

Early Praise for Building Table Views with Phoenix LiveView

Peter Ullrich’s Building Table Views with Phoenix LiveView is a great, practical
book. It will give the reader useful recipes on LiveView, filtering, pagination—all
of it described in a clear and easy-to-follow format. A book that will get you excited
about tables :D

➤ Joel Carlbark
Staff Engineer, Remote

This book covers a lot of ground in very few pages. Recommended for all levels of
expertise with web development.

➤ Vasilios Andrikopoulos
Associate Professor, University of Groningen

Getting things done the right way with a new language and framework can be a
daunting and time-consuming experience. Peter will be your guide in this book
that will shorten the path that leads to an awesome user experience by building
advanced table UIs with Elixir, Phoenix, and LiveView.

➤ Pedro Gaspar
Senior Software Engineer, Remote

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Building Table Views with
Phoenix LiveView

Advanced Table UIs for Accessible Data

Peter Ullrich

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: L. Sakhi MacMillan
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-973-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments vii
Introduction ix

1. Building a Simple Table UI 1
Creating the Schema and Context 1
Creating the LiveView 2
Wrapping Up 3

2. Sorting the Table 5
Sorting the Data in the Database 5
Setting up LiveView 6
Sorting with LiveComponent 7
Parsing and Assigning the Sorting Parameters 10
Putting the SortingForm to Use 13
Wrapping up 16

3. Filtering the Table 17
Filtering in the Database 17
Creating the Filter LiveComponent 20
Adding the Filter to the LiveView 23
Wrapping Up 26

4. Paginating the Table 29
Paginating in the Database 29
Creating the Pagination LiveComponent 34
Adding Pagination to the LiveView 38
Wrapping Up 41

5. Paginating the Table Using Infinity Scrolling 43
Setting up the Context 44
Creating the LiveView 45

Adding the LiveView Client Hook 49
Wrapping Up 57

Contents • vi

Acknowledgments
I would like to thank the Elixir community for their endless support and
inspiration. I thank my family and my reviewers for supporting and proofread-
ing me. Lastly, I thank the band The Pineapple Thief for providing the album
Versions of the Truth, the soundtrack to which I wrote this book.

I am sincerely thankful to my technical reviewers, who spent their precious
free time and carried this book over the finish line. In particular, I would like
to thank Svilen Gospodinov, Odhiambo Dormnic, Njoki Kiarie, Filipe Cabaço,
Thiago Ramos, Osman Perviz, Sigu Magwa, Anthony Leiro, Pedro Gaspar,
Joel Carlbark, Jacquie Kaunda, Vasilios Andrikopoulos, and Gregor Ihmor.

Peter Ullrich, 11 January 2023, Leiden, NL.

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

Introduction
There’s a joke in web development that 50% of our work is building tables
and the other 50% is building forms. This book is about the first 50%.

If you’re an Elixir developer, chances are that you have to build tables. Lots
and lots of tables. So, with table UIs making up such a significant part of our
daily work, it’s paramount to understand how to build them properly. This
book is here to teach you exactly that.

In the following chapters we will see how to build a table UI with advanced
features like sorting, filtering, pagination, and infinity scrolling. Using the
marvelous Phoenix LiveView framework, we’ll make them interactive. We’ll
work with LiveComponents and Ecto schemaless changesets to parse user
input. We’ll see how to organize our database operations using query compo-
sition and how to execute performance-heavy operations like sorting and fil-
tering right in the database.

This book assumes that you know the basics of Elixir and how to set up a
Phoenix LiveView application. If you’re unfamiliar with this, first check out
the Elixir “Getting Started” guide, https://elixir-lang.org/getting-started/introduction.html,
and the Phoenix “Installation” documentation, https://hexdocs.pm/phoenix/installa-
tion.html.

You can find the complete codebase on GitHub here: https://github.com/PJUllrich/
pragprog-book-tables. Feel free to download the code and play around with the
application before diving into this book.

We have a lot of ground to cover, so open up your favorite code editor, turn
to the next page, and let’s get started!

report erratum • discuss

https://elixir-lang.org/getting-started/introduction.html
https://hexdocs.pm/phoenix/installation.html
https://hexdocs.pm/phoenix/installation.html
https://github.com/PJUllrich/pragprog-book-tables
https://github.com/PJUllrich/pragprog-book-tables
http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

CHAPTER 1

Building a Simple Table UI
In the upcoming chapters, we’ll solve a common problem when displaying
data in a web application: our dataset is too large to show it all at once.
Showing everything at once would cause significant performance issues both
during the transport and the presentation of the data. Our user would have
to wait forever until they see the data. It also prevents our user from narrowing
down the dataset to the subsets they are most interested in.

We’ll explore how to paginate, sort, and filter the dataset to break it into
smaller, more digestible chunks. Our goal is to give the user full power over
this functionality so that they can explore our dataset all on their own.
Eventually, we want our user to be able to share their findings. Therefore,
we’ll build our solution in such a way that the user can share their view of
the data by simply copy-pasting the URL from their browser.

The foundation for our exploration will be a demo application called the
Meerkat Observation Warden, or short Meow. Its functionality is limited: it
displays fictitious meerkat data.

Currently, the Meow application has a problem: it displays the entire meerkat
dataset in a basic table UI. Our goal is to solve this problem by adding
advanced features like pagination, sorting, and filtering to it. But first, let’s
explore the existing Meow application to understand where and how we can
add our features.

Creating the Schema and Context
We begin with the core of our application: the Meerkat database schema. Open
up lib/meow/meerkats/meerkat.ex, and you’ll notice that the Meerkat schema holds
only one attribute: the meerkat’s name. We’ll use this attribute and the auto-
generated id of the meerkat to sort and filter the meerkat data later on.

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

defmodule Meow.Meerkats.Meerkat do
use Ecto.Schema

schema "meerkats" do
field :name, :string

end
end

Now, our Meerkat schema won’t bring us far without the ability to fetch the
existing meerkat data from the database. We want our Meow application to
adhere to Phoenix’s Model-View-Controller pattern. Therefore, we use the
Meerkats context to execute database operations on the meerkat data. Open
up lib/meow/meerkats.ex, and have a look at the list_meerkats/0 function.

defmodule Meow.Meerkats do
import Ecto.Query, warn: false

alias Meow.Repo
alias Meow.Meerkats.Meerkat

def list_meerkats() do
Repo.all(Meerkat)

end
end

You’ll notice that the function currently returns all meerkat data from our
database, and that’s the problem we’ll solve. We want to narrow down our
meerkat data based on the user’s wishes, and this function will be our place
to do just that. It will also be the location where we add the pagination of our
data. You’ll see that the Meerkats context will have our main focus when we
implement the solution.

Creating the LiveView
The purpose of our Meow application is to display meerkat data to our user
using a table UI. We want that display to be interactive and therefore use a
Phoenix LiveView to add the reactivity to our UI. Open up
lib/meow_web/live/meerkat_live.ex, and you’ll see our basic MeerkatLive LiveView for
displaying the meerkat data.

defmodule MeowWeb.MeerkatLive do
use MeowWeb, :live_view

alias Meow.Meerkats

def mount(_params, _session, socket), do: {:ok, socket}

def handle_params(_params, _url, socket) do
{:noreply, assign_meerkats(socket)}

end

Chapter 1. Building a Simple Table UI • 2

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

defp assign_meerkats(socket) do
assign(socket, :meerkats, Meerkats.list_meerkats())

end
end

As you can see, MeerkatLive loads our data using the Meerkats context and assigns
it to the LiveView Socket under the :meerkats key.

Notice that we don’t load the data in mount/3 but in the handle_params/3 callback.
The reason for this is that we’ll use live navigation for changing the sorting,
pagination, and filtering of our data. This means that LiveView will call han-
dle_params/3 with updated parameters whenever we change one of these aspects.
Every time that happens, we want to reload our data, which is why we use
the handle_params/3 callback for fetching and assigning the data.

Now, we need to display the data to the user. Since Phoenix 1.6, the recom-
mended way of creating the HTML code for our user is using a .heex template.
Open the lib/meow_web/live/meerkat_live.html.heex template and have a look at how
we present the data to the user.

<table>
<tbody>

<%= for meerkat <- @meerkats do %>
<tr>

<td><%= meerkat.id %></td>
<td><%= meerkat.name %></td>

</tr>
<% end %>

</tbody>
</table>

We see that the template builds a simple HTML table in which every meerkat
has its own row displaying its id and name attributes.

Wrapping Up
The problem we’ll solve in the upcoming chapters is that we load and display
all meerkat data in this table. As the meerkat data grows and grows, so too
will our table. This will cause performance issues where the user will have to
wait a long time before their browser displays the table. Also, it’s difficult to
filter the data for specific subsets. The sorting of the data is hardcoded as
well. This prevents our users from changing the hierarchy of the data where,
for example, larger values rank higher than lower values.

Next, we’ll begin to improve the table UI by allowing the user to sort the data
by ID or name, both ascending and descending. Let’s go.

report erratum • discuss

Wrapping Up • 3

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

CHAPTER 2

Sorting the Table
The first feature we’re going to add to our table UI is sorting the data by each
column, both ascending and descending. We’ll leverage Phoenix LiveComponents
and query composition for this task. Let’s get started.

Sorting the Data in the Database
Before we add the sorting functionality to our LiveView, let’s first explore how
we can sort the data. Loading all meerkat data into memory and sorting it
there is slow and will potentially exhaust our memory resources. Luckily, our
Postgres database is heavily optimized for this use-case and allows us to add
an ORDER BY SQL statement to our query. On the Elixir side, Ecto.Query provides
the order_by/2 function for adding this instruction. Let’s see how we can make
use of that function.

Open the Meerkats context in lib/meow/meerkats.ex and have a look at the
list_meerkats/0 function. Let’s add the order_by/2 function here. We want to make
our sorting function reusable for other meerkat queries as well. Therefore,
we’ll use query composition to separate the database instructions into small and
reusable functions. Here’s the final code. We’ll discuss it below:

def list_meerkats(opts) do
from(m in Meerkat)
|> sort(opts)
|> Repo.all()

end

defp sort(query, %{sort_by: sort_by, sort_dir: sort_dir})
when sort_by in [:id, :name] and

sort_dir in [:asc, :desc] do
order_by(query, {^sort_dir, ^sort_by})

end

defp sort(query, _opts), do: query

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

Have a look at the list_meerkats/1 function. First, we create our query with from(m
in Meerkat). This allows us to pipe the query through our sort/2 function and add
more functions to the pipe later on.

Now, have a look at the first sort/2 function. You’ll see that it receives the query
and our sorting parameters. It pattern matches against the sort_by and sort_dir
keys in the parameters. We verify with the when guard that we only pass valid
sorting keys and sorting directions to the database. Eventually, we add the
order_by statement to our query by providing a tuple with the sorting parame-
ters.

In the case where our opts map contains no or invalid sort_by or sort_dir values,
we fall back to the second sort/2 method, which simply returns the query
without adding any sorting to it. If you wanted to add a default sorting, which
applies when no or invalid sorting parameters are given, you could add it
here.

Now that we can sort the data when fetching it from the database, let’s explore
how we can give the user control over this new functionality by adding it to
our LiveView.

Setting up LiveView
We’ll use a combination of a LiveComponent, a LiveView, and live navigation
to handle and apply changes to the sorting of our meerkat data. In brief, we
will use the LiveComponent to handle any user input to the sorting elements
of our table UI. The LiveComponent updates the sorting parameters and
notifies the LiveView about the changes. The LiveView navigates to itself with
the updated sorting parameters added to the URL of our website. Upon com-
pletion of the live navigation, the LiveView parses and validates the updated
parameters and passes them on to our context. The context returns the
sorted data and our LiveView re-renders the table UI with it. The diagram
below shows an overview of these steps.

Chapter 2. Sorting the Table • 6

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

1. Click

User

2. Change sorting

Sorting Button

4. Notify about new params

LiveComponent

6. Parse new params

9. Display
sorted data LiveView

5. Live navigate to self
with new params

7. Load data with
new params

8. Return
sorted data

Context

3. Update sorting params

The described approach has the advantages that we move the logic for
updating the sorting parameters out of our LiveView and into a reusable
LiveComponent. It also allows us to update the URL whenever the user
changes their view onto the data. Keeping the URL in sync with our sorting
parameters enables the user to share their view by simply copy-pasting the
URL. It also prevents the loss of the users’ view when they accidentally refresh
the website. We can also use it to load specific views, like the latest meerkat
data, to the user whenever they access the website.

The flow described above uses the sorting parameters as an example, but
we’ll also use it for filtering and paginating the data in the upcoming chapters.

Now that we have understood the flow of updating and applying our sorting
parameters, let’s start implementing them.

Sorting with LiveComponent
As mentioned above, we want our LiveComponent to handle the user interac-
tions, update the sorting parameters, and notify the LiveView about the
changes. The SortingComponent that follows does just that. Open
lib/meow_web/live/sorting_component.ex, and have a look at the module shown here.
We’ll go through it step by step afterward.

defmodule MeowWeb.MeerkatLive.SortingComponent do

report erratum • discuss

Sorting with LiveComponent • 7

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

use MeowWeb, :live_component

def render(assigns) do
~H"""
<div phx-click="sort" phx-target={@myself} >

<%= @key %> <%= chevron(@sorting, @key) %>
</div>
"""

end

def handle_event("sort", _params, socket) do
%{sorting: %{sort_dir: sort_dir}, key: key} = socket.assigns

sort_dir = if sort_dir == :asc, do: :desc, else: :asc
opts = %{sort_by: key, sort_dir: sort_dir}

send(self(), {:update, opts})
{:noreply, assign(socket, :sorting, opts}

end

def chevron(%{sort_by: sort_by, sort_dir: sort_dir}, key)
when sort_by == key do

if sort_dir == :asc, do: "⇧", else: "⇩"
end

def chevron(_opts, _key), do: ""
end

We want to make the SortingComponent reusable. That’s why we let it only render
a single div element that shows the key of the field it sorts by and a chevron
that indicates its current sorting direction. We can add this div wherever we
want now—for example, as a header in our table UI.

Now, let’s go through its functionality. Have a look at the handle_event/3 callback.
You can see that if a user clicks the SortingComponent, we fetch the current sorting
parameters and update the sorting direction from ascending to descending
or the other way around. We then notify the LiveView about the updated
parameters by sending a message to self(). Eventually, we prevent any lag in
the UI by assigning the updated sorting parameters back to the socket of our
LiveComponent. This causes a re-render of our div element with the new
sorting direction. This way, the user will see the updated sorting direction
immediately, even when the LiveView has a delay in re-rendering the entire
table UI.

Adding the LiveComponent to the HEEx Template
Now that we’ve built the functionality of the SortingComponent, let’s add the
component to our table UI. Open lib/meow_web/live/meerkat_live.html.heex, and add
the SortingComponent as a table header. It should look like the code that follows.

<table>

Chapter 2. Sorting the Table • 8

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

<thead>
<tr>
<th>

<.live_component
module={MeowWeb.MeerkatLive.SortingComponent}
id={"sorting-id"}
key={:id}
sorting={@sorting} />

</th>
<th>

<.live_component
module={MeowWeb.MeerkatLive.SortingComponent}
id={"sorting-name"}
key={:name}
sorting={@sorting} />

</th>
</tr>

</thead>
<!-- Table body -->

</table>

As you can see, we added two table headers for the id and name fields of our
meerkat data. Since we use Phoenix 1.6 with Phoenix LiveView 0.17.5, we
can use the .live_component-function in our .heex file. If you use an older version,
simply replace the .live-component element with the following:

<%= live_component
MeowWeb.MeerkatLive.SortingComponent,
id: "sorting-name",
key: :name,
sorting: @sorting %>

You might wonder about the @sorting assign we pass to our SortingComponent. It
contains the current sorting key and sorting direction in a map like this:
%{sort_by: :name, sort_dir: :desc}.

Now that we have a reusable SortingComponent that handles the user interactions,
updates the sorting parameters accordingly, and notifies the LiveView about
the changes, let’s have a look at how the LiveView handles these changes.

Updating the URL with the New Sorting Parameters
Whenever the user changes the sorting of the table, the SortingComponent sends
an {:update, new_sorting_params} message to the LiveView. However, our LiveView
doesn’t know how to handle that message yet. Open up the MeerkatLive module
in lib/meow_web/live/meerkat_live.ex and write a handle_info/2 callback that handles
the message. It should look like this:

def handle_info({:update, opts}, socket) do

report erratum • discuss

Sorting with LiveComponent • 9

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

path = Routes.live_path(socket, __MODULE__, opts)
{:noreply, push_patch(socket, to: path, replace: true)}

end

Our handle_info/2 callback doesn’t do much. It generates a path with the new
sorting parameters and uses push_patch/2 to live navigate to that path. This will
trigger our handle_params/3 callback, with the new parameters. Let’s see how
we can parse these parameters and apply them when fetching the meerkat
data.

Parsing and Assigning the Sorting Parameters
Our LiveView receives the sorting parameters in the handle_params/3 callback
when the website is mounted or when the user changes the parameters
through our SortingComponent.

As with all user input, we want to make sure that the received parameters
are indeed valid. We don’t want to build the validation ourselves though.
Luckily Ecto.Changeset offers the functionality of parsing and validating the
parameters for us. We’ll use this functionality inside a schemaless changeset called
SortingForm. Before we can create this form though, we have to take a small
detour into the differences between a schema changeset and a schemaless
changeset.

Using Ecto.Enum Inside a Schemaless Changeset
If you want to work with a database in your Elixir application, you’ll likely
use an Ecto.Schema for defining the fields and their types in your database
schemas. Usually, a schema definition looks like this:

schema "my_models" do
field :name, :string
field :age, :integer
field :status, Ecto.Enum, values: [:active, :inactive]

end

The preceding schema defines the fields and their type for a fictitious MyModel
struct. Whenever you try to create such a struct, Ecto will check that your
input can be converted into the specified type of the field. For example, the
input %{"age"=> "21"} is valid since "21" can be converted to an integer. However,
the input %{"age" => "foo"} is invalid, since "foo" cannot be converted to an
integer.

We want to use this type notation in our SortingForm as well. In particular, we
want to define the valid values for our sort_by and sort_dir parameters as an
Ecto.Enum. This way, we can check each input against a list of valid values for

Chapter 2. Sorting the Table • 10

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

each parameter. However, our SortingForm doesn’t correspond to a database
schema. That is, we don’t store its values in our database, but only use them
in-memory. Therefore, we have to make it a schemaless changeset instead.

Schemaless changesets are Ecto.Changesets that don’t use an Ecto.Schema to define
the fields and the types of the data they validate. They validate the data against
fields defined in regular Elixir structs or simple key-value maps. Whereas the
purpose of regular changesets is usually to validate data before it’s written
to the database, schemaless changesets mostly validate user input coming
from forms or URL parameters. Any data that doesn’t correspond to a database
model hence doesn’t have an Ecto.Schema definition.

Unfortunately, the field :status, Ecto.Enum, values: [:active, :inactive] notation for Ecto.Enum
typed fields cannot be used in schemaless changesets. Instead, we have to
fall back to a general Ecto.ParameterizedType, which allows us to define any type
of field also in a schemaless changeset. Its notation might look a bit wild, but
the end result is the same. So, we wouldn’t define an Ecto.Enum field like this:

field :sort_by, Ecto.Enum, values: [:id, :name]

Instead, we have to write this:

sort_by: {:parameterized, Ecto.Enum, Ecto.Enum.init(values: [:id, :name])}

This notation is a bit too complex and tedious to type out for every parameter
we’ll define. Let’s create an EctoHelper module instead, which encapsulates this
notation in a small helper function called enum/1. Open up the
lib/meow/ecto_helper.ex file and type in the following:

defmodule Meow.EctoHelper do
def enum(values) do

{:parameterized, Ecto.Enum, Ecto.Enum.init(values: values)}
end

end

Now, we can use the Meow.EctoHelper.enum/1 function to define Ecto.Enum fields
also in a schemaless changeset. Let’s use it to define the valid values for the
sort_by and sort_dir parameters in our SortingForm.

Building a Schemaless Changeset
We want our SortingForm to take the received parameters and convert them into
a valid map of values we can use for sorting the meerkat data. Open up
lib/meow_web/forms/sorting_form.ex and type in the following. We’ll discuss it later
on.

defmodule MeowWeb.Forms.SortingForm do

report erratum • discuss

Parsing and Assigning the Sorting Parameters • 11

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

import Ecto.Changeset

alias Meow.EctoHelper

@fields %{
sort_by: EctoHelper.enum([:id, :name]),
sort_dir: EctoHelper.enum([:asc, :desc])

}

@default_values %{
sort_by: :id,
sort_dir: :asc

}

def parse(params) do
{@default_values, @fields}
|> cast(params, Map.keys(@fields))
|> apply_action(:insert)

end

def default_values(), do: @default_values
end

Since we use Ecto.Changeset, most of the parsing and validation happens under
the (Ecto) hood. However, here’s what happens in general terms:

The parse/1 function receives all of our parameters, takes the sort_by and sort_dir
parameters and converts their binary representation (for example, %{"sort_by"
=> "name"}) into an atom key-value pair (for example, %{sort_by: :name}). It checks
whether the converted value exists in a list of valid values we define in the
@fields map. Note that we used our EctoHelper.enum/1 function here to define two
Ecto.Enum typed fields.

If a value is received that is not in the list, parse/1 returns {:error, %Ecto.Change-
set{}}. Otherwise it returns {:ok, %{sort_by: parsed_value, sort_dir: parsed_value}.

If one or both of the sort_by and sort_dir parameters are missing, it fetches a
replacement value from the @default_values map and returns that one instead.
This way, we always have a valid value for sort_by and sort_dir for sorting our
data.

Testing the SortingForm
This might sound a bit complex, but it will become clearer once we’ve played
around with it. So let’s kick the tires and see how the SortingForm behaves when
we throw parameters at it. Open an IEx session and follow along with these
tests.

First, let’s see what happens if we provide both sort_by and sort_dir parameters:

iex(1)> alias MeowWeb.Forms.SortingForm

Chapter 2. Sorting the Table • 12

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

MeowWeb.Forms.SortingForm

iex(2)> SortingForm.parse(%{"sort_by" => "name", "sort_dir" => "desc"})
{:ok, %{sort_by: :name, sort_dir: :desc}}

You can see that the parse/1-function took the binary values of the sort_by and
sort_dir parameters and converted them into valid atom values. Great!

Now let’s see what happens if one of the parameters is missing:

iex(3)> SortingForm.parse(%{"sort_by" => "name"})
{:ok, %{sort_by: :name, sort_dir: :asc}}

Aha! As expected, the parse/1 function filled in the value for sort_dir with the
default value :asc. Also great!

Now, let’s break something. Let’s see what happens when we throw invalid
values at it:

iex(4)> SortingForm.parse(%{"sort_by" => "foo", "sort_dir" => "bar"})
{:error,

#Ecto.Changeset<
action: :insert,
changes: %{},
errors: [
sort_by: {"is invalid", [...]},
sort_dir: {"is invalid", [...]}

],
data: %{sort_by: :id, sort_dir: :asc},
valid?: false

>}

When the SortingForm cannot parse a parameter into a value from the acceptable
values list, it marks that field as invalid and returns an error. Just as we
expected!

It seems that our SortingForm works as expected, which is great! Now, we can
use it in our LiveView to validate the sorting parameters coming in through
the handle_params/3 callback.

Putting the SortingForm to Use
Now that we’ve created the functionality to parse and validate the input
parameters, let’s put it to use. Navigate back to the MeerkatLive module and
make these changes as described here:

defmodule MeowWeb.MeerkatLive do
use MeowWeb, :live_view

alias Meow.Meerkats

Add this alias:

report erratum • discuss

Putting the SortingForm to Use • 13

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

alias MeowWeb.Forms.SortingForm

def mount(_params, _session, socket), do: {:ok, socket}

Update handle_params/3 like this:
def handle_params(params, _url, socket) do

socket =
socket
|> parse_params(params)
|> assign_meerkats()

{:noreply, socket}
end

def handle_info({:update, opts}, socket) do
path = Routes.live_path(socket, __MODULE__, opts)
{:noreply, push_patch(socket, to: path, replace: true)}

end

Add this function:
defp parse_params(socket, params) do

with {:ok, sorting_opts} <- SortingForm.parse(params) do
assign_sorting(socket, sorting_opts)

else
_error ->

assign_sorting(socket)
end

end

Add this function:
defp assign_sorting(socket, overrides \\ %{}) do

opts = Map.merge(SortingForm.default_values(), overrides)
assign(socket, :sorting, opts)

end

Update assign_meerkats/1 like this:
defp assign_meerkats(socket) do

%{sorting: sorting} = socket.assigns

assign(socket, :meerkats, Meerkats.list_meerkats(sorting))
end

end

Okay, let’s unpack this code step by step. First, we updated our handle_params/3
callback to parse the parameters with parse_params/2 and then fetch the meerkat
data with assign_meerkats/1.

We use the SortingForm in our parse_params/2 function to validate the sorting
parameters and assign them to the socket if they are valid. If the SortingForm
can’t parse the parameters, we, for now, simply ignore the error and assign
a default sorting using the assign_sorting/1 function.

Chapter 2. Sorting the Table • 14

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

We updated our assign_meerkats/1 function to fetch the current sorting parame-
ters from the socket and pass them on to our Meerkats context. The context
uses these parameters for sorting the data before it returns it to our LiveView,
where we assign the data to our socket to update the UI.

With all these functions in place, we can now use the sorting elements in our
table UI to update the sorting of the meerkat data.

Whenever we interact with the UI element of the SortingComponent, it updates
the sorting parameters, notifies the LiveView through the handle_info/2 callback,
which then live navigates to a URL containing the updated sorting parameters.
In our parse_params/2 function, we use the SortingForm to validate these parameters
and assign them to the socket. We then re-fetch the meerkat data with
assign_meerkats/1, which fetches and passes on the sorting parameters to the
list_meerkats/1 function. Our Meerkats context applies the new sorting parameters
when fetching the meerkat data from the database and returns the properly
sorted meerkat data to the LiveView. Our LiveView assigns the new meerkat
data to our socket, which causes a re-render of our table UI, which eventually
displays the newly sorted data to the user.

Start the server with mix phx.server and play around with the new sorting ele-
ments. You should see something like this:

Note how we store the sorting parameters as URL parameters. Try refreshing
the page or copy-pasting the URL into a new browser window. You should
see that we always end up with the same view again.

report erratum • discuss

Putting the SortingForm to Use • 15

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

We can now update the sorting of our meerkat data by interacting with the
sorting UI elements. We can even copy and paste the URL from one browser
to another and our LiveView will apply the same sorting. That’s it, we’re done!

Wrapping up
Phew! That was a lot! Take a second and pat yourself on the shoulder for
following along until now. You managed to get through the most complex
chapter of this book! This chapter introduced all the bits and pieces you’ll
need to add advanced features to your table UI. The following chapters will
be a lot lighter since they build upon and extend these components. So, if
you’ve understood the concepts so far, the rest should be smooth sailing!

Moving forward, you probably already spotted the next problem with our table
UI: we still load all meerkat data from our database and present it in our
table. Next, let’s make the data filterable so that the user can focus on the
data they really need.

Chapter 2. Sorting the Table • 16

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

CHAPTER 3

Filtering the Table
Building a table UI is great for presenting your data to the user, but it can
also be overwhelming if too much data is presented at once. Users are typically
only interested in a subset of the entire dataset. Our job as developers is to
provide them with the tools they need to get their work done. Filtering a table
is one of these tools.

In the following chapter, we’ll explore how to add filtering to our meerkat data
and how to make the user’s filter shareable. We’ll use the building blocks we
introduced in the previous chapter for this. So, most of what you’ll see will
be familiar to you, just applied in a slightly different way. Let’s go!

Filtering in the Database
Let’s start with adding filters to our meerkat data by extending our Meerkat
context. We want to add filters for the id and the name fields of a meerkat. The
id filter will be a distinct filter that matches only the meerkat with the exact
id. The name filter will be a fuzzy filter that matches any meerkat whose name
contains a certain string.

So, when we filter by an ID like 123, only the meerkat with the ID 123 will
match our query. However, when we filter by name with, for example, the
search term big, we want to find meerkats that have names like Mr. Big, Bigly
Tickly, or Overbig Snouty. As you can see, we want to match names that contain
the string big regardless of its position in the name or its case. Ecto.Query offers
the ilike/2 method for exactly this use case. It searches for a string in a case
insensitive fashion. So, both Bigly and Overbig match the query, although the b is
sometimes uppercase and sometimes lowercase.

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

Now that we know what we want and how to achieve it, open up Meerkats
context in lib/meow/meerkats.ex.This is our starting point. Let’s change it in the
following way:

Change this function like so:
def list_meerkats(opts) do

from(m in Meerkat)
|> filter(opts)
|> sort(opts)
|> Repo.all()

end

Add the following functions:
defp filter(query, opts) do

query
|> filter_by_id(opts)
|> filter_by_name(opts)

end

defp filter_by_id(query, %{id: id}) when is_integer(id) do
where(query, id: ^id)

end

defp filter_by_id(query, _opts), do: query

defp filter_by_name(query, %{name: name})
when is_binary(name) and name != "" do

query_string = "%#{name}%"
where(query, [m], ilike(m.name, ^query_string))

end

defp filter_by_name(query, _opts), do: query

Let’s walk through the code step by step. First, we add a filter/2 function that
extends our query with filters for ID and name. We move each filter into its
own function so that we can reuse them and to make our code cleaner. The
filter_by_id/2 function is straightforward, as it only adds a where/2 clause filtering
by the id of a meerkat.

The filter_by_name/2 function is a bit more complex. First, we create a query_string
that surrounds our search term with percent characters. This means that we
match any name that contains the search term at any position. It gives us
the most results but might be less efficient since the database has to scan
every name in its entirety to check for matches (unless you use fancy indexing,
but that’s for another time).

A more typical use-case is to match names that start with a given search
term. In this case, we add a percent character after the search term like this:
"#{name}%". This will match names that begin with a search term like Bigly

Chapter 3. Filtering the Table • 18

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

Tickly but not names that have the search term anywhere like Overbig Snouty or
Mr. Big.

After creating our query string, we add another where/3 statement to our query
which uses the ilike/2 function to search for our search term case insensitively.
And that’s it! With only a few functions, we added filtering to our meerkat
query. Marvelous!

A Note on Query Composition
As you can see, we use query composition again to add the filter_by_id/2 and fil-
ter_by_name/2 functions. We use this method because it keeps our code open
for extension but reduces the potential need for modification. This means
that we can easily add more filters and reuse existing ones but that we don’t
have to modify existing filters when we make changes like adding fields to
the Meerkat schema or rename the database table.

Note also that we don’t make any assumptions about the schema for which
we query in the filter_by_id/2 and filter_by_name/2 functions. Technically, we can
use these filters to query for any schema, as long as it has an id or a name.

So, when you write your next Ecto context, consider splitting your queries
into smaller functions and use query composition to combine them into
larger queries. This way, you’ll avoid duplication of your code and make your
queries a bit more readble.

However, in software engineering, very few upsides come without a downside;
this approach also has a potential downside. If you split your queries into
many smaller functions and use them to compose larger queries, you increase
the dependencies between your larger queries since they use the same
building blocks. As an example, if you have two large queries that both use
the filter_by_name/2 function, you can’t change it without affecting both large
queries. If one large query wants to query case insensitively but the other one
doesn’t, then you have a conflict.

To solve this, you could add a Boolean flag to your filter_by_name/2 method and
change the case sensitivity based on it. You could also create two functions
that filter by name, one case sensitively and the other one case insensitively.
However you solve this conflict, your code always becomes more complex and
harder to maintain.

You could avoid the conflict altogether by not using query composition.
Instead, you could have dedicated functions that are large and complex but
self-contained and independent of other functions. They would serve a very

report erratum • discuss

Filtering in the Database • 19

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

specific purpose and might be large and complex, but they won’t have to
change if other functions change.

Sometimes this is the right way to go, especially when you have many large
queries that all use the same building blocks. So, to sum it up: be mindful
when using query composition and don’t use it blindly.

Alright! Now that we’re able to filter by ID and name when fetching the meerkat
data, let’s expose this functionality to our users by adding it to our LiveView.

Creating the Filter LiveComponent
As with our sorting functionality, we’ll encapsulate the filter logic into its own
LiveComponent called FilterComponent. It will contain a simple form for receiving
the user input and use another schemaless changeset for parsing said input.
Create a file at lib/meow_web/live/filter_component.ex and key in the following code:

defmodule MeowWeb.MeerkatLive.FilterComponent do
use MeowWeb, :live_component

alias MeowWeb.Forms.FilterForm

def render(assigns) do
~H"""
<div>

<.form let={f} for={@changeset} as="filter"
phx-submit="search" phx-target={@myself} >

<div>
<div>

<%= label f, :id %>
<%= number_input f, :id %>
<%= error_tag f, :id %>

</div>
<div>

<%= label f, :name %>
<%= text_input f, :name %>
<%= error_tag f, :name %>

</div>
<%= submit "Search" %>

</div>
</.form>

</div>
"""

end

def update(%{filter: filter}, socket) do
{:ok, assign(socket, :changeset, FilterForm.change_values(filter))}

end

def handle_event("search", %{"filter" => filter}, socket) do
case FilterForm.parse(filter) do

Chapter 3. Filtering the Table • 20

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

{:ok, opts} ->
send(self(), {:update, opts})
{:noreply, socket}

{:error, changeset} ->
{:noreply, assign(socket, :changeset, changeset)}

end
end

end

Let’s go through this code top to bottom. First, we create a HEEx template
which holds a simple HTML form. The form uses an Ecto.Changeset for populating
and submitting the form data. When the user submits the form, we send a
"search" event back to the LiveComponent.

We use the Phoenix.HTML.Form helper functions to create input fields for the id
and name search terms. For the id field, we use a number input. This allows
us to use HTML5 client-side validation, which checks the input data right
there in the browser even before the user sends it to the LiveComponent. The
name field is a simple text field that accepts any text input. But enough about
the HTML form. Let’s move on to the update/2 and handle_event/3 functions.

Every LiveComponent has a default update/2 function, which merges all assigns
into the socket. This is fine for most use-cases, but we want to convert the
filter parameters into an Ecto.Changeset before rendering the template. This allows
us to easily show error messages for each field using the error_tag/2 element.

For example, we want to disallow negative values for the id field since our
database IDs are always greater or equal to 0. If the user enters a negative
value for the id field, we want our Ecto.Changeset to flag it as invalid and provide
a simple error message which the error_tag/2 then presents to the user.

That’s why we override the default update/2 function of the LiveComponent
with our own. This way, we can fetch the filter assign and convert it into an
Ecto.Changeset using the FilterForm, which we will get into in a moment. Eventu-
ally, we assign the Ecto.Changeset to the @changeset assign and use it in the HTML
form as described before.

Next, let’s look at the handle_event/3 function. When the user submits the form,
our LiveComponent receives the "search" event with the form data stored in
the "filter" parameter. We fetch the data and parse it using the FilterForm. If the
data can be parsed correctly, we instruct the LiveView to update the parame-
ters with the send(self(), {:update, opts}) call, just as we did in the SortingComponent.

report erratum • discuss

Creating the Filter LiveComponent • 21

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

If our FilterForm cannot parse the form data correctly, we assign the returned
Ecto.Changeset to our socket and let the HTML form render the error messages
which the changeset contains.

So, to sum it up: a user can enter filter parameters, and we parse them using
the FilterForm and instruct the LiveView to update the URL parameters
accordingly. This causes the LiveView to refetch the meerkat data and apply
the new filter parameters while doing so. That’s the gist of what the FilterCom-
ponent does.

Next, let’s have a look at the FilterForm we mentioned before. Open up
lib/meow_web/forms/filter_form.ex and enter the following code:

defmodule MeowWeb.Forms.FilterForm do
import Ecto.Changeset

@fields %{
id: :integer,
name: :string

}

@default_values %{
id: nil,
name: nil

}

def default_values(overrides \\ %{}) do
Map.merge(@default_values, overrides)

end

def parse(params) do
{@default_values, @fields}
|> cast(params, Map.keys(@fields))
|> validate_number(:id, greater_than_or_equal_to: 0)
|> apply_action(:insert)

end

def change_values(values \\ @default_values) do
{values, @fields}
|> cast(%{}, Map.keys(@fields))

end

As you can see, the FilterForm is not too different from the SortingForm which we
created before. First, we specify a set of fields and their type. Then we define
their default values, which in this case are just nil since we don’t want to apply
any filtering by default. We expose the default values with the default_values/1
function. Our LiveView will use this function to set the default filter parameters
when it is first created.

Next, we define the parse/1 and change_values/1 functions. The parse/1 function
casts the given parameters into a schemaless changeset and verifies that the

Chapter 3. Filtering the Table • 22

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

id is greater than or equal to 0. By applying the :insert action, we instruct
Ecto.Changeset to verify that the casting and the validations were successful. It
will either return a map with the parsed parameters or an Ecto.Changeset that
contains error messages that explain why we couldn’t parse or validate the
parameters.

Remember that we want to convert the filter parameters to an Ecto.Changeset
before rendering the template. That is what the change_values/1 function is for.
It takes a map of values and converts them into an Ecto.Changeset. Unlike in
the parse/1 function, where we override the default values with values from
the params map, we don’t want to make any changes to the values map in
change_values/1. That’s why we use an empty map in the cast/3 function as a
second argument. This way, we convert the values into an Ecto.Changeset without
overriding any of them.

Alright, that’s all there is to know about the FilterComponent and the FilterForm!
Now, let’s get to the juicy bits: using the filter parameters in the LiveView.

Adding the Filter to the LiveView
To add the FilterComponent to our LiveView, open up the HEEx template at
lib/meow_web/live/meerkat_live.html.heex and add the following code:

<div>
<!-- Add this .live_component element -->
<.live_component

module={MeowWeb.MeerkatLive.FilterComponent}
id="filter"
filter={@filter} />

<!-- Table element stays here -->
</div>

Now, we render the FilterComponent above our table. However, if you try to start
the server, you’ll see an error message since we still have to add the @filter
assign to the socket. Let’s fix that by assigning the default filter parameters.
Open the LiveView at lib/meow_web/live/meerkat_live.ex and add the following code:

defmodule MeowWeb.MeerkatLive do
use MeowWeb, :live_view

Other aliases omitted

Add this alias
alias MeowWeb.Forms.FilterForm

mount/3 and handle_params/3 omitted

Update parse_params/2 like this:
defp parse_params(socket, params) do

report erratum • discuss

Adding the Filter to the LiveView • 23

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

with {:ok, sorting_opts} <- SortingForm.parse(params),
{:ok, filter_opts} <- FilterForm.parse(params) do

socket
|> assign_filter(filter_opts)
|> assign_sorting(sorting_opts)

else
_error ->

socket
|> assign_sorting()
|> assign_filter()

end
end

assign_sorting/2 omitted

Add the following function
defp assign_filter(socket, overrides \\ %{}) do

assign(socket, :filter, FilterForm.default_values(overrides))
end

end

Let’s first have a look at the updated parse_params/2 function. We added Filter-
Form.parse/1 here to parse any filter-related URL parameters provided by the
params map. Our FilterForm will cast and validate any given id and name parame-
ters and set default values (in this case nil) for those parameters that weren’t
provided.

If the FilterForm can parse the parameters successfully, we assign the result to
our socket with the assign_filter/2 helper function. If the parsing fails, for
example, because a negative id was entered, we catch (and ignore) the error
in the else clause and simply assign the default filter values as returned from
FilterForm.default_values/1. This way, we always assign valid filter parameters, even
when invalid URL parameters were entered.

This approach has the advantage that we can assume that we always receive
valid @filter values in our FilterComponent. But it also creates a worse UX since
we don’t inform the user that the entered parameters are invalid and that we
assigned default values instead. You can solve this problem easily by handling
the error in parse_params/2 and, for example, assigning an :error flash message to
the socket. Proper error handling is a topic on its own, and it’s up to you to
find a solution that suits you best. However you approach this problem,
though, the parse_params/2 function would be a good place to start.

Now, start the server again with mix phx.server. You should see the new HTML
form above the table now. Try entering a filter parameter and press Search.
If you followed the instructions closely, you should see that we filter the data

Chapter 3. Filtering the Table • 24

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

correctly. Hurray! Try entering a negative id and you should see an error
message. Double hurray!

But now, try sorting the table, for example, descending by id and add a filter.
Sadly, this removes the sorting and only applies the filter to the data. Also,
if you enter a single filter like, for instance, for an id, you’ll see that the URL
also receives a name parameter that is empty. There are two problems here:
first, we don’t merge all entered parameters from the sorting and the filter
component before updating the URL parameters. Second, we don’t remove
empty parameters. Thankfully, these are easy problems to fix, so open up the
LiveView again and update its code as follows:

Update handle_info/2 like this:
def handle_info({:update, opts}, socket) do

params = merge_and_sanitize_params(socket, opts)
path = Routes.live_path(socket, __MODULE__, params)
{:noreply, push_patch(socket, to: path, replace: true)}

end

Update assign_meerkats/1 like this:
defp assign_meerkats(socket) do

params = merge_and_sanitize_params(socket)

assign(socket, :meerkats, Meerkats.list_meerkats(params))
end

Add this function:
defp merge_and_sanitize_params(socket, overrides \\ %{}) do

%{sorting: sorting, filter: filter} = socket.assigns

%{}
|> Map.merge(sorting)
|> Map.merge(filter)
|> Map.merge(overrides)
|> Enum.reject(fn {_key, value} -> is_nil(value) end)
|> Map.new()

end

As you can see, the major change here is that we add a new function called
merge_and_sanitize_params/2 to both handle_info/2 and assign_meerkats/1. As the name
suggests, merge_and_sanitize_params/2 merges and sanitizes our parameters. It
retrieves all active sorting and filtering parameters, merges them, and removes
any empty parameters from the mix.

We use merge_and_sanitize_params/2 in handle_info/2 to assign all parameters to the
URL whenever any parameter changes. This solves our first problem, which
was that we removed the sorting parameters when we applied new filter
parameters.

report erratum • discuss

Adding the Filter to the LiveView • 25

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

We also use merge_and_sanitize_params/2 when fetching the meerkat data from the
database in assign_meerkats/1. If we don’t add this call here, we still set all
parameters in the URL but only apply some of them when actually fetching
the data.

Since we remove any empty parameters after merging them, we solved our
second problem, which was that we assigned empty parameters to the URL.
You can try this out if you restart the server, set a filter, and remove the filter
again. You should see that we first add the filter to the URL parameters but
then remove it again when you leave its input field empty. Triple hurray!

Play around with the filter inputs a bit. You should see something like the
following picture. Note how we store the sorting and filtering parameters as
URL parameters. This way, the user can copy, share, and bookmark the URL
and end up with exactly the same view again.

Wrapping Up
Again, great job for following along so far! We successfully added filtering to
our table UI! Even more so, we extended the building blocks from the previous
chapter and combined the sorting and filtering functionality in our LiveView
with only a few lines of code. We encapsulated the new filtering logic into its
own LiveComponent so that we can reuse or remove it easily in the future.
We merged and updated all parameters in the URL and applied them when
fetching the data. Great job!

One last problem we still need to fix, however, is that we fetch and present
all meerkat data in our database. A common solution to this problem is to

Chapter 3. Filtering the Table • 26

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

paginate the data, and this is exactly what we’ll look at in the next chapter,
so stay tuned!

report erratum • discuss

Wrapping Up • 27

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

CHAPTER 4

Paginating the Table
One of the last advanced functionalities that we’ll add to our table UI is the
pagination of the meerkat data. Instead of showing all data at once, we’ll only
show parts of the data, one at a time. This improves the loading performance
and overall usability of our table.

Pagination means that we chunk our data into pages based on a page size.
As an example, if we have 100 entries of meerkat data and a page size of 20,
we chunk the data into five pages of 20 entries each. If the number of entries
isn’t divisible by the page size, the last page will contain the remainder of
entries. For example, with 90 entries and a page size of 20, we have four pages
with 20 entries each and a fifth page with only 10 entries.

The user can step through the pages using a page stepper and change the
number of entries we show by adjusting the page size. As before, we’ll store
the page size and current page as URL parameters. This allows our users to
share their current page with others and to bookmark them. So, without
further ado, let’s start paginating our meerkat data!

Paginating in the Database
As usual, we start with adding the new functionality to our Meerkats context.
Open up lib/meow/meerkats.ex and add the following code:

def list_meerkats_with_total_count(opts) do
query = from(m in Meerkat) |> filter(opts)

total_count = Repo.aggregate(query, :count)

result =
query
|> sort(opts)
|> paginate(opts)
|> Repo.all()

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

%{meerkats: result, total_count: total_count}
end

defp paginate(query, %{page: page, page_size: page_size})
when is_integer(page) and is_integer(page_size) do

offset = max(page - 1, 0) * page_size

query
|> limit(^page_size)
|> offset(^offset)

end

defp paginate(query, _opts), do: query

As you can see, we create a new list_meerkats_with_total_count/1 function instead
of extending the existing list_meerkats/1 function. We could also rewrite the
existing list_meerkats/1 function; however, since we change the return type of
the function, we’ll create a new function instead. We return the total count of
all entries affected by the query since we need this information for our pagi-
nation to work. Let’s take a step back and understand why this is necessary.

In the UI, we want to show how many pages our data has so that the user
can click through them. To do so, we need to calculate the total number of
pages so that we can show one button per page. We can calculate the number
of pages if we know the total count of the entries and the current page size.
The total number of pages is the total count divided by the page size, rounded
up. So, when we have 90 entries and a page size of 20, it’s 4.5 rounded up,
so 5 pages in total. Later on, we’ll see how we can adjust the page size in the
UI, but we need to calculate the total count in our Meerkats context whenever
we fetch the meerkat data.

That’s what our new list_meerkats_with_total_count/1 function is for. It sorts, filters,
and fetches our meerkat data just as before, but it also returns the total count
of all entries that match our query. Additionally, it only returns the number
of entries that we specify with the page size. So, instead of returning all
meerkat data, it only returns, for example, 20 rows, which is exactly what we
want to achieve with our pagination.

A Small Deep Dive into How Pagination Works
We implement the pagination by adding the limit/2 and offset/2 statements to
our query. The limit/2 call instructs the database to return only the number
of entries we specify. The offset/2 statement instructs the database from where
it should count the number of entries to return. As an example, if we set the
offset to 10 and the limit to 20, the database will return 20 entries counting
from the eleventh row, effectively ignoring the first 10 entries.

Chapter 4. Paginating the Table • 30

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

This is how we achieve the pagination. We calculate the offset by multiplying
the current page number by the page size. In the UI, we present the page
numbers as starting from 1, but in our database, the first page is page 0.
That’s why we subtract 1 from the page number before calculating the offset.
Let’s look at an example:

Let’s say we want to fetch the data for the first page with a page size of 10.
We first subtract 1 from the page number, receiving a new page number of
0. Then we multiply the 0 with our page size of 10, and we get an offset of 0.
This means that the database will return 10 entries beginning with the very
first row, which is exactly what we want.

Now, let’s say we want the data for the second page. We subtract 1 from the
page number of 2, resulting in a new page number of 1. We multiply it with
our page size of 10 and get an offset of 10. This means that the database will
skip the first 10 entries and return entries from the eleventh row onward. So,
for our second page, we return the second chunk of data, which is exactly
what we want as well.

As a safety precaution, we use the max/2 function to ensure that our page
number is always equal to or greater than 0. In case we make a mistake
somewhere and set the page number to 0 or even -1, this will fix the mistake
by replacing it with 0.

A Short Comparison of Offset vs. Cursor Pagination
The pagination approach just described is called offset pagination. It’s a
popular approach to pagination because it’s relatively simple and easy to
understand. It lets the user jump to any page in the data. However, for very
large datasets (we’re talking multiple millions of rows here) and for real-time
data presentation, offset pagination is unsuitable. The reason is that the
database needs to count many rows to fetch, for example, the ten-millionth
row.

The time complexity of offset pagination is O(offset + limit), which means that
it has linear complexity. So, if you have a large dataset and you need to fetch
the last page of the data frequently, offset pagination might not be efficient
enough for your use-case since it will take potentially very long until your
query returns the data.

Given this drawback, offset pagination is unsuitable for real-time data presen-
tation where new data is continuously appended to the table and the most
recent data is fetched often. Your database needs to count and ignore many

report erratum • discuss

Paginating in the Database • 31

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

rows every time you fetch the latest data and the number of counted rows
increases as new data is added.

Another problem with offset pagination is that you might return repeated
rows to the user if you add data to a previous page. As an example, imagine
that we sort the meerkat data by the meerkat’s name and we chunk the data
into pages of ten rows each. Furthermore, imagine that the first page has ten
rows of names beginning with A and the second page has ten rows with names
beginning with B. So, if the user request the first page, they will see ten names
beginning with A.

Now, imagine we add another meerkat whose name begins with an A while
the user views the first page in their browser. Now, if the user moves to the
second page, suddenly they see a page containing one name beginning with
A and nine names beginning with B! Worse even, they might have seen the
name beginning with A on the previous page already! This happens because
the second page returns the tenth to the twentieth entries, regardless of which
data you presented previously. Since we now have eleven names with A and
ten with B, it returns the eleventh name with A and nine names with B. Hence,
the user see a repeated row with A, which might cause an inferior user
experience.

So, if you have a very large dataset, need to fetch rows at the end of the table
often, and add data anywhere in the dataset frequently, offset pagination
might not be for you. In such cases, you might want to look into cursor pagi-
nation instead.

In short, cursor pagination uses previous and next pointers to indicate the
upper and lower bounds of the current page. As an example, imagine you are
on the third page of the meerkat data and use the id field to paginate the data.
In this case, your previous, or lower bound, pointer would be 20 and the next,
or upper bound, pointer would be 29 because we are 0-based here. So, how
can you use these pointers to request the previous or the next page?

Fetching the next page is relatively simple. The query would look something
like this:

from(m in Meerkat,
where: m.id > ^29,
order_by: [asc: :id],
limit: 10

)

So, using the next pointer, we can simply fetch the next page by filtering out
any meerkat data with an id lower or equal to the next pointer, which is 29

Chapter 4. Paginating the Table • 32

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

in our case. This way, we fetch the thirtieth entry up to and including the
thirty-ninth entry, which is equal to the fourth page of our data. So far, so
good. However, fetching the previous page is slightly more complicated. Let’s
have a look at how a query could look:

from(m in Meerkat,
where: m.id < ^20,
order_by: [desc: :id],
limit: 10

)
|> Repo.all()
|> Enum.sort_by(& &1.id, :asc)

First, we filter out any data with an id equal to or higher than our previous
pointer, which is 20 in our case. We receive a dataset of twenty entries with
IDs from 0 to 19. So far so good. However, we want to fetch the tenth until
the nineteenth entry, which is why we sort the entries descending by their
ID. This results in a dataset where the entry with the ID 19 comes first, fol-
lowed by 18, 17, and so on. From that dataset, we then take ten entries as
indicated by the limit: 10 instruction. This returns the entries with an ID from
19 down to 10, which is the data we expect in the second page of our dataset.
However, the data is sorted descending by ID, which is why we inverse the
order using Enum.sort_by/3 before we return the data from the function.

Phew! As you can see, implementing a cursor-based pagination is definitely
more complex than the offset-based alternative. But the big advantage of
cursor-based pagination is that it uses the where instruction instead of the
offset instruction. The advantage of where over offset is that Postgres efficiently
ignores any rows that don’t match the where statement, whereas it counts and
skips the rows before the given offset. If the offset is high, Postgres counts every
single row until the offset, which can result in a full-table scan in the worst
case. With where, it first filters out any unsuitable rows before starting to
count. This results in a much more efficient query.

However, the efficiency gains of cursor pagination largely depend on properly
configured indices for the variables that you want to use for pagination. Our
primary key id already has an index, but if you wanted to paginate using the
name variable, you would have to create the proper index yourself. Otherwise,
Postgres still needs to check every row whether it matches the where statement
or not, and your cursor pagination won’t be better than a simple offset pagi-
nation.

Cursor pagination solves the problem with showing repeated entries, as well,
since it doesn’t rely on offsets but uses pointers to its upper and lower bound

report erratum • discuss

Paginating in the Database • 33

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

entries instead. In our previous example, the upper bound of the first page
would be the last name with A. So, when the user requests the second page,
our query would only show names beginning with B since B > A. Even if we
added another meerkat with a name beginning with A in the meantime, the
second page would only show entries after the last name with A, so all names
with B.

The big downside of cursor pagination, aside from its implementation com-
plexity, is that users can’t jump to specific pages in the dataset. Instead, they
have to browse through every single page before the page that they want to
access. This is because we don’t have an offset anymore but only upper and
lower bounds pointers. If this is a common use-case for your users, consider
using offset pagination instead.

In summary, for small datasets whose last page is rarely accessed, the offset
pagination is a simple and suitable solution. If your dataset is very large and
you need to access its latest data frequently, a cursor-based pagination might
be more suitable. In this book, we’ll implement an offset-based pagination
since it’s easier to understand and implement. Also, once you have the offset
pagination in place, it’s a relatively small step to switch to curser-based pag-
ination.

Alright! Now that we discussed how the pagination works on the database
side, let’s see how we can expose the pagination functionality to the user. As
usual, we’ll create a LiveComponent to encapsulate the UI logic. Let’s see
what that looks like.

Creating the Pagination LiveComponent
Just as with sorting and filtering, we want to create a dedicated LiveCompo-
nent for the pagination functionality. Open up lib/meow_web/live/pagination_compo-
nent.ex. Since the PaginationComponent is slightly larger than the previous Live-
Components, we’ll add the code in two steps instead of one. Please key in the
following code first:

defmodule MeowWeb.MeerkatLive.PaginationComponent do
use MeowWeb, :live_component

alias MeowWeb.Forms.PaginationForm

def render(assigns) do
~H"""
<div>

<div>
<%= for {page_number, current_page?} <- pages(@pagination) do %>

<div phx-click="show_page"

Chapter 4. Paginating the Table • 34

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

phx-value-page={page_number}
phx-target={@myself}
class={if current_page?, do: "active"} >

<%= page_number %>
</div>

<% end %>
</div>
<div>

<.form let={f}
for={:page_size}
phx-change="set_page_size"
phx-target={@myself} >

<%= select f, :page_size,
[10, 20, 50, 100],
selected: @pagination.page_size %>

</.form>
</div>

</div>
"""

end
end

Let’s have a look at what the PaginationComponent renders. First, we add a page
stepper, which the user can use to step through the pages. We render one
button per page. You might want to change this if you expect your data to
have hundreds or more pages. In that case, you could only show the first five
and the last five pages.

We generate a list of page numbers using the pages/1 helper function. In short,
it uses the page, page_size, and total_count for calculating how many pages we
need to show and which one of them is the currently selected one. This will
become clearer when we add the code in the next step.

When generating the page buttons, we add an .active class to the button that
represents the currently selected page. This helps the user to keep track of
which page they are on. When a user clicks a page button, we send a show_page
event to the LiveComponent with the page number as a parameter. Don’t
worry about how we handle this event for now. We’ll add its handler in the
next step.

Below the page stepper, we show a dropdown element for selecting a page
size. Theoretically, we could allow the user to specify any page size, but for
UX reasons, we provide a list of predefined page sizes of 10, 20, 50, and 100
entries. When the user selects one of these options, we send a set_page_size
event to the LiveComponent.

report erratum • discuss

Creating the Pagination LiveComponent • 35

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

Alright, now that we’ve discussed the UI elements of the PaginationComponent,
let’s have a look at the event handlers and at the pages/1 helper function. Please
add the following code below the render/1 function:

<!-- render/1 stays here -->

def pages(%{page_size: page_size, page: current_page,
total_count: total_count}) do

page_count = ceil(total_count / page_size)

for page_number <- 1..page_count//1 do
current_page? = page_number == current_page

{page_number, current_page?}
end

end

def handle_event("show_page", params, socket) do
parse_params(params, socket)

end

def handle_event("set_page_size", %{"page_size" => params}, socket) do
parse_params(params, socket)

end

defp parse_params(params, socket) do
%{pagination: pagination} = socket.assigns

case PaginationForm.parse(params, pagination) do
{:ok, opts} ->
send(self(), {:update, opts})
{:noreply, socket}

{:error, _changeset} ->
{:noreply, socket}

end
end

Let’s have a look at the pages/1 helper function first. It generates a list of page
numbers using the total count and the page size and provides an indicator
whether a page is the current page or not.

First, it calculates the total number of pages by dividing the total count by
the page size. We always want to create a last page that includes the
remainder of the division, which is why we use the ceil/1 function. For example,
if we have 90 entries with a page size of 20, the ceil/1 function makes sure
that we show five pages (4.5 rounded up) instead of four. The fifth page then
contains only the last 10 entries.

After calculating the page count, we generate a range of page numbers using
the range stepper page_count//1. This prevents us from showing two pages when
the page count equals 0. In that case we would generate a range from 1 to 0,

Chapter 4. Paginating the Table • 36

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

which means that Elixir creates a list of two descending numbers [1, 0]. How-
ever, since we use the positive range stepper page_count//1, we make sure to
only generate ascending numbers. So, if the page count equals 0, we generate
an empty list instead, which is exactly what we want.

Next, you see that we define two event handlers for the show_page and
set_page_size events. They both call the parse_params/2 function since they both
update the parameters. The parse_params/2 should look familiar to you since,
just as in the other LiveComponents, we instruct a form to parse the param-
eters and send an :update message to the LiveView if the parsing is successful.

Now, let’s continue with the PaginationForm. Open up lib/meow_web/forms/pagina-
tion_form.ex and key in the following code:

defmodule MeowWeb.Forms.PaginationForm do
import Ecto.Changeset

@fields %{
page: :integer,
page_size: :integer,
total_count: :integer

}

@default_values %{
page: 1,
page_size: 20,
total_count: 0

}

def parse(params, values \\ @default_values) do
{values, @fields}
|> cast(params, Map.keys(@fields))
|> validate_number(:page, greater_than: 0)
|> validate_number(:page_size, greater_than: 0)
|> validate_number(:total_count, greater_than_or_equal_to: 0)
|> apply_action(:insert)

end

def default_values(overrides \\ %{}) do
Map.merge(@default_values, overrides)

end
end

As with the previous forms, we define a list of fields, their types, and their
default values first. You can see that we show the first page with a page size
of 20 by default. Both the page and page_size must be greater than 0 since we
always want to show at least one page if any meerkat data exists. If no data
exists, we don’t show the page stepper and don’t validate the page or page
size. So, valid page and page size values should always be greater than 0.
However, our total count can be 0 since we might not have any meerkat data

report erratum • discuss

Creating the Pagination LiveComponent • 37

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

in our database or we set a filter which matches no entries. That’s why we
validate that the total count is always greater than or equal to 0.

Now that we have the PaginationComponent and the PaginationForm ready, let’s make
them usable by adding them to the LiveView.

Adding Pagination to the LiveView
Before we can use the PaginationComponent, we need to add it to our HEEx tem-
plate. Please open up lib/meow_web/live/meerkat_live.html.heex and add the following
code:

<div>
<!-- Filter form stays here -->

<!-- Table stays here -->

<!-- Add this .live_component -->
<.live_component

module={MeowWeb.MeerkatLive.PaginationComponent}
id="pagination"
pagination={@pagination} />

</div>

This will render our PaginationComponent beneath the table. Now, we need to
assign our default @pagination values. Open up the LiveView at
lib/meow_web/live/meerkat_live.ex and update the code as follows:

defmodule MeowWeb.MeerkatLive do
use MeowWeb, :live_view

Other aliases omitted

Add this alias
alias MeowWeb.Forms.PaginationForm

mount/3, handle_params/3, and handle_info/2 omitted

Update the parse_params/2 function like this:
defp parse_params(socket, params) do

with {:ok, sorting_opts} <- SortingForm.parse(params),
{:ok, filter_opts} <- FilterForm.parse(params),
{:ok, pagination_opts} <- PaginationForm.parse(params) do

socket
|> assign_sorting(sorting_opts)
|> assign_filter(filter_opts)
|> assign_pagination(pagination_opts)

else
_error ->

socket
|> assign_sorting()
|> assign_filter()
|> assign_pagination()

Chapter 4. Paginating the Table • 38

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

end
end

assign_sorting/2 and assign_filter/2 omitted

Add this function:
defp assign_pagination(socket, overrides \\ %{}) do

assign(socket, :pagination, PaginationForm.default_values(overrides))
end

Other functions omitted
end

Now, we parse any pagination-related parameters using the PaginationForm and
assign the default pagination values if no parameters were given. However,
we still need to hand over the pagination parameters to our Meerkats context
when we fetch the meerkat data. Let’s first update the code and discuss it
afterward. Please update the LiveView as follows:

Update assign_meerkats/1 like this:
defp assign_meerkats(socket) do

params = merge_and_sanitize_params(socket)

%{meerkats: meerkats, total_count: total_count} =
Meerkats.list_meerkats_with_total_count(params)

socket
|> assign(:meerkats, meerkats)
|> assign_total_count(total_count)

end

Update merge_and_sanitize_params/2 like this:
defp merge_and_sanitize_params(socket, overrides \\ %{}) do

%{sorting: sorting, filter: filter, pagination: pagination} = socket.assigns
overrides = maybe_reset_pagination(overrides)

%{}
|> Map.merge(sorting)
|> Map.merge(filter)
|> Map.merge(pagination)
|> Map.merge(overrides)
|> Map.drop([:total_count])
|> Enum.reject(fn {_key, value} -> is_nil(value) end)
|> Map.new()

end

Add this function:
defp assign_total_count(socket, total_count) do

update(socket, :pagination, fn pagination ->
%{
pagination
| total_count: total_count

}
end)

report erratum • discuss

Adding Pagination to the LiveView • 39

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

end

And this one:
defp maybe_reset_pagination(overrides) do

if FilterForm.contains_filter_values?(overrides) do
Map.put(overrides, :page, 1)

else
overrides

end
end

As a last step, add the following to the FilterForm-module:

def contains_filter_values?(opts) do
@fields
|> Map.keys()
|> Enum.any?(fn key -> Map.get(opts, key) end)

end

There are a few things to unpack here. Let’s start with assign_meerkats/1. We
updated this function to use the new list_meerkats_with_total_count/1 function from
our Meerkats context. This means that we receive the meerkat data as well as
its total count when we fetch our data. The meerkat data still behaves the
same as before, but now we have to handle the new total_count value somehow.

We need the total_count in our @pagination assign to calculate how many page
buttons to show in the page stepper. Since we assigned the @pagination values
before we call the assign_meerkats/1 function, we can use Phoenix LiveView’s
update/3 function to fetch the current @pagination value and update its total_count.
That’s exactly what assign_total_count/2 does. It fetches the current @pagination
assign and updates its total_count with the total_count received from the database.

The last change we need to make is to update the merge_and_sanitize_params/2
function to include the new pagination parameters when we merge all
parameters. So, we add the new pagination parameters with an extra
Map.merge/2 call.

Also, we don’t want to show the total_count parameter in the URL, since it’s
purely an internal variable which we use for calculating the number of pages.
Hence, we remove it from the mix of parameters using Map.drop/2.

When we set a new filter, we need to reset the pagination. Otherwise, we might
see an empty table, although our filter returned some meerkats, all because
we’re still on, for example, the second page and our new filter returned only
a single page of results. That’s why we reset the pagination in the
maybe_reset_pagination/1 function. It asks the FilterForm whether our new parameters
contain any filter parameters. If yes, it resets our pagination to the first page.

Chapter 4. Paginating the Table • 40

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

And that’s it! Start the Phoenix server with mix phx.server and have a go at the
new pagination! You should see something like this:

Note how we store all sorting, filtering, and pagination parameters as URL
parameters. The user can copy and paste this URL, share it, or bookmark it,
and will always get the same view when they access the URL again in the
future.

Try out stepping through the pages and changing the page size. Try combining
the pagination with the sorting and filtering functionality. Does it work as
expected? How would you improve the combination of these features? Where
would you implement these changes?

Wrapping Up
We covered how to manage large amounts of data by chunking them into
pages and how to allow the user to navigate through these pages using a
pagination stepper. A pagination stepper helps users to understand on which
page they can find what data, and it lets them share their current page with
others.

report erratum • discuss

Wrapping Up • 41

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

The downside of a pagination stepper is that it causes the user to lose their
focus on the data when they navigate to another page. This is acceptable in
systems that are created for analyzing data, like scientific applications or
back-office software, since they care more about offering a predictable
behavior and allowing the user to share their findings than they care about
engaging the user.

However, in systems where user engagement is a core business value, like
social media platforms, it’s unacceptable if users lose their focus on the con-
tent, since it makes them more likely to leave the page or close the application.
That’s why such systems tend to use a different method for navigating through
the pages, which will be the topic of the next chapter: infinity scrolling.

Chapter 4. Paginating the Table • 42

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

CHAPTER 5

Paginating the Table Using Infinity
Scrolling

The last advanced table UI feature that we’ll explore in this book is how to
paginate our data using infinity scrolling. It allows the user to navigate through
the pages of data without requiring any user input like the pagination stepper
did. This way, we can load our data in chunks, thus keeping our website
performant and responsive while not impairing its user friendliness.

Let’s think about our page navigation solution from the previous chapter: the
pagination stepper. It’s a good solution if the user requires a deterministic
behavior from the UI and wants to share their findings with others. They can
step through the pages and can expect to see a different subset of the data
with every click. They can also copy and paste the URL and share their current
view with others.

However, every time the user navigates to another page, they lose focus on
the currently displayed content. They need to find the button for the next
page in the pagination stepper, click it, and move their focus back to the table
where now everything has changed. They need to erase their mental model
of the previous data and adjust to the new data. It’s a hard transition between
data subsets, which breaks the user focus and potentially their engagement
with the site. Due to these issues with the pagination stepper, websites whose
business model relies heavily on user engagement, like social media platforms,
use infinity scrolling to paginate their content.

Infinity scrolling is simple to understand, and you’ve probably used it many
times before. Whenever you scroll down a website and get close to the bottom
of the content, the website loads and appends the next page of content outside
your view and without your explicit request to do so. This way, you never run

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

out of content to view and all you have to do is to keep scrolling. It’s a seamless
experience and allows you to keep your focus on the content rather than
having to request the next page of content manually.

Websites that use infinity scrolling rarely allow you to filter or sort the data.
They rather rely on their own rules for sorting the data in order to choose the
most suitable content for you. Therefore, in this chapter, we’ll build a new
table UI, one without sorting or filtering functionality, that teaches you how
to implement infinity scrolling using Phoenix LiveView and a tiny bit of
JavaScript. Let’s get started!

Setting up the Context
Since our LiveView won’t offer filtering or sorting of the data, it doesn’t make
sense to use the list_meerkats_with_total_count/1 function that we used in the previ-
ous chapter. Rather, let’s create a new function for fetching the next page of
meerkat data for our new LiveView. Open up the Meerkats context in
lib/meow/meerkats.ex and add the following two functions:

def meerkat_count(), do: Repo.aggregate(Meerkat, :count)

def list_meerkats_with_pagination(offset, limit) do
from(m in Meerkat)
|> limit(^limit)
|> offset(^offset)
|> Repo.all()

end

The first function, meerkat_count/0, simply returns the count of all meerkat
entries in our database. We’ll need this function in our new LiveView to
determine when we have loaded all meerkat data and can stop fetching new
data. However, you don’t need this function if you think that you’ll never run
out of new content to show to the user. But more about this later.

The second function, list_meerkats_with_pagination/2, fetches a subset of meerkat
data specified with an offset and a limit. If you think back to the previous
chapter, you’ll remember that we can specify how many entries the query
should skip with the offset parameter and how many entries the query should
return with the limit parameter. We’ll use these parameters to load the next
chunk of data whenever the user gets close to the end of the currently dis-
played content. Again, more about this later.

These two functions are all you need in order to implement infinity scrolling
in your LiveView. If you believe that you will never run out of data to show,
then you can even remove one of them! It’s always astonishing to see how
much you can do with a few lines of Elixir.

Chapter 5. Paginating the Table Using Infinity Scrolling • 44

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

Now that we have these two functions in place, let’s have a look at the new
LiveView.

Creating the LiveView
Let’s create a new LiveView for implementing the infinity scrolling logic. Create
a new file at lib/meow_web/live/infinity_live.ex and add the following code to it:

defmodule MeowWeb.InfinityLive do
use MeowWeb, :live_view

alias Meow.Meerkats

def render(assigns) do
~H"""
<table>

<tbody id="meerkats"
phx-update="append"
phx-hook="InfinityScroll">

<%= for meerkat <- @meerkats do %>
<tr id={"meerkat-#{meerkat.id}"}>

<td><%= meerkat.id %></td>
<td><%= meerkat.name %></td>

</tr>
<% end %>

</tbody>
</table>
"""

end
end

Let’s have a look at the render/1 function. It generates a HEEx template, which
displays a simple table that renders our meerkat data row by row. This isn’t
very different from our previous table UI, so let’s have a closer look at the
more interesting phx-update and phx-hook tags.

Instructing LiveView How to Handle New Data
The phx-update tag instructs Phoenix LiveView how to behave when our LiveView
updates the data in the @meerkats assign. If you don’t set this tag, it defaults
to replace, which means that it will replace the current content of the table
with the new data from the @meerkats assign.

However, this isn’t quite what we want. When we load the next page of data,
we want to keep the old content in the table and add the new content to the
end of the table. We can instruct LiveView to do exactly that by setting the
phx-update tag to append. Now, LiveView will add new rows to the end of the
table and keep the existing ones. This works well for infinity scrolling because

report erratum • discuss

Creating the LiveView • 45

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

we can append any new content to the table before the user sees it. This way,
we ensure that the user feels like the content never ends. Hence the infinity
in infinity scrolling. For completeness, let’s have a look at the other possible
values for the phx-update tag.

We could instruct LiveView to disregard any updates by setting this tag to
ignore. Now, LiveView will render the table only once and ignore any updates
to the @meerkats assign afterward. This can come in handy when your website
needs to interoperate with JavaScript frameworks for, for example, showing
alerts. Such frameworks typically create and manage the state of their own
HTML elements. If LiveView were to replace these elements every time an
update comes in, it could break the functionality that the framework provides.
Typically, you would set the phx-update tag to ignore on such elements and
handle any updates using LiveView Client Hooks. We’ll talk about those later.

If you wanted to add new rows to the top instead of the end of the table, you
could set the phx-update tag to prepend. This is useful if you want to show the
latest updates always at the top of the table and let them supersede any
previous messages. In that case, LiveView would keep the existing rows but
push them down the table by adding the new rows to the top of the table.

When we want to append or prepend new rows to the table, we need to give
each row a unique identifier. This way, LiveView can track which data entries
already exist in the table and which it needs to add. We accomplish this by
adding the id={"meerkat-#{meerkat.id}"} tag to every table row.

In our case, we can assume that the id of each meerkat is unique because we
use their unique database identifier. If you want to use a different field as a
row identifier, you need to make sure that it is unique, as well, and that you
never show the same row twice. LiveView won’t crash in that case, but the
user’s browser will log an error and LiveView’s updating behavior will become
unpredictable.

Finally, you might have spotted the phx-hook="InfinityScroll" tag already. With
this, we define which LiveView Client Hook should be mounted to the table element.
We’ll dive into client hooks in the next section. For now, all you need to know
is that this hook sends a "load-more" event to our LiveView whenever the user
gets close to the bottom of the page. This causes our LiveView to fetch more
meerkat data and append it to the table before the user reaches the end of
it.

Next, let’s define the mount/3 function for our LiveView. Add the following two
functions underneath the existing render/1 function:

Chapter 5. Paginating the Table Using Infinity Scrolling • 46

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

def mount(_params, _session, socket) do
count = Meerkats.meerkat_count()

socket =
socket
|> assign(offset: 0, limit: 25, count: count)
|> load_meerkats()

{:ok, socket, temporary_assigns: [meerkats: []]}
end

defp load_meerkats(socket) do
%{offset: offset, limit: limit} = socket.assigns
meerkats = Meerkats.list_meerkats_with_pagination(offset, limit)
assign(socket, :meerkats, meerkats)

end

For our new LiveView, the mount/3 callback is rather simple: it first fetches the
count of all meerkat data from the database, assigns default values for the
offset and limit parameters, and fetches the first page of meerkat data using
the load_meerkats/1 function. However, one interesting detail is the temporary_assigns:
[meerkats: []] option, so let’s have a closer look at it.

Optimizing Memory Consumption with Temporary Assigns
Let’s imagine that a user opens our website and scrolls all the way to the
bottom of the page. We would fetch and store all meerkat data in-memory
until the user’s session ends. Now, imagine that thousands of users access
and scroll to the bottom of our website, all at the same time. Elixir is not a
memory-heavy language, but even that won’t save our server from running
out of memory and crashing.

Additionally, we store all that meerkat data in-memory although we don’t
really need to. Once a data entry is rendered, we could just forget about it.
Even if we needed a single data entry to handle subsequent user actions like,
for example, updating the entry, we could always fetch it from the database,
update it, and re-render its row in the table. So, storing all meerkat data in
the LiveView’s process would be wasteful.

Luckily, LiveView has our back. With the temporary_assigns option, we can
instruct LiveView to discard any meerkat data and reset the @meerkats assign
back to an empty list, once it has rendered the initial meerkat data. This way,
we only store the subset of the meerkat data in-memory until the LiveView
has rendered it and free up its memory allocation right after.

Now that we assign the meerkat data only temporarily, we can support signif-
icantly more users with the same amount of memory. If you still expect per-
formance issues, because you initially load too much data or you load data

report erratum • discuss

Creating the LiveView • 47

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

too often when the user starts scrolling, you could tweak the limit parameter
until you find a sweet spot.

If you set limit too low, you’ll have to load data more often and its response
time will matter more because the user might hit the bottom of your website
before you render new content. If you set the limit too high, you’ll have peaks
in your memory consumption and might hit your memory threshold more
often because you load larger chunks of data per user. You can find the sweet
spot by load-testing your application using frameworks like wrt, k6, or Jmeter.

Now that we’ve defined the render/1 and mount/3 function of our LiveView, let’s
dive into how to load more meerkat data when the user starts scrolling.

As mentioned above, we’ll use a LiveView client hook to notify the LiveView
when it should load and render more meerkat data. The notification will be
a "load-more" event that the client hook sends through the websocket connec-
tion to the LiveView. Let’s create a handler for this event by adding the follow-
ing function to our LiveView:

def handle_event("load-more", _params, socket) do
%{offset: offset, limit: limit, count: count} = socket.assigns

socket =
if offset < count do
socket
|> assign(offset: offset + limit)
|> load_meerkats()

else
socket

end

{:noreply, socket}
end

Let’s dissect this function. First, we fetch the offset, limit, and count assigns from
the socket. Then we add a small but important detail to our event handler:
the offset < count check. This check allows us to stop fetching new data once
we’ve exhausted all meerkat data in our database.

As you can see in the assign(offset: offset + limit) call, we increase our offset by
our limit every time when we fetch new meerkat data. This means that at a
certain point, our offset will be larger than the count of all meerkat data.
When this happens, it would be pointless to keep on querying the database
since no new data will be returned. That’s why we add the offset < count check
here. Once we’ve exhausted our meerkat data, our event handler will become
a no-op and we don’t query our database unnecessarily.

Chapter 5. Paginating the Table Using Infinity Scrolling • 48

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

That’s all the code needed on the LiveView side. Again, we’ve achieved so
much with so little Elixir code! Now, to make our LiveView accessible, make
sure to add it to lib/meow_web/router.ex, like this:

scope "/", MeowWeb do
pipe_through(:browser)

Add the next line
live("/infinity", InfinityLive)
live("/", MeerkatLive)

end

Start the server with mix phx.server and navigate your browser to http://localhost:4000/
infinity. You should see a table with 25 rows of meerkat data like this:

Try scrolling down the table. Unfortunately, no new meerkat data appears.
This is because we haven’t yet added the LiveView client hook that instructs
the LiveView to load more data whenever the user gets close to the bottom of
the table. Let’s fix this.

Adding the LiveView Client Hook
If you’ve worked with Phoenix LiveView a bit, you know how simple it is to
send updates from the server to the user’s browser and let it display the
changes. You simply assign the new data to your socket. LiveView then sends
the updates through the websocket connection to the browser. Once the
browser receives the updates, the JavaScript part of LiveView re-renders the
relevant parts of the UI. So, server-to-client communication in Phoenix Live-

report erratum • discuss

Adding the LiveView Client Hook • 49

http://localhost:4000/infinity
http://localhost:4000/infinity
http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

View is easy because the framework does all the heavily lifting for us. All it
takes is a single function call and LiveView does the rest.

But this only covers the server-to-client communication. So, how does LiveView
allow us to communicate in the other direction, from the client to the server?
The answer is LiveView Client Hooks. We’ll dive into them next.

A Brief Excursion into LiveView Client Hooks
The first versions of Phoenix LiveView only supported server-to-client commu-
nication. It was easy to update the UI whenever something on the back end
changed. However, it was not trivial to customize the logic that handled the
updates on the front end.

For example, what if you wanted to show an alert whenever an update comes
in? You could build a solution using advanced CSS selectors. You could, for
instance, let a new row flash in noticeable colors when you add it to the table.
So, there were some work-arounds for handling updates in the UI, but some
things remained almost impossible to implement. For example, you would
struggle to add an event listener to the users’ browser and send a custom
event to the LiveView whenever the listener receives an event.

Think about how you would implement the popular game Snake using Live-
View. It would be easy to render the current location and shape of the snake
in the browser, but how would you handle the user input for moving the
snake up, down, left, or right?

Before LiveView introduced key event handlers that made handling user input
to the keyboard trivial, you had to implement your own event listener and
call an API endpoint on your server to update the location of the snake. If you
were very motivated, you could implement your own websocket connection
with the server using Phoenix Channels, which reduced the overhead of making
a separate HTTP request for every key event. As you can see, the client-to-
server communication was complex and made LiveView unusable for certain
use-cases.

The smart people behind the Phoenix LiveView framework quickly recognized
the need to improve the interoperability of LiveView and client-side JavaScript.
One of the biggest steps toward this goal is a feature called client hooks.

Client hooks, or in short just hooks, let you hook into the life cycle of any UI
element. That means that with just a few lines of JavaScript, you can execute
custom code when, for example, a new row is added to the table. They also

Chapter 5. Paginating the Table Using Infinity Scrolling • 50

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

allow you to send custom events back to your LiveView with a single function
call.

To use a hook, you need to do three things: define your hook, add it to your
LiveSocket, and set a phx-hook tag on your UI element. Let’s create a simple
hook to see how it works.

Heads up: there’s no need for you to add the following code to your Meow
application, but if you want to, you can of course. However, it’s enough to
read and understand the following code. We’ll implement an actual client
hook later on.

First, we need to define our hook. Let’s write an example hook that logs a
message to the browser’s console and sends an event back to our LiveView.
The code could look as follows:

const PingPongHook = {
addPongListener() {

window.addEventListener("phx:pong", (event) => {
console.log(event.type);
console.log(event.detail.message)

})
},
sendPing() {

this.pushEvent("ping", { myVar: 1 });
},
mounted() {

console.log("I'm alive!");
this.addPongListener();
this.sendPing();

},
};

As you can see, our hook PingPongHook defines custom code that LiveView should
execute when the UI element is mounted to the browser. In this case, we first
log the message "I’m alive" to the browser’s console. Then, we call a custom
function that we defined on the hook called sendPing(). It sends a custom "ping"
event back to the LiveView. We can even add a payload to the event with the
second parameter of the pushEvent function.

We can extend the hook to run custom code at many different life-cycle steps.
Have a look at the official documentation to see which steps are available by
the time you’re reading this book.

Now that we’ve defined our hook, we have to add it to the LiveSocket so that
it becomes available in the browser. We can do that by adding the following
code to our app.js:

report erratum • discuss

Adding the LiveView Client Hook • 51

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

let Hooks = {};
Hooks.PingPongHook = PingPongHook;

let liveSocket = new LiveSocket("/live", Socket, {
hooks: Hooks,
// params and other options

});

Now, we can add the hook to any HTML element. For example, we could create
a simple div and add the hook like this:

<div id="myDiv" phx-hook="PingPongHook" />

Note that you have to assign an id to the HTML element to which you want
to add the hook. LiveView needs this to uniquely identify the element of the
hook and to call the correct hook when the element changes.

Let’s create a simple event handler in our LiveView for the "ping" event. It
could look something like this:

def handle_event("ping", params, socket) do
IO.inspect("ping", label: "Event")
IO.inspect(params, label: "Params")
{:noreply, push_event(socket, "pong", %{message: "Hello there!"})

end

Now, if we would run our server with mix phx.server and open the browser’s
console, we would see the following: first, our client hook logs "I’m alive" to
the browser’s console. Then the hook sends the "ping" event to the LiveView,
where we log the following output:

Event: "ping"
Params: %{"myVar" => 1}

As you can see, our LiveView received the "ping" event and our payload from
our client hook through the websocket connection. So far so good!

Now, as a response, the LiveView sends a "pong" event back together with the
event payload: %{message: "Hello there!"}. The "pong" event then triggers our event
listener for the "phx:pong" event in our browser. If we peek into the browser’s
console once more, we see the following output:

phx:pong
Hello there!

It seems like our event listener successfully accessed the payload of the "pong"
event and logged its name and payload to the console. Our ping-pong conver-
sation between client and server worked!

Chapter 5. Paginating the Table Using Infinity Scrolling • 52

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

And that’s it. With just a few lines of Elixir and JavaScript, we added custom
client-to-server and server-to-client communication to our website. Amazing!

Now, let’s use what you’ve learned about client hooks to send a "load-more"
event to your LiveView whenever the user scrolls and gets close to the bottom
of our table.

First, we need to define the hook. It should check how much hidden content
is left when the user scrolls and send a "load-more" event to the LiveView if
the user is at more than 90% of the current content. So, whenever the user
has less than 10% of the currently rendered content to scroll through, we
want to load more content so that they don’t hit the bottom of the page. The
90% is just an example here. You can set it to whatever threshold suits your
application best.

Let’s write some code. Create a new file at assets/js/infinity-scroll.js and add the
following:

export default {
rootElement() {

return (
document.documentElement || document.body.parentNode || document.body

);
},
scrollPosition() {

const { scrollTop, clientHeight, scrollHeight } = this.rootElement();

return ((scrollTop + clientHeight) / scrollHeight) * 100;
}

}

Let’s have a look at the hook so far. We first added two helper functions:
rootElement() and scrollPosition().

The rootElement() function tries to return the html element of your website.
However, for browser compatibility, it sometimes falls back to the body element
in case it doesn’t have access to the html element. We won’t dive into why this
is necessary since it would be a whole other book about web standards and
how all browsers implement them differently. For now, let’s just assume that
rootElement() returns the outermost element of our HTML template, which is
usually the html element.

Now, let’s have a look at the scrollPosition() function. It first fetches the scrollTop,
clientHeight, and scrollHeight parameters from our root element and then calculates
how much content the user can still scroll through. To understand the calcu-
lation, we have to understand the three parameters first. Have a look at the
following diagram:

report erratum • discuss

Adding the LiveView Client Hook • 53

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

clientHeight

scrollTop

scrollHeight

The diagram shows an example table and the client’s browser window that
shows only a part of the entire table. The height of the browser window is
captured by the clientHeight variable. It’s important to take the browser height
into our calculation since some users have very tall screens and they only
have to scroll a little bit to reach the end of the table, whereas other users
might have a small screen, like a laptop screen, and have to scroll much
further to reach the end of the table. For the first group of users, we need to
preload much more content so that they never run out of content to scroll
through. For users with smaller screens, we don’t need to preload as much.

When the user starts scrolling, the browser window moves down the table.
The scrollTop variable captures how far the user has scrolled. It’s the distance
from the top of the table to the topmost visible content of the table. So, when
we add up the scrollTop and clientHeight variables, we get a good measure for how
far the user has scrolled down the table.

The next step is to calculate how much content is left for the user to scroll
through. The scrollHeight variable captures the total height of the table. This
height increases whenever we add content to the end of the table. Hence, we

Chapter 5. Paginating the Table Using Infinity Scrolling • 54

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

can use this variable to calculate the percentage of content that is left for the
user to scroll through by simply dividing the current scroll position by the
total scroll height.

This is exactly what our scrollPosition() function does. It adds the scrollTop and
clientHeight variables and divides the sum by the scrollHeight. This returns a value
between 0 and 1. To get a better understandable percentage between 0 and
100, we multiply the result by 100. Now, we have the percentage of content
that the user has seen.

We can use this percentage to load more content when the user is close to
the end of the table. Let’s add this functionality to the mounted() life-cycle step.
Open up assets/js/infinity-scroll.js again and add the following function beneath
scrollPosition():

mounted() {
this.threshold = 90;
this.lastScrollPosition = 0;

window.addEventListener("scroll", () => {
const currentScrollPosition = this.scrollPosition();

const isCloseToBottom =
currentScrollPosition > this.threshold &&
this.lastScrollPosition <= this.threshold;

if (isCloseToBottom) this.pushEvent("load-more", {});

this.lastScrollPosition = currentScrollPosition;
});

}

There’s a lot going on in this function, so let’s dissect it. First, we define the
threshold percentage at which we want to load more content. We set it to
90%, so whenever the user has seen at least 90% of the current content, we
load more.

You can adjust this threshold to suit your needs, of course. If your content
takes longer to load, consider decreasing this threshold to give your website
more time to load the new content. If your content loads fast, you can increase
this threshold and reduce the total amount of network requests that your
server will receive. Feel free to play around with it until you hit the sweet
spot.

Next, we define the lastScrollPosition variable. We’ll use this variable to ensure
that we request data only when the user passes the threshold from below
90% to 90% or above. If we don’t add this variable, we would request data
also when the user scrolls from 90% to 91%, from 91% to 92%, and so on,

report erratum • discuss

Adding the LiveView Client Hook • 55

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

which we don’t want. We only want to load data once they pass the 90%
threshold and then wait for the content to appear.

One edge-case that this check doesn’t cover is when a user scrolls from 89%
to 90%, back to 89%, and then again to 90% all before we add more content.
In that case, we would request new data more than once. You could cover
this edge-case by keeping track of the page or offset that you requested. So,
when you load all the data up to and including page 10 and you just request
page 11, you wouldn’t request page 11 again.

However, this requires you to synchronize which pages you requested already,
both in the LiveView and in the client hook, which is more complex than
simply tracking the current scroll position. But if you’re interested in a solution
to this, have a look at the Phoenix LiveView documentation about JavaScript
interoperability. The smart folks from the LiveView project present a page-
based solution, which solves this edge-case but is harder to understand than
the scroll-position approach.

Let’s come back to the second part of the mounted() function, the event listener,
part of our hook:

window.addEventListener("scroll", () => {
const currentScrollPosition = this.scrollPosition();

const isCloseToBottom =
currentScrollPosition > this.threshold &&
this.lastScrollPosition <= this.threshold;

if (isCloseToBottom) this.pushEvent("load-more", {});

this.lastScrollPosition = currentScrollPosition;
});

When LiveView mounts our table UI element, we add an event listener to its
root that listens for "scroll" events. So, whenever the user scrolls, the browser
calls the callback that we define here. Let’s see what happens next:

First, we get the current scroll position, which we calculate with our scrollPosi-
tion() function. Then we check whether the user has crossed the 90% threshold
with currentScrollPosition > this.threshold. We also check that the user hasn’t crossed
the threshold before with this.lastScrollPosition <= this.threshold.

If both of these checks are successful, we push a "load-more" event to the
LiveView, which in turn loads more data and adds it to the table. When this
happens, the current scroll position drops below 90% again since we increase
the scrollHeight by adding more content. Now, the user is below the threshold

Chapter 5. Paginating the Table Using Infinity Scrolling • 56

report erratum • discuss

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

again and we’re ready to trigger the "load-more" event again when they keep
on scrolling.

And that’s it. With only 30 lines of JavaScript and 50 lines of Elixir, we brought
our data to the users’ fingertips and even added the advanced feature of
infinity scrolling to it!

This concludes our implementation of the advanced infinity scrolling feature.
Before you leave, maybe play around with the new feature. Does your content
always load in time? If not, adjust the threshold a bit. Also test this feature
by simulating a slow internet connection. Most browsers can simulate this
for you. Is the table still responsive and does it load the content in time? If
not, consider lowering the threshold even more and reducing the limit variable
in the LiveView.

Infinity scrolling can improve the UX of your website a lot, but it can also
become a disadvantage if a slow internet connection causes it to become
sluggish. So, test this feature heavily on different and sometimes choppy
internet connections. If you put in the extra effort, you’re more likely to see
your user engagement soar, which is the whole point of infinity scrolling.

Wrapping Up
You’ve reached the end of this book. Well done! Hopefully, you feel comfortable
with implementing these advanced table UI features in your next project.

In this book, you learned how to bring your data to your users’ fingertips with
an advanced table UI. We touched on many different topics such as query
composition, memory optimization, JavaScript interoperability, live compo-
nents, and more. You learned about all the features commonly used in table
UIs, such as pagination, sorting, and filtering. You even learned how to opti-
mize the table UI for user engagement with infinity scrolling. You learned a
lot! Give yourself a pat on your shoulder, you deserve it.

report erratum • discuss

Wrapping Up • 57

http://pragprog.com/titles/puphoe/errata/add
http://forums.pragprog.com/forums/puphoe

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2023 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With up to a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

We thank you for your continued support, and we hope to hear from you
again soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2023

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/puphoe
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up-to-Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on Twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest Pragmatic developments, new titles, and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/puphoe
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	1. Building a Simple Table UI
	Creating the Schema and Context
	Creating the LiveView
	Wrapping Up

	2. Sorting the Table
	Sorting the Data in the Database
	Setting up LiveView
	Sorting with LiveComponent
	Parsing and Assigning the Sorting Parameters
	Putting the SortingForm to Use
	Wrapping up

	3. Filtering the Table
	Filtering in the Database
	Creating the Filter LiveComponent
	Adding the Filter to the LiveView
	Wrapping Up

	4. Paginating the Table
	Paginating in the Database
	Creating the Pagination LiveComponent
	Adding Pagination to the LiveView
	Wrapping Up

	5. Paginating the Table Using Infinity Scrolling
	Setting up the Context
	Creating the LiveView
	Adding the LiveView Client Hook
	Wrapping Up

