count only.

-c Print the byte count only.

-L Locate the longest line in each file and print its length in bytes.

du stdin stdout - file -- opt --help --version

du [options] [files | directories]

The du (disk usage) command measures the disk space occu‐
pied by files or directories. By default, it measures the current
directory and all its subdirectories, printing totals in blocks for
each, with a grand total at the end:

86 | Chapter 2: File Commands

→ du
36 ./Mail
340 ./Files/mine
40 ./Files/bob
416 ./Files
216 ./PC
2404 . Grand total, in blocks

It can also measure the size of files:

→ du myfile emptyfile hugefile
4 myfile
0 emptyfile
18144 hugefile

Useful options

-b Measure usage in bytes.

-k Measure usage in KB.

-m Measure usage in MB.

-B N Display sizes in blocks that you define, where 1 block = N bytes. (Default
= 1024)

-h

-H

Print in human-readable units. For example, if two directories are of size
1 gigabyte or 25 KB, respectively, du -h prints 1G and 25K. The -h
option uses powers of 1024, whereas -H uses powers of 1000.

-L Follow symbolic links and measure the files they point to.

-c Print a total in the last line. This is the default behavior when measuring
a directory, but to measure individual files, provide -c if you want a
total.

-s Print total sizes only, not the sizes of subdirectories.

Properties of Files | 87

file stdin stdout - file -- opt --help --version

file [options] files

The file command reports the type of a file. The output is an
educated guess based on the file content and other factors:

→ file /etc/hosts /usr/bin/who letter.docx
/etc/hosts: ASCII text
/usr/bin/who: ELF 64-bit LSB executable ...
letter.docx: Microsoft Word 2007+

Useful options

-b Omit filenames (left column of output).

-i Print MIME types for the file, such as “text/plain” or “audio/
mpeg”, instead of the usual output.

-f name_file Read filenames, one per line, from the given name_file,
and report their types. Afterward, process filenames on the
command line as usual.

-L Follow symbolic links, reporting the type of the destination
file instead of the link.

-z If a file is compressed (see “Compressing, Packaging, and
Encrypting” on page 126), examine the uncompressed
contents to decide the file type, instead of reporting
“compressed data.”

mimetype stdin stdout - file -- opt --help --version

mimetype [options] files

The mimetype command, like the file -i command, prints the
file’s MIME type such as text/plain or application/pdf, but
has more options.

→ mimetype photo.jpg sample.pdf zipfile.zip
photo.jpg: image/jpeg

88 | Chapter 2: File Commands

sample.pdf: application/pdf
zipfile.zip: application/zip

Useful options

-b Omit the leading filenames from the output.

-d Print longer descriptions like “JPEG image” or “ZIP archive.”

-l language When provided with the -d option, print the file types in the
given language. Language codes are the standard two-letter
ones such as de for German and pt for Portuguese.

-L For symbolic links, print the type of the linked file instead of
the link itself (type inode/symlink).

touch stdin stdout - file -- opt --help --version

touch [options] files

The touch command changes two timestamps associated with a
file: its modification time (when the file’s data was last changed)
and its access time (when the file was last read). To set both
timestamps to the present moment, run:

→ touch myfile

You can set these timestamps to arbitrary values, for example:

→ touch -d "November 18 1975" myfile

If a given file doesn’t exist, touch creates an empty file of that
name (see “Creating a File Quickly” on page 79).

Useful options

-a Change the access time only.

-m Change the modification time only.

-c If the file doesn’t exist, don’t create it (normally, touch
creates it).

Properties of Files | 89

-d timestamp Set the file’s timestamp(s). Many formats are acceptable,
from “12/28/2001 3pm” to “28-May” (the current year is
assumed, and a time of midnight) to “next tuesday 13:59” to
“0” (midnight today). Experiment and check your work with
stat. Full documentation is available from info touch.

-t timestamp Set a file’s timestamp precisely with the format
[[CC]YY]MMDDhhmm[.ss]. CC is the two-digit century,
YY is the two-digit year, MM is the two-digit month, DD is the
two-digit day, hh is the two-digit hour, mm is the two-digit
minute, and ss is the two-digit second. For example, -t
20230812150047 means August 12, 2023 at 15:00:47.

chown stdin stdout - file -- opt --help --version

chown [options] user_spec files

The chown command changes the owner of files and directories.
It requires superuser privileges in most cases. To make user
“smith” the owner of several files and a directory, run:

→ sudo chown smith myfile myfile2 mydir

The user_spec parameter may be any of these possibilities:

user_spec Meaning

smith An existing username

1001 A numeric user ID

smith:party An existing username and group name, separated by
a colon

1001:234 Numeric user and group IDs, separated by a colon

:party An existing group name, preceded by a colon

--reference=file The same user and group values as file file

90 | Chapter 2: File Commands

Useful options

--dereference Follow symbolic links and operate on the files they point to.

-R Recursively change the owner for a whole directory tree.

chgrp stdin stdout - file -- opt --help --version

chgrp [options] group_spec files

The chgrp (change group) command sets the group ownership
of files and directories:

→ chgrp users myfile myfile2 mydir

The group_spec parameter may be any of these possibilities:

• A group name or numeric group ID•
• --reference=file, to set the same group ownership as•

another given file

See “Group Management” on page 192 for more information
on groups.

Useful options

--dereference Follow symbolic links and operate on the files they point to.

-R Recursively change the group for a whole directory tree.

chmod stdin stdout - file -- opt --help --version

chmod [options] permissions files

The chmod (change mode) command protects files and directo‐
ries from unauthorized users on the same system, by setting
access permissions. Typical permissions are read, write, and
execute, and they may be limited to the file owner, the file’s

Properties of Files | 91

group owner, and/or all other users. The permissions argument
can take three different forms:

• --reference=file, to set the same permissions as another•
given file.

• An octal (base 8) number, up to four digits long, that•
specifies the file’s absolute permissions in bits, as in Fig‐
ure 2-2. The leftmost digit is special (described later) and
the second, third, and fourth represent the file’s owner, the
file’s group, and all users, respectively.

• One or more symbolic strings specifying absolute or rela‐•
tive permissions (i.e., relative to the file’s current permis‐
sions). For example, a+r makes a file readable by all users.

The most common octal permissions are:

→ chmod 600 myfile Private file for you
→ chmod 644 myfile Everyone can read; you can write
→ chmod 700 mydir Private directory for you
→ chmod 755 mydir Everyone can read; you can write

Figure 2-2. File permission bits explained

In the third, symbolic form, each string consists of three parts:

Scope (optional)
u for user, g for group, o for other users not in the group, a
for all users. The default is a.

92 | Chapter 2: File Commands

Command
+ to add permissions; − to remove permissions; or = to set
absolute permissions, ignoring existing ones.

Permissions
r for read, w for write/modify, x for execute (for directo‐
ries, this is permission to cd into the directory), X for
conditional execute (explained later), u to duplicate the
user permissions, g to duplicate the group permissions, o
to duplicate the “other users” permissions, s for setuid (set
user ID) or setgid (set group ID), and t for the sticky bit.

For example, ug+rw would add read and write permission for
the user and the group, a-x (or just -x) would remove execute
permission for everyone, and o=r would directly set the “other
users” permissions to read-only. Combine these strings by sep‐
arating them with commas, such as ug+rw,a-x,o=r.

Conditional execute permission (X) means the same as x,
except that it succeeds only if the file is already executable or is
a directory. It’s convenient during large-scale chmod operations
to change the execute bit on directories but not on files.

Setuid and setgid, when applied to executable files (programs
and scripts), have a powerful effect. Suppose you have an exe‐
cutable file F owned by user “smith” and the group “friends.” If
file F has setuid enabled, then anyone who runs F “becomes”
user “smith,” with all their rights and privileges, for the dura‐
tion of the program. Likewise, if F has setgid enabled, anyone
who executes F becomes a member of the “friends” group for
the duration of the program. As you might imagine, setuid and
setgid can impact system security, so don’t use them unless you
really know what you’re doing. One misplaced chmod +s can
leave your system vulnerable to attack.

The sticky bit, most commonly used for /tmp directories,
controls removal of files in that directory. Normally, if you
have write permission in a directory, you can delete or move
files within it, even if you don’t have this access to the files

Properties of Files | 93

themselves. Inside a directory with the sticky bit set, you need
write permission on a file to delete or move it.

Useful option

-R Recursively change permissions for a whole directory tree.

umask stdin stdout - file -- opt --help --version

umask [options] [mask]

The umask command sets or displays your shell’s default mode
for creating files and directories—whether they are readable,
writable, and/or executable by yourself, your group, and the
world. Print your mask:

→ umask Octal output
0002
→ umask -S Symbolic output
u=rwx,g=rwx,o=rx

Running umask is a technical operation that requires binary and
octal math, but let’s begin with simple recipes. Use mask 0022
to give yourself full privileges on new files and directories, and
give all other users read and execute privileges only:

→ umask 0022
→ touch newfile && mkdir newdir
→ ls -ldG newfile newdir
-rw-r--r-- 1 smith 0 Nov 11 12:25 newfile
drwxr-xr-x 2 smith 4096 Nov 11 12:25 newdir

Use mask 0002 to give yourself and your default group full
privileges, and read/execute to others:

→ umask 0002
→ touch newfile2 && mkdir newdir2
→ ls -ldG newfile2 newdir2
-rw-rw-r-- 1 smith 0 Nov 11 12:26 newfile2
drwxrwxr-x 2 smith 4096 Nov 11 12:26 newdir2

94 | Chapter 2: File Commands

Use mask 0077 to give yourself full privileges with nothing for
anyone else:

→ umask 0077
→ touch newfile3 && mkdir newdir3
→ ls -ldG newfile3 newdir3
-rw------- 1 smith 0 Nov 11 12:27 newfile3
drwx------ 2 smith 4096 Nov 11 12:27 newdir3

Now, the technical explanation. A umask is a binary (base two)
value, though it is commonly presented in octal (base eight).
It defines your default protection mode by combining with the
octal value 0666 for files and 0777 for directories, using the
binary operation NOT AND. For example, the umask 0002 yields
a default file mode of 0664:

0666 NOT AND 0002
= 000110110110 NOT AND 000000000010
= 000110110110 AND 111111111101
= 000110110100
= 0664

Similarly for directories, 0002 NOT AND 0777 yields a default
mode of 0775.

lsattr stdin stdout - file -- opt --help --version

lsattr [options] [files | directories]

Linux files have additional attributes beyond their access per‐
missions. For files on an “ext” filesystem (ext3, ext4, etc.), list
these extended attributes with the lsattr (list attribute) com‐
mand and change them with chattr. For example, this file is
immutable (i) and undeletable (u):

→ lsattr attrfile
-u--i--- attrfile

With no files specified, lsattr prints the attributes of all files in
the current directory. Attributes include:

Properties of Files | 95

Attribute Meaning

a Append-only: appends are permitted to this file, but it cannot
otherwise be edited. Root only.

A Accesses not timestamped: accesses to this file don’t update its access
timestamp (atime).

c Compressed: data is transparently compressed on writes and
uncompressed on reads.

d Don’t dump: tell the dump program to ignore this file when making
backups (see “Backups and Remote Storage” on page 241).

i Immutable: file cannot be changed or deleted (root only).

j Journaled data (on filesystems that support journaling).

s Secure deletion: if deleted, this file’s data is overwritten with zeros.

S Synchronous update: changes are written to disk immediately.

u Undeletable: file cannot be deleted.

Before using this command seriously, read the manpage for
details, especially for filesystem-specific issues.

Useful options

-R Recursively process directories.

-a List all files, including those whose names begin with a dot.

-d If listing a directory, do not list its contents, just the directory itself.

chattr stdin stdout - file -- opt --help --version

chattr [options] [+|−|=]attributes [files]

The chattr command changes a file’s extended attributes, the
same ones that lsattr displays. With syntax similar to the
chmod command, chattr adds (+) or removes (-) attributes

96 | Chapter 2: File Commands

relatively, or sets attributes absolutely (=). For example, to pre‐
vent a file from deletion even by the superuser, run:

→ sudo chattr +i attrfile Set attribute i
→ sudo rm attrfile Deletion fails
rm: cannot remove 'attrfile': Operation not permitted
→ sudo chattr -i attrfile Unset attribute i
→ sudo rm attrfile Deletion succeeds

Not all attributes are supported by all filesystems. Read the
manpage for details, especially for filesystem-specific issues.

Useful option

-R Recursively process directories.

Locating Files
find Locate files in a directory hierarchy.

xargs Turn a list of files into a list of commands (and much more).

locate Create an index of files, and search the index for a string.

which Locate executables in your search path (command).

type Locate executables in your search path (bash built-in).

whereis Locate executables, documentation, and source files.

A typical Linux system has hundreds of thousands of files, so
Linux includes commands for locating files of interest. find is a
brute-force command that slogs file by file through a directory
tree to locate a target. locate is much faster, searching through
a prebuilt index that you generate as needed. (Some distros
generate the index nightly by default.)

To locate programs in the filesystem, the which and type
commands check all directories in your shell search path.
type is built into the bash shell, while which is a program
(normally /usr/bin/which); type is faster and can detect shell

Locating Files | 97

3 The tcsh shell performs some trickery to make which detect aliases.

aliases.3 In contrast, whereis examines a known set of directo‐
ries, rather than your search path.

find stdin stdout - file -- opt --help --version

find [directories] [expression]

The find command searches one or more directories (and their
subdirectories recursively) for files matching certain criteria.
It is very powerful, with over 50 options, and unfortunately,
a rather unusual syntax. Here are some simple examples that
search the entire filesystem from the current directory (indica‐
ted by a dot):

Find a particular file named myfile:

→ find . -type f -name myfile -print
./myfile

Print filenames beginning with “myfile”. Notice that the asterisk
is escaped so the shell ignores it for pattern-matching and it’s
passed literally to the find command:

→ find . -type f -name myfile* -print
./myfile3
./myfile
./myfile2

Print all directory names:

→ find . -type d -print
.
./jpegexample
./dir2
./mydir
./mydir/dir
⋮

98 | Chapter 2: File Commands

Useful options

-name pattern

-path pattern

-lname pattern

Given a file pattern, find files with names (-name),
pathnames (-path), or symbolic link targets
(-lname) that match the pattern, which may
include shell pattern-matching characters *, ?, and
[]. (You must escape the patterns, however, so
they are ignored by the shell and passed literally to
find.) Paths are relative to the directory tree being
searched.

-iname pattern

-ipath pattern

-ilname pattern

These options are the same as -name, -path, and
-lname, respectively, but are case-insensitive.

-regex regexp The path (relative to the directory tree being
searched) must match the given regular expression.

-type t Locate only files of type t. Types include plain files
(f), directories (d), symbolic links (l), block devices
(b), character devices (c), named pipes (p), and
sockets (s).

-atime N

-ctime N

-mtime N

File was last accessed (-atime), last modified
(-mtime), or had a status change (-ctime)
exactly N *24 hours ago. Use +N for “greater than
N,” or -N for “less than N.”

-amin N

-cmin N

-mmin N

File was last accessed (-amin), last modified
(-mmin), or had a status change (-cmin) exactly N
minutes ago. Use +N for “greater than N,”or -N for
“less than N.”

-anewer other_file

-cnewer other_file

-newer other_file

File was accessed (-anewer), modified (-newer),
or had a status change (-cnewer) more recently
than other_file.

-maxdepth N

-mindepth N

Consider files at least (-mindepth) or at most
(-maxdepth) N levels deep in the directory tree
being searched.

-follow Dereference symbolic links.

Locating Files | 99

-depth Proceed using depth-first search: completely search
a directory’s contents (recursively) before operating
on the directory itself.

-xdev Limit the search to a single filesystem (i.e., don’t
cross device boundaries).

-size N [bckw] Consider files of size N, which can be given in blocks
(b), one-byte characters (c), KB (k), or two-byte
words (w). Use +N for “greater than N,” or -N for
“less than N.”

-empty File has zero size and is a regular file or directory.

-user name File is owned by the given user.

-group name File is owned by the given group.

-perm mode File has permissions equal to mode. Use -mode to
check that all of the given bits are set, or +mode to
check that any of the given bits are set.

These operators group or negate parts of the expression:

expression1 -a expression2
And. (This is the default if two expressions appear side by
side, so the -a is optional.)

expression1 -o expression2
Or.

! expression
-not expression

Negate the expression.

(expression)
Precedence markers, just like in algebra class. Evaluate
what’s in parentheses first. You may need to escape these
from the shell with “\”.

expression1 , expression2
Comma operator. Evaluate both expressions and return
the value of the second one.

100 | Chapter 2: File Commands

Once you’ve specified the search criteria, tell find to perform
the following actions on files that match the criteria:

-print Print the path to the file, relative to the search directory.

-printf string Print the given string, which may have substitutions applied to
it in the manner of the C library function, printf(). See the
manpage for the full list of outputs.

-print0 Like -print, but instead of separating each line of output
with a newline character, use a null (ASCII 0) character.
Use when piping the output of find to another command
and your list of filenames may contain space characters. Of
course, the receiving command must be capable of reading
and parsing these null-separated lines (e.g., xargs -0).

-exec cmd ; Invoke the given shell command, cmd. Escape any shell
metacharacters, including the required, final semicolon, so
they aren’t evaluated by the shell. Also, the symbol {}
(quoted or escaped) represents the path to the file found.
A full example is:
find . -exec ls '{}' \;

-ok cmd ; Same as -exec, but also prompts the user before each
invocation of the command cmd.

-ls Perform the command ls -dils on each file.

-delete Perform the command rm on each file. (Careful!!)

xargs stdin stdout - file -- opt --help --version

xargs [options] [command]

xargs is one of the oddest yet most powerful commands avail‐
able to the shell. It reads lines of text from standard input,
turns them into commands, and executes them. This might not
sound exciting, but xargs has some unique uses, particularly
for processing a list of files you’ve located. Suppose you made a
file named important that lists important files, one per line:

Locating Files | 101

→ cat important
/home/jsmith/mail/love-letters
/usr/local/lib/critical_stuff
/etc/passwordfile2
⋮

xargs can process each of these files easily with other Linux
commands. For instance, the following command runs the ls
-l command on all the listed files:

→ cat important | xargs ls -l

Similarly, view the files with less:

→ cat important | xargs less

and even delete them with rm:

→ cat important | xargs rm -f Careful! Destroys files!!

In each case, xargs reads the file important and produces
and runs new Linux commands. The power begins when the
input list doesn’t come from a file, but from another command
writing to standard output. In particular, the find command,
which prints a list of files, makes a great partner for xargs. For
example, to search your current directory hierarchy for files
containing the word “tomato”:

→ find . -type f -print | xargs grep -l tomato
./findfile1
./findfile2
→ cat findfile1 findfile2
This file contains the word tomato. From findfile1
Another file containing the word tomato. From findfile2

This command has a problem, however: it mishandles file‐
names that contain whitespace, like my stuff. If find prints this
filename, then xargs constructs an incorrect grep command:

grep -l tomato my stuff

which tells grep to process two files named my and stuff. Oops!
Now imagine that the command you passed to xargs was rm
instead of grep. Then rm would delete the wrong files! To avoid

102 | Chapter 2: File Commands

this problem, tell find and xargs to use a non-whitespace char‐
acter between lines of text—specifically, a null character (ASCII
value zero). The command find -print0 ends lines with nulls,
and xargs -0 expects nulls.

→ find . -type f -print0 | xargs -0 grep -l tomato

I’ve barely scratched the surface of the xargs command, so I
hope you’ll continue experimenting. (For safety, tell xargs to
invoke harmless commands like grep and ls for your tests,
rather than destructive commands like rm.)

Useful options

-n k Feed k lines of input to each executed command. The common -n1
guarantees that each execution processes only one line of input.
Otherwise, xargs may pass multiple lines of input to a single command.

-0 Set the end-of-line character for input to be ASCII zero rather than
whitespace, and treat all characters literally. Use this when the input
comes from find -print0.

xargs versus Command Substitution
If you remember “Quoting” on page 46, you might realize
that some xargs tricks can be accomplished with command
substitution:

→ cat file_list | xargs ls -l With xargs
→ ls -l $(cat file_list) With $()
→ ls -l `cat file_list` With backquotes

While these commands do similar things, the last two can fail if
the output of cat becomes longer than the maximum length of
a shell command line. The xargs solution reads unlimited text
from standard input rather than the command line, so it’s more
scalable for large or risky operations.

Locating Files | 103

4 My locate command comes from a package called “plocate.” Some
systems have older packages called “mlocate” or “slocate” with slightly
different usage. If you have slocate, simply run slocate instead of
updatedb in my examples.

locate stdin stdout - file -- opt --help --version

locate [options]

The locate command, with its partner updatedb, creates an
index (database) of file locations that is quickly searchable.4
If you plan to search for many files over time in a directory
hierarchy that doesn’t change much, locate is a good choice.
To locate a single file or perform more complex processing of
found files, use find.

Some distros automatically index the entire filesystem regularly
(e.g., once a day), so you can simply run locate and it works.
But if you ever need to create an index yourself of a directory
and all its subdirectories (say, ~/linuxpocketguide), storing the
index in /tmp/myindex, run:

→ updatedb -l0 -U ~/linuxpocketguide -o /tmp/myindex

(Note that -l0 is a lowercase L followed by a zero, not the
number 10.) Then search for a string in the index, such as
“myfile”:

→ locate -d /tmp/myindex myfile
/home/dbarrett/linuxpocketguide/myfile
/home/dbarrett/linuxpocketguide/myfile2
/home/dbarrett/linuxpocketguide/myfile3

updatedb has an interesting, optional security feature. If you
run it as root, you can create an index that displays only files
that the user is permitted to see, based on file permissions.
Simply add sudo and omit the -l0 option:

→ sudo updatedb -U directory -o /tmp/myindex

104 | Chapter 2: File Commands

Indexing options for updatedb

-u Create index from the root directory downward.

-U directory Create index from directory downward.

-l (0|1) Turn security off (0) or on (1). The default is 1.

-e paths Exclude paths from the index, separated by whitespace.

-o outfile Write the index to file outfile.

Search options for locate

-d index Indicate which index to use (in my example, /tmp/myindex).

-i Case-insensitive search.

-r regexp Search for filenames matching the given regular expression.

which stdin stdout - file -- opt --help --version

which file

The which command locates an executable file in your shell’s
search path. To locate the who command, run:

→ which who
/usr/bin/who

You can even find the which program itself:

→ which which
/usr/bin/which

If several programs in your search path have the same name
(e.g., /bin/who and /usr/bin/who), which reports only the first.

Locating Files | 105

type stdin stdout - file -- opt --help --version

type [options] commands

The type command, like which, locates an executable file in
your shell’s search path:

→ type grep who
grep is /bin/grep
who is /usr/bin/who

type also identifies shell features, such as aliases and built-in
commands:

→ type which type rm if
which is /usr/bin/which
type is a shell builtin
rm is aliased to `/bin/rm -i'
if is a shell keyword

As a built-in command, type is faster than which, but it’s avail‐
able only in certain shells such as bash.

whereis stdin stdout - file -- opt --help --version

whereis [options] files

The whereis command attempts to locate the given files by
searching a hardcoded list of directories. It can find executa‐
bles, documentation, and source code. whereis is somewhat
quirky because its internal list of directories might not include
the ones you need.

→ whereis nano
nano: /usr/bin/nano /usr/share/nano ...

106 | Chapter 2: File Commands

Useful options

-b

-m

-s

List only binary executables (-b), manpages (-m), or source code
files (-s).

-B dirs… -f
-M dirs… -f
-S dirs… -f

Search for binary executables (-B), manpages (-M), or source
code files (-S) in the given directories. You must follow the
directory list with the -f option before listing the files you seek.

Manipulating Text in Files
grep Find lines in a file that match a regular expression.

cut Extract columns from a file.

paste Append text from multiple files in columns.

column Organize text into columns.

tr Translate characters into other characters.

expand Convert from tabs to spaces.

unexpand Convert from spaces to tabs.

sort Sort lines of text by various criteria.

uniq Locate identical lines in a file.

tac Reverse a file line by line.

shuf Randomly shuffle the lines of a file (permutation).

tee Write to a file and print on standard output, simultaneously.

Perhaps Linux’s greatest strength is text manipulation: massag‐
ing a text file (or standard input) into a desired form by apply‐
ing transformations, often in a pipeline. Many commands do
this, but here I focus on some of the most important tools for
transforming text.

Manipulating Text in Files | 107

grep stdin stdout - file -- opt --help --version

grep [options] pattern [files]

The grep command is one of the most consistently useful and
powerful in the Linux arsenal. Its premise is simple: given one
or more files, print all of their lines that match a regular expres‐
sion. For example, if a file randomlines contains these lines:

The quick brown fox jumped over the lazy dogs!
My very eager mother just served us nine pancakes.
Film at eleven.

and you print all lines containing “pancake”, you get:

→ grep pancake randomlines
My very eager mother just served us nine pancakes.

Now use a regular expression to print lines ending in an excla‐
mation point:

→ grep '!$' randomlines
The quick brown fox jumped over the lazy dogs!

grep can use two different types of regular expressions: basic
and extended. They are equally powerful, just different, and
their syntax is in Table 2-2. Regular expressions are well worth
your time to learn. Other powerful Linux programs use them
too, such as sed and perl.

Useful options

-v Print only lines that do not match the regular expression.

-l Print only the names of files that contain matching lines, not the
lines themselves.

-L Print only the names of files that do not contain matching lines.

-c Print only a count of matching lines.

-o Print only the strings that match, not whole lines.

-n In front of each line of matching output, print its original line
number. (Or print the byte offset with -b.)

108 | Chapter 2: File Commands

-i Case-insensitive match.

-w Match only complete words.

-x Match only complete lines. Overrides -w.

-a Treat all files as plain text. Sometimes grep mistakenly treats a file
as binary and won’t print matching lines.

-A N After each matching line, print the next N lines from its file.

-B N Before each matching line, print the previous N lines from its file.

-C N Same as -A N -B N: print N lines (from the original file) above and
below each matching line.

--color Highlight the matched text in color, for better readability.

-r Recursively search all files in a directory and its subdirectories.

-R Same as -r but also follow all symbolic links.

-E Use extended regular expressions. See egrep.

-F Use lists of fixed strings instead of regular expressions. See fgrep.

Table 2-2. Regular expressions for grep (plain) and egrep (extended)

Plain Extended Meaning

. . Any single character.

[…] […] Any single character in this list.

[^…] [^…] Any single character not in this
list.

(…) (…) Grouping.

\| | Or.

^ ^ Beginning of a line.

$ $ End of a line.

\< \< Beginning of a word.

\> \> End of a word.

[:alnum:] [:alnum:] Any alphanumeric character.

Manipulating Text in Files | 109

Plain Extended Meaning

[:alpha:] [:alpha:] Any alphabetic character.

[:cntrl:] [:cntrl:] Any control character.

[:digit:] [:digit:] Any digit.

[:graph:] [:graph:] Any graphic character.

[:lower:] [:lower:] Any lowercase letter.

[:print:] [:print:] Any printable character.

[:punct:] [:punct:] Any punctuation mark.

[:space:] [:space:] Any whitespace character.

[:upper:] [:upper:] Any uppercase letter.

[:xdigit:] [:xdigit:] Any hexadecimal digit.

* * Zero or more repetitions of a
regular expression.

\+ + One or more repetitions of a
regular expression.

\? ? Zero or one occurrence of a
regular expression.

\{n\} {n} Exactly n repetitions of a regular
expression.

\{n,\} {n,} n or more repetitions of a regular
expression.

\{n,m\} {n,m} Between n and m (inclusive)
repetitions of a regular
expression, n<m.

\c \c The literal character c. For
example, use * to match
an asterisk or \\ to match
a backslash. Alternatively, use
square brackets, like [*] or [\].

110 | Chapter 2: File Commands

5 The commands egrep and fgrep are officially deprecated, but they are
so deeply embedded in a million Linux shell scripts that I don’t think
they’ll ever go away.

egrep stdin stdout - file -- opt --help --version

egrep [options] pattern [files]

The egrep command runs grep with the option -E pre-applied
to use extended regular expressions.5

fgrep stdin stdout - file -- opt --help --version

fgrep [options] [fixed_strings] [files]

The fgrep command runs grep with the option -F pre-applied.5
Instead of regular expressions, fgrep accepts a list of fixed
strings separated by newlines. For example, if you have a dictio‐
nary file full of strings, one per line:

→ cat my_dictionary_file
aardvark
abbey
abbot
⋮

fgrep searches for those strings in one or more input files:

→ fgrep -f my_dictionary_file story
a little aardvark who went to
visit the abbot at the abbey.

fgrep is convenient when searching for nonalphanumeric char‐
acters like * and { because they are treated literally as fixed
strings, not as regular expression characters.

It’s easiest for fgrep to read the fixed strings from a file, but it
can also take them from the command line if you quote them.
To search for the strings “one”, “two”, and “three” in a file, run:

Manipulating Text in Files | 111

→ fgrep 'one Note that I am typing newline characters
two
three' myfile

grep and End-of-Line Characters
When you match the end of a line ($) with grep, text files
created on Microsoft Windows or macOS systems may produce
odd results. Each OS has a different standard for ending a line.
On Linux, each line in a text file ends with a newline character
(ASCII 10). On Windows, text lines end with a carriage return
(ASCII 13) followed by a newline character. And on macOS,
a text file might end its lines with newlines alone or carriage
returns alone. If grep doesn’t match the ends of lines properly,
check for non-Linux end-of-line characters with cat -v, which
displays carriage returns as ^M:

→ cat -v dosfile.txt
Uh-oh! This file seems to end its lines with^M
carriage returns before the newlines.^M

To remove the carriage returns, use the tr -d command:

→ tr -d '\r' < dosfile.txt > /tmp/linuxfile.txt
→ cat -v /tmp/linuxfile.txt
Uh-oh! This file seems to end its lines with
carriage returns before the newlines.

cut stdin stdout - file -- opt --help --version

cut -(b|c|f)range [options] [files]

The cut command extracts columns of text from files. A “col‐
umn” is defined by character offsets (e.g., the 19th character of
each line):

→ cut -c19 myfile

112 | Chapter 2: File Commands

or by byte offsets (which are different from characters if your
language has multibyte characters):

→ cut -b19 myfile

or by delimited fields (e.g., the fifth field in each line of a
comma-delimited file, data.csv):

→ cat data.csv
one,two,three,four,five,six,seven
ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN
1,2,3,4,5,6,7
→ cut -f5 -d, data.csv
five
FIVE
5

You aren’t limited to printing a single column: provide a range
(3-16), a comma-separated sequence (3,4,5,6,8,16), or both
(3,4,8-16). For ranges, if you omit the first number (-16), a 1
is assumed (1-16); if you omit the last number (5-), the final
column is assumed.

Useful options

-d C Use character C as the input delimiter character
between fields for the -f option. By default it’s a
tab character.

--output-delimiter=S Use string S as the output delimiter character
between fields for -f. By default it’s a tab
character.

-s Suppress lines that don’t contain any delimiter
characters at all. Otherwise they’re printed
unchanged.

Manipulating Text in Files | 113

paste stdin stdout - file -- opt --help --version

paste [options] [files]

The paste command is the opposite of cut: it treats several files
as vertical columns and combines them on standard output:

→ cat letters
A
B
C
→ cat numbers
1
2
3
4
5
→ paste numbers letters
1 A
2 B
3 C
4
5
→ paste letters numbers
A 1
B 2
C 3
 4
 5

Useful options

-d delimiters Print the given delimiter characters between columns; the
default is a tab character. Provide a single character (-d:)
to be used always, or a list of characters (-dxyz) to be
applied in sequence on each line (the first delimiter is x,
then y, then z, then x, then y, …).

114 | Chapter 2: File Commands

-s Sideways: transpose the rows and columns of output:
→ paste -s letters numbers
A B C
1 2 3 4 5

column stdin stdout - file -- opt --help --version

column [options] [files]

The column command reads lines of text and prints them in
columns. By default, it creates as many columns as will fit in
the width of your terminal, so the output may vary.

→ seq 1 18 Print 18 numbers
1
2
3
⋮
18
→ seq 1 18 | column Create columns vertically
1 4 7 10 13 16
2 5 8 11 14 17
3 6 9 12 15 18
→ seq 1 18 | column -x Create columns horizontally
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18

column can also convert existing columns into a nicely format‐
ted table:

→ cat threes Original file
one two three Ragged columns
Do Re Mi
you and me
→ column -t threes Format as a table with -t
one two three Neat columns
Do Re Mi
you and me

Manipulating Text in Files | 115

→ column -t -N A,B,C threes Add headings with -N
A B C
one two three
Do Re Mi
you and me

Useful options

-s C Use character C as the input separator between columns.

-o C Use character C as the output separator between columns.

-t Format the output as a table.

-N headings Add headings to a table (requires -t). Provide a comma-
separated list.

--json Print the output in JSON format (requires -t and -N).

tr stdin stdout - file -- opt --help --version

tr [options] charset1 [charset2]

The tr command performs some simple translations of one set
of characters into another. For example, to capitalize everything
in a file:

→ cat wonderfulfile
This is a very wonderful file.
→ cat wonderfulfile | tr a-z A-Z
THIS IS A VERY WONDERFUL FILE.

or to change all vowels into asterisks:

→ cat wonderfulfile | tr aeiouAEIOU '*'
Th*s *s * v*ry w*nd*rf*l f*l*.

or to delete all vowels:

→ cat wonderfulfile | tr -d aeiouAEIOU
Ths s vry wndrfl fl.

116 | Chapter 2: File Commands

Delete all carriage returns from a DOS text file so it’s more
compatible with Linux text utilities like grep:

→ tr -d '\r' < dosfile.txt > linuxfile.txt

tr translates the first character in charset1 into the first charac‐
ter in charset2, the second into the second, the third into the
third, and so on. If the length of charset1 is N, only the first
N characters in charset2 are used. (If charset1 is longer than
charset2, see the -t option.)

Character sets can have the following forms:

Form Meaning

ABDG The sequence of characters A, B, D, G.

A-Z The range of characters from A to Z.

[x*y] y repetitions of the character x.

[:class:] The character classes accepted by grep, such as [:alnum:]
and [:digit:]. See Table 2-2.

tr also understands the escape characters “\a” (^G = alert by
ringing bell), “\b” (^H = backspace), “\f ” (^L = formfeed), “\n”
(^J = newline), “\r” (^M = return), “\t” (^I = tab), and “\v” (^K
= vertical tab) accepted by printf (see “Screen Output” on page
275), as well as the notation \nnn to mean the character with
octal value nnn.

tr is great for quick and simple translations, but for more
powerful jobs consider sed, awk, or a programming language
such as perl.

Useful options

-d Delete the characters in charset1 from the input.

-s Eliminate adjacent duplicates (found in charset1) from the input. For
example, tr -s aeiouAEIOU would squeeze adjacent, duplicate vowels
to be single vowels (reeeeeeally would become really).

-c Complement: operate on all characters not found in charset1.

Manipulating Text in Files | 117

-t If charset1 is longer than charset2, make them the same length by
truncating charset1. If -t is not present, the last character of charset2 is
(invisibly) repeated until charset2 is the same length as charset1.

expand stdin stdout - file -- opt --help --version

expand [options] [files]

unexpand [options] [files]

The expand command converts tab characters to an equivalent-
looking number of space characters, and unexpand does the
opposite. By default, a tab stop occurs every eight spaces, but
you can change this with options.

→ expand tabfile > spacefile
→ unexpand spacefile > tabfile

To check whether a file contains spaces or tabs, use the cat -T
command, which displays tabs as ^I, or the od -c command,
which displays tabs as \t.

Useful option

-t N Specify that one tab stop occurs every N spaces.

sort stdin stdout - file -- opt --help --version

sort [options] [files]

The sort command prints lines of text in alphabetical order,
or sorted by some other rule you specify. All provided files are
concatenated, and the result is sorted and printed:

→ cat threeletters
def
xyz
abc

118 | Chapter 2: File Commands

→ sort threeletters
abc
def
xyz

Useful options

-f Case-insensitive sorting.

-n Sort numerically (i.e., 9 comes before 10) instead of alphabetically (10
comes before 9 because it begins with a “1” character).

-g Another numerical sorting method with a different algorithm that,
among other things, recognizes scientific notation (7.4e3 means “7.4
times ten to the third power,” or 7400). Run info sort for full
technical details.

-u Unique sort: discard duplicate lines. (If used with -c to check sorted
files, fail if any consecutive lines are identical.)

-c Don’t sort, just check if the input is already sorted. If it is, print
nothing; otherwise, print an error message.

-b Ignore leading whitespace in lines.

-r Reverse the output: sort from greatest to least.

-k key Choose sorting keys, described next. (Combine with -t to choose a
separator character between keys.)

-t X Use X as the field separator for the -k option.

A sorting key indicates a portion of a line to consider when
sorting, instead of the entire line. Consider this file of names
and addresses:

→ cat people
George Washington,123 Main Street,New York
Abraham Lincoln,54 First Avenue,San Francisco
John Adams,39 Tremont Street,Boston

An ordinary sort displays the “Abraham Lincoln” line first. But
you can sort on the second value (-k2), the address, if you
consider each line as three comma-separated values (-t,). The
first address alphabetically is “123 Main Street”:

Manipulating Text in Files | 119

→ sort -k2 -t, people
George Washington,123 Main Street,New York
John Adams,39 Tremont Street,Boston
Abraham Lincoln,54 First Avenue,San Francisco

Likewise, sort on the third value (-k3), the city, where “Boston”
is first alphabetically:

→ sort -k3 -t, people
John Adams,39 Tremont Street,Boston
George Washington,123 Main Street,New York
Abraham Lincoln,54 First Avenue,San Francisco

The general syntax is -k F1[.C1][,F2[.C2]] which means:

Item Meaning Default value

F1 Starting field Required

C1 Starting position within field 1 1

F2 Ending field Last field

C2 Starting position within ending
field

1

So sort -k1.5 sorts by the first field beginning at its fifth char‐
acter; and sort -k2.8,5 means “from the eighth character of
the second field, up to the first character of the fifth field.” The
-t option changes the behavior of -k so it considers delimiter
characters such as commas rather than spaces.

Repeat the -k option to define multiple keys. sort applies them
from first to last as found on the command line.

uniq stdin stdout - file -- opt --help --version

uniq [options] [files]

The uniq command operates on consecutive, duplicate lines of
text. For example, if you have a file letters2:

120 | Chapter 2: File Commands

→ cat letters2
a
b
b
c
b

then uniq would detect and process (in whatever way you spec‐
ify) the two consecutive b’s, but not the third b. By default, uniq
deletes the consecutive duplicates:

→ uniq letters2
a
b Deleted one “b” character
c
b

uniq is often used after sorting a file:

→ sort letters2 | uniq
a
b
c

In this case, only a single b remains because sort placed all
three adjacently, and then uniq collapsed them to one. To count
duplicate lines instead of eliminating them, use the -c option:

→ sort letters2 | uniq -c
 1 a
 3 b
 1 c

Useful options

-c Count adjacent duplicate lines.

-i Case-insensitive operation.

-u Print unique lines only.

-d Print duplicate lines only.

-s N Skip the first N characters on each line when detecting duplicates.

Manipulating Text in Files | 121

-f N Ignore the first N whitespace-separated fields on each line when
detecting duplicates.

-W N Consider only the first N characters on each line when detecting
duplicates. If used with -s or -f, uniq ignores the specified number of
characters or fields first, then considers the next N characters.

tac stdin stdout - file -- opt --help --version

tac [options] [files]

The tac command, which is “cat” spelled backwards, prints the
lines of a file in reverse order.

→ cat lines
one
two
three
→ tac lines
three
two
one

It’s great for reversing lines that are in chronological order, such
as the contents of a logfile for a Linux service.

Given multiple filenames as arguments, tac reverses each file in
turn. To reverse all lines in all files together, combine them first
with cat and pipe the output to tac:

→ cat myfile myfile2 myfile3 | tac

shuf stdin stdout - file -- opt --help --version

shuf [options] [files]

The shuf command shuffles (permutes) lines of text randomly,
from a file or other sources.

122 | Chapter 2: File Commands

→ cat lines Original file
one
two
three
→ shuf lines Run it once
two
three
one
→ shuf lines Run it again with different output
one
three
two

Or, provide strings on the command line with shuf -e:

→ shuf -e apple banana guava
guava
apple
banana

Or, randomize the numbers in a range with shuf -i:

→ shuf -i 0-3
3
1
0
2

The shuf command is great for extracting random subsets of
lines from a file. For example, given a file of people’s first
names, shuf can randomize the file and can print a set number
of lines with the -n option:

→ cat names
Aaron
Ahmed
Ali
Ana
⋮
→ shuf -n3 names
Ying
Robert
Patricia

Manipulating Text in Files | 123

→ shuf -n1 names
Fatima

Useful options

-e Shuffle strings provided on the command line.

-i range Shuffle a range of whole numbers, such as 1-10.

-n K Print at most K lines.

-r Repeatedly shuffle and print, producing unlimited output. Combine
with -n to limit the output.

tee stdin stdout - file -- opt --help --version

tee [options] files

Like the cat command, the tee command copies standard
input to standard output unaltered. Simultaneously, it copies
the input to one or more files. tee is most often found in the
middle of pipelines, writing some intermediate data to a file
while passing it to the next command in the pipeline:

→ who | tee original_who | sort
barrett pts/1 Sep 22 21:15
byrnes pts/0 Sep 15 13:51
silver :0 Sep 23 20:44
silver pts/2 Sep 22 21:18

The preceding command line writes the unsorted output of who
to the file original_who and also passes the same text to sort,
which produces sorted output on screen:

→ cat original_who
silver :0 Sep 23 20:44
byrnes pts/0 Sep 15 13:51
barrett pts/1 Sep 22 21:15
silver pts/2 Sep 22 21:18

124 | Chapter 2: File Commands

Useful options

-a Append instead of overwriting files.

-i Ignore interrupt signals.

More powerful manipulations
Linux has hundreds of other filters that produce ever more
complex manipulations of the data. But with great power
comes a great learning curve, too much for a short book. Here
are a few of the most capable filters to get you started.

awk
AWK is a pattern-matching language. It matches data by regu‐
lar expression and then performs actions based on the data.
Here are a few simple examples to process a text file, myfile.

Print the second and fourth word on each line:

→ awk '{print $2, $4}' myfile

Print all lines that are shorter than 60 characters:

→ awk 'length < 60 {print}' myfile

sed
Like AWK, sed is a pattern-matching engine that manipulates
lines of text. Its syntax is shared by several other Linux pro‐
grams, such as Vim. For example, print a file with all occur‐
rences of the string “me” changed to “YOU”:

→ sed 's/me/YOU/g' myfile

Print lines 3 through 5, inclusive, from a file:

→ sed -n '3,5p' myfile

m4
m4 is a macro processor. It locates keywords within a file and
substitutes values for them. For example, given this file:

Manipulating Text in Files | 125

→ cat substitutions
My name is NAME and I am AGE years old.
ifelse(QUOTE,yes,Learn Linux today!)

see m4 perform substitutions (-D) for NAME, AGE, and QUOTE:

→ m4 -D NAME=Sandy substitutions
My name is Sandy and I am AGE years old.

→ m4 -D NAME=Sandy -D AGE=25 substitutions
My name is Sandy and I am 25 years old.

→ m4 -D NAME=Sandy -D AGE=25 -D QUOTE=yes substitutions
My name is Sandy and I am 25 years old.
Learn Linux today!

Perl, PHP, Python, Ruby
If you need even more powerful text processing, Linux includes
interpreters for Perl, PHP, Python, Ruby, and other full-fledged
programming languages. See “Beyond Shell Scripting” on page
327 for references.

Compressing, Packaging, and Encrypting
tar Package multiple files into a single file.

gzip Compress files with GNU Zip.

gunzip Uncompress GNU Zip files.

bzip2 Compress files in BZip format.

bunzip2 Uncompress BZip files.

bzcat Uncompress BZip data to standard output.

compress Compress files with traditional Unix compression.

uncompress Uncompress files with traditional Unix compression.

zcat Uncompress to standard output (gzip or compress).

zip Package and compress files in Windows Zip format.

unzip Uncompress and unpack Windows Zip files.

126 | Chapter 2: File Commands

7z Package and compress/uncompress 7-Zip files.

munpack Extract MIME data to files.

mpack Convert a file to MIME format.

gpg Encrypt a file with the GNU Privacy Guard (GnuPG).

Linux can pack and compress files in a variety of formats.
The most popular formats are GNU Zip (gzip), whose com‐
pressed files are named with the .gz extension, and BZip, which
uses the .bz2 extension. Other common formats include ZIP
files from Windows systems (.zip extension), 7-Zip files (.7z
and .lzma extensions), and occasionally, classic Unix compres‐
sion (.Z extension). If you come across a format I don’t cover,
such as macOS sit files, ARC, Zoo, RAR, and others, learn more
at https://oreil.ly/vO7l8.

TIP

Several popular commands have been adapted to work
directly on compressed files. Check out zgrep, zless,
zcmp, and zdiff, which work just like grep, less, cmp,
and diff, respectively, but accept compressed files as argu‐
ments. Compare compressed and uncompressed files:

→ zdiff sample1.gz sample2

An operation related to compression is the encoding of binary
files as text for email attachments. Nowadays, most email cli‐
ents do this automatically, but I cover the commands munpack
and mpack, which decode and encode on the command line,
respectively. Finally, I cover the most popular file encryption
command for Linux, gpg, the GNU Privacy Guard.

Compressing, Packaging, and Encrypting | 127

https://oreil.ly/vO7l8

tar stdin stdout - file -- opt --help --version

tar [options] [files]

The tar command packs many files and directories into a
single file for easy transport, optionally compressed. (It was
originally for backing up files onto a tape drive; its name is
short for “tape archiver.”) TAR files are the most common
file-packaging format for Linux.

→ tar -czf myarchive.tar.gz mydir Create archive
→ ls -lG myarchive.tar.gz
-rw-r--r-- 1 smith 350 Nov 7 14:09 myarchive.tar.gz
→ tar -tf myarchive.tar.gz List contents
mydir/
mydir/dir/
mydir/dir/file10
mydir/file1
mydir/file2
⋮
→ tar -xf myarchive.tar.gz Extract

If you specify files on the command line, only those files are
processed:

→ tar -xvf myarchive.tar.gz mydir/file3 mydir/file7

Otherwise, the entire archive is processed.

Useful options

-c Create an archive from files and directories listed as arguments.

-r Append files to an existing archive.

-u Append new/changed files to an existing archive.

-A Append one archive to the end of another: for example, tar
-A -f first.tar second.tar appends the contents of
second.tar to first.tar. Does not work for compressed archives.

-t List (test) the archive.

-x Extract files from the archive.

128 | Chapter 2: File Commands

-C dir Extract the files into directory dir.

-f file Read the archive from, or write the archive to, the given file. This is
usually a TAR file on disk (such as myarchive.tar) but can also be a
tape device (such as /dev/tape).

-d Diff (compare) the archive against the filesystem.

-z Use gzip compression.

-j Use bzip2 compression.

-Z Use classic Unix compression.

-v Verbose mode: print extra information.

-h Follow symbolic links rather than merely copying them.

-p When extracting files, restore their original permissions and
ownership.

gzip stdin stdout - file -- opt --help --version

gzip [options] [files]

gunzip [options] [files]

zcat [options] [files]

gzip and gunzip compress and uncompress files in GNU Zip
format. Compressed files have the extension .gz.

Sample commands

gzip file Compress file to create file.gz. Original file is
deleted.

gunzip file.gz Uncompress file.gz to create file. Original file.gz is
deleted.

gunzip -c file.gz Uncompress a file to standard output.

zcat file.gz Uncompress a file to standard output.

cat file | gzip | … Compress data in a pipeline.

Compressing, Packaging, and Encrypting | 129

cat file.gz | gunzip Uncompress data from a pipeline.

tar -czf tarfile dir Pack directory dir into a gzipped TAR file. Add -v
to print filenames as they are processed.

bzip2 stdin stdout - file -- opt --help --version

bzip2 [options] [files]

bunzip2 [options] [files]

bzcat [options] [files]

bzip2 and bunzip2 compress and uncompress files in Bur‐
rows–Wheeler format. Compressed files have the exten‐
sion .bz2.

Sample commands

bzip2 file Compress file to create file.bz2. Original file is
deleted.

bunzip2 file.bz2 Uncompress file.bz2 to create file. Original
file.bz2 is deleted.

bunzip2 -c file.bz2 Uncompress a file to standard output.

cat file | bunzip2 | … Compress data in a pipeline.

cat file.bz2 | bunzip2 Uncompress data from a pipeline.

bzcat file.bz2 Uncompress a file to standard output.

tar -cjf tarfile dir Pack directory dir into a BZipped TAR file. Add
-v to print filenames as they are processed.

130 | Chapter 2: File Commands

compress stdin stdout - file -- opt --help --version

compress [options] [files]

uncompress [options] [files]

zcat [options] [files]

compress and uncompress compress and uncompress files in
classic Unix compression format (Lempel-Ziv). Compressed
files have the extension .Z.

Sample commands

compress file Compress file to create file.Z. Original file is
deleted.

uncompress file.Z Uncompress file.Z to create file. Original file.Z
is deleted.

uncompress -c file.Z Uncompress a file to standard output.

zcat file.Z Uncompress a file to standard output.

cat file | compress | … Compress data in a pipeline.

cat file.Z | uncompress Uncompress data from a pipeline.

tar -cZf tarfile dir Pack directory dir into a compressed TAR file.
Use -cvZf to print filenames as they are
processed.

zip stdin stdout - file -- opt --help --version

zip archive.zip [options] [files]

unzip [options] archive.zip [files]

zip packs and compresses files in Windows Zip format, and
unzip extracts them. Compressed files have the extension .zip.

zip archive.zip file1 file2 … Pack.

Compressing, Packaging, and Encrypting | 131

zip -r archive.zip dir Pack a directory recursively.

unzip -l archive.zip List contents.

unzip archive.zip Unpack.

7z stdin stdout - file -- opt --help --version

7z [command] [options] archive_file [(files | dirs)]

The 7z command, also known as 7-Zip, packs and compresses
files and directories. By default, it produces archive files in
LZMA format with the filename extension .7z. It also supports
other compression methods, such as ZIP, gzip, and BZip2, but
you might as well use the original Linux commands (zip, gzip,
and bzip2, respectively), which are more commonly found on
Linux machines. 7z also extracts from a variety of archive files,
even Microsoft CAB files. See the manpage for a full list.

7z a archive.7z file1 file2 … Pack.

7z a archive.7z dir Pack a directory (same as for files).

7z l archive.7z List contents.

7z x archive.7z Unpack.

munpack stdin stdout - file -- opt --help --version

munpack [options] mail_file

mpack [options] files

Modern email programs handle attachments so seamlessly that
we rarely think about the process behind the scenes. The com‐
mands munpack and mpack work directly with attachments on
the command line. For example, if you have an email message
in a file, messagefile, and it contains a JPEG image and a PDF

132 | Chapter 2: File Commands

file as attachments, munpack can extract both attachments into
files:

→ munpack messagefile
beautiful.jpg (image/jpeg)
researchpaper.pdf (application/pdf)

Its partner program, mpack, does the opposite: it inserts files
as attachments into a MIME-format file. Create the file attach‐
ment.mime containing a MIME-encoded image, photo.jpg:

→ mpack -o attachment.mime photo.jpg
Subject: My example photo

gpg stdin stdout - file -- opt --help --version

gpg [options] [args]

The gpg command encrypts and decrypts files, manipula‐
tes digital signatures, maintains encryption keys, and more.
It’s part of the encryption application GNU Privacy Guard
(GnuPG).

The simplest approach, symmetric encryption, uses the same
password to encrypt and decrypt a file (so don’t lose it!):

→ ls secret*
secret
→ gpg -c secret
Passphrase: xxxxxxxx Invent a password on the spot
Repeat: xxxxxxxx
→ ls secret*
secret secret.gpg Creates the encrypted file

More common is public key encryption, which requires a pair
of keys (public and private), encrypting with the public key,
and decrypting with the private. Get started by creating a key
pair, assuming your email address is smith@example.com:

→ gpg --quick-generate-key smith@example.com \
 default default never

Compressing, Packaging, and Encrypting | 133

mailto:smith@example.com

Encrypt a file with public key encryption, creating secret.gpg:

→ gpg -e secret Use your default public key
→ gpg -e -r key secret Use a specific public key

Encrypt and digitally sign a file, creating secret.gpg:

→ gpg -es secret
Passphrase: xxxxxxxx

Decrypt the file secret.gpg and verify any signature. (If you’re
not reprompted for a passphrase, gpg has cached it for now.)

→ rm secret Delete the original file
→ gpg secret.gpg Decrypt
Passphrase: xxxxxxxx
gpg: encrypted with 4096-bit ELG key, ID 3EE49F4396C9,
 created 2023-02-26 "John Smith <smith@example.com>"
⋮
Good signature from "John Smith <smith@example.com>"
→ ls secret*
secret secret.gpg See the original file, decrypted

List the keys on your GnuPG keyring:

→ gpg --list-public-keys
→ gpg --list-secret-keys

Useful options

gpg has about 100 options. Here are some common ones.

-r name Encrypt for a recipient on your public keyring. The name may be the
key ID, email address, or various other parts of the key name.

-u name Sign as the user with this name from your keyring.

-o file Write output to the given file.

-a Create output in ASCII armor format instead of OpenPGP format.
ASCII armor is plain text and suitable for inserting into email
messages. Output files have the extension .asc rather than .gpg.

-q Be quiet—don’t print messages while running.

-v Print more verbose messages while running.

134 | Chapter 2: File Commands

Comparing Files
diff Line-by-line comparison of two files or directories.

comm Line-by-line comparison of two sorted files.

cmp Byte-by-byte comparison of two files.

shasum Compute checksums of the given files.

md5sum Compute checksums of the given files (insecure).

You can compare Linux files in at least three ways:

• Line by line (diff, comm), best suited to text files.•
• Byte by byte (cmp), often used for binary files.•
• By comparing checksums (shasum). Avoid older, weaker•

commands such as sum, cksum, and md5sum, which use inse‐
cure algorithms.

diff stdin stdout - file -- opt --help --version

diff [options] file1 file2

The diff command compares two files line by line, or two
directories file by file. If there are no differences, diff produces
no output. For text files, diff produces detailed reports of their
differences. For binary files, diff merely reports whether they
differ or not.

The traditional output format looks like this:

Affected line numbers, and the type of change
< Corresponding section of file1, if any

> Corresponding section of file2, if any

For example, start with a file fileA:

Comparing Files | 135

Hello, this is a wonderful file.
The quick brown fox jumped over
the lazy dogs.
Goodbye for now.

Suppose you delete the first line, change “brown” to “blue” on
the second line, and add a final line, creating a file fileB:

The quick blue fox jumped over
the lazy dogs.
Goodbye for now.
Linux r00lz!

The diff command reports two differences labeled 1,2c1 and
4a4:

→ diff fileA fileB
1,2c1 fileA lines 1-2 became fileB line 1
< Hello, this is a wonderful file. Lines 1-2 of fileA
< The quick brown fox jumped over
--- diff separator
> The quick blue fox jumped over Line 1 of fileB
4a4 Line 4 was added in fileB
> Linux r00lz! The added line

The leading symbols < and > are arrows indicating fileA and
fileB, respectively. This output format is the default: many oth‐
ers are available, some of which can be fed directly to other
tools. Try them out to see what they look like.

Option Output format

-c Context diff format, as used by the patch command (man
patch).

-D macro C preprocessor format, using #ifdef macro … #else …
#endif.

-u Unified format, which merges the files and prepends “-” for
deletion and “+” for addition. Used by git.

-y Side-by-side format; use -W to adjust the width of the output.

-q Don’t report changes, just say whether the files differ.

136 | Chapter 2: File Commands

diff can also compare directories. By default, it compares any
same-named files in those directories and also lists files that
appear in one directory but not the other:

→ diff dir1 dir2

To compare entire directory trees recursively, run diff -r

which produces a (potentially massive) report of all differences.

→ diff -r dir1 dir2

Useful options

-b Don’t consider whitespace.

-B Don’t consider blank lines.

-i Ignore case.

-r When comparing directories, recurse into subdirectories.

diff is one member of a family of commands that operate on
file differences. Some others are diff3, which compares three
files at a time, and sdiff, which merges the differences between
two files to create a third file according to your instructions.

comm stdin stdout - file -- opt --help --version

comm [options] file1 file2

The comm command compares two sorted files and produces
three columns of output, separated by tabs:

1. All lines that appear in file1 but not in file2.1.
2. All lines that appear in file2 but not in file1.2.
3. All lines that appear in both files.3.

For example, if commfile1 and commfile2 contain these lines:

Comparing Files | 137

commfile1: commfile2:
apple baker
baker charlie
charlie dark

then comm produces this three-column output:

→ comm commfile1 commfile2
apple
 baker
 charlie
 dark

Useful options

-1 Suppress column 1.

-2 Suppress column 2.

-3 Suppress column 3.

-23 Show lines that appear only in the first file.

-13 Show lines that appear only in the second file.

-12 Show only common lines.

cmp stdin stdout - file -- opt --help --version

cmp [options] file1 file2 [offset1 [offset2]]

The cmp command compares two files. If their contents are the
same, cmp reports nothing; otherwise, it lists the location of the
first difference:

→ cmp myfile yourfile
myfile yourfile differ: byte 225, line 4

By default, cmp does not tell you what the difference is, only
where it is. It also is perfectly suitable for comparing binary
files, as opposed to diff, which operates best on text files.

138 | Chapter 2: File Commands

Normally, cmp starts its comparison at the beginning of each
file, but if you provide offsets, it starts elsewhere:

→ cmp myfile yourfile 10 20

This comparison begins at the 10th character of myfile and the
20th of yourfile.

Useful options

-l Long output: print all differences, byte by byte:
→ cmp -l myfile yourfile
 225 167 127

The output says that at offset 225 (in decimal), myfile has a small “w” (octal
167) but yourfile has a capital “W” (octal 127).

-s Silent output: don’t print anything, just exit with an appropriate return code;
0 if the files match, 1 if they don’t. (Or other codes if the comparison fails.)

shasum stdin stdout - file -- opt --help --version

shasum -a (256|384|512|512224|512256) [options] files

shasum --check file

The shasum command calculates and validates checksums to
verify that files are unchanged. By default, shasum uses an
insecure algorithm called SHA-1. Add the option -a 256 (or
a higher value) for cryptographically secure results. Here I
produce a 256-bit checksum of the given files (64 hexadecimal
digits) using the secure SHA-256 algorithm:

→ shasum -a 256 myfile SHA-256 algorithm
e8183aaa23aa9b74c7033cbc843041fcf1d1e9e937... myfile

The second form of the command tests whether a checksum
matches the original file, using --check:

→ shasum -a 256 myfile myfile2 myfile3 > /tmp/mysum
→ cat /tmp/mysum
e8183aaa23aa9b74c7033cbc843041fcf1d1e9e937... myfile

Comparing Files | 139

2254f6879ae5fdf174b3a2ebbdc7fb4fa41e0ddf4a... myfile2
0bfa73d888300e3d4f5bc9ac302c1eb38e37499b5e... myfile3
→ shasum --check /tmp/mysum
myfile: OK
myfile2: OK
myfile3: OK
→ echo "new data" > myfile2 Change myfile2
→ shasum --check /tmp/mysum
myfile: OK
myfile2: FAILED
myfile3: OK
shasum: WARNING: 1 computed checksum did NOT match

Two different files are unlikely to have the same SHA-256
checksum, so comparing their checksums is a reliable way to
detect if two files differ.

→ shasum -a 256 myfile | cut -c1-64 > /tmp/sum1
→ shasum -a 256 myfile2 | cut -c1-64 > /tmp/sum2
→ diff -q /tmp/sum1 /tmp/sum2
Files /tmp/sum1 and /tmp/sum2 differ

md5sum stdin stdout - file -- opt --help --version

md5sum files | --check file

The md5sum command computes checksums using an insecure
algorithm called MD5. Do not use it for production work. Run
it much like shasum:

→ md5sum myfile myfile2 myfile3 > /tmp/mysum Generate
→ md5sum --check /tmp/mysum Check

Converting Files to Other Formats
pandoc Convert from one markup language to another.

hxselect Extract information from an HTML file.

jq Extract information from a JSON file.

140 | Chapter 2: File Commands

6 I ran pandoc to convert material from the third edition of this book,
written in DocBook XML, to AsciiDoc for the fourth edition.

xmllint Validate and extract information from an XML file.

csvtool Extract information from a comma-separated values (CSV) file.

split Split up a file simply into multiple files.

csplit Split up a file into multiple files using complex criteria.

Have you ever tediously converted a text file from one format
to another by hand, or manually extracted values from CSV,
JSON, or XML files? Never again! Linux has an arsenal of file-
conversion commands that make this kind of work disappear.

pandoc stdin stdout - file -- opt --help --version

pandoc [options] [files]

The amazing pandoc command converts files of many for‐
mats into many other formats. It handles HTML, JSON, CSV,
LaTeX, Microsoft DOCX and PPTX, DocBook XML, man‐
pages, numerous flavors of markdown and wiki text, and doz‐
ens of other formats. The results aren’t perfect and may require
a bit of manual cleanup, but they’re surprisingly good.6

Running pandoc couldn’t be simpler: just provide an input file
and pick an output format with the -t option, and pandoc
prints the converted results. Look how easy it is to convert a
CSV file to HTML, GitHub markdown, LaTeX, and JSON:

→ cat data.csv Original file
one,two,three,four,five,six,seven
ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN
1,2,3,4,5,6,7
→ pandoc -t html data.csv CSV to HTML
<table>
<thead>

Converting Files to Other Formats | 141

<tr class="header">
<th>one</th>
<th>two</th>
⋮
→ pandoc -t gfm data.csv CSV to markdown
| one | two | three | four | five | six | seven |
|-----|-----|-------|------|------|-----|-------|
| ONE | TWO | THREE | FOUR | FIVE | SIX | SEVEN |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
→ pandoc -t latex data.csv CSV to LaTeX
\begin{longtable}[]{@{}lllllll@{}}
\toprule
one & two & three & four & five & six & seven ...
⋮
→ pandoc -t json data.csv CSV to JSON
{"blocks":[{"t":"Table","c":[[], ...

Redirect the results to a file, or better yet, add the -o option
to write the results to an output file, particularly if they’re in a
binary format. If pandoc can guess the output format from the
output filename, you can omit the -t option:

→ pandoc -o page.pdf page.html HTML to PDF

If pandoc can’t guess the format of the input file, add the option
-f (“from”):

→ pandoc -o page.pdf -f html page.html

Useful options

pandoc has many more options than I list here, and it supports
configuration files for setting multiple options conveniently.
See the manpage for details.

--list-input-formats List all supported input formats (34 so far).

--list-output-formats List all supported output formats (57 so far).

-f input_format Explicitly convert from this format.

-t output_format Explicitly convert to this format.

-o file Write the output to this file.

142 | Chapter 2: File Commands

--wrap=type Determine whether text should be wrapped in
the output. Values are none for no wrapping,
auto to wrap at 72 columns, or preserve to
keep the same wrapping as the original file.

--columns=N Wrap the next at column N (default=72).

hxselect stdin stdout - file -- opt --help --version

hxselect [options] CSS_selectors

The hxselect command extracts strings from HTML data
based on CSS selectors. For example, extract all div tags from a
file page.html:

→ cat page.html Original file
<html>
 <head>
 </head>
 <body>
 <div>
 This is the first div.
 </div>
 <div class="secondary">
 This is the second div.
 </div>
 </body>
</html>
→ hxselect 'div' < page.html Print one div
<div>
 This is the first div
 </div><div class="secondary">
 This is the second div
 </div>
→ hxselect -c 'div' < page.html Contents
 This is the first div
 This is the second div
→ hxselect -c 'div.secondary' < page.html By selector
 This is the second div

Converting Files to Other Formats | 143

For best results, pass the content first through hxnormalize -x
to clean up the HTML code.

→ hxnormalize -x page.html | hxselect ...

Pipe the source of a web page to hxselect using curl:

→ curl url | hxnormalize -x | hxselect ...

Useful options

-c Just print the content within tags, not the tags themselves.

-i Match strings case-insensitively.

jq stdin stdout - file -- opt --help --version

jq [options] filter [JSON_files]

The jq command extracts and manipulates JSON data, accord‐
ing to a filter that you provide, and pretty-prints the results.
I present a few examples of using this powerful tool (see the
manpage for more).

→ cat book.json Original file
{
 "title": "Linux Pocket Guide",
 "author": "Daniel J. Barrett",
 "publisher": {
 "name": "O'Reilly Media",
 "url": "https://oreilly.com"
 },
 "editions": [1, 2, 3, 4]
}
→ jq .title book.json Simple value
"Linux Pocket Guide"
→ jq .title,.author book.json Multiple values
"Linux Pocket Guide"
"Daniel J. Barrett"
→ jq .publisher book.json Object
{

144 | Chapter 2: File Commands

 "name": "O'Reilly Media",
 "url": "https://oreilly.com"
}
→ jq .publisher.url book.json Nested value
"https://oreilly.com"
→ jq .editions book.json Array
[
 1,
 2,
 3,
 4
]
→ jq .editions[0] book.json One array value
1
→ jq '.editions|length' book.json Array length
4
→ jq '.editions|add' book.json Sum 1+2+3+4
10
→ cat oneline.json A one-line JSON file
{"title":"Linux Pocket Guide","author": ...
→ jq < oneline.json Pretty-print the file
{
 "title": "Linux Pocket Guide",
 "author": ...
 ⋮

Useful options

-f file Read the filter from a file instead of the command line.

-S Sort the output by its JSON keys.

xmllint stdin stdout - file -- opt --help --version

xmllint [options] [XML_files]

The xmllint command validates and extracts XML data. Vali‐
dating a valid XML file just prints the contents. Add the option
--noout to suppress the output.

Converting Files to Other Formats | 145

→ xmllint good.xml
<?xml version="1.0"?>
<hello> </hello>
→ xmllint --noout good.xml
→ echo $?
0 Success code

An invalid XML file prints an error:

→ cat bad.xml
<?xml version="1.0"?>
<hello> </helo> Mismatched tags
→ xmllint bad.xml
bad.xml:2: parser error : Opening and ending tag
mismatch: hello line 2 and helo
⋮
→ echo $?
1 Error code

Provide an XPath expression to extract data:

→ cat book.xml Original file
<?xml version="1.0"?>
<book>
 <title>Linux Pocket Guide</title>
 <author>Daniel J. Barrett</author>
 <pub>
 <name>O'Reilly Media</name>
 <url>https://oreilly.com</url>
 </pub>
 <eds>
 <ed id="1">First edition</ed>
 <ed id="2">Second edition</ed>
 <ed id="3">Third edition</ed>
 <ed id="4">Fourth edition</ed>
 </eds>
</book>
→ xmllint --xpath '//book/title' book.xml
<title>Linux Pocket Guide</title>
→ xmllint --xpath '//book/title/text()' book.xml
Linux Pocket Guide
→ xmllint --xpath '//book/pub/url/text()' book.xml
https://oreilly.com

146 | Chapter 2: File Commands

https://oreil.ly/WZdhL

→ xmllint --xpath '//book/eds/ed[@id][4]' book.xml
<ed id="4">Fourth edition</ed>
→ xmllint --xpath '//book/eds/ed[@id][4]/text()' \
 book.xml
Fourth edition

Useful options

--xpath path Query the given XPath expression in the XML data.

--format Print the output nicely formatted.

--noout Don’t print output.

csvtool stdin stdout - file -- opt --help --version

csvtool [options] command [command_args] CSV_files

The csvtool command extracts data from CSV files. It can
extract columns:

→ cat data.csv Original file
one,two,three,four,five,six,seven
ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN
1,2,3,4,5,6,7
→ csvtool col 3 data.csv One column
three
THREE
3
→ csvtool col 2,5-7 data.csv Multiple columns
two,five,six,seven
TWO,FIVE,SIX,SEVEN
2,5,6,7

It can count the number of rows and columns:

→ csvtool height data.csv Number of rows
3
→ csvtool width data.csv Number of columns (max)
7

It can insert values from each row into longer strings:

Converting Files to Other Formats | 147

→ csvtool format 'Third column is "%3"\n' data.csv
Third column is "three"
Third column is "THREE"
Third column is "3"

It can remove the first row, which often contains headings:

→ csvtool drop 1 data.csv
ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN
1,2,3,4,5,6,7

It can isolate a single value, say, row 2, column 6:

→ csvtool drop 1 data.csv \ Delete the first row
 | csvtool head 1 - \ Print the first remaining row
 | csvtool col 6 - Extract column 6
SIX

and much more. The csvtool manpage is sparse, so run
csvtool --help for more information.

Useful options

-c char Change the input separator character from a comma to char. For tab
characters, use -c TAB.

-o Same as -c but for the output separator character.

split stdin stdout - file -- opt --help --version

split [options] [file [prefix]]

The split command divides a file into equal-sized pieces (for
various definitions of “equal-sized”) and stores them in sepa‐
rate files. The output files are named sequentially, such as Xaa,
Xab, Xac, and so on, by default. X is called the prefix and the
endings aa, ab, and so on, are the suffix.

Divide the input file by number of lines:

→ split hugefile 1000 lines each
→ split -l 2000 hugefile 2000 lines each

148 | Chapter 2: File Commands

or by bytes:

→ split -b 1024 hugefile 1024 bytes each

or split it at a given character, called the separator:

→ split -t@ -l1 hugefile Separator character is @

Optionally change the prefix with a final argument:

→ split hugefile part- Set the prefix to “part-”
→ ls
hugefile part-aa part-ab part-ac part-ad ...

split can help you work with files that are too large to load
into other programs, or too large to store on offline media.
Reassemble the parts afterward with cat:

→ cat part-* > /tmp/outfile Join part-aa, part-ab, etc.

Useful options

-l lines Split into files of this many lines or records.

-b bytes Split into files of this many bytes.

-t separator Set the separator character, if any, between records.

-a length Set the length of the suffix, in characters.

-d Use numeric suffixes instead of letters, starting from
zero. Change the starting value to N with --numeric-
suffixes N.

csplit stdin stdout - file -- opt --help --version

csplit [options] file patterns

The csplit command divides one file into many based on
regular expressions. The output files are named sequentially,
such as xx01, xx02, xx03, and so on, by default. xx is called
the prefix and the endings 01, 02, and so on, are the suffix. By
default, csplit prints the size of each file it creates.

Converting Files to Other Formats | 149

The syntax is a bit unusual. After the input filename, provide
one or more patterns that represent dividing lines in the file.
Patterns have two types:

Regular expressions
An expression (see Table 2-2) enclosed in forward slashes,
such as /^[A-Z]*$/ for a line of all uppercase letters. Each
expression is matched just once by default.

Repeaters
A repeater has the form '{N}' which means “match the
preceding pattern up to N times.” An example is '{2}'
which matches its preceding pattern twice. The special
repeater '{*}' matches its preceding pattern as many
times as possible until the input ends.

csplit is great for splitting up structured text such as HTML,
XML, or programming source code.

→ cat page.html Original file
<html>
 <head>
 </head>
 <body>
 <div>
 This is the first div.
 </div>
 <div class="secondary">
 This is the second div.
 </div>
 </body>
</html>

Use four patterns (in quotes below) to split a file at the first
<head>, then at the next <body>, and then at every <div> tag:

→ csplit page.html '/<head>/' '/<body>/' '/<div/' '{*}'
7
19
9 Sizes of the output files, in bytes
49
86

150 | Chapter 2: File Commands

View the five output files:

→ ls xx*
xx00 xx01 xx02 xx03 xx04
→ cat xx00
<html>
→ cat xx01
 <head>
 </head>
→ cat xx02
 <body>
→ cat xx03
 <div>
 This is the first div
 </div>
→ cat xx04
 <div class="secondary">
 This is the second div
 </div>
 </body>
</html>

Useful options

-f prefix Set the prefix for output filenames.

-n length Set the suffix for output filenames to be length digits long.

-s Silent operation: don’t print the sizes of the generated files.

PDF and PostScript File Handling
pdftotext Extract text from PDF files.

ps2ascii Extract text from PostScript or PDF files.

pdfseparate Extract individual pages from a PDF file.

pdftk Split, join, rotate, and otherwise manipulate PDF files.

pdf2ps, ps2pdf Convert between PDF and PostScript file formats.

ocrmypdf Perform optical character recognition (OCR) on a PDF.

PDF and PostScript File Handling | 151

7 To edit PDF files, the best Linux program I’ve used is Master PDF
Editor by Code Industry, a commercial product.

To view PDF files and PostScript files on Linux, you’ll need a
graphical desktop and a document viewer like these:7

→ okular sample.pdf KDE's document viewer
→ evince sample.pdf GNOME's document viewer
→ gv sample.pdf Ghostscript viewer

In addition, Linux has a rich set of command-line tools to work
with PDF and Postscript files without displaying them. They
are well worth learning, especially the amazing pdftk.

pdftotext stdin stdout - file -- opt --help --version

pdftotext [options] [file.pdf [outfile.txt]]

The pdftotext command extracts text from a PDF file and
writes it to a file. This works if the PDF contains actual text, not
images that look like text (in which case, run ocrmypdf first).

→ pdftotext sample.pdf Creates sample.txt

Useful options

-f N Begin with page N of the PDF file. You must have a space between
the option and the number.

-l N End with page N of the PDF file. You must have a space between
the option and the number.

-htmlmeta Generate HTML rather than plain text (creates sample.html).

-eol OS Write end-of-line characters for the given operating system, OS,
which can be dos, mac, or unix.

152 | Chapter 2: File Commands

https://oreil.ly/l5Hto

8 Actually, ps2ascii --help describes command-line options, but they
don’t work. They are the options of a related command, gs, invoked by
ps2ascii.

ps2ascii stdin stdout - file -- opt --help --version

ps2ascii file.(ps|pdf) [outfile.txt]

The ps2ascii command extracts text from a PostScript file.
It’s a simple command with no options.8 To extract text from
sample.ps and place it into /tmp/extracted.txt:

→ ps2ascii sample.ps /tmp/extracted.txt

ps2ascii can also extract text from a PDF file, though you
wouldn’t guess that from the command name.

→ ps2ascii sample.pdf /tmp/extracted2.txt

pdfseparate stdin stdout - file -- opt --help --version

pdfseparate [options] [file.pdf] [pattern.txt]

The pdfseparate command splits a PDF file into separate PDF
files, one per page. For example, if one.pdf has 10 pages, then
the following command creates 10 PDF files in /tmp named
split1.pdf through split10.pdf, each containing one page:

→ pdfseparate one.pdf /tmp/split%d.pdf

The final argument is a pattern to form the names of the
individual page files. The special notation %d stands for the
extracted page number.

PDF and PostScript File Handling | 153

Useful options

-f N Begin with page N of the PDF file. You must have a space between the
option and the number.

-l N End with page N of the PDF file. You must have a space between the
option and the number.

pdftk stdin stdout - file -- opt --help --version

pdftk [arguments]

pdftk is the Swiss Army knife of PDF commands. This versatile
program can extract pages from a PDF file, join several PDFs
into one, rotate pages, add watermarks, encrypt and decrypt
files, and much more, all from the command line. This power
comes with quirky syntax, unfortunately, but with a little effort
you can learn a few useful tricks.

To join the files one.pdf and two.pdf into a single PDF file,
combined.pdf:

→ pdftk one.pdf two.pdf cat output combined.pdf

To extract pages 3, 5, and 8–10 from the file one.pdf and write
them to new.pdf:

→ pdftk one.pdf cat 3 5 8-10 output new.pdf

Extract the first five pages from one.pdf and the odd-numbered
pages from two.pdf and combine them as combined.pdf:

→ pdftk A=one.pdf B=two.pdf cat A1-5 Bodd output \
 combined.pdf

Copy the file one.pdf to new.pdf, but with page 7 rotated by 90
degrees clockwise (“east”):

→ pdftk one.pdf cat 1-6 7east 8-end output new.pdf

Interleave the pages of one.pdf and two.pdf, creating mixed.pdf:

154 | Chapter 2: File Commands

→ pdftk one.pdf two.pdf shuffle output mixed.pdf

The criteria for page selection are very powerful and typically
appear before the output keyword. They consist of one or more
page ranges with qualifiers. A page range can be a single page
like 5, a range like 5-10, or a reverse range like 10-5 (which
reverses the pages in the output). Qualifiers can remove pages
from a range, like 1-100~20-25, which means “all pages from
1 to 100 except for pages 20 to 25.” They can also specify only
odd pages or even pages, using the keywords odd or even, and
rotations using the compass directions north, south, east, and
west. I’ve only scratched the surface of pdftk’s abilities. The
manpage has more details and examples.

pdf2ps stdin stdout - file -- opt --help --version

pdf2ps [options] file.pdf [file.ps]

ps2pdf [options] file.ps [file.pdf]

The pdf2ps command converts an Adobe PDF file into a Post‐
Script file. If you don’t provide an output filename, the default
is to use the input filename, with .pdf replaced by .ps.

→ pdf2ps sample.pdf converted.ps

To go in the opposite direction, converting a PostScript file to
PDF format, use ps2pdf:

→ ps2pdf sample.ps converted.pdf

ocrmypdf stdin stdout - file -- opt --help --version

ocrmypdf [options] input_file output_file

The ocrmypdf command performs optical character recognition
(OCR) to create a searchable PDF file. The input file can be an
image file or a PDF file that contains images.

PDF and PostScript File Handling | 155

→ ocrmypdf imageoftext.png outfile.pdf Convert
→ okular outfile.pdf Display

Useful options

-l language Use language rather than English. For a list of languages, run
tesseract --list-langs.

-r Attempt to rotate pages into their correct orientation.

Printing
lpr Print a file.

lpq View the print queue.

lprm Remove a print job from the queue.

Linux has two popular printing systems, CUPS and LPRng.
Both systems use commands named lpr, lpq, and lprm, but
their options are different on CUPS and LPRng. I’ll present
common options that work with both systems.

To install and maintain printers, GNOME and KDE have
printer configuration tools in their system settings. To trouble‐
shoot a CUPS printer, visit http://localhost:631 to access your
computer’s CUPS management system.

lpr stdin stdout - file -- opt --help --version

lpr [options] [files]

The lpr (line printer) command sends a file to a printer:

→ lpr myfile Print on default printer
→ lpr -P myprinter myfile Print on a named printer

156 | Chapter 2: File Commands

http://localhost:631

Useful options

-P printername Send the file to printer printername, which you have
previously set up.

-# N Print N copies of the file. (The option is a literal hash
mark.)

-J name Set the job name that prints on the cover page (if your
system is set up to print cover pages).

lpq stdin stdout - file -- opt --help --version

lpq [options]

The lpq (line printer queue) command lists print jobs that are
waiting to be printed.

Useful options

-P printername List the queue for printer printername.

-a List the queue for all printers.

-l Be verbose: display information in a longer format.

lprm stdin stdout - file -- opt --help --version

lprm [options] [job_IDs]

The lprm (line printer remove) command cancels one or more
print jobs. Use lpq to learn the ID of the desired print jobs (say,
61 and 78), then run:

→ lprm -P printer_name 61 78

If you don’t supply any job IDs, your current print job is can‐
celed. (The superuser can cancel other users’ jobs.) The -P
option specifies which print queue contains the job.

Printing | 157

Spellchecking
look Look up the spelling of a word quickly.

aspell Interactive spelling checker.

spell Batch spelling checker.

Linux has several spellcheckers built in. If you’re accustomed to
graphical spellcheckers, you might find Linux’s text-based ones
fairly primitive, but they’re useful in a pinch (or a pipeline).

look stdin stdout - file -- opt --help --version

look [options] prefix [dictionary_file]

The look command prints words that begin with a given string
prefix. The words are located in a dictionary file (default /usr/
share/dict/words):

→ look bigg
bigger
biggest
Biggs

If you supply your own dictionary file—any text file with
alphabetically sorted lines—look prints all lines in the dictio‐
nary that begin with the given prefix.

Useful options

-f Ignore case. Needed only if you supply a dictionary file.

158 | Chapter 2: File Commands

aspell stdin stdout - file -- opt --help --version

aspell [options] file

aspell is an interactive spellchecker. It identifies words that it
doesn’t recognize and presents alternatives. A few useful com‐
mands are:

aspell -c file

Interactively check, and optionally correct, the spelling of
all words in file.

aspell dump master

Print aspell’s master dictionary on standard output.

aspell help

Print a concise help message. See http://aspell.net for more
information.

spell stdin stdout - file -- opt --help --version

spell [files]

The spell command prints all words in the given files that are
misspelled, according to its dictionary. It is not interactive.

→ cat badwords
This Linux file has some spelling errors.
You may naturaly wonder if a spelling checker
will pick them up. Careful Linuxx users should
run thier favorite spelling checker on this file.
→ spell badwords
naturaly
Linuxx
thier

Spellchecking | 159

http://aspell.net

CHAPTER 3

System Administration Basics

Becoming the Superuser
Normal users, for the most part, can modify only the files they
own. One special user, called the superuser or root, has full
access to the machine and can do anything on it. Superuser
privileges are mainly for system administration tasks; use them
only when absolutely necessary so you don’t accidentally harm
your Linux system. And don’t log in as root unless you must
(e.g., when rescuing a broken boot process).

WARNING

Superuser commands can destroy a Linux system if you’re
not careful.

You can become the superuser in several ways. One is to use
the sudo command to gain superuser abilities for the duration
of a single command. Simply type “sudo” followed by the com‐
mand. You may be prompted for your password, depending on
how sudo is configured on your machine:

161

→ sudo rm some_protected_file
[sudo] password: xxxxxxxx Your own password

To maintain your superuser powers without constantly run‐
ning sudo, launch a superuser shell with either of the following
commands:

→ sudo -s
→ sudo bash

A superuser shell is convenient, say, for browsing through
many protected directories with cd. When finished executing
commands as the superuser, press ^D or run exit to end
the superuser shell and become yourself again. If you forget
whether your shell is a superuser shell or just a normal one,
check your identity with the whoami command. If you’re the
superuser, it displays root.

Another way to become the superuser is the su command,
which also creates a superuser shell, but you’ll need a differ‐
ent password, called the root password, to use it. (Whoever
installed Linux chose the root password during installation.)

→ su
Password: xxxxxxxx root password
#

Your shell prompt may change, often to a hash mark (#), to
indicate you are the superuser. Add the option -l to run a login
shell that includes root’s full environment, such as root’s shell
aliases.

→ su -l Run a login shell
Password: xxxxxxxx root password
#

If you provide a username to sudo or su, you become that user,
provided you have the prerequisites:

→ sudo -u sophia command Become user sophia with sudo
[sudo] password: xxxxxxxx You must have sudo permission
→ su sophia Become user sophia with su
Password: xxxxxxxx You must know sophia's password

162 | Chapter 3: System Administration Basics

Use sudo rather than su whenever possible, especially if your
system has multiple users. su relies on a shared password,
which is a security concern. sudo uses your own password,
but it must be configured to do so (and many distros come
with sudo preconfigured). sudo also provides precise control
over privileges in the file /etc/sudoers, and it even logs the
commands that users run. A full discussion is beyond the scope
of this book: see man sudo for details.

Viewing Processes
ps List processes.

pgrep List the IDs of processes that match a regular expression.

uptime View the system load.

w List active processes for all users.

top Monitor resource-intensive processes interactively.

free Display free memory.

A process is a unit of work on a Linux system. Each program
you run represents one or more processes, and Linux provides
commands for viewing and manipulating them. Every process
is identified by a numeric process ID, or PID, and can be exam‐
ined in the directory /proc (see “Kernel-Related Directories” on
page 33).

Processes are different from jobs (see “Shell Job Control” on
page 49). Processes are part of the OS. Jobs are higher-level
constructs known only to the shell in which they’re running.
A running program comprises one or more processes; a shell
job consists of one or more programs executed as a shell
command.

Viewing Processes | 163

ps stdin stdout - file -- opt --help --version

ps [options]

The ps command displays information about your running
processes, and optionally the processes of other users:

→ ps
 PID TTY TIME CMD
 4706 pts/2 00:00:01 bash
15007 pts/2 00:00:00 emacs
16729 pts/2 00:00:00 ps

ps has at least 80 options; I cover just a few useful combina‐
tions. If the options seem arbitrary or inconsistent, it’s because
the supplied ps command (GNU ps) incorporates the features
of several other, competing ps commands, attempting to be
compatible with all of them.

View your processes:

→ ps -ux

View all processes owned by user “smith”:

→ ps -U smith

View all occurrences of a running program:

→ ps -C python

View processes on terminal N:

→ ps -tN

View particular processes 1, 2, and 3505:

→ ps -p1,2,3505

View all processes with their command lines truncated to the
width of the screen:

→ ps -ef

View all processes with full command lines:

→ ps -efww

164 | Chapter 3: System Administration Basics

View all processes in a threaded view that indents child pro‐
cesses below their parents:

→ ps -efH

Use grep and other filter commands to extract information
more finely from the output of ps:

→ ps -ux | grep python

pgrep stdin stdout - file -- opt --help --version

pgrep [options] regex

The pgrep command prints the process IDs (PIDs) of pro‐
cesses that match certain criteria, given by a regular expression.
(A similar command, pidof, matches only fixed strings.) For
example, print the PIDs of all running python processes:

→ pgrep python
4675
79493
82866
83114

or count the processes by adding the option -c:

→ pgrep -c python
4

Limit the results to processes owned by a particular user:

→ pgrep -u smith
79493

pgrep is most useful for passing a list of related PIDs to another
command. For example, locate processes that match a string,
using ps and command substitution (see “Command substitu‐
tion” on page 45).

→ ps -fwp $(pgrep python)

Viewing Processes | 165

See more examples of pgrep with the kill command in “Con‐
trolling Processes” on page 169.

Useful options

-d string Use string as the delimiter character between PIDs (newline by
default).

-u user Print only processes running as the given username or user ID
(UID). This is the effective user ID. For real user ID, use -U.

-f Match against the process’s full command line, not just its name.

-x Exact match, rather than a substring match.

-v Print PIDs of processes that don’t match.

uptime stdin stdout - file -- opt --help --version

uptime

The uptime command tells you how long the system has been
running since the last boot:

→ uptime
 10:54pm up 8 days, 3:44, 3 users,
 load average: 0.89, 1.00, 2.15

This information is, from beginning to end: the current time
(10:54 p.m.), system uptime (8 days, 3 hours, 44 minutes),
number of users logged in (3), and system load average for
three time periods: 1 minute (0.89), 5 minutes (1.00), and 15
minutes (2.15). The load average is the average number of
processes ready to run in that time interval.

166 | Chapter 3: System Administration Basics

w stdin stdout - file -- opt --help --version

w [username]

The w command displays the current process running in each
shell for all logged-in users:

→ w
 10:51pm up 8 days, 3:42, 8 users,
 load average: 2.02, 3.79, 5.44
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
barrett pts/0 :0 Sat 2pm 27:13m 0.07s 0.07s emacs
jones pts/1 host1 6Sep03 2:33m 0.74s 0.21s bash
smith pts/2 host2 6Sep03 0.00s 13.35s 0.04s w

The top line is the same one printed by uptime. The columns
indicate the user’s terminal, originating host or X display (if
applicable), login time, idle time, two measures of the CPU
time (run man w for details), and the current process. Provide a
username to see only that user’s information.

For the briefest output, try w -hfs.

Useful options

-h Don’t print the header line.

-f Don’t print the FROM column.

-s Don’t print the JCPU and PCPU columns.

top stdin stdout - file -- opt --help --version

top [options]

The top command monitors the most active processes, updat‐
ing the display at regular intervals (every 3 seconds, by default):

Viewing Processes | 167

→ top
top - 13:02:14 up 1 day, 32 min, 9 users, ...
Tasks: 719 total, 2 running, 717 sleeping, 0 stopped...
%Cpu(s): 0.3 us, 0.2 sy, 0.0 ni, 99.6 id, 0.0 wa, ...
MiB Mem : 31950.5 total, 3040.6 free, 5267.4 used ...
MiB Swap: 32000.0 total, 31991.7 free, 8.2 used ...

PID USER PR NI VIRT SHR S %CPU %MEM TIME CMD
26265 smith 20 0 1092 840 R 4.7 0.2 0:00 top
 1 root 20 0 540 472 S 0.0 0.1 0:07 systemd
 914 www 0 0 0 0 SW 0.0 0.0 0:00 httpd
⋮

While top runs, change its behavior interactively by pressing
keys, such as setting the update speed (s key), hiding idle pro‐
cesses (i), or killing processes (k). Press h to list the keystrokes
and q to quit. For similar commands to monitor your system’s
I/O and network bandwidth, try iotop and iftop. Also check
out the all-in-one command btop, which displays stats for your
CPUs, disks, processes, and network interfaces together.

Useful options

-nN Perform N updates, then quit.

-dN Update the display every N seconds.

-pN Display the process with PID N. You may repeat this option for up to 20
PIDs.

-c Display the command-line arguments of processes.

-b Print on standard output instead of behaving like an interactive
application. Suitable for piping or redirecting the output to a file. To
save a single iteration of top to a file, run top -b -n1 > outfile.

free stdin stdout - file -- opt --help --version

free [options]

The free command displays total memory use in KB:

168 | Chapter 3: System Administration Basics

→ free
 total used free shared buf/cache available
Mem: 523812 491944 31868 0 224812 299000
Swap: 530104 0 530104

The Linux kernel reserves memory for caching purposes (buf/
cache column), so your best estimate of free RAM in the pre‐
ceding output is in the available column (i.e., 299,000 KB)
rather than the free column (31,868 KB).

Useful options

-s N Run continuously and update the display every N seconds.

-m Display amounts in MB.

-h Display amounts in human-readable units like “Gi” for GB.

-t Add a totals row at the bottom.

Controlling Processes
kill Terminate a process (or send it a signal).

pkill Terminate processes by name (or send them a signal).

timeout Kill a command that runs for too long.

nice Invoke a program at a particular priority.

renice Change a process’s priority as it runs.

nohup Run a process that continues after you log out.

flock Ensure that only one instance of a command runs at a time.

Once processes are started, they can be stopped, restarted, kil‐
led, and prioritized. I discussed some of these operations as
handled by the shell in “Shell Job Control” on page 49. Let’s
continue to killing and prioritizing processes.

Controlling Processes | 169

kill stdin stdout - file -- opt --help --version

kill [options] [process_ids]

The kill command sends a signal to a process. This can
terminate a process (the default action), interrupt it, suspend
it, crash it, and so on. You must own the process, or be the
superuser, to affect it. To terminate process 13243, run:

→ kill 13243

If this does not work—some programs catch this signal without
terminating—add the -KILL or (equivalently) -9 option:

→ kill -KILL 13243

which is virtually guaranteed to work. However, this is not a
clean exit for the program, which may leave resources allocated
(or cause other inconsistencies) upon its death.

To learn the PID of a process, run ps and examine the output,
or better yet, run pgrep to produce the PID directly:

→ ps -uax | grep emacs
smith 8374 ... emacs myfile.txt Actual emacs process
smith 9051 ... grep emacs Spurious result to ignore
→ pgrep emacs More accurate output
8374

Now kill this process by PID, or kill it by name using command
substitution (see “Command substitution” on page 45):

→ kill 8374 Kill by PID
→ kill $(pgrep emacs) Kill by name

Or use the pkill command to kill all processes for a given
program:

→ pkill emacs

170 | Chapter 3: System Administration Basics

In addition to the kill program in the filesystem (usually /bin/
kill), most shells have built-in kill commands. Their syntax
and behavior differ, but they all support the following usage:

kill -N PID
kill -NAME PID

where N is a signal number, NAME is a signal name without
its leading “SIG” (e.g., to send the SIGHUP signal, use -HUP),
and PID is the ID of the process to kill. To see a complete
list of signals transmitted by kill, run kill -l, though its
output differs depending on which kill you’re running. For
descriptions of the signals, run man 7 signal.

timeout stdin stdout - file -- opt --help --version

timeout [options] seconds command…

The timeout command sets a time limit for running a program,
in seconds. If the program runs longer than the limit, timeout
kills it. As a demonstration, here is a sleep command that
should run for one minute but is killed after 3 seconds:

→ timeout 3 sleep 60 Killed after 3 seconds

As a more practical example, play music from your MP3 collec‐
tion for an hour (3,600 seconds), then stop:

→ timeout 3600 mplayer *.mp3

Useful options

-s signal Send a signal other than the default (TERM). The choices are the
same ones listed by kill -l.

-k seconds If the program doesn’t die after the first signal, wait this many
seconds longer and send a deadly KILL signal.

Controlling Processes | 171

1 This is called “nicing” the process. You’ll hear the term used as a verb:
“I niced the process to 12.”

nice stdin stdout - file -- opt --help --version

nice [-n level] command_line

When invoking a system-intensive program, be nice to the
other processes (and users) by lowering its priority. That’s what
the nice command is for: it sets a nice level (an amount of
“niceness”) for a process so it receives less attention from the
Linux process scheduler.1 Here’s an example of setting a big job
to run at nice level 7:

→ nice -n 7 sort hugefile > outfile

Normal processes (run without nice) run at level zero, which
you can see by running nice with no arguments:

→ nice
0

If you omit the -n option, the default nice level is 10. The
superuser can also lower the nice level, increasing a process’s
priority:

→ sudo nice -n -10 some_program

The nice levels of processes appear in the output of ps (the NI
column) and top (the N column).

→ ps -o pid,user,args,nice

For programs with a lot of disk accesses, also check out the
command ionice, which is like nice for input/output.

172 | Chapter 3: System Administration Basics

renice stdin stdout - file -- opt --help --version

renice [-n N] [options] PID

While the nice command invokes a program at a given nice
level, renice changes the nice level of an already-running pro‐
cess. As a quick (though trivial) test, create a process that just
sleeps for 2 minutes, run it in the background, and raise its nice
level by 5:

→ sleep 120 &
→ pgrep sleep
2673
→ renice -n 5 -p 2673
2673 (process ID) old priority 0, new priority 5

Ordinary users can increase the nice level of their own pro‐
cesses, while the superuser can also decrease the level (increas‐
ing the priority) and can operate on any process. The valid
range is −20 to +20, but avoid large negative values or you
might interfere with vital system processes.

Useful options

-p pid Affect the process with the given ID, pid. You can omit the -p
and just provide a PID (renice -n 5 28734).

-u username Affect all processes owned by the given user.

nohup stdin stdout - file -- opt --help --version

nohup command

Use nohup to keep a command running after you terminate the
shell that launched it. Ordinarily, when a shell or other process
terminates, its child processes are sent a termination signal,
called a hangup signal. The command nohup, which stands for
“no hangup,” causes the named command to ignore hangup
signals.

Controlling Processes | 173

→ nohup some_long_running_command &

If the supplied command writes to stdout or stderr, nohup redi‐
rects output to a file nohup.out in the current directory (if you
have permission) or in your home directory (if you don’t).

flock stdin stdout - file -- opt --help --version

flock [options] lockfile command…

Do you ever need to ensure that only one instance of a pro‐
gram runs at a time on your computer? For example, if you run
automatic backups every hour using a command like rsync,
there’s a slight chance that a previous backup might still be
running when the next backup launches. The flock command
solves this sort of problem. It creates a lock file that prevents a
command, such as a backup script, from running concurrently
with itself. If you try to run two copies of the command at
once with the same lock file, the second fails. For example, this
rsync command, when run with flock and the lock file /tmp/
mylock, instantly fails if another instance of the same command
is already running:

→ flock -n /tmp/mylock rsync -av dir1 dir2

To see flock in action, open two shell windows and run the
following command in each shell, one at a time (I use the sleep
command as a demonstration, which does nothing but wait for
a given number of seconds):

→ flock -n /tmp/mylock sleep 60

The first command runs and the second instantly terminates
because they have the same lockfile. This can be any file or
directory name, which flock treats as a unique marker to
prevent other commands from running. For example, if you
run the preceding sleep command in one shell and a different
command such as ls in another, with the same lock file:

174 | Chapter 3: System Administration Basics

→ flock -n /tmp/mylock ls

then flock prevents the second command (ls) from running.

Useful options

-n Instantly fail if another command is already running.

-w N Fail after waiting N seconds, if another command is already running.

-s Use a shared lock instead of an exclusive lock. You can run multiple
commands simultaneously with this option, but flock fails if you omit
the option. This is useful to limit the number of commands that can run
simultaneously.

Scheduling Jobs
sleep Wait a set number of seconds, doing nothing.

watch Run a command at set intervals.

at Schedule a job for a single, future time.

crontab Schedule jobs for many future times.

If you need to launch programs at particular times or at regular
intervals, Linux provides several scheduling tools with various
degrees of complexity.

sleep stdin stdout - file -- opt --help --version

sleep time_specification

The sleep command simply waits a set amount of time.
The given time specification can be an integer (meaning sec‐
onds) or an integer followed by the letter s (also seconds), m
(minutes), h (hours), or d (days). For example:

→ sleep 5m Do nothing for 5 minutes

Scheduling Jobs | 175

sleep is useful to delay a command for a set amount of time:

→ sleep 3 && echo 'Three seconds have passed.'
(3 seconds pass)
Three seconds have passed.

watch stdin stdout - file -- opt --help --version

watch [options] command

watch executes a supplied command at regular intervals; the
default is every two seconds. The command is passed to the
shell (so be sure to quote or escape any special characters),
and the results are displayed in a full-screen mode, so you can
observe the output conveniently and see what has changed. For
example, watch -n 1 date executes the date command once
per second, sort of a poor man’s clock. Press ^C to exit.

Useful options

-n seconds Set the time between executions, in seconds.

-d Highlight differences in the output, to emphasize what has
changed from one execution to the next.

-g Exit when the command produces output that is different from
the previous execution.

at stdin stdout - file -- opt --help --version

at [options] time_specification

The at command schedules one or more shell commands to
run later:

→ at 7am next sunday
at> echo Remember to go shopping | mail smith
at> lpr $HOME/shopping-list
at> ^D

176 | Chapter 3: System Administration Basics

2 See the formal syntax in the file /usr/share/doc/at/timespec.

<EOT>
job 559 at 2024-09-08 21:30

If the host is sleeping or off at the scheduled time, the job will
run immediately when the host comes up again. The time spec‐
ifications understood by at are enormously flexible, such as:

• A time followed by a date (not a date followed by a time)•
• Only a date (assumes the current clock time)•
• Only a time (assumes the very next occurrence, whether•

today or tomorrow)
• A special word like now, midnight, or teatime (16:00)•
• Any of the preceding followed by an offset, like “+ 3 days”•

Dates may take many forms: december 25 2030, 25 decem

ber 2030, december 25, 25 december, 12/25/2030, 25.12.2030,
20301225, today, thursday, next thursday, next month, next
year, and more. Month names can be abbreviated to three
letters (jan, feb, mar, …). Times are also flexible: 8pm, 8 pm,
8:00pm, 8:00 pm, 20:00, and 2000 are equivalent. Offsets are a
plus or minus sign followed by whitespace and an amount of
time: + 3 days, + 2 weeks, - 1 hour, and so on.2

If you omit part of the date or time, at copies the missing
information from the system date and time. So next year alone
means one year from right now, thursday alone means the
upcoming Thursday at the current clock time, december 25
alone means the next December 25, and 4:30pm alone means
the very next occurrence of 4:30 p.m. in the future.

The command you supply to at is not evaluated by the shell
until execution time, so file patterns, variables, and other shell
constructs are not expanded until then. Also, your current
environment (see printenv) is preserved within each job so

Scheduling Jobs | 177

it executes as if you were logged in. Aliases, however, aren’t
available to at jobs, so don’t include them.

To list your at jobs, use atq (“at queue”):

→ atq
559 2024-09-08 21:30 a smith

To delete a job, run atrm (“at remove”) with the job number:

→ atrm 559

Useful options

-f filename Read commands from the given file instead of standard
input.

-c job_number Print a job’s commands to standard output.

crontab stdin stdout - file -- opt --help --version

crontab [options] [file]

The crontab command, like the at command, schedules jobs
for specific times. However, crontab is for recurring jobs, such
as “Run this command at midnight every Tuesday.” To make
this work, you edit and save a file, called your crontab file,
which automatically gets installed in a system directory (/var/
spool/cron). Once a minute, a Linux process called cron wakes
up, checks all crontab files, and executes any jobs that are due.

crontab -e

Edit your crontab file in your default editor ($VISUAL).

crontab -l

Print your crontab file on standard output.

crontab -r

With no confirmation, delete your crontab file immediately
and permanently.

178 | Chapter 3: System Administration Basics

crontab myfile

Install the file myfile as your crontab file.

The superuser can add the option -u username to work with
other users’ crontab files.

Crontab files contain one job per line. (Blank lines and com‐
ment lines beginning with “#” are ignored.) Each line has six
fields, separated by whitespace. The first five fields specify the
time to run the job, and the last is the job command itself.

Minutes of the hour
Integers between 0 and 59. This can be a single num‐
ber (30), a sequence of numbers separated by commas
(0,15,30,45), a range (20–30), a sequence of ranges
(0-15,50-59), or an asterisk to mean “all.” You can also
specify “every nth time” with the suffix /n; for instance,
both */12 and 0-59/12 mean 0,12,24,36,48 (i.e., every 12
minutes).

Hours of the day
Same syntax as for minutes.

Days of the month
Integers between 1 and 31; again, you may use sequences,
ranges, sequences of ranges, or an asterisk.

Months of the year
Integers between 1 and 12; again, you may use sequences,
ranges, sequences of ranges, or an asterisk. Additionally,
you may use three-letter abbreviations (jan, feb, mar, …),
but not in ranges or sequences.

Days of the week
Integers between 0 (Sunday) and 6 (Saturday); again, you
may use sequences, ranges, sequences of ranges, or an
asterisk. Additionally, you may use three-letter abbrevia‐
tions (sun, mon, tue, …), but not in ranges or sequences.

Scheduling Jobs | 179

Command to execute
Any shell command. It’s executed in your login environ‐
ment, so you can include environment variables like $HOME
and they’ll work. Use only absolute paths to your com‐
mands (e.g., /usr/bin/who instead of who) to ensure that
cron runs the right programs, since a Linux system may
have several programs with the same name.

Here are some example time specifications:

* * * * * Every minute

45 * * * * 45 minutes after each hour (1:45, 2:45, etc.)

45 9 * * * Every day at 9:45 a.m.

45 9 8 * * The eighth day of every month at 9:45 a.m.

45 9 8 12 * Every December 8 at 9:45 a.m.

45 9 8 dec * Every December 8 at 9:45 a.m.

45 9 * * 6 Every Saturday at 9:45 a.m.

45 9 * * sat Every Saturday at 9:45 a.m.

45 9 * 12 6 Every Saturday in December, at 9:45 a.m.

45 9 8 12 6 Every Saturday in December, plus December
8, all at 9:45 a.m.

Here’s a complete crontab entry to run a script every Saturday
at 9:45 a.m.:

45 9 * * sat /usr/local/bin/myscript

If a job prints any output, cron emails a copy to the owner of
the crontab file.

180 | Chapter 3: System Administration Basics

TIP

Avoid long, messy shell commands in the crontab file.
Instead, store them in shell scripts to run from crontab.

Logins, Logouts, and Shutdowns
systemctl Control the state of your machine and its services.

shutdown Shut down your local machine.

reboot Reboot your local machine.

Logging in and out from GNOME, KDE, or other graphical
desktops is easy. To log out from a remote shell, just close the
shell (run exit or logout or press ^D on a line by itself). Linux
also provides commands for rebooting and shutting down the
computer or individual services. Never simply turn off the
power to a Linux system: it needs a more graceful shutdown to
preserve its filesystem.

systemctl stdin stdout - file -- opt --help --version

systemctl [options] command [arguments]

The systemctl command controls system services. It’s part of a
service manager called systemd. A full treatment of systemd is
beyond the scope of this book, but I cover a few basic uses. (See
man systemd for more details.)

systemctl can control the system as a whole:

sudo systemctl poweroff Shut down the system.

sudo systemctl reboot Reboot the system.

sudo systemctl suspend Suspend the system.

Logins, Logouts, and Shutdowns | 181

It also manages individual services, such as web servers and
databases, with the following basic commands (among others):

systemctl List all services and their
statuses.

sudo systemctl enable service_name Make a service runnable,
but do not launch it.

sudo systemctl start service_name Launch an enabled service.

sudo systemctl restart service_name Same as stop followed by
start.

sudo systemctl reload service_name Force a running service to
reread its configuration.

sudo systemctl status service_name Print the service’s current
status. For more detailed
status information, see
man journalctl.

sudo systemctl stop service_name Shut down a running
service.

sudo systemctl disable service_name Prevent a service from
being started.

Service names have the suffix “.service”, which you may omit.
For example, to restart the mySQL database server, either of the
following commands works:

→ sudo systemctl restart mysqld.service With suffix
→ sudo systemctl restart mysqld No suffix

shutdown stdin stdout - file -- opt --help --version

shutdown [options] time [message]

The shutdown command halts or reboots a Linux machine; only
the superuser may run it. (In many Linux distros, the shutdown
command is a symbolic link to systemctl.) Here’s a command

182 | Chapter 3: System Administration Basics

to halt the system in 10 minutes, broadcasting the message
“scheduled maintenance” to all users logged in:

→ sudo shutdown -h +10 "scheduled maintenance"

The time may be a number of minutes preceded by a plus sign,
like +10; an absolute time in hours and minutes, like 16:25; or
the word now to mean immediately.

With no options, shutdown puts the system into single-user
mode, a special maintenance mode in which only root is log‐
ged in (at the system console), and all nonessential services are
off. To exit single-user mode, either perform another shutdown
to halt or reboot, or exit the shell with exit or ^D to boot the
system in normal, multiuser mode.

Useful options

-r Reboot the system.

-h Halt the system.

-k Kidding: don’t really perform a shutdown, just broadcast warning messages
to all users as if the system were going down.

-c Cancel a shutdown in progress (omit the time argument).

-f On reboot, skip the usual filesystem check performed by the fsck
command (described in “Using Disks and Filesystems” on page 213).

-F On reboot, require the usual filesystem check.

For technical information about shutdowns, single-user mode,
and various system states, see man systemd or man init.

reboot stdin stdout - file -- opt --help --version

reboot [options]

The reboot command does exactly what it sounds like. It
immediately reboots the computer. You might assume that

Logins, Logouts, and Shutdowns | 183

reboot requires root privileges, but on some distros, any user
can run it.

reboot has options (see the manpage) but I rarely use them. In
some Linux distros, the reboot command is just a symbolic link
to systemctl.

Users and Their Environment
logname Print your login name.

whoami Print your current, effective username.

id Print the user ID and group membership of a user.

who List logged-in users, long output.

users List logged-in users, short output.

tty Print your terminal device name.

last Determine when someone last logged in.

printenv Print your environment.

Who are you? Only the system knows for sure. This grab-bag
of programs tells you all about users: their names, login times,
and properties of their environment.

logname stdin stdout - file -- opt --help --version

logname

The logname command prints your login name:

→ logname
smith

If this command does not work on your system, try instead:

→ echo $LOGNAME

184 | Chapter 3: System Administration Basics

whoami stdin stdout - file -- opt --help --version

whoami

The whoami command prints the name of the current, effective
user. This may differ from your login name (the output of
logname) when using the sudo command. This example distin‐
guishes whoami from logname:

→ logname Login name
smith
→ sudo logname The value does not change
smith
→ whoami Effective username
smith
→ sudo whoami The value changes
root

id stdin stdout - file -- opt --help --version

id [options] [username]

Every user has a unique, numeric user ID, and a default group
with a unique, numeric group ID. The id command prints these
values along with their associated user and group names:

→ id
uid=500(smith) gid=500(smith) groups=500(smith),6(disk)

Useful options

-u Print the effective user ID and exit.

-g Print the effective group ID and exit.

-G Print the IDs of all groups to which the user belongs.

With any of the preceding options, add -n to print user and
group names instead of IDs, and add -r to print real IDs/names
rather than effective ones.

Users and Their Environment | 185

3 If your system is configured to log this information.

who stdin stdout - file -- opt --help --version

who [options] [filename]

The who command lists all logged-in users. Users with multiple
interactive shells appear multiple times:

→ who
smith pts/0 Sep 6 17:09 (:0)
barrett pts/1 Sep 6 17:10 (10.24.19.240)
jones pts/2 Sep 8 20:58 (192.168.13.7)
jones pts/4 Sep 3 05:11 (192.168.13.7)

Normally, who reads its data from the file /var/run/utmp. The
filename argument selects a different file, such as /var/log/wtmp
for past logins or /var/log/btmp for failed logins.3

Useful options

-H Print a row of headings as the first line.

--lookup For remotely logged-in users, print the hostnames of origin.

-u Also print each user’s idle time at their terminal.

-m Display information only about yourself, the user associated with
the current terminal.

-q Quick display of usernames only and a count of users. Much like the
users command, but it adds a count.

users stdin stdout - file -- opt --help --version

users [filename]

The users command prints a quick listing of users who are
logged in. Users with multiple interactive shells appear multiple
times:

186 | Chapter 3: System Administration Basics

→ users
barrett jones smith smith smith

Like the who command, users reads /var/log/utmp by default
but can read from another supplied file instead.

tty stdin stdout - file -- opt --help --version

tty

The tty command prints the name of the terminal device
associated with the current shell:

→ tty
/dev/pts/4

last stdin stdout - file -- opt --help --version

last [options] [users] [ttys]

The last command displays a history of logins in reverse chro‐
nological order:

→ last
bob pts/3 localhost Mon Sep 8 21:07 - 21:08 (00:01)
sue pts/6 :0 Mon Sep 8 20:25 - 20:56 (00:31)
bob pts/4 myhost Sun Sep 7 22:19 still logged in
⋮

You may provide usernames or tty names to limit the output.

Useful options

-N Print only the latest N lines of output, where N is a positive
integer.

-p time Print only users who were logged in at the given time. For
current logins, run last -p now.

-i Display IP addresses instead of hostnames.

Users and Their Environment | 187

-R Don’t display hostnames.

-x Also display system shutdowns and changes in system runlevel
(e.g., from single-user mode into multiuser mode).

-f filename Read from some data file other than /var/run/wtmp; see the
who command for more details.

printenv stdin stdout - file -- opt --help --version

printenv [environment_variables]

The printenv command prints all environment variables
known to your shell and their values:

→ printenv
HOME=/home/smith
MAIL=/var/spool/mail/smith
NAME=Sandy Smith
SHELL=/bin/bash
⋮

or only specified variables:

→ printenv HOME SHELL
/home/smith
/bin/bash

User Account Management
useradd Create an account.

userdel Delete an account.

usermod Modify an account.

passwd Change a password.

chsh Change a user’s shell.

Linux installation software automatically creates the root
account and usually an ordinary user account (presumably for

188 | Chapter 3: System Administration Basics

yourself). You can also create other accounts. Just remember
that every account is a potential avenue for an intruder to enter
your system, so give them all strong, hard-to-guess passwords.

useradd stdin stdout - file -- opt --help --version

useradd [options] username

The useradd command lets the superuser create a user account.
(Don’t confuse it with the similarly named adduser command.)

→ sudo useradd -m smith

Its defaults are not very useful (run useradd -D to see them), so
be sure to supply all desired options. For example:

→ sudo useradd -d /home/smith -s /bin/bash \
 -G games,video smith

Useful options

-m Create the user’s home directory, and copy
some standard files into it from your system
skeleton directory, /etc/skel. The skeleton directory
traditionally contains minimal (skeletal) versions
of initialization files, like ~/.bashrc, to get new
users started. If you prefer to copy from a different
directory, add the -k option (-k dirname).

-d dir Set the user’s home directory to be dir.

-s shell Set the user’s login shell to be shell.

-u uid Set the user’s ID to be uid. Unless you know
what you’re doing, omit this option and accept the
default.

-c string Set the user’s comment field (historically called the
GECOS field). This is usually the user’s full name, but
it can be any string.

User Account Management | 189

-g group Set the user’s initial (default) group to group, which
can either be a numeric group ID or a group name,
and which must already exist.

-G group1,group2,… Make the user a member of the additional, existing
groups group1, group2, and so on.

userdel stdin stdout - file -- opt --help --version

userdel [-r] username

The userdel command deletes an existing user.

→ sudo userdel smith

It does not delete the user’s files (home directory, mailbox, etc.)
unless you supply the -r option. Think carefully before deleting
a user; consider deactivating the account instead (with usermod
-L). And make sure you have backups of all the user’s files
before deleting them—you might need them someday.

usermod stdin stdout - file -- opt --help --version

usermod [options] username

The usermod command modifies the given user’s account in
various ways, such as changing a home directory:

→ sudo usermod -d /home/another smith

Useful options

-a When adding the user to a group (-G), preserve the
user’s existing group memberships.

-c string Set the user’s comment field (historically called the
GECOS field). This is usually the user’s full name, but
it can be any string.

190 | Chapter 3: System Administration Basics

-d dir Change the user’s home directory to dir.

-l username Change the user’s login name to username. Think
carefully before doing this, in case anything on your
system depends on the original name. And don’t
change system accounts (root, daemon, etc.) unless
you really know what you’re doing!

-s shell Change the user’s login shell to shell.

-g group Change the user’s initial (default) group to group,
which can either be a numeric group ID or a group
name, and which must already exist.

-G group1,group2,… Make the user a member only of the existing groups
group1, group2, and so on. WARNING: if the user
currently belongs to other groups and you don’t list
them here, usermod removes the user from the
other groups. To prevent this behavior and preserve
the user’s existing groups, add the -a option.

-L Disable (lock) the account so the user cannot log in.

-U Unlock the account after a lock (-L) operation.

passwd stdin stdout - file -- opt --help --version

passwd [options] [username]

The passwd command changes a login password, yours by
default:

→ passwd

or another user’s password if run by the superuser:

→ sudo passwd smith

passwd does have options, most of them related to password
expiration. Use them only in the context of a well thought-out
security policy.

User Account Management | 191

chsh stdin stdout - file -- opt --help --version

chsh [options] [username]

The chsh (change shell) command sets your login shell pro‐
gram. Invoked without a username, chsh affects your account;
invoked with a username (by root), it affects that user. With no
options, chsh prompts you for the desired information:

→ chsh
Password: xxxxxxxx
New shell [/bin/bash]: /bin/tcsh

The new shell must be listed in the file /etc/shells.

Useful options

-s shell Specify the new shell.

-l List all permissible shells installed on your system.

Group Management
groups Print the group membership of a user.

groupadd Create a group.

newgrp Use a new group membership immediately.

groupdel Delete a group.

groupmod Modify a group.

A group is a set of accounts treated as a single entity. If you give
permission for a group to take some action (such as modify a
file), then all members of that group can take it. For example,
give full permissions for the group “friends” to read, write, and
execute the file /tmp/sample:

→ groups
users smith friends
→ chgrp friends /tmp/sample
→ chmod 770 /tmp/sample

192 | Chapter 3: System Administration Basics

→ ls -l /tmp/sample
-rwxrwx--- 1 smith friends 2874 ... /tmp/sample

To add users to a group, run usermod -aG or edit /etc/group as
root. To change the group ownership of a file, recall the chgrp
command from “Properties of Files” on page 83.

groups stdin stdout - file -- opt --help --version

groups [usernames]

The groups command prints the Linux groups to which you
belong, or to which other users belong:

→ whoami
smith
→ groups
smith users
→ groups jones root
jones : jones users
root : root bin daemon sys adm disk wheel src

groupadd stdin stdout - file -- opt --help --version

groupadd [options] group

The groupadd command creates a group. (Don’t confuse it with
the similarly named addgroup command.) In most cases, add
the -f option to prevent duplicate groups from being created:

→ sudo groupadd -f friends

Useful options

-g gid Specify a numeric group ID, gid. Normally, groupadd chooses it.

-f If the named group exists already, complain and exit.

Group Management | 193

newgrp stdin stdout - file -- opt --help --version

newgrp [-] [group]

When you’re added to a new group (e.g., with usermod -aG),
normally the change isn’t effective until your next login. The
newgrp command avoids this hassle. Run newgrp with the new
group name as an argument, and it launches a fresh shell with
your current group ID set to that group. In this way, you can
immediately use newly granted group privileges. The effect
lasts only while the new shell runs, but it beats logging out and
back in. Exit the shell to restore your default group ID.

For example, suppose you’ve just been added to the group
video. If you haven’t logged out yet, you won’t see video among
your groups.

→ groups View your active groups
smith sudo docker

Run newgrp to set your group ID to video:

→ newgrp video Launch a shell with group ID = video
→ groups Now “video” is your default group
video sudo docker smith
→ exit Set group ID back to default

The only option, a single dash, causes newgrp to set up your
environment as if you’d just logged in, like su -l does.

groupdel stdin stdout - file -- opt --help --version

groupdel group

The groupdel command deletes an existing group:

→ sudo groupdel friends

Before removing a group, identify all files owned by that group
so you can clean them up later:

194 | Chapter 3: System Administration Basics

→ sudo find / -group friends -print > /tmp/friend.files

because groupdel does not change the group ownership of any
files. It simply removes the group name from /etc/group. Any
files owned by the deleted group will retain the now-obsolete
group ID.

groupmod stdin stdout - file -- opt --help --version

groupmod [options] group

The groupmod command modifies the given group, changing its
name or group ID:

→ sudo groupmod -n newname friends

groupmod does not affect any files owned by this group: it sim‐
ply changes the ID or name in the system’s records.

Useful options

-n name Change the group’s name to name (safe).

-g gid Change the group’s ID to gid (risky). Any files with the original group
ID will now have invalid group ownership and need cleanup.

Installing Software Packages
dnf Standard package manager for RPM files (CentOS, Fedora, Red Hat,

Rocky, etc.).

yum Older package manager for RPM files.

rpm Manipulate RPM packages locally.

apt Standard package manager for DEB files (Debian, Deepin,
elementary OS, Kodachi, Linux Lite, MX, Mint, Nitrux, POP!_OS,
Rescatux, Ubuntu, Zorin OS, etc.).

aptitude Alternative package manager for DEB files.

dpkg Manipulate DEB packages locally.

Installing Software Packages | 195

emerge Portage package manager for Gentoo Linux.

pacman Package manager for Arch Linux (plus Garuda, EndeavourOS,
Manjaro, etc.).

zypper Package manager for openSUSE Linux.

flatpak Container-based package manager.

snap Container-based package manager.

Your Linux distro comes with a package manager application
to install software packages via the command line, GUI tools,
or both. Confusingly, every package manager has unique com‐
mands and may use a different file format for packages. So, one
of your first tasks as a Linux user is to learn which package
manager is standard for your distro. If you aren’t sure which
Linux distro you’re running, one of the following commands
should give you a clue:

→ cat /etc/issue
Ubuntu 22.04.2 LTS \n \l Running Ubuntu Linux
→ more /etc/*-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=22.04
DISTRIB_CODENAME=jammy
⋮

Then search for your distro’s package manager on the web, or
just run each package management command in my list to see
which ones are installed. The most common package types and
managers are:

Debian, dpkg, or .deb packages
Used by Debian, Ubuntu, and other distros. I cover the
package management commands apt, aptitude, and dpkg.

RPM packages
Used by Red Hat, Fedora, CentOS, and other distros. I
cover dnf, yum, rpm, and zypper.

These package types and others (some of which I cover) install
software into system directories like /usr/bin. Another kind

196 | Chapter 3: System Administration Basics

of package manager takes a different approach and runs its
software in a restricted mini-environment called a container.
Examples are Snap and Flatpak.

dnf stdin stdout - file -- opt --help --version

dnf [options] [packages]

dnf is the latest package manager for RPM packages (.rpm
files). The following table lists common operations:

Action dnf command

Search for a package that meets your
needs (supports wildcards * and ?).

dnf search string

Check if a package is installed. dnf list installed package

Download but don’t install a package. dnf download package

Download and install a package. sudo dnf install package

Install a package file. sudo dnf install file.rpm

Learn about a package. dnf info package

List the contents of a package. rpm -ql package

Discover which package an installed file
belongs to.

dnf provides /path/to/file

Update an installed package. sudo dnf upgrade package

Remove an installed package. sudo dnf remove package

List all packages installed on the system
(tip: pipe through less).

dnf list installed

Check for updates for all installed
packages.

dnf check-update

Update all packages on the system. sudo dnf upgrade

Update the distro to the next version. sudo dnf system-upgrade

Installing Software Packages | 197

yum stdin stdout - file -- opt --help --version

yum [options] [packages]

yum is an older package manager for RPM packages (.rpm files),
which has been largely replaced by dnf. The following table
lists common operations with yum. For operations on local files,
which yum does not provide, use the rpm command directly.

Action yum command

Search for a package that meets
your needs (supports wildcards *
and ?).

yum search string

Check if a package is installed. yum list installed package

Download a package but don’t
install it.a

sudo yum --downloadonly

install package

Download and install a package. sudo yum install package

Install a package file. rpm -ivh file.rpm

Learn about a package. yum info package

List the contents of a package. rpm -ql package

Discover which package an
installed file belongs to.

yum provides /path/to/file

Update an installed package. sudo yum update package

Remove an installed package. sudo yum remove package

List all packages installed on the
system (tip: pipe through less).

yum list installed

Check for updates for all installed
packages.

yum check-update

Update all packages on the
system.

sudo yum update

a May require the downloadonly plug-in. To install it, run sudo yum
install yum-downloadonly

198 | Chapter 3: System Administration Basics

rpm stdin stdout - file -- opt --help --version

rpm [options] [files]

If you prefer to download and install RPM packages by hand,
use the rpm command. Unlike dnf or yum, rpm works locally
on your computer: it does not search software archives on the
internet for new packages.

RPM filenames typically take the following form <name>-
<version>.<architecture>.rpm. For example, the filename
emacs-29.1-2.x86_64.rpm indicates the emacs package, version
29.1-2, for 64-bit x86 processors. Be aware that rpm sometimes
requires a filename argument (like emacs-29.1-2.x86_64.rpm)
and other times just the package name (like emacs). The fol‐
lowing table lists common operations:

Action rpm command

Check if a package is installed. rpm -q package

Install a package file. sudo rpm -ivh file.rpm

Learn about a package. rpm -qi package

List the contents of a package. rpm -ql package

Discover which package an
installed file belongs to.

rpm -qf /path/to/file

Update an installed package. sudo rpm -Uvh package_file.rpm

Remove an installed package. sudo rpm -e package

List all packages installed on the
system (tip: pipe through less).

rpm -qa

Installing Software Packages | 199

APT stdin stdout - file -- opt --help --version

apt subcommand [options] packages

dpkg [options] packages

The APT (Advanced Packaging Tool) suite of commands can
install, remove, and manipulate Debian Linux (.deb) packages.
The following table lists common operations:

Action APT command

Retrieve the latest information about
available packages before running
other commands.

sudo apt update

Search for a package that meets your
needs.

apt search string

Check if a package is installed. apt policy package

Download but don’t install a package. sudo apt install -d package

Download and install a package. sudo apt install package

Install a package file. sudo apt install file.deb

Learn about a package. apt show package

List the contents of a package. dpkg -L package

Discover which package an installed
file belongs to.

dpkg -S /path/to/file

Update an installed package. sudo apt upgrade package

Remove an installed package. sudo apt remove package

Remove an installed package and
associated files.

sudo apt purge package

List all packages installed on the
system (tip: pipe through less).

apt list --installed

Check for updates for all installed
packages (run sudo apt update
first).

sudo apt list --upgradable

200 | Chapter 3: System Administration Basics

Action APT command

Update all packages on the system. sudo apt upgrade

Update the distro to the next version. sudo apt dist-upgrade

aptitude stdin stdout - file -- opt --help --version

aptitude [options] [packages]

aptitude is another package manager for the command line
that manipulates Debian (.deb) packages. When run with no
arguments, it provides a full-terminal interactive interface to
the APT system:

→ sudo aptitude

aptitude can also run some, but not all, APT operations from
the command line. The following table lists common opera‐
tions, including a few that aptitude does not support and the
appropriate apt or dpkg commands to run instead.

Action aptitude command

Retrieve the latest
information about available
packages before running
other commands.

sudo aptitude update

Search for a package that
meets your needs.

aptitude search string

Check if a package is
installed (see “State” in the
output).

aptitude show package

Download but don’t install a
package.

aptitude download package

Download and install a
package.

sudo aptitude install package

Installing Software Packages | 201

Action aptitude command

Install a package file. sudo apt install file.deb

Learn about a package. aptitude show package

List the contents of a
package.

dpkg -L package

Discover which package an
installed file belongs to.

dpkg -S /path/to/file

Update an installed
package.

sudo aptitude safe-upgrade package

Remove an installed
package.

sudo aptitude remove package

List all packages installed
on the system (tip: pipe
through less).

aptitude search ~i

Check for updates for all
installed packages.

aptitude --simulate full-upgrade

Update all packages on the
system.

sudo aptitude full-upgrade

emerge stdin stdout - file -- opt --help --version

emerge [options] [arguments]

emaint [options] subcommand

equery [options] subcommand [arguments]

The emerge command controls the package manager in Gentoo
Linux, called Portage. Before working with Portage packages
for the first time, run the following command:

→ sudo emerge gentoolkit Install additional Portage commands

202 | Chapter 3: System Administration Basics

Action emerge command

Retrieve the latest
information about available
packages before running
other commands.

sudo emaint -a sync

Search for a package that
meets your needs, by name.

emerge -s string

Search for a package that
meets your needs, by
description.

emerge -S string

Check if a package is
installed.

equery list "*" | grep package

Download but don’t install a
package.

sudo emerge -f package

Download and install a
package.

sudo emerge package

Learn about a package. sudo equery meta [--description]

package

List the contents of a
package.

equery files package

Discover which package an
installed file belongs to.

equery belongs /path/to/file

Update an installed package. sudo emerge -u package

Remove an installed
package.

sudo emerge -cav package

List all packages installed on
the system (tip: pipe through
less).

equery list "*"

Check for updates for all
installed packages.

emerge -puD world

Update all packages on the
system.

sudo emerge -uD world

Installing Software Packages | 203

If emerge won’t remove a package because of dependencies, try
including the dependencies on the command line:

→ sudo emerge -cav my/package fails
Calculating dependencies... done!
 my/package-29.3 pulled in by:
 other/pack-16.1 requires ... dependency!
>>> No packages selected for removal by depclean
→ sudo emerge -cav my/package other/pack succeeds
Would you like to unmerge these packages? [Yes/No] Yes

pacman stdin stdout - file -- opt --help --version

pacman subcommand [options] [arguments]

The pacman command is a package manager for Arch Linux.
Arch packages are typically tar files compressed with the com‐
mand zstd. The following table lists common operations:

Action pacman command

Retrieve the latest information
about available packages before
running other commands.

sudo pacman -Sy

Search for a package that
meets your needs (by regular
expression).

pacman -Ss string

Check if a package is installed. pacman -Q package

Download but don’t install a
package.

sudo pacman -Sw package

Download and install a package. sudo pacman -S package

Install a package file. sudo pacman -U file.pkg.tar.zst

Learn about a package. pacman -Qi package

List the contents of a package. pacman -Ql package

204 | Chapter 3: System Administration Basics

Action pacman command

Discover which package an
installed file belongs to.

pacman -Qo /path/to/file

Update an installed package. sudo pacman -S package

Remove an installed package. sudo pacman -R package

List all packages installed on
the system (tip: pipe through
less).

pacman -Qe

Check for updates for all
installed packages.

sudo pacman -Syup

Update all packages on the
system.

sudo pacman -Syu

zypper stdin stdout - file -- opt --help --version

zypper [options] subcommand [subcommand_opts] [arguments]

The zypper command is a package manager for openSUSE
Linux. It uses RPM packages under the hood. The following
table lists common operations:

Action zypper command

Retrieve the latest information
about available packages before
running other commands.

sudo zypper refresh

Search for a package that meets
your needs.

zypper search string

Check if a package is installed. zypper search -i package

Download but don’t install a
package.

sudo zypper install -d package

Download and install a package. sudo zypper install package

Install a package file. sudo rpm -ivh file.rpm

Installing Software Packages | 205

Action zypper command

Learn about a package. zypper info package

List the contents of a package. rpm -ql package

Discover which package an
installed file belongs to.

rpm -qf /path/to/file

Update an installed package. sudo zypper update package

Remove an installed package. sudo zypper remove package

List all packages installed on the
system (tip: pipe through less).

zypper search -i

Check for updates for all installed
packages.

sudo zypper update --dry-run

Update all packages on the
system.

sudo zypper update

Update the distro to the next
version.

sudo zypper dist-upgrade

flatpak stdin stdout - file -- opt --help --version

flatpak subcommand [options] [arguments]

Flatpak is a system for installing software packages, called
“Flatpaks,” that run in a restricted environment, called a con‐
tainer or sandbox. A container includes all the package’s depen‐
dencies. Use the flatpak command to install, update, and
remove packages. You may need to add a remote repository
first:

→ sudo flatpak remote-add --if-not-exists flathub \
 https://flathub.org/repo/flathub.flatpakrepo

Flatpaks have limited access to the host filesystem, but for
the most part, they operate like ordinary applications…except
when you run them at the command line. Flatpaks must be run
with the flatpak command. So if you’ve installed GNU Emacs,

206 | Chapter 3: System Administration Basics

for example, find out its Flatpak ID, which is a three-part string
containing dots, such as org.gnu.emacs. Then run the program
by its ID:

→ flatpak list | grep emacs
ID ...
org.gnu.emacs ... The flatpak ID
→ flatpak run org.gnu.emacs

If typing the ID is annoying, define an alias:

alias emacs='flatpak run org.gnu.emacs'

The following table lists common operations for working with
Flatpaks system-wide, which often requires superuser privi‐
leges. To install Flatpaks just for yourself, run flatpak --user
instead of sudo flatpak.

Action Flatpak command

Add a remote repository for
downloading Flatpaks.

sudo flatpak remote-add

--if-not-exists name url

List the remotes installed
on your system.

flatpak remotes

Search for a package that
meets your needs.

flatpak search string

Check if a package is
installed.

flatpak list | grep package

Download and install a
package.

sudo flatpak install package

Install a package file. sudo flatpak install /path/to/file

Run a package. flatpak run package_id

Learn about a package. flatpak info package_id

Update an installed
package.

sudo flatpak update package_id

Remove an installed
package.

sudo flatpak uninstall package_id

Installing Software Packages | 207

Action Flatpak command

List all packages installed
on the system (tip: pipe
through less).

flatpak list

Update all packages on the
system.

sudo flatpak update

snap stdin stdout - file -- opt --help --version

snap [options] subcommand [subcommand_options]

Snap is a system for installing software packages, called “snaps,”
that run in a restricted environment, called a container or sand‐
box. A container includes all the package’s dependencies. Snaps
have limited access to the host filesystem, but for the most part,
they operate like ordinary applications. Use the snap command
to install, update, and remove packages. The following table
lists common operations:

Action snap command

Search for a package that meets your
needs.

snap find string

Check if a package is installed. snap list | grep package

Download but don’t install a package. sudo snap download package

Download and install a package. sudo snap install package

Learn about a package. snap info package

List the contents of a package. ls /snap/package/current

Update an installed package. sudo snap refresh package

Remove an installed package. sudo snap remove package

List all packages installed on the system
(tip: pipe through less).

snap list

208 | Chapter 3: System Administration Basics

Action snap command

Check for updates for all installed
packages.

snap refresh --list

Update all packages on the system. sudo snap refresh

Installing Software from Source Code
configure Prepare to build software manually with make.

make Build software from source code.

Package managers, described in “Installing Software Packages”
on page 195, generally require superuser privileges to install
software. As an ordinary user, you can also install software
within your home directory. The process requires more steps
and more understanding than using a package manager.

Downloading the Source Code
Plenty of Linux software is distributed as source code to be
downloaded and built on your local system. The two most
common forms of distribution are:

• Compressed TAR or ZIP files found on websites•
• Git repositories, cloned from servers like GitHub•

I briefly explain each and then show how to build the source
code with the commands configure and make.

Method 1: Download and unpack a TAR or ZIP file
A compressed TAR file, or “tarball,” is just a collection of files
packed up by tar. The file is usually compressed with gzip
and has the filename extension .tar.gz or .tgz, or bzip2 with the
extension .tar.bz2 or .tbz. Similarly, a .zip file is a collection of
files packed by zip. To unpack files:

Installing Software from Source Code | 209

4 A malicious archive could include an absolute file path like /etc/
passwd which, if extracted, could overwrite your system password file.
Nasty.

1. List the package contents. Assure yourself that each file,1.
when extracted, won’t overwrite something precious on
your system, either accidentally or maliciously:4
→ tar -tvf package.tar.gz | less gzip
→ tar -tvf package.tar.bz2 | less bzip2
→ unzip -l package.zip | less zip

2. If satisfied, extract the files into a new directory:2.
→ mkdir newdir
→ tar -xvf package.tar.gz -C newdir gzip
→ tar -xvf package.tar.bz2 -C newdir bzip2
→ unzip -d newdir package.zip | less zip

If this worked, continue to “Building and Installing the Code”
on page 210.

Method 2: Clone a Git repository
To obtain software from GitHub or a similar repository, copy
the URL of the desired repository and pass it to the git clone
command, which should look something like this:

→ git clone git@github.com:username/repository.git

git clone downloads a copy of the repository to your local
system. Now you’re ready to build the software.

Building and Installing the Code
Once you’ve downloaded and/or extracted the source code,
build the software. Briefly, the usual sequence of commands is:

→ ./configure PREFIX=any_writable_directory
→ make
→ make install

210 | Chapter 3: System Administration Basics

In more detail, the sequence is as follows:

1. In the source code directory, read the extracted file named1.
INSTALL or README. For example:
→ less INSTALL

2. Usually, you’re instructed to run a provided script called2.
configure, then run make, then run make install. To view
the options for the configure script, run this command
(the output is usually long):
→ ./configure --help | less

The most important option for our purposes is --prefix,
which sets the installation directory. For example, to
install the software in your home directory, in a subdirec‐
tory named packages, you’d run:
→ ./configure --prefix=$HOME/packages

If you omit the --prefix option, then configure arranges
to install the software system-wide, and you’ll need super‐
user privileges later to complete the installation.
→ ./configure

If configure fails, it usually means your local system is
missing some prerequisite software. Read the output of
configure carefully, install what is missing, and try again.

3. Once configure succeeds, build (compile) the software by3.
running make. It performs all necessary steps to prepare
the software for installation, without installing it.
→ make

If make fails, read the error output carefully, search the
web for solutions, and if appropriate, file a bug with the
maintainers of the software you’re building.

4. If make completed successfully, and you ran configure4.
with the --prefix option, complete the installation:
→ make install

Installing Software from Source Code | 211

Or, if you omitted --prefix to install the software system-
wide, use sudo:
→ sudo make install

If you originally ran configure with the --prefix option, the
installed software will be in the directory you specified, usually
in a subdirectory named bin. Optionally, add this bin directory
to your search path (see “Search Path” on page 41). If you
installed the software in $HOME/packages as in my example,
append its bin subdirectory to your PATH with this command:

→ PATH=$PATH:$HOME/packages/bin

Add this line to your shell configuration file (see “Tailoring
Shell Behavior” on page 58) to make the new software available
to your future shells.

212 | Chapter 3: System Administration Basics

CHAPTER 4

Filesystem Maintenance

Using Disks and Filesystems
df Display available space on mounted filesystems.

lsblk List disks and other block devices.

mount Make a disk partition accessible.

umount Unmount a disk partition (make it inaccessible).

fsck Check a disk partition for errors.

Linux systems can have multiple disks or partitions. In casual
conversation, these are variously called devices, filesystems,
volumes, even directories. I’ll try to be more precise.

A disk is a mass storage device, which may be divided into
partitions that act as independent devices. Disks and partitions
are represented on Linux systems as special files in the direc‐
tory /dev. For example, /dev/sda7 could be a partition on your
hard drive. Some common devices in /dev are:

sda First block device, such as SCSI, SATA, or USB hard drives; partitions are
sda1, sda2, ….

sdb Second block device; partitions are sdb1, sdb2, …. Likewise for sdc,
sdd, etc.

213

1 You can mount a filesystem on a nonempty directory, but the direc‐
tory’s contents become inaccessible until you unmount.

md0 First RAID device; partitions are md0p1, md0p2, …. Likewise for md1,
md2, etc.

nvme0n1 First NVMe SSD device; partitions are nvme0n1p1, nvme0n1p2, ….
Likewise for nvme1n1, nvme2n1, etc. The second integer, like the 1 in
nvme0n1p2, is called the namespace ID, and most users can ignore it.

Before a partition can hold files, it is formatted by a program
that creates a filesystem on it (see “Creating and Modifying
Filesystems” on page 219). A filesystem defines how files are
represented; examples are ext4 (a Linux journaling filesystem)
and NTFS (a Microsoft Windows filesystem). Formatting is
generally done for you when you install Linux.

After creating a filesystem, make it available by mounting its
partition on an empty directory.1 For example, if you mount a
Windows filesystem on a directory /mnt/win, it becomes part
of your system’s directory tree, and you can create and edit files
like /mnt/win/myfile.txt. Mounting generally happens automat‐
ically at boot time. You can also unmount partitions to make
them inaccessible via the filesystem for maintenance.

df stdin stdout - file -- opt --help --version

df [options] [disk devices | files | directories]

The df (disk free) command shows you the size, used space,
and free space on a given disk partition. If you supply a file
or directory, df describes the disk device on which that file or
directory resides. With no arguments, df reports on all moun‐
ted filesystems:

214 | Chapter 4: Filesystem Maintenance

→ df
Filesystem 1k-blocks Used Avail Use% Mounted on
/dev/sda 1011928 225464 735060 24% /
/dev/sda9 521748 249148 246096 51% /var
/dev/sda8 8064272 4088636 3565984 54% /usr
/dev/sda10 8064272 4586576 3068044 60% /home

The df command may list all sorts of devices besides disks. To
limit the display to disks, try these options (and create an alias
if it’s helpful):

→ df -h -x tmpfs -x devtmpfs -x squashfs

Useful options

-k List sizes in KB (the default).

-m List sizes in MB.

-B N Display sizes in blocks of N bytes. (Default = 1024)

-h

-H

Print human-readable output and choose the most appropriate unit
for each size. For example, if your two disks have 1 gigabyte and 25
KB free, respectively, df -h prints 1G and 25K. The -h option uses
powers of 1024, whereas -H uses powers of 1000.

-l Display only local filesystems, not networked filesystems.

-T Include the filesystem type (ext3, vfat, etc.) in the output.

-t type Display only filesystems of the given type.

-x type Don’t display filesystems of the given type.

-i Inode mode. Display total, used, and free inodes for each filesystem,
instead of disk blocks. When all inodes on a filesystem are used, the
filesystem is “full” even if free disk space remains.

Using Disks and Filesystems | 215

lsblk stdin stdout - file -- opt --help --version

lsblk [options] [devices]

The lsblk command lists the mass storage devices, known as
block devices, available on a Linux system, such as hard disks,
SSDs, and RAM disks.

→ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 20G 0 disk
├─sda1 8:1 0 1M 0 part
├─sda2 8:2 0 513M 0 part /boot/efi
├─sda3 8:3 0 19.5G 0 part /
sdb 8:80 0 7.6G 0 disk
└─sdb1 8:81 1 7.6G 0 part /mnt/usb-key

The output shows a hard drive at /dev/sda with three partitions,
and a USB thumb drive at /dev/sdb with a single partition.
lsblk has a ton of formatting options and can limit itself to
particular devices.

→ lsblk -o NAME,SIZE /dev/sda
NAME SIZE
sda 20G
├─sda1 1M
├─sda2 513M
└─sda3 19.5G

Useful options

-l Display a simple list instead of a tree.

-a Show all block devices, including those normally hidden.

-f Add information about the filesystems on each device.

-o columns Print only the given columns, which you provide as a comma-
separated list. View the available columns with lsblk
--help.

-J Print the list in JSON format for easy processing by programs.

216 | Chapter 4: Filesystem Maintenance

mount stdin stdout - file -- opt --help --version

mount [options] [device | directory]

The mount command makes a partition accessible. Most com‐
monly it handles disk drives (say, /dev/sda1) and removable
media (e.g., USB keys), making them accessible via an existing
directory (say, /mnt/mydir):

→ sudo mkdir /mnt/mydir
→ ls /mnt/mydir Notice it’s empty
→ sudo mount /dev/sda1 /mnt/mydir
→ ls /mnt/mydir
file1 file2 file3 Files on the mounted partition
→ df /mnt/mydir
Filesystem 1K-blocks Used Avail Use% Mounted on
/dev/sda1 1011928 285744 674780 30% /mnt/mydir

mount has many uses; I discuss only the most basic. In most
common cases, mount reads the file /etc/fstab (filesystem table,
pronounced “F S tab”) to learn how to mount a desired disk.
For example, if you run mount /usr, the mount command looks
up “/usr” in /etc/fstab, whose line might look like this:

/dev/sda8 /usr ext4 defaults 1 2

Here mount learns that device /dev/sda8 should be mounted
on /usr as a Linux ext4-formatted filesystem with default
options. Mount it with either of these commands:

→ sudo mount /dev/sda8 By device
→ sudo mount /usr By directory

mount is run typically by the superuser, but common removable
devices like USB keys and DVDs often can be mounted and
unmounted by any user.

Useful options

-t type Specify the type of filesystem, such as ext4 or ntfs.

-l List all mounted filesystems; works with -t too.

Using Disks and Filesystems | 217

2 Notice the spelling is “umount,” not “unmount.”

-a Mount all filesystems listed in /etc/fstab. Ignores entries that include
the noauto option. Works well with -t too.

-r Mount the filesystem read-only (see the manpage for disclaimers).

umount stdin stdout - file -- opt --help --version

umount [options] [device | directory]

umount does the opposite of mount: it makes a disk partition
unavailable via the filesystem.2 For instance, if you’ve mounted
a USB thumb drive, umount it before you unplug it:

→ umount "/media/smith/My Vacation Photos"

Always unmount any removable medium before ejecting it,
particularly if it’s writable, or you risk damage to its filesystem.
To unmount all mounted devices:

→ sudo umount -a

Don’t unmount a filesystem that’s in use; in fact, the umount
command refuses to do so for safety reasons.

fsck stdin stdout - file -- opt --help --version

fsck [options] [devices]

The fsck (filesystem check) command validates a Linux disk
filesystem and, if requested, repairs errors found on it. fsck
runs automatically when your system boots, or manually. In
general, unmount a device before checking it, so no other
programs are operating on it at the same time:

218 | Chapter 4: Filesystem Maintenance

→ sudo umount /dev/sda10
→ sudo fsck -f /dev/sda10
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/home: 172/1281696 files (11.6% non-contiguous), ...

You cannot use fsck to fix your root filesystem while your
system is running normally. Boot first on a Linux USB thumb
drive or other rescue media, then run fsck.

fsck is a frontend for a set of filesystem-checking commands
found in /sbin, with names beginning “fsck”. Only certain types
of filesystems are supported; list them with the command:

→ ls /sbin/fsck.* | cut -d. -f2 | column
cramfs ext3 fat hfsplus msdos
ext2 ext4 hfs minix vfat

Useful options

-A Check all disks listed in /etc/fstab, in order.

-f Force fsck to run even if no errors are apparent.

-N Print a description of the checking that would be done, but exit without
performing any checking.

-r Fix errors interactively, prompting before each fix.

-a Fix errors automatically (use only if you really know what you’re doing; if
not, you can seriously mess up a filesystem).

Creating and Modifying Filesystems
mkfs Format (create a filesystem on) a disk partition.

resize2fs Grow or shrink a disk partition.

e2label Change the volume label on a disk partition.

Creating and Modifying Filesystems | 219

Disk-related operations like partitioning and formatting can be
complex at the command line. In general, for anything more
complicated than formatting a single partition, I recommend
using a graphical application such as gparted. Honestly, it’s
easier and less error-prone.

Nevertheless, I still run a few operations at the command line
that are quick and easy. One is listing the partitions of a storage
device like /dev/sda with fdisk:

→ sudo fdisk -l /dev/sda
Disk /dev/sda: 20 GiB, 21474836480 bytes, ...
⋮
Device Start End Sectors Size Type
/dev/sda1 2048 4095 2048 1M BIOS boot
/dev/sda2 4096 1054719 1050624 513M EFI System
/dev/sda3 1054720 41940991 40886272 19.5G Linux

or similarly with parted:

→ sudo parted /dev/sda -- print

Another is exporting the partition table of a storage device for
safekeeping. (Store it on a USB thumb drive or other device,
not the disk you’re working on!)

→ sudo sfdisk -d /dev/sda > /mnt/thumb/sda.txt

Later, if you mess up a risky partitioning operation, you can
restore the partition table (but be careful to specify the correct
disk device or you’ll overwrite the wrong partition table):

→ sudo sfdisk /dev/device < /mnt/thumb/sda.txt

The commands that follow are also relatively basic operations
on disks and filesystems without graphical tools.

220 | Chapter 4: Filesystem Maintenance

mkfs stdin stdout - file -- opt --help --version

mke2fs [options] device

mkfs.ext3 [options] device

mkfs.ext4 [options] device

mkntfs [options] device

mkfs.ntfs [options] device ...and many other variations...

The mkfs family of commands formats a Linux storage device
for a variety of filesystems. The storage device is usually a
partition, such as /dev/sdb1.

WARNING

mkfs erases a storage device. Make sure the device name
you provide is the correct one!

Examples:

→ sudo mkfs.ext4 /dev/device Standard Linux filesystem
→ sudo mke2fs /dev/device Standard Linux filesystem
→ sudo mkfs.ntfs /dev/device Microsoft Windows filesystem
→ sudo mkntfs /dev/device Microsoft Windows filesystem

As you can see, most of the command names are “mkfs” fol‐
lowed by a dot and a filesystem type, like mkfs.ext4. They
may also have alternate names (links) with the filesystem type
embedded in the middle of “mkfs”, such as mke2fs for an “ext”
filesystem. To list all such commands installed on your system,
run:

→ ls /usr/*bin/mkfs.*
/usr/sbin/mkfs.ext2 /usr/sbin/mkfs.hfs
/usr/sbin/mkfs.ext3 /usr/sbin/mkfs.minix
/usr/sbin/mkfs.ext4 /usr/sbin/mkfs.msdos
/usr/sbin/mkfs.fat /usr/sbin/mkfs.ntfs

Creating and Modifying Filesystems | 221

Useful options

-n Dry-run mode: don’t format anything. Just display what would be
done.

-L name Label the formatted volume with the given name, which can be up to
16 bytes long.

-b N Set the block size to N bytes.

resize2fs stdin stdout - file -- opt --help --version

resize2fs [options] device [size]

The resize2fs command grows or shrinks a standard Linux
filesystem of type ext2, ext3, or ext4. To enlarge a filesystem:

1. Confirm that the device has enough free space immedi‐1.
ately following the current partition.

2. Unmount the filesystem.2.
3. Enlarge its disk partition with gparted or similar program.3.

(This requires free space just after the current partition.)
4. Check the filesystem with fsck.4.
5. Run resize2fs with appropriate arguments. In modern5.

kernels, the filesystem may be mounted during resizing.

To shrink a filesystem:

1. Confirm with df that the data in the filesystem (the “Used”1.
column) will fit within the proposed new size.

2. Unmount the filesystem.2.
3. Run resize2fs with appropriate arguments.3.

222 | Chapter 4: Filesystem Maintenance

4. Shrink its disk partition with gparted or a similar4.
program.

5. Check the filesystem with fsck.5.

To resize a filesystem on /dev/sda1, assuming you’ve already
completed any checking and partitioning, run resize2fs either
with or without a size:

→ sudo resize2fs /dev/sda1 100G Resize to 100 GB
→ sudo resize2fs /dev/sda1 Resize to the partition size

Sizes can be an absolute number of blocks, like 12345690, or
a size followed by K (KB), M (MB), G (GB), T (terabytes), or s
(512-byte sectors). The values are powers of two, so 1K means
1024, not 1000, and so on.

If you resize filesystems often, make your life easier with logical
volume management (LVM), as explained in “Logical Volumes
for Flexible Storage” on page 229, or a more modern filesystem,
as in “ZFS: A Modern, Do-It-All Filesystem” on page 235.

Useful options

-f Force the resizing operation, even if resize2fs complains.

-p Display the progress of the operation as it runs.

e2label stdin stdout - file -- opt --help --version

e2label device [label]

A label is a nickname for a filesystem. The e2label command
sets or prints the label of a standard Linux filesystem of type
ext2, ext3, or ext4. Filesystems don’t require labels, but they’re
convenient for referring to filesystems in /etc/fstab.

→ sudo e2label /dev/sdb1 backups Assign a label
→ sudo e2label /dev/sdb1 Print a label
backups

Creating and Modifying Filesystems | 223

RAID Arrays for Redundancy
mdadm Manage RAID arrays.

RAID (Redundant Array of Independent Disks) is a technique
that distributes a computer’s data across multiple disks, trans‐
parently, while acting like a single disk. Usually, RAID is for
redundancy—if one disk dies, your files are still intact. Other
types of RAID increase the performance of storage.

A bunch of disks in a RAID arrangement is called a RAID
array. The type of RAID, called the RAID level, determines how
many drive failures the array can tolerate and still guarantee the
data’s safety. Some standard RAID levels are RAID-0, RAID-1,
RAID-5, RAID-10, and others you can explore on the web.

Let’s create a minimal RAID-1 array using the most common
RAID software for Linux, mdadm. RAID-1 adds redundancy
simply by mirroring data from one drive to the others in the
array. As long as one drive is still operating, the data is safe.
For this example, I start with two disks, /dev/sdf and /dev/sdg,
each of which has a 10 GB partition, /dev/sdf1 and /dev/sdg1.
The steps I show are largely the same for other RAID levels and
additional devices. For full details, visit the Linux Raid Wiki.

WARNING

RAID operations can wipe out filesystems without confir‐
mation. Practice the commands on spare drives or a virtual
machine for safety.

Create a RAID Array
First, show that no RAID setup exists yet:

→ cat /proc/mdstat
Personalities : No RAID types listed

Create the RAID-1 array /dev/md1, from the two partitions:

224 | Chapter 4: Filesystem Maintenance

https://oreil.ly/ibL7l

→ sudo mdadm --create /dev/md1 --level 1 \
 --raid-devices 2 /dev/sdf1 /dev/sdg1

View /proc/mdstat again. The Personalities line now shows that
RAID-1 is in use, and the next line shows the new array, md1,
which is being built:

→ cat /proc/mdstat
Personalities : [raid1]
md1 : active raid1 sdg1[1] sdf1[0]
 10474496 blocks super 1.2 [2/2] [UU]
 [=========>...........] resync = 45.8% ...
 finish=0.4min ...

Optionally, wait for the build (“resync”) to complete:

→ cat /proc/mdstat
Personalities : [raid1]
md1 : active raid1 sdg1[1] sdf1[0]
 10474496 blocks super 1.2 [2/2] [UU]

However, you don’t have to wait. The array is usable immedi‐
ately. Format and mount it like any other storage device:

→ sudo mke2fs /dev/md1 Format the array
→ sudo mkdir /mnt/raid Mount it
→ sudo mount /dev/md1 /mnt/raid
→ df -h /mnt/raid View it
Filesystem Size Used Avail Use% Mounted on
/dev/md1 9.9G 24K 9.4G 1% /mnt/raid

Run lsblk to illustrate the RAID configuration:

→ lsblk
⋮
sdf 8:80 0 10G 0 disk
└─sdf1 8:81 0 10G 0 part
 └─md1 9:1 0 10G 0 raid1 /mnt/raid
sdg 8:96 0 10G 0 disk
└─sdg1 8:97 0 10G 0 part
 └─md1 9:1 0 10G 0 raid1 /mnt/raid

Run mdadm to see more details about the array:

RAID Arrays for Redundancy | 225

3 If your RAID array mysteriously renames itself /dev/md127, you for‐
got to run update-initramfs in the previous step.

→ sudo mdadm --detail /dev/md1
dev/md1:
 ⋮
 Creation Time : Thu Jul 20 13:15:08 2023
 Raid Level : raid1
 Array Size : 10474496 (9.99 GiB 10.73 GB)
 Raid Devices : 2
 State : clean
Working Devices : 2
 ⋮
Number Major Minor RaidDevice State
 0 8 81 0 active sync /dev/sdf1
 1 8 97 1 active sync /dev/sdg1

When you’re satisfied with the array, save its configuration so it
will survive reboots and mount itself. Don’t skip any steps.

1. Save the RAID configuration to a file:1.
→ sudo mdadm --detail --scan --verbose > /tmp/raid
→ cat /tmp/raid
ARRAY /dev/md1 level=raid1 num-devices=2 ...

2. Use a text editor to append the contents of /tmp/raid to the2.
configuration file /etc/mdadm/mdadm.conf, replacing any
previous RAID configuration.

3. Run this command to update the Linux kernel:3.
→ sudo update-initramfs -u

4. Reboot. Check that your RAID array survived by mount‐4.
ing it by hand:3
→ sudo mount /dev/md1 /mnt/raid

5. If everything worked, add this line to /etc/fstab so your5.
RAID array mounts at boot time:
/dev/md1 /mnt/raid ext4 defaults 0 2

226 | Chapter 4: Filesystem Maintenance

WARNING

Don’t update /etc/fstab too early. If your RAID configura‐
tion has a problem and you reboot, the computer might
hang. Instead, test the configuration first by rebooting and
mounting the array by hand, as I have.

Replace a Device in a RAID Array
So, your RAID array is up and running. What happens when a
device dies and needs replacement? First, the failure is visible
in /proc/mdstat. The failed device, /dev/sdf1, is marked with
(F), and the uptime indicator, which should read [UU] (two
devices up), reads [U_] (first device up, second device down).

→ cat /proc/mdstat
Personalities : [raid1]
md1 : active raid1 sdf1[1](F) sdg1[0]
 10474496 blocks super 1.2 [2/1] [U_]

mdadm also shows the array as “degraded” and the device as
“faulty”:

→ sudo mdadm --detail /dev/md1
/dev/md1:
 ⋮
 Raid Devices : 2
 State : clean, degraded
 Working Devices : 1
 Failed Devices : 1
 ⋮
 Number Major Minor RaidDevice State
 1 8 97 - faulty /dev/sdf1

To replace device /dev/sdf1, mark it as failed (if it isn’t already)
and remove it from the RAID array:

→ sudo mdadm --manage /dev/md1 --fail /dev/sdf1
→ sudo mdadm --manage /dev/md1 --remove /dev/sdf1

RAID Arrays for Redundancy | 227

Shut down the computer, unplug the power cable, and physi‐
cally swap the failed storage device for a new one of the same
size or larger. I’ll call it by a nonexistent name /dev/NEW to
clearly distinguish it in my instructions because the following
commands are destructive, and you don’t want to mix up your
drives. Substitute the correct device name on your system.

Boot the computer, identify a good drive in the RAID array (in
our case, /dev/sdg), and copy its partition table onto the new
device with the sgdisk command.

→ sudo sgdisk -R /dev/NEW /dev/sdg Copy from sdg to NEW
→ sudo sgdisk -G /dev/NEW Randomize GUIDs

The device /dev/NEW now has a 10 GB partition, /dev/NEW1.
Add it to the array:

→ sudo mdadm --manage /dev/md1 --add /dev/NEW1
mdadm: added /dev/NEW1

The array immediately begins rebuilding itself, mirroring data
onto the new device:

→ cat /proc/mdstat
⋮
[==========>..........] recovery = 51.5% ...
 finish=0.4min ...

When mirroring is complete, the new device /dev/NEW1 has
replaced the faulty device /dev/sdf1:

→ cat /proc/mdstat
Personalities : [raid1]
md1 : active raid1 NEW1[1] sdg1[0]
 10474496 blocks super 1.2 [2/2] [UU]

Destroy a RAID Array
Should you ever want to destroy the RAID array and use the
partitions for other purposes, run these commands, assuming
your device names are /dev/sdg1 and /dev/sdh1:

→ sudo umount /mnt/raid
→ sudo mdadm --stop /dev/md1

228 | Chapter 4: Filesystem Maintenance

mdadm: stopped /dev/md1
→ sudo mdadm --zero-superblock /dev/sdg1 /dev/sdh1

Finally, update /etc/fstab and /etc/mdadm/mdadm.conf to
remove the RAID array /dev/md1, and inform the kernel that
the array is gone:

→ sudo update-initramfs -u

Logical Volumes for Flexible Storage
pvcreate Create a physical volume.

pvdisplay View details of physical volumes.

pvremove Delete a physical volume.

pvs View other details of physical volumes.

vgcreate Create a volume group.

vgdisplay View details of volume groups.

vgextend Add physical volumes to a volume group.

vgreduce Remove physical volumes from a volume group.

vgremove Delete a volume group.

lvcreate Create a logical volume.

lvdisplay View details of logical volumes.

lvresize Resize a logical volume.

lvremove Delete a logical volume.

Logical volume management (LVM) solves two annoying prob‐
lems with disk storage:

• Limited size. When a disk fills up, you have to delete files•
or replace it with a larger disk.

• Fixed partitions. When you partition a disk, you guess•
how much space each partition will require, and if you’re
wrong, it’s time-consuming to change.

Logical Volumes for Flexible Storage | 229

LVM solves these problems by wrapping a layer of abstraction
around physical storage. It collects together a bunch of physical
disks of any sizes, called physical volumes, to simulate one big
disk, which it calls a volume group. The volume group becomes
a playground for creating simulated partitions, called logical
volumes, that can grow and shrink on demand. Figure 4-1
shows the relationship between physical volumes (PVs), the
volume group (VG) that contains them, and logical volumes
(LVs) that you carve out of the total space. If the VG runs
out of space, simply add another physical volume and the VG
grows. If a partition (LV) is the wrong size, just change it.
Existing files are preserved. Any mass storage devices can be
part of a volume group, even RAID arrays created with mdadm
(see “RAID Arrays for Redundancy” on page 224).

Figure 4-1. LVM concepts. Physical volumes (PV) are collected into a
volume group (VG). Logical volumes (LV) are carved out of the VG.

The most popular LVM software for Linux is called lvm2. It
includes over 50 commands, which might seem like a lot, but
their names follow a simple pattern: pv, vg, or lv, followed
by a verb like create, remove, or display. So vgcreate creates
a volume group, and pvdisplay prints information about a
physical volume.

230 | Chapter 4: Filesystem Maintenance

4 Operate on partitions rather than whole disks.

WARNING

LVM operations can wipe out filesystems without confir‐
mation. Practice the commands on spare drives or a virtual
machine for safety.
Also, LVM provides no inherent redundancy. If one phys‐
ical volume dies, you lose the whole volume group. For
more safety, run LVM on top of RAID; see “RAID Arrays
for Redundancy” on page 224.

I now present examples of using the most common lvm2
commands, using three empty 10 GB disk partitions, /dev/
sdb1, /dev/sdc1, and /dev/sdd1.4 lvm2 has dozens more com‐
mands, however. For a full list, view the manpage of any lvm2
command and jump to the end or visit sourceware.org/lvm2.

Create a First Logical Volume
This sequence of steps sets up two physical volumes, groups
them into a 20 GB volume group, myvg, and creates a 15 GB
logical volume, stuff:

→ sudo pvcreate /dev/sdb1 /dev/sdc1 Create two PVs
 Physical volume "/dev/sdb1" successfully created.
 Physical volume "/dev/sdc1" successfully created.
→ sudo vgcreate myvg /dev/sdb1 /dev/sdc1 Create a VG
 Volume group "myvg" successfully created
→ sudo lvcreate -L 15G -n stuff myvg Create the LV
 Logical volume "stuff" created.
→ sudo pvs View the PVs
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 myvg lvm2 a-- <10.00g 0
 /dev/sdc1 myvg lvm2 a-- <10.00g 5.34g

Logical Volumes for Flexible Storage | 231

https://oreil.ly/Gl2AZ
https://oreil.ly/yLLli

The logical volume stuff is usable like any other storage device.
Format and mount it:

→ sudo mke2fs /dev/myvg/stuff Format the LV
→ sudo mkdir /mnt/stuff Mount it
→ sudo mount /dev/myvg/stuff /mnt/stuff
→ df -h /mnt/stuff View it
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/myvg-stuff 15G 24K 1.4G 1% /mnt/stuff

When your LV is ready, add this line to /etc/fstab to mount it at
boot time:

/dev/mapper/myvg-stuff /mnt/stuff ext4 defaults 0 2

View LVM Details
The pvdisplay, vgdisplay, and lvdisplay commands print
details about physical volumes, volume groups, and logical
volumes, respectively. The commands pvs, vgs, and lvs print
helpful summaries of that information.

→ sudo pvdisplay Show all PVs
→ sudo pvdisplay /dev/sdb1 Show selected PVs
→ sudo pvs Summarize PVs
→ sudo vgdisplay Show all VGs
→ sudo vgdisplay myvg Show selected VGs
→ sudo vgs Summarize VGs
→ sudo lvdisplay Show all LVs
→ sudo lvdisplay myvg/stuff Show selected LVs
→ sudo lvs Summarize LVs

Add a Logical Volume
Let’s run lvcreate again to add a 2 GB logical volume called
tiny to our volume group:

→ sudo lvcreate -L 2G -n tiny myvg
 Logical volume "tiny" created.
→ sudo mke2fs /dev/myvg/tiny Format
→ sudo mkdir /mnt/tiny Mount
→ sudo mount /dev/myvg/tiny /mnt/tiny

232 | Chapter 4: Filesystem Maintenance

5 Old-timers may resize an LV by running lvextend, umount, fsck,
resize2fs, and mount in sequence. lvresize is easier.

→ df -h /mnt/tiny View
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/myvg-tiny 2.0G 24K 1.9G 1% /mnt/tiny

Add Disks to a Volume Group
The vgextend command adds physical volumes to a volume
group. Suppose you want to increase the size of stuff by 10
GB (to 25 GB), but there’s only 3 GB of space left in volume
group myvg. Enlarge your VG by adding a third physical vol‐
ume, /dev/sdd1, increasing the VG’s total size to 30 GB:

→ sudo pvcreate /dev/sdd1 Create another PV
→ sudo vgextend myvg /dev/sdd1 Grow the VG

At this point, the LVM setup looks like Figure 4-1. Run lsblk
to illustrate the LVM configuration:

→ lsblk /dev/sdb /dev/sdc /dev/sdd
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sdb 8:16 0 10G 0 disk
└─sdb1 8:17 0 10G 0 part
 └─myvg-stuff 253:0 0 15G 0 lvm /mnt/stuff
sdc 8:32 0 10G 0 disk
└─sdc1 8:33 0 10G 0 part
 ├─myvg-stuff 253:0 0 15G 0 lvm /mnt/stuff
 └─myvg-tiny 253:1 0 2G 0 lvm /mnt/tiny
sdd 8:48 0 10G 0 disk
└─sdd1 8:49 0 10G 0 part

Enlarge a Logical Volume
The lvresize command grows or shrinks a logical volume.5
Let’s enlarge the LV stuff to 25 GB:

→ sudo lvresize --resizefs --size 25G /dev/myvg/stuff
→ df -h /mnt/stuff

Logical Volumes for Flexible Storage | 233

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/myvg-stuff 25G 24K 24G 1% /mnt/stuff

Shrink a Logical Volume
It turns out the LV stuff doesn’t need to be so large. Shrink it to
8 GB (making sure first that it has less than 8 GB in use):

→ sudo lvresize --resizefs --size 8G /dev/myvg/stuff
Do you want to unmount "/mnt/stuff" ? [Y|n] y
⋮
Logical volume myvg/stuff successfully resized.
→ df -h /mnt/stuff
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/myvg-stuff 7.9G 24K 7.5G 1% /mnt/stuff

Delete a Logical Volume
The lvremove command deletes a logical volume. Let’s get rid
of the LV tiny:

→ sudo umount /mnt/tiny First unmount the LV
→ sudo lvremove /dev/myvg/tiny Remove the LV
Do you really want to remove and DISCARD
active logical volume myvg/tiny? [y/n]: y
 Logical volume "tiny" successfully removed

Reduce a Volume Group
The vgreduce command removes an unused physical volume
from a volume group. The PV remains managed by lvm2, just
not within the VG myvg:

→ sudo vgreduce myvg /dev/sdd1
 Removed "/dev/sdd1" from volume group "myvg"

Delete a Volume Group
The vgremove command removes a volume group and deletes
any logical volumes it contains:

→ sudo vgremove myvg
Do you really want to remove volume group "myvg"

234 | Chapter 4: Filesystem Maintenance

containing 1 logical volumes? [y/n]: y
Do you really want to remove and DISCARD
active logical volume myvg/stuff? [y/n]: y
 Logical volume "stuff" successfully removed
 Volume group "myvg" successfully removed

Delete a Physical Volume
The pvremove command removes physical devices from LVM:

→ sudo pvremove /dev/sdb1 /dev/sdc1
 Labels on physical volume "/dev/sdb1" wiped.
 Labels on physical volume "/dev/sdc1" wiped.

ZFS: A Modern, Do-It-All Filesystem
zpool Configure a ZFS storage pool.

zfs Configure a ZFS dataset.

WARNING

ZFS operations can wipe out filesystems without confirma‐
tion. Practice the commands on spare drives or a virtual
machine for safety.

ZFS (Zettabyte File System) packs advanced features like RAID,
logical volume management, encryption, and compression into
one convenient package. If you’re accustomed to traditional
Linux filesystems like ext4, ZFS may seem like an alien world.
It has its own terminology with “pools” and “vdevs.” It doesn’t
use /etc/fstab or the mount command. You don’t even need to
partition or format your disks explicitly.

A ZFS vdev, short for “virtual device,” is a group of physical
disks that work together. They might divide the data among
themselves as if they were one big disk, like a RAID-0 “disk
striping” setup. They might mirror each other for redundancy,

ZFS: A Modern, Do-It-All Filesystem | 235

like a RAID-1 setup. They might operate as a disk cache; and
there are other possibilities.

A collection of vdevs is called a pool. A pool acts like one big
storage device. You can carve it up into units that are sort
of like partitions, called datasets, and you can change their
size limits and other attributes flexibly. Dataset names look
like Linux paths without a leading slash. For example, a pool
named mypool with a dataset named stuff would be named
mypool/stuff. (Datasets can contain other datasets too, like
mypool/stuff/important.) Add a leading slash, and you get the
dataset’s default Linux mount point, like /mypool/stuff.

ZFS isn’t the only filesystem with advanced capabilities—
another popular one is Btrfs—but it’s among the easiest to
configure.

NOTE

I discuss only the minimal ZFS functionality to do inter‐
esting things. Real ZFS systems need careful configura‐
tion, tuning, and plenty of RAM; read the docs at https://
oreil.ly/-t5Fu.

To demonstrate ZFS with both mirroring and striping, I use
two pairs of disks, as in Figure 4-2. Each pair is a vdev with
mirroring (RAID-1). ZFS then stripes across the two vdevs
(RAID-0), effectively creating a RAID-10 setup. This redun‐
dant pool can tolerate one failed drive in each vdev and keep
the data safe.

236 | Chapter 4: Filesystem Maintenance

https://oreil.ly/-t5Fu
https://oreil.ly/-t5Fu

Figure 4-2. Our example ZFS configuration: a RAID-10 pool

Create a ZFS Pool
Use the zpool command to construct the pool of two pairs of
mirrored drives. I create a pool called mypool from four 10 GB
disk devices, /dev/sdb, /dev/sdc, /dev/sdd, and /dev/sde:

→ sudo zpool create mypool \
 mirror /dev/sdb /dev/sdc \
 mirror /dev/sdd /dev/sde

WARNING

The simple device names in my examples, like /dev/sdb,
can change after a reboot. For a more robust setup, use
names that are guaranteed not to change, like the symbolic
links found in /dev/disk/by-id or /dev/disk/by-uuid.
Also, on real systems, be sure to set an appropriate align‐
ment shift value with -o ashift on creation; see the docs.

ZFS: A Modern, Do-It-All Filesystem | 237

Use zpool status to view the results.

→ zpool status
 pool: mypool
 state: ONLINE
config:
 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0 The pool
 mirror-0 ONLINE 0 0 0 First vdev
 sdb ONLINE 0 0 0
 sdc ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0 Second vdev
 sdd ONLINE 0 0 0
 sde ONLINE 0 0 0

Create a ZFS Dataset
Traditional filesystems have partitions of fixed size that you
mount in the file /etc/fstab. ZFS has datasets of arbitrary size
that it mounts automatically. Create a dataset named data in
pool mypool, mounted at the directory /mypool/data:

→ sudo zfs create -o mypool/data

Move the mount point if you like, to /mnt/stuff:

→ sudo zfs set mountpoint=/mnt/stuff mypool/data

View the results with either of these commands:

→ zfs mount
mypool /mypool The whole pool
mypool/data /mnt/stuff Your dataset
→ zfs get mountpoint mypool/data
NAME PROPERTY VALUE SOURCE
mypool/data mountpoint /mnt/stuff local

Now use the dataset like any other mounted partition:

→ sudo cp /etc/hosts /mnt/stuff
→ cd /mnt/stuff
→ ls
hosts

238 | Chapter 4: Filesystem Maintenance

Create an Encrypted ZFS Dataset
By adding a few options, you can create a dataset that’s encryp‐
ted and requires a passphrase before mounting. Create an
encrypted dataset named mypool/cryptic:

→ zfs create \
 -o encryption=on \
 -o keylocation=prompt \
 -o keyformat=passphrase \
 mypool/cryptic
Enter new passphrase: xxxxxxxx
Re-enter new passphrase: xxxxxxxx

Use the dataset normally. When you reboot or otherwise need
to mount the dataset, run:

→ sudo zfs mount -l mypool/cryptic

Set Size Limits on ZFS Datasets
By default, a ZFS dataset is the same size as the pool. Limit its
size by setting a quota, which you may change anytime:

→ sudo zfs set quota=15g mypool/data
→ zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 312K 18.4G 25K /mypool
mypool/data 24K 15.0G 24K /mnt/stuff 15 GB limit

Enable Compression on ZFS Datasets
ZFS can automatically compress data as it’s written and uncom‐
press it when read. It supports various compression algorithms;
here I use gzip compression and view how effectively files are
being compressed (the compression ratio):

→ sudo zfs set compression=gzip mypool/data
→ cp hugefile /mnt/stuff Store a big file
→ zfs get compressratio See the compression ratio
NAME PROPERTY VALUE SOURCE
mypool compressratio 122.66x -
mypool/data compressratio 126.12x -

ZFS: A Modern, Do-It-All Filesystem | 239

After enabling compression, only new data is compressed;
existing files are not. To turn off compression:

→ sudo zfs set compression=off mypool/data

Snapshot a ZFS Dataset
ZFS supports snapshots: storing the state of a dataset so you can
easily return to that state (roll back) later. Before performing a
risky change on your files, for example, take a snapshot, and if
something goes wrong, you can revert the change with a single
command. Snapshots occupy very little disk space, and you can
send them efficiently to other zpools or hosts (with zfs send
and zfs recv). Create a snapshot of mypool/data named safe:

→ sudo zfs snapshot mypool/data@safe

List your snapshots:

→ zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
mypool/data@safe 0B - 24K -

If you can’t list snapshots, set listsnapshots=on and try again:

→ sudo zpool set listsnapshots=on mypool

Try changing some files in mypool/data. Then roll back to the
snapshot safe and see that your changes are gone:

→ sudo zfs rollback mypool/data@safe

Destroy a ZFS Dataset or Snapshot
Be careful with the zfs destroy command—it runs immedi‐
ately without confirmation.

→ sudo zfs destroy mypool/data@safe A snapshot
→ sudo zfs destroy mypool/data A dataset

240 | Chapter 4: Filesystem Maintenance

Destroy a ZFS Pool
Be careful with the zpool destroy command—it runs immedi‐
ately without confirmation.

→ sudo zpool destroy mypool

Backups and Remote Storage
rsync Efficiently copy a set of files, even across a network.

rclone Sync files with various cloud providers.

dd Low-level copying of data.

growisofs Burn a DVD or Blu-ray disc.

You can back up your precious Linux files in various ways:

• Copy them to a remote machine.•
• Copy them to a backup medium like an external drive.•
• Burn them onto a disc.•

I present a few popular Linux commands for backups, but there
are others. Some users prefer cpio for its flexibility, and some
long-time administrators swear by dump and restore as the only
reliable way to back up and restore every type of file. See the
manpages for these commands if you are interested in them.

rsync stdin stdout - file -- opt --help --version

rsync [options] source destination

The rsync command copies a set of files. It can make an exact
copy, including file permissions and other attributes (called
mirroring), or it can just copy the data. It can run over a net‐
work or on a single machine. rsync has many uses and over 50
options; I present just a few common cases relating to backups.

Backups and Remote Storage | 241

To mirror the directory mydir and its contents into another
directory mydir2 on a single machine:

→ rsync -a mydir mydir2

rsync is finicky about how you specify the first directory. If
you write “mydir” as in the example here, that directory is
copied into mydir2, creating the subdirectory mydir2/mydir. If
instead, you’d rather have only the contents of mydir copied
into mydir2, append a slash onto “mydir”:

→ rsync -a mydir/ mydir2

rsync can mirror a directory over a network to another host,
securing the connection with SSH to prevent eavesdropping.
Here I copy directory mydir to the account “smith” on remote
host server.example.com, in a directory D2:

→ rsync -a mydir smith@server.example.com:D2

If you like rsync but also want to have incremental back‐
ups and manage them efficiently, try rsnapshot (https://oreil.ly/
VNfb-).

Useful options

-o Copy the ownership of the files. (You might need superuser privileges on the
remote host.)

-g Copy the group ownership of the files. (You might need superuser privileges
on the remote host.)

-p Copy the file permissions.

-t Copy the file timestamps.

-r Copy directories recursively (i.e., including their contents).

-l Permit symbolic links to be copied (rather than the files they point to).

-D Permit devices to be copied. (Superuser only.)

-a Mirroring: copy all attributes of the original files. This implies all of the
options -Dogptrl (think “dog patrol”).

242 | Chapter 4: Filesystem Maintenance

https://oreil.ly/VNfb-
https://oreil.ly/VNfb-

-x When copying a tree of files, remain within the current filesystem; do not
cross over into other mounted filesystems.

-z Compress the data for transit. Only useful for remote hosts over slow
connections. Avoid compression when copying files locally (it’s wasteful).

-n Dry-run mode: don’t actually copy. Just display what would be done.

-v Verbose mode: print status information during the copy. Add --progress
to display a numeric progress meter while files are copied.

rclone stdin stdout - file -- opt --help --version

rclone subcommand [options] [arguments]

The rclone command connects your Linux system to popular
cloud storage providers to copy files conveniently. It works
with Dropbox, Google Drive, Microsoft OneDrive, Amazon S3,
and about 50 other destinations. To get started, run rclone
config and follow the prompts to set up a connection with
your cloud provider of choice, which rclone calls a remote.
Visit rclone.org/docs for detailed instructions on configuration.

After choosing a name for your remote, such as myremote, refer
to remote files with the syntax myremote:path, where path is a
Linux-style file path. For example, a file photo.jpg in a remote
directory Photos would be myremote:Photos/photo.jpg.

Backups are usually done with the rclone sync command,
which synchronizes a local directory and a remote directory so
they contain the same content, adding or deleting as necessary.
It works much like the rsync --delete command. You can
synchronize in either direction, from your local machine to the
remote, or from the remote to your local machine. You can
even set up client-side encryption, so files are transparently
encrypted before they’re copied to the remote and decrypted
when they’re copied back to your local system (see the docs).

Some common operations for backups include:

Backups and Remote Storage | 243

https://oreil.ly/YXVrw

rclone ls remote: List files on the remote recursively
(append --max-depth 1 for
no recursion).

rclone lsd remote: List only directories on the
remote.

rclone lsl remote: Display a long listing like ls
-l from the remote recursively
(append --max-depth 1 for
no recursion).

rclone copy myfile remote: Copy a local file to the remote.

rclone copy remote:myfile . Copy a remote file to your local
system.

rclone move myfile remote: Move a local file to the remote.

rclone move remote:myfile . Move a remote file to your local
system.

rclone delete remote:myfile Delete a remote file.

rclone sync mydir remote:mydir Synchronize local files onto the
remote.

rclone sync remote:mydir mydir Synchronize remote files onto
your local system.

Run rclone help for a complete list of subcommands. Note
that you can access fancier paths on the remote than my earlier
examples show:

→ rclone copy remote:Photos/Vacation/picture.jpg .

Useful options

-n Dry-run mode: don’t actually copy. Just display what would be done.

-i Run interactively so you’re prompted before changes.

244 | Chapter 4: Filesystem Maintenance

dd stdin stdout - file -- opt --help --version

dd [options]

dd is a low-level copier of bits and bytes. It can copy data from
one file to another, say, from myfile to /tmp/mycopy:

→ dd if=myfile of=/tmp/mycopy
2+1 records in
2+1 records out
1168 bytes (1.2 kB) copied, 0.000174074 s, 6.7 MB/s

It can even convert data while copying, like changing charac‐
ters to uppercase while copying from myfile to /tmp/mycopy:

→ dd if=myfile of=/tmp/mycopy conv=ucase

dd does much more than copy files. It can copy raw data
directly from one disk device to another. Here’s a command
to clone a hard disk:

→ sudo dd if=/dev/device1 of=/dev/device2 bs=512 \
 conv=noerror,sync OVERWRITES /dev/device2

Or, copy an entire disk device to create an ISO file. Make sure
the output file is on a different disk device and has sufficient
free space.

→ sudo dd if=/dev/device of=disk_backup.iso

WARNING

dd, when run as the superuser, can wipe out your hard
drive in seconds if you’re not careful. Always double-check
that the output file (the argument of=) is the one you
intend. Back up your computer and keep a Linux “live”
distro on hand for emergencies (see “What’s in This
Book?” on page ix) before experimenting with dd as root.

Backups and Remote Storage | 245

For some great advice on sophisticated uses of dd, visit https://
oreil.ly/R3krx. My favorite tip is backing up a disk’s master boot
record (MBR), which is 512 bytes long, to a file called mbr.txt:

→ sudo dd if=/dev/device of=mbr.txt bs=512 count=1

Useful options

if=file Specify an input file or device.

of=file Specify an output file or device. Double-check that it’s the
correct one!

bs=N Copy N bytes (the “block size”) at a time. (To set different block
sizes for the input and output, use ibs and obs, respectively.)

skip=N Skip past N blocks of input (of size ibs) before starting the copy.

seek=N Discard N blocks of output (of size obs) before starting the copy.

conv=spec Convert the data being copied. spec can be ucase (convert to
uppercase), lcase (convert to lowercase), ascii (convert to
ASCII from EBCDIC), and many others listed on the manpage.

growisofs stdin stdout - file -- opt --help --version

growisofs [options] tracks

The growisofs command burns a writable CD, DVD, or Blu-
ray disc. To burn the contents of a Linux directory onto a disc
readable on Linux, Windows, and macOS systems:

1. Locate your disc writer devices by running:1.
→ grep "^drive name:" /proc/sys/dev/cdrom/info
drive name: sr1 sr0

The available devices here are /dev/sr1 and /dev/sr0.
2. Put the files you want to burn into a directory, say, dir.2.

Arrange them exactly as you’d like on the disc. The direc‐
tory dir itself is not copied to the disc, just its contents.

246 | Chapter 4: Filesystem Maintenance

https://oreil.ly/R3krx
https://oreil.ly/R3krx

3. Use the mkisofs command to create an ISO (disc) image3.
file, and burn it onto a disc using growisofs, assuming
your device is /dev/sr1:
→ mkisofs -R -l -o $HOME/mydisk.iso dir
→ growisofs -dvd-compat -Z /dev/sr1=$HOME/mydisk.iso
→ rm $HOME/mydisk.iso

To burn audio CDs, use a friendly graphical program like k3b.

Backups and Remote Storage | 247

CHAPTER 5

Networking Commands

Host Information
uname Print basic system information.

hostname Print the system’s hostname.

ip Set and display network interface information.

Every Linux machine or host has a name, a network IP address,
and other properties. Here’s how to display this information.

uname stdin stdout - file -- opt --help --version

uname [options]

The uname command prints fundamental information about the
OS, particularly the kernel:

→ uname -a
Linux myhost 5.15.0-76-generic #83-Ubuntu
 SMP Thu Jun 15 19:16:32 UTC 2023 x86_64
 x86_64 x86_64 GNU/Linux

This includes the kernel name (Linux), hostname (myhost),
kernel release (5.15.0-76-generic), kernel version (#83-Ubuntu

249

SMP Thu Jun 15 19:16:32 UTC 2023), hardware name
(x86_64), processor type (also x86_64), hardware platform
(also x86_64) and OS name (GNU/Linux).

Useful options

-a All information

-s Only the kernel name (the default)

-n Only the hostname, as with the hostname command

-r Only the kernel release

-v Only the kernel version

-m Only the hardware name

-p Only the processor type

-i Only the hardware platform

-o Only the OS name

hostname stdin stdout - file -- opt --help --version

hostname [options] [name]

The hostname command prints the name of your computer.
Depending on how you have things set up, this might be the
fully qualified hostname:

→ hostname
myhost.example.com

or your short hostname:

→ hostname
myhost

You can also set your hostname, as root:

→ sudo hostname orange

250 | Chapter 5: Networking Commands

NOTE

Changes made by hostname might not survive a reboot.
Consult your distro’s documentation for any additional
steps to make the change permanent, such as editing a
configuration file that is read at boot time.

Useful options

-s Print your host’s short name.

-f Print your host’s fully qualified name.

-d Print your host’s DNS domain name.

-a Print all of your host’s aliases.

-I Print all of your host’s network addresses.

-F hostfile Set your hostname by reading it from file hostfile.

ip stdin stdout - file -- opt --help --version

ip [options] object command…

The ip command displays and sets various aspects of your
computer’s network interface. This topic is beyond the scope of
the book, but I’ll teach you a few tricks.

If you know the name of your default interface, such as eth0,
ens160, or enp68s0, view its details with this command:

→ ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> ...
 link/ether 00:50:ba:48:4f:ba brd ff:ff:ff: ...
 inet 192.168.0.21/24 brd 192.168.0.255 scope ...
 inet6 fe80::21e:8cff:fe53:41e4/64 ...

They include the IPv4 address (192.168.0.21), IPv6 address
(fe80::21e:8cff:fe53:41e4/64), MAC address (00:50:ba:48:4f:ba),

Host Information | 251

and other details. If you don’t know the interface name, view all
loaded network interfaces:

→ ip addr show | less

Another command, ifconfig, presents information similar to
ip addr show. It’s considered mostly obsolete but you’ll still
find it on many systems.

→ ifconfig eth0 Details of one network interface
→ ifconfig -a Details of all network interfaces

Display other network information with the following ip com‐
mands. Add help on the end of any command (e.g., ip link
help) for usage details.

ip addr Display IP addresses of your network devices.

ip maddr Display multicast addresses of your network devices.

ip link Display attributes of your network devices.

ip route Display your routing table.

ip monitor Begin monitoring your network devices; press ^C to stop.

ip help See usage information for all these commands.

Superusers can also use ip to configure network devices, man‐
age routing tables and rules, create tunnels, and more. Learn
more about ip and related tools (known as iproute2) and on
the ip manpage.

Host Location
host Look up hostnames, IP addresses, and DNS info.

whois Look up the registrants of internet domains.

ping Check if a remote host is reachable.

traceroute View the network path to a remote host.

252 | Chapter 5: Networking Commands

https://oreil.ly/jT5FF

When dealing with remote computers, you might want to
know more about them. Who owns them? What are the IP
addresses? Where on the network are they located?

host stdin stdout - file -- opt --help --version

host [options] name [server]

The host command looks up the hostname or IP address of a
remote machine by querying DNS:

→ host www.ubuntu.org
www.ubuntu.com has address 69.16.230.226
→ host 69.16.230.226
226.230.16.69.in-addr.arpa domain name pointer
 lb05.parklogic.com.

It can also find out much more:

→ host -a www.ubuntu.org
Trying "www.ubuntu.org"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR ...
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, ...

;; QUESTION SECTION:
;www.ubuntu.org. IN ANY

;; ANSWER SECTION:
www.ubuntu.org. 60 IN CNAME ubuntu.org.

though a full discussion of this output is beyond the scope
of this book. The final, optional “server” parameter specifies a
particular nameserver for the query:

→ host www.ubuntu.org ns1.parklogic.com
Using domain server:
Name: ns1.parklogic.com
Address: 69.16.230.48#53
Aliases:
www.ubuntu.org has address 69.16.230.226
www.ubuntu.org mail is handled by ...

Host Location | 253

Useful options

To see all options, run host by itself.

-a Display all available information about a host.

-t Choose the type of nameserver query: A, AXFR, CNAME, HINFO, KEY, MX,
NS, PTR, SIG, SOA, and so on.

Here’s an example of the -t option to locate MX records:

→ host -t MX centos.org
centos.org mail is handled by 10 mail.centos.org.

If the host command doesn’t meet your needs, try dig, another
DNS lookup utility, or the nslookup command, which is mostly
obsolete but still around.

whois stdin stdout - file -- opt --help --version

whois [options] domain_name

The whois command prints the registration of an internet
domain. The output is long, so pipe it through less:

→ whois linuxmint.com | less
 Domain name: LINUXMINT.COM
 Registrar: Ascio Technologies, Inc. Danmark
 Updated Date: 2023-05-16T22:22:38Z
 Creation Date: 2006-06-07T10:45:34Z
 Name Server: NS01.SERVAGE.NET
 ⋮

Useful options

-h server Perform the lookup at the given registrar’s whois server. For
example:
→ whois -h whois.comlaude.com redhat.com

-p port Query the given TCP port instead of the default (43).

254 | Chapter 5: Networking Commands

ping stdin stdout - file -- opt --help --version

ping [options] host

The ping command tells you if a remote host is reachable. It
sends small messages called ICMP packets to a remote host,
waits for responses, and prints how long they took:

→ ping slackware.com
PING slackware.com (64.57.102.36) 56(84) bytes of data.
64 bytes from connie.slackware.com (64.57.102.36):
 icmp_seq=1 ttl=52 time=107 ms
64 bytes from connie.slackware.com (64.57.102.36):
 icmp_seq=2 ttl=52 time=107 ms
^C
--- slackware.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, ...
rtt min/avg/max/mdev = 107.207/107.350/107.494/0.143 ms

Here, the host slackware.com replied in 107 milliseconds.
(Notice that its real name is connie.slackware.com.) Pings may
be blocked by firewalls, so a running host might not respond.

Useful options

-c N Ping at most N times. (Note that “ping” is a verb.)

-i N Wait N seconds (default 1) between pings. (Here “ping” is a noun.)

-n Print IP addresses in the output, rather than hostnames.

-6 Use IPv6 instead of the default IPv4.

traceroute stdin stdout - file -- opt --help --version

traceroute [options] host [packet_length]

The traceroute command prints the network path from your
local host to a remote host, and the time it takes for packets to
traverse the path:

Host Location | 255

→ traceroute archlinux.org
 1 server.mydomain.com (192.168.0.20) 1.397 ms ...
 2 10.221.16.1 (10.221.16.1) 15.397 ms ...
 3 router.example.com (92.242.140.21) 4.952 ms ...
 ⋮
12 archlinux.org (95.217.163.246) 117.100 ms ...

traceroute sends three “probes” to each host in the path and
reports the return times. If five seconds pass with no response,
traceroute prints an asterisk. If traceroute is blocked by fire‐
walls or cannot proceed for other reasons, it prints a symbol:

Symbol Meaning

!F Fragmentation needed

!H Host unreachable

!N Network unreachable

!P Protocol unreachable

!S Source route failed

!X Communication administratively prohibited

!N ICMP unreachable code N

The default packet size is 40 bytes. Change this value with
the final, optional packet_length parameter (e.g., traceroute
myhost 120). For a more interactive experience, try the mtr
command (“my traceroute”).

Useful options

-n Numeric mode: print IP addresses instead of hostnames.

-w N Change the timeout from five seconds to N seconds.

-6 Use IPv6 instead of the default IPv4.

Network Connections
ssh Log into a remote host, or run commands on it.

256 | Chapter 5: Networking Commands

scp Copy files between two hosts.

sftp Interactively copy files between two hosts.

netcat Create arbitrary network connections.

Linux makes it easy to connect from one host to another
securely for remote logins, file transfers, and other purposes.

ssh stdin stdout - file -- opt --help --version

ssh [options] host [command]

The ssh (Secure Shell) command securely logs you into a
remote machine. If your local and remote usernames are the
same, just provide the remote hostname:

→ ssh remote.example.com
smith@remote.example.com's password: xxxxxxxx

Otherwise, provide your remote username as well:

→ ssh sandy@remote.example.com One syntax
→ ssh -l sandy remote.example.com Another syntax

If you provide a command, ssh invokes it on the remote
machine without starting an interactive login session:

→ ssh sandy@remote.example.com df Check free disk space

ssh encrypts all data that travels across its connection, includ‐
ing your username and password. The SSH protocol also sup‐
ports other ways to authenticate, such as public keys: see the
sidebar “Public Key Authentication with SSH” on page 258.

Useful options

-l user Specify your remote username; otherwise, ssh assumes it equals your
local username. Or use the syntax username@host:
→ ssh sandy@remote.example.com

Network Connections | 257

-p port Connect to a port number other than the default (22).

-t Allocate a tty on the remote system; useful when trying to run a remote
command with an interactive UI, such as a text editor.

-v Produce verbose output, useful for debugging. Repeat -v for more
detailed messages.

Public Key Authentication with SSH
Public key authentication is a more secure way to log into
remote hosts with SSH. It uses a pair of cryptographic keys.
Your private key remains on your local host in the directory
~/.ssh, protected by a passphrase. Your public key is copied to
remote hosts. First, generate a key pair:

→ ssh-keygen
Enter file to save the key (~/.ssh/id_rsa): <Enter>
Enter passphrase (empty for no passphrase): xxxxxxx
Enter same passphrase again: xxxxxxx
Your identification has been saved in ~/.ssh/id_rsa

Then, copy your public key to the remote host and log in:

→ ssh-copy-id sandy@remote.example.com
sandy@remote.example.com's password: xxxxxxxx
Number of key(s) added: 1

→ ssh sandy@remote.example.com
Enter passphrase for '/home/sandy/.ssh/id_rsa': xxxxxxx

If the final ssh command fails to log you in, check that:

• The local and remote ~/.ssh directories have mode 0700.•
• The local private key file ~/.ssh/id_rsa has mode 0600.•
• The remote file ~/.ssh/authorized_keys has mode 600.•
• The public key in local file ~/.ssh/id_rsa.pub appears in•

remote file ~/.ssh/authorized_keys. If not, append the local
file’s contents to the remote authorized_keys and try again.

Also run ssh -v to print debug messages and look for clues.
Run ssh -vvv for more verbose detail.

258 | Chapter 5: Networking Commands

scp stdin stdout - file -- opt --help --version

scp local_spec remote_spec

The scp (secure copy) command copies files and directories
from one computer to another in batch. (For an interactive
UI, see sftp.) It encrypts all communication between the two
machines using SSH. As a simple example, scp can copy a local
file to a remote machine:

→ scp myfile remote.example.com:newfile

recursively copy a directory to a remote machine:

→ scp -r mydir remote.example.com:

copy a remote file to your local machine:

→ scp remote.example.com:myfile .

or recursively copy a remote directory to your local machine:

→ scp -r remote.example.com:mydir .

You can even copy files from one remote machine to another if
you have SSH access to both machines:

→ scp remote1.example.com:myfile remote2.example.com:

To specify an alternate username on the remote system, use the
username@host syntax:

→ scp myfile sandy@remote.example.com:

Useful options

-P port Connect on the given TCP port number (default is 22).

-p Preserve all file attributes (permissions, timestamps) when copying.

-r Recursively copy directories and their contents.

-v Produce verbose output, useful for debugging.

Network Connections | 259

sftp stdin stdout - file -- opt --help --version

sftp (host | username@host)

The sftp command is an interactive program that copies files
securely between two computers using SSH. (Avoid the simi‐
larly named command ftp—most implementations send user‐
names, passwords, and files insecurely over the network.)

→ sftp remote.example.com
smith@remote.example.com's password: xxxxxxxx
sftp> cd MyFiles Change remote directory
sftp> ls List remote directory
README
file1
file2
file3
sftp> get file2 Transfer a remote file
Fetching /home/sandy/MyFiles/file2 to file2
sftp> quit

If your username on the remote system is different from your
local one, use the username@host argument:

→ sftp sandy@remote.example.com

Command Meaning

help View a list of available commands.

ls List the files in the current remote directory.

lls List the files in the current local directory.

pwd Print the remote working directory.

lpwd Print the local working directory.

cd dir Change your remote directory to be dir.

lcd dir Change your local directory to be dir.

get file1 [file2] Copy remote file1 to local machine, optionally
renamed as file2.

260 | Chapter 5: Networking Commands

Command Meaning

put file1 [file2] Copy local file1 to remote machine, optionally
renamed as file2.

mget file* Copy multiple remote files to the local machine
using patterns * and ?.

mput file* Copy multiple local files to the remote machine
using patterns * and ?.

quit Exit sftp.

netcat stdin stdout - file -- opt --help --version

netcat [options] [destination] [port]

nc [options] [destination] [port]

netcat, or equivalently, nc, is a general-purpose tool to make
network connections. It’s handy for debugging, learning about
networking, and many other uses. For example, netcat can
speak directly to any TCP or UDP service, such as an SSH
server (if one is running) on your local TCP port 22:

→ netcat localhost 22
SSH-2.0-OpenSSH_8.9p1 Ubuntu-3ubuntu0.1
^C

This feature, which can determine if a particular service is
up or down, also works with service names as listed in the
file /etc/services. For example, you could connect to Google’s
web service (port 80) with:

→ netcat www.google.com http
abc <Enter> Type some junk and press Enter
HTTP/1.0 400 Bad Request
Content-Type: text/html; charset=UTF-8
Content-Length: 1555
Date: Tue, 18 Jul 2023 03:14:36 GMT
⋮

Network Connections | 261

For old-school Linux users who run telnet to connect to TCP
ports, netcat is more flexible. For example, create a client and a
service that talk to each other. Begin with a service listening on
port 55555:

→ netcat -l 55555

In another window, run a client that talks to that same port,
and type a message:

→ netcat localhost 55555
Hello world, how are you? <Enter>

Your message is sent to your service, which prints “Hello world,
how are you?” and any subsequent lines you enter. Press ^C in
the client to close the connection.

Useful options

-u Establish a UDP connection instead of TCP.

-l Listen for connections on the given port.

-p N Use port N as the source port.

-w N Time out after N seconds.

-h Get help.

Email in Daily Use
mutt Text-based mail client.

mail Minimal text-based mail client.

mailq View the outgoing mail queue on your system.

Most users receive their email in the cloud and read it in a
web browser or a graphical email application. Few people read
their email at the command line. Nevertheless, text-based email
programs have interesting uses, particularly in scripts. I present
one full-featured email client (mutt) that runs on the command
line, followed by a few other mail-related commands. I assume

262 | Chapter 5: Networking Commands

your system is already configured to accept email; otherwise,
some commands will not work.

mutt stdin stdout - file -- opt --help --version

mutt [options]

Mutt is a text-based mailer that runs in a shell, so it can be used
both locally (e.g., in a terminal window) or remotely over an
SSH connection. To invoke it, run:

→ mutt

When the main screen appears, mutt briefly lists messages in
your mailbox, one per line. Try the following operations:

Keystroke Meaning

Up arrow Move to the previous message.

Down arrow Move to the next message.

PageUp Scroll up one pageful of messages.

PageDown Scroll down one pageful of messages.

Home Move to the first message.

End Move to the last message.

m Compose a new mail message. This invokes your default
text editor. After editing the message and exiting the
editor, type y to send the message or q to postpone it.

r Reply to current message. Works like m.

f Forward the current message. Works like m.

i View the contents of your mailbox.

C Copy the current message to another mailbox.

d Delete the current message.

When you’ve finished editing a message, try these operations:

Email in Daily Use | 263

Keystroke Meaning

a Attach a file (an attachment) to the message.

c Set the CC list.

b Set the BCC list.

e Edit the message again.

r Edit the Reply-To field.

s Edit the subject line.

y Send the message.

C Copy the message to a file.

q Postpone the message without sending it.

The following operations are always available:

Keystroke Meaning

? See a list of all commands (press the space bar to scroll
down, q to quit).

^G Cancel the command in progress.

q Quit.

mail stdin stdout - file -- opt --help --version

mail [options] recipient

The mail command is a simple email client. It’s best for quick
messages from the command line or in scripts. Send a message:

→ mail smith@example.com
Subject: my subject
I'm typing a message.
To end it, I type a period by itself on a line.
.
Cc: jones@example.com
→

264 | Chapter 5: Networking Commands

Pipe any command’s output to mail to send it in an email
message. This feature is particularly useful in shell scripts.

→ echo "Wake up!" | mail -s "Alert" smith@example.com

To mail the contents of a text file, simply redirect the file to
mail. This won’t work for binary files like images, which must
be converted to attachments first.

→ mail -s "my subject" smith@example.com < file.txt

Useful options

-s subject Set the subject line of an outgoing message.

-c addresses CC to the given addresses, a comma-separated list.

-b addresses BCC to the given addresses, a comma-separated list.

-v Verbose mode: print messages about mail delivery.

mailq stdin stdout - file -- opt --help --version

mailq

The mailq command lists outgoing email messages awaiting
delivery, if any.

→ mailq
... Size-- ----Arrival Time-- -Sender/Recipient---
 333 Tue Jan 10 21:17:14 smith@example.com
 jones@elsewhere.org

Mail delivery is often so quick that mailq has no output.
Sent messages are also recorded in a log file such as /var/log/
mail.log. The name may differ from distro to distro. View the
last few lines with tail:

→ tail /var/log/mail.log

Email in Daily Use | 265

Beyond Mail Readers
Email is more “transparent” on Linux than on other platforms
that merely display your mailbox and send and receive mes‐
sages. The ability to list outgoing email messages with mailq is
just one example. Here are some other options to whet your
appetite and encourage you to explore.

• Process your mailboxes with any command-line tools,•
such as grep, because mail files are plain text.

• Manually retrieve messages from a remote mail server at•
the command line with the fetchmail command. Using a
simple configuration file, this command can reach out to
IMAP and POP servers and download mail in batch. See
man fetchmail.

• Run a mail server, such as postfix, for complex mail•
delivery situations; see “Email Servers” on page 266.

• Control local mail delivery in sophisticated ways with the•
procmail command, which filters arriving email messages
through any arbitrary program. See man procmail.

• Perform spam filtering with the SpamAssassin suite of•
programs. Run it personally on your incoming email or at
the server level for large numbers of users.

In short, email is not limited to the features of your mail-
reading program. Investigate and experiment!

Email Servers
Configuring a mail server is a complex job that can’t be taught
in a few pages, so I just present some common operations.
For Postfix, one of the most popular mail servers, I assume it’s
already running on your local host. In case you don’t have a
mail server yet, I also present Nullmailer, a simpler service that
relays your mail to another server for delivery.

266 | Chapter 5: Networking Commands

Postfix: A Full-Featured Mail Server
Postfix is a powerful and popular mail server, and it’s controlled
by the postfix command. Important configuration files for the
server are located in the directory /etc/postfix:

main.cf
Variables that control Postfix’s behavior, such as your
server’s name and domain, locations of important files,
size limits on mailboxes and incoming mail, and more.
After changing this file, run sudo postfix reload for the
changes to take effect.

master.cf
Defines how Postfix runs various services. Most users
don’t commonly edit this file, but if you do, run sudo
postfix reload for the changes to take effect.

postfix-files
Defines the correct permissions for all Postfix files. These
permissions are critical for email security. Most users
won’t modify this file. To restore a Postfix installation to
these permissions, run sudo postfix set-permissions.

sasl_passwd
Authentication information for connecting to a remote
SMTP provider. After changing this file, run sudo

postmap /etc/postfix/sasl_passwd for the changes to
take effect. The file format is:

[smtpserver]:port username:password

where smtpserver is the remote SMTP server, port is its
TCP port number (optional), and username and password
are the authentication credentials. For example:

[smtp.example.com]:587 smith:SEEKRIT_PASSWURD

Email Servers | 267

WARNING

Protect all files in /etc/postfix. Keep the files sasl_passwd
and sasl_passwd.db readable only by root (mode 0600)
because they contain passwords.

Postfix usually runs automatically, but you can start and stop it
by hand:

→ sudo postfix start Run the server
→ sudo postfix status Check that the server is running
→ sudo postfix stop Halt the server gracefully
→ sudo postfix abort Kill the server ungracefully

After a mail delivery problem, to deliver all queued mail imme‐
diately, run:

→ sudo postfix flush

For more information on Postfix, visit postfix.org.

Nullmailer: Simple Outgoing Email
Postfix is complicated. A simpler solution is to forward your
local host’s email to another mail server for delivery. (You’ll
need an account on the remote mail server.) This is called
setting up a relay-only mail server.

Suppose you have an account “smith” on a Linux host
example.com, and you want to configure that host to send
email. You also have an account “sandy” on a remote server,
mail.example.com, that already runs Postfix for delivering mail.
Install Nullmailer on your local host, either using your distro’s
package manager (preferred) or from https://oreil.ly/82aMq.
Then, as the superuser, create three local files in the direc‐
tory /etc/nullmailer:

adminaddr
Contains the email address to receive administrative
emails, such as Nullmailer notices.

268 | Chapter 5: Networking Commands

https://oreil.ly/NzFRZ
https://oreil.ly/82aMq

defaultdomain
Contains the domain to set for all outgoing emails.

remotes
Contains the login information for the remote mail server,
including the password in plain text, so make sure this file
is readable only by root:

→ chmod 0600 /etc/nullmailer/remotes

Here’s what the three files look like in a typical installation:

→ cd /etc/nullmailer
→ cat adminaddr
smith@example.com
→ cat defaultdomain
example.com
→ cat remotes
cat: remotes: Permission denied
→ sudo cat remotes The content must be on a single line
mail.example.com smtp --port=587 --tls --user=sandy
 --pass=...

Your remotes file will require different values specific to your
remote mail server. Run man nullmailer-send to learn about
them. Once the three files are in place, enable and start the
Nullmailer service:

→ sudo systemctl enable nullmailer
→ sudo systemctl start nullmailer

Send a test message:

→ echo hi | mail funkydance@another.example.com

Check that the message was relayed to mail.example.com:

→ tail /var/log/mail Or other mail log file
...nullmailer-send: Starting delivery:
 host: mail.example.com
...nullmailer-send: From: <smith@example.com> to:
 <funkydance@another.example.com>
...nullmailer-send: Delivery complete

Email Servers | 269

Web Browsing
lynx Text-only web browser.

curl Access online content from the command line.

wget Download web pages and files.

Besides the usual web browsers such as Chrome and Firefox,
Linux offers several ways to explore the World Wide Web via
the command line.

lynx stdin stdout - file -- opt --help --version

lynx [options] [URL]

Lynx is a stripped-down text-only web browser. It doesn’t dis‐
play pictures or play audio or video. All browsing is done by
keyboard, not with a pointing device. But Lynx is incredibly
useful when you just want a quick look at a page, when the
network is slow, or for downloading the HTML of a website. It’s
particularly good for checking out a suspicious URL because
Lynx doesn’t run JavaScript and won’t even accept a cookie
without asking you first.

→ lynx https://danieljbarrett.com

Many pages won’t look right, especially if they use tables or
frames, but usually you can find your way around a site.

Keystroke Meaning

? Get help.

k List all keystrokes and their meanings.

^G Cancel a command in progress.

q Quit Lynx.

Down arrow Go to the next link or form field.

Up arrow Go to the previous link or form field.

270 | Chapter 5: Networking Commands

Keystroke Meaning

Enter “Click” the current link, or finish the current form field.

Right arrow Go forward to next page, or “click” the current link.

Left arrow Go back to previous page.

g Go to a URL (you’ll be prompted to enter it).

p Save, print, or mail the current page.

Space bar Scroll down.

b Scroll up.

^A Go to top of page.

^E Go to end of page.

m Return to the main/home page.

/ Search for text on the page.

a Bookmark the current page.

v View your bookmark list.

r Delete a bookmark.

= Display properties of the current page and link.

\ View HTML source (press again to return to normal view).

Lynx has over one hundred options, so the manpage is worth
reading. Other text-based browsers include w3m, links, and
elinks.

Useful options

-dump Print the rendered page to standard output and exit.
(Compare to the -source option.)

-source Print the HTML source to standard output and exit.
(Compare to the wget command.)

-useragent=name If a site is blocking lynx, set the useragent to present as
a different browser. Try -useragent=mozilla.

Web Browsing | 271

-emacskeys Make Lynx obey emacs-like keystrokes.

-vikeys Make Lynx obey Vim-like keystrokes.

-homepage=URL Set your home page URL to be URL.

-color Turn colored text mode on.

-nocolor Turn colored text mode off.

curl stdin stdout - file -- opt --help --version

curl [options | URLs]

The curl command accesses online content. It can download
web pages, test a web service, or do any other task that hits a
URL. By default, curl writes to standard output, so redirect the
output as needed or use the -o option:

→ curl https://www.yahoo.com > mypage.html Redirect
→ curl -o mypage.html https://www.yahoo.com -o option
→ curl https://www.yahoo.com | wc -l Pipelines

curl is great for quickly testing a REST API. Search Wikipedia
for the word “Linux” and receive a JSON response:

→ curl "https://en.wikipedia.org/w/rest.php/v1/search/\
page?q=Linux"
{"pages":[{"id":6097297,"key":"Linux","title":"Linux" ...

Curl has dozens of options and can speak numerous protocols
besides HTTP, such as IMAP, FTP, and SMB. It can add web
headers, post data to web pages, authenticate with usernames
and passwords, handle SSL certificates, simulate cookies, and
much more (see the manpage).

Useful options

-o file Write output to the given file.

-A name Set the user agent to name. Try -A mozilla.

272 | Chapter 5: Networking Commands

-v Verbose mode: print lots of diagnostic output.

-s Silent mode: no diagnostic output.

wget stdin stdout - file -- opt --help --version

wget [options] URL

The wget command downloads data from a URL to a file. It’s
great for capturing individual web pages, downloading files, or
duplicating entire website hierarchies to arbitrary depth. For
example, let’s capture the Yahoo! home page:

→ wget https://www.yahoo.com
2023-10-22 13:56:53 (3.45 MB/s) - 'index.html' saved

which is saved to a file index.html in the current directory. wget
can resume a download if it gets interrupted in the middle, say,
due to a network failure: just run wget -c with the same URL
and it picks up where it left off.

Perhaps the most useful feature of wget is its ability to down‐
load files without needing a web browser:

→ wget https://linuxpocketguide.com/sample.pdf

This is great for large files like videos and ISO images. You can
even write shell scripts to download sets of files if you know
their names. Here’s a script that downloads three MP4 videos
named 1.mp4, 2.mp4, and 3.mp4 from the root of a website.

→ for i in 1 2 3
do
 wget https://example.com/$i.mp4
done

wget has over 70 options, so I cover just a few important ones.

Web Browsing | 273

Useful options

-U name If a site is blocking wget, set the useragent to present as a
different browser. Try -U mozilla.

-O filename Write all the captured HTML to the given file.

-i filename Read URLs from the given file and retrieve them in turn.

-c Continue an interrupted download. For example, if wget
downloaded 100K of a 150K file, wget -c retrieves just
the remaining 50K. wget can be fooled, however, if the
remote file has changed since the first (partial) download,
so use -c only if the remote file hasn’t changed.

-t N Try N times before giving up. N=0 means try forever.

--progress=dot Print dots instead of bars to show download progress.

--spider Don’t download, just check existence of remote pages.

-nd Retrieve all files into the current directory, instead of
duplicating the remote directory hierarchy.

-r Retrieve a whole tree of pages recursively.

-l N Retrieve files at most N levels deep (5 by default).

-k Inside retrieved files, modify URLs so the files can be
viewed locally in a web browser.

-p Download all necessary files to make a page display
completely, such as stylesheets and images.

-L Follow relative links (within a page) but not absolute links.

-A pattern Accept mode: download only files whose names match a
given pattern, using standard shell pattern-matching.

-R pattern Reject mode: download only files whose names do not
match a given pattern.

-I pattern Directory inclusion: download files only from directories
that match a given pattern.

-X pattern Directory exclusion: download files only from directories
that do not match a given pattern.

274 | Chapter 5: Networking Commands

CHAPTER 6

Getting Stuff Done

Screen Output
echo Print simple text on standard output.

printf Print formatted text on standard output.

yes Print repeated text on standard output.

seq Print a sequence of numbers on standard output.

clear Clear the screen or window.

Linux provides several commands to print messages on stan‐
dard output. Each has different strengths and intended pur‐
poses. These commands are invaluable for learning about
Linux, debugging, writing shell scripts (see “Programming with
Shell Scripts” on page 311), or just talking to yourself.

echo stdin stdout - file -- opt --help --version

echo [options] strings

The echo command simply prints its arguments:

→ echo We are having fun
We are having fun

275

Confusingly, there are several different echo commands with
slightly different behavior. There’s /bin/echo, but Linux shells
typically override this with a built-in command called echo. To
find out which you’re using, run the following command:

→ type echo
echo is a shell builtin

Useful options

-n Don’t print a final newline character.

-e Recognize and interpret escape characters. For example, try echo
'hello\a' and echo -e 'hello\a'. The first prints literally and
the second produces a beep.

-E Don’t interpret escape characters: the opposite of -e.

Available escape characters are:

\a Alert (play a beep)

\b Backspace

\c Don’t print the final newline (same effect as -n)

\f Form feed

\n Line feed (newline)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ A backslash

\' Single quote

\" Double quote

\nnn The character whose ASCII value is nnn in octal (base 8)

276 | Chapter 6: Getting Stuff Done

printf stdin stdout - file -- opt --help --version

printf format_string [arguments]

The printf command is an enhanced echo: it prints formatted
strings on standard output. It operates much like the C pro‐
gramming language function printf(), which applies a format
string to a sequence of arguments to create some specified
output. For example:

→ printf "User %s is %d years old.\n" sandy 29
User sandy is 29 years old.

The first argument is the format string, which in our example
contains two format specifications, %s and %d. The subsequent
arguments, sandy and 29, are substituted by printf into the
format string and then printed. Format specifications can get
fancy with floating-point numbers:

→ printf "That'll be $%0.2f, my friend.\n" 3
That'll be $3.00, my friend.

Linux has two printf commands: one built into bash, and one
in /usr/bin/printf. The two behave almost identically with small
differences; for example, only the built-in printf can store
output in a shell variable (with the -v option).

Make sure the number of format specifications (%) equals the
number of arguments to printf. With too few arguments,
printf outputs default values (0 for numeric formats, an empty
string for string formats). With too many arguments, printf
iterates over the extras until they run out. Treat such mis‐
matches as errors, even though printf is forgiving: they are
bugs waiting to happen.

→ printf "%d %d\n" 10 Too few arguments
10 0
→ printf "%d %d\n" 10 20 30 40 Too many arguments
10 20
30 40

Screen Output | 277

Format specifications are described in detail on the manpage
for the C function printf (see man 3 printf). Here are some
useful ones:

%d Decimal integer

%ld Long decimal integer

%o Octal integer

%x Hexadecimal integer

%f Floating point

%lf Double-precision floating point

%c A single character

%s String

%q String with any special shell characters escaped

%% A percent sign by itself

Set the minimum width of the output by inserting a numeric
expression just after the leading percent sign. For example,
“%5d” means to print a decimal number in a five-character-
wide field, and “%6.2f ” means a floating-point number in a
six-character-wide field with two digits after the decimal point.
Some useful numeric expressions are:

n Minimum width n

0n Minimum width n, padded with leading zeros

n.m Minimum width n, with m digits after the decimal point

printf also interprets escape characters like “\n” (print a new‐
line character) and “\a” (ring the bell). See the echo command
for the full list.

278 | Chapter 6: Getting Stuff Done

yes stdin stdout - file -- opt --help --version

yes [string]

The yes command prints “y” or a given string forever, one
string per line:

→ yes
y
y
y
⋮

Though it might seem useless at first glance, yes can be perfect
for commands that prompt the user to continue. Pipe the out‐
put of yes into the input of the command to answer every
prompt affirmatively:

→ yes | any_interactive_command

When any_interactive_command terminates, so does yes.

seq stdin stdout - file -- opt --help --version

seq [options] specification

The seq command prints a sequence of integers or real num‐
bers that’s suitable to pipe to other programs. It supports three
kinds of arguments:

A single number: an upper limit
seq begins at 1 and counts up to the number:

→ seq 3
1
2
3

Two numbers: lower and upper limit
seq begins at the first number and counts as far as it can
without passing the second number:

Screen Output | 279

→ seq 2 5
2
3
4
5

Three numbers: lower limit, increment, and upper limit
seq begins at the first number and increments by the sec‐
ond number as far as possible without passing the third
number:

→ seq 1 .3 2
1
1.3
1.6
1.9

You can also go backward with a negative increment:

→ seq 5 -1 2
5
4
3
2

Useful options

-w Print leading zeros, as necessary, to give all lines the same width:
→ seq -w 8 10
08
09
10

-f format Format the output lines with a printf-like format string, which
must include either %g (the default), %e, or %f:
→ seq -f '**%g**' 3
1
2
3

280 | Chapter 6: Getting Stuff Done

-s string Use the given string as a separator between the numbers. By
default, a newline is printed (i.e., one number per line):
→ seq -s ':' 10
1:2:3:4:5:6:7:8:9:10

Bash and other shells have a similar feature to produce a
sequence of numbers; see “Brace Expansion” on page 39.

→ echo {1..10}
1 2 3 4 5 6 7 8 9 10

clear stdin stdout - file -- opt --help --version

clear

This command simply clears your display or shell window.
Alternatively, press ^L.

Copy and Paste
xclip Copy and paste between the shell and the clipboard.

xsel Manipulate the clipboard from the shell.

Linux has a clipboard to copy and paste between graphical
applications. Actually, Linux has three different clipboards,
called selections. You can access the selections from the com‐
mand line, send the output of any shell command to the selec‐
tion, or read the selection like standard input.

These commands work only if your shell runs in an X11
environment such as GNOME or KDE. Wayland has other
clipboard mechanisms such as wl-copy and wl-paste. In a
non-graphical environment, the tmux and screen commands
provide clipboards while running. If you’re using none of these
environments, no clipboard exists.

Copy and Paste | 281

xclip stdin stdout - file -- opt --help --version

xclip [options]

xclip reads and writes the three Linux selections (clipboards)
to copy and paste text between the shell and graphical applica‐
tions. To see it in action, copy some text with your mouse to a
selection—say, double-click a word in your terminal window—
and then run:

→ xclip -o

The text you copied is printed on standard output. As another
example, copy the contents of a file to a selection, and then
print the selection:

→ cat poem See the file
Once upon a time, there was
a little operating system named
Linux, which everybody loved.
→ cat poem | xclip -i Pipe file to selection
→ xclip -o Print selection
Once upon a time, there was
a little operating system named
Linux, which everybody loved.

All command-line options for xclip use single dashes, even
-help and -version.

Useful options

-selection name Choose a selection: primary (default), secondary,
or clipboard. In my terminal windows, the middle
mouse button pastes from primary, and “Paste” in the
right-button menu uses clipboard.

-i Read the selection contents from standard input (default
behavior).

-o Write the selection contents to standard output.

282 | Chapter 6: Getting Stuff Done

xsel stdin stdout - file -- opt --help --version

xsel [options]

xsel is a more powerful version of xclip. Along with reading
and writing the three selections (clipboards), it can also append
to them, swap them, and clear them:

→ echo Hello | xsel -i
→ xsel -o
Hello
→ echo World | xsel -a Append
→ xsel -o
Hello
World

Useful options

-p Use the primary selection (default).

-s Use the secondary selection.

-b Use the clipboard selection.

-i Read the selection contents from standard input (default behavior).

-a Append to the selection.

-o Write the selection contents to standard output.

-c Clear the selection contents.

-x Swap (exchange) the contents of the primary and secondary selection.

Math and Calculations
expr Do simple math on the command line.

bc Text-based calculator.

dc Text-based RPN calculator.

Need a calculator? Linux provides some commands to compute
mathematical truths for you.

Math and Calculations | 283

expr stdin stdout - file -- opt --help --version

expr expression

The expr command does simple math (and other expression
evaluation) on the command line:

→ expr 7 + 3
10
→ expr '(' 7 + 3 ')' '*' 14 Quote any shell characters
140
→ expr length ABCDEFG
7
→ expr 15 '>' 16
0 Zero means false

Bash provides a shorthand for expr using a dollar sign and
a double parenthesis: $((…)). It’s convenient for calculations
within a command line:

→ echo The answer is: $((7 + 3))
The answer is: 10

Each argument must be separated by whitespace. Notice that
you have to quote or escape any characters that have special
meaning to the shell. Parentheses (escaped) may be used for
grouping. Operators for expr include:

Operator Numeric operation String operation

+, -, *, / Addition,
subtraction,
multiplication, and
integer division,
respectively

% Remainder (mod)

< Less than Earlier in dictionary

<= Less than or equal Earlier in dictionary, or
equal

> Greater than Later in dictionary

284 | Chapter 6: Getting Stuff Done

Operator Numeric operation String operation

>= Greater than or
equal

Later in dictionary, or equal

= Equality Equality

!= Inequality Inequality

| Boolean “or” Boolean “or”

& Boolean “and” Boolean “and”

s:regexp Does the regular expression
regexp match string s?

substr s p n Print n characters of string
s, beginning at position p
(the first character is p=1)

index s chars Return the index of the
first position in string s
containing a character from
string chars. Return 0 if not
found. Same behavior as
the C function index().

For Boolean expressions, the number 0 and the empty string
are considered false; any other value is true. When returning
Boolean results, 0 is false and 1 is true.

bc stdin stdout - file -- opt --help --version

bc [options] [files]

bc is a text-based calculator that reads arithmetic expressions,
one per line, and prints the results. Unlike most other calcula‐
tors, bc can handle numbers of unlimited size and any number
of decimal places:

→ bc
1+2+3+4+5 Add five numbers

Math and Calculations | 285

1 This demonstration code fails if the roots are imaginary.

15
scale=2 Set precision to 2 decimal places
(1 + 2 * 3 / 4) - 5
-2.50
2^100 Raise 2 to the power 100
1267650600228229401496703205376
^D Exit

Programmers may enjoy the ability to switch bases to perform
calculations and conversions in binary, octal, hexadecimal, or
even custom bases:

→ bc
obase=2 Display results in base 2
999
1111100111
obase=16 Or base 16
999
3E7

But bc doesn’t stop there. It’s also a programmable calculator
that can define functions. Here’s a function that implements the
quadratic formula from algebra and prints the real roots of a
given equation, stored in a file called quadratic.txt:1

→ cat quadratic.txt
scale=2
define quadform (a, b, c) {
 root1 = (-b + sqrt(b^2 - 4*a*c)) / (2*a)
 root2 = (-b - sqrt(b^2 - 4*a*c)) / (2*a)
 print root1, " ", root2, "\n"
}

quadform(1, 7, 12) Solve x2 + 7x + 12 = 0

Redirect the file to bc to run the function and see the results:

→ bc < quadratic.txt
 -3.00 -4.00

286 | Chapter 6: Getting Stuff Done

In its most powerful form, bc is a programming language
for arithmetic. You can assign values to variables, manipulate
arrays, execute conditional expressions and loops, and even
write scripts that prompt you for values and run any sequence
of math operations. For full details, see the manpage.

Useful arithmetic operations

+, -, *, / Addition, subtraction, multiplication, and division, respectively.
Results of division are truncated to the current scale (see below).

% Remainder (mod).

^ Exponentiation, as in 10^5 for “ten to the fifth power.”

sqrt(N) Square root of N.

ibase=N Treat all input numbers as base N.

obase=N Output all numbers in base N.

scale=N Set the number of significant digits after the decimal point to N.

(…) Parentheses for grouping (changing precedence).

name=value Assign a value to the variable name.

dc stdin stdout - file -- opt --help --version

dc [options] [files]

The dc (desk calculator) command is a reverse Polish notation
(RPN), stack-based calculator that reads expressions from stan‐
dard input and writes results to standard output. If you know
how to use a Hewlett-Packard RPN calculator, dc is pretty easy
once you understand its syntax. If you’re accustomed to tradi‐
tional calculators, however, dc may seem inscrutable. I cover
only some basic commands.

For stack and calculator operations:

Math and Calculations | 287

q Quit dc.

f Print the entire stack.

c Delete (clear) the entire stack.

p Print the topmost value on the stack.

P Pop (remove) the topmost value from the stack.

n k Set precision of future operations to be n decimal places (default is 0k,
meaning integer operations).

To pop the top two values from the stack, perform a requested
operation, and push the result:

+, -, *, / Addition, subtraction, multiplication, and division, respectively.

% Remainder (mod).

^ Exponentiation (second-to-top value is the base, top value is the
exponent).

To pop the top value from the stack, perform a requested
operation, and push the result:

v Square root.

Examples:

→ dc
4 5 + p Print the sum of 4 and 5
9
2 3 ^ p Raise 2 to the 3rd power and print the result
8
10 * p Multiply the stack top by 10 and print the result
80
f Print the stack
80
9
+p Pop the top two values and print their sum
89
^D Exit

288 | Chapter 6: Getting Stuff Done

Dates and Times
cal Print a calendar.

date Print or set the date and time.

Need a date? How about a good time? Try these commands to
display and set dates and times on your system.

cal stdin stdout - file -- opt --help --version

cal [options] [month [year]]

The cal command prints a calendar—by default, the current
month:

→ cal
 January 2024
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

To print a different calendar, supply a month and four-digit
year: cal 8 2024 or cal aug 2024. If you omit the month (cal
2024), the entire year is printed. Note that several different cal
programs exist and yours may behave differently.

Useful options

-y Print the current year’s calendar.

-3 Three-month view: print the previous and next month as well.

-j Print each date by its position in the year. February 1 would be displayed as
32, February 2 as 33, and so on.

Dates and Times | 289

date stdin stdout - file -- opt --help --version

date [options] [format]

The date command prints dates and times. The results depend
on your system’s locale settings (for your country and lan‐
guage). In this section, I assume an English, US-based locale.

By default, date prints the system date and time in the local
timezone:

→ date
Sun Jun 4 02:09:05 PM EDT 2023

Format the output differently by supplying a format string
beginning with a plus sign:

→ date +%x
06/04/2023
→ date '+The time is %l:%M %p on a lovely %A in %B'
The time is 2:09 PM on a lovely Sunday in June

Here is a sampling of the date command’s many formats:

Format Meaning Example (US
English)

Whole dates and times:

%c Full date and time, 12-hour clock Sun 04 Jun 2023
02:09:05 PM EDT

%D Numeric date, 2-digit year 06/04/23

%x Numeric date, 4-digit year 06/04/2023

%T Time, 24-hour clock 14:09:05

%X Time, 12-hour clock 02:09:05 PM

Words:

%a Day of week (abbreviated) Sun

%A Day of week (complete) Sunday

%b Month name (abbreviated) Jun

290 | Chapter 6: Getting Stuff Done

Format Meaning Example (US
English)

%B Month name (complete) June

%Z Time zone EDT

%p AM or PM PM

Numbers:

%w Day of week (0–6, 0=Sunday) 0

%u Day of week (1–7, 1=Monday) 7

%d Day of month, leading zero 04

%e Day of month, leading blank 4

%j Day of year, leading zeros 144

%m Month number, leading zero 06

%y Year, 2 digits 23

%Y Year, 4 digits 2023

%M Minute, leading zero 09

%S Seconds, leading zero 05

%l Hour, 12-hour clock, leading blank 2

%I Hour, 12-hour clock, leading zero 02

%k Hour, 24-hour clock, leading blank 14

%H Hour, 24-hour clock, leading zero 14

%N Nanoseconds 384789400

%s Seconds since the beginning of Linux
time: midnight January 1, 1970

1685902145

Other:

%n Newline character

%t Tab character

%% Percent sign %

Dates and Times | 291

date also displays other dates and times via options.

Useful options

-d string Display the given date or time string, formatted as you wish.

-r filename Display the last-modified timestamp of the given file,
formatted as you wish.

-s string Set the system date and/or time to be string; only the
superuser can do this.

Version Control
git Perform version control using Git.

svn Perform version control using Subversion.

Version control systems like Git and Subversion let you keep
track of changes to files, safely revert risky edits, and collabo‐
rate with teams to modify the same files without clobbering
each others’ work. I’ll assume you already understand version
control concepts like repositories, branches, and commits.

git stdin stdout - file -- opt --help --version

git [options] subcommand [arguments]

Git is a popular and powerful version control system. It gives
every participant their own full-featured repository and lets
them share changes with other repositories. The git command
has a rich set of features too large to teach here, but let’s check
out some common operations.

To get started, either create a local repository:

→ mkdir project
→ cd project
→ git init .

292 | Chapter 6: Getting Stuff Done

or download a copy of a remote repository by its URL:

→ git clone url

After you edit some files, a common sequence of git com‐
mands is as follows:

→ git status List the changed files
→ git diff Check changes line by line
→ git add -A Stage the changed files
→ git diff --staged Check the staged changes
→ git commit -m"comment" Commit the staged changes locally
→ git show View the committed changes

Staging and Undoing Changes
Staging means copying files to a hidden “staging area” to com‐
mit in the next git commit. The opposite is git reset, which
removes (“unstages”) files from the staging area.

→ git reset files... Unstage some files
→ git reset Unstage ALL files

You can also undo changes that aren’t staged yet, restoring some
or all files to their most recent commit.

→ git restore files... Undo unstaged changes in files
→ git reset --hard Unstage, then undo ALL changes

Older versions of Git use git checkout instead of git restore.

WARNING

git reset --hard destroys all uncommitted changes,
whether they’re staged or not. Be sure you mean it!

Version Control | 293

2 Older Git versions use git checkout [-b] instead of git switch
[-c].

If you’re working with a remote repository, push your changes
there at your convenience. The following git command pushes
your changes to the remote branch that matches your local one.

→ git push origin HEAD

Pull your teammates’ changes into your local repository. This
is a good practice to ensure your changes work with your
teammates’ before you push.

→ git pull

Another common workflow is to create a branch, commit var‐
ious changes to it, merge the changes into the main branch
when you’re ready, and delete the branch when you’re done.2

→ git switch -c branch_name Create local branch
→ ... Edit files and commit changes
→ git switch main Switch to your main branch

→ git merge branch_name Merge your changes
→ git branch -d branch_name Delete local branch

You can also push changes to a remote branch other than the
main one:

→ git push origin branch Push changes

and delete a remote branch when your collaborators are fin‐
ished with it:

→ git push origin --delete branch Delete remote branch

View your branch’s change history:

→ git log

Each commit has a revision ID: a string of 40 hexadecimal
digits, sometimes abbreviated to the first 7 digits. Many git

294 | Chapter 6: Getting Stuff Done

commands accept revision IDs as arguments, like git log

b77eb6b.

Other common operations:

→ git branch List all branches
→ git mv source dest Move a file/directory
→ git cp source dest Copy a file/directory
→ git rm file Delete a file
→ git rm -r dir Delete a directory

svn stdin stdout - file -- opt --help --version

svn subcommand [options] [arguments]

Subversion is a version control system for a tree of files. Unlike
Git, Subversion requires an existing repository before you can
work on files, so I assume you already have access to a reposi‐
tory. The svn command has a rich set of features too large to
teach here, but let’s check out some common operations.

To get started, locate the URL of an existing repository and
check it out, creating a local workspace called the working copy:

→ svn checkout URL

After you edit files in the working copy, a common sequence of
svn commands is as follows:

→ svn status List the changed files
→ svn diff Review your changes
→ svn commit -m"comment" Commit your changes

If you create new files, you must tell Subversion that they’re
part of your working copy before committing them:

→ svn add new_files... Add to working copy
→ svn commit -m"comment" Commit your changes

Version Control | 295

Pull your teammates’ changes into your working copy. This
is a good practice to ensure your changes work with your
teammates’ before you commit.

→ cd root_of_your_working_copy
→ svn update

Another common workflow is to create a branch in the reposi‐
tory, commit various changes to it, and merge the changes into
the main branch when you’re ready. Subversion’s branching
syntax is trickier than Git’s. A branch name is typically a URL
within the repository, like the following examples:

https://example.com/path Remote server, SSL
svn://example.com/path Remote server, SVN protocol
svn://localhost/path Local server, SVN protocol

The following commands create a branch by copying the main
branch, often called the trunk. They then commit changes to
the new branch and merge it back into the trunk.

→ ls
my_project
→ svn cp my_project my_branch Create branch
→ nano my_branch/file.py Edit a file
→ svn commit -m"edited in a branch" Commit to branch
Adding my_branch
Sending my_branch/file.py
Transmitting file data .done
Committing transaction...
Committed revision 966.
→ cd my_project
→ svn merge -c966 svn://example.com/my_branch . Merge
--- Merging r966 into .:
U file.py
→ svn commit -m"merging into trunk" Commit to trunk
Sending file.py
Transmitting file data .done
Committing transaction...
Committed revision 967.

296 | Chapter 6: Getting Stuff Done

View your change history:

→ svn log

Each commit has a revision ID: a positive integer that increa‐
ses by 1 with each commit. IDs appear in the log. Many svn
commands accept revision IDs as options, like svn log -r25.
Specify a range of revisions with two IDs separated by a colon:
svn log -r25:28.

Other operations:

→ svn mv source dest Move a file/directory
→ svn rm path Delete a file/directory
→ svn cat [-r revision] file Print file on stdout
→ svn info path Print info about files

Containers
docker Package and run applications in containers.

Have you ever installed an application and discovered that your
Linux system isn’t configured to run it? Containers are a way
to package up an application’s code plus all its dependencies so
it’s ready to run on other systems. Even better, each running
container is an isolated, miniature environment, sort of like
a virtual machine but much lighter weight, which is great for
scaling up applications, especially in the cloud.

Docker is a popular infrastructure for containers. I present its
common uses and assume you have a Docker environment.

docker stdin stdout - file -- opt --help --version

docker subcommand [options] [arguments]

The docker command creates, runs, and manages containers.
Begin with a text file named Dockerfile that specifies a running
container’s contents and behavior. Here’s a simple Dockerfile for

Containers | 297

an image that simply sleeps for five minutes, but it could just as
easily run a web server or do calculations.

A image that sleeps for 5 minutes.
Based on a minimal image called alpine.
FROM alpine
CMD ["sleep", "300"]

Then “build” the Dockerfile to create an image that’s ready
to run. Finally, run one or more instances of the image, each
inside a container that is an isolated (sandboxed) process. A
typical workflow is:

→ docker build -t example . Build an image named “example”
→ docker run example & Run image in a container
→ docker run example & Run image in another container
→ docker ps List running containers
CONTAINER ID IMAGE COMMAND ...
ff6d0f5ad309 example "sleep 300" ...
f80519480635 example "sleep 300" ...

Or, instead of creating a Dockerfile, download and run an
image created by others. The Docker Registry is an infrastruc‐
ture for sharing images. A typical workflow is:

→ docker search hello Search the Registry
NAME DESCRIPTION
hello-world Hello World! (an example of minimal...
⋮
→ docker pull hello-world Download an image
→ docker run hello-world Run image in a container

NOTE

Depending on how docker is installed on your system, you
may need to run docker commands as root (sudo docker)
or join the Linux group “docker” to run commands as
yourself (sudo usermod -aG docker $USER) .

298 | Chapter 6: Getting Stuff Done

Common Docker Operations
For operations that need a container name or ID, run docker
ps to find them. Most docker subcommands have options, and
there are other subcommands I don’t cover. The Docker site
has full details.

Images and Containers

docker search string Locate an image in a central registry with a name
or description matching string.

docker pull image Download an image from a central registry.

docker build image Given a Dockerfile, build an image.

docker create image Given an image, create a container and don’t run
it.

Executing Containers

docker run image Create a container and run an instance of an
image.

docker stop names Stop the execution of containers with the given
names or IDs. For a time, the containers can be
restarted with docker start, but if they’re
stopped for long enough, they are killed.

docker start names Start any stopped containers with the given
names or IDs.

docker restart names Same as docker stop followed by docker
start.

docker pause names Suspend all processes in containers with the
given names or IDs. The container itself continues
to run.

docker unpause names Unpause containers with the given names or IDs.

docker kill names Kill containers with the given names or IDs.

Containers | 299

https://oreil.ly/6eNA6

Manipulating Containers and Images

docker cp path1 path2 Copy files to and from a container. One path is
in your local filesystem and the other is within
the container. Paths within a container begin
with the container name or ID, a colon, and
then a file path, like 45171c25a5a0:/etc.

docker exec name cmd Execute a command inside a container, such as
docker exec dcf10812030b ls -l.

docker diff name List file additions, removals, and changes in a
container since it was run.

docker rename old new Rename a container.

docker rm [-f] name Remove (delete) a container. Use -f to force a
deletion.

docker rmi [-f] image Remove (delete) an image. Use -f to force a
deletion.

Monitoring Containers

docker ps [-a] List all running containers. Add -a to
list all containers.

docker top name List processes running in the given
container.

docker logs [options] name View the system log of a given
container. The option --follow prints
the logs and continues monitoring
them. The option --tail N prints the
last N log lines. The option --since T
begins the logs at timestamp T, such as
--since 2024-01-31.

I’ve covered just the basics of the docker command. See the
manual to learn more.

300 | Chapter 6: Getting Stuff Done

https://oreil.ly/6eNA6
https://oreil.ly/6eNA6

Displaying and Processing Images
display Display a graphics file.

convert Convert files from one graphical format into another.

mogrify Modify a graphics file.

montage Combine graphics files.

For viewing or editing graphics, Linux has handy tools with
tons of options. Let’s focus on command-line tools from a
package called ImageMagick. Its commands all have similar
usage, and a full explanation is at https://oreil.ly/nJZnm.

display stdin stdout - file -- opt --help --version

display [options] files

The display command displays images of numerous formats:
JPEG, PNG, GIF, BMP, and more. It also includes a small suite
of image editing tools that appear if you left-click the displayed
image. Type q to exit the program.

→ display photo.jpg

The command is very powerful, with more than 100 options
listed on its manpage.

Useful options

-resize size Resize the image. The size values are extremely flexible,
including setting the width (800), the height (x600), both
(800x600), a percentage to grow or shrink (50%), an area in
pixels (480000@), and more.

-flip Reverse the image vertically.

-flop Reverse the image horizontally.

-rotate N Rotate the image by N degrees, positive or negative.

Displaying and Processing Images | 301

https://oreil.ly/HyBKC
https://oreil.ly/nJZnm

-backdrop Display the image on a backdrop of solid color that covers the
rest of your screen.

-fill Set the solid color used by the -backdrop option.

-delay N Show the image for N seconds and then exit. If you list
multiple images, you get a slideshow with a delay of N
seconds between images.

-identify Print information about the image’s format, size, and other
statistics to standard output.

convert stdin stdout - file -- opt --help --version

convert [input_options] infile [output_options] outfile

The convert command copies an image and converts it to a
different graphics format. For example, if you have a JPEG file,
produce a PNG or PDF file of the same image:

→ convert photo.jpg newphoto.png
→ convert photo.jpg newphoto.pdf

Modify the copy at the same time, such as resizing or reversing
it:

→ convert photo.jpg -resize 50% -flip newphoto.png

convert accepts largely the same options as display.

mogrify stdin stdout - file -- opt --help --version

mogrify [options] file

The mogrify command transforms an image like convert does,
but it changes the original image file you provide, not a copy.
(So convert is a safer command when experimenting on a
favorite photo.) It accepts largely the same options as display:

→ mogrify -resize 25% photo.jpg

302 | Chapter 6: Getting Stuff Done

montage stdin stdout - file -- opt --help --version

montage infiles [options] outfile

montage produces a single image file from a collection of input
files. For example, create a sheet of thumbnails as a single
image, labeling each thumbnail with its original filename:

→ montage photo.jpg photo2.png photo3.gif \
 -geometry 120x176+10+10 -label '%f' outfile.jpg

montage provides great control over how those images appear.
The preceding command, for example, produces thumbnails
of size 120 × 176 pixels, offset by 10 pixels horizontally and
vertically (creating space between the thumbnails), and labeled
with their input filename.

Useful options

-geometry WxH[+|-]X[+|-]Y Set the width (W), height (H), and (X,Y)
offset of the images. Example value:
120x176+10-10.

-frame N Draw a frame of N pixels around each
image.

-label string Label each image with any string, which
can contain special escape characters
beginning with a percent sign: %f for the
original filename, %h and %w for height
and width, %m for file format, and about
40 others.

Audio and Video
mediainfo Print details about a multimedia file.

cdparanoia Rip audio from CDs to WAV files.

lame Convert from WAV to MP3.

id3info View ID3 tags in an MP3 file.

Audio and Video | 303

id3tag Edit ID3 tags in an MP3 file.

ogginfo View information about an OGG file.

metaflac View and edit information about a FLAC file.

sox Convert between audio file formats.

mplayer Play a video or audio file.

ffmpeg Convert between video and/or audio file formats.

There are numerous Linux programs with graphical interfaces
for playing and editing audio and video, but let’s focus once
again on command-line tools.

mediainfo stdin stdout - file -- opt --help --version

mediainfo [options] files

The mediainfo command displays details about video and
audio files.

→ mediainfo clip.mp4
General
Complete name : clip.mp4
Format : MPEG-4
Format profile : Base Media / Version 2
Codec ID : mp42 (mp42/mp41/isom/avc1)
File size : 1.11 MiB
Duration : 23 s 275 ms
Overall bit rate : 399 kb/s
⋮

mediainfo has options, but usually the default output is suffi‐
cient. If you need more, add the option -f (“full”) to print every
picky detail about a media file.

304 | Chapter 6: Getting Stuff Done

cdparanoia stdin stdout - file -- opt --help --version

cdparanoia [options] span [outfile]

The cdparanoia command reads (rips) audio data from a CD
and stores it in WAV files (or other formats: see the manpage).
Common uses are:

cdparanoia N
Rip track N to a file.

cdparanoia -B

Rip all tracks on the CD into separate files.

cdparanoia -B 2-4

Rip tracks 2, 3, and 4 into separate files.

cdparanoia 2-4

Rip tracks 2, 3, and 4 into a single file.

If you experience difficulty accessing your drive, try running
cdparanoia -Qvs (meaning “search for CD-ROM drives ver‐
bosely”) and look for clues.

lame stdin stdout - file -- opt --help --version

lame [options] file.wav

The lame command converts a WAV audio file (say, song.wav)
into an MP3 file:

→ lame song.wav song2.mp3

It has over one hundred options to control bit rate, convert
other formats, add ID3 tags, and much more.

Audio and Video | 305

id3info stdin stdout - file -- opt --help --version

id3info [options] [files]

The id3info command displays information about an MP3
audio file, such as the song title, recording artist, album name,
and year. The file must contain ID3 tags. There are no options
except --help and --version:

→ id3info knots.mp3
*** Tag information for knots.mp3
=== TIT2 (Title/songname/content description): Knots
=== TPE1 (Lead performer(s)/Soloist(s)): Gentle Giant
=== TALB (Album/Movie/Show title): Octopus
=== TYER (Year): 1972
*** mp3 info
MPEG1/layer III
Bitrate: 320KBps
Frequency: 44KHz

id3tag stdin stdout - file -- opt --help --version

id3tag [options] files

The id3tag command adds or modifies ID3 tags in an MP3 file.
For example, to tag an MP3 file with a new title and artist, run:

→ id3tag -A "My Album" -a "Loud Linux Squad" song.mp3

Useful options

-A name Set the artist’s name.

-a title Set the album title.

-s title Set the song title.

-y year Set the year.

-t number Set the track number.

-g number Set the genre number.

306 | Chapter 6: Getting Stuff Done

ogginfo stdin stdout - file -- opt --help --version

ogginfo [options] [files]

ogginfo is a simple command that displays information about
an Ogg Vorbis audio file:

→ ogginfo knots.ogg
Processing file "knots.ogg"...
⋮
User comments section follows...

Title=Knots
Artist=Gentle Giant
Album=Octopus
⋮

Vorbis stream 1:
Total data length: 69665 bytes
Playback length: 0m:05.067s
Average bitrate: 109.973744

Add the -h option for more detailed usage information.

metaflac stdin stdout - file -- opt --help --version

metaflac [options] [files]

The metaflac command displays or changes information about
a FLAC audio file. To display information, run:

→ metaflac --list knots.flac
⋮
 sample_rate: 44100 Hz
 channels: 2
 bits-per-sample: 16
 total samples: 223488
⋮
 comments: 4
 comment[0]: Title=Knots
 comment[1]: Artist=Gentle Giant
 comment[2]: Album=Octopus
 comment[3]: Year=1972

Audio and Video | 307

The simplest way to change information, such as the title and
artist, is to export the information to a text file, edit the file, and
then reimport it:

→ metaflac --export-tags-to info.txt knots.flac
→ cat info.txt
Title=Knots
Artist=Gentle Giant
Album=Octopus
Year=1972
→ nano info.txt Make changes and save the file
→ metaflac --import-tags-from info.txt knots.flac

Useful options

--show-tag name Display the value for the named tag, such as
title, artist, album, year, etc. There are
many other “show” options for other information:
see the manpage.

--remove-tag name Remove all occurrences of the named tag (title,
artist, etc.) from the FLAC file.

sox stdin stdout - file -- opt --help --version

sox [options] infile outfile

sox is the simplest command to convert from one audio file
format to another. It supports MP3, OGG, FLAC, WAV, and
dozens of other formats. (Run man soxformat for a list.) Simply
specify the new format using the correct file extension, as in
these examples:

→ sox knots.mp3 knots2.wav MP3 to WAV
→ sox knots.ogg knots2.mp3 OGG to MP3
→ sox knots.flac knots2.ogg FLAC to OGG

sox has many other uses, including combining audio files and
adding special effects. See the manpage for details.

308 | Chapter 6: Getting Stuff Done

Useful options

-S Show a progress meter; useful for long conversions.

--no-clobber Don’t overwrite the output file if it already exists.

-t type Specify the type of the input file, if sox cannot figure it out.
See man soxformat for the list of types.

mplayer stdin stdout - file -- opt --help --version

mplayer [options] video_files…

The mplayer command plays video and audio files in many
formats (MPEG, AVI, MOV, and more):

→ mplayer clip.mp4

Press the space bar to pause and resume the video, the cursor
keys to jump forward and backward, and Q to quit. mplayer
also plays audio files and has dozens of options on its manpage.
Learn more at https://oreil.ly/96S5B.

Other popular video players for Linux include (vlc), (kaf
feine), and (xine).

ffmpeg stdin stdout - file -- opt --help --version

ffmpeg [input_options] -i input [output_options] output

The ffmpeg command converts video file formats, splits and
appends videos, extracts audio tracks, creates thumbnail images
for videos, and much more. To understand ffmpeg thoroughly,
it helps to know digital video concepts like frame rates, demux‐
ing, and codecs; but in this pocket guide I cover just a few
common uses. For more complicated tasks, your best bet is to
search the web for someone else’s ffmpeg solution.

Audio and Video | 309

https://oreil.ly/96S5B
https://oreil.ly/hBGP0
https://oreil.ly/mROWt
https://oreil.ly/mROWt
https://oreil.ly/IyQw6

NOTE

ffmpeg is sensitive to the order of its options, unlike most
other Linux commands. Wherever you place the option -i
filename on the command line, input file options come
before it and output file options come after. If an input
option sits among output options or vice versa, ffmpeg
may fail mysteriously.

Convert a video file myvideo.mp4 from MP4 to MOV format:

→ ffmpeg -i myvideo.mp4 myvideo.mov

Extract 10 seconds of video (-t 10) beginning at the two
minute mark (-s 00:02:00) and store it in a file extract.mp4:

→ ffmpeg -i myvideo.mp4 -ss 00:02:00 -t 10 \
 -codec copy extract.mp4

Extract audio from myvideo.mp4 into an MP3 file audio.mp3:

→ ffmpeg -i myvideo.mp4 -q:a 0 -map a audio.mp3

Append multiple videos to create movie.mp4. Start with a text
file that lists the paths to the source videos, then run ffmpeg:

→ cat videos.txt
file 'video1.mp4'
file 'video2.mp4'
file 'video3.mp4'
→ ffmpeg -f concat -safe 0 -i videos.txt -c copy \
 movie.mp4

Create a thumbnail image from a video file myvideo.mp4 by
extracting a single frame (-vframes 1) at the five-second mark
(ss 5) into a JPEG file thumb.jpg, sized 160 × 120 pixels:

→ ffmpeg -ss 5 -i myvideo.mp4 -vcodec mjpeg \
 -vframes 1 -an -f rawvideo -s 160x120 thumb.jpg

ffmpeg has an extensive help system built in (see the manpage):

310 | Chapter 6: Getting Stuff Done

→ ffmpeg -encoders List supported encoders
→ ffmpeg --help encoder=mpeg4 Get details about one

Programming with Shell Scripts
Bash has a built-in programming language. You can write shell
scripts (bash programs) to accomplish tasks that a single com‐
mand cannot. The command reset-lpg, supplied in the book’s
examples directory, is a shell script that you can read:

→ less ~/linuxpocketguide/reset-lpg

Like any good programming language, bash has variables, con‐
ditionals (if-then-else), loops, input and output, and more.
Entire books and online courses have been written on shell
scripting; I cover the bare minimum to get you started. For
greater detail, run info bash, pick up a bash scripting book, or
search the web for bash scripting tutorials.

Creating and Running Shell Scripts
To create a shell script, simply put bash commands into a file as
you would type them. To run the script, you have three choices:

Prepend #!/bin/bash and make the file executable
This is the most common way to run scripts. Add the line:

#!/bin/bash

to the very top of the script file. It must be the first line of
the file, left-justified. Then make the file executable:

→ chmod +x myscript

Then run the script. For a script in the current directory,
you will probably have to prepend “./” so the shell can
locate the script. (The current directory is generally not in
your search path for security reasons. You wouldn’t want
a malicious script named “ls” in the current directory to
silently override the real ls command.)

→ ./myscript

Programming with Shell Scripts | 311

3 That’s because the script runs in a separate shell (a child shell) that
cannot alter the original shell.

Alternatively, move the script into a directory in your
search path and run it like any other command:

→ myscript

Pass to bash
Run bash with the script filename as an argument.

→ bash myscript

Run in current shell with source or a dot
The preceding methods run your script as an independent
entity that has no effect on your current shell.3 If you want
a script to make changes to your current shell (setting
variables, changing directory, etc.), run it with the source
command or a single dot:

→ source myscript
→ . myscript

Whitespace and Linebreaks
Bash shell scripts are sensitive to whitespace and linebreaks.
Because the “keywords” of this programming language are
actually commands evaluated by the shell, you must separate
arguments with whitespace. Likewise, a linebreak tells the shell
that a command is complete, so a linebreak in the middle of a
command can cut the command short. Follow the conventions
I present here and you should be fine. (Also see my formatting
advice in the sidebar “Style in Shell Scripts” on page 317.)

To split a long command into multiple lines, end each line
(except the last) with a single \ character, which means “contin‐
ued on next line.” Here’s a script with a long grep command:

#!/bin/bash
grep abcdefghijklmnopqrstuvwxyz file1 file2 file3 \
file4 file5

312 | Chapter 6: Getting Stuff Done

Variables
I described shell variables in “Shell Variables” on page 39:

→ MYVAR=6
→ echo $MYVAR
6

All values held in variables are strings, but if they are numeric,
the shell treats them as numbers when appropriate:

→ NUMBER="10"
→ expr $NUMBER + 5
15

When you refer to a variable’s value in a shell script, it’s a good
idea to surround it with double quotes to prevent certain run‐
time errors. An undefined variable, or a variable with spaces in
its value, evaluates to something unexpected if not surrounded
by quotes, causing your script to malfunction:

→ FILENAME="My Document" Space in the name
→ ls $FILENAME Try to list it
ls: My: No such file or directory ls saw 2 arguments
ls: Document: No such file or directory
→ ls -l "$FILENAME" List it properly
My Document ls saw only 1 argument

If a variable name is evaluated adjacent to another string, sur‐
round it with curly braces to prevent unexpected behavior:

→ HAT="fedora"
→ echo "The plural of $HAT is $HATs"
The plural of fedora is No variable “HATs”
→ echo "The plural of $HAT is ${HAT}s"
The plural of fedora is fedoras What we wanted

Programming with Shell Scripts | 313

Input and Output
Scripts can print to standard output with the echo and printf
commands, which I described in “Screen Output” on page 275:

→ echo "Hello world"
Hello world
→ printf "I am %d years old\n" `expr 20 + 20`
I am 40 years old

Scripts can read from standard input with the read command,
which grabs one line of input and stores it in a variable:

→ read name
Sandy Smith <ENTER>
→ echo "I read the name $name"
I read the name Sandy Smith

See also “Command-Line Arguments” on page 323.

Booleans and Exit Codes
Before I describe conditionals and loops, you need the concept
of a Boolean (true/false) test. To the shell, the value 0 means
true or success, and anything else means false or failure. (Think
of zero as “no error” and other values as error codes.)

Additionally, every Linux command returns an integer value to
the shell when the command exits. This value is called an exit
code, exit value, or exit status.

You can see this value in the special variable $?:

→ cat exittest
My name is Sandy Smith and
I really like Ubuntu Linux
→ grep Smith exittest
My name is Sandy Smith and A match was found...
→ echo $?
0 ...so exit code is “success”
→ grep aardvark exittest
→ echo $? No match was found...
1 ...so exit code is “failure”

314 | Chapter 6: Getting Stuff Done

A command’s exit codes are documented on its manpage.

The test Command
The test command (built into the shell) evaluates simple
Boolean expressions involving numbers and strings, and sets
its exit status to 0 (true) or 1 (false):

→ test 10 -lt 5 Is 10 less than 5?
→ echo $?
1 No, it isn’t
→ test -n "hello" Does “hello” have nonzero length?
→ echo $?
0 Yes, it does

Here are common test arguments to check properties of inte‐
gers, strings, and files:

File tests

-d name File name is a directory.

-f name File name is a regular file.

-L name File name is a symbolic link.

-r name File name exists and is readable.

-w name File name exists and is writable.

-x name File name exists and is executable.

-s name File name exists and its size is nonzero.

f1 -nt f2 File f1 is newer than file f2.

f1 -ot f2 File f1 is older than file f2.

String tests

s1 = s2 String s1 equals string s2.

s1 != s2 String s1 does not equal string s2.

-z s1 String s1 has zero length.

-n s1 String s1 has nonzero length.

Programming with Shell Scripts | 315

Numeric tests

a -eq b Integers a and b are equal.

a -ne b Integers a and b are not equal.

a -gt b Integer a is greater than integer b.

a -ge b Integer a is greater than or equal to integer b.

a -lt b Integer a is less than integer b.

a -le b Integer a is less than or equal to integer b.

Combining and negating tests

t1 -a t2 And: Both tests t1 and t2 are true.

t1 -o t2 Or: Either test t1 or t2 is true.

! your_test Negate the test (i.e., your_test is false).

\(your_test \) Use parentheses for grouping, as in algebra.

You can write tests in bash in three ways. The first uses the test
command as I’ve already shown. The second is to surround a
condition with double square brackets:

→ [[10 -lt 5]] Is 10 less than 5?
→ echo $?
1 No, it isn’t
→ [[-n "hello"]] Does “hello” have nonzero length?
→ echo $?
0 Yes, it does

The third way, which is also supported by some other shells, is
to use a single square bracket:

→ [10 -lt 5] Is 10 less than 5?
→ echo $?
1 No, it isn’t
→ [-n "hello"] Does “hello” have nonzero length?
→ echo $?
0 Yes, it does

The single square bracket is an older syntax with some odd
quirks. You must add whitespace after the left bracket and

316 | Chapter 6: Getting Stuff Done

before the right bracket. That’s because the left bracket is
actually a command named “[”—it is an alias for test. You
must therefore follow the left bracket with individual arguments
separated by whitespace. You also must ensure that the final
argument is a right square bracket, signifying the end of the
test. If you mistakenly forget some whitespace:

→ [5 -lt 4] No space between 4 and]
bash: [: missing ']'

then test sees the final argument is the string “4]” and com‐
plains that the final bracket is missing.

Conditionals
The if statement chooses between alternatives, each of which
may have a complex test. The simplest form is the if-then
statement:

if command If exit status of command is 0
then
 body
fi

Style in Shell Scripts
Shell scripting keywords (if, then, fi, etc.) must be the first
word on their line. That means the keyword must follow either
a newline character or a semicolon (plus optional whitespace).
Here are two other common layouts for an if statement. Other
conditionals and loops can be styled similarly.

if command; then Semicolon before then
 body
fi

if command; then body; fi Semicolons before then and fi

Here’s an example script with an if statement. Try running it
with and without sudo and view the results.

Programming with Shell Scripts | 317

→ cat script-if
#!/bin/bash
if [`whoami` = "root"]
then
 echo "You are the superuser"
fi
→ ./script-if No output
→ sudo ./script-if
[sudo] password: xxxxxxxx
You are the superuser

Next is the if-then-else statement:

if command
then
 body1
else
 body2
fi

For example:

→ cat script-else
#!/bin/bash
if [`whoami` = "root"]
then
 echo "You are the superuser"
else
 echo "You are a mere mortal"
fi
→ ./script-else
You are a mere mortal
→ sudo ./script-else
[sudo] password: xxxxxxxx
You are the superuser

Finally, there’s the form if-then-elif-else, which can have as
many tests as you like:

if command1
then
 body1
elif command2
then

318 | Chapter 6: Getting Stuff Done

 body2
elif ...
 ⋮
else
 bodyN
fi

For example:

→ cat script-elif
#!/bin/bash
bribe=20000
if [`whoami` = "root"]
then
 echo "You are the superuser"
elif ["$USER" = "root"]
then
 echo "You might be the superuser"
elif ["$bribe" -gt 10000]
then
 echo "You can pay to be the superuser"
else
 echo "You are still a mere mortal"
fi
→ ./script-elif
You can pay to be the superuser

The case statement evaluates a single value and branches to an
appropriate piece of code:

→ cat script-case
#!/bin/bash
echo -n "What would you like to do (eat, sleep)? "
read answer
case "$answer" in
 eat)
 echo "OK, have a hamburger."
 ;;
 sleep)
 echo "Good night then."
 ;;
 *)
 echo "I'm not sure what you want to do."

Programming with Shell Scripts | 319

 echo "I guess I'll see you tomorrow."
 ;;
esac
→ ./script-case
What would you like to do (eat, sleep)? sleep
Good night then.

The general form is:

case value in
 expr1)
 body1
 ;;
 expr2)
 body2
 ;;
 ⋮
 exprN)
 bodyN
 ;;
 *)
 body_of_else
 ;;
esac

The value is any value, usually a variable value like $myvar, and
expr1 through exprN are patterns (run the command info bash
for details), with the final * like a final “else.” Each body must
be terminated by ;; (as shown):

→ cat script-case2
#!/bin/bash
echo -n "Enter a letter: "
read letter
case $letter in
 X)
 echo "$letter is an X"
 ;;
 [aeiou])
 echo "$letter is a vowel"
 ;;
 [0-9])
 echo "$letter is a digit, silly"

320 | Chapter 6: Getting Stuff Done

 ;;
 *)
 echo "The letter '$letter' is not supported"
 ;;
esac
./script-case2
Enter a letter: e
e is a vowel

Loops
The while loop repeats a set of commands as long as a condi‐
tion is true.

while command While the exit status of command is 0
do
 body
done

For example:

→ cat script-while
#!/bin/bash
i=0
while [$i -lt 3]
do
 echo "$i"
 i=`expr $i + 1`
done
→ ./script-while
0
1
2

The until loop repeats until a condition becomes true:

until command While the exit status of command is nonzero
do
 body
done

For example:

Programming with Shell Scripts | 321

→ cat script-until
#!/bin/bash
i=0
until [$i -ge 3]
do
 echo "$i"
 i=`expr $i + 1`
done
→ ./script-until
0
1
2

Watch out for infinite loops, which use while with a condition
that always evaluates to 0 (true) or until with a condition that
always evaluates to a nonzero value (false):

i=1
while [$i -lt 10]
do
 echo "forever" Oops: variable i never changes
done Infinite loop

Another type of loop, the for loop, iterates over values from a
list:

for variable in list
do
 body
done

For example:

→ cat script-for
#!/bin/bash
for name in Tom Jane Harry
do
 echo "$name is my friend"
done
→ ./script-for
Tom is my friend
Jane is my friend
Harry is my friend

322 | Chapter 6: Getting Stuff Done

The for loop is handy for processing lists of files; for example,
filenames with a certain extension in the current directory:

→ cat script-for2
#!/bin/bash
for file in *.docx
do
 echo "$file is a stinky Microsoft Word file"
done
→ ./script-for2
letter.docx is a stinky Microsoft Word file
shopping.docx is a stinky Microsoft Word file

You can also generate a list of values and loop over them,
using curly braces (“Brace Expansion” on page 39) or the seq
command (see “Screen Output” on page 275):

→ cat script-seq
#!/bin/bash
for i in {1..20} Generates the integers 1-20
do
 echo "iteration $i"
done
→ ./script-seq
iteration 1
iteration 2
iteration 3
⋮
iteration 20

Command-Line Arguments
Shell scripts can accept command-line arguments and options
just like other Linux commands. (In fact, some common Linux
commands are scripts.) Within your shell script, refer to these
arguments as $1, $2, $3, and so on:

→ cat script-args
#!/bin/bash
echo "My name is $1 and I come from $2"

→ ./script-args Johnson Wisconsin

Programming with Shell Scripts | 323

My name is Johnson and I come from Wisconsin
→ ./script-args Bob
My name is Bob and I come from

A script can test the number of arguments it received with $#:

→ cat script-args2
#!/bin/bash
if [$# -lt 2]
then
 echo "$0 error: you must supply two arguments"
else
 echo "My name is $1 and I come from $2"
fi

The special value $0 contains the name of the script and is
handy for usage and error messages:

→ ./script-args2 Barbara
./script-args2 error: you must supply two arguments

To iterate over all command-line arguments, use a for loop
with the special variable $@, which holds all arguments:

→ cat script-args3
#!/bin/bash
for arg in $@
do
 echo "I found the argument $arg"
done
→ ./script-args3 One Two Three
I found the argument One
I found the argument Two
I found the argument Three

Exiting with an Exit Code
The exit command terminates your script and passes a given
exit code to the shell (see “Booleans and Exit Codes” on page
314). By tradition, scripts should return 0 for success and 1 (or
other nonzero value) on failure. If your script doesn’t call exit,
its exit code will be that of the last command the script runs.

324 | Chapter 6: Getting Stuff Done

→ cat script-exit
#!/bin/bash
if [$# -lt 2]
then
 echo "$0 error: you must supply two arguments"
 exit 1
else
 echo "My name is $1 and I come from $2"
fi
exit 0
→ ./script-exit Bob
./script-exit error: you must supply two arguments
→ echo $?
1

Piping to bash
Bash is not just a shell; it’s also a command, bash, that reads
from standard input. This means you can construct commands
as strings and send them to bash for execution:

→ echo wc -l myfile
wc -l myfile
→ echo wc -l myfile | bash
18 myfile

WARNING

Piping commands into bash is powerful but can also be
dangerous. First, make sure you know exactly which com‐
mands you’re sending to bash for execution. You don’t
want to pipe an unexpected rm command to bash and
delete a valuable file (or one thousand valuable files).
If someone asks you to retrieve text from the web (say,
with the curl command) and pipe it to bash, don’t do
it blindly. Instead, capture the web page as a file (with
curl or wget), examine it closely, and make an informed
decision whether to execute it with bash.

Programming with Shell Scripts | 325

This technique is incredibly useful. Suppose you want to down‐
load the files photo1.jpg, photo2.jpg, through photo100.jpg from
a website. Instead of typing 100 wget commands by hand,
construct the commands with a loop, using seq to construct the
list of integers from 1 to 100:

→ for i in `seq 1 100`
do
 echo wget https://example.com/photo$i.jpg
done
wget https://example.com/photo1.jpg
wget https://example.com/photo2.jpg
⋮
wget https://example.com/photo100.jpg

Yes, you’ve constructed the text of 100 commands. Now pipe
the output to bash, which runs all 100 commands as if you’d
typed them by hand:

→ for i in `seq 1 100`
do
 echo wget https://example.com/photo$i.jpg
done | bash

Here’s a more complex but practical application. Suppose you
have a set of files you want to rename. Put the old names into a
file oldnames, and the new names into a file newnames:

→ cat oldnames
oldname1
oldname2
oldname3
→ cat newnames
newname1
newname2
newname3

Now use the commands paste and sed (“Manipulating Text in
Files” on page 107) to place the old and new names side by side
and prepend the word “mv” to each line, and the output is a
sequence of “mv” commands:

326 | Chapter 6: Getting Stuff Done

→ cat oldnames \
 | paste -d' ' oldnames newnames \
 | sed 's/^/mv /'
mv oldfile1 newfile1
mv oldfile2 newfile2
mv oldfile3 newfile3

Finally, pipe the output to bash, and the renaming takes place!

→ cat oldnames \
 | paste -d' ' oldnames newnames \
 | sed 's/^/mv /' \
 | bash

Beyond Shell Scripting
Shell scripts are fine for many purposes, but Linux comes with
much more powerful scripting languages, as well as compiled
programming languages. Here are a few:

Language Program To get started…

C, C++ gcc, g++ man gcc

https://oreil.ly/-kuj1

Java javac https://oreil.ly/-yvQR

.NET mono man mono

https://oreil.ly/IVenL

Perl perl man perl

https://oreil.ly/LKgdM

PHP php man php

https://oreil.ly/JPmIL

Python python man python

https://oreil.ly/vAunc

Ruby ruby https://oreil.ly/ifm2L

Programming with Shell Scripts | 327

https://oreil.ly/-kuj1
https://oreil.ly/-yvQR
https://oreil.ly/IVenL
https://oreil.ly/LKgdM
https://oreil.ly/JPmIL
https://oreil.ly/vAunc
https://oreil.ly/ifm2L

Final Words
Although I’ve covered many commands and features of Linux,
there’s so much more to learn. I hope you’ll continue reading
and exploring the capabilities of your Linux systems.

To boost your Linux skills even more, check out my follow-up
book, Efficient Linux at the Command Line. It goes beyond the
basics to make you faster and more effective with Linux, with
tons of practical tips and techniques. For more information,
visit my website.

328 | Chapter 6: Getting Stuff Done

https://learning.oreilly.com/library/view/efficient-linux-at/9781098113391/
https://danieljbarrett.com

Index

Symbols
! (exclamation point)

filename pattern, 38
shell command history, 48
test command, 100

$ (dollar sign), variable value, 40
$#, argument count, 324
$((, expr command, 284
$(, command substitution, 45
$0, script name, 324
$1, script argument, 323
$?, exit code, 314
$@, all arguments, 324
% (percent), printf formatting,

277-278
& (ampersand), running back‐

ground jobs, 51
&& (double ampersand), logical

and, 44
* (asterisk)

case statement, 320
filename pattern, 37, 38
traceroute output, 256

- (dash)
filenames beginning with, xii
standard input/output, xi, 282

-- (double dash), end of options,
xii

. (dot)
current directory, 29
dot files, 38
shell script execution, 312

.. (dot dot)
brace expansion, 39
parent directory, 29

/ (slash)
directory separator, 28
root directory, 27
ZFS datasets, 236

; (semicolon), combined com‐
mands, 44

;; (two semicolons), case state‐
ment, 320

< (less than), input redirection, 43
<(, process substitution, 46
= (equals sign), variable assign‐

ment, 39
> (greater than), output redirec‐

tion, 44
? (question mark), filename pat‐

tern, 38
[(left square bracket)

alias for test command, 317

329

filename pattern, 38
[] (square brackets)

versus curly braces, 39
expansion on command line,

38
grep regular expressions, 109
test command, 316

\ (backslash)
escaping special characters, 47
line continuation, xiii, 312

^ (caret)
control key, xiv, 80
filename pattern, 38

`` (backquotes), 45
(see also command substitu‐

tion)
{ } (curly braces)

expansion on command line,
39

for loops, 323
grep regular expressions, 110
shell variables, 313
versus square brackets, 39

| (pipe) operator, 26, 45, 325-327
|| (double pipe), logical or, 44
~ (tilde), home directories, 30

A
abiword command, 78
absolute path, 28, 69
absolute permissions, 92
addgroup command, 193
adduser command, 189
adminaddr file, 268
administrator (see superuser)
alias command, 42, 62
alphabetical order, sorting text in,

118
ampersand (&), running back‐

ground jobs, 51
apt command, 196, 200
aptitude command, 196, 201
Arch Linux, 60, 204

arguments for commands, 24, 277
aspell command, 159
asterisk (*)

case statement, 320
filename pattern, 37, 38
traceroute output, 256

at command, 176-178
atq command, 178
atrm command, 178
attributes of files

changing, 96
listing, 84-86, 95-96

audio, 304-310
compressing, 305
converting, 308
playing, 309
ripping, 305
tags, 306-307

awk command, 117, 125

B
background jobs, running, 50
backquotes (``), 45

(see also command substitu‐
tion)

backslash (\)
escaping special characters, 47
line continuation, xiii, 312

backups, 241-247
basename command, 69
bash shell, 20, 36-59

aliases, 42
brace expansion, 39
built-in commands, 43
combining commands, 44-46
command history, 48
command-line editing, 47
configuring, 58
defining variables, 39-41
evaluation prevention, 46-47
filename completion, 49
identifying, 37

330 | Index

input/output redirection,
43-44

invoking directly, 325-327
job control, 50-53
killing commands, 57
pattern matching, 37-39
printf command, 277
programming with shell

scripts, 311
running as a command, 37
running multiple shells at

once, 54-56
search path, 41-42
tailoring behavior of, 58
terminating, 58
type command, 97, 106

.bashrc file, 38, 42, 58, 189

.bash_login file, 58

.bash_logout file, 56, 58

.bash_profile file, 58
bc command, 285-287
bg command, 51, 52
bin directory, 32
binary files, viewing, 77
block devices, 216
Booleans in shell scripts, 285, 314
/boot directory, 34
braces (see { })
broken link, 67
btop command, 168
Btrfs, 236
built-in commands, 43
bunzip2 command, 130
burning CDs and DVDs, 246
bzcat command, 130
bzip2 command, 130

software installation and, 209
tar –j command and, 129

C
C and C++ languages, 327
^C keystroke (killing programs),

57

cal command, 23, 289
calculator programs, 283
calendar printing, 289
caret (see ^)
carriage returns, 112, 117
case statement, 319
cat command, x, 72, 118

gzip command and, 129
revealing end-of-line charac‐

ters, 112
split command and, 149
tee command and, 124

cd command, 27, 29, 30, 69
cdparanoia command, 305
CDs (compact discs)

burning, 246
ripping audio, 305

cgi-bin directory, 32
chattr command, 96
checksums

comparing, 139
security, 135
shasum command, 139

chgrp command, 36, 91, 193
chmod command, 36, 91-94
chown command, 36, 90
chronological order, reversing,

122
chsh command, 37, 192
cksum command, 135
clear (the screen) command, 24,

281
clipboard

copy and paste actions,
281-283

selections, 281
Wayland window system, 281
X window system, 281

clock programs, 289
cloning hard drives, 245
cloud storage providers, 243
cmp command, 135, 138
Code Industry, 152

Index | 331

column command, 115
columns of text

appending, 114-115
creating, 115
extracting from files, 112-113

combining commands, 44-46
comm command, 135, 137-138
command history, 48
command mode, vim text editor,

81
command prompt, xii
command substitution, 45, 103,

170
command-line arguments, shell

scripts, 323-324
command-line editing with bash,

47
commands

built-in, 43
combined, 44-46
defined, 19
examples to try, 22-24
killing, 57, 170
previous, 48
sequences of, 44
shell scripts, 311-324
simple, 25
structure of, 24-26

compact discs (see CDs)
comparing files, 135-140
completing filenames with Tab

key, 49
compress command, 129, 131
compressing/uncompressing files,

127-133
compression ratio, ZFS, 239
conditional execute permission,

93
conditionals, shell scripts,

317-320
config.fish file, 58
configuration files, shell, 58
configure script, 209, 211

containers, 297-300
creating, 297
Docker, 297
executing, 299
Flatpak, 206
images and, 299
manipulating, 300
monitoring, 300
package management, 197
Snap, 208

convert command, 302
copy and paste actions, 281-283
cp command, 64
cpio command, 241
cron process, 178
crontab command, 178-180
.cshrc file, 58
csplit command, 149-151
CSS selectors, 143
csvtool command, 147-148
CUPS printing system, 156
curl command, 24, 272

downloading practice files,
xiv

piping into bash, 325
piping into hxselect, 144

curly braces (see { })
current directory, 28, 69
cut command, 112-113

D
^D keystroke (end of file), 58

logging out, 181
single-user mode, 183
superuser shells, 162
tmux command, 56

dangling link, 67
dash (see -)
dash shell, 58
dataset, ZFS, 236, 238
date command, 176, 290-292
dates and times, displaying and

setting, 289-292

332 | Index

dc command, 287-288
dd command, 245-246
deb file, 196
Debian packages, 196

apt command, 200
aptitude command, 201
dpkg command, 200

decimal places
bc command, 285
dc command, 288

default editor, setting, 79
defaultdomain file, 269
/dev directory, 33
df command, 23, 214-215
diff command, 45, 135-137
diff3 command, 135, 137
dig command, 254
directories, Linux, 27

changing, 69
comparing, 137
creating, 70
default mode for creating,

94-95
deleting empty, 71
deleting nonempty, 71
group ownership, 91
home directories, 29-30
kernel-related directories,

33-35
ownership, 90, 91
printing absolute path of, 69
printing final part of path, 69
printing path without final

part, 70
protection from unauthorized

users, 91-94
system directories, 30-33

dirname command, 70
disks

disk usage, 86-87
logical volume management,

229-235
RAID arrays, 224-229

using, 213-219
disown command, 53
disowning jobs, 50
display command, 301
DISPLAY environment variable,

40
distro, 20

identifying, 196
installing software, 196

dnf command, 196
DNS (domain name service),

querying, 253
doc directory, 32
Docker, 297-301

containers
copying files to/from, 300
creating, 299
deleting, 300
detecting changes, 300
killing, 299
listing, 298, 300
logs, 300
pausing, 299
processes, listing, 300
renaming, 300
restarting, 299
running commands in,

300
stopping, 299

Dockerfile, 297
images, 298-301

building, 298, 299
deleting, 300
downloading, 299
running, 298
searching for, 299

manual, 300
registry, 298

docker command, 297-300
Dockerfile, 297
dollar sign (see $)
domain name service (DNS),

querying, 253

Index | 333

dot (see .)
dot files, 38, 62
double ampersand (&&), logical

and, 44
double dash (--), end of options,

xii
double pipe (||), logical or, 44
downloading files, xiv, 273
dpkg command, 196, 200, 201
du command, 86-87
dump command, 96, 241
duplicate lines of text, 120-122

E
e2label command, 223
echo command, xiii, 275-276

built-in versus /bin/echo, 276
script output, 314

EDITOR environment variable,
73, 79

egrep command, 111
elinks command, 271
else statement, 318
emacs text editor, 80

bash command-line editing,
47

creating/editing files, 78
flatpak command and, 206
lynx –emacskeys command,

272
email, 262-269

directory, 33, 40
file format, 266
log file, 265
pipelines, 265
queue, 265
readers, 262-265
reading over SSH connection,

263
scripting, 264
servers, 266-269

emerge command, 202-204
empty files, creating, 79

encrypting files, 133-134, 243
enlarging filesystems, 222
environment variables, 40

DISPLAY, 40
EDITOR, 73, 79
HOME, 30, 40
LOGNAME, 40
MAIL, 40
OLDPWD, 40
PATH, 40
printing, 188
PWD, 40
SHELL, 40
TERM, 40
USER, 40
VISUAL, 73, 79

equals sign (=), variable assign‐
ment, 39

escape characters
echo command, 276
printf command, 278
tr command, 117

escaping special characters, 47
etc directory, 32
evaluation of special characters,

preventing, 46-47
evince command, 152
examples, running, xiv
Excel documents, 78
exclamation point (see !)
execute permission, 35, 91
exit codes

defined, 314
exiting with, 324
test command, 315

exit command, 181, 324
single-user mode, 183
terminating shells, 58

expand command, 118
export command, 40
expr command, 284-285
ext3 filesystems, 96
ext4 filesystems, 214

334 | Index

extended regular expressions,
108, 111

F
fdisk command, 220
fetchmail command, 266
ffmpeg command, 309
fg command, 51, 53
fgrep command, 111
file command, 88
filename completion, 49
files

attributes of, 84-97
case sensitive names, 29
changing attributes, 96
comparing, 135-140
compressing and packaging,

127-133
converting, 141-151
copying, 64, 245
counting words, 86
creating, 78-79, 89
default mode for creating,

94-95
deleting, 65
disk usage, 86-87
downloading, 273
encrypting, 133-134, 243
group ownership, 91
linking, 66-68
listing, 61-63
listing attributes, 84-86, 95-96
locating, 97-107
MIME type, 88
moving, 64
ownership, 35, 63, 90, 91
pattern matching, 37
PDF and PostScript files,

152-155
permissions, 35-36, 63, 91,

104
protecting in /etc/postfix, 268

protection from unauthorized
users, 91-94

renaming, 64
reporting type of, 88
test arguments for, 315
text editors, 78-81
text manipulation, 107-124
timestamps, 89
transferring between

machines, 259
viewing, 71-78

filesystems, 27-36
backups and remote storage,

241-247
checking integrity, 218
creating and modifying,

220-223
ext4, 214
file permissions, 35-36
fixing errors, 218
home directories, 29-30
kernel-related directories,

33-35
logical volume management,

229-235
RAID arrays, 224-229
system directories, 30-33
using, 213-219
ZFS, 235-241

find command, 97, 98-101, 102
firewalls

blocking pings, 255
blocking traceroute, 256

fish shell, 58
FLAC audio file, 307
flatpak command, 206
flock command, 174
folders (see directories)
fonts directory, 32
for loops, shell scripts, 322, 324
foreground jobs, 50, 53
format specifications

Index | 335

format specifications, printf,
277-278

formatting disks, 214
free command, 168-169
fsck command, 183, 218-219
fstab file

lvm2, 232
mount command, 217
RAID array, 226

full name of user
changing, 190
setting, 189

functions, bc command defining,
286

G
g++ command, 327
gcc command, 327
GECOS field, 190
git command, 292-295

cloning repositories, 210, 293
diff format, 136

GNOME graphical environment,
20, 22

gnome-terminal command, 22
GNU emacs (see emacs text edi‐

tor)
GNU Privacy Guard (GnuPG),

133
gnumeric command, 78
gparted command, 220, 222
gpg command, 133-134
graphical desktop environment,

20, 21, 56
graphics (see images)
grep command, 108-109

egrep command and, 111
fgrep command and, 111
ps command and, 165
strings command and, 76

group IDs, 185
groupadd command, 193
groupdel command, 194

groupmod command, 195
groups, 35, 192-195

creating, 193
deleting, 194
logical volume, 235
modifying, 195
ownership of files, 91
printing group membership,

193
updating membership, 191
using new membership

immediately, 194
groups command, 193
growisofs command, 246
gs command, 153
gunzip command, 129
gv command, 152
gzip command

software installation and, 209
tar –z command and, 129

gzip compression, 239

H
hangup signal, 173
hard drive cloning, 245
hard links, 66
hardware platform, 250
hash mark

cron comments, 179
superuser prompt, 162

head command, 75
help and tutorials, 59-60
--help option, xii, 60, 252
history command, 48
home directories, 29-30
HOME environment variable, 30,

40
host command, 253-254
host information, 249-252

local, 249
remote, 253

host location, 253-256
hostfile file, 251

336 | Index

hostname command, 250-251
HTML data, extracting strings

from, 143
html directory, 32
hxnormalize command, 144
hxselect command, 143-144

I
ICMP packets, 255
id command, 185
ID3 tags

modifying, 306
viewing, 306

id3info command, 306
id3tag command, 306
if statement, shell scripts, 317
ifconfig command, 252

(see also ip command)
iftop command, 168
ImageMagick, 301
images, 301-303

combining, 303
converting, 302
displaying, 301
Docker, 299-300
modifying, 302
optical character recognition,

155
include directory, 32
index of file locations, creating,

104
infinite loops, 322
info command, 59
info directory, 32
init.d directory, 32
initialization files, shell, 58
inode, 66, 85
input redirection (<) operator, 43
input to a shell script, 314
input/output redirection, 43-44
insert mode, vim text editor, 81
installing software

from source code, 209-212

package installation, 196-208
Internet domains, looking up reg‐

istration of, 254
ionice command, 172
iotop command, 168
ip command, 251-252
ISO files, 245, 246
itsfoss.community, 60

J
Java language, 327
javac command, 327
job control in Linux shells, 50-53
job scheduling, 175-180
jobs command, 51
journalctl command, 182
jq command, 144-145
JSON, 116, 144

K
k3b command, 247
Kaffeine media player, 309
KDE graphical environment, 20,

22
kernel, 19

kernel-related directories,
33-35

name and version, 249
key pair

GnuPG, 133
SSH, 258

kill command, 57, 170-171
konsole command, 22, 54
ksh shell, 58
.kshrc file, 58

L
labels, filesystem, 223
lame command, 305
language codes, 89
lartc.org website, 252
last command, 24, 187

Index | 337

leading zeros, 280
less command, x, 72-74
lib directory, 32
LibreOffice, 78
line continuation character, xiii,

312
line numbering

cat -n command, 72
nl command, 74

linebreaks
converting, 112
grep handling of, 112
shell scripts, 312
Windows and MacOS, 112

links, 66
creating, 66-68
hard versus symbolic, 67
output of ls, 63

links web browser, 271
Linux, 19

(see also commands)
components of, 19-20
defined, 19
help and tutorials, 59-60
scripting languages, 327

linuxpocketguide directory, xiv
linuxquestions.org website, 60
ln command, 66-68
load average, 166
locate command, 97, 104-105
lock directory, 33
lockfile, 174
logfiles

directory, 33
reversing, 122

logical volume management
(LVM), 229-235
(see also lvm2)
adding volumes, 232, 233
creating volumes, 231
deleting logical volumes, 234
deleting physical volumes,

235

enlarging volumes, 233
shrinking volumes, 234
viewing details, 232
volume groups, 234

.login file, 58
login shell, 162, 192
logins/logouts, 181-184

changing login shell, 192
listing logged-in users, 186
logging into remote

machines, 257
printing login names, 184
viewing recent, 187

logname command, 184, 185
LOGNAME environment vari‐

able, 40, 184
logout command, 181
long command lines, xiii, 312
look command, 158
loops, shell scripts, 321-323
/lost+found directory, 34
lpq command, 156, 157
lpr command, 24, 156
lprm command, 156, 157
LPRng printing system, 156
ls command, xi, 23, 61-63

displaying file attributes, 84
file permissions, 35

lsattr command, 95-96
lsblk command, 216, 225, 233
lvcreate command, 229, 231, 232
lvdisplay command, 229, 232
lvextend command, 233
LVM (see logical volume manage‐

ment; lvm2)
lvm2

logical volumes, 230
physical volumes, 230
RAID combined with, 230
volume group, 230

lvremove command, 229, 234
lvresize command, 229, 234

338 | Index

LVs (see logical volume manage‐
ment; lvm2)

lvs command, 232
Lynx web browser, 270-271

M
m4 macro processor, 125
mail (see email)
mail command, 264-265
mail directory, 33, 40
MAIL environment variable, 40
mail server

nullmailer, 268
relay-only, 268

mailq command, 265
main.cf file, 267
make command, 209, 211
malicious archive file, 210
man command, 32, 59
man directory, 32
masks and file permissions, 95
master boot record (MBR), 246
master.cf file, 267
math commands, 283-288
md5sum command, 135, 140
mdadm command

adding disks, 228
creating arrays, 224
destroying arrays, 228
LVM combined with, 230
managing arrays, 224
mdadm.conf file, 226
removing disks, 227
replacing disks, 227
saving configuration, 226
viewing arrays, 225

mdstat file, 224
/media directory, 33
mediainfo command, 304
memory usage, displaying, 169
meta key, 80, 81
metaflac command, 307

Microsoft CAB files, extracting,
132

Microsoft documents, editing, 78
MIDI, 304
MIME

attachments, 132
type detection, 88

mimetype command, 88
mirroring

RAID, 224
rclone, 243
rsync, 241
ZFS, 236

mkdir command, 70
mke2fs command, 221, 232
mkfs commands, 221
mkisofs command, 247
mkntfs command, 221
mlocate command, 104
/mnt directory, 33
mode 0600, 268
mogrify command, 302
mono command, 327
montage command, 303
mount command, 217

lvm2, 232
RAID, 226

mounting filesystems, 214
MOV files, 310
MP3 files

creating from WAV files, 305
extracting audio from MP4

files into, 310
ID3 tags, 306

MP4 files, 310
mpack command, 132
mplayer command, 309
mplayerhq.hu website, 309
mtr command, 256
munpack command, 132
music (see audio)
mutt command, 263-264
mv command, 64, 326

Index | 339

N
nameserver, 253
nano text editor, 80
nc command, 261
.NET, 327
netcat command, 261-262
network interface, viewing, 251
networking, 249-274

email, 262-265
email servers, 266-269
host information, 249-252
host location, 253-256
network connections, 257-262
web browsing, 270-274

newgrp command, 194
nice command, 172
nixcraft.com website, 60
nl command, 72, 74
nohup command, 173
NOT AND binary operation, 95
nslookup command, 254
NTFS filesystems, 214
Nullmailer, 268-269
nullmailer-send command, 269

O
OCR (optical character recogni‐

tion), 155
ocrmypdf command, 155
octal permissions, 92
ocular command, 152
od command, x, 77-78, 118
Ogg Vorbis audio file, 307
ogginfo command, 307
OLDPWD environment variable,

40
openSUSE Linux, 205
OpenZFS Documentation, 236
operating system

directories, 33
printing name of, 250

optical character recognition
(OCR), 155

options for commands, 24
other (user group), 35
output from shell scripts, 314
output redirection (>) operator,

44
ownership of files, 35, 63

P
package management, 196-208

apt, 200
aptitude, 201
container-based, 197
dnf, 197
dpkg, 200
emerge, 202-204
flatpak, 206
pacman, 204
Portage, 202
rpm, 199
snap, 208
yum, 198
zypper, 205

pacman command, 204
paging keystrokes, 73
pandoc command, 141-142
parentheses, 284
parted command, 220
partition table, saving, 220
partitioning a disk, 213, 220
passwd command, 191
passwords

changing, 191
root, 162

paste command, 114-115, 326
patch command, 136
path

filesystem, 28
printing absolute directory

path, 69
printing final part, 69
search, 41-42

PATH environment variable, 40,
41

340 | Index

pattern matching (wildcards),
37-39, 99

pattern-matching engines, 125
PDF files, 152-155

converting from images, 302
converting from markdown,

142
converting to PostScript, 155
displaying, 152
extracting attachments into

files, 132
manipulating, 154
optical character recognition,

155
splitting, 153
text extraction, 152-153

pdf2ps command, 155
pdfseparate command, 153
pdftk command, 154
pdftotext command, 152
Perl, 126, 327
permissions, file, 35-36, 63, 91,

104
pgrep command, 165-166, 170
photos (see images)
PHP, 126, 327
physical volumes (PVs), 230

(see also lvm2)
PID (see process ID)
pidof command, 165
ping command, 255
pipe (|) operator, 26, 45, 325-327
pkill command, 170
plocate command, 104
pool, ZFS, 236
Portage package manager, 202
postfix command, 267
Postfix mail server, 266-268
postfix-files file, 267
postfix.org website, 268
PostScript files, 152-155

converting to PDF, 155
displaying, 152

text extraction, 153
Powerpoint documents, 78
practice files, downloading, xiv
--prefix option, 211
printenv command, 178, 188
printf command, 277-278, 314
-printf option (find command),

101
printing, 156-157
private key

GnuPG, 133
SSH, 258

/proc directory, 34
process ID, 163, 165
process substitution, 45-46
processes

controlling, 169-175
killing, 170-171

by name, 170
by PID, 170

shell jobs versus, 163
signaling, 170
viewing, 163-169

processor type, 250
procmail command, 266
.profile file, 58
prompt, xii
ps command, 164-165, 170
ps2ascii command, 153
ps2pdf command, 155
public key

GnuPG, 133
SSH, 258

public_html directory, 32
pvcreate command, 229, 231, 233
pvdisplay command, 229, 230,

232
pvremove command, 229, 235
PVs (physical volumes), 230

(see also lvm2)
pvs command, 229, 231, 232
pwd command, 27, 69
PWD environment variable, 40

Index | 341

Python, 126, 327

Q
question mark (?), filename pat‐

tern, 38
quoting

on command line, 47
in shell scripts, 313

R
RAID arrays, 224-229

(see also mdadm)
creating, 224-226
destroying, 228
drive failure, 227
mounting, 224, 226
replacing devices in, 227-228

RAID level, 224
rc.d directory, 32
rclone command, 243-244
read command, 314
read permission, 35, 91
readlink command, 68
real name of user

changing, 190
setting, 189

reboot command, 183
rebooting, hostname command

and, 251
redirecting input/output, 43-44
regular expressions

awk command, 125
csplit command, 149
egrep command, 111
find –regex command, 99
grep command, 108, 109
less command, 73
line numbering with nl, 74
locate –r command, 105
pgrep command, 165

relative path, 28
relative permissions, 92

relay-only mail server, 268
remote machines

file transfers, 259, 260
hostname lookup, 253
logging in with ssh, 257
sending ICMP packets to, 255
traceroute command, 255

remote storage, 241-247
remotes file, 269
renice command, 173
reset command, 57
reset-lpg script, xiv, 311
resize2fs command, 222-223, 233
REST APIs, testing, 272
restore command, 241
resuming jobs, 50, 53
return codes of commands, 314,

324
reverse Polish notation (RPN),

287
revision IDs, 294, 297
ripping CD tracks, 305
rm command, 65, 325
rmdir command, 71
root directory (/), 27, 29
root password, 162
root user, 26, 161

(see also superuser)
rpm command, 196, 199
rpm file, 196
RPM packages, 196

dnf command, 197
rpm command, 199
yum command, 198
zypper command, 205

RPN (reverse Polish notation),
287

rsnapshot command, 242
rsync command, 174, 241-243
Ruby, 126, 327
run directory, 33

342 | Index

S
sasl_passwd file, 267
sbin directory, 32
scheduled jobs, running

at command, 176
crontab command, 178

scp command, 259
screen command, 54, 281
screen output, 275-281
sdiff command, 135, 137
search path, 41-42
secure shell program, 257
sed command, 117, 125, 326
selections (clipboard), 281
semicolon (;), combined com‐

mands, 44
seq command, 279-281, 323
.service suffix, 182
setgid, 93
setting dates and times, 289-292
setuid, 93
7z (7-Zip) command, 132
sfdisk command, 220
sftp command, 260
sgdisk command, 228
share directory, 32
shasum command, 135, 139-140
shell, xii, 20

(see also bash shell)
changing login shell, 192
history-related commands, 48
identifying, 37
job control, 50-53
launching, 21
versus program, 43
prompt, xii
running multiple shells at

once, 54-56
suspending, 52
tailoring behavior of, 58
versus terminal, 22
terminating, 58
window, 21

SHELL environment variable, 40
shell scripts, 311-324

Booleans, 314
command-line arguments,

323-324
conditionals, 317-320
creating, 311-312
exit codes, 314, 324
input/output, 314-314
linebreaks, 312
loops, 321-323
piping to bash, 325-327
running, 311-312
test command, 315-317
variables, 313
whitespace, 312
writing, 311

shrinking filesystems, 222
shuf command, 122-124
shutdown command, 182-183
signals, 171
simple command, 25
single-user mode, 183
slash (see /)
sleep command, 171, 175
slocate command, 104
snap command, 208
snapshots, ZFS, 240
soft links, 67
software

installing from source code,
209-212

package installation, 196-208
sort command, 118-120
sorting key, 119
sound (see audio)
source command, 312
sox command, 308
spaces, converting to tabs, 118
SpamAssassin, 266
special characters, escaping, 47
spell command, 159
spelling checkers, 158-159

Index | 343

split command, 148-149
spool directory, 33
square brackets (see [])
src directory, 32
ssh command, 21, 242, 257-258
ssh-copy-id command, 258
ssh-keygen command, 258
Stack Exchange, 60
stack-based calculator, 287
staging, 293
standard error (stderr), 43
standard input (stdin), xi, 43
standard output (stdout), xi, 43,

275
startup files, shell, 58
stat command, 84-86
storage devices

erasing, 221
exporting partition tables of,

220
listing all, 216
listing partitions of, 220
replacing failed devices, 228

strings command, 76
striping disks, 236
su command, 162, 163
subdirectories, Linux, 27
subprocess, 40
Subversion, 295

(see also svn command)
sudo command, 26

becoming superuser, 161
versus su command, 163
whoami command and, 185

sum command, 135
superuser, 26

becoming, 161-163
useradd command, 189

suspend command, 52
suspending jobs, 50
svn command, 295-297
symbolic links, 67
sync command, 96

/sys directory, 34
system administration, 161-212

becoming superuser, 161-163
controlling processes, 169-175
group management, 192-195
installing software from

source code, 209-212
installing software packages,

196-208
logins/logouts and shut‐

downs, 181-184
scheduling jobs, 175-180
user account management,

188-192
users and user environment,

184-188
viewing processes, 163-169

system directories, 30-33
directory path application, 33
directory path categories,

31-33
directory path scope, 31

system load, 166
systemctl command, 181-182
systemd service manager, 181

T
Tab key, completing filenames

with, 49
table formatting, 115
tabs, converting to spaces, 118
tac command, 122
tail command, 75-76
tar command, 128-129

extracting practice files, xiv
software installation and, 209

tar files, 209
bzipped, 130
compressed, 131
gzipped, 130

tarball, 209
tcsh shell, 58
.tcshrc file, 58

344 | Index

tee command, 124
telnet, 262
TERM environment variable, 40
terminal device names, printing,

187
terminal program, 21-22
terminating shells, 58
tesseract command, 156
test command, 315-317
text manipulation commands,

107-124
text-based email programs, 262
tilde (~), home directories, 30
time, displaying and setting,

289-292
timeout command, 171
timestamps of files

listing, 85
modifying, 89
printing, 63

tmp directory, 33
tmux command, 54, 281
top command, 23, 167-168
touch command, 79, 89
tr command, 116-117
traceroute command, 255-256
translating characters, 116-117
tree, 27
trunk (subversion branch), 296
tty command, 187
tutorials, 59-60

emacs, 80
Linux help, 59
vim editor, 81

type command, 41, 43, 97, 106
types of files, reporting, 88

U
umount command, 218
unalias command, 62
uname command, 34, 249-250
uncompress command, 131
unexpand command, 118

uniq command, 120-122
unix.stackexchange.org website,

60
unmask command, 94-95
until loops, shell scripts, 321-322
unzip command, 131
update-initramfs command, 226
updatedb command, 104
uptime command, 34, 166
USER environment variable, 40
useradd command, 189
userdel command, 190
usermod command, 190-191
users, 26, 184-192

(see also superuser)
administrator, 26
creating accounts, 189
deleting, 190
effective username, printing,

185
environment variables,

related, 188
group membership, printing,

193
login names, printing, 184
login times, listing, 187
logins, active, 186
password changes, 191
protecting files from unau‐

thorized, 91-94
user IDs, printing, 185

users command, 186
/usr/share/doc directory, 59
uxterm command, 22

V
/var directory, 33
variables

defining, 39-41
in shell scripts, 313

vdev, ZFS, 235
version control, 292-297
VG (see volume group)

Index | 345

vgcreate command, 229, 230, 231
vgdisplay command, 229, 232
vgextend command, 229, 233
vgreduce command, 229, 234
vgremove command, 229, 234
vgs command, 232
vi (see vim text editor)
video, 309-310
viewing

files, 71-78
images, 301
processes, 163
videos, 309

vim text editor, 78, 81
bash command-line editing,

47
less command, 73
lynx –vikeys command, 272
sed and, 125

VISUAL environment variable,
73, 79

VLC media player, 309
volume group, 230

(see also lvm2)

W
w command, 167
w3m command, 271
watch command, 176
Wayland window system, 20, 281
wc command, 23, 24, 86
web browsing, 270

automation, 273
retrieving pages via command

line, 273
text-based, 270

wget command, 271, 273-274, 325
whereis command, 98, 106
which command, 41, 97, 105
while loops, shell scripts, 321-322
whitespace

arguments separated by, 284
linebreaks, 112

programming with shell
scripts, 312

quoting on command line, 47
square brackets (test com‐

mand), 316
xargs command and, 102

who command, 105, 186
whoami command, 162, 185
whois command, 24, 254
wildcards (pattern matching),

37-39, 99
windows (shell), opening, 21
wl-copy command, 281
wl-paste command, 281
Word documents, 78
working directory (see current

directory)
world (user group), 35
write permission, 35, 91
www directory, 32

X
X window system, 20

clipboard commands, 281
DISPLAY variable, 40
X11 directory, 32

xargs command, 101-103
command substitution, com‐

parison to, 103
find command and, 102
null-separated lines, 101

xclip command, 282
xine video player, 309
xmllint command, 145-147
XPath expression, 146
xsel command, 283
xterm command, 22

Y
yes command, 279
yum command, 196, 198

346 | Index

Z
^Z keystroke (suspending jobs),

51
zcat command, 129, 131
zcmp command, 127
zdiff command, 127
zeros, leading, 280
ZFS (Zettabyte File System),

235-241
creating datasets, 238
creating encrypted datasets,

239
creating pools, 237-238
destroying datasets, 240
destroying pools, 241
destroying snapshots, 240
enabling compression, 239

setting size limits on datasets,
239

snapshotting datasets, 240
zfs command, 235
zfs destroy command, 240
zgrep command, 127
zip command, 131, 209
zless command, 127
.zlogin file, 58
.zlogout file, 58
zpool command, 235, 237
.zprofile file, 58
.zshenv file, 58
.zshrc file, 58
zstd command, 204
zypper command, 196, 205

Index | 347

About the Author
Daniel J. Barrett has been teaching and writing about Linux
and related technologies for more than 30 years. His numerous
O’Reilly books include Efficient Linux at the Command Line;
Linux Pocket Guide; SSH, The Secure Shell: The Definitive Guide;
Linux Security Cookbook; Macintosh Terminal Pocket Guide; and
MediaWiki. Dan has also been a software engineer, heavy metal
singer, system administrator, university lecturer, web designer,
and humorist. He works at Google. Visit DanielJBarrett.com to
learn more.

https://danieljbarrett.com

Colophon
The animal on the cover of Linux Pocket Guide is a Belgian
horse. The first breeding of these gentle giants was recorded
in the 17th century, with the creation of the first studbook in
1886. These horses are descendants of the Great Horse of medi‐
eval times. They were developed for industrial and farm work
and hauling. They have a gentle, cooperative temperament, are
willing to work, easy to handle, and rarely spook. They are also
adaptable to a wide range of environments.

Belgian horses have a small head compared to the size of their
body. They have a compact, short body with a broad chest and
a wide back. They have a straight profile with kind eyes and a
thick neck, which is particularly thick on stallions. Their legs
are feathered around their medium-sized hooves. They stand
between 16 and 18 hands, with males being taller than females.
They reach their full size around five years of age and can
weigh between 1,800 and 2,200 pounds.

While their predecessors may be extinct, Belgian horses are a
very popular breed of draft horse and are not at risk of extinc‐
tion. Many of the animals on O’Reilly covers are endangered;
all of them are important to the world.

The cover image is a color illustration by Kate Montgomery,
based on an antique line engraving from Wood’s Animate
Creation. The series design is by Edie Freedman, Ellie Volck‐
hausen, and Karen Montgomery. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

.
 17

5_
4.

25
x7

http://www.oreilly.com/online-learning

	Copyright
	Table of Contents
	First Things First
	What’s in This Book?
	What’s New in the Fourth Edition?
	Conventions Used in This Book
	Commands, Prompts, and Output
	Your Friend, the echo Command
	Long Command Lines
	Keystrokes

	Downloading the Practice Files
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Essential Concepts
	What’s Linux?
	Launching a Shell
	Command-Line Warm-Up

	The Structure of Commands
	Users and Superusers
	The Filesystem
	Home Directories
	System Directories
	Kernel-Related Directories
	File Permissions

	Selected Features of Bash
	Which Shell Are You Running?
	Pattern Matching
	Brace Expansion
	Shell Variables
	Search Path
	Aliases
	Built-in Commands
	Input, Output, and Redirection
	Combined Commands
	Preventing Evaluation
	Command-line Editing
	Command History
	Filename Completion
	Shell Job Control
	Running Multiple Shells at Once
	Killing a Command in Progress
	Terminating a Shell
	Tailoring Shell Behavior

	Getting Help

	Chapter 2. File Commands
	Basic File Operations
	Directory Operations
	Viewing Files
	Creating and Editing Files
	Creating a File Quickly
	Your Default Editor

	Properties of Files
	Locating Files
	Manipulating Text in Files
	awk
	sed
	m4
	Perl, PHP, Python, Ruby

	Compressing, Packaging, and Encrypting
	Comparing Files
	Converting Files to Other Formats
	PDF and PostScript File Handling
	Printing
	Spellchecking

	Chapter 3. System Administration Basics
	Becoming the Superuser
	Viewing Processes
	Controlling Processes
	Scheduling Jobs
	Logins, Logouts, and Shutdowns
	Users and Their Environment
	User Account Management
	Group Management
	Installing Software Packages
	Installing Software from Source Code
	Downloading the Source Code
	Building and Installing the Code

	Chapter 4. Filesystem Maintenance
	Using Disks and Filesystems
	Creating and Modifying Filesystems
	RAID Arrays for Redundancy
	Create a RAID Array
	Replace a Device in a RAID Array
	Destroy a RAID Array

	Logical Volumes for Flexible Storage
	Create a First Logical Volume
	View LVM Details
	Add a Logical Volume
	Add Disks to a Volume Group
	Enlarge a Logical Volume
	Shrink a Logical Volume
	Delete a Logical Volume
	Reduce a Volume Group
	Delete a Volume Group
	Delete a Physical Volume

	ZFS: A Modern, Do-It-All Filesystem
	Create a ZFS Pool
	Create a ZFS Dataset
	Create an Encrypted ZFS Dataset
	Set Size Limits on ZFS Datasets
	Enable Compression on ZFS Datasets
	Snapshot a ZFS Dataset
	Destroy a ZFS Dataset or Snapshot
	Destroy a ZFS Pool

	Backups and Remote Storage

	Chapter 5. Networking Commands
	Host Information
	Host Location
	Network Connections
	Email in Daily Use
	Email Servers
	Postfix: A Full-Featured Mail Server
	Nullmailer: Simple Outgoing Email

	Web Browsing

	Chapter 6. Getting Stuff Done
	Screen Output
	Copy and Paste
	Math and Calculations
	Dates and Times
	Version Control
	Containers
	Common Docker Operations

	Displaying and Processing Images
	Audio and Video
	Programming with Shell Scripts
	Creating and Running Shell Scripts
	Whitespace and Linebreaks
	Variables
	Input and Output
	Booleans and Exit Codes
	The test Command
	Conditionals
	Loops
	Command-Line Arguments
	Exiting with an Exit Code
	Piping to bash
	Beyond Shell Scripting

	Final Words

	Index

