

Developer's Dilemma

Inside Technology

edited by Wiebe E. Bijker, W. Bernard Carlson, and Trevor
Pinch

Casey O’Donnell, Developer's Dilemma: The Secret World of
Videogame Creators

Christina Dunbar-Hester, Low Power to the People: Pirates, Protest,
and Politics in FM Radio Activism

Eden Medina, Ivan da Costa Marques, and Christina Holmes,
editors, Beyond Imported Magic: Essays on Science, Technology,
and Society in Latin America

Anique Hommels, Jessica Mesman, and Wiebe E. Bijker, editors,
Vulnerability in Technological Cultures: New Directions in
Research and Governance

Amit Prasad, Imperial Technoscience: Transnational Histories of
MRI in the United States, Britain, and India

Charis Thompson, Good Science: The Ethical Choreography of Stem
Cell Research

Tarleton Gillespie, Pablo J. Boczkowski, and Kirsten A. Foot, editors,
Media Technologies: Essays on Communication, Materiality, and
Society

Catelijne Coopmans, Janet Vertesi, Michael Lynch, and Steve
Woolgar, editors, Representation in Scientific Practice Revisited

Rebecca Slayton, Arguments that Count: Physics, Computing, and
Missile Defense, 1949–2012

Stathis Arapostathis and Graeme Gooday, Patently Contestable:
Electrical Technologies and Inventor Identities on Trial in Britain

Jens Lachmund, Greening Berlin: The Co- Production of Science,
Politics, and Urban Nature

Chikako Takeshita, The Global Biopolitics of the IUD: How Science
Constructs Contraceptive Users and Women's Bodies

Cyrus C. M. Mody, Instrumental Community: Probe Microscopy
and the Path to Nanotechnology

Morana AlaČ, Handling Digital Brains: A Laboratory Study of
Multimodal Semiotic Interaction in the Age of Computers

Gabrielle Hecht, editor, Entangled Geographies: Empire and
Technopolitics in the Global Cold War

Michael E. Gorman, editor, Trading Zones and Interactional
Expertise: Creating New Kinds of Collaboration

Matthias Gross, Ignorance and Surprise: Science, Society, and
Ecological Design

Andrew Feenberg, Between Reason and Experience: Essays in
Technology and Modernity

Wiebe E. Bijker, Roland Bal, and Ruud Hendricks, The Paradox of
Scientific Authority: The Role of Scientific Advice in Democracies

Park Doing, Velvet Revolution at the Synchrotron: Biology, Physics,
and Change in Science

Gabrielle Hecht, The Radiance of France: Nuclear Power and
National Identity after World War II

Richard Rottenburg, Far-Fetched Facts: A Parable of Development
Aid

Michel Callon, Pierre Lascoumes, and Yannick Barthe, Acting in an
Uncertain World: An Essay on Technical Democracy

Ruth Oldenziel and Karin Zachmann, editors, Cold War Kitchen:
Americanization, Technology, and European Users

Deborah G. Johnson and Jameson W. Wetmore, editors, Technology
and Society: Building Our Sociotechnical Future

Trevor Pinch and Richard Swedberg, editors, Living in a Material
World: Economic Sociology Meets Science and Technology Studies

Christopher R. Henke, Cultivating Science, Harvesting Power:
Science and Industrial Agriculture in California

Helga Nowotny, Insatiable Curiosity: Innovation in a Fragile
Future

Karin Bijsterveld, Mechanical Sound: Technology, Culture, and
Public Problems of Noise in the Twentieth Century

Peter D. Norton, Fighting Traffic: The Dawn of the Motor Age in the
American City

Joshua M. Greenberg, From Betamax to Blockbuster: Video Stores
tand the Invention of Movies on Video

Mikael Hård and Thomas J. Misa, editors, Urban Machinery: Inside
Modern European Cities

Christine Hine, Systematics as Cyberscience: Computers, Change,
and Continuity in Science

Wesley Shrum, Joel Genuth, and Ivan Chompalov, Structures of
Scientific Collaboration

Shobita Parthasarathy, Building Genetic Medicine: Breast Cancer,
Technology, and the Comparative Politics of Health Care

Kristen Haring, Ham Radio's Technical Culture

Atsushi Akera, Calculating a Natural World: Scientists, Engineers
and Computers during the Rise of U.S. Cold War Research

Donald MacKenzie, An Engine, Not a Camera: How Financial
Models Shape Markets

Geoffrey C. Bowker, Memory Practices in the Sciences

Christophe Lécuyer, Making Silicon Valley: Innovation and the
Growth of High Tech, 1930–1970

Anique Hommels, Unbuilding Cities: Obduracy in Urban
Sociotechnical Change

David Kaiser, editor, Pedagogy and the Practice of Science:
Historical and Contemporary Perspectives

Charis Thompson, Making Parents: The Ontological Choreography
of Reproductive Technology

Pablo J. Boczkowski, Digitizing the News: Innovation in Online
Newspapers

Dominique Vinck, editor, Everyday Engineering: An Ethnography
of Design and Innovation

Nelly Oudshoorn and Trevor Pinch, editors, How Users Matter: The
Co-Construction of Users and Technology

Peter Keating and Alberto Cambrosio, Biomedical Platforms:
Realigning the Normal and the Pathological in Late-Twentieth-
Century Medicine

Paul Rosen, Framing Production: Technology, Culture, and Change
in the British Bicycle Industry

Maggie Mort, Building the Trident Network: A Study of the
Enrollment of People, Knowledge, and Machines

Donald MacKenzie, Mechanizing Proof: Computing, Risk, and Trust

Geoffrey C. Bowker and Susan Leigh Star, Sorting Things Out:
Classification and Its Consequences

Charles Bazerman, The Languages of Edison's Light

Janet Abbate, Inventing the Internet

Herbert Gottweis, Governing Molecules: The Discursive Politics of
Genetic Engineering in Europe and the United States

Kathryn Henderson, On Line and On Paper: Visual Representation,
Visual Culture, and Computer Graphics in Design Engineering

Susanne K. Schmidt and Raymund Werle, Coordinating
Technology: Studies in the International Standardization of
Telecommunications

Marc Berg, Rationalizing Medical Work: Decision Support
Techniques and Medical Practices

Eda Kranakis, Constructing a Bridge: An Exploration of
Engineering Culture, Design, and Research in Nineteenth-Century
France and America

Paul N. Edwards, The Closed World: Computers and the Politics of
Discourse in Cold War America

Donald MacKenzie, Knowing Machines: Essays on Technical
Change

Wiebe E. Bijker, Of Bicycles, Bakelites, and Bulbs: Toward a Theory
of Sociotechnical Change

Louis L. Bucciarelli, Designing Engineers

Geoffrey C. Bowker, Science on the Run: Information Management
and Industrial Geophysics at Schlumberger, 1920-1940

Wiebe E. Bijker and John Law, editors, Shaping Technology /
Building Society: Studies in Sociotechnical Change

Stuart Blume, Insight and Industry: On the Dynamics of
Technological Change in Medicine

Donald MacKenzie, Inventing Accuracy: A Historical Sociology of
Nuclear Missile Guidance

Pamela E. Mack, Viewing the Earth: The Social Construction of the
Landsat Satellite System

H. M. Collins, Artificial Experts: Social Knowledge and Intelligent
Machines

http://mitpress.mit.edu/books/series/inside-technology

http://mitpress.mit.edu/books/series/inside-technology

Developer's Dilemma

The Secret World of Videogame Creators
Casey O’Donnell

The MIT Press

Cambridge, Massachusetts

London, England

© 2014 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales
promotional use. For information, please email special_sales@mitpress.mit.edu.

This book was set in Stone Sans Std and Stone Serif Std by Toppan Best-set Premedia
Limited, Hong Kong.

Library of Congress Cataloging-in-Publication Data

O’Donnell, Casey, 1979–
Developer's dilemma : the secret world of videogame creators / Casey O’Donnell.
 pages cm.—(Inside technology)
Includes bibliographical references and index.
ISBN 978-0-262-02819-6 (hardcover : alk. paper) 1. Computer games—Programming.
2. Computer software—Development. 3. Video games–Design. 4. Video games—
Authorship. 5. Computer software developers. I. Title.
QA76.76.C672O36 2014
794.8’1526—dc23
2014013210

10 9 8 7 6 5 4 3 2

mailto:special_sales@mitpress.mit.edu

Contents

How to Play (Use) This Game (Book)

Minus World: A Glitch

Introduction: A Videogame Industry Primer

World 1: A Tutorial Level

Preproduction: Muddling Toward a Videogame

World 2: Teasing Out Underlying Systems and Structures

World 3: Assembling Experimental Systems

Production: Let's Go Make Stuff!

World 4: Interactive Game Development Tools

World 5: Leeroy Jenkins, Autoplay, and Crunch

Publishing, Manufacturing, and (Digital) Distribution

World 6: Actor-Networks of (In)access

World 7: Disciplining the Industry's Actor-Networks

Epilogue: The Videogame Industry Game

World 8: A Game Design Document

Notes

Glossary

References

Index

List of tables

World 5

Table 5.1 Common myths about the game industry

World 6

Table 6.1 VGChartz sales data 2006–2010 (Staff 2011)

Table 6.2 Top ten videogame publishers in 2004–2009
(Wilson 2008; Staff 2009)

World 8

Table 8.1 Game subsystems

Table 8.2 Skill-level subsystem detail

Table 8.3 Employer categories

Table 8.4 Mini-game categories

List of figures

World 2

Figure 2.1 Spy vs. Spy for the NES

Figure 2.2 Screen shot of a simple OpenGL animation
window

Figure 2.3 The C++/OpenGL code necessary to generate
figure 2.2

World 3

Figure 3.1 High-scale images of art (left) and code (right)
conceptions

Figure 3.2 Low-scale images of art (left) and code (right)
conceptions

World 4

Figure 4.1 The image used to deliver warnings for users of
the build system

Figure 4.2 A graph generated from file reference statistics
for SM3

Figure 4.3 A modeler's view of the world in 3D Studio Max

Figure 4.4 Peaches in action editing a game level

World 6

Figure 6.1 An artist's interpretation of the Actor-
Inter/Intranetworks

Figure 6.2 An artist's interpretation of the
publisher/developer relationship

Figure 6.3 The lock and key of the 10NES patent

Figure 6.4 A schematic of a NES cartridge (Nakagawa and
Yukawa 1987)

Figure 6.5 The Famicom combined with a disk drive: The
NES DevKit

Figure 6.6 Sony's Phil Harrison speaks of “Game 3.0” at
GDC 2007

Figure 6.7 Web 2.0 graphic released under the creative
commons copyright

World 7

Figure 7.1 Screenshot of US immigration and customs
enforcement website (ICE 20…

Figure 7.2 A screen shot of San Diego Piracy Raid Report
(Radd 2007)

How to Play (Use) This Game (Book)

The structure of this book is performative. It imitates the level
structure of the Nintendo Entertainment System game Super Mario
Bros. (SMB) to highlight the importance that games and how an
understanding of games does work in game developer culture. This
sense of a shared history and experience provides foundations for
how videogame developers talk about their occupations. This is not
really any different from any other discipline or environment of
cultural production where experiences and language become
entangled in ways that prevent broader accessibility. To make the
work experiences of developers decipherable, the book is structured
in a way that provides readers with the tools to help debug game
developer culture.

WORLD X—Each World in this book is a “chapter” in the
traditional sense.

WORLD X-1–X-4—Each World is a collection of four levels,
much like SMB. Each level advances material that culminates in
the Boss Fights found at the end of each world.

BOSS FIGHT—Boss Fights, in games, require that players draw
on new skills, lessons, or mechanics in order to progress to the
next World. Think of it like a test. Bonus: I get to take the
academic gloves off.

#: SET DEBUG_MODE = 1—Most games have, lying
underneath, a host of tools/options/data used during
development that is invisible to the player. By turning
“DEBUG_MODE” on (to 1 or TRUE), I am offering up some of
the empirical data that lies behind the text.

AUTHOR_DEV_DILEMMA—I use these sections, contained
only in DEBUG_MODEs, to delineate my reflective comments. It
is interpreta tion that came after the gathering of the data being
presented. Time, experience, and analytic perspective offer
something absent in just the transcripts.

CASEY—My voice in interview transcripts contained only in
DEBUG_MODEs.

TITLE_Project—Informant's words in DEBUG_MODEs appear
in a fashion that indicates their relative position within a
company and the name or codename of the project they were
working on at the time.

#: SET DEMO Switch_MODE = 0—Turn DEMO
Switch_MODE off (to 0 or FALSE)

Minus World: A Glitch

World –1: “Ship It”

There exists a glitch in the original Super Mario Bros. game for the
Nintendo Entertainment System (NES). If the player performs a
series of actions in World 1-2 of the game (the proper sequence of
events is left as an exercise to interested readers) they enter World –1
(“Minus World”). The catch, however, is that once inserted into
“Minus World,” they cannot escape. The player is ultimately doomed.
They consistently die due to either the creatures in the level or the
continuous countdown of the clock in the game, which doesn't reset
at the end of a level, as in the typical game. Worse, the levels loop
together, forever returning the player to the start. There is no escape
from Minus World.

Minus World is a bit like trying to write a book about the game
industry and the people that work in it. No matter how hard an
analyst tries to capture it all, things continue to move and shift. Yet,
that's precisely what makes this text an important contribution to the
historical memory of the game industry, a memory that I argue in
this text is under-documented, rarely studied, and widely
misunderstood. I could have returned to the material in this text year
after year, modifying and adjusting according to the shifts of
independent and industry game development each year, much like
Mario or Luigi continually returning to the looping worlds of Minus
World. New consoles, tools, and platforms will surely render some of
the ethnographic material in this text “quaint” over time, yet without
this text, the idea that such an account is important would never

even be considered. For this reason, I must eventually simply say,
“Ship it.”

Visibility of developers has changed significantly in recent years,
thanks in great deal to the micro-blogging site Twitter. Game
developers can be found and engaged with in ways that were largely
impossible prior to 2007. Twitter use by developers is one of several
subsequent game-developer-focused studies now under way. I am
certain that the site will play a role in the future of this text, precisely
because of the networks that developers have solidified in that space.
If I thought having my informants “talk back” during my fieldwork
was complicated, I can only imagine the kinds of comments that may
find their way to me [@caseyodonnell] in 140 character morsels.
Game developers increasingly blog on their own or on sites like
Gamasutra, which occasionally selects entries from developers that
use the site to “feature” insights from numerous perspectives across
the industry. This largely was not the case when I began this
endeavor.

Also captured in the trope of Minus World are the glitches found in
any massive creative endeavor, like this text. There are sure to be
errors or bugs to be found. Those, along with the analysis and
conclusions reached, are subject to my particular position and
context. As one of a very small number of cultural analysts that have
negotiated access to game developer communities, my perspective is
limited and finite.

Lest that caveat sound apologetic, I must reassert my firm belief
that all critiques and Boss Fights in the following text result from the
sincere hope of bringing productive change to the work of game
development and the game industry more broadly. I want to make
the creative collaborative work of my informants more visible
because what every game developer does every day can inform so
many others. Making game development visible, rather than a secret
diary kept quietly locked away, will do more to address quality of life
struggles. Writing with this aim foremost in my mind, I try to honor
my informants. Their work is indicative of what labor has become in
our current historical and cultural moment. I thank the game
development community for the opportunity to perform my
research, and I hope that the resulting product contributes
something positive. Without a historical memory, I worry about the
trajectory that such a headlong rush forward will result in,

particularly at a moment when independent games, serious games,
art games, games for impact, and numerous others are finally finding
a foothold.

My game industry informants from across the world made this text
possible. Especially important are those who made access to their
sites possible. I would like to thank Vicarious Visions, 1st Playable,
Dhruva Interactive, RedOctane India (now closed) and all the other
sites and developers who spoke with me during my research. Such an
undertaking would have been unfeasible without their candid
participation in this project. To the handful of people who helped me
navigate initial access, a special thanks is necessary. Even more so to
those of you that have continued the conversation in subsequent
years. You know who you are. You are awesome. My various field
sites’ willingness to provide access, resources, and copious amounts
of coffee made this research possible and without such generosity
this book would not exist. Their contribution is a testament to
precisely the kind of creative collaborative interdisciplinary work
that lies at the core of this book. Thank you for playing the
Developer's Dilemma well.

I owe a debt of gratitude to the faculty and graduate students of
Rensselaer Polytechnic Institute's Science and Technology Studies
Department. Most important, I am thankful for the work of my
dissertation committee. Each member, in his or her own way,
influenced the predecessor to this text (O’Donnell 2008). Kim
Fortun, Mike Fortun, Nancy Campbell, Atsushi Akera, and
Christopher Kelty: thank you. Special thanks goes to my chair, Kim,
who helped me understand the underlying game mechanics of
academia. Kim, Mike, Kora, and Lena, you were our adopted family
while living in Troy, and I thank you for that.

My editor, Christine Harkin (http://christineharkin.com) helped
propel this book out of stasis in the winter and spring of 2012, for
which I am eternally grateful. I am appreciative for the hard work of
the anonymous reviewers that looked at the early versions of the text,
even when it remained a train wreck. Much like how a game under
development can appear to its developers as a “busted pile of crap”
(Wyatt 2012), such was the way I viewed this text until Christine and
I were able to coax from the wreckage what now stands as
Developer's Dilemma. Thanks also to Marguerite Avery and the MIT

http://christineharkin.com/

Press for their continued interest in this text, even while it was under
revision.

To my mom, thank you for all the random conversations about
post-structuralism at odd hours and for knowing me better than
sometimes I know myself. To my mother-in-law, thank you for being
the ever-enthusiastic supporter, helper on the home front, and for
keeping the reality of day-to-day corporate culture in my frame.

I think most authors have an animal companion that deserves
recognition. I have had the luxury of three Siamese cats, each has
offered input on this book, mostly in the form of hair on my lap.
Rambo and Scoshi kept me company through the first two drafts of
this text and Ash bit the heels of hands through the completion of the
third.

Utmost thanks goes to my wife, Andrea, who has had to live with
me throughout the various iterations of this text. She has been with
me through the ups and downs of industry life and allowed herself to
be dragged across the United States, all the while building her own
career. She has helped me find games in the most unlikely places and
reminds me of the value of being a player, a coach, and referee, but
never all of them at one time. She makes me a better person, scholar,
husband, and dad. To Alexis and Caelyn, whom I hope to “classically
train,” with the gift of an Atari 2600 at age three, a Nintendo
Entertainment System at age four, a Sega Genesis at age five, and so
on, I'm sorry in advance if all of that results in only future
conversations with a psychiatrist. I love you both.

Ship it.

Introduction: A Videogame Industry Primer

World 1: A Tutorial Level

Box 1.1

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: The game industry lends itself to high-
stakes dramas: long hours, looming deadlines, hardcore
engineers, big money payouts, and tremendous losses. Yet,
rarely have ethnographers or social analysts gained
significant and sustained access to these companies. Game
development companies don't even lend themselves to inquiry,
with significant limitations and non-disclosures that make
research problematic. This text is a result of extensive
ethnographic fieldwork among game developers working in
“AAA” and independent game studios in the United States and
India. Though my research as a videogame development
ethnographer continues, this text is largely based on
material gathered from 2004 to 2008. While the study of
games has exploded in recent years, game developers and game
development has remained less explored.
This text is due in part to the serendipity of how and why

a former engineer turned anthropologist of science and
technology began studying game development as a way to ask
questions about the new economy and new media work. I was an
engineer who had worked in the industry, yet I'd created a
path towards social analyst. For me it was about creating
cat's cradles (more on that in a bit) with my informants
such that I could contribute back in meaningful ways. While
I had ostensibly left the game industry for academia, I
instead found myself in a position capable of offering
constructive criticism able to speak about the structures
that game developers experience every day. Those structures
are worthy of critique when they rob game developers of
happiness and fulfillment in a workplace they are so
passionate about.
World 1 marks the entry point into the activities of

videogame developers. Much like a player just starting a

game, readers need a tutorial or introduction because
without a primer, the player/reader is left with no idea of
what they can or are expected to do/learn. World 1 is this
text's tutorial.
#: SET DEMO_MODE 0

World 1-1: The Text's Software Development Kit (SDK)

Developer's Dilemma makes three major contributions to the field of
science and technology studies: empirical, theoretical/conceptual,
and methodological. The first contribution lies in the breadth and
depth of my research. Scholars have not yet engaged in empirical
studies of videogame development practice, and in-depth
ethnographic fieldwork in the videogame industry has been absent.
Some have looked glancingly at the work of media industries (the
game industry included) but none have taken an in-depth
ethnographic look at the collaborative work and tools of the
videogame industry. This text closely examines the social and
technical milieu of videogame developers and where those elements
intersect, more broadly, with the numerous other systems and
institutions that seem to imbricate “the industry.”

The second contribution of Developer's Dilemma is a
demonstration of how the creative collaborative practice of game
developers and game development work sheds new conceptual light
on our understandings of work, the organization of work, and the
market forces that shape and are shaped by media industries in the
new economy. Videogame developers—programmers, artists, game
designers, and managers—and videogame development in the United
States and India are used as windows into understanding these
complex issues.

This text is based on foundational ethnographic data formed from
four years of participant observation at game studios in the United
States and several months of fieldwork with game studios in India.
This is further supplemented by more than seventy in-depth
interviews and internal documentation, practices, and protocols
from each field site. Patent documents, legal cases, U.S. Securities
and Exchange Commission (SEC) filings, and press releases serve to
further illuminate the forces and activities of game developers. Trade

press and “enthusiast” press material is also used as a means to
validate and further contextualize the ethnographic data.1 This third
contribution, largely methodological, grapples with research located
in corporate field sites often encumbered by numerous limitations,
such as non-disclosure agreements (NDAs).

New media work, exemplified by game development practice, is
dependent upon producing new modes of creative collaborative work
practice. This book connects the diverse forces and activities (e.g.,
laws, technologies, and workplace cultures) that make creative
collaborative practice central to the way the new economy works.

The way these practices play out and the structural conditions they
unfold within, however, simultaneously undercut creative
collaborative practice. The core of creative collaborative practice is
the ability and necessity of being able to play with and get at
underlying systems—technical, conceptual, and social. When access
to underlying systems is undermined, so, too, is creative
collaborative practice. By making collaborative practice the central
concern, this project demonstrates how diverse systems across
multiple scales come together in the context of new media work in
ways that either help or hurt the function of creative collaborative
practice.

Broadly considered, this text draws on three primary bodies of
literature: studies of work practice and science and technology
production; media studies and game studies; and studies of
globalization and the new economy. I draw connections between the
relevant literature throughout the text and my empirical material. To
provide scaffolding, however, I offer an introductory
contextualization below. This initial position among the primary
bodies of scholarship being drawn upon is done to provide academic
readers with a framework for approaching this text.

Box 1.2

#: SET WARNING_LEVEL 10
//————————————————————
// For those of you here just to read about game
development,

// do not let the next few paragraphs deter you from the
text.
// The more readable section will continue shortly. The
// conceptual parts of the text are there to help situate my
// analysis of the material. I'll try to keep things
readable.
//————————————————————
#: SET WARNING_LEVEL 0

The primary assemblage of literature situating this text includes
the studies of work and work practice. In this sphere are studies of
technological and scientific production, since they provide a wealth
of theoretical and methodological resources for making sense of the
activity of videogame development (Latour and Woolgar 1986;
Pickering 1995; Forsythe 2001). These texts demonstrate the often-
neglected social and technological aspects that disappear behind
completed science and technology. They demonstrate the contingent
and constructed character of these endeavors. Texts included in this
category also point to the influence of political and economic aspects
on the lives and approaches used by practitioners. The way gender
and social networks structure labs and workplaces offers significant
resources for examining communities of game developers. Further
supplementing this category are studies of work and work practice
(Suchman 1995; Orr 1991; Barley and Orr 1997a). These texts
establish both the importance of studying the everyday lives of
working people, as well as studying what work has become in recent
times. In many cases, work is much more complex and nuanced than
acknowledged by management or those external to those
professions. What is typically portrayed as simple or straightforward
is often quite the opposite. Even “obvious” problems require much
more skill and ability than is recognized.

Anthropological and sociological inquiries into work and work
organization offer a wealth of theoretical and empirical resources
from which to draw on. In particular, the examination of technical,
engineering, and (new) media work indicate a significant disconnect
between how work is imagined by those laboring in them. These
“new breeds” of workers “violate our concepts for making social
sense of work” (Barley 1996, 412). It is with this in mind that
researchers have attempted to better understand the relationship
workers have with their work, wondering, “what are we to make of
someone who says they love their work and cannot imagine doing

anything they enjoy more, yet earns so little that they can never take
a holiday, let alone afford insurance or a pension” (Gill 2007, 9).
While it might seem at first glance that these jobs are different, “hot,”
“cool,” or unpredictable (Neff et al. 2005) in ways that make them
less like work and more like play, these types of jobs, work, and
organizations are often cited as exemplars of our “Brave New World
of Work” (Castells 1998; Beck 2000).

Rather than signifying these workplaces as distinct or different, all
indications seem to be that this form of work and the organizations
that support them “may become the modal form of work for the
twenty-first century” (Barley and Orr 1997b). So while these forms of
work seem to be dramatically important in the context of the new
economy, they also prove significantly problematic for existing forms
of organization. Initially some cultural analysts assumed that a
natural transition toward “horizontally” organized work would result
in more horizontal forms of organization (Whalley and Barley 1997).
Rather, it seems that these changes have proven more contested; that
despite “horizontal work processes, collaboration, rather than
command, is the key to getting work done” (Zabusky 1997, 130) most
organizations balk at the necessary autonomy and trust that must be
placed in the individual (Barley 1996). Some organizations attempt a
kind of “industrialization of bohemia” that while at a surface plugs
into the self-image of workers interested in these emerging
industries actually tends to be quite detrimental to workers lives
outside the workplace (Ross 2003).

What many of these investigations agree upon is that more
research in the corporate context are needed, precisely when they are
becoming more and more difficult to perform (Smith 2001). More
needs to be learned about how work gets done in contexts where the
work of individuals frequently becomes lost or invisible, and in these
new horizontal technology organizations such cloaking occurs
frequently (Downey 2001). Many researchers have attempted to
reconstruct work practice in ways that encourage greater attention to
the collaborative social aspects of the workplace (Suchman 1995;
Suchman et al. 1999). These fieldwork-centered inquiries indicate
that this collaborative and social aspect of work in the new economy
makes simplistic approaches to globalization, offshoring, and
management particularly difficult (Hakken 2000b). Along this same
vein, this research attempts to resocialize and use the creative

collaborative efforts of game developers as a means to rethink work
in the new economy.

Tied closely to anthropological studies of work are ethnographic
studies of organizations and industries closely related to the
videogame industry. Because of their intersection with
technoscientific practice, many of these projects are highly informed
by the broader field of STS. Foundational anthropological studies of
engineers (Downey 1998), Linden Labs (Malaby 2009) and the
Gaming Industry (Schüll 2012) further inform and situate this study.
Each differs in important ways from this study, yet each offers a
methodological and conceptual core for “critical participation”
(Downey 1998, xi) that many studies like this one attempt to
manage. Linden Labs was, in many respects, a game engine
developer, though they understood themselves as virtual world
architect and host. Rather, they were in the business of creating tools
for users to generate content in a virtual world they managed.
Engineering culture certainly intersects with the work of game
development, but it is precisely the intersection of engineering
worlds with art, design and business perspectives that makes the
study of game development distinct (O’Donnell 2012). The gaming
(as in gambling machines) industry has certainly paid attention to
the work of game developers and game scholars, but to different
ends, both technologically and culturally. Each serves as an
important connection for this study.

Media studies and the emerging discipline of game studies is the
second body of scholarship that situates this text. Though this study
does not explicitly engage with the images or games produced by
game developers, the insight and research in these areas provide a
wealth of resources. Studies of online spaces and the gamers that
inhabit them provide some insight into the perspective of developers,
because most are avid gamers. They provide a foundation for
understanding how or why a developer might make some decisions
or pursue particular interests over others. Some studies look
explicitly at the politics and economics of online worlds created by
developers (Castronova 2005; Nardi 2010; Taylor 2006a) and others
examine the different ways people play online or offline and how
aspects like gender affect these (Cassell and Jenkins 2000). Some
have made the turn more explicitly toward production and how user

created game modifications (mods) shape play spaces (Taylor
2006b).

Some texts examine the issue of play and games, which is central to
the theoretical foundation of this text. How and why people play, or
the human or animal propensity for games and play, offer extensive
resources from which to draw (Huizinga 1971; Sutton-Smith 1998;
Burghardt 2005). In this book, these texts are put into conversation
with post-Marxist and cultural studies conceptual frameworks that
provide new resources for understanding hegemonic structures and
hegemonic projects (Omi and Winant 1994; Hall 1996). Finally, a
handful of research projects actually come into contact with game
developers, though primarily in small doses, corporate approved
doses, or based on fictional situations (Chaplin and Ruby 2005;
Coupland 2006; Wark 2007). They point to some of the ambiguity
and difficulty of working in the game industry, but stop short of
offering new empirical perspectives. Most never make it beyond the
big names and highly publicized meltdowns.

A small, emerging set of literature attempts to examine the worlds
of videogame developers specifically. These texts are limited by their
small sample sizes and limited access to field sites. The majority
relies on limited access to online forums or other virtual means that
result in a very engineering-centric picture of what videogame
development looks like (McAllister 2004). This would make sense
given that (as is noted in this text), many aspiring game developers
end up pursuing engineering-related resources though the
disciplines found in the game industry are actually quite varied.
Available web resources reflect the external bias and so does the
analysis of those studies. Other studies attempt to be too
encompassing, ultimately offering an un-nuanced, general account of
a strikingly dynamic industry (Deuze 2007). Other texts work to
capture the massive scale and global character of the game industry,
but in so doing neglect the daily work activity of game developers
(Dyer-Witheford 1999; Dyer-Witheford and Sharman 2005; Dyer-
Witheford and de Peuter 2009). Ultimately, the failing in game
studies has been close attention to what I call simply “production” or
the work involved in creating videogames. The focus has been largely
on game experience, game design, game economies, and the
feedback loop between player and game. Stepping in closer, I ask a

very common STS question: What about the people that create the
thing you are studying?

This text draws on a final set of literature from studies and
accounts of the new economy and globalization. These texts vary
greatly in their empirical engagement with the new economy and, as
such, it is most useful to explicate their connection within this text.
Some texts focus on modernity, postmodernity, and the changing
position of the state (Lyotard 1984; Harvey 1990; Appadurai 1996).
These texts often include insight into the new economy, as it is one
aspect of, or perhaps a result of (post)modernity ushered in by new
communications technologies. Some point to the decline of the state
and resulting consequences, like the rise of neoliberalism and the
commercialization of formerly government-run institutions. Others
look at the new means and mechanisms by which organizations
discipline workers and one another or make use of global
differentials in monetary systems.

Several texts look explicitly at the process of the information or
new economy and globalization (Tsing 2005; Kelly 2006; Varma
2006). These texts exemplify the importance of understanding new
global processes, and provide readers with an appreciation for the
complexity of the new economy by examining the interweaving of
corporate interests in historical and social processes, the global
movement and training of new generations of workers for the new
economy, the different ways in which global workers are viewed and
encouraged or discouraged from working together, and how
globalization is experienced on the ground where conflict is
experienced.

While grounded in these different approaches to work practice,
game theory, and new economy studies, this document differs from
most other media that has covered the videogame industry. A small
number of publications and online websites cater to game
developers, offering new methods or reviews of development tools.
Occasionally magazines like Wired, Newsweek, or Time will engage
with the game industry, but infrequently with game studios.
Journalists will swarm the most well-known executives or game
designers, but never rank-and-file developers. Entire magazines are
devoted to the latest videogames in development or recently
released, and perhaps interview the games producer. The online
enthusiast press observes all the meanderings of videogame

corporations but offers very little analysis. Each of these perspectives
is useful, and can frequently access information and people that I
cannot. In this respect they have been invaluable resources.

However, this text is different in that the focal point remains on
“typical” developers and work practice—the people who devote the
majority of their time to bringing videogames into reality. This text is
also executed with an eye to better understanding why they work in
the ways they do. It is about observing the activities of everyday
developers, who have largely disappeared behind the names of
publishers or console manufacturers, and to better comprehending
why things go right or wrong.

World 1-2: The Characters—My Gorillas

I never had any intention of studying the game industry. I just
wanted to study how software development unfolds in practice. Then
I stepped into the offices of Vicarious Visions (VV) in September
2004. For the most part, I was open to studying any software
company. I had come expecting to study the lived reality of work
practice in the context of the so-called new economy. And for my
purposes, VV was ideal: a medium-sized, independent game
development studio employing roughly seventy-five employees, a
mixture largely of artists, engineers, designers, various managers,
and support staff.

Throughout my fieldwork at VV, my informants did not know how
to define my position. The inability to place me within existing
understandings of what and who counted as legitimate members of
the videogame development community was problematic for many of
my informants. Often, this manifested in humorous ways,
discussions of tribes, gorillas (silverbacks in particular), pith
helmets, and mating rituals were common, representing their
assumptions about cultural anthropology. Thinking of them this way
is not intended to be derogatory, but is a means of expressing how
the developers I spent so much time with came to understand the
place of an anthropologist and fieldworker among them. It is also an
expression of a continual kind of self-jesting that occurs among game
developers. A tools engineer from VV actually presented me with a

pith helmet at the conclusion of my dissertation defense, an object
that now occupies a special place in my office. It, too, is indicative of
the kind of creative and satirical humor entrenched in the game
industry.

Other developers in the company feared I represented someone
determining just how much time they were wasting or whether they
were expendable. For such people I was a threat and was kept at
arm's length. A few simply could not comprehend what value might
be found in observing their communities. Despite my best attempts
to explain, they felt speaking with me would simply not be useful. To
the remaining people, frequently those who became key informants,
I represented a break or schism in a system they felt they could not
critique. Somehow I had been authorized to ask the questions that
they could not. I represented an opportunity to explicitly reconnect
work experience to the political economy within which game
development is nestled.

The timing of my arrival at VV was just right, because at the time,
development had just begun on a game for Sony's as-yet-unreleased
handheld console videogaming system, PlayStation Portable (PSP).
The game was based on a forthcoming movie from a major movie
studio in partnership with one of the largest comic book companies
(among other companies) and VV had been contracted for the
project by one of the larger game publishing companies. It was
presumed that the title would be developed and released
simultaneously with the June 2005 release of the movie and shortly
after the March release of the new game system. The project, code-
named “Asylum,” was tasked with producing a series of prototypes
and levels that would then be reviewed to determine if the rest of the
development work would be entrusted to VV. Many small game
studios that have proven their ability to bring a game to market will
take on jobs like these either as the mainstay of their work or to fund
other internal projects.

Asylum was behind schedule even before there was a schedule.
Another development studio had long since begun work creating a
version of the game for Microsoft's Xbox, Nintendo's GameCube, and
Sony's PlayStation 2 game consoles.2 The PSP and its software was
an afterthought, a last-minute realization that a possible market for
consumption might be missed. I watched for four months as a team
of talented engineers, artists, and designers toiled to create a

prototype suitable to justify the remainder of the project. VV's
employees each had their own reasons for their enthusiastic work on
Asylum. For some of the VV team it was a chance to play with
hardware that was only available to a handful of game developers.
For others it was a chance to work on a “real” console title rather
than on systems with greater hardware limitations. Others were
excited about the opportunity to work on a game title linked to a
blockbuster movie. And some developers felt a passion for the comic
book characters contained in the title. For all these reasons, the team
toiled day and night for four months creating the foundations for a
new game for a new game system.

It was this coalescing of corporate interests and developers’ desires
that caught my attention. If anything could be said to characterize
new modes of work/play, it was precisely this sort of interplay. Daily
practices shrouded in secrecy lent an air of mystique to game
developers’ worlds. Yet, those same practices exhibited a special
propensity for collapse under the extreme time pressures that
descended from intellectual property (IP) holders and other parties
with stakes in the action.3

The atmosphere at the office had grown tense by December 2004.
Asylum's preproduction had come a long way, but there were many
moving parts that had to behave well for the game elements to come
together. Code from engineers had to be in place to display special
effects overlays created by artists. Animations from artists could not
be displayed until the requisite data from designers were added to
configuration files. Engineers were waiting for software development
kit (SDK) updates from Sony to fix bugs found in the hardware or
firmware of the PSP. By this time in the project, frustrated outbursts
were common, with one element of the game breaking as other
components were added. The automated build and “smoke test”
system frequently seemed to be broken and everyone was constantly
in hurry-up-and-wait mode. A couple of beers late at night while a
daily build was executing sometimes took the edge off, though only
for a few short hours before the process began again the next day. In
late December 2004 a build was delivered to the publisher for
evaluation. The numerous complex software systems, which were
expected to be real-time and interactive, strained under the pressure
of technologies in transition and the demands of developers. The

experimental practices and instrumentality of work/play was quickly
transitioning into the realm of “crunch” or mandatory overtime.

In January 2005, five months after I had begun my pilot research,
Activision, Inc. (ATVI), one of the largest videogame publishers and
a direct competitor of the publisher that had contracted the
development of Asylum, bought VV. Most of my informants learned
of the acquisition just hours prior to the press release; I was
informed by the release itself.

I asked the lead designer on Asylum, who had aided me in getting
access to VV, “What's happening with Asylum and what's happening
with all of you?” The answers came back within hours: the
acquisition by ATVI and the looming release of the PSP had
convinced someone somewhere that Asylum would likely be
unsuccessful, and the project had been shut down. ATVI was
assigning everyone to a new project.

It was at this moment that I realized simply talking about “work
practice in the new economy” was a woefully inadequate way to look
at the project before me. This was the videogame industry, no matter
how uncomfort able I was labeling the full scope of my research.
Many of my emerging core categories and distinguishing
characteristics—such as work/play, interactivity,
inter/intranetworks, experimentation, and collaborative practice—
were being further complicated through corporate acquisition and
consolidation.

In April 2005, Farrar, Straus and Giroux released the book The
World Is Flat: A Brief History of the Twenty-First Century by
Thomas Friedman just as game development work was spreading to
other parts of the globe and the two brothers who started VV traveled
to China and India to speak with aspiring game development
entrepreneurs. It was not lost on my informants or on me that
offshore outsourcing loomed just outside the frame.

To better understand this “flat” global new economy I decided to
travel to one of these emerging game development sites. I chose
India over China, Korea, and Vietnam because I would have more
access to English-speaking informants there. Also crucial was an
introduction by the Studio Head of VV to the Studio Head of Dhruva
Interactive, the self-titled “premier game company in India,” situated
in Bangalore. The rapid growth of the IT sector in India, India's
exploding outsourcing developments, the United States’

dramatization of Indian workers in popular media4 and Dhruva's
willingness to grant me site access clarified my choice.

It took eighteen months to secure funding, access, and time to
travel to India. During that time I was able to find some Indian
development studios willing to provide me site access and others
willing only to speak with me upon my arrival. I also accepted an
offer to perform fieldwork at RedOctane India in Chennai.

In November 2006, with the assistance of a National Science
Foundation (NSF) Grant,5 I traveled to India to better understand
what game development looked like in a seemingly surging new
home for game development. For two months I scrambled from field
site to field site speaking with employees and studio heads of game
development companies, and with aspiring developers in Bangalore,
Hyderabad, and Chennai. I performed more than two hundred hours
of participant observation, ran more than twenty structured
interviews, and had after-work conversations with every game
developer willing to share their perspectives of the global game
industry that I could find. Two studios, Dhruva and RedOctane,
allowed me on-site for one month each. FXLabs in Hyderabad,
GameLoft Hyderabad, and Microsoft's Casual Games Group in
Hyderabad were also accommodating, though reluctant to allow me
to perform fieldwork over an extended period of time.

In addition to formal observation, I spent my free moments
conversing with more individuals interested in working in this
emerging area of India's booming IT sector. Many simply wanted to
know more about US development practices. They lamented the
small number of resources available that might help them make
games at a level beyond that of a hobbyist, for though they could find
snippets of information here and there, they could use very little of it
to inform themselves and their projects. I shared my Firefox game
development bookmarks and news feeds with more people than I can
recall.

My time with Indian developers taught me that US and Indian
developers often face similar issues, though the latter's challenges
are frequently exacerbated by temporal and physical distance from
the numerous networks and secrets that structure the industry. In
some cases this distance is a positive barrier in that it protects Indian
developers from the secret society syndrome rampant among US
developers, an issue I explore throughout this text.

The biggest commonality among international developers is a
shared interest in learning more about what game developers do and
how they can each get better at doing it. Despite this shared
experience, however, I often found myself wondering, both in India
and the United States, “How could anyone assert that the terrain of
game development is flat?” Integral to this new global economy
project is that I present the lives and work of India- and US-based
developers as connected, for at its core, that is what the new global
economy is about. These connections, often so numerous and
interwoven that developers fail to recognize them, supersede talk of
“our jobs” and “their jobs.” The industry itself and those within it
need to learn how work gets done so that laborers do not fail to grasp
the importance of what has transpired. The realities of everyday
developer life are connected to a much broader set of rules and
ideologies.

This text lays bare the work, rules, and other unspoken realities of
the videogame industry in order to ask questions about those
systems. Games are made by a wide ranging group of people, who at
their core are driven by asking questions about and attempting to
better understand underlying systems; and yet, they rarely do it of
their own industry. Most disturbingly, these systems are becoming
more opaque and reinforced in ways that most game developers
ought to find abhorrent, given their proclivity and desire to get at
these sorts of underlying systems. For so many, this is an activity
that they are passionate about, and as such, all game developers need
to ask if these rules and systems are functioning as they ought to and
if they might rather see a different set of rules and systems in place.6

By February 2005 a new project for the PSP was already underway
and I had become a regular fixture about the office and was largely
ignored as “the anthropologist” in the office. I partook in
conversations, asked questions, and attempted to better understand
that which was unfamiliar to me. I attended meetings, occasionally
with introductions to those who were not familiar with “our resident
anthropologist.” I drank copious amounts of their coffee and partook
in bagel/donut Fridays. I interviewed them and other times simply
talked to them about life and work. I became friends, attended
parties, and had evening beers with some of them (World 5
demonstrates that this is an important aspect of development work).
I submitted talk proposals to the Game Developers Conference

(GDC) with a couple of my informants. I answered their questions as
best I could when they were curious about my findings. They often
talked about themselves and VV as being distinctly different from
other studios, though often the concerns they voiced were the same
as other game developers. Some even looked to me to help find
answers to their quality of life (QOL) questions, a summons that
further inspired this book.

While conducting fieldwork at VV, I saw the development and
release of numerous game titles. I also saw three projects started
then canceled or transferred elsewhere. Game console systems came
and went. Microsoft's Xbox 360 came and the Xbox left. Sony's
PlayStation 3 (PS3) came, though the PlayStation 2 (PS2) still hasn't
left. Nintendo's GameCube (GC) never really arrived and the Wii has
taken gamers and developers by storm, albeit briefly. The Nintendo
DS (DS) came and has planted its two little LCD screens firmly into
the hearts of game developers.

I gathered data from videogame-related news sites, blogs, web
comics, and corporate websites. I saved every press release and every
SEC document I could find that might better contextualize the arena
of game development in a broader political-economic context. I first
searched the US Patent Office's online system and later turned to
Google's Patent Search service once it became available.

In late April 2007 after returning to the United States from India,
VV released their most ambitious project to date, an endeavor that I
had seen progress from concept to completion. VV had swelled to
more than 175 employees and various contractors. For nearly three
years I sat with the developers (engineers, designers, artists, and
managers) who produce the products we simply call “videogames.”
These developers, at least for the players of games, often disappear
behind a single name: Activision, Sony, Microsoft, Nintendo,
Miyamoto, John Carmack, Will Wright, Spiderman, World of
Warcraft, Xbox, Wii, or PlayStation. As the years passed and my
research continued to examine the creative collaborative work of
game development, many of my Indian informants lost their jobs
when game studios closed as the US economy went into recession.
Even the lure of less expensive labor that might have helped in a
tough economy couldn't lure American game development studios
that did not quite understand how to integrate overseas teams whose

limited knowledge of and experience with developing games
complicated outsourcing.

I began to see in the communities of my informants a reflection of
broader shifts in creative work practice. I realized that asking
questions about what had changed in the ways people work missed
the key questions about how game developers themselves work.
What can the everyday work of game developers teach us about
globalization and the new economy? How do these activities and
communities differ across national and cultural boundaries? What
does the new economy mean for what work looks like? My research
among game developers continues as I observe old informants from
a distance, seek out new field sites to work with, and create a kind of
experimental system for new modes of videogame production work.
My questions have changed somewhat, but an ethnographic
examination of the work of videogame production and the
importance of creative collaborative practice remains at the center of
my inquiries.

There is a temptation, on the part of both cultural analysts and the
general public to understand or equate videogame development with
software development. Many educational programs even call
themselves “game development” programs and focus only on the
software development (often referred to as “software engineering” or
“programming”) aspects of game development. Young people
interested in videogames are often instructed by those unfamiliar
with game development to enroll in computer science programs,
where often they fail to find themselves at home. Game developers
come in many flavors. Artists now constitute one of the largest
segments of videogame development work. Game designers, while a
smaller population than engineering teams, focus on issues very
different from software development. Game development has always
been a “strange mix” of artists, game designers, and engineers. To
equate this milieu to software does a disservice to the work of the
activity as well as the very particular technological, global, and
political-economic context within which this labor occurs.

Box 1.3

#: SET DEMO_MODE 1

Casey: There seem to be four major categories of folks
working here: engineers, artists, designers, and managers.
Am I missing somebody?
ART_Spidey_2: No, that sounds about right. So you have
probably seen that child's toy that has a board with round
and square holes and they have round and square pegs. So the
engineers are the hard shapes. They will go into the shape
they're supposed to go into. And they like going in the
right shaped hole. If it's the wrong shape, they're not
going to be happy. Artists are more like clay. They're
pretty free form, you can mush them into just about any
hole. But, after they go through they're going to retain
that shape a bit. You may have to force them through, but
they will learn it and retain some of that shape from the
process. The designers are the pegboard though. They set up
where everything has a space and how it is going to work
together. Now, just because you have pegs and holes doesn't
mean that everything is going to go through. That is where
the hammer comes in. Managers are the hammer. Nobody likes
the hammer, but you need it anyway. Sometimes things aren't
all lined up, but the hammer comes down and pops everyone
through. Sometimes it's all lined up and easy. Other times
it doesn't work so well.
#: SET DEMO_MODE 0

The temptation to align games with software is fed by similarities
in form between the two products. For example, Second Life, which
appears to be a videogame and the “breadth of affordances in virtual
worlds owes a great deal to [its] gameness,” (Malaby 2009, 14) is, in
fact, not a game (though games have been developed within Second
Life). While comparisons are drawn between Second Life and World
of Warcraft (WoW) because each may be an immersive online
experience, WoW is a game, designed and produced as such. One
might point to the popularity of WoW over Second Life as a
demonstration of what makes game development different from
providing game-like spaces of play. WoW delivers content produced
by a large number of artists and game designers to its players. Game
mechanics manage the player's relationship with the underlying
system of the game and creates goals and feedback loops with which
they interact. This is what prompts players to return, time and again,
for their repeated interactions and “grinding” in order to advance
levels. Second Life, on the other hand, was designed to ask users to
develop all of those elements for themselves. An avatar in Second
Life has no “level” other than that defined by what the user has

created for the system. No game mechanics reward Second Life
“players” for their activities other than perhaps the currency running
through the system or the pleasure or recognition of having creating
something in the virtual space. Even within their virtual account in
Second Life developers play Tribes, which has artwork, models,
music, levels, and underlying game systems that, ultimately, are the
reason workers play it after working on Second Life all day. This isn't
to say that analysis of Second Life and Linden Labs should be
excluded from our understanding of games, simply that there are
differences between Second Life and WoW, and certainly differences
between Linden Labs and a game development studio.7

World 1-3: Developer's Dilemma—The Mechanics of the
Rant and the Genre of Zero Punctuation

The collective unease with the Asylum development process and its
spiraling complexity coincided with (several months into the project
and at the beginning of the permanent crunch) the November 2004
publication of a blog on the LiveJournal site by an anonymous poster
“ea_spouse.” Some of the concerns voiced by ea_spouse echoed
those of the developers working on Asylum. For others it was simply
someone over-thinking something that was common and didn't
really matter, since at the end of the day it meant they were still able
to make videogames. The blog, written by the “significant other” of a
game developer, voiced frustrations over work practices in the Los
Angeles studios of Electronic Arts (EA).

Our adventures with Electronic Arts began less than a year ago.
The small game studio that my partner worked for collapsed as a
result of foul play on the part of a big publisher—another
common story. Electronic Arts offered a job, the salary was right
and the benefits were good, so my SO took it. I remember that
they asked him in one of the interviews: “how do you feel about
working long hours?” It's just a part of the game industry— few
studios can avoid a crunch as deadlines loom, so we thought
nothing of it. When asked for specifics about what “working long
hours” meant, the interviewers coughed and glossed on to the
next question; now we know why.

Within weeks production had accelerated into a ‘mild’ crunch:
eight hours six days a week. Not bad. Months remained until any
real crunch would start, and the team was told that this “pre-
crunch” was to prevent a big crunch toward the end; at this
point any other need for a crunch seemed unlikely, as the project
was dead on schedule. I don't know how many of the developers
bought EA's explanation for the extended hours; we were new
and naive so we did. The producers even set a deadline; they
gave a specific date for the end of the crunch, which was still
months away from the title's shipping date, so it seemed safe.
That date came and went. And went, and went. When the next
news came it was not about a reprieve; it was another
acceleration: twelve hours six days a week, 9am to 10pm.

Weeks passed. Again the producers had given a termination
date on this crunch that again they failed. Throughout this
period the project remained on schedule. The long hours started
to take its toll on the team; people grew irritable and some
started to get ill. People dropped out in droves for a couple of
days at a time, but then the team seemed to reach equilibrium
again and they plowed ahead. The managers stopped even
talking about a day when the hours would go back to normal.

Now, it seems, is the “real” crunch, the one that the producers
of this title so wisely prepared their team for by running them
into the ground ahead of time. The current mandatory hours are
9am to 10pm—seven days a week—with the occasional Saturday
evening off for good behavior (at 6:30pm). This averages out to
an eighty-five hour work week. Complaints that these once more
extended hours combined with the team's existing fatigue would

result in a greater number of mistakes made and an even greater
amount of wasted energy were ignored. . . .

EA's attitude toward this—which is actually a part of company
policy, it now appears—has been (in an anonymous quotation
that I've heard repeated by multiple managers), “If they don't
like it, they can work someplace else.” Put up or shut up and
leave: this is the core of EA's Human Resources policy. The
concept of ethics or compassion or even intelligence with regard
to getting the most out of one's workforce never enters the
equation: if they don't want to sacrifice their lives and their
health and their talent so that a multibillion dollar corporation
can continue its Godzilla-stomp through the game industry, they
can work someplace else. . . .

I look at our situation and I ask “us”: why do you stay? And the
answer is that in all likelihood we won't; and in all likelihood if
we had known that this would be the result of working for EA,
we would have stayed far away in the first place. But all along
the way there were deceptions, there were promises, there were
assurances—there was a big fancy office building with an
expensive fish tank—all of which in the end look like an
elaborate scheme to keep a crop of employees on the project just
long enough to get it shipped. And then if they need to, they hire
in a new batch, fresh and ready to hear more promises that will
not be kept; EA's turnover rate in engineering is approximately
50 percent. This is how EA works. So now we know, now we can
move on, right? That seems to be what happens to everyone else.
But it's not enough. Because in the end, regardless of what
happens with our particular situation, this kind of “business”
isn't right, and people need to know about it, which is why I
write this today.

If I could get EA CEO Larry Probst on the phone, there are a
few things I would ask him. “What's your salary?” would be
merely a point of curiosity. The main thing I want to know is,
Larry: you do realize what you're doing to your people, right?
And you do realize that they ARE people, with physical limits,
emotional lives, and families, right? Voices and talents and
senses of humor and all that? That when you keep our husbands
and wives and children in the office for ninety hours a week,
sending them home exhausted and numb and frustrated with

their lives, it's not just them you're hurting, but everyone around
them, everyone who loves them? When you make your profit
calculations and your cost analyses, you know that a great
measure of that cost is being paid in raw human dignity, right?
(ea_spouse 2004)

The words of ea_spouse caused a ripple in the videogame industry,
one that is still being felt, though in different ways. For a brief
moment, it seemed revolutionary, though seven years later, new QOL
controversies emerge, demonstrating that very little has actually
changed. White papers were written and special interest groups
formed, and awareness was certainly raised, but death-march
crunches still occur and many developers accept them blindly. The
International Game Developers Association (IGDA) encouraged
developers everywhere to contemplate and begin addressing QOL
issues (Bates et al. 2004). A few years later, Game Developer
magazine published an article examining the success and failure of
QOL efforts in the game industry (Hyman 2007). The IGDA appeal
has since metamorphosed into many different IGDA-sponsored
projects, a few of which I still participate in since deeming them
necessary to my research. Most of these projects (and those who
created them) aren't certain how to frame their initiatives; neither
top-down (management lead) nor bottom-up (instigated by the rank
and file) has gained significant traction. In the pages that follow, I
will argue that the QOL problems are rooted in the videogame
industry's emphasis on secrecy, closed networks of access, and use of
the state8 to discipline those networks. These conditions
simultaneously enable and constrain the videogame industry's
practice of creative collaborative work.

The industry noticed developers’ overwhelming response to
ea_spouse's words. In March 2005, at the Game Developers
Conference (GDC) in San Francisco, California, hundreds of game
developers crowded into an IGDA sponsored session titled “Burning
Down the House: Game Developer's Rant.” This is a perennial event
at the GDC, known to be an (in)famous gathering of developers who
“cut the shit and speak truth to power” (Davis 2006). This year was
different—something interesting was about to happen, for when Greg
Costikyan9 took the stage, he delivered “The Rant Heard ’round the
World”:

As recently as 1982, the average budget for a PC game was
$200,000. Today a typical budget for an A-level title is $5
million, and with the next generation it'll be more like $20
million. As the costs ratchet up, publishers become increasingly
conservative, and decreasingly willing to take a chance on
anything other than the tired and true. So we get Driver 69,
Grand Theft Auto: San Infinitum. And license drivel after license
drivel. Today you cannot get an innovative title published unless
your last name is Wright or Miyamoto.

How many of you were at the Microsoft keynote? The HD era,
bigger, louder, more photo-realistic 3-D, teams of hundreds, and
big bucks to be made. Not by you and me of course. Not by the
developers—developers never see a dime beyond dev
[development] funding—by the publishers (and Microsoft,
presumably). Those budgets—those teams—ensure the death of
innovation. This is not why I got into games. Was your
allegiance bought at the price of a television?

Then there's the Nintendo keynote. Nintendo is the company
that brought us to this precipice. Nintendo established the
business model under which we are crucified today. Nintendo
said, “pay us a royalty not on sales, but on manufacturing.”
Nintendo said, “we will decide what games we'll allow you to
publish,” ostensibly to prevent another crash like that of 1983,
but in reality to quash any innovation but their own. Iwata-san
said he has the heart of the gamer, and my question is what poor
bastard's chest did he carve it from?

My friends, we are fucked! We are well and truly fucked. The
bar in terms of graphics and glitz has been raised and raised and
raised, until no one can any longer afford to risk anything at all.
The sheer labor involved in creating a game has increased
exponentially until our only choice is permanent crunch and
mandatory 80-hour weeks, at least until all our jobs are
outsourced to Asia. (Costikyan as quoted in Davis 2006)

Costikyan's rant lamented the rapidly changing structure of the game
industry that demanded particular modes of production favoring
extensive content over innovative gameplay mechanics. What is
interesting about the rant sessions at GDC is that they are actually
indicative of a broader genre of commentary in the videogame

industry. They are one of the most widely attended sessions aside
from the keynote speeches. They have recently even created
situations where developers are quoted saying quite provocative
things and are later reprimanded by upset studio heads or
publishers. Regardless of repercussions, the rant serves as
productive mode of critique in the videogame industry and among
game developers. Though a rant's tone may come off as sardonic or
flippant, it is a product of passion and interest. One cannot really
rant without caring.10

More recently, the video rant has emerged as an over-the-top and
increasingly vitriolic form of the rant. The online magazine The
Escapist publishes weekly issues with game and industry
commentary. In August 2007, it posted a video called “Zero
Punctuation,” 11 created by the character “Yahtzee” (Ben Croshaw).
He, now famously, delivers weekly rants on what game developers
have done right or primarily wrong in newly released games. Though
his highly critical, often vitriolic, and seemingly misogynistic and
homophobic diatribes lampoon games, they also offer needed critical
commentary on the state of the videogame industry and the kinds of
games being produced. His videos have struck such a chord with
developers that his narratives were placed on the big screen during
the GDC's Developer's Choice Awards in 2008.

Yahtzee exemplifies a common, intensely critical, public peer-
review process within the game industry. Unfortunately, his words
are easily criticized since they pantomime a kind of gamer narrative
that uses phrases like “ass fucking” or tossing additional use of “tits”
around. Yet to engage his rants at that level is as weak a reading as
most games are given by “critics.” Yahtzee's methods, then, place
him in a position quite similar to that of the developers he takes on.
Many developers comment that simply having Yahtzee publicly rip
asunder their work is a sign of his respect, since his deconstructive
stance requires extreme engagement and effort.

This kind of oft-heard, ranting, caustic quality to game criticism
has led some to ponder whether the videogame industry is an
“unhappy” place to work (Alexander 2010). I think the question is
too simplistic in its approach. Many of the people who work in the
videogame industry see themselves as having a significant stake in an
industry in which they have little control. Game creation is a labor of
love, something that developers invest themselves in technically and

creatively. Developers often make it clear that they appreciate “the
rant” and other extreme forms of feedback. They are not oblivious to
the structures within which they all work, but despite their
frustration with the industry, they continue to invest themselves in
projects. This book is in part an exploration of that desire.

Ranting, and perhaps even being perceived as jaded, is also a
marker of having actually worked in the videogame industry. Those
veteran game developers who are the most realistic about their
position in the industry and who display their love and frustration
simultaneously through the rant are said to “get it.” It is from this
perspective that I maintain the rant can be productive. Costykian and
Yahtzee do not distance themselves through their deconstruction.
Rather, they intensely love and critically inhabit critically this space.
As feminist and psychologist Elizabeth Wilson notes,
“Deconstruction has effect by inhabiting the structures it contests.
This means, of course, that deconstruction and its practitioners are
always internal to and complicit with the structures they examine.”
(Wilson 1998, 36) Like Costikyan, Yahtzee, and Wilson, I maintain
that this kind of active engagement and attention are crucial to
“inhabit[ting] well” (Wilson 1998, 36).

I have always conceptualized my relationship with the game
industry and game developers, game studies, and science studies as a
kind of cat's cradle game.12 The cat's cradle is “about patterns and
knots”; it is a game that can be played alone, where, “one person can
build up a large repertoire of string figures on a single pair of hands.”
However, when it becomes a shared and embodied activity through
the passing of figures “back and forth on the hands of several players,
who add new moves in the building of complex patterns,” that the
game becomes interesting. “It is not always possible to repeat
interesting patterns,” because of their contingency on individuals
and combinations of patterns, and “figuring out what happened to
result in intriguing patterns is an embodied analytical skill.” Not only
can the analyst examine collective patterns, but in doing so the
analyst and informants will certainly learn about the kinds of
patterns that they desire for the future. Players of the cat's cradle
game can ask “questions about for whom and for what the semiotic-
material apparatuses of scientific knowledge production get built and
sustained,” always searching out what was “denied and disavowed in
the heart of what seems neutral and rational” (Haraway 1997, 268–

269). Even in the heart of a discussion about asking who gets left out,
we can leave our emphasis on another affect, yearning. I, too, can
yearn for new kinds of projects, knots, and patterns.

In many respects, this book's title, Developer's Dilemma, comes
from this critical, yet inhabiting perspective. It is, of course, a play on
a classic game theory game, the Prisoner's Dilemma. In its simplest
form, two players, with imperfect information are put in a situation
where if one player “defects,” he or she will receive the greatest
personal reward. If both defect, they lose the most. And, if they
cooperate, they will both receive a modest reward. Of course, the
ideal solution is to always cooperate, but if you know the other
person is going to cooperate, why not defect for the greater reward?
Embodied in this conundrum is why, despite moments of possible
tectonic shifts in the game industry, does the current structure
persist? In the rant, I see the opportunity to call light to critical
defections; where cooperation is thrown under the train for personal
gain.

This is why the text takes on this genre of writing in boss fight
sections of the text. It is done on purpose to drive home particular
points in a style that is indicative of the kinds of “constructive
feedback” that many developers identify with. Some may mark this
language as not objective, or in extreme cases as simply unscholarly.
My response is that, rather, it is both simultaneously scholarly and
engaged with its subjects and those disciplines that inform it. I chose
to not engage with whether the work is objective or not, as it
broaches a much larger conversation regarding the foundations of
social science research. This work is a perspective informed by
personal experience, extensive ethnographic fieldwork, and
considerable time reading field notes and news items surrounding
the videogame industry through a theoretical and analytic lens that
informs our understanding of what game development work is and
how that can inform future social theory.

World 1-4: Learning to Use the Debugger

Each chapter or “world” of this text examines a particular component
of the game development process and its scale with respect to the

analytic center. Simultaneously, each chapter develops a theoretical
category for understanding those processes and scales. While the text
is divided in this way, connections remain between each section,
conceptual categories and activities bleed together. Each world is a
collection of four levels, much like a game. Each level within a world
provides experiences or tools, which will serve the player in the boss
fight at the end of each world. The boss fight in a game often requires
a player to bring the lessons learned, or tools gained, in order to
progress to the next world. Each boss fight also marks the transition
from one stage of the game to the next. This process is usually
introduced in the first world and levels of a game, such that the
player can become familiar with the flow of gameplay. In a similar
fashion each world in this book introduces you to new aspects of the
socio-technical milieu of game developers.

Furthermore, each world begins with a DEMO_MODE, mimicking
the way in which a game left to its own devices will often show the
game in action without the necessary user input. These are done as a
means of framing central issues that emerge in each level.
DEMO_MODE is also used throughout the text to present
ethnographic interview data relevant to the argument being
advanced in that section of the text. In some cases, the arguments of
the text can seem distant from the lived local practices of videogame
developers. Yet, work continues all the time on game development
projects ranging from the small to the massive. Continually thinking
about how these issues relate back to the daily lived experiences of
game developers is crucial. By framing each world with the words of
developers reminds the reader that this a real space populated by
workers who labor day after day at something they feel quite
passionate about.

Box 1.4

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: I played the game industry game, for a
while. That experience took me from being a computer
scientist at NASA's Jet Propulsion Labs in Pasadena Southern
California to being an engineer at a small videogame company
in La Jolla near San Diego. I went from developing cross-
platform 3D libraries for Silicon Graphics Workstations,

Linux, Windows, and Mac OS computers to developing cross-
platform 3D sound systems for Windows, Mac OS, PlayStation,
and Nintendo 64. Eventually I meandered my way back to
engineering special effects systems on those same platforms,
but only near the end of my time at this particular company.
As the dot-com bust decimated clients throughout Southern

California, those of us with “other options” were encouraged
to pursue them. I made an appeal to a college roommate and
friend whom I'd helped land a job: return the favor. That
worked out for a few more years until corporate dysfunction
sent me seeking other options. There were other
opportunities aside from graduate school, but the line
“Where does the bastard child of a forbidden tryst between
computer science/mathematics/technology and
sociology/women's studies/philosophy turn?” landed me a spot
in Rensselaer Polytechnic Institute's Science and Technology
Studies Department.
My time in the game industry was something I seemingly

forgot until chatting with DESIGN_LEAD_1 at a party early
into my time in graduate school. DESIGN_LEAD_1 was in the
middle of a big project and things weren't quite going as
planned. There were numerous parallels between his situation
and those that prompted me to pursue graduate research. In
retrospect, it was probably the first of many “stitch and
bitch” sessions that DESIGN_LEAD_1 and I had over the years,
reflecting on growing up gamer and finding ourselves in
companies attempting to create the things we love. It was
also about earning the respect of our peers for the massive
amount of labor and love that goes into putting boxes on the
shelves of stores like Best Buy and Walmart. Those boxes
that prominently feature the logos and names of the
companies seemingly least associated with creating games.
Whatever prompted DESIGN_LEAD_1 to speak to ENG_GRP_MGR_1

about allowing a social scientist among the busy developers
of their company is a mystery to me. I count myself
fortunate, because without their willingness to try
something different, my research and this monograph would
have never occurred. Yet, I continually fear that it will
never happen again, that game developers or publishers are
simply too busy or too secretive to allow field site access
for an extended period of time. But that is precisely what
the game industry needs most. Thus, this labor and love, for
the developers in an industry that so desperately needs it.
#: SET DEMO_MODE 0

The structure of this book is in part performative. It mimics the
level structure of the original Super Mario Bros. game published by

Nintendo for the Nintendo Entertainment System (NES). This is
done to reflect the importance that recognizing discrete references to
other games serves in game developer culture. Most of the
developers I spoke with in this project came to games after or grew
up as a part of the Nintendo Generation. This sense of a shared
history and experience provides foundations for how videogame
developers talk about their occupations. Of course, this is not really
any different from other disciplines or environments of production
where experience and language become entangled in ways that
prevent broader accessibility. To make the work experiences of
developers decipherable, the book is structured in a way that
provides readers with the tools necessary to disentangle the
unfolding narrative of game development work as it progresses.

I compare this approach to using a debugger, a software
programmer's tool that allows them to observe the execution of a
program's source code as it progresses. Part technology, part
mindset, part tedium, and part intuition, debugging exemplifies what
makes game development challenging. A debugger also allows the
reader to “step-into” functions, moving from higher levels of
abstraction to lower and lower levels until reaching the assembly
code, which is fed to the processor. The setup gives the reader the
ability to “step-out” or move up a level of abstraction after moving
lower. For this text, this means starting at the level of work practice
and stepping into those other functions that run in the background.

World 1 provides an introduction to the structure of the text and its
over-arching arguments. World 1 also introduces “the rant” as an
important conceptual category for analysis and inclusion into
academic writing. Despite it being an important genre of speech and
writing for game developers, the rant is a highly connected form of
writing evidencing deep involvement in the topic about which the
rant is written. One must be engaged and inhabit to rant. In some
respects then, this commitment to intense scrutiny and attack is
rooted in care: care for the industry and care for what it produces
results in a kind of highly committed form of critique. This
implicates the research in game developers’ commitment, though
this kind of reflexivity is already important to and crucial in many of
the locales where STS scholars now find themselves embedded
(Latour 2004). Rather than attempting to hold videogame
developers and the videogame industry at a “critical distance,” this

work seeks to critically engage it in debate in a vernacular it expects,
understands, and respects.

Broadly considered, World 2 and World 3 focus broadly on what is
termed in the videogame industry “preproduction,” which is the time
and space where a game is first conceptualized. It is a time of
contingency and system building where many elements are in flux.
World 2 examines the individual disciplines that make up the
majority of videogame production: game design, art, and
engineering. The primary theoretical category under examination is
“underlying systems and structures,” and to better indicate what this
means for game developers, a redefinition of “hardcore gaming”
around the notion of “instrumental play” is developed. Game
developers cultivate a central desire to understand how games tick,
how hardware functions, and how to leverage software systems to
produce interesting and innovative creative works. Instrumental play
as a conceptual category links the activities of a sub-category of game
players, “power gamers,” (Taylor 2006a, 72–73) to the work of
videogame development. In other words, there are traits that appear
“gamer” in game developers, but those skills have very little to do
with actual gaming. These traits are a very particular subset of gamer
skills. They are the logical skills rooted in finding connections
between what one perceives and the way things work at lower and
lower levels of a system.

World 3 looks further forward down the temporal timeline to
where experimental systems are being constructed to enable the
second major stage of game development: production. Experimental
systems serve as a useful theoretical framework for understanding
and appreciating the ways in which game development tools
structure and enable the creative collaborative practice. This section
of the text does some historical positioning of tools development and
the recent rise of the new (inter)disciplines of tools engineer and
technical artist. World 3 also examines the notion of the “pipeline” or
social and technical process by which items from artists, designers,
and engineers are processed assembled into a videogame. The
pipeline, one of the most important aspects of the game production
process is also one of the least examined in any form. Thus world 3
devotes itself to the pipeline and its newly anointed stewards.
Theoretically, World 3 examines the emergence of “creole” (Galison
1997, 46) or “faultline” (Traweek 2000) professions within the

videogame industry. The tools engineer and technical artist have
emerged at particular disciplinary interfaces between artists,
engineers, and game designers. These individuals have been largely
responsible for the development of the experimental systems
(Rheinberger 1997) that are then used to create videogames. Thus,
these experimental systems lie precisely at the interface between
disciplines and offer both promise and peril for developers as they
attempt to build game systems that cross these divides.

Production is the next major phase of the game development
process. Worlds 4 and 5 empirically focus on this aspect of game
development. Production is ideally the point where many of the
variables have been removed from the development process and the
goal is to produce all of the elements that constitute the game (the
creation of numerous art and audio assets, level designs, mission
designs, and the further development and optimization of game
code). Production is the longest segment of the game development
process, occupying a majority of the game development timeline.
World 4 examines how “interactive” tools, often those developed in
the pipeline, are used in concert with other established tools for
artists, engineers, and designers to develop a game. The importance
of interactivity and rapid feedback loops is examined in this world.
Ultimately, however, the interactive process of game development
also requires a great deal of social and technological assistance in the
form of synchronization and build processes. These ensure all
moving parts come together into integrated wholes. The elephant in
the room, when one examines game production, is that all of the
processes leading up to this point are far from stable and developed,
often resulting, instead, in “crunch,” or intense and extended periods
of socially mandatory overtime, and a seemingly perpetual startup
environment for game development companies. World 4 advances
the idea that interactivity in this context has impacted how
videogame developers view and understand their work: interactivity
as a theoretical category that has significant implications for how
game development work unfolds. Systems layer on top of systems
and the negotiated aspect of design (Bucciarelli and Kuhn 1997)
becomes a process of intense interaction between worker and
technology where developers attempt to understand the relationship
of small aspects of work to a large and often very complex whole.

World 5 examines the ways in which these carefully crafted
systems can in some cases collapse around the teams that labor so
intensely to keep them working well. This world also examines recent
changes initiated in game development practices as an attempt to
mitigate some of this propensity for breakdown. Of course this
perpetual startup system owes some of its dysfunctional underlying
systems and structures to those beyond the reach of many game
developers. The text therefore moves upward in scale of analysis to
examine some of the systems within which these machinations
unfold. “Autoplay” (Schüll 2005), “crunch,” and their relationship
with desire is the primary critical theoretical category explored in
World 5. The game industry has gained a reputation, at least
internally, for chewing up and spitting out young excited workers.
The text will show that the ways in which game development work
intersects with desire, passion, chaos, and other external forces
results in a perpetual startup machine.

The game industry is enormous, though communities of game
developers are actually quite intimate. This seeming disconnect is a
product of the massive structures of videogame publishing
companies, console manufacturers, and distribution networks that
ultimately make the rest of the industry function. Worlds 6 and 7
zero in on these systems through the lens of actor-network theory.
World 6 is based in part on the framework developed in a previously
published essay that traced the historical origins of this system of
publishing, manufacturing, and distribution (O’Donnell 2011a).
Rather than focusing on the historical origins of the system, World 6
examines some of these elements as they stand currently and of the
social and technological systems that govern them. This section's
empirical focus includes elements such as licensing, game
development kits or “DevKits,” and the agreements that support
these practices. Through the lens of actor-network theory, I develop
the notion of the inter/intra-actor-network to emphasize the
importance of paying attention to how actor-networks can be
structured to ensure very rigid demarcation between those on the
inside and those on the outside. World 6 advances further the notion
of the “actor-intra/internetwork,” as a more nuanced understanding
of actor-network theory (Latour and Woolgar 1986; Callon 1989;
Law 1989) in the context of videogame development. The videogame

industry depends, in part, on the distinction of privileged networks
to delineate legitimate developers.

World 7 examines how these actor-networks are disciplined and
maintained and the inter-connections between the broader
videogame industry and the state (rather than assuming the actor-
networks are emergent as many might claim). These inter-
connections include ways in which patent, copyright, and even the
ability to incarcerate are leveraged to ensure the stability and
seeming “closure” of these artifacts. This world also examines how,
despite efforts to the contrary, a system's users continue to leverage
the systems themselves to ensure that practices exceed boundaries
and to consistently introduce new points of instability. World 7
interrogates the state as a conceptual category, capable of
disciplining subjects (Smith 1999). The idea that particular forms of
“domination” are more “dominating” than others is important. In
light of the intense boundary work being done in the game industry
(and examined in World 6), the use of the state as a means of actively
and in some cases violently enforcing these boundaries is critical.

World 8 synthesizes much of the text, consolidating and presenting
the material in the format of a vertical slice of a game, in the form of
a game-play narrative followed by a game design document. These
provide the reader with a feel for the game play, description of the
design, rules, and play of the videogame industry game. Both the
language and artifact contribute to an improved understanding of
the ways in which work practice becomes entangled with broader
forces. This World performs two roles within this text. First, it clearly
denotes and re-examines the numerous systems and structures
discussed in the text. Second, it demonstrates an important form and
text within the process of game development.

Games are a useful means to understanding complex systems,
because the overall system must remain in focus, rather than just the
local or the global level. There is a feedback loop between the system
and the local conditions; they are inextricable. Games also provide
the opportunity for players to feel out those systems for themselves,
perhaps determining their own interventions or conclusions that are
ultimately the skills integral to videogame development work. Put
simply, World 8 puts to test the idea that by expressing the rules or
design of the game industry as a game can have a persuasive effect
(Bogost 2007). Most important though, the world's mechanics

(Sicart 2008) get at the interconnected complexity of this system
that is videogame development work in the context of the global
videogame industry. It is a highly connected system with numerous
feedback loops capable of unpredictable results and outcomes. Thus,
World 8 attempts to express the enormity of the context videogame
developer's work within the day to day.

This does not necessarily signify that the worlds simply build on
one another, but rather that they are intimately connected. Aspects
of each world constantly connect with and impact the local activities
of videogame developers. It is with this in mind that World 8 returns
to the empirical material of earlier worlds in the form of a game
design document. The game design document is an important genre
of writing for game developers that expresses well what actually
underlies games. While all games to a greater or lesser degree
contain narratives, all games contain extensively designed systems
that structure the play space.

The text's focus is the system—creative collaborative work practice
and those things that (dis/en)able it in the context of globalized
videogame development work. This system runs on the ability and
the desire to get at underlying social and technical systems and
structures, thus this text serves as an example of the very
phenomenon it indexes. It is dependent upon and produced via new
modes of collaborative practice, while demonstrating the importance
of being able to drill down into the subsystems that make up the
game industry code.

World 1 Boss Fight: Ready? Fight!

New economy work, exemplified by game development practice, is
dependent upon and producing new modes of creative collaborative
work practice. The way these practices play out and the structural
conditions they play out within, however, simultaneously undercut
creative collaborative practice. Developer's Dilemma connects the
diverse forces and activities—laws, technologies, and workplace
cultures, for example—that make creative collaborative practice
central to the way the new economy works. These same forces and
activities are also capable of undermining collaborative practices. At

the core of creative collaborative practice is the ability and necessity
of being able to play with and get at underlying systems: technical,
conceptual, and social. When access to underlying systems is
undermined, so too is creative collaborative practice.

The text's focus continually returns to creative collaborative work
practice. Linking up work practice to the structures within which it is
situated is the best strategy for understanding why work looks the
way it does. The components of work/play and interactivity that
emerge from my field site work do so in relation to
inter/intranetworks and a rapidly corporatizing state. I link work
practice to broader structures because the day-to-day realities of
work practice leaves my informants with little time or opportunity to
better understand their context. The focus is continually at the local
level, namely, fighting fires to keep work moving forward. While SEC
and patent documents may seem distant from the everyday
experience of work for developers, they are actually far closer than
most realize. The connections between the local and the broader
system are crucial to understanding the entire system, or game. As
Dorothy Smith writes about “ruling relations,” it is the “heterogenous
extra-local that organizes the local” (Smith 1999, 73). It is too easy to
get lost in those everyday realities without connecting them to
broader structures, often leaving workers frustrated and
disenfranchised.

Many organizations have also begun to encourage more playful and
experimental workplaces. One indicator of this is Google's
appointment to Fortune Magazine's cover for the number one
position among the “100 Best Companies to Work For.” It is
presented as a place where workers “can climb, play beach volleyball,
lift weights, and go for a dip—without ever leaving work” (Lashinsky
2007). This Googlefication of the workplace has long been seen as a
strategy of startups, technology companies, and videogame
companies. The distinction between what is work and what is play
blurs and frequently displaces many other aspects of worker's lives.
Work practice becomes inevitably intertwined with another core
category: work/play. This conflation plugs into a different set of
drives, which enables and encourages workers to push harder and
longer than they would otherwise. It also encourages them to forge
new connections and think creatively. These new modes of work

practice are simultaneously crucial, yet capable of being pushed to
too far, dissolving into destructive work practices.

Burrowing into work practices within game development, this text
will also explore how rising levels of interactivity go hand in hand
with the decreasingly hierarchical or “flat” organization that has been
touted as a distinguishing aspect of work in the new economy.
Interactivity allows workers to experiment with the systems they
both work within and create. Interactivity goes hand in hand with the
connections between disciplines and cuts to the heart of what makes
workers able to produce. This interactivity can also push too far,
resulting in “infinite” meetings, emails, instant messages, and other
forms of feedback and response. Interactivity can supplant the work,
which then only gets done after hours.

But just as the industry pours its energy into interactivity, it can be
blind to its interactions with the outside world. Policy makers and
lawyers have not shied away from attempting to capitalize on the
explosive growth of the videogame industry,13 attempting to both
simultaneously entice game development companies to their cities
and to censor or penalize companies for producing game content that
is deemed nebulously too violent or extreme. Lawyers have
encouraged legal cases against companies for doing “harm” and to
encourage expanded use of patenting and litigious action against one
another and game users. This project demonstrates policy's lack of
foresight and inability to adjust to new contexts, especially in highly
technological industries like the videogame industry. It also points to
specific locations where changes could be made to encourage
mutually beneficial outcomes.

This book hacks many of the disciplines that birthed it. Numerous
disciplines—communications, social psychology, psychology, and
media studies—have begun to stake out videogames as their new
territories. Often, a single-minded approach on game spaces and
content prevail. Games are seen simply as virtual environments to
study within or for new media to study. The newly emerging
discipline of game studies most explicitly suffers from this myopia,
not stopping to wonder about the broader networks within which its
newfound demand is being produced. This project proceeds with the
assumption that videogames are media and technology, both of
which are constructed within extensive networks that have largely
been ignored. The secondary task of the project is to place work

practice in a contextualized setting, such that it comes into
connection with the structures that affect and shape it so
dramatically.

Preproduction: Muddling Toward a
Videogame

World 2: Teasing Out Underlying Systems
and Structures

Box 2.1

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Game developers often talk about the
“90/10” rule of game development. The idea is that the last
10 percent of a game feels like 90 percent of the effort.
The work of making games requires developers to assemble a
host of ideas, art, tools and technologies in effort to
“find the game” within an idea. Because of this, the process
of game development is quite iterative. It is refined over
time. During the early stages of game development, this
process can seem very ambiguous, as developers attempt to
provide as much room for that creative exploration as
possible.
Casey: Are there parts of the game development process you
like more than others?
ENG_Asylum: Well, there are different aspects of each part
that I like. I mean, I seem to always like the part that I'm
not in. I used to not like the end of projects, but now I
love the end of the projects, because I'm nowhere near the
end of my project.
Casey: So what do you like about the end?
ENG_Asylum: Well, it's kind of how things start coming
together a lot faster at the end. You can see improvements
from day to day. It's also that it's something, actually
close to being a game at the point, and it is really obvious
whether what you do is right or wrong at that point. You'll
be fixing bugs and you'll know if it is fixed. But, when
you're just first implementing something, you don't know if
that is going to turn out or it often involves assets that
you're not in control of. Yeah, and preproduction. I think
I'm too close to preproduction right now, because I don't

like preproduction. I used to like preproduction, but then I
went into preproduction and it's basically a lot of
documentation, and I'm not the best of writers, though I
tend to write a lot anyway.
Casey: So what is it you dislike?
ENG_Asylum: Preproduction. No, seriously. I think the main
thing is that no one makes—you don't really make many
decisions. You come up with a lot of options and then leave
the options open until you're forced to take a certain
direction or the game dictates that it is one way or
another. I mean, if I was the only person working on a game,
then I could just make the decision right there, but in
preproduction you can't do that, so there is just a lot of
processing overhead.
Casey: So are you making an educated guess? Or are you just
supporting a lot. . .
ENG_Asylum: That's the other thing. You don't really do too
much implementation. It's trying to decide what systems you
will use and most of the time you can't even pick those
until more of the vision has been nailed down. It involves a
lot of prototyping, which probably won't end up happening
anyway. I've worked on several games in preproduction that
never made it into production. That is kind of discouraging,
when you're like, “it's pretty cool,” and then you shelve it
and move onto the next prototype because you couldn't sell
it, or whatever.
Casey: How many times has that happened to you so far?
ENG_Asylum: At least three, probably more like four.
AUTHOR_DEV_DILEMMA: This also means that often times
developers spend significant amounts of time working on
games that may never actually be fully developed. Parts of a
game may be designed, only to find that another studio has
received the contract, the project has been shelved,
canceled or were simply deemed financially risky. Given the
importance of credited “shipped” titles for game developers,
this can lead to developer's concern that they may work
forever and never gain the industry “cred” necessary for
success.
#: SET DEMO_MODE 0

World 2-1: Talking the Game Design Talk

Early phases of preproduction—that phase of game development
where artists, designers, and engineers define the foundations of a

fledgling game—often referred to as “concept,” are so common that
they can often become invisible. The leap from concept to fledgling
preproduction team and then to production is a process that is rarely
discussed or documented; yet the process of preproduction happens
all of the time. During my time with VV, I directly observed more
than four games enter preproduction and only one of those games
proceeded on to production and completion; the others were
canceled after varying amounts of time. Numerous other projects
were also in various stages of preproduction and production at VV
throughout the time I observed the preproduction and production of
Spiderman 3 (SM3).

While secrecy explicitly surrounds numerous aspects of the
videogame industry, the process of preproduction is not a closely
guarded secret—a “black art”— as much as it is foundational in a way
that defies discussion among many developers. It is just what you do.
You come up with an idea and you try to make enough of it to find
out if it is going to be worth continued development. In the words of
my informants, it is “the creation of options” (Informant and
O’Donnell 2006b). Decisions are delayed, yet something must be
created to determine if there is even a game worth making hidden
away within the concept. The entry into preproduction is an
important one because it represents the authorization to begin
constructing the system that becomes a game. Yet as part of a
secretive industry, not much of the preproduction process is open for
outside view.

The industry's pervasive secrecy, though it does not veil
preproduction itself, is in some respects an attempt by developers
and the industry to hold themselves apart, as distinct from other
industries. It lends game development a mystique or desirability. The
idea that “This is not work like other people's work. This is not real
work or ordinary work: This is game development” pervades the
culture. The presentation of game development work as hard, but
separated as though it were an intermezzo or interlude, provides it a
kind of cachet. Nearly every conversation with game developers
begins with a disclaimer, “not that I (we) represent the industry more
broadly,” or “we do things a bit differently here from the other
studios you have probably visited.” This insistence on difference
seems cultural; it allows developers to mark themselves off from one
another, as well as from other creative industries. In many respects

fieldwork in game studios illuminated that self-defining as different
was the demarcation of specific realm of play, not unlike a game. As
cultural historians and scholars of “ludology” have noted in their
examinations of play, all playgrounds are “marked off beforehand”
providing the grounds for a new “absolute” order “into an imperfect
world and into the confusion of life [play] brings a temporary, a
limited perfection” (Huizinga 1971, 10).

While not always intentional, the secrecy that surrounds the daily
work of game developers has dramatic consequences for those who
choose to work in these communities. Sociologists of new economy
work and of new media workers have noted that the “general lack of
formality” may excite and entice young driven workers, and the
seemingly “creative” and “autonomous” aspects of the work can lend
themselves accidentally to secrecy (Neff et al. 2005, 321–330).
Autonomous and creative work is rarely discussed within a game
studio. One is simply expected to produce, either in concert or on
their own, the necessary components that then plug into the system.

There is a mythology that surrounds game development (and
design even more so), which is only made more pervasive by popular
culture depictions in movies, or the hype that often surrounds
particularly well-known designers or producers. Many imagine that
game development looks like playing games and that all developers
are famous members of a kind of game development “band.” As my
informants noted, this perception is wildly inaccurate.

Box 2.2

#: SET DEMO_MODE 1
Casey: There is a myth that being a game developer makes you
a kind of rockstar . . .
ENG_DS_Spidey_1: That's a total myth. That is such bullshit.
It's not a rockstar job. Rockstars are surrounded by women,
first of all. Rockstars have a lot of money, second of all.
I don't know how it's a rockstar lifestyle.
Casey: It's perceived as one, especially by kids.
ENG_DS_Spidey_1: I guess there is a perception. I used to
have that perception. Now I wonder, “why did I have that
perception?” I have no idea. I think that people have a
misconception of what a developer is, or what they do, and
how they picture game development. They probably see it as

sitting in front of a game console, magically raising their
hands [and] their creation leaps from their brain into the
game and it's great.
Living in this version of Wonderland, and that's just so

people know, it's false. Because you have to do work to make
things happen. Sometimes it's a lot of work, and it's often
delayed. I think people perceive the process of creation
from the outside to be instantaneous and free and wonderful.
In fact, it is work. I mean, people think about being a
painter or an artist and just sitting there with their
palette and going buh, buh, buh, buh, buh, and there's a
beautiful picture. Wouldn't that be great? And it just isn't
true. You ask people to paint and they'll say, “god, you
know, I'm just really frustrated sometimes and it's hard.”
Casey: Like, film perhaps?
ENG_DS_Spidey_1: Exactly. It's just not that easy. Same
thing with games. Film is probably a perfect example. I mean
everyone probably has a picture of what it's like to be an
actor or director and seeing this wonderful movie. But, then
you look at the actual process of movie making and it's very
painstaking and exacting and miserable; there's a lot of
work.
#: SET DEMO_MODE 0

Outsider perception of game design as outrageously fun and easy
play is a myth heightened by the industry's many curtains of secrecy,
which play out in different ways among individuals, disciplinary
divisions, corporations, and inter/intra-corporate entities. The
importance of being an insider and knowing those unknowable
aspects (the “Konami Code” for example) denotes inter/intra-
disciplinary or professional/hobbyist/independent distinctions.
Secrets matter among engineers, engineers and artists, managers
and leads, studios and publishers, even manufacturers and
publishers. Secrecy crosses scales—from the level of the individual to
the level of the company to the broader industry—and the secrets of
console manufacturers matter for artists’ and engineers’ everyday
activities. What worked on one project or for one console suddenly is
discouraged or completely impossible in another context. Developers
may not even be aware of this until significant labor has been
invested in pursuing what was perceived to be the “normal” way to
approach a problem. Secrecy propagates mistakes throughout the
everyday working worlds of developers.

One of the most fundamental dimensions of secrecy within the
creative collaborative work of game developers is the importance of
“speaking the language” of the industry, videogames and videogame
development. Language is a precursor to many of the other barriers
to entry or “secrets” of the game industry. If you cannot access and
understand the language of those who work in the game industry,
you certainly cannot play the metaphorical game of game
development.1

One bit of game developer lexicon is rooted, as is this text's
structure, in a pervasive videogame industry reference to Super
Mario Bros., which was released in October of 1985 for the Nintendo
Entertainment System (NES) (Nintendo 2003). SMB is a staple in
the gamer vocabulary, as well as a temporal reference much like the
Gregorian calendar's AD or BC. An overwhelming majority of game
developers have an extensive history of playing games,2 and many of
these game developers began their gaming lives playing with the NES
console. Though it wasn't the first videogame console introduced in
the United States, nearly every developer talks about the impression
that the NES made on them. An online email discussion with an
Indian informant reveals an oft-echoed nostalgia for the NES,
especially with respect to the “Konami Code” (a series of movements
on the game controller that provided the player with extra lives3),
which was first found in the game Contra on the NES:

Oh! Those were *the* days.

Circa 1988–92, at my hometown in India, we used to get the
game console and “2 free” game cartridges for Rs. 20 per hour
(approx $0.50) and then the prices came down to Rs. 5 per hour
and Rs. 25 for the whole night (evening to next morning). And
then those “5 games in 1” cartridges were available at extra cost.

Super Mario Bros., Contra, Donkey-kong, Popeye, Road Rash?

sigh (Informant and O’Donnell 2006a)

Games dominate the language of both work and play for gamers
and game developers alike, but this is not a mechanism to keep
others at bay or explicitly exclude. This vernacular works because
games provide discursive resources for developers trying to describe

abstract concepts, like game mechanics. Because there is no
“discipline” of game design or game development, games themselves
have become a kind of lingua franca. And when you think and talk
through/with games, they become aspects of the workplace.

One particular experience while in the field demonstrated the
importance of this vernacular for developers. The term “Vertical
Slice” (VS) loomed large in the discourse of game development when
I found myself among the developers at VV. Like most outsiders, I
had never heard the term before, in part because I had never worked
on a project that had reached the VS stage. VS for game developers is
having one example of everything that would then go into the game:
examples of every special effect, every game mechanic, and one
feature-complete sample level. It also signifies a kind of barrier
between preproduction and production. Because a VS has the
potential to demonstrate each feature or mechanic of the game, it
means that many of those “options” mentioned in the opening
DEMO_MODE have solidified.

When deadlines loom (and seemingly more so around VS) more
meetings crop up. It seems inevitable that just when developers want
to spend more time at the computer working on the game, more
meetings are scheduled that in turn keep them away from their “real”
work. For this reason, many of my informants hated VS, it was a
necessary requirement, but the production of it meant numerous
hours spent in meetings and time spent late at work attempting to
then implement the decisions made in those conversations. In one
particular VV meeting the project leads and upper management were
attempting to determine the mechanics of a potential Wi-Fi
multiplayer aspect of the game.4 Of course, meeting participants
were already exhausted from recent long nights, and the thought of
having to define a new game mechanic and underlying technology to
support it was low on everyone's priority list. Engineering was saying
one thing, design was saying something else, and management yet
another. From my seat, it seemed like they were all saying the same
thing, but the meeting continued for nearly an hour before one
designer looked at an engineer and asked, “So, do you mean it's like
Spy vs. Spy?” 5

After this suggestion, one of the engineers thought for a moment,
and said, “Yes, like Spy vs. Spy.” The managers and the rest of the
designers in the room also nodded their heads. So, similar to the

language uses noted by other anthropologists who examine
knowledge work, game talk and game development talk accomplish
numerous tasks for game developers. Insider language, as Traweek
(1988) notes, “creates, defines, and maintains the boundaries of this
. . . community; it is a device for establishing, expressing, and
manipulating relationships in networks; . . . it articulates and affirms
the shared moral code about the proper way to conduct [scientific]
inquiry” (122).

Game talk, at its core, appeals to an almost instrumentalist logic.
“Like Spy vs. Spy” is actually getting at a deeper understanding
about the mechanics of a game. The talk appeals to the game and its
underlying systems in a fashion that gets at not precisely the content
of the game, but its functionality. But while game talk can be a
productive tool for uniting disparate disciplines (a topic covered in
more depth in World 3), it can also be used to exclude.
Anthropological studies of high-energy physics have shown how oral
communication enables collaborative communities, but also
simultaneously can be used to close communities off. These findings
hold true of game development as well.

Figure 2.1 Spy vs. Spy for the NES

Access to this world of oral communication is quite limited. In a
community with easy access to widely disseminated written
information, keeping crucial information accessible only in oral
form is an impressively effective means of maintaining its
boundaries. . . . Protection of oral communication encourages
the development of a closed community. In physics it is
consistent with the group's image of itself as a meritocracy: only
an informed, worthy member of the community will know what
is to be said and what is to be written. (Traweek 1988, 120)

Oral communication, though, is not used to maintain boundaries
simply through resisting documentation. It is also used as a means to
convey information for which my informants had no other language.
It is, therefore, reductive to consider oral communication only a
means of exclusion, for the use of game-talk serves productive
capacities crucial to the collaborative capacities of developers. It is
incredibly consequential that access to oral communication is closely
controlled. Anthropological studies of technical work practice have
demonstrated that the closed access to oral communication inhibits
our understanding of what goes on in the workplace (Traweek 1988).
This has consequences at the level of the corporation, but also in the
frequent assumption that game development is “merely playing
games.” Secrecy simultaneously is used to control access to the
community, but it is also productive. It provides the foundations for
productive conversations across disciplines. Insider language also
does work for those that use it. It is not “simply” jargon. Embedded
within insider language is a greater depth of understanding and
knowledge than is abstracted into what is often construed as game-
geek-technobabble. Given that argument, we can see why Orr (1991)
might find that “one of the interesting results of the ethnographic
investigation of work practice is that one discovers that what is done
on the job is often rather more than and different from the job as
described by the corporation” (12). This makes sense, given that
oftentimes the work is disguised by language that may be
inaccessible to the “corporation” but serves important roles for
workers.

Because game development work practice is quite different from
what it is thought to be, and because developers do not communicate
actual practices outside of their small communities, it becomes

difficult to learn from and understand the experiences of others.
While companies continue to invest in ways of attempting to capture
this informal and abstract information that surrounds daily practice,
these efforts remain problematic precisely because of their roots in
social relations in addition to technological ones (Hakken 2000b).
Because the social and the technological are so tightly intertwined in
these interactions, it becomes tempting to “record everything,”
though this rarely results in a greater ability to make sense of the
subsequent gluttonous data flows that are often ignored when the
next project hits. Yet, it is precisely this information that might, if
shared more broadly, enable companies to make sense of the data as
analysts and hobbyists make sense of it for them.

Most aspiring US developers have become accustomed to needing
to learn the language of game development on their own without
tutorial, manual, or mentor. For example, being able to understand
that when someone says, “Like in God of War's context sensitive
button-pressing mini-games,” that person is referencing a game for
the PlayStation 2 console and a particular game mechanic that
requires the player to time precisely certain button presses for
unique or context sensitive actions. This longer statement is
generally shortened to “quick time events” or “button time events.” It
is this complexity and contextual character that makes the emergent
game design discipline particularly difficult.

The discipline of “game design” is relatively new among game
developers, but it has quickly become the professional aspiration for
many young game developers. This is likely because designers are on
the front line for constructing what is finally viewed as the game.
While people new to the industry imagine that engineering is the
work of game development, it is frequently the game designers who
occupy the privileged position as “author.” The famous designers of
the game development world—Will Wright, Shigeru Miyamoto, John
Romero, Peter Molyneux or Cliff Bleszinski (“Cliffy B”) typically lead
an army of game developers, artists, engineers, and other designers
who construct the products (which are then credited back to their
generals). While design has long been a task among those making
games, the specialization has been relatively recent. Many designers
were previously engineers or artists who have transitioned more
exclusively into the designer role. Each designer I met came from a
different background—for example, physics, computer science,

media studies, film studies, graphic arts, writing, and journalism.
More designers in each studio were “self taught” than were artists or
engineers. While designers seemed to come from every disciplinary
background imaginable, the common theme was that they were more
likely to be gamers than members of any other discipline within
game development. Designers frequently had skills that seemed to
transcend disciplinary boundaries, including analytic skills that allow
them to deconstruct games, examine their core elements and
mechanics, and determine the underlying rules and structure of a
game.

Engineers, in particular, recognize the difficulty that the design
process of a game presents and appreciate the analytical approach of
game designers. In part this is due to engineers having to work
closely with designers to build the systems that designers then
leverage throughout the game development process. Engineers
recognize good designers, but too often there is no attempt made to
leverage that knowledge.

Box 2.3

#: SET DEMO_MODE 1
Casey: So what is it that makes game design particularly
difficult?
ENG_DS_Spidey_1: The task of the game designer is incredibly
ill-defined and there's no way to teach a person how to do
it and there is not even a really good idea of what makes a
good game designer. But, on the other hand, I've worked with
good game designers, they do exist. Being a good designer
has happened, so we need to teach it. We need to learn how
to package it, and that isn't a question that has been
addressed. No one has ever gotten fifty great game designers
into a room and said, “What do you guys fucking do?”
#: SET DEMO_MODE 0

And despite the fact that nobody puts fifty great designers in a
room to ask what they do, we do know one thing: they play games.
The need to play games to make games is as much about culture as it
is about understanding what it is that makes a particular game
interesting or fun. One must know the game, but also know how it
functions. Because designers must play a significant number of

games to be able to break down games into the component parts,
they frequently come to speak in the language of games, rather than
in any single disciplinary language, “Like Spy vs. Spy,” becomes a
bridge between an imaginary concept and an actual game mechanic.
Designers are fluent in the language of games broadly defined,
including tabletop games, role-playing games, board games, and
videogames.6

In fact, the mechanics and the systems underlying games is what
drove most game designers’ interest to jobs in game development.
Some came up through the organization as quality assurance testers;
most others transitioned from engineering or art to the design teams.
Some designers have taken existing videogame engines and
customized them, building MODs or levels to demonstrate their
abilities. Those coming out of software-heavy backgrounds may have
created small stand-alone games. Those who were hired directly as
designers were coming from other game studios where they had
followed similar tracks through the organization. Though “game
design” education programs have existed for some time, my
informants, at least thus far, said there was no indication that these
students were any better at design than someone who had come out
of a physics program and was intensely interested in games.

Because the “science” of game design (and perhaps of design more
generally7) is in its infancy and most game developers have had a
difficult time deploying many of the ideas developed in the academy
(or simply do not have enough time to implement them prior to the
next deadline), most designers in my interviews, field site
observations, and personal experiences in the industry expressed the
urgent need for better tools or new ways to talk about and perform
game design. Nebulous concepts like “play,” “fun,” “verisimilitude,”
and others abound, propelling and constricting new designs in
different ways. In the formal-method vacuum, designers speak in
terms of games—all sorts of games. This is different from explicit
secret keeping or the lack of documentation of design practice. As
game design has attempted to define itself, it has struggled with an
adequate vocabulary or sets of practices by which to systematize its
internal logics and methods. This isn't to say that there haven't been
ambitious and productive attempts from both industry and academia
to do so (Perry and DeMaria 2009; Salen and Zimmerman 2005;
Schell 2008).

One of the ways in which we can talk about game design is via the
concept that game development companies, like many new media
companies are continually in what Neff and Stark call “permanent
beta”:

The influence of design—where the design of products,
technology, or services—and organizational form on each other
emerges partly due to the process of continual technological
change, in which the cycle of testing, feedback, and innovation
facilitates ongoing negotiations around what is made and to
organize making it. We call the organizational state of flux that
emerges from this negotiation “permanently beta.” (Neff and
Stark 2004, 175)

I also see this state of flux as a product not only of the process and
organization, but also of the relative youth and lack of institutional
memory that these industries seem to exhibit. There is nothing
inevitable about the permanent beta state. Permanent beta, is in part
a product of technological change and flux, but it is also about the
problematic character of then retaining those experiences or learning
long-term lessons about how precisely one works in those situations.

The critical gap for would-be designers is making the leap from
talking about games to constructing games. There is a cavernous gap
between thinking about game design and actually doing it. Both the
practicing designer and would-be designer must be able to translate
that gamer vocabulary into the intermediary languages of engineers
and artists. Designers must be able to write and choreograph the
experience of playing a game, balancing their personal desires with
what other players will find fun, interesting, intriguing, or
meaningful. This means that designers frequently cross between the
worlds of artists and engineers, and experimentally construct ways
through which they bridge code and art through the nebulous
mechanism “data,” which is examined more closely in World 4-3.

The language of game design, rooted in a deep and nuanced
understanding of games, provides discursive and conceptual
resources for developers to draw on in their discussions surrounding
abstract and often complicated systems. While game designers may
locate their ideas and rule systems in the language of other games,
mathematics, spreadsheets, or others, game design is at its core
about the construction of systems (underlying systems) that others

will play in a game. Game designers locate the core components that
others will play and feel out in the process of gaming. Game
designers are, therefore, gamers par excellence, for they are always
looking for loopholes or means to game the system. Particularly in
the early stages of game development, design takes a leading role,
identifying the rules and systems, or simply mechanics, that will
govern game space. Designers will frequently attempt to do things
that they have been instructed will not work, to see if there are ways
in which to tweak their work so it falls within guidelines. The essence
of game designers is to embody “teasing out underlying systems and
structures” and “instrumental play,” in ways that construct worlds
that players want to experience time and again.

World 2-2: Bumping into Software

Box 2.4

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Some artists pursue game development
specifically. Others happen upon it more accidentally.
Making artwork for games can be a very different process
than other forms of graphical artistry. For some, that is
precisely what interests them in the productive process.
Casey: Did you intend to go into games when you went to art
school?
ART_DS_Ogre_1: Sort of. That is a funny story. I was really
into the first The Sims game. I discovered that there is a
whole online community devoted to editing the skins, which I
thought was really cool. I tried to teach myself Photoshop
and just enjoyed spending all day making alternate textures
and wanted to get into editing the object files and changing
the animations for the characters. I couldn't figure that
out through the tutorials, so I started thinking, “Oh, maybe
there is a school for this sort of thing, because I could
deal with getting paid to do this all day.” So, yes, games
was what I was thinking when I pursued art school. I mean, I
didn't know anything about games and certainly had no idea
about how they were made or what went into it.

AUTHOR_DEV_DILEMMA: Art is thus closely tied to the
underlying systems of a game. There are very precise
requirements that must be met for those “assets” to make
their way into a game engine. These are requirements that an
artist must balance with a host of other requirements in
their quest to bring visual life to a game.
#: SET DEMO_MODE 0

It is often impossible for artists, engineers, or designers to know
precisely what they can create without causing the underlying
hardware to buckle under the pressure they put on it. For artists, in
particular, preproduction can be a difficult time: they must
frequently be the Swiss Army knives of game development, balancing
between fine arts skills and technical knowledge. Preproduction is
often the time when getting artwork into the game is at its most
difficult because engineers have not yet determined how artwork will
make its way into the game.

But artists’ work is significant to the game and its requirements, for
the majority of a videogame's CPU usage actually goes to the
rendering or drawing of images to the screen and represents the
overwhelming majority of what game players see on screen.
Examples include visual interface elements like “health meters” or
user interfaces (typically called “HUDs” or heads-up displays), as
well as actual game content like 3D models and 2D textures.
Animators put these models into motion and texture artists give
them “skins.” Concept artists sketch foundational pieces that define
the look of a game. Full-motion video artists assemble game cut-
scenes. Lighting artists, with an understanding of the dramatic
effects of illumination, place light sources in maps to set a game's
mood or tone. Most games dramatically redefine the user interface
and rarely make use of standard user interface elements. Each of
these artistic elements must be created by an artist and made
available to the game “engine” in some format. The proper format for
those elements or the steps necessary to then see them present in the
game is often in a state of flux during preproduction. Artists may be
involved in defining the flow or pipeline that artists will later use to
examine their creations in the game. When what they have spent so
much time creating does not appear in game or does not look as
expected, artists must frequently engage with the knowledge of
engineers and designers.

Generally speaking, artists are trained either in fine arts programs
or more professionally minded institutions, which claim to balance
artistic training with up-to-date software package training. Self-
taught artists will occasionally make their way into game studios,
though in my research this was the exception rather than the rule.

Much like their engineering counterparts, artists develop particular
areas of expertise over time. Each must be familiar with
sophisticated technological tools that are used to create their artistic
visions, and these tools are highly specialized for each discipline.
Even if an artist is familiar with the software package 3D Studio Max
(“Max”) or Maya, both products created by AutoDesk, they may not
be familiar with the particular add-ons or additional applications
made to run within these programs in an effort to speed or simplify
particular tasks. Artists must be able to quickly grasp and work with
new tools, in many cases custom technologies that may not have
been designed by artists.

Artists have specialized languages for understanding their work,
just as the other specialized roles do; and artists’ communications
are further contextualized by the tools and systems that they use to
produce art assets. Often, terms can conflict across disciplines. At
one level, artists and engineers speak different languages because the
same words have different meanings.

Programmer: “I need this model in under 300k.”
Artist: “Okay.”
Artist: [Spends a week and makes the model in under

300,000 polygons.]
Programmer: [Head explodes.]

The joke is that the engineer meant one thing and the artist
interpreted the words to mean something entirely different. The
engineer was thinking about the size of a file on disk; the modeler
interpreted the request to constrain the number of polygons in the
model. This example ignores a significant difference between art
production for games and art production for other purposes. The
limitations of games’ hardware and software systems alter the artistic
process. Yet at the same time, many artists find the limitations
compelling. Constraints provide a framework within which creativity
can run rampant. Rather than being left with a world of possibilities,

artists can explore innovative ways to work within the more limited
numbers of creative possibilities available to them (at least during
preproduction).

Game development really occurs at the interface between artists,
designers, and engineers because conversations between disparate
worldviews result in a complex creative works of artistic information
processing known as a videogame. At every point of preproduction,
communication from artists offer visual clarity, fidelity and creativity
to complement the designers’ underlying mechanics and messages in
a way that engineering can assemble into a final product. While there
are myriad ways in which an artist might construct, animate or
texture a model, the process is always mediated. Engineering may
eliminate many of the possibilities. Design may restrict how
elements may look or function so everything will work with other
elements of the game.

ART_DS_Ogre_1: Certain things are just harder for me, I guess.
I'm very comfortable and happy doing individual tasks. Give me
a list of things to make, what style you want them in, or
whatever, and I will make them. But planning something out in
a huge scope is different. Tile sets for example, you make these
individual pieces that work for various situations. It has to work
here like this and there like that. It always has to work. That's
just too thinky for me. I don't like to think that much. I guess I'm
just not that creative. So, I'd never done levels before and I get
this sketched up file from design and it is just the platforms for
the game, just boxes and it is very angular, and I'm thinking,
“But this is a forest, why is that floating?” So then I have to
imagine something that justifies the character being able to go
up on that platform. I hate that. I want someone else to do
concept and I can just make it. (Informant and O’Donnell
2007a)

As many facets of the team constrain the artists’ work,
preproduction demands documentation of how things are to be
done. Much of the preproduction work of artists, including meetings
that attempt to marry the differing desires of designers, artists and
engineers, can feel very much like non-work. Though it may not be
the aspect of game development that artists most cherish, all of the
non-work is crucial to the later success of the project, and the

expertise of experienced artists is crucial to the planning of a games
production.

When in preproduction, artists who are not in meetings sit in front
of their computers,8 gather in front of white boards with other
developers, talk in person with developers, and sit reviewing one
another's work. These peer review sessions can frequently result in
tense situations where artistic style comes into conflict with the
overall aesthetics of a game. Colleagues ask, “Would he really move
like that?” and press each other by questioning the quality of one
another's work or challenging one another's assumptions about how
a given task ought to be done. Collaboration, changes, and creative
innovation is often spurred by questions like, “Have you seen the
animation that the other team made?”

Artists also come into conflict about technological limitations, and
they don't always react well to implied criticism. “Of course it would
look better like that, but I've only got seven bones9 to work with.”
They remind their colleagues about limitations under which they toil.
“If I do that, I'm going to break our budgets.” Entire conversations
can be dominated by the examination of several discrete frames of
animation or the tweaking of several bones or vertices on a model. In
some cases, those animations or models may never make their way
into the finished game product.

Some of the parameters within which artists struggle, beyond the
constraints put upon them by design and engineering needs, are the
layers of idiosyncratic software and hardware systems. During one
conversation, a technical artist talked about how willing artists were
to assume that if something wasn't working, it was their own fault.
They would continue working with a model or other art asset, forcing
it into the game, despite repeated failures. In some cases they would
even manage to make something fit into the game that should not
have fit in the first place. It seems quite important to artists that they
fit their work into the parameters established by others, for they will
continually modify and carefully check their work to see where
changes can be made to improve the visual quality of their work
without breaking the guidelines they have been given.

Many artists feel like work horses, doing the hard logistical work of
preproduction, and while very few artists are involved in the
preparatory work of preproduction, the number of artists rapidly
ramps upward as a game reaches production. Those artists who were

part of preproduction often look forward to entering production, as it
is a time in which they can, “simply go in their hole and make some
stuff.” Artists contribute concretely to the production of art (or
“assets”) for the game, and they are rarely directly involved in the
production of code or data. In fact, this distinction—art “assets,”
rather than code or design—have led many game development
companies to seek art production work overseas because the
linguistic distinction was logically differentiable to management.
This partial outsourcing, wherein art is separated and isolated,
neglects the connected character of artistic game work.

World 2-3: Bumping into Hardware

Game designers and engineers spend a great deal of time
constructing the videogame's foundation and underlying systems.
Perhaps the collaboration leads would-be developers to pursue
degrees in computer science more often than art, game design, or
film studies due to the assumption that games are “just” software.
The cultural imaginary around code is so closely linked to computer
science that they are almost synonymous, while other fields are only
now embracing the role of code. Engineers (and they do refer to
themselves as engineers rather than programmers or computer
scientists) translate design mechanics into computer programming
languages like C or C++, which are then compiled into machine
understandable code by software often made specifically for a given
game system. These compilers can be, to greater or lesser degrees,
integrated into other game development tools.

Box 2.5

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: When asked about why games command their
attention, engineers often talked about how producing a game
was simply more interesting than the possible alternatives.
ENG_DS_Spidey_1: Because they're games and that's where the
excitement comes in. It's more fun to make things blow up on

screen or make something animate, than it is to make a web
polling application. . . .
AUTHOR_DEV_DILEMMA: Yet, engineers are quick to note that
what is on the screen is rarely their direct doing. Their
engagement is at a different level. The focus is closer to
the hardware and to all of the elements that must be coaxed
into a cohesive whole to make those elements animate on the
screen. The process of determining what is necessary to
bring the hardware and software systems into that kind of
harmony, however, can be quite complex:
ENG_DS_Spidey_1: There is this total amount of knowledge
when you're going all the way down to the wires and you have
to understand everything from what you're typing in to
what's coming out all the way down to the basics of computer
hardware. Really, you know, how computers work at a hardware
level, and you can infer things. But you have to have that
desire to really know what's going on and make things work
fast and work with obscure hardware that changes every year
and a half. A lot of people don't have that, I guess. A lot
do.
AUTHOR_DEV_DILEMMA: For a community that manages to burn
through young talent, it troubles me, as an analyst and
developer to hear how vitally important experience seems to
be. Consistently informants will cite the dramatic
difference in understanding that developers acquire as they
spend greater amounts of time engaged with the process of
making games:
ENG_DS_Spidey_1: There is a tremendous gap. It's just
cavernous. Between the knowledge that they teach you in a
curriculum and actually creating software and games even
more so.
AUTHOR_DEV_DILEMMA: There are numerous reasons why those
gaps exist, only partially the fault of educators. Given the
kind of secrecy and contextual character of game development
work, it seems almost a given that the distance between
those worlds would be gaping.
#: SET DEMO_MODE 0

At the same time that they work to turn mechanics into code,
engineers invest significant effort into externalizing the interests of
artists and designers. They construct the means by which designers
can adjust the parameters of design mechanics, even though these
parameters may change dramatically over the course of game
development, as the team learns more about what makes the game
particularly enjoyable or meaningful. Engineers often refer to this
abstractly as “data driven” design, but it's not just about honoring

the data. The way engineers work also empowers designers,
providing alternate methods for constructing the game system that
does not always require the intervention of engineers (who might
already be stretched thin by all the demands on their skills).

Websites like GameDev.Net that provide information for
developers offer resources aimed at helping would-be engineering
developers learn the tools of the trade. Some examples are Nehe
Productions, Code on the Cob, and AngelCode, all of which offer
extensive information on technical issues and the concerns of
engineers who are learning game development. These sites’
engineering-heavy focus and marked lack of information about how
design, art, engineering, and management work together to produce
games is not widely or explicitly discussed.

Pointing would-be game developers toward conceptualizing the
practice of videogame development collaboratively would be more
productive; encouraging engineers to think about the place of artistic
and design practice will better serve the student and the industry.
What follows, is the sample output and source code often used to
introduce engineering-inclined game developers to 3D game
programming. While it is a helpful demonstration, it actually
confuses the roles of artist and programmer. For example, it would
make more sense for demonstrations to read the “pyramid” data
from a file that can be later modified to produce other outputs,
rather than a basic rendering of a hard-coded object to the screen.
This would give engineers a better sense of how a game might
actually get developed based on those samples. In creating a
videogame you would not want to “hard code” every vertex (a point
in 3D space) or color for every model in your game, especially
considering that most models for games will have thousands of
vertices. The animation and the code required to generate a pyramid
using OpenGL is illustrated in figures 2.2 and 2.3 respectively. More
useful for aspiring developers would be a demonstration of reading
the pyramid from a file, or reading an arbitrary number of points and
colors from a file.

Figure 2.2 Screen shot of a simple OpenGL animation window

Figure 2.3 The C++/OpenGL code necessary to generate figure 2.2

The same argument for encouraging the engagement of
engineering and design practice would be true for sites focused on
artistic practice. The collaboration of artists, designers, and
engineers is made evident in the way in which data is placed into the

game's code. Though it seems counter-intuitive, data is read from
files rather than hard-coded into the code of a game. Because a
designer would potentially want to edit the “m_rRotationRate” (the
rate at which the 3D pyramid will rotate in space) in the above
sample, it was probably parsed from design data. The model itself (a
pyramid in this case) would have been created by and put into a file
by an artist. It is therefore simpler for an engineer to allow the game
to read data produced by artists and designers than to place the
information themselves into the code for a game. This choice, which
might not make sense from a computer science standpoint, is about
enabling collaborative practice. Educational websites should give
prospective developers a sense of this cooperative environment and
its technical requirements and constraints. My informants often
cited a lack of this kind of knowledge by engineers new to the
industry as a critical failure.

ENG_DS_Spidey_1: I mean, I think on the whole, what we do in
games programming is harder. I mean, in terms of total amount
of knowledge you need to have the comfort with computers and
how they work. I think there are a lot of programmers that don't
really understand what's going on behind the scenes. They know
what goes in and they know what comes out, and they kind of
have a mapping of it in their head, but they don't really know
what is going on. That is the difference with game programmers.
Good game programmers, at least. A lot of people really
understand what is going on and can spot things immediately in
terms of underlying things. I mean, just this morning, we had a
random problem and ENG_DS_Spidey_2 and I just
immediately knew it was X, but we wouldn't have known it was
X if we didn't have this obscure piece of knowledge about the
hardware on the DS that lets us know, “oh, that's it.” And it's
perfectly possible to write code for a DS without knowing that
piece of information. So it's the difference between people who
pursue those little details and those who don't. (Informant and
O’Donnell 2005a)

The lack of available information about the way in which game
development engineers have to work became most apparent to me
while working with a team in India who was developing a game
prototype for the Nintendo DS. I had already shared with the

development team most of my game development web bookmarks
when I noticed one of the artists seated by the desk of an engineer on
the project. The two were pouring over what appeared to be a hard-
coded array of data. I asked what they were working on and they
explained that they were trying to get the artist's data into the game.
I asked why they were doing it that way rather than reading the files
into the game while it was loading—so that the artist could make
changes to his artwork and it would easily be reflected in the game.
Both responded that the sample code on the sites I had pointed them
toward, as well as in Nintendo's documentation, contained all of the
data hard-coded, and they assumed that was how it had to be done.
This type of misinformation in developer resources is made even
more problematic when developers work on proprietary hardware,
for code references can be even more difficult to find.

Box 2.6

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Many engineers I encountered maintained
that there was a necessary special breed of programmer that
wants to work in the game industry.
Casey: So, what does it mean to be a good programmer? What
kind of person makes a good engineer?
ENG_Asylum: Well, first of all you have to be logical, and
have some sense of organization. That is first and foremost.
The other element is, well, it depends on your skills in
what I consider to be the two main categories of
programming. I think these two things compose at least 90
percent of what you do in programming. The two things are
number-crunching and string parsing. And then there are a
small number, like 10 percent where maybe you do some work
like writing a data structure, but that is mostly number
crunching anyway. So you either have to be good at one, or
the other, or both. But that is just my bizarre theory on
programming.
Casey: So how do you reconcile the making of good
engineering deci sions and bad engineering decisions and how
those cascade down?
ENG_Asylum: So, bad decisions can be made because you don't
fully understand the problem or you've perhaps encountered
the problem before and go down one path and not another
based on that experience rather than on looking at the big

picture. And you'll always have to revisit things, which is
fine, but depending on how you've decided to do something,
you may have to redo it instead of merely fixing it. That
would be because it doesn't meet the needs of the customer.
As a programmer, the designer is the customer of the
programmer. So, designers will want a feature and the
programmers will implement it to meet their requirements.
Casey: But if a designer doesn't know what those
requirements need to be?
ENG_Asylum: Then that creates a bottleneck. Either you make
that feature so vast it handles everything that a designer
could possibly want. Or at least a lot of things they might
want. And sometimes that is a good option, because it will
be more general for down the road. But, that can take longer
and sometimes ends up being less efficient.
Casey: So for the vertical slice last week?
ENG_Asylum: Yeah, so that was mainly supporting the
aesthetics that they wanted to add. So much of that was
helping them just get it into the engine, and how that
pipeline worked. The code was pretty much immutable up to
that point, just helping them fix up and support what they
were trying to add. At that point adding features would have
made no sense, we had features two months ago that weren't
even in use yet.
AUTHOR_DEV_DILEMMA: Engineers in the game industry attempt
to manage the space between allowing for creative
possibility and managing the kind of complexity that that
goes along with providing a system that exposes such
flexibility.
#: SET DEMO_MODE 0

Despite engineers’ best efforts to “scope out” a project at the
beginning, based on the specifications of a system, they frequently
discover there is much to understand about the underlying game
systems. One engineer in particular discussed having a feel for “every
transistor and chip inside that thing” after performing optimizations
for the Nintendo DS handheld console (Informant and O’Donnell
2006b). Despite all of the documentation, specifications, and
scoping, it required his investigation of and prying into the system to
get it to do what they had assumed it would do in the first place.

An engineering group manager who had gone through this process
numerous times talked about the process of digging into a system, at
the level of software or hardware systems, and its requisite
attentiveness. When I asked about mechanics that weren't working
properly, ENG_GRP_MGR_1 noted:

There is an emotional component of it. . . . You gotta get over
that pretty quick. And I guess that's where the logical part comes
in. You say, well, you know, it's broken. . . . you're not expecting
a system call to do what it should, or hardware to do what it
should, and I think . . . if you take the time, the gruesome
horrible time, you can always, if you have to, map out the
transistors, and follow the flow of logic. It will all come out in
the wash. So you have to be persistent. (Informant and
O’Donnell 2005b)

Some STS scholars have written about the process of debugging or
feeling out systems, and Turkle (1997), in particular, discusses the
process as “combining the magic of emergence with the possibility of
getting your hands dirty,” it was a combination of “hard and soft,
bricolage and algorithm” (143). Yet, bricolage seems to go too far; it
is not so un-systematic. Engineers learn just as much from “negative
knowledge,” knowing the limits of what they know as they do from
knowing specific systems. As noted by sociologist Knorr-Cetina
(1999), negative knowledge can steer us away from wasting time
with, “things that interfere with our knowing, of what we are not
interested in and do not really want to know” (64). Examining and
determining how systems work is a simultaneously
thorough/methodical and creative/intuitive thought process. To get
at underlying systems, as anthropologist of medicine Emily Martin
(1997) has noted, our tasks and relations with them begin to
approximate “disorders” where our “exaggerated sense of urgency”
and “exaggerated sense of boredom” contribute to our abilities to
“stretch, cram, speed, warp, and loop poor old linear time and space”
(253). The capacity to “organize the chaotic mix of seemingly
unrelated simplistic elements into a more integrated and
comprehensive framework of understanding, approaching a clearer
picture of complexity,” begins to approximate the clinical definition
of Attention Deficit Disorder (Martin 1997, 254).

Engineers are not disordered, of course. They're systematic in their
rooting for problems that keep their code, designers’ visions, and
artists’ assets from working properly. ENG_DS_Spidey_1 noted the
reason engineers barrel through the process to find bugs that impede
the process:

It's about encountering problems and figuring out why. It's also
about attacking problems that are ill-defined and require a lot of
investigative work. You can't just say you can't do it. That's an
unacceptable answer. There is a reason for the problem. I can't
tell you the number of times where I've been like, “this is non-
deterministic, this is total nonsense, this is impossible.” It never
really is. There's just a missing piece of knowledge, somewhere,
and it's the wherewithal to stick it out and find it. But it's your
job, so you have to figure it out, even if it makes you want to kill
yourself. There is a way, it is solvable. (Informant and O’Donnell
2005a)

It is this exploratory sleuthing process—simultaneously creative,
logical, and systematic—that characterizes much of the engineer's
game development work, particularly during the process of
preproduction. There is a kind of continual seeking for the “bottom”
where the rubber treads of software systems laden with design data
and artistic assets meet the road of computer system hardware. It is
crucial to reiterate that this is a creative collaborative process not run
by a single discipline. As is often the case in collaborative
environments, tempers flare and the process begins to break down.
When demands external to the development team are made (by
management, for instance, or publishers and intellectual property
holders) and the game development team must make decisions about
what to include or not, friction is inevitable. This is discussed in
more detail in World 6.

World 2-4: Instrumental Work/Play

In each of these—design, art, and engineering—there is something
that drives game developers (and workers in the new economy more
generally) to weather obstacles and stick with their industry. It is an
aspect of the work that encourages workers to push further and
harder than necessarily required. This has benefitted corporations
because their workers are plugged into their work in ways they have
not been previously. Perhaps on some level it is a realization of a
Protestant work ethic based on the idea of a “calling.”

As sociologists and ethnographers of virtual worlds (and gamers
more generally) demonstrate, it goes beyond the simple answer,
“because the work is fun,” (which it may very well be some of the
time). More than work's level of fun, there is an underlying drive—a
dedication—to what Taylor (2006a) calls, “efficiency and
instrumental orientation (particularly rational or goal-oriented),
dynamic goal setting, a commitment to understanding the
underlying game systems/structures, and technical and skill
proficiency,” on the part of game players (72–73). Among many
game developers, the desire to know the structure of the system
within which they work has led to an almost instrumental or “power
gamer” approach to work/play. In part, this is a product of a system
that seems arbitrary or imposed, hence the “broader ambivalence
about what constitutes legitimate play[/work]” (Taylor 2006a, 72–
73). The instrumental or “power gaming” of the workplace, which I
have termed instrumental work/play evidences a desire to
understand the hows and whys of the structures within which game
developers move. In working so intently at having fun, artists,
designers, and engineers seek knowledge that will enhance the ability
of the knower in their work/play quests.

Instrumental work/play is rooted in the culture of gamers, who
place significant importance on the act of working through the
complex problems found in videogames. Any circumvention of this
labor is often seen as a circumvention of the rules. Players are
expected to play within the rules of the system, though
circumvention through legitimate play is often seen as exemplary
play (Consalvo 2007). Personally and deeply exploring the systems
one works within is at the core of instrumental work/play. These
same motivations also seem to plug into the ethic of secrecy that
dominates the videogame industry. Much like “walkthroughs” are
seen as the tool of the less adept videogame player, most game
developers expect one another to understand the processes and
practices that are, for all intents and purposes, undocumented.

Instrumental work/play spans the disciplines that constitute the
category of game development. Informants often discussed how the
work of making a game, either from a code, art, or design standpoint,
differed fundamentally, depending on the method. Each way could
be more or less difficult, time-consuming, or error-prone than other
applications. The ability to understand how a complex whole, such as

videogame development, is composed of numerous underlying
elements (engineering, illustration, and design), contributes to the
delimiting factor in the collaboration necessary for creating the final
work.

Box 2.7

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Rooted in the engineer's insistence that
there is a difference between “normal” programmers and the
ones who thrive in game development is the argument that
game programmers have a desire, drive or interest in their
work that distinguishes them.
Casey: What do you mean “like you?” What is the difference
between someone with a pulse and you?
ENG_DS_Spidey_1: There's a difference . . . I mean, you can
get through an academic program by just going through the
motions. I guess it's like working out. You can go to a
martial arts class and you can make all the motions, or you
can really do it. It's all in the energy you put in. So you
can go into a computer science curriculum and you can
complete all your assignments and you can memorize things
for the test and you can walk out with a passing grade. But
that doesn't mean you know how to do anything.
Casey: Why is that do you think?
ENG_DS_Spidey_1: It's a certain . . . Depth of understanding
that you have to have. They give you all the pieces in a
curriculum but there's nothing that makes you coalesce it
all into a useful body of knowledge. I don't think that is
possible without sitting down and trying to accomplish
something that wasn't assigned to you.
AUTHOR_DEV_DILEMMA: It is both an issue of drive and
initiative, but also one of bringing things together that
aren't spelled out for you in advance. It gets at the kind
of experimentation and trial-and-error that surround the
craft of game development.
#: SET DEMO_MODE 0

So it is not just technicians or engineers who, as historians and
geographers of technology note, work at the “empirical interface
between the material world and machine-generated representations
of the world” (Downey 2001, 229), but nearly every game developer.
Each engages with instrumentalist tendencies in an effort to

accomplish their goals. Engineering and design studies researcher
Louis L. Bucciarelli (1994) says that “designing is not simply a matter
of trade-offs, of instrumental, rational weighing of interest against
each other,” that “nothing is sacred, not even performance
specifications, for these too, are negotiated, changed, or even thrown
out altogether” (187). But, the fact of the matter is, the design process
for game developers—that push and pull—determines where the
bottom is. Despite the construction of rigid specifications, games are
based on something that must be felt out and determined by the
players. Eventually developers run into the limits of electrons and
silicon. Specifications are made, but they are not made up; they're
the result of a negotiated process, which is frequently the product of
instrumental play.

The trouble is, not everyone is interested in playing this way.
Instrumental play has it limits. “This sense that somehow these
players are just too dedicated, indeed almost bordering on the
psychologically pathological, is a popular theme. What I found in
conversation with power gamers, however, is that they consider their
own play style quite reasonable, rational, and pleasurable” (Taylor
2006a, 72–73). If, as Taylor notes, “these functions are
mainstreaming the focus on quantification in that play style,” then
likely this work/play style will become more widespread. “But if the
adoption of these tools and with it the play styles it brings becomes
mandatory,” Taylor (2006b) asks, “must we start to deal more
concretely with notions of emergent coercive systems?” (332). This
seems to get more directly at the heart of instrumental work/play.

I also like to think of instrumental play as an alternative narrative
to the dominant discourse surrounding “casual” versus “hard core”
gamers. Many game developers no longer count as “hard core”
within this dichotomy; nor are they casual, either. Instead I posit
another term, instrumental players, who are dedicated not to a
particular genre or subset of games, but who consistently and
persistently attempt to dissect their games from the mechanics up.
Many designers play very few hardcore titles because the mechanics
are instantly recognizable, and their interest lies in uncovering
structures. Many so-called casual gamers are adept instrumental
players. Their ability to strategically change their play based on
knowledge of the underlying system is precisely the kind of
instrumental rationality and sensitivity for the underlying game

mechanics that are so crucial for game developers. However, many
instrumental gamers find it difficult to simply observe or play games
because they have difficulty resisting the urge to determine how a
system functions. They continually see the underlying systems and
may find it difficult to participate in either casual or hardcore
attitudes, immersing themselves in a particularly complex game
intensely until they feel adequately satisfied that they understand the
underlying systems that make it function.

Instrumental play should be distinguished from a kind of
“instrumental rationality” or “instrumental reason” as it might be
defined by critical theorists of the Frankfurt School (Adorno and
Horkheimer 1976). Instrumental play is distinguished from these
theoretical categories in that it has no claim to the irreducible or
absolute. In fact, instrumental play would continue to probe into the
structures of what is considered irreducible. As my informants might
put it, “You've got to get over that [a commitment to the absolute]
real quick.”

Instrumental play is about searching out associations, analogies,
and relationships, much like “enlightened” scientific inquiry, but it
makes no assumptions about the absolute character of those
suppositions. This is where the “play” component of instrumental
play is crucial. There is always the assumption that what you are
working on or working with will swerve and send you in new
directions. This is more in line with the idea of the game developer as
“bricoleur” (Lévi-Strauss 1962, 17), adept at performing numerous
diverse tasks, “mak[ing] do with whatever is at hand” (Lévi-Strauss
1962, 17). The concept of bricolage, or the bricoleur, is not new to the
studies of technological development, but instrumental work/play
plugs into the bricoleur's underlying drive, which is to push one's
tools to the brink and pull off “risky” moves, doing what others have
thus been unable to do. Put another way, instrumental work/play is
what pushes bricoleurs to attempt creations that strain their
understandings, no matter the extent to which that bricolage
understanding appears to be “reality.” There is always a time and
place to question the bricolage system that one has constructed in an
effort to pull off a new feat of creative work.

Unfortunately, in many cases developers do not even have the
opportunity to form specifications or play in instrumental ways,
methods that are crucial to pushing the tools, expertise, and products

of game studios. Developers doing outsourcing work are frequently
given rigid guidelines for their work. Unlike developers working in
studios, outsourced work is rejected outright if it does not meet
specifications. Developers’ ability to get at the underlying system in
need of changes has been compromised because there is no link
between the specifications and the process from which they were
derived. The ability for an artist or designer to see their work within
a game is obscured when the work is done by contract developers
since, often, only the contracting studio has the ability to view the
results. Anthropology of work shows that in the “absence of informal
working knowledge from technologically sophisticated production
processes. . . . technical workers. . . . develop complex cognitive
models that represent the . . . messy world of work” (Baba 2003, 19).
While these models provide the frameworks that other workers can
use to get things done, developers remain hamstrung by their
inability to access the underlying systems from which these demands
arise.

For many developers, the ire at being pushed into situations where
premature designs are released or key elements are cut is directed at
management. Studio heads and managers play with their
organizations like artists play with textures and models, but for ends
separate from the game. Studio heads are often myopically focused
on either the continual survival of the company, or its acquisition by
some parent organization. They must interface and play with game
development studios, intellectual property holders ranging from
movie studios to comic book publishers, console videogame system
manufacturers, and videogame publishing companies. Studio heads
and managers also bump into the limits of their teams, their
employees, their networks (both social and technological), and their
access to secrecy networks. Managers must do as much as possible
with as little as possible. Teams will get shuffled around based on the
work available. If particular designers have proven themselves able
to handle particularly restrictive conditions, they may be moved from
one project to another in the hopes of bringing new perspectives to
existing teams. Just like their subordinates, managers must often
instrumentally play within the structures of a project that they have
been hired to complete, without necessarily having any say in the
parameters by which they must abide. Creative visions may differ,
and those who do not need to rework systems to achieve

modifications seem to ask for constant modifications.
Representatives of corporate institutions use a game that is in
development as a means of negotiating with other institutions.
Studio managers must also frequently engage with the management
of a system, which in many cases began as play, for many studio
heads began as developers working on a game in one form or
another.

Time and again in my fieldwork, the interface between the creative,
logical, systematic, and intuitive met with the emotional. At times it
was due to conditions outside of the control of my informants. The
demand for overtime or crunch, an occurrence examined more
closely in World 5, would often cause collaborative practice to break
down. Perhaps most disturbing were those occurrences where
particularly unwavering restrictions about how a system should be
implemented were brought into a project that had already
progressed in a very different direction. In these cases, developers
routinely deflated and proclaimed that “this would be so much easier
with system X,” or grew frustrated because they knew that “this is so
much easier in program Y.” This emotional response coupled with a
reversely proportional emotional response on the part of developers
already part of the project proved explosive. Thus, the phrase “you
gotta get over that real quick” rang through my head time and again
as I watched communication practices break down among
developers.

The developers’ tendency to force themselves beyond that which
the job requires does not stem from a demand or coercion that
everyone push harder and play/work in the same instrumental ways.
Overt coercion undeniably happens, but the structures that many
workers trapped in the new economy must work within are also key
constituents of why people feel compelled to work and play in
instrumental ways. It is not simply the systemization and
regimentation of game/sport that causes the loss of game-like
innocence. The issue is larger than that. And the argument is not
simply a “game for sport versus game for money” dichotomy. Simply
bringing money into the whirlwind does not automatically
cannibalize your game. The difficulty is that money brings those
interested in playing other kinds of games—often exclusively
financial games—into a world that many had hoped might stay a
game. It is the incorporation of a drive toward institutionalization

that changes the play. As anthropologist, John Kelly has written
about American baseball:

But it wasn't commoditization that changed baseball so
unmistakably. It was higher levels of capitalist organization.
Above all, the leagues changed everything. What are they, and
what is their relationship to commodities? Commoditization,
yes, but we will need more tools than that: we will need to
understand whole new layers of management. We will need a
theory of the firm. Professional Sports leagues did more than
commoditize the game. They incorporated it. (Kelly 2006, 55–
56)

So what has changed the play of game development into the
work/play of game development is the coalescing of a willingness to
play (or be coerced into play in particular ways) with the systematic
incorporation of the videogame industry. That move to industry
rather than something else marks an event that begins to alter the
space of play. While baseball is one example, the connections with
the videogame industry are undeniably industrial. Games do not
start as an industry, but have moved into that space. It is not simply
that people good at playing a game begin to accept compensation to
publicly perform their play. That might make it sport, but that alone
does not account for the work/play conflation.

Kelly notes that bringing money into baseball opened the door to
monetary concepts like free enterprise and profit, the result of which
was a prioritization of interested parties over the game's interests.

Competent professional players began to make the game a
means to profit, starting with the prowess of the Cincinnati Red
Stockings. The line of movement from clubs to leagues to
Organized Baseball remade baseball into an increasingly
interconnected congeries of commercial institutions, made
baseball into a branch of what Americans like to call “free
enterprise.” Baseball reorganized from independent clubs,
originally player-oriented leisure groups, into profit seeking
corporations in a legally powerful cartel. We can use this history
to discuss dynamics of capital, profit, and finance in the actual
capitalist world. What are the key genres of capitalism, its
defining institutional structures, drive belts of its history? What
is baseball, when it is not only a genre of game, but also, a genre
of capitalist enterprise? What then constitutes its best interest,
and how? (Kelly 2006, 59)

Baseball and game development are each a genre of game
work/play. It is the connection with commercial, profit-driving
organizations that has so dramatically shaped game developers’
worlds. Profit also provides us a normative point of entry. What
drives this bus and how does it go? More important, “what
constitutes [the game's] best interest, and how?” In many respects, it
may be a return to these questions that has signaled a resurgence of
experimental, artistic, and independent game development. These
movements are attempts to recover a kind of lost history rooted in
games being about a love for finding and playing with underlying
systems, which was supplanted with a drive for systems that
encourage profit seeking.

There is a reason that games now find themselves at the forefront
of a wide variety of economic frontiers, ranging from the
gameification/exploitification/bullshit debates (Bogost 2011; Kazemi
2011; Zichermann 2011) to continual acquisition and shutdown of
small game studios. This largely deregulated or self-regulated space
exists at the boundaries, where rules have yet to be constructed or
even discussed and thus the decision making is often left to those
with the largest bank accounts. Though game development may
seem distant from other frontiers where extraction results in death,
cancer, and destruction, it too suffers from being at that edge where
the “expansive nature of extraction comes into its own” (Tsing 2005,

27). These new debates about what games are, can be, or ought to be
are the questioning of the importation of new frontier profit seeking
ethics.

World 2 Boss Fight: “Ya Gotta Get over That Real Quick . . .”

Preproduction is only successful when it begins to orchestrate the
collaboration between the teams working on a project. In my
research it was common to see projects that began with the best
intentions, but failed because a team was unable to construct the
necessary tools for collaboration as a project moved into production.
One such example was a recently hired Artificial Intelligence (AI)
programmer assigned to lead a short-timeline project aimed at
bringing an existing game “franchise” (referred to here as Lure of
Action) to the PSP. This particular engineer was exceptionally
knowledgeable in both AI and game engine development, but his
ideas about how the game should be implemented were very
different from those throughout the rest of the company. The project
team, which was in preproduction at the time, took faith in their lead
engineer and made the departure from the path of the rest of the
company. However, as production loomed and their pipeline was not
ready, the team glimpsed the significant ramifications of their
divergence. None of the other tools and software systems developed
throughout the rest of the company were compatible with these new
approaches, and most of the other engineers within the divergent
team were unfamiliar with the approach taken by the new engineer.
Thus, the emotional decision to go with one engineer's instinct
became a serious liability for the project team.

This example is indicative of the kinds of breakdowns that occur
commonly in the process of game development. At the core of
creative collaborative practice is the ability and necessity of being
able to play with and get at underlying systems—technical,
conceptual, and social. When access to underlying systems is
undermined, so too is creative collaborative practice. In the rogue
engineer example, extensive disconnects rendered one piece of the
system useless because the engineer refused to determine if there

was some other mechanism by which to reconcile the approaches of
the rest of the studio.

This steadfast approach, when it ignores the circumstances,
evidences another emotional response that hijacks healthy creative
collaboration. There is often a kind of bi-directional lack of respect
for differing approaches to development within game companies.
Many experienced developers scoff at the ideas of inexperienced,
young developers. At the same time, young game developers will
quietly mock the approaches taken by senior developers. In only the
best situations are actual bridges made across these divides where
developers explain to each other why a particular approach might be
difficult or problematic later in a project or why something
overlooked might offer a solution. Stubborn refusal to change their
ways, emotional assumptions that nobody else could be right, and
lack of productive communication are developers’ foibles that often
derail projects.

The same can be said of the lack of acknowledgment that game
development requires significant interdisciplinarity and skills
variety. Engineers will often privilege engineering labor, designers
privilege design elements, artists privilege artistic efforts; other
disciplines such as sounds, writing, and production will claim to be
the key(s) to game development. But arguing about importance
ignores the fact that any single element on its own would be
something quite different and would do something quite different
from a videogame. It is the coming together of all these elements in a
way that works as a system of systems to convey one or many
concepts that makes videogames functional and interesting.

Interdisciplinarity is at the core of videogame development, and as
such it needs to be presented this way, not merely as a world
dominated by engineers. The broader fantasy about what game
development work is and who game developers are shapes who
becomes interested in making games, and thus the kinds of games
that are made. Interdisciplinarity is tempered by the ability to
communicate and work across disciplinary divides, processes aided
by the creation of new categories of specialization: tools engineers
and technical artists (further discussed in World 3-3). This
specialization can be difficult to achieve in young or small studios
just starting to explore the work of game development, but the

importance of these new categories of specialization is rooted in
experience.

As game companies grow they rediscover the importance of
developer specialization, yet more broadly, the industry does not
communicate or express this integral component of game
development work. Despite rosy collaborative pictures like the one
painted below, interdisciplinary work takes time and the emotional
maturity to accept that the ideas brought by each area of expertise
are worth considering. If any one component of the collaborative
team is unwilling to recognize this, the system breaks down. The
project manager on Resistance: Fall of Man commented on the
importance of interdisciplinary collaborative practice and how it was
something that the studio, Insomniac, had to continually work at
during the more than two-year development cycle.

Insomniac grew from a company of 40 people to around 160 in a
few short years. In order to keep the business running smoothly,
a new layer of management structure was introduced, which
worked surprisingly well. But Insomniac quickly became more
departmentalized. People began to focus more on the needs of
their department than how their department related to the
ultimate goal: the game. . . . By the end of the project, it was
common to see animators sitting next to gameplay
programmers, going over get-hit timings and whatnot. In a
collaborative environment where each person brings ideas for
improvement and innovation, getting the right people together
is the key to creating quality. (Smith 2007, 36)

Many game development studios remain departmentalized, which
isolates collaborative resources within disciplines. Both
interdisciplinary and intradisciplinary collaboration is productive
given different circumstances. The key is finding the time to pursue
collaboration cautiously. Interactivity can be measured and
tentative; studios do not need to jump blindly into interdisciplinary
collaboration.

Because hesitation is both warranted and compatible with
implementing interactivity, this world's boss fight really amounts to
a quite simple rant: “you aren't going to do this on your own.” It
takes many people to make games and it is because of developers’
ability to see game worlds in different ways that the entire

production process works. Certainly it is possible for an individual
developer to create small experimental or artistic games that work
and are quite compelling. But these are not the games that reach
large numbers of players. They may grow in popularity over time, but
this is typically only after a coalescing of other perspectives.

The interconnectedness of game development work cuts to the
heart of what makes it able to produce the technologies it does, as
well as why it can be so unpredictable and complex for those working
in it and those attempting to manage the globalization of this
industry. Game developers stress not only the sheer number of
disciplines that work on the creation of games, but on the numerous
forms of communication that ultimately becomes a goal in its own
right. Despite this, developers continue to talk past one another. The
relationship between interdisciplinary work and communicative
collaborative practices are constantly on the minds of developers.

Furthermore, too often, while a game is credited to the numerous
developers found in a game's actual credits screen, it is cited as the
work of an individual; a producer or designer. Yet this neglects the
fact that the entire process of preproduction is about the coming
together of people possessing different expertise and capacity to
think about what a game might be, how it might come to be created
and begin that process. Game development is about
interdisciplinarity, thus any reductionism with regard to what/who a
“developer” is neglects those other disciplines that make games
possible. This isn't about a single individual or one discipline guiding
the process. It is about the assembly of a space where creative
collaboration can occur. Any commitment to a single person's ego,
approach, or perspective will only end in disaster. Ya gotta get over
that, real quick.

World 3: Assembling Experimental
Systems

Box 3.1

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: The pipeline is one of the most
important things being assembled during the preproduction
phase of game development. It is the set of practices,
tools, standards, aesthetics and themes that will carry the
project into the production phase of game development. It
involves defining a rigid enough set of specifications and
systems so that the game will hold together, and maintaining
a flexible enough structure to allow the production team of
the game development studio the ability to be creative
within those confines:
Casey: The tools and pipelines have worked well for you?
ART_DS_Ogre_1: I was expecting there to be a more organized
pipeline I guess. [Laughs to self] I always think of Super
Mario Bros. when I hear the term “pipeline.” I just imagine
going down it.
AUTHOR_DEV_DILEMMA: For some artists, the pipeline is the
set of tools made available for production. It is a set of
systems and practices that ought to already be in place. For
others it is the very aspect of game development that
interests them. For those interested in creating the
pipelines that will be used by others, many find themselves
toiling on the assembly line in submission to those systems:
TECH_ART_1: Production . . . Well, it is a drain on the
soul. I was the lead character artist for COMPANY_X. I made
like 150 characters for this game. Functionally they were
all exactly the same; they just looked different. I might be
better with production as a designer and getting to make
game play that acts different for different parts of the
game, but what I was doing was window-dressing. That is

just, “go make this pile of stuff so people can perceive it
as being all the content.”
Casey: So, preproduction is your favorite?
TECH_ART_1: Well, not preproduction specifically, but it is
solving problems and making decisions about the big picture
about what the game is going to be and how it is going to
be. I would much rather figure out how this really
complicated character model is going to work than go and
make ten of them. I have done both.
AUTHOR_DEV_DILEMMA: Yet, the goal of preproduction, is
always to create a set of technologies and practices that
will ultimately be put into production. Put another way, at
one point or another, game development will turn into the
assembly line process where materials are being produced for
the game at a rate that will ultimately strain the very
systems designed to accommodate them.
#: SET DEMO_MODE 0

World 3-1: The Importance of “the Pipeline”

The pipeline, for videogame developers, is the set of technologies,
standards, and practices through which art assets and design data
flow into the underlying game code. It is processed and ultimately
displayed on the screen as a game. Pipelines are often highly specific
to each project because there may be particular aspects of the
pipeline that are used for one project, but not for another. The
pipeline is simultaneously a thing sui generis and motley. It would be
difficult to go into any game company and ask to “see their pipeline”
(and it would be unlikely that they would show it to you without
having signed an NDA). Even if you gained access to the pipeline,
you would only get glimpses and would not get to see the whole
thing.

The pipeline is one aspect of game development least talked about
by those outside of the game industry, probably because it is
something to which only experienced game developers have paid
particular attention. Game development hopefuls rarely encounter a
detailed description of how “you get a bunch of stuff” into a game
after you have conceptualized it. Most developers never get that far.
The pipeline rapidly recedes into the background of game
development as it is constructed. In some cases, pipelines may

simply be a wiki page(s) on a web server that describes how to
properly tag models or animations for export from Max or Maya. In
other cases it will be a wiki page(s) combined with a specialized
button placed in Max or Maya that automates the process. However,
many of those things quickly become taken for granted as a project
proceeds from preproduction to production. For our purposes, the
pipeline and all its requisite practices, technologies, and standards
need close attention so we can discern how pipelines come to be
developed.

Pipelines and tools shape the possibilities of game developers in
profound ways. All of these technologies, standards, and practices
combine in the “experimental systems” that developers create to
enable the development of videogames. The desire to tinker and have
highly responsive feedback loops between one's work and the final
game results in a tightening relationship between worker and
product—only if the systems enable such tinkering. Throughout the
initial stages of preproduction, artists, designers, and engineers feel
out limits, unearth fundamental structures, and put in place
underlying systems. The next step is the creation of tools and
pipeline that enable continued play on the part of developers as they
continue down the road of game development.

To begin to understand the pipeline, we must elucidate the focus of
developers’ work: essentially they work to enable the work itself.
Flexible technologies, built on systems like XML or scripting
languages like Python or Lua, have become the new key component
of game development. They offer the ability for artists and designers
to alter a game's characteristics, such as the power of a weapon or
allowable configurations of a player's gear. Engineering must
frequently create these tools that are at the core of what makes game
development practice function. The lead engineer on Battle Engine
Aquila, a game that was developed for the PlayStation 2 and Xbox
over the course of two and a half years, notes the importance of
flexible and modifiable systems.

Flexible core technologies [went right]. As much information as
possible was read in from externally editable files, and several
custom editors for different areas of the game were written to
allow designers and artists to alter everything from level layouts
and unit statistics to graphical effects, without needing code
changes. . . . This approach paid off both by reducing the knock-
on effects of changes and potential bugs and by enabling a lot of
experimentation during the game's development. (Carter 2003,
51)

At their best, flexible technologies provide members of a game
development team the ability to work independently. The ability to
experiment with ideas in the stream of constantly shifting sets of
properties, enables each member to individually push the boundaries
of creativity. In the end, the use of flexible technologies becomes
good design practice; the ability to expand or contract game
components without the cumbersome team intervention allows each
developer to experiment simultaneously.

These flexible technologies also interface in game development
studios with the numerous disciplines that birth them—artists’ tools
like Photoshop or 3D Studio Max must interface with data created by
designers in the form of scripts or XML, for example. The process,
therefore, demands engineers who work well with designers and
artists; otherwise you will end up with mutant technologies that
merely reinforce the old ways rather than bridging artists’ and
designers’ understanding the world. One of the most critically
acclaimed games of 2007, BioShock (which was released on the PC
and Xbox 360 and took nearly three years and four thousand files to
create), suffered difficulties, as noted by the project lead: “Many of
the processes and tools we used to develop Bioshock were inefficient
or confusing in implementation, leading to slow iteration cycles and
bugs” (Finley 2007, 26).

Tools enabling work interaction are frequently written in the
“spare” time of engineers, when other demands are not being placed
on them to provide basic game functionality. These tools, if poorly
designed, become hazardous to the health of a project. Wedging
flexible-technology building into the small cracks in engineers’ time
forces the development team to accept something that might not
work. When their play ends up failing, many designers and artists

are convinced that it is their fault, rather than approaching an
engineer to understand why a tool or process is not working.

The mechanisms that enable developers to interact with their
systems, data and each other are infrequently discussed or shared.
Secrecy between teams is the modus operandi throughout game
development. Even if flexible technologies are shared between teams,
critical information, such as the social practices that surround those
tools are omitted or are simply referred to as “tools.” No explanation
is given as to what these technologies do or what they accomplish for
game developers, nor how the designers, artists and engineers can
improve their work using flexible technologies to work together or
independently. These tools are unknown until someone has begun
working in the game industry, and are generally cloaked within each
team even though these tools are cited as one of the most important
components of the game development process. The supervisor on the
game Final Fantasy XII for the studio and publisher Square Enix
notes the importance of tools that provide experimental or trial-and-
error approaches to design: “Our various in-house authoring tools,
coupled with commercial digital content creation tools . . . created an
environment in which we could use trial-and-error tactics with the
new tools while also increasing productivity by using the ones we
already knew well. It was especially helpful for us that the in-house
tools enabled real-time previews using the game's rendering engine
(Murata 2007, 24).

The existence and development of tools that allow experimentation
and heighten productivity should be touted throughout the industry
but flexible technologies remain a game development industry
secret, largely unknown and unexplored by those looking to enter the
videogame industry. The explosion of developer excitement
surrounding development tools like Unity 3D are due almost entirely
to how these software systems illuminate the previously obscured
territory of flexible technologies. The methods and practices used to
actively produce games have remained the “black art” of game
development. Technology has not held developers back nearly as
much as obsessive secret keeping and naïve neglect of practice have.

More disturbing is that these flexible technology workflow
resources are most frequently kept from companies doing offshore
outsourcing work for videogame studios. “Real-time previews” of
game's content inside of a “game's rendering engine” is frequently

cited as essential by artists. Yet time and again in India I
encountered artists struggling to work within the confines of
structures unknown and invisible to them because the experimental
tools created by engineers specifically for the project, which would
enable these contract developers to understand where, how, and why
aspects of their work were failing, were withheld by the contracting
organization. These artists were not able to preview any of their work
and therefore spend considerable more time and energy frustrated,
unable to explore options and blindly searching for answers. As I
observed them, they would attempt to respond to annotated
renderings of a model as seen in engine, though they were unable to
tinker with the model and immediately view it in the game's engine.
Changes had to be filtered through contacts at the contracting
company often with significant time lag. Presumably, all the
contracting company would have to do is run the models through the
very preview tool the Indian developers so desperately needed. The
gate-keeping model fails on so many levels, not the least of which is
the time and money lost while developers sit around and wait,
unable to work. Of course if at any point those tools require a
component limited by licensing or NDA, the ability to share those
tools further breaks down.

Processing everything by hand the way contract developers are
forced to is the “old way” of developing games. This approach
requires an artist (or a designer) to harass/bug/pester someone
(frequently an engineer) so they can see their work operating within
the game. Most game developers work this way early in their careers
for lack of knowledge of the independence and efficiency of flexible
technologies. The lead designer of Diablo II (which was created by
Blizzard Entertainment, one of the largest and most respected game
studios among developers) notes the difficulties that result from not
having these workflow tools created. Diablo II took more than three
years to develop and required a twelve-month crunch period.

We developed the original Diablo with almost no proprietary
tools at all. We cut out all the background tiles by hand and used
commercial software to process the character art. . . . The
greatest deficiency of our tools was that they did not operate
within our game engine. We could not preview how monsters
would look in the environments they would inhabit. We couldn't
even watch them move around until a programmer took the
time to implement an A.I. Even after that, an artist would have
to hassle someone to get a current working build of the game to
see his creation in action. . . . Our lack of tools created long
turnaround times, where artists would end up having to re-
animate monsters or make missing background tiles months
after the initial work was completed. (Schaefer 2003, 88–89)

The producer for Crackdown on the Xbox 360, a project that took
nearly four years, also notes the significant lag times created by poor
experimental tools: “The testing of a single asset could take upward
of an hour, directly impacting productivity and indirectly impacting
quality since it naturally discouraged regular testing” (Wilson 2007,
30).

More than discouraging regular testing, developing games “the old
way” discourages exploration and experimentation, which is crucial
for developers to push the quality of a game forward. Those
companies that tout the sharing of information, tools, and practices
continually cite flexible technologies and tools as the key that took
the game from mediocre to excellent. Yet for many developers, this
painfully slow and less flexible process remains typical and results
directly from the unwillingness of the industry to share tools and
processes. This reluctance to share or improve does not provide the
kind of experimental environment that seems necessary for the
creation of videogames. Aspiring game developers and newly created
videogame companies continue to function without the tools they
need and without the ability to do their best work. For developers in
India and young developers in the US, there is no “new way” until
experience and access allows it. Developers cannot do their best
work, as they are continually asked to do more, work more for the
same cost, often with similar or worse results. The issue is not one of
productivity, but rather sensibility.

New mechanisms are necessary to increase the productivity,
creativity, and efficiency of work. And perhaps more important, the
sharing of practices and tools surrounding pipeline development is
crucial for an industry struggling to deal with quality of life issues.
Both experienced and inexperienced teams would likely benefit from
decreased secrecy surrounding aspects of game development that
have proven useful, since the more flexible technology and key tools
can streamline development work, the more developers are free to
experiment and to create better games. Yet, the developers often lack
the proper tools, and the process therefore breaks down. “Production
difficulties,” is often a code word for breakdowns in the carefully
constructed pipelines and timelines built during preproduction. One
developer, in a discussion about some of those difficulties even
marked problems as still “in preproduction”:

Casey: You were talking about production difficulties on
SM3 . . .

DESIGN_LEAD_1: Yeah . . . Well, preproduction on SM3
actually went fairly well, all things considered. I take that back.
Preproduction for design and art went really well. Engineering
preproduction lasted almost the entire process.

Casey: There were pieces coming together fairly late I recall.
DESIGN_LEAD_1: Yes. The technology really fell apart

there, but the other efforts were managed well and went fairly
smoothly. (Informant and O’Donnell 2007)

In some cases, when a pipeline or tool chain is effective enough, it
becomes a company asset, such as the Unreal Engine and its host of
tools, which were developed originally during the creation of the first
Unreal Tournament game. Other technologies such as Unity 3D are
designed from the ground up in real time as developers run into
pipeline issues such as asset importing and data management. There
are numerous tools such as these that, to one degree or another, aim
to streamline the game development process by automating the
pipeline and its capabilities. Yet, these tools can be expensive, may
not support the platforms needed by developers or have capabilities
locked until separate licensing for a platform has been acquired.
These development platforms, in many cases, also presume certain
types of games and can prove difficult to use in other cases. Game

development is often a labyrinthian process, as designers, engineers,
and artists muddle their way toward a game. As noted in World 2,
the experimental character of the work often means the
requirements for any given tool will be pushed to their breaking
point during the process. In other cases tools will need to be changed
out in favor of others as a project moves forward or at the demand by
parent company or licenser. Unity 3D, in particular, has caused a
significant shift in the game development ecosystem. Both
experienced and amateur game developers now have a tool available
for developing games that enables a wide variety of game types and
experimentalism on the part of developers. At the same time, it is
possible that Unity 3D may continue to be viewed by some as a tool
for amateurs who have not yet transitioned to “real” game platforms.

I use the metaphor of the labyrinth and experimental system in this
world because it connects our enjoyment of working within limits to
pushing those limits. “Not anything goes. If there is construction, it is
constrained.” Game developers and scientists alike “meet with
resistance, resilience, [and] recalcitrance” (Rheinberger 1997, 225).
Put another way, the tools of game developers are shaped by and
shape the kinds of games they attempt to create.

As previously noted in World 2, engineers, artists, designers,
management, and corporate executives all find themselves exploring
the fine interface between work/play. Engineers will interact with
and attempt to better understand the underlying hardware systems
that structure their code. Artists will adjust models in ways that work
within rigid confines defined by engineers, attempting to create
aesthetic harmony in a highly structured space. Designers will adjust
maps, levels, and scenarios to bring out particular player
experiences. Management teams will move around team members in
the hopes of maximizing employee output without derailing teams or
projects. Executives will change release dates in the hopes of better
positioning their offerings against competitors’ offerings or to
coincide with marketing pushes made by console manufacturers.
This constant state of flux that rules game development practice
further suggests the importance of work/play for developers. Thus,
these tools and software systems enable the kind of experimentation
and play so critical to game development.

And so, the developers who actually gain access to a pipeline come
to see it as a kind of savior for the game development process.

Because the pipeline is always co-constructed during the process of
preproduction, however, it cannot completely guard against the
inherent unpredictability of the process. As historian of biology
Hans-Jörg Rheinberger writes about experimental practice and
experimental systems:

An experimental system can readily be compared to a labyrinth,
whose walls, in the course of being erected, in one and the same
movement, blind and guide the experimenter. In the step-by-
step construction of a labyrinth, the existing walls limit and
orient the direction of the walls to be added. A labyrinth that
deserves the name is not planned and thus cannot be conquered
by following a plan. It forces us to move around by means and
by virtue of checking out, of groping, of tâtonnement. He who
enters a labyrinth and does not forget to carry a thread along
with him, can always get back. (Rheinberger 1997, 74–75)

Given the complexity and frequent demands for secrecy, it is not
surprising that developers thus far have been constructing the
labyrinth of game development as they go. It is no wonder that in the
rush forward they have not bothered carrying any thread along.
Developers have typically made a headlong plunge in, with no way to
get back, or even untangle where they have been. They occasionally
make retrospective assessments, “postmortems,” wherein they
discuss where think they have been and where they might have gone
wrong. But postmortems are not successful enough to keep
development teams from continually take the same wrong turns.

The situation becomes more intense when developers realize that
they must maintain the secret society of the office and industry.
Suddenly they are not willing or able to talk about the labyrinth in
any real detail. They talk about how pretty the vines look, or how
they were able to grow them in a particular way, or that sometimes
you take wrong turns and have to work late to find your way back.
But postmortems are often internal discussions, applied sparingly to
future projects and never to interstudio understandings. Because the
construction of each labyrinth is seen as unique and developers
discuss the full construction practice so rarely, it is difficult to
connect practices throughout the industry. Meaningful collaboration
at the industry level has been rendered impossible by the culture of
secrecy that plagues the game industry.

The implications of carefully guarding secrets about lessons
learned and labyrinths built, as seen more broadly throughout
businesses in the new economy, is troubling. If game development is
an index into new economy work—both are spaces where
experimental practice is crucial—then the ability to communicate
and think about access or obstacles to experimental practices are
even more important. In game development, demands for secrecy
seem to have taken precedence over the maturation of game
development practice and, by extension, threaten the development of
the new economy.

In a community where play and games hold such high meaning,
secrecy is even more insidious than a simple mandated code of
silence. There is a game in secrecy as well. “Tension means
uncertainty, chanciness; a striving to decide the issue and so end it.
The player wants something to ‘go,‘ or to ‘come off,‘” we want to
succeed by our exertions (Huizinga 1971, 10–11). Again, the
metaphor of the labyrinth in experimental systems ties to our
enjoyment of working within limits, but also to having those limits
pushed.

But how do we extrapolate from videogame systems and structures
to experimental systems and the interactivity of people?
Experimental systems have become a useful way to think about game
development, in particular the work of designers, those people who
end up interfacing with the work of engineers and artists. Their tools
are created by the tools engineers, but frequently with a mind toward
changes down the road. This is also why you have tools engineers
and technical artists accompanying our new systems, technologies,
and practices. As sociologists of science have shown, “the more
automatic and the blacker the box is, the more it has to be
accompanied by people” (Latour 1987, 137). In part it is because
these “outcomes are often not consciously calculated, or even
intended by any one of the parties involved” (Knorr-Cetina 1983,
130). Because they are embedded in a broader social context of
practice, they must somehow retain those connections.

Experimental systems are to be seen as the smallest integral
working units of research. As such, they are systems of
manipulation designed to give unknown answers to questions
that the experimenters themselves are not yet able clearly to ask
. . . They are not simply experimental devices that generate
answers; experimental systems are vehicles for materializing
questions. They inextricably cogenerate the phenomena or
material entities and the concepts they come to embody.
Practices and concepts thus “come packaged together.”
(Rheinberger 1997, 28)

Until a project reaches production, and frequently even after that,
almost every aspect of the game development process must act like
an experimental system. It must be open, or capable of providing
unknown answers. Sometimes these unknown answers are
frustrating, but often they become aspects of the game proper. By
necessity, experimental systems must be interactive. They must
respond in real time to other technical systems, data, and people.
This is where the headlong rush forward begins to be a dangerous
practice for game developers. As designers play with all of the art and
code assembled with experimental tools being used by multiple
people, interactive technologies obscure the traces of what happened
where. Multiple experimenters running multiple experiments render
even the remotest possibility of an accurate reconstruction of the
past next to impossible, even for game developers. Rather, many
developers and engineers hope for the possibility of “mind melding,”
because experimental systems and interactive development tools
make it impossible to map where the game came from and where it
will eventually be when it becomes a golden master (GM).1

The reality of relatively secret and exploration-obscuring
experimental systems, then, is about change. Like a labyrinth itself,
game development practice has built and is constrained by its
histories and technological systems. Because of this, many
experienced developers rightly insist on being able to manipulate
things on the fly, interactively. Developers bump into their histories
and technologies, and in the cases where every exploration requires
going back to the drawing board, it takes years of frustration to get
games accomplished. Tools including the pipeline could be the
answer.

However, the pipeline is not created in a day. The emergence of the
pipeline is part and parcel of numerous other changes that have
emerged in the game industry. The remainder of this world examines
the emergence of two subdisciplines embodying ideal specializations
in the pipeline: the technical artist and the tools engineer. This text
contextualizes their rise to being by examining the emergence of
technological mechanisms that predate the development of new
disciplines and new technologies.

World 3-2: The Console and the Debug Menu

If the pipeline and tools emerged to meet the experimental needs of
game developers, then the “console” (not to be confused with “game
consoles”) and the “debug menu” are the historical roots of these
practices. For many developers they remain the primary means by
which developers can tweak a game's systems. The experimental
tools that game developers create are an appeal to the kinds of
interactive systems that they design for game players to interact with
their creations. These systems are designed in ways that appeal to
the very form that they instantiate. Game mechanics can be “played,”
or “tweaked,” into “balance” via many of these tools. The “debug”
menu or “console” found in many games seems to be one of the
foundational means by which developers have attempted to make
their tools more flexible. The game must act as both finished product
and experimental system for game developers. It must be
constructed in a way that is both flexible enough to accommodate
change, yet rigid enough to ensure that it is used as it was intended.

The console is a powerful tool, but might be the least intuitive and
least interactive of the experimental systems created by developers.
It is the videogame equivalent to the MS-DOS prompt in Windows or
the Terminal in Mac OS X. The console is commonly used to issue
specific commands to the underlying game system, commands that
must be memorized or have references provided for them. For
example, variables can be assigned new values, thus adjusting the
underlying mechanics of a game system. Boolean variables can be
turned off or on, indicating whether or not particular program paths
or options will be executed or optimizations made (or not).

In many cases consoles are the interface into the underlying
scripting engines that have been created as interfaces designers can
use to manipulate the game spaces presented to players. Scripts can
be typed directly into the console (or new functionality temporarily
defined for testing purposes), yet working with the console isn't an
easy a task. The developer issues commands then returns to the
game to see if or how those changes affect the overall game system.
In some cases the changes may only be temporary, being reinitialized
each time the game is run.

In some games, the console actually remains visible to the player,
or just outside of view for the player. One of the distinguishing
characteristics of the console, however, is the requirement of a
keyboard for use. When games are being developed for videogame
consoles, like the Nintendo Wii, Sony PlayStation, Microsoft Xbox, a
keyboard will generally not be present for the player. In other cases,
developers do not wish to expose the kind of flexibility provided by
these tools to the actual users of their games. In this case, the console
may only be available on an internal build of a videogame that runs
strictly on the computers of developers. But when the console does
remain as a feature for consumers, it functions for players the same
way it does for developers, allowing interactivity and flexibility to
those who know how to use it.

In many first-person shooter games, pressing the “`”/”~” key on
the keyboard will cause the console to slide down from the top or
bottom of the screen, providing a location from which commands
can be issued. New maps can be loaded, settings adjusted, or
statistics gathered. In most cases, the console is a tool for game
development teams during the creation of game and is usually
stripped from shipping games. But in some cases the console
remains intact, especially if user-created “modifications” (MODs) are
an important aspect of a game's appeal. The console provides
necessary feedback to MOD developers and provides the interface
through which they will often load or unload their changes to the
underlying game system.

The MODs and the console are an interface between users and
developers. Perhaps, even more than an interface, these tools are the
means by which some users become interested in game development
(Postigo 2007; Taylor 2006b). Some users delight in experimenting
with these resources and in turn become aspiring game developers.

These tools provide a kind of shared opportunity for developers and
users to explore the underlying systems of a videogame's systems.

In addition to being a development tool for developers in specific
games, consoles are somewhat common in large software systems,
especially when software packages offer a large variety of
functionality to their users. Consoles and scripting systems allow for
the automation of particular processes or customization of a
program's behavior to better suit the users at a particular site.
Software packages like 3D Studio Max and Maya are two game-
industry-specific examples of software packages that expose a great
deal of functionality and customizability through their consoles and
scripting systems. This will be examined further in the section on
technical artists in this world.

The debug menu, on the other hand, while quite similar to the
console, will often offer the developer a range of predefined options.
Exposed variables will be listed, with current values and the option
to change them. In some cases, specific actions can be executed:
characters can be spawned or destroyed; models, textures, sounds,
and other options can be substituted; levels can be loaded, missions
launched, or specific cut scenes played. But, most important, the
debug menu visually offers developers a range of options. They need
not necessarily know the commands that make a particular action
occur, and it therefore makes changes and exploration easier for the
development team. The menu provides the user with the information
regarding what can be changed and provides context. Rather than
commands and syntax needing to be understood in advance, the
menu presents those options and ensures “proper” use of the
underlying systems.

The debug menu is nearly always removed from the final releases
of a game. It is stripped from the game released to players, as its
target audience was the developers making the game and not those
playing it. Early in the preproduction of SM3, I noticed engineers
and designers both working to define debug menus that enabled
personal experimentation within the emerging game. Many options
from within the debug menu may very well allow situations or events
that were eventually removed from the final game. For the debug
menu to remain in the game would create the possibility for events
or possibilities that developers do not wish to occur within the final
version of the game. The debug menu represents precisely the kinds

of experimental tools crucial for pushing games in new directions. It
provides a framework and context for understanding, but it also
creates the possibility for excess, to push the underlying systems and
structures outside of their intended boundaries. At the same time,
this is precisely what makes it a useful tool for game developers.
With little fear of catastrophic failure, designers, artists, and
engineers will experiment with new ideas or approaches. This is a
key feature to what makes experimental systems productive
apparatuses for scientists and game developers alike.

Both consoles and debug menus evidence a deeper shift happening
at the core of game systems. These tools are simply a first step down
a path of moving design data outside of the core source code of
videogame systems, a necessary step, as we have seen, to facilitate
the kind of unfettered access needed by designers and artists. The
console and debug menu are the most obvious form of a broader
movement within game design and development. “Data driven”
design is nothing new in the lives of software developers, but for
many game developers it can seem a relatively new concept. Software
development, distinguished from game development, has more
rapidly embraced the need for sustainability and standard sets of
practices and approaches. This is due, in part, to software,
generically considered, not being subject to many of the same
restrictions and structures of secrecy that pervade the game industry.
Even the menus presented to the “player”/designer of a game may be
adjusted or have new options defined. This allows for new data, or
experimental opportunities, to be pushed into the game. New
possibilities can be created, default properties defined or adequately
restrained for designers to then explore. Thus, even the most basic
approach to providing designers the ability to explore a games
system, can quickly become very complex. As more powerful and
playful systems are added to the game development process, it is no
wonder that these technological systems rapidly approach massive
scales and massive complexity.

Prior to the development of the more integrated tools for SM3
(detailed in World 4), VV's preproduction team relied heavily upon
the debug menus of the game. “White room” levels were created,
where artists and designers could add, or “spawn,” newly created
game characters to test animation sequences, behaviors, model
appearances, and many other functions critical to the game. The

majority of a game's behavior comes from locations external to its
“code.” Models need to be loaded, not based on hard-coded source,
but based on design data from game designers. Artists need to be
able to specify a range of textures applicable to a single model and
the frames associated with animations. In many cases a single model
may be used to define several different “enemies” within a game.
What distinguishes each object may only be a shift in color values,
textures, properties (e.g., attack, defense, vulnerabilities,
immunities), or size. Each one of these can be experimentally defined
through interactive design.

It is precisely the ability to play with the functions of a game to
better understand each components relationship with the broader
game systems that is so important. It is also the aspect of game
development that is so difficult for small game companies to come to
understand. In the case of studios based in India, working on
outsourced projects, it was precisely these tools that were denied
them, making the iterative, exploratory and playful process of game
development untenable.

World 3-3: Rise of the Technical Artist and Tools Engineer

Box 3.2

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: The vague connotation “communication”
becomes a kind of stand in for a whole host of social,
technical, methodological, and epistemological differences
between members of a game development team. As such, it is
readily identified in so many cases as the culprit that
hounded a game development team.
Casey: Sure. How is communication between the different
groups working on the project?
ENG_GRP_MGR_1: Communication is pretty good . . . Well, I
wouldn't go that far. Communication is getting better. There
have been times in the past when it has been poor. That is
just one of those areas that we need to work on. We have a
group of folks on the west coast, and our communication with

them is very poor. On a previous project we were working on,
we had acquired the assets and software of some folks from
this company when they went out of business. We had sort of
a destructive and abusive relationship where each team would
blame each other for things. It just got out of hand and was
pretty horrible. So we are actually reaping the benefits of
that now and trying to improve communication. It is a slow
process. Communication is alright. We're taking new actions
all the time. I mean, we have this guy TECH_ART_1 who is in
the office with you. He's a technical artist. That is a
position we didn't have until six months ago. There is now
this person who can actually facilitate that communication
between programmers and artists. That has been a really good
thing. I‘m hoping we‘ll do more of those kinds of things.
We're trying different processes to figure out how to get
teams communicating better.
AUTHOR_DEV_DILEMMA: New “disciplines” emerge precisely at
those fault lines where the greatest friction occurs. The
individuals that inhabit these spaces attempt to bridge or
mediate across boundaries that make them inadvertent
obligatory passage points. Yet, it isn't “communication”
precisely that is being groped after. It is something more
ethereal and difficult to put one's finger on.
Casey: Can you put your finger on the source of a point of
pain? “This is where we have weak communication.”
TECH_ART_1: I spend so much time communicating here. I spend
more time communicating than doing anything. That is kind of
the nature of where we are at in the project right now. We
are in pre-, so we are making decisions about where things
are going to go. It requires a lot of communication. I would
like to see . . . I don't even know how . . . You spend so
much time writing emails and posting on forums and having
meetings, and everything. If there was just some way we
could all mind-meld and get it done, in a more streamlined
way. I don't know what that is though.
AUTHOR_DEV_DILEMMA: Ultimately, for developers,
communication is about what makes good collaboration across
disciplinary divides. Attempting to understand the
underlying systems and structures that shape each other's
understanding of a problem. Communication is about
developing a clear commitment to understanding what another
team member is attempting to do and how the realm of
possibilities that make that possible or impossible can be
bridged in ways that leverage the particular skills of each.
Casey: Are the distinctions and relationships between
disciplines pretty clear?
TECH_ART_1: That has always been a clear distinction, and
yes, my job as a technical artist is to straddle that line.

But, that is why I think I‘m needed. There is a huge wall
between artists and engineers. In many cases that may
actually also be a physical wall, they are often sitting in
different places. Most of the time it is a giant
communication barrier though. So that is a big thing. Then
you have management, who is also speaking a different
language at the same time. Designers and writers speak a
different language too. So, I definitely think there are
very clear lines between the different disciplines.
Casey: Do you think that is a good thing?
TECH_ART_1: It can be frustrating when someone takes their
disciplinary responsibility to mean it is theirs and theirs
alone to discuss and decide. I think every area needs
collaboration. A programmer is entitled to an opinion about
how something looks and an artist is entitled to an idea
about how something acts in the game, and everyone is
entitled to thoughts about design and mechanics decisions.
So think you need to have an openness for discussion, but I
also think that roles and boundaries are good when it comes
to decision making time and responsibilities. Everyone
should be able to hear what others have to say, but I have
no problem with DSN_LEAD_Spidey_1 being the lead designer
and making the final decision on what gets put into the
game. It would be absolute chaos if there was a team of
people and we were “just going to do it.”
Casey: What do you think is making it so difficult?
TECH_ART_1: I think unless you all sit in the exact same
room, then you're going to have some sort of medium like
that. But even if you don't, it is important for recording
things. Email is really great for moments where you ask
yourself, “Wait, what did that guy say?” So, even if
everything happened verbally, but how do you keep track of
what was decided? I think in some ways having everybody
sitting in one open area has its perks, especially during
preproduction. Once you get into production, you kind of
want to just take your list of stuff and go into your hole
and make stuff and not be bothered though. In preproduction
though, you have to be talking to all of the people on the
team.
AUTHOR_DEV_DILEMMA: Collaboration and communication are key
elements throughout the creative process of game
development. Understanding the structures that lie behind
engineers’ often oversimplified “no” can be frustrating for
artists. The desire for a particular artistic effect or
capability is also framed by structures that are not
understood by engineers. The ability to see those
conversations in a way that enables the identification of
common frames or an understanding that bridges them is

precisely what has made technical artists and tools
engineers such a critical component of modern game
development.
#: SET DEMO_MODE 0

Game development has seen a dramatic shift in the last eight years.
The amount of digital storage space available for developers to use
has risen dramatically and the subsequent expectations of players
and publishers have risen as well. This has meant that in many cases,
significantly more content can and must be placed into a game. More
levels, more models, more textures, more sounds must be created to
fill the available space on shipped disks. This has required a
significant shift in how developers approach game development and
the pipeline has become much more important since it is the path
through which all those elements must flow to become part of the
game. The process by which a particular game asset (sound, image,
model, level) is placed into a game and how it may be interacted with
by designers and engineers further down this pipeline has only
increased in importance. Specifically, the turnaround time for an
artist or designer to see something in the game such that they can
ensure that what they've constructed in 3D Studio Max or Maya
indeed looks as it should inside the game is no longer a luxury, but a
necessity. In the case of designers, this means that a player moves as
anticipated, a level is paced in a way that is playable, or that “out of
bound” areas cannot be accessed.

The pipeline has become much more complex over this time
period, and its two main laborers have become the “technical artist”
and the “tools engineer.” Each serves different purposes, though in
smaller game studios the technical artist and tools engineer are often
the same person. The technical artist is an accident of history, with
many technical artists having moved from computer science
programs during college careers to artistic degrees when the myth of
the programmer-only game development haze has cleared from their
eyes. At the same time, these individuals had in many cases acquired
an appreciation and understanding of how software engineers
understand the world around them. This kind of overlapping
knowledge made them uniquely prepared to interface between the
perspectives of artists and engineers. Through a similar exposure to
programming and art, some technical artists without formal
programming backgrounds simply emerge in small game companies

by necessity, making scripts, toolbars, and other utilities that speed
the process of getting their work into the engine so they can see it.
They are the saviors of other artists when things don't go quite as
anticipated because they have the knowledge ands skills to either fix
a problem, or push back on the engineering team to explain why or
how something is broken in a way that other artists may not.

The technical artist serves a crucial role as a kind of mediator
between engineers and artists. In videogame development, engineers
and artists largely speak a different language and focus on different
aspects of the game development process; in short, they come from
different epistemic communities (Knorr-Cetina 1999). Technical
artists will often understand the idiosyncratic differences in how
artists and engineers talk about the underlying systems of a game
and has thus emerged as an interface between the disciplines of
engineer and artist. What makes technical artists particularly
interesting is their emergence specifically at this disciplinary fault
line. Artists and engineers have different understandings of what
“counts as a good question, an interesting mode of inquiry, way of
teaching and learning, and the infrastructure needed for pursuing
these emerging forms of knowledge” (Traweek 2000, 23).

Anthropologists of science and technology have demonstrated that
it is frequently at these fault lines of disciplines where the most
interesting and critically important outcomes occur (Traweek 2000).
Historians of science have similar findings, noting that it is at these
sites or “trading zones” where “creole languages” emerge and local
coordination and cooperation can be worked out in practice (Galison
1997). Intimately important to this process, however, is the ability to
get at the underlying systems that historically situate our object of
concern. This access is significantly limited in the videogame
industry. For the collaborative process to really function, it is
important for “open system analysis” to be possible, a process
dependent upon the historicization of the object of concern (Fortun
2006). Because of the emphasis placed on closed systems and closed
collaboration, it becomes difficult to historicize: in this case, the very
act of creative collaborative practice in the game industry.

The technical artist is a nomad, fully at home in neither one
community nor the other. Technical artists, as mediators, often find
themselves attempting to bridge the incommensurable. Emerging at
a fault line means that they often find themselves at points of

extreme friction, which are precisely the points at which technical
artists contribute to the pipeline (which serves as its own kind of
fault line mediator). As technical artists put in place scripts,
exporters, optimizers, toolbars, documentation, and other elements
that facilitate smooth transitions from artists’ tools to the game
engine, they grease the wheels of videogame production by replacing
communication and understanding between artists and engineers
with technological systems. These systems make invisible the
significant labor required to bridge disciplinary understanding of
videogame development. These are also the pressure points that
break during periods of intense stress and instrumental activity of
artists during game production.

Placing technological systems at fault lines makes them
manageable in a different way. “Good, usable systems disappear
almost by definition” when they facilitate communication gaps, or
minimize them (Bowker and Star 1999, 33). For game developers,
this means that pipelines disappear into the background. Perhaps
more important, good usable systems mediate effectively between
different disciplinary perspectives. When those systems fail, they can
have “bug” reports filed on their failure. It creates a kind of
abstracted separation between the human and the machine. Staging
experts and systems at the junction more effectively manages the
gap.

During the preproduction phase of SM3, the lead technical artist
came to me looking for advice. He had been advised that
“communication was not so good” between the art group and
engineering group. Since I had been observing at the site of turmoil,
he turned to me asking for guidance. We talked about the situation
for most of a morning, which is a massive amount of time for a game
developer at work. We collaborated, discussing both of our
observations, and came to decide that the real fault line was based on
disciplinary difference of understanding what makes the project tick.
We identified four different ways that the project was being viewed,
illustrated by Google Maps and Google Earth. Figures 3.1 and 3.2
represent different perspectives of the same problem and its
subcomponents. They were separated by scale (level of detail) and in
content (art or code). We found that, as one might expect, artists
were typically interested in understanding the game in a way that
favored artistic aspects (represented by the satellite images).

Engineers were primarily concerned with implementation
(represented by the road maps).

One possible resolution would be to simply lay the maps on top of
one another, making a hybrid, a popular solution among many
developers (aka “the mind meld”). Unfortunately, this would not be a
helpful solution. Attempting to teach your artists about all of the
engineering aspects and vice versa would be both cumbersome and
likely impossible. The utility of specialization is that they should not
need to know everything the other knows. Different scales and
content is useful. Homogeneity was not the goal; communication
was.

The higher scale “engineering” or “art” map (figure 3.1) illustrates
the viewpoint of the engineering or art lead. Based on the map, it is
obvious that this person's greatest knowledge will be the overall
functionality of a system. They will likely have less knowledge of the
system's lowest level of functionality (represented by figure 3.2). Nor
will a lead artist have the details of lower scales. But these
acknowledged differences are necessary for the project to come to
completion.

Figure 3.1 High-scale images of art (left) and code (right) conceptions

Figure 3.2 Low-scale images of art (left) and code (right) conceptions

The solution, as the lead technical artist saw it, was to encourage all
parties to understand the utility and “correctness” of each
interpretation, or to understand the need filled by that perspective
(which was often lost in the other perspectives). While engineers
might control the flow of art assets into the game, artists wanted
some information about why an engineer was saying “no.” Engineers
also needed to understand why artists were attempting to create
certain effects or models. The lead technical artist therefore
encouraged both groups to understand the differences in their
viewpoints and scales people were working at, providing developers
with a new language for discussing collaborations helped them work
together.

Of course, the question remains whether this approach changes
anything: does providing new cognitive tools matter when it comes
to the production schedule of a game? While the hopeful answer is
that over time the process will change and become more
collaborative, the short-term answer has been that it has not yet
altered how people work.2 In one case, the producer of a project was
meeting with the executive producers from the publishing company
for their upcoming game. The publisher commented that the

buildings in the Bronx, despite being to scale, did not look tall
enough. The producer, wishing to please the publisher, went to an
artist and asked that he scale all of the buildings in that block so that
they would be taller, a task that was relatively easy for the artist with
the tools that had been developed. Unfortunately, since the producer
had bypassed the art lead, no one thought to check that all of the
collision data (the data used to determine which objects in the game
a game character “collides” into and which impede their motion,
such as the ground, a rooftop, or a wall3) would also need to be
altered. Rather than impressing the publisher, the resulting
demonstration, in which characters passed through walls and fell
through the ground, caused the publisher to doubt the capabilities of
the development team.

In some cases, studios have attempted to automate the technical
artist's mediator role. Engineers on a development team occasionally
attempt to create engines capable of bringing in nearly every model
and texture format, in the hopes that designers and engineers can
then interface with the creations of artists without the constraints of
waiting for and taking time from another developer. The difficulty is
that such an approach does not recognize the kind of complexity and
nuance of technical artists’ skills. Technical artists often recognize
problems in advance and encourage artists to follow sets of practices
that further down the pipeline often result in fewer difficulties,
simply based on their overlapping understanding of art and
engineering. For example, technical artists will often encourage
animators to use nearly exclusively the more complex “quaternion”
system for dealing with rotation, knowing that the underlying engine
of the game is less likely to encounter errors with such a rotation
than with the simpler “angular” rotations.

Thus, the experimental systems created by technical artists along
the fault lines between artists and engineers are not simply
labyrinthine (as we previously defined it to mean constructed on the
fly). Rather, technical artist systems are rooted in art, craft, and
science. This further complicates our understanding of technological
working, “as craftpeople informed by abstract knowledge” (Barley
and Orr 1997a, 12). Work in this context is art, craft, science, and
interest in collaborative practice. Collaboration requires interest and
overlap in realms of understanding, furthering the idea that for game

development practice to function, more people, not fewer, will be
necessary to keep the “black box” functioning.

The tools engineer, much like the technical artist, has been an
accident of history, rather than a deliberate shift of the industry.
Tools engineers were typically engineers who found themselves
watching artists, designers, or engineers continually making the
same “mistakes” over and over getting things into the game. Tools
engineers’ core role seems to be helping others manage the chaos of
game development.4 This has led to their construction of custom
generating tools, many of which may have been previously specified
with the editing of TEXT, INI, or XML files. Custom editors for
games are the creations of tools engineers. Perhaps unfortunately,
tools engineers have also become the masters of build systems and
must frequently perform numerous tasks and integrate the
persnickety compilers and tools developed by console manufacturers
with little apparent regard to usability.5

Ultimately, however, each one of the tools engineers and technical
artists—has made it a goal to create game development systems that
respond rapidly to the work of the developer. Adjusting a slider and
being able to see the change in particle system behavior is much
more intuitive than the pre-tools-engineer days of editing external
files or code directly. Dropping a new texture onto a model or
selecting it from a drop down menu is far more responsive than
having to consult with an engineer to modify the code loading a
texture and wait for a new build of the game. Clicking a single button
to perform a model check, export, and load into the game engine
takes less time than following a checklist. These hybrid developers
and their resulting systems are actually extensions of the World 3-2
discussions of debug menus and consoles within games. The
interactive systems’ objective is to provide flexibility and make the
lives of developers easier. As with debug menus and consoles, the
proprietary tools and pipelines developed by technical artists and
tools engineers are rarely available for gamers and are built and
available for preproduction and production phases of development
only.

While technical artists’ positions can be best thought about as
occurring at fault lines between artists and engineers, where friction
is managed through the development of practices and systems, tools
engineering is somewhat more systematic and done with

instrumental work/play in mind. Tools engineers function at the
“trading zone,” which can be thought of as a “domain in which
procedures [and technologies] could be coordinated locally even
when broader meanings classed” (Galison 1997, 46). Put another
way, the systems developed by tools engineers serve as the kind of
“creole languages” developed by those living and working in trading
zones.

What is crucial is that in the logical context of the trading zone,
despite the differences in classification, significance, and
standards of demonstration, the two groups collaborate. They
can come to a consensus about the procedure of exchange, about
the mechanisms to determine when goods are “equal” to one
another. They can even both understand that the continuation of
exchange is a prerequisite to the survival of the larger culture of
which they are part. (Galison 1997, 803)

In this negotiated exchange, then, tools are very much a monetary
commodity within videogame development companies. For the
management of a videogame company, its tool chain is intellectual
property that provides a significant edge in the act of videogame
production. For game developers on the ground in those
organizations, these technologies have “intention, purpose, and
priorities,” (Galison 1997, 804) that enable and constrain certain
activities over others. Tools, because of their negotiated character,
could also be conceptualized as a kind of game development
“boundary object,” (Leigh Star and Griesemer 1989) though I think
the metaphor of the “creole” language is much more accurate, given
the often heated conversations that take place in videogame
companies.

The tools created by tools engineers in many ways also do the work
of managing friction between different disciplinary understandings
of videogame design and development. At the same time, tools are
much deeper systems than those created by the technical artist.
While the work of the technical artist often disappears, the work of
the tools engineer is often very visible within the organization. The
aspects of a pipeline created by a tools engineering team may very
well be productized and sold to other game development studios. At
that point, however, the pipeline tools are then often divorced from
their broader context and from systems developed by technical

artists that further smooth and enable the system to fit well into the
game development process. In other words, the tools engineers
create invaluable resources that are much less useful out of context,
just as a creole is less useful (and often incomprehensible) beyond its
trading zone.

Separating such tools from the game they were developed to create
often requires significant work on the part of engineering teams,
artists, and designers. Any game development studio that has used a
commercial game engine will attest that it is not a trivial task to
integrate the engine into the company's workflow and make it work
for the game design as initially conceived. After all, videogame
development tools and systems are highly experimental. They are
created with specific games in mind and they therefore significantly
shape the kinds of games that can be created with them. The tools
are also continually being instrumentally worked/played by technical
artists and others who smooth the process of fitting these tools into
their broader social/technical/artistic context.

World 3-4: Fault Lines, Fault Lines, Fault Lines Everywhere

As an engineer, artist, or designer proves their abilities and gains
experience, they will more than likely begin to move into either a
“lead,” “manager,” or “producer” role in a game company. This is
assuming that the studio has grown large enough to warrant these
roles. For the most part these distinctions were quite similar between
US- and India-based studios. In smaller studios, every employee
fulfills part of these roles out of necessity. While the basics are
similar, leads, managers, and producers6 are different and
distinguishing among them is important.

A lead is frequently an artist, engineer, or designer who has proven
their ability to produce quality work and exhibits some leadership
characteristics. Leads remain responsible for producing design data,
code or art assets in addition to their leadership role. Yet, leads must
also maintain a higher-level understanding of what the entire team is
working on and how it relates to the project more broadly. They
typically come up through the ranks of an organization. Their
responsibility is to represent their group's interests in team meetings

and planning sessions. They need to adequately report back to
producers and management on the status of a project and therefore
tend to work closely with their teams to ensure adequate information
flow. Some leads seem to have extended the role of lead artist,
engineer, or designer into that of a project lead. In some cases this is
effective. In other cases, management who come to their role via a
group management role will often find themselves micromanaging
certain tasks of the development process, unable to let go of tasks
that they likely had been responsible for in their previous role as
lead. Managing a project or group of a project, though, separates the
lead from managers, for leads tend to be responsible for a single
project.

Managers, on the other hand, lead multiple teams through multiple
projects. Also unlike leads, managers generally do not take part in
the production of games. They may be involved in the production of
internal resources for their teams, but their overall goal begins to
shift to ensuring the long-term success of their “groups.” Most
managers, like leads, have risen through the ranks of the
organization and are frequently artists, engineers, or designers who
have been with the company for a significant amount of time and
have been willing to move into managerial positions. Some
developers choose to remain leads rather than moving into
management positions. Ultimately this means that very few
members of a game studios “management team” have any
management training. Some organizations will work to train in key
areas, such as communication and leadership.

The role of the producer is the management of a project or, for an
executive-level producer, several projects. In the end, they are
responsible for the overall quality, profitability, schedule, and
effective production practices of a given project. Producers must
understand the scheduling and staffing needs of a project and ensure
that milestones are met. Much like leads and group managers,
producers also suffer and benefit from having been active game
developers. It gives them an intimate understanding of how games
are created and developed, but it frequently results in lack of
management training and sometimes with an actual disconnect from
developers because their attention may be focused more particularly
on those areas with they are most familiar. The producer is the
person who ultimately, at least organizationally, is considered

responsible for the relative success or failure of a game. Producer
roles generally seem similar from the United States and India,
though the number of producers in India was diminutive, as there
were fewer “end to end” or complete game development projects
underway.

The leads and the producers often occupy fault line positions much
like technical artists and tools engineers do. The transition for a lead
or producer from one realm to another positions them as mediators
between different disciplinary perspectives. While each may tend to
favor their previous point of view, moving into roles that demand a
different kind of understanding forever corrupts them. What is
interesting about this is that it results in a kind of misunderstanding
of where problems come from. They become, as we've seen before,
generically labeled “communication” problems.

In creative collaborative work, communication is actually more
about understanding perspectives other than one's own.
Communication in this context is attempting to understand, and
perhaps more importantly, caring about the perspective of those
other members of a team with epistemic frames different from one's
own. This epistemic bridging and communication takes time and is
one of the more prevalent activities of game developers.
Communication for game developers is about care and work, which
occurs in the much dreaded, meeting.

In the written descriptions of the roles of engineers, artists, and
designers, the phrase “when not in meetings” was used as a recursive
feedback placeholder. The interactive organization loops in on itself.
Management schedules meetings to better understand what is
transpiring at each level. Leads will have team meetings, producers
will have meetings with leads, and managers will have meetings with
their disciplinary groups. Studio heads will have meetings with
managers and producers. Entire teams will participate in company-
wide meetings. Information flows in both directions, but primarily it
flows up the chain of command. Management time is dominated by
meetings and ensuring that things are functioning properly—
scheduling meetings and also participating in them. The importance
of face-to-face meetings, for which US or Indian developers make
time outside of development hours (they will arrive early at work or
stay late for meetings), “manifests a delicious contradiction; work
becomes more dependent upon workers’ abilities to create close

social relations at the same time as globalization inhibits their
construction” (Hakken 2000a, 771).7

Some leads, managers and producers borrow from more formal
project management techniques, yet most are assembled in an ad-
hoc fashion. Even those that make strides to bring new tools and
approaches into the workplace will, given time and pressure, often
revert to micromanaging or step out of management roles out of
inexperience. This is exacerbated as corporations globalize and
become a seemingly “complex tangle of remotely related parts. . . .
both tightly coupled and dispersed,” (Fortun 2001, 93), a recipe
discussed in this level's boss fight as particularly problematic.

The process of relating the parts to the whole is often problematic
in management and yet is something that videogame developers
constantly expect of their players. Integration and interrelation
ought to be something of a specialty for this community. The
numerous data sources, such as VCSs and logs from the build
systems could be leveraged in ways that provide leads, managers,
and producers with new tools to make sense of the work happening
all around them. The game development process cannot just remain
a complex tangle, given the kinds of feedback loops that create
dependencies and relations that ultimately result in a kind of
feedback fetish, where feedback and response themselves become
goals, rather than a means of understanding how the system
functions. In part, the mess between and among management realms
is a failure to see understanding the process of game development
work in and of itself as worthy of attention within game companies.
Leads, managers, and producers are left to their own devices in
developing tools, metrics, and practices by which to understand how
a team is working.

World 3 Boss Fight: The Fun Part Is Over Now

It is strange that game developers can constantly be focused on
creating meaningful experiences for players, which often requires the
presentation of extensive amounts of data in abstract ways—data
related through numerous feedback loops that allow players to make
decisions. A renewed focus on tools and the pipeline and providing
flexibility for development teams to understand how their own
systems interact has been only relatively recent. The basic truth is
that videogame developers need the stability and access that more
open systems bring. The details, however, attest that this requires a
fundamental shift in developers thinking about what needs to be
kept secret and those things that can be more widely shared such
that they can be leveraged to improve the working practices that
mobilize their daily lives.

Within the game industry there are emerging standards and half
standards and rules of thumb, but there has been very little work
toward real industry-wide standards or best practices. There needs to
be some base level that is approachable and deployable broadly. This
is where efforts, such as Microsoft's XNA fall short. The continued
lock-in to largely proprietary systems like C# and DirectX contradict
the call for standardization and open access. There are numerous
“industry standards” that end up competing with other proprietary
standards. Developers frequently pick and choose based upon those
with the newest features rather than on those that have open
standards. Having standards does not mean that individual
companies cannot go above and beyond those industry standards.
Nor is this to suggest that only Nintendo, Sony, Microsoft, or some
other large, well established company must be the only player in
town. Analysts have shut down calls for standards in the past
through misinterpretation or poor “analysis.” Periodically a call for
some kind of standardization goes out in the game industry (Waters
2007). The response is typical, “I do not think the industry will ever
resort to one console. It would be bad for the industry. I could
understand the argument for a single development standard, but not
a single hardware standard. . . . However, in regards to a single
console, it would hinder innovation and consumer choice” (Wen

2007). Standards are instantly conflated with a single console, which
is not the point. Either that or the idea is instantly tossed out as
impossible, as a developer did when asked about standardization:
“The fact is, as long as Sony and Nintendo are alive and kicking, one
platform will never happen. If there were one platform, the
manufacturer would have all of the leverage, unless it offered open
architecture. Not likely. Nintendo and Sony [would] both insist upon
a proprietary standard. Microsoft has a proprietary online business.
It sounds wonderful, but so does world peace” (Wen 2007). A culture
of secrecy internalized by the developers themselves means that, not
only do they not push for standards, but we shout down calls for such
openness. Developers who would benefit from fewer secrets
condemn any call for better work practices.

Ultimately this level's recommendation is dependent upon
implementation. Standards that span platforms could be developed,
but developers would have to be willing to avoid platforms that shirk
those standards. A more modest intervention would be for
developers to consider fewer aspects of their work worthy of secrecy.
Developers need to demand that process and source level knowledge
of development practices need not be included under NDAs, allowing
developers to contribute back to OSS initiatives that they draw upon.
Developers have to be willing to take a stand and support those more
open technologies, which ultimately will improve their ability to do
game development work. Hegemony, the organizing principles by
which society agrees to the priorities of the powerful works by
seeming like the natural order of things. But it's not the natural order
of things, nor is it simply about the status quo or domination.
Hegemony embodies a kind of dialectic between coercion and
consent. And it is subject to resistance and recalcitrance. Developers
need not simply roll over for those corporations that make dictates
about how game development needs to occur. Experienced
developers, in particular, can push back against restrictive practices
that make game development work dysfunctional. And they can ask
for change. Counter-hegemonic projects can force accommodation to
their demands. Organizations in positions of power cannot simply
say “no,” for in all likelihood an open revolt could occur among
developers. In fact, this has occurred as developers moved away from
developing games for the Super NES and N64 to those less restrictive
agreements surrounding the Sony PlayStation. Developers have the

opportunity to push back against NDAs and licensing agreements in
ways that could enable greater stability. They can help create a more
open, less secretive industry in which to creatively collaborate, work,
and play.

New tools, practices, and processes can be developed from a more
open foundation. This is precisely where Free/Libre and Open
Source Software (F/LOSS) has proven its ability to support unified
technologies across numerous hardware platforms and the
production of resources that developers can draw on to reduce their
dependence on self-developed code. F/LOSS has dramatically
influenced much of the broader software development community,
but because the game industry has assumed itself different, it has not
yet been able to grasp the importance of openness for pushing
technologies, practices, and stability further. The constant re-
creation of software often results in bugs or deficiencies due to the
process of developing software. F/LOSS addresses scalability (the
ability for similar APIs to work across numerous devices ranging
from full-scale computers to very limited custom hardware) in ways
that the videogame industry could dramatically benefit from.

Ultimately, much of what game development companies pay for
now as “middleware” is software that could be more effectively
developed in an open and cooperative manner. This would also allow
developers to work with similar tools even in locations where
licensing agreements are unattainable because of cost or due to
restrictions by hardware manufacturers. And this approach would
allow developers the ability to retain more of their work when
licensing was provided.

This is really an appeal to open up the production networks of the
game industry wide enough to enable collaborations that extend
beyond the walls of single studios, publishers or manufacturers. It is
an earnest call to enable work to flow more broadly into the worlds of
free and open source software in ways that are not simply extractive,
but give back to those communities in new ways. This call to change
is not about asking the game industry to become completely open or
porous, but capable of providing interfaces that may very well make
the daily lives of developers better. F/LOSS developers are just as
excited at seeing game developers draw on and contribute back to
their projects as any other community.

What is at stake here is not the “giving away” of free DevKits, but
rather the opening up of the SDKs that allow developers to create
games for these systems. Production pipelines for designers and
artists will emerge around these SDKs. To make this possible, the
enormously secretive console manufacturers will have to provide
some mechanism by which games can be tested without DevKits
(these devices are already being provided outside the law, and will be
used in the implementation of the game described in World 8). This
would not spell the end of multiple systems; rather it would assure
their place in the market, for, surely aspiring developers would be
more likely to purchase “approved” Nintendo, Sony, or Microsoft
versions of each device.

Many independent developers or F/LOSS developers want to be
included in the networks of the game industry and have simply been
told, “no,” or often simply nothing at all. In stranger cases, F/LOSS
developers have often, unknowingly, had their projects incorporated
into commercial games with no reciprocal relationship being formed.
There is clear value for game developers in leveraging these open
technologies, but little way for them to contribute back to that
broader “commons.” As can be seen from the rapid rise of Apple's
iOS for games, it is clear that there has been a built up need for
change in this space. It should be possible for game console
manufacturers to maintain control while also increasing the
openness of their systems. The more interactive DevKits could be
made available only when a developer has gotten approval to move
forward with a manufacturer or publisher. That approval should not
prevent a developer from pursuing development on a platform,
however.

Box 3.3

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Cultivating experienced developers
requires that aspiring developers be able to gain experience
in actual production processes. As currently configured,
that is nearly impossible given the kind of control exerted
over the hardware that dominates the game industry.
Developers are asked instead to work in hypothetical

situations that are often completely uninformed by the
reality of game development.
Casey: You were talking about some of the production
difficulties on SM3 . . .
DESIGN_LEAD_1: Yeah . . . Generally our production methods
on SM3 sucked. Principally just test tracking and things
like that. We went through several versions and setting on
something that relied on inexperienced production
coordinators to track it all, so that took forever. The team
was just inexperienced overall. It was a very green team. We
had a lot of co-ops, especially on mission design and they
had to work a lot harder to make up for their inexperience.
But that was a staffing problem, which went back to a
staffing freeze several years ago, which had a loophole for
non-salary folks, basically co-ops. Some of them were
awesome, and we hired them. Others went to work at places
like EA. Even some of our leads were inexperienced.
Casey: So where should that experience come from?
DESIGN_LEAD_1: Well, my opinion is that the [Nintendo] DS is
the perfect proving ground for growing people. We need to be
growing people through DS and then having them come on the
console side with that experience.
AUTHOR_DEV_DILEMMA: There is a strange mantra that dominates
the game industry. If you want to make games, you need to go
make games, which makes sense. If you want to write, you
should go write. Yet, the very process by which one makes a
game is made so opaque, and even more so if thinking in
terms of modern games. It isn't about technological
standards so much as it is about standards of practice.
#: SET DEMO_MODE 0

The practice of videogame development needs standards. The
continued opacity and closed character of the industry has lead
developers to continually forge the same path over and over again.
Having once traversed a course, developers have been unable to
share in detail these routes because of restrictive NDAs and licensing
agreements. Console manufacturers and publishers continue to hold
tightly to the technological and legal keys to the means of
distribution, and will continue to do so unless the industry itself
demands change. The obsession with control over the production of
games is a relic of the past that hinders developers and the industry.
For the industry to truly mature this tight-lipped control of
information must change. Further, such changes and the resulting
maturation of the videogame industry will lead to improvements in

quality of life (QOL) and sustainability, the major concerns for my
US- and India-based informants.

Perhaps more important, game studios need to learn how to and be
allowed to “carry string with them” during the construction of their
labyrinths. This process has no technological fix. It is a deep-seated
social component that necessitates taking time to reflect on the
activities of game development, and not simply at the end of a game
title's development. Slowing down long enough to talk about how
and why something should be done gives development teams a better
understanding of why they are progressing down one path rather
than another. More connections, detailed sharing, and openness will
result in more mature videogame studios being able to work within
the numerous structures of access. Ultimately however, this kind of
revised videogame development work requires significant change in
the numerous structures that shape the lived realities of videogame
developers. These changes developers must demand themselves to
make new kinds of videogame titles possible. For too long developers
have allowed the broad forces of the videogame industry to shape
their communities. These are castles that must be hacked and
MODed.

Production: Let's Go Make Stuff!

World 4: Interactive Game Development
Tools

Box 4.1

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: As we saw in World 3, game development
relies on numerous tools (software systems) that are often
ancillary to the actual game being developed by a team.
These tools are by themselves complex software systems that
must be created and maintained by teams of tools engineers
and technical artists. This further complicates the already
muddy understanding that many people have of game
development practice.
Casey: Do you like sitting in between the artists,
designers, and other engineers?
TOOLS_ENG_2: I do. That is exactly where I want to be.
Casey: What do you think are the main things that people
don't understand about what you do?
TOOLS_ENG_2: It is really hard for me to explain my job to
just about anyone else. Even just saying that you're a
programmer, not in the game industry, people will respond
with, “Well, what do you do?” But people don't take it
seriously because it's videogames. Or, people will think
that all you do is screw around all day. I try to explain it
with concrete examples, like trying to explain what a level
editor is or what a level designer would do with tools I've
created. That is the easiest way to explain what a tool
might be. But people don't understand anything other than
the final end product.
Casey: The box on the shelf?
TOOLS_ENG_2: Yep. You can explain what an artist does more
readily. To a certain extent you can even explain a regular
engine programmer, but a tools programmer . . . They just
don't . . .

AUTHOR_DEV_DILEMMA: This ambiguity between what is the game
and what is the software that surrounds and supports it
makes it difficult for many developers to explain what it is
they do and for many, this can make it seem like their labor
associated with a games development disappears behind those
roles more directly identifiable as having participated in a
games creation.
#: SET DEMO_MODE 0

World 4-1: Engineering Interactivity

Once a game has reached production, most of the tools and processes
have been nailed down. The everyday operations are supposed to be
less experimental and more about actually creating all of the
elements planned for a game. Of course, if preproduction was
unsuccessful, then this becomes more complex. Interactivity is an
important aspect of how game developers understand the
relationship between their work and the videogames. It is similar to
the “meaningful play” game players discover as a result of their
actions in a virtual space (Salen and Zimmerman 2004, 33–36).

Throughout the production process of SM3, game development
pivoted on interactivity as additional tools and systems were
developed to help each group working on the project understand the
relationship between their work and the work of others. It was also
during production that the number of people working on the project
dramatically increased. Additional artists, engineers, and designers
were added to the team to create the mountain of art assets, code,
and data that would become SM3. In this world, we examine these
interactive intersections between engineers, artists, and designers.
The world concludes with an examination of the complex issue of
“the build” where one demanding goal is keeping a game's
voluminous system synchronized across the activities of numerous
developers. Finally, because game development is a creative
collaborative practice that bears little resemblance to how it might
otherwise be imagined or portrayed in popular culture I return to the
imagined realm of what game development is thought to be to erode
myths that hinder industry growth and maturation.

Throughout production, the engineering team of SM3 was
responsible for implementing the various systems that they had laid
out and prototyped during the preproduction process. Typically,
during this time of the production process, engineers can frequently
be found in front of their computers, in front of a white board with
other game developers, talking in person with other developers, or
reviewing code written by other engineers. Time spent in front of the
computer screen can be spent “working” or writing game code or
documentation for game code, or it can be spent managing massive
numbers of emails from across the company, personal emails,
instant messages from co-workers, some work related, some not, and
instant messages from family and friends. Occurring simultaneously
are web browsing looking for documentation, reading up on industry
news, or pursuing personal interests. Meeting reminders pop up on
the screen courtesy of Microsoft Outlook or Mozilla Thunderbird.

Most of this time, however, engineers are in front of their
integrated development environment (IDE), the tool designed for
creating software. If they are writing source code, then typically their
code will dominate one computer screen, and documentation will fill
the other. Engineers pour over documentation determining how to
take abstract concepts or solutions to problems and make them
function in whatever environment or on whatever system they are
developing for. While similarities will frequently exist between
systems, oftentimes specific code must be written or rewritten if
being developed for different systems. Just as code written for
Windows is different from MacOS (both are operating systems or
“platforms”), code for ODE is different from code for Havok (both
are physics APIs) and DirectX is different from OpenGL (both are
graphics APIs), despite the fact that similar conventions and goals
frequently drive each system.

At the core of engineering for games is the idea of managing a
game's state. This includes both the running simulation of the game's
rules as defined by designers, and the maintenance and putting into
motion of the art assets created by artists. Because this process is
frequently unknown, or at least experimentally defined, engineers
spend a great deal of time using the debugger (a component of their
IDE); observing what a piece of code is doing; attempting to figure
out why a piece of code is not functioning as they intended or believe
it ought to function; or correcting mistakes made in the process of

translating their own ideas into code. There are two productive ways
of thinking about this process of determining the functionality of a
system through experimentation. The first is the “mangle of
practice,” where there is a “temporal structuring of practice as a
dialectic of resistance and accommodation” (Pickering 1995, xi). The
second way is about getting better at understanding resistances.
“Listening to noise and transforming it into a signal depends as
much on acquired intuition” (Rheinberger 1997, 134). The experience
of a developer “organize[s] the experimental gropings” (Rheinberger
1997, 134) into a functional piece of code.

The experimental process of debugging can be time-consuming
and tedious, yet it exemplifies how interactive systems begin to
inundate the game development process. One conversation among
my informants highlights the ways in which interactivity enables
production:

I look up from my computer screen as Eric begins yelling “fuck
you” at his computer monitor. He's in the debugger, looking at
some of the data moving through the game's engine. There's
nothing pretty about this. It is numbers, strings, and source
code. From across the desk David looks up and has this
conversation with Eric:

David: Did that function fix it?
Eric: No.
David: Did that function help?
Eric: No.
David: I assume you figured it out?
Eric: No.
David: Do you want to talk about it?

At which point a math discussion ensues at the marker board.
(Informants and O’Donnell 2005c)

This conversation is an excellent example of how the interactive
tool, the debugger, in concert with a fellow coworker enabled a
conversation about what was going wrong at the core of a game in
development. The IDE provided the tool that made visible elements
of the underlying systems of a game, which were clearly not working
as expected, and allowed a conversation to ensue that later solved the

problem. IDEs allow engineers to quickly and easily make changes to
their code, recompile the game, and either see changes in the
debugger or observe the behavior of the game.

It is this kind of experimental feeling out of functionality and
behavior that has led some to refer to “successful practice” as
“depend[ent] on trial and error or on local and contextual
knowledge, then that too has generally been acceptable to most
engineers” (Whalley and Barley 1997, 30). Both interesting and
problematic, the “view of skill as having an improvisational quality is
in stark contrast to lab managers’ and administrators’conceptions of
technician skill” (Scarselletta 1997, 207). The approaches of
engineers have been thrust on numerous other actors who may not
work well within these systems or approaches. Again, this seems to
reference the “gate-keeping” aspects of engineering work in game
development.

At the same time, the improvisational feel can be the first step
down our path of fetishizing interactivity. Interactivity is useful, it
provides feedback to the developer, yet it can also replace the process
of attempting to understand the underlying system. Especially as
timelines become tighter, which is commonplace during production,
the desire for a system that perfectly responds to every tweak made
by a developer becomes tempting. In some cases changes are made
specifically as an engineer experimentally progresses toward a
solution to a problem. In other cases changes will be made with little
analytical foundation (for example, the addition of a “-” sign before a
number or the adjustment of a constant number in the source code,
all toward the end of a desired outcome). This practice is much more
common among younger developers, many of whom have not had
the experience of such actions back-firing on them—too many
minute changes ends up in an unsalvageable or unreturnable past
and represent death by one thousand cuts. Regardless of how the
changes are made—as part of a methodical experimentation or of
massaged code—this constantly changing set of what represents a
game's underlying code means most engineers have adopted some
sort of version control system (VCS).

The VCS can be as simple and inexpensive as a “shared folder” on
the network that contains the latest working version of files used to
build a game, or as complex as proprietary systems (such as Perforce,
produced by a company with the same name). One key aspect of a

VCS is that it tracks changes over time. While a shared folder cannot
do this on its own, it can be approximated by compressing and
saving the shared folder periodically along with a date. Other
systems such as the open source CVS or SVN (Concurrent Versions
System and Subversion, respectively) are free, though their
integration with tools such as Visual Studio and Max are minimal.1
An engineer using the VCS will “check out” a file of the version
control system when they are working on it. This is visible to other
developers who may choose to not work on the file at the same time,
though in some cases the system may prevent others from working
on it at all. When a file is “checked in” after work has completed, an
engineer will typically make note of what was changed in the file.

“The build” is closely tied to the VCS. More than any other
technological system in game development, it is what everyone on a
development team seems constantly aware of—so much so that it
becomes a kind of obsession. To visually inform anyone waiting on
the build, traffic lights or strands of Christmas lights are connected
to the build machine to provide instant visual feedback: green is
good, yellow not so good, and red means “broken.” Sometimes the
breaking of the build is accompanied by an audio alert, the sound of
an explosion or the screeching of tires. A Windows task-bar pop-up
generated from figure 4.1 delivers warnings or errors to the user. The
grey area surrounding the engineer's visage, originally magenta, is
used to make those areas transparent.

Figure 4.1 The image used to deliver warnings for users of the build system

Ironically, the kinds of errors displayed are machine-generated,
rather than the kinds of words the engineering team lead would
actually utter. For example, if a contributed art asset cannot be
processed by the art pipeline tools, a message indicating the file's
location and the associated error would be displayed in the bubble.
When combined, the build and the VCS allow for automated builds
and testing systems to keep track of the relative health of a game's
progress. These automated builds also dramatically cut down on the
amount of time necessary to “build” the game.

Figure 4.2 was generated from the massive number of files that it
took to create the AAA (“triple A”) videogame title, SM3 for the PS2,
Wii, and PSP. Because of the large number of files, the build can take
a very long time. Automated build systems simplify this by having
the latest version of processed files pregenerated, allowing an
engineer, artist, or designer to only generate a small number of files
to see the latest version of the game along with their most recent
changes. Once changes have been tested, they are checked into the
VCS, at which point the build system will incorporate them into the
next build cycle—at least in an ideal world.

Figure 4.2 A graph generated from file reference statistics for SM3

Engineers and, specifically tools engineers, are responsible for
developing the software that combines the efforts of artists,
designers, and everyone else into a playable game. These software
systems read in the art assets produced by artists and the scripts,
levels, or other pieces of data produced by designers. Even input read
from controllers, keyboards, or mice is passed through the data
produced by designers. The knowledge of when to play a particular
sound file or display a particular model must come from somewhere,
and frequently this is not hard-coded into the game code; it, too,
must come from design data. Parsing data or files requires a detailed
understanding of their format. Sometimes they are as simple as text

files that can easily be parsed by reading the characters from the file
and interpreting the information. In other cases the format is more
complex. Binary, image, or sound data are, for all intents and
purposes, unreadable by humans, though we may recognize these
kinds of data when we see them. These file formats are often more
multiplex, sometimes containing compressed data that must be
uncompressed prior to its usage in game. This is the process of
“parsing” as my informant saw it (detailed in World 2-3): reading
data and placing it within an internal representation of the software
system. But simply loading the data is not enough to make a game.
Nothing has even been displayed on the screen at this point. The
loaded data must then be combined, interpreted, and displayed on
the screen and respond to the actions of the user.

Engineers are responsible for the tools and workflows that parse
and assemble game assets from artists, designers, and other
engineers. The creation of these tools is a process, one that demands
that an engineer is capable of working closely and collaborating with
all the other developers on the team. The tool-building process also
frequently requires engineers to understand the foundations of
rendering, effects, and cinematic principles that will be underlying
the understandings of artists and designers.

The next difficulty for engineers lies in the fact that most
videogames do not use a common data format, and this is further
complicated on consoles because of proprietary file systems, data
formats, and application programming interfaces through which they
are accessed, all of which is covered by NDA. Each game engine—the
number-crunching and number-parsing heart of a game—makes use
of different capabilities from other applications that may be
unavailable in others. While things like extensible markup language
(XML) or other attempts at industry standard formats have had
some traction, frequently these systems are so generalized that they
also require a great deal of engine support and specification for them
to be of any use. In an effort to maximize use of game media or
processing power, engineers will frequently strip unused data from
files, leaving data-parsing systems specific to each game.

Because of this, engineers are frequently seen as the gatekeepers to
game functionality, as they must implement the systems that expose
functionality to artists and designers. Engineers become sentinels
because they ultimately have to answer questions regarding

hardware resources available to the developers. “No, that will take
too much memory . . . Well, if we do that we'll have to rework the way
in which those files are being read . . . That will definitely break our
CPU budget.” One engineer told me that his customer is not the
gamer, but rather the artists and designers. He was there to make
what they wanted to create functional, to the extent possible
considering time and hardware.

This view of engineers as gatekeepers can cause friction among
developers. Artists sometimes perceive the unwillingness of an
engineer to expose functionality as a lack of interest in the overall
visual appeal of a game. Engineers can frequently perceive the
demands of artists as superfluous or distracting, frustrating obstacles
to the completion of other aspects of game functionality.

World 4-2: Interactive Artistry

It was during production that I really began to appreciate how many
artists perceive themselves as those most directly responsible for the
creation of the massive amount of content found in modern games.
Artists would have lists of the artistic assets they were responsible for
creating. Ideally, once created, these assets could then be laid to rest
while artists moved to the next item on their list. Unfortunately,
artists must often bear the brunt of changes made to the underlying
systems of a game: models must be reworked and reexported,
textures must be resized and reapplied to models, naming
conventions for animations or file structures must be adjusted
quickly to accommodate changes made throughout the game's build
or tools.

Box 4.2

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: In some cases, changes must be made for
nontechnological reasons. The ability to make changes and
adjust one's work in ways that can be quickly iterated on is
crucial to the process of game development. Artists will
often return to a particular asset numerous times through

the production process of a game. If the process by which
that asset is then made available to the engine or how they
are able to examine the results of their work too arduous,
in the result is a collaborative disconnect between team
members.
Casey: So making that leap from a sketch from design to the
art level, that is the hardest part?
ART_DS_Ogre_1: I guess. I realized recently that I was
making artwork that didn't really match the style of
ART_DS_Ogre_3. It didn't even occur to me to worry about
that until the other day. I looked at it and thought, “Oh,
wow. His stuff is really cartoony.” I thought I was making
my stuff cartoony, but comparatively it just isn't so. Now I
have to figure out how to make my stuff look like
ART_DS_Ogre_3's. I feel like I'm always running into things
I hadn't anticipated. I guess I'm just too new.
Casey: But when you have multiple artists with different
styles and interpretations, how do you resolve that? Do you
do peer review across segments?
ART_DS_Ogre_1: No. Not officially, but we should. But we
have been really pressed for time and there are only a
couple of us. I guess we just assume we're looking at one
another's work and I just didn't think about it.
AUTHOR_DEV_DILEMMA: It is also difficult to often see
outside the small production space provided for each
individual by the time a team is in production. They are
expected to produce a defined set of elements that can then
be read into the game and used by designers. Yet, this
compartmentalizing, which is precisely what must be done
during production, can make it difficult for members of a
team to know what one another is doing.
#: SET DEMO_MODE 0

Throughout the production of SM3, changes in process and
underlying systems required modifications to artwork. In many
games’ production processes, new tools that artists must be able to
quickly grasp and work with are often rolled out during production.
In many cases, these custom technologies may not have been
designed by artists and an artist might spend several hours
attempting to learn how to use the given tool. In addition to tools
that change with each project, even well into the project's life, artists
also have to work with technology via their teammates. When, for
instance, assets that an artist has spent so much time creating do not
appear in game or do not look as expected, artists must frequently
access the knowledge of engineers and designers. Some SM3 artists

were quick to engage tools engineers, technical artists, and engineers
when they were unable to make systems work. In other cases artists
would tweak models, animations, or textures attempting to
determine why something that ought to be working a particular way
wasn't. Their efforts at being technologically self-sufficient were
futile, however, for in some cases vague error messages (sometimes
displayed by the lovely engineering lead pop-up mentioned
previously) would indicate something was wrong with a given art
asset and in others applications would simply crash or do nothing.

Functionally, the work of artists differs little from that of engineers,
though their tools and knowledge are quite different. In appearance
most developers spend the majority of their days seated at a
computer or in conversation with other members of the development
team. However, the elements that they bring to a game are quite
different. Artists create assets that are then often processed by the
computer in a way that the images are brought into the game system.
Artists will tweak elements of their work to ensure it appears as
correctly as possible within the game's systems. An artist will flip
between their typical tools (Max/Maya or Photoshop, discussed in
more detail below) export a model, animation, or texture, and then
view those changes within the game's engine. In some cases there are
significant differences between those two views, which the artist
must negotiate with or without help.

Modelers and animators work primarily within 3D Studio Max (or
simply Max); figure 4.3 is how the Max interface looks when an artist
is editing the mesh of a model. The mesh is the collection of lines and
vertices (points) that define the structure of the model. In contrast to
modelers and animators, texture artists primarily work within Adobe
Photoshop, though they continually examine how the changes made
in one program affect the other. All of the data they create for these
models are stored within a single Max file or texture file. Much like
an engineer's IDE, these tools are the experimental apparatuses
within which artists work. And like engineers, artists typically use the
VCS to store a historical record of their work. Unlike engineers
however, there is no choice in being able to work on a file that has
already been checked out. Because of the data formats of these files,
artists are unable to simultaneously work on the same files.2

Figure 4.3 A modeler's view of the world in 3D Studio Max

Box 4.3

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Artists, too, think that the specifics
of what goes into their work, though quite visible in a
game, are misunderstood to be entirely different. Even when
their work draws on, or is part of a broader ecosystem of
game production, the work of actually making those things
function as a game is difficult to convey clearly.
Casey: How would you go about explaining what you do every
day?
ART_DS_Ogre_1: I don't think I understand what I do every
day. Really, I've given up on explaining. Most people think
that I do work like what comes out of Pixar. The majority of
people only think they comprehend Pixar's animation and that

is what they think I do. They see a 3D animation and they
are like, “Oh, look!” Most people know I work in games, but
they have no real concept of what it is. Some people think I
do graphic design. There is also this misconception that
when you're working on a licensed title that all we do is
take someone else's game and convert it into something that
can be played on another platform. They have no idea that
most games are totally recreated. A DS game may be
completely different from its corresponding PC game. I'm
sure some gamers know that, because they play them both and
see that they are different. But so many people think, “Oh,
you just take their art assets and convert them.” They
assume that there is no difference across platforms. There
is so much design and creativity that goes into those new
games. They are literally largely created from scratch. We
just use the same characters as a launching point.
When I first got here I went to ART_DS_Ogre_2 and asked,

“Can't we just take their models and sort of optimize them?”
He said, “It is just faster to make them ourselves really.”
At least that way we know ours aren't going to give us any
goofy problems in the tool chain.
AUTHOR_DEV_DILEMMA: This is the work of art game production
in many AAA game studios, where assets may be available from
other projects, but because of the numerous software systems
that surround the activity of game development, it is often
impossible for these to flow seamlessly between one project
and another. This complexity of these processes makes it
difficult for artists to convey the work of game development
properly. Thus, even though a particular art asset may be
visible in the game, the actual work associated with its
creation is quite absent.
#: SET DEMO_MODE 0

Most artists on teams in the United States have the opportunity to
see their artwork “in game” on a daily if not more frequent basis.
They understand why they are limited or “working within budgets”
for polygon counts, vertex counts, texture size and shape, and the
numerous other expectations that accompany producing artwork for
games. If they do not understand the limitations or if they are
curious about those limitations (some, for instance, are harder or
softer than others), they can ask their lead, or an artist who was part
of the team during preproduction when those limits were decided
upon, or they can walk over to an engineer and ask. Some will even
experiment, simply determining which limits were hard or soft based
upon whether those changes break the game or do not.

Box 4.4

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Art production is highly contingent on
the code that supports it. Changes to the underlying systems
of a game make it difficult for art assets to move from one
project to another. It also creates the possibility that
changes made to the code of a game can result in significant
rework on the part of an artist.
Casey: [Laughs]
ART_DS_Ogre_1: I was expecting there to be this massive hard
drive with lots of reference material and that there would
be established methods of doing things. For example, “This
is how we make fire.” You know, or whatever else has been
done a hundred different times. There isn't much of a shared
pipeline. I imagined that there would be somewhere to go
look at basic textures.
Casey: So you end up doing a lot from scratch?
ART_DS_Ogre_1: Yes, which is fine. But in a company this
big, it is strange, for resources to not be shared. . . . At
all.
Casey: How do you like the project so far?
ART_DS_Ogre_1: No complaints. It's awesome. I want to work
here forever. There are some things that go on, but I'm just
a worker, I don't pay attention. It isn't as if I'm
consulted every time some issue comes up. We're trying to do
a lot of things on this project that haven't been done
before. So, it's a situation where sometimes to reach those
new things, we have to do things over again. For example, we
recently changed the way levels are constructed. At first it
was rather free form and now we've switched to tile sets.
Although now we may be switching back to free form. But I
had never done tile sets before and free form was very
frustrating so I was thinking, “Oh, tile sets, maybe that
will be easier.” As soon as we were doing tile sets, I was
like, “Oh, my god. My head hurts.” But those are just my own
personal weaknesses.
AUTHOR_DEV_DILEMMA: Many artists talk about the way small
changes to a game can result in significant rework and that
the day-to-day practices (like making “tiles” or being able
to “freeform”) can often mean that an artist will have to
completely remake a particular art asset as changes are made
to the game in order to keep it functioning. Ideally these
are issues that would have been determined during the
preproduction process, but in many cases developers find

themselves for various reason (both legitimate and
illegitimate) redesigning basic functionality while a game
is in production.
#: SET DEMO_MODE 0

Many of the developers in India with whom I spent time were
working on some aspect of artistic production for games being
developed by US studios. In most cases the artwork was for
established game franchises, sequels in many cases. These games
were already in full production mode, with the limitations and
requirements for artists already established. Almost none of the
artists working with these games saw what they were creating within
the game itself until after it had been released. Comments from US-
based artists and designers would come back to them annotated for
changes, but there was no clear understanding of why or how the
limitations that they were working within had been established.
Teams of artists were being asked to produce art assets in a way that
no traditional game developer would be asked to do. The inability to
see how changes made to a particular art asset were then reflected in
the games engine made it difficult for artists to understand the
relationship between their work and the game in which it was being
placed. The interactive and experimental processes were removed
and, worse yet, made completely unavailable. This proved
particularly difficult for an Indian team of artists and engineers
working on a prototype for the Nintendo DS. Without an experience
of working with any of the libraries for a console like the DS, the
engineers were largely left to learn the conventions of the system
from Nintendo-supplied documentation and private messaging
boards. These resources did not make it clear how to actually make
games in practice, either for the engineer or for the artist. Instead the
artists and engineers found themselves walking from desk to desk,
transferring files, converting files, asking one another questions,
making changes, looking at the debugger together, and struggling
with the lack of interactivity.

I was struck at how a team of developers in Chennai, India, were
struggling to piece together the foundations of a game's asset
pipeline for themselves. My years in the game industry came
tumbling back, reminding me that this was a fundamental aspect of
game development that was simply not being communicated. Tools
and pipelines must be constructed in such a way that each developer

can do what they do well, rather than stepping on one another's toes.
It seemed as though a lot of talented developers were wasting time
and energy doing their work in the dark with their hands tied behind
their backs.

As mentioned before, pipelines are the least talked about, least
documented, and frequently most critical points in the game
development process. And more than any other time, change or
redefinition of the pipeline results in massive amounts of rework for
artists, engineers, and designers. Though pipelines are frequently
defined at the beginning of a project, they must often go through
several iterations to adjust to the changing needs of a project.
Unfortunately, changes typically occur much later in a game's
development cycle than most would like. Each developer experiences
only a portion of the pipeline. While an engineer will interact
frequently with those components that process code, an artist's
experience of the pipeline will often extend into external tools not
created by a game development team.

The process of making the transition from the tools of the artist
into the game is frequently called the “art pipeline.” The artist's
pipeline typically begins in Max/Maya or Photoshop. Tools engineers
or technical artists often will have customized the extensive set of
scripting and exporting features of these programs, which extracts
the relevant information for placement into the game engine. For
most artists in the United States, this means by the time full blown
production on a game has begun, they will have a “make art” button
within Max that will export the necessary data from their work in a
format such that it can be seen within game. This allows artists to
more quickly tweak and view their work. Artists are limited in that
there is no debugger for this process. If something does not work or
does not appear correctly, there is often no obvious way to determine
how or why. Artists typically then proceed to make changes to their
models, textures, or animations in the hope of feeling out the
reasons. Sometimes they'll turn to an engineer to ask if something
can be done or if there is a way to do something that is causing them
problems. This is often a point of conflict for artists and engineers,
who continue to negotiate pipelines throughout the development of a
game. Both artist and engineer have a different conceptual
understanding of how something should be done or even what is

possible. “Shader,” “vertex,” “stripping,” and numerous other terms
mean very different things to artist and programmer.

This is where the experience of the “gate-keeping” is felt explicitly,
though tension between specialties is, as we saw in World 3, broadly
labeled as a “communication issue” in studios. Because technical
artists and tools engineers are responsible for the creation of the
tools that power these pipelines, they are also often responsible for
other things, and time is always at a premium, causing conflict to
frequently arise. One informant and I attempted to spell out the
enduring tensions of pipeline clashes in a GDC session presentation
proposal:

Artists and programmers have worked together in games ever
since the first game programmers said to themselves, “My art
sucks.” From that day forward, we have tried to integrate artists
and their craft into this highly technical field. Here in 2006, we
should consider this a work in progress that all the disciplines of
game development can endeavor to improve upon. This session
dissects common issues and provides solutions in the
artist/programmer relationship that development teams of all
sizes face.

A few months ago, the two presenters spent time speaking
with both programmers and artists at Vicarious Visions. They
conducted a one-hour roundtable session for artists only, where
they could talk about what they did and did not understand
about programmers. Then they ran the same session with only
the engineers. The one thing that amazed both of the presenters
was how professional and genuine both sides were. They both
wanted only the best for the game and their team. How then,
could they end up at each other's throats in the middle of
development? What is the problem?

The presenters will begin by having the audience ask
themselves the following questions:

Artists:

Have you ever tried to suggest a feature to a programmer, only to
walk away frustrated and upset?

Are the in-house tools that you use bug-ridden and overly
complex?

When you have a problem that programmers can solve, do you
hesitate to ask for fear of the response?

Do you find yourself overwhelmed with techno-babble?

Do you ever feel cut out of the loop in designing your own
workflow?

Do you ever operate outside of your team structure and go to a
programmer on another team for advice?

Programmers:

Do artists break your tools and game code with stunning
regularity?

Have you ever given an artist a checklist of steps to follow, only to
have them fail to do so repeatedly?

Have you found artists performing mind-numbingly repetitive
tasks that you could have fixed with code had you only known
about them?

Have you ever needed a simple art fix, only to have an artist tell
you that you are asking for the impossible? (Informant and
O’Donnell 2005b)

Videogame artistry, in many respects, is interactive based upon the
tools that define it. Yet that interactivity can break down, resulting in
a different kind of interactivity, one in which artists and engineers
can “end up at each other's throats.” In many respects I see this
breakdown related to “standards” and “classifications” that “may
become more visible, especially when they break down or become
objects of contention” (Bowker and Star 1999, 2–3). But it goes
beyond just social relations or disciplinary differences, or
differentials of power in the setting of standards and classifications,
which are typically developed in already compacted inconvenient
time frames. It has just as much to do with “institutional”
deficiencies that prevent broader discourse about “standards” or
“classifications.” The demands for secrecy throughout the industry
prevent that. Thus, the breakdown of interactivity is partially rooted
in disciplinary ways of understanding how things function and what

is being created. It is also rooted in a kind of institutional
Alzheimer's that continues to be perpetuated through the very
structures of secrecy that lend the game industry its panache. It is
based, too, in lack of conventions, standards, documentation, public
discourse, and institutions. And it can all be felt even more explicitly
in the everyday lives of game designers.

World 4-3: Designing Interactivity Interactively

The role of game designer as singular, specified, and locatable in
videogame organizations and educational programs has been
relatively recent. In previous generations of game development,
having designer/artists, designer/producer or designer/engineers
handling the design of a game's mechanics or systems was much
more frequently the norm.

Box 4.5

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Very few designers who I spoke with in
the game industry were “trained” designers. Most came from a
variety of disciplines and somehow wound up, by either
desire or accident in the role of the designer. Most found
the process of design interesting and had some previous
experience designing either as a hobby or recreationally
games, but very few had a specific degree in game design.
Casey: Let's start at the beginning. Give me a little
history of how you wound up at VV and found your way to now.
DESIGN_LEAD_1: Well, I'll start back at the beginning, when
I was a little child. . . . No. I guess it started my
freshman year of college. I lived with a bunch of guys and a
couple of us became very close friends. That was the first
year that I had a computer that I could call my own. It was
also the year that DOOM came out. So a couple of us started
making DOOM levels, you know, back when the editing software
was a pile of crap. But, I was good at texture alignment; I
could just look at it and guess which pixels were off.
Anyway, we started making levels and working together and
ultimately I became engrossed in videogames throughout
college. After we finished, we went to work for

MGMT_CREATIVE_HEAD_1. I saw some of the work they were doing
and said I thought I could do better. He said, “Show me.”
Eventually they hired me. The rationale being that I might
as well do it while I was young. It was really a chance to
do something I never really imagined myself doing.
There was no sense of a “design” role at all at VV at that

point. Everyone chipped in and did design for things they
were interested in. I ended up doing mostly resource
economies and narrative, because I guess someone thought I
could write a story, or I convinced them that I could even
though I had no clue. Probably because I was a film buff
more than any other reason. Resource economies because of
all the MUDs and online multi-player games I had played.
Eventually we just formed a design role out of that. Then we
start hiring more people and define the position and at a
certain point you realize that you need some type of
cohesive group. So several other designers and I formed the
design group, but I didn't want to manage it, so we hired
MGMT_DESIGN_HEAD_1 to do that and built the infrastructure
around it.
Casey: So, given the amount of time you've been with the
company, do you feel like you're still proving yourself? Or
do you have that freedom to just say, “Trust me?”
DESIGN_LEAD_1: Yeah. You need a culture that allows people
to make mistakes. That is something that I've been trying to
push. If you don't strive to innovate, you never will. You
are just going to try and avoid failure at that point, and
avoiding failure is not how you're going to make successful
games. You can make a mediocre game that may sell well, but
that isn't going to keep your team around and that isn't
going to make you feel creatively fulfilled. And, when
you're constantly doing due-diligence and trying to prove
your points, you are focusing more on avoiding failure than
trying to succeed. So I've really picked up the mantra,
“fail quickly.” But, you have to be able to fail, to fail
quickly.
AUTHOR_DEV_DILEMMA: Design, more than other aspect of the
game development process was the most open and subject to
change throughout the development of a game. For some
designers it was a process of “finding the fun,” which was
often put in tension with other requirements of a project.
Always it was an iterative process that had far-reaching
consequences for teams in production. As a game is developed
new avenues are explored, and often when designers begin to
find new “fun” in a game, pursuing those features could
require significant shift in a game's production.
#: SET DEMO_MODE 0

During production, designers are responsible for putting many of
the pieces of a game together. While the basic systems and
mechanics of a game will have been defined during preproduction,
during production all of the specific elements need to be assembled
into a game. Levels need to be created and balanced. Missions need
to be defined and tested for difficulty and plausibility within the
storyline of the game. Specific game objects need to be placed or
their behavior scripted in such a way to make it specific to a time,
event, or other element. All of this information is referred to, vaguely
at best, as “data.” Data forms the glue between the game's engine
created by the engineering team and the art assets generated by
artists. Engineering defines the structure by which the game can be
specified, artists create visual elements that can be pulled into the
game, and the designers create data that draws on artistic assets and
places it into the structure indicated by the engineering team.

For the most part, generating data consists of creating files, which
are combined with artistic “assets” and interpreted by the underlying
source code written by engineers. This underlying code can be an
XML file or files containing scripting languages like C#, Ruby, or
LUA that direct the game-code, telling it how to behave. Scripting is
similar to programming, however scripts are interpreted during the
execution of a game rather than being precompiled into the native
machine code. This combination of art and data passed through the
underlying code defines the structure of the game. Sometimes these
coding activities are enabled and assisted by custom tools built by
tools engineers and technical artists at their company, other times
external software packages are purchased, and other times they may
only be able to work with a text editor. This more primitive option
can intensify the feedback loops among engineers, artists, sound
engineers, and designers. If changes must be made in different
places to accommodate new concepts or approaches as a game is
developed, then changes may be required throughout the different
components that make up a game. This is not the “fault” of designers,
but rather a product of their position in the creation process. This
means that often designers find themselves sitting in front of text
editors or spreadsheets thinking about the economics or
relationships between the different components of a game's
underlying systems, creating scenarios, or scripting parts of a game
to ensure that particular storylines are delivered to the player or how

aspects of the game will react differently to a player based on the
players activities. In some cases, custom tools are created for
designers that facilitate these activities. For small game development
teams, or those early in development (prior to the stage when custom
tools are created) designers are primarily defining data in some way
that the game can easily read it. XML is a popular format for
structuring data and more easily parsed by the underlying code. In
other cases designers will work with various scripting languages that
allow them to articulate, in a fashion understandable to the game's
engine, how objects relate, interact or change the game's underlying
state. Thus, for many designers, the text editor is one of their most
important tools.

Designers occasionally mix up this standard amalgamation of
computer time by playing games that have preceded the one they are
currently working on, with a critical eye toward what is enjoyable,
and what is not. This is likely where the fallacy that game developers
“play games all day,” derives from. However, most game designers
play games in a highly critical mode, dissecting the elements,
namely, “Oh, there are the ‘God of War’ style quick-time events,” or
“Uh, oh, skill tree ahead!” Other games are played to work out new
game mechanics, which might become useful in the development of
their own components.

Perhaps second only to tools engineers and technical artists,
designers must have excellent communications skills. They must be
able to collaborate and work well with one another, as well as the
engineers and artists, which they connect through their rather
abstract job of generating data for a game's engine.

Designers were the most difficult game developers to find in India,
in part because designers are almost always gamers and in India
gamers can be difficult to find. Beyond the general derision that
parents level at videogames the idea that game development is a
profession has not yet caught hold. A son or daughter interested in
making games faces the assumption by parents that they “are going
to be playing games all day.” Videogames are still viewed as a
diversion from those educational tasks that students ought to be
preparing for. For this reason, design has been a difficult leap in the
Indian industry. This is made more problematic by the general lack
of professionalization of game design or game development more
broadly. The technical, social, and procedural connection of

engineers, artists, and designers in ways that enable collaboration
has also been difficult. Because these practices have been developed
experimentally over time, through experience, and are entirely
undocumented, means that they are rarely communicated outside
studios that develop them.

“Tools,” have been essential for the professionalization of designers
within game companies. Tools provide designers with structure
through which they can help bring together the work of engineers
and artists in a meaningful way. However, as discussed in World 3,
most tools are project or team or company specific, making it
critically difficult for designers to professionalize outside the
industry. Thus, the mantra for those hoping to be game designers
—”go make games.” This is of course correct, but the kind of
literature that helps define what that means for a designer is not so
simply available.

Box 4.6

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Tools engineers are those that focus
specifically on software systems that connect artists,
designers, and the engineers working on a game's engine.
Tools can also provide other support mechanisms to a team.
Build tools, testing tools, etc., all fall under the purview
of the tools engineer. They are a particular breed of
engineer, because they often do not find themselves in the
limelight, though players may actually use their tools if
they are released to users in order to enable MODs.
Casey: So, you've always been interested in tools even while
in undergrad?
TOOLS_ENG_2: Yes. My thesis was really more of a user
interface sort of concept. The idea was to take some of the
complex work of 3D modeling in Maya and Max and simplify it.
Each application has all of these different operations for
how you interact with a model; you can grab a couple, or a
group of vertices and pull them this way or that, but it can
be really tedious because you can have thousands of vertices
that are visible. So we were trying to make the whole system
more gesture based or sketch based. You can take your mouse
and sketch what you wanted to do rather than the old method.
Casey: Now you are part of the SM3 team, what is your
official role?

TOOLS_ENG_2: My title is associate tools programmer, so my
role is basically working with TOOLS_ENG_LEAD, for the most
part. I'm spending most of my time on Peaches and other SM3
tools.
Casey: How is that going?
TOOLS_ENG_2: It's going well. I think it's going well.
Peaches is coming along. The hardest part for me is that I
feel like, and this could just be a personal thing, that
with all of the things we have to do, I feel like things
could be getting done faster or more efficiently. I'm
concerned about time constraints but no one has said if I
should be doing things faster or if turnaround is good
enough, so it is hard to gauge. There is also the scale of
the project, it's hard to keep up with what is going on
sometimes, outside our little tools world.
Casey: Yeah, they have nine engineers, or so, working on all
different components.
TOOLS_ENG_2: Because of that, a lot of times I kind of have
to look to TOOLS_ENG_LEAD to help buffer. Even within
Peaches, it is such a big program, I will start working on a
tool and have to keep asking him, “Where is this thing?” I
don't know. There is a huge code base and I don't understand
how it interacts with the game fully. Yet.
Casey: And you have things like Alchemy too . . .
TOOLS_ENG_2: Yeah. I feel a lot better about that now, but
at first I was like, “What is an IGB file? What are you
talking about?” It was definitely intimidating at first. The
cool thing about tools is that every time you work with a
tool, you get to touch a different part of it. So I learn as
I go.
AUTHOR_DEV_DILEMMA: Peaches was a data editor first created
specifically for the SM3 project. Alchemy was a set of tools
that defined a kind of basic tech upon which other games
could be created. Tools touch every aspect of a game. They
are part of an increasing desire for game development
practice to be less chaotic and developers to specialize.
Tools are thus about attempting to solidify the practice of
what it means to make games.
#: SET DEMO_MODE 0

As previously mentioned, there are no commercially available
“standard” tools for designers to use in the process of making games.
Instead, the job at each company of technical artists and tools
engineers is to create new software systems for designers, artists, and
engineers. While there are numerous “middleware” companies
creating tools, frequently these fill engine gaps rather than tools

gaps, meaning that they are designed to be used in the underlying
“tech” or code of a game, and while designers have tools of their own,
these tools cannot link together all of the other pieces of design as
must be done to create a game. That is the job of the engineer.

Tech is one of the most important pieces of code in game
companies: the foundational pieces that form the core of every
engine or game that a team of developers creates. Tech can include
aspects of the pipelines as well. My primary field site, in particular,
spent years and massive amounts of money and mind power to
create their internal tech. This system was originally purchased from
a company called Alchemy, which retains the name. More recently,
the goal has become grander than simply a game engine; the
company now wants to create a foundational layer of tech and tools
that can support not only a standard art pipeline, but also the data
pipeline of designers.3 It was with this goal in mind that Peaches was
created. The name was based on a historical practice of the tools
team that stipulated that all tools would be named after some sort of
food, which could later be justified by an accompanying acronym.

Peaches, seen in figure 4.4, was created in part to assist in dealing
with the complexity of a project like SM3 (the vastness of which
figure 4.2 illustrates). The sheer number of files and references
between files requires a new set of tools for developers. While level
editors and other systems have been quite common in the past
among game development companies, the goal of Peaches was much
broader. It was designed to be a system that could be expanded on,
as new kinds of design data were necessary in future projects. The
same tool could be used by designers to create special effects, levels,
and missions and to script cut scenes.

Figure 4.4 Peaches in action editing a game level

Even when working independently with tools, though, the activities
of game designers are intertwined with those of engineers and
artists. Each depends on the other for the successful completion of a
game. In the interim, with no standards and no standardized tools,
designers must constantly work with and without artists and
engineers in the construction of virtual spaces, story-lines, and
characters for which there is no agreed upon language. Designers,
much like videogame artists, are constrained by their tools, the
game's tech as defined by engineers, and the ability to translate
abstract concepts into forms that work with each of these. Designers
do not direct their ire at engineers, however. Instead, they take the
tools they have managed to cobble together, and run with them,
attempting to make them do things they were never intended to do,
in the hopes that what results is indeed “fun.”

If designers focus their frustrations in any single location, it is only
on the constraints driven by time, and on the frequent inability to
return to decisions made previously. Designers forge ahead because
the game is ultimately their vision with whatever tools they find at
hand. The designer is the exemplary bricoleur, attempting to create
spaces of play amid a myriad of artistic, technological, and corporate
restrictions placed on them. Yet, it is the set of systems that they
create that largely defines the player's world, though their labor may
be largely invisible to the player when done well.

World 4-4: Keeping Things Synched

At each level of game development, interactive tools abound.
Engineers use IDEs, debuggers, and profiling tools to better
understand the flow and execution of game code. Artists use
modeling, painting, and animation tools to craft the visuals to be
displayed in the game. Designers often use custom tools to combine
art assets into game spaces governed by a combination of game code
and rules, missions, and stories designed to engage the player. All of
these interactive tools must have pipelines that allow data to flow
from one discipline to another. This is where systems begin to break
down, in part because the pipeline occurs at precisely those cross-
disciplinary boundaries that have made the emergence of technical
artists and tools engineers necessary. The pipeline also fractures
most spectacularly because it is the most subject to breakage when
fault lines move suddenly.

When developers talk about what is missing, about the aspect of
game development that prevents them from being able to work well,
they frequently settle on the highly problematic term “vision.” As
they conceptualize it, vision is a clear idea of what you want at the
end of a project. Vision is assumed to come (or not come) from
somewhere above in the company, delivered by management to help
developers understand how to direct their experimental efforts.
When a vision is combined with a plan for how that vision can be
brought to life, the work can then be scheduled. Unfortunately
because of the constantly changing technological landscape, not only
is the vision often missing, but the subsequent “how to implement it”

is often absent. But the designers’ lament for a nonexistent vision
“ignores the fact that outcomes are socially accomplished in context
rather than individually calculated . . . it ignores the fact that
outcomes are often not consciously calculated, or even intended by
any one of the parties involved” (Knorr-Cetina 1983, 130). Vision is
accomplished along the way. Designers thus often desire the very
thing that they cannot have. Yet in a work environment where
predetermined end products and paths toward them cannot be
known, the ability to plan is significantly compromised. Without
plans for the what and how, designers balk. The conversation below
indicates how many developers have come to see vision as central to
their undertakings.

Casey: So, what do you think went wrong?
ENG_LEAD_Asylum: Well, if you want my opinion . . . , it's

lack of vision. If you know what you want, then you can get it
sooner, but most of the time, you don't know what you want, so
you have to see it. At the beginning, you don't really know what
you want, so you just kind of try things out, and you get one
thing, but you can't really tell how that works, because you need
these other things in place, but you didn't know quite what the
other things would be, because there isn't an overall . . . theme.
And then, the later you go, the more concrete things get, and its
more apparent with the pieces that you have, what you have to
do, and so then you end up with something. At preproduction,
everything is very free, flowing, and then when you go into
production, and try to execute, and then you're at the end of
production, and you see how everything turned out, which is
very different from where you started. But if you had a clear
vision of what you wanted at the start, then things might have
turned out differently. (Informant and O’Donnell 2005e)

Having spent three years observing (and more than seven working)
in game studios in the United States and India, I tend to agree that
games, which begin without a clear vision of what they are supposed
to be, have trouble being implemented prior to their deadlines. At
the same time that vision shifts over time during the development
process become more refined as it is explored. Furthermore, games
without a clear sense of purpose are also those that fall prey to the
multifarious desires of the companies that fund its creation.

Designers, more than any single category of developer, are
responsible for defining this vision. This is part documentation
(writing down what the game should be), but it is also about thinking
about how all the pieces should relate to one another. Undoubtedly,
they will shift as a game is developed. But without an objective, many
games wander aimlessly into production. Without a clear vision,
there is no reason to protest “feature creep” (an industry pejorative
for the additional elements that simply have no place in the game
being developed). Developers often run after half-formed or vague
ideas for additional features, only to find themselves miles down a
road that was not the best to first travel.4

Perhaps it is too idealized to expect to know precisely what you
want and how you are going to get it. After all, we've come a long way
since the “waterfall” method of design concept from the dark ages of
game or software development. The waterfall method was based on
the idea that a team would know explicitly all of the requirements of
a project before setting out to build it; however, as already noted,
game development is much more experimental, requiring changes to
the requirements throughout the process. Further, developers must
always answer to someone up the food chain and be capable of
arguing for or against changes that may very well derail a project. My
informants and I seek a clear vision of the final product with the
acknowledgment that the target will likely shift in new directions
throughout the life of a project. The distinction is that the game will
swerve in directions that fit the overall vision, rather than turning in
random directions that allow the overall structure and rules to take
control of the development process.

This vision problem becomes particularly daunting for Indian
developers. While they frequently have more detailed contracts that
govern their relationships with developers in the United States, the
constant flux of project needs in one location impacts its partner site.
For example, one location will have to scramble to rework art assets
when the art pipeline changes in a mirror location. Managers must
either negotiate change orders with the studio that has contracted
them, or have employees make the changes without adjustment to
the contract. Because US developers are so accustomed to rework,
Indian studios risk amiable social relations when they ask for
compensation for rework activities, which US developers assume are
“natural.” Because complete overhauls to the work in the United

States and abroad strain workers, budgets, and timelines, lack of
vision means more work, more tension, and more conflict.

Vision has really become shorthand for the goal that crosses each
of the disciplinary boundaries within a game. It represents the
idealized notion that having a common goal in mind will help keep
these systems in sync across their numerous fault lines. But even by
game developers’ own admissions, oftentimes the idea of what a
game should be at the beginning is quite different from what it is at
the end (Hoffman 2009). Even when one turns to a more historical
view of scientific and technological production, it seems difficult to
privilege the vision, as it will shift over the life of a particular project.
The “mangled” (Pickering 1995) character of technological
development lends itself to thinking in terms of “resistance” and
“accommodation” (Pickering 1995). The privileging of vision is thus a
kind of technological determinist position, though rather than
privileging the technological it privileges the vision. Thus, as Knorr-
Cetina notes above, a “vision” is kind of a false hope for game
developers. Design itself is more frequently thought to be a dynamic
process that involves numerous points of experimentation and trial
and error (Bucciarelli and Kuhn 1997). What game developers are
ultimately seeking is a means to improve the flow of information and
communication across fault lines. Because, ultimately, the “vision” of
a game is caught up in the ability to keep that vision communicated
in a way that speaks to all of the disciplines involved in its
production. If the vision of what a game “should be” is both shifting
and experimentally determined, then ensuring that that vision can be
updated and communicated quickly and accurately are core to the
problems facing developers. At the same time, because organizations
frequently believe they cannot spare enough engineers and artists to
fill the roles that attempt to bridge fault lines, game development
organizations find themselves grappling with stressed systems that
ultimately fail when in full production mode.

It is important to point out that when these highly coupled systems
break, they break spectacularly, and do so more frequently when
they have no documentation.5 They are highly coupled in both a
technological sense and human sense. Numerous technologies touch
one another and numerous disciplinary understandings are also
interconnected throughout the system. Implicit assumptions based

on previous experience may prove more volatile than expected
because of the shifting context of work.

Because of the sheer number of disciplines, technologies, and
practices that make up the practice of game development work, there
are a large number of interconnected and dependent pieces. As we've
seen before, artists or designers cannot see the results of their work
until engineers create the underlying code or tech to support those
features. Artists may be unable to see their work in a game without
data defined by designers. And, designers may not be able to see the
results of their work without the associated art assets of the artists.
At the same time, numerous complex software systems are mediating
the interaction between these individuals. The build system itself is a
system that may fail or break, regardless of the health of the
underlying game. In other cases, a game may function on one
system, but not another.6

While “incidents are overwhelmingly the most common untoward
system events,” I suspect that given the frenetic pace of game
development, lack of broader discussion of best practices, or any
practices for that matter, the commonality of full-fledged “accidents”
becomes much more common. As other industries privatize and
place more emphasis on secrecy rather than open discussion, the
implications outside of the game industry are troubling. While a full-
fledged “system accident” for a group of game developers results in
long hours and a stressful work environment, the implications for all
creative collaborative workers, whose developments are not so
perfectly contained, becomes particularly troubling (Perrow 1999,
70–71).

The general unpredictability and instability of production systems
has led many to see the answer in more real time feedback
throughout the systems, including the human component. The game
development trend has been to move toward what I have termed an
“interactive” model of game development, where changes and
modifications to the overall complex system can be viewed in real
time and instantly.7 While in some respects, the goal of instant
feedback and response can indeed be a boon for developers (as in the
ability for an artist to know precisely how and why things are not
working as they had thought they might), the same goal does not
necessarily extend itself to the realm of human work or work
organization. People simply do not move, think, or understand

complex problems instantaneously. We need moments of rest,
separation, or thought to reach conclusions. These goals surrounding
interactivity can simultaneously be overextended, resulting in what I
term generically “churn,” or the inability for workers to find a
reasonable space of time to sit and work on their assignments.
Feedback and information for the sake of feedback and information
result in situations where systems come to a dynamic standstill.

Creative, collaborative, and interdisciplinary work is difficult
already. There is a reason that disastrous portends like “fault lines,”
“sedimentation,” and “volatility” are used in these contexts (Traweek
2000; Fortun 2006). The development process is fraught with the
continual (re)formation of creole languages and the experimental
process. Tools break and complex systems fail all throughout the
development process. In an effort to increase efficiency, interactive
systems are deployed, but can distract us or become goals in and of
themselves. The conversation between an individual's work process
and broader systems is a critical component of where we find
meaning. Quite literally, it is the “meaningful play” (Salen and
Zimmerman 2004) of work itself. Game developers by and large have
been lost in their ability to really reflect, document, or talk about
those experiences that would historicize their activities.

World 4 Boss Fight: This Ain't Anything like Grandma's Boy

The ability to interactively work across disciplines to solve problems
was almost universally cited by informants as a “useful” or
“necessary” aspect of game development. Fast cycle times and
feedback loops that allowed small groups of developers to rapidly
find solutions to problems, which they faced in the development of a
game, were found productive. The project lead of Bioshock, again,
notes how interdisciplinary collaborative teams were crucially
important throughout the development process: “Over the course of
development, we created multidisciplinary strike teams to work on a
wide variety of problems, including AI, animation, visual effects, and
cinematic. The results of those teams were universally better than
the previous non-iterative process” (Finley 2007, 24).

At the same time, this process, when under pressure can result in
reckless cycling, or rapid changes that result in a more chaotic
structure. The ability to “iterate” on a problem with a team is
productive, but when that iterative structure is put under immense
time pressure, it often begins to fall apart, rendering the resulting
incessant iteration useless.

As noted in my fieldwork, unpredictable results may occur when
iteration and fast feedback loops are bypassed or disconnected from
those structures that attempt to keep them under control. An
engineer working on Microsoft's game Age of Empires, developed by
Ensemble Studios commented on a phenomenon very similar to
experiences of my informants during periods of intense activity.

The lead is the go-to person when someone outside has new
requests for the team. As the development of AOE progressed
and the pressures rose, adherence to this system broke down as
people went direct to get their needs filled quickly. We paid a
price for it. People didn't know about programming changes or
new art that was added to the game, and the level of confusion
rose, creating a time drain and distraction. We all had to stop at
times to figure out what was going on. (Pritchard 2003)

System failure can result when interactive interdisciplinarity
disconnects from the safety valves between feedback loops.
Emergent forms of structure within these groups must be considered
as important as the more rigid and formalized structures to allow for
the kind of experimental outcomes that form the foundation of
effective game development practice. These structures must also be
communicated among team members, a process that is frequently
neglected when time pressures are imposed, are disconnected from
knowledge about where a team is, or are oblivious to how a team is
functioning.

Systems are doomed to fail when a small number of individuals
working at the margins of disciplines—the tools engineers, technical
artists, and leads—are not provided with the human and time
resources necessary to prevent breakdowns between groups. Again,
the project manager from Insomniac Games comments about the
tendency toward excess these systems can exhibit: “Adding to the
confusion, only a small number of programmers had the knowledge
required to debug the problems, and these people were overwhelmed

with requests for help. If it weren't for their inhuman effort and long
hours hunched over keyboards, we would have never hit launch date”
(Smith 2007, 35).

Unfortunately this bottleneck effect is frequently solved by asking
or assuming that employees will stay late to make up the slack
created by overwhelmed feedback loops, ineffective interactivity,
interdisciplinary breakdowns, or disrespect of emergent forms of
structure. Time spent maintaining effective systems is seen as
separate from the actual work of making a game. This can no longer
be the case if the work of game development really does include this
interdisciplinary work; for teams to work together, studios must take
into account the structure and process of game development.

For game development to truly find stability or sustainability, the
industry must adopt a modicum of standards around which tools and
practices can be instituted. Most importantly, these standards, tools
and practices need to be open for debate and conversation. They are
ultimately too important to be hidden behind NDAs or licenses
available only to a small portion of those who call themselves game
developers.

World 5: Leeroy Jenkins, Autoplay, and
Crunch

Box 5.1

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Work/home balance is an issue for every
developer who has spent a significant time in the industry.
Yet, it seldom remains a consistent issue that developers
devote themselves to solving. Game developers struggle with
the immateriality of their work, in that it can make it
difficult to justify to significant others left to late
nights on their own, what precisely they were doing all day.
Of course it doesn't help that there may very well be the
assumption, though false, that developers might just be
playing games all day.
Casey: Has working in games had an effect on your personal
life?
ART_Spidey_2: It definitely hasn't helped it. One of the
hardest things is how I sit here all day working, but when
the computer turns off, I don't really have anything to show
for it. I mean, when you're working for eighteen hours and
you go home, you can't really show someone all that you did
for that length of time. The other part is that it's such a
young industry. There are lots of people fresh out of
college, who aren't married and love working on games. So it
isn't a normal office where people come in at 9 and leave at
5 and if you stay until 8, people are appalled. Here, many
people are like, “I got nothing else to do.” So if you're
the one with a wife at home, it can be hard. But things are
flexible, which is good. But probably more bad than good.
AUTHOR_DEV_DILEMMA: So, many game developers dive into the
game industry. They start their careers passionate and
excited about making games. Many, within a very short period
of time, begin to develop a jaded view of the industry.

Sometimes it seems as if being jaded about the industry is a
kind of badge representing one's actual experience working
in it. So many love it, in spite of it. Love and hate mix
into a kind of abusive relationship that results in the
majority spiraling away from the game industry within five
years or less.
Casey: So, do you still love it?
DESIGN_LEAD_1: Did I ever love it?
Casey: That's a good question.
DESIGN_LEAD_1: It is one of those things. Sometimes you love
it and sometimes you hate it. I haven't completely lost the
romantic notion of game development, because everyone has
hopes that they're going to work on something really cool
and it's going to do well. Each project that you work on
kind of grinds away on that dream, if it's not successful.
I wouldn't want to start my own thing. I know how much

work that is. I guess I know what I'm looking for if I ever
decide to go somewhere else. I was virtually ground level
this time along, and doing that all over again doesn't seem
appealing. But there is the quality of life thing too.
Developers don't last more than ten years and I've been
doing this for ten years. So, now I'm asking, can I keep
this up if I wanted a family, much less a girlfriend? The
quality of life does suffer. Some people are fine with that.
Because they're hermits or programmers or whatever.
At the same time, I can't really go back. Can't do

biomedical engineering without going back to school, it's
been ten years. I guess I could manage just about any team
working on some project. For programmers and artists, when
they leave the industry, they have a path. Designers. . .
we're kinda screwed. What a lot of people do is start side
projects. Things they have control over. I'm going to do
more of that. I haven't in the past because I'm just drained
every day.
AUTHOR_DEV_DILEMMA: With the emphasis placed so often on
“passion,” it only makes sense that for so many developers
when they walk away, they are really done, their experiences
and expertise lost to a “romantic” relationship that simply
wasn't balanced to begin with.
Casey: What do you like the least?
TECH_ART_1: Oh, it has to be the culture of overtime. I
mean, there is a lot of history in the game industry as
rooted in nerds in garages and doing it for the love of it.
That has just filtered down into places expecting employees
to just go above and beyond without question, all the time.
As I've gotten older, I've found that there are other parts
of my life that I care about. When I was young, I didn't. I
would work a ninety-hour week and be happy. I don't really

want to do that anymore. It doesn't mean I care any less
about making great games or my career or anything. I think
that is a part of the industry that needs to be fixed. It
has to be a maturity issue.
Casey: What do you mean “culture of overtime”?
TECH_ART_1: I think it has to do with the hyper-
competitiveness in the industry. For people to stay ahead,
people making decisions have to push their employees. Often
times it's easier to say, “You. You work. You employees work
harder,” rather than having to spend money in areas or hire
another person to do something.
AUTHOR_DEV_DILEMMA: This “work harder” mentality owes debt
to the mythology of the technology startup. The culture of
having come up from a garage persists, and even though many
of these companies have matured, their day-to-day work
practices have not. The culture of overtime authorized in
the startup is maintained (even in consolidated) in multi-
national game development publishing companies where, out of
fear of having to break into the game industry again, many
developers work harder rather than pushing back against
management or licensors.
Perhaps all of this isn't unique to the game industry. And

maybe, game developers might want to consider their work as
yet another creative industry enmeshed in a broad system of
global political-economic networks that shapes their daily
work experience rather than as completely distinct from
broader work settings.
#: SET DEMO_MODE 0

World 5-1: Managing Chaos

What is it precisely that drives game developers to do what they do,
and to do it so intensely in many cases? As we have seen in the World
1 discussion of endemic crunch problems, developers tend to work
hard and stay late, encouraged by an industry that chronically
mismanages deadlines and demands inhuman work hours for long
periods of crunch during production. Most troubling of this intense
work environment is the collapse of desire, work, and play into
AutoPlay. AutoPlay, a term coined by an anthropologist studying
casino game players, “marks the point at which the varied, complex
forms of interactivity and productivity that have become the
trademark of the ‘digital age’ loop into recursive forms of

disengagement . . . Players cease to be desiring subjects” (Schüll
2005, 78). In other words, AutoPlay marks the transition at which
aspects of work/play that encourage our involvement or enjoyment
(“fun”) in work practice—collapse and disengage—crunch.

In an environment flush with both productive and playful
distractions, developers often find themselves much like Schüll's
gaming machine players, searching out isolated locations where the
pursuit of creation can take place uninterrupted (Schüll 2005, 73).
They, too, desire the deep hack mode1 where lines of code, level
design, mission scripts, animation frames, texture art, or model
geometry can be produced. The drive to pursue these longings often
pushes developers toward excess.

In the spring of 2005, a video clip released on the newly introduced
Google Video service began making the rounds of VV's offices. Before
the eventual point when everyone had loaded up the video on their
own machine, small groups of developers would crowd around a
computer watching the clip together, bursting into laughter at one
key moment.

The two and a half minute clip was made from within the game
World of Warcraft (WoW). It features what appears to be a WoW
guild, “PALS FOR LIFE,” preparing for a “raid” of difficult sections of
the game. The team members are busy audio chatting with one
another about the tactics and actions they will deploy upon entry into
the room. The conversation occupies the first nearly minute and a
half of the clip. Their careful preparations are suddenly interrupted
when one of the guild members, “Leeroy,” returns from being “AFK”
or Away from Keyboard only to yell, “Alright, time's up, let's do this!
Leeeerooooy Jeeennkins!” Each time the huddled groups of
developers watched the moment “Leeroy” charged into battle (to the
dismay of his clan brothers, who were discussing the tactics they
would so delicately deploy to ensure victory), VV employees would
laugh uproariously. In the video, there is a subsequent moment of
stunned silence before the raid leader says, “Oh, my god, he just ran
in.” The clan then attempts to run in and complete the mission only
to be “wiped.” The video ends with the death of the guild members
and much audio chatter about how stupid Leeroy is, to which he
replies, “At least I have chicken,” which can only be assumed to be
his reason for being AFK.2

I had forgotten Leeroy for a while, but when I least expected it, it
resurfaced. I began to think of the clip as an effective analogy for
how, despite all attempts to otherwise stave off defeat, when your
“chances of survival” are only “32.33 percent repeating,” 3 things
often do not go quite as planned. Complex in different ways than
making games, the humorous WoW guild raid video clip bears many
similarities to the work spaces of game developers. Frequently,
despite all of the planning and attempts to manage the process of
creating games, game development results in a final melee that bears
little resemblance to what many hoped the final battle would look
like.

Most games are believed to go through an idealized waterfall
process from preproduction to production to testing (or Q/A) to
golden master when the final version of a game is sent to the
publisher. This idealized process barely scratches the surface of how
games actually get developed, but the widely held belief that this is
how games are developed means that the notion persists.4 Even as an
idea, however, it so grossly misunderstands the process of game
development, which is much more iterative and messy, that it
actually harms the industry to understand this as the way games get
created. It even goes so far as actively ignoring such well known
software engineering ideas like “the mythical man month,” and the
inherent problematic character of creative technical work (Brooks
1995). This approach ignores assumption in Brooks’ argument, a
conjecture game developers frequently echo, that until you begin
making the thing (in this case a game), it is just an idea that you
likely fully don't understand (Hoffman 2009). Perhaps most
frightening is how isolated the conversations about the messiness of
game development are. Many game companies have attempted to get
better at the process by having process managers or people who
make it their job to better understand how to more effectively make
games.

More recently, many game development studios have begun
playing with more broadly establishing software development
processes. “Agile” development or one of its incarnations, “Scrum,”
have been widely touted as making significant improvements to the
game development process. Indian game companies in particular
have made extensive attempts to bring proven software development
best practices into the context of game development. In many cases

the upper management of these companies come from other areas of
software development where similar methods have improved the
management of software production. The steadily growing number
of sessions at the Game Developers Conference that feature the
words “process” or “management” in their title will give you an idea
of the growing popularity of this new area.5 Some studios in the
United States and Western Europe, however, are fighting this
interest, asserting the widely held belief that game development is
just different, unmanageable. Sometimes, teams actively combat
management techniques that attempt to discipline the methods by
which games are developed. As discussed for overtime abuses in the
DEMO_MODE for this world, this resistance to process changes is
due in part to the origins of many US game developers who get their
start while in college, working out of dorm rooms, garages, or
basements. Many studios have worked to integrate new methods and
practices to innovate in the area of process; yet the lack of experience
and discussion about these processes fails to sufficiently prepare
developers for the melee that frequently ensues when these highly
coupled, complex systems interact.

While “process” as generically conceptualized is where many
developers believe the “solution” to work/play issues lies, “scrum”
has become the most common. And it works, to a certain extent,
except that the interface with external demands made by publishers
and console manufacturers, secrecy about game development and
the fetishization of interactivity all prevent process from making
fundamental change to the industry. The producer of the game
Crackdown notes how the constant movement from platform to
platform created significant difficulties during the development
process.

Over the course of its four-year development, Crackdown
moved from PC (where it was prototyped), to Xbox (where it was
initially intended to stay), back to PC (in preparation for move to
Xbox 360), to Xenon Alpha, then Xenon Beta, and at last to
Xenon/360 Final. Even on the final hardware, we continued to
take hits from significant system software updates every few
months. When at last the platform stabilized during the last year
of development (post hardware launch), development efficiency
increased massively. (Wilson 2007, 29)

This reminds us that, while developers are at the whims of console
manufacturers, their ability to control their own process is severely
limited by the industry habit of creating efficiencies and standards
for each project as it develops rather than standardizing tools and
systems.

While it is true that process can improve difficult situations, it
cannot account for the myriad influences that shape the socio-
technical milieu of game developers. As with pipeline and engineers’
tools, Scrum requires localization at the level of each studio. It is a
conceptual framework that must be worked out by each studio and
must frequently be modified for each project. Scrum is a process and
as such, doesn't begin to address the necessary technological issues
associated with the construction of pipelines and tools that
accommodate those processes. The pipeline is to data, assets, and
code as Scrum is to the collaborative, organizational, and
communicative practices of developers. The continued norms of
secrecy demand that game developers must experimentally figure
things out on their own, which makes the broader success of all
projects difficult for game developers. While Scrum offers promise, it
(or any technique) will remain inherently limited without
mechanisms for institutional learning.

World 5-2: The Importance of Passion

Talk to game developers for even a short time, and you will quickly
hear that the game industry is “more social” than other industries,
and that networking is one of the most important aspects of
“breaking in.” Gaining access to the industry has become a game in
and of itself. Nearly every game developer has a story to tell about
how they managed to break into the industry and is more than happy
to share it. I often joked with new developers that “you've got to
make games, before you can make games,” which usually elicits a
laugh, or a story about the demo reel, engine, or portfolio that they
were certain had something to do with their hiring.

Box 5.2

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Many developers talk about how it isn't
a requirement that people crunch or dive so deeply into
their work, rather it is just what happens. That there is so
much passion, drive, and a lack of other interests early in
a developer's career that it is easy to leap into the work
with little regard for the rest of the world. In other
cases, developers do identify that there are times and
situations where crunch was required, for one reason or
another push forward and work for extended periods of time.
Casey: So what causes that push to produce so much?
TECH_ART_1: I think it's a lot of things. Some places, it
may very well just be the love of it. So, take Bungee for
example. They're making Halo 2 right now, and they know
they're going to make millions and people are going to buy
it and its going to be awesome. So I can imagine many
employees just don't mind being a part of that. But, I've
seen places where working tons of overtime was purely to
make up for management miscalculations or bad scheduling or
demos for higher-ups that are sprung on people. Bosses could
have just said, “No,” to things like that, but they didn't,
because it isn't them working really hard. In other cases I
think it is just immaturity with regard to running
businesses.
Casey: Do you think that is changing?
TECH_ART_1: It's also because it is such a competitive
industry to get into. You feel like if you don't go above
and beyond all the time that you're going to get weeded out.
But I think when you have management saying, “You need to be
here for twelve hours a day, just for the sake of it,” that
you suddenly have a problem. Some people who are driven are
also efficient and they don't need to do that. But you can't
just put it on the managers. There is a culture that
supports it. Not to mention the kind of screwing around that
goes on. I mean, at one place I was at, we would play
Battlefield all day. Ugh. Bad decisions.
AUTHOR_DEV_DILEMMA: A competitive industry, dependent on
talented and committed individuals, capable of providing
them with space to do interesting work is enough for many to
slip into life and work styles that actually prevent long
term engagement with the craft of game development. Thus, in
some cases abusive work patterns derive from passion and in
others from an employer requirement (and those reasons may

very well differ from person to person on a given team).
Yet, it all falls into the same category: overtime. There
exists a culture of overtime that is simultaneously
requirement, expectation, and simply a product of passion.
“If you aren't passionate enough to make games, then maybe
you shouldn't” becomes a consistent mantra. Certainly, there
are people willing to take your place if you can't or won't
work long hours.
#: SET DEMO_MODE 0

Nearly every US game developer who has broken into the game
industry has done so by making games, or something as close as they
can get, on their own time. While this means that game development
companies benefit from new hires being moderately more
knowledgeable of what it takes to create videogames, it also means
that the industry imports some of the work habits of college students
into their studios. Procrastination and an “it will come together in
the final hours,” mentality frequently prevails. Some developers even
bring college sleeping and eating habits into game companies. Late
to rise and late to leave can frequently become the modus operandi
of a studio if young developers are left to their own devices. For
many, game development is the interlude to a host of other work- or
school-related activities. It is quite literally play for those looking to
break into the industry.

I myself broke in during the transitional period, where game
programs at schools were just starting to come into existence.
Maybe this is why I still tell high school students who want to
make games that they should:

get a degree in CS, or art, or business, or whatever at a reputable
four-year school

work on lots of games, preferably with a game development club,
in their spare time while in college (start a club if it doesn't exist)

and network the hell out of every conference or IGDA meeting
they can get to

I guess I'm old-fashioned, but I still think it's the best way.
Because, believe it or not, you may change your mind about
making games while you're in college. And it would be nice to
just say, “Okay, I'll just stop making games in my spare time and
going to conferences,” as opposed to having to change your
major, maybe change schools, and worry about all those extra
credits you took that are not going to help with your new degree.
(Kazemi 2007)

In addition to importing poor time management techniques from
college and the sense of play that surrounds the production of games,
this perpetuates the pervasive culture of secrecy that dominates the
industry. Students are expected to “make games” without any
knowledge of how they are produced in the actual game industry.
Breaking in perpetuates the culture of secrecy. Since these students’
learning process is divorced from insight by those with experience
working in the game industry (either because they are unwilling or
unable to share information gathered through experience) many
developers view their own solutions to common development
problems as the only possible ones. Because US developers have not
had an opportunity to make games in the context of work, the ability
to discipline or improve their practices is rarely taken. When game
development is only a hobby, there is no drive to discipline the
practice or understand why paying attention to practice is important.
Young developers who find themselves at studios that invest time
and energy into developing best practices, tools, or production
methods frequently rail against their newfound restrictions and
parameters. These developers do not last long at established studios
and instead strike out on their own, often making the same mistakes
as they muddle their way through the process of making games.
Learning how to make large-scale games, or games that can be easily
modified to meet the demands of numerous actors, is not done until
one reaches the workplace.

It is in the transition from play to work that developers begin to
take seriously the importance of practice. Constructing pipelines and
tools are rarely (if ever) documented or discussed by developers.
Even where those conversations are occurring, most young
developers fail to even know they should be paying attention. This is
not unlike the work of engineers or technicians more broadly

demonstrated by ethnographic fieldwork of these organizations (Orr
1996). Each studio becomes responsible for developing sets of
practices, ones usually based on those who started the studio, and
their collective experiences.

In contrast, many Indian game developers go straight from their
undergraduate education to game development companies often
without a portfolio or game development experience. While these
developers must learn the ropes of game development on the job,
they do so in a context of work. This frequently makes it easier for
them to understand game development as work, rather than only as
a personal passion. In the Indian market, it is desirable for
developers to have experience making games, but most companies
assume that a significant amount of training will be necessary; as a
result, developers in emerging game industries don't experience
breaking in as US developers do. Even Western European developers
seem to feel that breaking in is an experience of American
developers.

The disadvantage of a less rigid barrier—of an industry in which
most new developers are completely inexperienced in game creation
combined with game developer's secrecy regarding the everyday
work practices that speed and enable development—is that many
young game development companies are on uneven footing when it
comes to development operations. This tension is greatest when it
comes to the full game development process; the development of a
game from start to finish, often referred to as the “completion of a
title.”

The “titles” (games) in which game developers have appeared in
the credits tends to be the form of cultural capital that gets them
hired when changing studios. For developers in emerging industries,
like India, this can be problematic since the same networks that
govern studios also govern individuals by default. Studio heads may
have willingly traded away the ability to publicize their involvement
in the production of a game for greater monetary compensation,
which means the studio and its developers get no credit for the title.
While many of my Indian informants joke that the Indian legal
system makes it difficult to enforce some of the limitations rendered
by NDAs (including not insisting on credit for work done in
international studios), most of my informants would not consider the
possibility of breaking the agreement. This issue of involuntarily

producing uncredited work is of crucial concern for game developers,
which has made it one of the many issues in which the IGDA invests
time. Game industry veterans Feil and Weinstein introduce the
association's recent efforts to standardize crediting practices.

Crediting in the game industry has become a hot topic in recent
years. As development teams grow bigger and outsourcing
becomes more prevalent, the informal crediting procedures used
become increasingly insufficient to describe each developer's
exact role within the development process. Additionally, the
non-standard naming procedures for job titles that have thus far
characterized the free spirit of the gaming industry have now
become a liability for those who wish to prove their skills when
moving from one company to another. A movement to
standardize crediting procedures and titles has never been more
needed.

The IGDA Credit Standards Committee is a group of
volunteers who have come together to study, document and
propose voluntary game industry crediting practices that
properly recognize those responsible for the creation of games.
To do this, we are creating two documents: one which details the
current methodology of credit assignment as well as catalogs a
set of the most accepted job titles found within the industry; and
another report to propose a set of “generally accepted practices”
which can be adopted voluntarily by developers within the
industry to resolve difficult crediting dilemmas. (Feil and
Weinstein 2006, 3)

Having to depend on credits or titles as the measure of a
developer's worth, especially given the controversy and lack of
standards around the practice, seems a weak metric for measuring
the vast amount of work that goes into the production of a game.
This ultimately suggests the question, “What, precisely do studios
desire of those working within these secret spaces?” The answer,
perhaps, lies in how those secret spaces are defined, and who is
allowed to play within them.

This text has touched often on the idea of work/play, a concept that
speaks to the kinds of activities that occur during the work of game
development. One reason that we link these two experiential and
professional concepts, other than the fact that developers play games

and do work to make games, is that work/play provides a mechanism
that brings other kinds of effects back into the conversation. Work is
laborious, and game development certainly is no exception, but it is
also enjoyable in ways that speak to play. The imagination or
imaginative capacities of play have a great deal to do with our linking
of work/play. As play theorists note, “imagination, flexibility, and
creativity” of the “play worlds” link to narratives of innovation and
progress (Sutton-Smith 1998, 11); yet the ability to be creative,
flexible, and imaginative on the job is not all that new. Nor are the
problems of both parsing and harnessing work/play. Many in game
development and new economy work more generally have attempted
to create a hierarchy of work, one that separates the imaginative
capacities of one set of laborers over another. While it is true that
there is an important difference between creativity and imagination
for personal amusement versus creativity and imagination as aspects
of work activity, the linking of work and play as something
particularly unique to new economy, or game development work in
particular, seems premature. Rather, it has likely long been an aspect
of creative collaborative practice pre-dating the new economy.

One part of what turns play into work, especially in game
development, is skill. The necessary “skill” of workers in game
development is difficult to place, seeming to lie somewhere between
intuition, technique, experience, technical prowess, and artistry.6
Game development is varied in its capacity, a fact that is frequently
ignored in favor of focusing on the engineering tasks of game
development. The work of creating games is highly complex, but also
it can be highly repetitive. I was continually impressed by the
technical feats my informants could accomplish, and simultaneously
surprised by how much repetitive work they tolerated. The concept
of work/play allows the cultural analyst to conveniently ignore the
complexity in which these things coexist without attempting to
understand their broader context. Work/play, when considered as a
muddling practice of stops and starts, demands interest and drive (or
perhaps passion) but also requires “skill” to inform those activities.

Of course, the concept of “skill” is problematic, as it serves as
another means by which access is managed. Rather than using more
concrete metrics, studios privilege this amorphous and
immeasurable quality in developers, which can act as a convenient
means for eliminating or preventing the acceptance of alternative

perspectives. The skills necessary for success in game development
are wrapped up in a culture of secrecy. To find out how to make
games, developers must make games. This circular logic elicits mirth
from developers, precisely because of its contradictions. To prove
yourself capable of working in the game industry, you must work in
the game industry. Even interviews can exhibit the strangeness of
these requirements. Riddles, trick questions, and other abstract tests
can be used to determine one's “fit” in an organization. Most
important, at least in linking our work/play system to those systems
of playful relation that actually drive it, is the closure and secrecy of
social networks in the game industry. The presumption of, “This is
for us, not for the ‘others;’ what the ‘others’ do ‘outside’ is of no
concern of ours at the moment,” makes it convenient for developers
to ignore the insights of others, occasionally cherry-picking ideas
from other worlds without really examining the consequences of
those ideas. An insular industry serves as a kind of cultural blinder
for developers, blocking the industry from outside view (and insight)
and trapping developers within its cultural and technological walls. A
problematic result of this blind isolation is that developers distance
themselves from alternative perspectives: “Inside the game, the laws
and customs of ordinary life no longer count. We are different and do
things differently” (Huizinga 1971, 12). This sense of being apart
from, as mentioned in World 2, allows developers to assume their
worlds as uniquely distinct in the world of software-mediated
creative work. This evokes Huizinga's observation that play often
attempts to wrap itself in a sense of mystery and assertion that the
real difference lies simply in the demand of play to call itself
different. “The exceptional and special position of play is most
tellingly illustrated by the fact that it loves to surround itself with an
air of secrecy,” is of critical importance to our understanding of
work/play (Huizinga 1971, 12). We do things differently here; do not
expect your ways to be our ways.

It is possible to situate the culture of secrecy of the game industry
in a sense of play, but given its temporal persistence, it seems
inadequate. In more than one instance, informants referred to the
craft of game development as a kind of technological “dark art.” The
idea that the craft of game development is almost a kind of witchcraft
or sorcery places it more centrally in the culture of the community.
There are numerous anthropological examples of how witchcraft and

sorcery are central to “control[ling] flows of power in a society” and
often “incorporate general concerns about uncertainty, scarcity, and
risk” in relation to ambiguous power flows. (James 2012, 50–51).
The close control of social relations and the desire for creating order
in light of complex forces that destabilize the community makes
intuitive sense. In many respects, “dark sorcery” and its craft are an
important means by which cultures are “capable of defending
[themselves] against the depredations of the outside world”
(Whitehead and Wright 2004, 7). By rendering aspects of work and
social relations opaque, those operating on the inside protect
themselves from outside influence. Yet, the maintenance of the
culture of secrecy among game developers is not so actively
perpetuated. It more accurately fits into the model of a “public
secret,” or “that which is generally known, but cannot be articulated”
(Taussig 1999, 5). It is with this in mind, that I “point out the
obvious” of mythologies surrounding game development, for even
the “obvious needs stating in order to be obvious” in this case
(Taussig 1999, 6).

World 5-3: The Game Develop(er/ment) Mythology

These cyclical arguments of needing to open up, yet rejecting such an
act of subversion in the culture of play, hearken back to the “breaking
into the industry” narratives of informants, and the entire sub-genre
of game development community writings about how one can gain
entry to the restrictive networks of access. While it is true that
work/play is imaginative, interesting, and desirable, it seems that the
way it wraps itself in secrecy and closes off networks of access further
elevates its status and desirability. The levels of secrecy and networks
of access pervade numerous aspects of the work/play of the
videogame industry. The mythology that surrounds the game
industry about what game development is, who it is for, how it takes
place, and its broader political economic context all enter into this
equation.

The secrets of manufacturers, even when revealed to a licensed
engineering team, are protected by restrictions on what may be freely
shared outside of an individual studio. Chances are, even if two

studios are covered by the same contracts and non-disclosure
agreements, they will be reluctant to speak in specificities for fear of
transferring some specific piece of “proprietary” information. The
threat is not only of revealing secrets that might give a rival studio an
advantage, but of angering the publisher or manufacturer who
controls future contracts. Artists who move from one company to
another will encounter entirely new, though perhaps quite similar,
technical systems that enable their work/play. The immense
categories of work covered by copyright, non-disclosure agreement,
or corporate contract encourages the fallback position that
everything is secret. Names of characters, basic game mechanics,
story lines, tools, model requirements, engineering standards,
processes, pipelines, organizational structure, clients, publishers,
and hardware being worked with all begin to fall into the category of
“secret.” And because ongoing pervasive secrecy within and among
each studio compounds the historical legacy of secrecy in a walled off
industry, potential answers about how or why systems have been
constructed in the way they were remain unknown.

The importance of the secret, combined with an average career
lifespan for game developers that hovers somewhere around five
years (Staff 2007), results in a situation that resembles a perpetual
startup company machine. Experience is crucial to the game
developer's work, but it is the very thing that has proved elusive for
the game industry. Secrecy and inexperience leads to continual
reinvention of the industry in terms of methods and technologies.
Those companies that do succeed at creating games are often
purchased and incorporated into the increasingly secretive inner
circles of the videogame monoliths and the acquired knowledge
locked into powerful, legally circumscribed spheres. Game
development has no theoretical foundation that can be simply
applied; and even if an all-encompassing theory of game design did
exist, all theories are “models or tools,” and it is the technologist's
ability to “apply theory through recognizing situations as similar”
(Turnbull 2000, 43) that would allow the universal use of that
knowledge. Few developers have access to shared information, even
fewer have lengthy careers, and therefore the opportunity for
industry learning, maturity, and advancement is lost.

Most conversations with developers tend to focus on
“sustainability” or the ability for the industry to exit its state of

perpetual startup. This “sustainability question,” which is what
drives much of developers’ anxiety about the industry, has very little
to do with monetary stability. The massive amounts of money
swirling around the videogame industry at the moment, though
staggering and likely unsustainable, are not the elements that
concern developers. Their unease focuses on the long-term viability
of making games as a professional craft.

In part, the sustainability question is linked to a widespread lack of
understanding of the myths and realities of the videogame industry.
The complicated matter is that, in many respects, the industry, as it
has currently constructed itself, depends on widespread belief of the
myths noted in table 5.1, which encourage or hinder new employees
and new investment.

Table 5.1 Common myths about the game industry
Myths

1. You get to play games all day.a

2. You get to make the games you want.

3. You get infinite time and resources to make a game.

4. Every game makes millions of dollars, and so do game
developers.

5. Games are for kids.

a And, by corollary to this myth, should self-ascribe to being “gamers,” which has
significant implications for the diversity of individuals seeking to make games.

These myths, as toxic as they are to the industry's ability to attract
and retain talent and capital, persist in part because of the industry's
penchant for secrecy and in part because developers simply don't do
enough to discourage these myths. For the most part, the all-day
game-playing myth has begun to wane in US conceptions of game
development, though popular culture does still fall back on this
myth, as demonstrated in a movie titled Grandma's Boy. The story
line's basic premise is a weed smoking, unmotivated yet brilliant Q/A

developer who plays games all day with his coworkers. In his free
time (of course) he is able to develop a game for the Microsoft Xbox
completely on his own and without a DevKit, SDK, debugger,
computer, or actual resources of any kind. His “development”
process also appears to be his playing a videogame that his
grandmother also plays on several occasions, offering her feedback
and adjustment of. Even game development programs at schools and
universities will fall back on this myth of constant game play in an
effort to recruit new students.7 In the commercial spot, two twenty-
something men gaze toward a screen invisible to the viewer,
controllers in hand. “Oh, better hurry up, the boss lady is coming.”
The boss stands in the doorway and asks, “Have you guys finished
testing that game yet? I've got another one I need designed.” To
which one replies, “We just finished level three and need to tighten
up the graphics a little bit.” As the ad closes out, the two men
exchange glances and one confesses to the other, “I can't believe we
got jobs doing this.” The other replies, “I know, and my mom said I
would never get anywhere with these games.” People who talk or
write about videogames, however, are beginning to understand at a
basic level that the actual work of making games involves tools that
engineers, artists, and managers have already used for years, with
new custom tools filling in the holes when necessary.

Box 5.3

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Much of game development isn't actually
the creation of new and exciting titles, but an attempt to
capitalize on the movie industry model of sequels upon
sequels of any one given intellectual property, except that
game studios have significantly more work required between
sequels.
Casey: I know a lot of game developers worry about
sustainability.
STUDIO_CREATIVE_HEAD: [T]here is no good way for publishers
to leverage their content beyond a certain point. So the
game gets released. It may go to greatest hits, which is
actually a pretty good model that keeps games on the shelves
longer, but then it is gone. And often it is because the
technology has moved on and the platform you played it on is

outdated. Games have no model of: theatrical release, pay-
per-view, premium cable, DVD, broadcast TV, cheap DVDs in
the bin at Walmart. There isn't a model like that. Nintendo
does a brilliant job of bringing out a new handheld and
putting Mario back out on it and selling a few more million
copies. They are one of the few that have figured that out.
But, that isn't an industry model. Leveraging your back
catalogue of IP is crucial for long-term sustainability.
AUTHOR_DEV_DILEMMA: Because of the technologies, tools, and
systems involved, development companies must toil to
recreate titles with entirely new technologies or for
different hardware platforms, which is often a much more
difficult task than is acknowledged. Many game development
companies work on other company's intellectual properties
other than their own.
#: SET DEMO_MODE 0

Cloaking the day-to-day reality of long hours and tedious work on
sequels, the myth about making whatever games you want is
perpetuated far and wide, even among some current game
developers. Only those who have worked in the game industry for
years and developed a jaded/realistic attitude toward their projects
know that they rarely, if ever, make the games they want. The
majority of the time, the studios work on games envisioned by
others. The developers’ assignment is to make someone else's vision
a reality (and as much fun for someone else as possible). The creative
license myth, however, is critically linked to the myth that most
games make millions and easily recuperate the associated costs.
Frequently, the most successful games are breakout hits, which are
different and new, or those that capitalize on an already established
market and franchise. Most of those established games are developed
on contract with third party development companies.

Just as developers don't play games all day, and rarely work on
games of their own choosing, they do not have unlimited time or
resources. While, from an external perspective this may seem true of
certain companies such as Bungie, Blizzard, or Id (all of which are
legends in the game development community), the reality is that
even these companies who have the power/license/cachet/ability to
respond to questions about schedules with “It will be done when it is
done” are internally quite aware of their time and budget limitations.

And those budget limitations do not include huge salaries for
developers. Though no game developers I spoke to ever imagined

making millions of dollars based on their work in the videogame
industry, the myth of the wealthy game developer remains: “The
computer industry's garage-to-riches myth fuels the hope of instant
success despite evidence to the contrary. . . . Indeed, younger
workers are well on the way to believing that taking entrepreneurial
risks is necessary to building careers. This is the legacy of 1980s-era
enterprise culture and corporate restructuring” (Rogers and Larsen
1984, 154). The perception of development as wildly lucrative hurts
the industry because it ignores the numerous factors that may lead to
a startup studio's demise, simultaneously glorifying risk and
withholding a critical examination of who often then receives the
majority of the payoff.

With so many game companies closing or having layoffs, a
perception exists that, regardless of how well the game industry is
doing, getting another job will be difficult and as such, there is a
“disincentive to exit during difficult economic times” (Neff,
Wissinger, and Zukin. 2005, xx). Further, many game developers
exhibit an entrenched commitment to notions of “meritocracy,”
within the game industry. If game developers are any good, they can
go anywhere. If developers are without work, then they must not be
very good. These theories enable “continued attacks on unionized
work” (Neff, Wissinger, and Zukin 2005, 317–330). The two aspects
of employment and job search combine to obfuscate systemic issues
in the game industry, transitioning blame from external aspects to
individual ones. For example, there is an assumption that a
developer's performance and compensation has a direct relationship
to an individual's skills. If a developer is unsuccessful or not paid
well enough, the problem is a personal one; there is no possibility
that structural issues might be condemning developers. Put in the
language of the videogame industry, if you crunch it is because you
did something wrong. And if you object to crunching, you shouldn't
be in the game industry.

The final myth, concerning the idea of games as child play, is in
many respects the most complicated, especially given the contrast
between India and the United States. As mentioned in World 2, for
many Indian developers, working in the game industry is not
considered a reasonable career choice. US developers, many of
whom do not take their family's or parents’ advice when considering
a career path after college, recognize that their family might lack

understanding and support for any career, not just for their choice to
pursue a game development job. For Indian developers, it is assumed
that your family is part of your consideration process in pursuing a
career. Many game developers take their game job against the will of
their parents, and eventually translate their experience into positions
at companies like Google, Microsoft, or Infosys. These more
“reputable” companies alleviate the familial strife (and benefit from
the game industry's poor reputation in Indian culture). The
perception that games are childish significantly impacts the ability
for students to move into these positions. Given the choice, when
Indian workers are willing to take the risk of offending their families
to develop games, many pursue work with established companies
over local burgeoning game studios. The threat of offending one's
parents is risk enough, no need to bring in additional risks associated
with small companies and creative work. The ability of these new
studios to push themselves onto the global scene is hindered by the
same perception of illegitimacy, or lack of rigor of videogames. Given
the fact that many videogame publishing companies are establishing
development studios overseas, there may be a decline in the
conception that videogame development career paths are not
practical. However, such international development will also likely
negatively impact the viability of locally started game development
studios that will have to compete for employees with more well-
known names, such as Sony Computer Entertainment, Microsoft,
Electronic Arts, and Activision.

All five of these myths continue to hobble the professionalization of
game development practice. Yet, developers are not working to fight
or even discourage unrealistic views and expectations. In fact, in
some cases developers even promote the myths. This emerging
system of relations between corporations and game development
studios plugs directly into a system of labor relations found in many
“cool” industries. Sociologists studying new media companies
frequently find that knocking workers down builds profits.

The labor relations within cultural production provide global
capital with a model for destabilizing work and denigrating
workers’ quality of life. The cultural workers in fashion modeling
and new media work long hours, networking even while they are
schmoozing and boozing, constantly try to improve their skills,
and live with a high degree of insecurity about their income and
employment. These workers now directly bear entrepreneurial
risks previously mediated by the firm, such as business cycle
fluctuations and market failures. Popularized in media images of
cool jobs and internalized in subjective perceptions, this work
creates a model of labor discipline for other industries to follow.
Moreover, given the ethnic and gender characteristics that have
been associated with entrepreneurial culture, the effect of these
changes will exacerbate persistent social inequalities. (Neff,
Wissinger, and Zukin 2005, 330)

As workers are more frequently asked to bear the consequences of
a denigrated and destabilized quality of life, they are asked to bear
greater amounts of risk once born by the organization. Yet, because
there is a perception that the individual can mitigate this risk
through personal passion or perseverance, it becomes permissible to
blame the individual for any feeling of insecurity. This plugs directly
into a kind of libertarian worldview that dominates many of these
industries. While workers are capable of working within this regime,
it works to their advantage, until it is no longer possible, at which
point it becomes their own fault and they can easily be blamed for
their falling behind.

The myths that perpetuate an idea of what game development is
prevent it from being viewed more broadly as worthy of
consideration as a profession or realm of expertise. It encourages a
mass of interest in the field that may prove unable to actually provide
the requisite necessary areas of expertise. Thus, workers find their
everyday working worlds destabilized because they are perceived to
be without expertise or profession. The “coolness” of the work makes
it “easy.” Anyone can be cool, right? But, as I've noted throughout
this text, game development is a highly technical, creative,
exploratory and fraught process that is far from easy. By
destabilizing workers and their labor in pejorative ways, the risk is

further offloaded on the individual from the broader context of the
game industry.

World 5-4: Designing the Perpetual Startup System

As the myths surrounding game development work bind developers
and limit the industry, the risk associated with developing new ideas
has been offloaded from companies onto workers. The image of game
developers as pushing the envelope, realizing their own creative
ideas, having fun, and getting rich has led them to willingly trade a
sustainable industry for the negligible possibility of making it really
big. Corporations capitalize on what can only be termed “adventure
capital” of game development workers by cherry-picking the best
companies for consolidation and acquisition in order to benefit from
the risks they've already taken. Risk taking is handed off as a badge
of honor for developers, and the prize is collected by the companies
who hire them. VV's acquisition by Activision is one such example.
Throughout my fieldwork at VV, Activision acquired eight different
studios, four of which were later closed.

The primary consequence of this structure is what I have called the
“perpetual startup cycle” of the videogame industry,8 a situation
where most of the risk associated with expanding markets and
developing new IP is borne by small startup companies, those
frequently with the most to lose. Large companies with enough
capital to afford risks frequently eschew them in favor of ensuring
good quarterly reports, as can be seen in publishers’ and
manufacturers’ overwhelming preference for derivative games and
licensed IP. When a startup is able to prove itself capable of
producing value, it is acquired, so a large, established company can
milk the value out of the risk-taking resources. Further discussion of
this phenomenon can be found in World 6. Those who tire of this
cycle of risk being relegated to small development studios while
reward comes to large corporations often perpetuate the loop
themselves by leaving and starting new companies, taking risks, and
again pushing the industry in new directions. Again the cost
associated with trying something new is borne by those least able to.
Startup companies, with their demanding and tiring work

environments (which our earlier DEMO_MODE showed can be
particularly daunting for anyone with a significant other at home or a
social life or hobbies outside of the office), drain the adventure
capital of their contributors in order to sell it to large corporations.

In many respects adventure capital resembles and is infused with
the same “venture labor” (Neff 2012) that can be found in fields
similar to the game industry. What I think distinguishes adventure
capital is the sense of play and almost flippancy about risk that
imbues many game developers. In games and in particular digital
games, players fail repeatedly. Failure is not just part of the game, in
many cases it is the name of the game. You fail and learn. Fail and
learn. The “adventure” aspect of this is of course also a tip of the hat
to the 1970s adventure style text-based games that borrowed, built
and learned from one another in the early game industry. Thus,
adventure capital is part venture labor based on intense risk and
accidental entrepreneurship. It is also more playful and assumes a
kind of serial failure that is in some ways different from the kind of
serial venture labor that one encounters in the new economy.

If you watch the videogame industry (or any industry, for that
matter) in this first part of the twenty-first century, you are bound to
notice that there are many acquisitions occurring. New media
industries including the videogame industry exemplify of this kind of
activity. “‘In this industry, because it's changing so fast, you're lucky
if you're in the same job for a year,’ says a producer for a corporate,
online retailer” (Neff 2005, 326). Even the once famously
independent game studio “Blizzard Entertainment, Inc.” was
acquired by Vivendi/Universal, itself a consolidation of two large
media organizations, and later sold off to Activision.

My primary field site in the US transitioned from
independent/third-party developer to in-house developer in the
winter of 2005. While Castells has written about the “crisis of the
large corporation” (Castells 1998, 167) and the “resilience of small
and medium firms as agents of innovation and sources of job
creation” (Castells 1998, 167), the fact remains that “small businesses
are less technologically advanced, and less able to innovate
technologically in process and in product than larger firms” (Castells
1998, 167). The large publishing companies that employ the vast
majority of experienced game developers in one way or another
(either through direct ownership of studios or through licensing

deals) end up doing less innovative work as judged by the comments
of my informants, despite larger companies’ higher levels of
technological and experiential capacity. Inter-firm linkages are “the
multidirectional network model enacted by small and medium
businesses and the licensing-subcontracting model of production
under an umbrella corporation” (Castells 1998, 172), though they are
intra-firm in most cases because they are the firms already capable of
doing much of the work. As game companies gain development
experience, they often forget the adventure capital already invested
in the infrastructure that enables development. As such, established
game companies are quite different from their younger and less
experienced counterparts. Anthropologists of scientific and
technology production note the increasingly complex
interconnections between organizations: “Production increasingly
takes place within larger organizations, each of which is more likely
to include multiple locations, many of which in turn are in different
regional, national, and cultural locations. Moreover, more permeable
organizational boundaries mean production occurs within technical
and social networks which cross company cultures” (Hakken 2000b,
770).

This structure, especially in that it involves multiple corporate
cultures, doubly complicates the situation for game development
companies in countries other than those with already established
networks. As has been demonstrated, game development work, with
its numerous disciplinary fault lines and technological complexities,
is procedurally and structurally complex. Without established peer
networks willing to share people, information, or experiences, new
companies have a predilection for collapse. While the acquisition
behavior in India is in full swing, networks of access limit it. Take for
example, Indiagames, which UTV Software acquired. Indiagames
had inserted themselves into the networks of mobile phone
networks, and had developed connections that UTV Software could
use to its benefit (hence the acquisition). RedOctane—India (part of
the US company RedOctane, which published Harmonix's wildly
popular game, Guitar Hero), on the other hand had no ability to
develop games for console systems until it was acquired by
Activision. After the acquisition they were able to use the networks
within Activision to begin working with Nintendo's DS systems.
Hakken's observations, then, that production occurs within

permeable and flexible networks is correct, but also limited by the
connections of those networks. Permeability does not equate with
accessibility.

Of course this does not begin to address the complexity of dealing
with publishing companies that in many cases have no knowledge of
an emerging industry's internal market. These companies only know
that they are supposed to be moving their “activities of production,
consumption, and circulation, as well as their components (capital,
labor, raw materials, management, information, technology,
markets)” (Castells 1998, 77) toward being “organized on a global
scale, either directly or through a network of linkages between
economic agents” (Castells 1998, 77). Companies’ options include
developing games internally and self-publishing (which limits them
to distributing online for the personal computer, Web, or more
recently on mobile “app” stores), developing games with contractual
obligations with other companies, or being acquired and developing
games as dictated by the parent company. If publishing companies
have become “conservative” in the United States, they are doubly so
in emerging markets, which they often understand as only capable of
consuming First Person Shooters, Drivers, and Massively
Multiplayer Online games.

Franchises derived from local markets (Bollywood or Hindu
legends, for example) that could potentially be lucrative are too risky
for US, European, or Japanese producers whose limited
understanding and low risk tolerance demand that local
development and productions remain small and independent.
Publishers and manufacturers who do dip their toe into such markets
ship only existing titles and refuse to authorize the development of
titles specifically for those markets made by people who know the
market; others will simply refuse to market their games or consoles
in the region. This avoidance of taking risks to extend into new
markets is an example of how the industry is thwarted by the model
in which small studios take all the risk and large corporations
capitalize only on what's popular.

Like publishers, most manufacturers are hesitant to risk spending
much time or energy marketing to emerging markets. Microsoft is a
particular outlier in India, marketing the Xbox 360 throughout the
country and even partnering with local Indian banks to provide
financing to encourage broader adoption among the affluent middle

class. Despite this relatively daring move on the part of Microsoft, no
authorized licenses for developing games on the 360 have been given
to developers in India. Microsoft's games continue to be developed at
US and Western European studios. Sony, on the other hand,
maintains retails stores in India that have begun selling the PSP and
PS3. They have not aggressively marketed their consoles in other
regions, and the particularly expensive character of the PS3 makes it
a difficult sell in emerging economies. Nintendo seems to refuse to
acknowledge India; even in a market with massive support of mobile
devices most gamers have no knowledge of the Nintendo DS system,
which caters to the mobile market. The only Nintendo systems in
India are those that have been imported or brought back by the few
gamers who travel between other countries and India.

It might seem that this marketing blackout is just a case of general
ignorance of emerging markets. Yet, for game developers, the
consequences of these oversights reach far beyond the simple
availability of hardware within a market. The importance of being on
the right sides of network switches or “part of the club” is
dramatically important, though frequently under-examined in the
context of emerging networks. Console game manufacturers and
publishers carefully monitor those companies that are capable of
making games for the game industry. In recent years, the emergence
of the iTunes App Store and Android Market has demonstrated the
fragility of these assumptions on the part of the game industry. While
some people point to these new app stores as “walled gardens,” in the
game industry, the walls have always been there, and in most cases
these new walls are much lower, enabling new companies to emerge
as major market players.

The more countries join the club, the more difficult it is for those
outside the liberal economic regime to go their own way. So, in
the last resort, locked-in trajectories of integration in the global
economy, with its homogeneous rules, amplify the network, and
the networking possibilities for its members, while increasing
the cost of being outside the network. This self-expanding logic,
induced and enacted by governments and international finance
and trade institutions, ended up linking the dynamic segments
of most countries in the world in an open, global economy.
(Castells 1998, 142)

And, at least until recently, in the videogame industry there truly is
“only one game in town,” a game that rather than being controlled by
political elites is working within massive publishing and
manufacturing conglomerates. While new distribution platforms
have emerged, the primary means of “playing the game,” requires
access to the more limited networks of the major console
manufacturers. These networks have determined the regular rules by
which one becomes part of the inner circle; if your game or project
falls outside of those rules, you need not apply: “This is because the
global economy is now a network of interconnected segments of
economies, which play, together, a decisive role in the economy of
each country—and of many people. Once such a network is
constituted, any node that disconnects itself is simply bypassed, and
resources (capital, information, technology, goods, services, skilled
labor) continue to flow in the rest of the network” (Castells 1998,
146–147).

The local, the social, and the distinctness of network segments is
reemerging rather than disappearing. In game development, an
individual is quite close to the thing being produced. While a
developer's input into the project may only be a small component of
what is experienced by the player, it is often identifiable. This was
the very point of resistances on the part of early Atari developers,
who were not given credit for their work (Kent 2001). While teams
have gotten larger, it is still possible for individuals to contest the
flow of the rest of the network. The connections are too many and too
diffuse to be completely overridden. Some connection point will
remain that can be reconstituted: “In sum, the more the process of
economic globalization deepens, the more the interpenetration of
networks of production and management expands across borders,
and the closer the links become between the conditions of the labor
force in different countries, place at different levels of wages and
social protection, but decreasingly distinct in terms of skills and
technology” (Castells 1998, 254).

Corporate consolidation of videogame studios under umbrella
publishing companies has severely limited the ability of developers
to gain access to the networks necessary for creating games for
consoles or distributing them more broadly. Publishers and
manufacturers have both participated in disciplining the particular
function of this system, but more in an interest of playing the game

to the advantage of their bottom lines rather than out of malice.
Many of these publishers began as small game studios railing against
the status quo. It would be too simple to say what is occurring now is
a deliberate attempt to dismantle game development work; rather,
the demands of an economic system dependent upon quarterly
results have skewed their perspective. Most employees of publishing
companies or manufacturers have a deep commitment to games as
forms of art, media, and entertainment. It would be disingenuous to
claim that they were all dupes of a system designed to crush
innovative game development. We can note more plausibly that the
structure of the industry has enabled a continual cycle of
externalizing adventure capital, relying on small game development
studios to bear the risk and then milking those innovations in the
name of profits to meet quarterly results.

World 5 Boss Fight: The Rise and Fall of “Quality of Life”

Why do academics always wind up at the laments of ea_spouse? That
infamous post has become work/play pornography, in part because
of its accessibility. I suppose academics have not had much
opportunity to observe work/play patterns and realities because field
site access is so limited. And, a LiveJournal site is so much more
readily accessible to the social scientist (Dyer-Witheford and
Sharman 2005; Dyer-Witheford and de Peuter 2006; Deuze, Martin,
and Allen 2007; Wark 2007), not unlike other forms of Internet
porn. Cultural studies analysts have commented on the surface
visuals of ea_spouse, and the EA context, but not pushed much
further:

You could be forgiven for thinking this is just a game, but it is
somebody's life — as reported in a widely circulated text written
by EA Spouse. EA, or Electronic Arts, is a game company best
known for its Madden sports games, but which also which owns
Maxis, which makes The Sims. EA's slogan: Challenge
Everything—everything except EA, of course—or the gap
between game and gamespace. In the gamespace of
contemporary labor, things are not like the measured
progression up the ranks of The Sims. In The Sims, Benjamin
could work his way from Game Designer to Information
Overlord much the same way as he had worked up the levels
below. At Electronic Arts, things are different. Being an
Information Overlord like EA's Larry Probst requires an army of
Benjamins with nothing to work with but their skills as game
designers and nowhere to go than to another firm which may or
may not crunch its workers just as hard. As the military
entertainment complex consolidates into a handful of big firms,
it squeezes out all but a few niche players. Gamespace is here a
poor imitation of its own game. (Wark 2007, 044)

This is not to say that the ea_spouse comment has not been an
important index, or an important galvanizing point for game
industry workers. It most certainly is that. But the fixation on
ea_spouse's post draws analytic attention away from the broader
issue: why and how does work/play have such a propensity for
damage to quality of life? We must recognize that EA and
ea_spouse's spouse are positioned in a broad system that encourages
practices that enable poor quality of life.

It is easy to fixate on ea_spouse. Erin9 is a superb writer. However,
the fixation on ea_spouse, even in positive ways, draws our attention
from the reality of working in the game industry that rarely
resembles gamespace and, significantly, changes the reason why
developers continue to work in an industry that places such demands
on its workers. The desire game, “I want, and will pursue” strikes so
clearly at the issues faced by videogame developers. Those people
that pursue game development do so, often with a fervor that is
easily co-opted into forms of labor that are unsustainable, driving
workers from the industry and losing their accumulated experience.

Box 5.4

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: For some of my informants,
sustainability is localized. They look around and wonder
what has happened to so many of the game developers that
came before them. With an industry now nearly thirty years
old, there should be more developers in their fifties and
sixties. Yet, the average age of those working in the game
industry still hovers in the early thirties (Gourdin 2005).
Casey: So how does that work long term?
TECH_ART_1: That's what I'd really like to know. You really
can't look around too much and say, “Where are all the
fifty-year-olds making games?” When I'm forty-five or fifty
am I going to be valued or that much better because of my
experience? Because, someone that was making games in 1982,
a lot of what they know means less now. It doesn't really
say anything about their relevance now. If that cycle of the
industry re-inventing itself every fifteen years or so,
where the technology changes completely, then that is a
pretty frightening possibility. I mean, I'd like to think
that I can keep up and retool, but it takes time and work.
It's like when the 8-bit era ended and everyone was a pixel
artist and say you didn't have an aptitude for 3D—you were
screwed. Not to mention that you have all these seventeen-
year-old kids that learn software well, but don't know shit
about art. But the industry gets into this big roll-over
periodically.
AUTHOR_DEV_DILEMMA: There is an element of reinvention that
the game industry does periodically, where old techniques
and technologies are traded for newer ones. Yet, this has
become less common. Even when new “generations” of consoles
are released, there is more similarity to older versions and
fewer processes are jettisoned completely from day-to-day
practice. But the question remains, “Where are all the game
developers?”
#: SET DEMO_MODE 0

Some might assume that all of this crunching is no fun, right? It
certainly is true that 50 percent of game developers leave the
videogame industry in fewer than ten years (Gourdin 2005). Nearly a
third drop out before their fifth year (Bonds et al. 2004, 30–31).
Many communication scholars assume that game developers are

then just dupes of a post-industrial system that exploits them, which
is a conclusion Kline makes convincing.

All this casts doubts on the myth that game making is ‘fun.’ Such
labour does not live up to rose-coloured post-industrial visions
of knowledge work. But nor does it match the straightforward
picture of deskilling and degradation painted by the neo-Luddite
left. What emerges is more contradictory. The creation of a new
creative high-technology industry has required management to
recruit a post-Fordist workforce whose control requires the use
of techniques that are very different from the rigid routinization
and top-down discipline of Fordism. They involve a high degree
of soft coercion, cool cooption, and mystified exploitation. (Kline
et al. 2005, 201)

But, if the game workforce is coerced, coopted, or exploited to
develop games as they do, then why do we find similar work/play
characteristics among people working for free? Sure there is soft
coercion and co-optation, game studios are corporations. But it
doesn't make any sense to argue the developers are being controlled,
because despite these conditions, and beyond simply the “cool”
factor of it all, people are driven by their jobs. There is something
about the intellectual, visual, collaborative aspect of it that hits at
something deeper, as anthropological studies of Free/Libre and
Open Source Software workers demonstrates. Deep-hack mode does
not draw just hackers (Coleman 2001). It affects artists, designers,
graduate students, and many others. Work/play has tapped into
something that, when allowed to drive to its own beat, does become
“mystified” exploitation.

Just as the military industrial complex once forced the free
rhythms of labor into the measured beat of work, so now its
successors oblige the free rhythms of play to become equally
productive. Alan Liu: “Increasingly, knowledge work has no true
recreational outside.”* The time and space of the topological
world is organized around the maintenance of boredom,
nurturing it yet distracting it just enough to prevent its
implosion in on itself, from which alone might arise the counter
power to the game. (Wark 2007, 172)

This is a different set of desires, the “phenomenology of the zone.” I
wonder, however, if all of these games are worth playing? What is the
payout? What is being pursued and often at such risks? Why then do
my, as some would say, “mystically exploited” informants keep doing
it?

“So far so good, but what actually is the fun of playing? Why
does the baby crow with pleasure? Why does the gambler lose
himself in his passion? Why is a huge crowd roused to frenzy by
a football match?” This intensity of, and absorption in, play
finds no explanation in biological analysis. Yet in this intensity,
this absorption, this power of maddening, lies the very essence,
the primordial quality of play. (Huizinga 1971, 2–3)

Why are we continually testing ourselves with these games? The
question becomes: how can we hack, or “exploit, refigure, and thrive
off those social contradictions related to technology, contradictions
that emerge more palpably in the tense intersection between liberal
values and a neoliberal knowledge economy” (Coleman 2005, 46) to
better serve developers work/play needs? Perhaps we can turn, at
least in part, to hacker practice as a site for inspiration.

This means a hacker will at times dutifully respect a system of
logic while, in other instances, he will blatantly and with
succulent pleasure disrespect it, either for the sake of play,
exploration, making a political statement, or to accomplish the
immediate task at hand. As often as one can find hackers
distorting language, laying bare its contingent nature, one can
also find hackers who dutifully respect the formal rules of
grammar and praise its internal or deep logic with the same
incisive precision they treat object variables while programming.
Based on elements like individual stylistic preferences, one's
ability to manipulate form, and especially the social context of
activity, the hacker attitude toward form is relational, oscillating
between respectful awe and playful irreverence. (Coleman 2005,
213–214)

Coleman uses hacker practice as a site for her own theoretical
innovations, using the term “irony” (in close proximity to historicity)
to, “simultaneously accentuate the existence of powerful systems of

coercion or hegemonic institutions, as well as the ways in that they
are intentionally and accidentally evaded” (Coleman 2005, 34) This
use of irony is intricately linked to the practice of simultaneously
working dutifully within structures of constraint while also
disrespecting them, frequently in humorous ways. This type of play is
considered “ironic precisely because it is still possible to tease out the
sensible or expected elements within the shell of the unexpected”
(Coleman 2005, 34).

But what does this ironic play have to do with breaking out of the
recursive infinite-loops of AutoPlay? It can best be described as a
process of debugging coercive or hegemonic structures, which
requires an attention to detail and awareness that cannot be
described in any ways as disengagement. Debugging requires an
attention to detail and “disrespect” to a system that enables us to
examine the inner workings of a system. Often times debugging
involves “stepping into” systems that were previously closed or
considered outside of the frame of interest. This is complicated when
we are on the “bleeding edge” as “urgency” is compounded by
“technological complexity” (Pentland 1997, 118).

This stepping into the system's structure is what separates the
hacker from other system (structure) inhabitants. This is how we can
escape the mechanism of AutoPlay, rather than being absorbed into
the recursive flow of the system. We can step into the operational
mechanics and disrespect them. Perhaps this insolence will manifest
itself in humorous ways. Perhaps we debuggers will be labeled
“black-hat malicious saboteurs” (Coleman 2005, 45), but it is
precisely that ability and desire to disrespect the systematic nature of
structures that drives us to make changes. This is precisely what it
means to transition from being a gamer to a game developer, asking
questions of the underlying system.

More than anything, the game developers need to rediscover the
importance of sharing and collaborating across corporate divides.
They need to reinvigorate their ability and desire to write, talk, and
share details of their work that they take for granted. In the nearly
thirty years of videogame development, game developers have not
managed to share more broadly the reality of their work practice,
despite the demands that people entering the game industry already
be acquainted with making games. Maybe we should demand,

instead, that they know (and actually tell them) how games are
actually made.

The demolition of the pervasive individualistic barrier will require
developers to give up on the secret society. Game developers can no
longer afford to perceive themselves or those around them as
independent rock stars. Indeed, many of them are extremely
intelligent, hardworking, and deserving of recognition for their
creative work. The current system tends to recognize too few. With
these changes, more developers can be recognized as integral to the
process.

Box 5.5

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: In some respects, the yearly Game
Developers Conference (GDC) inhabits a strange space in the
game industry. It attempts to bring developers together to
discuss their practice in ways that share information. Yet,
simultaneously, most talks are vetted through legal and
layers of management that may completely disable the utility
of a talk. In other cases developers throw caution to the
wind and discuss those things that maybe even they were
instructed not to, taking on the adventure capital of
sharing information that they feel the game industry so
desperately needs at their own peril.
Casey: Does that prevent developers from being able to have
frank, useful conversations?
DESIGN_LEAD_1: Sure. It is always interesting at GDC, the
kinds of discussions you have. They're often at a purely
theoretical level. Or, they are just trying to sell you
something. “Look at our awesome game! We're awesome!” Or,
“Look what we're about to do! We're awesome!” I hate that
even more, because they never actually get into any detail.
The discussions are purely at this high level. Then there
are the folks who rightly claim, or cynically claim, that
anyone who's actually figured out anything will never share
it with you anyway. Unless of course it's too late, because
you'll never catch up anyway. Yeah, that kinda sucks.
Casey: So how does it get better?
DESIGN_LEAD_1: Generally there are people who you have
closer contact with. You have a professional rapport with
them. You know they're not going to stick it out in public
or blog about it.

Casey: So how about information sharing even between studios
with the same publisher?
DESIGN_LEAD_1: Kinda sucks. You know, our publisher really
touts their independent studio model for success, though
I've never had that adequately explained to me why it works.
So we have contacts, and I've met folks from other studios.
Given the distance and often just convenience, it's just not
that easy. We try to rectify that, but there are studios
that we work more with than others.
AUTHOR_DEV_DILEMMA: Thus, it is primarily within the
established networks of the game industry that information
is shared. Yet, even then, the constant time restraints
placed on teams means that they are rarely afforded the time
to explore these collaborative opportunities.
#: SET DEMO_MODE 0

Fixing the ways in which studios work will also necessitate change
in how game development companies recruit new talent. Rather than
demanding that aspiring youth “break into” the game industry, there
must be mechanisms by which they can be encouraged into the
industry. “Talent” and innovation must be fostered rather than
demanded from the outset. If developers allow themselves to
maintain the existing structure where only those who have already
“figured it out” are authorized, they will continue to get more of the
same: inexperienced developers who reinvent the wheel, grow
frustrated, and leave. Instead, developers must become more
accessible. They must begin to share more publicly, and more with
one another. They must begin to think of themselves collectively
rather than as individuals or individual studios. A sense of “the
profession” and culture of the game industry must become
something that people actively engage with and consider.

Glimmers of hope exist. A handful of studios have embraced the
idea of sharing tools and practices with the community more
generally. Insomniac Studios, for example, has developed their
“Nocturnal Initiative,” which has made publicly available more
information about their tools and pipelines. More and more game
developers blog and tweet publicly about engineering, design, and
artistic workflows. New tools, like Unity, have emerged that place the
issue of the “pipeline” at their center, rather than the periphery.
Scrum and Agile development methods are being more widely used.
More conferences have emerged, particularly among “indie” game
developers, where ideas, early prototypes, and methods are

discussed in detail. However, even among those that share
information, similar constraints emerge and problems emerge. Thus,
it seems that secrecy and fears around sharing are a systemic issue.
In other words, there is an underlying system (a game mechanic,
perhaps) that encourages the system to break in consistent ways that
continue to steal adventure capital from those with the fewest
resources: rank and file developers.

Publishing, Manufacturing, and (Digital)
Distribution

World 6: Actor-Networks of (In)access

Box 6.1

#: SET DEMO_MODE 1

Figure 6.1 An artist's interpretation of the Actor-Inter/Intranetworks

AUTHOR_DEV_DILEMMA: The game industry is a favorite topic of discussion for game
developers. More than any other subject, it is what my informants were the most
interested in discussing. The day-to-day work of game development was never as
interesting as thinking about the structure of the world that supports their
labor.
Casey: Talk to me a bit more by what you mean when you say “the industry.”
ART_Spidey_2: Ok, so there are a bunch of people. There are the consumers; they
have a need, or a want. Now, whether they are out there saying, “We want a game,”
or if the publishers are saying, “We think they want this game,” either way, the
next person is the publisher. Basically, publishers are the people with the
money.
Casey: Did that not use to be the case?
ART_Spidey_2: Well, it seems that they've always had money. But I guess even
those places started as spin-offs from Atari and places like that. But they have
it now, so they use it to make more money. So, pretty much, the publisher says,
“We think making this game will make us money,” and either they look for an
internal or external developer. So, Activision has multiple internal developers,
who sometimes even compete with one another. But, the publisher goes to the
developer and says, “We want X,” where X is a cool game they think will make
money. So sometimes developers have to fight over that and pitch ideas to the
publisher. Eventually they'll decide on one and make a deal with the developer.
But no matter what, the developer has to figure out how to make what the
publisher wants, but make it fun. Publishers could really care less if it's fun,
as long as it makes money. Now, sometimes there is a licenser involved. . .
Casey: Like Marvel or DC?
ART_Spidey_2: Exactly. Now, sometimes the licenser is the publisher. Other times
it isn't. But, the publisher has already negotiated that part of the deal. But,

there is always this big kind of loop or tug of war, where you're coming up with
ideas . . . Oh, and the engineers are in on this tug of war too, along with your
designers . . . But the designers are saying what they want to do, and the
publishers and the licensers are saying what you're allowed to do, and the
engineers are saying what they think they can do. It's a giant tug of war that
can fester for a long time sometimes. But you eventually wind up with an
agreement and no one is really happy, and then you start making the game.
AUTHOR_DEV_DILEMMA: For many, the interest in the industry, or the ability to
speak knowledgably about its structure and critique those elements that they find
frustrating is akin to a rite of passage. A common sentiment among my informants
was: if a developer isn't at least a bit cynical about the industry, then likely
that developer hasn't been working long enough. The more entrenched a project is
amongst these networks of licensing and publishing, the more likely a developer
was to have thoughts about that structure. Those developers who by some stroke of
luck began working on an original IP often take longer to develop their more
jaded set of understandings of their position in the game industry.
#: SET DEMO_MODE 0

World 6-1: Why the Console Face?

“The industry” is an object of scrutiny for nearly all game developers. It both constrains and
compels them; it is the broader system within which they play. The image that begins this
world's DEMO_MODE nicely demonstrates how many developers feel they fit into the
networks of videogame industry. Though developers are quite close to the creation of the
product, they end up feeling quite distant from the consumer, the teams of marketing
specialists who decide how to sell the game, and the money, which ultimately funds and fuels
the videogame industry and their jobs. Many studio heads said that they consider themselves
to be in a “service” industry rather than “product” industry because of their position in a
network of companies. Relationships within the networks of game production end up
mattering as much as (or more than) the individual projects that are developed. This in many
respects counters the belief that the product focus of the game industry is one of the features
that differentiate it from other new economy workplaces. The overarching argument for
World 6 is that, as the industry has “matured,” the networks have become less accessible and
less interoperable. This trajectory consequentially limits developers more than they might
like to believe (and in ways many are unwilling to criticize).

The structuring effect of the network is particularly interesting. Network approaches to
understanding work, the economy, production, or society frequently fail to actively engage
with the structuring effects, or more generally “power” in a very un-theorized sense. The
“flows” of knowledge, which are then networked, are also structured in ways not addressed in
current research (Castells 1998). “Access” is such a key aspect of the game industry and of
game development work more generally, yet it is frequently glossed over in research that
attempts to examine the networks of game production. These studies rarely look closely at
what is necessary for a developer to gain access to these networks (Johns 2006). The concept
of the inter/intranetwork is a useful tool for thinking about the structuring effects of
networks. The structure that has emerged is “networked” but, more explicitly, networked in a
fashion that I have termed “intranetworked,” or closed off. Much like a corporation's private
internal network, or intranet, the highly networked structure and knowledge flows are tightly
controlled and connections to the broader world or “internetworks” are highly monitored.
Many Internet users imagine that they are “on the Internet” while accessing it via Internet
Service Providers (ISPs) (such as Comcast, Verizon, AT&T, or America Online). In fact, this is
largely not the case. Most ISPs actually operate as intranetworks that provide access to the
Internet through controlled mechanisms.

Box 6.2

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Game developers, while quick to reflect on their position
within larger networks of production, very rarely attempt to critique publicly
those structures. The Game Developers Conference is one space where those
criticisms are leveled, yet once developers leave that space, rarely is that
critique maintained and explored fully. It seems as if GDC operates as a release
valve that allows excess steam and pressure to escape, yet sustained critical
analysis of those structures are rarely carried on.
Casey: Do you think there is something about game developers that encourages them
to be more self-reflective?
STUDIO_CREATIVE_HEAD: That's an interesting observation. I think it is true of
the game development community more than the industry at large. I hate to say it
this way, but, I think if it were up to most game publishers or console
manufacturers, there really wouldn't be a Game Developers Conference. I'm not
saying it's an “us versus them” sort of thing, just that game developers are
often more forthcoming with information and knowledge, giving away secrets, and
generally being self-deprecating, programmers especially, that doesn't sit well
with the big companies. But, things are changing at such a rate that keeping that
information secret is less helpful to you than sharing more. And, the industry is
less open than it used to be. It used to be a lot of black magic, hacker in the
bedroom sort of thing, so it made sense to not share your competitive advantage.
But things are just so big and so dynamic, and the only way we're going to learn
is if there is a lot of active openness and sharing.
So, that is there, and the culture has evolved, which is cool. You see a lot of

public postmortems and people sharing with one another at GDC. And you really
need it, because things are moving quickly. It used to be that cutting edge stuff
took ten to twelve years to make it into a game, from the academic world to the
industry. Now you'll see something at SIGGRAPH in the summer and then a hacked up
version of it at GDC the following spring and our guys are figuring out how to
incorporate it into our engine a week later. Then you'll be doing that on
hardware that isn't finished and finding bugs in Microsoft's compiler as they're
trying to release the new hardware. Developers are just trying to adapt
themselves to this rate of change that is really fast as well.
AUTHOR_DEV_DILEMMA: I've most frequently characterized the lack of sustained
analysis of the structure of the game industry to be a product of “Ooh, look,
shiny!” Developers are so frequently enamored by new tools, tricks and
technologies that they forget the critiques that were being made at any given
moment. As the game industry chugs forward, there is always something new to
explore or hacked that enables a new world of exploration. Developers are so
interested in and passionate about their craft that it becomes difficult to
maintain a critical examination of its context, because that isn't as interesting
as making another game.
#: SET DEMO_MODE 0

The concept of intranetworks that structure themselves in ways that close off knowledge is
useful in the anthropology and sociology of science. These disciplines use “actor-networks” as
a means to analytically understand how science and scientific practice unfolds. While actor-
networks provide some insight into the gaming industry, I have become critically interested
in why particular nodes become obligatory passage points, or why entire networks become
closed off from other nodes in the network: “If technoscience may be described as being so
powerful and yet so small, so concentrated and so dilute, it means it has the characteristics of
a network. The word network indicates that resources are concentrated in a few places—the
knots and the nodes—which are connected with one another—the links and the messages—
these connections transform the scattered resources into a net that may seem to extend
everywhere” (Latour 1987, 180).

This game industry has become highly structured with very little intention or forethought
toward structure. The networks of the videogame industry are inter/intranetworked and may

seem to extend everywhere, but are accessible to only specific individuals and organizations.
Publishers consolidate their interests by acquiring smaller (moderately) successful game
development studios. Console manufacturers (who are also frequently publishers) do this as
well. Frequently, new connections end up closing off networks. This often results in
metaphorical islands of information disconnected from the mainland. Even independent
studios tend to operate only in concert with a small number of other studios if any at all. This
perpetuates the structures of inaccess (especially for young, small game companies) and
results in islands of game production practice with many developers and studios remaining
completely disconnected from broader structures that might enable the industry to mature.

The inter/intranetwork structure stands in stark contrast to how networks are frequently
talked about, particularly in the context of the new economy. Sociological inquiries into new
economy work has drawn heavily upon the network metaphor, emphasizing their
limitlessness over their structuring effects: “Networks are open structures, able to expand
without limits, integrating new nodes as long as they are able to communicate within the
network, namely as long as they share the same communication codes” (Castells 1998, 501).

But as I've already established, the communication codes in the videogame industry are
largely closed, and must be rediscovered by many aspiring developers looking to enter the
videogame industry. This lack of openness and collaboration is fostered by the highly
restrictive legal agreements and sense of secrecy that dominate the videogame industry. Thus
the game industry (in)effectively attempts to maintain this kind of complex corporate, social,
technical, and legal network.

Videogame development companies—studios—are where games are created. It is within
these companies that code is written, art is generated, and designs are made. The
communities of game developers are not that much removed from those of other artistic
networks of production. “Information circulates through networks: networks between
companies, networks within companies, personal networks, and computer networks”
(Castells 1998, 177). Sociological analysis of artistic networks demonstrates compelling
parallels to the networks of the videogame industry. What seems crucially important,
however, is that artistic networks, despite their scale, rely on other networks of production.

Some networks are large, complicated, and specifically devoted to the production of
works of the kind we are investigating as their main activity. Smaller ones may have only
a few of the specialized personnel characteristics of the larger, more elaborate ones. In
the limiting case, the world consists only of the person making the work, who relies on
materials and other resources provided by others who neither intend to cooperate in the
production of that work nor know they are doing so. (Becker 1984, 37)

In much the same way, there are several different kinds of game development studios. The
most basic and most nebulous is the independent, or self-funded studio. They range in size
from several developers, artists, and designers working together to create a videogame to
large companies without an exclusive relationship with a particular publishing company or
console manufacturer. These companies or loose affiliations of individuals create games of
their own design.

Most independent developers eventually enter into some kind of relationship with a
publisher to release their first game on a PC. Then they must begin responding to the desires
of the publishing company to ensure the release and distribution of their game. If the game is
successful or garners critical acclaim, then the relationship with a publisher continues, and
only then does a game development studio gain access to the resources necessary to develop
console games. In some cases independent developers instead opt to distribute their games
online as a downloadable game for the PC or via Adobe Inc.'s “Flash” Web-based
technologies. Either way, independent developers take on the task of distributing and
supporting their game, which is not the most lucrative or prestigious path in the videogame

industry. Often game developers consider this path amateurish or as something that one
does before you have actually “made it” in the industry.

Once independent developers have proven their ability to successfully create and release a
game, they frequently become what is called a “third-party development company.” In some
cases companies will enter this category as a means to make money during the development
of their first independent title. Other companies enter this phase immediately, if they are
created by developers with connections to publishing companies or console makers who have
diverged from other game companies. A third-party developer is similar to an outsourcer for
a publisher; they are instructed to make a particular game. In some cases a previous game
title can be used as a reference. This is most common in the case of established franchises.
For example, a company may be contracted to develop “Shrek 3” or “Batman Forever.”
Developers will frequently play or examine the titles that came before it. In most cases, the
publisher already owns, or has acquired the rights to these “IPs.” The developer is then
authorized to make a game to the publishing company's specifications. There is often not a
clear delineation between a third-party developer and an independent developer. Most third-
party developers have internal, independent projects, which are funded by the revenue based
on “non-independent” work for a publisher.

Box 6.3

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: One thing that all developers I spoke with seemed to believe
is that the game industry moves in very cyclical ways. That as conservatism
spreads through the industry, new risk is taken on at the margins and new
innovations then break free, allowing for new forms of creative exploration. In
the meantime, however, there are many cases where developers feel as if they are
put into situations where the limitations placed on creativity will ultimately
result in failures that could have been avoided if those limits had not been put
in place.
Casey: What is the worst part about making games, then?
ART_Spidey_2: It has to be that it is difficult to make imagination fit into a
process. But it also has to be a viable business. When we come up with a really
cool idea that we think will be fun, that isn't the only thing that determines if
it goes into the game. It has to be approved by whoever is licensing the
character. It has to be compared with what marketing thinks is popular that day.
They have to promote things in games that may not be fun, but they think
increases sales. It really is the relationship between the suits and the
beatniks. Sometimes dealing creatively with restrictions is cool, but when it's
just seen as an outlet for sales rather than a creative thing, that isn't fun.
Casey: Do you think as the industry pushes forward, pushing that imagination into
a process, that things will be more structured?
ART_Spidey_2: I think it will go back and forth. I like to compare it to movies.
Movies probably started the same way. There are people with crazy ideas, who know
people with money, but those producers say, “Hey, you know that idea is pretty
cool but I don't see it making money. I can give you $300 million to make this
other thing though.” So you reach a point where you're making things, like “White
Chicks,” and then you have a resurgence of people with crazy ideas. Videogames do
the same things. Videogames have become so expensive to make, which is why
Nintendo has really tried to change the direction of things. Nintendo knows that
small developers don't have $40 million to make a game, but would rather them
make something weird like Nintendogs or Katamari Damacy. I always think it will
be a tug of war.
AUTHOR_DEV_DILEMMA: Restrictions were always complex for my informants. In some
cases limitations were seen as creative opportunities, while in other cases they
were viewed as distractions. The distinguishing factor seemed to be linked more
to the origin of the limitation. Hardware and software limitations are fun and
interesting, while restrictions made by those seemingly disconnected from the
creative process are viewed less positively.

#: SET DEMO_MODE 0

While it may sound as though third-party developers are simply “outsourcing” houses for
publishing companies, this would misrepresent the dynamic and complex relationship
between developers and their publishers. Developers are not given a precise description of
the game, though they often want one. Instead developers must frequently base new designs
on older ones, which are then vetted by the publisher. The oversight of publishing companies
over third parties is varied and complex. In some cases very little direction will be given
except at milestones or intermediate steps along the development process. In other
situations, publishers may place a producer in the offices of the third-party developer to
provide constant feedback. Frequently publishers have a conceptual foundation that third
parties can begin working from, but the actual game that winds up on the shelf is a product of
both companies working in concert. This means that publishing companies in many cases do
little to zero actual game development. The design “document” that becomes a part of the
“contract” is actually developed by the game studio. The effort of creating games is reserved
for those working for game studios.

The distinction between outsourcing and third-party development is important to make,
considering that there are true outsourcing companies in the videogame industry. These may
also be individual freelancers who create art assets, localize text, port code to new platforms,
or test games for defects. These relationships are governed with relatively precise
specifications and contractual obligations on both ends. Many game companies in India have
chosen to use outsourcing as a means to fund internal development projects. While most
game companies in the United States begin as a mixture of independent and third-party
studios, most Indian companies begin as a mixture of independent and outsourcing studios.
In part this has been due to the readily available manpower with experience using and
creating media arts. Since code is frequently highly protected by game studios, they contract
for very little code outsourcing. Contractual obligations in many cases govern whether or not
an outsourced studio is even listed in a game's credits, which are critical resources for
aspiring game companies, as bylines begin to establish credibility for a game development
studio. However, given the climate surrounding outsourcing in the United States, companies
will often pay more to prevent outsourcing studios from speaking about or placing their logo
in games bound for the United States, for fear of consumer retribution or bad press. As
previously discussed, this restricts employees at these studios from being able to claim
having worked on a title, which limits developers from gaining access to social networks
within the game industry.

There is a typology among those companies doing offshore outsourcing work within the
videogame industry. This differentiation is primarily based on the markets that a company is
most interested in venturing into. For some, the drive is developing games for an internal
market, closely targeted to users in their home countries. For others, it is the eventual
creation of games targeted at a global market, much like their counterparts in already
established markets. Other companies seem to be interested primarily in acquisition by large
multinational publishing companies (which is not to say that they do not have aspirations of
those other companies, simply that they have charted a different course). Such goals are
realistic, since recently, publishing companies have begun acquiring outsourcing studios in
India, China, Vietnam, and other countries, hoping to use these acquired studios as sites for
intracorporate off-shoring. In these cases, publishing companies have established production
pipelines for particular games, which only need content created for them. These acquired
outsourcing studios are then used to create content in a highly controlled but cheaper
environment.

Closely related to the outsourcing companies are “middle-ware” companies, which provide
software that enables more rapid development of game systems. As the complexity of games
has risen, this new class of company in the videogame industry has exploded, and in many
cases these companies have sprung from countries that otherwise do not have a large

established videogame industry. Rather than outsourcing, these companies have developed
extensive libraries of source code, software tools, and process management systems, which
they can sell to developers in Japan, the United States, and Western Europe.

The final kind of company in this typology is the in-house development studio, which is
wholly owned by either a publishing company or console manufacturer (who are often
publishers as well). These studios frequently act like independent developers, third-party
developers, or a mixture of the two, not unlike studios not owned by publishing companies.
There is often minimal collaboration between studios under the same publisher. Different
studios have different practices, systems, technologies, processes, and internal cultures. In
rare cases collaboration does occur, though in most cases the extent of in-house-development
interaction with publisher or console manufacturer is through the interface of studio heads
and employees of the parent publishing company.

Box 6.4

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Consolidation within the game industry was an oft-cited
concern that centered frequently on creativity and the kinds of games being
produced. More and more studios were being acquired in order to exploit the
creative work those studios had already produced.
Casey: Are there aspects of the industry that make you nervous?
STUDIO_CREATIVE_HEAD: Yeah. There is a lot of consolidation in the industry,
which occurs for different reasons. When that happens, people fundamentally stop
prizing the best, because you want to see growth. But, you can do it organically
too. Mostly it seems to be about economies of scale and being able to take on
risk and sustain taking a hit, if a product is a giant bomb or something bad
happens. There are all those reasons for consolidation. Game development and the
game industry at large is inherently a very risky business, and things are
getting more risky, not less. There are bigger costs than ever before, so
mistakes are very costly. You are always making a lot of bets and if we're making
a big bet, we're going to play it safe. Sequels and other things are safe bets,
you know they'll at least be commercial successes. Unfortunately, that is counter
to innovation and you have stagnation and that stagnation is what kills the
industry. So it's kind of a self-fulfilling prophecy. What happens when the safe
bet is actually a disaster?
AUTHOR_DEV_DILEMMA: Many developers point to stagnation as being one of the
defining characteristics of tectonic shifts in the game industry. Major shifts
came from companies taking bigger or more frequent risks, not from fewer.
#: SET DEMO_MODE 0

For many developers in India, the game industry is very distant. In some locations
developers have mobilized through informal meetings, or through local International Game
Developers Association (IGDA) chapters. In other areas companies have banded together
with larger organizations, like India's National Association of Software and Service
Companies (NASSCOM) to encourage new growth in game development. Of course, for
some, like those working for Microsoft's Casual Game Group in Hyderabad, India, whose
games are being placed onto the online distribution network of Microsoft's Xbox 360 Xbox
Live Arcade, the feeling of distance is minimal. The networks have already been established.
For companies that have yet to gain access, the distance is palpable.

More than any other question I received while in India, I heard, “How does game
development practice in India differ from what developers in the United States do?” This
relatively simple question frequently led to conversations about a disconnect between what
Indian developers are allowed to contribute to game development projects and those tasks
that are necessary to produce a videogame from start to finish. Some companies do create
games from start to finish, though at a different scale. They create games for mobile (cell-
phone-based) game platforms. Although at a different scale, these networks are as difficult to

access as US development networks are. Mobile game studios tend to fund their development
efforts by also offering art asset production outsourcing services. Because of this, the
companies become more specialized in one aspect of game development and don't develop
their capabilities in others. This disconnect cuts deepest at the companies who become solely
identified as locations for outsourcing by US companies. As the majority of these studios’
resources become focused on that singular aspect of the development process, the studios
become disconnected from game development more broadly.

By contrasting game developers with the workers in other technologies we can see how
isolating outsourcing one facet of games can be. Science and Technology Studies scholars
have demonstrated how Indian scientists and engineers have remained in conversation with
American institutions through electronic means.

[India's] scientists and engineers are highly connected with their peers in American
institutions. This is partly because scientists and engineers in India overwhelmingly
enjoy access to the World Wide Web, but institutional linkages are even more important.
With the IT revolution, Indian S&E educational institutions have been increasingly
connected with the United States, as well as with the rest of the world, essentially
comprising one global system. (Varma 2006, 40–41)

However, this interconnectedness has largely not been the case for game developers.
Scientists and engineers, unlike game developers, have avenues or venues in which collective
knowledge is shared more broadly. Here, again, game-industry secrecy prevents the
formation of a community of practice more broadly at the cost of limiting the growth of
developers and the industry.

For those developing-market developers interested in projects for any platform outside of
the Web, personal computer, or mobile (and even this platform is notoriously difficult to
work with due to the domineering attitude of carrier companies), the opportunities are
extremely limited. It is frequently only when the concerns of a US company are involved that
some sort of agreement can be reached and the requisite hardware, software, and
documentation are finally given to Indian developers. However, this information is often
provided without connection to the tacit knowledge of what it takes to create a game for these
platforms. The immense body of knowledge that has become codified only in the practices
and conversations of developers is not transferred along with the capabilities to produce
games for these systems. When Indian developers go through the same learning process that
other established developers went through only several years earlier, and which could be
ameliorated with access to existing systems and knowledge, Indian developers are confronted
with questions from experienced game developers that amount to “Don't you know
anything?”

This network disconnect is not simply limited to those in distant countries. Numerous
independent developers, and even those simply struggling to bring developers together away
from the United States’ East and West Coasts face similar barriers. As mentioned before, if
you are not part of the game development community, the only way you can get in is to create
a game, but it can be difficult to develop a game without connection to those existing
networks. Instead, you must fumble your way until you have learned enough on your own to
prove your worth, at which time you are best served by moving to where the networks have
already been established.

As World 2 discusses, there are secret social networks as well. “An industry's cocktail
parties, seminars, and informal gatherings form its social backbone and are especially
important to innovative industries that rely on the rapid dissemination of information” (Neff
2005, 135). In the case of the game industry the glaring gaps are less about the dissemination
of rapidly changing information, and are more about social networks. These closed
intranetworked social structures “increase the experience of labor market inequality” and
“workers unable to access or maintain these networks may be at a disadvantage” (Neff 2005,

138). These closed networks are not just pervasive, but assumed normal and necessary. Most
contradictory is that workers must negotiate access to these networks and simultaneously
maintain the barriers to entry.

The social inter/intranetworks of game developers are not without differential power
relations. In the move from despotic power relationships, like those of
manufacturer/publisher/developer, to hegemonic relations, more akin to those of
core/periphery, a new kind of measure, one of connectivity and reputation, seems to be ever
more predominant. This new power relationship concurrently attempts to obscure the labor
of rank and file developers. This is not an isolated activity, however, since anthropological
analysis of social networks among high-energy physicists demonstrate similar boundary
marking and maintenance by practitioners of scientific work. Knowledge work and creativity
combine in a highly competitive space for funding that results in very similar kinds of border
preservation.

Networks of exchange link otherwise autonomous units at every level of social
organization. The primary commodities exchanged are students, postdoctoral research
associates, and ‘gossip’ (oral information about detectors, proposals, data, organization
of groups and labs, and the location and professional genealogies of individuals). The
boundaries of the networks as a whole are closed, marking off the outsiders. . . . The
boundaries of the community as a whole are negotiated with great circumspection.
(Traweek 1988, 123)

The use of reputation networks as a mechanism for structuring numerous resources within
a section of networks is consequential for any social network. The same is true for labor and
knowledge production networks. If the practices of a given subsection of the
inter/intranetwork are not meeting the expectations of other components of the network,
their reputation, and subsequently their income will begin to fall. While these networks are
social, they are also technological, corporate, and intricately connected to complex legal and
legislative systems. In effect, the network structure has systematically blocked out those
mechanisms by which access for developers both foreign and domestic can be granted. More
and more work is being done only from within the networks. Those hoping to break into the
network must battle numerous difficulties in what is largely (and falsely) being touted as a
“flat” economic system.

World 6-2: The License

Box 6.5

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: The current model of licensing that dominates the game
industry is not an accident, nor was it inevitable. It was designed with specific
goals and interests in mind with little consideration for what those might mean
for game developers and the craft of game development.
Casey: What about the relationship between the publishers and the console
manufacturers?
ART_Spidey_2: There has to be money under the table, just to get games out, but I
don't really know that. I mean, the manufacturer doesn't really care if a game
does well or not. It makes money if a game does or doesn't sell. They make more
if it sells well though. But the publisher is paying for the cost of production.
I mean, if you wanted to sell a game that just crashed, and were willing to pay
for its production, I don't think the manufacturers would really care.

Casey: But licensing started with the Seal of Quality, right?
ART_Spidey_2: Yeah, that was the whole Seal of Quality thing. You do need the
manufacturer to provide you the hardware for you to make the game too. So they do
get final say. Maybe that made sense when there were fewer games for each system,
and if a bad game came out for a system people were like, “Nintendo is an
inferior product.” But that really isn't the case anymore. Nintendo used to run
games through “Mario Club” after lock-check. It was sort of like quality
assurance. Now they just run it through a little profiler to see if it runs all
right and doesn't crash. There are some legal requirements and things about
making sure when a user does something like unplug a controller it says a very
specific thing. But other than that, they don't care much, at least it seems to
me.
AUTHOR_DEV_DILEMMA: While quality may have been the primary concern of licensing
in the early days of the game industry, things have changed in the subsequent 30
years. The logics of licensing have changed and the necessity of it has also
shifted.
#: SET DEMO_MODE 0

You can always tell when an executive producer from one of the publishers or manufacturers
is “in the house” at a game studio. Parts of the company seem to exude a new level of stress
and excitement. Secret meetings are organized among select individuals (often in buildings
made with more glass than walls, which results in mobs outside the glass observing a small
team of workers within). The visit often denotes a demo of new hardware for a development
team expected to come to grips with it over the coming months to add it to their supported
platforms. Or perhaps a new build of a game is being shown to receive feedback from the
producer. Regardless, it is almost as if the emperor or one of his inner circle has traveled
from afar to see what the commoners have been preparing in tribute.

As far as developers are concerned, publishers and manufacturers control the videogame
industry. Development studios structure themselves around their relationships with these
companies. As already noted, developers can create games for the PC and the Web without
publishers and console manufacturers. Why is it then that so much emphasis is placed on the
ability to work with publishing companies on console videogame systems, aside from the
prestige of being allowed to do so? What is it about consoles that separate them from other
gaming systems like the common PC? Console gaming systems did not mark the beginning of
computer-based gaming, a point made by numerous studies of the “birth” of the videogame
(Kent 2001; Kline, Dyer-Witherford, and de Peuter 2005; Malliet and Zimmerman 2005).
But consoles did several things differently from the (personal) computer, the first being the
way that people interacted with the system. Typically this was through a simplified manner of
data entry, perhaps by a rotating knob and button, a joystick with one or more buttons, or
with something like the controller of the Nintendo Entertainment System with its directional
pad (visually similar to an equilateral cross) and one or more buttons. Consoles were
connected to televisions rather than to separate and costly monitors or “dumb” terminals
connected to mainframe computers. The console was simply another component of the
growing “entertainment center” in the home.

Price is a major issue in where the industry focuses its development power because
consoles are significantly less expensive than the computer configurations necessary to play
games, which means more customers have consoles than computers. The average purchaser
can more easily justify several hundred dollars for a console rather than several thousand for
a computer. As time went on and the price of personal computers began to fall, more people
acquired them. Many believed that console gaming was something that would vanish, a
remnant of history (Carless 2007; Edery 2007; Snow 2007). On the contrary, console gaming
continues to be most lucrative sector of the videogame industry. Simply by looking at the
differential scores between PC and console game sales (see table 6.1), you get an idea of the
magnitude of difference between the sectors. This would explain publishers’ interest in the
console systems.

Table 6.1 VGChartz sales data 2006–2010 (Staff 2011)
Year Console game sales PC game sales
2006: 231.8 million units 1.2 million units
2007: 388.4 million units 5.2 million units
2008: 628.5 million units 9.3 million units
2009: 602.3 million units 8.8 million units
2010: 636 million units 17.6 million units

This differential is only partially explained by the simplicity and lower cost of gaming
consoles. The more significant difference lies in both the capabilities and limitations of a
gaming system. Consoles frequently have certain technological capabilities beyond those
found in affordable PCs. In the beginning, graphics processing power marked the difference.
In many cases the graphics processing power of console gaming systems when initially
released have been beyond those of the average computer. Consoles begin their lives more
capable than average computer systems even though throughout the lifetime of a console
similar technologies frequently become incorporated into general computer systems.
Further, until recently, standard operation for console makers was to price consoles at a loss.
The basic logic of this practice is that console manufacturers make more money from games
than from hardware. The console system itself was historically a loss leader because
technologies were so much at the cutting edge that they were offered to buyers at prices
below cost. Not surprisingly, this brought about the downfall of more than one console
manufacturer.

Another reason consoles tend to outsell PCs centers on game production limitations.
Because they are not required to do “typical” personal computing tasks, consoles can be built
with very precise specifications and limitations to their possible uses. From a game
development standpoint, there are no differences to be taken into account with a console—no
differences in amount of memory, graphics systems, operating systems, processing power.
There are no warnings from a console that you do not have the proper driver installed. Each
console is created with specific specifications, and when creating games for it, game
developers know these capabilities. The case is very different on the PC. Differences in
software/hardware configuration, the possibility of other processes running and interfering
with the functionality of a running game, and simply the unknown availability of options
frequently provides great difficulty for companies making games for the PC. Some argue, and
I tend to agree, that these “non-standardized advances in home computers,” have encouraged
the growth of the console videogame industry and massive improvements in the graphics
processing capacity of videogames. These developments also create one of the biggest worries
and limitations for developers hoping to create games for personal computers (Williams
2002).

The focus on console games by developers and the perception that it is the only market
worth developing for (or is the most prestigious market to develop for) has meant that
consoles remain a focus for most developers. However, unlike personal computers, you
cannot simply begin developing games for a console without first establishing a relationship
with a console manufacturer. Because of this, these companies continue to have the single
largest impact on the videogame industry.

The rules of game development for consoles are dominated by legal, technological, and
monetary rules dictated by console manufacturers. While most developers avoid the pitfalls
of legal prosecution, some do come under legal scrutiny if they attempt to circumvent the
technological limitations of their position. The technological collapses into the legal in this
space, as technology is often used to enforce already agreed upon legally binding rules. NDAs

and contracts are secondarily enforced by technologies (DevKits and SDKs) leased to
developers that enable their work. Yet, developers do have the ability to push back against
console manufacturers in these agreements but do not for fear of losing access to the closed
networks of production. However, it is precisely this commitment to broader sharing and
collaboration that are crucial to the long-term health of game development practice. While
technological limitations would still remain, it would be a step in the right direction.
Developers could have the most impact in their desire to both shape and care for the industry
if they used their ability to push back against the restrictions of manufacturers. At the same
time, this restrictive part of the game industry disappears from their perception. Once a
company has gained access to DevKits and SDKs, these tools recede into the background of a
company, despite the fact that they were once one of the major gatekeepers of access to
industry networks. Far too quickly developers allow themselves to forget just how difficult it
can be to work into and among the structures of the industry.

The situation is even more complex though, because frequently before a request for a
DevKit is granted, developers must demonstrate a proof of concept or playable demo of a
game. This is frequently done using freely available resources and tools, targeting the
personal computer or the Web. All of this work must typically be redone once a DevKit is
acquired, as those systems are completely different from those freely available. This is a
particularly sticky aspect when talking about a business rather than a hobby or something set
up in your garage in the hopes of making it big. Many informants noted a distinct difference
between game development as work and game development as play, especially when
livelihoods are on the line. The shift is part cultural, with the activity of making games for
oneself rather than making games for a pay-check being very different tasks. But there is also
difference in the material practice. Tools and professionalization is linked more distinctly to
sustainable game development work. Game development outside of those lines need not be
sustainable, for it isn't a hobbyist's goal or purpose.

Even if a game development team is successful creating a game for console systems
(enabled by leased DevKits) for distribution on the proprietary Nintendo, Microsoft, or Sony
networks, the resulting game will require approval of the self-governing ratings system of the
game industry, which will cost another $2,000 to $3,000. There is a chance that a game
might receive a rating from the Entertainment Software Rating Board (ESRB) that limits the
audience too significantly and requires massive rework. This creates a logic that leads many
developers to ask publishers to fund the massive effort required to make a game, though that
investment comes at the cost of relinquishing some control of the project, and frequently the
rights to the IP of a project to the publisher. This way if the risk does pay off for the
publisher, they can continue to reap the benefits of that adventure capital for years to come.

Despite all of this, risk and the rules by which those risks are taken remain a largely
invisible aspect of the game industry. While developers will frequently lament the way the
industry game is played, they seem blind to the rules by which it is played, something
uncharacteristic from people (self) trained to pay attention to underlying structures.

Let's take a major industry shift as an example. Nintendo first emerged as a force to be
reckoned with during the time of Atari, and the NES release was particularly important
because it brought about massive change to the way videogames were developed, sold, and
marketed—in fact, NES brought changes to the very technological core of game consoles. For
the most part, these changes were not obvious to the user. The only visible difference was the
emergence of the Nintendo Seal of Quality on the boxes of games. It was placed on “official”
game titles released for the NES. These were the games licensed by Nintendo.

Nintendo's logic was clear. They believed that the low quality of games released for the
Atari were partially to blame for the “crash” that came shortly after the release of several
games that were massive economic failures. By offering their “guarantee” of quality,
Nintendo offered gamers a way to feel safe investing their money in the games.

But this was not simply a quality control issue (if it was you would have likely had two
groups of games for the NES, those “guaranteed” and those that were not). There were very
few “unlicensed” games for the NES. The only games available (for the most part) bore the
Nintendo Seal of Quality because what lies behind the Seal of Quality endures today on all
games released for Nintendo's current generation of consoles. The very term “licensing”
entered the minds and vocabulary of game developers at this significant moment in gaming.
The real power of the seal is in the resulting web of connections and network. But why focus
on manufacturers like Nintendo? It is because they structure the network more so than other
actors. This is where concepts like those proposed by sociologists examining the “network
society” or “networked/new economy,” rightly index the importance of switches or points of
control within the network. Unfortunately these important aspects are frequently not
examined closely enough, despite their ability to dramatically shape resulting networks:
“Switches connecting the networks are the privileged instruments of power. Thus, the
switchers are the power-holders. Since networks are multiple, the inter-operating codes and
switches between networks become the fundamental sources in shaping, guiding, and
misguiding societies” (Castells 1998, 502).

The Seal of Quality offered such a network switch, because of the ways that these networks
structure the very work of producing games. Reading into several court cases, we can learn
more about Nintendo's licensing practices, which are otherwise invisible. Up until the
introduction of the NES, companies were created games without licensing. The Seal of
Quality changed all that. But what kind of deal was necessary to change the rules of the
industry game? Atari's frustration at having the rules switched mid-game is evidenced in
their antitrust suit against Nintendo (Atari, Tengen, and Nintendo 1992).

In December 1987, Atari became a Nintendo licensee. Atari paid Nintendo to gain access
to the NES for its videogames. The license terms, however, strictly controlled Atari's
access to Nintendo's technology, including the 10NES program. Under the license,
Nintendo would take Atari's games, place them in cartridges containing the 10NES
program, and resell them to Atari. Atari could then market the games to NES owners.
Nintendo limited all licensees, including Atari, to five new NES games per year. The
Nintendo license also prohibited Atari from licensing NES games to other home
videogame systems for two years from Atari's first sale of the game. (Atari, Tengen, and
Nintendo 1992)

Five games per year, and all costs must be paid for at manufacture. A company's entire
earnings were limited to five games per year, and those companies bore all of the risk
associated with the costs of production. Heaping limitation on top of limitation, those games
had to be maintained as NES exclusives for two years before they could be ported to other
console systems. Nintendo was the only company unhindered by these limitations on
production. If other developers or console manufacturers attempted to change the rules, they
met with not only the ire of Nintendo, but also the force of the state apparatus. The legal
ramifications of copyright and patent systems were leveraged by Nintendo to alter the entire
playing field of the videogame industry. But what did it cost other companies to play on this
field? Was it fair to have different rules for Nintendo, since it needed to cover its expenses in
the manufacturing of games for their console? Atari lost this particular case and was forced
to play by the rules dictated by Nintendo.

Things have changed, and Nintendo no longer places such severe restrictions on the
number of games a publisher can create in a year. This is as evidenced by looking at the
number of games released for consoles each year by different publishers. But, if we examine
the top publishers of videogames (see table 6.2), an interesting trend emerges.

Table 6.2 Top ten videogame publishers in 2004–2009 (Wilson 2008; Staff 2009)
Top videogame publishers
2004 2005 2006 2007 2008 2009
Electronic
Arts

Electronic
Arts

Electronic
Arts

Nintendo Nintendo Nintendo

Microsoft Activision Nintendo Electronic
Arts

Electronic
Arts

Electronic
Arts

Sony
Computer
Entertainment

Microsoft Activision Activision Activision Activision
Blizzard

THQ Nintendo Sony
Computer
Entertainment

Ubisoft Ubisoft Ubisoft

Ubisoft Sony
Computer
Entertainment

Take Two THQ Sony
Computer
Entertainment

Take Two

SCi/Eidos Ubisoft Microsoft Take Two Take Two Sony
Computer
Entertainment

Activision Konami THQ Sega of
America

Sega of
America

Bethesda
Softworks

Take Two THQ Ubisoft Sony
Computer
Entertainment

THQ THQ

Atari Sega Sammy
Holdings

Konami Microsoft Microsoft Square Enix

Nintendo Take Two Sega Sammy
Holdings

Eidos
Interactive

Square Enix Microsoft

No matter the year, every single console manufacturer is in the top ten. The ability to
control what makes it into the content stream obviously has effects on who is making money.
A particularly interesting outlier is Electronic Arts, who year after year manages to displace
even console manufacturers. The small amount of motion you see in charts like this shows
that only very large and very established publishing companies are managing to get their
games into the console stream. The simplest answer is that this is an expensive game to play.
Because the entire manufacturing run must be paid for in advance, and all marketing for a
game must be covered by the publisher, creating games for consoles, while lucrative, is also
extremely risky and requires a high initial investment. The game industry is built around
high risk, high reward, high initial cost, and high barrier to entry rather than out of some
innate necessity. This is precisely how the industry was engineered to function with the
model implemented by Nintendo beginning in 1985. Yet the game industry need not function
on such a model and developers need not labor under such a structure.

The industry's aversion to risk and high-cost power structure becomes crucially important
when attempting to understand the relatively conservative behavior of publishers and the
kinds of games that they are willing to fund. Unless they acquire a studio near the end of the
game production cycle, publishers bear the majority of the risk associated with physically
creating a game. This does not mean that publishers bear all of the monetary risk associated

with game development, though many developers I spoke with believe this to be true.
Frequently publishers only bear the full risk of a game development project if it is one that
they have entirely sponsored the development of. In many cases these games already have
proven franchises, brands, or more generically, IP (intellectual property, though in a fairly
restricted sense of that term). Some have called this a move toward a “hit driven” industry,
much like the movie industry, where for the major publishers to be successful every title
must not simply be profitable, but massively so to recuperate the development costs. As one
of my informants noted, this makes them incredibly risk averse, which is actually the
opposite of what they need to be to truly be successful in a hit-driven industry. Publishing
companies desire to play it safe means that they leech the profits of particular game
franchises to death, rather than nurturing the kinds of environments where runaway hits can
be fostered and grown.

This is compounded in the current industry situation, where the massive growth of
available storage space on game media has caused many companies to place an emphasis on
rapid expansion of game art assets. Many of my informants have pointed to modern games
being “asset limited” rather than “engineering limited.” Simply stated, the greatest
percentage of a game's cost stems from creating content for the game, not the underlying
code that puts a game into action. The release of “next generation” or “next gen” console
systems has led many developers to focus on the creation of highly detailed art assets for
games that frequently require more production time to create content.

This entire publishing and production picture is further complicated by the
“unpredictability” of videogame development, which is frequently touted as being more
difficult to manage than traditional software development, though some argue otherwise.
Simply looking at the archives of Game Developer magazine's “Postmortems,” you begin to
see a pattern of unknowns coming back to bite game developers late in the production of
their games. Frequently this results in rework for every aspect of the development team,
where changes ripple across engineering, art, and design. This of course has serious
repercussions when most publishing companies want their premier titles on retailers’ shelves
during rush buying seasons; in the United States this is the Christmas sales season. In other
cases publishing companies have partnered with the movie industry using their established
franchises to encourage sales of videogame titles. In each case this leads to a rigidity of
release dates, and missing these dates can be disastrous for both publisher and developer.

To reduce these risks, as touched upon in World 5, publishing companies have begun
offloading the risk of developing new IP or franchises to independent developers. While this
is not possible for a publishing company hoping to make a game in concert with a movie
studio, it is frequently the case for new games to come from otherwise unknown studios.
Often the publisher becomes involved in the development of these games only after an
independent developer has already developed large portions of a game concept, thereby
capturing the adventure capital without the substantial risk. Once this is complete,
publishers will frequently milk these new franchises with or without the original
development team, depending upon the contract agreements between publisher and
developer. In many cases if a developer retained the rights to their new IP the publisher
instead purchases them so they can milk the new franchise regardless.

This mentality of capturing game equity regardless of the method leads publishers to have a
certain conception of the market and consumers. In particular, because of the emphasis on
“hits,” most games attempt to capture the core or “hardcore” gamer market or existing,
lucrative IPs. Franchises like “Barbie,” “Bratz,” or “Batman” are viewed as less risky than
titles without an established market. “Madden NFL” or other sports franchises oscillate
between being seen as a kind of bread and butter and being derided by game developers.
While it is the job of publishers to identify and market games to consumers, many publishers
have become even more conservative in their approaches, stonewalling development efforts
that do not have an obvious brand or market associated with them. Despite this, once a game

has proven its appeal as an online “Flash” game or downloadable game, many publishers will
then take the substantially lower risk to further development and distribute the game via
more traditional channels on more restricted hardware like console systems. In a sense, then,
they use independent developers to test the market for them and then take advantage of the
lower risk, proven games to reap adventure capital without much downside.

World 6-3: The Development Kit (“DevKit”)

More than any other relationship, developers perceive their interactions with publishers as
the most problematic. Even developers working for studios wholly owned by publishing
companies view these as troubled marriages, in part because, the publisher is the gatekeeper
to other networks in the game industry. But the relationship is further strained because the
publishing companies exercise their position of power within industry networks frequently at
the expense of developers’ time and effort. The relationship between publishing companies
and developers frequently take the foreground in informants’ conversations about developer
frustrations.

Obviously, as figure 6.2 indicates, developers seem to not be having the best time,
perceiving themselves as the hard working talent lining the pockets of the slovenly game
publishing pimps. Unfortunately for our understanding and discussion of the industry, this
relationship is often stereotyped and misunderstood because cultural analysts typically have
only the insight of ea_spouse as their guide for what work is really like in the videogame
industry. At the time the blog post and attenuated ea_spouse comment were published I was
sitting with a group of developers working on a videogame based on an upcoming movie title
for an unreleased handheld console. They, too, were in crunch mode, working to beat
timelines that had been set to meet the demands of movie executives, game publishers, and
console manufacturers, forced into a release calendar without realistic expectations about
how long it takes to make a game. As we saw in World 1, the game was later canceled, but
those hours late at work fighting against prerelease hardware with prerelease software
development kits (SDKs), a new engine, an in-development build system, and no proven
pipeline for art assets or design data were still fresh and raw for my informants. That is not to
say that ea_spouse was wrong about the industry secret of pervasive crunch, but rather that
the situation is even more difficult and complex than analysts had previously envisioned.
Developers have not just traded their allegiance for televisions, but for a slew of new and
interesting technologies and access to private networks.

Figure 6.2 An artist's interpretation of the publisher/developer relationship

As previously noted, one of these technologies, the NES, marks a pivotal moment in the
history of videogame development, and in the realm of rule making and rule enforcement. In
December of 1985, shortly after the release of the NES in the United States, Nintendo filed
for a patent, the only public record of a significant technological device that had been
developed.1 This microprocessor, the piece of code carved in silicon, was about to change the
course of videogame development forever; and in this case software/code presaged a code—a
legislation—of another kind.2

The phrase Nintendo used in its patent application, “System for Determining Authenticity
of an External Memory used in an Information Processing Apparatus,” belies a much more
complicated device, for within the console resided a semiconductor lock and in the cartridge
a key. This silicon lock and key ensure the “authenticity” of the “external memory device”
added technological force to the Seal of Quality placed on a game's box. The key and seal
worked together to restructure the way games were made. To get a game made with the key
you needed a seal. To get the seal you needed Nintendo. The following patent document
excerpt (figure 6.3) demonstrates the “invention” of this silicon/digital lock and key.

Figure 6.3 The lock and key of the 10NES patent

Nintendo engineer Katsuya Nakagawa, in the device's patent, clearly lays out Nintendo's
plan to have a locking mechanism in the console and an unlocking mechanism in the external
memory device (game).

United States Patent Number 4,799,635 - System for Determining Authenticity
of an External Memory used in an Information Processing Apparatus.

To verify that the external memory is authentic, duplicate semiconductor devices, for
example microprocessors, are separately mounted with the external memory and in the
main unit, respectively. The semiconductor associated with the external memory device
acts as a key device and the duplicate device mounted in the main unit acts as a lock
device. (Nakagawa 1985)

Nintendo's intentionality with regard to this method is broadcast in the court cases that
quickly followed from those companies who did not care to work through the locked system
wherein Nintendo locked out quality to lock in power. Nintendo's own testimony indicated
that the 10NES chip, as it came to be known, was designed specifically as a means to enforce
licensing agreements. Note that at this moment the interest in the way the lock and key were
structured was in protecting Nintendo's ability to say who could make and release games for
the NES, rather than on copy protection; and while I do not address those concerns in depth
in this world, I will return to them in World 7-2 and 7-3. The intentionality of what the device
was designed to do is directly indexed in a court case from 1992.

Nintendo designed a program—the 10NES—to prevent the NES from accepting
unauthorized game cartridges. Both the NES console and authorized game cartridges
contain microprocessors or chips programmed with the 10NES. The console contains a
“master chip” or “lock.” Authorized game cartridges contain a “slave chip” or “key.”
When a user inserts an authorized cartridge into a console, the slave chip in effect
unlocks the console; the console detects a coded message and accepts the game
cartridge. When a user inserts an unauthorized cartridge, the console detects no
unlocking message and refuses to operate the cartridge. Nintendo's 10NES program thus
controls access to the NES.” (Atari, Tengen, and Nintendo 1992)

While Nintendo's technological legislation encouraging developers to work directly with
Nintendo was dramatically different from how things had been managed for previous
consoles, it was in many ways only the beginning. This leads to two questions: “Why not pick
the lock?” which can be answered in part by the second, “Why the patent?” Nintendo had
learned from Atari's experiences and knew that the kinds of people interested in making
games were very resourceful. A simple technological device, while capable of influencing the
way in which games were developed for the new NES, was not enough to ensure control over
the rights of production. This power is simply out of the hands of most organizations. To
exert that kind of control requires the mobilization of government intervention, which is
precisely why they applied for a patent.

Interestingly, NES's Japanese counterpart, the Nintendo Famicom, did not contain the
10NES lockout chip, and while this did result in some levels of piracy that Nintendo
combated with just the Seal of Quality (without technological or legal networks), the lack of
10NES also resulted in a longer life cycle for the console. Long after Nintendo had released
the Super Nintendo Entertainment System, games were still being released for the Famicom.
Many of them were unlicensed, but gamers continued to buy them, keeping the console in
living rooms well beyond Nintendo's expectations.

To exert control over the networks that Nintendo hoped would form around the NES, code
was not a sufficient form of legislation. The patent office's granting of a patent provided one
legal means by which force could be mobilized against those wishing to get around
Nintendo's Seal of Quality. Nintendo was also careful in the copyrighting of the code that
composed the 10NES chip. This provided them a second means of mobilizing the state to
enforce compliance with the rules that they could not enforce themselves. Those wishing to
pick the lock were now subject to litigation, and while it was still possible to reverse engineer
the patented technologies, those doing so must be careful so that when they were sued, they
could properly defend themselves in court against the state's enforcement of Nintendo's
power.

While several companies did manage to circumvent the lockout capabilities of the NES,
most did not. In Nintendo's most publicized legal loss, Galoob demonstrated that their Game
Genie product for the NES made no use of copyrighted Nintendo technologies. The Game
Genie merely altered the code being transmitted from cartridge to console. The Game Genie
did not circumvent the 10NES lockout chip, but instead used the key device in the cartridge
to allow normal booting of the NES. Galoob's technological and legal success, however, was

unusual. More commonly, companies attempting to market games outside of Nintendo's new
rule system paid dearly.3 The most famous of these was a case involving both patent and
copyright infringement, wherein a developer failed to jump Nintendo's legal hurdles.

Yet another case—Nintendo vs. Atari and Tengen—became the precedent for many of
Nintendo's future legal claims. The case was foundational for all subsequent litigation to
control the means of production even outside the game industry. The case is also particularly
important because without it, the details of licensing arrangements mentioned in World 6-2
would have remained invisible. Unfortunately the case was exceptionally poorly played by
Atari and Tengen, as is demonstrated in a brief excerpt from the court report. Needless to
say, Atari went about “reverse engineering” the 10NES in a most harebrained4 fashion.

Atari first attempted to analyze and replicate the NES security system in 1986. Atari
could not break the 10NES program code by monitoring the communication between the
master and slave chips. Atari next tried to break the code by analyzing the chips
themselves. Atari analysts chemically peeled layers from the NES chips to allow
microscopic examination of the object code. Nonetheless, Atari still could not decipher
the code sufficiently to replicate the NES security system. . . .

In early 1988, Atari's attorney applied to the Copyright Office for a reproduction of the
10NES program. The application stated that Atari was a defendant in an infringement
action and needed a copy of the program for that litigation. Atari falsely alleged that it
was a present defendant in a case in the Northern District of California. Atari assured
the “Library of Congress that the requested copy [would] be used only in connection
with the specified litigation.” In fact, no suit existed between the parties until December
1988, when Atari sued Nintendo for antitrust violations and unfair competition.
Nintendo filed no infringement action against Atari until November 1989.

After obtaining the 10NES source code from the Copyright Office, Atari again tried to
read the object code from peeled chips. Through microscopic examination, Atari's
analysts transcribed the 10NES object code into a handwritten representation of zeros
and ones. Atari used the information from the Copyright Office to correct errors in this
transcription. The Copyright Office copy facilitated Atari's replication of the 10NES
object code.

After deciphering the 10NES program, Atari developed its own program—the Rabbit
program—to unlock the NES. Atari's Rabbit program generates signals indistinguishable
from the 10NES program. The Rabbit uses a different microprocessor. The Rabbit chip,
for instance, operates faster. Thus, to generate signals recognizable by the 10NES master
chip, the Rabbit program must include pauses. Atari also programmed the Rabbit in a
different language. Because Atari chose a different microprocessor and programming
language, the line-by-line instructions of the 10NES and Rabbit programs vary.
Nonetheless, as the district court found, the [F.2d 837] Rabbit program generates
signals functionally indistinguishable from the 10NES program. The Rabbit gave Atari
access to NES owners without Nintendo's strict license conditions. (Atari, Tengen, and
Nintendo 1992)

This case begs the question, why was Atari trying to get around the limitation? Why not just
talk to Nintendo? There is, of course, the possibility that Atari was simply bitter, having gone
from the leader of the videogame industry to a player forced to work within the rules of
another company. It is possible that Atari simply wanted to siphon off some of Nintendo's
videogame profits. What neither answer gives us is any insight into the working realties in
which Atari, Tengen, and Nintendo were operating. We have no way of knowing why
companies were feeling compelled to work around Nintendo rather than with them.

One answer might be that the NES was so chock full of new and interesting technologies
that developers were happy to buy into licensing schemes as a means of inserting themselves
into the networks that were emerging—they played Nintendo's game to get a chance to play

with new technologies. As with India's game studios, developers were willing to trade their
rights for new and shiny technologies. One particular innovation that separated the NES
from previous generations of consoles and might have inspired developers to work within the
new Seal-of-Quality world of licensing restrictions was Nintendo's use of a new technology, a
precursor to the now ubiquitous GPU. On the NES, Nintendo improved and simplified the
way graphics were processed and delivered to the television screen with the Picture
Processing Unit or PPU. This major design innovation also allowed the CPU of the console to
spend more time doing game-related operations and less time handling graphics-related
operations.

While it may seem that I am leveling blame for difficult work conditions solely at console
manufacturers, I am not. Rather, I'm trying to elucidate that in the videogame industry, there
is no boogeyman; closed and secret structures and networks are co-constructed. Game
developers allow and perpetuate the current state of affairs. Put simply, game developers
allow whatever game developers allow. People who create media, writing, and technology
have long been concerned and interested in limitations placed on the distribution and use of
their products. The methods of limitation in videogame have come to leverage the powers of
the state more and more.5 These limitations are also inherently limitations on the ability to
produce for technologies covered under these methods. The more tightly distribution is
controlled, the more tightly controlled production will be.6

At its simplest level, the cost of technology can do a great deal to ensure that users and
distributors of videogames follow the rules set by videogame manufacturers. If you look at
the technologies used in each console system and look for the cost of a given distribution
medium it becomes apparent that when first released each was prohibitively expensive for an
average consumer. In 1996, 64MB memory modules were not cheap, nor was it easy for
consumers to create them or place them into plastic cartridges to fit into the Nintendo 64.
This was one reason Nintendo opted to continue using cartridges in their systems like the
one pictured in figure 6.4, despite Sony's move to use CD-ROMs in the competing
PlayStation. In 2000 when the PS2 was introduced, the cost of a DVD burner was more than
$4,000 and disks for those burners started at $40, nearly the cost of a videogame to the
average consumer. By the end of the PS2's life span however, DVD burners were a common
add-on for new PCs. When the PS2 was first released, it was expensive or difficult to
circumvent copy protection. By the end of the devices’ life cycle, it was far easier and cost
effective. The technology moves forward not just to provide new capabilities for game
developers, but to also move on to platforms that are, for the most part, exclusive to content
creators.

Figure 6.4 A schematic of a NES cartridge (Nakagawa and Yukawa 1987)

The same was true for nearly every medium on which console games were distributed. Of
course this does not mean that either company did not also take precautions to reinforce the
cost or difficulty of producing these items. Knowing full well that an all-out copyright assault
would be expensive, drawn-out, and difficult, each company again employed the use of
secretive and patented mechanisms to prevent production of unauthorized duplicates.

All of these technological and legal machinations have fundamentally altered the way
games get developed. One specific way is that developers can't create these games on PCs
without the same technologies that the consoles have. Thus, the NES also heralded the birth
of a now-ubiquitous game development technology: the “DevKit.” 7 DevKits were introduced
so that game developers could create games for consoles where the hardware differed
significantly from that of PCs. Nintendo developed technologies to bridge the gap between
the PCs (where code was typically written) and the consoles (which ran the code). The
complexity of these devices has increased dramatically with the complexity of consoles.

DevKits are also distributed with the software packages that simplify the process of game
development. These range from SDKs that provide a set of software resources for developers
to draw upon, to software tools that combine art, code, and data into a format that can be
delivered and run on a DevKit. It is likely that the Nintendo Famicom, with accompanying
disk drive, as pictured in figure 6.5, could well have served as an NES-era DevKit. DevKits
can also include very basic technologies like compilers, IDEs, and debuggers, which are
indispensable tools for game developers. Without these resources, the process of creating
games can be much more complex. On a simple system like the NES or Game Boy Advance,
hobbyists can overcome some of these limitations even though the resources typically
available to developers are off limits. To be clear, DevKits are leased from the console
manufacturer. Developers do not own DevKits. A lease can be revoked at any time and for a
variety of reasons, and thus the very ability to develop games for these platforms can also be
revoked. Fees paid to acquire a leased device are not returned.

Figure 6.5 The Famicom combined with a disk drive: The NES DevKit

Accompanying the DevKits from manufacturers are NDAs that further limit game
developers. These agreements legally prevent developers from distributing or sharing
knowledge of or resources for these systems. While companies covered by the same NDA
technically could share knowledge and resources, such openness is prohibited by the
overarching industry emphasis on secrecy. This means that an unconnected producer cannot
create a game for one of these devices; doing so requires the permission of the manufacturer.
More on this in World 6-4.

Without DevKits, games can be developed and prototyped, but will later require massive
changes to support the highly specific characteristics of a game console. Such an assertion
reflects on distribution explicitly, but does not emphasize clearly that development
necessitates these kinds of technologies. While distribution may be touted as “more
accessible,” this won't be true until DevKits are easily and cheaply acquired, or SDKs no
longer depend on them. Game studies scholars and independent game developers have all
lamented the limits this places on developers.

Both physical and digital distribution rely on independent developers’ ability to make
games for the new platform in the first place. While Nintendo has been quite vocal about
its intention to support independent developers, including offering Wii dev kits for
under US $2,000, Nintendo of America has also said that it won't start reviewing
independent developer applications until January 2007—which means that only those
developers with publishing contracts or special invitations actually have them. (Bogost
2006)

Even by the summer of 2007, independent developers were unable to acquire these
devices, despite announcements that indicated otherwise. The rhetoric used in this
announcement harkens to the one used by Microsoft with the announcement of their XNA
Express endeavors mentioned in World 3's Foss Fight. Under close examination, the reality
of console technologies locking out developers indicates that very little is actually changing.

And this failure to broaden access really means that Nintendo's announcement was made
to indicate an intention to distribute independent and original games on their online
network, much like Microsoft and Sony had already been doing on their networks. So while
Microsoft's XNA technologies are actually creating opportunities for developers to share
resources and technologies, Nintendo's approach to production control remains the same,
despite the similarities in the rhetorical framing of their press releases. The mechanisms for
controlling production continue.

If the ability to gain access to the game development technologies for these systems has
been difficult for developers in established industries, it is even more complex in countries
like India with emerging industries. The legal, technological, and political maneuverings
unflatten the global playing field. While I was in India and when I left at the beginning of
2007, there were precisely two Nintendo DS DevKits in all of India, both at the same
company, which had recently been acquired by a rapidly globalizing US-based publishing
company. The studio's engineers and artists were trying to get their heads around this more
limited technology with SDKs they had never seen before. It was one of those odd moments
where my past developing videogames suddenly became useful during fieldwork. Having
worked with Nintendo SDKs during the time of the N64, I recognized some of the techniques
and standards that were being used. For the developers in India these were new concepts,
unexplained and undocumented (except in cursory terms and in ways not useful for
developers making games). When asking questions on the private forums used for developer
discussions, they frequently encountered hostile responses like, “How can you not know
this?” So I spent some of my time working with engineers offering what aged and blurry
knowledge I did have to assist in their development work. In some cases I sat with engineers
while they wrote code. Other times we talked at whiteboards. Sometimes I asked artists how
they were generating their art and getting it into the game. How did they play the game?
Their absolute lack of the knowledge held by other Nintendo developers yet but not included
with the two Indian DevKits precisely illustrates the point that industry structures control
production and prevent any circulation of knowledge regarding what it takes to create games
for console systems.

In many respects, in a platform studies sense, the NES facilitated certain types of social and
technical support systems that surrounded it. Thus, in addition to the ways “hardware and
software platforms influence, facilitate, or constrain . . . computational expression” (Montfort
and Bogost 2009, 3) they reach further. Platforms matter not just for the technical creativity
of artists, programmers and designers, but also for their broader social context. It is the
broader social, political and economic context that I would argue that platform studies often
misses, by focusing so tightly on the technology of the devices examined. As such, it is that
setting that provides a kind of historicity for a device that also shaped its development. For
example, in the platform studies examination of the Nintendo Wii (Jones and Thiruvathukal
2012), no mention is made of the well known 2007 GDC rant delivered by Chris Hecker,
where he characterized the device as “two [Nintendo] Game Cubes duct-taped together.” This

statement nearly cost him his job, despite the goal of the GDC rants to serve as “off the
record” moments. The idea that the Wii was more like the Game Cube than it was different
was particularly humorous to those in the audience working on the Wii. Early DevKits for the
Wii were actually Game Cube DevKits with the addition of periphery hardware and updated
SDKs. To those developers with that knowledge, the Wii really had started its life as a Game
Cube. Thus, the Wii, as a platform remains inherently linked to the Game Cube and its
shaping of that platform. Another such example is that the “waggle” recognition software
distributed by Nintendo for developer, was not actually included in early DevKits, but came
later in the life of the console as developers identified the need.

Secrecy and protected power networks also have the secondary effect of encouraging Indian
game development companies to focus on the production of art assets. Because the tools of
game art production, Max and Maya, are relatively standard, developers in India are already
familiar with these tools and are able to produce artwork for United States and Western
European companies. However, because the tools that would allow engineers to create code
for other systems and begin generating tools for designers to bring these aspects together are
unavailable, many companies are forced to focus on those aspects most amenable to offshore
outsourcing. This meant that rather than being able to bootstrap themselves into the global
game industry, they are structurally positioned to act as art production houses. Because of
this, as mentioned in World 5, many of the Indian game studios shift their focus to the
production of game titles for mobile cell phone devices, currently the smallest market within
the broader game industry. Of course this is changing, as the introduction of Android and
iOS based phones and their accompanying digital distribution platforms has caused a major
shift for both content creators and users.

Many of the other technologies that compromise consoles and PCs have actually converged,
and the lockout chip, 10NES or otherwise, perseveres. It is the main limitation for developers
hoping to distribute their games on consoles.8 It also prevents new publishers from
challenging existing ones; and even when they do, the standard approach is consolidation
and acquisition. The distribution of DevKits fits nicely into the networked structure
throughout the videogame industry. The big players lease these DevKits for large sums of
money and use them or distribute them to developers making the games for consoles. Even
consoles purported to use “standard CD-ROM” drives (Malliet and Zimmerman 2005) place
limitations on developers.

Regardless of how a device characterizes its effect, if a technology being touted as a
controller of distribution or production, the net effect is actually control of both. These
technologies and their connection with political and legal structures disable the ability of
producers to use, learn from, and share experiences with one another. Such technologies
reinforce the prejudice of developers that the work of game development is somehow
different and separate and encourages the maintenance of secret societies throughout the
industry. And while corporations scream that the market must be allowed to function
without regulation, they simultaneously leverage government regulation to alter the market
specifically in their favor and at the expense of those they depend upon for production. Only
those who have been approved and are inside the networks should be allowed a distributed
voice: this is an inherently anti-market approach. However, corporations cannot enforce
these systems without the intervention of the state.

World 6-4: The Non-Disclosure Agreement (NDA)

The non-disclosure agreement is a peculiar animal in the videogame industry. It is the
embodiment of secret keeping and, at the same time, it is one of the most frequently
breached documents, often for the benefit of game developers. The informal conversations

that developers have with one another form the foundation of institutional memory and
professionalization. Yet in these undocumented intrastudio discussions, the NDA still carries
significant power.

There has been significant recent backlash to the NDA as videogame console
manufacturers have attempted to make their hardware available to university programs, so
that budding engineers can play instrumentally with the hardware available prior to entering
the game industry. At the same time, these devices have remained under NDA, which means
that for the most part students cannot post any source code for the projects developed under
the program (Danks 2008; Orland 2008). Students can share information with one another,
but cannot put their findings into conversation with the broader communities of hobbyist
and independent game development.

NDAs pervade the game industry. They exist between organizations and individuals and
among organizations. What results is an industry founded on and bounded by silence, in part
based on a desire for secrecy (as mentioned in World 2) and in part based on necessity.
Developers talk mostly in generalities, so deeply have they internalized the code of not
disclosing. Even when companies ultimately belong to the same parent company, they
continue to not share information based on accustomed practice. Developers acquire a built-
in paranoia about what can or cannot be discussed, resulting in a kind of constant self-
policing that resides at the core of our consent to hegemony. The fear that another game
developer, who is hard at work on their own project, might become aware of the project you
are working on operates as an effective silencer within an industry where a competitor might
incorporate your super-secret, earth-shattering technology to gain more sales than you.
Publishers want to control information flows to ensure their marketing departments manage
the public relations of a soon-to-be-released game. Hardware manufacturers fight to ensure
that information about the underlying technologies of their devices are not leaked to other
manufacturers or hackers hoping to break the copy protection on their devices and extend
their functionality beyond that of their intended design (Androvich 2007). Within the
industry, fear, or at least self-censorship operates at all levels of development to help
manufacturers, publishers, and studios maintain secrecy.

At the same time, game developers are often desperate to find more information about how
others develop games, and the Game Developers Conference (GDC) is one event where
information flows more freely, though still consciously constrained by the legal implications
of NDAs. At one such event I asked a group of game developers who were all working on the
Nintendo DS, “How many of you have written an XML parser for the DS?” Nearly every
engineer in the room raised their hand. Discussion between developers ensued and at least
two open source solutions, expat and TinyXML, were found to have been ported numerous
times. One must ask how many of the technological and engineering problems found in game
development have already been solved broadly by the Free/Open Source Software movement
(F/OSS).9

Thus, the NDA embodies a foundational memory-loss system. While organizations ought to
protect their intellectual property, often the uniqueness of a given technology is much less
than it is often given credit for. In only a few, truly unique, instances have developers opened
up and begun talking about the technologies that form the foundation of their game
development practice. One example of a game studio bucking this trend is Insomniac Games,
which has started its “Nocturnal Initiative™,” open sourcing numerous aspects of their
videogame development process and the tools that form the connective tissue between their
numerous systems. Insomniac is a highly successful game studio, with numerous highly
successful game titles under their belt, including Ratchet and Clank, Resistance, and Spyro.
Their efforts with Nocturnal Initiative™ are aimed at unveiling the tools that might save
other developers time: “Nocturnal Initiative™ is not a game engine. The libraries provided
here are potentially very useful for developing a game engine, but we want to avoid the ‘all
things to all people’ that so often results in overly complex and/or under-performing

monolithic engines. Instead, we want to provide a useful toolbox for the professional game
developer” (Insomniac Games’ website quoted in Evans 2008). It is precisely this kind of
commitment to break the culture of secrecy perpetuated by the pervasive NDA traditions that
stands to transform game development practice if adopted more broadly.

Having observed the effects of a videogame industry that has labored under a culture of
NDA for nearly thirty years (since the introduction of the NES and licensing), it is surprising
that when more typical software developers encounter similar limitations on new devices,
they react very differently from game developers. After the release of the iPhone 3G in 2008,
which added the ability to create custom applications for Apple's App Store, developers
quickly reacted strongly to being unable to share information with one another about how to
best work with the device (Chen 2008). In fact, the website fuckingnda.com was created
within two months of the iPhone 3G's release and offers a place in which software developers
can rant about their limitations. Strangely, game developers have worked under similar
restrictions for nearly three decades and have not balked at their lack of ability to share
practices with one another. NDA restrictions are constantly referenced at conferences or
during informal conversations among developers, who nevertheless continue to work under
the yoke of those systems. The culture of secrecy and the culture of the NDA has pervaded
development so fully that developers no longer question the logic of the limitations or what
their implications might be.

World 6 Boss Fight: Institutional Alzheimer's

The game industry needs to become more open for its own survival and growth. Ultimately
this openness must occur both at the lowest and highest levels. Game developers must be
able to converse broadly about the practice of game development. Publishers and
manufacturers need to be able to differentiate between talking about how one goes about
making games and “giving away” a game. Many software companies have made numerous
aspects of their work and work processes available online to foster a community of practice.
The important difference is that for game companies this openness would go beyond
releasing the “source code” of a game. It would also document and reveal how artists and
designers went about creating and working within the source code of a game: how they
created content and data, which then resulted in a game. Useful discussions should involve
samples of real data that artists worked on and their process to get it into the engine.
Designers should be able to document and explain how data combined with artistic assets
and how it mobilized the source code to create a game.

Much of this information already exists, in studio and corporate wiki sites, and could easily
be shared. The argument that developers simply do not have enough time to do the work of
documenting their processes and structures is simply not true. They already do it internally.
The real hesitation lies in a fear of losing competitive advantage. Yet sharing the information
more broadly can only make developers more effective at the practice of game development.
Portions of their internal wikis can be released more broadly, perhaps delayed until after the
release of a game title, for huge gains in the industry's knowledge base and capabilities.
Developers could be spared reinventing the wheel and could use their talents to push the
industry further.

Further, these wikis can serve as the foundation for fostering new developers interested in
working with those practices. Young developers interested in becoming part of these game
studios can become the intermediaries between the company and its community. Aspiring
game developers can uses these insights in their own quests to create videogames. Rather
than making the same day-to-day mistakes or misunderstanding how the process functions,
they can learn from some of the lessons of the nearly thirty years of videogame development

http://fuckingnda.com/

history. Rather than being seen simply as a training or proving ground for new unpaid talent,
wikis can be used as a space for developing collaborative skills among new paid developers
who then more quickly and easily learn how to use the tools and work with others both in
and outside the company.

Sharing portions of existing developer wikis will also encourage a broader understanding of
what goes into making games. Artists, designers, engineers, and managers who already
participate in the generation of these resources, will make the work of game development
more visible, and in so doing can make explicit the cross-disciplinarity of the endeavor. The
importance of process, tools, communication, and collaboration can be clarified and taken to
new levels. The imagination of game developer as computer scientist will no longer reign
supreme, replaced, instead, by a new generation of developers coming to the industry with
diverse backgrounds, educations, and talents.

Once networks and structures shed the veil of secrecy, teams will have the opportunity to
make the numerous design decisions and their impacts visible. Making more transparent the
effects of sudden shifts of scope or design dictates from other interests can provide insight
into the lived realities of game development. Collectively, this information may encourage
developers to work with particular manufacturers and publishers in favor of others that
detrimentally affect the work practices of developers. Transparency may also help publishers
and manufacturers understand why developers are resistant to dictated shifts or changes.
Improved visibility could provide publishers and manufacturers with insight into when and
why studios or development teams are not moving forward successfully. Transparency cuts
in numerous directions, all of which would seemingly benefit the game industry.

Transparency will begin to demystify the game development process, so new conversations
can begin about these processes, discussions that are explicit and clear rather than general
and vague. Companies can discuss aspects of game development that have historically
remained closed. More than anything, opening up will encourage game developers to think of
themselves in a broader collective context, rather than as individuals in individual studios
scraping against all odds against their fellow developers.

The unlocking of the videogame industry would create new opportunities for creativity and
entrepreneurship from new locations around the world. If US-based game development
companies are willing to work with globally located companies for their artistic production,
then these companies should be provided the access necessary for further engagement, and
the credit necessary to build their prestige.

Even veterans of the videogame game industry, like the vice president of operations and
development for Big Huge Games, which created Rise of Nations for the PC, a project that
took more than three years and nearly eighteen hundred files to create, express their
frustrations over the lack of institutional memory. As Train notes, what irks him most is as
follows: “Not listening to all the other ‘Postmortems’ ever printed in Game Developer. The
‘Postmortems’ are the most widely read feature in Game Developer around Big Huge, and yet
somehow we still managed to make many of the mistakes developers are cautioned against in
these pages” (Train 2003, 40).

Silence, while preventing the disclosure of outside influences, encourages developers to
discount the experiences of others as distinctly unique from their own experiences. Tim
Train's comments indicate that while postmortems may not be directly applicable or
importable into each and every studio, there is something to be learned from those
experiences in the context of any game development company. This also requires that
developers build in the time to address the concerns of previous projects and perhaps even
incentivize sharing practices during development schedules.

Secrecy clearly hinders the passing on of information to those interested in joining the
videogame industry, be they domestic or international game developers. Because common
practices are not documented or circulated broadly, students, hobbyists, and independent
developers are left to reinvent the wheel and relearn practices that ought to be commonplace

in game development practice. The Lead Designer of the game Asheron's Call, which took
four years to create, comments on the lack of experience and communication difficulties that
arise between disciplinary groups in the workplace.

Many of the employees were students immediately out of college, or even college
students completing a work-study program. . . . It was nearly impossible for team leads
to give realistic schedule estimates for tasks, since few of us had experience in
professional software development. It was also initially difficult to get different teams
from the programming, art, and design departments to communicate regularly with each
other. (Ragaini 2003, 307)

As sociological studies of science indicate, estimation in particular requires experience
(Pinch, Collins, and Carbone 1997). If developers made it clear that estimating was
something that a developer should be thinking about when approaching tasks, it would be
more transparent. An educational website could note, “Before you begin this task, estimate
how long you think it will take you to complete the exercise.” If estimates are routinely
ignored because they are either dramatically under- or overestimated, how does that affect
project deadlines? New conversations about practice can begin, ideally resulting in more
realistic timelines and less crunch. But this can only happen if there is real education of new
developers and if there is genuine effort at understanding and fixing current practices, all of
which hinges on the end of industry-wide silence.

The (in)ability for game developers to learn and share information about game production
practices severely limits the capacity for the industry to mature. This is largely due to the
restrictive practices surrounding the tools necessary for the production of videogames. NDAs
prevent developers from sharing source code, tools, or information about how to navigate
and apply these devices. These NDAs are disguised under the category of “licensing” at the
level of the publisher and console manufacturer. Ultimately it is the manufacturer who
demands that information about the console not be shared more broadly, though these
agreements can also be passed down from manufacturer to publisher, and then to
developers.

The time for broader participation is at hand. For too long, game developers have seen
their culture as largely Western or Japanese. Web 2.0 as broadly presented is an indicator of
this changing relationship. While I may quibble with the particularities of what Web 2.0 is
precisely, at its core it is a changing relationship between “user” and “producer.” There is a
fundamental difference, but that difference is dependent upon ideas that the game industry
has not yet embraced: access, standards, openness, participation, and remixability. The new
technological paradigm demands core modes of operation that are still anathema to game
development, and this needs to change.

Sony's Phil Harrison continues to speak about “Game 3.0” as the videogame industry's
version of Web 2.0, yet the industry's reality is something quite different. It remains vetted to
a broadcast model of game design, development, and distribution, which is an inherently
outmoded, previous generation system. “Community” and “customization” remain limited to
the rather small sandboxes provided for players. This is quite different from Web 2.0, where
companies may not always be happy at what their users produce or reproduce. If the game
industry currently allows for very small, highly controlled and lifeguarded sandboxes, to truly
embrace the possibilities of Web 2.0, the game industry needs to think more in terms of a
vast desert complete with wastelands, but also an oasis that flourishes outside the standard
protocols and rules that dominate the game industry.

Despite the slide delivered by Sony's Phil Harrison at GDC 2007 containing the words,
“open, extendible, customizable, collaborative, audience-driven, localized,” the reality is that
the only openness that has been realized in the four years since his address's delivery is
perhaps “content creation” and “commerce,” and even those remain significantly limited by
the networks of connection to Sony (figure 6.6). Web 2.0 depends on a backbone of open

technologies, formal standards, and a community of developers whose actions reflect the
terms, not mimic them. Even post-dot-com-bust, the World Wide Web remains the realm of
innovation, more so than the game industry center.

Figure 6.6 Sony's Phil Harrison speaks of “Game 3.0” at GDC 2007

Harrison's slide was an appeal to the draw of Web 2.0 that attempted to capture the
excitement being generated by a similar, but very different image. Perhaps unsurprisingly,
Phil Harrison subsequently left Sony Computer Entertainment for Atari and has labored to
encourage broader acceptance of open technologies among game developers. Harrison spoke
at the Unity game engine's Unite conference in 2008, discussing the importance of open and
accessible game technologies.

Numerous words appear in figure 6.7 that do not appear in Sony's vision of Game 3.0. Most
important are the words, “standardization, open APIs, data driven, design, and
participation.” These words do not appear in Sony's understanding of what the future holds.
Regardless of the “reality” of Web 2.0, something is happening online. YouTube, Google, and
Really Simple Syndication (RSS) refocus media on the user as co-conspirator in the design
and development process. The secret society of “production” is always already in doubt in
this space, yet its long term viability is dependent upon openness, standards, and
remixability. This is the everyday life that game developers and the game industry must
embrace for sustainability.

Figure 6.7 Web 2.0 graphic released under the creative commons copyright

Developers face structural barriers to openness. These barriers will require significant
changes by console manufacturers and publishing companies, who must switch the power
network that has been in place since the release of the NES. These companies technologically
and legally barricade access to distribution channels. Yet the fears that led Nintendo to close
off the NES no longer threaten it. It is time for the game industry to embrace a culture of
openness and sharing that facilitates the growth of the medium, rather than its continued
stagnation. Manufacturing companies have largely been playing the same game for the last
thirty years and they will likely be hesitant to play by new rules. In a more open production
space, there will be greater competition and the possibility for content that manufacturers do
not endorse or approve. However, this is already the industry's reality. The only differences
are that game developers will be more able to share knowledge and resources and users will
have a new opportunity to embrace and explore a medium they already care so deeply for.

Console manufacturers and publishers will likely claim that opening up routes of
production will increase piracy. However, this does not seem to correspond with Microsoft's
experiences on the Xbox 360 with the XNA Toolkit. Many of the efforts by other console
manufacturers to stem the tide of piracy have had the shadow-effect of silencing new lines of
independent production. When not arresting or shutting down companies that make these
technologies possible, manufacturers stem the tide of broader involvement by blocking
homebrew developers with “updates.” Upgraded features for existing devices tempt users to
install updated “firmware” (software upgradeable hardware) technologies that render devices
with homebrew software unusable or no longer accessible. Despite this, time and again, users
are able to bypass new mechanisms, again making them open to user modifications, new
capabilities and in some cases, piracy. It seems illogical to invest so much time, energy,
money, and legal resources into preventing the modification, hacking and repurposing by
users who will continually work to make their consoles function how they desire. These
developers are bringing new functionality to these devices at no cost to the manufacturer. In
the end, the risk is that content that has not been approved or paid licensing fees will make

its way to these devices. However, the continued control of development hardware or DevKits
will likely encourage most developers to pay licensing fees and retain their connections with
manufacturers as the risks associated with going rogue are often too high. This will
simultaneously allow indie developers to further the industry, rather than thwart it. With
open avenues of independent production, the risk for working outside the boundaries of the
industry will prove much higher and as a result, these new developers will further the
industry rather than attempt to thwart it.

Though developers and companies within the videogame industry will both have to give up
certain elements of control and positions of power that the existing structure encourages, the
benefits outweigh the drawbacks of previous approaches. Now, more than ever, the game
industry must come to understand that openness will benefit the sustainability and maturity
of the game industry in the long term. To continue down a path lacking standards,
emphasizing secrecy, and subject to aging patent and copyright law that largely does not
understand new interactive media, is to progress down a path where repeated and
compounding errors and risks will continue to eat away at the game industry. Refusing to
change disrespects the creative work poured into making the place that videogames have
come to occupy in broader global culture.

The boss fight for this level is ultimately the one that game developers and the game
industry may be the least willing to play, but it might be the most beneficial fight to
experience. Creating forums for broader cooperation across the videogame industry will
create opportunities for learning and sharing. There is the potential for transgressive
possibilities, which may be viewed as undesirable. This is an inevitable consequence of
encouraging more participation in the creation of videogames rather than a closed off world
of limited participation. Ultimately however, existing structures enable corporations to
maintain control over their “official” networks.

How would PC and mobile sectors, those which have had the most penetration by global
players outside the typical networks of access, benefit from these efforts at documented and
shared networks and systems, while the console game industry game would not? In part,
because of the familiar dismissal of a single platform:

The idea of a single platform for the videogame console industry has been kicked around
nearly every videogame cycle. Publishers would gain leverage over console
manufacturers or forego licensing payments altogether with a collaborative organization
to develop standard hardware and software specs and requirements. I don't believe such
a consortium could bring about a single console system. Business models and publisher
strategies are too divergent to enable agreement on a hardware platform. (Staff 2007)

Yet openness could be a boon to game developers if they were to demand a common open
reference platform rather than a single console device. This boss fight is an argument for
information sharing, not total standardization. The continued labeling of the console game
industry as different or unique forces the argument to fold back onto the work practice of
game developers. They must come to see their lives as intimately connected rather than
outside of traditional forms of work and social-technical practice if the industry is to grow.

d_r0

World 7: Disciplining the Industry's Actor-
Networks

Box 7.1

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: [REDACTED]

Figure 7.1 Screenshot of US immigration and customs enforcement website (ICE
2007)

AUTHOR_DEV_DILEMMA: [REDACTED]
#: SET DEMO_MODE 0

World 7-1: Software Is Society Made Malleable

In the collected volume A Sociology of Monsters, Bruno Latour
authored an essay titled “Technology Is Society Made Durable”
(Latour 1991). The argument that technology encodes and enacts
ideas about how society ought to function was an important one. Yet
technology has changed since 1991, in ways driven by ideas

introduced by the game industry, and in ways we must examine. I
believe scholars of science and technology have missed something
critically important with regard to the software and hardware of
technologies, in part because the two are now so interwoven.
Updatable firmware, flash memory, solid state disk drives, network
connectivity, and updatability—all of these belay a significant change
underlying many technologies. This challenges in a fundamental way
how technologies have begun to enter into dialogues with users. A
device's capacities can expand and contract without the consent of
the user as new software/firmware updates are applied. What was
possible at one moment may become disabled without a user's
consent. Functionality may be added to encourage new modes of
interaction. Manufacturers, publishers, and authorized developers
can, if they so desire, change how a device or software functions, and
if the user is unhappy about those changes, leave them with no
alternatives. In short, technologies have become more subject to
change over time, based not on how users want to use devices, but
based on how companies expect users to employ those objects. This
contrasts with the devices scrutinized by Latour, which did not have
this capacity, and thus many devices are put to use in ways not
imagined by their creators.

Latour grapples with notions of “power” and “domination” through
the lens of actor/actant-network theory in the context of socio-
technical assemblages. At its simplest, his argument is that
technology and society are intimately connected. Technology does
not “impact” society, rather it is constituted in ways that are socially
situated and society takes those technologies up in ways that are
nondeterministic. Technology and society are intimately connected.
Historically, this was both a theoretical and methodological turn
toward understanding technology in the making.

Unlike scholars who treat power and domination with special
tools, we do not have to start from stable actors, from stable
statements, from a stable repertoire of beliefs and interests, nor
even from a stable observer. And still, we regain the durability of
social assemblage, but it is shared with the non-humans thus
mobilised. When actors and points of view are aligned, then we
enter a stable definition of society that looks like dominations.
When actors are unstable and the observers’ points of view shift
endlessly we are entering a highly unstable and negotiated
situation in which domination is not yet exerted. . . . It is as if we
might call technology the moment when social assemblages gain
stability by aligning actors and observers. (Latour 1991, 129)

When Latour says “dominations” in this context, what he is really
talking about is stable structures of power. This focus on technology
as a point in time of stability is perhaps at best evocative of a
Gramscian kind of hegemony. However, I think this is a weak use of
the term domination, because when we're talking about technologies
and the maintenance of actor-networks, some domination is more
dominating than others.

As previous worlds have made clear, I have studied game
development, game developers, and the game industry for years and
my fieldwork has spanned from legitimate corporate game
developers at studios owned by Activision to far flung field-sites in
India (some owned by Activision and others owned by independent
Indian developers). I have also looked closely at small homebrew and
independent game developers in the United States, as my informants
indicated that it was an important community where new
developments were occurring. What is interesting is that domination
is experienced in these more peripheral communities in a much
stronger sense than in more conventional game development
companies. This isn't to say that the same structures and
dominations don't affect rank-and-file game developers, just in
different ways. Before I launch into a discussion of homebrew
developers in World 7-4, I want to be clear that while such
enterprises might seem disconnected from the game industry proper,
this is not the case. Homebrew developers experience the
disciplining effects of structure that affect the whole industry, but
feel the affects more acutely. Homebrew developers exist at the outer

edge of the swerve that software and code creates for us as social
analysts, which means domination that encourages stability in the
center of the industry throws homebrew developers wildly about on
the fringes of game production.

Throughout this world, you'll notice that I use the chiasma of
software/code and silicon/hardware. I do this deliberately, because it
is important to remember that silicon and electrons are part of this
equation as well, especially since my informants (as quoted in earlier
worlds) note that they know the very underlying structure of the
hardware. As Mike Fortun puts it, “Science is made, but it is not
made up” (Fortun 2007, 147–148). The same is true in game
development as well. Software/specifications/etc. are made, but they
are not made up. We cannot forget that though code is constructed, it
is also linked to electrons, silicon, and other elements of the physical
world.

At this intersection, then, of constructions and their underlying
realities, we need ways in which to understand the system of
structures that frame the work of developers in the videogame
industry. This approach is heavily rooted in what I tend to think of as
John Law's “heterogenous engineering” version of Actor-Network
Theory. This framework provides an initial set of questions that
enables us to start making sense of the numerous aspects of the game
industry that come together in what often appears to be a jumbled
mess. Put simply, theory serves as a primer for the parsing of this
data. In particular, for a way to parse the systems that define the
game industry we can adapt Law's attention to three particular
aspects of a technological system: “An approach to these questions
that stresses (1) the heterogeneity of the elements involved in
technological problem solving, (2) the complexity and contingency of
the ways in which these elements interrelate, and (3) the way in
which solutions are forged in situations of conflict” (Law 1989, 111).

Heterogeneity? Complexity? Conflict? Domination? This is the
stuff game technology is made of, and this world begins with an
argument that software/code is part and parcel with what Omi and
Winant might call “projects” or “formation processes [as] occurring
through a linkage between structure and representation” (Omi and
Winant 1994, 56). You can also think of the software/code creation
as a kind of Pickerian “mangle” or Deleuzian “assemblage,” if that
seems more your cup of tea, given the observations in previous

chapters on the preproduction and production shows. But, as we
allow various terms to frame software/code, note that some actor-
networks are more capable of mobilizing the abstract war machine,
or as Wendy Brown may call it, “The Prerogative Dimension of the
State . . . The [s]tates's ‘legitimate’ arbitrary aspect: extralegal,
adventurous, and violent” (Brown 1995, 186) component. This
hearkens back toward those observations in World 6, examining
NDAs, lockout chips and court cases. These systems are intimately
linked together.

Ultimately, it is this contradiction, that, at least in the context of
the videogame industry, the systems are not always passages from
the microscopic to the macroscopic, or emergent. As we saw in the
Nintendo/Atari case, force can be exerted from numerous directions.
Developers understand their craft as critically linked with practice,
the NDAs of World 6, and the culture of secrecy that encourages
developers to hold tight to their secrets. The pace of development
that prevents real reflection defies a singularly micro-to-macro or
macro-to-micro mapping. This leads me to question Latour's
assertion:

The narrative should also account for another little mystery: the
progressive passage from the microscopic to the macroscopic.
Network analysis and field work have been criticized for giving
interesting demonstrations of local contingencies without being
able to take into account the “social structures” which influence
the course of local history. Yet, as Hughes has shown in a
remarkable study of electrical networks (Hughes 1999, 50–63)
the macrostructure of society is made of the same stuff as the
micro-structure—especially in the case of innovations which
originate in a garage and end up in a world that includes all
garages—or, conversely, in the case of technological systems
which begin as a whole world and end up on a dump. The scale
change from micro to macro and from macro to micro is exactly
what we should be able to document. (Latour 1991, 118)

Sometimes, power is administered from the top down. We can see
top-down domination occurring in the game industry, and to chalk it
up to “the same stuff” neglects the power found in these networks.
Such a cycle feels more deliberate when we're talking about cross-
nation, simultaneous, coordinated raids on corporations and

individuals because there is a macrostructure here. It isn't just
bottom-up; there is top-down happening. But since there is no clear
procession from the micro to the macro, and since the videogame
industry is much more mangled, I prefer to think of the way power is
expressed in the game industry in terms of Dorothy Smith's notion of
ruling relations. As she notes: “The intersection of everyday local
settings and the abstracted, extra-local ruling relations is mediated
by the materiality of printed and electronic texts. The texts integral
to the social organization of these forms are complemented by
technologies or disciplined practices that produce standardized local
states of affairs or events corresponding to the standardized texts”
(Smith 1999, 73).

Smith's framework acknowledges that local affairs may be quite
different from the texts of the extra-local, yet that does not negate
the force of those extra-local texts. For example, VV's interest in
developing internal tools that spanned projects and platforms is not
the same as other studios that purchase and adapt tool-chains or
those that develop new tools and pipelines for each project. The local
is always structured in some way by those extra-local texts, often in
ways that are perceived as having derived from the local. The extra-
local ruling relations are mediated and experienced. There is a
disconnect between them, true, yet one cannot simply say that the
extra-local is a product of the emergent local situations. As Smith
elaborates: “Ruling relations in general, are, ontologically, fields of
socially organized activity. People enter and participate in them,
reading/watching/operating/writing/drawing texts; they are at
work, and their work is regulated textually; whatever form of agency
is accessible to them is accessible textually as course of action in a
text-mediated mode” (Smith 1999, 75).

The overarching power of texts in this argument does not
necessitate written texts. As other worlds have noted, though many
of the texts in game development are undocumented, they are still
enacted through daily “operating” practice. Daily practice can be
taken as a text, as this work has attempted to construct. Developers
who, as Smith notes, “enter and participate in them” at work also
adhere to them at play. Yet the fact remains that, as with technology,
there is a dialogue in which changes to software/code also back up to
the production structures. At a more fundamental level, this textual
mediation seems to be part and parcel of the normal process of

technological development. Ruling relations, then, and the available
avenues of action are dictated by the codes in place within
technological production processes, and the codes themselves dictate
what changes can be made. Software/code is the glue that provides
corporate technology purveyors a way to make technologies that are
themselves capable of changing over time. As users appropriate
technologies, software/code allows for the very “text” of these
technologies to be rewritten to rein users in.

Put in a different context, software/code becomes another
assemblage by which the state will attempt to stop the lines of flight
that “the abstract machine of mutation,” will continually enable
(Deleuze and Guattari 1987, 227). At the same time, those very
systems are subject to mutation and it is the “impotence” of those
that mobilize the state to trap this system rendering it a futile quest
in which the state often unleashes the war machine. Software/code
pushes the concept of ruling relations, because of the ability for these
texts to shift over time, making user's agency in the network difficult
to pin down, as it shifts according to changes in extra-local texts.
Thus, software/code realizes a solution to one of the biggest
“problems,” in the network of technological production, those that
prove difficult to hold in place:

The network approach stresses this by noting that there is
almost always some degree of divergence between what the
elements of a network would do if left to their own devices and
what they are obliged, encouraged, or forced to do when they are
enrolled within the network. . . . Elements in the network prove
difficult to tame or difficult to hold in place. Vigilance and
surveillance have to be maintained, or else the elements will fall
out of line and the network will start to crumble. (Law 1989, 114)

John Law indexes the particular desire, on the part of actor-
networks, for divergence that causes me to question if software/code
is not precisely the kind of glue that was previously fundamentally
absent and that provided corporate technology purveyors the
capacity to swerve as much as their users do. Because technologies
can shift, change, and swerve, they are also capable of encoding the
network approach within their processes and thereby become a
hegemonic force, themselves. It is the possibility of shift, change, and
swerve that makes technologies capable of being part of hegemonic

discourse. Their ability to adjust to users and their appropriations
over time is precisely what makes them difficult as compared with
and different from previous generations of technologies.
“Domination” in the technological arena becomes less about
stationary stability and instead about the stability of particular texts
over time and shifting fields of user activity. “At an accelerating pace
in the twentieth century, the ruling relations come to form hyper-
realities that can be operated and acted in rather than merely written
and read” (Smith 1999, 84). Malleability, then, seems the key to the
durability of extra-local texts.

This world points to and examines some of the rules and structures
that undergird the videogame industry. It draws upon the
instrumental gaming of my field research. Within game development
production there are numerous technological and social apparatuses,
which structure the rules that developers experience so acutely in
Worlds 1–3. In the rest of the levels of World 7, I take on the role of
the power gamer as a means to seek out structural conditions or
systems that sit behind the worlds of game developers. I do so in the
hope that more developers find the desire to understand what makes
the game industry tick in the fashion it does. This first level has
situated us in the technology world's need for domination, conflict,
ruling relations and their texts, and the network approach to
hegemony so that we can create an open space in which to
interrogate the systems and structures documented in previous
worlds.

The desire for and work of pursuing those underlying systems and
structures is key to the investigative process. While there are surely
technological mechanisms that legislate this game space, this world
considers how technological components are networked with
interested parties and political and legal structures of regulation to
ensure enforcement in ways more effective than the simplest or most
elaborate technological fixes. As we shall see, the force of these rules
is truly felt when they come in concert.

World 7-2: Production Protection

As discussed in World 6, the intention of production control, at least
initially, was to control the quality and supply of games entering the
market, as well as to supplement the costs associated with selling
console hardware systems at a loss. The lack of production standards
and access to the production and distribution resources allows
manufacturers to prevent “undesirable” material from being played
on their consoles. Locking out independent developers provides the
opportunity for brand management. It also engages the state's legal
resources by using the ratings-system barrier to force companies into
the industry's production control structure.1

In addition to controlling production, console manufacturers
control distribution because they execute final quality assurance and
testing of games and thereby exert direct control over all games
playable on their consoles. This reality stems from a concern for
maintaining the image of the console's brand rather than care for the
kinds of games being positioned on the console. But the key here is
that distribution and production have become entangled in the
current game industry regime. The distribution networks have been
disciplined by patent and legal structures. Thus, quality control
disguises complete control. The game industry has always been a
walled garden.

The tight control over production seems problematic because
clearly low quality games make their way onto consoles and high
quality games are blocked from entry. In response to this disconnect,
Microsoft, one of the three console manufacturers, has opened up a
partial production path to the public. A strong community has risen
up in this nascent space, and developers have begun to share tools
and practices more broadly than happens at established game
development studios. Unfortunately, this breech in control of
production still requires developers to focus exclusively on
Microsoft's Xbox 360 console. In opening up game development on
their console, they have closed off the possibility of opening up those
paths across console devices, tapping into the pent up demand for
more open access to game console development tools, while
simultaneously ensuring that those tools can be brought to bear
primarily only on their own consoles.

Developers gaining access to the console manufacturers’ networks
must frequently take a game that is already significantly developed
and attempt to move it to consoles. A game developed for one

platform is not necessarily easily ported to another platform, and it
becomes impossible for a development team to account for, in
advance, the idiosyncrasies of each platform. The specificities of
production for those platforms remain closed, open only to the select
few authorized by the manufacturer or publisher. Even when a
developer is authorized to move a game to a new hardware platform,
individual technological vagaries make a massive difference, as a
Lost Toys Studio's engineer notes.

Our code structure was aimed toward making the porting
process as painless as possible, but we hadn't counted on the
extent of the limitations of the console platforms relative to the
PC. . . . The Xbox port of the game had the advantage of being
based on DirectX, and hence the majority of the code was shared
with the PC version. The PlayStation 2 port, however, required
an entire graphics and sound engine to be coded from scratch—a
mammoth task for our two PlayStation 2 programmers, one of
whom had never actually written any code for the machine
before this project and was still supporting a significant amount
of code on the PC tool-chain and Xbox sides of the project.
(Carter 2003, 56)

Ultimately, the porting process impacts developers more than
publishers or manufacturers. In the end, developers must re-create
what they have already made, or face the retrospective knowledge
that they could have accounted for limitations were they not coding
under significant constraints made by corporate entities. Every game
development studio must create processes that are then are re-made
and re-learned constantly throughout the process of development.
Developers frequently talk about processes that are not unique to
their game, like “baking” data, a process that in many respects could
be reasonably standardized among studios and across platforms, but
has not.

The content baking process for the console was time-consuming
and difficult to troubleshoot. Frequently the only way to either
identify or resolve a bake problem was to re-bake at the cost of
up to an hour of work, and if the tools were actually broken in
some way, it would take at least another bake cycle to be able to
work effectively again. (Finley 2007, 26)

As evidenced by the lack of documentation and standardization,
and by the wastes of time and energy in every project that begins in
the dark without the support they need, publishers and
manufacturers make no effort to encourage sharing or collaboration
across the industry, even across studios they own and manage.
Manufacturers have no incentive to make the process of game
development flow more smoothly. Too many developers hoping to
breach the gates of access networks are throwing themselves at
publishers and manufacturers. And for those established developers
who've already gained access, the risks of mobilizing efforts on their
own include criminal violation of the DMCA, violation of NDAs, and
being cut out of the networks that allow them to work in these
spaces. So demands for resources from without and within are
blocked by those very corporations that stand to gain from better-
equipped developers.

The entanglement of production and distribution significantly
limits the game industry and ultimately affects the working lives of
game developers worldwide. Sharing and collaboration take a back
seat to simply keeping a development studio alive and functioning
within the limits placed on production. On the other hand, when
accusations of copyright infringement are true, frequently only force
can dissuade individuals perpetrating theft, which is why companies
are continually looking for new mechanisms to use the state to force
what legal maneuvering seems incapable of doing: stopping
copyright violations. In particular, corporations have come to desire
the prerogative capacities of the state to ensure that their networks of
access and secrecy are not compromised. Media corporations in
particular have become quite adept at mobilizing state forces to meet
their needs rather than the interests of users and producers, who are
left to work within or break these assembled structures.

In its protection against unauthorized circumvention, the DMCA
does much more than protect digital copyright; it will be the
guardian at the gates of the trusted system, ready to patrol the
boundaries of this massive control mechanism. And by
emphasizing access rather than copying, it can sanction
violations of the trusted system that have nothing to do with
copying, but are rather about accessing materials without
following the proper channels, i.e. paying for it, and following
the rules prescribed by that commercial relationship. CSS and
the trusted system proscribe behavior in intense detail and
design other behaviors out of existence, and then depend on the
law to ensure that consumers use the system as recommended,
risking the threat of criminal penalty if they attempt otherwise.
(Gillespie 2004, 224)

Domination, then, emerges not simply from the bottom up.
Behavior is both deemed criminal or deviant by the game industry,
as illustrated in figure 7.2, and regulated by the state.
Simultaneously, software/code/silicon/hardware then encode those
ruling relations in a way that enables them to be modified or updated
to ensure that users, even when able to deviate, can be brought back
in line with ruling relations via updated technological legislation.
Domination is a product of both a top-down restrictive text of
acceptable behaviors and a bottom up acquiescence to how things
are assumed to “naturally” occur, which are influenced by those rules
instituted from above, which emerged from bottom up practices that
migrate ever upward. Domination is a mangled dance.

Figure 7.2 A screen shot of San Diego Piracy Raid Report (Radd 2007)

Some companies take this particular copyright interface between
the state and corporation very seriously: Nintendo is one such
example. Recently they have come out in strong support of the US
stance on anti-piracy measures. But there is an implicit conflation of
actual illegal activity and potential illegal activity, and certainly no
mention of the legal and legitimate uses of so-called piracy
technologies, such as homebrew game development or listening to
music on the devices. What makes these efforts troubling is that like
all coercive state-based efforts, they suffer from the inability to
determine “the difference between false deference and real deference
. . . how can we distinguish compliance under force from
mystification and fatalism?” (Scott 1976, 230). The growing

mobilization of the prerogative state power on the part of
corporations is impressive, as the following game industry news
report indicates, with new “processes” in which corporations offer
their input on the “adequacy” of state intervention in the space of
intellectual property rights enforcement : “Each year Nintendo
participates in the annual Special 301 process, by which the US
Trade Representative office solicits views from the industry and
makes judgments about the adequacy of intellectual property laws
and enforcement in foreign countries, including not only China, but
Hong Kong, Brazil, Mexico and Paraguay as well” (Dobson 2007).

This power, ceded to game industry giants by the US government
represents an important example of how the extra-legal aspects of
the state are being mobilized by corporations to police individuals.
This can be seen in recent controversies around the Stop Online
Piracy Act (SOPA) and Protect IP Act (PIPA). Our technologies are
allegedly advanced enough that legislators and law enforcement find
themselves at a loss for what should be done, and thus cede power to
industry. While companies argue and lobby for decreased regulation
of themselves, indicating the importance and intelligence of the
market's ability to solve problems, they simultaneously lobby for
increased regulation of the individual user/citizen. In many cases
these are military-like raids on homes and businesses, which fail to
even meet the goals of the companies that mobilize these
interventions.

Nintendo commented in a statement: Despite the millions of
counterfeit Nintendo products seized from retailers and
manufacturing plants in China through the years, there has only
been one criminal prosecution. Numerous factories, where tens
of thousands of counterfeit Nintendo products were seized,
escaped with only trivial fines or no penalty at all. And often
these production sites continue to operate after products are
seized. In order to avoid punishment, many counterfeiters are
sophisticated and keep stock levels below the criminal
thresholds and avoid keeping sales records. (Dobson 2007)

These contradictions weaken the game industry's claims that
market-based ratings systems like the ESRB are effective. In the case
of content regulation, allow the market to solve the problem. In the
case of copyright and piracy, legislate the solution. If the game

industry cannot determine whether the market or the state should be
the dominant mode of disciplining their production methods, they
subvert their own claim that only a market-based solution to the
consumer's understanding of games ratings. While criminalizing the
sale of mature- or adult-only-rated games to minors seems a
foolhardy approach to managing the situation, the game industry
and the ESRB have not been particularly effective at coming up with
alternative approaches to how to address the problem. The criteria
and varying moralities at play in the ratings of games ultimately goes
unquestioned: “I take issue with the fact that to get an E10 rating, we
had to change our beloved secret bonus character's name from
Armondo Gnuetbahg to Armondo Ootbagh. Am I missing something
here, or is Gnuetbahg a new curse word that the hip kids are using?
Yes, in our tutorial we teach kids to “clobber 10 people before time
expires” but we aren't allowed to say ‘Gnuetbahg’” (Schadt 2007, 34).

As time has gone by, the situation has become more complex. With
the introduction of the DMCA and the use of encryption schemes in
console game systems, attempting to circumvent the limits on
production has become a criminal activity (DMCA 1998). While the
DMCA has come under particular scrutiny recently because of its
relationship with digital rights management (DRM) in the context of
digital movie players, there has been very little broader public
scrutiny of the practice and legislation. Legislators, unable to
understand the complexity and nuance of the industry and work that
occurs within it, abdicate their responsibility and pass legislation
embraced by individual companies, but often not by those
responsible for creating games. In many respects DRM technologies
are actually a collective invention of the videogame industry. Users
interested in playing music files on different devices seem to have
gotten the bulk of the attention2, yet game content has long been
restricted and many users fail to see their rights extend to game
content. While this is good for those already in positions of power in
the videogame industry, one might posit that the inconsistency or
inattention to this detail is especially problematic because it erodes
the foundations of media production companies’ arguments. Some in
the videogame industry have noted this contradiction, though they
seem unsure what the consequences of that variance means precisely
(Fahey 2007). The “postmodern” state is not one in which the state is
strictly on the decline—particular components are on the decline and

others are in ascendance, and particularly those dealing with
restrictions: the police, surveillance, and military action.

The [s]tate, constituted as a coercive system of authority that
has a monopoly over institutionalized violence, forms a second
organizing principle through which a ruling class can seek to
impose its will not only upon its opponents but upon the
anarchical flux, change, and uncertainty to which capitalist
modernity is always prone. The tools vary from regulation of
money and legal guarantees of fair market contracts, through
fiscal interventions, credit creation, and tax redistributions, to
provision of social and physical infrastructures, direct control
over capital and labour allocations as well as over wages and
prices, the nationalization of key sectors, restrictions on
working-class power, police surveillance, and military
repression and the like. (Harvey 1990, 108)

This claim that the secondary role of the state answers to a ruling
class evokes Gillespie's assertion that the coercive arm of regulation
is both creating and enforcing boundaries for the game industry.

Recently the same mechanisms have been deployed in an
unprecedented manner. In tandem with the US Immigration and
Customs Enforcement agency, the game industry has leveraged the
punitive powers of the state to execute search warrants in 16 states
across the United States in a preemptive strike against equipment
that could be used for piracy. Despite the possible legitimate uses of
technology, the risk of possible illegal activity becomes the
motivation for these raids. The scale of these recent actions are of
particular note, verging on militarized rather than localized police
actions.

Illicit devices like the ones targeted today are created with one
purpose in mind, subverting copyright protections,” said Julie L.
Myers, Assistant Secretary of Homeland Security for
Immigration and Customs Enforcement. “These crimes cost
legitimate businesses billions of dollars annually and facilitate
multiple other layers of criminality, such as smuggling, software
piracy and money laundering. . . .

Between fiscal years 2002 and 2006, ICE agents arrested more
than 700 individuals for IPR violations and dismantled several
large scale criminal organizations that distributed counterfeit
merchandise to nations around the globe. At the same time, ICE
investigations into these networks resulted in 449 criminal
indictments and 425 convictions. Together, ICE and CBP seized
more than $750 million worth of counterfeit goods from fiscal
year 1998 through fiscal year 2006. (ICE 2007)

The lack of response by active game developers, or potential
developers more broadly indicates that these activities are seen as
either normal or not even worth paying attention to. Yet, what is
being seized in these raids is a device of potential misuse that also
serves very real and legitimate uses as well. Part of the market appeal
of these devices is that they enable illegal activity on the part of
users. They are also appealing because they expand the legitimate
uses of the devices as well. What is being described as a device solely
costing companies money is not necessarily costing them anything.
In many respects, these devices actually expand the capability of a
users’ technological investment in ways that are not approved…just
because they're not approved. These devices make possible the kind
of DIY and remix cultures that are so critical to new media
industries. Yet, it is normal for the state to break into houses to take
these devices, and thus no counter argument is made. The lack of
debate itself, though, might recapitulate resistance: “What passes as
deference ‘is ritualized and habitual’ or even calculating. . . . There
may in fact be a large disparity between this constrained behavior
and the behavior that would occur if constraints were lifted. The
degree of this disparity would be some index of the disingenuousness
of deferential acts. The very act of deferring may embody a certain
mockery” (Scott 1976, 232).

In many respects this mocking nod to adherence of form is
evidence among a new generation of media producers, those with an
eye toward ironic re-interpretation or “remixing” (Lessig 2005). This
new sense of playful disregard for (even while technically adhering
to) constraints mimics that of other technical art forms and may
follow their trajectory. As more users understand themselves as
capable producers, the current legitimacy of this state regulatory
action, particularly preemptory silencing of potential legal creation
will be called into question, as has already been demonstrated in
areas like digital music downloads (Gillespie 2006).

The tension between the fixity (and hence stability) that [S]tate
regulation imposes, and the fluid motion of capital flow, remains
a crucial problem for the social and political organization of
capitalism. This difficulty is modified by the way in which the
[S]tate stands itself to be disciplined by internal forces (upon
which it relies for its power) and external conditions—
competition in the world economy, exchange rates, and capital
movements, migration, or, on occasion, direct political
interventions on the part of superior powers. (Harvey 1990, 109)

The DMCA has further extended the ability of corporations to
incarcerate people who, regardless of their intentions, enable others
to circumvent those copy protection mechanisms that companies
create. The legal (though inaccurate) conflation of “hacking” and
“cracking” derives from the tension between the rights of users to
legally do with technology as they please (“hacking”) and restriction
against users illegally attempting to copy or redistribute the property
of corporations (“cracking”). This conflation renders the DMCA
problematic because its foundations are rooted in the assumption
that anyone interested in doing something with digital data that it
was not originally intended to do is attempting to make illegal copies.
The state is making no distinction between hacking and cracking. Yet
the same limitations extend to anyone interested in producing media
for console videogames. There is no acknowledgment that these
technologies limit producers within structures that should not apply
to them. Production of new media is only talked about vaguely as
“home brew” and is both denigrated and extolled in different
industry press releases. The erroneous assumption of illegality is
encouraged by companies precisely because it gives them power to

enforce their existing technologies and legal structures with new
regulations and police actions not in the interest of users.

World 7-3: Patent and Copyright “Risk”

Patents and patent enforcement, which severely hems in gaming
competition, are the legal structures that support major corporate
players in the game industry. One might argue that growth of the
industry faces a significant problem when corporate SEC filings
begin to indicate the litigious character of existing US copyright and
patent systems as a key risk factor.

If patent claims continue to be asserted against us, we may be
unable to sustain our current business models or profits, or we
may be precluded from pursuing new business opportunities in
the future.

Many patents have been issued that may apply to widely-used
game technologies, or to potential new modes of delivering,
playing or monetizing game software products. For example,
infringement claims under many issued patents are now being
asserted against interactive software or online game sites.
Several such claims have been asserted against us. We incur
substantial expenses in evaluating and defending against such
claims, regardless of the merits of the claims. In the event that
there is a determination that we have infringed a third-party
patent, we could incur significant monetary liability and be
prevented from using the rights in the future, which could
negatively impact our operating results. We may also discover
that future opportunities to provide new and innovative modes
of game play and game delivery to consumers may be precluded
by existing patents that we are unable to license on reasonable
terms. . . . Other intellectual property claims may increase our
product costs or require us to cease selling affected products.

Many of our products include extremely realistic graphical
images, and we expect that as technology continues to advance,
images will become even more realistic. Some of the images and
other content are based on real-world examples that may
inadvertently infringe upon the intellectual property rights of
others. Although we believe that we make reasonable efforts to
ensure that our products do not violate the intellectual property
rights of others, it is possible that third parties still may claim
infringement. From time to time, we receive communications
from third parties regarding such claims. Existing or future
infringement claims against us, whether valid or not, may be
time consuming and expensive to defend. Such claims or
litigations could require us to stop selling the affected products,
redesign those products to avoid infringement, or obtain a
license, all of which would be costly and harm our business.
(Electronic Arts 2007, 54)

“Risk and uncertainty” caused by the current condition of the
patent and copyright institutions in the United States points to a
fundamental problem for the future of videogame production and for
new media production more broadly. In many respects the risk and
uncertainty is exacerbated for those companies who, unlike
Electronic Arts, do not have the available capital to defend
themselves from the numerous copyright and patent claims that
could conceivably be brought against them. Despite the problematic
character of intellectual property law in the United States, it remains
the standard on a global scale. Even more troubling, new legislative
efforts funded by corporations push hard against ideas like fair use
or a creative commons, which will only create more risk and
uncertainty for new media producers.

Copyright and patent infringement claims against established
companies in the videogame industry are only an index of a more
substantial problem. These companies have the money and
experience that allows them to be more able to deal with
infringement claims. Smaller and newly created development studios
looking to establish themselves actually have more to lose in this
environment than companies like Electronic Arts, who shine a light
on the problem. Ultimately copyright was designed to “promote the
progress of science and useful arts” (Sprigman 2002), of which it has
done very little for the videogame industry broadly.

The volley of infringement claims is so pervasive that several game
industry lawyers have indicated in conversations with me that new
studios need to assume that within their first year of activity, they
will be taken to court by one corporation or another. Beyond being
part of the pervasive reality of legal and corporate teams, at a
practical level, copyright and patent infringement claims have come
to impact the daily lives of game developers. A pervasive
environment of conservatism surrounds the legal analysis of
videogames. The assumption is that if a patent or copyright might
apply, then it ought to be preemptively licensed, purchased, or the
game altered. The lead designer of the game Tony Hawk's Downhill
Jam for the Nintendo Wii talked about dealing with corporate legal
teams during development work.

We also had a number of changes to make due to a fear of
potential lawsuits. This exchange is a prime example:

Activision Legal: “You'll have to change that restaurant's
name.”

Development Team: “But it's called Dim Sum. That's, like,
totally generic.”

Activision Legal: “But if you type Dim Sum into Google, you'll
find many actual, real-life restaurants called ‘Dim Sum.’ It's
safer just to change it.”

I failed to realize how frightening the legal climate is at present.
The fear of being sued is so pervasive that artistic freedom is
being compromised, and conservative, safe decisions are
routinely made even when there is no legitimate legal
infringement. (Schadt 2007)

Companies’ use of copyright and patent to strictly police their
intellectual property encourages this conservatism, which then
ensures the continued failure of copyright and patent law to promote
“progress” and instead encourages regress. As more and more
allowances are made, claims of fair-use and public domain
knowledge are diminished, based simply on fear of litigation.
Numerous patent and copyright infringement claims are filed with
the knowledge that companies will be more likely to pay off the
claimant than actually attempt to fight or correct the broader
problem. This is in part because those same defendant companies
have a vested interest in being able to pursue similar litigation
against other studios.

Console manufacturers also make significant use of the slippery
slope of copyright and patent law to control production and
distribution systems. Copyright claims are a mechanism for shutting
down retailers of “pirate” technologies. Those same technologies,
however, are integral to truly independent game development: game
creation entirely outside of the videogame industry's networks.
Again, the ability to control distribution (copyright) becomes
conflated with the ability to produce (speak). As such, many of these
attacks on “copyright infringement” need to be reframed as attacks
on speech by those who are being silenced. The ability for people to
learn, investigate, and share information about these devices via
mechanisms that game companies do not control is not purely
attributable to piracy or violations of copyright. In many cases

attempts to share information are simply attempts by the
user/producer to work on these new devices. In light of this, game
developers are those most hurt by litigious abuses, and should seek
reform. They have a particularly interesting understanding of the
complex connections among the creative interdisciplinary work
necessary for the production of new media, and should involve
themselves in the process of copyright and patent reform, reminding
lawmakers that legal decisions ultimately impact workers/voters.
Game developers need to help a broadly defined public understand
the importance of these issues, especially in connection with their
ability to think with and comment on cultural forms. In a world now
characterized by technologies that blur the lines between user and
producer, the ability to investigate, experiment, and tinker is
especially important. The realities of “Web 2.0” or “Participatory
Culture” are endangered by the continued attacks on the very core
mechanisms that support it. For game companies already at the
center of the industry, software/code and supporting structures that
mobilize the state support the stability of those positions. Yet, this
mobilization is anathema to new emerging forms of media and
precisely those communities of practice from which game
development emerged. To say that the structure of the game industry
is a bottom-up process neglects the ways in which powerful and
power-laden structures are being put to use to further structure the
way the game industry functions. These new structures favor the
status quo and discourage innovation and information sharing
among game developers. Quite literally, the game industry has
structured itself and continues to fight to maintain a structure that
hurts game developers.

World 7-4: The Death of Hacking and Homebrew

As mentioned in the first level of this world, homebrew game
development is independent game development for console game
systems, like the Nintendo Dual Screen (or “DS”) or Sony's
PlayStation Portable (or “PSP”). Traditionally, these devices are
covered under significant numbers of user-end license agreements
aimed at users. They demand that the devices be used in only

particular ways. To produce software for these devices, one must be a
registered or “licensed” developer for Sony or Nintendo. This license,
combined with not an insignificant sum of money, provides
developers with the requisite hardware and software necessary for
developing software for these systems.

Homebrew game development circumvents the restrictive elements
that prevent users from creating software for these systems. As an
informant writes: “The point of homebrew is to allow programmers
who want to develop something for the Wii [or the DS, or the PSP] to
have the chance . . . Frankly, as much as I love Nintendo, the fact that
they make it impossible for people to program for the Wii without
having a company of X size, Y wealth, and Z experience created the
need for the homebrew channel” (Informant 2009a).

This person's argument is intriguingly rooted in a kind of market
logic. Nintendo's lack of attention to the numerous hopeful game
developers and tinkerers created a demand for circumvention
devices. These emergent counter-channels are a product of the
restrictive policies. For the majority of would-be developers, if a
legitimate means were available, even for a small fee, that route
would be explored first, rather than the more complex illegitimate
means.

As an experiment, a game, a homebrew test of my own, I have
imported from China numerous “copyright circumvention devices,”
like those seized in ICE's raids across the United States. I have
imported devices created for the Nintendo DS. I import more of the
“MOD Chips” than I need and more than I'll ever use. I do it now
almost out of spite, as new devices are developed I purchase several
at a time. It has become a kind of game for me, wondering when I'll
pull the slot-machine lever and get a surprise that I hadn't intended:
federal agents at my door. Part of me wonders if this confession will
result in my own disciplining. If this isn't a “chilling effect,” then I
am not sure what is. I have never used these devices to illegally
violate copyright and play games that I have not legitimately paid for.
I have used these devices to allow me to develop small games for the
DS and make presentations using the device at academic
conferences. This legitimate activity, which fundamentally should be
protected by the first amendment and fair use, has been criminalized
at the demand of videogame manufacturing companies.

It is the “extra legal” aspect of the state—its ability to incarcerate
and ultimately punish or kill individuals—now being leveraged by
corporations hoping to cement their commercial interests. Press
releases notify the general public of the state's activity and in most
cases there is little or no public outcry, media coverage, or discussion
of what might be mistaken in these situations. There are indeed
legitimate and illegitimate uses of the devices being taken so
seriously by media producing companies. This is little different than
the range of legitimate and illegitimate uses for products like
photocopiers, CD/DVD burners, computers, or simply pens and
pencils.

In response to this unjust abuse of state power in the interest of
corporate profit, entire communities of software developers have
formed (composed largely of engineers), to support the development
of software fundamental to the game development process. At the
same time however, these software systems are dependent on
numerous technologies, processes, and hardware/software glitches
that make it possible for them to load their software onto devices
that are otherwise locked.

A side effect of this is that the act of making these devices open to
would-be developers means that they create new openings for
software “piracy.” Confounding the efforts of developers who want to
create are those who are interested in cheating the manufacturers.
Once devices are unlocked, ROM files are traded among those with
little interest in making software for the devices but with significant
interest in playing all the games available for these systems without
payment. Others focus on creating game-emulation software,
allowing their PSP or DS to play games that were never intended for
it. This, probably more than anything is what raises the ire of console
manufacturers. They would prefer that you not dilute their brand by
running Super Mario Bros. on your PSP or that if you were planning
to play Sonic the Hedgehog on your DS, they would prefer you pay
for it again, despite having purchased it for the Sega Genesis back in
1991. So rather than being a purely free speech, game development
issue, there are the realities of piracy, brand dilution, and others:
“Doesn't the whole idea behind homebrew revolve around piracy? I
see a bunch of topics involving emulation . . . Isn't that piracy? . . . I
don't understand the whole Puritan approach. I guarantee that

anyone who has homebrew on their Wii has at least one pirated IP”
(Informant 2009b).

And while I cannot disagree more—to my mind emulation is not
piracy—it often does quickly become that. Most people interested in
emulation do not own licenses to the software they wish to emulate.
But that does not mean that there aren't significant numbers of users
with legitimate claims to emulation.

Because of the piracy and abuse of technology, these homebrew
platforms quickly become the target of the powers that be. Nintendo
and Sony release software updates to their consoles disabling
homebrew efforts. Sony has even gone so far as to remove
capabilities from the PS3 that once allowed it to run Linux, an Open
Source Operating System. The PSP frequently undergoes firmware
updates that disable previous generations of homebrew efforts, only
to days later be re-“hacked,” restoring homebrew developers’
freedoms.

The DS is a strange bird in this mix of firmware updatable console
systems, a mistake Nintendo has “corrected” with their release of the
DSi, a camera enabled, SD-card-packing downloadable game system.
This system contains flash-able firmware. But the DS does not have
an updatable firmware. However, this does not mean that Nintendo
lacks the urge to prevent the production of unauthorized software.

To correct for the DS's lack of updatable firmware, Nintendo has
mobilized the extralegal aspect of the state. Multi-state, multi-site,
simultaneous raids of US businesses selling R4 or DSTT cartridges
that bypass the DS's encryption system have become more common.
Nintendo has made appeals to the US government, the Chinese
government, and others to stem the flow of these devices (ICE 2007).
This, more than anything troubles me as a social analyst, the
mobilization of the extra-legal aspects of the state for interests that
are largely market concerns. While the game industry will
simultaneously defer to the power of the market to regulate content
concerns or the ability for the state to censor game content, they
quickly request the state's ability to incarcerate and seize property.

To counteract these limitations, users have been willing to open up
their consoles and install “Mod-Chips,” which have three effects. One
allows a user to legally import a game and play it (circumventing a
regional lockout), and a second that allows users to illegally “burn”
or copy game disks. A third and less publicized effect is access for

those interested in developing games for consoles outside the game
industry's networks. Truly independent game development, work
disconnected from the networks of secrecy and access requires
breaking current US intellectual property rights laws. In the early
part of the century, companies who offered services to assist users in
the modification process were subsequently taken to court by console
manufacturers for violation of copyright (Nintendo and Lik Sang
2003; Sony Computer Entertainment and Lik Sang 2003).
Strikingly, in these cases the copyright of the console manufacturers
was not being violated, but their mechanisms for control were being
circumvented. The issue is even foggier in countries like India where
a particular console may not be available in the first place. What
region is the user a part of? Console manufacturers assert that if a
user imports a game console to play, they must ensure that all games
they buy subsequently are from the proper region.

In many respects I see MOD or remix culture (Lessig 2005)
embodied by these activities of hackers to be a serious complication
to any notion of technological systems as “durable” (Latour 1991) in
any kind of lasting way without connections to systems that enforce
durability seems problematic. Of course barriers are in place that
encourage durability or stability, yet an increased interest by users of
technology in MODing or remixing them increases the complexity of
the situation.

In a well-known case among game developers the site “Lik-Sang”
was shut down because of continued harassment from console
manufacturers, despite their service to the game development
community. Lik-Sang was the leading provider of adapters for
console controllers so that developers could use them on PCs during
the process of development. Some of the products were even being
used by smaller development studios to supplement the number of
available DevKits within their company. This case is also indicative
of a broader problem of litigation practice, where companies with
more money, despite possibly having an invalid case, can inflict
mortal financial wounds on those companies that seek to interrupt or
alter networks of access.

Lik-Sang.com Out of Business due to Multiple Sony
Lawsuits

Tue Oct 24 2006 21:58:51 Hong Kong Time—
Corporate Info

OUT OF BUSINESS NOTICE
Hong Kong, October 24th of 2006—Lik-Sang.com, the popular

gaming retailer from Hong Kong, has today announced that it is
forced to close down due to multiple legal actions brought
against it by Sony Computer Entertainment Europe Limited and
Sony Computer Entertainment Inc. Sony claimed that Lik-Sang
infringed its trade marks, copyright and registered design rights
by selling Sony PSP consoles from Asia to European customers,
and have recently obtained a judgment in the High Court of
London (England) rendering Lik-Sang's sales of PSP consoles
unlawful.

As of today, Lik-Sang.com will not be in the position to accept
any new orders and will cancel and refund all existing orders
that have already been placed. Furthermore, Lik-Sang is
working closely with banks and PayPal to refund any store
credits held by the company, and the customer support
department is taking care of any open transactions such as
pending RMAs or repairs and shipping related matters. The staff
of Lik-Sang will make sure that nobody will get hurt in the
crossfire of this ordeal.

A Sony spokesperson declined to comment directly on the
lawsuit against Lik-Sang, but recently went on to tell
Gamesindustry.biz that “ultimately, we're trying to protect
consumers from being sold hardware that does not conform to
strict EU or UK consumer safety standards, due to voltage
supply differences et cetera; is not - in PS3's case - backwards
compatible with either PS1 or PS2 software; will not play
European Blu-Ray movies or DVDs; and will not be covered by
warranty.”

Lik-Sang strongly disagrees with Sony's opinion that their
customers need this kind of protection and pointed out that PSP
consoles shipped from Lik-Sang contained genuine Sony 100V-
240V AC Adapters that carry CE and other safety marks and are
compatible worldwide. All PSP consoles were in conformity with
all EU and UK consumer safety regulations.

Furthermore, Sony have failed to disclose to the London High
Court that not only the world wide gaming community in more
than 100 countries relied on Lik-Sang for their gaming needs,
but also Sony Europe's very own top directors repeatedly got
their Sony PSP hard or software imports in nicely packed Lik-
Sang parcels with free Lik-Sang Mugs or Lik-Sang Badge
Holders, starting just two days after Japan's official release, as
early as 14th of December 2004 (more than nine months earlier
than the legal action). The list of PSP related Sony Europe
orders reads like the who's who of the videogames industry, and
includes Ray Maguire (Managing Director, Sony Computer
Entertainment Europe Ltd), Alan Duncan (UK Marketing
Director, Sony Computer Entertainment Europe Ltd.), Chris
Sorrell (Creative Director, Sony Computer Entertainment
Europe Ltd.), Rob Parkin (Development Director, Sony
Computer Entertainment Europe Ltd.), just to name a few.

“Today is Sony Europe victory about PSP, tomorrow is Sony
Europe's ongoing pressure about PlayStation 3. With this
precedent set, next week could already be the stage for
complaints from Sony America about the same thing, or from
other console manufacturers about other consoles to other
regions, or even from any publisher about any specific software
title to any country they don't see fit. It's the beginning of the
end . . . of the world as we know it,” stated Pascal Clarysse,
formerly known as the Marketing Manager of Lik-Sang.com.

“Blame it on Sony. That's the latest dark spot in their shameful
track record as gaming industry leader. The Empire finally
‘won’, few dominating retailers from the UK probably will
rejoice the news, but everybody else in the gaming world lost
something today.” (Lik-Sang.com 2006)

As pervasive as copyright litigation is, patent litigation is much less
common. Patents in the game industry are primarily used to prevent
other companies from using the same methods, techniques, or
technologies as the patenting organization. When any mechanism of
control is circumvented, copyright violation is often the first rallying
cry, even when it isn't clear that actual violations have occurred.
Thus, it is often the catch-all weapon in shutting down unauthorized
production. Even when the accusation of copyright infringement is

false, often the individual or company being sued will attempt to
placate the attacking corporation. Taken to its eventual conclusion,
this technique of instantaneous and often unjustified copyright
policing often leads to endings like that which befell Lik-Sang.

Beyond the implications of putting companies out of business with
spurious lawsuits, game corporations need to be challenged for
locking out independent voices. Aspiring, independent, hobbyist,
and student game developers also need to assert their rights to speak
on devices that have been shut off. The ability for game developers to
speak is being shut down through the over-application of patents and
copyright. Co-opting the legal mechanisms of the state, console
manufacturers have deliberately thwarted homebrew efforts by
closing console systems to these developers. Game developers must
assert that this is a violation of their speech and we must all resist the
ways in which copyright and patent law have become a threat rather
than a cultivator of new speech and speech forms.

Ultimately, changing the game industry's control over speech must
occur at the policy level, and will require the activism of numerous
game developers. There will be resistance from console
manufacturers and publishers, and it is likely that these corporations
will use the threat of network access as a means to prevent changes
they mistakenly see as disadvantageous. This is when it becomes
imperative that studio heads use their positions to push for change.
A drive of this sort cannot succeed without broad industry support
and collaboration. And hackers are chief among those who must
correct the misperception that their involvement amounts to piracy.
Most industry leaders continue to conflate the difference between
hacking and cracking, using a single word to reference two very
different activities, despite the benefits hackers have to offer the
videogame industry. A game industry executive epitomizes the
refusal to acknowledge the nuance between those activities that are
actually crucial to their survival:

“Unfortunately, hackers will try to exploit any hardware system
software,” SCEA spokesperson Dave Karraker told
GamesIndustry.biz.

“The best we can do as a company is to make our security that
much stronger and aggressively pursue legal action against
anyone caught trying to use an exploit in an illegal manner.”. . .
Every hardware launch brings with it a race for hackers to defeat
the system's protections, whether for the technological
challenge, to run copied software, or to allow for homebrew
games.

Despite Sony's attempts to prevent its emergence, the PSP has
a strong homebrew community—and hackers are doubtless
hoping to establish a similar base for PS3. (Androvich 2007)

What is the difference between exploiting a hardware system to do
what you would like it to do, and trying to use it in an illegal manner?
I would answer that this is precisely the distinction between the
hacker and the cracker, yet companies continue to combat them as if
they were the same entity3, and apparently, producing for a console
in an unlicensed manner fits this description. There is a huge
difference, despite Karraker's refusal to see it, between homebrew
software and illegally copied software. “Homebrew” software is
developed by amateurs at home: aspiring students and developers
hoping to learn about game development practice, as well as
hobbyists hoping to tinker with the devices they have already paid
large sums of money for. Though the same exploits may contribute to
both hacking and cracking, it seems premature to pursue both as if
they were the same thing. Some companies, like Nintendo largely
ignore homebrew developers. Sony actively combats them. And
Microsoft has ostensibly embraced them.

One story in particular stands out as an example of how homebrew
development benefits the videogame industry. Nintendo's GameBoy
Advance (GBA) handheld system has enjoyed one of the longest lives
of any console game system, in part because of its relatively low cost
and large library of videogames. More importantly, it developed a
large community of homebrew developers who invested significant
time and energy into making the system accessible and open to new
developers. Even the Nintendo Dual Screen (DS), the logical
successor to the GBA will play cartridges made for that system. GBA

development in its later years benefited greatly from the
development of an open source and homebrew project called
VisualBoyAdvance,4 a project that began as an emulator for the GBA
on PCs. As the project matured, so did the development tools that the
software included. Built-in map viewers, sprite viewers, memory
viewers, palette viewers, and visual debugging tools were all
integrated into one package by hackers seeking to make games for
the device. Not even Nintendo had provided such a host of tools for
developing games for the GBA—even the software libraries
associated with GBA homebrew began to surpass those supplied by
Nintendo. Licensed developers began developing tools with hacker-
made software. While it is possible for someone to download the
emulator and then download ROM files created from GBA
cartridges, this is not the only possible use of the technology, and is a
model for how operating outside the access network is productive
and beneficial rather than being profit-usurping piracy.

Emulators, decompilers, and numerous other technologies that
might be labeled as dangerous to the videogame industry are not
obviously so. These technologies allow artwork generation and
visualization creation. Each of these activities is based on technology
that at one time was considered illegal by many in the videogame
industry. If developers can make manufacturers and publishers see
that this hacking is not the equivalent of cracking, all can benefit and
independent voices will be heard.

The other complication to the hacker/cracker distinction is that as
far as most companies are concerned, even if you do own the ROMs
that you're playing on an emulator, they would rather be able to re-
sell you that content than have you make use of it yourself. Having
Nintendo's Mario on a Sony PS3 or Microsoft Xbox360 does not help
videogame brand building initiatives or profits. Even “open”
consoles, which have attempted to break down these barriers for
developers, has economically failed because hobbyists put more
development work into emulation than new games. In practice,
emulation actually gives console manufacturers more reason to
combat homebrew rather than embrace it.

World 7 Boss Fight: Is That Your Head Over There?

In the movie The Princess Bride, a character named “Miracle Max,”
played by Billy Crystal, entreats a client to “Have fun stormin’ the
castle.” His wife, a moment later asks, “Do you think it will work?” to
which he replies, “It will take a miracle.” I am certainly no Miracle
Max, and this is the videogame industry, not a book/movie. Yet the
pessimism of the statement holds true, for there is more than one
castle to storm and there are many levels.

Part of the difficulty of the current system stems from the
compelling nature of the functionalist argument, “Yes, but if it is so
broken, then why does it seem to work so well?” Despite all of the
contradictions, the videogame industry broadly speaking has a
compelling irrational stability and adaptability. Perhaps more
importantly for some, it continues to bring in massive amounts of
money. Why on earth would I want to storm such a formidable
castle? The answer is of course part personal and part analytic. At an
analytic level, I believe that the changing relationship between users
and producers as examined in this world signify a significant schism
for media producers. The rising use of coercive state power ought to
be an indicator of this critical moment. I use the word coercion
deliberately; drawing on the idea that hegemony is an ongoing
process of coercion on the part of the state and consent on the part of
those it governs regardless of if the consent is explicit or implicit
(Gramsci 1975). If the game industry does not adapt to this changing
relationship, it will not continue to exist as it does now, and much
pain and strife will come to workers in the game industry before it
comes to those in positions of power. There are also limits to the
desire machine, which has driven the game industry for so long. As
users become more capable of producing and fulfilling their desire to
produce games of their own, the industry will not be able to sustain
its churn-and-burn attitude toward employees. At a personal level,
the answer is more esoteric. Just because something functions does
not mean that it isn't capable of functioning in ways that are more
respectful, nimble, and nurturing. I can only hope that a
commitment from those who believe videogames are an art form will

encourage game developers to seek changes to their communities of
practice.

So while the following SEC filing excerpt indicates the risks
associated with working within these licensing agreements, it
neglects to indicate the effect that these agreements have on the
practice of game development more broadly. Perhaps more
importantly, it fails to acknowledge that efforts like those around
homebrew and jail-breaking could significantly reduce these kinds of
risks. Yet, time and again, publishing companies assuage their
interest in alternatives for access to the next shiny toy. As even
Securities and Exchange Commission filings note, the position of
development studios and even publishing companies is dramatically
affected by the control of hardware platforms.

The videogame hardware manufacturers set the royalty rates
and other fees that we must pay to publish games for their
platforms, and therefore have significant influence on our costs.
If one or more of these manufacturers adopt a different fee
structure for future game consoles, our profitability will be
materially impacted.

In order to publish products for a videogame system such as
the Xbox 360, PlayStation 3 or Wii, we must take a license from
the manufacturer, which gives it the opportunity to set the fee
structure that we must pay in order to publish games for that
platform. Similarly, certain manufacturers have retained the
flexibility to change their fee structures, or adopt different fee
structures for online gameplay and other new features for their
consoles. The control that hardware manufacturers have over
the fee structures for their platforms and online access makes it
difficult for us to predict our costs, profitability and impact on
margins. Because publishing products for videogame systems is
the largest portion of our business, any increase in fee structures
would significantly harm our ability to generate revenues and/or
profits. (Electronic Arts 2007, 53)

Concern about cost structures over production practices is
indicative of the fundamental disconnect the game industry needs to
make between production practice and the secrecy that surrounds
those devices. Instead of attempting to make significant
modifications to these systems of relation, developers who have

gained access to these production networks willingly trade their
ability to share and learn for an opportunity to make more money
and produce another game title. The continued dominance of the
console game market, which represents the largest portion of the
game development business, also symbolizes a critical point of access
that must be examined. Even online distribution networks, which
remove a significant aspect of the risk associated with publishing
game titles, remain closed and unavailable except to those
companies that work within the licensing agreements of console
manufacturers.

Box 7.2

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: For many of my informants, the
independent game development “scene” has emerged as a kind
of alternative to the games that dominate the mainstream
game industry. In recent years, the independent game
development community has come into its own. As shared
tools, resources and open conversation about game design and
development has enabled a flourishing, though somewhat
insular, creative zone of game development.
Casey: Are there things going forward that are exciting to
you?
DESIGN_LEAD_1: Yeah, why didn't independent game development
come along earlier? There is more of a scene now, because
the tools and the resources for making small innovative
stuff has come down. There are avenues for distributing
independent content to a mass market, which there wasn't
before. I'm also interested in socially responsible games
and serious games. Games still have such a limited audience.
People tout all the time that it is bigger than the movie
industry, blah, blah, blah, but they're only comparing box
office sales with game sales. That doesn't include DVDs,
merchandising, and everything else. Games need more avenues,
not just the single one we have now.
Which is another thing. Gameplay length. It's one of the

reasons games cost more, because it's supposed to be a
longer experience. You have to create more crap. They charge
what they do also because the precedent was already set. I
guess it all comes down to, “Why can't we be more creative?”
I guess my answer to that is, “Fine. I'll be creative when I
don't have to worry about getting paid any more.”

AUTHOR_DEV_DILEMMA: For so many of my informants, game
development will only become sustainable when game
development can extend into more areas, providing new
opportunities for creativity that no longer demands
adherence to the current industry structure. In the case of
“indy” game development, that may mean sacrificing a salary,
though alternatives also exist. Serious games, social games,
and so-called casual games are each opportunities to create
a more sustainable space of game development that is not so
singularly focused on the current structure of the game
industry.
#: SET DEMO_MODE 0

More broadly, the game industry must decide how it would like to
position its relationship between the state and the market. The
contradictory appeals to the independence of the game industry and
the importance of the market is subverted by continued appeals to
the state to provide protection and enforcement on activities that can
arguably be defined as “piracy.” The mobilization of the state as a
means to enforce artificial controls on the market, which ultimately
impact the everyday lives of game developers, is problematic. Those
same legal activities severely constrain the ability of game developers
to share and collaborate. This results in game developers spending
significant amounts time reinventing the same components and
never having the time necessary to share specific details about game
development. While the double-speak creates particular
opportunities for console manufacturers to manage and control the
game industry, the same activities discourage any kind of maturation
or the encouraging broader participation in game development
practice.

In many respects the failure of the market and the state is visible in
the kinds of games that are produced and distributed in the game
industry. The continued consolidation and resulting risk-averse
conglomerate companies encourages an adherence to the status quo.
Only a small number of individuals within those corporations are
given the freedom to push the game industry in new directions.
Aspiring game developers are not given an opportunity to fully
participate in the market of the game industry because they are
constrained by the activities of established companies.

There seems to be something particularly distinct occurring in this
space, something that I believe cuts to the core about why coercive

state action is being mobilized on an unprecedented scale against
entirely nonviolent citizen action. The (re)productive capacity of
users rather than consumers is integral in this crisis for those seeking
to control productive capacities. Play and playfulness is not
something that corporations or the state has learned to work within
yet, and as a consequence you find strong rhetoric against those that
seek to leverage technologies to meet their desires rather than those
they have been expected to consume.

Ultimately the relationship the industry has with the market and
the state becomes a game of prisoner's dilemma. Will the players
cooperate or defect? The unfortunate answer is that, as the game has
currently been constructed, the players will tend to defect, only to
have greater restrictions placed on them. The industry loses, because
they, too, time and again defect. Yet, greater reward could be had if
they had instead worked with users and learned to play something
other than their own game.

Epilogue: The Videogame Industry Game

World 8: A Game Design Document

Box 8.1

#: SET DEMO_MODE 1
AUTHOR_DEV_DILEMMA: Never demo the end of a game.
#: SET DEMO_MODE 0

World 8-1: What's in a Game?

There is nothing like doing fieldwork among game developers to
impress upon you that game design matters, and game mechanics
are just as important as any other aspect of game design and
development. I may have already been a convert. However, I grew up
among the Nintendo generation, which is apparently enough to
change one's perspective on the potential and possibilities for
videogames.

This isn't to say that narrative doesn't matter; rather that the
structure, systems, and mechanics, which all move in the
background, are as much elements under inquiry and scrutiny. The
game design document primarily unpacks the systems lying in the
game background. Put simply, the document provides the rules of
the game. It is a detailed breakdown of how the game's systems
interrelate and how the user's actions impact those systems.

Throughout the construction of this text, I continually struggled
with how the linear narrative of text offered the only opportunity to
engage with the material I was presenting. There was only one way to
go, and if readers were dissatisfied with my interpretations of the
material, there was little they could do to shift the trajectory of the

framework I had constructed for them. In short, Developer’s
Dilemma wasn't much of a game. Maybe it should have been a
Choose Your Own Adventure book? If you agree with Latour's frame,
turn to page XX or if you think we should follow Smith's lead, turn to
YY.

This was particularly troublesome because the framework I had
constructed was more complex than I felt I could adequately convey.
Not to mention that my informants had impressed upon me the
importance of play. The field was continually shifting under my feet
and demanded more methodological nimbleness than I felt my
current form allowed. I turned to the very terms of my informants to
find new discursive and technoscientific resources to deploy in my
analytical toolkit.

I turned to concepts like the “vertical slice” (VS) as a tool for
ethnographers to think through issues of contiguity, speed, and
proximity that the field holds for those working in highly mediated
contexts. The VS also gives ethnographers a means to think through
the complex feedback loops between the observer and the observed.
It is where informants read and respond to us, often when we are
least equipped to deal with new information.

The iterative, or “interactive” approach to the field—our data, our
methods, and ultimately our findings and subsequent ethnographic
narratives—provides the opportunity to more reflectively engage
with the field and our informants. Though it might be said that this
differs from more traditional ethnographic practices, for the most
part anthropologists of science and technology have acknowledged
that ethnography must shift in order to account for “how various
kinds of systems (textual, social, technological, etc.) hang together,”
and how those system “are continually being reconstituted through
the interaction of many scales, variables, and forces” (Fortun 2006,
296). It makes sense that in this context our research projects
become more complex.

But this isn't “anything goes.” There are underlying systems and
structures that I am attempting to grapple with in this. There are
rules to the game being played. The difference, of course, is that I ask
for readers to engage with them, likely making their own conclusions
along the way. And, perhaps that isn't any different than the state of
affairs in all texts.

After all, the process of design is rooted in constructing systems
within which narrative systems can emerge. More important,
perhaps, than any narrative I want to hammer into the minds of my
readers, is the story that emerges for them from reading this text. As
such, I attempt to lay bare the underlying systems that my
instrumental play of this system has revealed. In the end, it is the
demand that one's reader participates and co-constructs (or co-
deconstructs) the narrative that makes the difference. It is the
demand that a text or argument be played that assumes a different
kind of engagement assumed in “reading.”

Playing the text, of course, allows for hacks, mods, remixes, and
cheating, much like gaming in real life. It is perhaps for these reasons
that I pursue the game-form as a supplement to the ethnographic
text. My readers deserve an opportunity to play the field as I did
during my years of participant observation. Can their forays into my
virtual space ever be equivalent to the fieldwork I pursued? No, but
that isn't really the point. Perhaps the points are multiple.

My hope is that the interactive/engaged instrumental play is an
opportunity to engage with the structures as I perceived them and
either validate my findings, or make them swerve, though likely both
will occur.

The opportunity to play the story resonates differently, much like
the game developers making games, or students playing games—the
process of the push and pull allows for alternative readings. The
game of tug-of-war that we play between systems that restrict as we
attempt to muddle through them is an opportunity for my
ethnographic accounts to have greater verisimilitude. They make
sense and are means of making sense.

I make no promise that the game-form is ultimately superior or
inferior. It is all in how things get presented. There are certainly
better ethnographic game-forms than others. Each “text” illuminates
and simultaneously obscures aspects of the overarching
ethnographic narrative, one that ultimately emerges through play
and replay. I continue to muddle my way toward both an
ethnography and an ethnographic game that makes sense of the
worlds of videogame developers in the context of global neo-liberal
capitalism.

The explicit engagement with design as shaping the resulting
possibilities for collaboration, interpretation, and remixing

encourages attentiveness to the construction of the ethnographic
argument. The game-form ultimately offers anthropologists new
means to approach their objects of concern as well as new
collaborative opportunities for readers and informants.

What I want to stress is that the game-form offers both promise
and peril for ethnographer and informant. More often we need our
ethnographic forms to take new shapes. This is not to say that we
need to jettison one type of text in favor of the other, simply that we
need to be thinking more broadly about what constitutes the
ethnographic narrative and what possibilities can be found in new
forms.

World 8-2: Vertical Slice—An Analytic Conclusion

This final world returns to the central category of the text—creative
collaborative practice—that resides at the core of this text's analytic
focus. Analyzing creative collaborative practice in the context of
videogame development requires analytic attention at different
scales. The entire system is important, and the text grapples with this
system. World 8 is one way I have attempted to wrestle with how
social analysts can come to confront systems that cross “scales,
variables, and forces” (Fortun 2006, 296) in different ways. The
game as an analytic tool is one that I investigate as a means for
understanding the complexity of these formations as well as how
they are open to change and (re)interpretation.

What kind of game would the game industry be?1 Would it be a fun
game? World 8 mobilizes the arguments made throughout this text
and synthesizes them by conceptualizing the videogame industry as a
game—a designed game. It is an opportunity to ask different
questions about the work of videogame development. As this text has
conceptualized it, the game industry is a multiplayer game, though
not necessarily a “networked” game in the traditional sense like a
first-person shooting game. It is both collective and individual. The
individual affects and is affected by the collective. At the level of work
practice, this exercise makes the point that interactivity, though a
valuable tool for game developers, can also be pushed too far. People
must be given the time and space to get work done. Crunch is, in

many respects, the product of over-interactivity in concert with poor
planning, modified timelines, artificial demands by other interests,
and the continued demands for secrecy in the game industry. To
understand the interconnections between these aspects coming
together in concert to produce crunch as it now exists in the game
industry prompts a different kind of text: a game design document.

A game design document for videogame development work
embodies the foundations of a kind of procedural rhetoric, and this
text functions as just such a document. The game industry game is
“persuasion through rule-based representation and interactions
rather than the spoken word” (Bogost 2007, ix). This design is an
argument about the structures that shape and are shaped by
videogame developers. The advantage is that it is open to a
multiplicity of interpretations. Though the industry game is not yet a
game that can be played, it is nonetheless quite serious in that I have
attempted to think through the kinds of structures and play that
would occur in this space. It is also a method by which to think
through a different form of ethnography.

The account given in the preceding chapters is one possible story
that a cultural analyst could draw from the material gathered
throughout my fieldwork. Although that “account(s) may be truthful;
. . . [it is] in principle, susceptible to refutation, assuming access to
the same pool of cultural facts.” In other words, this is not “the story,
but a story among other stories” (Clifford 1986, 109). World 8's
ethnographic game is an attempt to create a persuasive yet playful
space where alternate interpretations or arguments about the
structure of Developer’s Dilemma can emerge. In this way, the
ethnographic game takes an entirely different view of the
ethnographic allegory, which attempts to limit the play within the
text. Instead, the ethnographic game invites play. Of course in some
researchers’ eyes this will discount the scientific character of this
study. Yet I strive for that goal of many game developers with too
little time and too few resources who attempt to capture a sense of
reality—verisimilitude.

This game, as imagined here, is designed for the Nintendo DS for
numerous reasons. The first is personal: the Nintendo DS has a
burgeoning homebrew and technically illegal community growing
around it that I hope to support by offering new arguments in
support of their activities as well as the technical resources created

during the eventual development of the game. It is my opinion that
developing a game for the Nintendo DS in connection with a
scholarly project demonstrates the illogical character of criminalizing
speech on proprietary technologies. The ability to speak with and
through devices that are owned by a user should not be compromised
by legislation encouraged by corporations that largely have been
unable to prove the value or sustainability of what they promote.

The other reasons the DS is the target platform for this industry
game are more practical. More than any other console device, the DS
is the closest developers and gamers have to a universal language in
that both hardcore gamers and casual gamers alike have accepted the
DS. The DS has a much broader player demographic than typical
console hardware. Nintendo has gone as far as marketing the device
and a subset of its games at numerous markets—men, women,
young, and old. Atypical games have been released for the console
and it continues to attract new kinds of gamers.

Another reason for creating this text as a DS game lies in my
findings from those who work in the industry. Thinking broadly
about who could conceivably be or desire to be game developers is an
important aspect to changing the structure of their work
communities. In some respects, the decision to target the DS is a
departure from using this exercise strictly as a demonstration of the
structures of the game industry. If that were the goal, then I would
have targeted only the PlayStation 3, the most inaccessible and
expensive of the current generation of consoles.

The DS's two screens, stylus input, built-in Wi-Fi, and relatively
low price also make it an attractive target for this project. The two
screens allow the simultaneous interaction and presentation of new
information. The stylus, while being an approachable form of input
for gameplay, is also more like the mouse on a personal computer,
where most games are actually created. The DS's Wi-Fi capabilities
allow “teams” of developers to work together on tasks. I do not
conceptualize this collaboration in “real-time,” but rather through a
mechanism where individual tasks come to affect others on your
team. Each individual developer has their own drives and specialties,
which ultimately affects the kinds of games they play, as well as their
progression through the game. The graphics are meant to be stylized
and again, accessible. Rather than appealing to core demographics,
the DS emphasizes accessibility.

Over the course of gameplay, developers hope that players begin to
understand their position in a larger structure, some characteristics
of which they can adjust and modify, and others they cannot. It is
these structures I hope players will come to question and desire to
change. The game's design is meant to bring a broader
understanding of what it means to create videogames, as well as
appreciate the work that numerous people do to bring games to
market, especially since most are unacknowledged or never seen as
integral to the development of this class of new media.

Each world of Developer’s Dilemma has introduced an analytic
category, which I found productive in the analysis of the everyday
lives of game developers. World 1, via its structure begins to
introduce and explore the everyday lives of game developers. This is
important because the text itself embodies a crucial aspect of the
videogame industry and work of game development: game worlds
are rife with contextual information that needs to be examined
closely. Too often games and game developers are not granted close
readings. By structuring the text as a tip-of-the-hat to Super Mario
Bros. I acknowledge my ancestry as well as that of so many of my
informants. The very text and structure of Developer’s Dilemma
attempts to bring some of the contextual systems of game developers
into view and decode them for the reader.

The frame that mobilizes World 2 encompasses underlying systems
and structures and the drive that game developers have to find them
or construct them. This framework uses the concept of instrumental
work/play as the mode of activity through which developers arrive at
the kinds of conclusions made day-in and day-out. The discussion of
instrumentality in World 2 is about discretely and precisely
identifying each element of a game that has yet to be constructed; it
is both world building and world deconstructing, simultaneously. In
some cases it thus appears that game developers are keeping others
at bay through their culture and language, yet this is not simply done
as a means to maintain exclusivity, but rooted in a broader attempt
to define a kind of epistemic space of their own.

World 3 draws on the notion of the experimental system as a
means for understanding what game developers attempt to do in
their preproduction work. The experimental system of the game is
not just the game itself, but the systems and people around it that
support that system. Thus, the experimental system isn't simply an

apparatus, but comprises the supporting humans and non-humans,
often drawing on different world views and the means by which they
come together in fault line-ridden ways. Yet, this is precisely what
makes games particularly interesting systems for developers to
construct, rooted, as many of them are, in gaming and gamer history.
The riskiness of game development is precisely that this
experimental system may very well fail. Time and again, the
juxtaposition of these diverse backgrounds, systems, and epistemic
perspectives keeps game developers passionate about their work.

As we transition from the temporal space of preproduction to
production in World 4, game development takes on a very different
character. It is here that experimental systems are expected to
function flawlessly in an interactive way that keeps developers
collaborating and moving forward. All of the meticulously designed
(or not so) practices, technologies, and approaches place strain on
the experimental system. Things begin to break down and the hope
or promise of interactivity gives way to something more problematic;
developers begin to lose perspective on the overall whole of the
game. Individual tasks, the build, and “whose piece of the puzzle isn't
meshing into the overall whole” become the focus. Interactivity
becomes a goal, rather than an element that enables the creative
collaborative practice of game development. World 4 contextualizes
developers among the myriad of tools they use to construct their
games as well highlighting the dysfunction of getting a game to
function.

World 5 descends into the moments where the wheels simply start
coming off the cart. Interactivity gives way to Autoplay, or complete
engaged disengagement. Crunch envelops teams attempting to meet
deadlines while changes are dictated from afar. Systems and
practices begin to fall apart under the stress and strain. Yet, the
perpetual startup system requires this, and the difficulty of breaking
into the industry combined with a ready stream of talented,
passionate, and young people—enable it. And all of this is rooted in
the underlying systems and structures of the broader game industry,
which is why we progress to the next level.

In World 6 we see explicitly how access, control, and secrecy go
hand in hand with the numerous issues that developers face. The
actor-network can be structured and disciplined in different ways.
Access to particular technological or social obligatory passage points

(such as the DevKit, NDA, and licensing) maintains certain kinds of
actor-network structures. These elements are part of what lead to our
perpetual startup cycle, which, viewed from another perspective
results in institutional Alzheimer's. The evidence would indicate that
this is not a healthy direction for the game industry. While
publishers and manufacturers talk in directions that would seem to
enable new kinds of institutional memory, in reality these claims are
merely words said to appease earnings analysts, rather than actions
that result in improvements for the everyday lives of game
developers who in the end are responsible for the creation of the
games these organizations depend upon. Ultimately, it is the
everyday working game developers who are responsible for creating
games and the happier, more sustainable, and diverse the
community of game developers, the more likely it is that developers
will remain in the industry. Experienced, rested and happy
developers can only improve the products of the game industry.

In some cases, the active disciplining of actor-networks is so severe
and so counter to the claims of console manufacturers that it
deserves specific attention of its own. World 7 turns to the ways in
which software, hardware, and the ability to mobilize governments to
seize property and imprison individuals further entrenches the
existing structure of the game industry. Despite the fact that many of
these companies now recognize that this particular state of affairs is
not working, and that the rise of independent game development
indicates those old structures do not maintain quality and innovation
as much as they were once thought to, the industry nevertheless
continues to co-opt State powers to maintain control. Those very
systems that publishers and manufacturers cling to so tightly,
however, may be the very vehicles of their own destruction. Of course
in the meantime, many game development studios may pay the
price.

Finally, in an attempt to bring the text full circle, World 8 returns
to the structure of the game and a game design document. The final
level of a game should agglomerate each and every element that the
player has been expected to master and ask players to leverage these
skills to prove a kind of mastery over the entire system. What better
way to consolidate our understanding of designing games than to
think through what kind of a game this might be? The contribution
of World 8 is the realization of my argument that game developers

have a very particular epistemic perspective that ought to be
respected as such. A game is just as capable of conveying complex
frameworks as a conventional text, and does so in such a way that
might just compel you to keep playing, despite knowing that it isn't
entirely working quite right.

World 8-3: “The Expo Demo”—Two Gameplay Narratives

What follows are two gameplay narratives as imagined by two
hypothetical players of the game Developer’s Dilemma. It is thought
of as a conceptual or verbal account of what a “playable demo” of the
players of the game would experience.

Narrative 1
The first thing I was presented with while playing this game was a
screen, which I was asked to enter my name. I presumed I could
enter whatever I like, but I chose to enter “Cassie O’Donnell.” The
second prompt asked me what my college undergraduate major was.
There were several options, I selected “computer science.” It told me
that I was currently unemployed, had managed to escape my
undergraduate institution with no debt, but that I was
“unfortunately” located in the Midwest, where few game jobs were
available.

I was presented with my developer's “status” screen. It indicated
that I was currently unemployed and I had “undergraduate” skills in
engineering and “low” skills in art, design, and management. My
personal status was currently “happy.” When I touched that element
with my stylus it went into more detail, displaying that my “fatigue”
was “low,” my mood was “good,” number of hours at work was zero, I
had $1,000 in the bank, I was single, and I had no children.

Four new options presented themselves: “search for jobs,” “create
independent studio,” “join independent studio,” and “relocate.” I
first investigated the “relocate” option, because I had previously been
told that my location was “unfortunate.” More unfortunately, the
$1,000 I had banked was not enough to finance relocation to
anywhere with greater game development job availability. So, with

that in mind I selected “search for jobs” and began searching for a
job. There were several available “software development” jobs for
which I applied. I was accepted and took on the role, “entry level
software engineer.”

At this point I was presented with my first engineering puzzle
game. It was relatively easy to complete. My goal was to trace the
movement of “data” into a system and correct “improper” data
movement. Several pieces of data were being improperly placed,
which I corrected by adjusting “pipes” on the screen. After
completing the first game I was returned to my “status” screen. My
money was gradually increasing and my engineering skills were
increasing. The avatar's mood was happy and well rested, though less
rested than prior to taking the job.

I then chose to “create independent studio.” I named my studio
“Alchemyst Creations.” I entered into a new engineering puzzle
game. During this game however, I received a message that my “real”
job was demanding my time. I could either respond to the request or
continue with my independent work. At first I selected to continue
with my independent work, and was then instructed that this would
likely result in a poor performance report from my real job.
Considering this warning I instead chose to return to my real job. I
completed two more engineering puzzles before I was returned to my
independent engineering puzzle. After completing that puzzle I
closed my console for a break.

Later, when I returned to the console, I was told that I had two
waiting real job puzzles to complete. After finishing those I began
another independent puzzle. My independent studio status screen
indicated that “production” on my first game was 5 percent done
with respect to engineering, but 0 percent for both “design” and
“art.” There appeared to be several available options: to “take on
design task,” “take on art task,” or “find other developers.” I tried the
latter option, at which time the console attempted to wirelessly find
other “developers” in its range. I was by myself however, so it could
not find anyone else. It encouraged me to find players with artistic or
design skills and “connect” with them using this feature. It also said
that I could “manually” add other players using the “friend code”
option.

In the meantime I took on several art and design tasks. The first art
task was to duplicate several line drawings displayed on one screen

using the stylus on the lower screen. Other tasks involved attempting
to place a texture on a 3D model by selecting points on the lower
screen. Many of these puzzles were quite difficult for me. Later that
night I emailed a friend from high school, asking if he had seen this
game. He had not, but downloaded it and placed it on his console.
Since he was an artist he was initially assigned a job at an advertising
company, but was able to join my independent studio using the
“friend code” option. At this point we both became able to work
together on our independent project, when not assigned tasks from
our real jobs. He took on the art projects, I did the engineering, and
we split the design tasks.

During this time, my position at my real job role had improved to
“lead software engineer,” and I had begun being assigned
“management” puzzles. While my management skills were
characterized as “improving,” the work made it more difficult to
improve my engineering skills, which were crucial to my
independent project work. My avatar's mood had shifted to
borderline unhappiness and the number of hours being worked had
steadily increased. I began to seriously consider the relocation option
available in the game. It was going to cost me a significant amount of
money, but I could relocate to the West Coast where there were
several available “jobs” at established game companies. I found that I
could search jobs in these locations and even apply for them, though
I frequently only received rejections or no response at all.

Eventually I did decide to relocate within the game. At this time I
was able to take an “entry level game engineer” position at a
company for less money than I had previously been making, but it
was an opportunity to be a “real” game developer. Very quickly I was
being assigned new puzzle tasks. On several occasions when I
returned to the console after having shut it for a day I would find
myself with five to ten puzzles to complete before I could return to
my independent work with my friend. Then one day the game
notified me that game production at the company I was working for
was entering “crunch” mode.

I wasn't quite sure what that indicated, but it initially meant that I
had puzzles coming at me nonstop. When I attempted to close the
console, it flashed a red light, which I assume indicated something,
so I opened the console again. It said that if I chose to stop in the
middle of this puzzle I would be risking my job, and that I should

finish this puzzle and two more before closing the device. I did that,
reluctantly, and closed the console. When I returned to the device the
next day I had fifteen puzzles waiting for me to complete. Quickly I
found myself working exclusively on these puzzles. Occasionally
other puzzles would interrupt the puzzle I was working on, and not
even reduce the number of puzzles I needed to complete before
closing the device without risking a poor performance review.

I noticed that my avatar's status was deteriorating. This began to
manifest during puzzle activities, where “bugs” or “mistakes” would
strike while I was attempting to solve a puzzle. These would
frequently make the puzzles more difficult and take more time. The
character's fatigue was increasing and the mood rapidly turning
toward very unhappy. Finally I was frustrated enough with this
process that I began searching for new jobs. There were plenty of
new jobs available, so I tried a new company. I was even hired as a
“senior game engineer,” but quickly this company too was in crunch
mode. However, I had saved enough money up that I quit my job this
time and began working exclusively on the independent project.

Unfortunately my friend's avatar was not doing much work on the
independent project by this time, because he was working for a game
company as well. However, I knew a handful of people with the game
now, so they joined my company as well and began working on the
project. When the game was 50 percent complete a new option
became available. We suddenly had the opportunity to “shop your
game around” to publishing companies. When we did find a
publisher willing to fund the remaining development of the game,
suddenly new tasks began presenting themselves, primarily
management tasks. Because I had started the studio, everyone
indicated that I should handle those tasks.

Our independent work had quickly become our own work, the
publishing company began also asking for changes to our game, and
new engineering, art, and design tasks began presenting themselves
as a result. In an effort to meet a deadline for the game (part of the
deal with the publishing company), I was forced to indicate “crunch”
mode for our game. It became readily apparent that this was the
same game all over again, only I was in charge of the company this
time. Some of my fellow players began to bail out, resulting in more
tasks for fewer people. I tried to bring on other players, but they too

quickly dropped out of the game. Eventually it was just a handful of
hardcore players that made sure that the game completed.

While there was a sizable payout at the end of that part of the
game, my avatar was left “exhausted,” and almost incapable of
completing a puzzle due to the frequency of bugs and mistakes. I set
the game aside for a while to recuperate myself as well. At some
point it seems inevitable that I will have to use the “leave the game
industry” button, an option always available. Leaving seems such a
shame after all that I have invested.

Narrative 2
As I sat down to play the game, the first question it asked me for was
my name. I entered “Maria Murali.” It then prompted me for my
major in college. I selected “fine arts,” as it was the closest thing I
could find. It indicated that I was located in central India, which was
indicated as “fortunate.” I wasn't entirely sure what that meant, but I
assumed it was a lucky break.

The game's next screen indicated that I was unemployed with
“undergraduate” skills in “art” and “low” skills in engineering,
design, and management. My avatar had a smile on its face, which I
assumed meant that I was happy. I later discovered that by tapping
on the avatar with the pen that it showed a more detailed breakdown
of what indicated my happiness. I had spent 0 hours at work thus far
and had only Rs. 1,000 (approximately $25). I was not in a
relationship and had no children.

The game presented several available actions at this point. Of
those, I selected “search for jobs.” There were twelve available “art
production” jobs available in my vicinity. I applied and was accepted
as “entry level production artist.” From this point forward the game
spiraled into a series of different art-based puzzle games. Goals
ranged from things like simplifying basic 3D models to use fewer
polygons to filling in the proper colors on a mesh to meet a goal
model's appearance. One of my favorites was attempting to
reproduce a higher-resolution image as a much smaller piece of pixel
art.

Throughout this process I could see via my avatar's status page that
my artistic skills were increasing and my money was increasing as
well. I guess that meant that things were going well. However, my

avatar was getting tired, so after finishing several puzzles, I closed
the DS and walked away from it. A few minutes later I walked by and
observed that the DS was flashing one of its indicator lights at me. I
opened the DS and the game informed me that there was further
work to do. This struck me as strange, but I completed a few more
puzzles and closed the DS again, observing that my avatar was quite
tired.

Despite the fact that I saw the indicator light flashing a couple of
hours later, I ignored the DS for a day, the game not being a priority
at the moment. When I next opened the DS, it informed me that I
had been “let go” by the game company that had hired me and that
my status was “unemployed,” I did observe, however that my
character was happy and had more money than it used to.

Again I selected “search for jobs.” There were a number of “art
production” jobs available. I scanned through the list and selected
another. Again, the game launched into a series of puzzles. I would
play for a bit, set it down, and come back. Eventually the game would
indicate that my employer was unsatisfied with my work and I would
be “let go.” It was a bit strange, but there were plenty of jobs to be
had, so I didn't mind the process.

After several weeks, an “art production lead” position became
available. I applied and was granted this job. It included a new set of
puzzles that were about managing other artists in addition to doing
art-based puzzles. Occasionally, management tasks would override
an art task, but overall the process was still interesting. My character
would get fatigued, but I still managed to get enough puzzles done at
each sitting that I kept that job for quite a while.

One thing struck me as strange during some of the management
processes. Occasionally, I had the feeling that my success in puzzles
resulted in poor employee performance or even employee loss. The
game did not penalize me for this, but I was curious about the
process. It was also during this time that I observed errors in the
game. At first I thought they were bugs in the game itself, but it
became clear that some puzzles were actively attempting to thwart
my efforts at solving them. I noticed that this tended to only occur
when my avatar was particularly tired.

I'm not entirely sure when the game became a compulsion, but I
played it a lot. Despite my character's obvious fatigue and the active
negative feedback the game gave me, I played a great deal. My

character's skill continued to climb in art and management and so
did my bankroll. It was about this time that my parents introduced
me to my now husband. I set aside the game and never really came
back to it, though I've thought about it on several occasions. I never
really had a chance to see where I could go, or what opportunities
would come about. The thing that concerns me the most was that
compulsion I felt to respond to its indicator light that there was work
do be done and I was needed.

World 8-4: Core Gameplay and Game Elements

The work of game development functions as the core gameplay
mechanic. It is stylized in the form of puzzle-like tasks that the player
navigates. These tasks attempt to approximate the “play” of work as
much as possible, though basing work in play does not undermine
the fact that the puzzles can be difficult or complex. These tasks take
the form of “mini-games” that the user plays. The overall goal of the
game is open ended. Players can determine if their goal is to “create
titles,” create their own company, climb the corporate ladder, or
simply enjoy the tasks which they have the opportunity to work on.
While there is no “score” in the traditional sense, several different
sub-systems have the potential for being recognized as a “score.”
Each of the employment history, employer, and titles published
subsystems serves as sites of potential value that players might view
as being a score. The game has several underlying subsystems that
each impact the overall game mechanic. These are divided into the
categories enumerated in table 8.1.

Table 8.1 Game subsystems
Subsystem
name

Description

Skill levels The skill level represents skills acquired while
working. These skills provide further options during
the play of mini-games as well as the ability to
advance or move to other companies.

Personal
status

Personal status represents the state of a worker.
Fatigue, mood, number of hours at work, money,
relationship status, and number of children are
included in this category.

Regional
location

The regional location is randomly assigned to the
player at the beginning of the game. The region affects
available job opportunities and employers. A player
can move if they have enough money to do so.

Employment
status

Employment status represents where a player is
employed.

Job role Job role is the kinds of primary tasks available to and
assigned to a player. Sometimes jobs not associated
typically with a role will be available, providing
players with the ability to gain new kinds of skills.

Employer The employer of a player determines the kinds of
tasks available to them. Players can create new
“independent” companies while employed at other
companies, though they must maintain their work
level enough to remain employed.

Employment
history

The employment history of a player is a record of
where they have worked, how long, and kind of work
they did.

Titles
published

The titles published are a list of games that the player
has been credited for in their work.

Some of these sub-systems are simpler than others. “Employment
History and Titles Published” are a historical record of what a player
has done through the course of the game. Some are more complex.

The “skill level” system is one of the primary game mechanics, as it
determines the kinds of employers and job roles available to a player.
Players are awarded “experience” during the course of playing mini-
games. Games conceptualized as “engineer” games will be heavier on
engineering skill rewards. The player then has the ability to
distribute these points among those skills (listed in table 8.2) they
would like to improve.

Table 8.2 Skill-level subsystem detail
Skill levels Category and description
Software
coding

[Engineering] Coding skills point at the ability for a
player to quickly complete software development tasks.
This is not necessarily indicative of the quality of the
code being produced.

Software
design

[Engineering] This is the other side of software
development skills: being able to produce “good” or
“well designed” code.

Debugging [Engineering] Debugging is the ability of an engineer to
determine where something is going wrong in the
process of game development.

Modeling [Art] Modeling is the creation of objects that can be
placed into the game.

Texturing [Art] Texturing is the creation of skins for models.
Animation [Art] Animation is the ability to create the animation

sequences that textured models depend upon to be put
into motion.

Level
design

[Design] Level design is the creation of game
environments.

Character
design

[Design] Character design is the generation of
compelling game character concepts.

Game
mechanics

[Design] Game mechanics are those rules and systems
that underlie a game's visual presentation.

Scheduling [Management] Scheduling is the ability to accurately
estimate and hit project deadlines.

Resource
allocation

[Management] Resource management is the ability to
keep a team on track and adequately tasked for a
project.

Networking [Management] Networking keeps developers
connected to other developers, publishers, and
manufacturers.

Each player, when starting the game, will choose an undergraduate
major. These will affect the starting values of a player's skills. All
players will start out unemployed, and can either begin searching for
work, move if money provides the opportunity, or start their own
game companies. These companies of course will only have one role
available to begin, “jack of all trades.” Numerous tasks will be
available to the player, but they will quickly have to decide on a
specialization and then either pursue employment at an established
company, or attempt to attract other players to their companies. At
any given time a player can only be part of two different companies.
This amounts to the idea of a “day job” and a “startup.” Of course a
player can belong to two startup companies, though this will quickly
affect fatigue, mood, and money.

Some game systems provide restrictions on the player. Personal
status, regional location, current job role, employment history, and
titles published fit well into these categories. The personal status of a
player affects the amount of time they can reasonably remain at work
each week without their fatigue increasing or their mood falling.
These two categories will affect the “accuracy” with which they can
complete work-related tasks. The more fatigued a player is, or the
worse his or her mood is, the more possible it becomes that actions
taken in a task will not work quite as desired. This is done to
approximate the declining ability to remain focused experienced by
fatigued workers.

The “game is over” when the players mood sinks to “jaded” and
their fatigue reaches “hospitalization,” or at any point their money
reaches zero. This is considered “burnout.” A player can later reenter
the industry with a character if sufficient real-time has passed since
the game was last played. Players can also opt to “leave the industry,”
at any time during the game, though players who are working with
that player will suffer in-game repercussions.

In the game that is the videogame industry, the regional location
affects the likelihood that particular kinds of employment are
available for a would-be game developer. Each employer defined in
the game will have regional locations where particular job roles are
available to the player. These restrictions will reflect the available job
opportunities of a given geographic region. Players will be equally
likely to spawn in the United States, Western Europe, India, or
Japan. In locations where game development jobs are particularly

rare, developers will have the opportunity to work at companies that
border game development work. Engineers will have the opportunity
to work for software companies, though they must maintain a
company of their own on the side to “remain in the industry.”

The mini-games represent the game space of the videogame studio.
Mini-games are tasks which each player must complete. As a player
moves into certain kinds of positions or organizations, tasks may
become timed. An “estimated” time may be provided, which a player
must beat in order to gain all points associated with a mini-game.
Timed mini-games may not be paused or stopped by closing the DS
without penalty. It is assumed that if a timed task is paused that the
human player needs a break that would be unavailable to a worker.
While the player may pause, their virtual character's skill status will
decrease during these situations, correlating with a drop in
professional status as one avoids assigned work. Untimed tasks may
be paused or the DS can be closed and put into its hibernation mode.

Crunch mode occurs in the game when a series of tasks are
scheduled back to back, and the user has no option to not complete
all of them simultaneously. Again, if the game is paused or place into
hibernation, the characters’ skill status will be decreased. If crunch
has not occurred recently, a temporary increase in mood will be
provided, representing some of the allowances made to employees
during crunch times.

Throughout the play of mini-games, “interactive” prompts from
other employees as well as other games may interrupt the flow of a
current game. Meeting mini-games, comments from fellow workers,
email messages, and instant messages will in some cases distract a
player. If a player has a significant other or children, then additional
mini-games or interruptions may occur, resulting in fewer skill-level
experience points. Over time this loss of points may result in lower
earnings or fewer advancement opportunities.

Players may also be dependent upon the completion of a task by
another player. They then have the opportunity to send an IM to that
player to check on the progress of the work. These messages will later
show up on the screen of the other player in the form of “interactive”
prompts. However, these same prompts can distract or affect the
work of the other player being done. They are designed to be a
double-edged sword.

Based upon the “amount of time spent at work,” effectiveness at
work, and other minimum values, players may be encouraged to
leave a company. In many cases however, these players will likely
“burn out” prior to a prompted end of employment.

Other game elements are defined by the employer and role of a
player. In some cases, the combination of particular employers,
roles, and locations may result in situations where players are
pushed more quickly toward burnout. More sustainable models may
be in place with other companies, roles, and locations. When the
game is first developed there will be several categories of employers,
though the list found in table 8.3 can be expanded in future
downloadable updates.

Table 8.3 Employer categories
Employer
type

Description

Independent
studio

Players can create an independent studio of their
own at any time. They will either have to complete all
of the tasks associated with game development, or
they will have to look for other players to join their
company. As these companies mature, they may be
approached by publishing companies or
manufacturers to do work, at which time the
classification of their studio will change. In many
cases moving from independent to contract work will
be a necessary step for getting a job with any of the
other available employers. These studios may be
sold, bought, or merged with other studios,
publishers, or manufacturers.

Third-party
studio

Several third-party companies will be created for the
game to serve as starting locations for players to
work. These will be restricted by geographic location.

First-party
studio

These studios frequently have more freedoms than
third-party studios as they have more funding
coming from a publishing or manufacturing
company. However, these companies can also exert
force over the studio during the development of a
game.

Publisher These companies will likely only be accessible to
developers with high skill sets. Players will have to
ensure that they live in the geographic locations
where these companies are, and that their skills are
such that they will be hired.

Manufacturer Similar to publishing companies, but a step higher in
difficulty for developers to gain access.

Software firm In locations where engineering game development
work may be more difficult to find, players interested
in being engineers will likely have to work for a
software firm while also doing independent game
development.

Art
production
studio

These companies only employ artists and typically
have fewer “crossover” tasks that allow developers to
work on projects that expand their skill set. However,
these employers will train artists and pay them
enough so that players have mobility if they wish to
change geographic region.

Once a studio has reached the level of third-party or higher, they
can begin “researching” tools to assist in the development of their
games. These tools must be individually researched. If a player
changes companies, these tools will not move with the player. If a
player transitions from one company to another, they may gain
access to new tools that assist in their work.

It is also possible, however, that during gameplay, if a tool is used it
may malfunction depending on how frequently it is used by
employees. The more frequently a tool is used, the more reliable it
becomes. The less used, the less reliable. This means when a tool is
first created it may actually make work more difficult. Over time
however, and with continued use the tool will begin to simplify the
work processes. Because tools cannot be shared, the testing of a tool
must be done at each individual company, so players may have to
experience the “learning curve” or “testing phase” of a new tool
several times during the course of their career. Tools may also be
purchased from a middleware company, while the cost of purchasing
a tool may be less expensive than researching a tool, the learning
curve and testing phases will still be required.

Tool access can also be restricted by geographic location and
employer type. Some middle-ware will simply be too expensive for
companies to purchase, while others are unattainable because
employers have not yet gained access the those networks that
provide them the opportunity to acquire tools or even know that
their development is useful.

Each mini-game will be divided into one of the four categories
listed in table 8.4.

Table 8.4 Mini-game categories
Game
category

Description

Engineering Engineering tasks involve an assortment of parsing
and number crunching tasks. There are also
debugging tasks, where the player must identify
previously parsed or number-crunched pieces of work
that are incorrect.

Art Art tasks require the player to create and modify
different kinds of artistic elements. This can be the
creation of wireframe models that approximate goal
images. It can be the picking of proper texture
coordinates to skin a model, or the creation of
animations for a model.

Design Design games require the user to take game content
and mechanics and solve problems with them. The
goal is to make a particular goal event occur through
the modification of on-screen objects.

Management Management work is frequently puzzle work, piecing
together disparate pieces of a system. The goal is
project completion, or task completion, or the
movement of resources from one location to another.

Different mini-games can be defined for each category. Throughout
the game, frequently players will have to engage with some games
that fall outside their realm of expertise, or they may take a job that
requires them to complete tasks outside of their area of expertise. In
these cases, games may not behave entirely as expected, in order to
simulate the accumulated expertise over time. However, if a player
continually plays and does well with particular types of games and
expands their skill levels at these games, new jobs, companies, and
tasks will become available to them.

While particular mini-games will be encountered more than once,
they will also have elements that are generated randomly when a
game starts. For this reason, players will not be solving the same
game each time. Rather, when they encounter the same game, it will

begin in a random fashion. Engineering number crunching games
will be randomly seeded in such a way that they remain re-playable.
All games will have one or more randomized elements that will it
possible to replay games.

Because players will also be presented with occasional games
outside their area of expertise, it will give each player the opportunity
to play different kinds of games. Players can increase their skills in
new areas in hopes of receiving new kinds of games. New “moves”
will be provided for players as their experience increases. For
example, an experienced artist working on a particularly difficult
model can push a button that says “basic layout” that moderately
decreases the complexity of the model they are working on. In some
cases companies will have defined special moves that assist their
employees in getting tasks completed.

“Winning” is a category that players can define on their own.
Because the game is designed to provide numerous user-defined
goals, winning can be successfully running one's own independent
studio, working at an established company, or starting a company
that is acquired and leaving the industry with a large bank account,
etc. The definition of winning is intentionally left ambiguous to
encourage players to reflect on their motivations and goals within
this open-ended system.2

World 8 Boss Fight: The Credits Roll and Bowser Lives

A game design document doesn't mean much. In the words of Erin
Hoffman, the unveiled ea_spouse turned game designer, consultant,
and game industry activist, “Your game idea actually sucks”
(Hoffman 2009). What this design document does is return to the
core systems that dominate the videogame industry. It is an
opportunity to think through those structures in an alternative
format that allows for divergent interpretations of the material. And
so, perhaps my game idea actually sucks, but it is a game based on
extensive data gathered from within the game industry. It is a game
exploring life realities rife with systems and structures that are rarely
talked about outside the yearly rant sessions at GDC and the

occasional blog post signaling that another experienced game
developer has burned out and spun out of the game industry ecology.

More than an attempt to actually create a game, this structure
provides a commentary on the state of the videogame industry as it
currently stands in a way that allows engagement and interactivity in
ways that a standard text wouldn't. The goals available in the game,
one of which a player must adopt—either the creation of their own
studios, console manufacturing companies, or the amassing of
money—is precisely the narration that I would encourage developers
to defy, to play differently. And perhaps seeing such limited options
on a menu will incite them to do that.

It is my hope that this account also encourages discussion around
certain aspects of the videogame industry, like the artificial
construction of restrictions that prevent access from developers in
the United States and other countries. I believe it also makes
apparent that features like “crunch” and a culture of overtime are not
only undesirable for the game industry, but are the product of a
particular construction and imagination of the game industry. They
are certainly not an inevitability. I also hope that this game
document encourages developers to appreciate the value of
experience and expertise, for both are crucial to the future success
and stability of the videogame industry. The continued
hemorrhaging of talented hardworking individuals and the lack of
collaboration that results from an environment demanding secrecy
are problematic for the industry's longevity and growth.

Perhaps more than any other aspect of the game industry, the tools
of game development have changed since I first undertook this
research. It is important to note that console development remains
largely a dark art, characterized by custom asset pipelines through
which a game's art assets are processed for use in the game's engine.
Custom build scripts and compilers must be used and configured to
work with software engineer's preferred integrated development
environments (IDE). Custom scripting languages must be integrated
to each of those systems. Various middleware software, which
simplifies or implements aspects of a game (i.e., physics or audio)
must be combined with the various other systems that allow the
process to function. This entire process is laborious in ways and for
reasons that are far reaching (O’Donnell 2011b).3 New upstart
production tools like Unity (Unity Technologies, 2005) and game

developer's increasing interest in mobile platforms have pressured
even the most dominant “big game” engines, like the Unreal Engine.

That isn't to say that tools haven't progressed; they most certainly
have. Systems like Scratch (MIT Media Lab, 2006), which offer
integrated editing systems, limited models, and integrated remixing
are linked strictly to their online platform. The amount of
customization that can be performed with tools like Gamestar
Mechanic (E-Line Media, 2010), another online system like Scratch
that offers game models for users, is still limited. Even now, software
packages like GameMaker (YoYo Games, 1999), GameSalad Creator
(GameSalad, 2009), and Unity—game engines targeted at similar
demographics—do not offer the kinds of integrated and highly
platform specific editors that one would expect given the age of the
industry. Each engine relies heavily on external tools used to create
the content seen in the game. These software packages also often
bear the scarlet mark of “hobbyist” development tools, not those of
“real” game developers. Further, with the exception of Unity, none of
those systems can be used to author games on modern game
consoles.

Perhaps more than any other single technology, Unity has altered
the shape and terrain of game development tools. Built as a largely
platform-agnostic set of tools, Unity's asset pipeline makes it
particularly interesting as a game development tool. Pipelines, as I
discuss in this text, are one of the most ambiguous and least
discussed aspects of game development. By making the asset pipeline
a central element of the engine, rather than an afterthought or add-
on, Unity simplified one of the most difficult parts of game
development, simply getting things into the game.

At the same time, Unity's subsequent development clearly
demonstrates a new interest in the core game industry, which is
more indicative of the Unreal Engine, rather than in the hobbyist and
independent developers that they first courted. Recent additions to
the engine indicate a growing interest from mainstream “AAA” game
developers, including the largest players in the game industry.
Nintendo's latest console, the Wii U, includes as part of their
Development Kits (DevKits) a license for Unity Pro. Yet, the
gatekeeping to those platforms remains largely in place.

In 2012, many game developers cite the crowd-funding site
Kickstarter as a fundamental game changer in the world of game

development. I think that overstates the importance of upfront
money for making games. Kickstarter is certainly one of many
changes that have shifted the balance of power, yet it owes its
leverage to the other changes that have made crowd funding a viable
option.

On March 2, 2011, at the Game Developers Conference in San
Francisco, Satoru Iwata, the chief executive officer of Nintendo took
the stage for his keynote discussing the changing world of game
development and distribution. Most surprising about his
presentation was that, despite a slide including the title-screen of
Angry Birds, a runaway independent game title for Apple's iOS from
an independent game development studio Rovio, he never
mentioned Apple and iOS (the underlying operating system of the
iPad/iPhone/iPod Touch). At precisely the same time, across the
street, also at the Moscone Center, the late Steve Jobs announced
Apple's iPad 2, which included a significantly faster graphics
processor aimed specifically at bringing bigger games to their
platform. In that convergence, something happened, but what?
Nintendo lost credibility; the future of the industry was laid bare; a
secret shook itself loose; something. Nintendo was blind and self-
protective, and Apple was changing things in ways indicative of
broader changes throughout the world of game development.

The biggest shift in the game industry has been the rise of digital
distribution platforms, like Apple's iOS “App Store” and Valve's
Steam system. These breaks from the old models of physical
distribution and the availability of new platforms for games have
truly altered the landscape of the game industry. While Apple has
been constantly critiqued for the “walled garden” of the App Store,
the game industry is quite used to walled gardens, and Apple's walls
are much shorter than those found in the game industry. At the same
moment that Nintendo was expecting independent game developers
to pay $2,500 for a Nintendo DS development kit, Apple was
charging only $99 for access to their developer network. Even large
game publishing companies have started making games for these
platforms, which were initially dominated by individuals or small
teams of game developers. The results of which are indeterminate? Is
there a need for spaces free of those vested interests?

The rise of independent game development has benefited from
these growing distribution systems as well as providing a means for

paying for games in new ways. Digital distribution was certainly an
option in 2008 but it wasn't nearly as respectable for games, and
convincing users to pay was much more difficult. Even independent
game development has changed from the worlds of hobbyist game
developers to professionals who have left the industry to strike out
own their own because of the new distribution and financial
channels.

New economic models for game development have emerged, but
have yet to be proven long-term. “Freemium” games that are free to
play but encourage the player to pay for additional game content,
and “social” games that leverage social networks like Facebook
generate revenue in ways wildly different from the standard console-
game model. Perhaps more surprising and controversial than social
games has been the rise and fall of “gamification” and an intense
interest to draw on the kind of engagement that many games bring
for more “productive” ends. Funding has shifted in important ways
that go beyond consumer and advertising dollars, as public and
private foundation and grant dollars pour into this shifting industry.

Noting all these funding changes, then, we can agree that focusing
solely on Kickstarter has been a bit of a distraction. Questions that
focus on whether this new funding mechanism has “broken the game
industry” miss the point. Steam, the Apple App Store, and Google's
Play system made ventures on Kickstarter possible by opening up the
ways people think about games, play games, and pay for games. The
game industry now finds itself in an extreme moment of transition.

As such, this is not a climatic boss fight wherein the enemy is slain
and a clear and decisive victory is gained. Both life and creative
collaborative practice are a bit too ambiguous for that. Rather, this
boss fight is the culmination of one account of one aspect of
videogame development practice. It is an examination of much of the
center of the game industry. There are indeed other possible avenues
that developers can travel in the creation of their collaborative
works. How does a different path shift the underlying structures?
There are numerous developers experimenting with modifying how
games are created, marketed, and distributed. What do these new
experimental game mechanics mean for the rest of the industry?
How does it fit back together? Like a game, these experimental
systems are unpredictable and their highly interconnected character
makes deterministic outcomes difficult.

And finally, what implications can be taken from this game and
brought to bear on other aspects of work and new media production?
What can be learned from the everyday practices of videogame
developers? A great deal, including new ways to talk about and
examine structures of domination and control. This boss fight is
about the tension that remains between game development practices
in the context of the global game industry. Worlds 2 and 3 examine
the highly experimental nature of game development practice,
particularly during the early phases of game development. Worlds 4
and 5 examined how those systems put in place to support
development practices that unfold during game production begin to
strain under the weight of production practices and external
demands. Rapidly, game development practice moves from
experimental and playful to mad scrambling mayhem. Worlds 6 and
7 then draw connections from those local worlds of game developers
to the broader context of the game industry. World 8 brought all of
those together as a kind of game design document speaking to their
interconnections.

When I say “tension,” between development practice and the
industry, what I really mean is that the game industry survives, even
thrives, in spite of itself. Rank-and-file game developers bear the
brunt of the labor that comes with a slew of cultural and political-
economic demands. The culture of secrecy that dominates the game
industry is both top-down—non-disclosure agreements, closed
licensing structures, proprietary hardware and software—and
bottom-up—”my idea is super secret and super awesome,” “nobody
has ever thought of a space-based real physics resource management
game this game is going to be awesome,” “if I talk about this,
someone is going to steal it.” Compared to other “industries,” the
game industry is surrounded by secrecy about the daily practices of
what and how games get created. This has led to a general lack of
respect for the complexity and creativity of what may be dismissed
by many as a toy on a shelf. Games have emerged as an important
cultural form, yet game development is still often imagined to be
something it isn't and the game industry has itself to blame for this.

In other spaces of cultural production, there are numerous
standard tools and practices that enable greater modes of creativity.
People are not restricted from talking about what they do or how
they do it. The game industry's connection to software development

practice ought to indicate a thriving connection between game
development and the “open source software” movement. While that
is truer for independent game development, it is largely not the case
for much of the game industry. Simply recall the story from World 6
of TinyXML, ported by numerous developers to the same platform
because of the NDAs that rule the Nintendo DS. While game studios
may draw on Open Source Software, they can often not contribute
their changes back to the community, and thus each studio replicates
the work of others. There are a growing number of exceptions to the
rule of secrecy at blogs like #AltDevBlogADay (.com), yet the fact
remains that frank discussion of day-to-day game development
practice is difficult to find. Game developers have no sense of
professional identity, because so many feel so disconnected from one
another.

Finally, game developers are not vocal enough about the absurd
behavior of the companies for which they work and the policies,
lobbying, and government intervention they seek. This is your
industry. You make the games. Speak up. Nintendo, Microsoft, and
Sony cannot revoke all of your licenses. They depend on your work
for their survival. Clearly, the emergence of Apple's iOS devices and
App Store, based on a walled but more open garden clearly indicate
that there are other approaches to licensing and distribution.
Developers’ selections of platforms to support are as much a vote for
the kinds of policies that they agree with. Vote with your labor. Go
make great games.

Notes

World 1

1 I recorded most of my field notes digitally, in text files on my
laptop. The majority of these files were created with
TextWrangler, a freely available text editor for Mac OS X. I hand
coded my notes, and inserted them into the bibliographic software
Bookends that I used as both a means of data storage and analysis
in grouping coded entries together. Interviews were also recorded
digitally on an iPod via a Griffin Microphone adapter. I
transcribed my interviews using ExpressScribe for Mac OS X and
a USB transcription foot-pedal. Interviews were then coded using
TextWrangler and entered into Bookends similarly to my field
notes. All of these files were consolidated on my computer and
encrypted using Apple's Mac OS X FileVault functionality, which
encrypted the data using the AES-128bit encryption algorithm.
Four primary codes emerged from these activities, “work/play,”
“interactivity,” “networks of access,” and “corporatization of the
state.” Each of these primary categories was also broken down
into subcodes. I coded and recoded the existing literature,
interviews, and field notes in Bookends. Using the “Smartgroup”
categories in Bookends, I was able to create categories that
automatically updated themselves with elements with particular
codes—“work/play AND secrecy” for example. By selecting a
Smartgroup, I was able to see all the material I had associated
with my codes. This was used to organize the material contained
in the text.

2 Later VV was contracted to produce a version of the game for
Nintendo's Game Boy Advance (GBA) system.

3 I have written at length how this complex interplay of interests,
combined with digital format “lock-in” makes many of the
promises of digital “convergence” seem to disappear. These issues
are critical in future discussions surrounding “transmedia,”
though the realities of what that means for content producers has
been under explored (O’Donnell, 2011).

4 This particular aspect of globalization is one on which I presented
and published early in my graduate academic career, looking at
Wired Magazine's construction of Free/Libre and Open Source
Software (FLOSS) and Indian new economy laborers (O’Donnell
2004a).

5 This material is based on work supported by the National Science
Foundation under Grant No. 0620903. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of
the National Science Foundation (NSF). That research was
conducted under the guidelines of Rensselaer Polytechnic
Institute's Institutional Review Board (IRB) approval #723.

6 A failing of this text, as I see it, is a lack of insight into why,
despite a changing gender demographic among the players of
games (Datamonitor 2004; Datamonitor 2005; ESA 2005;
Datamonitor 2007), the demographics of game developers have
remained relatively static and continue to be significantly lower
than those who play games (Gourdin 2005). This failing is
partially my own. A lack of women informants at primary field
sites is a cop-out. Those informants are certainly present in the
text, but I should have pressed the issue. The majority of the US
studios visited as part of this research exhibited demographics
similar to those of the rest of the country. As such, women
developers are clearly included in this account, but most did not
reflect on their gendered position. Many women developers talked
about it as something they had become used to, in the process of
pursuing game development work. In other cases, they were
actively uninterested in talking about it, for it marked their gender

in ways they were uncomfortable with. Perhaps I focused too
myopically on specific corporate sites throughout the research. I
think it is critical that future research of women game developers
should be undertaken, informed by this work, to better
understand what compels and constrains their progress in the
industry. Certainly, recent controversies, like those on Twitter
surrounding #1reasonwhy, #1reasontobe or the vitriolic
comments that appear when women developers are featured on
trade press websites, are representative of the underlying issue.

7 While this text does not examine game developers from Blizzard
(creator of WoW), there are likely more parallels between this text
and Blizzard's working conditions than those of Linden Labs
(which created Second Life).

8 While I draw out conceptually what I mean by the state in World
7, the foundation is located in a Deleuzian notion of the state
apparatus based on the “abstract machine of overcoding” that it
“tends increasingly to identify with the abstract machine it
effectuates” (Deleuze and Guattari 1987, 223). So one can, for the
time being, substitute “the state apparatus” for “the state” in my
writing. While I largely conceptualize of it in a Gramscian sense of
“coercion” and “consent” (Simon 2001, 24–32), I am particularly
interested in the moment where the “perogative” power of the
state is mobilized. I am interested in the “‘legitimate’ arbitrary
aspect” or “extralegal, adventurous, violent” aspects of the state
(Brown 1995, 186); the moment when consent transitions to
coercion.

9 Greg Costikyan is an interesting figure in the videogame industry,
who began as a board game developer and has worked on
numerous videogame projects. He has also been a caustic and
amusing commentator on the videogame industry. See his website
at http://www.costik.com.

10 World 5 discusses further how passion lends the rant some of its
credibility.

11 The name itself, “Zero Punctuation,” is indicative of the kind of
delivery rants take. When in the heat of passion, the ranter can

http://www.costik.com/

hardly muster the effort needed to breathe. If the ranter did not
care, he or she could not garner the exhaustive energy needed for
delivering an impassioned speech desperate for change to the
videogame industry.

12 The first essay I ever produced for publication while in graduate
school, was an essay desperate for finding new kinds of rhetorics
and metaphors by which to frame critical endeavors that did not
appeal to the kind of militaristic analogies that dominate much of
science and technology studies (O’Donnell 2004b).

13 The game industry had over $22 billion dollars in sales in 2008
and $19.6 billion in 2009 (Remo 2010; ESA 2009). These figures
do not include numbers for videogame rentals, the sale of used
videogames, or money made from the licensing of videogame
intellectual properties (IP) to movie companies.

World 2

1 And so, too, is it important for researchers interested in studying
the industry to be acquainted with these languages. Without this
knowledge it would have been impossible to gain access to my
initial field site. It was actually a conversation about game
development and project planning at a party that began the
friendship that provided me the opportunity to do pilot research
at a game studio.

2 Even the few game developers who did not consider themselves
gamers prior to working in the game industry have at least one of
the latest console systems. They try to play, at least casually, the
latest and most popular game titles.

3 On the Nintendo Entertainment System's controller, this
sequence was up, up, down, down, left, right, left, right (on the
directional pad) and the buttons “B” then “A” followed by pressing
the “Start” button.

4 A game mechanic is the underlying “game” which is then
presented on a screen. Think of it as the rule that higher cards
beat lower cards, and equal cards mean war in the card game War.

5 Spy vs. Spy was originally a Mad Magazine comic strip, which
was later inspiration for a videogame on several different console
game platforms. It is a game with a long history of its own. The
mechanic, which interested my informants, was the idea that
rather than direct combat (i.e., shooting or punching your
opponent), users could set traps for one another.

6 It's possible that this demand for at least a kind of “gamer”
identity limits the accessibility of game design as a profession.
Certainly, no one would question that knowledge of games is not
crucial for game designers. Yet, the identification of one's self as
“gamer,” may limit the number of people interested in pursuing it
as a career. Certainly there is no similar demand put on those
interested in making films. They may care for and be very
knowledgeable of the world of filmmaking. Yet, they would not
likely call themselves “filmies” or “filmers.”

7 The idea that “design is thus best seen as a process of
communication, negotiation, and consensus-building,”
(Bucciarelli and Kuhn 1997, 214) has been useful in my research,
especially in the context of the videogame industry because it
involves so much communication and negotiation. The idea of
design as a consensus-building project also dramatically
complicates the idea that the designers are solely responsible for
the final game, which may have been shaped by dozens of other
forces.

8 Time spent in front of the screen can be spent working on
creating models based off of drawings, taking existing models and
modifying them for new purposes, changing textures or the ways
in which a texture is distributed over a model, or the way a model
has been animated. Computer time is also spent dealing with IMs,
email, web browsing, all work (related and unrelated).

9 “Bones” are the underlying elements that allow 3D models to be
animated. Similar, conceptually, to the bones of a person, these

objects are used to animate a 3D model and control how it is
capable of being moved. However, the “mesh” of the model, whose
motion is dictated by the bones, is not governed by some
mysterious method, artists must ensure that the motion looks
adequate and may have to use fewer virtual bones than, perhaps,
the “real thing” would contain.

World 3

1 “Golden master” refers to the state of a game when it is ready to
be shipped to the manufacturing company for mass production.

2 In part I see the lack of change in how disciplines work together
as connected with the continued separation of disciplines among
game developers. It matters which group you are working with.
Are you an engineer, designer, artist, or manager? The setting off
of groups from other groups creates a “sort of Mafia,” or “inbred
group of buddies,” who “do things the way the want” (Fortun
2001, 116). This exacerbates the differences and separations
between groups, which matters when they are constantly
interacting and working within and among the elements that
another group creates.

3 “Collision data” being stored separately from the model geometry
of a level is one of the many contextual game development
practices that are never shared more broadly. Storing collision
data separately allows for faster or “cheaper” computation of
collision detection. Rather than using the level geometry, simpler
objects, such as a sphere or box can represent more complex
objects.

4 I must admit my predilection toward the tools engineer, having
been one when I was a game developer. I will attempt to moderate
my awe of this position when possible. I suppose it only makes
sense, given that my transition to this role went along with a
decision to pursue graduate studies that led to this work.

5 As long as I'm making confessions, I should probably admit my
residual frustration with console manufacturers as well. This
frustration was really driven home as I worked with my Chennai,
India-based informants on a game that was later canceled and the
studio closed. I wondered, why they were making similar missteps
that I had made six years earlier in my work in the industry? What
kept me from sharing that information? The answer is quite
simple there: NDAs and proprietary hardware.

6 The term “management” is used to reference these as a collective
game development endeavor.

7 This seems to contradict the idea that work though, “increasingly
individualized… is disaggregated in its performance, and
reintegrated in its outcome through a multiplicity of
interconnected tasks in different sites, ushering in a new division
of labor based on the attributes/capacities of each worker rather
than on the organization of the task” (Castells 1998, 502).
Furthermore, based on my experiences, the unfortunate side
effect of this has been increased time at work to make up for the
re-socialized workplace. This further contradicts the idea that
“skilled labor is required to manage its own time in a flexible
manner, sometimes adding more work time, at other times
adjusting to flexible schedules, in some instances reducing
working hours, and thus pay” (Castells 1998, 468). Such an
arrangement would seem an outrageous luxury in game
development.

World 4

1 US-based software companies have assumed that emerging
economies would automatically adopt the same tools as their
predecessors, no matter the cost. This complicates the matter
significantly for Indian studios, who frequently cannot afford the
combined price tag of Max, Visual Studio, various Adobe
products, and Perforce. This frequently leaves them using less
expensive, though more difficult methods such as shared folders

or SVN. The need for simplified tools has also provided
entrepreneurial opportunities for Indian development firms, for
some studios have developed their own systems for solutions with
an eye toward commoditizing them. The extremely high cost of
software combined with global differentials in money markets has
driven foreign companies to develop their own technologies,
several of which may eventually compete with those of US
companies.

2 This is in contrast with engineers who, when necessary, can work
simultaneously and “merge” their efforts later.

3 The “mangle” of game development (Pickering 1995, 7) is in part
a product of the dance with hardware systems that may or may
not work as advertised. This is further complicated by “the world.
. . . continually doing things” (Pickering 1995, 7–8) and these
things, such as electrons moving through circuitry, media devices
spinning up, power flowing out of a batter, are frequently
mediated or “threaded” through technological devices (Pickering
1995, 7–8). The situation is even more complicated if your devices
are highly unpredictable and not necessarily documented.

4 This “creative ambiguous process” or the necessity of “intellectual
flexibility” is empowering for many, but also places the onus of
production on the individual. If unable to produce, then they are
assumed simply unskilled or just not smart enough. In many
cases, there is a complex relationship between the context of work
being done and those forces that enable or constrain it. While the
“desired results or functions are what are demanded of workers,
the contextual mechanisms, by which output is reached, while
often dictated, frequently has little to do with the actual means by
which things occur” (English-Lueck and Saveri 2001, 8). Workers
are often judged based upon dictated demands rather than on the
contextualized mechanisms necessary to actually do the work. Put
another way, sometimes it really isn't your fault that things keep
exploding, but rather the set of moving targets that encourages
those catastrophes.

5 Though perhaps far removed from a chemical plant in Bhopal,
the continued systematic failure of breakdown of game

development practices seems to me to indicate a problem more
systemic than user error (Fortun 2001, 123–131). The
“modifications” and ad hoc modifications of complex technical
systems can have unforeseen results, something game developers
can certainly understand. Furthermore, as the complexity or
coupling of a system increases, the opportunity for “catastrophe”
or “system accident” increases rapidly (Perrow 1999, 62–100).

6 The connection to Development Kits or DevKits, explained in
more detail in World 6, is an important one. These complex
technological systems are supported by complex software systems
and custom processes must couple together to ensure the overall
health of the build.

7 What game developers need just as much as “interactive” systems
is better processes for pursuing their assemblages. Much like
other science industries, game development is “such a dense,
intricate, and volatile assemblage of practices, metaphors,
articulations, and other kludged-together elements of nature,
culture, and power, they have to be muddled through.” But more
important, this process must remain “cautious, nimble, and
respectful, since they deal with explosive matter” (Fortun and
Bernstein 1998, 147–148).

World 5

1 In her research on open source software developers, Coleman
describes the deep hack mode as “a cavernous state of mental and
often physical isolation in which one reaches such a pure state of
concentration that basic biological drives like sleeping and eating
are put on hold during the hours or days that pass” (Coleman
2001, 233). Deep hack mode is much like a kind of “flow” state
(Csikszentmihalyi 2008) that many game players find themselves
in when immersed in a play experience.

2 The full video can be viewed at
https://www.youtube.com/watch?v=LkCNJRfSZBU.

https://www.youtube.com/watch?v=LkCNJRfSZBU

3 The “32.33 percent repeating” chance of survival actually comes
from the dialogue of the Jenkins video clip. Because the clip was
actually staged and meant to be humorous, I can only surmise that
the “0.33 percent repeating” component was meant as a joke to
poke fun at WoW players or gamer “nerds” more generally.

4 Game developers certainly “muddle through” the “socially
complicated as well as intellectually complex” process of creating
their technological systems (Fortun and Bernstein 1998, x–xi).
What I think differentiates the game industry is that it as of yet
has no systematic system for reporting, publicizing, or thinking
more broadly about that process of muddling. While tension
remains between talking about and documenting the process of
scientific production, the difference in the game industry is that
there is no broader discussion, not even an opportunity for
tension.

5 Session listings were previously available, online, though can now
be searched as part of the GDC “vault” project
(www.gdcvault.com). In 2007, five talks with agile in their title
were presented, six in 2008, one in 2009, and 11 in 2010 (GDC
2007; GDC 2008; GDC 2009; GDC 2010). More contained the
word “process” or “management” with often the focus of these
talks examining art asset production pipelines and talent pool
management.

6 Latour writes about “technical skill” as applying to those “with a
unique ability, a knack, a gift, and also to the ability to make
themselves indispensable, to occupy privileged though inferior
positions, which might be called . . . obligatory passage points”
(Latour 1999, 191). Though I do not think this concept of
giftedness is entirely applicable to game development, it
encourages critical thinking about the work, in which concepts
like “passion,” “skill,” and “talent,” seem to imply innate
capacities.

7 An infamous example can be found at
http://www.collegehumor.com/video/949720/tighten-up-the-
graphics.

http://www.gdcvault.com/
http://www.collegehumor.com/video/949720/tighten-up-the-graphics

8 This is in direct contradiction of what many refer to as a “mature”
industry. While I would agree with an assessment of the industry
as “structured” (Williams 2002, 51), maturity or stability has not
been reached in the game development industry. What I think can
be mistaken for “maturity” is rather what the same author
identifies as the “entry barrier created by an existing dominant
network” (Williams 2002, 51).

9 Nearly a year and a half after the publication of the ea_spouse
blog, Erin Hoffman, now a designer in the videogame industry,
made her identity public in an online interview (Wong 2006).
During the course of my research, she began working with a game
studio that spun off from my primary field site. She continues to
write for online game development and game-related publications
and more recently has released her first novel as a fantasy writer.

World 6

1 Several texts have mentioned the existence of the 10NES chip, but
none of these texts ever offered any proof of the existence of the
device (Clapes 1993; Sheff 1993). Despite this, others have been
willing to use these reports as facts, without inquiry into the
validity of these claims or the functionality of the device (Kline et
al. 2005).

2 While I think the situation is more complicated, as this world and
much of the text would seem to indicate, I do believe that viewing
code/technology as “legislation” as well as “speech” is a
productive tool for thinking about technology (Lessig 1999).
Taken to its extreme however, I think it assumes too much about
the deterministic character of technology.

3 There are, of course, examples of companies that managed to
circumvent Nintendo's lockout mechanisms. As near as I can tell
based on unscientific searches, 87 unlicensed titles have been
released, compared with 670 licensed titles (Nintendo 2003).

4 As the following court case selection indicates, Atari's resulting
silicon lock pick was called the “rabbit program.” Though I use the
term “harebrained,” I do so with tongue in cheek, the kind of
ironic wordplay that would not be uncommon in game
development companies. I do not intend it simply to mean
“stupid.”

5 I actually construct this in contradiction to accounts of
neoliberalism as a hollowing out of the state, or the “subjugation
of political and social life to a set of processes termed ‘market
forces’” (Farmer 2005, 5) or the advocacy of “a competition-
driven market model” (Farmer 2005). Rather, the codifying of
corporate power seems a mobilization of the state to perform
duties that corporations operating in a market cannot do. In many
respects it is making the move for both de-regulation and
increased regulation of political and social life.

6 Or in a Deleuzian way, “This whole chain and web of power is
immersed in a world of mutant flows that eludes them. It is
precisely its impotence that makes power so dangerous. The man
of power will always want to stop the lines of flight, and to this
end to trap and stabilize the mutation machine in the overcoding
machine” (Deleuze and Guattari 1987, 229). This is precisely why
control must be maintained over the realm of the producer. Left to
its own devices it will move in directions that may make SEC
filings more difficult, but perhaps more beneficial to new markets
and new producers and competitors.

7 The “DevKit” is distinct from “development kits” as defined by
some authors (Postigo 2003, 603). There is a slippery and
important language to keep in mind. SDKs or software
development kits are distinctly different, though intertwined with
DevKits. DevKits typically have accompanying SDKs. However, it
is possible for companies to release SDKs without having DevKits.
The hardware of the DevKit is in part what distinguishes it from
an SDK, as does access to documentation and other resources like
online discussion forums.

8 Also strikingly uncanny are current “trusted computing”
endeavors by PC and software companies that I see making an

appeal to the 10NES's pattern of game development where you
can be much more sure that a user has paid for what they are
playing: game, song or otherwise. “The ‘trusted’ part of this
system is that this device obeys rules established by the copyright
owner when they first make the song available. . . . The rhetoric is
classic command-and-control, a far cry from the delicate balance
of copyright” (Gillespie 2004, 241).

9 Because of the peculiarities of videogame consoles, game
developers must continually re-create common software that,
even if ported to a console cannot be released back to the
community.

World 7

1 A console manufacturer will not distribute an unrated game, even
if the producer has managed to bypass the production control
mechanisms implemented in the console. For such a product, if
distributed, subjects creators to criminal consequences under the
jurisdiction of the Digital Millennium Copyright Act (DMCA).

2 Since the controversy surrounding the sharing of music files on
Napster, music files have dominated the public awareness of
where DRM and the DMCA impact their lives (Gillespie 2007).
Unfortunately the impact is far broader, and much of the
emphasis remains on the technology creators rather than the
copyright holders who are most often responsible for making the
digital lock-down demands in the first place.

3 While I treat the distinction between hackers and crackers as
relatively clear, it is actually a rather complex division, even
among hackers (Coleman 2005, 53–54). In part I do so as a
reaction to the alternatively muddy conflation, which is frequently
tossed about in which all hackers are bad. This erring on the side
of upstanding hacking activity is done with the reasonable
assumption that not every hacker has criminal intent.

4 While it is still possible that some day in the future this project
will be dismantled by Nintendo, at this point it seems unlikely.
The project can currently be found at
http://sourceforge.net/projects/vba, with tools available for most
PC platforms, including Windows, Mac OS X, and Linux.

World 8

1 Oddly, a game industry game already exists. Game Dev Story was
released for Apple's iOS platform in October of 2010. This
resource management and strategy game challenges players to
manage a game development studio. The game takes small jabs at
numerous aspects of the game industry, from console
manufacturers to publishers and game titles. Of particular note is
that fact that the focus remains at the studio level even as
developers level up and improve as they remain with your
company. The game developers themselves disappear into the
background, functioning as yet another resource to be managed.
And the game reinforces this perspective; the procedural rhetoric
of the game marginalizes the labor of game developers, yet outside
the console, game developers are the culture and creative
collaborative community that makes the game industry function
in Game Dev Story, rather than forgettable resources. In contrast,
the game presented here in World 8 focuses on the individuals
working within the industry.

2 Experienced game developers will, of course, now shudder,
“That's not a design document! You haven't even figured out what
all those puzzles are going to be!” Yes, you are right. The engineers
will be shaking their heads and mumbling something about, “How
are you going to specify those puzzles and their win/fail states?”
Artists will be worried about the lack of concept art and a real
visual direction. But those developers also know that a complete
design for such a game would be a text significantly longer than
appropriate for a single chapter of this book. I take your critique
seriously, however.

http://sourceforge.net/projects/vba

3 I have written at length about the role that game development
tools have in the design and creation of videogames. This is done
through the lens of a series of patents by Nintendo that outlined
the technological foundations for a truly co-creative production
platform for games, affectionately dubbed Mario Factory
(O’Donnell 2013).

Glossary

2D (Two-dimensional). Flat graphics meant to be viewed like an
image or flat text.

3D (Three-dimensional). Graphics meant to be viewed within a
three-dimensional space.

AAA (Triple A). Drawn from the sporting world, where AAA was
the designation of the “Big Leagues.” Imported into the game
industry to designate those working on “big” games.

AI (Artificial intelligence). Logic provided to interactive
elements within a game not under human control.

Agile. A software development methodology/ideology.

Assets. The art (models, textures, audio, etc.) information that a
game engine “reads” in, in order to present a game to the user.

Console (Debug). A text-based command system for adjusting the
underlying state of a game's engine. The debug console is most
frequently removed or hidden when a game is shipped.

Console (Game). A self-contained computing system typically
connected to a television. Game consoles frequently have custom
hardware, software, and input devices to differentiate themselves
from their competitors.

Data. The “design” data, which can range from scripts to structured
information like XML, which is used by the engine to further define
the game.

DevKits (Development Kits). The hardware and software of a
game console development kit. Necessary to develop a game for a

given piece of console hardware.

DRM (Digital Rights Management). Copy protection
mechanism.

DS (Nintendo DS). A handheld game console manufactured by
Nintendo.

Engine. The underlying software of a game. The engine is not a
game; it is more basic than that. It provides a platform, to which
more code, data, and art assets are produced to make a game.

ESA (Entertainment Software Association). Body that lobbies
on the part of large game studios, publishers, and manufacturers.

ESRB (Entertainment Software Rating Board). Body that
rates, for a fee, games for retail sale in the United States.

F/LOSS (Free/Libre Open Source Software). Software which
can be freely licensed for use and which the underlying source code is
available to the licensee.

GameCube.. A game console manufactured by Nintendo.

GDC (Game Developers Conference). The annual conference,
typically held in San Francisco, to which game developers who are
able to flock to each year.

HUD (Heads-up display). The user-interfaces typically always
visible in a game. These often provide information regarding the
current state of a game, ranging from location to health or points.

ICE (Immigration and Customs Enforcement). U.S. Agency
that has been involved with raids related to MOD chips.

IDE (Integrated Development Environment). The software
tools used by programmers to edit, debug, and compile code.

IGDA (International Game Developers Association). A
volunteer-based professional organization that works to represent
the interests of game developers more broadly.

ISP (Internet service provider). Comcast, Verizon, and AT&T
are examples of ISPs.

Konami Code. A special sequence of moves on a game-pad
controller that provided the player with extra lives in the game
Contra on the NES.

Max (3D Studio Max). A professional 3D modeling, rigging, and
animation application developed by Autodesk.

Maya (Maya). A professional 3D modeling, rigging, and animation
application developed by Autodesk.

Middleware. Software that does not itself constitute a game, but
that can be used to ease the development time or provide
functionality to a game. A game engine, a physics engine, and a
sound engine are examples.

MOD (Modification). A stand-alone modification to a game that
can be shared or redistributed that changes the underlying
functionality or behavior of a game engine.

NDA (Non-disclosure agreement). A legal document requiring
one or more parties to not disclose secret information to others.
What precisely is secret and who others is up for grabs.

NES (Nintendo Entertainment System). A game console
released by Nintendo in the United States in 1984.

Polygons. The triangles or “faces” that make up a 3D model.

Preproduction. The early phases of game development, spent
trying to “find” the game.

Production. The phase of game development where art and design
data production is dramatically increased.

Programming languages. These can be either “compiled”
languages like C or C++ as well as “interpreted” scripting languages
like Lua, Python, or others.

PSP (Playstation Portable). A game console made by Sony
Computer Entertainment.

Q/A (Quality assurance). The testing and usability component of
game development.

QoL (Quality of life). The “well-being” of people in a given
context.

Scrum. An element of or style of Agile development.

SDK (Software development kit). The software associated with
either a development environment or platform.

SM3 (Spiderman 3). A movie and a videogame for a variety of
game consoles. The primary project observed throughout this text.

SVN (Subversion). A VCS.

Textures. The visual skins found on 3D models.

VCS (Version control system). Not to be confused with the
Atari VCS, an early game console. The VCS in this text is a means for
sharing and “versioning” or monitoring the revisions to a file.

VS (Vertical slice). The prototype phase of game development
where a “slice,” as in a slice of cake, of a game's visuals and gameplay
are produced in order to demonstrate playability and feasibility.

VV (Vicarious Visions). The game development studio that for
one reason or another was willing to let this anthropologist spend
nearly three and a half years within its halls.

Wii (Nintendo Wii). A game console made by Nintendo.

WoW (World of Warcraft). A massively multiplayer online
(MMO) world developed by Blizzard.

Xbox (Microsoft Xbox). A game console made by Microsoft.

Xbox 360 or 360 (Microsoft Xbox 360). A game console made
by Microsoft.

XML (Extensible Markup Language). A structured markup
language, like HTML, which is frequently used to organize data
within games or other software packages.

References

Adorno, Theodor W., and Max Horkheimer. 1976. Dialectic of
Enlightenment. Translated by John Cumming. New York:
Continuum International Publishing Group.
Alexander, Leigh. 2010. “Analysis: Is the Game Industry a Happy
Place?” Gamasutra. Accessed July 28, 2010.
http://www.gamasutra.com/view/news/29292/Analysis_Is_The_G
ame_Industry_A_Happy_Place.php.
Androvich, Mark. 2007. “Sony Threatens to Pursue Legal Action
against PS3 Hackers.” GamesIndustry International. Accessed July
20, 2007.
http://web.archive.org/web/20070706161709/http://www.gamesin
dustry.biz/content_page.php?aid=25750.
Appadurai, Arjun. 1996. Modernity at Large. Minneapolis:
University of Minnesota Press.
Atari, Tengen, and Nintendo. 1992. Atari Games Corp. and Tengen,
Inc. v. Nintendo of America Inc. and Nintendo Co., Ltd., 975 F.2d,
832.
Baba, Marietta L. 2003. “Working Knowledge Goes Global:
Knowledge Sharing and Performance in a Globally Distributed
Team.” Anthropology of Work Review 24 (1–2): 19–29.
Barley, Stephen R. 1996. “Technicians in the Workplace:
Ethnographic Evidence for Bringing Work into Organizational
Studies.” Administrative Science Quarterly 41 (3): 404–441.
Barley, Stephen R., and Julian E. Orr. 1997a. Between Craft and
Science: Technical Work in U.S. Settings. Ithaca, NY: Cornell
University Press.

http://www.gamasutra.com/view/news/29292/Analysis_Is_The_Game_Industry_A_Happy_Place.php
http://web.archive.org/web/20070706161709/http://www.gamesindustry.biz/content_page.php?aid=25750

Barley, Stephen R., and Julian E. Orr. 1997b. “Introduction: The
Neglected Workforce.” In Between Craft and Science: Technical
Work in U.S. Settings, ed. Stephen R. Barley and Julian E. Orr, 1–19.
Ithaca, NY: Cornell University Press.
Bates, Bob, Jason Della Rocca, Alex Dunne, John Feil, Mitzi
McGilvray, Brian Reynolds, Jesse Schell, and Kathy Schoback. 2004.
“Quality of Life Issues.” IGDA. Accessed May 20, 2014.
https://web.archive.org/web/20041119062234/http://www.igda.org
/qol/open_letter.php.
Beck, Ulrich. 2000. The Brave New World of Work. Malden, MA:
Polity Press.
Becker, Howard. 1984. Art Worlds. Berkeley: University of California
Press.
Bogost, Ian. 2006. “Persuasive Games: Wii's Revolution Is in the
Past.” CMP Serious Games Source. Accessed July 20, 2007.
http://seriousgamessource.com/features/feature_112806_wii_1.ph
p.
Bogost, Ian. 2007. Persuasive Games: The Expressive Power of
Videogames. Cambridge, MA: MIT Press.
Bogost, Ian. 2011. “‘Gamification Is Bullshit.’” The Atlantic. Accessed
August 29, 2011.
http://www.theatlantic.com/technology/archive/2011/08/gamificati
on-is-bullshit/243338.
Bonds, Scott, Jamie Briant, Dustin Clingman, Hank Howie, François
Dominic Laramée, Greg LoPiccolo, Andy Luckey, and Mike
McShaffry. 2004. Quality of Life in the Game Industry: Challenges
and Best Practices. Mount Royal, NJ: International Game
Developers Association.
Bowker, Geoffrey C., and Susan Leigh Star. 1999. Sorting Things
Out: Classification and Its Consequences. Cambridge, MA: MIT
Press.
Brooks, F. P. 1995. The Mythical Man-Month: Essays on Software
Engineering. Boston, MA: Addison-Wesley.
Brown, Wendy. 1995. States of Injury: Power and Freedom in Late
Modernity. Princeton, NJ: Princeton University Press.
Bucciarelli, Louis L. 1994. Designing Engineers. Cambridge, MA:
MIT Press.
Bucciarelli, Louis L., and Sarah Kuhn. 1997. “Engineering Education
and Engineering Practice: Improving the Fit.” In Between Craft and

https://web.archive.org/web/20041119062234/http://www.igda.org/qol/open_letter.php
http://seriousgamessource.com/features/feature_112806_wii_1.php
http://www.theatlantic.com/technology/archive/2011/08/gamification-is-bullshit/243338

Science: Technical Work in U.S. Settings, edited by Stephen R.
Barley and Julian E. Orr, 210–229. Ithaca, NY: Cornell University
Press.
Burghardt, Gordon M. 2005. The Genesis of Animal Play: Testing
the Limits. Cambridge, MA: MIT Press.
Callon, Michel. 1989. “Society in the Making: The Study of
Technology as a Tool for Sociological Analysis.” In The Social
Construction of Technological Systems: New Directions in the
Sociology and History of Technology, edited by Wiebe Bijker,
Thomas P. Hughes, and Trevor Pinch, 83–106. Cambridge, MA: MIT
Press.
Carless, Simon. 2007. “Why Consoles Are Here to Stay, Yay.”
GameSetWatch. Accessed August 4, 2007.
http://www.gamesetwatch.com/2007/08/why_consoles_are_here_
to_stay.php.
Carter, Ben. 2003. “Postmortem: Lost Toys’ Battle Engine Aquila.”
Game Developer Magazine 10 (4): 50–58.
Cassell, Justine, and Henry Jenkins. 2000. From Barbie to Mortal
Kombat: Gender and Computer Games. Cambridge, MA: MIT Press.
Castells, Manuel. 1998. The Rise of the Network Society. Oxford, UK:
Blackwell Publishers.
Castronova, Edward. 2005. Synthetic Worlds: The Business and
Culture of Online Games. Chicago: University of Chicago Press.
Chaplin, Heather, and Aaron Ruby. 2005. Smartbomb: The Quest
for Art, Entertainment, and Big Bucks in the Videogame Revolution.
Chapel Hill, NC: Algonquin Books.
Chen, Brian X. 2008. “iPhone Developers Devote Profane Web Site
to Apple's NDA.” Wired. Accessed August 6, 2008.
http://www.wired.com/gadgetlab/2008/08/developers-stea.
Clapes, Anthony L. 1993. Softwars: The Legal Battles for Control of
the Global Software Industry. Westport, CT: Quorum Books.
Clifford, James. 1986. “On Ethnographic Allegory.” In Writing
Culture: The Poetics and Politics of Ethnography, edited by James
Clifford and George E. Marcus, 98–121. Berkeley: University of
California Press.
Coleman, Gabriella E. 2001. “High-Tech Guilds in the Era of Global
Capital.” Anthropology of Work Review 22 (1): 28–32.
Coleman, Gabriella E. 2005. “The Social Construction of Freedom in
Free and Open Source Software: Hackers, Ethics, and the Liberal

http://www.gamesetwatch.com/2007/08/why_consoles_are_here_to_stay.php
http://www.wired.com/gadgetlab/2008/08/developers-stea

Tradition.” Diss., Department of Anthropology, University of
Chicago, Chicago, IL.
Consalvo, Mia. 2007. Cheating: Gaining Advantage in Videogames.
Cambridge, MA: MIT Press.
Coupland, Douglas. 2006. JPod. New York: Bloomsbury Publishing.
Csikszentmihalyi, Mihaly. 2008. Flow: The Psychology of Optimal
Experience. New York: Harper and Row.
Danks, Mark. 2008. “PlayStation-edu.” Playstation.blog. Accessed
May 16, 2010.
http://blog.us.playstation.com/2008/06/06/playstation-edu/.
Datamonitor. 2005. “Games Consoles in the United States.”
Datamonitor. 2007. “Games Consoles Industry Profile: United
States.”
Datamonitor. 2004. “Games Consoles in the United States.”
Davis, Galen. 2006. “GDC Rant Heard ’Round the World.” Gamespot
News. Accessed September 14, 2006.
http://www.gamespot.com/news/6120449.html.
Deleuze, Gilles, and Felix Guattari. 1987. A Thousand Plateaus:
Capitalism and Schizophrenia. Translated by Brian Massumi.
Minneapolis: University of Minnesota Press.
Deuze, Mark. 2007. Media Work. Malden, MA: Polity Press.
Deuze, Mark, Chase Bowen Martin, and Christian Allen. 2007. “The
Professional Identity of Gameworkers.” Convergence 13 (4): 335–
353.
DMCA. 1998. To amend title 17, United States Code, to implement
the World Intellectual Property Organization Copyright Treaty and
Performances and Phonograms Treaty, and for other purposes, 17
U.S.C. §§ 512, 1201–1205, 1301–1332; 28 U.S.C. § 4001; 17 U.S.C. §§
101, 104, 104A, 108, 112, 114, 117, 701.
Dobson, Jason. 2007. “Nintendo Issues ‘Strong Support’ for U.S.
Anti-Piracy Measures.” Gamasutra.com. Accessed July 20, 2007.
http://www.gamasutra.com/php-bin/news_index.php?story=13466.
Downey, G. L. 1998. The Machine in Me: An Anthropologist Sits
among Computer Engineers. New York: Routledge Press.
Downey, Greg. 2001. “Virtual Webs, Physical Technologies, and
Hidden Workers.” Technology and Culture 42 (2): 209–235.
Dyer-Witheford, Nick. 1999. “The Work in Digital Play: Video
Gaming's Transnational and Gendered Division of Labor.” Journal of
International Communication 6 (1): 69–93.

http://blog.us.playstation.com/2008/06/06/playstation-edu/
http://www.gamespot.com/news/6120449.html
http://gamasutra.com/
http://www.gamasutra.com/php-bin/news_index.php?story=13466

Dyer-Witheford, Nick, and Greig de Peuter. 2006. “EA Spouse and
the Crisis of Video Game Labour: Enjoyment, Exclusion,
Exploitation, and Exodus.” Canadian Journal of Communication 31
(3): 599–617.
Dyer-Witheford, Nick, and Greig de Peuter. 2009. Games of Empire:
Global Capitalism and Video Games. Edited by Katherine Hayles,
Mark Poster, and Samuel Weber. Minneapolis: University of
Minnesota Press.
Dyer-Witheford, Nick, and Zena Sharman. 2005. “The Political
Economy of Canada's Video and Computer Game Industry.”
Canadian Journal of Communication 30 (2).
ea_spouse. 2004. “EA: The Human Story.” Live Journal. Accessed
June 24, 2010. http://ea-spouse.livejournal.com/274.html.
Edery, David J. 2007. “Console Demise? Don't Hold Your Breath.”
Game Tycoon. Accessed July 23, 2007.
http://www.edery.org/2007/07/console-demise-dont-hold-your-
breath.
Electronic Arts, Inc. 2007. “Form 10-Q: Quarterly Report Pursuant
to Section 13 or 15 (d) of the Securities Exchange Act of 1934.”
English-Lueck, J. A. and Andrea Saveri. 2001. “Silicon Missionaries
and Identity Evangelists.” Anthropology of Work Review 22 (1): 7–
12.
ESA (Entertainment Software Association). 2005. “2005 Sales,
Demographics, and Usage Data: Essential Facts about the Computer
and Video Game Industry.” Entertainment Software Association.
Accessed February 5, 2008.
http://web.archive.org/web/20080121185227/http://www.theesa.c
om/files/2005EssentialFacts.pdf.
ESA (Entertainment Software Association). 2009. “2009 Sales,
Demographics, and Usage Data: Essential Facts about the Computer
and Video Game Industry.” Entertainment Software Association.
Accessed May 20, 2014.
http://www.theesa.com/facts/pdfs/esa_ef_2009.pdf.
Evans, Geoff. 2008. “Nocturnal Initiative.” Insomniac Games.
Accessed May 25, 2010. http://nocturnal.insomniacgames.com.
Fahey, Rob. 2007. “Locked Away: Do the Death Throes of Music
DRM Mean Anything for Games?” GamesIndustry.Biz. Accessed May
1, 2007.

http://ea-spouse.livejournal.com/274.html
http://www.edery.org/2007/07/console-demise-dont-hold-your-breath
http://web.archive.org/web/20080121185227/http://www.theesa.com/files/2005EssentialFacts.pdf
http://www.theesa.com/facts/pdfs/esa_ef_2009.pdf
http://nocturnal.insomniacgames.com/

http://web.archive.org/web/20070616130240/http://www.gamesin
dustry.biz/content_page.php?aid=24585.
Farmer, Paul. 2005. Pathologies of Power: Health, Human Rights,
and the New War on the Poor. Edited by Robert Borofsky. Berkeley:
University of California Press.
Feil, John, and David Weinstein. 2006. “Game Industry Crediting: A
Snapshot of the Present.” IGDA. Accessed March 22, 2007.
http://www.igda.org/credit/IGDA_CreditsSnapshot_Apr06.pdf.
Finley, Alyssa. 2007. Postmortem: 2K Games’ Bioshock. Game
Developer Magazine 14 (10): 20–26.
Forsythe, Diana E. 2001. Studying Those Who Study Us: An
Anthropologist in the World of Artificial Intelligence. Edited by
Timothy Lenoir and Hans Ulrich Gumbrecht. Stanford, CA: Stanford
University Press.
Fortun, Kim. 2001. Advocacy after Bhopal: Environmentalism,
Disaster, New Global Orders. Chicago: University of Chicago Press.
Fortun, Kim. 2006. “Poststructuralism, Technoscience, and the
Promise of Public Anthropology.” India Review 5 (3–4): 294–317.
Fortun, Mike, and Herbert J. Bernstein. 1998. Muddling Through:
Pursuing Science and Truths in the 21st Century. Washington, DC:
Counterpoint Press.
Friedman, Thomas L. 2005. The World Is Flat: A Brief History of
the Twenty-First Century. New York: Farrar, Straus and Giroux.
Galison, Peter. 1997. Image and Logic: A Material Culture of
Microphysics. Chicago: University of Chicago Press.
GDC. 2007. “Session Listings for GDC 2007.” Accessed November
14, 2007. http://gdcvault.com/browse/gdc-07.
GDC. 2008. “Session Listings for GDC 2008.” Accessed August 11,
2010. http://gdcvault.com/browse/gdc-08.
GDC. 2009. “Session Listings for GDC 2009.” Accessed August 11,
2010. http://gdcvault.com/browse/gdc-09.
GDC. 2010. “Session Listings for GDC 2010.” Accessed August 11,
2010. http://gdcvault.com/browse/gdc-10.
Gill, Rosalind. 2007. Technobohemians or the New Cybertariat?
New Media Work in Amsterdam a Decade after the Web.
Amsterdam: Institute of Network Cultures.
Gillespie, Tarleton. 2004. “Copyright and Commerce: The DMCA,
Trusted Systems, and the Stabilization of Distribution.” Information
Society 20 (4): 239–254.

http://web.archive.org/web/20070616130240/http://www.gamesindustry.biz/content_page.php?aid=24585
http://www.igda.org/credit/IGDA_CreditsSnapshot_Apr06.pdf
http://gdcvault.com/browse/gdc-07
http://gdcvault.com/browse/gdc-08
http://gdcvault.com/browse/gdc-09
http://gdcvault.com/browse/gdc-10

Gillespie, Tarleton. 2006. “Designed to ‘Effectively Frustrate’:
Copyright, Technology, and the Agency of Users.” New Media &
Society 8 (4): 651–669.
Gillespie, Tarleton. 2007. Wired Shut: Copyright and the Shape of
Digital Culture. Cambridge, MA: MIT Press.
Gourdin, Adam. 2005. “Game Developer Demographics: An
Exploration of Workforce Diversity.” International Game Developers
Association. Accessed August 14, 2011. http://www.igda.org/game-
developer-demographics-report.
Gramsci, A. 1975. Prison Notebooks. New York: Columbia University
Press.
Hakken, David. 2000a. “Resocializing Work? Anticipatory
Anthropology of the Labor Process.” Futures 32: 767–775.
Hakken, David. 2000b. “Resocializing Work? The Future of the
Labor Process.” Anthropology of Work Review 21 (1): 8–10.
Hall, Stuart. 1996. “Gramci's Relevance for the Study of Race and
Ethnicity.” In Critical Dialogues in Cultural Studies, edited by David
Morely and Kuan-Hsing Chen, 411–441. New York: Routledge.
Haraway, Donna Jeanne. 1997. Modest_Witness-AT-
Second_Millennium.FemaleMan©_Meets_OncoMouse™:
Feminism and Technoscience. New York: Routledge Press.
Harvey, David. 1990. Condition of Postmodernity: An Enquiry into
the Origins of Cultural Change. Cambridge, MA: Blackwell
Publishing.
Hoffman, Erin. 2009. “Why Your Game Idea Sucks.” The Escapist
Magazine. Accessed November 16, 2009.
http://www.escapistmagazine.com/articles/view/issues/issue_221/
6582-Why-Your-Game-Idea-Sucks.
Hughes, Thomas P. 1999. “Edison and Electric Light.” In The Social
Shaping of Technology, edited by Donald MacKenzie and Judy
Wajcman, 50–63. Philadelphia, PA: Open University Press.
Huizinga, Johan. 1971. Homo Ludens: A Study of the Play-Element
in Culture. Boston: Beacon Press.
Hyman, Paul. 2007. “For Better or Worse: A Quality of Life Update.”
GameDeveloper Magazine, June/July: 7–11.
ICE (U.S. Immigration and Customs Enforcement). 2007. “Game
Over: ICE, Industry Team Up in Gaming Piracy Crackdown: 32
Search Warrants Executed in Nationwide Intellectual Property
Rights Investigation.” Accessed June 2, 2010.

http://www.igda.org/game-developer-demographics-report
http://www.escapistmagazine.com/articles/view/issues/issue_221/6582-Why-Your-Game-Idea-Sucks

https://web.archive.org/web/20100528032701/http://www.ice.gov
/pi/news/newsreleases/articles/070801washington.htm.
Informant. 2009a. “Forum Post: ‘Re: What's the Point (of
Homebrew)?’”
Informant. 2009b. “Forum Post: ‘What's the Point (of Homebrew)?’”
Informant and Casey O’Donnell. 2007a. “Interview with Artist
ART_DS_Ogre_1.”
Informant and Casey O’Donnell. 2007b. “Interview with Designer
DESIGN_LEAD_1.”
Informant and Casey O’Donnell. 2006a. “Email—Re: Press Start.”
Informant and Casey O’Donnell. 2006b. “Interview with Engineer
ENG_Asylum.”
Informant and Casey O’Donnell. 2005a. “Interview with Engineer
ENG_DS_Spidey_1.”
Informant and Casey O’Donnell. 2005b. “Interview with Engineering
Group Manager ENG_GRP_MGR_1.”
Informant and Casey O’Donnell. 2005c. “Field Notes amongst
Engineers.”
Informant and Casey O’Donnell. 2005d. “GDC 2006 Abstract
Submission: Where Is My Make Art Button? Improving the
Artist/Programmer Relationship.”
Informant and Casey O’Donnell. 2005e. “Interview with an
Engineering Lead.”
James, E. C. 2012. “Witchcraft, Bureaucraft, and the Social Life of
(US)Aid in Haiti.” Cultural Anthropology 27 (1): 50–75.
Johns, Jennifer. 2006. “Video Game Production Networks: Value
Capture, Power Relations, and Embeddedness.” Journal of
Economic Geography 6:151–180.
Jones, S. E., and G. K. Thiruvathukal. 2012. Codename Revolution:
The Nintendo Wii Platform. Cambridge, MA: MIT Press.
Kazemi, Darius. 2007. “Breaking In: Then and Now.” Blogger.com.
Accessed August 7, 2007.
http://tinysubversions.blogspot.com/2007/08/breaking-in-then-
and-now.html.
Kazemi, Darius. 2011. “Exploitify.” TinySubversions.com. Accessed
September 1, 2011. http://tinysubversions.com/2011/05/exploitify.
Kelly, John D. 2006. The American Game: Capitalism,
Decolonization, World Domination, and Baseball. Chicago: Prickly
Paradigm Press.

https://web.archive.org/web/20100528032701/http://www.ice.gov/pi/news/newsreleases/articles/070801washington.htm
http://blogger.com/
http://tinysubversions.blogspot.com/2007/08/breaking-in-then-and-now.html
http://tinysubversions.com/
http://tinysubversions.com/2011/05/exploitify

Kent, Steven L. 2001. The Ultimate History of Video Games: The
Story Behind the Craze that Touched our Lives and Changed the
World. New York: Three Rivers Press.
Kline, Stephen, Nick Dyer-Witherford, and Greig de Peuter. 2005.
Digital Play: The Interaction of Technology, Culture, and
Marketing. Québec, Canada: McGill-Queen's University Press.
Knorr-Cetina, Karin D. 1983. “The Ethnographic Study of Scientific
Work: Towards a Constructivist Interpretation of Science.” In
Science Observed: Perspectives on the Social Study of Science,
edited by Karin D. Knorr-Cetina and Michael Mulkay, 115–140.
Beverly Hills, CA: Sage Publications.
Knorr-Cetina, Karin D. 1999. Epistemic Cultures: How the Sciences
Make Knowledge. Cambridge, MA: Harvard University Press.
Krahulik, Mike, and Jerry Holkins. 2007. “Old School.” Penny
Arcade. Accessed April 8, 2008. http://www.penny-
arcade.com/comic/2007/12/03.
Lashinsky, Adam. 2007. Search and Enjoy (Cover Story). Fortune
Magazine 155 (1): 70–82.
Latour, Bruno. 1987. Science in Action: How to Follow Scientists
and Engineers Through Society. Cambridge, MA: Harvard
University Press.
Latour, Bruno. 1991. “Technology Is Society Made Durable.” In A
Sociology of Monsters: Essays on Power, Technology and
Domination, edited by John Law, 103–131. New York: Routledge
Press.
Latour, Bruno. 1999. Pandora's Hope: Essays on the Reality of
Science Studies. Cambridge, MA: Harvard University Press.
Latour, Bruno. 2004. “Why Has Critique Run out of Steam? From
Matters of Fact to Matters of Concern.” Critical Inquiry 30 (2): 225–
248.
Latour, Bruno, and Steve Woolgar. 1986. Laboratory Life: The
Construction of Scientific Facts. Princeton: Princeton University
Press.
Law, John. 1989. “Technology and Heterogeneous Engineering: The
Case of Portuguese Expansion.” In The Social Construction of
Technological Systems: New Directions in the Sociology and
History of Technology, edited by Wiebe Bijker, Thomas P. Hughes,
and Trevor Pinch, 111–134. Cambridge, MA: MIT Press.

http://www.penny-arcade.com/comic/2007/12/03

Leigh Star, Susan, and James R. Griesemer. 1989. “Institutional
Ecology, ‘Translations,’ and Boundary Objects: Amateurs and
Professionals in Berkeley's Museum of Vertebrate Zoology, 1907–
39.” Social Studies of Science 19 (3): 387–420.
Lessig, Lawrence. 2005. Free Culture: The Nature and Future of
Creativity. New York: Penguin Press.
Lessig, Lawrence. 1999. Code and Other Laws of Cyberspace.
Jackson, TN: Basic Books.
Lévy-Strauss, Claude. 1962. The Savage Mind. Edited by Julian Pitt-
Rivers and Ernest Gellner. Chicago: University of Chicago Press.
Lik-Sang.com. 2006. “Lik-Sang.com Out of Business due to Multiple
Sony Lawsuits.” Wayback Machine. Accessed May 20, 2014.
http://web.archive.org/web/20070314000426/http://www.lik-
sang.com.
Lyotard, Jean-François. 1984. The Postmodern Condition: A Report
on Knowledge. Edited by Wlad Godzich and Jochen Schulte-Sasse.
Translated by Geoff Bennington and Brian Massumi. Minneapolis:
University of Minnesota Press.
Malaby, Thomas M. 2009. Making Virtual Worlds: Linden Lab and
Second Life. Ithaca, NY: Cornell University Press.
Malliet, Steven, and Eric Zimmerman. 2005. “The History of the
Video Game.” In Handbook of Computer Game Studies, edited by
Joost Raessens and Jeffrey Goldstein, 23–46. Cambridge, MA: MIT
Press.
Martin, Emily. 1997. “Managing Americans: Policy, Work, and the
Self.” In Anthropology of Policy: Perspectives on Governance and
Power, edited by Cris Shore and Susan Wright, 239–260. New York:
Routledge.
McAllister, Ken S. 2004. Game Work: Language, Power, and
Computer Game Culture. Tuscaloosa: University of Alabama Press.
Montfort, N., and I. Bogost. 2009. Racing the Beam: The Atari
Video Computer System. Cambridge, MA: MIT Press.
Murata, Taku. 2007. “Postmortem: Final Fantasy XII.” Game
Developer Magazine 14 (7): 22–27.
Nakagawa, Katsuya. 1985. U.S. Patent No. 4799635. Washington,
DC: U.S. Patent and Trademark Office. Assignee: Nintendo Co., Ltd.
Nakagawa, Katsuya, and Masayuki Yukawa. 1987. U.S. Patent No.
4865321. Washington, DC: U.S. Patent and Trademark Office.
Assignee: Nintendo Co., Ltd.

http://lik-sang.com/
http://web.archive.org/web/20070314000426/http://www.lik-sang.com

Nardi, Bonnie A. 2010. My Life as a Night Elf Priest: An
Anthropological Account of World of Warcraft. Ann Arbor:
University of Michigan Press.
Neff, Gina. 2012. Venture Labor: Work and the Burden of Risk in
Innovative Industries. Cambridge, MA: MIT Press.
Neff, Gina. 2005. “The Changing Place of Cultural Production: The
Location of Social Networks in a Digital Media Industry.” The Annals
of the American Academy of Political and Social Science 597: 134–
152.
Neff, Gina, and David Stark. 2004. “Permanently Beta: Responsive
Organization in the Internet Era.” In Society Online: The Internet in
Context, edited by Philip N. Howard and Steve Jones, 173–188.
Thousand Oaks, CA: Sage Publications.
Neff, Gina, Elizabeth Wissinger, and Sharon Zukin. 2005.
“Entrepreneurial Labor among Cultural Producers: ‘Cool’ Jobs in
‘Hot’ Industries.” Social Semiotics 15 (3): 307–334.
Nintendo. 2003. “NES Licensed Game List.” Nintendo. Accessed
June 6, 2007.
https://web.archive.org/web/20070317023021/http://www.nintend
o.com/doc/nes_games.pdf.
Nintendo Co. LTD. and Nintendo of America Inc. v. Lik Sang
International, LTD. 2003. HCA 3584/2002.
O’Donnell, Casey. 2004a. “A Case for Indian Insourcing: Open
Source Interest in IT Job Expansion.” First Monday 9.11. Accessed
May 20, 2014.
http://www.firstmonday.org/ojs/index.php/fm/article/view/1188.
O’Donnell, Casey. 2004b. “Critique with a “K”—From Military
Matters of Concern to Cat's Cradles that Matter: In Search of
Metaphors that Frame Inquiry.” Technoscience: Newsletter of the
Society for Social Studies of Science 19 (2): 1–3.
O’Donnell, Casey. 2008. “The Work/Play of the Interactive New
Economy: Video Game Development in the United States and India.”
Ph.D. diss., Rensselaer Polytechnic University, Troy, NY.
O’Donnell, Casey. 2011a. The Nintendo Entertainment System and
the 10NES Chip: Carving the Videogame Industry in Silicon. Games
and Culture 6 (1): 83–100.
O’Donnell, Casey. 2011b. “Games Are Not Convergence: The Lost
Promise of Digital Production and Convergence.” Convergence 17
(3): 271–286.

https://web.archive.org/web/20070317023021/http://www.nintendo.com/doc/nes_games.pdf
http://www.firstmonday.org/ojs/index.php/fm/article/view/1188

O’Donnell, Casey. 2012. “This Is Not a Software Industry.” In The
Video Game Industry: Formation, Present State and Future, edited
by P. Zackariasson and T. L. Wilson, 17–33. New York: Routledge.
O’Donnell, Casey. 2013. “Wither Mario Factory? The Role of Tools in
Constructing (Co)Creative Possibilities on Videogame Consoles.”
Games and Culture 8 (3): 161–180.
Omi, Michael, and Howard Winant. 1994. Racial Formation in the
United States: From the 1960s to the 1990s. New York: Routledge.
Orland, Kyle. 2008. “Sony Offers PS2/PSP Dev Kits for Education.”
Joystiq. Accessed May 16, 2010.
http://www.joystiq.com/2008/06/06/sony-offers-ps2-psp-dev-kits-
for-education.
Orr, Julian E. 1991. “Contested Knowledge: Work, Practice and
Technology.” Anthropology of Work Review 12 (3): 12–17.
Orr, Julian E. 1996. Talking about Machines: An Ethnography of a
Modern Job. Edited by Stephen R. Barley. Ithaca, NY: Cornell
University Press.
Pentland, Brian T. 1997. “Bleeding Edge Epistemology: Practical
Problem Solving in Software Support Hot Lines.” In Between Craft
and Science: Technical Work in U.S. Settings, ed. Stephen R. Barley
and Julian E. Orr, 113–128. Ithaca, NY: Cornell University Press.
Perrow, Charles. 1999. Normal Accidents: Living with High-Risk
Technologies. Princeton, NJ: Princeton University Press.
Perry, D., and R. DeMaria. 2009. David Perry on Game Design: A
Brainstorming Toolbox. Boston, MA: Course Technology.
Pickering, Andrew. 1995. The Mangle of Practice: Time, Agency,
and Science. Chicago: University of Chicago Press.
Pinch, Trevor, and Wiebe Bijker. 1989. “The Social Construction of
Facts and Artifacts: Or How the Sociology of Science and the
Sociology of Technology Might Benefit Each Other.” In The Social
Construction of Technological Systems: New Directions in the
Sociology and History of Technology, edited by Wiebe Bijker,
Thomas P. Hughes, and Trevor Pinch, 17–50. Cambridge, MA: MIT
Press.
Pinch, Trevor, Harry M. Collins, and Larry Carbone. 1997. “Cutting
Up Skills: Estimating Difficulty as an Element of Surgical and Other
Abilities.” In Between Craft and Science: Technical Work in U.S.
Settings, edited by Stephen R. Barley and Julian E. Orr, 101–112.
Ithaca, NY: Cornell University Press.

http://www.joystiq.com/2008/06/06/sony-offers-ps2-psp-dev-kits-for-education

Postigo, Hector. 2003. From Pong to Planet Quake: Post-Industrial
Transitions from Leisure to Work. Information Communication and
Society 6 (4): 593–607.
Postigo, Hector. 2007. Of Mods and Modders: Chasing Down the
Value of Fan-Based Digital Game Modifications. Games and Culture
2 (4): 300–313.
Pritchard, Matt. 2003. “Ensemble's Age of Empires.” In
Postmortems from Game Developer, edited by Austin Grossman,
63–74. New York: CMP Books.
Radd, David. 2007. “ESA Applauds San Diego Raid.” Edited by Libe
Goad. GameDaily.Biz. Accessed July 20, 2007.
http://biz.gamedaily.com/industry/news/?id=16634.
Ragaini, Toby. 2003. “Turbine's Asheron's Call.” In Postmortems
from Game Developer, edited by Austin Grossman, 299–309. New
York: CMP Books.
Rheinberger, Hans-Jörg. 1997. Toward a History of Epistemic
Things: Synthesizing Proteins in the Test Tube. Stanford, CA:
Stanford University Press.
Rogers, Everett M., and Judith K. Larsen. 1984. Silicon Valley Fever:
Growth of High-Technology Culture. New York: Basic Books.
Ross, Andrew. 2003. No-Collar: The Humane Workplace and Its
Hidden Costs. Jackson, TN: Basic Books.
Sakamoto, Yoshio, Norikatsu Furuta, Kenji Imai, Hironobu Suzuki,
Makoto Katayama, Koichi Kishi, Yumiko Morisada, and Hiroshi
Tanigawa. 2000. U.S. Patent No. 6601851. Washington, DC: U.S.
Patent and Trademark Office. Assignee: Nintendo Co., Ltd.
Salen, Katie, and Eric Zimmerman. 2004. Rules of Play: Game
Design Fundamentals. Cambridge, MA: MIT Press.
Scarselletta, Mario. 1997. “The Infamous ‘Lab Error’: Education,
Skill, and Quality in medical Technicians’ Work.” In Between Craft
and Science: Technical Work in U.S. Settings, edited by Stephen R.
Barley and Julian E. Orr, 187–209. Ithaca, NY: Cornell University
Press.
Schadt, Toby. 2007. Postmortem: Not Your Typical Grind—Tony
Hawk's Downhill Jam for Wii.” Game Developer Magazine 14 (1):
30–37.
Schaefer, Erich. 2003. “Blizzard Entertainment's Diablo II.” In
Postmortems from Game Developer, edited by Austin Grossman,
79–90. New York: CMP Books.

http://biz.gamedaily.com/industry/news/?id=16634

Schell, J. 2008. The Art of Game Design: A Book of Lenses. New
York: Elsevier.
Schüll, Natasha Dow. 2005. “Digital Gambling: The Coincidence of
Desire and Design.” Annals of the American Academy of Political
and Social Science 597 (1): 65–81.
Schüll, Natasha Dow. 2012. Addiction by Design: Machine
Gambling in Las Vegas. Princeton, NJ: Princeton University Press.
Scott, James C. 1976. Moral Economy of the Peasant: Rebellion and
Subsistence in Southeast Asia. New Haven, CT: Yale University
Press.
Sheff, David. 1993. Game Over: How Nintendo Zapped an American
Industry, Captured Your Dollars, and Enslaved Your Children. New
York: Random House Inc.
Sicart, Miguel. 2008. “Defining Game Mechanics.” Game Studies 8
(2). Accessed December 15, 2008.
http://gamestudies.org/0802/articles/sicart.
Simon, Roger. 2001. Gramsci's Political Thought: An Introduction.
London: ElecBook.
Smith, Dorothy E. 1999. Writing the Social: Critique, Theory, and
Investigations. Buffalo, NY: University of Toronto Press.
Smith, Marcus. 2007. “Postmortem: Resistance: Fall of Man.” Game
Developer Magazine 14 (2): 28–36.
Smith, Vicki. 2001. “Ethnographies of Work and the Work of
Ethnographers.” In Handbook of Ethnography, edited by Paul
Atkinson, Amanda Coffey, Sara Delamont, John Lofland, and Lyn H.
Lofland, 220–233. Thousand Oaks, CA: Sage Publications.
Snow, Blake. 2007. “The Future of Video Games According to 1982.”
Joystiq. Accessed January 30, 2007.
http://www.joystiq.com/2007/01/30/the-future-of-video-games-
according-to-1982/.
Sony Computer Entertainment, Inc. v. Lik Sang International, LTD.
2003. HCA 3583/2002.
Sprigman, Chris. 2002. “The Mouse That Ate the Public Domain:
Disney, the Copyright Term Extension Act, and Eldred v. Ashcroft.”
FindLaw. Accessed April 25, 2007.
http://writ.news.findlaw.com/commentary/20020305_sprigman.ht
ml.
Staff. 2007. “2006 Game Developer Salary Survey Reveals Industry
Trends.” Gama sutra. Accessed July 29, 2007.

http://gamestudies.org/0802/articles/sicart
http://www.joystiq.com/2007/01/30/the-future-of-video-games-according-to-1982/
http://writ.news.findlaw.com/commentary/20020305_sprigman.html

http://www.gamasutra.com/php-bin/news_index.php?story=13352.
Staff. 2009. “Game Developer Reveals Top 20 Publishers, Debuts
2009 Research.” Gamasutra. Accessed March 23, 2011.
http://www.gamasutra.com/php-bin/news_index.php?
story=25506.
Staff. 2011. “Worldwide Yearly Chart Index.” VGChartz. Accessed
May 21, 2014. http://www.vgchartz.com/yearly/.
Suchman, Lucy. 1995. Making Work Visible. Communications of the
ACM 38 (9): 56–64.
Suchman, Lucy, Jeanette Blomberg, Julian E. Orr, and Randall
Trigg. 1999. “Reconstructing Technologies as Social Practice.”
American Behavioral Scientist 43 (3): 392–408.
Sutton-Smith, Brian. 1998. The Ambiguity of Play. Cambridge, MA:
Harvard University Press.
Taussig, M. 1999. Defacement: Public Secrecy and the Labor of the
Negative. Stanford, CA: Stanford University Press.
Taylor, T. L. 2006a. Play between Worlds: Exploring Online
Gaming Culture. Cambridge, MA: MIT Press.
Taylor, T. L. 2006b. “Does WoW Change Everything?: How a PvP
Server, Multinational Player Base, and Surveillance Mod Scene
Caused Me Pause.” Games and Culture 1 (4): 318–337.
Train, Tim. 2003. “Postmortem: Big Huge Games’ Rise of Nations.”
Game Developer Magazine 10 (7): 36–41.
Traweek, Sharon. 1988. Beamtimes and Lifetimes: The World of
High Energy Physicists. Cambridge, MA: Harvard University Press.
Traweek, Sharon. 2000. “Fault Lines.” In Doing Science + Culture:
How Cultural and Interdisciplinary Studies are Changing the Way
We Look at Science and Medicine, edited by Roddey Reid and
Sharon Traweek, 21–48. New York: Routledge Press.
Tsing, Anna Lowenhaupt. 2005. Friction: An Ethnography of Global
Connection. Princeton, NJ: Princeton University Press.
Turkle, Sherry. 1997. Life on the Screen: Identity in the Age of the
Internet. New York: Simon & Schuster.
Turnbull, David. 2000. Masons, Tricksters, and Cartographers:
Comparative Studies in the Sociology of Scientific and Indigenous
Knowledge. New York: Routledge.
Varma, Roli. 2006. Harbingers of Global Change: India's Techno-
Immigrants in the United States. Lanham, MD: Lexington Books.

http://www.gamasutra.com/php-bin/news_index.php?story=13352
http://www.gamasutra.com/php-bin/news_index.php?story=25506
http://www.vgchartz.com/yearly/

Wark, McKenzie. 2007. Gamer Theory. Cambridge, MA: Harvard
University Press.
Waters, Darren. 2007. “EA Wants ‘Open Gaming Platform.’” BBC
News. Accessed October 23, 2007.
http://news.bbc.co.uk/2/hi/technology/7052420.stm.
Weber, Tim. 2007. “Games Industry Enters a New Level.” BBC
News. Accessed June 4, 2007.
http://news.bbc.co.uk/2/hi/business/6523565.stm.
Wen, Howard. 2007. “Analyze This: Will There Ever Be One Console
to Rule Them All?” Gamasutra. Accessed November 16, 2007.
http://www.gamasutra.com/view/feature/2012/analyze_this_will_t
here_ever_be_.php.
Whalley, Peter, and Stephen R. Barley. 1997. “Technical Work in the
Division of Labor: Stalking the Wily Anomaly.” In Between Craft and
Science: Technical Work in U.S. Settings, edited by Stephen R.
Barley and Julian E. Orr, 23–52. Ithaca, NY: Cornell University
Press.
Whitehead, N. L., and R. Wright. 2004. In Darkness and Secrecy:
The Anthropology of Assault Sorcery and Witchcraft in Amazonia.
Durham, NC: Duke University Press.
Williams, Dmitri. 2002. “Structure and Competition in the U.S.
Home Video Game Industry.” International Journal on Media
Management 4 (1): 41–54.
Wilson, Elizabeth A. 1998. Neural Geographies: Feminism and the
Microstructure of Cognition. New York: Routledge Press.
Wilson, Phil. 2007. “Postmortem: Realtime Worlds’ Crackdown.”
Game Developer Magazine 14 (9): 26–31.
Wilson, Trevor. 2008. “Game Developer's Magazine's Top 20
Publishers for 2008.” Gamasutra. Accessed March 23, 2011.
http://www.gamasutra.com/view/feature/3800/game_developer_
magazines_top_20_.ph.
Wong, Nicole. 2006. “Exclusive: Nicole Wong Reveals Identity of EA
Spouse.” The Mercury News. Accessed April 25, 2006.
http://web.archive.org/web/20060430102757/http://blogs.mercury
news.com/aei/2006/04/exclusive_nicol.html.
Wyatt, P. 2012. “StarCraft Was Once a Busted Pile of Crap.” Accessed
November 11, 2012. http://kotaku.com/5942128/starcraft-was-once-
a-busted-pile-of-crap.

http://news.bbc.co.uk/2/hi/technology/7052420.stm
http://news.bbc.co.uk/2/hi/business/6523565.stm
http://www.gamasutra.com/view/feature/2012/analyze_this_will_there_ever_be_.php
http://www.gamasutra.com/view/feature/3800/game_developer_magazines_top_20_.ph
http://web.archive.org/web/20060430102757/http://blogs.mercurynews.com/aei/2006/04/exclusive_nicol.html
http://kotaku.com/5942128/starcraft-was-once-a-busted-pile-of-crap

Zabusky, Stacia E. 1997. “Computers, Clients, and Expertise:
Negotiating Technical Identities in a Nontechnical World.” In
Between Craft and Science: Technical Work in U.S. Settings, edited
by Stephen R. Barley and Julian E. Orr, 129–153. Ithaca, NY: Cornell
University Press.
Zichermann, Gabe. 2011. “Gamification Is Here to Stay.” The
Atlantic. Accessed August 29, 2011.
http://www.theatlantic.com/technology/archive/2011/08/gamificati
on-is-here-to-stay/244232.

http://www.theatlantic.com/technology/archive/2011/08/gamification-is-here-to-stay/244232

Index

The letter f following a page number denotes a figure, b denotes a
term found in a box, and t denotes a table.

2D (two-dimensional), 49

32.33 percent repeating survival rate, 138, 281n3

3D Studio Max, 50, 73, 82, 87, 114, 115f

3D (three-dimensional)

actor-networks and, 160b

bones and, 278n9

cross-platform libraries and, 25b

game design document and, 258, 261

interactivity and, 116b, 125b

models and, 49

system structures and, 49–50, 54–56

AAA (triple A), 3b, 110, 116b, 271

Access

actor-networks and, 171, 174, 177, 179–182, 185–186, 188, 193, 195,
197, 202, 209–210, 213–214, 224–226, 237–238, 240–241, 243,
283n7

anthropological studies and, 3, 5, 8, 12, 20, 275n1

development mythology and, 147–148

experimental systems and, 72, 76, 78–79, 83, 88, 97, 101

game design document and, 252, 255, 266, 267t, 269, 272

India and, 155

passion and, 140, 145

perpetual startup system and, 155, 157–158

quality of life (QoL) and, 159

skill and, 145

system structures and, 41, 44, 64, 68, 277n1

Acquisitions, 12–13, 64, 67, 153–156, 177, 204

Activision, 12, 16, 152–154, 156, 170, 189t, 219, 233

Actor-networks, 30

3D (three-dimensional) models and, 160b

access and, 171, 174, 177, 179–182, 185–186, 188, 193, 195, 197,
202, 209–210, 213–214, 224–226, 237–238, 240–241, 243, 283n7

artists and, 169f, 174, 192f, 203, 207–209, 233

assets and, 177, 179, 190, 193, 204, 207

AUTHOR_DEV_DILEMMA and, 169b–170b, 172b, 175b–176b,
178b–179b, 182b–183b, 217b, 244b

Boss Fights and, 207–215, 242–243

collaboration and, 174, 178, 185, 208, 211, 214, 225, 240, 245

consoles and, 171–205, 210, 213–215, 224–225, 228, 231, 233–
234, 236–245, 283nn1,9

copyright and, 29, 188, 196–197, 200, 214, 226, 228, 230–235,
237, 238–240, 283nn1,2,8

creativity and, 172b, 175b–176b, 178b, 181, 203, 209, 214, 232,
234, 239, 244b

criminal actions and, 225–226, 228, 230, 235, 253, 283nn1,3

debugging and, 172b, 200, 241

design data and, 193

designers and, 170b, 174, 203–204, 207–208, 210, 233, 282n9

DevKits and, 185–186, 192–205, 213, 238, 283n7

divergence and, 222–223

domination and, 218–221, 223, 226, 238, 273

engineers and, 170b, 180, 190–191, 193, 196–197, 203–206, 208,
220, 224, 236

engines and, 172b, 193, 206–207, 225

feedback and, 176, 183

flat economic system and, 182

game design document and, 255–256

hacking and, 172b–173b, 206, 213, 231, 234–241, 283n3

hardware and, 172b, 176b, 180, 182b, 183–185, 192–193, 200,
203–206, 213–214, 218–219, 224, 226, 235–236, 238, 240, 243,
283n7

homebrew developers and, 213, 219, 226, 234–243, 253

India and, 177–180, 198, 203–204, 219, 237

institutional Alzheimer's and, 207–215

intellectual property (IP) and, 170b, 186, 190–191, 206, 227–228,
232–233, 236–237

interdisciplinarity and, 234

Latour on, 29, 173, 218–221, 238, 281n6

legal issues and, 174, 182, 185, 188, 196, 200–206, 213, 220, 223–
241, 245

licenses and, 170b, 176b, 182–192, 195–198, 207, 210, 213–214,
232–236, 240–243, 282n3

managers and, 208, 239

manufacturers and, 172b, 173–174, 178, 181, 183–188, 193, 198,
200, 202, 205–210, 213–214, 218, 224–225, 233, 236–245, 283n1

Microsoft and, 172b, 179, 186, 189t, 202, 213, 224, 241–242

narrative and, 221

new media and, 230–234

Nintendo and, 176b, 182b, 183, 186–190, 193, 195–206, 213, 220,
226–228, 233–237, 241–242, 282n3, 284n4

non-disclosure agreements (NDAs) and, 185, 202, 205–207, 210,
220, 225

open source software and, 206, 237, 241

outsourcing and, 175–180, 204

patents and, 29, 188, 193–196, 200, 214, 224, 231–234, 239–240,
284n3

PCs and, 174–175, 183–185, 200, 204, 209, 214, 225, 238, 241,
284n4

pipelines and, 193

platforms and, 177, 179–180, 183, 200, 202–204, 215, 221, 224–
225, 236, 243, 284n4

play and, 171, 175, 179b, 184, 186, 188, 190, 198, 203, 205, 213–
214, 222, 228, 232, 235–238, 241, 245

power and, 171, 181, 187, 192, 195–196, 198, 204–205, 213–214,
218–221, 223, 226–231, 234, 236, 238, 242, 256, 271, 273, 276n8,
282nn5,6

preproduction and, 220

producers and, 176, 183, 202, 204, 210, 226, 230–232, 234, 242,
282n6, 283n1

production control and, 202, 223–231, 283n7

programmers and, 172b, 197, 203, 210, 225, 235

publishers and, 169b–170b, 172b, 173–178, 181–184, 186, 188–193,
204, 206–210, 213–214, 218, 224–225, 239–241

quality assurance (Q/A) and, 182b, 224

risk and, 175b, 179b, 186–188, 190–192, 213–214, 225–226, 229,
231–234, 243, 245

SDK (software development kit) and, 185–186, 193, 200, 202–
204, 283n7

Seal of Quality and, 182b, 187–188, 193, 196, 198

secrecy and, 174, 180, 202, 204–209, 214, 220, 226, 237, 243

SET DEMO_MODE and, 169b–170b, 172b–173b, 175b–176b,
178b–179b, 182b–183b, 217b, 244b

software and, 176b, 178–180, 185–186, 191, 193, 200, 203–207,
210, 213–214, 218–223, 226, 230–231, 283nn8,9

Sony and, 186, 189t, 198, 202, 211–212, 234–242

source code and, 178, 197, 205, 207, 210

standards and, 203, 210–214, 224, 238

sustainability and, 186, 213–214, 244b, 253, 256

work practice and, 208, 215

Xbox and, 179, 213, 224–225, 242–243

Adobe, 49b, 73, 114, 119, 175, 279n1

Adorno, Theodor W., 63

Advertising, 258, 272, 280n3

Age of Empires (game), 133

Agile, 139, 165, 281n5

Alexander, Leigh, 22

Algorithms, 59, 275n1

Allen, Christian, 28087

America Online, 171

Analytic skills

designers and, 45

engineers and, 46

game development and, 23–24, 45–46, 108, 159, 173, 242, 250–
257

work practice and, 23–24, 45–46, 108, 159, 173, 242

Android platform, 157, 204

Androvich, Mark, 206, 240

AngelCode, 54

Angry Birds (game), 271

Animation, 12, 138

bones and, 52, 278n9

experimental systems and, 72, 76, 84, 91

game design document and, 264t, 268t

interactivity and, 112, 114, 116b, 119, 128, 133

system structures and, 49, 51–56, 69, 278nn8,9

Anthropology, 146, 155, 250–251

access and, 3, 5, 8, 12, 20, 275n1

actor-networks and, 173, 181

artists and, 4, 10

chaos and, 137

designers and, 4, 9–12, 15–16, 17b, 27–28

engineers and, 6–8, 10–12, 15–16, 17b, 19, 25b, 27–28

experimental systems and, 88

expo demo and, 257–262

intranetworks and, 13, 31, 169b, 171, 173, 181–182

programmers and, 4, 26

publishers and, 10, 12, 18, 21, 25b

quality of life (QoL) and, 161

studios and, 3b, 4, 9–18, 21

system structures and, 43–44, 59, 64, 66

Appadurai, Arjun, 9

Apple

App Store and, 157, 207, 271–272, 274

iOS and, 100, 204, 271, 274, 284n1

iPad and, 271

iPhone and, 207, 271

iPod Touch and, 271

iTunes and, 157

Mac OS and, 25b, 81, 107, 275n1, 284n4

as walled garden, 271–272

App stores, 156–157, 207, 271–272, 274

Artificial Intelligence (AI), 67, 133

Artists

actor-networks and, 169f, 174, 192f, 203, 207–209, 233

animation and, 12 (see also Animation)

anthropological studies of, 4, 10

bones and, 278n9

checklists and, 120

code and, 117b

contract developers and, 64

data files and, 56, 57

development mythology and, 147, 149

different term meanings for, 119

difficulties of, 40b

engineers and, 93–97

experimental systems and, 71b, 73–80, 82–96, 99, 278n2

game design document and, 258, 261, 267t-268t, 269, 284n2

game engine and, 49

in game view of work and, 116

interactivity and, 28, 105b, 106–107, 110–128, 131–133

language of, 87–88

large segment of, 16–17

leads and, 41–42, 94–97, 100b, 101, 133, 210

managers and, 4, 10, 15, 17b, 19, 41, 43, 58–59, 64–65, 69, 94–97,
108, 130, 133, 139, 141b, 149, 208, 239, 278n2

mediation and, 51

old methods and, 75–76

passion and, 145

path of, 136b

Photoshop and, 49b, 73, 114, 119

pipelines and, 27–28, 50, 58b, 67, 71b, 72–81, 87–88, 91, 93, 97,
109, 117b, 118–119, 126, 128, 130, 140, 165, 193, 271

preproduction and, 38

producers and, 10, 18–19, 40, 70, 76, 91, 94–97, 121, 140, 154, 156,
176, 183, 202, 204, 210, 226, 230–234, 242, 275n3, 282n6, 283n1

programmers and, 54

quality of life (QoL) and, 160b, 161, 165

real-time previews and, 75

rendering engines and, 75

research methodology and, 15

responsibilities of, 112–121

secrecy and, 41 (see also Secrecy)

software experience and, 50

system structures and, 38, 40b, 41, 45, 48–61, 64, 66, 68–69

technical artists and, 93 (see also Technical artists)

Asheron's Call (game), 210

Assets

actor-networks and, 177, 179, 190, 193, 204, 207

art, 50, 52, 60, 72, 90–91, 94, 106–114, 116b–117b, 118, 123, 128,
130–131, 177, 179, 190, 193, 204, 207, 270, 281n5

audio, 28

experimental systems and, 72, 76–77, 85b, 87, 90–91, 94

game design document and, 270–271

interactivity and, 106–107, 109–118, 123, 128, 130–131

pipelines and, 140, 281, 281n5

system structures and, 37b, 49b, 50, 52, 59–60

Asylum project, 11–12, 18, 37–38, 57–58, 129

AT&T, 171

Atari, 158, 170b, 187–188, 189t, 195–197, 212, 220, 282n4

Attention Deficit Disorder, 59

AUTHOR_DEV_DILEMMA

actor-networks and, 169b–170b, 172b, 175b–176b, 178b–179b,
182b–183b, 217b, 244b

concept of, xi

crunch and, 141b

experimental systems and, 71b–72b, 84b–86b, 100b–101b

game design document and, 249b

Game Developers Conference (GDC) and, 163b–164b

interactivity and, 105b, 113b, 115b–117b, 121b–122b, 125b–126b

sequels and, 149b–150b

sustainability and, 160b

system structures and, 37b–38b, 48b–49b, 53b–54b, 57b–58b,
61b–62b

tutorial level and, 3b, 25b

work-home balance and, 135b–137b

Autonomy, 7, 39, 181

AutoPlay, 28, 137, 162–163, 255

Baba, Marietta L., 64

Barbie, 191

Barley, Stephen R., 6–7, 92, 108

Bates, Robert, 20

Batman, 175, 191

Battle Engine Aquila (game), 73

Battlefield (game), 141b

Beck, Ulrich, 6

Becker, Howard, 174

Bernstein, Herbert J., 280n7, 281n4

Best practices, 97, 131, 139, 143

Big Huge Games, 209

BioShock (game), 74

Black art, 39, 75

Black-hat hackers, 163

Bleszinski, Cliff, 45

Blizzard Entertainment, Inc., 75, 150, 154

Blogs, 15, 18, 164–165, 193, 269, 274, 282n9

Bogost, Ian, 30, 67, 202–203, 252

Bollywood, 156

Bonds, Scott, 161

Bones, 52, 278n9

Boss Fights, xiv

actor-networks and, 207–215, 242–245

concept of, xi

experimental systems and, 96–101

game design document and, 269–274

interactivity and, 132–134

QoL (quality of life) and, 159–165

system structures and, 67–70

tutorial level and, 23–24, 31–33

World 1 and, 31–33

World 2 and, 67–70

World 3 and, 96–101

World 4 and, 132–134

World 5 and, 159–165

World 6 and, 207–215

World 7 and, 242–245

World 8 and, 269–274

Bowker, Geoffrey C., 89, 120

Bratz, 191

“Brave New World of Work,” 6

Breakdowns, 28, 67–68, 77, 120–121, 133–134, 249, 260, 280n5

Bricolage, 59, 64

Brooks, F. P., 139

Brown, Wendy, 220

Bucciarelli, Louis L., 28, 62, 131, 278n7

Budgets, 20–21, 52, 112, 116, 130, 150–151

Build, the, 96, 106, 109–110, 131, 255, 280n6

Bungie, 150

Burghardt, Gordon M., 8

“Burning Down the House: Game Developer's Rant” session, 20–21

Business models, 21, 214, 231

C, 53

C# 97, 123

C++, 53

Carbone, Larry, 210

Carmack, John, 16, 21, 45

Carter, Ben, 73, 225

Cassell, Justine, 8

Castells, Manuel, 6, 155–158, 171, 174, 187, 279n7

Castronova, Edward, 8

Cat's cradle, 3b, 23

CD burners, 198, 200, 237

CD-ROMs, 198, 204

Chaos management, 137–140

Chaplin, Heather, 8

Characters

comic book, 11

development mythology and, 147

experimental systems and, 71b, 82, 84, 91

game design document and, 265

interactivity and, 110, 116b, 127

system structures and, 49b

Cheating, 236, 251

Checklists, 92, 120

Chen, Brian X., 207

China, 13, 28, 178, 227–228, 235, 237

Clapes, Anthony L., 282n1

Classifications, 93, 120–121, 267t

Clifford, James, 253

Code on the Cob, 54

Coleman, Gabriella E., 161–163, 281n1, 283n3

Collaboration, 13

actor-networks and, 174, 178, 185, 208, 211, 214, 225, 240, 245

creative practice and, xiv—xv, 4–5, 7, 16, 20, 27, 30–31, 41, 60, 68,
70, 88, 95, 106, 132, 145, 251–252, 255, 272, 284n1

experimental systems and, 79, 85b–86b, 88–89, 91–93, 95, 98–99

fault lines and, 94–97

game design document and, 251–255, 270–273, 284n1

horizontal work processes and, 6

individualistic barriers and, 163

interactivity and, 106, 111, 113b, 124, 132–133

interdisciplinarity and, xv, 67–70, 132–134, 234

openness and, 86b, 98–101, 172b, 174, 202, 207, 210–215

passion and, 145

quality of life (QoL) and, 161, 163, 164b

Scrum and, 140

social workplace and, 7

system structures and, 41, 44, 51–56, 60–61, 65, 67–70

Collins, Harry M., 210

Collision data, 91, 279n3

Comcast, 171

Communication, 84b–86b

Complex systems, 30, 132, 139

Consalvo, Mia, 61

Console menu, 81–84. See also Debugging

Consoles, xiii

actor-networks and, 171–205, 210, 213–215, 224–225, 228, 231,
233–234, 236–245, 283nn1,9

chaotic development environment and, 139–140

connected to televisions, 183

consumers and, 82, 169b–170b

dumb terminals and, 183

entertainment centers and, 183

experimental systems and, 78, 92, 97–101, 279n5

game design document and, 253, 256, 258–259, 269–272, 284n1

illegal burning and, 237

interactivity and, 111, 118

interfaces and, 49, 81, 99, 112

joysticks and, 183

Lik-Sang and, 237–238

as loss leader, 184

next generation, 190

patents and, 193–196 (see also Patents)

perpetual startup system and, 156–158

personal computers and, 184–185

production control and, 202, 223–231, 283n1

QoL (quality of life) and, 160b

region issues and, 237

system structures and, 40b, 41, 45, 58, 64, 277nn2,5

tutorial level and, 10–11, 15, 29

tweaking and, 48, 52, 81, 108, 114, 119

Consumers, 232, 245, 272

choice and, 97

consoles and, 82, 169b–170b

cost and, 198–200

criminal penalties and, 226

developers’ distance from, 171

DMCA and, 226

game equity and, 191

game ratings and, 228

publishers and, 191

retribution by, 177

safety standards and, 238–239

Contract developers, 64, 75

Contra (game), 41–42

Copyright

actor-networks and, 29, 188, 196–197, 200, 214, 226, 228, 230–
235, 237, 238–240, 283nn1,2,8

categorical coverage and, 147

China and, 237

Digital Millennium Copyright Act (DMCA) and, 225–226, 228,
231, 283nn1,2

DSTT cartridges and, 237

illegal burning and, 237

intellectual property (IP) and, 29, 147, 188, 196–197, 200, 214,
226, 228, 230–235, 237–240, 283nn1,2,8

Lik-Sang and, 237–239

Nintendo and, 188, 196–197, 237

R4 cartridges and, 237

region issues and, 237

risk and, 231–234

Sony and, 238

Costikyan, Greg, 20–22, 277n9

Coupland, Douglas, 8

CPU, 49, 112, 198

Crackdown (game), 76, 140

Cracking, 231, 240–241, 283n3

Creative commons, 232

Creativity, 10, 16, 137b

actor-networks and, 172b, 175b–176b, 178b, 181, 203, 209, 214,
232, 234, 239, 244b

as ambiguous process, 280n4

collaboration and, 4 (see also Collaboration)

development mythology and, 149b, 150–153

experimental systems and, 71b, 73, 76, 86b, 88, 95, 98

exploration and, 37b

game design document and, 251–252, 255, 272–274, 284nn1,3

imagination and, 145, 175b–176b, 208, 270

innovation and, 21, 27, 47, 51–52, 69, 97, 122b, 139, 145, 155, 158,
162, 165, 175b, 179b, 181, 198, 212, 221, 232, 234, 244b, 256

intellectual flexibility and, 280n4

interactivity and, 106, 116b, 121b–122b, 132, 280n4

labors of love and, 22

managing chaos and, 139

passion and, 145–146

perpetual startup system and, 153

quality of life (QoL) and, 161, 163

system structures and, 37, 39, 41, 50–52, 58b, 59–60, 64–70

tinkering and, 73, 75, 234, 241

Credibility, 177, 271, 277n10

Credits, 45, 70, 143–144, 158, 177, 206, 209, 263t, 269

Criminal actions, 225–226, 228, 230, 235, 253, 283nn1,3

Croshaw, Ben “Yahtzee,” 22

Crunch

AUTHOR_DEV_DILEMMA and, 135b–137b, 141b

development mythology and, 151

game design document and, 252, 255, 259–260, 265, 268–269

game development and, 12, 18–21, 28, 65, 75, 137, 141b, 151, 159,
161, 193, 210, 252, 255, 259–260, 265, 268–269

interactivity and, 28

overtime and, 3b, 12, 18–19, 28, 65, 132, 134, 135b–137b, 139,
141b, 142, 150, 152, 269

quality of life (QoL) and, 159, 161

SET DEMO_MODE and, 135b–137b, 141b

Crystal, Billy, 242

Csikszentmihalyi, Mihaly, 281n1

Cut-scenes, 49

CVS (concurrent versions system), 109

Danks, Mark, 205

Data driven design, 54, 83, 212

Debugging

actor-networks and, 172b, 200, 241

AutoPlay and, 162–163

console menu and, 81–84

development mythology and, 149

experimental systems and, 73–75, 81–84, 89, 92, 99

game design document and, 258t, 259–261, 264t, 268t

interactivity and, 107–108, 118–120, 128, 134

learning to use debugger and, 24–31

perpetual startup system and, 149

QoL (quality of life) and, 162–163

SDK updates and, 12

source code and, 26

stepping in/out and, 26

system structures and, 37b, 59

tweaking and, 48, 52, 81, 108, 114, 119

Decompilers, 241

Deep hack mode, 137, 161, 281n1

Deleuze, Gilles, 220, 222, 276n8, 282n6

DeMaria, R., 47

De Peuter, Greig, 9, 159, 183

Design data

actor-networks and, 193

experimental systems and, 72, 83–84, 94

interactivity and, 110, 127

system structures and, 56, 60

Designers

actor-networks and, 170b, 174, 203–204, 207–208, 210, 233,
282n9

anthropological studies of, 4, 9–12, 15–16, 17b, 27–28

data generation and, 123–124

experimental systems and, 71b, 73–75, 77–81, 83–84, 86b, 87, 91–
92, 94–96, 99, 278n2

game design document and, 269

India and, 124

interactivity and, 105b, 106–107, 110–114, 118, 121–131

lack of path for, 136b

Peaches software and, 125b, 126–127

play and, 124

quality of life (QoL) and, 159, 161

responsibilities of, 121–131

synchronization and, 128–132

system structures and, 38, 40, 43, 45–56, 58b, 59–61, 63–65, 68,
70, 278n6, 278n7

tech and, 126–127, 131

tools and, 123–128

Deuze, Mark, 8, 159

Development mythology

access and, 147–148

artists and, 147, 149

characters and, 147

creativity and, 149b, 150–153

crunch and, 151

debugging and, 149

engineers and, 147, 149

feedback and, 149

genre and, 147

hardware and, 147, 150b

India and, 151–152

intellectual property (IP) and, 150b

licenses and, 147, 150

managers and, 149

Microsoft and, 152

networks and, 147, 152

new media and, 152, 154

Nintendo and, 150b

non-disclosure agreements (NDAs) and, 147

outsider perceptions and, 41

overtime and, 150, 152

platforms and, 150b

play and, 147–151

professionalization and, 152–153

publishers and, 147, 149b

quality of life (QoL) and, 152–153

risk and, 151–153

rockstar reputation and, 40b

SDK (software development kit) and, 149

secrecy and, 147–149

Sony and, 152

standards and, 147

sustainability and, 148, 149b–150b

work/play and, 147

Xbox and, 149

DevKits, 29

actor-networks and, 185–186, 192–205, 213, 238, 283n7

development mythology and, 159

distribution of, 200

experimental systems and, 99–100

Game Cube and, 203–204

game design document and, 255, 271

interactivity and, 280n6

leasing of, 200, 204

licensing and, 213–214

non-disclosure agreements (NDAs) and, 202

ownership of, 200

prototypes and, 202

publishers and, 192–205

SDKs and, 200, 202–203

Wii and, 203–204

Dhruva Interactive, 13

Diablo II (game), 75–76

Digital Millennium Copyright Act (DMCA), 225–226, 228, 231,
283nn1,2

DirectX, 97, 107, 225

DIY culture, 230

Dobson, Jason, 227–228

Donkey Kong (game), 42

Downey, G. L., 7, 62

DRM (digital rights management), 228–229, 283n2

DSi, 237

DSTT cartridges, 237

DVD burners, 198, 200

Dyer-Witheford, Nick, 9, 159, 183

ea_spouse, 18–20, 159, 193, 269, 282n9

Electronic Arts (EA), 18, 152, 159, 188, 189t, 232, 243

Emulators, 241

Encryption, 228, 237, 275n1

Engineers

actor-networks and, 170b, 180, 190–191, 193, 196–197, 203–206,
208, 220, 224, 236

anthropological studies of, 6–8, 10–12, 15–16, 17b, 19, 25b, 27–28

artists and, 93–97

data driven design and, 54, 83, 212

development mythology and, 147, 149

experimental systems and, 73–80, 83–96, 278n2, 279n4

format issues and, 111–112

game design document and, 257–260, 262, 264–265, 267t-268t,
270, 284n2

hardcore, 3b

integrated development environment (IDE) and, 107–108, 114,
128, 200, 270

interactivity and, 105b, 106–112, 114–116, 118–128, 131, 133,
280n2

language of, 87–88

leads and, 41–42, 94–97, 100b, 101, 133, 210

managers and, 4, 10, 15, 17b, 19, 41, 43, 58–59, 64–65, 69, 94–97,
108, 130, 133, 139, 141b, 149, 208, 239, 278n2

mind melding and, 80, 85b, 90

mythical man month and, 139

old methods and, 75–76

passion and, 143, 145

path of, 136b

pipelines and, 27–28, 50, 58b, 67, 71b, 72–81, 87–88, 91, 93, 97,
109, 117b, 118–119, 126, 128, 130, 140, 165, 193, 271

preproduction and, 38

producers and, 10, 18–19, 40, 70, 76, 91, 94–97, 121, 140, 154, 156,
176, 183, 202, 204, 210, 226, 230–234, 242, 275n3, 282n6, 283n1

quality of life (QoL) and, 165

research methodology and, 15

responsibilities of, 106–112

Scrum and, 140

secrecy and, 41 (see also Secrecy)

software development and, 110

system structures and, 38, 41–62, 67–68

tools and, 84–94 (see also Tools engineer)

tug of war of, 170b

workflows and, 111

Engines, 7

actor-networks and, 172b, 193, 206–207, 225

artists and, 49

designer passion and, 140

experimental systems and, 74–76, 81, 87–88, 91–92, 94

game design document and, 270–271

interactivity and, 105b, 107, 112–114, 118–119, 123–126

MODs and, 82, 235, 238

system structures and, 46, 49, 58b, 67

Entertainment Software Rating Board (ESRB), 186, 228

Escapist, The (magazine), 21–22

Experimental systems, 27–28, 255

access and, 72, 76, 78–79, 83, 88, 97, 101

animation and, 72, 76, 84, 91

artists and, 71b, 73–80, 82–96, 99, 278n2

assets and, 72, 76–77, 85b, 87, 90–91, 94

AUTHOR_DEV_DILEMMA and, 71b–72b, 84b–86b, 100b–101b

Boss Fights and, 96–101

characters and, 71b, 82, 84, 91

classifications and, 93

collaboration and, 79, 85b–86b, 88–89, 91–93, 95, 98–99

consoles and, 78, 92, 97–101, 279n5

creativity and, 71b, 73, 76, 86b, 88, 95, 98

debugging and, 73–75, 81–84, 89, 92, 99

design data and, 72, 83–84, 94

designers and, 71b, 73–75, 77–81, 83–84, 86b, 87, 91–92, 94–96,
99, 278n2

DevKits and, 99–100

engineers and, 73–80, 83–96, 278n2, 279n4

engines and, 74–76, 81, 87–88, 91–92, 94

fault lines and, 27, 85b, 88–89, 92–97

feedback and, 73, 82, 96–97

flexible technologies and, 73–76

game code and, 72

game functions and, 84

hacking and, 101

hardware and, 78, 97, 99, 100b, 279n5

India and, 75–76, 84, 94–96, 101

integrated tools and, 84

intellectual property (IP) and, 93

interfaces and, 81, 99

labyrinths and, 77–80, 92, 101

legal issues and, 101

licenses and, 75, 77, 98–99, 101

managers and, 94–97, 278n1

manufacturers and, 78, 92, 98–101, 279n5

mind melding and, 80, 85b, 90

networks and, 99–100

Nintendo and, 81, 97–101

non-disclosure agreements (NDAs) and, 72, 75, 98, 101, 279n5

old methods and, 75–76

open source software and, 98–99

open system analysis and, 88

outsourcing and, 75, 84

pipelines and, 71b, 72–81, 87–88, 91, 93, 97

platforms and, 77, 98–100

play and, 71b, 73–74, 78–80, 84, 93, 98

producers and, 76, 91, 94–97

production process and, 100b

programmers and, 76, 85b–86b, 87

publishers and, 74, 87, 91, 99–101

quality of life (QoL) and, 76, 101

real-time previews and, 75

SDK (software development kit) and, 99

secrecy and, 74, 76, 78–79, 83, 98

SET DEMO_MODE and, 71b–72b, 84b–86b, 100b–101b

software and, 75–76, 78, 82–83, 85b, 87, 98–99

Sony and, 81, 97–99

source code and, 83

Spiderman 3 (SM3) and, 77, 83–84, 89, 100b

standards and, 71b, 72–73, 93, 97–98, 101

studios and, 71b, 73–75, 79, 82, 84, 87, 91, 93–96, 99, 101

sustainability and, 83, 101

technical artists and, 79–85

textures and, 82–84, 87, 91–92

tools engineer and, 95

work/play and, 78, 93

work practice and, 98

Xbox and, 73–74, 76, 81

External memory, 193, 195

Facebook, 272

Face-to-face meetings, 96

Fahey, Rob, 229

Family, 136b, 151

Farmer, Paul, 282n5

Fault lines

consoles and, 284n1

experimental systems and, 27, 85b, 88–89, 92–97

face-to-face meetings and, 96

game design document and, 255

interactivity and, 128, 130–132

managers and, 94–97

perpetual startup system and, 155

producers and, 94–97

Feedback

actor-networks and, 176, 183

constructive, 23

development mythology and, 149

experimental systems and, 73, 82, 96–97

game design document and, 250, 262

interactivity and, 32, 108–109, 123, 132–134

loops and, 17, 28, 30

player-game, 9

rants and, 18–24, 26, 69, 203, 207, 269, 277n10

system structures and, 47

Feil, John, 144

Final Fantasy XII (game), 74

Finley, Alyssa, 74, 133, 225

Firmware, 12, 213, 218, 237

First-person shooter games, 82, 156

Flash, 175, 191, 218, 237

Flexible technologies, 73–76

F/Loss (Free/Libre Open Source Software), 98–100, 202

Format, 49–50, 91, 110–111, 119, 124, 200, 269, 275n3

Forsythe, Diana E., 5

Fortun, Kim, 88, 96, 132, 250, 252, 278n2, 280n5

Fortun, Mike, 219, 280n7, 281n4

Fortune Magazine, 31

Franchises, 67, 118, 150, 156, 175, 190–191

Frankfurt School, 63

Freemium games, 272

Friedman, Thomas, 13

Fun

actor-networks and, 170b, 176b, 242

game development mythology and, 150

humor and, 10, 20, 138, 162–163, 204, 281n3

instrumental work/play and, 60–61

interactivity and, 122b, 128

perpetual startup system and, 153

play and, 41, 46–48, 53b, 60–61, 97, 122b, 128, 137, 150, 153, 161–
162, 170b, 176b, 242, 252, 281n3

system structures and, 41, 46–48, 53b, 60–61

FXLabs, 13

Galison, Peter, 27, 88, 93

Galoob, 196

Gamasutra, xiv

Game 3.0, 211–213

Game Boy Advance (GSA), 200, 241, 275n2

Game code, 28. See also Programming languages

experimental systems and, 72

interactivity and, 106, 110, 120, 123, 128

GameCube, 11, 15, 203–204

Game design document

3D (three-dimensional) models and, 258, 261

access and, 252, 255, 266, 267t, 269, 272

actor-networks and, 255–256

animation and, 264t, 268t

artists and, 258, 261, 267t-268t, 269, 284n2

assets and, 270–271

AUTHOR_DEV_DILEMMA and, 249b

Boss Fights and, 269–274

characters and, 265

classifications and, 267t

collaboration and, 251–255, 270–273, 284n1

consoles and, 253, 256, 258–259, 269–272

contents of game and, 249–251

core gameplay and, 262–269

creativity and, 251–252, 255, 272–274, 284nn1,3

crunch and, 252, 255, 259–260, 265, 268–269

debugging and, 258t, 259–261, 264t, 268t

designers and, 269

DevKits and, 255, 271

engineers and, 257–260, 262, 264–265, 267t-268t, 270, 284n2

engines and, 270–271

expo demo and, 257–262

fault lines and, 255

feedback and, 250, 262

game elements and, 262–269

genre and, 30

hacking and, 251

India and, 260, 265

interactivity and, 250–252, 255, 265–266, 269

legal issues and, 253

licenses and, 256, 271, 273–274

manufacturers and, 256, 264t, 267t, 284n1

Microsoft and, 274

mini—games and, 262, 263t, 265, 268

narrative and, 249–251, 257–262

networks and, 264t, 266, 272

new media and, 254, 273

Nintendo and, 249, 253, 271–272, 274, 284n4

non-disclosure agreements (NDAs) and, 273–274

open source software and, 274

pipelines and, 271

platforms and, 253, 270–274, 284nn1,3

play and, 250–254, 260–265, 268–269, 272

preproduction and, 255

publishers and, 256, 260, 264t, 267t, 284n1

risk and, 255, 259

secrecy and, 252, 255, 270, 273–274

SET DEMO_MODE and, 249b

Sony and, 274

studios and, 256–258, 260, 265–266, 267t, 269, 271, 274

sustainability and, 266

textures and, 258, 264, 268t

vertical slice (VS) and, 250–257

work/play and, 254

work practice and, 252

Game Developer magazine, 20, 191, 209

Game Developers Conference (GDC), 15, 269

“Burning Down the House: Game Developer's Rant” and, 20–21

criticism and, 172b–173b

Developer's Choice Awards and, 22

Hecker rant and, 203

information flows and, 206

management sessions and, 139

Nintendo and, 271

non-disclosure agreements (NDAs) and, 206

pipeline clashes and, 119

process sessions and, 139

Sony and, 211

“The Rant Heard ‘round the World” and, 20–21

vault project and, 281n5

vetting and, 163b–164b

Game development

90/10 rule of, 37b

actor-networks and, 169–171 (see also Actor-networks)

amount of digital storage space and, 87

analytic skills and, 23–24, 45–46, 108, 159, 173, 242, 250–257

artists and, 106 (see also Artists)

autonomy and, 7, 39, 181

black art and, 39, 75

breakdowns and, 28, 67–68, 77, 120–121, 133–134, 249, 260,
280n5

budgets and, 20–21, 52, 112, 116, 130, 150–151

the build and, 96, 106, 109–110, 131, 255, 280n6

company inquiry and, 3b

contract developers and, 64, 75

CPU usage and, 49, 112, 198

creativity and, 37, 39, 41, 50–52, 58b, 59–60, 64–70 (see also
Creativity)

credits and, 45, 70, 143–144, 158, 177, 206, 209, 263t, 269

crunch and, 12, 18–21, 28, 65, 75, 137, 141b, 151, 159, 161, 193, 210,
252, 255, 259–260, 265, 268–269

data driven design and, 54, 83, 212

designers and, 106 (see also Designers)

development mythology and, 40 (see also Development
mythology)

distance from consumers and, 171

engineers and, 106 (see also Engineers)

equated with software development, 16–18

experimental systems and, 71–101

firmware and, 12, 213, 218, 237

flat terrain of, 13–14, 32, 182, 203

format and, 49–50, 91, 110–111, 119, 124, 200, 269, 275n3

game design document and, 249–274

gate-keeping and, 75, 108, 119

golden master (GM) and, 80, 138, 278n1

humor and, 10, 20, 138, 162–163, 204, 281n3

independent, 3b, 10, 41, 66, 73–74 (see also Independent
developers)

innovation and, 21, 27, 47, 51–52, 69, 97, 122b, 139, 145, 155, 158,
162, 165, 175b, 179b, 181, 198, 212, 221, 232, 234, 244b, 256

interactivity and, 105–134

interdisciplinarity and, xv, 67–70, 132–134, 234

International Game Developers Association (IGDA) and, 20, 142,
144, 179

leads and, 41–42, 94–97, 100b, 101, 133, 210

managers and, 4, 10, 15, 17b, 19, 41, 43, 58–59, 64–65, 69, 94–97,
108, 130, 133, 139, 141b, 149, 208, 239, 278n2

managing chaos and, 137–140

mini—games and, 45, 262, 263t, 265, 268

mythology of, 147–153

non-disclosure agreements (NDAs) and, 3b, 4, 72, 75, 98, 101, 112,
134, 144, 147, 185, 202, 205–207, 210, 220, 225, 273–274, 279n5

openness and, 86b, 98–101, 172b, 174, 202, 207, 210–215

outsourcing and, 13, 16, 21, 52, 64, 75, 84, 144, 175–180, 204

overtime and, 3b, 18–19, 132, 134, 141b, 150, 152

passion and, 140–147

permanent beta and, 47

perpetual startup system and, 153–159

pipelines and, 27–28, 50, 58b, 67, 71b, 72–81, 87–88, 91, 93, 97,
109, 117b, 118–119, 126, 128, 130, 140, 165, 193, 271

political economy and, 11, 15–16, 137b, 147, 273

producers and, 10, 18–19, 40, 70, 76, 91, 94–97, 121, 140, 154, 156,
176, 183, 202, 204, 210, 226, 230–234, 242, 275n3, 282n6, 283n1

productivity and, 74–76, 137

prototypes and, 11, 38b, 57, 106, 118, 140, 165, 202

quality of life (QoL) and, 159–165

rants and, 18–24

research methodology on, 4–10

reverse engineering and, 196–197

secrecy and, 39 (see also Secrecy)

skill and, 145–146

speaking industry language and, 41–42

system structures and, 37–70

third party, 150, 155, 175–178, 232, 266, 267t

tweaking and, 48, 52, 81, 108, 114, 119

walkthroughs and, 61

work practice and, 3b, 11–18, 21, 24, 26–32 (see also Work
practice)

GameDev.Net, 54, 83, 212

Game Genie, 196

Game industry, 227–228

access to, 140 (see also Access)

acquisitions and, 12–13, 64, 67, 153–156, 177, 204

actor-networks and, 169b–170b, 171–175 (see also Actor-networks)

breaking into, 140–142, 147, 255

budgets and, 20–21, 52, 112, 116, 130, 150–151

corporate restructuring and, 151

development mythology and, 147–153

enterprise culture and, 151

franchises and, 67, 118, 150, 156, 175, 190–191

institutional Alzheimer's and, 207–215

literature on, 4–10

lockout chips and, 196, 204, 220

major shifts in, 187, 271–272

meritocracy and, 44, 151

movies and, 11, 40, 64, 149, 176b, 190–191, 193, 228, 238, 242,
244b, 277n13

NDAs and, 206 (see also Non-disclosure agreements [NDAs])

passion and, 140–147

perpetual startup system and, 153–159

PIPA and, 228

production control and, 202, 223–231, 283n1

profit and, 20, 66–67, 95, 152, 158, 190, 197, 231, 236, 241–243

recruiting new talent and, 153, 165

Seal of Quality and, 182b, 187–188, 193, 196, 198

SOPA and, 227–228

studios and, 3b, 154, 164b, 173, 257–258, 267t, 269 (see also
Studios)

walled gardens and, 271–272

GameLoft, 13

GameMaker system, 270

GameSalad Creator system, 270

Gamestar Mechanic system, 270

Game talk, 43–44

Gamification, 272

Gate-keeping, 75, 108, 119

Gender, 6, 8, 152, 276n6

Genre

development mythology and, 147

game design document and, 30

rant and, 18–24, 26, 69, 203, 207, 269, 277n10

system structures and, 63, 66

“Zero Punctuation” and, 21–22, 277n11

Gill, Rosalind, 6, 226

Gillespie, Tarleton, 226, 229–230, 283nn2,8

Glitches, xii—xiv, 236

Globalization, 5, 7, 9, 13, 16, 30, 69, 96, 158, 203, 275n4

God of War (game), 45

Golden master (GM), 80, 138, 278n1

Google, 15, 31–32, 89, 138, 152, 212, 233, 272

Gourdin, Adam, 160b, 161, 276n6

Gramsci, A., 242, 276n8

Grandma's Boy (film), 132, 149

Guattari, Felix, 222, 276n8, 282n6

Guitar Hero (game), 156

Hacking, 32

actor-networks and, 172b–173b, 206, 213, 231, 234–241, 283n3

black-hat, 163

China and, 237

cracking and, 231, 240–241, 283n3

deep hack mode and, 137, 161, 281n1

DSi and, 237

experimental systems and, 101

firmware and, 237

game design document and, 251

homebrew developers and, 213, 219, 226, 234–243, 253

illegal burning and, 237

Lik-Sang and, 237–239

quality of life (QoL) and, 161–163

remix culture and, 210, 213, 230, 238, 251, 270

Hakken, David, 7, 44, 96, 155–156

Haraway, Donna Jeanne, 23

Hard code, 56, 57, 84, 110

Hardware, 140

actor-networks and, 172b, 176b, 180, 182b, 183–185, 192–193,
200, 203–206, 213–214, 218–219, 224, 226, 235–236, 238, 240,
243, 283n7

anthropological studies and, 1–12, 27

development mythology and, 147, 150b

experimental systems and, 78, 97, 99, 100b, 279n5

firmware and, 12, 213, 218, 237

game design document and, 253, 256, 273

interactivity and, 112, 280n3

non-disclosure agreements (NDAs) and, 206

perpetual startup system and, 157

system structures and, 49–60

Harrison, Phil, 211–212

Harvey, David, 9, 229, 231

Heads-up displays (HUDs), 49

Health meters, 49

Hecker, Chris, 203

Heterogeneity, 31, 220

Hobbyists, 14, 41, 45, 186, 200, 205, 209, 239–242, 270–272

Hoffmann, Erin, 130, 139, 269, 282n9

Homebrew developers

actor-networks and, 213, 219, 226, 234–243, 253

death of, 234–242

licenses and, 234–235

Microsoft and, 241

Nintendo and, 241

piracy and, 226, 234, 236, 240–241

Sony and, 241

Horkheimer, Max, 63

Huizinga, Johan, 8, 39, 79, 146, 162

Humor, 10, 20, 138, 162–163, 204, 281n3

Hyman, Paul, 20

ICE (Immigration and Customs Enforcement), 217b, 229, 230, 235,
237

Id, 150

Identity, 274, 278n6, 282n9

Independent developers

actor-networks and, 173–178, 180, 191–192, 202, 205, 209, 213–
214, 219, 224, 234, 237, 239–241, 244b

anthropological studies and, 3b, 10

experimental systems and, 73–74

game design document and, 256–260, 263t, 267t, 269, 271–272,
274

homebrew developers and, 213, 219, 226, 234–243, 253

interactivity and, 127

perpetual startup system and, 154–156

quality of life (QoL) and, 163, 164b

system structures and, 41, 66

India, 3–4

actor-networks and, 177–180, 198, 203–204, 219, 237

art assets and, 204

best practices and, 139

Bollywood and, 156

booming IT sector of, 14

designers and, 124

development mythology and, 151–152

experimental systems and, 75–76, 84, 94–96, 101

game design document and, 260, 265

Hindu legends and, 156

Hyderabad, 13–14, 179

interactivity and, 118, 124, 129–130, 279n1

interest in US development practices and, 14

lack of portfolios and, 143

Microsoft and, 13–14

NASS-COM and, 179

networks and, 143–144

non-disclosure agreements (NDAs) and, 144

old methods and, 76

perpetual startup system and, 155–157

recession effects in, 16

rework compensation and, 130

similar developer issues in, 14

system structures and, 41, 57, 279n5

Infosys, 152

INI, 92

Innovation

actor-networks and, 175b, 179b, 181, 198, 212, 221, 232, 234, 244b

anthropological studies and, 21, 27

experimental systems and, 97

interactivity and, 122b

game design document and, 256

managing chaos and, 139

passion and, 145

perpetual startup system and, 155, 158

quality of life (QoL) and, 162, 165

system structures and, 47, 51–52, 69

Insomniac Games, 133–134, 206–207

Instrumental work/play, 27

experimental systems and, 93

fun and, 60–61

game design document and, 250–251, 254

goal setting and, 60–62

system structures and, 48, 60–67

work ethic and, 60

Integrated development environment (IDE), 107–108, 114, 128, 200,
270

Intellectual property (IP), 277n13

actor-networks and, 170b, 186, 190–191, 206, 227–228, 232–233,
236–237

copyright and, 29, 147, 188, 196–197, 200, 214, 226, 228, 230–
235, 237–240, 283nn1,2,8

development mythology and, 149b, 150b

DRM and, 228–229, 283n2

experimental systems and, 93

lockout chips and, 196, 204, 220

non-disclosure agreements (NDAs) and, 3b, 4, 147, 205–207, 273

secrecy and, 12, 20, 39–41 (see also Secrecy)

patents and, 4, 15, 29, 31–32, 188, 193–196, 200, 214, 224, 231–
234, 239–240, 284n3

perpetual startup system and, 153–154

piracy and, 196, 213, 226–230, 234, 236, 240–241, 245

system structures and, 60, 64

Interactivity

3D (three-dimensional), 116b, 125b

animation and, 112, 114, 116b, 119, 128, 133

artists and, 28, 105b, 106–107, 110–128, 131–133

assets and, 106–107, 109–118, 123, 128, 130–131

AUTHOR_DEV_DILEMMA and, 105b, 113b, 115b–117b, 121b–
122b, 125b–126b

better processes and, 280n7

Boss Fights and, 132–134

characters and, 110, 116b, 127

classifications and, 120–121

collaboration and, 106, 111, 113b, 124, 132–133

consoles and, 111, 118

creativity and, 106, 116b, 121b–122b, 132, 280n4

crunch and, 28

data generation and, 123–124

debugging and, 107–108, 118–120, 128, 134

design data and, 110, 127

designers and, 105b, 106–107, 110–114, 118, 121–131

development mythology and, 149

DevKits and, 280n6

engineers and, 105b, 106–112, 114–116, 118–128, 131, 133, 279n4,
280n2

engines and, 105b, 107, 112–114, 118–119, 123–126

fault lines and, 128, 130–132

feedback and, 32, 108–109, 123, 132–134

fetishization of, 108–109, 139–140

game code and, 106, 110, 120, 123, 128

game design document and, 250–252, 255, 265–266, 269

gate-keeping and, 108, 119

hardware and, 112, 280n3

India and, 118, 124, 129–130, 279n1

interdisciplinarity and, 132–134

interfaces and, 112

licenses and, 116b, 134

managers and, 108, 130, 133

mangle of practice and, 107

narrative and, 122b

networks and, 109

Nintendo and, 118

non-disclosure agreements (NDAs) and, 112, 134

open source software and, 109

Peaches software and, 125b, 126–127

pipelines and, 109, 117b, 118–119, 126, 128, 130

platforms and, 107, 116b

play and, 31, 106, 110, 116b, 124, 128, 132, 275n1

producers and, 121

production process and, 106, 113b, 114, 117b

programmers and, 105b, 112, 119–120, 123, 125b, 133–134

quality of life (QoL) and, 136b

secrecy and, 121, 131

SET DEMO_MODE and, 105b, 113b, 115b–117b, 121b–122b, 125b–
126b

software and, 105b, 107, 110–111, 116b, 121b, 123, 125b, 126, 130–
131, 279n1, 280n6

source code and, 107–108, 123

Spiderman 3 (SM3) and, 106, 110, 114, 125b–126b, 127

standards and, 120–122, 127, 134

studios and, 109, 114, 116b, 118–119, 124, 129–130, 133–134

sustainability and, 134

synchronization and, 28, 106, 128–132

tech and, 126–127, 131

textures and, 112–119, 121b

work/play and, 31, 275n1

Interdisciplinarity, xv

actor-networks and, 234

interactivity and, 132–134

system structures and, 68–70, 132

Interfaces

experimental systems and, 81, 99

health meters and, 49

HUDs and, 49

interactivity and, 112

Inter/intranetworks, 13, 31, 169b, 171, 173, 181–182

International Game Developers Association (IGDA), 20, 142, 144,
179

Internet Service Providers (ISPs), 171

iOS, 100, 204, 271, 274, 284n1

iPad, 271

iPhone, 207, 271

iPod Touch, 271

iTunes, 157

Iwata, Satoru, 271

James, E. C., 146

Jenkins, Henry, 8

Jenkins, Leeroy, 138, 281n3

Jet Propulsion Labs, 25b

Jones, S. E., 203

Karraker, Dave, 240

Kazemi, Darius, 20, 66–67, 95, 152, 158, 190, 197, 231, 236, 241–243

Kelly, John D., 9, 66

Kent, Steven L., 158, 183

Kickstarter, 271–272

Kline, Stephen, 161, 183, 282n1

Knorr-Cetina, Karin D., 59, 79, 88, 129, 131

Konami Code, 41, 189t

Kuhn, Sarah, 28, 131, 278n7

Labyrinthine secrecy, 77–80, 92, 101

Larsen, Judith K., 151

Lashinsky, Adam, 32

Latour, Bruno, 5, 26, 79, 250

actor-networks and, 29, 173, 218–221, 238, 281n6

A Sociology of Monsters and, 218

“Technology Is Society Made Durable” and, 218

Law, John, 220, 222–223

Leads, 41–42, 94–97, 100b, 101, 133, 210

Legal issues

actor-networks and, 174, 182, 185, 188, 196, 200–206, 213, 220,
223–241, 245

cartels and, 66

criminal penalties and, 226

development mythology and, 148

Digital Millennium Copyright Act (DMCA) and, 225–226, 228,
231, 283nn1,2

experimental systems and, 101

extralegal aspects and, 220, 237, 276n8

game design document and, 253

Game Developers Conference (GDC) and, 163b

India and, 144

lawyers and, 32, 233

Lik-Sang and, 237–239

litigation and, 32, 196–197, 231–234, 238–239

lockout chips and, 196, 204, 220

non-disclosure agreements (NDAs) and, 3b, 4, 72, 75, 98, 101, 112,
134, 144, 147, 185, 202, 205–207, 210, 220, 225, 255, 273–274,
279n5

patents and, 4 (see also Patents)

SEC filings and, 4, 15, 21, 231, 243, 282n6

secrecy and, 174 (see also Secrecy)

system structures and, 66

Leigh Star, Susan, 89, 93, 120

Lessig, Lawrence, 230–231, 282n2

Lévi–Strauss, Claude, 63–64

Libre software, 98, 161, 275n4

Licenses, 21, 29, 137b

actor-networks and, 170b, 176b, 182–192, 195–198, 207, 210, 213–
214, 232–236, 240–243, 282n3

development mythology and, 147, 150

DevKits and, 213–214

experimental systems and, 75, 77, 98–99, 101

game design document and, 256, 271, 273–274

homebrew developers and, 234–235

interactivity and, 116b, 134

perpetual startup system and, 154–155, 157

profits from, 277n13

Seal of Quality and, 182b, 187–188, 193, 196, 198

Lik Sang, 237–239

Linden Labs, 7, 18, 276n7

Linux, 25b, 237, 284n4

Litigation, 32, 196–197, 231–234, 238–239

LiveJournal, 18, 159

Lockout chip, 196, 204, 220

Lost Toys Studio, 224–225

Lua, 73, 123

Lure of Actions (game), 67

Lyotard, Jean-François, 9

Mac OS, 25b, 81, 107, 275n1, 284n4

Madden NFL, 191

Mad Magazine, 277n5

Malaby, Thomas M., 7, 17

Malliet, Steven, 183, 204

Managers

actor-networks and, 208, 239

anthropological studies and, 4, 10, 15, 17b, 19

artists and, 94–97

chaos management and, 137–140

development mythology and, 149

experimental systems and, 94–97, 278n1

face-to-face meetings and, 96

fault lines and, 94–97

formal techniques and, 96

game developer mythology and, 149

Game Developers Conference (GDC) and, 139

groups and, 95

immaturity of, 141b

interactivity and, 108, 130, 133

internal resources and, 95

multiple projects and, 95

relating parts to whole and, 96–97

secrecy and, 41 (see also Secrecy)

system structures and, 41, 43, 58, 64–65, 69, 278n2

Manufacturers

actor-networks and, 172b, 173–174, 178, 181, 183–188, 193, 198,
200, 202, 205–210, 213–214, 218, 224–225, 233, 236–245, 283n1

consoles and, 10 (see also Consoles)

experimental systems and, 78, 92, 98–101, 279n5

game design document and, 256, 264t, 267t, 284n1

perpetual startup system and, 154, 156–158

secrecy and, 41, 147 (see also Secrecy)

system structures and, 41, 64

Mario Factory system, 284n3

Martin, Chase Bowen, 159

Martin, Emily, 59

Massively Multiplayer Online Games (MOOGs), 156

Maya, 50, 72, 82, 87, 114, 119, 125b, 204

McAllister, Ken S., 8

Meritocracy, 44, 151

Microsoft, 16, 21

actor-networks and, 172b, 179, 186, 189t, 202, 213, 224, 241–242

Age of Empires and, 133

Casual Games Group and, 14, 179

development mythology and, 152

experimental systems and, 81, 97–99

game design document and, 274

homebrew developers and, 241

India and, 13–14, 156–157, 179

multiple systems and, 99

Outlook and, 106

proprietary standards and, 98

Windows and, 25b, 81, 107, 109, 284n4

Xbox and, 15, 73–74, 76, 81, 140, 149, 156, 179, 213, 224–225,
242–243

XNA and, 97, 202, 213

Middleware, 99, 126, 266, 270

Mind melding, 80, 85b, 90

Mini-games, 45, 262, 263t, 265, 268

Minus World, xiii–xiv

Miyamoto, Shigeru, 16, 21, 45

MOD chips, 235, 237

MOD (modification), 82, 235, 238

Molyneux, Peter, 45

Montfort, N., 203

Movies, 64, 242

digital players and, 228

DVD region and, 238

as hit-driven industry, 190

popular culture and, 40, 149

profit and, 176b, 244b, 277n13

publisher partnerships and, 11, 191, 193

sequels model and, 149b

Mozilla Thunderbird, 106

MS-DOS, 81

Murata, Taku, 74

Nakagawa, Katsuya, 193

Nardi, Bonnie A., 8

Narrative, 22, 30

actor-networks and, 221

feedback and, 9

game design document and, 249–251, 257–262

interactivity and, 122b

system structures and, 63

unfolding of, 26

National Association of Software and Service Companies (NASS-
COM), 179

National Science Foundation (NSF), 13, 276n5

Neff, Gina, 6, 39, 47, 151–152, 154, 181

Nehe Productions, 54

Networks

access and, 3, 5, 8, 12, 20, 41, 44, 64, 68, 275n1, 281n8

actor-networks and, 29 (see also Actor-networks)

breaking into, 140, 142

closed, 20, 181, 185

development mythology and, 147

distribution, 29, 179, 224, 243

experimental systems and, 99–100

flows of knowledge and, 171

game design document and, 264t, 266, 272

India and, 143–144

information sharing and, 164b

interactivity and, 109

inter/intranetworks and, 13, 31, 169b, 171, 173, 181–182

multidirectional model and, 155

multiplayer games and, 252

open, 173–174

perpetual startup system and, 155–158

political-economic, 137b

Seal of Quality and, 182b, 187–188, 193, 196, 198

secrecy and, 14 (see also Secrecy)

shared folders and, 109

social, 6, 146, 155, 177, 181, 272

system structures and, 43, 64, 171

VCS and, 109

New media, 3b, 5–6, 32

actor-networks and, 230–234

development mythology and, 152

game design document and, 254, 273

perpetual startup system and, 154

system structures and, 39, 47

Newsweek magazine, 9

Nintendo

actor-networks and, 176b, 182b, 183, 186–190, 193, 195–206, 213,
220, 226–228, 233–237, 241–242, 282n3, 284n4

business model of, 21

copyright and, 188, 196–197, 237

development mythology and, 150b

DS and, 15, 56–58, 100b, 116b, 118, 156–157, 203, 206, 234–237,
241, 253–254, 261, 265, 272, 274

DSi and, 237

experimental systems and, 72, 75, 81, 97–101

Famicom and, 196, 200

Galoob and, 196

Game Boy Advance (GBA) and, 200, 241, 275n2

GameCube and, 11, 15, 203–204

game design document and, 249, 253, 271–272, 274, 284n4

Game Developers Conference (GDC) and, 271

homebrew developers and, 241

interactivity and, 112, 118, 134

Iwata and, 271

Lik-Sang and, 237

lockout chips and, 196, 204, 220

loss of credibility and, 271

N64 and, 25b, 198, 284nn1,3

Nakagawa and, 193

Nintendo Entertainment System (NES) and, xi, xiii, xvi, 26, 41, 98,
183, 187–188, 193, 195–203, 207, 213, 277n3

patents and, 188, 193–196, 284n3

perpetual startup system and, 156–157

Picture Processing Unit (PPU) and, 198

Seal of Quality and, 182b, 187–188, 193, 196, 198

Special 301 process and, 227

system structures and, 41, 57–58, 277n3

Wii and, 15–16, 81, 110, 202–204, 233, 235–236, 243, 271

Nocturnal Initiative, 206

Non-disclosure agreements (NDAs)

actor-networks and, 185, 202, 205–207, 210, 220, 225

backlash against, 205, 207

culture of, 207

development mythology and, 147

experimental systems and, 72, 75, 98, 279n5

game design document and, 273–274

hardware and, 206

passion and, 144

pervasiveness of, 205–206

work practice and, 3b, 4, 72, 75, 98, 101, 112, 134, 144, 147, 185,
202, 205–207, 210, 220, 225, 273–274, 279n5

O’Donnell, Casey, xv, 7, 29, 270, 275nn3,4, 277n12, 284n3

Omi, Michael, 8, 220

OpenGL, 56, 107

Openness

actor-networks and, 172b, 174, 202, 207, 208–215

experimental systems and, 86b, 98–101

interactivity and, 109

Open source software

actor-networks and, 206, 237, 241

deep hack mode and, 281n1

experimental systems and, 98–99

game design document and, 274

interactivity and, 109

Nocturnal Initiative and, 206

quality of life (QoL) and, 161

Open systems, 88, 97

Orr, Julian E., 6, 44, 92, 143

Outsourcing

actor-networks and, 175–180, 204

experimental systems and, 75, 84

passion and, 144

system structures and, 52, 64

work practice and, 13, 16, 21, 52, 64, 75, 84, 144, 175–180, 204

Overtime. See Crunch

Passion

artists and, 145

attention to practice and, 143

collaboration and, 145

creativity and, 145–146

engineers and, 143, 145

importance of, 140–147

non-disclosure agreements (NDAs) and, 144

outsourcing and, 144

overtime and, 142

play and, 141b, 142–146

risk and, 146

secrecy and, 142–147, 156–157

skill and, 145–146

work practice and, 140–147

Patents

actor-networks and, 29, 188, 193–196, 200, 214, 224, 231–234,
239–240, 284n3

China and, 237

copyright and, 29 (see also Copyright)

DSTT cartridges and, 237

expanded use of, 32

Google Patent Search and, 15

intellectual property (IP) and, 4, 15, 29, 31–32, 188, 193–196, 200,
214, 224, 231–234, 239–240, 284n3

litigation and, 239–240

lockout chips and, 196, 204, 220

Nintendo and, 188, 193–196, 284n3

R4 cartridges and, 237

risk and, 231–234

Securities and Exchange Commission (SEC) and, 4, 31

PC platform, 20

actor-networks and, 174–175, 183–185, 200, 204, 209, 214, 225,
238, 241, 283n8, 284n4

experimental systems and, 74

platform differences and, 116b, 140

Peaches (software), 125b, 126–127

Pentland, Brian T., 163

Permanent beta, 47

Perpetual startup system

access and, 155, 157–158

acquisitions and, 12–13, 64, 67, 153–156, 177, 204

creativity and, 153

fail and learn approach and, 154

fault lines and, 155

franchises and, 156

hardware and, 157

India and, 155–157

intellectual property (IP) and, 153–154

licenses and, 154–155, 157

manufacturers and, 154, 156–158

networks and, 155–158

Nintendo and, 156–157

platforms and, 157

play and, 154, 158

producers and, 154, 156

publishers and, 154, 156–158

risk and, 153–158

Sony and, 157

sustainability and, 153

Xbox and, 156

Perrow, Charles, 132, 280n5

Perry, D., 47

Photoshop, 49b, 73, 114, 119

Pickering, Andrew, 5, 107, 130, 280n3

Picture Processing Unit (PPU), 198

Pinch, Trevor, 210

Pipelines

actor-networks and, 193

amount of digital storage space and, 87

artists and, 27–28, 50, 58b, 67, 71b, 72–81, 87–88, 91, 93, 97, 109,
117b, 118–119, 126, 128, 130, 140, 165, 193, 271

assets and, 140, 281, 281n5

engineers and, 27–28, 50, 58b, 67, 71b, 72–81, 87–88, 91, 93, 97,
109, 117b, 118–119, 126, 128, 130, 140, 165, 193, 271

experimental systems and, 71b, 72–81, 87–88, 91, 93, 97

flexible technologies and, 73–76

game design document and, 271

importance of, 72–80

interactivity and, 74, 109, 117b, 118–119, 126, 128, 130

old methods and, 75–76

possibilities of, 73

real-time previews and, 75

recession into background of, 72

Scrum and, 140, 165

secrecy and, 74–76, 78–79

standards and, 72–73

work focus and, 73

Piracy

DRM (digital rights management) and, 228–229, 283n2

homebrew developers and, 226, 234, 236, 240–241

intellectual property (IP) and, 196, 213, 226–230, 234, 236, 240–
241, 245

lockout chip and, 196, 204, 220

openness and, 213

PIPA and, 227–228

SOPA and, 227–228

Platforms, 25, 140. See also specific type

actor-networks and, 177, 179–180, 183, 200, 202–204, 215, 221,
224–225, 236, 243, 284n4

development mythology and, 150b

experimental systems and, 77, 98–100

game design document and, 253, 270–274, 284nn1,3

interactivity and, 107, 116b

perpetual startup system and, 157

system structures and, 51, 277n5

Play, 6, 276n6

actor-networks and, 171, 175, 179b, 184, 186, 188, 190, 198, 203,
205, 213–214, 222, 228, 232, 235–238, 241, 245

designers and, 124

development mythology and, 147–151

experimental systems and, 71b, 73–74, 78–80, 84, 93, 98

flow state and, 281n1

fun and, 41, 46–48, 53b, 60–61, 97, 122b, 128, 137, 150, 153, 161–
162, 170b, 176b, 242, 252, 281n3

game design document and, 250–254, 260–265, 268–269, 272

gender and, 8

instrumental, 27, 48, 60–67, 93, 250–251, 254

interactivity and, 31, 106, 110, 116b, 124, 128, 132, 275n1

managing chaos and, 137, 139

mods and, 8

narrative and, 30 (see also Narrative)

new modes of work practice and, 32

passion and, 141b, 142–146

perpetual startup system and, 154, 158

quality of life (QoL) and, 159–162

spaces of, 8, 17, 128

system structures and, 39, 41–42, 46–48, 60–68, 277n2

PlayStation 3 (PS3), 15, 157, 237–238, 240, 242

PlayStation Portable (PSP), 11–12, 15, 67, 110, 157, 234–240

Political economy, 11, 15–16, 137b, 147, 273

Polygons, 50, 116, 261

Popeye (game), 42

Porting, 225

Postigo, Hector, 82, 283n7

Post-Marxism, 8

Postmortems, 209

Preproduction, 27

actor-networks and, 220

early phases of, 38

experimental systems and, 71–101

game design document and, 255

interactivity and, 105–134

quality assurance (Q/A) and, 138, 149, 182b, 224

secrecy and, 12, 20, 39–41 (see also Secrecy)

system structures and, 35–70

Prices, 21, 41–42, 133, 184, 190, 229, 253, 256, 272, 279n1

Princess Bride, The (film), 242

Probst, Larry, 159, 1590

Producers, 10, 18–19

actor-networks and, 176, 183, 202, 204, 210, 226, 230–232, 234,
242, 282n6, 283n1

artists and, 94–97

content, 275n3

experimental systems and, 76, 91, 94–97

face-to-face meetings and, 96

fault lines and, 94–97

formal techniques and, 96

interactivity and, 121

managing chaos and, 140

multiple projects and, 95

perpetual startup system and, 154, 156

product quality and, 95

profits and, 95

schedules and, 95

secrecy and, 41, 213 (see also Secrecy)

system structures and, 40, 70

Production control

actor-networks and, 202, 223–231, 283n7

baking data and, 225

China and, 237

cracking and, 231, 240–241, 283n3

DSTT cartridges and, 237

Lik-Sang and, 237–239

Linux and, 237

MOD chips and, 235, 237

patents and, 4 (see also Patents)

PIPA and, 228

porting and, 225

protection measures and, 223–231

quality assurance (Q/A) and, 46, 138, 149, 182b, 224

R4 cartridges and, 237

search warrants and, 229

SOPA and, 227–228

Special 301 process and, 227

walled gardens and, 271–272

Production process, 27

actor-networks and, 222

experimental systems and, 100b

interactivity and, 106, 113b, 114, 117b

preproduction and, 39 (see also Preproduction)

system structures and, 39, 64, 69

Productivity, 74–76, 137

Profit

game industry and, 20, 66–67, 95, 152, 158, 190, 197, 231, 236,
241–243

movie industry and, 176b, 244b, 277n13

prices and, 21, 41–42, 133, 184, 190, 229, 253, 256, 272, 279n1

Programmers, 136b

actor-networks and, 172b, 197, 203, 210, 225, 235

anthropological studies of, 4, 26

artists and, 54

different term meanings for, 119

experimental systems and, 76, 85b–86b, 87

interactivity and, 105b, 112, 119–120, 123, 125b, 133–134

quality of life (QoL) and, 162

system structures and, 50, 53–56, 57b–58b, 61b, 67, 69

work practice and, 16

Programming languages, 53, 197

C, 53

C# 97, 123

C++, 53

DirectX, 97, 107, 225

Lua, 73, 123

OpenGL, 56, 107

Python, 73

Ruby, 123

XML, 73, 92, 112, 123–124, 206, 274

Protect IP Act (PIPA), 228

Prototypes, 11, 38b, 57, 106, 118, 140, 165, 202

Publishers

actor-networks and, 169b–170b, 172b, 173–178, 181–184, 186,
188–193, 204, 206–210, 213–214, 218, 224–225, 239–241

anthropological study of, 10, 12, 18, 21, 25b

consumers and, 191

development mythology and, 147, 149b

DevKits and, 192–205

experimental systems and, 74, 87, 91, 99–101

game design document and, 256, 260, 264t, 267t, 284n1

managing chaos and, 138–139

money of, 169b–170b

perpetual startup system and, 154, 156–158

quality of life (QoL) and, 164b

secrecy and, 41 (see also Secrecy)

system structures and, 41, 60, 64

Puzzles, 255, 257–262, 268t, 284n2

Python, 73

Quality assurance (Q/A), 46, 138, 149, 182b, 224

Quality of life (QoL), 15

access and, 159

acquisitions and, 12–13, 64, 67, 153–156, 177, 204

artists and, 160b, 161, 165

autonomy and, 7, 39, 181

Boss Fights and, 159–165

collaboration and, 161, 163, 164b

creativity and, 161

credits and, 45, 70, 143–144, 158, 177, 206, 209, 263t, 269

crunch and, 12, 18–21, 28, 65, 75, 136b–137b, 139, 141b, 151, 159,
161, 193, 210, 252, 255, 259–260, 265, 268–269

debugging and, 162–163

designers and, 159, 161

development mythology and, 40, 152–153

ea_spouse and, 18–20, 159, 193, 269, 282n9

engineers and, 165

experimental systems and, 76, 101

family and, 136b, 151

fun and, 41, 46–48, 53b, 60–61, 97, 122b, 128, 137, 150, 153, 161–
162, 170b, 176b, 242, 252, 281n3

hacking and, 161–163

individualistic barriers and, 163

interactivity and, 136b

meritocracy and, 44, 151

open source software and, 161

overtime and, 3b, 12, 18–19, 28, 65, 132, 134, 135b–137b, 139,
141b, 142, 150, 152, 269

phenomenology of the zone and, 161

play and, 159–162

programming and, 162

publishers and, 164b

rants and, 18–24

recruiting new talent and, 153, 165

rise and fall of, 159–165

secrecy and, 20, 165

sustainability and, 159, 160b

work/play and, 159–162

work practice and, 163

R4 cartridges, 237

Rabbit program, 197, 282n4

Ragaini, Toby, 210

“Rant Heard ‘round the World, The” (Costikyan), 20–21

Rants

“Burning Down the House: Game Developer's Rant” and, 20–21

ea_spouse and, 18–20, 159, 193, 269, 282n9

genre of, 18–24, 26, 69, 203, 207, 269, 277n10

mechanics of, 18–24

off the record, 203

quality of life (QoL) and, 18–24

“Zero Punctuation” and, 21–22, 277n11

Ratchet and Clank (game), 206

Really Simple Syndication (RSS), 212–213

Real-time previews, 75

RedOctane, 13

Remix culture, 210, 213, 230, 238, 251, 270

Resistance: Fall of Man (game), 69, 206

Reverse engineering, 196–197

Rheinberger, Hans-Jörg, 27, 77–78, 80, 107

Rise of Nations (game), 209

Risk, 21, 161

actor-networks and, 175b, 179b, 186–188, 190–192, 213–214, 225–
226, 229, 231–234, 243, 245

copyright and, 231–234

development mythology and, 151–153

game design document and, 255, 259

passion and, 146

patents and, 231–234

perpetual startup system and, 153–158

rework compensation and, 130

system structures and, 38b, 64

Road Rush (game), 42

Rogers, Everett M., 151

Romero, John, 45

Ross, Andrew, 7

Rovio, 271

Royalties, 21, 243

Ruby, Aaron, 8

Ruby (programming language), 123

Safety, 238–239

Salen, Katie, 47, 106, 132

Scarselletta, Mario, 108

Schadt, Toby, 228, 233

Schell, Jesse, 47

Schüll, Natasha Dow, 7, 28, 137

Scott, James C., 227, 230

Scratch system, 270

Scripts, 127

Scrum, 139–140, 165

Seal of Quality, 182b, 187–188, 193, 196, 198

Search warrants, 229

Second Life, 17–18, 276n7

Secrecy

actor-networks and, 174, 180, 202, 204–209, 214, 220, 226, 237,
243

air of mystique and, 12

black art and, 39, 75

blogs and, 274

culture of, 79, 98, 142, 145–147, 207, 220, 273

development mythology and, 147–149

encryption and, 228, 237, 275n1

experimental systems and, 74, 76, 78–79, 83, 98

game design document and, 252, 255, 270, 273–274

gate-keeping and, 75, 108, 119

as hindrance, 209–210

interactivity and, 121, 131–132

labyrinths and, 77–80, 92, 101

managing chaos and, 139–140

non-disclosure agreements (NDAs) and, 3b, 4, 72, 75, 98, 101, 112,
134, 144, 147, 185, 202, 205–207, 210, 220, 225, 255, 273–274,
279n5

passion and, 142–147

pervasiveness of, 39, 142

pipelines and, 74–76, 78–79

producers and, 213

quality of life (QoL) and, 20, 165

resisting documentation and, 44

scale and, 41

speaking industry language and, 41–42

system structures and, 39–41, 44, 54b, 61, 64

Sequels, 118, 149b, 150, 179b

SET DEMO_MODE

actor-networks and, 169b–170b, 172b–173b, 175b–176b, 178b–
179b, 182b–183b, 217b, 244b

crunch and, 141b

experimental systems and, 71b–72b, 84b–86b, 100b–101b

game design document and, 249b

Game Developers Conference (GDC) and, 163b–164b

interactivity and, 105b, 113b, 115b–117b, 121b–122b, 125b–126b

sequels and, 149b–150b

sustainability and, 160b

system structures and, 37b, 40b, 46b, 48b–49b, 53b–54b, 57b–
58b, 61b–62b

tutorial level and, 3b–4b, 17b, 25b

work/home balance and, 135b–137b

SET_WARNING_LEVEL, 5b

Sharman, Zena, 9, 159

Sheff, David, 282n1

Shrek 3, 175

Sicart, Miguel, 30

Silicon Graphics Workstations, 25b

Sims, The (game), 49, 159

Smith, Dorothy E., 29, 31, 221–223

Smith, Marcus, 69, 134

Smith, Vicki, 7

Social networks, 6, 146, 155, 177, 181, 272

Sociology of Monsters, A (Latour), 218

Software, 160b

actor-networks and, 176b, 178–180, 185–186, 191, 193, 200, 203–
207, 210, 213–214, 218–223, 226, 230–231, 283nn8,9

artists and, 50

debugging and, 26 (see also Debugging)

deep hack mode and, 137, 161, 281n1

engineering and, 16, 87, 110, 139, 257–258, 270 (see also
Engineers)

engines and, 7, 49, 58b, 67, 74–76, 87–88, 91–92, 94, 105b, 107,
112–114, 118

experimental systems and, 75–76, 78, 82–83, 85b, 87, 98–99

firmware and, 12, 213, 218, 237

game design document and, 256–258, 264t, 265, 267t, 270, 273–
274

game development equated with, 16–18

interactivity and, 105b, 107, 110–111, 116b, 121b, 123, 125b, 126,
130–131, 279n1, 280n6

leveraging systems and, 27

as malleable society, 218–223

managing chaos and, 139–140

middleware and, 99, 126, 266, 270

open source, 98–99, 109, 161, 206, 237, 241, 274, 281n1

passion and, 146

PSP market and, 11

research methodology and, 275n1

SDK and, 12 (see also Software development kit [SDK])

system structures and, 46–52, 48b, 49–52, 53b–54b, 59–60, 67

work practice and, 10 (see also Work practice)

Software development kit (SDK), 12

actor-networks and, 185–186, 193, 200, 202–204, 283n7

as applied to text, 4–10

experimental systems and, 99

Sony, 16

actor-networks and, 186, 189t, 198, 202, 211–212, 234–242

copyright and, 238

experimental systems and, 81, 97–99

game design document and, 274

homebrew developers and, 241

Lik-Sang and, 238–239

Linux and, 237

perpetual startup system and, 152, 157

PlayStation 3 (PS3) and, 15, 157, 237–238, 240, 242

PlayStation Portable (PSP) and, 11–12, 15, 67, 110, 157, 234–240

Source code

actor-networks and, 178, 197, 205, 207, 210

debugging and, 26

experimental systems and, 83

interactivity and, 107–108, 123

system structures and, 54

Special 301 process, 227

Spiderman 3 (SM3)

experimental systems and, 77, 83–84, 89, 100b

interactivity and, 106, 110, 114, 125b–126b, 127

system structures and, 39

Spyro (game), 206

Spy vs. Spy (game), 43, 46, 277n5

Square Enix, 74, 189t

Standards

actor-networks and, 203, 210–214, 224, 238

development mythology and, 147

experimental systems and, 71b, 72–73, 93, 97–98, 101

IGDA Credit Standards Committee and, 144

interactivity and, 120–122, 127, 134

managing chaos and, 140

pipelines and, 72–73

Stark, David, 47

Steam system, 271–272

Stop Online Piracy Act (SOPA), 227–228

Studios

AAA, 3b, 110, 116b, 271

actor-networks and, 150 (see also Actor-networks)

anthropological studies and, 3b, 4, 9–18, 21

development mythology and, 147–153

experimental systems and, 71b, 73–75, 79, 82, 84, 87, 91, 93–96,
99, 101

game design document and, 256–258, 260, 265–266, 267t, 269,
271, 274

independent, 3b, 154, 164b (see also Independent developers)

interactivity and, 109, 114, 116, 118–119, 124, 129–130, 133–134

managing chaos and, 137–140

passion and, 140–147

perpetual startup system and, 153–159

quality of life (QoL) and, 159–165

system structures and, 38b, 39–41, 45, 47, 50, 64–69

Suchman, Lucy, 6–7

Super Mario Bros. (SMB) (game), xi, xiii, 26–32, 41, 71b, 236, 254

Sustainability

actor-networks and, 186, 213–214, 244b, 253, 256

AUTHOR_DEV_DILEMMA and, 160b

development mythology and, 148, 149b–150b

experimental systems and, 83, 101

game design document and, 266

interactivity and, 134

perpetual startup system and, 153

quality of life (QoL) and, 159, 160b

Sutton-Smith, Brian, 8, 145

SVN (subversion), 109, 279n1

Synchronization, 28, 106, 128–132

System structures, 27, 254

3D, 49–50, 54–56

access and, 41, 44, 64, 68, 277n1

animation and, 49, 51–56, 69, 278nn8,9

artists and, 38, 40b, 41, 45, 48–61, 64, 66, 68–69

assets and, 37b, 49b, 50, 52, 59–60

AUTHOR_DEV_DILEMMA and and, 37b–38b, 48b–49b, 53b–
54b, 57b–58b, 61b–62b

Boss Fights and, 67–70

characters and, 49b

collaboration and, 41, 44, 51–56, 60–61, 65, 67–70

consoles and, 40b, 41, 45, 58, 64, 277nn2,5

creativity and, 37, 39, 41, 50–52, 58b, 59–60, 64–70

debugging and, 37b, 59

design data and, 56, 60

designers and, 38, 40, 43, 45–56, 58b, 59–61, 63–65, 68, 70,
278nn6,7

engineers and, 38, 41–62, 67–68

engines and, 46, 49, 58b, 67

feedback and, 47

game talk and, 43–44

genre and, 63, 66

hardware and, 49–60

India and, 41, 57, 279n5

intellectual property (IP) and, 60, 64

interdisciplinarity and, 68–70, 132

legal issues and, 66

managers and, 41, 43, 58, 64–65, 69

manufacturers and, 41, 64

narrative and, 63

networks and, 43, 64, 171

new media and, 39, 47

Nintendo and, 41, 57–58, 277n3

outsourcing and, 52, 64

permanent beta and, 47

platforms and, 51, 277n5

play and, 39, 41–42, 46–48, 60–68, 277n2

producers and, 40, 70

production process and, 39, 64, 69

programmers and, 50, 53–56, 57b–58b, 61b, 67, 69

publishers and, 41, 60, 64

quality assurance (Q/A) and, 46

secrecy and, 39, 41, 44, 54b, 61, 64

SET DEMO_MODE and, 37b, 40b, 46b, 48b–49b, 53b–54b, 57b–
58b, 61b–62b

software and, 46–52, 53b–54b, 59–60, 67

source code and, 54

speaking industry language and, 41

Spiderman 3 (SM3) and, 39

studios and, 38b, 39–41, 45, 47, 50, 64–69

talking the game design talk and, 38–48

technical artists and, 52, 68

textures and, 49, 51, 64, 278n8

tools engineer and, 68

work/play and, 60–67

work practice and, 44

Taylor, T. L., 8, 27, 60, 62–63, 82

Tech, 126–127, 131

Technical artists, 27

amount of digital storage space and, 87

backgrounds of, 45

communication and, 84b–86b

experimental systems and, 79–85

interactivity and, 105b, 114, 119, 123–124, 126, 128, 133

language of, 87–88

mapping and, 89–91

as mediator, 87–88

negotiated exchange and, 93

open system analysis and, 88

rise of, 84–94

scale and, 89–90

system structures and, 52, 68

“Technology Is Society Made Durable” (Latour), 218

Tengen, 188, 195–197

TEXT, 92

Textures

experimental systems and, 82–84, 87, 91–92

game design document and, 258, 264, 268t

interactivity and, 112–119, 121b

managing chaos and, 138

system structures and, 49, 51, 64, 278n8

Third party development, 150, 155, 175–178, 232, 266, 267t

Thiruvathukal, G. K., 203

Time magazine, 9

Tinkering, 73, 75, 234, 241

TinyXML, 206, 274

Tools engineer, 10, 27

amount of digital storage space and, 87

backgrounds of, 45

experimental systems and, 79–80, 84–95

interactivity and, 105b, 110, 114, 119, 123–128, 133, 279n4

language of, 87–88

mapping and, 89–91

negotiated exchange and, 93

open system analysis and, 88

rise of, 84–94

scale and, 89–90

system structures and, 68

Train, Tim, 209

Transparency, 109, 208–210

Traweek, Sharon, 27, 43–44, 88, 181, 312

Tsing, Anna Lowenhaupt, 9, 67

Turkle, Sherry, 59

Turnbull, David, 148

Tutorial level

AUTHOR_DEV_DILEMMA and, 3b, 25b

Boss Fights and, 31–33

consoles and, 10–11, 15, 29

debugging and, 24–31

SDK (software development kit) and, 4–10

SET DEMO_MODE and, 3b–4b, 17b, 25, 25b

work practice and, 5–7, 9–10, 13, 16, 18, 26, 30–33

Tutorials, 45, 49, 228

Tweaking, 48, 52, 81, 108, 114, 119

Twitter, xiii, 276n6

Unity system, 75, 77, 270–271

Unreal Engine system, xx, 77, 270–271

Unreal Tournament (game), 77

U.S. Securities and Exchange Commission (SEC), 4, 15, 21, 231, 243,
282n6

UTV Software, 155–156

Valve, 271

Varma, Roli, 9, 180

VCS (version control system), 96, 109–110, 115

Verizon, 171

Vertical slice (VS), 250–257

Vicarious Visions (VV), xiv

actor-networks and, 221

anthropological studies and, 10–13, 15

experimental systems and, 84

interactivity and, 120, 121b–122b

managing chaos and, 138

perpetual startup system and, 153

system structures and, 38, 42

Violence, 32, 220, 229, 245, 276n8

Visual Studio, 109, 279n1

Vivendi/Universal, 154

Walkthroughs, 61

Wark, McKenzie, 8, 159, 161

Waters, Darren, 97

Web 2.0, 211–212

Weinstein, David, 144

Wen, Howard, 97–98

Whalley, Peter, 6, 108

Wii, 15–16, 81, 110, 202–204, 233, 235–236, 243, 271

Wikis, 72, 208

Williams, Dmitri, 185, 281n8

Wilson, Elizabeth, 22–23

Wilson, Phil, 76, 140

Wilson, Trevor, 189t

Winant, Howard, 8, 220

Windows, 25b, 81, 107, 109, 284n4

Wired magazine, 9, 275n4

Wissinger, Elizabeth, 151–152

Woolgar, Steve, 5, 29

Work/play

AutoPlay and, 137

concept of, 144

development mythology and, 147

experimental systems and, 78, 93

game design document and, 254

having fun and, 145–146

instrumental, 27, 48, 60–67, 93, 250–251, 254

interactivity and, 31, 275n1

motivations and, 32

new modes of, 12–13

passion and, 140–147

process and, 139–140

quality of life (QoL) and, 159–162

scrum and, 139

system structures and, 60–67

Work practice

acquisitions and, 12–13, 64, 67, 153–156, 177, 204

actor-networks and, 208, 215

analytic skills and, 23–24, 45–46, 108, 159, 173, 242

anthropological studies and, 5–7, 9–10, 13, 16, 18, 26, 30–33

autonomy and, 7, 39, 181

broader shifts in, 16

collaboration and, 6 (see also Collaboration)

common interest in improving skills and, 14

communication and, 84b–86b

creativity and, 16, 37, 39, 41, 50–52, 58b, 59–60, 64–70 (see also
Creativity)

credits and, 45, 70, 143–144, 158, 177, 206, 209, 263t, 269

crunch and, 12, 18–21, 28, 65, 75, 136b–137b, 137, 139, 141b, 151,
159, 161, 193, 210, 252, 255, 259–260, 265, 268–269

daily operations and, 222

ea_spouse and, 18–20, 159, 193, 269, 282n9

experimental systems and, 98

family and, 136b, 151

flat terrain of, 13–14, 32, 182, 203

format and, 49–50, 91, 110–111, 119, 124, 200, 269, 275n3

game design document and, 252

having fun and, 137

horizontal organization and, 6–7

interdisciplinarity and, xv, 67–70, 132–134, 234

leads and, 41–42, 94–97, 100b, 101, 133, 210

managers and, 4, 10, 15, 17b, 19, 41, 43, 58–59, 64–65, 69, 94–97,
108, 130, 133, 139, 141b, 149, 208, 239, 278n2

meritocracy and, 44, 151

mind melding and, 80, 85b, 90

new breeds of workers and, 6

new economy and, 13

non-disclosure agreements (NDAs) and, 3b, 4, 72, 75, 98, 101, 112,
134, 144, 147, 185, 202, 205–207, 210, 220, 225, 273–274, 279n5

openness and, 86b, 98–101, 172b, 174, 202, 207, 210–215

outsourcing and, 13, 16, 21, 52, 64, 75, 84, 144, 175–180, 204

overtime and, 3b, 12, 18–19, 28, 65, 132, 134, 136b–137b, 139,
141b, 142, 150, 152, 269

passion and, 140–147

producers and, 10, 18–19, 40, 70, 76, 91, 94–97, 121, 140, 154, 156,
176, 183, 202, 204, 210, 226, 230–234, 242, 275n3, 282n6, 283n1

productivity and, 74–76, 137

quality of life (QoL) and, 163

rants and, 18–24

recruiting new talent and, 153, 165

rework compensation and, 130

secrecy and, 12 (see also Secrecy)

system structures and, 44

videogame development as software development and, 16

“work harder” mentality and, 137b

World Is Flat, The: A Brief History of the Twenty-First Century
(Friedman), 13

World of Warcraft (WoW), 16–18, 138, 276n7, 281n3

Wright, Will, 16, 21, 45

Writers, 37b, 86b, 159, 282n9

Xbox, 11

actor-networks and, 179, 213, 224–225, 242–243

development mythology and, 149

experimental systems and, 73–74, 76, 81

perpetual startup system and, 156

Xbox 360 and, 15, 74, 76, 140, 156, 179, 213, 224, 243

Xenon Alpha, 140

XML (Extensible Markup Language), 73, 92, 112, 123–124, 206, 274

XNA, 97, 202, 213

Yahtzee, 22

YouTube, 212

Zabusky, Stacia E., 7

“Zero Punctuation” (video), 21–22, 277n11

Zichermann, Gabe, 67

Zimmerman, Eric, 47, 106, 132, 183, 204

Zukin, Sharon, 151–152

	How to Play (Use) This Game (Book)
	Minus World: A Glitch
	Introduction: A Videogame Industry Primer
	World 1: A Tutorial Level

	Preproduction: Muddling Toward a Videogame
	World 2: Teasing Out Underlying Systems and Structures
	World 3: Assembling Experimental Systems

	Production: Let's Go Make Stuff!
	World 4: Interactive Game Development Tools
	World 5: Leeroy Jenkins, Autoplay, and Crunch

	Publishing, Manufacturing, and (Digital) Distribution
	World 6: Actor-Networks of (In)access
	World 7: Disciplining the Industry's Actor-Networks

	Epilogue: The Videogame Industry Game
	World 8: A Game Design Document

	Notes
	Glossary
	References
	Index

