

Early Praise for Craft GraphQL APIs in Elixir with Absinthe

Like GraphQL’s meteoric rise, this book is sure to be a breakout hit for readers
looking to revolutionize the way they write APIs. Ben and Bruce combine their
Absinthe expertise with their production experience to take readers from the basics
of GraphQL to exercising its most powerful features with Elixir and Phoenix.

➤ Chris McCord
Author, Phoenix framework

If we’re lucky, about once per decade or so we’ll come across a technology that
has the chance to revolutionize the Web. GraphQL is one such set of technologies.
This book is written by two of the industry’s experts—co-authors of one of the
best and most complete GraphQL implementations. Even if you’re not planning
to deploy on Elixir, this book will show you GraphQL done right.

➤ Chad Fowler
Microsoft and BlueYard Capital

Absinthe single-handedly made one of the most critical and complex parts of
Trailpost’s infrastructure the piece I worry about least. This book should be on
the radar of anyone developing APIs in Elixir, and probably some who aren’t.

➤ Daniel Pehrson
Founder, Trailpost.com

GraphQL is a broad but rewarding topic, and Bruce and Ben have covered it
comprehensively. The book introduces the key GraphQL concepts in a very ap-
proachable way. It then makes sure you have all the tools and techniques to build
robust, well-structured, and incredibly fast GraphQL APIs using Elixir, Absinthe,
Ecto, and Phoenix. A killer combination for building amazing applications if ever
there was one!

➤ Josh Price
Technical Director, Alembic

GraphQL is a game changer, and now you can use it with Elixir! This book is an
invaluable must-read for any Elixir developer. I referred to it often as I helped
prepare our web team for the next generation of APIs.

➤ Daniel Berkompas
Senior Software Engineer, Infinite Red; Creator of LearnElixir.tv &
LearnPhoenix.tv

Craft GraphQL APIs in Elixir
with Absinthe

Flexible, Robust Services for Queries, Mutations,
and Subscriptions

Bruce Williams
Ben Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series Editor: Bruce A. Tate
Copy Editor: Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-255-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—April 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgements ix
Introduction xi

Part I — Build a GraphQL API

1. Meet GraphQL 3
On the Client 3
On the Server 8
Absinthe and the Tech Stack 13
Moving On 14

2. Building a Schema 15
Preparing the Application 15
Our Schema Module 16
Making a Query 21
Running Our Query with GraphiQL 24
Testing Our Query 27
Moving On 29

3. Taking User Input 31
Defining Field Arguments 31
Providing Field Argument Values 35
Using Enumeration Types 41
Modeling Input Objects 44
Marking Arguments as Non-Null 48
Creating Your Own Scalar Types 50
Moving On 57

4. Adding Flexibility 59
Organizing a Schema 59

Understanding Abstract Types 63
Using Named Fragments 74
Moving On 76

5. Making a Change with Mutations 77
Defining a Root Mutation Type 77
Building the Resolver 80
Handling Mutation Errors 86
Moving On 95

6. Going Live with Subscriptions 97
Setting Up Subscriptions 98
Event Modeling 100
Submitting Subscriptions 108
Testing Subscriptions 111
Subscription Triggers 114
Moving On 120

Part II — Publish Your API

7. Resolution Middleware 123
Our First Module 123
Applying Middleware 127
Setting Defaults 132
Moving On 137

8. Securing with Authentication and Authorization . . . 139
Logging In 139
Using the Execution Context 148
Securing Fields 153
Structuring for Authorization 162
Moving On 165

9. Tuning Resolution 167
Understanding the Problem 169
Using Built-in Plugins 176
Discovering Dataloader 184
Moving On 191

Contents • vi

Part III — Use Your API

10. Driving Phoenix Actions with GraphQL 195
Building an Action 196
Handling Input 203
Complex Queries 209
Moving On 219

11. Integrating with the Frontend 221
Starting Simple 221
Choosing a Framework 229
Using Apollo Client 231
Using Relay 243
Wrapping Up 258

A1. GraphQL Types 261
Object 261
InputObject 261
Enum 262
Interface 263
Union 263
Scalar Types 264
Special Types 266

Bibliography 269
Index 271

Contents • vii

Acknowledgements
We’d like to thank our editor, Jackie Carter, and the rest of the staff at The
Pragmatic Bookshelf for their guidance and assistance turning this book into
a reality. While it’s a cliché, writing a book is hard work…and it would have
been immeasurably more difficult without your help. Likewise, a small army
of technical reviewers—Andrea Leopardi, Brian O’Grady, Chad Wooley,
Chengyin Liu, Gabor Hajba, Jack Marchant, James Fish, Jesse Cooke, Kim
Shieir, Lou Xun, Mark Goody, Nate Vick, Paulo A. Pereira, Rodrigo Franco,
and Sebastian Kosch—helped us improve the content and code in this book.
Any remaining issues fall squarely and solely on our shoulders.

Bruce would like to thank his wife, Melissa, and their three sons—Braedyn,
Jamis, and Cole—without whose love, support, and deep, abiding well of
patience, no book would be worth writing (or would get done in the first place).
He’d also like to thank Maria Gutierrez, a dear friend who he’ll eventually
forgive for the gentle nudge that convinced him to invest the time to write
another book.

Ben is grateful to his colleagues, friends, and family for their seemingly endless
willingness to listen, offer advice, and humor the most insane ideas throughout
this process. In particular, Ben wants to thank his wife, Becca, whose constant
care and dedication to those around her serves as both an inspiration and a
daily joy.

Finally, we’d like to show our appreciation for those who have contributed to
Absinthe, the project this book covers.

We deeply appreciate the time and encouragement given to us by José Valim
and Chris McCord as the Absinthe project has grown. Their answers to hard
questions and warnings about pitfalls, their open minds and imaginations,
have made all the difference between the project becoming a fun yet subtly
broken toy, and a robust, useful tool for the Elixir/Phoenix community
they lead.

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

In the same vein, we’d like to thank the dozens of contributors to Absinthe’s
many packages. Absinthe is an ambitious project. Like many ambitious
projects, it started out as a crazy dream—and as it turns out, it found plenty
of crazy-smart, friendly people to share it...and make it so much better.
Thank you!

Acknowledgements • x

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Introduction
GraphQL is an exciting newcomer to the world of web service protocols. It
arrived on the scene at exactly the right time for us, struggling as we were
with a complicated, inflexible REST API that was wearing a little of the shine
off our fancy new Elixir application in production.

We decided to give GraphQL a try.

Little did we know that along the way, we’d discover an approach to building
APIs and collaborating across the backend/front-end divide that was more
flexible, maintainable, and fun for our team.

We wrote Absinthe, the GraphQL toolkit for Elixir, because we thought
GraphQL might be a good fit for our problem, our development process, and
our platform. Since that time, a community has grown up around the project.
We wrote this book because we think that it might just be a good fit for
yours, too.

It’s certainly a great fit for Elixir!

About This Book
This book is organized into three parts.

Part I introduces you to the core concepts behind GraphQL, then guides you
through building a GraphQL API in Elixir. You’ll learn about queries, muta-
tions, and subscriptions, and end up with a functional example by the time
you’re through.

Part II addresses the most common security, maintainability, and performance
questions that people have about GraphQL in production, focusing on
building real-world solutions that turn naive implementations into rock-solid,
scalable APIs that are easy to maintain.

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Part III is all about using your GraphQL API. You’ll learn how to support client-
side GraphQL frameworks that access it over HTTP or directly from within
your Elixir applications.

The book wraps up by providing a useful appendix to use as a quick reference
when building your GraphQL schema and interacting with your API.

What This Book Isn’t
This book isn’t an introductory book on Elixir or Phoenix. While the book’s
code should be straightforward reading for most developers, we will cover
some more advanced topics that would benefit from a firm grounding in the
Elixir language and the Phoenix web framework. We recommend the following
supplementary books to readers who might be coming at this book from a
different background:

• Programming Elixir 1.6 [Tho18]
• Programming Phoenix 1.4 [TV19]

This book isn’t a lengthy diatribe about REST or JSON APIs. While we’ll take
time to compare GraphQL with other technologies—building on your experi-
ence—this isn’t going to be a point-by-point takedown of other choices;
GraphQL is a compelling choice, and while we’ll often touch on why, we’ll
move on to actually building things with it rather quickly.

Who This Book Is For
If you’re a developer who writes modern web APIs, this book is for you. You
know the rewards and challenges of building a RESTful API using JSON,
working with databases, and aggregating data from remote services. This
book is for you because you’re in a good position to experience the “aha
moment” of GraphQL full-force. You already know the problem space.

If you write Elixir (or Erlang) code, this book is for you. You use the Erlang/OTP
platform for a reason—it’s robust, fault-tolerant, and battle-tested. This book
is for you because GraphQL is the web API and (data retrieval/mutation)
technology that Elixir/Erlang deserves, and you’re using a platform that can
take GraphQL to the next level.

If you write Node.js code, and especially if you’re already supporting GraphQL
APIs for JavaScript-based web frameworks, this book is for you. Maybe you’re
looking for an alternative backend technology, and you’ve heard a lot about
Elixir and Phoenix. You already know a fair bit about GraphQL, but you want
to take it further. This book is for you because it will help you take the jump
to Elixir with the confidence and knowledge to make your APIs even better.

Introduction • xii

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

How to Read This Book
If you’re brand new to GraphQL and want the full background story, or if
you’ve played a bit with it before but would like a solid refresher, start at the
beginning. In Chapter 1, Meet GraphQL, on page 3, you’ll learn about its
origins and walk through the core concepts that you’ll need as you read the
rest of the book.

If you’ve used GraphQL before in another language and want to jump straight
into building your first Elixir GraphQL API, then Chapter 2, Building a
Schema, on page 15 is the chapter for you. It’s where you’ll be introduced to
Absinthe, the GraphQL toolkit for Elixir, and start building the GraphQL
schema for our example application.

Readers who have already had some experience building GraphQL APIs using
Elixir and are looking for specific answers might want to start at Part II,
Publish Your API, on page 121; its chapters are focused on common challenges
GraphQL developers face taking their dreams to reality. If you’re ready to use
your Absinthe-based GraphQL API, take a look at Part III, Use Your API, on
page 193, where you’ll learn about supporting fancy JavaScript GraphQL-fluent,
client-side frameworks over HTTP and even building some custom processing
logic to use GraphQL directly from elsewhere in your Elixir applications.

Regardless of where you start reading the book, check out the “Moving On”
section at the end of each chapter. You’re sure to find ideas and challenges
there that will help you take your understanding of GraphQL and its use in
Elixir to the next level.

About the Code
The sample code and examples included in this book are written using the
Elixir programming language, and will focus on how to use Absinthe,1 the
GraphQL toolkit for Elixir. As the authors of Absinthe, we can’t wait to show
you the ropes.

Absinthe is distributed as a number of separate, focused packages, and we’ll
be using several; absinthe provides the core GraphQL functionality, absinthe_plug
supports handling requests over HTTP/S, and absinthe_phoenix adds support
for GraphQL subscriptions over Phoenix channels. You learn about each of
these, and more related packages, as we build out the examples.

1. http://absinthe-graphql.org

report erratum • discuss

About the Code • xiii

http://absinthe-graphql.org
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

System Dependencies
The Elixir example code for the book assumes that you’ve installed the follow-
ing system dependencies. This can be done by using your favorite package
manager or downloading and installing them as pre-built binaries from the
associated websites.

• Erlang2 (v20.0+)
• Elixir3 (v1.5.0+)
• PostgreSQL4 (v9.4+)

The final chapter of the book covers integration with JavaScript client-side
frameworks, and we recommend Node.js5 v8.9.0+.

Online Resources
You can find all the example code for this book on its Pragmatic Bookshelf
website,6 alongside a handy community forum if you’d like to reach out for
help along the way.

While we’ve worked hard to make our code examples and explanations bug-
free and clear in every way for our readers, we’ve written enough software to
know that we’re fallible. Thanks in advance for reporting any issues that you
find in the book code or text via the errata form, also conveniently found on
the book website.

Welcome to the world of GraphQL—using Elixir. We can’t wait to see what
you build!

Bruce Williams & Benjamin Wilson

March 2018

2. https://www.erlang.org
3. https://elixir-lang.org
4. https://www.postgresql.org
5. https://nodejs.org
6. https://pragprog.com/book/wwgraphql/craft-graphql-apis-in-elixir-with-absinthe

Introduction • xiv

report erratum • discuss

https://www.erlang.org
https://elixir-lang.org
https://www.postgresql.org
https://nodejs.org
https://pragprog.com/book/wwgraphql/craft-graphql-apis-in-elixir-with-absinthe
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Part I

Build a GraphQL API

In this first part, you’ll learn GraphQL’s core con-
cepts (or enjoy a refresher) and build a basic func-
tional API in Elixir from start to finish. You’ll discov-
er how to use queries to get information, mutations
to make modifications to data, and live subscrip-
tions over Phoenix channels to keep your API users
up to date with changes.

CHAPTER 1

Meet GraphQL
There was a time when the primary job of a web server was supplying HTML
content to a web browser for display, but these days—to support mobile and
rich client-side applications—a lot of the work that we need to do on the
backend involves building APIs.

Building an API that can support a wide range of possible clients can quickly
become a challenge. The needs of applications that use the API can quickly
diverge and force us to make tough decisions; what starts as a simple REST
API can quickly become more complex as we work to make its endpoints more
flexible to support clients.

Let’s explore a different way to build APIs—one that addresses this modern
problem head on and comes packed with other benefits: GraphQL.

GraphQL is a query language that gives the users of an API the ability to
describe the data that they want, and lets creators of the API focus on data
relationships and business rules instead of worrying about the various data
payloads the API needs to return.

In this chapter, we’re going to look at some of the key concepts behind
GraphQL, including how these query documents are structured and how a
GraphQL server interprets them. Along the way, we’ll draw some comparisons
with the most common technology driving web services today: REST.

On the Client
To illustrate conventional GraphQL communication practices, let’s imagine
how a web or mobile application might request data from a server over HTTP.
At a high level, this conversation looks something like the figure on page 4.

The application sends a GraphQL document to the server, and the server
responds with a JSON document, having consulted a schema that describes

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

data it has available to query and to modify. Because of the schema, the
server is empowered to flexibly fulfill the requests sent by clients on a case-
by-case basis.

Let’s see how this compares to REST, looking at a specific example: retrieving
information about a specific user record. In a REST API, we’d do an HTTP
request that would look something like this (assuming a user ID of 123):

GET /users/123

As a client of this REST API, you have very limited control over what is
returned. Perhaps the server will give you the user’s ID and a name, or maybe
it will return the entirety of the user’s profile and every other record associated
with the user. The contract between the client and the server is fairly one-
sided: the client gets what the server wants to give it.

REST API authors attempting to address this problem use a number of differ-
ent techniques and conventions:

• Writing detailed, custom documentation about API responses, so clients
at least know what to expect

• Supporting query parameters (like include and fields) that act as flags to
select information, adding some limited flexibility

• Including references (either IDs or URLs) to related data, rather than
embedding it, effectively splitting the query across multiple requests

• Using different resources to model different levels of data inclusion (for
example, /users/123 as a full set of data and /profiles/123 as a sparse set of
data), duplicating or reusing large chunks of code

• Splitting the API completely, perhaps by platform (for instance, exposing
/desktop/users/123 and /mobile/users/123), to support the needs of different types
of clients

• Some combination of all of these

Chapter 1. Meet GraphQL • 4

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

REST’s simplicity falls away pretty suddenly as the needs of clients become
more varied and the surface area of the API expands.

The GraphQL approach to this problem is more standardized (being based
on a specification) and cohesive: GraphQL is an expressive query language
focused on flexibly meeting API client needs. If a GraphQL client wanted to
retrieve user 123’s name and email address, for instance, they’d explicitly
specify those fields:

{
user(id: 123) {

name
email

}
}

We don’t need to get hung up on the details now, but what you’re looking at
here are three fields: user, name, and email, with name and email being children
of user. This makes sense, structurally, as a user has a name and an email
address. We’re passing an id argument here, too, specifying which user we’d
like to use.

The request is made to a single GraphQL endpoint (URL) via an HTTP GET
or a POST request, and the structure of the GraphQL document determines
exactly what the server’s response will look like. There are no hidden, default
values forced upon the client; the response is tailored based on the request.
Here’s an example response based on our previous GraphQL document:

{
"data": {

"user": {
"name": "Joe Bob",
"email": "joe.bob@example.com"

}
}

}

The GraphQL server has the schema and knows what a User is, how to retrieve
one by ID, and what information it can contain. It can respond to the client
with the information about the user that the client specifically requested.

It knows how to find data related to the user, too.

Including Relationships
Often the most valuable pieces of data end up being the relationships between
entities rather than the entities themselves. That is certainly true in social

report erratum • discuss

On the Client • 5

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

networking applications, where the interconnectedness of people—their social
graph—serves as the functional core of the product. Social networks could
hardly be considered social without friendships.

It shouldn’t be much of a surprise then that GraphQL, originating at Facebook,
excels at helping clients query across relationships—across the graph of
related entities. It’s even in the name!

But let’s take a step back and think about how we might handle getting related
information from a REST API first. Joe—our user 123—has friends, and we’d
like to know their names, too.

When using a REST API, here are some questions we should probably ask
ourselves:

• Can we get a user’s friends via /users/:id, or do we need to use a different
resource URL?

• Are friends (or their names) included by default, or do we need to specify
that we want them? How do we do that?

• When information about friends is returned, where will it be in the result?

• Is each friend’s data embedded, or just referenced, forcing us to do more
requests to retrieve it? Will we need to paginate the friends list? How will
this affect our performance on mobile devices, where bandwidth may be
limited and additional requests have a negative effect on performance and
battery life?

This is a lot of unnecessary mental overhead, requiring researching documen-
tation (if it exists and is complete) and doing exploratory testing just to
determine how to access the data we need from the API.

GraphQL Simplifies Things
GraphQL can shorten your development time because you don’t need to ask
these questions.

If you know that a GraphQL server supports users having friends (you’ll learn
about introspection in Running Our Query with GraphiQL, on page 24), you
also know that you can query across that relationship, getting exactly the
information that you want to receive in a single request, all the while using
a standardized query language.

We simply ask for the data using GraphQL:

Chapter 1. Meet GraphQL • 6

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

{
user(id: 123) {

name
email
friends {➤

name➤

}➤

}
}

The result is much as it was with our earlier user example, but with the addi-
tional data about friends a level deeper:

{
"data": {

"user": {
"name": "Joe Bob",
"email": "joe.bob@example.com",
"friends": [

{"name": "Fred Jones"},
{"name": "Jane Smith"},
{"name": "Rebekah Jones"}

]
}

}
}

Looking at the client-side code, you know exactly what you can expect to be
there because you have a GraphQL query at hand that tells you the shape of
the response you’ll get back from the server, taking the guesswork (and doc-
umentation spelunking) out of the picture. This lets you focus on more
product-specific concerns.

From a backend perspective, because queries are coming in as a declarative
query language detailing what clients need, you gain an incredibly detailed
picture of what information your clients actually need. Gone are the days of
sending as much data across the wire that any client, someday, might use,
or building in custom inclusion and exclusion logic that you have to maintain.

This isn’t necessarily a new concept either. If you’ve ever used a database
system that supports SQL, you’re already familiar with query languages that
allow you to retrieve exactly what you want. GraphQL is a lot simpler than
SQL for users, however, and the backend data retrieval logic (that gets the
data the user wants) is a lot easier to customize.

Let’s take a closer look at that backend logic next and talk about what needs
to be done on the GraphQL server for it to give us this level of flexibility.

report erratum • discuss

On the Client • 7

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

On the Server
GraphQL is incredibly powerful, but it isn’t magic. GraphQL query documents
can be flexible because the server holds a complete schema describing the
shape of data that the API models and the input that it can expect from clients.
This means that you, as the API developer, are responsible for accurately
building a representation of your data. If this sounds like a lot of work, take
heart in that it means the GraphQL server can free you up from more mun-
dane details being mixed into your business logic.

We’ll get into the nitty gritty of how GraphQL schemas are built in the next
chapter, but let’s take a look at one of the more important benefits that pro-
viding one gives us automatically: user input validation. We’ll start with a
little vignette showing how this usually works in a REST API.

User Input Validation in REST
Suppose, in your REST API, you have an endpoint that will return a list of
upcoming events. You want to support filtering these events by the date and
location where they are going to take place. This would give you something like:

GET /events?date=2016-11-22&location_id=4

You can’t trust API users to give you correct input values. The location_id could
be “hello world” instead of a number, for example. The date could be given in
an invalid or unsupported date format. Users might even pass in superfluous
parameters that they think should work, but do not.

REST, as a standard, doesn’t really have much to say about data validation,
so enforcing rules about incoming data is left up to the code that handles the
request—code that we have to write ourselves.

This validation code can add a lot of complexity to backend controllers, which
are often responsible for a long list of other tasks: retrieving the information
the client wants, formatting the result as the client expects, and sending the
response back across the HTTP connection. This can quickly become a mess.
Here’s an example of our events endpoint using a Phoenix controller action.
Remember, its only job is to return a list of filtered events, and yet…

@valid_filters ~w(date location_id name)aLine 1

def index(conn, params) do-

filters =-

@valid_filters-

|> Enum.reduce(%{}, fn key, filters ->5

case Map.fetch(params, Atom.to_string(key)) do-

{:ok, value} ->-

Chapter 1. Meet GraphQL • 8

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

add_filter(filters, key, value)-

_ ->-

filters10

end-

end)-

-

render("index.json", events: Event.list(filters))-

end15

-

defp add_filter(filters, :date, date) do-

case Date.from_iso8601(date) do-

{:ok, date} ->-

Map.put(filters, :date, date)20

{:error, _} ->-

filters-

end-

end-

defp add_filter(filters, key, value) do25

Map.put(filters, key, value)-

end-

This is a lot of code! Did you catch where the controller action actually
retrieved the requested data—its main purpose? There it is on line 14, tucked
away in the wash of boilerplate. This is without even trying to return nice
errors to the client in the event they do something wrong, or letting them
know they’ve sent something extra.

The controller is trying to do three distinct tasks:

1. Validate the input from the user.
2. Get the data the user wants.
3. Respond to the user in the correct format.

Even when you leverage packages and other utilities to try to make data val-
idation simpler, the central problem is still the same: you’re doing too much
work here that’s outside your core goal, which is getting the events.

Using GraphQL, this is a completely different story.

GraphQL Inputs
GraphQL simplifies this dramatically by inverting the problem. With GraphQL
you have a predefined schema with declared types and rules about the input
that you can receive from users to retrieve data. When someone sends you
data, it is checked by these rules before your code is executed.

This keeps your code focused on its primary objective: doing what the user
wants.

report erratum • discuss

On the Server • 9

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

To use our previous example, you would declare that location_id has to be an
integer, and that date has to be formatted as a date. Then, to support a com-
parable GraphQL query like the following:

{
events(location_id: 4, date: "2016-11-22") {

name
location {
name

}
}

}

You could write code that just focuses on using the filters (that will be validat-
ed and parsed for us) to get the events you want:

def events(filters, _) do
{:ok, Event.list(filters)}

end

Validation Errors Skip Execution

A GraphQL server doesn’t just verify that a request is well formed.
It also validates that it meets the requirements defined by the
schema.

Requests that fail to pass validation never get the chance to execute
your business logic, resulting in faster error responses and less
bugs for you to track down later.

If the client sends something extra, they’ll be given a detailed error message
in the response to that effect. If API users fail to send something that’s
required, or if they send something that is invalid, they’ll be notified as well.
As developers, we don’t have to worry about any of those scenarios! Once we
have a schema in place, the input data given to our code is guaranteed to
have met the rules we’ve declared about it, and we can get right down to
business.

Your GraphQL server’s knowledge of your schema also helps it determine
what data is available to be output.

Queries and Schemas
Remember our user example from earlier, and how our GraphQL server knew
that the client could receive the name, email, and friends of a user? The reason
that worked is rooted in the correspondence between the structure of GraphQL
queries and the structure of the graph of types maintained in the schema. In
the next couple of chapters, we’ll be covering how we actually write Elixir

Chapter 1. Meet GraphQL • 10

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

code that builds this schema graph, but let’s look at a few diagrams that
demonstrate this correspondence.

Let’s talk about another query—returning the data for a user profile. A basic
diagram of the GraphQL schema might look like this:

This is a graph showing User (a custom type in our schema) and String and Int
(built-in types) as nodes, with the fields name, email, age, and friends as edges,
representing the relationships between the types. (We’ll talk about QueryRootType
in a moment.)

Nodes and Edges

GraphQL developers and the GraphQL community commonly
borrow terms from graph theory, which is the study of mathemat-
ical structures that model the relationships between objects.

In graph theory terminology, the relationships between objects
are commonly referred to as “edges” (drawn as lines), and the
objects themselves are called “nodes” (drawn as shapes connected
by those lines).

A User type is related to a String type both by its name and its email fields.

Because the User type has fields and represents a complex value, GraphQL
refers to it as an object type, whereas Int and String are simple values that it
refers to as scalar types; they have no fields of their own. GraphQL’s type
system models a number of different types and defines a number of ready-
to-use, built-in types. You will learn more about others in the next few
chapters.

report erratum • discuss

On the Server • 11

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Object types can have fields that point to themselves, which is what we see
with the User type’s friends edge. This means that all objects in our graph that
are of the User type can have friends, and that each of those friends will also be
of type User.

Incoming queries are matched up against the schema. Sometimes it’s useful
to represent the relationships visually. For instance, if we graph the following
query document:

{
profile {

name
email
friends {
name

}
}

}

It will look something like this:

We can see a lot of similarities with our schema graph. Each node in our
query tree lines up exactly with the name of an edge we have in our schema
graph. When we query a GraphQL schema, we’re really just walking these
edges and getting the data associated with them. All queries start at a root
object we have on our schema graph (we’re calling it RootQueryType). Our query
then has us follow the profile edge, which gets us to a User. From there, we also
want to follow the name and email edges, which get us to string values. Finally,
our friends edge just gets us back to a User, letting us know that we can get a
name, age, or email of the friend if we want…and their friends, too!

Chapter 1. Meet GraphQL • 12

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Building a schema presents two major categories of work: describing the types
and the edges between types (both by defining them and adding built-in
documentation, which you’ll see later), and writing the business logic that
edges use to find their data.

If a query needs to walk from a user to its friends, how does that actually
happen? Are we going to hit the database? If we do, will trying to get the
friends of friends result in terrible database access patterns?

These are the kinds of questions that we’re going to take on as we work
through this book. To do this, we are going to be building an application piece
by piece that will put these problems front and center in a concrete way.

Absinthe and the Tech Stack
For the rest of the book, we’ll be focusing on improving an application that
we’ve provided called PlateSlate. PlateSlate models the menu, ordering, and
order fulfillment needs of a quick-service restaurant chain. We’ll incrementally
build out the domain model and add features to its API that will expose you
to deeper, trickier aspects of GraphQL (and Elixir) as we go. If you haven’t
already downloaded the application, please go to Online Resources, on page
xiv, and follow the instructions there.

This application makes use of a few Elixir packages, the most important of
which is Absinthe. Absinthe lets you build GraphQL schemas and execute
documents against them using Elixir. It provides a host of features that we’ll
be covering throughout this book to make your GraphQL APIs straightforward
to build, idiomatic, and perform well.

We’re also going to leverage a couple of packages for exposing our GraphQL
API via the web, specifically Plug and Phoenix. In many ways, Absinthe replaces
a lot of the things you’d normally find in a Phoenix-based API like controllers
and views. Little to no knowledge of either of these technologies is assumed;
we’ll cover the bits you need to know along the way.

Finally, we’re going to have some packages we use to get underlying data.
One of the core value propositions of GraphQL is its ability to provide a
common interface to different types of data stores, and we’ll try to illustrate
that as we build our application. This means we’ll eventually use a basic HTTP
client to make HTTP requests to other APIs and use Ecto to access an SQL
database. Strong proficiency with these packages is not required, but a basic
grasp of how to interact with a relational database will help.

report erratum • discuss

Absinthe and the Tech Stack • 13

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

At a high level, this is how a GraphQL request is handled, using these packages:

Most of our time will be spent focusing on how to define our GraphQL schema
and tie it to our application business logic, and that’s what we will move on
to next.

Moving On
In this chapter, we’ve introduced a lot of key GraphQL concepts and talked
about how GraphQL compares to REST. We’ve talked about how clients
communicate with servers using GraphQL documents, and how servers use
a schema to validate and retrieve the data requested. You’ve learned how this
approach makes client requests more flexible, and how the schema simplifies
the concerns that your server business logic needs to handle manually.

Here are a couple of challenges for you before we move on:

1. Think of a domain familiar to you and write down the types that belong
to that domain. Draw in relationships between those types. Remember,
these relationships are often what we think of as properties on an entity.

2. Add a root object, and think about how you might want to connect it with
your graph. From there, write down some GraphQL queries that would
be possible to handle from that point. What kinds of responses might
come back for these?

Once you’ve thought through these problems, get ready to jump into defining
your first GraphQL schema with Elixir using Absinthe.

Chapter 1. Meet GraphQL • 14

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

CHAPTER 2

Building a Schema
GraphQL APIs are shaped by their schemas. In fact, it’s fair to say that
because GraphQL schemas are more than just structural metadata and
actually define behavior, they’re the API implementation itself.

The schema is used by GraphQL servers as the canonical source of information
when deciding how to respond to a request. They’re the reason that GraphQL
documents can be as flexible as they are, while still giving backend developers
the mechanisms that they need to ensure the API is safe and reliable.

In Elixir, you can use the Absinthe package to build GraphQL APIs. In this
chapter, we’ll help you get acquainted with how Absinthe’s schemas are
defined by building the foundation of our example application, PlateSlate.
The knowledge you’ll pick up in this chapter will serve as the foundation for
the rest of the book.

First, let’s kick the tires on our example application, making sure it’s up and
running and ready for a GraphQL API.

Preparing the Application
Let’s start by making sure that you’ve set up your development environment.
Your system will need to have the prerequisites listed in the System Depen-
dencies, on page xiv, installed and ready to go, and you’ll need to download
the example application source code via one of the methods explained in
Online Resources, on page xiv.

Once that’s done, make sure that you’re looking at the directory for this
chapter. We’re going to be running a few commands using the mix build tool.

Make sure that you’re running the correct versions of Elixir, just to make
sure that you don’t download and compile packages using the wrong version:

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

$ elixir --version
Erlang/OTP 20 «Build details»
Elixir 1.5.0

Great, with Elixir 1.5 (and Erlang/OTP 20), you’re ready to go.

Let’s retrieve the Elixir package dependencies of the PlateSlate application
using the deps.get task:

$ mix deps.get
Running dependency resolution...
«Dependency installation output»
Now that we have our dependencies, let’s get the PostgreSQL database for
the application configured correctly, the Ecto migrations run, and our seed
data loaded. Handily, we’ve included a single alias in our mix.exs, ecto.setup.
Just run it, and you should see the following:

$ mix ecto.setup
The database for PlateSlate.Repo has been created
«Database setup output»
If something goes wrong here, it’s usually a missing PostgreSQL role.1 (If you
encounter this problem, you can find the configuration we’re trying to use
for PostgreSQL in config/dev.exs.)

Seed data for the project will be used both in development and in testing, so
it’s been extracted to a module PlateSlate.Seeds in /dev/support/seeds.ex. The
ecto.setup process will have already loaded these values, but you may want to
give them a look so that you’re familiar with the data you’ll have on hand.

Once our mix ecto.setup has run successfully, we’re ready to move on to defining
our first GraphQL object type. It’s time to start building our schema.

Our Schema Module
To build a GraphQL API, you’ll need to construct a GraphQL schema, which
defines its domain model and how data is retrieved. That can seem pretty
overwhelming at first, so we’ll help you start by showing you where to put
the schema and ease you into your first query.

We want this schema to support clients of our API accessing a list of menu
items. An example query from a client might look something like this:

1. https://www.postgresql.org/docs/current/static/app-createuser.html

Chapter 2. Building a Schema • 16

report erratum • discuss

https://www.postgresql.org/docs/current/static/app-createuser.html
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

{
menuItems {

name
}

}

If the user was talking to us, this would translate to “Give me the names of
all of the menu items that you have.” Here’s a sample of the type of JSON
they’d expect in response:

{
"data": {

"menuItems": [
{"name": "Reuben"},
{"name": "Croque Monsieur"},
{"name": "Muffuletta"}

]
}

}

To make this happen, we need to define a GraphQL object type for our menu
items.

Defining an Object Type

All data in GraphQL has an associated type. Our menu item type is what
GraphQL refers to as an object, since it contains a number of fields (like name).
Let’s define our menu item object type so that clients can retrieve information
about the structure of menu items. We do this using the object macro that
using Absinthe.Schema gives us.

Your Schema in an Abstraction Layer

Keep in mind that your API and the underlying data representa-
tions do not need to be identical, or even have the same structure.
One of the main values in modeling GraphQL types is that they
can serve as an abstraction over whatever backing data store (or
service) contains the associated data, transforming it before it’s
transmitted to API users.

Here are the beginnings of the schema module, with the boilerplate for our
new menu item type. You can see we’re also stubbing out the query definition
for now (more on that soon):

report erratum • discuss

Our Schema Module • 17

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

02-chp.schema/1-start/lib/plate_slate_web/schema.ex
defmodule PlateSlateWeb.Schema do

use Absinthe.Schema

query do
<<Ignore this for now>>

end

object :menu_item do
<<We'll add fields soon>>

end
end

Before we add any fields, let’s fire up Interactive Elixir from the root directory
of our application:

$ iex -S mix
iex(1)>

Don’t Forget -S mix

It’s important that you run iex with the -S mix option. Without it,
your application code won’t be automatically compiled, started,
and available to you from your session.

Once the prompt shows up, let’s take a look at how the menu item object type
is modeled in our schema module. We’ll use the handy Absinthe.Schema.lookup_type
function:

iex(1)> Absinthe.Schema.lookup_type(PlateSlateWeb.Schema, "MenuItem")

The result looks something like this (we’re omitting some of the private
internals that are just around for record keeping, and ordering the contents
roughly by importance):

%Absinthe.Type.Object{
identifier: :menu_item,
name: "MenuItem",
description: nil,
fields: %{},
interfaces: [],
is_type_of: nil

}

Absinthe models the types we define as Elixir structs. We haven’t added much
to our menu_item type yet, so you can see the definition is rather sparse, but
it’s still worth pointing out some of the main features. First, some internals:

identifier
The internal identifier Absinthe uses to refer to this type. As we define
the schema, we’ll be using it a lot, too.

Chapter 2. Building a Schema • 18

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/1-start/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The rest of the Absinthe.Type.Object struct defines values that we can customize
as needed:

description
Documentation we can provide for an object type that will automatically
be available to API users using GraphQL’s built-in introspection features.
We’ll be talking about this more in Running Our Query with GraphiQL,
on page 24.

name
The canonical GraphQL type name. While required, this will be generated
for you automatically if you don’t provide it yourself, based on the Absinthe
identifier. While we could customize this for our :menu_item object, the
default of "MenuItem" works just fine.

fields
The real meat and potatoes of our object types. We’ll add some next.

is_type_of and interfaces
Support GraphQL’s Union and Interface abstract types, which we’ll talk more
about in Understanding Abstract Types, on page 63.

This is how Absinthe represents the types that you’ll be building. Now let’s
move on to filling in your first type.

Adding Fields
Adding a field to an object type is as simple as using the field macro. The macro
takes an identifier atom, a type reference, an optional keyword list of
attributes, and a further optional block for more in-depth configuration. We’ll
start with the basics and add :id, :name, and :description fields to our :menu_item
object:

02-chp.schema/2-object/lib/plate_slate_web/schema.ex
object :menu_item do

field :id, :id
field :name, :string
field :description, :string

end

The identifiers that we’ve chosen for the fields will give the fields canonical
GraphQL names of "id", "name", and "description". (Like object types, the canonical
GraphQL names of fields are generated for us automatically.)

The second argument to the field macro here defines the field type. These fields
are simple scalar values, and the GraphQL specification defines a number of

report erratum • discuss

Our Schema Module • 19

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/2-object/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

built-in scalar types you can use. We’ve including a handy, detailed reference
in Appendix 1, GraphQL Types, on page 261, but here are the basics:

DescriptionAbsintheGraphQL

Signed 32-bit numeric non-fractional values:integerInt
Signed double-precision fractional values as specified by
IEEE 7542

:floatFloat

Textual data, represented as UTF-8 character sequences:stringString
true or false:booleanBoolean
Null values, represented as the keyword null:nullNull
A unique identifier, often used to re-fetch an object or as
the key for a cache; not intended to be human-readable

:idID

The built-in ID (:id) and String (:string) types are great fits for our :id and :name fields.

Custom Scalar Types

We can add our own scalar types too (we’ll learn more about that
in Creating Your Own Scalar Types, on page 50).

Let’s review our object by starting iex -S mix and then using Absinthe.Schema.lookup_
type/2 to see the fields we’ve added:

iex(1)> Absinthe.Schema.lookup_type(PlateSlateWeb.Schema, "MenuItem")

This gives us something like this (again, shortened a bit for clarity):

%Absinthe.Type.Object{
identifier: :menu_item,
name: "MenuItem",
description: nil,
fields: %{

id: %Absinthe.Type.Field{➤

identifier: :id,
name: "id",
type: :id,
args: %{},
default_value: nil,
deprecation: nil,
description: nil,
resolve: nil

},

2. http://en.wikipedia.org/wiki/IEEE_floating_point

Chapter 2. Building a Schema • 20

report erratum • discuss

http://en.wikipedia.org/wiki/IEEE_floating_point
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

name: %Absinthe.Type.Field{➤

identifier: :name,
name: "name",
type: :string,
args: %{},
default_value: nil,
deprecation: nil,
description: nil,
resolve: nil

}
},
interfaces: [],
is_type_of: nil

}

There are additional options we can pass to the field macro to build out our
Absinthe.Type.Field structs, but we’ll get into those soon enough. First let’s see
about building a basic query.

Making a Query
A GraphQL query is the way that API users can ask for specific pieces of
information. We’ve defined the shape of our GraphQL MenuItem type, but to
support users getting menu items, we need to provide two things:

• A way for users to request objects of the type
• A way for the system to retrieve (or resolve) the associated data

The key to the first objective is defining a special object type to serve as the
entry point for queries on a GraphQL schema. We already defined it when we
used the query macro earlier.

The query macro is just like object, but it handles some extra defaults for us
that Absinthe expects. Since we’ve already defined a blank query object, let’s
take a look at what it looks like in IEx, too:

iex(1)> Absinthe.Schema.lookup_type(PlateSlateWeb.Schema, "RootQueryType")

The result looks something like this:

%Absinthe.Type.Object{
identifier: :query,
name: "RootQueryType",
description: nil,
fields: %{},
interfaces: [],
is_type_of: nil

}

report erratum • discuss

Making a Query • 21

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

As you can see, there’s nothing special about the root query object type
structurally. Absinthe will use it as the starting point of queries, determining
what top-level fields are available.

Let’s add the field we need, :menu_items, for our menu item listing query. We’ll
use the same field macro we used when we were building our :menu_item object:

query do

field :menu_items, list_of(:menu_item)

end

list_of is a handy Absinthe macro that we can use to indicate that a field returns
a list of a specific type. Technically, here it’s shorthand for %Absinthe.Type.List{of_
type: :menu_item}. That’s a little long to type every time you need to return a list.
We’ll use menu_items, since it should return information about more than one
menu item.

Supporting Language Conventions

GraphQL is often used by front-end languages like JavaScript that have slightly dif-
ferent conventions than Elixir. In Elixir, it’s more conventional to use :menu_items, but
in JavaScript, we’d expect menuItems (which is the GraphQL convention, as well).

Lucky for us, Absinthe handles translating between these two conventions automat-
ically so that both the client and the server can work using the formats most familiar
to them. The functionality is extensible, too; if you want to use a different naming
convention in your GraphQL documents, you can.

Our :menu_items field doesn’t actually build the list of menu items yet. To do
that, we have to retrieve the data for the field. GraphQL refers to this as res-
olution, and it’s done by defining a resolver for our field.

A field’s resolver is the function that runs to retrieve the data needed for a
particular field. Let’s build our first one for the :menu_items field. Our menu
item data is modeled using Ecto:3

02-chp.schema/2-object/lib/plate_slate/menu/item.ex
defmodule PlateSlate.Menu.Item do

use Ecto.Schema
import Ecto.Changeset
alias PlateSlate.Menu.Item

schema "items" do
field :added_on, :date
field :description, :string

3. https://hex.pm/packages/ecto

Chapter 2. Building a Schema • 22

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/2-object/lib/plate_slate/menu/item.ex
https://hex.pm/packages/ecto
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

field :name, :string
field :price, :decimal

belongs_to :category, PlateSlate.Menu.Category

many_to_many :tags, PlateSlate.Menu.ItemTag,
join_through: "items_taggings"

timestamps()
end

@doc false
def changeset(%Item{} = item, attrs) do

item
|> cast(attrs, [:name, :description, :price, :added_on])
|> validate_required([:name, :price])
|> foreign_key_constraint(:category)

end
end

To retrieve all the menu items, do the following:

PlateSlate.Repo.all(PlateSlate.Menu.Item)

Since this is exactly what our :menu_items field needs to do, let’s wire that in
as the result of its resolver, using Elixir’s alias to shorten the module names
for readability:

02-chp.schema/2-object/lib/plate_slate_web/schema.ex
alias PlateSlate.{Menu, Repo}

query do

field :menu_items, list_of(:menu_item) do
resolve fn _, _, _ ->
{:ok, Repo.all(Menu.Item)}

end
end

end

We’ve passed a function to the resolve macro to set the field’s resolver. Because
the field doesn’t need any parameters, we can ignore the function arguments
and just return an :ok tuple with the list of menu items. That lets Absinthe
know that we were able to resolve the field successfully.

You don’t need to define a resolver function for every field. For example, this
query will attempt to resolve a menu item’s :name field:

{
menuItems {

name➤

}
}

report erratum • discuss

Making a Query • 23

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/2-object/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

If a resolver is not defined for a field, Absinthe will attempt to use the equiva-
lent of Map.get/2 to retrieve a value from the parent value in scope, using the
identifier for the field. You’ll learn more about how that works in Setting
Defaults, on page 132.

Resolution starts at the root of a document and works its way deeper, with
each field resolver’s return value acting as the parent value for its child fields.
Because the resolver for menuItems (that is, the resolver we defined in our
schema for the :menu_items field) returns a list of menu item values—and reso-
lution is done for each item in a list—the parent value for the name field is a
menu item value. Our query, in fact, boils down to something very close
to this:

for menu_item <- PlateSlate.Repo.all(PlateSlate.Menu.Item) do
Map.get(menu_item, :name)

end

Of course, our GraphQL request gets this information bundled up, nicely
labeled in a JSON response from Absinthe.

Let’s take a break from editing the schema to play with GraphiQL, a handy
user interface we can use to query our fledgling GraphQL API.

Running Our Query with GraphiQL
GraphiQL is “an in-browser IDE for exploring GraphQL,” and to make things
easy for the user, Absinthe integrates with three versions of GraphiQL: the
official interface,4 an advanced version,5 and GraphQL Playground.6 All three
are built in to the absinthe_plug7 package and ready to go with just a little
configuration.

The absinthe_plug dependency is already in our mix.exs file from the initial setup,
but we need to now configure the Phoenix router to use it. Replace the existing
"/" scope with the following block:

02-chp.schema/2-object/lib/plate_slate_web/router.ex
scope "/" do

pipe_through :api

forward "/api", Absinthe.Plug,
schema: PlateSlateWeb.Schema

4. https://github.com/graphql/graphiql
5. https://github.com/OlegIlyenko/graphiql-workspace
6. https://github.com/graphcool/graphql-playground
7. https://github.com/absinthe-graphql/absinthe_plug

Chapter 2. Building a Schema • 24

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/2-object/lib/plate_slate_web/router.ex
https://github.com/graphql/graphiql
https://github.com/OlegIlyenko/graphiql-workspace
https://github.com/graphcool/graphql-playground
https://github.com/absinthe-graphql/absinthe_plug
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

forward "/graphiql", Absinthe.Plug.GraphiQL,
schema: PlateSlateWeb.Schema,
interface: :simple

end

Really, we’re setting up two routes: "/api" with the regular Absinthe.Plug, and
"/graphiql" with the GraphiQL plug. The former is what API clients would use and
what we’ll use in our tests, and then the latter provides the “in-browser” IDE
we’ll use now. Specifically, we’re going to use the simplified, official GraphiQL
interface, set with the interface: :simple option.

Let’s start our application by running the following:

$ mix phx.server

Since the server will start on port 4000, visit http://localhost:4000/graphiql (adding
the path where you have mounted GraphiQL) and see the GraphiQL user
interface.

There’s a lot to see here, but let’s give our query a shot before we dig into it
much further. Start by typing your query into the text area to the top left.

Did you notice that while you were typing, GraphiQL helpfully suggested some
autocompletions? That’s because when you loaded the page, it automatically
sent an introspection query to your GraphQL API, retrieving the metadata
it needs about PlateSlateWeb.Schema to support autocompletion and display
documentation.

When you press the play button above the query, you can see the JSON result
in the right-hand text area as shown in the top figure on page 26.

Success! Now, let’s try this one, adding the :id field:

{
menuItems {

id➤

name
}

}

report erratum • discuss

Running Our Query with GraphiQL • 25

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Here’s the result:

It’s handy being able to specify additional fields in our query without having
to modify the schema any further! We already defined the :id field on our
:menu_item type, so it works out of the box. We just weren’t asking for it before.

What else can we query? Let’s look at the API documentation that GraphiQL
has collected for us. To the right of the GraphiQL interface, there’s a “Docs”
link that, when clicked, will open up a new sidebar full of API documentation:

If you click on RootQueryType, you can see the menuItems field with its type,
[MenuItem], displayed, but it’s missing a more detailed description. You can
add one by editing your schema.

Let’s do that now. Back in web/schema.ex, you can add a :description value as part
of the third argument to the field macro:

Chapter 2. Building a Schema • 26

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

field :menu_items, list_of(:menu_item),
description: "The list of available items on the menu" do

«Menu item field definition»
end

If you look back at GraphiQL (refresh the page), your description will now be
displayed.

There’s another technique you can use to add descriptions, using a module
attribute, @desc, just as you would with Elixir’s @doc:

@desc "The list of available items on the menu"
field :menu_items, list_of(:menu_item) do
«Menu item field definition»

end

Because the latter approach supports multiline documentation more cleanly
and sets itself off from the working details of our field definitions, it’s the
approach we’ll use in our application.

Testing Our Query
GraphiQL is a great tool to explore our API and when we’d like to manually run
a query, but it’s not a replacement for a test suite. We’ll use ExUnit to add tests
for our Absinthe schema to make sure our queries work now and later on to
prevent regressions. Our future selves will appreciate the forethought.

ExUnit is bundled with Elixir, so no dependencies are required. Since our
PlateSlate application is using Phoenix, ExUnit has already been set up with
a preconfigured test harness that we can use.

Because we know our users are going to use the API by hitting /api, we can
treat our API just as we would a Phoenix controller, using the PlateSlate.ConnCase
helper module that Phoenix generously generated for us:

report erratum • discuss

Testing Our Query • 27

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

02-chp.schema/2-object/test/plate_slate_web/schema/query/menu_items_test.exs
defmodule PlateSlateWeb.Schema.Query.MenuItemsTest doLine 1

use PlateSlateWeb.ConnCase, async: true-

-

setup do-

PlateSlate.Seeds.run()5

end-

-

@query """-

{-

menuItems {10

name-

}-

}-

"""-

test "menuItems field returns menu items" do15

conn = build_conn()-

conn = get conn, "/api", query: @query-

assert json_response(conn, 200) == %{-

"data" => %{-

"menuItems" => [20

%{"name" => "Reuben"},-

%{"name" => "Croque Monsieur"},-

%{"name" => "Muffuletta"},-

«Rest of items»-

]25

}-

}-

end-

-

end30

The setup block loads our seed data as a convenience. The test itself starts by
building a connection. Then it passes the @query module attribute we defined
previously (making use of Elixir’s handy multiline """ string literal) as the :query
option, which is what Absinthe.Plug expects. The response is then checked to
make sure that it has an HTTP 200 status code and includes the JSON data
that we expect to see.

Running the test gives us exactly what we were hoping for:

$ mix test test/plate_slate_web/schema/query/menu_items_test.exs
.

Finished in 0.2 seconds
1 test, 0 failures

After a little compilation, a passing test!

We’ll continue to build tests out this way as our API grows. These tests exercise
a lot of our system, from HTTP requests through JSON serialization, helping

Chapter 2. Building a Schema • 28

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/2-object/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

to reduce our stress by keeping us confident that changes elsewhere in the
application aren’t affecting our GraphQL users.

Moving On
In this chapter, we learned how to build the foundation of a GraphQL schema
in an Elixir application, defining an object type that we exposed via a query
field, and we tested our fledgling API using a popular tool, GraphiQL.

Here are a couple challenges for you before we move on:

1. We’ve defined :id and :name fields for our MenuItem object type. The backing
Ecto schema, PlateSlate.Menu.Item, has a number of other fields we could
also expose in our GraphQL schema. Define another one using one of the
built-in scalar types we mentioned earlier.

2. Add descriptions for the fields inside the MenuItem object type, using the
@desc form. Don’t stop there: you can use it to add a description for the
object type itself, too. Verify that GraphiQL is displaying the descriptions.

Once you’re done, we’re going to look at supporting user input in the next
chapter, which will open up a whole range of new and interesting API
possibilities.

report erratum • discuss

Moving On • 29

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

CHAPTER 3

Taking User Input
Web APIs need to define and validate input from users, whether it’s used to
query information or to modify it. In most web frameworks, this input defini-
tion is ad hoc and often mixed in with the business logic of the application.
GraphQL takes a more declarative approach, however, by defining input as
part of your API schema and supporting type validations as a core feature.

In this chapter, you’ll see that by articulating the rules about our data in the
schema, we can have the Absinthe package enforce them for us, allowing our
Elixir application code to focus on more core application concerns. This will
make our code more readable and easier to maintain.

We’ll dig into the nuts and bolts of user input in GraphQL, covering the dif-
ferent ways users can provide it and the constraints we can set. You’ll learn
about new input types and how to apply them to make your GraphQL schemas
more descriptive, accurate representations of your API.

Let’s start by looking at GraphQL’s most fundamental user input concept,
the field argument.

Defining Field Arguments
GraphQL documents are made up of fields. The user lists the fields they would
like, and the schema uses its definition of those fields to resolve the pieces
of data that match. The system would be pretty inflexible if it did not also
allow users to provide additional parameters that would clarify exactly what
information each field needed to find. A user requesting information about
menuItems, for instance, may want to see certain menu items or a certain
number of them.

It’s for this reason that GraphQL has the concept of field arguments: a way
for users to provide input to fields that can be used to parameterize their

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

queries. Let’s take a look at our example application and see how we can
extend our Absinthe schema by defining the arguments that our API will
accept for a field, and then see how we can use those arguments to tailor the
result for users.

We’ve already built a field in our API that we could make more flexible by
accepting user input: the list of menu items. Our schema’s menuItems field, if
you remember, looks something like this:

03-chp.userinput/1-start/lib/plate_slate_web/schema.ex
alias PlateSlate.{Menu, Repo}Line 1

-

query do-

-

field :menu_items, list_of(:menu_item) do5

resolve fn _, _, _ ->-

{:ok, Repo.all(Menu.Item)}-

end-

end-

10

end-

On line 7, the field’s resolver just returns all the menu items, without any
support for filtering, ordering, or other modifications to the scope or layout
of the result. The field isn’t declaring any arguments, so the resolver doesn’t
receive anything with which we could modify the list of menu items retrieved.

Let’s add an argument to our schema to support filtering menu items by
name. We’ll call it matching, then configure our field resolver to use it when
provided:

03-chp.userinput/2-matchinginline/lib/plate_slate_web/schema.ex
alias PlateSlate.{Menu, Repo}Line 1

import Ecto.Query-

-

query do-

5

field :menu_items, list_of(:menu_item) do-

arg :matching, :string-

resolve fn-

_, %{matching: name}, _ when is_binary(name) ->-

query = from t in Menu.Item, where: ilike(t.name, ^"%#{name}%")10

{:ok, Repo.all(query)}-

_, _, _ ->-

{:ok, Repo.all(Menu.Item)}-

end-

end15

-

end-

Chapter 3. Taking User Input • 32

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/1-start/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/2-matchinginline/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

On line 7, we defined matching as a :string type. If you remember from the previ-
ous chapter, :string is a built-in type. We can use it as an input type, too.

We’re not making the matching argument mandatory here, so we need to support
resolving our menuItems field in the event it’s provided, and in the event it isn’t.
You can see Elixir’s pattern matching capability used in the two separate
function heads of our resolver to handle those two cases.

The second function head, on line 12, serves as the fall-through match and
is identical to our original resolver.

It’s the first function head, on line 9, that adds our new behavior. On line 10,
we make use of the matched argument as name (in the from macro that Ecto.Query1

provides) to build our Ecto query. We pulled the Ecto.Query macros in on line
2. By declaring our inputs up front, Absinthe has a bounded set of inputs to
work with and can thus give us an atom-keyed map to work with as argu-
ments, unlike Phoenix controller action params.

Resolvers and Field Arguments

Absinthe only passes arguments to resolvers if they have been
provided by the user. Making a map key match of the arguments
resolver function parameter is a handy way to check for a field
argument that’s been specified in the request.

Writing complicated resolvers as anonymous functions can have a negative
side effect on a schema’s readability, so to keep the declarative look and feel
of the schema alive and well, let’s do a little refactoring and extract the resolver
into a new module. Because filtering menu items is an important feature of
our application—and could be used generally, not just from the GraphQL
API—we’ll also pull the core filtering logic into the PlateSlate.Menu module, which
is where our business logic relating to the menu belongs.

Here’s our new resolver module:

03-chp.userinput/3-matching/lib/plate_slate_web/resolvers/menu.ex
defmodule PlateSlateWeb.Resolvers.Menu do

alias PlateSlate.Menu

def menu_items(_, args, _) do
{:ok, Menu.list_items(args)}

end
end

You can see that the resolver is calling PlateSlate.Menu.list_items/1, passing the
arguments. The logic inside PlateSlate.Menu looks like this:

1. https://hexdocs.pm/ecto/Ecto.Query.API.html

report erratum • discuss

Defining Field Arguments • 33

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/lib/plate_slate_web/resolvers/menu.ex
https://hexdocs.pm/ecto/Ecto.Query.API.html
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

03-chp.userinput/3-matching/lib/plate_slate/menu/menu.ex
def list_items(%{matching: name}) when is_binary(name) do

Item
|> where([m], ilike(m.name, ^"%#{name}%"))
|> Repo.all

end
def list_items(_) do

Repo.all(Item)
end

This code should look pretty familiar; it’s been extracted out of our anonymous
resolver function and restructured into a named function. Doing this makes
both the resolver and the overall schema more readable.

The Point of "Pointless" Modules

While it might seem like adding resolver modules just to have them call functions
from other modules is superfluous, it’s important to set up a solid separation of
concerns early on in our project.

In general, a resolver’s job is to mediate between the input that a user sends to our
GraphQL API and the business logic that needs to be called to service their request. As
your schema gets more complex, you’ll be glad you made space in the overall architecture
of your application to keep your resolver and domain business logic separate.

We’ll cover structural decisions like these in more detail in Chapter 4, Adding Flexi-
bility, on page 59.

Now let’s wire our resolver back into our :menu_items field in the schema:

03-chp.userinput/3-matching/lib/plate_slate_web/schema.ex
alias PlateSlateWeb.Resolvers

query do

field :menu_items, list_of(:menu_item) do
arg :matching, :string
resolve &Resolvers.Menu.menu_items/3

end

end

Using Elixir’s & function capture special form2 here lets us tie in the function
from our new module as the resolver for the field and keeps the schema dec-
laration tight and focused.

Let’s explore using this new field argument that we’ve defined with some
GraphQL queries that cover a range of scenarios.

2. https://hexdocs.pm/elixir/Kernel.SpecialForms.html#&/1

Chapter 3. Taking User Input • 34

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/lib/plate_slate/menu/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/lib/plate_slate_web/schema.ex
https://hexdocs.pm/elixir/Kernel.SpecialForms.html#&/1
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Providing Field Argument Values
There are two ways that a GraphQL user can provide argument values for an
argument: as document literals, and as variables.

Using Literals
Using document literals, values are embedded directly inside the GraphQL
document. It’s a straightforward approach that works well for static docu-
ments. Here’s a query that uses a document literal for the matching argument
that we’ve added to retrieve menu items whose names match "reu":

{
menuItems(matching: "reu") {➤

name
}

}

Argument values are given after the argument name and a colon (:), and the
literal for a :string argument is enclosed in double quotes ("). Let’s use this
query in a new test, just as we did in Testing Our Query, on page 27:

03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
{

menuItems(matching: "reu") {
name

}
}
"""
test "menuItems field returns menu items filtered by name" do

response = get(build_conn(), "/api", query: @query)
assert json_response(response, 200) == %{

"data" => %{
"menuItems" => [

%{"name" => "Reuben"},
]

}
}

end

Running the test, we can verify that our literal argument value is being passed
through, and the query successfully filtering the menu items returned:

$ mix test test/plate_slate_web/schema/query/menu_items_test.exs
..

Finished in 0.4 seconds
2 tests, 0 failures

report erratum • discuss

Providing Field Argument Values • 35

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

It works! Now let’s see what happens when a user provides a bad value:

03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
{

menuItems(matching: 123) {
name

}
}
"""
test "menuItems field returns errors when using a bad value" do

response = get(build_conn(), "/api", query: @query)
assert %{"errors" => [➤

%{"message" => message}➤

]} = json_response(response, 400)➤

assert message == "Argument \"matching\" has invalid value 123."➤

end

The first thing to notice here is that we’re getting an HTTP 400 response code
from Absinthe. This indicates that one or more errors occurred that prevented
query execution. Helpfully, the error given in the response tells the user of
the API what they’re doing wrong.

This is great! Our API can respond appropriately to user-provided values,
without any intervention by any custom type-checking code. By consulting
our schema, Absinthe handles it for us.

Let’s run it to make sure the error is returned:

$ mix test test/plate_slate_web/schema/query/menu_items_test.exs
...

Finished in 0.4 seconds
3 tests, 0 failures

Now that we have both valid and invalid tests working correctly, let’s talk
about how users might use this query in the real world. In the examples we’re
using for our tests, we’re using literal argument values directly in the GraphQL
document. This isn’t very reusable.

Imagine a user interface that took a search term from end users and then
called out to our API. If the front-end application only used document literals,
it would need to interpolate the search terms directly into the GraphQL doc-
ument. For each user request, a completely new document would have to be
generated, likely using string interpolation. To do this while ensuring that
the GraphQL document wouldn’t be malformed, it would need to sanitize the
input—making sure, for instance, that no double quotes were provided that

Chapter 3. Taking User Input • 36

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

would prematurely end the string value and cause a parse error from the
GraphQL server.

This is a great use case for GraphQL variables—a way to insert dynamic
argument values provided alongside (rather than inside) the static GraphQL
document.

Using Variables
GraphQL variables act as typed placeholders for values that will be sent along
with the request, a concept that may be familiar to you if you’ve used
parameterized SQL queries for insertion and sanitization of values. GraphQL
variables are declared with their types—before they’re used—alongside the
operation type. We haven’t had to think about operation types before, so let’s
talk a little bit about what operations are and how they fit inside the GraphQL
document.

Understanding Operations

A GraphQL document consists of one or more operations, which model
something that we want the GraphQL server to do. Up to this point, we’ve
been asking the server to provide information—an operation that GraphQL
calls a query. GraphQL has other operation types too, notably mutation for per-
sisting a change to data, and subscription to request a live feed of data. We’ll get
into those later.

We’ve been using a simplified way of typing up a query operation, which just
uses an outer set of curly braces ({}) to demarcate where it starts and ends:

{
menuItems { name }

}

GraphQL assumes that if you’re providing a single operation like this, its
operation type is query. The previous example is equivalent to this, where we
explicitly mark the operation as a query:

query {
menuItems { name }

}

In simple cases, we omit the operation type, but when we’re using variables,
we need to use the more formal, verbose syntax and fully declare the operation.
This gives us a place to list and describe the variables that we’ll be using in
the operation. Let’s declare a variable for use in our menu item search query.

report erratum • discuss

Providing Field Argument Values • 37

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Naming Operations

You can also provide a name for operations, which can be useful
for identifying them in server logs. The name is provided after the
operation type—for instance, queryMenuItemList { ... }. You’ll see named
operations later in the book.

Declaring Variables

Here’s our menu items query operation with a definition for a variable we’ll
be using, $term, and then its use for the matching argument:

query ($term: String) {
menuItems(matching: $term) {

name
}

}

Variable declarations are provided directly before the curly braces that start
the body of an operation, and are placed inside a set of parentheses. Variable
names start with a dollar sign ($), and their GraphQL types follow after a
colon (:) and a space character. If we were declaring multiple variables, we’d
list them separated by commas.

The variable’s GraphQL type isn’t the snake_cased form as declared in our
schema. As you discovered in the previous chapter, Absinthe uses snake_cased
atom identifiers for GraphQL types (like :string) so that our Elixir code feels
idiomatic. In GraphQL documents, however, we need to use the canonical
GraphQL type names (like String), which are CamelCased. (If you’re ever unsure
of the canonical name for a built-in GraphQL type and how they map to
Absinthe types, take a peek at Appendix 1, GraphQL Types, on page 261, where
we’ve laid them all out for you.)

We used the String type for our $term variable, since that’s exactly the type of
argument value that we defined for the matching argument in our schema.

Variable Types Aren’t Extraneous

While it might seem like having to declare an argument type and
a variable type (that will be used for that argument) is overkill, it
allows the GraphQL server to give clearer error messages about
the expected vs. provided variable value and lets the GraphQL
document writer make values mandatory to support client-side
validation.

Chapter 3. Taking User Input • 38

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Of course, if you’ve taken the time and effort to declare a variable and sprinkle
its values throughout a document, you probably want to know how to provide
values for it.

Providing Values for Variables

Variable values are provided alongside GraphQL documents. Let’s modify the
test that we used previously to illustrate how:

03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
query ($term: String) {

menuItems(matching: $term) {
name

}
}
"""
@variables %{"term" => "reu"}
test "menuItems field filters by name when using a variable" do

response = get(build_conn(), "/api", query: @query, variables: @variables)
assert json_response(response, 200) == %{

"data" => %{
"menuItems" => [

%{"name" => "Reuben"},
]

}
}

end

You notice that we’re passing the value of term (without the $ prefix) along in
variables. We’re still using a GET request here, but a POST would also work. In
either case, the value of variables should be JSON-encoded (a detail that—since
we’re inside a test—we can ignore).

We can run the test with mix to verify that our variable value is being passed
correctly:

$ mix test test/plate_slate_web/schema/query/menu_items_test.exs
....

Finished in 0.4 seconds
4 tests, 0 failures

We can also play with the query in the GraphiQL interface that we learned
about in the previous chapter, provided for us as part of the absinthe_plug project
dependency. To do that, we start our application to access the GraphiQL
interface:

$ mix phx.server
[info] Running PlateSlateWeb.Endpoint with Cowboy using http://localhost:4000

report erratum • discuss

Providing Field Argument Values • 39

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Open up a browser and point it at http://localhost:4000/graphiql.

First, enter this query in the pane on the left:

query ($term: String) {
menuItems(matching: $term) {

name
}

}

Then, make sure the “Query Variables” section is open and define the value
for the term variable in a JSON object. It should all look something like this:

When we run the query, GraphiQL sends a POST with a body that looks
something like this:

{
"query": "query ($term: String) { menuItems(matching: $term) { name } }",
"variables": "{\"term\": \"reu\"}"

}

The response, sent back from Absinthe, is formatted nicely for readability
and is exactly what we expect to see:

GraphQL makes it easy to plug in dynamic values from outside the document.
This capability makes for flexible, reusable GraphQL documents that we can
use over and over with different use values. Let’s look at another example,
tackling a common user interface need (list ordering) while introducing a new,
useful GraphQL type: enumerations.

Chapter 3. Taking User Input • 40

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Using Enumeration Types
A GraphQL enumeration (or enum, as it’s generally called) is a special type
of scalar that has a defined, finite set of possible values. Here are some
examples of values that are well represented by enums:

• Available shirt sizes: S, M, L, and XL
• Color components: RED, GREEN, and BLUE
• Ordering: ASC and DESC

Enums are a good choice if the possible values are well defined and unlikely to
change, if those values are short (one or maybe two words long), and if they’re
not a pair of values that are more clearly represented by a boolean flag.

Let’s use the ASC and DESC ordering example for a list of menu items that we’ll
allow users to retrieve in ascending or descending order.

We’ll start by adding our enum type, :sort_order, using the enum and value macros.
The enum macro works just like object, but it defines an enumeration instead
of an object. The value macro defines a possible value of the enum. For our
use case, :asc and :desc will do:

03-chp.userinput/4-ordering/lib/plate_slate_web/schema.ex
enum :sort_order do

value :asc
value :desc

end

To allow users to dictate a :sort_order for our :menu_items field, we need to declare
a new argument. We’ll call it :order, too:

field :menu_items, list_of(:menu_item) do
arg :matching, :string
arg :order, :sort_order➤

resolve &Resolvers.Menu.menu_items/3
end

There are a few things to notice about the argument declaration. First, as
with the :matching argument for the :menu_item type, the standard form for an
argument declaration is arg NAME, TYPE. If this seems a bit confusing, we can
make the type more explicit by providing it as a :type option. Let’s do that,
and provide the argument a default value for good measure:

arg :order, type: :sort_order, default_value: :asc

The second argument to the arg macro can be a keyword list to support addi-
tional options. Here we dictate that the :order argument should have a default
value of :asc if one is not provided; that way, our users don’t have to declare an

report erratum • discuss

Using Enumeration Types • 41

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/4-ordering/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

order if they don’t care about it, but our resolver can always expect to find a
value for it. Let’s modify the PlateSlate.Menu.list_items/1 to handle those two cases:

• When the order is given (or it defaults) as :asc
• When the order is given as :desc

03-chp.userinput/4-ordering/lib/plate_slate/menu/menu.ex
def list_items(filters) do

filters
|> Enum.reduce(Item, fn

{_, nil}, query ->➤

query➤

{:order, order}, query ->➤

from q in query, order_by: {^order, :name}➤

{:matching, name}, query ->
from q in query, where: ilike(q.name, ^"%#{name}%")

end)
|> Repo.all

end

Here we use Ecto’s order_by to take the value of our :order argument directly—since
it just happens to use :desc and :asc for ordering. We execute the query to retrieve
the menu items, which are then returned. If we run the tests at this point,
you’ll notice our default order is causing a failure:

$ mix test test/plate_slate_web/schema/query/menu_items_test.exs
.
1) test menuItems field returns menu items

(PlateSlateWeb.Schema.Query.MenuItemsTest)
test/plate_slate_web/schema/query/menu_items_test.exs:16
Assertion with == failed
«Lots of details»

...

Finished in 0.3 seconds
4 tests, 1 failure

This happens because the test doesn’t provide a desired order, so the order
falls back to the default value. This causes the menu items to be returned in
an order the test doesn’t expect. If we change the order of the menu items in
the test to match the default value, the test will pass:

03-chp.userinput/4-ordering/test/plate_slate_web/schema/query/menu_items_test.exs
test "menuItems field returns menu items" do

conn = build_conn()
conn = get conn, "/api", query: @query
assert json_response(conn, 200) == %{"data" => %{"menuItems" => [

%{"name" => "Bánh mì"},
%{"name" => "Chocolate Milkshake"},
%{"name" => "Croque Monsieur"},

Chapter 3. Taking User Input • 42

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/4-ordering/lib/plate_slate/menu/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/4-ordering/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

%{"name" => "French Fries"},
%{"name" => "Lemonade"},
%{"name" => "Masala Chai"},
%{"name" => "Muffuletta"},
%{"name" => "Papadum"},
%{"name" => "Pasta Salad"},
%{"name" => "Reuben"},
%{"name" => "Soft Drink"},
%{"name" => "Vada Pav"},
%{"name" => "Vanilla Milkshake"},
%{"name" => "Water"}

]}}
end

We also want to make sure specifying a sort order works. Let’s write another
test that will attempt to get the list of menu items, ordered descending, and
check the name of the first menu item returned:

03-chp.userinput/4-ordering/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
{

menuItems(order: DESC) {
name

}
}
"""
test "menuItems field returns items descending using literals" do

response = get(build_conn(), "/api", query: @query)
assert %{

"data" => %{"menuItems" => [%{"name" => "Water"} | _]}
} = json_response(response, 200)

end

We’re providing the order as DESC, and without quotes. By convention, enum
values are passed in all uppercase letters; the value macro that we used to declare
the enum values sets up a mapping for us, accepting enum values as literals
and variables in all uppercase and converting them to atoms automatically.

Unconventional Enum Values

While the value macro does support customizing the external rep-
resentation used for enum values, the GraphQL specification
explicitly recommends the uppercase convention that Absinthe
sets up for you automatically.

Unless you have a very good reason, you should stick with the
recommendation given by the specification so that your API pro-
vides as comfortable an experience as possible to users that are
already familiar with GraphQL.

report erratum • discuss

Using Enumeration Types • 43

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/4-ordering/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

You provide variable values for enum types just as you do for String. Let’s
revisit the test we just ran, but using variables to insert the argument value:

03-chp.userinput/4-ordering/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
query ($order: SortOrder!) {

menuItems(order: $order) {
name

}
}
"""
@variables %{"order" => "DESC"}
test "menuItems field returns items descending using variables" do

response = get(build_conn(), "/api", query: @query, variables: @variables)
assert %{

"data" => %{"menuItems" => [%{"name" => "Water"} | _]}
} = json_response(response, 200)

end

Because the "Water" menu item is the first item in descending order, we’re
checking that it’s the first item returned.

Notice the type name that we’re using for our :sort_order enum variable, $order.
It starts with SortOrder, as you’d expect given the way Absinthe type identifiers
are automatically converted to title case for their canonical GraphQL
names—but it ends in an exclamation mark (!). This denotes that, as the
person writing the GraphQL query document, you’re making the variable
mandatory. This is a handy tool on the client side, giving front-end developers
the ability to enforce additional input constraints. A document that doesn’t
meet its variable requirements won’t be executed if it’s received by Absinthe,
and some client-side frameworks even enforce variable checks to prevent
inadequately filled GraphQL documents from being sent at all.

We can make arguments mandatory at the schema level as well, adding non-
null constraints to our argument types. We’ll cover that shortly, but first let’s
take a look at how we can organize field arguments into groups using a
mechanism that GraphQL calls input object types.

Modeling Input Objects
Up to this point, we’ve been adding arguments directly onto our fields, but
this can get messy. Imagine, for instance, if we wanted to add various filtering
options to our :menu_items field. We could just add them à la carte:

@desc "Matching a category name"
arg :category, :string

Chapter 3. Taking User Input • 44

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/4-ordering/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

@desc "Matching a tag"
arg :tag, :string

@desc "Priced above a value"
arg :priced_above, :float

@desc "Priced below a value"
arg :priced_below, :float

Mixed in with other arguments that we add to the field, this can quickly become
a hodgepodge of various flags and options that would be better organized into
related groupings. GraphQL gives us a tool to do this: input object types.

We can collect multiple arguments and model them as a special object type used
just for argument values. Let’s take the :category, :tag, :priced_above, and :priced_below
arguments and group them together into a new input object type, :menu_item_filter:

03-chp.userinput/5-inputobjects/lib/plate_slate_web/schema.ex
@desc "Filtering options for the menu item list"
input_object :menu_item_filter do

@desc "Matching a name"
field :name, :string

@desc "Matching a category name"
field :category, :string

@desc "Matching a tag"
field :tag, :string

@desc "Priced above a value"
field :priced_above, :float

@desc "Priced below a value"
field :priced_below, :float

end

We’ve taken the filters and placed them inside an input_object macro block that
demarcates the limits of our new :menu_item_filter type. You’ll also notice that
we’re not using arg anymore; just like normal object types, input objects
model their members as fields, not arguments. Fields for input objects, how-
ever, don’t have any arguments (or a resolver) of their own; they’re merely
there to model structure.

Let’s plug this new type in as an argument for the :menu_items field:

03-chp.userinput/5-inputobjects/lib/plate_slate_web/schema.ex
field :menu_items, list_of(:menu_item) do

arg :filter, :menu_item_filter➤

arg :order, type: :sort_order, default_value: :asc
resolve &Resolvers.Menu.menu_items/3

end

report erratum • discuss

Modeling Input Objects • 45

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/5-inputobjects/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/5-inputobjects/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

To support the filter, we modify PlateSlate.Menu.list_items/1, reworking it to build
a query using either or both of the :order and :filter arguments:

03-chp.userinput/5-inputobjects/lib/plate_slate/menu/menu.ex
def list_items(args) do

args
|> Enum.reduce(Item, fn

{:order, order}, query ->
query |> order_by({^order, :name})

{:filter, filter}, query ->
query |> filter_with(filter)

end)
|> Repo.all

end

defp filter_with(query, filter) do
Enum.reduce(filter, query, fn

{:name, name}, query ->
from q in query, where: ilike(q.name, ^"%#{name}%")

{:priced_above, price}, query ->
from q in query, where: q.price >= ^price

{:priced_below, price}, query ->
from q in query, where: q.price <= ^price

{:category, category_name}, query ->
from q in query,

join: c in assoc(q, :category),
where: ilike(c.name, ^"%#{category_name}%")

{:tag, tag_name}, query ->
from q in query,

join: t in assoc(q, :tags),
where: ilike(t.name, ^"%#{tag_name}%")

end)
end

We use the order_by and where macros from Ecto.Query as we iterate over the
key/value pairs of the filter and build up the query with Enum.reduce/3.3 To
understand how the filter can be sent to Absinthe, let’s build and run a couple
of tests. In the first test, we’ll provide the filter as a literal:

03-chp.userinput/5-inputobjects/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
{

menuItems(filter: {category: "Sandwiches", tag: "Vegetarian"}) {
name

}
}
"""

3. https://hexdocs.pm/elixir/Enum.html#reduce/3

Chapter 3. Taking User Input • 46

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/5-inputobjects/lib/plate_slate/menu/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/5-inputobjects/test/plate_slate_web/schema/query/menu_items_test.exs
https://hexdocs.pm/elixir/Enum.html#reduce/3
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

test "menuItems field returns menuItems, filtering with a literal" do
response = get(build_conn(), "/api", query: @query)
assert %{

"data" => %{"menuItems" => [%{"name" => "Vada Pav"}]}
} == json_response(response, 200)

end

Here we’re providing the filter argument value formatted just as you might
expect from a JavaScript object, using curly braces and bare, unquoted
identifiers for the field names. Once the filter argument passes schema checks,
it is restructured to match the schema naming, handling camelCase to snake_case
conversion, if appropriate. Not much needs to be done to the filter input object
value; the arguments map passed to our menu items resolver looks exactly
like the GraphQL document, using atom keys:

%{category: "Sandwiches", tag: "Vegetarian"}

We’ve seen how input objects can be provided as literals, but usually complex
arguments will be sent as variables, so let’s look at how this same request
might look using a $filter variable:

03-chp.userinput/5-inputobjects/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
query ($filter: MenuItemFilter!) {

menuItems(filter: $filter) {
name

}
}
"""
@variables %{filter: %{"tag" => "Vegetarian", "category" => "Sandwiches"}}
test "menuItems field returns menuItems, filtering with a variable" do

response = get(build_conn(), "/api", query: @query, variables: @variables)
assert %{

"data" => %{"menuItems" => [%{"name" => "Vada Pav"}]}
} == json_response(response, 200)

end

It looks very similar; as in previous examples, the variable value is sent
alongside the query. Here, for the test case, the value of the filter variable is
defined using an Elixir map type, which is how Absinthe will receive the value
after the JSON object sent as part of the request is parsed by Plug.Parsers and
the absinthe_plug package.

Having replaced the matching arg with the filter arg, you’ll also want to take a
moment to go through the existing tests that are now failing and turn any
matching: "..." inputs into filter: {name: "..."}. Pay attention to the error message
you get back in the failing tests. Once again, we can see Absinthe at work
validating input without any code necessary in our resolvers.

report erratum • discuss

Modeling Input Objects • 47

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/5-inputobjects/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Rules for Input Objects

Here are some things to keep in mind when building input objects:

• Input objects can be nested. You can define an input object
field as having an input object type. This nesting can be arbi-
trarily deep.

• Input object types, unlike normal object types, do not support
circular references. You can’t have two input types that refer
to each other, either directly or through an intermediary.

• Input object type fields can be of any type that a field argument
might use. It’s best to just think of them as structured
arguments.

We’ve just scratched the surface of input objects. We’ll dig in deeper in
Chapter 5, Making a Change with Mutations, on page 77, where we’ll learn
about how we can use input objects to model data for changesets.

In the meantime, let’s address non-null constraints, the mechanism that
GraphQL schemas use to enforce that a given argument is provided in docu-
ments before they are executed.

Marking Arguments as Non-Null
In the last section, you saw variable declarations that featured use of excla-
mation marks to ensure variable values were provided. It looked something
like this:

query ($filter: MenuItemFilter!) {
menuItems(filter: $filter) {

name
}

}

The document here declares that the $filter variable is a MenuItemFilter, while the
addition of an exclamation mark denotes that a value is mandatory. This is
a constraint that the document designer (usually a front-end developer) builds
into the query, but the schema designer can enforce non-null constraints on
the backend as well.

Let’s say, for instance, that we wanted to ensure that a filter was always
provided to the :menu_items field, regardless of what the document says should
be mandatory. We can do this by using the Absinthe non_null macro, wrapping
the argument type:

Chapter 3. Taking User Input • 48

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

field :menu_items, list_of(:menu_item) do
arg :filter, non_null(:menu_item_filter)➤

arg :order, type: :sort_order, default_value: :asc
resolve &Resolvers.Menu.menu_items/3

end

Like the list_of macro, non_null is a handy shortcut for building a struct—in this
case, %Absinthe.Type.NonNull{of_type: :menu_item_filter}.

Our use of non_null here ensures that the :filter argument is always provided. If
it isn’t, execution of the document won’t occur, the field resolver function
won’t even be invoked, and the user will get back a blunt message that looks
something like this (omitting some line number information):

{
"errors": [

{
"message":
"In argument \"filter\": Expected type \"MenuItemFilter!\", found null."

}
]

}

Granted, sending an empty filter object is enough to count as meeting this
constraint; to force values in the filter, we’d have the flexibility to handle those
directly. For instance, in the event we wanted to force the menu items list to
always be filtered by category, we could also mark that field as non-nullable:

input_object :menu_item_filter do
field :category, non_null(:string)➤

field :tag, :string
field :priced_above, :float
field :priced_below, :float

end

Non-Nullability

When the field for an input object is non-nullable—just as with
arguments—validation will fail when a non-null value isn’t provided
for that field. It’s different for normal (output) object fields.
Declaring an output object field as non-nullable means that the
schema will guarantee the field resolver’s result will always be
non-null.

Non-nullability for input object fields means the client needs to
provide a non-null value as part of the request. Non-nullability
for output object fields means the server needs to provide a non-
null value as part of the response.

report erratum • discuss

Marking Arguments as Non-Null • 49

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Dealing with Dependent Arguments

You may encounter situations where you’ve defined many arguments for a field only
to discover that certain arguments should be non-nullable—but only in the event
another argument isn’t present...or is. Here are two differing solutions that you can
evaluate:

• Make the field arguments more complex: try grouping arguments that go
together into input objects, like we did with menu item filtering. This lets you
leave the input object nullable but individual input object fields as non-nullable.
Sometimes it’s more important to keep a field cohesive.

• Make the field simpler: split it into multiple, simpler fields that handle narrower
use cases and have their own documentation (via @desc). Don’t be afraid to create
more, case-specific fields, each with a narrow focus. You can always share reso-
lution logic and output types.

With this constraint in place, any filter that’s provided that omits a value for
:category would get a similarly helpful error message after failing validation.

Defining arguments (and input object fields) as non-nullable is an important
part of building an effective GraphQL schema that accurately models the data
constraints that your API needs to operate.

There are certain situations that are fairly cut and dry. For instance, if the
purpose of a field is to retrieve a specific piece of data by an :id, it makes sense
for that :id to be defined as non-nullable. There may be cases, especially when
dealing with mutations (as we’ll learn about soon), in which you’ll need to
carefully assess whether an argument should be nullable and what effect
that will have—especially as the nullable status will be clearly denoted in the
API documentation that users automatically have available as a feature of
GraphQL.

Now that we have a handle on complex argument data structures and some
techniques that we can use as we build and configure them, let’s focus in a
little tighter—on the smallest unit of user input: scalar types.

Creating Your Own Scalar Types
Scalar types form the leaves of your input and output trees. You’re already
pretty familiar with a number of scalar types that we’ve used as inputs and
outputs. Absinthe’s built-in scalar types, from :integer to :string and :id, all have
a firm grounding in the GraphQL specification. These types are not special
cases, but are built using the same schema tools provided to users of Absinthe.

Chapter 3. Taking User Input • 50

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Building your own scalar types can be handy, too. Let’s say, for instance,
that we’d like to support a :date scalar type that supports users providing
dates in a nice, easy-to-use format, automatically giving us Date structs that
are easier for us to use in Elixir.

If we wanted to filter our menu item list by the date prior to which the menu
item was added, for instance, it would be nice to support a nicely formatted
date as an argument:

{
menuItems(addedBefore: "2017-01-31") {

name
}

}

We also want to be able to retrieve the date of a menu item in a document
like this:

{
menuItem {

name
addedOn

}
}

Given what we already know, this could definitely be handled by just making
the :added_before argument a :string field. The problem, though, would be that
our resolver code would have to go through the effort of parsing that string
into an actual %Date{} struct, and handling any errors that might show up if
it’s in an invalid format. We also lose out on documentation because while
the field type will say string, it’s really more specific than that.

We would be a lot better off building a :date type, which it turns out is pretty
easy to do!

The first thing we’ll need is the scalar type itself, which we can build with the
scalar macro.

03-chp.userinput/6-customscalar/lib/plate_slate_web/schema.ex
scalar :date do

parse fn input ->
«Parsing logic here»

end

serialize fn date ->
«Serialization logic here»

end
end

report erratum • discuss

Creating Your Own Scalar Types • 51

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/6-customscalar/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Each scalar needs to have two parts defined for it—a parse function and a
serialize function:

• parse converts a value coming from the user into an Elixir term (or returns
:error).

• serialize converts an Elixir term back into a value that can be returned via
JSON.

In this example, the parse function’s job is to take the document representa-
tion of the scalar (for example, "2016-01-31") and transform it into an Elixir date,
validating it along the way. The serialize function’s job is just to go the other
way, transforming the date back into a string. In our particular case, the
actual logic for date parsing and serialization is supplied by Elixir itself, so
that part is largely solved for us.

03-chp.userinput/6-customscalar/lib/plate_slate_web/schema.ex
scalar :date do

parse fn input ->
case Date.from_iso8601(input.value) do
{:ok, date} -> {:ok, date}
_ -> :error

end
end

serialize fn date ->
Date.to_iso8601(date)

end
end

Scalars can be used as both input and output types, as you’ve already seen
with built-in scalars like :string. We track the added-on dates of menu items
in the database, and we’d like to support an API that would let users filter
menu items by that date.

To do that, let’s first add the field to our menu item object:

03-chp.userinput/6-customscalar/lib/plate_slate_web/schema.ex
object :menu_item do

field :id, :id
field :name, :string
field :description, :string
field :added_on, :date➤

end

Now that we have that, let’s enhance our menu item filter with :added_before
and :added_after fields:

Chapter 3. Taking User Input • 52

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/6-customscalar/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/6-customscalar/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

03-chp.userinput/6-customscalar/lib/plate_slate_web/schema.ex
@desc "Filtering options for the menu item list"
input_object :menu_item_filter do

@desc "Matching a name"
field :name, :string

@desc "Matching a category name"
field :category, :string

@desc "Matching a tag"
field :tag, :string

@desc "Priced above a value"
field :priced_above, :float

@desc "Priced below a value"
field :priced_below, :float

@desc "Added to the menu before this date"➤

field :added_before, :date➤
➤

@desc "Added to the menu after this date"➤

field :added_after, :date➤

end

With the filter changes in place, we need to modify list_items/1 to make use of
the new filter options:

03-chp.userinput/6-customscalar/lib/plate_slate/menu/menu.ex
defp filter_with(query, filter) do

Enum.reduce(filter, query, fn
{:name, name}, query ->
from q in query, where: ilike(q.name, ^"%#{name}%")

{:priced_above, price}, query ->
from q in query, where: q.price >= ^price

{:priced_below, price}, query ->
from q in query, where: q.price <= ^price

{:added_after, date}, query ->➤

from q in query, where: q.added_on >= ^date➤

{:added_before, date}, query ->➤

from q in query, where: q.added_on <= ^date➤

{:category, category_name}, query ->
from q in query,

join: c in assoc(q, :category),
where: ilike(c.name, ^"%#{category_name}%")

{:tag, tag_name}, query ->
from q in query,

join: t in assoc(q, :tags),
where: ilike(t.name, ^"%#{tag_name}%")

end)
end

report erratum • discuss

Creating Your Own Scalar Types • 53

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/6-customscalar/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/6-customscalar/lib/plate_slate/menu/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

What we’ve done here is pretty similar to what’s already in place for prices,
checking for an added_on value that falls after :added_after and before :added_before.
This works because our custom scalar logic has parsed the input values and
converted them into %Date{} structs for us, as we’ll show in a moment.

First, let’s test this out and see if it works!

03-chp.userinput/6-customscalar/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
query ($filter: MenuItemFilter!) {

menuItems(filter: $filter) {
name
addedOn

}
}
"""
@variables %{filter: %{"addedBefore" => "2017-01-20"}}
test "menuItems filtered by custom scalar" do

sides = PlateSlate.Repo.get_by!(PlateSlate.Menu.Category, name: "Sides")
%PlateSlate.Menu.Item{

name: "Garlic Fries",
added_on: ~D[2017-01-01],
price: 2.50,
category: sides

} |> PlateSlate.Repo.insert!

response = get(build_conn(), "/api", query: @query, variables: @variables)
assert %{

"data" => %{
"menuItems" => [%{"name" => "Garlic Fries", "addedOn" => "2017-01-01"}]

}
} == json_response(response, 200)

end

In addition to our test, let’s briefly inspect the arguments that the resolver is
passing to the list_items/1 function:

03-chp.userinput/6-customscalar/lib/plate_slate/menu/menu.ex
def list_items(args) do

IO.puts "These are our arguments: #{inspect(args)}"➤

args
|> Enum.reduce(Item, fn

{:order, order}, query ->
query |> order_by({^order, :name})

{:filter, filter}, query ->
query |> filter_with(filter)

end)
|> Repo.all

end

Chapter 3. Taking User Input • 54

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/6-customscalar/test/plate_slate_web/schema/query/menu_items_test.exs
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/6-customscalar/lib/plate_slate/menu/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Running the test, we not only see that our test passed, but we also see the
output from our IO.puts line:

$ mix test test/plate_slate_web/schema/query/menu_items_test.exs
Compiling 7 files (.ex)
«Other tests»
.These are our arguments: %{

filter: %{added_before: ~D[2017-01-20]},
order: :asc

}
..

Finished in 0.2 seconds
14 tests, 0 failures

As we can see, the date string has been parsed into an actual Elixir date
value! This means we can just pass it directly as part of our filters without
having to do any validation at all in our resolver.

Let’s see what happens when a user provides a bad value:

03-chp.userinput/6-customscalar/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
query ($filter: MenuItemFilter!) {

menuItems(filter: $filter) {
name

}
}
"""
@variables %{filter: %{"addedBefore" => "not-a-date"}}
test "menuItems filtered by custom scalar with error" do

response = get(build_conn(), "/api", query: @query, variables: @variables)

assert %{"errors" => [%{"locations" => [
%{"column" => 0, "line" => 2}], "message" => message}

]} = json_response(response, 400)

expected = """
Argument "filter" has invalid value $filter.
In field "addedBefore": Expected type "Date", found "not-a-date".\
"""
assert expected == message

end

The user will get a helpful error, with no extra effort.

There’s actually one more caveat we aren’t really going to go into in detail yet,
but it explains why we do input.value in our parse function instead of just input.
The input for our parse function isn’t just the string "2017-01-31" but rather a
struct that holds additional information about our input. Right now, for

report erratum • discuss

Creating Your Own Scalar Types • 55

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/6-customscalar/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

example, we can make our scalar break by passing in a document that looks
like this:

{
menuItems(addedBefore: 123) {

name
}

}

We can use the extra information provided by the input struct to handle these
cases nicely, checking the type of the input that was provided:

03-chp.userinput/7-strictcustomscalar/lib/plate_slate_web/schema.ex
scalar :date do

parse fn input ->
with %Absinthe.Blueprint.Input.String{value: value} <- input,
{:ok, date} <- Date.from_iso8601(value) do
{:ok, date}

else
_ -> :error

end
end

serialize fn date ->
Date.to_iso8601(date)

end
end

Instead of accepting any input type, we are pattern matching for string inputs
so that we can make sure to give the date-parsing function acceptable input.
If we didn’t do this, Date.from_iso8601/1 would raise an exception.

We’ll learn more about Absinthe.Blueprint structs and how to use them in Chapter
9, Tuning Resolution, on page 167.

Absinthe Custom Types

Absinthe ships with a number of custom scalar definitions,
including several for dates and times. You can find these definitions
in Absinthe.Type.Custom.

In the next chapter, you’ll learn how to import types from other
modules.

Adding a custom scalar type gives us the capability to keep our business
logic clean and simple by isolating any parsing (and validation) logic inside
the scalar type definition itself, while clarifying the date and time input and
output formats that we support for our users.

Chapter 3. Taking User Input • 56

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/7-strictcustomscalar/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Moving On
In this chapter, you’ve learned a lot about how to model the input types that
users can provide as arguments, and how Absinthe uses the schema to
automatically enforce the constraints for you.

Before you move on, here are a couple of challenges for you to look at:

1. We built out a full example using input objects and enums for the
:menu_items field. Add a :categories field that supports filtering by name and
also supports ordering.

2. Build a custom scalar type that accepts valid email addresses and parses
them into {username, domain} tuples, then serializes tuples back out as email
addresses. Just use a simple check when parsing the email address; this
isn’t about crafting the perfect regular expression.

In the next chapter, you’ll learn how to better organize your schema and use
abstract types to model relationships that will make your GraphQL documents
more flexible and reusable.

report erratum • discuss

Moving On • 57

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

CHAPTER 4

Adding Flexibility
Capturing and distilling an entire domain model into a GraphQL schema can
be quite the undertaking, and it’s important to keep your schema as main-
tainable and flexible as possible as it grows to describe the needs of your API.

Like any software developer, you likely bridle at the idea of typing countless
lines of repetitive boilerplate into an editor, or dealing with restrictions that
force you to organize your code in a way that doesn’t fit your personal tastes
or team conventions. Never fear! We’ll start this chapter exploring tools that
Absinthe provides that can make your type definitions more reusable, and
we’ll look at techniques you can employ to more effectively organize your
schema.

After you have code organization figured out, we’ll dig into some advanced
modeling approaches that will help you build a more meaningful, accurate
representation of your domain model. You’ll discover how using abstract types
like interfaces and unions can make your API simpler, and you’ll learn how
users can leverage GraphQL fragments to keep their documents shorter and
easier to understand.

Let’s take your schema-writing capabilities to the next level, starting with
some brand-new techniques to organize your Absinthe-related code.

Organizing a Schema
Absinthe schemas are compiled, meaning that their types are collected, refer-
ences are resolved, and the overall structure of the schema is verified against
a set of rules during Elixir’s module compilation process. Absinthe does this
to ensure that GraphQL documents can be processed at runtime using a
schema module that’s already been checked for common errors and has been
optimized for better performance.

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

That doesn’t mean your Absinthe schema needs to be written in a single
module. In fact, when a schema grows beyond being a limited sketch of our
domain model into something more comprehensive—when it becomes some-
thing that we need to maintain—it’s a good idea to organize it across multiple
modules.

To do this, we need something to wire them all together so that Absinthe can
find the portions of the schema we’ve extracted and organized elsewhere.

Thankfully, Absinthe provides two simple tools to help us: import_types and
import_fields. Let’s look at how we can use these two handy macros in our
schema definitions, using the PlateSlate example application that we’ve been
working on.

Importing Types
During the module compilation process, all the types referenced in an Absinthe
schema are bundled together and built into the compiled module. Right now,
in our PlateSlate application, all the types are located inside a single module,
PlateSlateWeb.Schema, and it just works. Unfortunately, it’s getting a bit long and
unwieldy.

Let’s see about splitting the custom types from the root type definitions (like
query). Since all the types we’ve built so far are menu-related, we’ll create a new
module, PlateSlateWeb.Schema.MenuTypes, to hold them. Here’s what that looks like:

04-chp.flexibility/1-start/lib/plate_slate_web/schema/menu_types.ex
defmodule PlateSlateWeb.Schema.MenuTypes do

use Absinthe.Schema.Notation

@desc "Filtering options for the menu item list"
input_object :menu_item_filter do

«menu item filter fields»
end

object :menu_item do
«menu fields»

end

end

Absinthe refers to modules like this one as type modules, because their purpose
is to contain a set of types for inclusion in a schema. Type modules can be kept
for use in your own schema or packaged and published for reuse by others.

It’s important to note that unlike a schema module, which makes use of
Absinthe.Schema, type modules use Absinthe.Schema.Notation instead. This gives them

Chapter 4. Adding Flexibility • 60

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/1-start/lib/plate_slate_web/schema/menu_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

access to the general type definition macros (like object), without the top-level
compilation and verification mechanism that only schemas need.

Use Absinthe.Schema.Notation in Type Modules

Use Absinthe.Schema.Notation in your type modules to import Absinthe’s
type definition macros. Don’t use Absinthe.Schema; it’s reserved for
schema modules themselves.

Inside of our schema we use the import_types/1 macro and point it at our new
module so that the newly extracted types are still usable from within our
schema:

04-chp.flexibility/1-start/lib/plate_slate_web/schema.ex
defmodule PlateSlateWeb.Schema do

use Absinthe.Schema

alias PlateSlateWeb.Resolvers

import_types __MODULE__.MenuTypes➤

query do

field :menu_items, list_of(:menu_item) do
arg :filter, :menu_item_filter
arg :order, type: :sort_order, default_value: :asc
resolve &Resolvers.Menu.menu_items/3

end

end

«Common types; :date, :sort_order, etc»
end

During compilation, Absinthe will pull in the type definitions from PlateSlate-
Web.Schema.MenuTypes, wiring them into our schema module so they work just
like they did when they were defined in place.

Notice that we’ve kept the root query object type around. The query macro is
defined in Absinthe.Schema, and can only be used in our schema module. This
is to ensure that we don’t end up with multiple root query object types when
importing different type modules. The same restriction will apply to the other
root types that we’ll define later: mutation and subscription.

Only Use import_types at the Schema Level

Absinthe’s import_types macro should only be used from your schema
module. Think of your schema module like a manifest, defining
the complete list of type modules needed to resolve type references.

report erratum • discuss

Organizing a Schema • 61

http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/1-start/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

This has really helped clean up our schema, and we can take it even further
if we need to later on. Let’s talk a bit about Absinthe’s other schema structural
macro, import_fields.

Importing Fields
Imagine what it might be like down the road for our PlateSlate application
when the surface area of the API has expanded to support a wide range of
applications. Our user interface will only be the beginning; once we’ve opened
up the API to third-party developers and support integrations with other
services, the entry points into our API—the catalog of fields present inside
our root query object type—might grow to the point that our schema once
again becomes unwieldy, despite our best efforts refactoring other types into
type modules.

To support breaking up a large object, Absinthe provides another macro,
import_fields, that we can use.

In our hypothetical, successful future for PlateSlate, let’s say our root query
object type has fields that provide the following:

• Information about menu items
• Specialized search functions for allergens
• Customer and order history queries
• Staff schedule details
• Restaurant location address information for mapping

Instead of having an exhaustive query object in our schema.ex spanning dozens
or hundreds of lines, what if it could look like this:

query do
import_fields :menu_queries
import_fields :allergen_queries
import_fields :customer_queries
import_fields :staff_queries
import_fields :location_queries
«Other fields»

end

Instead of defining the fields directly in the root query object type, we can
pull them out and put them into separate types (which we can place in other
type modules). Here’s how our :menu_queries type might look, defining the same
:menu_items field we’ve gotten used to seeing in our schema:

object :menu_queries do

field :menu_items, list_of(:menu_item) do
arg :filter, :menu_item_filter

Chapter 4. Adding Flexibility • 62

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

arg :order, type: :sort_order, default_value: :asc
resolve &Resolvers.Menu.menu_items/3

end

«Other menu-related fields»
end

It’s just an object type definition—nothing special—and we’d locate it alongside
other menu-related objects in our menu_types.ex file. Instead of being used as
a type for a field’s resolution, however, the :menu_queries object type just serves
as a convenient named container to hold the fields we’d like to pull into our
root query object type.

Deciding on Structure
The tools that we’ve covered here—import_types and import_fields—don’t establish
any structural constraints for the way that you arrange your Absinthe-related
modules. It’s completely up to you.

We opted for extracting the types along the same lines as our Ecto schemas are
organized under the PlateSlate module; the types present in PlateSlate.Menu are
represented by GraphQL types located in PlateSlateWeb.Schema.MenuTypes.

Absinthe and Phoenix Contexts

Phoenix v1.3 introduced the concept of bounded context modules. These modules
define the business logic for a portion of your overall domain model.

A compelling, more structured choice for laying out your Absinthe-related modules
involves grouping your Absinthe types into modules that mirror the names of your
Phoenix contexts, then calling functions present in your contexts from your field
resolvers.

As you learned in the previous chapter, it’s important to keep your business logic inside
your context modules—don’t pull it into your resolvers or duplicate it there. Think
of your resolvers as a way to trigger your business logic, a way to wire it into schema.

Now that you have some ideas about the tools and techniques you can use to
arrange your Absinthe schema, let’s dig into another important real-world feature
set: how to use abstract types to make your schema more flexible and reusable.

Understanding Abstract Types
Up to this point, we’ve focused on building concrete types that closely model
the underlying data, matching up with the Ecto schemas we’ve built for our
PlateSlate application.

report erratum • discuss

Understanding Abstract Types • 63

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

To support an easy-to-use, flexible API for your users, you’ll need to go beyond
this type of modeling and learn how to use abstract types as well.

Let’s look at a quick example. A standard feature for a user interface (and
the APIs that support them) is a search function. If we were going to implement
a search function for our PlateSlate application, allowing users to retrieve
both menu items and menu item categories (a grouping of menu items) that
match a search term, how would we do it?

With only our concrete types in place, we’re stuck with having to build this
feature as two separate fields. After all, a GraphQL field can only resolve to
a single type. Here’s about the best that our users can hope for:

query Search($term: String!) {
searchCategories(matching: $term) {

«Select fields from category results»
}
searchMenuItems(matching: $term) {

«Select fields from menu item results»
}

}

We’ll have to define a distinct search field for every type we want to be
searchable, looking something like this in our schema:

field :search_categories, list_of(:category) do
arg :matching, non_null(:string)
resolve fn _, %{matching: term}, _ ->

«Search logic»
{:ok, results}

end
end

field :search_menu_items, list_of(:menu_item) do
arg :matching, non_null(:string)
resolve fn _, %{matching: term}, _ ->

«Similar search logic for a similar field»
{:ok, results}

end
end

This is going to get tedious. Imagine what life will be like in six months after
we’ve fully built out the domain to include allergen information, listings for
our various restaurant locations, marketing content we’d like searchable, and
so on. A brittle, complicated mess.

What if, instead, we could model all these search results as…search results?
It would sure look better if our schema code could read like this:

Chapter 4. Adding Flexibility • 64

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

field :search, list_of(:search_result) do
arg :matching, non_null(:string)
resolve fn _, %{matching: term}, _ ->

«Combined search logic, returning heterogenous data»
{:ok, results}

end
end

This would make our search feature more adaptable as features are added
later. In any case, the code is certainly easier to read, and it would allow user
queries to look more like this:

query Search($term: String!) {
search(matching: $term) {

«Select fields from a mix of search results»
}

}

Look, no type-specific fields! Just a single field that users can leverage anytime
they want to retrieve records by a search term.

Now, to do this, we need to let Absinthe know what a :search_result is and how
it relates to the concrete types that we want to be searchable.

We’re going to cover a couple of different options that the GraphQL specifica-
tion gives us: unions and interfaces. After we’re done, you should have a
solid grounding in both abstract type mechanisms and feel confident about
when to use each when modeling your domain model in future applications.

Using Unions
A GraphQL union type is an abstract type that represents a set of specific
concrete types. For instance, in our PlateSlate search example, a :search_result
could be a union type for both :menu_item and :category.

Let’s define that in our schema…but first, we need to add the :category type.
It’s a straightforward grouping of :menu_item records with a name and
description:

04-chp.flexibility/2-unions/lib/plate_slate_web/schema/menu_types.ex
alias PlateSlateWeb.Resolvers

object :category do
field :name, :string
field :description, :string
field :items, list_of(:menu_item) do

resolve &Resolvers.Menu.items_for_category/3
end

end

report erratum • discuss

Understanding Abstract Types • 65

http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/2-unions/lib/plate_slate_web/schema/menu_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’ve included a resolver to load the menu items for a category when the
:items field is selected. At the moment, the implementation is a bit naive:

04-chp.flexibility/2-unions/lib/plate_slate_web/resolvers/menu.ex
def items_for_category(category, _, _) do

query = Ecto.assoc(category, :items)
{:ok, PlateSlate.Repo.all(query)}

end

If the menu items for a list of categories were requested, for example, this
would execute a database query per category (an example of the infamous
“N+1” problem). This isn’t something we’d want in production, and you’ll learn
how to combat it later in Chapter 9, Tuning Resolution, on page 167.

Notably, though, this is the first resolver we’ve written where we’re using the
first argument, which receives the parent value. In our case, this resolver is
on the :items field of the :category object, so its parent value is a category. We
can then use that category to do a database query for its items.

Now that the object type is out of the way, let’s move on and define the
:search_result union type:

04-chp.flexibility/2-unions/lib/plate_slate_web/schema/menu_types.ex
union :search_result do

types [:menu_item, :category]
«Almost done...»

end

This uses a couple of new macros from Absinthe. The union macro is used to
create our type, and it works a lot like object. The types macro, used inside the
union scope, sets its types.

We need to add one more thing to our type definition. Abstract types like
unions (and, as you’ll learn about later, interfaces) need a way to determine
the concrete type for a value. For our :search_result union type, supporting both
:menu_item and :category concrete types, we’ll write it like this:

04-chp.flexibility/2-unions/lib/plate_slate_web/schema/menu_types.ex
union :search_result do

types [:menu_item, :category]
resolve_type fn

%PlateSlate.Menu.Item{}, _ ->
:menu_item

%PlateSlate.Menu.Category{}, _ ->
:category

_, _ ->
nil

end
end

Chapter 4. Adding Flexibility • 66

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/2-unions/lib/plate_slate_web/resolvers/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/2-unions/lib/plate_slate_web/schema/menu_types.ex
http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/2-unions/lib/plate_slate_web/schema/menu_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The resolve_type macro takes a 2-arity function. The first parameter of the
function will receive the value that we’re checking, and the second parameter
will receive the resolution information (which we’ll just ignore in this case).
Recall that a union type means “one of these types.” When Absinthe is actu-
ally running a document and getting Elixir values, it needs a way to figure
out which Elixir value maps to which of the types in the union, and that’s
what this resolve_type function does for us.

Since the resolved value for the :search_result type will be Ecto schema structs
for PlateSlate.Menu.Item or PlateSlate.Menu.Category, determining the associated
Absinthe type is straightforward. For completeness, we provide a fall-through
match. It returns nil, which denotes that the value doesn’t belong to any
member type of the union.

Now that we’ve completed the modeling for the :search_result type, let’s build
that search field we’ve been thinking about. We’ll add it to our query block in
the schema file:

04-chp.flexibility/2-unions/lib/plate_slate_web/schema.ex
query do

«Other query fields»
field :search, list_of(:search_result) do

arg :matching, non_null(:string)
resolve &Resolvers.Menu.search/3

end

end

To resolve the field, we’ll use a search resolver function.

04-chp.flexibility/2-unions/lib/plate_slate_web/resolvers/menu.ex
def search(_, %{matching: term}, _) do

{:ok, Menu.search(term)}
end

It just hands off the work to a context function, which runs a search pattern
against names and descriptions for each table, and returns the combined results.

04-chp.flexibility/2-unions/lib/plate_slate/menu/menu.ex
@search [Item, Category]
def search(term) do

pattern = "%#{term}%"
Enum.flat_map(@search, &search_ecto(&1, pattern))

end

defp search_ecto(ecto_schema, pattern) do
Repo.all from q in ecto_schema,

where: ilike(q.name, ^pattern) or ilike(q.description, ^pattern)
end

report erratum • discuss

Understanding Abstract Types • 67

http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/2-unions/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/2-unions/lib/plate_slate_web/resolvers/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/2-unions/lib/plate_slate/menu/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

While each value returned from this function is a :menu_item or :category, it’s
also a valid :search_result, owing to the union type definition we added to the
schema.

There’s one concern that this neat new ability to generalize a field result brings
up: if a field can return different results with different shapes, how can users
effectively select the data they want in the query?

Let’s look at that search query again:

query Search($term: String!) {
search(matching: $term) {

«How do we differentiate category and menu item fields?»
}

}

To do this, we make use of an important GraphQL feature, fragments. Frag-
ments are a way to write chunks of GraphQL that can target a specific type.

Here’s a query that pulls out some information specific to PlateSlate menu
items and categories:

query Search($term: String!) {Line 1

search(matching: $term) {-

... on MenuItem {-

name-

}5

... on Category {-

name-

items {-

name-

}10

}-

}-

}-

You can see where we’re defining and inserting fragments on lines 3 and 6.
The ... is referred to as a “fragment spread,” and it inserts the inline fragment
that follows. This is nomenclature you’ll also find in ECMAScript 6 objects,1

which isn’t surprising considering the number of JavaScript developers
involved with the creation and maintenance of GraphQL.

The inline fragment targets a type (introduced with on) and defines the set of
fields, within the curly braces, that apply for any item that matches the type.
You’ll learn about named fragments later in this chapter.

1. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator

Chapter 4. Adding Flexibility • 68

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Let’s explore this query a bit with the GraphiQL user interface to see what
the results look like.

We’ve made the search function ridiculously permissive, allowing even single
character searches, so let’s make use of that. By searching for anything that
matches "e", we should be able to get a large volume of results.

First, we start the server:

$ mix phx.server
[info] Running PlateSlateWeb.Endpoint with Cowboy using http://0.0.0.0:4000

Heading over to http://localhost:4000/graphiql in our browser, we enter the query
in the left side panel, define our term variable, and press the “play” button:

In the bottom-right pane, you can see those results: a mix of menu items and
categories.

We can make the difference between the results more obvious by using a
handy GraphQL tool: introspection.

Introspecting Value Types
The GraphiQL interface uses GraphQL’s introspection2 capabilities extensively
to provide nice features like autocompletion and documentation. We can use
introspection ourselves, too. Let’s decorate our search query with a little
introspection:

query Search($term: String!) {
search(matching: $term) {

... on MenuItem {
name

}

2. http://graphql.org/learn/introspection

report erratum • discuss

Understanding Abstract Types • 69

http://graphql.org/learn/introspection
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

... on Category {
name
items {

name
}

}
__typename➤

}
}

Fields that begin with __ are reserved by GraphQL to support features like
introspection. The __typename introspection field that we’re using here always
returns the concrete GraphQL type name that’s in the associated scope.

If we plug it back into our GraphiQL example, we can see it in action:

Now we can see our results handily annotated with the GraphQL types in the
result pane.

Use __typename to See GraphQL Types

If you’re ever curious about the GraphQL type that’s being
returned, use the built-in __typename introspection field. It will
always return the concrete GraphQL type for the surrounding
scope, which can be handy for debugging an API or updating client-
side caches.

At this point, we have a fully functional search (although one we’ll want to
tune before we release it to production), and we’ve played with it in GraphiQL.
Let’s build a test for it, too. We’ll shorten up our query a bit and just make
sure that we get a mix of menu items and categories returned:

Chapter 4. Adding Flexibility • 70

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

04-chp.flexibility/2-unions/test/plate_slate_web/schema/query/search_test.exs
@query """
query Search($term: String!) {

search(matching: $term) {
... on MenuItem { name }
... on Category { name }
__typename

}
}
"""
@variables %{term: "e"}
test "search returns a list of menu items and categories" do

response = get(build_conn(), "/api", query: @query, variables: @variables)
assert %{"data" => %{"search" => results}} = json_response(response, 200)
assert length(results) > 0
assert Enum.find(results, &(&1["__typename"] == "Category"))
assert Enum.find(results, &(&1["__typename"] == "MenuItem"))

end

We’ll run mix test to execute our test:

$ mix test test/plate_slate_web/schema/query/search_test.exs
.

Finished in 0.2 seconds
1 test, 0 failures

It passes; great!

Now let’s think a little about how we could make this even better. The simpli-
fied search that we’ve done for our test seems to hint at a sore point: there
sure is a lot of duplication involved to get the same field from two different
concrete types.

Because unions are about combinations of disparate types that might not
have any fields in common, retrieving data from them requires us to use
fragments (that target types) to get the data we want. There’s another option:
interfaces. Let’s see if modeling our search results as an interface might make
things a bit simpler.

Using Interfaces
GraphQL interfaces are similar to unions, with one key difference: they add
a requirement that any member types must define a set of included fields.
This might remind you of interfaces in other languages (or perhaps behaviours
in Elixir/Erlang).

report erratum • discuss

Understanding Abstract Types • 71

http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/2-unions/test/plate_slate_web/schema/query/search_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

For search results, we know that we want to easily access the name field. It’s
fair to say that a search result should always include a name; it’s a simple
constraint, and one that doesn’t require us to add any fields to our :menu_item
and :category types. We just need to convert our :search_result to an interface and
indicate that our types belong to it.

Let’s open up the file with our Absinthe type definitions and make the modi-
fications. First, we’ll convert our :search_result type to an interface:

04-chp.flexibility/3-interfaces/lib/plate_slate_web/schema/menu_types.ex
interface :search_result do

field :name, :string
resolve_type fn

%PlateSlate.Menu.Item{}, _ ->
:menu_item

%PlateSlate.Menu.Category{}, _ ->
:category

_, _ ->
nil

end
end

We use the interface macro instead of the union macro, and because interfaces
need to be able to resolve the concrete types of their values just like unions,
we get to keep the resolve_type function that we already defined.

We removed the types macro usage, which our union type used to declare
which types it included; the object types that implement our new interface
declare that themselves, as we’ll see in a moment.

The only addition we’ve made involves the use of the field macro. Here we’ve
indicated any implementing object types must define a :name field that returns
a :string value. Easily done, as both :menu_item and :category already do that. All
we need to do with them is declare they implement our new interface.

We’ll make the addition to :menu_item:

04-chp.flexibility/3-interfaces/lib/plate_slate_web/schema/menu_types.ex
object :menu_item do

interfaces [:search_result]➤

field :id, :id
field :name, :string
field :description, :string
field :added_on, :date

end

And to :category:

Chapter 4. Adding Flexibility • 72

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/3-interfaces/lib/plate_slate_web/schema/menu_types.ex
http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/3-interfaces/lib/plate_slate_web/schema/menu_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

04-chp.flexibility/3-interfaces/lib/plate_slate_web/schema/menu_types.ex
alias PlateSlateWeb.Resolvers

object :category do
interfaces [:search_result]➤

field :name, :string
field :description, :string
field :items, list_of(:menu_item) do

resolve &Resolvers.Menu.items_for_category/3
end

end

As you can probably guess from the list value we’re passing to interfaces, an
object type can implement as many interfaces as you’d like.

Now that we have these changes in place, let’s see what difference it can make
to our query documents. We’ll update the test we just added, but first it’s
worth pointing out that it should still pass with flying colors:

$ mix test test/plate_slate_web/schema/query/search_test.ex
.

Finished in 0.2 seconds
1 test, 0 failures

We’ll make our change to the search query, removing the now-excessive
fragment usage:

04-chp.flexibility/3-interfaces/test/plate_slate_web/schema/query/search_test.exs
@query """
query Search($term: String!) {

search(matching: $term) {
name
__typename

}
}
"""
@variables %{term: "e"}
test "search returns a list of menu items and categories" do

response = get(build_conn(), "/api", query: @query, variables: @variables)
assert %{"data" => %{"search" => results}} = json_response(response, 200)
assert length(results) > 0
assert Enum.find(results, &(&1["__typename"] == "Category"))
assert Enum.find(results, &(&1["__typename"] == "MenuItem"))
assert Enum.all?(results, &(&1["name"]))

end

Then, run the tests again:

report erratum • discuss

Understanding Abstract Types • 73

http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/3-interfaces/lib/plate_slate_web/schema/menu_types.ex
http://media.pragprog.com/titles/wwgraphql/code/04-chp.flexibility/3-interfaces/test/plate_slate_web/schema/query/search_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

$ mix test test/plate_slate_web/schema/query/search_test.exs
.

Finished in 0.2 seconds
1 test, 0 failures

See how the name field is bare, without a wrapping ... on Type { } inline fragment?
This works because selecting fields that have been declared on the interface
aren’t subject to the same type of restrictions as selecting fields on unions
(which have no such mechanism).

This doesn’t mean, of course, that you can just select any field on an interface
and get away with it. If we wanted to retrieve information about menu items
that belonged to any categories that were returned from a search, we’d still
need to have a wrapping fragment type, like this:

query Search($term: String!) {
search(matching: $term) {

name
... on Category {
name
items {

name
}

}
}

}

This is because :items isn’t declared on the interface. It’s not a field that’s
shared with other object types (that is, :menu_item) that implement :search_result.

Interfaces are a handy tool, and they’re often the right choice when you need
an abstract class precisely for the reason that we’ve illustrated here. If there
are fields in common, interfaces allow users to write more simple, readable
GraphQL.

Let’s talk about another tool along those lines: named fragments. Wouldn’t
it be nice if we could reuse chunks of GraphQL rather than have the same
thing over and over?

Using Named Fragments
In the last section, you were introduced to fragments, using the inline variety
to associate parts of GraphQL documents with specific types. Named fragments
are just like inline fragments, but they’re reusable.

Let’s give that search query another look, this time breaking out the fields
for menu items and categories:

Chapter 4. Adding Flexibility • 74

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

query Search($term: String!) {
search(matching: $term) {

... MenuItemFields

... CategoryFields
}

}

fragment MenuItemFields on MenuItem {
name

}

fragment CategoryFields on Category {
name
items {

... MenuItemFields
}

}

Just as before, the ... fragment spread is used to insert an instance of a frag-
ment. This time, however, we’re referencing a named fragment that’s defined
outside the GraphQL operation using the fragment keyword. Notice that the
type targeting is still there on the fragment definition. Fragments always target
a specific type.

We are ignoring the :search_result interface’s ability to return a name field without
using fragments in this specific example. That’s okay; maintaining a GraphQL
document like this has a key benefit: simple extensibility.

For instance, application requirements down the road may mean that
searches need to return price information. Handily, for menu items that match
directly or for menu items that were returned as part of the category, the user
would only have to edit the definition for MenuItemFields:

fragment MenuItemFields on MenuItem {
name
price➤

}

Since the fields from MenuItemFields are inserted into both the top-level search
and used inside the definition for CategoryFields, the new price data would be
retrieved at both records.

The benefits to named fragments become even more pronounced if the user
is building their application in such a way that they can compose documents
from different sources, mixing and matching definitions to serve the data
needs of the specific application component they’re working on.

Named fragments give users more flexibility to build documents the way they
want, with a minimum of fuss. An unavoidable part of an eminently flexible

report erratum • discuss

Using Named Fragments • 75

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

query language like GraphQL is it can be used to build complex documents to
service complex needs. Fragments are a nice exit hatch to support program-
matic generation of documents to relieve some of the maintenance stress.

Fragments Can’t Form Cycles

Named fragments can include references to other fragments, but
can’t form cycles (A -> B -> A, A -> A, etc). Absinthe will helpfully
detect cycles and self-referential definitions in GraphQL documents
and automatically return errors to the user for you.

Moving On
In this chapter, we’ve looked at a wide range of topics that help make building
and using a GraphQL system more flexible and humane.

You’ve learned how to break up your schema into manageable pieces using
Absinthe’s import_types and import_fields macros. We’ve dug deep into GraphQL
unions and interfaces, and you’ve discovered how abstract types can make
your API more approachable and usable. Your knowledge of GraphQL docu-
ment building has expanded as well, now that you’ve seen fragments and
understood how users can define, apply, and reuse fragments, enabling new
approaches to GraphQL document authoring.

Before we head on to the next chapter, here are a few thought exercises based
on the material in this chapter:

1. Take a look at the schema.ex file. We’ve kept it simple for the purposes of
the book, but think through how you might break up the query definition
using import_fields, or where you might relocate the common types at the
bottom of the schema (using import_types) if you wanted to keep the file as
concise as possible.

2. We settled on using an interface to model search results for PlateSlate.
Can you think of any cases you might prefer to use a union?

3. Build a query document that defines a series of named fragments that
form a cycle. Why do you think it might be a bad idea to try to execute a
query like this? Try to run the document through Absinthe to trigger the
error response.

Next up, we tackle a very important topic: mutations! It’s been fun building
a read-only API, but it’s probably time to let our users make changes to our
data. We think you’ll be pleased with the flexibility you’ll have at your finger-
tips, especially if you have experience building REST APIs.

Chapter 4. Adding Flexibility • 76

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

CHAPTER 5

Making a Change with Mutations
It’s easy to focus on GraphQL’s data-fetching capabilities; the flexibility it
gives clients when crafting queries is certainly its most striking feature, but
it’s not a read-only data platform. GraphQL also supports mutations, which
allow users of the API to modify server-side data.

If you’re familiar with REST APIs, you can think of GraphQL mutations as
roughly analogous to POST, PUT, and DELETE operations. Unlike REST, however,
the responses from GraphQL mutations can be tailored, just as with GraphQL
query operations.

In this chapter, we’re going to explore how GraphQL mutations can be used
by adding menu-item management features to our PlateSlate application. You’ll
learn how to add a root mutation type and define fields, get acquainted with
modeling new records with input objects, and uncover important strategies
that you can use to return error information if something goes wrong.

Let’s jump in by building our first mutation, which will let users create menu
items using the PlateSlate API.

Defining a Root Mutation Type
To support mutation operations, we need to define a root mutation type, just as
we did for queries. This will be used as the entry point for GraphQL mutation
operations, and it will define—based on the mutation fields that we add—the
complete list of capabilities users of our API will have available to modify data.

We define the root mutation type by using the mutation macro in our schema:

05-chp.mutations/1-start/lib/plate_slate_web/schema.ex
mutation do

«Mutation fields will go here»
end

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/1-start/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

This might strike you as somewhat similar to our use of the query macro when
we did the initial build-out of the PlateSlate Absinthe schema, and that’s by
design. Both macros—query and mutation—are used to define the root object
types for their respective GraphQL operations.

A mutation root type won’t do us any good unless we define mutation fields.
Let’s do that next, adding a mutation for menu item creation.

Adding a Mutation Field
Now that we have a place to put our mutations, let’s get organized and come
up with a plan for menu item creation. Here’s the narrative of how we expect
this feature to work:

• A user will build out the menu item details in their user interface (website,
mobile application, anything that can talk GraphQL).

• The user’s client will send the collected data for a menu item to our
GraphQL API, indicating the createMenuItem mutation and the data they’d
like in response.

• Our API will execute the mutation, create the menu item (if possible), and
return the requested data.

Let’s build out the mutation field that clients need. Just as we would with
query fields and the query root mutation type, we add mutation fields directly
inside the mutation block (which defines the root mutation object type). Here,
we add a :create_menu_item field:

05-chp.mutations/2-create/lib/plate_slate_web/schema.ex
mutation do

field :create_menu_item, :menu_item do
end

end

Most mutations that create something return it as the result of the field,
which is why the mutation here is returning a :menu_item. We’ll talk more about
why this is handy soon, but first let’s get into the nitty gritty of receiving the
input to create the menu item.

Modeling with an Input Object
To create menu items, you’ll need to accept information from the client. You’ll
use an input object to model the data that you’re expecting. Let’s keep it
simple for now, just accepting a name, optional description, price, and cate-
gory ID in a new input object type, :menu_item_input:

Chapter 5. Making a Change with Mutations • 78

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/2-create/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

05-chp.mutations/2-create/lib/plate_slate_web/schema/menu_types.ex
input_object :menu_item_input do

field :name, non_null(:string)
field :description, :string
field :price, non_null(:decimal)
field :category_id, non_null(:id)

end

These fields represent the subset of fields that are needed to support clients
creating menu items. We can expand this as the menu management features
that we need grow with our application.

Object Types Aren’t Input Types

It’s easy to forget that you can’t use object types for user input;
instead, you need to create input object types for use in arguments.
While this might seem like unnecessary work at first, you’ll come
to appreciate the way it forces you to focus on the discrete package
of data that you need for specific mutations.

There are also some technical differences between objects and
input objects. Input object fields can only be valid input types,
which excludes unions, interfaces, and objects. You also can’t
form cycles with input objects, whereas cycles are permitted with
objects.

Our GraphQL schema doesn’t know what the :decimal type is yet, so we need
to define that as well. Absinthe ships with a :float scalar type—a built-in type
to meet the requirements of the GraphQL specification—but a float is a poor
choice for monetary math operations. Thankfully, we’ve already got the decimal
package in our mix.exs file, which will let us properly represent our menu item
prices.

Let’s define the :decimal type using the scalar macro, just as we did in Creating
Your Own Scalar Types, on page 50:

05-chp.mutations/2-create/lib/plate_slate_web/schema.ex
scalar :decimal do

parse fn
%{value: value}, _ ->
Decimal.parse(value)

_, _ ->
:error

end
serialize &to_string/1

end

report erratum • discuss

Defining a Root Mutation Type • 79

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/2-create/lib/plate_slate_web/schema/menu_types.ex
http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/2-create/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Now that we have a decimal type, we can expose a :price field on the :menu_item
object type that we defined all the way back in Defining an Object Type, on
page 17, too:

05-chp.mutations/2-create/lib/plate_slate_web/schema/menu_types.ex
object :menu_item do

interfaces [:search_result]

field :id, :id
field :name, :string
field :description, :string
field :price, :decimal➤

field :added_on, :date
end

Let’s define an :input argument on our :create_menu_item field, using our :menu_
item_input type:

05-chp.mutations/2-create/lib/plate_slate_web/schema.ex
mutation do

field :create_menu_item, :menu_item do
arg :input, non_null(:menu_item_input)
resolve &Resolvers.Menu.create_item/3

end

end

We are using the name input here because it’s a convention of the Relay
client-side framework1 for mutations, but we could use a different name
instead if we were so inclined. (We’re not, for now.) We’ve also wired in the
resolver function, located with the other menu-related resolvers in Plate-
SlateWeb.Schema.Resolvers.Menu.

The actual behavior that will occur when users use createMenuItem in GraphQL
documents is the responsibility of the resolver function for our mutation field.
We need to make the resolver interpret our client input, attempt to persist
the menu item, and respond to users.

Building the Resolver
Let’s build the resolver function. It will grab the :input argument for us, and
then call a general-purpose PlateSlate.Menu.create_item/1 function that will handle
attempting to persist the record:

1. https://facebook.github.io/relay/

Chapter 5. Making a Change with Mutations • 80

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/2-create/lib/plate_slate_web/schema/menu_types.ex
http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/2-create/lib/plate_slate_web/schema.ex
https://facebook.github.io/relay/
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

05-chp.mutations/2-create/lib/plate_slate_web/resolvers/menu.ex
def create_item(_, %{input: params}, _) doLine 1

case Menu.create_item(params) do2

{:error, _} ->3

{:error, "Could not create menu item"}4

{:ok, _} = success ->5

success6

end7

end8

Here’s how we’ve implemented PlateSlate.Menu.create_item/1:

05-chp.mutations/2-create/lib/plate_slate/menu/menu.ex
def create_item(attrs \\ %{}) do

%Item{}
|> Item.changeset(attrs)
|> Repo.insert()

end

The actual persistence of the menu items is straightforward but requires you
to know a little about how Ecto works. The important thing to know here is
that an Ecto changeset models the data that needs to be inserted or updat-
ed—changed—in a database. Here our create_item/1 function takes the menu
item attributes, creates an Ecto changeset using PlateSlate.Menu.Item.changeset/1
(helpfully already written for you in the application), and attempts to insert
it into the PlateSlate.Repo, aliased for convenience here as Repo.

If you look back at line 2 of the resolver, you’ll notice that we use case to
handle the result of the create_item function. While the return value of a suc-
cessful Repo.insert/2 is compatible with a resolution result, the {:error, changeset}
that it can return isn’t. For the moment, when an error occurs, we just return
an error message from the field resolver, but we’ll look at some options for
error reporting at the end of this chapter.

Let’s talk a bit about what happens when the persistence is successful.

Returning Data from Mutations
Remember, when we defined the mutation field, we declared what type of
object it would have as a result. We did this by passing :menu_item as the second
argument to the field macro:

05-chp.mutations/2-create/lib/plate_slate_web/schema.ex
mutation do

field :create_menu_item, :menu_item do
end

end

report erratum • discuss

Building the Resolver • 81

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/2-create/lib/plate_slate_web/resolvers/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/2-create/lib/plate_slate/menu/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/2-create/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

What this means is our API clients can query the result object type just like they
would in a query operation. They can then extract exactly the information they
want from the created object to update the user interface of their application.

Mutations and Client-Side Frameworks

Because mutations change data in the system, and modified data needs to be
reflected in user interfaces—forms updated, lists redrawn, and other elements changed
—different client-side application frameworks and tools have constraints around how
to structure arguments for mutations and how to shape results of mutations.

In this chapter, we’re showing how to use GraphQL mutations according to the
specification rather than using any specific framework. We’ll cover framework-specific
configurations later, in Chapter 11, Integrating with the Frontend, on page 221.

Here’s an example of a full GraphQL document that uses our new mutation
field and requests some information about the resulting menu item:

mutation CreateMenuItem($menuItem: MenuItemInput!) {
createMenuItem(input: $menuItem) {

id
name
description
price
category { name }
tags { name }

}
}

Notice how we can dig into the returned :menu_item object type and pull out
any information that we need, like categories and tags. This would be espe-
cially useful if, by persisting a new menu item, certain defaults were set on
the menu item (or calculated based on information we sent). By supporting
a fully tailored query in the same request, our clients can immediately make
use of the information without having to make a separate, subsequent request,
subject to race condition concerns.

In a perfect world, we’d just know that our mutation would work flawlessly
the very first time. We know better, so let’s give it a test!

Testing Our Request
Testing a mutation doesn’t look a whole lot different from testing a query. We’ll
be passing some variables, shaped just the right way to match our :menu_item_input
input object type, and the only real change is that we need to make sure to use
post, since that’s the HTTP method that GraphQL expects for mutations.

Chapter 5. Making a Change with Mutations • 82

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’ll open a new test file and drop in our createMenuItem mutation:

05-chp.mutations/2-create/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
defmodule PlateSlateWeb.Schema.Mutation.CreateMenuTest do

use PlateSlateWeb.ConnCase, async: true

alias PlateSlate.{Repo, Menu}
import Ecto.Query

setup do
PlateSlate.Seeds.run()

category_id =
from(t in Menu.Category, where: t.name == "Sandwiches")
|> Repo.one!
|> Map.fetch!(:id)
|> to_string

{:ok, category_id: category_id}
end

@query """
mutation ($menuItem: MenuItemInput!) {

createMenuItem(input: $menuItem) {
name
description
price

}
}
"""
test "createMenuItem field creates an item", %{category_id: category_id} do

menu_item = %{
"name" => "French Dip",
"description" => "Roast beef, caramelized onions, horseradish, ...",
"price" => "5.75",
"categoryId" => category_id,

}
conn = build_conn()
conn = post conn, "/api",

query: @query,
variables: %{"menuItem" => menu_item}

assert json_response(conn, 200) == %{
"data" => %{
"createMenuItem" => %{

"name" => menu_item["name"],
"description" => menu_item["description"],
"price" => menu_item["price"]

}
}

}
end

end

report erratum • discuss

Building the Resolver • 83

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/2-create/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

If we run the test from the console, we’ll see the test pass. (Flawlessly, the
first time! We must have been lucky. This time.)

$ mix test test/plate_slate_web/schema/mutation/create_menu_item_test.exs
.

Finished in 0.1 seconds
1 test, 0 failures

You might notice something about the response, though. The value that’s
returned for the menu item is housed inside an object returned under the
"createMenuItem" key. The raw JSON response looks something like this:

{
"data": {

"createMenuItem": {
"name": "French Dip",
"description": "Roast beef, caramelized onions, horseradish, ..."
"price": "5.75"

}
}

}

While that’s not very surprising, given that is the name of the mutation field,
it’s also not very pretty. It would be a lot nicer to have it called "menuItem".
Luckily, we can use a mechanism that GraphQL calls a field alias to help.

Using Field Aliases for Nicer (and Unique) Names
Sometimes there’s a difference of opinion between what the schema designer
decides to call a field and how the user of the API would like results returned.
This comes up especially with mutations, since they commonly include verbs
as part of their names (in our example, “create”).

So, our users probably don’t want to have their new menu item returned as
"createMenuItem". What can they do?

They can use a field alias, which is done by preceding the field with another
name and a colon (:). For example, they can write this to call the result menuItem
instead:

mutation ($menuItem: MenuItemInput!) {
menuItem: createMenuItem(input: $menuItem) {

name
}

}

Chapter 5. Making a Change with Mutations • 84

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

It almost looks like an assignment, doesn’t it? Now our result would look
like this:

{
"menuItem": {

"name": "French Dip"
}

}

This isn’t all for vanity’s sake, either. Imagine the real possibility that an API
client might want to create multiple new menu items at once. A naive attempt
might look something like this:

mutation CreateTwo($menuItem1: MenuItemInput!, $menuItem2: MenuItemInput!) {
createMenuItem(input: $menuItem1) { id name }
createMenuItem(input: $menuItem2) { id name }

}

This won’t end well! GraphQL doesn’t allow duplicate field names in a request,
and it wouldn’t make much sense in the resulting JSON, either. How would
it figure out how to return a single value for "createMenuItem"?

Instead, clients can mark each mutation with separate aliases:

mutation CreateTwo($menuItem1: MenuItemInput!, $menuItem2: MenuItemInput!) {
one: createMenuItem(input: $menuItem1) { id name }
two: createMenuItem(input: $menuItem2) { id name }

}

Now clients would receive two values in the JSON response: one for "one" and
one for "two".

This isn’t just for mutations either. Structurally, GraphQL queries and
mutations are exactly the same, and there are plenty of cases where a user
might want to query the same field with different sets of arguments for mul-
tiple, separate results. Here’s an example of a query we might want to support:

query Meal {
inHand: search(matching: "reu") { name }
inGlass: search(matching: "lem") { name }

}

The aliases here support using a single field multiple times within a GraphQL
document; the result would come back with the field data associated with
each alias:

report erratum • discuss

Building the Resolver • 85

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

{
"data": {

"inHand": [
{

"name": "Reuben"
}

],
"inGlass": [
{

"name": "Lemonade"
}

]
}

}

We’ve done a little test along the happy path2 and discussed some complexities
when returning data for successful requests, but let’s dig a bit deeper and
talk about what to do when things go wrong. What if we have business rules
that prevent a mutation from being successful? How do we provide useful
feedback to our API users?

Handling Mutation Errors
In a perfect world, users would provide the correct data, conditions would
always be met, mutations would execute cleanly, and changes would be per-
sisted flawlessly. This isn’t a perfect world, however, so we need to deal with
errors that might occur when executing our mutations. We’ll cover two major
strategies that you can use to report errors to users. While you can’t always
make them happy, you can at least let them know what went wrong.

Before we dig into error handling, we need to set up a good example. Let’s
add a constraint in our PlateSlate application business logic so that we can
easily trigger an error when creating menu items.

Right now in our PlateSlate application, we’re very permissive about menu
item creation; besides checking that names and prices are provided, we allow
any menu item to be created. We even allow menu items with duplicate names;
let’s add a basic constraint in our database to prevent that.

Since we’re using Ecto for our PlateSlate project, we’ll use mix to generate a
migration:

2. https://en.wikipedia.org/wiki/Happy_path

Chapter 5. Making a Change with Mutations • 86

report erratum • discuss

https://en.wikipedia.org/wiki/Happy_path
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

$ mix ecto.gen.migration AddIndexForMenuItemNames
* priv/repo/migrations
* priv/repo/migrations/20170826015057_add_index_for_menu_item_names.exs

Opening the migration file, we’ll add an index with a unique constraint:

05-chp.mutations/3-errors/priv/repo/migrations/20170826015057_add_index_for_menu_item_names.exs
defmodule PlateSlate.Repo.Migrations.AddIndexForMenuItemNames do

use Ecto.Migration

def change do
create unique_index(:items, [:name])

end
end

Now, run the migration:

$ mix ecto.migrate
«Running migration»
[info] create index menu_items_name_index
[info] == Migrated in 0.0s

Now we have the database configured. We’ll add the unique constraint to the
Ecto changeset for Menu.Item as well:

05-chp.mutations/3-errors/lib/plate_slate/menu/item.ex
def changeset(%Item{} = item, attrs) do

item
|> cast(attrs, [:name, :description, :price, :added_on])
|> validate_required([:name, :price])
|> foreign_key_constraint(:category)
|> unique_constraint(:name)➤

end

Let’s add a test that verifies our expectations for error handling as it stands
right now:

05-chp.mutations/3-errors/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
test "creating a menu item with an existing name fails",
%{category_id: category_id} do

menu_item = %{
"name" => "Reuben",
"description" => "Roast beef, caramelized onions, horseradish, ...",
"price" => "5.75",
"categoryId" => category_id,

}
conn = build_conn()
conn = post conn, "/api",

query: @query,
variables: %{"menuItem" => menu_item}

report erratum • discuss

Handling Mutation Errors • 87

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/3-errors/priv/repo/migrations/20170826015057_add_index_for_menu_item_names.exs
http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/3-errors/lib/plate_slate/menu/item.ex
http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/3-errors/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

assert json_response(conn, 200) == %{
"data" => %{"createMenuItem" => nil},
"errors" => [
%{

"locations" => [%{"column" => 0, "line" => 2}],
"message" => "Could not create menu item",
"path" => ["createMenuItem"]

}
]

}
end

Running this confirms that all is well:

$ mix test test/plate_slate_web/schema/mutation/create_menu_item_test.exs
..

Finished in 0.2 seconds
2 tests, 0 failures

Now you can have some peace of mind that when users create menu items,
they will be prevented from using duplicate names. The only question is
whether the errors you give your users are informative enough.

We’ll cover two approaches that you can use in your Absinthe schema to give
users more information when they encounter an error: using simple :error
tuples and modeling the errors directly as types.

Using Tuples
Field resolver functions return tuple values to indicate their result. We’ve
already seen this in the resolvers we’ve built so far in our PlateSlate applica-
tion. For example, here’s the resolver for the :create_menu_item field that we’ve
been working on throughout this chapter:

05-chp.mutations/3-errors/lib/plate_slate_web/resolvers/menu.ex
def create_item(_, %{input: params}, _) do

case Menu.create_item(params) do
{:error, _} ->
{:error, "Could not create menu item"}

{:ok, _} = success ->
success

end
end

The return value for PlateSlate.Menu.create_item/1 is a tuple, and we use case to do
a bit of post-processing on the value to return a nicely formatted value for
Absinthe to include in the response. Successful values are returned
untouched, but error values (which are Ecto changesets) are replaced with

Chapter 5. Making a Change with Mutations • 88

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/3-errors/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

a pretty generic message, “Could not create menu item.” We can do better
than that!

Here’s what a changeset looks like when returned from Ecto after an unsuc-
cessful attempt to create a menu item:

#Ecto.Changeset<action: :insert,
changes: %{name: "Water", price: #Decimal<0>},
errors: [name: {"has already been taken", []}],
data: #PlateSlate.Menu.Item<>, valid?: false>

Changesets are a pretty complex piece of machinery, and for good reason.
We need to extract useful error information from this in a format that Absinthe
can consume and return to users. Fortunately, Ecto.Changeset.traverse_errors/2 is
a ready-made tool that’s perfect for our purposes. Let’s plug it into the resolver
function, pulling the error information out of the changeset and returning it
as part of the tuple:

05-chp.mutations/4-errortuples/lib/plate_slate_web/resolvers/menu.ex
def create_item(_, %{input: params}, _) do

case Menu.create_item(params) do
{:error, changeset} ->
{

:error,
message: "Could not create menu item",
details: error_details(changeset),➤

}
success ->
success

end
end

def error_details(changeset) do➤

changeset➤

|> Ecto.Changeset.traverse_errors(fn {msg, _} -> msg end)➤

end➤

The traverse_errors/2 function takes a changeset and a function to process each
error, which is a two-element tuple of the error message. We’re transforming
the error information into a string with format_error/1.

Errors Need a Message

If you go beyond returning {:error, String.t} and return a map or
keyword list, you must include a :message. Anything else is
optional, but any error information must be serializable to JSON.

report erratum • discuss

Handling Mutation Errors • 89

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/4-errortuples/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Instead of returning a simple {:error, String.t} value from the resolver, we’re now
returning an {:error, Keyword.t}, with the error information from the changeset
under the :details key. Here’s what the return value of the resolver will look
like if a user encounters a name collision:

{
:error,
message: "Could not create menu item",
details: %{

"name" => ["has already been taken"]
}

}

It’s important to remember that errors are reported separate of data values
in a GraphQL response, so the previous error would be serialized to look like
this in a response:

{
"data": {

"createMenuItem": null
},
"errors": [

{
"message": "Could not create menu item",
"details": {

"name": ["has already been taken"]
},
"locations": [{"line": 2, "column": 0}],
"path": [

"createMenuItem"
]

}
]

}

Handily, the path to the related field is included, as well as line number
information. This makes mapping an error to its originating point in our
GraphQL schema (and document) pretty straightforward.

That Pesky Column Number

Notice that the column value in the error is 0. Due to a current lim-
itation of the lexer that Absinthe uses (leex3, part of Erlang/OTP),
column tracking isn’t available...yet. For the moment, to be
compatible with client tools, Absinthe always reports the column
value as 0.

3. http://erlang.org/doc/man/leex.html

Chapter 5. Making a Change with Mutations • 90

report erratum • discuss

http://erlang.org/doc/man/leex.html
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Let’s verify we get this error by modifying our test along the same lines:

05-chp.mutations/4-errortuples/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
test "creating a menu item with an existing name fails",
%{category_id: category_id} do

menu_item = %{
"name" => "Reuben",
"description" => "Roast beef, caramelized onions, horseradish, ...",
"price" => "5.75",
"categoryId" => category_id,

}
conn = build_conn()
conn = post conn, "/api",

query: @query,
variables: %{"menuItem" => menu_item}

assert json_response(conn, 200) == %{
"data" => %{"createMenuItem" => nil},
"errors" => [
%{

"locations" => [%{"column" => 0, "line" => 2}],
"message" => "Could not create menu item",
"details" => %{"name" => ["has already been taken"]},➤

"path" => ["createMenuItem"]
}

]
}

end

Running it, we see that it still passes:

$ mix test test/plate_slate_web/schema/mutation/create_menu_item_test.exs
..

Finished in 0.2 seconds
2 tests, 0 failures

With this in place, we know that the error information is being extracted from
the changeset and being returned correctly from the resolver to our users. It
will be handy to keep it around to fend off any regressions in the future.

Now let’s take a look at an alternate way to return errors.

Errors as Data
Sometimes, rather than returning errors in GraphQL’s free-form errors portion
of the result, it might make sense to model our errors as normal data—fully
defining the structure of our errors as normal types to support introspection
and better integration with clients.

report erratum • discuss

Handling Mutation Errors • 91

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/4-errortuples/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

If you recall, the mutation field that we created earlier returned a :menu_item:

mutation do

field :create_menu_item, :menu_item do➤

«Contents»
end

end

If we were to diagram the relationship between the resulting GraphQL types
and fields, this is what it would look like:

If we wanted to give our API clients more insight into the structure of the
errors this mutation could return, we’d need to expand this modeling out a
bit to make room for error types. What if, instead of returning the menu item
directly, our mutation field returned an object type, :menu_item_result, that would
sit in the middle?

05-chp.mutations/5-errorobjects/lib/plate_slate_web/schema/menu_types.ex
object :menu_item_result do

field :menu_item, :menu_item
field :errors, list_of(:input_error)

end

This result models each part of the output, the menu item, and the errors.
The :errors themselves are an object, which we’ll put in the schema because
they’re generic enough to be used in a variety of places:

05-chp.mutations/5-errorobjects/lib/plate_slate_web/schema.ex
@desc "An error encountered trying to persist input"
object :input_error do

field :key, non_null(:string)
field :message, non_null(:string)

end

The figure on page 93 shows how the resulting GraphQL type structure would
look, once we modify the mutation field to declare its result to be a :menu_
item_result.

Chapter 5. Making a Change with Mutations • 92

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/5-errorobjects/lib/plate_slate_web/schema/menu_types.ex
http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/5-errorobjects/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Let’s do that, modifying the field resolver:

05-chp.mutations/5-errorobjects/lib/plate_slate_web/resolvers/menu.ex
def create_item(_, %{input: params}, _) do

case Menu.create_item(params) do
{:error, changeset} ->
{:ok, %{errors: transform_errors(changeset)}}➤

{:ok, menu_item} ->
{:ok, %{menu_item: menu_item}}➤

end
end

defp transform_errors(changeset) do
changeset
|> Ecto.Changeset.traverse_errors(&format_error/1)
|> Enum.map(fn

{key, value} ->
%{key: key, message: value}

end)
end

@spec format_error(Ecto.Changeset.error) :: String.t
defp format_error({msg, opts}) do

Enum.reduce(opts, msg, fn {key, value}, acc ->
String.replace(acc, "%{#{key}}", to_string(value))

end)
end

report erratum • discuss

Handling Mutation Errors • 93

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/5-errorobjects/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

It’s important to notice that, regardless of error state, an :ok tuple is returned;
it’s just doing the work of translating database errors into values that can be
transmitted back to clients.

GraphQL documents from the clients wouldn’t look much different; they’d
just be a level deeper. Let’s modify the query we’re using in our tests to support
this new structure:

05-chp.mutations/5-errorobjects/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
@query """
mutation ($menuItem: MenuItemInput!) {

createMenuItem(input: $menuItem) {
errors { key message }
menuItem {

name
description
price

}
}

}
"""

When clients receive responses for this document, they can interpret the
success of the result by checking the value of menuItem and/or errors, then give
feedback to users appropriately. Because the errors are returned as the result
of specific fields, this means that, even in cases where the client sends multiple
mutations in a single document, any errors encountered can be tied to the
specific mutation that failed.

For our tests to work with the changes to the field and this new query, we
need to update the assertions we make about the responses we expect.

We’ll start with the case that successfully creates a menu item:

05-chp.mutations/5-errorobjects/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
assert json_response(conn, 200) == %{

"data" => %{
"createMenuItem" => %{

"errors" => nil,
"menuItem" => %{

"name" => menu_item["name"],
"description" => menu_item["description"],
"price" => menu_item["price"]

}
}

}
}

We also need to update the error case:

Chapter 5. Making a Change with Mutations • 94

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/5-errorobjects/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/5-errorobjects/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

05-chp.mutations/5-errorobjects/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
assert json_response(conn, 200) == %{

"data" => %{
"createMenuItem" => %{

"errors" => [
%{"key" => "name", "message" => "has already been taken"}

],
"menuItem" => nil

}
}

}

With the test assertions updated, your test assertions should pass. Let’s run
the tests for the field again:

$ mix test test/plate_slate_web/schema/mutation/create_menu_item_test.exs
..

Finished in 0.2 seconds
2 tests, 0 failures

This is a straightforward approach to modeling errors as data, and it’s possible
to take it a lot further—for example, supporting a fully fleshed out error code
system using enums or setting a union as the result type—but it’s important
to make decisions about error modeling based on the needs of your API users.
Remember, if users don’t need to know the structure of your errors ahead of
time, or if you don’t think supporting introspection for documentation pur-
poses is worth it, even this basic modeling is overkill; just return simple :error
tuples instead. They’re low ceremony and flexible enough to support most
use cases.

Moving On
In this chapter, you learned how GraphQL draws a distinction between queries,
which are used to retrieve information, and mutations used to change it. We
worked through adding a root mutation type and a mutation field, discussed
how to use input objects to model new records, and uncovered several
strategies for returning error information if something goes wrong.

This chapter finishes up our work building the core pieces of a GraphQL API.
Before we move on to some exciting near real-time features of GraphQL, here
are some challenges you can tackle in the PlateSlate application to use your
knowledge of the material in this chapter:

1. We added a :decimal scalar type in this chapter and used it as the type for
the :price field of our :menu_item type. Back in Modeling Input Objects, on
page 44, we added a :menu_item_filter type with price filters that use :float;

report erratum • discuss

Moving On • 95

http://media.pragprog.com/titles/wwgraphql/code/05-chp.mutations/5-errorobjects/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

convert them to :decimal and make the changes necessary so the tests still
pass. (Feel free to add more, too!)

2. Add a new mutation field, :update_menu_item, that takes a similar :input
argument and an :id, but updates records instead of creating them.

3. Let’s assume you’ve opted to include a :code value in your mutation errors
to match up with some internationalized error messages in your client
user interfaces. Think through how you might do this if returning simple
:error tuples vs. :ok tuples with error objects.

4. Menu items belong to a category, and it would be useful to assign a menu
item and create a new category on creation. How would you modify the
:menu_item_input type to support providing a category name? If you’re feeling
ambitious, figure out how to use Ecto to create and associate the new
category, too.

In the next chapter, you’ll learn about subscriptions, GraphQL’s approach to
live data updates. Considering the near real-time performance of Elixir and
Phoenix, it should be no surprise they’re the perfect fit—with Absinthe’s
help—for this exciting capability.

Chapter 5. Making a Change with Mutations • 96

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

CHAPTER 6

Going Live with Subscriptions
In REST-oriented web frameworks, the need to have near real-time, live data
streams still feels like a strange new world. It isn’t necessarily that setting
up a WebSocket connection is hard (particularly if you’re using Phoenix), but
rather that such connections don’t fit into the REST API paradigm very easily.
Setting up connections for specific data feeds and managing the communica-
tion across them is, to say the least, awkward in a world of “resources”
tightly coupled to HTTP verbs. Consequently, even in frameworks that have
fantastic near real-time support, whatever approach that’s available doesn’t
feel like a first-class part of the API. When your API is built solidly around
the semantics of HTTP requests, the needs of live data feeds can feel like an
afterthought.

GraphQL, on the other hand, puts near real-time data at the same first-class
level as queries or mutations with what are called subscription operations.
It’s these subscriptions that allow users to request data updates—using the
same semantics as any other GraphQL request—and manage the life cycle
of the data feed. Modern user interfaces using subscriptions can work with
live data as a part of their normal conversation with a GraphQL server. Near
real-time data updates are not a bolt-on, after-market component of a
GraphQL API, but rather an intrinsic feature.

Over the last few chapters, we’ve built up the foundation of a GraphQL API for
a restaurant menu and ordering system. Our example application, PlateSlate,
is just crying out for user interfaces that use near real-time data. Whereas
something like the restaurant menu is a relatively static set of information,
orders are dynamic. From a screen in the restaurant’s fast-moving kitchen that
tells cooks when and what to prepare, to consumer mobile applications that
support to-go and delivery ordering, it’s important that information about
changes to an order’s status is distributed quickly and easily.

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’ll spend this chapter building a simple system for tracking orders in a
specific restaurant. The scenario will go like this:

• The customer goes to a cashier, orders and pays for items, and is handed
a number.

• A user interface in the restaurant kitchen displays the order as it is placed,
along with what items are in the order.

• A simple status screen is displayed in the seating area of the restaurant,
letting the customer know when their order is ready for pickup.

• When their food is ready, the customer trades in the number for their
food.

In this chapter, you’ll learn how to model the related data operations and
configure the subscriptions that will power these user interfaces. Let’s get
started by covering some important background about subscriptions.

Setting Up Subscriptions
Subscriptions let a client submit a GraphQL document that, instead of being
executed immediately, is executed on the basis of some event in the system.
From the perspective of the server, we need to be able to hold onto documents
that clients have submitted so that we can run them at the right time, and
we need a way to propagate events through the system. Finally, we need a
way to have a persistent connection with the client so that we can push results
up to them when their documents are executed.

This requires a little bit of setup. Fortunately, PlateSlate already has Phoenix
as a dependency, and that will play the role of the publish-subscribe1 and
WebSocket system. This provides a number of handy features for free: clients
will be able to use long polling or WebSockets, and the pubsub will work
either over distributed Elixir or through any other adapter (like Redis) built
to work with Phoenix pubsub. However, there are a few things you need to
do to connect these capabilities to Absinthe.

The first order of business is to add an Absinthe.Subscription supervisor to the
PlateSlate application’s supervision tree by modifying the children list in the
start/2 callback of application.ex.

06-chp.subscriptions/1-start/lib/plate_slate/application.ex
def start(_type, _args) do

import Supervisor.Spec

1. https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Chapter 6. Going Live with Subscriptions • 98

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/1-start/lib/plate_slate/application.ex
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

children = [
supervisor(PlateSlate.Repo, []),
supervisor(PlateSlateWeb.Endpoint, []),
supervisor(Absinthe.Subscription, [PlateSlateWeb.Endpoint]),➤

]
opts = [strategy: :one_for_one, name: PlateSlate.Supervisor]
Supervisor.start_link(children, opts)

end

This Absinthe.Subscription supervisor starts a number of processes that will handle
broadcasting results and hold on to subscription documents. You pass the
supervisor your PlateSlateWeb.Endpoint module because you’re using the Phoenix
endpoint as the underlying pubsub mechanism.

Phoenix Not Required

We’re using Phoenix as the pubsub for our subscriptions in this
chapter because it’s a powerful system and easy to get started
with. Absinthe’s support for subscriptions is flexible enough to be
used outside of WebSockets (or even the browser); we’ll cover some
ideas in later chapters.

Speaking of the Phoenix endpoint, we need to add a single line to its definition
to provide a few extra callbacks that Absinthe expects:

06-chp.subscriptions/1-start/lib/plate_slate_web/endpoint.ex
defmodule PlateSlateWeb.Endpoint do

use Phoenix.Endpoint, otp_app: :plate_slate
use Absinthe.Phoenix.Endpoint➤

«Rest of file»
end

Here we see the first use of the Absinthe.Phoenix project. Much like Absinthe.Plug
provides a way to use Absinthe from within a Plug pipeline, Absinthe.Phoenix
provides a way to use Absinthe from within Phoenix-specific features like
channels.2

With the actual pubsub stuff set up, we just need to configure our socket.
Inside PlateSlateWeb.UserSocket, add:

06-chp.subscriptions/1-start/lib/plate_slate_web/channels/user_socket.ex
defmodule PlateSlateWeb.UserSocket do

use Phoenix.Socket
use Absinthe.Phoenix.Socket, schema: PlateSlateWeb.Schema➤

«Rest of file»
end

2. https://hexdocs.pm/phoenix/Phoenix.Channel.html

report erratum • discuss

Setting Up Subscriptions • 99

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/1-start/lib/plate_slate_web/endpoint.ex
http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/1-start/lib/plate_slate_web/channels/user_socket.ex
https://hexdocs.pm/phoenix/Phoenix.Channel.html
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Last but not least, we need to configure GraphiQL to use this socket:

06-chp.subscriptions/1-start/lib/plate_slate_web/router.ex
forward "/graphiql", Absinthe.Plug.GraphiQL,

schema: PlateSlateWeb.Schema,
interface: :simple,
socket: PlateSlateWeb.UserSocket➤

And with those four lines added, all the underlying mechanisms are wired
up. Let’s build an ordering system.

Event Modeling
Subscriptions push data in response to events or actions within your system,
so it isn’t enough to think of subscriptions as a purely API-related concern.
A system that can’t model change will have a very hard time communicating
about changes to subscribers. Designing our application, we want to arrive
at a model that lets us track the life cycle of an order as it is started, complet-
ed, and ultimately picked up by the customer. Along the way, each of these
changes should be transmitted immediately to employees tasked with making
the order, as well as to the hungry customer waiting for their food.

This part of the system is a bit more involved than the menu, so we’re going
to take it in pieces. The first piece just focuses on creating the orders and
building your first simple subscription to be able to see those orders in real
time. Then we’ll circle back and expand these abilities to cover the full life
cycle of the order.

Placing Orders
To jump-start this process, we’re going to use the Phoenix context generator
to rapidly build out the main files we need:

$ mix phx.gen.context Ordering Order orders \
customer_number:integer \
items:map \
ordered_at:utc_datetime \
state:string

This gets your core PlateSlate.Ordering.Order schema in place, and it provides a few
useful functions in the PlateSlate.Ordering context that you’ll expand on in a
moment. You might be thinking that we’ll need a join table connecting an order
to the menu items included in the order, but doing so leads to some trouble.
Menus change over time, but orders are historical. Future changes to the price
of a menu item shouldn’t retroactively affect the total of past orders, so directly
and permanently tying order and menu item rows is problematic.

Chapter 6. Going Live with Subscriptions • 100

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/1-start/lib/plate_slate_web/router.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Instead, we’re going to a use a different approach where a jsonb (PostgreSQL’s
binary JSON type3) column called items will store a snapshot of each item
taken at the time the order is placed. This way, each order record is a nicely
self-contained picture in time. If this were the real world, we’d be dealing with
other similar issues such as taxes, payment modeling, and a host of other
concerns. The point isn’t to address every scenario, but just to show how we
can easily use different underlying data approaches within our API.

The orders migration itself needs a few changes so that some database defaults
are set correctly:

06-chp.subscriptions/2-ordering/priv/repo/migrations/20170826185436_create_orders.exs
defmodule PlateSlate.Repo.Migrations.CreateOrders do

use Ecto.Migration

def change do
create table(:orders) do
add :customer_number, :serial
add :items, :map
add :ordered_at, :utc_datetime, null: false, default: fragment("NOW()")
add :state, :string, null: false, default: "created"

timestamps()
end

end
end

The customer_number column will autogenerate by default, although if the store
has a specific set of numbers it wants to use, it’ll be able to override this when
it creates the order.

Head over to your new Ordering.Order module to update the fields and changeset
function:

06-chp.subscriptions/2-ordering/lib/plate_slate/ordering/order.ex
defmodule PlateSlate.Ordering.Order do

use Ecto.Schema
import Ecto.Changeset
alias PlateSlate.Ordering.Order

schema "orders" do
field :customer_number, :integer, read_after_writes: true
field :ordered_at, :utc_datetime, read_after_writes: true
field :state, :string, read_after_writes: true

embeds_many :items, PlateSlate.Ordering.Item

timestamps()
end

3. https://www.postgresql.org/docs/9.4/static/datatype-json.html

report erratum • discuss

Event Modeling • 101

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/2-ordering/priv/repo/migrations/20170826185436_create_orders.exs
http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/2-ordering/lib/plate_slate/ordering/order.ex
https://www.postgresql.org/docs/9.4/static/datatype-json.html
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

@doc false
def changeset(%Order{} = order, attrs) do

order
|> cast(attrs, [:customer_number, :ordered_at, :state])
|> cast_embed(:items)

end
end

We’ll add PlateSlate.Ordering.Item, the embedded schema itself, in a separate file:

06-chp.subscriptions/2-ordering/lib/plate_slate/ordering/item.ex
defmodule PlateSlate.Ordering.Item do

use Ecto.Schema
import Ecto.Changeset

embedded_schema do
field :price, :decimal
field :name, :string
field :quantity, :integer

end

def changeset(item, attrs) do
item
|> cast(attrs, [:price, :name, :quantity])
|> validate_required([:price, :name, :quantity])

end
end

Before we build a test around ordering, you need to run migrations to add
orders to the database schema:

$ mix ecto.migrate
«Running migration»
[info] create table orders
[info] == Migrated in 0.0s

With the core modeling in place, you now need to modify the create_order context
function to actually build snapshots of the order. Let’s set up a test case to
capture the desired logic and then make the necessary changes to the create_
order/1 function. The Phoenix generator you used will have already set up a
test module, which you should essentially clear out in order to set up the
following test case:

06-chp.subscriptions/2-ordering/test/plate_slate/ordering/ordering_test.exs
defmodule PlateSlate.OrderingTest do

use PlateSlate.DataCase, async: true

alias PlateSlate.Ordering

setup do
PlateSlate.Seeds.run()

end

Chapter 6. Going Live with Subscriptions • 102

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/2-ordering/lib/plate_slate/ordering/item.ex
http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/2-ordering/test/plate_slate/ordering/ordering_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

describe "orders" do
alias PlateSlate.Ordering.Order

test "create_order/1 with valid data creates a order" do
chai = Repo.get_by!(PlateSlate.Menu.Item, name: "Masala Chai")
fries = Repo.get_by!(PlateSlate.Menu.Item, name: "French Fries")

attrs = %{➤

ordered_at: "2010-04-17 14:00:00.000000Z",➤

state: "created",➤

items: [➤

%{menu_item_id: chai.id, quantity: 1},➤

%{menu_item_id: fries.id, quantity: 2},➤

]➤

}➤
➤

assert {:ok, %Order{} = order} = Ordering.create_order(attrs)➤

assert Enum.map(order.items,➤

&Map.take(&1, [:name, :quantity, :price])➤

) == [➤

%{name: "Masala Chai", quantity: 1, price: chai.price},➤

%{name: "French Fries", quantity: 2, price: fries.price},➤

]➤

assert order.state == "created"
end

end
end

The idea here is that we pass in the menu items’ IDs that the user wants to
order, and then the create_order/1 function itself looks up the price to compute
the total and build out the items snapshot.

From an implementation perspective, this is pretty straightforward:

06-chp.subscriptions/2-ordering/lib/plate_slate/ordering/ordering.ex
def create_order(attrs \\ %{}) do

attrs = Map.update(attrs, :items, [], &build_items/1)

%Order{}
|> Order.changeset(attrs)
|> Repo.insert()

end

defp build_items(items) do
for item <- items do

menu_item = PlateSlate.Menu.get_item!(item.menu_item_id)
%{name: menu_item.name, quantity: item.quantity, price: menu_item.price}

end
end

Now let’s run our test to see if everything works:

report erratum • discuss

Event Modeling • 103

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/2-ordering/lib/plate_slate/ordering/ordering.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

$ mix test test/plate_slate/ordering/ordering_test.exs
.

Finished in 0.09 seconds
1 test, 0 failures

While it doesn’t seem like much, the ordering schema with its state column goes
a long way toward supporting meaningful events. We can already talk about
placing orders, and the role column puts us in a great spot to track changes
to that state as the order progresses.

Building the Ordering API
The context function we just built provides a pretty good indicator of what
our GraphQL inputs should look like. We’re expecting a list of items that we
want to order, as well as an optional customer reference number. Notably,
the items don’t contain any price info, as that should always be looked up
from the menu system (to make sure clients aren’t doing anything funny with
the prices). Add the following field to your mutation object:

06-chp.subscriptions/3-orderingapi/lib/plate_slate_web/schema.ex
import_types __MODULE__.OrderingTypes

«Other schema content»
mutation do

field :place_order, :order_result do
arg :input, non_null(:place_order_input)
resolve &Resolvers.Ordering.place_order/3

end

«other types»
end

This field relies on types sourced via import_types/1 from a separate PlateSlate-
Web.Schema.OrderingTypes module. We’ll create the module, filling out all the
ordering-related types that we’ll need:

06-chp.subscriptions/3-orderingapi/lib/plate_slate_web/schema/ordering_types.ex
defmodule PlateSlateWeb.Schema.OrderingTypes do

use Absinthe.Schema.Notation

input_object :order_item_input do
field :menu_item_id, non_null(:id)
field :quantity, non_null(:integer)

end
input_object :place_order_input do

field :customer_number, :integer
field :items, non_null(list_of(non_null(:order_item_input)))

end

Chapter 6. Going Live with Subscriptions • 104

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/3-orderingapi/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/3-orderingapi/lib/plate_slate_web/schema/ordering_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

object :order_result do
field :order, :order
field :errors, list_of(:input_error)

end
object :order do

field :id, :id
field :customer_number, :integer
field :items, list_of(:order_item)
field :state, :string

end
object :order_item do

field :name, :string
field :quantity, :integer

end
end

Non-Null Lists

The non_null(list_of(non_null(:order_item_input))) type we set for the :items
field may seem a bit convoluted, but it makes sense when you
break it down.

The outermost non_null indicates that the client can’t leave out the
:items field or make it null. The list_of just tells us that the value will
be a list, and then the innermost non_null just tells the client that
none of the items in the list can themselves be null.

Last but not least, we have our resolver, which—until we get to handling
authentication concerns in Chapter 8, Securing with Authentication
and Authorization, on page 139—has very little to do outside of managing errors.

06-chp.subscriptions/3-orderingapi/lib/plate_slate_web/resolvers/ordering.ex
defmodule PlateSlateWeb.Resolvers.Ordering do

alias PlateSlate.Ordering

def place_order(_, %{input: place_order_input}, _) do
case Ordering.create_order(place_order_input) do
{:ok, order} ->

{:ok, %{order: order}}
{:error, changeset} ->

{:ok, %{errors: transform_errors(changeset)}}
end

end
defp transform_errors(changeset) do

changeset
|> Ecto.Changeset.traverse_errors(&format_error/1)
|> Enum.map(fn
{key, value} ->

%{key: key, message: value}
end)

end

report erratum • discuss

Event Modeling • 105

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/3-orderingapi/lib/plate_slate_web/resolvers/ordering.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

@spec format_error(Ecto.Changeset.error) :: String.t
defp format_error({msg, opts}) do

Enum.reduce(opts, msg, fn {key, value}, acc ->
String.replace(acc, "%{#{key}}", to_string(value))

end)
end

end

For the moment, we’ve just copied and pasted the error formatting logic that
we put together in Errors as Data, on page 91. In the next chapter, we’ll look
at how we can use middleware to improve code reuse for resolvers (in a way
that’s even better than an Elixir use or import).

Let’s pop open the GraphiQL user interface to play with our API a bit. First,
start your server:

$ mix phx.server
[info] Running PlateSlateWeb.Endpoint with Cowboy using http://0.0.0.0:4000

Now, browse to http://localhost:4000/graphiql.

We’re going to run a quick query so that we can figure out some menu item
IDs. Here’s the query we’ll use:

{
menuItems {

id
name

}
}

Let’s paste that into the left-side panel in GraphiQL and press “play.” Here’s
what you should see:

Chapter 6. Going Live with Subscriptions • 106

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’ll pick two of those IDs and use them in the following mutation:

mutation ($input: PlaceOrderInput!) {
placeOrder(input: $input) {

errors { message }
order { id state }

}
}

Use Variables!

If you need to use values from a query in a subsequent mutation,
copy and paste those values into the variables part of GraphiQL,
and then reference those variables within your mutation document.

We used variables to define the inputs to the mutation, so we click on the
“Query Variables” panel header at the bottom left of the GraphiQL interface
to open up the variable entry panel.

GraphiQL expects variable input to be given in JSON format, so we enter an
object that matches up with the structure of the :place_order_input type that we
defined in our schema earlier. We pick a customer number, 4, and provide
the two menu item IDs that we retrieved in our last query.

Once the variable values are ready to go, we press the “play” button to execute
the mutation and see the following in the result panel:

Congratulations, an order has been placed!

report erratum • discuss

Event Modeling • 107

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Submitting Subscriptions
Now that we can create orders, we’re at the perfect spot to introduce the first
basic subscription that will support pushing these orders as they’re created
out to subscribed clients. You’ll first need to define a subscription field in
your schema, and then you’ll also need a way to actually trigger this subscrip-
tion when the :place_order mutation runs.

06-chp.subscriptions/4-publish/lib/plate_slate_web/schema.ex
subscription do

field :new_order, :order do

config fn _args, _info ->
{:ok, topic: "*"}

end
end

end

For the most part, this is a pretty ordinary-looking field. We’ve got another
top-level object, subscription, to house our subscription fields, and then the
:new_order, which will return the :order object we’re already familiar with. The
fact that it returns a regular :order object is crucial, because this means that
all the work we have done to support the output of the mutation can be reused
immediately for real-time data.

What’s new, however, is the config macro, and it’s one of a couple macros that
are specific to setting up subscriptions. The job of the config macro is to help us
determine which clients who have asked for a given subscription field should
receive data by configuring a topic. We’ll talk more later about constructing
topics, but the main thing to know is that topics are scoped to the field they’re
on, and they have to be a string. We’re just going to use "*" to indicate that we
care about all orders (but there’s nothing special about "*" itself).

Set Up and Return Error

The config function can also return {:error, reason}, which prevents
the subscription from being created.

Let’s see if we can subscribe with GraphiQL. First, let’s make sure it’s running
again, but this time, inside an IEx session (you’ll see why shortly):

$ iex -S mix phx.server
[info] Running PlateSlateWeb.Endpoint with Cowboy using http://0.0.0.0:4000

Then, browse to http://localhost:4000/graphiql and enter the following in the left-
side panel (you can close the “Query Variables” panel if you have it open):

Chapter 6. Going Live with Subscriptions • 108

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

subscription {
newOrder {

customerNumber
items { name quantity}

}
}

When you hit “play,” instead of getting a result, you’ll get a message saying,
"Your subscription data will appear here after server publication!":

What’s happening here is that although the server has accepted the subscrip-
tion document, the server is waiting on some kind of event that will trigger
execution of the document and distribution of the result. Specifically, it’s
waiting for an event that targets the field of our subscription newOrder and the
topic associated with this specific document "*".

The most direct way to make this trigger happen is with the Absinthe.Subscrip-
tion.publish/3 function, which gives us manual control of the publishing mecha-
nism. If you go into the IEx session in your console, you can trigger the sub-
scription you just created in GraphiQL by running:

iex> order = PlateSlate.Ordering.Order |> PlateSlate.Repo.all |> List.last
«%PlateSlate.Ordering.Order{} displayed»
iex> Absinthe.Subscription.publish(

PlateSlateWeb.Endpoint,
order,
new_order: "*"

)
:ok

If you look back to your GraphiQL page, you should see a result as shown in
the figure on page 110.

The arguments to the publish/3 function are the module you’re using as the
pubsub, the value that you’re broadcasting, and the field: topic pairs at which

report erratum • discuss

Submitting Subscriptions • 109

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

to broadcast the value. Concretely then, the function call you typed in IEx
says to broadcast the last %Order{} struct to all clients subscribed to the
:new_order field via the "*" topic.

You may have noticed when you set up the subscription field that you didn’t
specify a resolver, and this is why. Unlike a root query or root mutation resolver,
which generally starts with no root value and has to start from scratch, the root
value of a subscription document is the value that is passed to publish/3. You can
see this for yourself if you add just an inspect resolver to the subscription field:

06-chp.subscriptions/4-publish/lib/plate_slate_web/schema.ex
subscription do

field :new_order, :order do

config fn _args, _info ->
{:ok, topic: "*"}

end

resolve fn root, _, _ ->➤

IO.inspect(root)➤

{:ok, root}➤

end➤

end
end

If you re-run the Absinthe.Subscription.publish/3 call in your IEx session, you will
see printed into console the value you are broadcasting, nested under the
:new_order key:

%Ordering.Order{
«Contents»

}

With this Absinthe.Subscription.publish/3 function at our disposal, it’s clear then
that one possibility for making our live interface is to put it inside the :place_order
mutation resolver so that instead of triggering subscriptions from IEx, we’ll
trigger subscriptions every time a new order is placed.

Chapter 6. Going Live with Subscriptions • 110

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

06-chp.subscriptions/4-publish/lib/plate_slate_web/resolvers/ordering.ex
def place_order(_, %{input: place_order_input}, _) do

case Ordering.create_order(place_order_input) do
{:ok, order} ->
Absinthe.Subscription.publish(PlateSlateWeb.Endpoint, order,➤

new_order: "*"➤

)➤

{:ok, %{order: order}}
{:error, changeset} ->
{:ok, %{errors: transform_errors(changeset)}}

end
end

You could have some fun with this:

• In one window, open GraphiQL and enter the subscription document.
• In another window, also go to GraphiQL and enter the mutation document.
• Press “play” in the mutation window.
• Watch real-time events show up in the subscription window!

Play around with changing what parts of the subscription document you ask
for, and play around with the values you put in the mutation document to
get a feel for how the two documents relate to one another.

Testing Subscriptions
Testing your API is important, and subscriptions are no exception. We’ve been
using helpers from the PlateSlate.ConnCase module in our test to ease building
HTTP-based integration tests; you’ll need a similar PlateSlate.SubscriptionCase
module for managing the subscription integration tests via channels. While
the ConnCase module gets generated by Phoenix when we first create the project,
the SubscriptionCase module we’ll need to make ourselves.

06-chp.subscriptions/4-publish/test/support/subscription_case.ex
defmodule PlateSlateWeb.SubscriptionCase do

@moduledoc """
This module defines the test case to be used by
subscription tests
"""

use ExUnit.CaseTemplate

using do
quote do

Import conveniences for testing with channels
use PlateSlateWeb.ChannelCase
use Absinthe.Phoenix.SubscriptionTest,

schema: PlateSlateWeb.Schema

report erratum • discuss

Testing Subscriptions • 111

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/lib/plate_slate_web/resolvers/ordering.ex
http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/test/support/subscription_case.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

setup do
PlateSlate.Seeds.run()

{:ok, socket} =
Phoenix.ChannelTest.connect(PlateSlateWeb.UserSocket, %{})

{:ok, socket} =
Absinthe.Phoenix.SubscriptionTest.join_absinthe(socket)

{:ok, socket: socket}
end

import unquote(__MODULE__), only: [menu_item: 1]
end

end

handy function for grabbing a fixture
def menu_item(name) do

PlateSlate.Repo.get_by!(PlateSlate.Menu.Item, name: name)
end

end

This module sets up the socket we’ll use in each of our test cases, and it also
gives us a convenient function for getting menu items.

As far as the test case itself goes, much of the setup here is exactly the same
as any other Phoenix channel test. Absinthe.Phoenix provides some helpers to
instantiate a socket process with the configuration you added to the UserSocket.

06-chp.subscriptions/4-publish/test/plate_slate_web/schema/subscription/new_order_test.exs
defmodule PlateSlateWeb.Schema.Subscription.NewOrderTest do

use PlateSlateWeb.SubscriptionCase

@subscription """
subscription {

newOrder {
customerNumber

}
}
"""
@mutation """
mutation ($input: PlaceOrderInput!) {

placeOrder(input: $input) { order { id } }
}
"""
test "new orders can be subscribed to", %{socket: socket} do

setup a subscription
ref = push_doc socket, @subscription
assert_reply ref, :ok, %{subscriptionId: subscription_id}

run a mutation to trigger the subscription
order_input = %{"customerNumber" => 24,

"items" => [%{"quantity" => 2, "menuItemId" => menu_item("Reuben").id}]
}

Chapter 6. Going Live with Subscriptions • 112

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/test/plate_slate_web/schema/subscription/new_order_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

ref = push_doc socket, @mutation, variables: %{"input" => order_input}
assert_reply ref, :ok, reply
assert %{data: %{"placeOrder" => %{"order" => %{"id" => _}}}} = reply

check to see if we got subscription data
expected = %{

result: %{data: %{"newOrder" => %{"customerNumber" => 24}}},
subscriptionId: subscription_id

}
assert_push "subscription:data", push
assert expected == push

end
end

If channels are pretty new to you, that’s okay. The essential thing to keep in
mind is that it’s a lot like testing a GenServer. You’ve got the test process
itself, which acts like the client, and you’ve got the socket process, which
operates just as it does when connected to by an external client. You can
push an event and params to the socket and then listen for a specific reply
to that event, much like a GenServer call. Each push is asynchronous, so it’s
important to make sure to wait for a reply after each push. The socket can
also send messages directly to the test process, which is what will happen
when we trigger an event.

Testing a socket, then, is just a matter of sending it the data we need to
configure our subscription, triggering a mutation, and then waiting for sub-
scription data to get pushed to the test process.

So the first thing we do is push a "doc" event to the socket along with the
parameters specifying our subscription document, and then we assert for
a reply from the socket that returns a subscriptionId. This subscriptionId is impor-
tant because a single socket can support many different subscriptions, and
the subscriptionId is used to keep track of what data push belongs to what
subscription.

The next thing we do is run a mutation to place an order. This operation is
actually pushed over the socket as well; sockets support all the different
operation types. While an explicit Absinthe.run would also work, it would
require that we explicitly pass in the pubsub configuration, whereas that
config is picked up automatically if the document is pushed through the
socket.

Finally, all we have to do is assert that the test process gets a message con-
taining the expected subscription data!

Let’s go ahead and run our test to make sure everything is working as
expected:

report erratum • discuss

Testing Subscriptions • 113

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

$ mix test test/plate_slate_web/schema/subscription/new_order_test.exs
«Debugging output»
.

Finished in 0.1 seconds
1 test, 0 failures

There we go! Not only did we get subscriptions working in GraphiQL, we were
able to treat it like any other part of our API and write a proper integration
test. Now that we have subscriptions working using a manual method, let’s
look at a mechanism that we can use to publish changes automatically as
they occur.

Subscription Triggers
In the previous section, we only used a single hard-coded topic value, but
when we start thinking about tracking the life cycle of a particular entity, we
need to pay a lot more attention to how we’re setting up our subscriptions
and how we’re triggering them. The challenge isn’t just keeping track of how
the topics are constructed; it can also be hard to make sense of where in your
code base publish/3 calls may be happening. We’re going to explore an alternative
approach to trigger mutations as we expand on the order-tracking capabilities
of the PlateSlate system.

Everything that has a beginning has an end, and for the hungry customer,
orders are fortunately no exception. We need to complete the life cycle of an
order by providing two mutations: one to indicate that it’s ready, and one to
indicate that it was picked up.

Fortunately, most of what we need to do this in our context and schema
already exists, so we can just jump directly to building out the relevant
mutation fields in the GraphQL schema and filling out each resolver.

06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
mutation do

field :ready_order, :order_result do
arg :id, non_null(:id)
resolve &Resolvers.Ordering.ready_order/3

end
field :complete_order, :order_result do

arg :id, non_null(:id)
resolve &Resolvers.Ordering.complete_order/3

end

«Other fields»
end

Chapter 6. Going Live with Subscriptions • 114

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Our :ready_order and :complete_order fields use new resolver functions from
PlateSlateWeb.Resolvers.Ordering; let’s add those:

06-chp.subscriptions/5-trigger/lib/plate_slate_web/resolvers/ordering.ex
def ready_order(_, %{id: id}, _) do

order = Ordering.get_order!(id)
with {:ok, order} <- Ordering.update_order(order, %{state: "ready"}) do

{:ok, %{order: order}}
else

{:error, changeset} ->
{:ok, %{errors: transform_errors(changeset)}}

end
end

def complete_order(_, %{id: id}, _) do
order = Ordering.get_order!(id)

with {:ok, order} <- Ordering.update_order(order, %{state: "complete"}) do
{:ok, %{order: order}}

else
{:error, changeset} ->
{:ok, %{errors: transform_errors(changeset)}}

end
end

So far, so good. This may start to feel pretty second nature at this point. If
you are concerned that the changeset error handling here is seeming kind
of redundant, hold on tight—that is covered in the very next chapter on
middleware.

Subscribing to these events is just a little bit different than before, because
now we’re trying to handle events for specific orders based on ID. When the
client is notified about new orders via a new_order subscription, we then want
to give them the ability to subscribe to future updates for each of those sub-
scriptions specifically.

We want to support a GraphQL document that looks like:

subscription {
updateOrder(id: "13") {

customerNumber
state

}
}

Notably, we want to use this one subscription field to get updates triggered
by both the :ready_order and :complete_order mutation fields. While it’s important
to represent the mutations as different fields, it’s often the case that you just
need a single subscription that lets you get all the state changes for a partic-
ular entity that you want to watch.

report erratum • discuss

Subscription Triggers • 115

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/5-trigger/lib/plate_slate_web/resolvers/ordering.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
subscription do

field :update_order, :order do
arg :id, non_null(:id)

config fn args, _info ->
{:ok, topic: args.id}

end
end

«Other fields»
end

The main difference is that we’re now doing something more dynamic in our
config function. Here we’re using the arguments provided to the field to generate
a topic that is specific to the ID of the order we care about.

Based on your previous experience with the Absinthe.Subscription.publish/3 function,
you might be able to figure out the function call you could put in each
mutation resolver to trigger this subscription field:

Absinthe.Subscription.publish(
PlateSlateWeb.Endpoint, order,
update_order: order.id

)

However, while we could use the publish/3 function here, we’re going to explore
a slightly different option. The issue with our approach thus far is that
although our schema contains the :place_order mutation and also the :new_order
subscription fields, there isn’t any indicator in the schema that these two
fields are connected in any way. Moreover, for subscription fields that are
triggered by several different mutations, the topic logic is similarly distributed
in a way that can make it difficult to keep track of.

This pattern of connecting mutation and subscription fields to one another
is so common that Absinthe considers it a first-class concept and supports
setting it as a trigger on subscription fields, avoiding the need to scatter publish/3
calls throughout your code base. Let’s look at how we can use the trigger macro
to connect the new subscription field to each mutation without touching our
resolvers:

06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
subscription do

field :update_order, :order do
arg :id, non_null(:id)

config fn args, _info ->
{:ok, topic: args.id}

end

Chapter 6. Going Live with Subscriptions • 116

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

trigger [:ready_order, :complete_order], topic: fn
%{order: order} -> [order.id]
_ -> []

end

resolve fn %{order: order}, _ , _ ->
{:ok, order}

end
end

«Other fields»
end

The trigger macro takes two arguments: a mutation field name (or list of names)
and a set of options that let you specify a topic function. This trigger topic
function receives the output of the mutation as an argument, and should
return a list of topics that are each used to find relevant subscriptions.

Let’s think through how this works.

Two new orders are created with IDs "1" and "2". The UI client will send in two
subscriptions. The first looks like this:

subscription {
updateOrder(id: "1") {

state
}

}

The second looks like this:

subscription {
updateOrder(id: "2") {

state
}

}

Even though they use the same field, each of these documents should only
get events that are for the particular order ID specified in the arguments. The
first document produces a topic of "1", and the second document produces a
topic of "2".

Now order "2" is marked by the kitchen as ready to be picked up. The ready_order
resolver returns {:ok, %{order: %Order{id: 2, ...}}}, and it’s that value in that tuple
that gets passed to the trigger function you’ve defined (where it’s matched by
the first pattern). This clause returns order.id, which, in the case of this specific
order, produces a result of 2. As we noted earlier, topics are always strings,
so Absinthe calls to_string/1 on whatever return, in this case producing "2".

report erratum • discuss

Subscription Triggers • 117

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We now have a value ("2") with which to look up subscriptions; when we do
so, we get just the second document.

Triggering Many Topics

Trigger topic functions can specify multiple topics by returning a
list: ["topic1", "topic2"].

What about the other case that shows up in the trigger topic function: _, _ ->
[]? Remember that the mutation resolver can return error information from
changesets. When this happens, we don’t want to push out anything because
the order wasn’t actually updated. Returning [] prevents any publication from
happening for this particular mutation, because we aren’t returning any
topics that we want to publish to.

What if the :ready_order and :complete_order mutation fields returned different
values? A given subscription field can have many different triggers defined on
it each with a different topic function. For example, suppose :ready_order returned
%{ready: order}, and :completed_order returned %{completed: order}. We could handle
this by doing:

trigger :ready_order, topic: fn
%{ready: order}, _ -> [order.id]
_, _ -> []

end
trigger :completed_order, topic: fn

%{completed: order}, _ -> [order.id]
_, _ -> []

end

Finally, you’ll see that we’re using a resolver here, whereas we didn’t need to
do so on the other subscription field. When we were calling publish/3 explicitly,
we were passing the bare order record directly to publish. Now, however, we’re
getting the full result of the mutation, which in the success case is %{order:
order}. The resolver can just pattern match on this to unwrap it.

Whether to use an explicit Absinthe.Subscription.publish/3 call or the trigger macro
will depend on the scenario. In general, however, it’s best to use triggers when
there’s a clear and sensible mapping of mutations to subscriptions because
it helps place this information in a clear and central location. Placing the
trigger topic functions next to the subscription topic function goes a long way
toward keeping track of how each operation connects to the other.

No feature would be complete without a test, so let’s encode this little narrative
in a test case:

Chapter 6. Going Live with Subscriptions • 118

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

06-chp.subscriptions/5-trigger/test/plate_slate_web/schema/subscription/update_order_test.exs
defmodule PlateSlateWeb.Schema.Subscription.UpdateOrderTest do

use PlateSlateWeb.SubscriptionCase

@subscription """
subscription ($id: ID!){

updateOrder(id: $id) { state }
}
"""
@mutation """
mutation ($id: ID!) {

readyOrder(id: $id) { errors { message } }
}
"""
test "subscribe to order updates", %{socket: socket} do

reuben = menu_item("Reuben")

{:ok, order1} = PlateSlate.Ordering.create_order(%{
customer_number: 123, items: [%{menu_item_id: reuben.id, quantity: 2}]

})
{:ok, order2} = PlateSlate.Ordering.create_order(%{

customer_number: 124, items: [%{menu_item_id: reuben.id, quantity: 1}]
})

ref = push_doc(socket, @subscription, variables: %{"id" => order1.id})
assert_reply ref, :ok, %{subscriptionId: _subscription_ref1}

ref = push_doc(socket, @subscription, variables: %{"id" => order2.id})
assert_reply ref, :ok, %{subscriptionId: subscription_ref2}

ref = push_doc(socket, @mutation, variables: %{"id" => order2.id})
assert_reply ref, :ok, reply

refute reply[:errors]
refute reply[:data]["readyOrder"]["errors"]

assert_push "subscription:data", push
expected = %{

result: %{data: %{"updateOrder" => %{"state" => "ready"}}},
subscriptionId: subscription_ref2

}
assert expected == push

end
end

This test case ultimately captures the story we’re going for. You’ve got two
distinct subscriptions, and then an update happens to just one of them; that’s
the one you get the update for, not any other. Let’s run the test:

$ mix test test/plate_slate_web/schema/subscription/update_order_test.exs
.

Finished in 0.4 seconds
1 test, 0 failures

report erratum • discuss

Subscription Triggers • 119

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/5-trigger/test/plate_slate_web/schema/subscription/update_order_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

When you look back over the code in this chapter, you can see that nearly
all of it just has to do with building out orders. At the end of the day, GraphQL
subscriptions end up being rather simple, because with GraphQL, they’re
just another part of your normal API. The GraphQL type system binds each
of these parts of the API together, so that all the work you do to support
ordinary queries and mutations can simply get referenced from subscriptions.

Moving On
Although it’s been a relatively simple system that we’ve built here, we’ve
successfully built a basic menu and ordering application that provides flexible
querying and near real-time data capabilities. More importantly, you learned
about the significance of meaningful events in a system that supports sub-
scriptions; GraphQL is able to naturally expose those events in a way that’s
in harmony with the way query and mutation operations are handled.

Here are a couple of ways to play around with subscriptions further:

1. Refactor the :place_order subscription to use the trigger macro.
2. Open GraphiQL in multiple browser windows and play around with sub-

scribing to the same or different fields. Trigger values in your console and
see them show up in real time.

In Part II of this book, we’re going to cover some Absinthe-specific tools that
you’ll want to use as you take your application from the safe confines of your
laptop to the real world. They’ll help you control security, scalability, and
maintainability concerns that are key to any production system.

Chapter 6. Going Live with Subscriptions • 120

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Part II

Publish Your API

There’s building something that works, then there’s
building something that’s also solid, safe, and easy
to maintain. In this part, you’ll discover how to se-
cure, scale, and simplify a GraphQL schema for
long-term production use, turning your GraphQL
API into one that’s ready for the real world.

CHAPTER 7

Resolution Middleware
Absinthe is built to be highly flexible. Even months prior to our first-class
support for subscriptions, for example, people had put together their own
implementations based on the tooling and support for extensions built into
the framework. In this chapter, we’re going to look at one of the most important
of these mechanisms: middleware.

Even within the small API we’ve written over the last few chapters, we’ve seen
some common patterns emerge within some of our resolvers. As you look
forward toward error handling, authorization, and other concerns a real API
would have, you’ll want to become familiar with some tools that Absinthe
provides for encapsulating these ideas into easier-to-use patterns.

We’re going to start our exploration by looking at Absinthe middleware—a
tool you can use to make resolvers shorter and more elegant by being able to
reuse logic.

Our First Module
In Chapter 5, Making a Change with Mutations, on page 77, we added several
resolution functions that all copied an error-handling function we first
developed to power the :create_menu_item mutation field. This error-handling
function enabled the system to give users feedback about errors that bubble
up from the underlying database—from internal schema-validation prob-
lems like missing and badly formatted arguments to database constraint
violations.

Let’s take a look at that resolver again:

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

07-chp.middleware/1-start/lib/plate_slate_web/resolvers/menu.ex
def create_item(_, %{input: params}, _) do

case Menu.create_item(params) do
{:error, changeset} ->
{:ok, %{errors: transform_errors(changeset)}}

{:ok, menu_item} ->
{:ok, %{menu_item: menu_item}}

end
end

The output of the resolver is a :menu_item_result type, which we’ve defined as
part of our schema, and includes an :errors field:

07-chp.middleware/1-start/lib/plate_slate_web/schema/menu_types.ex
object :menu_item_result do

field :menu_item, :menu_item
field :errors, list_of(:input_error)

end

Our resolver builds the error portion of the result using a transform_errors/1
function that turns %Ecto.Changeset{} structs into :input_error objects:

07-chp.middleware/1-start/lib/plate_slate_web/resolvers/menu.ex
defp transform_errors(changeset) do

changeset
|> Ecto.Changeset.traverse_errors(&format_error/1)
|> Enum.map(fn

{key, value} ->
%{key: key, message: value}

end)
end

@spec format_error(Ecto.Changeset.error) :: String.t
defp format_error({msg, opts}) do

Enum.reduce(opts, msg, fn {key, value}, acc ->
String.replace(acc, "%{#{key}}", to_string(value))

end)
end

This worked great when it was just the :create_menu_item mutation, but when
we added more resolvers to power the ordering system, we just copied and
pasted the same code into that resolver too. Clearly this isn’t the approach
we would want to take as the API expands. One option for cleaning this up
is to just extract the transform_errors/1 function into its own module, which we
could import into both resolvers.

If we take a step back, however, we can look at this problem a different way.
We got to this point because functions within our Menu and Ordering contexts
end up returning {:error, %Ecto.Changeset{}} when validations fail, and Absinthe

Chapter 7. Resolution Middleware • 124

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/1-start/lib/plate_slate_web/resolvers/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/1-start/lib/plate_slate_web/schema/menu_types.ex
http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/1-start/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

doesn’t really know what to do with a changeset. We might wonder, though,
how Absinthe knows what to do with the existing {:ok, value} or {:error, error}
tuples we’ve been using. If we knew what handled those tuples, we might be
able to find a way to have Absinthe handle changesets, too.

Our first clue is to look closely at how the resolve macro is implemented:

defmacro resolve(function_ast) do
quote do

middleware Absinthe.Resolution, unquote(function_ast)
end

end

When you do something like this:

resolve &Resolvers.Menu.menu_items/3

It expands to this in your schema:

middleware Absinthe.Resolution, &Resolvers.Menu.menu_items/3

This Absinthe.Resolution middleware has been the driving force behind how our
resolvers have operated this whole time, building the arguments to our
resolvers, calling them, and then interpreting the result we’ve returned.
However, we know more about our application than Absinthe does, so by
building our own middleware, we can inform Absinthe about how to handle
data that is more suited to our specific needs.

It’s time to upgrade our app by building our first middleware module.

If we want to let Absinthe know how to handle changeset errors, we’re going
to need to build a middleware module to do so. Let’s start by ripping the error
transformation logic out of our resolver modules and putting it inside a new
module that will serve as the base of our middleware.

07-chp.middleware/2-module/lib/plate_slate_web/schema/middleware/changeset_errors.ex
defmodule PlateSlateWeb.Schema.Middleware.ChangesetErrors do

@behaviour Absinthe.Middleware

def call(res, _) do
«to be completed»

end

defp transform_errors(changeset) do
changeset
|> Ecto.Changeset.traverse_errors(&format_error/1)
|> Enum.map(fn
{key, value} ->

%{key: key, message: value}
end)

end

report erratum • discuss

Our First Module • 125

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/2-module/lib/plate_slate_web/schema/middleware/changeset_errors.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

defp format_error({msg, opts}) do
Enum.reduce(opts, msg, fn {key, value}, acc ->
String.replace(acc, "%{#{key}}", to_string(value))

end)
end

end

So far, it’s almost exactly what we had before, although we’re also indicating
that this module implements the Absinthe.Middleware behaviour. Modules that
implement this behaviour are required to define a call/2 function that takes
an %Absinthe.Resolution{} struct as well as some optional configuration. The
resolution struct is packed with information about the field that’s being
resolved, including the results or errors that have been returned. We’ll get to
the middleware configuration in a bit; for the moment, we can ignore it.

Similarities to Plug

The %Absinthe.Resolution{} struct plays a role similar to the %Plug.Conn{}
struct. Each gets passed through a sequence of functions that can
transform it for some purpose and return it at the end.

The overall approach we’re going to take with this call function is to look
inside the resolution struct to see if we have a changeset error and, if we do,
turn it into the structured error data we’ve been using.

07-chp.middleware/2-module/lib/plate_slate_web/schema/middleware/changeset_errors.ex
def call(res, _) do

«to be completed»
with %{errors: [%Ecto.Changeset{} = changeset]} <- res do

%{res |
value: %{errors: transform_errors(changeset)},
errors: [],

}
end

end

Here we’re using the with pattern to check for this exact scenario. If this pattern
doesn’t match, the call/2 will just return the resolution struct unchanged.

This code block introduces us to two of the most significant keys inside reso-
lution structs: :value and :errors. The :value key holds the value that will ultimately
get returned for the field, and is used as the parent for any subsequent child
fields. The :errors key is ultimately combined with errors from every other field
and is used to populate the top-level errors in a GraphQL result.

When you return {:ok, value} from within a resolver function, the value is placed
under the :value key of the %Absinthe.Resolution{} struct. If you return {:error,

Chapter 7. Resolution Middleware • 126

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/2-module/lib/plate_slate_web/schema/middleware/changeset_errors.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

error}, the error value is added to a list under the :errors key of the resolution
struct.

Putting this knowledge together then, we can grasp the full picture of what
our call/2 function is doing. We use the with macro to check for any changeset
errors that would have been put there by a resolver returning {:error, changeset}.
If we find one, we set the :value key to a map holding the transformed errors.
We also clear out the :errors key, because we don’t want any of this to bubble
up to the top level.

Now that we have this middleware, we’re going to look at how to place this
on the schema so that it’s used during resolution.

Applying Middleware
When it comes to applying middleware, we’ve got two different approaches
available to us. Sometimes you have middleware that you want to apply to
very specific fields, or even just one field. A logout mutation, for example, might
use middleware to mutate the context, removing the current user.

Other times, you want to ensure that a particular middleware is always applied
to every field in a certain object, or every field that has a particular name and
return type. This is critical for something like authorization, where you want
to protect against a programmer forgetting to specify that a field should be
secured.

Absinthe provides two main approaches to handle these types of scenarios,
which we’ll examine in turn.

Macro Approach
When you have specific fields on which you want to place middleware, you’ll
want to reach for the middleware/2 macro. As we hinted at earlier, you’ve already
been using this macro indirectly via the resolve/1 macro. To recap how it works:

defmacro resolve(function_ast) do
quote do

middleware Absinthe.Resolution, unquote(function_ast)
end

end

All we’ve been doing with resolve is placing a single piece of middleware on our
field, Absinthe.Resolution, and giving it the function we want to execute. With this
piece of knowledge, we’re ready to place our newly minted ChangesetErrors mid-
dleware on the :create_menu_item field.

report erratum • discuss

Applying Middleware • 127

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

07-chp.middleware/3-macro/lib/plate_slate_web/schema.ex
alias PlateSlateWeb.Schema.Middleware
«Other schema content»
mutation do

«Other mutation fields»
field :create_menu_item, :menu_item_result do

arg :input, non_null(:menu_item_input)
resolve &Resolvers.Menu.create_item/3
middleware Middleware.ChangesetErrors➤

end

end

Notice how we’ve placed it after the resolve/1 call. When it comes time to execute
the :create_menu_item field, Absinthe goes through each piece of middleware in
order. We want our ChangesetErrors code to process errors that happen during
resolution, so we need to place it after the resolve call. If we had it prior, there
would never be any errors to transform yet!

You can have as many middleware/1,2 calls on a field as you like, and a few dif-
ferent varieties are supported. In addition to the module-based calls you’ve
seen, you can also do inline functions, refer to specific remote functions, or
even refer to local functions. You can also provide a configuration value that
will be passed as the second argument during all middleware call/2 invocations.

With this logic extracted into middleware now, we can drastically simplify our
:create_menu_item resolver:

07-chp.middleware/3-macro/lib/plate_slate_web/resolvers/menu.ex
def create_item(_, %{input: params}, _) do

with {:ok, item} <- Menu.create_item(params) do
{:ok, %{menu_item: item}}

end
end

No longer do we need to worry about the error case at all, much less worry
about transforming errors.

Running the tests confirms that we are still getting the right results back,
even in the error case.

$mix test test/plate_slate_web/schema/mutation/create_menu_item_test.exs
..

Finished in 0.2 seconds
2 tests, 0 failures

We’ve taught Absinthe how to handle changesets!

Chapter 7. Resolution Middleware • 128

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/3-macro/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/3-macro/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Differences from Plug

The way you add middleware to a field with the macro and the way each of these
functions work on a common struct may remind you a lot of how Pluga works. While
Plug was definitely an inspiration for this API, there is at least one major difference:
all Absinthe middleware is always run.

In Plug, if you halt the connection struct, no further plugs are executed. A consequence
of this is that it’s hard to use plugs to do stuff after your controller actions, because
controller actions will frequently send a result to the client, which halts the connection.
This is why Phoenix had to add action_fallback as a separate mechanism to do what
we’re doing here with just a single underlying behavior.

a. https://hex.pm/packages/plug

Callback Approach
As we look at our schema as a whole at this point, we can clearly see some
other places where we want this error handling to happen. In fact, every field
in our mutation object so far can return Ecto changeset errors, and those
resolvers would be a lot cleaner if they could use this middleware instead. If
we took the macro-based approach we have covered so far, that might look
like this:

mutation do

field :ready_order, :order_result do
arg :id, non_null(:id)
resolve &Resolvers.Ordering.ready_order/3
middleware Middleware.ChangesetErrors➤

end
field :complete_order, :order_result do

arg :id, non_null(:id)
resolve &Resolvers.Ordering.complete_order/3
middleware Middleware.ChangesetErrors➤

end

field :place_order, :order_result do
arg :input, non_null(:place_order_input)
resolve &Resolvers.Ordering.place_order/3
middleware Middleware.ChangesetErrors➤

end

field :create_menu_item, :menu_item_result do
arg :input, non_null(:menu_item_input)
resolve &Resolvers.Menu.create_item/3
middleware Middleware.ChangesetErrors➤

end
end

report erratum • discuss

Applying Middleware • 129

https://hex.pm/packages/plug
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Not only does this seem like unnecessary duplication of code, it’s also a bit of an
error-prone approach because as your schema grows, it could become easy to miss
a field. Even if you have tests to catch it (everyone always tests the error case, right?),
what you really want is a schema-wide rule that says something to the effect of, “All
fields on the mutation object should run this middleware after resolution.” Fortu-
nately, we have a way to do just that and more. Meet the middleware/3 callback:

07-chp.middleware/4-callback/lib/plate_slate_web/schema.ex
defmodule PlateSlateWeb.Schema do

use Absinthe.Schema

alias PlateSlateWeb.Resolvers
alias PlateSlateWeb.Schema.Middleware

def middleware(middleware, _field, _object) do
middleware

end

When you use Absinthe.Schema in your schema module, it injects a middleware/3
function that looks just like the previous one, which you can override if you
want to do some dynamic logic. This function is called for every field in the
schema, passing the list of middleware already configured for the field—set
using the resolve/1 macro or a middleware/1,2 macro call elsewhere in the
schema—as well as the actual field and object structs themselves.

We took a look at these %Absinthe.Type.Field{} and %Absinthe.Type.Object{} structs
back at the very beginning, in Chapter 2, Building a Schema, on page 15. If
you remember, they both have an :identifier key that’s set when the field and
object are defined in our schema. Let’s take a closer look at what’s going on
here. We’ll modify the function and insert a bit of inspection code, and then
run a simple query against our API:

def middleware(middleware, field, object) do
IO.inspect [

object: object.identifier,
field: field.identifier,

]
middleware

end

If we compile our program with iex -S mix and then run this:

iex(1)> Absinthe.run("""
{ search(matching: \"Reuben\") { name } }
""", PlateSlateWeb.Schema)
[object: :query, field: :menu_items]
[object: :query, field: :search]
[object: :menu_item, field: :added_on]
[object: :menu_item, field: :description]

Chapter 7. Resolution Middleware • 130

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/4-callback/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

[object: :menu_item, field: :id]
[object: :menu_item, field: :name]
[object: :menu_item, field: :price]
{:ok, %{data: %{"search" => [%{"name" => "Reuben"}]}}}

We get a lot of output! You also probably got even more output at compile
time. What’s going on here? If you run the query again, there’s no output at
all. What’s going on?

The middleware/3 callback is run on every field for an object whenever that object
is loaded from the schema. The compile-time output happens because
Absinthe does a lot of compile-time checking of your schema, which involves
loading every object out of it to make sure it’s valid.

Then when we run the GraphQL query, Absinthe has to load the root query
object and the menu item object out of the schema in order to execute the
document. What about the lack of output if you run the query again? In the
current version of Absinthe, there is some in-memory caching that happens
on loaded schema objects. If you run the same query twice, it’s just going to
re-use the in-memory cache for the second run, so no loading happens. In
that case, the middleware/3 callback doesn’t need to be run.

Back to our goal: we want to apply error-handling middleware on the mutation
object, but not elsewhere. With middleware/3, this becomes nice and easy!

07-chp.middleware/4-callback/lib/plate_slate_web/schema.ex
def middleware(middleware, _field, %{identifier: :mutation}) do

middleware ++ [Middleware.ChangesetErrors]
end
def middleware(middleware, _field, _object) do

middleware
end

We’ve got two middleware/3 clauses: one that pattern matches for an object with
the identifier :mutation, and another that is just a fallback. In the :mutation clause,
we’re taking whatever existing middleware is already specified on the field
like a resolver, and we’re appending our ChangesetErrors module to the end.

Much like when we had a sequence of middleware/1,2 calls in our schema earlier
in the chapter, the middleware placed in this list is executed in order. Remove
the middleware callback :create_menu_item field and re-run the tests, confirming
that our changeset handling is being applied correctly by our callback.

$mix test test/plate_slate_web/schema/mutation/create_menu_item_test.exs
..

Finished in 0.2 seconds
2 tests, 0 failures

report erratum • discuss

Applying Middleware • 131

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/4-callback/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We can also significantly improve the ordering resolver as well now. Here’s just
one particular resolver function by way of example:

07-chp.middleware/4-callback/lib/plate_slate_web/resolvers/ordering.ex
def ready_order(_, %{id: id}, _) do

order = Ordering.get_order!(id)
with {:ok, order} <- Ordering.update_order(order, %{state: "ready"}) do

{:ok, %{order: order}}
end

end

The middleware/3 callback is incredibly powerful. At the end of the day, all we
had to do was add a single function and a few lines of code to our schema in
order to educate Absinthe about how to handle changesets coming back from
our mutation resolvers, which gave us big wins in readability.

Setting Defaults
Now that we feel comfortable with defmiddleware, we’re in a good place to address
an important question: how do fields without specific resolvers actually resolve
anything? Throughout the entire book so far, we’ve had stuff in our schema
like this:

object :menu_item do
field :name, :string
... other fields

end

Despite the fact that the :name field has no obvious resolver, we nonetheless
can include it in a GraphQL query and we get a result. What we need to do
is look at what actually happens here because what you’ll find is not only a
feature you can use yourself, but more importantly, a tool you can customize
as necessary when the default behavior doesn’t suit the data you are work-
ing with.

As you might remember from Making a Query, on page 21, what happens
at this point is that the default resolution logic does something equivalent
to this:

field :name, :string do
resolve fn parent, _, _ ->

{:ok, Map.get(parent, :name)}
end

end

Chapter 7. Resolution Middleware • 132

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/4-callback/lib/plate_slate_web/resolvers/ordering.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Any time a def middleware callback returns an empty list of middleware for a
field, Absinthe adds the incredibly simple middleware spec [{Absinthe.Middle-
ware.MapGet, field.identifier}]. Here it is in full:

def call(%{source: source} = resolution, key) do
%{resolution | state: :resolved, value: Map.get(source, key)}

end

This is handy when the parent entity in question is a map with atom keys,
but it isn’t what we want in every scenario.

It’s increasingly common that an API will expose data from a variety of data
sources, only some of which may have a fully structured schema on hand
that will give you nice maps with atom keys. Whether you’re hitting a NoSQL
database or calling out to a third-party API for JSON data, you’re going to
eventually run into a situation where the data that you want to expose via
GraphQL has string keys or keys that aren’t quite what you want.

We can get some of this NoSQL experience without even changing databases,
as PostgreSQL has significantly expanded its NoSQL features, and now offers
a JSONB column type with which we can store a JSON blob. We’re going to add
a column to our items table that uses this JSONB type and in it we’ll store
allergy information about the menu items.

Start by creating the database migration:

$ mix ecto.gen.migration add_allergy_info_to_menu_item

Add the column in the migration file:

07-chp.middleware/5-default/priv/repo/migrations/20170828023859_add_allergy_info_to_menu_item.exs
defmodule PlateSlate.Repo.Migrations.AddAllergyInfoToMenuItem do

use Ecto.Migration

def change do
alter table(:items) do
add :allergy_info, :map

end
end

end

Then expose it in Elixir by adding the field in the schema module:

07-chp.middleware/5-default/lib/plate_slate/menu/item.ex
field :allergy_info, {:array, :map}

report erratum • discuss

Setting Defaults • 133

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/5-default/priv/repo/migrations/20170828023859_add_allergy_info_to_menu_item.exs
http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/5-default/lib/plate_slate/menu/item.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

That’s it as far as the underlying data schema is concerned. Let’s run the
database migration, and then add a menu item with allergy information:

$ mix ecto.migrate

In the book code for this chapter, we’ve added a new item, “Thai Salad,” that
contains some allergy information. If you don’t want to reset your database,
you can just copy and paste this into an iex -S mix session:

07-chp.middleware/5-default/dev/support/seeds.ex
alias PlateSlate.{Menu, Repo}
category = Repo.get_by(Menu.Category, name: "Sides")
%Menu.Item{

name: "Thai Salad",
price: 3.50,
category: category,
allergy_info: [

%{"allergen" => "Peanuts", "severity" => "Contains"},
%{"allergen" => "Shell Fish", "severity" => "Shared Equipment"},

]
} |> Repo.insert!

Otherwise, a mix ecto.reset will clear everything out and re-run the seeds. Now
that everything is here, let’s take a look at what the menu item actually
looks like:

iex> PlateSlate.Menu.Item |> PlateSlate.Repo.get_by(name: "Thai Salad")
%PlateSlate.Menu.Item{__meta__: #Ecto.Schema.Metadata<:loaded, "items">,
added_on: ~D[2017-08-27],
allergy_info: [%{"allergen" => "Peanuts", "severity" => "Contains"},
%{"allergen" => "Shell Fish", "severity" => "Shared Equipment"}],

category: #Ecto.Association.NotLoaded<association :category is not loaded>,
category_id: 2, description: nil, id: 9,
inserted_at: ~N[2017-08-28 02:39:37.300521], name: "Thai Salad",
price: #Decimal<3.5>,
tags: #Ecto.Association.NotLoaded<association :tags is not loaded>,
updated_at: ~N[2017-08-28 02:39:37.300525]}

As you can see, there is an allergy_info key in our Menu.Item struct now, and it
contains a list of maps. Each map describes a particular allergen, giving its
name and severity information. Some people only care if a particular allergen
is an ingredient in the dish, whereas others must avoid anything that shares
even preparation surfaces with that allergen.

Notice how the map on the allergy_info: key of the Thai salad is full of string
keys and not atom keys—for example, "allergen" instead of :allergen. All we told
Ecto is that the :allergy_info column is a :map, and since it can’t know anything
about its internal structure, it just gives us plain, deserialized JSON. Let’s
see how this messes up our default resolver, and what we can do to fix it.

Chapter 7. Resolution Middleware • 134

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/5-default/dev/support/seeds.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Modeling this in our Absinthe schema starts off pretty simply. We need to
add the allergy_info field to our menu_item object, and then we need to create a
new object to model the information found there:

07-chp.middleware/5-default/lib/plate_slate_web/schema/menu_types.ex
object :menu_item do

interfaces [:search_result]

field :id, :id
field :name, :string
field :description, :string
field :price, :decimal
field :added_on, :date
field :allergy_info, list_of(:allergy_info)➤

end

object :allergy_info do➤

field :allergen, :string➤

field :severity, :string➤

end➤

We run into trouble, though, if we actually try to query this information in
GraphiQL:

mix phx.server

{
menuItems(filter: {name: "Thai Salad"}) {

allergyInfo { allergen severity }
}

}

All of the allergen and severity fields came back null!

report erratum • discuss

Setting Defaults • 135

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/5-default/lib/plate_slate_web/schema/menu_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

What’s going on? We didn’t get any errors back from the server, and our code
certainly looks valid. If we think back to how the default resolution behavior
works, though, this makes sense. Our :allergen field, for example, is going to
do a Map.get(parent, :allergen) call on the map inside the JSONB column, but of
course there isn’t any such key there. :allergen is an atom, but all the keys in
that map are strings. We can make this work by doing this:

object :allergy_info do
field :allergen, :string do

resolve fn parent, _, _ ->
{:ok, Map.get(parent, "allergen")}

end
end
field :severity, :string do

resolve fn parent, _, _ ->
{:ok, Map.get(parent, "severity")}

end
end

end

This is a bit tedious and verbose. Really what we want to do is change the
default resolver for the fields defined on this object:

07-chp.middleware/5-default/lib/plate_slate_web/schema.ex
def middleware(middleware, field, %{identifier: :allergy_info} = object) do➤

new_middleware = {Absinthe.Middleware.MapGet, to_string(field.identifier)}➤

middleware➤

|> Absinthe.Schema.replace_default(new_middleware, field, object)➤

end➤

def middleware(middleware, _field, %{identifier: :mutation}) do
middleware ++ [Middleware.ChangesetErrors]

end
def middleware(middleware, _field, _object) do

middleware
end

We’ll add an additional function head for middleware/3 that pattern matches for
fields where the object definition’s identifier matches :allergy_info.

This new code sets up a new specification using the Absinthe.Middleware.MapGet
middleware, and passes as its option a stringified version of our field identifier.
The middleware will then use the string identifier (instead of an atom) to
retrieve the correct value from the map. With this new middleware definition,
we call the Absinthe.Schema.replace_default/4 function, which handles swapping it
in for the existing default in the list.

Chapter 7. Resolution Middleware • 136

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/07-chp.middleware/5-default/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We could just return [{Absinthe.Middleware.MapGet, to_string(field.identifier)}] from the
function and be done with it, but the replace_default/4 function is more future-
proof. This is both from the perspective of Absinthe itself, which may decide
to change its default somewhere down the line, and also from the perspective
of your own schema. In Chapter 9, Tuning Resolution, on page 167, we’ll add
some tracing middleware, and this function makes sure we don’t end up
ignoring that.

Now if we try our query in GraphiQL again:

We get the expected result!

Middleware is an enormously important tool for keeping your resolvers focused,
giving you an incredible amount of control over what happens when executing
a document. It’s also a great feature for third-party packages that want to
augment Absinthe’s resolution logic; the middleware/3 callback is a handy inte-
gration point.

Moving On
During this chapter, you’ve learned an important new skill: how to build and
use middleware that can modify the way fields are resolved during document
execution. You know how to configure middleware on an individual basis,
using the middleware/1,2 macros, and at the schema level, using middleware/3.
Armed with this knowledge and an understanding of the MapGet middleware
that’s used as Absinthe’s default resolution logic, you’re ready to build much
more interesting patterns in your Absinthe schemas.

report erratum • discuss

Moving On • 137

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

In the next chapter, we’re going to look at a critical use of middleware:
securing your application behind authentication and authorization checks.

Before we move on, however, give this challenge a shot:

1. Build some middleware that can be used to measure how long it takes to
resolve a field. It should print how long it took and the current path. Hint:
you may need to have the same middleware appear more than once in
the middleware list. Consult the Absinthe.Resolution module docs to see what
data is available to you in middleware.

2. Apply the middleware to a specific field in our schema using the middle-
ware/1,2 macro.

3. Apply the middleware to all the fields in the schema that are running
custom resolvers/middleware.

Once you’re feeling comfortable with the mechanics of building and applying
middleware, let’s move on to how to use that knowledge to secure our API.

Chapter 7. Resolution Middleware • 138

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

CHAPTER 8

Securing with Authentication
and Authorization

With some basic functionality squared away and Absinthe tools ready at hand,
we’re all set to take the API live. When any API goes live, even internally
within an organization, there is generally a need to secure portions of the API
behind authentication and authorization checks.

In this chapter, we’ll cover how to add these checks to an Absinthe schema,
continuing to build on the restaurant ordering system, PlateSlate. Along the
way, you’ll discover how to tailor mechanisms that you’re probably already
familiar with, like token-based authentication, to work within the greater
flexibility of a GraphQL API.

Let’s start by giving our hungry restaurant customers access to our system
to create orders.

Logging In
Online ordering is all the rage right now, as customers look to beat the lines
by placing an order online and then picking it up shortly afterward. The
(theoretical) mobile team has been hard at work on a mobile application that
customers can use to place orders from the comfort of their homes, so we
need to provide a way to do this securely.

So far, when we’ve been responding to API requests, we haven’t been concerned
with who is making those requests; we’ve been focused on how to deal with
the data itself. Both menu updates and the orders themselves have come
from within the restaurant, so we could just accept whatever it sent us. If
we’re going to accept orders from the customers themselves, however, not

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

only do we need to keep track of who has ordered what, but we also need to
give each customer the ability to view and subscribe to their orders (and no
one else’s).

Authentication
Tracking customers also entails tracking employees, because we need a way
to permit employees to carry out actions that are forbidden for customers,
like editing the menu or completing an order. In fact, most of the operations
in the system at the moment ought only to be carried out by employees.

The first step then is being able to identify whether someone is an employee
or a customer. From there, we’ll see how we can use this information to per-
form authentication and authorization checks within our schema.

Our goal is to support a simple mutation like the following:

mutation Login($email: String!, $password: String!) {
login(role: EMPLOYEE, email: $email, password: $password) {

token
}

}

This should return an API token valid for this particular employee if the
supplied email address and password are correct. The response from our API
should look something like this:

{
"data": {

"login": {
"token": "EMPLOYEE-TOKEN-HERE"

}
}

}

To do this, though, we need to make a few additions to our database and Ecto
schemas in order to have the data on hand. We’ll get those changes in, and
then we’ll build out the code necessary to integrate the data with our API.

There are many different ways to model users, but we don’t need something
particularly complicated for our use case. We’re going to use a single users
table that will hold the user’s name, email address, and password. We’ll also
have a role column to indicate whether they’re an employee or a customer.

Our first order of business is to create the schema and migration we need to
manage these users. We can use a Phoenix generator to get some of the basics
going:

Chapter 8. Securing with Authentication and Authorization • 140

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

$ mix phx.gen.schema Accounts.User users \
name:string \
email:string \
password:string \
role:string

Make a small change to the generated migration to add a unique index on
the user email and role:

08-chp.auth/1-start/priv/repo/migrations/20170828175714_create_users.exs
defmodule PlateSlate.Repo.Migrations.CreateUsers do

use Ecto.Migration

def change do
create table(:users) do
add :name, :string
add :email, :string
add :password, :string
add :role, :string

timestamps()
end

create unique_index(:users, [:email, :role])➤

end
end

There’s a useful package called :comeonin_ecto_password that we’re going to use
to hash the password for us. Let’s add it with a compatible hash algorithm
dependency to our mix.exs file:

08-chp.auth/1-start/mix.exs
defp deps do

[
{:comeonin_ecto_password, "~> 2.1"},➤

{:pbkdf2_elixir, "~> 0.12.0"},➤

«Other deps»
]

end

Here’s all we need to make a small tweak to the User schema to set that up:

08-chp.auth/1-start/lib/plate_slate/accounts/user.ex
schema "users" do

field :email, :string
field :name, :string
field :password, Comeonin.Ecto.Password➤

field :role, :string

timestamps()
end

report erratum • discuss

Logging In • 141

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/1-start/priv/repo/migrations/20170828175714_create_users.exs
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/1-start/mix.exs
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/1-start/lib/plate_slate/accounts/user.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Additionally, we’re going to put a couple of extra columns on the orders table
that we can use to relate a given order to the customer who ordered it.

$ mix ecto.gen.migration AddCustomerToOrders

08-chp.auth/1-start/priv/repo/migrations/20170828180804_add_customer_to_orders.exs
defmodule PlateSlate.Repo.Migrations.AddCustomerToOrders do

use Ecto.Migration

def change do
alter table(:orders) do
add :customer_id, references(:users)

end
end

end

After we run our migrations, we’ll be all set up:

$ mix ecto.migrate
Compiling 1 file (.ex)
Generated plate_slate app
[info] == Running Migrations.CreateUsers.change/0 forward
[info] create table users
[info] create index users_email_role_index
[info] == Migrated in 0.0s
[info] == Running Migrations.AddCustomerToOrders.change/0 forward
[info] == Migrated in 0.0s

The column we’ve added to the orders table needs a corresponding line in the
order schema module, and the addition of the :customer_id to the changeset
function’s cast list:

08-chp.auth/1-start/lib/plate_slate/ordering/order.ex
schema "orders" do

field :customer_id, :integer➤

«other schema fields»
end
def changeset(%Order{} = order, attrs) do

order
|> cast(attrs, [:customer_id, :customer_number, :ordered_at, :state])➤

|> cast_embed(:items)
end

We can use the new "users" table to build out a basic PlateSlate.Accounts module
and authenticate/3 function:

08-chp.auth/1-start/lib/plate_slate/accounts/accounts.ex
defmodule PlateSlate.Accounts do

@moduledoc """
The Accounts context.
"""

Chapter 8. Securing with Authentication and Authorization • 142

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/1-start/priv/repo/migrations/20170828180804_add_customer_to_orders.exs
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/1-start/lib/plate_slate/ordering/order.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/1-start/lib/plate_slate/accounts/accounts.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

import Ecto.Query, warn: false
alias PlateSlate.Repo
alias Comeonin.Ecto.Password

alias PlateSlate.Accounts.User

def authenticate(role, email, password) do
user = Repo.get_by(User, role: to_string(role), email: email)

with %{password: digest} <- user,
true <- Password.valid?(password, digest) do
{:ok, user}

else
_ -> :error

end
end

end

We’re using a pretty simple authentication mechanism here: just role, email,
and password. Our function looks up a customer by role and email address,
and then the password the customer supplies is compared against the stored
password. If the email belongs to a user, and if the password is valid, our
function here will return {:ok, user}. You can find a variety of authentication
and user management systems on Hex,1 and you may well find that one of
those suits your particular needs very well. The way you’d integrate this with
Absinthe will be almost exactly the same in each case.

Before we integrate authentication into PlateSlate’s API, fire up iex -S mix and
get a feel for using authenticate/3. Here’s an example of creating employee and
customer users and then successfully authenticating them:

iex(1)> alias PlateSlate.Accounts
iex(2)> %Accounts.User{} |>
Accounts.User.changeset(%{role: "employee", name: "Becca Wilson",

email: "foo@example.com", password: "abc123"}) |> PlateSlate.Repo.insert!
#=> %Accounts.User{...}

iex(3)> %Accounts.User{} |>
Accounts.User.changeset(%{role: "customer", name: "Joe Hubert",

email: "bar@example.com", password: "abc123"}) |> PlateSlate.Repo.insert!
#=> %Accounts.User{...}

iex(4)> Accounts.authenticate("employee", "foo@example.com", "abc123")
{:ok,
%Accounts.User{
email: "foo@example.com", id: 1, inserted_at: ~N[2017-08-28 18:14:15.785375],
name: "Becca Wilson",
password: "$pbkdf2-sha512$16...",
role: "employee", updated_at: ~N[2017-08-28 18:14:15.786666]}}

1. https://hex.pm

report erratum • discuss

Logging In • 143

https://hex.pm
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

If you try to log in with either an invalid email/password or with the wrong
role, you’ll get an :error atom as the result:

iex(5)> alias PlateSlate.Accounts
iex(6)> Accounts.authenticate("customer", "foo@example.com", "abc123")
:error
iex(7)> Accounts.authenticate("employee", "foo@example.com", "123")
:error
iex(8)> Accounts.authenticate("employee", "bad@example.com", "abc123")
:error

While simple, this user modeling accomplishes a lot. The role column lets us
distinguish employees from customers, and this makes it easy to write code
that handles both as we move forward.

Login API
With the underlying database work all set, the next task is to define the
mutation for your API. Head over to your Absinthe schema and add a :login
mutation field to the root mutation type:

08-chp.auth/2-login/lib/plate_slate_web/schema.ex
mutation do

field :login, :session do
arg :email, non_null(:string)
arg :password, non_null(:string)
arg :role, non_null(:role)
resolve &Resolvers.Accounts.login/3

end
«Other mutation fields»

end

The mutation requires an email address, password, and role, and it returns
a :session type. We’ll be creating a new type module to house this type and the
others like it:

08-chp.auth/2-login/lib/plate_slate_web/schema/accounts_types.ex
defmodule PlateSlateWeb.Schema.AccountsTypes do

use Absinthe.Schema.Notation

object :session do
field :token, :string
field :user, :user

end

enum :role do
value :employee
value :customer

end

Chapter 8. Securing with Authentication and Authorization • 144

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/2-login/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/2-login/lib/plate_slate_web/schema/accounts_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

interface :user do
field :email, :string
field :name, :string
resolve_type fn
%{role: "employee"}, _ -> :employee
%{role: "customer"}, _ -> :customer

end
end

object :employee do
interface :user
field :email, :string
field :name, :string

end

object :customer do
interface :user
field :email, :string
field :name, :string
field :orders, list_of(:order)

end
end

There are a couple of interesting types here. At the top, we’ve got the :session
object returned from the :login mutation, which contains an API token and a
user field. This user field is an interface, which you learned about back in
Chapter 4, Adding Flexibility, on page 59. Both employee and customer objects
have email and name fields. However, we still want to keep them as separate
objects because, as our API grows, there will be fields that only apply to one
but not the other. In a bit, we’ll be filling out the orders field on the customer,
but this field doesn’t make much sense on an employee.

The resolution function for the login field is Resolvers.Accounts.login/3. We’ll add
it in a new resolver module:

08-chp.auth/2-login/lib/plate_slate_web/resolvers/accounts.ex
defmodule PlateSlateWeb.Resolvers.Accounts do

alias PlateSlate.Accounts

def login(_, %{email: email, password: password, role: role}, _) do
case Accounts.authenticate(role, email, password) do
{:ok, user} ->

token = PlateSlateWeb.Authentication.sign(%{
role: role, id: user.id

})
{:ok, %{token: token, user: user}}

_ ->
{:error, "incorrect email or password"}

end
end

end

report erratum • discuss

Logging In • 145

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/2-login/lib/plate_slate_web/resolvers/accounts.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Here we’re using the Accounts.authenticate/3 function we built earlier, and if it’s
successful, creating a token using the PlateSlateWeb.Authentication module. This
module is really just a small wrapper about the token generation abilities we
get from Phoenix.Token.

08-chp.auth/2-login/lib/plate_slate_web/authentication.ex
defmodule PlateSlateWeb.Authentication do

@user_salt "user salt"

def sign(data) do
Phoenix.Token.sign(PlateSlateWeb.Endpoint, @user_salt, data)

end

def verify(token) do
Phoenix.Token.verify(PlateSlateWeb.Endpoint, @user_salt, token, [

max_age: 365 * 24 * 3600
])

end

end

The token encodes information about the type of session, as well as who the
session belongs to, by including the employee.id. We’ll need this information to
know what role (customers or employees) to use when we want to look up the
user record later.

Now we’re ready to write some basic tests to ensure our mutation is built and
behaves correctly. The first thing we’ll do is create a small helper module for
generating users so that we can have some on hand in this and any future tests:

08-chp.auth/3-context/test/support/factory.ex
defmodule Factory do

def create_user(role) do
int = :erlang.unique_integer([:positive, :monotonic])
params = %{

name: "Person #{int}",
email: "fake-#{int}@example.com",
password: "super-secret",
role: role

}

%PlateSlate.Accounts.User{}
|> PlateSlate.Accounts.User.changeset(params)
|> PlateSlate.Repo.insert!

end
end

With that out of the way, we can look at the login test itself:

08-chp.auth/2-login/test/plate_slate_web/schema/mutation/login_test.exs
defmodule PlateSlateWeb.Schema.Mutation.LoginEmployeeTest do

use PlateSlateWeb.ConnCase, async: true

Chapter 8. Securing with Authentication and Authorization • 146

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/2-login/lib/plate_slate_web/authentication.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/3-context/test/support/factory.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/2-login/test/plate_slate_web/schema/mutation/login_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

@query """
mutation ($email: String!) {

login(role: EMPLOYEE, email:$email,password:"super-secret") {
token
user { name }

}
}
"""
test "creating an employee session" do

user = Factory.create_user("employee")
response = post(build_conn(), "/api", %{

query: @query,
variables: %{"email" => user.email}

})

assert %{"data" => %{ "login" => %{
"token" => token,
"user" => user_data

}}} = json_response(response, 200)

assert %{"name" => user.name} == user_data
assert {:ok, %{role: :employee, id: user.id}} ==
PlateSlateWeb.Authentication.verify(token)

end
end

We use the employee’s information in our test to ensure that, given the correct
credentials, the correct token is returned from our :login mutation. Let’s run
the test:

$ mix test test/plate_slate_web/schema/mutation/login_test.exs
.

Finished in 0.1 seconds
1 test, 0 failures

We can also see this working in GraphiQL because of the user we created in
IEx earlier, so let’s give that a shot by starting the server:

mix phx.server

mutation {
login(role: CUSTOMER, email:"bar@example.com",password:"abc123") {

token
user { name __typename }

}
}

It worked! As shown in the figure on page 148, we got back an auth token and
some information about the employee we just authenticated. Now we just

report erratum • discuss

Logging In • 147

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

take that authentication token and…do what with it? Is it something that
should get passed to future GraphQL fields?

This is the next thing we need to figure out.

Using the Execution Context
Now that we have a way to identify users, we need to figure out how to inte-
grate this information with the processing of GraphQL requests so that fields
that need to be secured have access to the relevant data.

One option would be to just make each field resolution function responsible
for authenticating the user and have the token passed as normal arguments,
but this causes two problems. If we need this information in several fields,
we require the user to pass in the token in many places—not a very nice API
for clients. It wouldn’t be very nice for the server, either; it would need to look
up the same user in each field even though the information returned would
be the same each time.

The Absinthe feature that addresses this problem is called the execution
context. It’s a place where we can set values that will be available to all of our
resolvers.

Handily, the final argument passed to the resolver function is an Absinthe.Reso-
lution struct, which includes the context. Here’s a basic example of using a
context and how the context is provided to Absinthe:

defmodule ContextExample.Schema do
use Absinthe.Schema

query do
field :greeting, :string do
resolve fn _, _, %{context: context} ->

{:ok, "Welcome #{context.current_user.name}"}
end

end
end

end

Chapter 8. Securing with Authentication and Authorization • 148

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Our document
doc = "{ greeting }"

Our context
context = %{current_user: %{name: "Alicia"}}

Running Absinthe manually
Absinthe.run(doc, ContextExample.Schema, context: context)

If you paste this into iex -S mix, you’ll see this result:

{:ok, %{data: %{"greeting" => "Welcome Alicia"}}}

The context that you passed into the Absinthe.run/3 call is the same context you
accessed in the third argument to the resolution function of the greeting field.
After that, you’re just accessing the values you placed inside of it earlier.

Context Is Everywhere

Whatever we pass into the context is always made available as is
in the resolution functions. Importantly, the context is always
available in every field at every level, and it’s this property that
gives it its name: it’s the “context” in which execution is happening.

Our application code, however, does not explicitly call Absinthe.run/3 but instead
uses Absinthe.Plug, which executes the GraphQL documents that we receive
over HTTP. We need to make sure that the context is set up ahead of time so
that it has what it needs to execute documents.

Storing Auth Info in Context with a Plug
To recap the relationship between Absinthe and Plug, remember that we
placed an Absinthe.Plug in our router at the API path, which looks like this:

08-chp.auth/1-start/lib/plate_slate_web/router.ex
scope "/" do

pipe_through :api

forward "/api", Absinthe.Plug,➤

schema: PlateSlateWeb.Schema➤

forward "/graphiql", Absinthe.Plug.GraphiQL,
schema: PlateSlateWeb.Schema,
interface: :simple,
socket: PlateSlateWeb.UserSocket

end

We’ve got a root scope that pipes requests through the :api Phoenix router
pipeline, which is basically just a sequence of plugs that operate on the con-
nection. Within this scope, we’re just passing along the conn to one of the

report erratum • discuss

Using the Execution Context • 149

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/1-start/lib/plate_slate_web/router.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

two Absinthe.Plug plugs, which will run any query document sent to us with the
specified schema.

Thankfully, Absinthe.Plug knows how to extract certain values from the connec-
tion automatically for use in the context. All we need to do is write a plug that
inserts the appropriate values into the connection first.

Let’s build it! We’ll start by adding the reference to the new plug in our :api
pipeline:

08-chp.auth/3-context/lib/plate_slate_web/router.ex
pipeline :api do

plug :accepts, ["json"]
plug PlateSlateWeb.Context➤

end

We added the PlateSlateWeb.Context plug so that it will run prior to Absinthe.Plug
and give us a place to set up our context.

08-chp.auth/3-context/lib/plate_slate_web/context.ex
defmodule PlateSlateWeb.Context do

@behaviour Plug
import Plug.Conn

def init(opts), do: opts

def call(conn, _) do
context = build_context(conn)
IO.inspect [context: context]
Absinthe.Plug.put_options(conn, context: context)

end

defp build_context(conn) do
with ["Bearer " <> token] <- get_req_header(conn, "authorization"),
{:ok, data} <- PlateSlateWeb.Authentication.verify(token),
%{} = user <- get_user(data) do
%{current_user: user}

else
_ -> %{}

end
end

defp get_user(%{id: id, role: role}) do
PlateSlate.Accounts.lookup(role, id)

end
end

If you’re unfamiliar with the Plug framework, that’s okay; the core idea is
pretty straightforward. Let’s walk through it.

We have an init callback, which receives any options that get passed to our
module (but we’re not using any of those, so we just pass them through).

Chapter 8. Securing with Authentication and Authorization • 150

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/3-context/lib/plate_slate_web/router.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/3-context/lib/plate_slate_web/context.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The core functionality of the plug is the call/2 callback, which takes a %Plug.
Conn{} struct. Inside this struct is a private key, which is a place for libraries
like Absinthe to place values for later use. We use the call/2 function to return
another %Plug.Conn{} struct, with our current user helpfully placed behind a
context key in the private absinthe namespace. It turns out that this namespace
is exactly where Absinthe.Plug looks for a prebuilt context.

We get the user in the build_context/1 function by looking up the header to get the
Phoenix token sent with the request, and then using that token to find the
related user (whether they’re a customer or employee). If there is no "authorization"
header or if there is no user for a given API key, with will simply fall through to
its else clause, where we’ll return the context without a :current_user specified.

The Accounts.lookup/2 is just a little helper function we’re going to use to help
keep account-related responsibilities out of the plug itself, so it doesn’t need
to worry about implementation details.

08-chp.auth/3-context/lib/plate_slate/accounts/accounts.ex
def lookup(role, id) do

Repo.get_by(User, role: to_string(role), id: id)
end

With the context placed in the connection, Absinthe.Plug is properly set up to
pass this value along when it runs the document, and it will be available to
our resolvers. Note that we’ve got a little debugging going on with the IO.inspect
[context: context]. This gives us a cheap and easy way to look at what our context
is until we have something more real in place.

The final question is how to use this from within GraphiQL, because there isn’t
any place in the GraphiQL interface we’ve been using to configure headers. It’s
time to break out the advanced GraphiQL interface. Head over to your router
and remove the interface: :simple option on the Absinthe.Plug.Graphiql plug:

08-chp.auth/3-context/lib/plate_slate_web/router.ex
forward "/graphiql", Absinthe.Plug.GraphiQL,

schema: PlateSlateWeb.Schema,
socket: PlateSlateWeb.UserSocket

Now start your server (mix phx.server), browse to http://localhost:4000/graphiql,
and behold GraphiQL Workspace as shown in the figure on page 152.

There’s a lot more here! Let’s run the same mutation we did earlier:

This operates as it did before, but now we have the ability to configure
GraphiQL to use the token that was just returned as a header to authorize
future requests.

report erratum • discuss

Using the Execution Context • 151

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/3-context/lib/plate_slate/accounts/accounts.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/3-context/lib/plate_slate_web/router.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Select the token string value (without quotes) in the response box and copy
it. Click the Standard drop-down, select “OAuth 2 Bearer Token,” and paste
the token after Bearer.

After clicking OK, you should see that you’ve got a header configured in the
upper right-hand part of the GraphiQL Workspace.

Chapter 8. Securing with Authentication and Authorization • 152

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Let’s see if this header is being used to set our context correctly. Run a simple
GraphQL query like this:

{
menuItems { name }

}

In your console logs, you should see something like the following (we’ve cleaned
it up a bit here for readability):

[
context: %{

current_user: %PlateSlate.Accounts.User{
__meta__: #Ecto.Schema.Metadata<:loaded, "users">,
email: "bar@example.com",
id: 2,
inserted_at: ~N[2017-08-29 01:23:15.743144],
name: "Joe Hubert",
password: "$pbkdf2-sha512$160...",
role: "customer",
updated_at: ~N[2017-08-29 01:23:15.744546]

}
}

]

This means it worked! The essence of an authentication system is the ability
to verify that someone is who they say they are, and that’s exactly what we
have here. The next step is to sort out what exactly that person is permitted
to do, now that we know who they are.

Securing Fields
Now that we have a way to get the current user, we have what we need to
enforce authorization on particular fields: we can just check the context.
Having the current user also gives us the ability to retrieve associated records
in our resolvers, returning information specific to the user.

Inline Authorization
Before we let customers anywhere near this API, we need to put some
authorization checks between the current user and the variety of important
actions our API can perform. Just as we did before, the most direct way to
do this is to use the third argument to each resolver to pattern match for the
desired case.

Let’s start by securing the :create_menu_item resolver, as we really don’t want to
let customers run wild with that one.

report erratum • discuss

Securing Fields • 153

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

08-chp.auth/3-context/lib/plate_slate_web/resolvers/menu.ex
def create_item(_, %{input: params}, %{context: context}) do➤

case context do➤

%{current_user: %{role: "employee"}} ->➤

with {:ok, item} <- Menu.create_item(params) do
{:ok, %{menu_item: item}}

end
_ ->➤

{:error, "unauthorized"}➤

end➤

end

In the function head, we pattern match the context out of the resolution struct
in the third argument. Then we’re just wrapping the contents of the function
in a case expression, carrying on as normal if the context contains an
employee as the current user, or returning an error otherwise.

If we run our tests right now, we’ll get two errors!

$ mix test test/plate_slate_web/schema/mutation/create_menu_item_test.exs
Compiling 5 files (.ex)

... test output elided

Finished in 0.2 seconds
2 tests, 2 failures

This makes sense, of course, because we aren’t doing anything in our tests to
set up a context that might permit the creation of menu items. Let’s change
that. We just need to generate a user and put an "authorization" header on the conn.

08-chp.auth/3-context/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
test "createMenuItem field creates an item", %{category_id: category_id} do

menu_item = %{
"name" => "French Dip",
"description" => "Roast beef, caramelized onions, horseradish, ...",
"price" => "5.75",
"categoryId" => category_id,

}
user = Factory.create_user("employee")➤

conn = build_conn() |> auth_user(user)➤

conn = post conn, "/api",
query: @query,
variables: %{"menuItem" => menu_item}

assert json_response(conn, 200) == %{
"data" => %{

"createMenuItem" => %{
"errors" => nil,
"menuItem" => %{

"name" => menu_item["name"],
"description" => menu_item["description"],

Chapter 8. Securing with Authentication and Authorization • 154

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/3-context/lib/plate_slate_web/resolvers/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/3-context/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

"price" => menu_item["price"]
}

}
}

}
end

defp auth_user(conn, user) do➤

token = PlateSlateWeb.Authentication.sign(%{role: user.role, id: user.id})➤

put_req_header(conn, "authorization", "Bearer #{token}")➤

end➤

In essence, this is exactly what we did in GraphiQL. Fixing the next test is
easy too, as you can just reuse the auth_user helper function we’ve got there.
Consider extracting it to the ConnCase module for easy use in other tests.

While it’s good that we’ve fixed these test regressions, we really ought to also
add a test demonstrating what happens if a user is unauthorized.

08-chp.auth/3-context/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
test "must be authorized as an employee to do menu item creation",
%{category_id: category_id} do

menu_item = %{
"name" => "Reuben",
"description" => "Roast beef, caramelized onions, horseradish, ...",
"price" => "5.75",
"categoryId" => category_id,

}
user = Factory.create_user("customer")
conn = build_conn() |> auth_user(user)
conn = post conn, "/api",

query: @query,
variables: %{"menuItem" => menu_item}

assert json_response(conn, 200) == %{➤

"data" => %{"createMenuItem" => nil},➤

"errors" => [%{➤

"locations" => [%{"column" => 0, "line" => 2}],➤

"message" => "unauthorized",➤

"path" => ["createMenuItem"]➤

}]➤

}➤

end

Now that you know resolvers can check the current user for authorization,
you might be asking yourself if you’re going to be forced to add authorization
checks to every single field that you want to secure. This is going to get pretty
tedious if you have to do that, for there’s already a handful of top-level
resolvers you need to secure. Fortunately, there’s a tool you can apply here
to extract common logic: middleware!

report erratum • discuss

Securing Fields • 155

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/3-context/test/plate_slate_web/schema/mutation/create_menu_item_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Authorization Middleware
Adding authorization checks inside all of our resolvers is going to produce a
lot of clutter, so let’s build some middleware to handle this problem once and
for all.

As you recall, we have two choices for how to apply middleware: the middleware/2
macro for configuring individual fields, and the middleware/3 callback function for
taking a pattern-based approach. Different fields each have slightly different
authorization conditions, so we’re going to use the middleware/2 macro to annotate
them individually. Using this middleware should look something like this:

08-chp.auth/4-middleware/lib/plate_slate_web/schema.ex
field :create_menu_item, :menu_item_result do

arg :input, non_null(:menu_item_input)
middleware Middleware.Authorize, "employee"➤

resolve &Resolvers.Menu.create_item/3
end

Then in the resolver, we can just go back to how it was before we had the
authorization check:

08-chp.auth/4-middleware/lib/plate_slate_web/resolvers/menu.ex
def create_item(_, %{input: params}, _) do

with {:ok, item} <- Menu.create_item(params) do
{:ok, %{menu_item: item}}

end
end

Note that we no longer need to check the type of the current_user in the resolution
function or handle the possibility that there is no current_user at all. The mid-
dleware will handle all of this for us!

Let’s take a look:

08-chp.auth/4-middleware/lib/plate_slate_web/schema/middleware/authorize.ex
defmodule PlateSlateWeb.Schema.Middleware.Authorize doLine 1

@behaviour Absinthe.Middleware-

-

def call(resolution, role) do-

with %{current_user: current_user} <- resolution.context,5

true <- correct_role?(current_user, role) do-

resolution-

else-

_ ->-

resolution10

|> Absinthe.Resolution.put_result({:error, "unauthorized"})-

end-

end-

-

Chapter 8. Securing with Authentication and Authorization • 156

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/4-middleware/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/4-middleware/lib/plate_slate_web/resolvers/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/4-middleware/lib/plate_slate_web/schema/middleware/authorize.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

defp correct_role?(%{}, :any), do: true15

defp correct_role?(%{role: role}, role), do: true-

defp correct_role?(_, _), do: false-

end-

By specifying @behaviour Absinthe.Middleware, the compiler will make sure that we
provide a call/2 callback function. The function takes an %Absinthe.Resolution{}
struct and will also need to return one, as described in the previous chapter.

The %Absinthe.Resolution{} struct should feel familiar; it’s the same value passed
as the last argument to our resolution functions, and it contains our :context
so that it’s accessible to resolvers and middleware. It’s useful in resolvers—in
a read-only sense—but middleware can manipulate resolution structs to
enhance how documents are executed.

The call/2 function also takes a second argument, which is whatever additional
value was supplied to the middleware/2 call in our schema. In the previous :create_
menu_item field example, we added the middleware with an argument, "employee",
which means that role on line 4 is "employee". We check this type against the
context’s current user and if they match, we pass the resolution onward,
unchanged. There’s also an option for specifying middleware Authenticate, :any,
which permits any user to view the page, whether they’re a customer or an
employee, but it does still require that the user is logged in.

If the types don’t match or if there is no current user at all, we use the
Absinthe.Resolution.put_result/2 function to stick an error on the resolution struct,
and if there are any errors on the resolution struct, the Absinthe.Resolution mid-
dleware will not call our resolve function.

You can now annotate any fields that need to be authenticated with the mid-
dleware/1,2 macro prior to the resolve/1 macro, and Absinthe will handle the
authentication check prior to doing any resolution.

This is handy now that we want to turn to the central task of letting customers
themselves place orders. This has two components to it. There’s an authorization
component where we only want to allow an order to be placed by a logged-in
customer or employee, and then there’s also a data component where if the
person placing the order is a customer, their ID needs to be associated with
the record. The first of these can be handled by the newly minted middleware:

08-chp.auth/4-middleware/lib/plate_slate_web/schema.ex
field :place_order, :order_result do

arg :input, non_null(:place_order_input)
middleware Middleware.Authorize, :any➤

resolve &Resolvers.Ordering.place_order/3
end

report erratum • discuss

Securing Fields • 157

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/4-middleware/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

To configure the params, though, we’ll need to head over to the place_order/3
resolver function and conditionally add a value to the place_order_input if the
current user is a customer:

08-chp.auth/4-middleware/lib/plate_slate_web/resolvers/ordering.ex
def place_order(_, %{input: place_order_input}, %{context: context}) do➤

place_order_input = case context[:current_user] do➤

%{role: "customer", id: id} ->➤

Map.put(place_order_input, :customer_id, id)➤

_ ->➤

place_order_input➤

end➤

with {:ok, order} <- Ordering.create_order(place_order_input) do
Absinthe.Subscription.publish(PlateSlateWeb.Endpoint, order,

new_order: "*"
)
{:ok, %{order: order}}

end
end

With this change, we’ve officially got a customer-based ordering system! Let’s
place a couple via GraphiQL:

mutation {
placeOrder(input:{items:[{quantity: 2, menuItemId:"1"}]}) {

order {
customerNumber

}
errors { key message }

}
}

After you’ve run this mutation, head to IEx and look up the last order:

iex(3)> PlateSlate.Ordering.Order |> Ecto.Query.last |> PlateSlate.Repo.one
%PlateSlate.Ordering.Order{__meta__: #Ecto.Schema.Metadata<:loaded, "orders">,
customer_id: 1, id: 3,
...}

It’s got a customer ID! Online ordering is live. However, if we run our tests at
this point, we’ll see that we’ve got a failing case:

ben:plate_slate ben$ mix test
.........................

1) test new orders can be subscribed to (...)
test/plate_slate_web/schema/subscription/new_order_test.exs:16
...
stacktrace:

test/plate_slate_web/schema/subscription/new_order_test.exs:27: (test)

Finished in 2.1 seconds
26 tests, 1 failure

Chapter 8. Securing with Authentication and Authorization • 158

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/4-middleware/lib/plate_slate_web/resolvers/ordering.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’ve broken our subscriptions test! This isn’t actually that surprising if you
think about it, because this test places an order, and we’ve just put authen-
tication checks in the middle of that process. There are a couple ways to fix
this. We could simply refactor how we connect to the socket, passing in and
parsing some token as we do with the headers in our PlateSlateWeb.Context plug.
There’s a Absinthe.Phoenix.Socket.put_options/22 function that we can use to set the
context exactly like we did with Plug.

There’s a slightly more interesting option, however. Unlike HTTP requests, a
Phoenix channel connection is stateful. If a GraphQL document makes a
change to the context, this will affect other subsequent documents that are
executed by that client.

To enable this, we need to modify our login mutation to persist a change to the
context, and then we’ll need to add a login mutation call to the subscription test:

08-chp.auth/4-middleware/lib/plate_slate_web/schema.ex
field :login, :session do

arg :email, non_null(:string)
arg :password, non_null(:string)
arg :role, non_null(:role)
resolve &Resolvers.Accounts.login/3
middleware fn res, _ ->➤

with %{value: %{user: user}} <- res do➤

%{res | context: Map.put(res.context, :current_user, user)}➤

end➤

end➤

end

This is an example of some inline middleware, where we’ve just got a simple
anonymous function inline with the field definition. What we’re doing is pattern
matching via with on the resolution struct to see if the value returned by the
resolver includes a user. If it does, we’re logged in, so we can update the
context accordingly. Not only does this help with subscription fields, but it
also ensures that any sub-selections on the login field are authorized properly.

To get the test back to green, we just need to log in:

08-chp.auth/4-middleware/test/plate_slate_web/schema/subscription/new_order_test.exs
@login """➤

mutation ($email: String!, $role: Role!) {➤

login(role: $role, password: "super-secret", email:$email) {➤

token➤

}➤

}➤

"""➤

2. https://hexdocs.pm/absinthe_phoenix/Absinthe.Phoenix.Socket.html#put_options/2

report erratum • discuss

Securing Fields • 159

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/4-middleware/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/4-middleware/test/plate_slate_web/schema/subscription/new_order_test.exs
https://hexdocs.pm/absinthe_phoenix/Absinthe.Phoenix.Socket.html#put_options/2
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

test "new orders can be subscribed to", %{socket: socket} do➤

login➤

user = Factory.create_user("employee")➤

ref = push_doc socket, @login, variables: %{➤

"email" => user.email,➤

"role" => "EMPLOYEE",➤

}➤

assert_reply ref, :ok, %{data: %{"login" => %{"token" => _}}}, 1_000➤

setup a subscription
ref = push_doc socket, @subscription
assert_reply ref, :ok, %{subscriptionId: subscription_id}
«Rest of test case»

end

Note that we’re providing a slightly longer timeout value (1_000) to the assert_reply
call. Login mutations will generally take slightly longer because of the pass-
word hashing that happens.

Running mix test again shows the tests are green.

Authorizing Subscriptions
While we’re on the subject, subscriptions pose some interesting challenges
with respect to authorization. For example, we straight away run into some
trouble with the new_order field because it uses a "*" topic. The way it’s built
right now, every customer who subscribes is going to get pushed information
about everyone else’s order. This is probably not good.

Fixing this isn’t simply a matter of adding authorization middleware to the
new_order field. Middleware runs when the document is executed, but the
document won’t be executed until an actual order is placed and published.
In other words, we’d still be letting clients create the subscription, but then
instead of an order, they’d get "unauthorized" when an event happens. What we
want to do is scope new_order so that when a subscription is created by a cus-
tomer, we only route that customer’s orders to that subscription.

Let’s capture this problem in a test case:

08-chp.auth/5-subscriptions/test/plate_slate_web/schema/subscription/new_order_test.exs
test "customers can't see other customer orders", %{socket: socket} do

customer1 = Factory.create_user("customer")
login as customer1
ref = push_doc socket, @login, variables: %{

"email" => customer1.email,
"role" => "CUSTOMER"

}
assert_reply ref, :ok, %{data: %{"login" => %{"token" => _}}}, 1_000

Chapter 8. Securing with Authentication and Authorization • 160

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/5-subscriptions/test/plate_slate_web/schema/subscription/new_order_test.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

subscribe to orders
ref = push_doc socket, @subscription
assert_reply ref, :ok, %{subscriptionId: _subscription_id}

customer1 places order
place_order(customer1)
assert_push "subscription:data", _

customer2 places order
customer2 = Factory.create_user("customer")
place_order(customer2)
refute_receive _

end

defp place_order(customer) do
order_input = %{"customerNumber" => 24,

"items" => [%{"quantity" => 2, "menuItemId" => menu_item("Reuben").id}]
}
{:ok, %{data: %{"placeOrder" => _}}} = Absinthe.run(@mutation,

PlateSlateWeb.Schema, [
context: %{current_user: customer},
variables: %{"input" => order_input},

])
end

This test case starts off just like our other test in this module. We create a
customer, log them in, and then subscribe to new_order. We affirm that we get
messages when customer1 places an order. Then we create an additional user
and place an order under that user. At this point, the socket we’re testing
shouldn’t receive anything, since this isn’t an order by customer1.

However, running this test gives us the error we expect:

$ mix test test/plate_slate_web/schema/subscription/new_order_test.exs

1) test customers can't see other customer orders (...)
test/plate_slate_web/schema/subscription/new_order_test.exs:61
Unexpectedly received message %Phoenix.Socket.Message{
event: "subscription:data", join_ref: nil,
payload: %{

result: %{data: %{"newOrder" => %{"customerNumber" => 24}}},
subscriptionId: "__absinthe__:doc:128181748"

}, ref: nil, topic: "__absinthe__:doc:128181748"} (which matched _)
code: refute_receive _
stacktrace:

test/plate_slate_web/schema/subscription/new_order_test.exs:85: (test)
.

Finished in 1.9 seconds
2 tests, 1 failure

report erratum • discuss

Securing Fields • 161

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Let’s tweak our subscription topics to fix this security issue, while still pre-
serving the ability for employees to watch for everything:

08-chp.auth/5-subscriptions/lib/plate_slate_web/schema.ex
subscription do

«Other fields»
field :new_order, :order do

config fn _args, %{context: context} ->
case context[:current_user] do

%{role: "customer", id: id} ->
{:ok, topic: id}

%{role: "employee"} ->
{:ok, topic: "*"}

_ ->
{:error, "unauthorized"}

end
end

end
end

At the heart of our solution is the ability to retrieve the current user from
within the config function. If the current user is a customer, we’re going to use
the customer ID as the topic. Employees still get the "*" topic, and everyone
else gets an unauthorized message. This does prevent customers from listening
on the "*" topic, but we also need to update how we publish orders if we’re to
make the id topic useful.

This happens back in the place_order resolver:

08-chp.auth/5-subscriptions/lib/plate_slate_web/resolvers/ordering.ex
with {:ok, order} <- Ordering.create_order(place_order_input) do

Absinthe.Subscription.publish(PlateSlateWeb.Endpoint, order,
new_order: [order.customer_id, "*"]➤

)
{:ok, %{order: order}}

end

The change here is very small. When we publish an order, we’re now publish-
ing on two topics: "*" and the ID of the customer that ordered it. If we run our
test again, we’ll see it’s all been cleared up.

Subscriptions and authorization are all about topic design. Topics are
extremely cheap and should be used readily to help scope published data to
precisely the clients that should be able to see it.

Structuring for Authorization
Some authorization concerns can be handled by the very structure of the
data within our application, and we can use this when we design our schema.

Chapter 8. Securing with Authentication and Authorization • 162

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/5-subscriptions/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/5-subscriptions/lib/plate_slate_web/resolvers/ordering.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The idea is that a single field can authenticate for fields deeper down in our
query. After all, a GraphQL document is a tree; if we can have a single field
act as a gatekeeper for any data that requires authorization, it could simplify
our code and the amount of mental overhead involved in trying to remember
what’s public and what isn’t.

A good example of some data in our application that is structured this way
is the orders that are associated with a particular customer record. Based
on what we’ve done so far, if we’re logged in as a customer and want to get
our orders as well as the current menu, we might expect to use a document
like this:

{
orders {

id
items { name quantity}

}
menuItems {

name
}

}

We saw how by using the context, we could restrict the values that are
returned to only those that belong to the current user, but this produces a
small problem. The menuItems field always shows the same thing no matter
who is looking at that field, and the orders field always shows different things
depending on who is looking at the field, but there’s nothing in the document
that might hint that this is what will happen.

The me pattern is an approach where fields that always depend on whoever
is viewing the API are placed on some object representing the current user
so that the document’s structural hierarchy makes that dependency clear.

Here’s how it might be used in our GraphQL query:

{
me {

orders {
id
items { name quantity}

}
}
menuItems {

name
}

}

report erratum • discuss

Structuring for Authorization • 163

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The menuItems field still happens at the top level because its values are the
same regardless of the current user, whereas the orders field has been placed
under me. The shape of the document itself helps communicate what is
going on.

History of a Pattern

This pattern has its roots in the Relay3 v1 implementation—the
original GraphQL framework, now called “Relay Classic”—where
the field was called viewer. It served to provide both authorization
and an easy way to ensure that certain data is always loaded in
the context of the current user. We’re using the field name me,
which is the general convention within the broader GraphQL
community at this point.

We’re already in a pretty good place to support this pattern. The :user interface
type we created in the AccountTypes module already encapsulates the possibilities
of a “current user” in our system, so we can just go ahead and add the requi-
site field to our schema:

08-chp.auth/6-me/lib/plate_slate_web/schema.ex
query do

field :me, :user do
middleware Middleware.Authorize, :any
resolve &Resolvers.Accounts.me/3

end
«Other query fields»

end

The resolver itself couldn’t be simpler; we just need to grab the current user
out of the context and return it:

08-chp.auth/6-me/lib/plate_slate_web/resolvers/accounts.ex
def me(_, _, %{context: %{current_user: current_user}}) do

{:ok, current_user}
end
def me(_, _, _) do

{:ok, nil}
end

We can complete the authorization story by filling out the orders field on the
:customer object, which we had previously just stubbed:

08-chp.auth/6-me/lib/plate_slate_web/schema/accounts_types.ex
object :customer do

«Other fields»
field :orders, list_of(:order) do

3. https://facebook.github.io/relay/

Chapter 8. Securing with Authentication and Authorization • 164

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/6-me/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/6-me/lib/plate_slate_web/resolvers/accounts.ex
http://media.pragprog.com/titles/wwgraphql/code/08-chp.auth/6-me/lib/plate_slate_web/schema/accounts_types.ex
https://facebook.github.io/relay/
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

resolve fn customer, _, _ ->➤

import Ecto.Query➤
➤

orders =➤

PlateSlate.Ordering.Order➤

|> where(customer_id: ^customer.id)➤

|> PlateSlate.Repo.all➤
➤

{:ok, orders}➤

end➤

end
end

What we end up with is a GraphQL query that looks like this:

{
me {

name
... on Customer { orders { id } }

}
menuItems { name }

}

This tells us a lot. We know that the customer has a name, we know that
customers have orders, and we know that those orders are going to be specific
to that customer and not include somebody else’s. We also can reasonably
expect that the menu items are global values and won’t be different if our
friend checks it. In situations where “authorization” boils down to scoping
data under other data, it’s often best to express that scope via the GraphQL
document itself.

Moving On
We covered quite a bit in this chapter! We delved into how the client can
request a token from the server and how that token is used in subsequent
requests. You discovered the Absinthe context and how values placed inside
of it are available in resolution functions. We also had an opportunity to see
how middleware can be used ahead of resolvers to prevent unauthorized
resolution, and how the structure of our schema itself can be used to manage
authorization in a more user-friendly way.

Before moving to the next chapter:

1. We’ve added some basic authorization to the API; review the rest of the
schema and add authorization rules on the remaining mutations. Lock
them down!

report erratum • discuss

Moving On • 165

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

2. Imagine that you want to create a way for employees to look up the order
history of a customer. How would you do it? How could you secure it?

3. We updated the new_order subscription to prevent security holes. Make
similar updates to the other subscription fields to prevent customers from
subscribing to orders that don’t belong to them.

With our API secured, we’re about ready to expose it to the Internet as a
whole. Before we do so, though, we need to look at the tools and patterns
Absinthe provides to support high-performance data access.

Chapter 8. Securing with Authentication and Authorization • 166

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

CHAPTER 9

Tuning Resolution
As your knowledge of GraphQL grows and you start to imagine how your APIs
might need to scale and deal with different problems, you’re bound to have
questions that go beyond basic field resolvers and middleware.

Resolvers (as we’ve been using them so far in the book) execute one after
another, serially. What if we want to have some of them happen concurrently
instead? If several fields on the same object need to retrieve the same data,
how could we execute those fields together so that we don’t calculate the same
value more than once, negatively affecting performance? How do we make
decisions by looking at the whole GraphQL document, rather than just field
by field, to efficiently execute a query, mutation, or subscription?

In this chapter, we’re going to explore the last major tool that Absinthe provides
for tweaking the execution of a document: plugins. We’ll walk through Absinthe’s
core built-in plugins, and we’ll make a new one ourselves: a plugin that can
use the associations we’ve defined with Ecto to easily and efficiently power
associations in our GraphQL schemas without violating context boundaries.

Before we jump into plugins, though, we’re going to take a quick glance at
the underlying engine that powers Absinthe, the pipeline. The pipeline is at
the heart of how Absinthe works, and manipulating the parts that make up
the pipeline—phases—is key to many of the advanced features that Absinthe
offers. You don’t need to know much about the pipeline to build plugins, and
you generally don’t need to know anything at all to use them. Still, it’s worth
taking a quick moment to get familiar with the pipeline so that as we move
forward, we have the right context to understand what’s going on.

Absinthe is a lot like an interpreter. When you pass it a GraphQL document,
it’s parsed into an abstract syntax tree, converted into an intermediate
structure we call a blueprint that houses additional metadata, and fed through

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

configured validation and preprocessing logic before being ultimately executed.
At a high level, this is what the process looks like:

Validate / PrepareValidate / Prepare

This is the Absinthe pipeline, and each of the steps in the process—represented
by a rectangle in the diagram—is called a phase. A phase is simply a module
that has a run/2 function, accepting an input and options, and returning an
output.

After the %Absinthe.Blueprint{} struct is created, the rest of the document process-
ing pipeline centers on the manipulation of the blueprint, passed from phase
to phase. Phases are the real workhorses of Absinthe and have names like
Phase.Document.Validation.NoFragmentCycles and Phase.Document.Arguments.Normalize.

Broadly speaking, Absinthe phases fall into three categories:

• Preparation phases
• Execution phases
• Result building phases

All the Phases

At the time of writing, the default pipeline has forty-one phases!

As you’ve followed along with the examples in the book, this pipeline has been
working behind the scenes for every document you’ve submitted, returning
results and providing the error messages when you make mistakes. All of

Chapter 9. Tuning Resolution • 168

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

the code that you’ve written within your resolvers and middleware happens
within the Phase.Document.Execution.Resolution phase, which takes a validated
document and starts walking through it to run your code.

A plugin then is essentially an upgraded middleware module that has some
specific hooks into this Resolution phase. These hooks let us run some stuff
before and after resolution, as well as give us the ability to control whether
additional phases need to happen. Combined with the middleware behaviour,
they are the perfect building blocks to craft the right execution model for our
domain, whatever it may be.

Understanding the Problem
Anytime we need to do something like load an Ecto schema has_many association
in a resolver, then query child values, we can quickly find ourselves mired in
what’s referred to as the “N + 1 problem” and performing more database work
than we expect. Let’s say you want to get the category for a bunch of menu
items. The best way to go is to collate all the category_id values found within
your set of menu items and then do a single SQL query for categories with
those IDs. The N+1 problem happens when instead, you do an SQL query for
each individual menu item’s category; this is where the problem gets its name.
There’s 1 query to get the menu items themselves, and then N queries after-
ward, where N is the number of menu items.

To illustrate this, let’s review how a document is executed with a naive
example and see what happens. We’ll add a small piece of middleware to our
schema that will print out each field that executes. To do so, we need to
reorganize how we apply middleware a little so that we can more easily com-
pose different options. Start with the def middleware refactor:

09-chp.performance/1-start/lib/plate_slate_web/schema.ex
def middleware(middleware, field, object) do

middleware
|> apply(:errors, field, object)
|> apply(:get_string, field, object)

end

defp apply(middleware, :errors, _field, %{identifier: :mutation}) do
middleware ++ [Middleware.ChangesetErrors]

end
defp apply([], :get_string, field, %{identifier: :allergy_info}) do

[{Absinthe.Middleware.MapGet, to_string(field.identifier)}]
end
defp apply(middleware, _, _, _) do

middleware
end

report erratum • discuss

Understanding the Problem • 169

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/1-start/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Functionally, this is exactly the same, but it gives us a little more flexibility.
Previously, we were pattern matching for objects or fields within the middleware/3
function heads, which meant each situation was handled totally separately.
If we wanted to apply common middleware to all fields, we’d need to add it to
every clause of the middleware/3 block.

With this refactor in place, we can trivially add a debug middleware to every
field. In order to make it easy to turn on and off, we’ll only run it if we do
DEBUG=true when starting our IEx session. We want the debugger to print at
the start of every field’s resolution, and also at the end. One option for doing
this is to put the middleware at both the beginning and the end:

[{Middleware.Debug, :start}] ++ middleware ++ [{Middleware.Debug, :finish}]

Instead, though, we’re going to just put it at the beginning with a :start option,
and then add the :finish part inside the middleware itself, which is a trick that
will be useful to know later on:

09-chp.performance/1-start/lib/plate_slate_web/schema.ex
def middleware(middleware, field, object) do

middleware
|> apply(:errors, field, object)
|> apply(:get_string, field, object)
|> apply(:debug, field, object)➤

end

defp apply(middleware, :errors, _field, %{identifier: :mutation}) do
middleware ++ [Middleware.ChangesetErrors]

end
defp apply([], :get_string, field, %{identifier: :allergy_info}) do

[{Absinthe.Middleware.MapGet, to_string(field.identifier)}]
end
defp apply(middleware, :debug, _field, _object) do➤

if System.get_env("DEBUG") do➤

[{Middleware.Debug, :start}] ++ middleware➤

else➤

middleware➤

end➤

end➤

defp apply(middleware, _, _, _) do
middleware

end

Let’s take a look at the Middleware.Debug module:

09-chp.performance/1-start/lib/plate_slate_web/schema/middleware/debug.ex
defmodule PlateSlateWeb.Schema.Middleware.Debug do

@behaviour Absinthe.Middleware

Chapter 9. Tuning Resolution • 170

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/1-start/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/1-start/lib/plate_slate_web/schema/middleware/debug.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

def call(resolution, :start) do
path = resolution |> Absinthe.Resolution.path |> Enum.join(".")
IO.puts """
======================
starting: #{path}
with source: #{inspect resolution.source}\
"""
%{resolution |

middleware: resolution.middleware ++ [{__MODULE__, {:finish, path}}]
}

end
def call(resolution, {:finish, path}) do

IO.puts """
completed: #{path}
value: #{inspect resolution.value}
======================\
"""
resolution

end
end

Here we’ve got two call function clauses where we’re pattern matching on our
option argument, :start or :finish. The first corresponds to the option we specified
in our schema middleware callback. In this clause, we get the current path in
the document and then print out a message providing info about the field
we’ve started resolving.

Now the cool part: we can actually change what future middleware will run
on this specific field. One of the keys under the %Absinthe.Resolution{} struct is
:middleware, and it contains a list of all remaining middleware queued up to
run on this field. By adding the Debug module at the end of the list with the
:finish option, we ensure that it will be called again after everything else. While
we’re at it, we also pass along the path variable we’ve calculated, just so that
we don’t need to compute it again.

When Debug is called the second time with the {:finish, path} option, we can print
some info about the value that’s been resolved. Let’s give this a try! We’ll open
up an IEx session (don’t forget DEBUG=true) and run a query:

$ DEBUG=true iex -S mix
iex> Absinthe.run("""
...> {
...> menuItems(filter: {name: "Reu"}) {
...> name
...> id
...> }
...> }
...> """, PlateSlateWeb.Schema)

report erratum • discuss

Understanding the Problem • 171

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

======================
starting: menuItems
with source: %{}
[debug] QUERY OK source="items" db=3.3ms
SELECT i0."id", i0."added_on", ...
FROM "items" AS i0 WHERE (i0."name" ILIKE $1) ORDER BY i0."name" ["%Reu%"]
completed: menuItems
value: [%PlateSlate.Menu.Item{...}]
======================
======================
starting: menuItems.0.name
with source: %PlateSlate.Menu.Item{...}
completed: menuItems.0.name
value: "Reuben"
======================
======================
starting: menuItems.0.id
with source: %PlateSlate.Menu.Item{...}
completed: menuItems.0.id
value: 1
======================
{:ok, %{data: %{"menuItems" => [%{"id" => "1", "name" => "Reuben"}]}}}

There’s a decent bit of output here, but most of that is just from inspecting
the menu item itself (which we have omitted from the book for space reasons).
As you might expect, our tracing middleware indicates that Absinthe starts
at the :menu_items field, then moves to the :name and :id fields. At the :menu_items
field, the source value is just an empty map, because there isn’t any data yet
at the top level. That field returns a list with a single menu item. When
Absinthe moves to the :name and :id fields, it does so using that specific menu
item struct as the source value.

You May Need to Use env

If you’re using a non-standard shell like the friendly interactive
shell (fish)1 and didn’t see the expected output, remember that
you may need to prefix commands that use ad hoc environment
variables with env—for example, env DEBUG=true iex -S mix.

If we do a slightly broader search and just match for "on", we get two results:
“Croque Monsieur” and “Lemonade.”

iex> Absinthe.run("""
...> {
...> menuItems(filter: {name: "on"}) {
...> name
...> id

1. https://fishshell.com/

Chapter 9. Tuning Resolution • 172

report erratum • discuss

https://fishshell.com/
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

...> }

...> }

...> """, PlateSlateWeb.Schema)
======================
starting: menuItems
with source: %{}
[debug] QUERY OK source="items" db=3.5ms
SELECT i0."id", i0."added_on", ...
FROM "items" AS i0 WHERE (i0."name" ILIKE $1) ORDER BY i0."name" ["%on%"]
completed: menuItems
value: [

%PlateSlate.Menu.Item{name: "Croque Monsieur", ...},
%PlateSlate.Menu.Item{name: "Lemonade", ...}

]
======================
======================
starting: menuItems.0.name
with source: %PlateSlate.Menu.Item{name: "Croque Monsieur", ...}
completed: menuItems.0.name
value: "Croque Monsieur"
======================
======================
starting: menuItems.0.id
with source: %PlateSlate.Menu.Item{name: "Croque Monsieur", ...}
completed: menuItems.0.id
value: 2
======================
======================
starting: menuItems.1.name
with source: %PlateSlate.Menu.Item{name: "Lemonade", ...}
completed: menuItems.1.name
value: "Lemonade"
======================
======================
starting: menuItems.1.id
with source: %PlateSlate.Menu.Item{name: "Lemonade", ...}
completed: menuItems.1.id
value: 12
======================
{:ok,
%{data: %{"menuItems" => [%{"id" => "2", "name" => "Croque Monsieur"},

%{"id" => "12", "name" => "Lemonade"}]}}}

The menu items field once again starts with an empty map as the source, but
now it returns a list of two different menu items. When we look at the next
lines of tracing output, we see that Absinthe goes through each in turn and
executes the :name and :id fields our query document selected. It gets the name
and ID field on the “Croque Monsieur” item, and then the name and ID field
from the “Lemonade” item. All of this happens in a single process, one item

report erratum • discuss

Understanding the Problem • 173

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

and one field after another. If we return N items from the menu_items field, the
name and ID field resolvers will each run N times.

This is both the simplest and most optimal way to proceed when all those
fields do is a Map.get on their source, but this approach won’t serve if we need
to execute fields in parallel, or if we want to work with a group of fields all
together. A good example of the latter situation is if we’re doing a database
call. Every menu item belongs to a category, and if we want to let people query
the category on a menu item, we really want to do a single database query to
get all of those categories, instead of N.

Let’s start by creating the problem we want to fix: a naive implementation
where we directly get the category for each menu item. We’ll start by making
sure we have the correct fields and objects set up in our menu_types.ex file.

09-chp.performance/2-naive/lib/plate_slate_web/schema/menu_types.ex
alias PlateSlateWeb.Resolvers
object :menu_item do

interfaces [:search_result]

field :id, :id
field :name, :string
field :description, :string
field :price, :decimal
field :added_on, :date
field :allergy_info, list_of(:allergy_info)
field :category, :category do➤

resolve &Resolvers.Menu.category_for_item/3➤

end➤

end

We already have a :category object from all the way back in Chapter 2, Building
a Schema, on page 15, so all we need to do is add in the field on our :menu_item
object connecting it to a category, then give it a resolver.

09-chp.performance/2-naive/lib/plate_slate_web/resolvers/menu.ex
def items_for_category(category, _, _) do

query = Ecto.assoc(category, :items)
{:ok, PlateSlate.Repo.all(query)}

end

def category_for_item(menu_item, _, _) do
query = Ecto.assoc(menu_item, :category)
{:ok, PlateSlate.Repo.one(query)}

end

In the resolver, we just use the Ecto.assoc/2 function to build an Ecto query,
which is then run by our Repo. If we run some queries and pay attention to

Chapter 9. Tuning Resolution • 174

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/2-naive/lib/plate_slate_web/schema/menu_types.ex
http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/2-naive/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

the [debug] database logging, we’ll see that for each menu item in the result,
we’re having to do a lookup in the categories table:

iex> Absinthe.run("""
...> {
...> menuItems(filter: {name: "on"}) {
...> name
...> category { name }
...> }
...> }
...> """, PlateSlateWeb.Schema)
======================
starting: menuItems
with source: %{}
[debug] QUERY OK source="items" db=7.4ms
SELECT i0."id", i0."added_on", ...
FROM "items" AS i0 WHERE (i0."name" ILIKE $1) ORDER BY i0."name" ["%on%"]
completed: menuItems
value: [

%PlateSlate.Menu.Item{name: "Croque Monsieur", ...},
%PlateSlate.Menu.Item{name: "Lemonade", ...}

]
======================
======================
starting: menuItems.0.name
with source: %PlateSlate.Menu.Item{name: "Croque Monsieur", ...}
completed: menuItems.0.name
value: "Croque Monsieur"
======================
======================
starting: menuItems.0.category
with source: %PlateSlate.Menu.Item{name: "Croque Monsieur", ...}
[debug] QUERY OK source="categories" db=1.5ms
SELECT c0."id", ...
FROM "categories" AS c0 WHERE (c0."id" = $1) [1]
completed: menuItems.0.category
value: %PlateSlate.Menu.Category{name: "Sandwiches", ...}
======================
======================
starting: menuItems.0.category.name
with source: %PlateSlate.Menu.Category{name: "Sandwiches", ...}
completed: menuItems.0.category.name
value: "Sandwiches"
======================
======================
starting: menuItems.1.name
with source: %PlateSlate.Menu.Item{name: "Lemonade", ...}
completed: menuItems.1.name
value: "Lemonade"
======================

report erratum • discuss

Understanding the Problem • 175

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

======================
starting: menuItems.1.category
with source: %PlateSlate.Menu.Item{name: "Lemonade", ...}
[debug] QUERY OK source="categories" db=1.4ms
SELECT c0."id", ...
FROM "categories" AS c0 WHERE (c0."id" = $1) [3]
completed: menuItems.1.category
value: %PlateSlate.Menu.Category{name: "Beverages", ...}
======================
======================
starting: menuItems.1.category.name
with source: %PlateSlate.Menu.Category{name: "Beverages", ...}
completed: menuItems.1.category.name
value: "Beverages"
======================
{:ok,
%{data: %{"menuItems" => [%{"category" => %{"name" => "Sandwiches"},

"name" => "Croque Monsieur"},
%{"category" => %{"name" => "Beverages"}, "name" => "Lemonade"}]}}}

If we look at our tracing, it isn’t hard to see why: we’re fully resolving the
category field on each menu item before moving on. Given how we’ve built
our resolver, this isn’t surprising. The solutions we’re going to look at next
make use of Absinthe plugins to alter how each of these fields are executed,
providing us opportunities to load this data more efficiently.

Using Built-in Plugins
As we noted at the start, a plugin in Absinthe is any module that implements
the Absinthe.Plugin behaviour. It is not uncommon for a plugin module to also
implement the Absinthe.Middleware behaviour, because the two behaviours work
together. The middleware callbacks handle changes that need to happen to
each individual field, and the plugin callbacks operate at the document level.

We’ll start by looking at two simple plugins built into Absinthe itself. These
will help us get the hang of how plugins work, and each has use cases where
they’re the perfect tool for the job.

Async
A step in the direction of efficient execution would be to run each field con-
currently. It doesn’t get rid of the N+1 query, but it does mean that by doing
all the N at the same time, we can improve our response time. While obviously
not the optimal solution for SQL-based data, async execution is a useful tool
when dealing with external APIs. Async is one of the simplest plugins, so let’s
give it a look as a way to get our feet wet.

Chapter 9. Tuning Resolution • 176

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Let’s head back to our category_for_item/3 resolver function and make it async.
To do this, we’ll make use of a helper built into Absinthe—async/1—which we’ll
import from the Absinthe.Resolution.Helpers module.

09-chp.performance/3-async/lib/plate_slate_web/resolvers/menu.ex
import Absinthe.Resolution.Helpers, only: [async: 1]
«Rest of file»
def category_for_item(menu_item, _, _) do

async(fn ->
query = Ecto.assoc(menu_item, :category)
{:ok, PlateSlate.Repo.one(query)}

end) |> IO.inspect
end

The change to the resolution function is very small; we’re wrapping the body
of the function in an 0-arity anonymous function and then passing that to
async/1, much like you would with Task.async. You’ll notice that we’ve added an
IO.inspect after our async call, and if we run a query, we’ll see a return value
that we’ve never seen before:

$ iex -S mix
iex> query = """
{menuItems(filter: {name: "Reu"}) { category { name } id } }
"""
iex> Absinthe.run(query, PlateSlateWeb.Schema)

{:middleware, Absinthe.Middleware.Async, {
#Function<0.33547832/0 in PlateSlateWeb.Resolvers.Menu.category_for_item/3>,
[]

}}

This is new! Every resolver we’ve written so far has returned either an {:ok,
value} or {:error, error} tuple. Here, though, we’re seeing the third and final tuple,
which has the form {:middleware, MiddlewareModule, options} and amounts to telling
Absinthe, “Hey, hand off the execution of this field to this middleware with
these options.” In our specific case then, Absinthe is going to call the
Absinthe.Middleware.Async.call function with the field’s resolution struct, and then
pass it the options tuple we see at the end there. It houses the function we
have in our category_for_item/3 and an empty list of options.

In fact, the entire contents of the async/1 helper is just:

def async(fun, opts \\ []) do
{:middleware, Middleware.Async, {fun, opts}}

end

Run a query that gets all the menu items, paying attention to the tracing
output this time.

report erratum • discuss

Using Built-in Plugins • 177

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/3-async/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

$ DEBUG=true iex -S mix
iex> Absinthe.run("{menuItems { category { name } id }}",

PlateSlateWeb.Schema)

The menuItems field returns the full list of items, and then you can see it
starting the category field on the first item. However, instead of completing,
the next thing you see is it starting and finishing the id field. Then it starts
the category field of the next menu item! As you keep going down, you’ll actu-
ally begin to see database output as the function happens in the background
while Absinthe is still processing the document.

Only after all the category fields have been started do you see Absinthe com-
pleting any of them with values. Nothing in the async helper seems to be doing
anything to spawn processes though, so the work has to be done inside the
Middleware.Async module. Let’s dive in:

defmodule Absinthe.Middleware.Async do
@behaviour Absinthe.Middleware
@behaviour Absinthe.Plugin

def before_resolution(exec) do
put_in(exec.context[__MODULE__], false)

end

def call(%{state: :unresolved} = res, {fun, opts}) do
task_data = {Task.async(fun), opts}

%{res |
state: :suspended,
context: Map.put(res.context, __MODULE__, true),
middleware: [{__MODULE__, task_data} | res.middleware]

}
end
def call(%{state: :suspended} = res, {task, opts}) do

result = Task.await(task, opts[:timeout] || 30_000)
Absinthe.Resolution.put_result(res, result)

end

def after_resolution(exec), do: exec

def pipeline(pipeline, exec) do
case exec.context do
%{__MODULE__ => true} ->

[Absinthe.Phase.Document.Execution.Resolution | pipeline]
_ ->

pipeline
end

end
end

Chapter 9. Tuning Resolution • 178

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

There’s a lot going on here! Notably, this module is implementing both the
Absinthe.Middleware and the Absinthe.Plugin behaviours. The first makes sure we
can hook into individual fields when they need to use Async, and the other
provides us before and after resolution callbacks. We’re going to walk through
this step by step, keeping in mind our GraphQL query:

{
menuItems {

category { name }
id

}
}

The first thing that happens, as the name suggests, is the before_resolution/1
callback. The value passed to this function is an %Absinthe.Blueprint.Execution{}
struct, from which every field’s %Absinthe.Resolution{} struct is derived. The
before_resolution/1 callback is a good place to set up values we may need later.
In this case, we just set a flag to false within our context. This context is the
exact same one we’ve been using to store the current user for authentication.
The flag will be used later to figure out whether any processes are running
in the background or not. Since we just started, none are.

As execution proceeds, Absinthe will hit our :category field, which hands off to
this middleware’s call function via the :middleware tuple we saw inside the async/1
function. This is 100% the same def call callback that we looked at when we
were doing the error handling or authorization middleware.

Notably, we actually have two clauses here. The first one we’ll hit immediately
at the end of our resolver; since no result has been placed on our field, the
state is still :unresolved. Here we find where the actual asynchronous action
happens! This clause does four things: calls Task.async/1 with our function, sus-
pends resolution, sets our context flag to true, and then updates the field’s
middleware to re-run this module when the field is unsuspended. The context
part is pretty simple, in that now that there is definitely a process running in
the background, we need to set the flag to true so that we know about it later.

The other two changes are a bit less simple. When you suspend the resolution
struct, Absinthe stops doing any further processing to that field and moves
on to the next sibling field. If you suspend the category field, it stops doing
work on that field and moves on to the id field. The name field is unreachable
until after category has finally resolved. After doing the id field of the first menu
item, it would move to the next menu item to begin its category field (which
also pushes a value into the loader) and then suspend.

report erratum • discuss

Using Built-in Plugins • 179

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

This makes sense of the tracing output we saw earlier, where :category fields
kept being started, but then Absinthe would just move on to the next field.
When Absinthe comes back to this field, it needs a way to turn this task back
into an actual value that it can continue resolution with, so we use the same
trick we learned in the Debug module to re-enqueue our middleware. This time
though, instead of adding it at the end, we add the middleware and our task
to the beginning so that it will be the very next thing to run. When Absinthe
comes back to the field, it’ll run this module again, and we’ll have the
opportunity to Task.await/1 and get a value.

After Absinthe has completed this particular walk through the document, it
runs the after_resolution callback. This is an opportunity to do any extra trans-
formations or loading, but for our purposes, we don’t need to do anything.

The Absinthe.Phase.Document.Execution.Resolution phase we’ve been inside this whole
time only does a single walk through the document. Now that we’re executing
certain fields asynchronously, however, this is a problem, because we need to go
back and get values out of each task. This brings us to the last and most interest-
ing callback: pipeline. Based on the execution struct we returned from after_resolution,
our plugin has the option to tell Absinthe to run additional phases on the docu-
ment. We’re putting that flag in our context we’ve been tracking to good use; if
it’s been set to true, then we know there are async fields happening, and we
need to go back to await them. If the flag is false, then as far as this plugin is
concerned, there’s nothing more to be done, so we leave the pipeline alone.

Graphically, this execution flow looks like this:

Validate / PrepareValidate / Prepare

Validate / PrepareValidate / Prepare

Chapter 9. Tuning Resolution • 180

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

With this additional phase specified, Absinthe knows it has more work to do,
effectively starting the whole process over again. As Absinthe walks through
the document, it will come across the first suspended field, calling whatever
remaining middleware exists on that field. Of course, that’s just Middleware.Async
clause number two because that’s what we set up the first time around. All
we need to do is just Task.await on our process and put the result on the field.

Batch
The problem with async, of course, is that while it’s faster than serial database
queries, we’re still doing N of them to get N categories when we could really
be doing just one database query to get all the categories. We need a way to
aggregate values, a function that can use those aggregated values to run an
SQL query, and then the ability to get those values back into individual fields.

Fortunately, the Absinthe.Middleware.Batch plugin has our backs. Let’s see how it
looks in our resolver:

09-chp.performance/4-batching/lib/plate_slate_web/resolvers/menu.ex
import Absinthe.Resolution.Helpers, only: [batch: 3]
«Rest of file»
def category_for_item(menu_item, _, _) do

batch({PlateSlate.Menu, :categories_by_id}, menu_item.category_id, fn
categories ->
{:ok, Map.get(categories, menu_item.category_id)}

end) |> IO.inspect
end

As before, we’ve got an Absinthe helper function we’re importing to provide
a nice API, as well as an |> IO.inspect at the end, so we’ll be able to see in a
second what this function returns. The function takes three arguments: a
module and function tuple indicating what function will actually run the
batch, a value to be aggregated, and then a function for retrieving the results
specific to this field.

The function specified, PlateSlate.Menu.categories_by_id/2, looks like this:

09-chp.performance/4-batching/lib/plate_slate/menu/menu.ex
def categories_by_id(_, ids) do

Category
|> where([c], c.id in ^Enum.uniq(ids))
|> Repo.all
|> Map.new(fn category ->

{category.id, category}
end)

end

report erratum • discuss

Using Built-in Plugins • 181

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/4-batching/lib/plate_slate_web/resolvers/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/4-batching/lib/plate_slate/menu/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The body of this function gives us a pretty good idea of what’s going to happen.
The resolver function is aggregating menu_item.category_ids, and those will get
passed in as the second arg of the categories_by_id function. Within that function,
we have a simple Ecto query that grabs all the categories with the ids we want,
and then we make a map of category IDs to the associated category for easy
lookup later. Let’s give this a whirl:

$ DEBUG=true iex -S mix
iex> Absinthe.run("""
...> {menuItems(filter: {name: "on"}) { category {name} } }
...> """, PlateSlateWeb.Schema)
======================
starting: menuItems
with source: %{}
[debug] QUERY OK source="items" db=7.7ms decode=1.5ms
SELECT i0."id", i0."added_on", ...
FROM "items" AS i0 WHERE (i0."name" ILIKE $1) ORDER BY i0."name" ["%on%"]
completed: menuItems
value: [%PlateSlate.Menu.Item{...}, %PlateSlate.Menu.Item{...}]
======================
======================
starting: menuItems.0.category
with source: %PlateSlate.Menu.Item{...}
{:middleware, Absinthe.Middleware.Batch,
{{PlateSlate.Menu, :categories_by_id}, 1,
#Function<0.54233969/1 in PlateSlateWeb.Resolvers.Menu.category_for_item/3>,
[]}}

======================
starting: menuItems.1.category
with source: %PlateSlate.Menu.Item{...}
{:middleware, Absinthe.Middleware.Batch,
{{PlateSlate.Menu, :categories_by_id}, 3,
#Function<0.54233969/1 in PlateSlateWeb.Resolvers.Menu.category_for_item/3>,
[]}}

[debug] QUERY OK source="categories" db=1.9ms
SELECT c0."id", c0."description", c0."name", c0."inserted_at", c0."updated_at"
FROM "categories" AS c0 WHERE (c0."id" = ANY($1)) [[3, 1]]
completed: menuItems.0.category
value: %PlateSlate.Menu.Category{name: "Sandwiches", ...}
======================
======================
starting: menuItems.0.category.name
with source: %PlateSlate.Menu.Category{name: "Sandwiches", ...}
completed: menuItems.0.category.name
value: "Sandwiches"
======================
completed: menuItems.1.category
value: %PlateSlate.Menu.Category{name: "Beverages", ...}
======================

Chapter 9. Tuning Resolution • 182

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

======================
starting: menuItems.1.category.name
with source: %PlateSlate.Menu.Category{name: "Beverages", ...}
completed: menuItems.1.category.name
value: "Beverages"
======================
{:ok,
%{data: %{"menuItems" => [%{"category" => %{"name" => "Sandwiches"}},

%{"category" => %{"name" => "Beverages"}}]}}}

This is looking good! As with async, we see that when we get to the first
menuItems.0.category field, we start it but then immediately move on to the
menuItems.1.category field. Our debug Ecto output shows that we do a single SQL
query for two categories, IDs 3 and 1, and then each category field completes
without any further database querying.

Logger Prints Asynchronously

Depending on your computer, you may see the SQL debug output
show up at different points amid the output from your Debug mid-
dleware. This is because Elixir’s Logger maintains a small buffer
for performance reasons, so output may be delayed. We’re using
IO.puts in our debugger, which outputs immediately. If you see the
SQL query show up after one of the category fields shows as
complete, that’s the reason why!

We aren’t going to dive into the actual code of the Absinthe.Middleware.Batch
because the code for managing the batches is a little too much to fit into a
book. From what we saw within the Async plugin, though, we can see that a
similar process is at work. The fact that we started each category field before
we completed any of them tells us that the plugin is suspending each field
as it internally builds up a batch under each function, and the fact that each
field ultimately completes tells us it’s doing the trick of modifying the middle-
ware to come back. Then, each batch is run during the after_resolution callback.
If there were any batches to run, the resolution phase happens once more,
and results can be filtered into the proper fields.

The Absinthe.Middleware.Batch achieves a lot and, with some helpers, was the
standard way to solve this problem for a long time. While batch still has a
place, it has a few limitations that have driven the development of the final
approach we’ll look at in this chapter. There are small-scale annoyances like
the limitation of only being able to batch one thing at a time in a field, or the
fact that the API can get very verbose.

report erratum • discuss

Using Built-in Plugins • 183

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

There are also some larger-scale issues. Ecto has a fair number of quirks that
make it a difficult library to abstract access to. If you want the concurrent
testing feature to work, you need to add self() to all the batch keys and do
Repo.all(caller: pid) in every batch function so that it knows which sandbox to
use. It gets easy for your GraphQL functions to become full of direct database
access, inevitably going around important data access rules you may want
to enforce in your Phoenix contexts. Alternatively, your context functions can
end up with dozens of little functions that only exist to support batching
items by ID.

In time, people involved in larger projects were able to build some abstractions,
helpers, and conventions around the Absinthe.Middleware.Batch plugin that did a
good job of addressing these issues. That effort has been extracted into the
project Dataloader, which, while a generic tool not tied to GraphQL, is the
perfect fit for what we’re trying to accomplish here.

Discovering Dataloader
The challenge here is getting the data we want efficiently without coupling
our GraphQL API tightly to the SQL structure of our data, and without stuffing
our contexts full of tons of functions that exist just for GraphQL purposes.
We want to respect the idea that our contexts define a boundary, and if we
start just doing Ecto queries in all of our resolvers, we’ll be violating that
boundary. At the same time, GraphQL’s flexibility means that without a little
bit of help, we’re going to end up with dozens of functions within our context
to handle every scenario.

Dataloader is a small package that defines a minimalist API for getting data
in batches. We can use it within our contexts to keep all the SQL details
nicely packed away, while still providing flexibility. It also won’t require us to
have a lot of context boilerplate either. Although Dataloader is managed under
the absinthe-graphql GitHub organization, it really is entirely separate from
GraphQL itself, and actually has utilities for conveniently retrieving values
inside ordinary Phoenix controllers.

Credit Where Credit Is Due

Dataloader was first created in JavaScript by the developers at
Facebook to handle similar situations.2 The Elixir package is
inspired by its JavaScript counterpart, but is built to better suit
Elixir conventions and capabilities.

2. https://github.com/facebook/dataloader

Chapter 9. Tuning Resolution • 184

report erratum • discuss

https://github.com/facebook/dataloader
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’ll start by using Dataloader in an explicit and manual kind of way, and
then gradually build some helper functions so that within our schemas we’ll
eventually get something as easy as this:

field :category, :category, resolve: dataloader(Menu)

Let’s get a basic Dataloader up and running, and then we’ll walk through
what it does.

First let’s add it to our mix.exs file:

09-chp.performance/5-dataloader/mix.exs
defp deps do

[
{:dataloader, "~> 1.0.0"},➤

«Other deps»
]

end

Then in our Menu context, we’re going to define a Dataloader source:

09-chp.performance/5-dataloader/lib/plate_slate/menu/menu.ex
def data() do

Dataloader.Ecto.new(Repo, query: &query/2)
end

def query(queryable, _) do
queryable

end

Let’s hop into iex -S mix and play with this new library. First we’ll create our-
selves a Dataloader with a source:

iex> alias PlateSlate.Menu
iex> source = Menu.data()
iex> loader = Dataloader.new |> Dataloader.add_source(Menu, source)

With that in place, we’ll queue up some items to be loaded:

iex> loader = (
...> loader
...> |> Dataloader.load(Menu, Menu.Item, 1)
...> |> Dataloader.load(Menu, Menu.Item, 2)
...> |> Dataloader.load(Menu, Menu.Item, 3)
...>)

This doesn’t actually run any queries against the database yet. If we try to
get one of those items out of the Dataloader, we’ll just get nil.

iex> loader |> Dataloader.get(Menu, Menu.Item, 2)
nil

report erratum • discuss

Discovering Dataloader • 185

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/5-dataloader/mix.exs
http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/5-dataloader/lib/plate_slate/menu/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

To retrieve all queued-up batches, we use Dataloader.run/1:

iex> loader = loader |> Dataloader.run
[debug] QUERY OK source="items" db=17.2ms
SELECT i0."id", ...
FROM "items" AS i0 WHERE (i0."id" = ANY($1)) [[3, 2, 1]]

When we run that function, we can see that a single SQL query runs to grab
all the items we’ve queued up so far. Now if we use Dataloader.get/3 again, we’ll
see that our items are here. We can also use Dataloader.get_many/3 to conveniently
grab several items at once:

iex> menu_item = loader |> Dataloader.get(Menu, Menu.Item, 2)
%PlateSlate.Menu.Item{...}
iex> menu_items = loader |> Dataloader.get_many(Menu, Menu.Item, [1,2,3])
[%PlateSlate.Menu.Item{...}, ...]

The idea here is that we can load up one or more batches’ worth of data we
want to retrieve, on one or more sources, delaying the actual execution of any
SQL queries until we actually need the results. When we call Dataloader.run,
each data source is run concurrently, and within each data source each batch
is run concurrently. It doesn’t just work for IDs either; we can also use Ecto
association names:

iex> loader = (
...> loader
...> |> Dataloader.load_many(Menu, :category, menu_items)
...> |> Dataloader.run
...>)
[debug] QUERY OK source="categories" db=5.6ms
SELECT c0."id", ...
FROM "categories" AS c0 WHERE (c0."id" = $1) [1]

iex> categories = loader |> Dataloader.get_many(Menu, :category, menu_items)
[%PlateSlate.Menu.Category{...}, ...]

With the basics of Dataloader under our belt, let’s see how we can wire it in
to GraphQL. To start with, we’re going to place a loader struct inside of the
Absinthe context. This will make it readily available in all of our resolvers, so
that each one can efficiently load data if desired.

Right now, we set up our context within a plug, and we could definitely add
our Dataloader there. Annoyingly, though, we would also need to add it to
our UserSocket, because the plug we set up doesn’t affect sockets. While it’s
useful to be able to run specific code for plugs and sockets, this is a common
concern for both, so we want a common place for it to live.

Helpfully, the schema itself supports a context/1 callback that’s perfect for setting
up values that you want to be around no matter how you run GraphQL queries.

Chapter 9. Tuning Resolution • 186

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Head on over to your PlateSlateWeb.Schema module and do this:

09-chp.performance/5-dataloader/lib/plate_slate_web/schema.ex
def dataloader() do

alias PlateSlate.Menu
Dataloader.new
|> Dataloader.add_source(Menu, Menu.data())

end

def context(ctx) do
Map.put(ctx, :loader, dataloader())

end

The dataloader/0 function here is nothing special, just a handy way to organize
our code and make it easy to grab a Dataloader in IEx if we ever want to. The
context/1 callback gets passed the existing context value, and then we have the
opportunity to make any adjustments to it that we want. This function runs
after code in our PlateSlateWeb.Context plug, so, for example, if there’s a current
user configured we’ll find that in the ctx map that’s passed in.

We’re almost done with integrating Dataloader into Absinthe. One thing we
haven’t addressed so far is how Absinthe knows it needs to run the
before_resolution callbacks of the Absinthe.Middleware.Async and Absinthe.Middleware.Batch
plugins we looked at earlier in the chapter. No resolution functions have
happened at that point in the execution process, so it needs an external way
of knowing what plugins to run callbacks for. The data source it uses is a
plugins/0 function on your schema module, which simply defaults to Async and
Batch if you don’t supply a custom one. Let’s add one to include the Dataload-
er plugin:

09-chp.performance/5-dataloader/lib/plate_slate_web/schema.ex
def plugins do

[Absinthe.Middleware.Dataloader | Absinthe.Plugin.defaults]
end

Return once more to the :category field resolver, and let’s put Dataloader
to work:

09-chp.performance/5-dataloader/lib/plate_slate_web/resolvers/menu.ex
import Absinthe.Resolution.Helpers, only: [on_load: 2]
«Rest of file»
def category_for_item(menu_item, _, %{context: %{loader: loader}}) do

loader
|> Dataloader.load(Menu, :category, menu_item)
|> on_load(fn loader ->

category = Dataloader.get(loader, Menu, :category, menu_item)
{:ok, category}

end)
end

report erratum • discuss

Discovering Dataloader • 187

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/5-dataloader/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/5-dataloader/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/5-dataloader/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Not too bad! We grab our loader and load a batch exactly like we were doing
in IEx previously. New to the helper team is on_load, which we’re importing
from Absinthe.Resolution.Helpers. The callback function we pass to on_load is a lot
like the callback function we pass to the batch helper. Similar to batch, on_load
hands off control to the Absinthe.Middleware.Dataloader module, which arranges to
run our callback after the Dataloader batches have been run.

This resolver handles going from an item to its category, but we also ought to
handle the association going the other way as well, from a category to the items
on it. This direction is a bit more complicated though, because we probably
ought to support ordering, filtering, and other query customization options.

The Dataloader.Ecto source we’re using makes this easy by accepting a tuple as
the third argument, where the first element is the association or queryable,
and the second element is a map of params it passes down to our context.
This looks like:

loader |> Dataloader.get_many(Menu, {:items, %{order: :asc}}, categories)

As you recall, we set up our Menu Dataloader source with a query/2 function we
had stubbed out inside of our Menu context. This function lets you alter the Ecto
query used by Dataloader to enforce access rules or apply filters. Let’s hook it
up to the existing filtering options we have for our menu items. We’ll refactor the
list_items/1 function so the query building part is extracted into its own function:

09-chp.performance/5-dataloader/lib/plate_slate/menu/menu.ex
def list_items(args) do

args
|> items_query
|> Repo.all

end

defp items_query(args) do
Enum.reduce(args, Item, fn

{:order, order}, query ->
query |> order_by({^order, :name})

{:filter, filter}, query ->
query |> filter_with(filter)

end)
end

Now add a clause to the query/2 function pattern matching on Menu.Item, and
apply arguments:

09-chp.performance/5-dataloader/lib/plate_slate/menu/menu.ex
def query(Item, args) do

items_query(args)
end

Chapter 9. Tuning Resolution • 188

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/5-dataloader/lib/plate_slate/menu/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/5-dataloader/lib/plate_slate/menu/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

def query(queryable, _) do
queryable

end

Now, every time Dataloader queries a Menu.Item, the query/2 function will pattern
match on the first arg Item and apply the arguments specific for that queryable.
We can use this to easily wire efficient and flexible loading into the :items field
of our :category object, with the same kind of filtering we do at the top level.

09-chp.performance/5-dataloader/lib/plate_slate_web/schema/menu_types.ex
object :category do

interfaces [:search_result]

field :name, :string
field :description, :string
field :items, list_of(:menu_item) do

arg :filter, :menu_item_filter➤

arg :order, type: :sort_order, default_value: :asc➤

resolve &Resolvers.Menu.items_for_category/3
end

end

All we’re doing here is just adding two arguments to the :items field. We can
easily support this inside of our items_for_category/3 resolver function by using
Dataloader and passing in the arguments as part of the batch key.

09-chp.performance/5-dataloader/lib/plate_slate_web/resolvers/menu.ex
def items_for_category(category, args, %{context: %{loader: loader}}) do

loader
|> Dataloader.load(Menu, {:items, args}, category)
|> on_load(fn loader ->

items = Dataloader.get(loader, Menu, {:items, args}, category)
{:ok, items}

end)
end

Let’s play around with this in GraphiQL with the following GraphQL query
(see figure on page 190):

{
search(matching:"es") {

name
... on Category {
items(filter: {name: "F"}) {

name
}

}
}

}

report erratum • discuss

Discovering Dataloader • 189

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/5-dataloader/lib/plate_slate_web/schema/menu_types.ex
http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/5-dataloader/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We start by doing a basic search so that we can get some categories. Then
on each category, we’re retrieving items, filtering down to just those items
with the matching the letter “F”. Fields on the :category object work exactly like
fields on the root :query object, so just as we could have arguments on the root
menuItems field, we can also have them on the items field of the :category object.

Looking at our logs, we can see that Dataloader is handling both the filtering
as well as the batching:

SELECT i0."id", ...
FROM "items" AS i0
WHERE (i0."name" ILIKE $1) AND (i0."category_id" = ANY($2))
ORDER BY i0."category_id", i0."name" ["%F%", [1, 2, 3]]

If we look at the :items_for_category and :category_for_item resolver functions, we
can begin to sense a pattern here. In both cases, we’re just grabbing the
parent item, loading an association on it, and then pulling the result out in
the on_load callback.

This is such a common pattern that Absinthe provides a helper that lets you
turn both of these resolvers into a nice one-liner:

09-chp.performance/6-final/lib/plate_slate_web/schema/menu_types.ex
import Absinthe.Resolution.Helpers
alias PlateSlate.Menu
«Rest of file»

field :items, list_of(:menu_item) do
arg :filter, :menu_item_filter
arg :order, type: :sort_order, default_value: :asc
resolve dataloader(Menu, :items)➤

end

Chapter 9. Tuning Resolution • 190

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/09-chp.performance/6-final/lib/plate_slate_web/schema/menu_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

There’s no magic here. It’s no different than what we’ve already been doing.
Here is the dataloader/2 helper from within Absinthe itself:

def dataloader(source, key) do
fn parent, args, %{context: %{loader: loader}} ->

loader
|> Dataloader.load(source, {key, args}, parent)
|> on_load(fn loader ->
result = Dataloader.get(loader, source, {key, args}, parent)
{:ok, result}

end)
end

end

In essence, the dataloader function is simply building exactly the same resolver
functions we have been doing. With this in place, we do not even need the
two dedicated functions within the Resolvers.Menu module at all, and we can
remove them.

Dataloader is an incredibly powerful tool that strikes a balance between
flexible querying and having strict code boundaries. We’ve seen how with a
few functions, we can make it easy to walk associations within our GraphQL
schema, finally providing users with all the potential data that they need.

Moving On
If your head is spinning a bit about when to use each of these plugins, don’t
fear—we’re going to take a moment and recap what we covered in this chapter.
The linear “one field at a time” approach that Absinthe takes when executing
your documents is a great default, but it isn’t what you want all the time.
When you want things to go differently, you combine middleware’s ability to
suspend fields with plugins, which give you before and after resolution call-
backs. We looked at three built-in plugins that Absinthe supplies: Async,
Batch, and Dataloader.

• Dataloader: Use this library when it makes sense to get data in aggregate
out of sources. It ships with integrations with Ecto and some flexible
modules for making more sources. It provides the easiest, cleanest inte-
gration with Phoenix’s bounded context, and it should be your first choice
for efficiently loading fields from external sources.

• Batch: Use this plugin when you need to be very hands on with how to
actually get the data for a batch. Whether it’s a particularly gnarly SQL
query that you can’t sensibly handle with Dataloader, or any situation
where you need field-by-field control over how to get the data, Batch will
have your back.

report erratum • discuss

Moving On • 191

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

• Async: Use this plugin as a quick and easy way to get asynchronous
execution when the thing you’re executing isn’t sensibly batched. In most
cases, the Batch or Dataloader plugins are a superior approach. However,
the Async plugin is written to be a tutorial, and it’s a great place to start
if you want to look into making your own plugins.

With these tools at your disposal, you are fully equipped to build flexible,
secure, and efficient GraphQL servers with Elixir and Absinthe. Although the
helpers you use at the end should cover 99% of your day-to-day Absinthe
development needs, you’ve also got a firm foundation for understanding what’s
going on behind the one-liner that will support you no matter how you need
Absinthe to run.

To wrap up our PlateSlate server, here are some additional exercises you can
now do efficiently with the features you learned in this chapter:

1. Use the helper functions Absinthe provides or ones you create yourself
to fill out other relevant fields associating different objects together.

2. In particular, play around with retrieving the current menu item for a
given order’s order item. This one is tricky, since it crosses contexts and
order_item in an embedded schema.

3. There’s actually a helper that only requires that you pass in the Dataloader
source, which looks like dataloader(Menu). See if you can figure out how it
knows what field it’s on.

In the final part, we’re going to look at some features Absinthe provides for
integrating with clients.

Chapter 9. Tuning Resolution • 192

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Part III

Use Your API

In this third and final part of the book, you’ll learn
how to use your Absinthe-based GraphQL APIs,
both from the server and the client.

CHAPTER 10

Driving Phoenix Actions with GraphQL
As you’ve learned in the previous chapters, the foundation of a GraphQL API
is the definition of its schema, which models the domain and provides a
cohesive interface for accessing and modifying its data.

GraphQL APIs are commonly used (and in fact, GraphQL was originally
developed) to support data fetching for user interfaces that aren’t co-located
with the server code. Mobile applications and single-page JavaScript applica-
tions are the conventional clients for a web-facing GraphQL API. But it doesn’t
need to be that way. You can use the power of GraphQL directly from other
parts of your Elixir application too.

You can even use GraphQL to build more traditional, server-side, rendered
user interfaces, and in this chapter, we’re going to show you how.

We’re going to work on building out a basic administrative interface for our
example application, PlateSlate. We’ll add features so that administrators can
list and get the details of menu items, and we’ll do this all by using—and
improving—our existing GraphQL schema.

We’ll be building the user interface on top of Phoenix’s controllers and tem-
plating. If you’ve never used Phoenix to build a UI, don’t worry; we’ll work
through it step by step.

Along the way, you’re going to learn about an advanced GraphQL feature,
directives, which are special annotations that you can use to customize
GraphQL execution. You’ll see that they’re a pretty handy feature to have
around.

Let’s jump right in and start building our first GraphQL-driven Phoenix action,
complete with a user interface!

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Building an Action
The first thing we’ll need is a simple way to list all the menu items that we have
in our system so that we can then take further action upon them. If you aren’t
super familiar with doing server-side rendering with Phoenix, don’t worry;
we’ll cover everything you need to know here. In order to avoid writing a ton
of HTML boilerplate, we’ll use one of the Phoenix generators and then we’ll
replace the generated controller contents as needed. Run this in your shell:

$ mix phx.gen.html --no-context --no-schema Menu Item items
$ rm test/plate_slate_web/controllers/item_controller_test.exs

The first command generates some boilerplate HTML for us, and the second
removes a test case we won’t be needing. Up next is our router. We’ll be
making use of the :browser pipeline that’s been sitting around unused this
whole time by creating an "/admin" scope inside of which we’ll be setting up
our controller:

10-chp.serverui/1-start/lib/plate_slate_web/router.ex
scope "/admin", PlateSlateWeb do

pipe_through :browser

resources "/items", ItemController
end

We can confirm that that our router is properly set up by using the handy
mix phx.routes command:

$ mix phx.routes
* /api Absinthe.Plug [schema: PlateSlateWeb.Schema]
* /graphiql Absinthe.Plug.GraphiQL [...]
item_path GET /admin/items PlateSlateWeb.ItemController :index
item_path GET /admin/items/:id/edit PlateSlateWeb.ItemController :edit
item_path GET /admin/items/new PlateSlateWeb.ItemController :new
item_path GET /admin/items/:id PlateSlateWeb.ItemController :show
item_path POST /admin/items PlateSlateWeb.ItemController :create
item_path PATCH /admin/items/:id PlateSlateWeb.ItemController :update
PUT /admin/items/:id PlateSlateWeb.ItemController :update
item_path DELETE /admin/items/:id PlateSlateWeb.ItemController :delete

With that out of our way, we can turn our attention to the controller, where
we should replace its existing contents entirely with the following:

10-chp.serverui/1-start/lib/plate_slate_web/controllers/item_controller.ex
defmodule PlateSlateWeb.ItemController do

use PlateSlateWeb, :controller
use Absinthe.Phoenix.Controller,

schema: PlateSlateWeb.Schema

end

Chapter 10. Driving Phoenix Actions with GraphQL • 196

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/1-start/lib/plate_slate_web/router.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/1-start/lib/plate_slate_web/controllers/item_controller.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Now for the fun part. The way that Absinthe.Phoenix.Controller works is that it gives
you a way to associate a GraphQL query with a controller action, and use the
data looked up from that query in your controller. We won’t be replacing the
controller actions but rather augmenting them by utilizing all the lookup
ability we’ve already written, letting our controller focus on just managing
the HTTP connection. Start with something basic:

10-chp.serverui/1-start/lib/plate_slate_web/controllers/item_controller.ex
@graphql """
{

menu_items {
name

}
}
"""
def index(conn, result) do

result |> IO.inspect➤

render(conn, "index.html", items: result.data["menu_items"] || [])
end

Let’s break this down. At the top of this snippet is a @graphql module attribute
on which we’re putting a string with a GraphQL query. Beneath that there’s
a relatively ordinary-looking Phoenix controller callback index/2, which gets
the HTTP conn and some params, and then renders an index.html.

At a high level, the controller action is acting as a GraphQL client. Instead of
looking up menu items by directly hitting the database or PlateSlate.Menu context,
it submits a GraphQL query to Absinthe, and then it receives the results of that
query as the second argument to the index/2 function. The controller then can
go about whatever it would normally do with data; in this case, we’re using it
to render an HTML template, and we’re providing that template with some :assigns.

By way of Phoenix review, :assigns is a key on the connection struct that holds
a map where you can just “assign” values. Those values propagate along with
the connection itself and are made available to you inside of templates.

Head over to the template briefly so that you can make sure it will actually
show you something interesting:

10-chp.serverui/1-start/lib/plate_slate_web/templates/item/index.html.eex
<h2>Listing Items</h2>

<table class="table">
<thead>

<tr>
<th>Menu Item</th>

</tr>
</thead>

report erratum • discuss

Building an Action • 197

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/1-start/lib/plate_slate_web/controllers/item_controller.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/1-start/lib/plate_slate_web/templates/item/index.html.eex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

<tbody>
<%= for item <- @items do %>

<tr>
<td><%= item["name"] %></td>

</tr>
<% end %>

</tbody>
</table>

This is all 100% totally normal EEx (Embedded Elixir1) template code. As with
other templates in Phoenix, we can access values that we place on the con-
nection assigns (from within our controller) as usual via @. We put all of the
items that we got back from GraphQL under the items: assign in the controller,
so we can access it in the template as @items. Then we can just loop over each
item and build out the HTML table.

Before we go deeper, let’s get this running a bit so we can get some hands-on
familiarity. Start your server:

$ iex -S mix phx.server

Then browse to http://localhost:4000/admin/items.

It isn’t much, but we’ve got items!

Now let’s take a look at the logs. The IO.inspect line from our controller will
show us the result of our GraphQL query:

1. https://hexdocs.pm/eex

Chapter 10. Driving Phoenix Actions with GraphQL • 198

report erratum • discuss

https://hexdocs.pm/eex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

[info] GET /admin/items
[debug] Processing with PlateSlateWeb.ItemController.index/2

Parameters: %{}
Pipelines: [:browser]

[debug] QUERY OK source="items" db=2.4ms decode=0.1ms
SELECT ... FROM "items" AS i0 ORDER BY i0."name" []
%{data: %{"menu_items" => [%{"name" => "Bánh mì"},

%{"name" => "Chocolate Milkshake"}, %{"name" => "Croque Monsieur"},
%{"name" => "French Fries"}, %{"name" => "Lemonade"},
%{"name" => "Masala Chai"}, %{"name" => "Muffuletta"},
%{"name" => "Papadum"}, %{"name" => "Pasta Salad"}, %{"name" => "Reuben"},
%{"name" => "Soft Drink"}, %{"name" => "Thai Salad"},
%{"name" => "Vada Pav"}, %{"name" => "Vanilla Milkshake"},
%{"name" => "Water"}]}}

]}}

No surprises here. The result that we get in the second argument to our index/2
function is essentially the output you’d get from using Absinthe.run manually.
The only difference is that here we’re doing menu_items instead of menuItems, so
we get keys that are a bit more idiomatic to Elixir.

The response could be easier to use. If we were getting this data directly from
a Menu.list_items/1 function call, we’d have nice atom keys to work with, and
what we want is a way to get the same kind of result from GraphQL too. In
fact, if we want to use Phoenix path or form helpers, we really need to be able
to get the entire MenuItem struct back, because Phoenix uses some internal
information in Ecto structs to make certain markup decisions.

In other words, if we wanted to link to each menu item in our template, we’d
do something like <%= link "Show", to: item_path(@conn, :show, item) %>. Right now,
however, item is just %{"name"=> "Reuben"} and, understandably, Phoenix doesn’t
know how to build a link from that. It needs a fully fleshed out %Menu.Item{}
struct and all of its data.

Here’s where directives come into play.

A directive is a type that’s defined in our schema, just like an object or a
scalar, and we can use these types to annotate parts of our GraphQL docu-
ments for special handling.

Absinthe.Phoenix ships with a couple of directives, which we can get access to
by importing them into our own schema:

10-chp.serverui/2-action/lib/plate_slate_web/schema.ex
import_types __MODULE__.MenuTypes
import_types __MODULE__.OrderingTypes
import_types __MODULE__.AccountsTypes
import_types Absinthe.Phoenix.Types➤

report erratum • discuss

Building an Action • 199

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/2-action/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

With this in place, we have access to the :action directive, which we can use
to annotate GraphQL queries in our controller. Directives are placed in
GraphQL documents prefixed with a @ sigil. Let’s see it at work:

10-chp.serverui/2-action/lib/plate_slate_web/controllers/item_controller.ex
@graphql """➤

query Index @action(mode: INTERNAL) {➤

Here you can see the :action directive placed in the GraphQL document via
@action, marking the query operation. Much like a field, directives can take
arguments. The mode: INTERNAL bit isn’t a strange new syntax; this is a totally
ordinary argument with an enum value that tells Absinthe.Phoenix that we want to
have it adjust the results of executing the query to suit internal Elixir usage.

If we do just this one change and reload our controller, we won’t get the list
anymore, since our code still expects string keys, but we do get some interest-
ing IO.inspect output:

%{data: %{menu_items: [%{name: "Bánh mì"}, %{name: "Chocolate Milkshake"},
%{name: "Croque Monsieur"}, %{name: "French Fries"}, %{name: "Lemonade"},
%{name: "Masala Chai"}, %{name: "Muffuletta"}, %{name: "Papadum"},
%{name: "Pasta Salad"}, %{name: "Reuben"}, %{name: "Soft Drink"},
%{name: "Thai Salad"}, %{name: "Vada Pav"}, %{name: "Vanilla Milkshake"},
%{name: "Water"}]}}

Because we placed the @action directive on our query, flagging the query as
something we want to run in the INTERNAL mode, we get atom keys. When
Absinthe.Phoenix ran the query, it used special phases that looked for these flags
to adjust the output for us.

While atom keys are nice, they aren’t enough to give us a first-class, server-
side experience. We need to be able to get the full structs of each menu item
so that we can have the full Phoenix.HTML experience. Thankfully, @action has
our back.

10-chp.serverui/2-action/lib/plate_slate_web/controllers/item_controller.ex
@graphql """➤

query Index @action(mode: INTERNAL) {➤

menu_items➤

}➤

"""➤

def index(conn, result) do
result |> IO.inspect
render(conn, "index.html", items: result.data.menu_items)➤

end

The most important thing to notice here is that our GraphQL query now just
has a bare menu_items field instead of the previous menu_items { name }. When

Chapter 10. Driving Phoenix Actions with GraphQL • 200

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/2-action/lib/plate_slate_web/controllers/item_controller.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/2-action/lib/plate_slate_web/controllers/item_controller.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

using @action, this bears special significance: it will return the bare data from
field resolvers. With this and the change we make to the render line (to use
the atom keys), a controller reload will give us back our list.

Take a look at the debug output:

%{data: %{menu_items: [
%PlateSlate.Menu.Item{name: "Bánh mì", ...},
%PlateSlate.Menu.Item{name: "Chocolate Milkshake", ...],
...

The GraphQL document on the controller is returning regular Elixir structs!
This is the power of directives. By giving you a flexible way to annotate your
document, GraphQL clients and servers have the ability to make deep cus-
tomizations to their APIs.

Let’s put this new struct data to use:

10-chp.serverui/2-action/lib/plate_slate_web/templates/item/index.html.eex
<%= for item <- @items do %>

<tr>
<td><%= item.name %></td>
<td class="text-right">➤

<%= link "Show", to: item_path(@conn, :show, item),➤

class: "btn btn-default btn-xs" %>➤

➤

<%= link "Edit", to: item_path(@conn, :edit, item),➤

class: "btn btn-default btn-xs" %>➤

➤

<%= link "Delete", to: item_path(@conn, :delete, item),➤

method: :delete,➤

data: [confirm: "Are you sure?"],➤

class: "btn btn-danger btn-xs" %>➤

➤

</td>➤

</tr>
<% end %>

The index page here is a jumping-off point to other pages that will let us view
more details or edit particular items on the menu. The chunk of code we’ve
added to the table contains various links to those pages that make use of
Phoenix path helpers.

Phoenix path helpers are pretty cool. At compile time, the routes that you set
up in your router are compiled into a bunch of functions within the PlateSlate-
Web.Router.Helpers module, which get imported for us inside of templates.
Together with the Phoenix.Param protocol, which builds a URL parameter out of
a struct, we can use handy functions like item_path(@conn, :show, item).

report erratum • discuss

Building an Action • 201

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/2-action/lib/plate_slate_web/templates/item/index.html.eex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The real value of the @action directive is that we can treat our GraphQL API
as a first-class Elixir data source. With that kind of support, it frees us to go
back to writing completely ordinary server-side UI code. The effort you expend
to build your GraphQL API for a mobile or JavaScript application can be
immediately reused to power backend UIs, and vice versa.

Let’s wrap up this first pass at our index by including the name of the category
that each menu item belongs to. Here we face a small challenge. If we do the
ordinary { menu_items { category { name }}}, we would no longer have a bare
menu_items field, so the result would no longer include the full structs. What
we want to have happen here is for the contents of the category resolver to
simply get placed into the results we were getting before. To accomplish this,
we’ll use another directive, :put:

10-chp.serverui/3-put/lib/plate_slate_web/controllers/item_controller.ex
@graphql """
query Index @action(mode: INTERNAL) {

menu_items @put {
category

}
}
"""
def index(conn, result) do

render(conn, "index.html", items: result.data.menu_items)
end

The use of @put in our document indicates to Absinthe.Phoenix that instead of
narrowing down the results of the menu_items field to only the fields in the
selection set, we want to put those values into the previous result.

Now that we’re loading our category, we can update our template:

10-chp.serverui/3-put/lib/plate_slate_web/templates/item/index.html.eex
<table class="table">

<thead>
<tr>
<th>Menu Item</th>
<th>Category</th>➤

<th></th>➤

</tr>
</thead>
<tbody>

<%= for item <- @items do %>
<tr>
<td><%= item.name %></td>
<td><%= item.category.name %></td>➤

Chapter 10. Driving Phoenix Actions with GraphQL • 202

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/3-put/lib/plate_slate_web/controllers/item_controller.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/3-put/lib/plate_slate_web/templates/item/index.html.eex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Reload your server to see it all come together:

At the end of the day, our controller is hardly doing anything at all, which is
how it should be. The controller can focus on managing the HTTP connection
itself, which, in the case of an index page, is essentially just a matter of
sending a rendered template over the wire. Our Absinthe schema already
knows how to do all the heavy lifting to get our data, so we just tell it what
the controller needs and pass it along to the template.

Directives Are Safe

When using normal GraphQL documents, all values that the client
will receive are noted explicitly in the schema. This means that
clients to the API will only get exactly the data that we’re willing
to give them; they can’t get data that might be sensitive. When
using @action, however, extra Elixir values are making their way
to our templates, even if they aren’t in the schema.

Fortunately, this isn’t unsafe at all. Directives can’t force the
server to do anything; they just ask nicely. The :action and :put
directives we’re using here are ignored completely unless run
through Absinthe.Phoenix.Controller. This means that if someone uses
them in a normal API, they are ignored completely, and any sensi-
tive values remain safely on the server.

Handling Input
The main administrative feature we want is to be able to look at the order
history for each of the menu items that we have listed here. This isn’t the
kind of thing that should be visible to just anyone, though, so we need to

report erratum • discuss

Handling Input • 203

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

take some steps to secure the UI. You already know how to secure portions
of your GraphQL schema, but you’ll learn how to hook that up to the kinds
of session mechanisms you use when doing server-driven UIs. It’ll also be a
good first intro to handling input that comes from the forms.

When working with normal browser-based interfaces, we’ll need a way to put
authentication information into the session cookie that Plug manages. After
a successful login, user information will be placed into the cookie, and then
that cookie will get pushed along in every subsequent request. Back in
Chapter 8, Securing with Authentication and Authorization, on page 139, we
created a plug to handle retrieving auth information from headers, and we’ll
create a similar plug for our admin scope. It’s possible to refactor the existing
plug to handle both the API and the admin interface, but there’s enough dis-
tinct logic that it’s cleaner to create a new one.

10-chp.serverui/4-login/lib/plate_slate_web/admin_auth.ex
defmodule PlateSlateWeb.AdminAuth do

@behaviour Plug
import Plug.Conn

def init(opts), do: opts

def call(conn, _) do
with id when not is_nil(id) <- get_session(conn, :employee_id),
%{} = user <- PlateSlate.Accounts.lookup("employee", id) do
conn
|> Plug.Conn.assign(:current_user, user)
|> Absinthe.Plug.put_options(context: %{current_user: user})

else
_ ->

conn
|> clear_session
|> Phoenix.Controller.redirect(to: "/admin/session/new")

end
end

end

Instead of looking at the headers, we’re using the get_session/2 function provided
by the Plug.Conn module to check the user-provided cookie for an :employee_id. If
there is such an ID and it matches up to a user, we put that user in the connec-
tion :assigns so that the user is available broadly within our UI, and we put it in
the Absinthe.Plug context so that our GraphQL queries have access to it too. If the
user isn’t authenticated, they’ll just be redirected to the login page, and
whatever session info they have is cleared out just in case it’s erroneous.

Chapter 10. Driving Phoenix Actions with GraphQL • 204

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/4-login/lib/plate_slate_web/admin_auth.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The trick in the router is that you want this to be applied to the item routes
but not the session routes. Otherwise, you’d have the catch 22 of requiring
authentication to log in. You can achieve this by having two "/admin" scopes
in the router:

10-chp.serverui/4-login/lib/plate_slate_web/router.ex
pipeline :admin_auth do

plug PlateSlateWeb.AdminAuth
end

scope "/admin", PlateSlateWeb do
pipe_through :browser

resources "/session", SessionController,
only: [:new, :create, :delete],
singleton: true

end

scope "/admin", PlateSlateWeb do
pipe_through [:browser, :admin_auth]

resources "/items", ItemController
end

The first bit here is a Phoenix router pipeline with our brand-new AdminAuth
module plugged in. Then we’ve got the "/admin" scope holding the session paths,
and it only uses the :browser pipeline so that anyone can view the login page.
Afterward, there’s another admin clause that we run through both the
:browser and the :admin_auth pipeline, and it locks down the item routes we
defined previously.

At this point, we’ve really handled the most complicated Phoenix bits. Let’s
fill out the session view and template, then turn our attention to the interesting
part: the controller.

Our view couldn’t be simpler:

10-chp.serverui/4-login/lib/plate_slate_web/views/session_view.ex
defmodule PlateSlateWeb.SessionView do

use PlateSlateWeb, :view
end

When we created the ItemController, we used a Phoenix generator, so the ItemView
was created for us. We aren’t using generators this time, so we need to create
it ourselves, but this isn’t a lot of trouble given its size.

report erratum • discuss

Handling Input • 205

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/4-login/lib/plate_slate_web/router.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/4-login/lib/plate_slate_web/views/session_view.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The login template is pretty simple too:

10-chp.serverui/4-login/lib/plate_slate_web/templates/session/new.html.eex
<h2>Login</h2>

<%= form_for @conn, session_path(@conn, :create), fn f -> %>
<div class="form-group">

<label>
Email: <%= text_input f, :email %>

</label>

<label>
Password: <%= password_input f, :password %>

</label>

<%= submit "Submit", class: "btn btn-primary" %>
</div>

<% end %>

We’re using the Phoenix form_for helper just to minimize the HTML boilerplate,
and with it we set up a basic form with email and password inputs. When we
submit this form, it’ll do a POST to the session_path, which evaluates out to
/admin/sessions.

Looking Up Your Paths

Remember, if you need to check what the name for a route is, use
the mix phx.routes task.

Last but not least, let’s get a basic controller action going so we can render this.

10-chp.serverui/4-login/lib/plate_slate_web/controllers/session_controller.ex
defmodule PlateSlateWeb.SessionController do

use PlateSlateWeb, :controller
use Absinthe.Phoenix.Controller,

schema: PlateSlateWeb.Schema

def new(conn, _) do
render(conn, "new.html")

end
end

At this point, we’ve got enough in place that we can start our server and head
over to the login page. If we head to the items page that we were looking at
before at /admin/items instead, we should be redirected to the login page, since
we’ve locked that down now.

Start your server and browse to http://localhost:4000/admin/session/new.

$ iex -S mix phx.server

Chapter 10. Driving Phoenix Actions with GraphQL • 206

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/4-login/lib/plate_slate_web/templates/session/new.html.eex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/4-login/lib/plate_slate_web/controllers/session_controller.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

It’s a form!

If we try to submit this form at the moment, it’s going to raise an error, since
we haven’t configured a create/2 function in the session controller yet. Let’s do
it anyway, though, just so that we can see the parameter output in the logs:

[info] POST /admin/session
[debug] Processing with PlateSlateWeb.SessionController.create/2

Parameters: %{
"_csrf_token" => ...,
"_utf8" => "✓",
"email" => "user@localhost",
"password" => "[FILTERED]"

}

We can hook these parameters up to a GraphQL document by naming variables
within a document after their corresponding parameter. All of the actual valida-
tion logic already exists in our login_employee mutation, so we just need to write
a GraphQL document that maps these parameters to that mutation field.

10-chp.serverui/4-login/lib/plate_slate_web/controllers/session_controller.ex
@graphql """
mutation ($email: String!, $password: String!) @action(mode: INTERNAL) {

login(role: EMPLOYEE, email: $email, password: $password)
}
"""
def create(conn, %{data: %{login: result}}) do

case result do
%{user: employee} ->
conn
|> put_session(:employee_id, employee.id)
|> put_flash(:info, "Login successful")
|> redirect(to: "/admin/items")

_ ->
conn
|> put_flash(:info, "Wrong email or password")
|> render("new.html")

end
end

To recap, the login_employee mutation field returns an :employee_session object,
which consists of an employee field and a token field. If the login information

report erratum • discuss

Handling Input • 207

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/4-login/lib/plate_slate_web/controllers/session_controller.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

isn’t correct, it adds a GraphQL error and returns nil. The login field requires
two arguments, email and password, which we’re passing in via variables.
Those variable names match up the parameter names set in our form, so
when we submit the form, Absinthe.Phoenix.Controller grabs those parameters and
uses them as GraphQL variable inputs.

Our controller logic is focused on what to do with the HTTP connection
depending on the result of the mutation. If the login is successful, we need
to add the employee information to the session via put_session so that the data
is available in future requests for the AdminAuth plug’s get_session function. With
the session configured, the controller can redirect to the items page, which
should now render happily for us.

Give it a go first with a bad username and password:

If you still have the user we created back in Chapter 8, Securing with Authenti-
cation and Authorization, on page 139, you should be able to log in with email:
foo@example.com, password: abc123. If not, let’s create one here in your console:

$ iex -S mix phx.server
iex(1)> %PlateSlate.Accounts.User{} |>
PlateSlate.Accounts.User.changeset(%{

role: "employee",
name: "Becca Wilson",
email: "foo@example.com",
password: "abc123"}) |> PlateSlate.Repo.insert!

Head back to http://localhost:4000/admin/sessions/new and give it a whirl!

Chapter 10. Driving Phoenix Actions with GraphQL • 208

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Logging out is just a matter of clearing out the session cookie, which doesn’t
really involve our GraphQL API. All we need is a basic delete action in the
controller:

10-chp.serverui/4-login/lib/plate_slate_web/controllers/session_controller.ex
def delete(conn, _) do

conn
|> clear_session
|> redirect(to: "/admin/session/new")

end

And we need a link to it on the UI:

10-chp.serverui/4-login/lib/plate_slate_web/templates/layout/app.html.eex
<nav role="navigation">

<ul class="nav nav-pills pull-right">
Get Started
<%= if @conn.assigns[:current_user] do %>➤

<%= link "Logout", to: session_path(@conn, :delete),➤

method: :delete,➤

class: "btn btn-danger btn-xs" %>➤

➤

<% end %>➤

</nav>

Reload the page and look to the top right-hand corner:

At the end of the day, getting data into our GraphQL queries is pretty simple.
Absinthe.Phoenix just does a one-to-one mapping of parameters to variables, and
then all the usual logic takes over.

Complex Queries
Now that we have a session management story for our admin UI, we can
tackle exposing more sensitive information. What we want to do is provide
an order history that we’ll display on each menu item show page. We’ll have
to start by adding some fields to our GraphQL schema in order to connect
menu items over to the orders, and we’ll need to do a few tweaks at the
database and context level to make pulling the data out easy.

report erratum • discuss

Complex Queries • 209

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/4-login/lib/plate_slate_web/controllers/session_controller.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/4-login/lib/plate_slate_web/templates/layout/app.html.eex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

What we’ll get for this effort, though, is pretty cool. Not only will it give us the
ability to show this information on the show page, but we’ll also suddenly have
the ability to display a subset of the information back on the index page, and
we’ll have set up everything the next chapter needs to do the same thing in
JavaScript. A little bit of effort goes a long way.

Connecting Items to Orders
Let’s start with thinking about how we want to get the orders for a menu item,
because the database design we came up with in Chapter 6, Going Live with
Subscriptions, on page 97 does not make that quite as easy as we’d like. As
you recall, when an order is placed, there is a snapshot taken of the orders
at the time of ordering, so that any future price or name changes to the menu
won’t affect our historical record. It also gives us an opportunity to experiment
with how embedded schemas work with GraphQL.

What this means, however, is that the snapshots don’t reference menu items
by ID but rather by name, and they’re inside of a JSONB column on the orders
table. If this were a production system, we’d probably normalize this into a
significantly more complicated setup with a half dozen join tables, but for our
purposes, we can do something a bit simpler.

In the code provided for this book, you’ll find a database migration that creates
a PostgreSQL view. A view is basically a table powered by an SQL query. You
can treat it exactly like a table from within Ecto, which is a perfect way to
expose an Elixir-friendly interface for certain database operations that might
otherwise be less ergonomic. We’ve included the code that creates this
database view here for reference:

10-chp.serverui/5-history/priv/repo/migrations/20171108213102_create_order_item_view.exs
defmodule PlateSlate.Repo.Migrations.CreateOrderItemView do

use Ecto.Migration

def up do
execute("""
CREATE VIEW order_items AS

SELECT i.*, o.id as order_id
FROM orders AS o, jsonb_to_recordset(o.items)

AS i(name text, quantity int, price float, id text)
""")

end

def down do
execute("DROP VIEW order_items")

end
end

Chapter 10. Driving Phoenix Actions with GraphQL • 210

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/priv/repo/migrations/20171108213102_create_order_item_view.exs
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’re not going to worry too terribly much about the SQL query itself here.
The point to take away is that we’ve created a view we can query as "order_items"
and it has the columns name, quantity, price, id, order_id.

With that in place, we’re in a good spot to turn to our GraphQL schema and
think about how we want to represent the history. When we think about an
order history, we often want to do more than merely list the orders, we also
want to know certain aggregate information about the span of time we’re
querying. In our case, we’re going to show the total quantity of the menu item
sold, as well as the total revenue we’ve earned from it over time.

Here’s how we model this in our GraphQL schema:

10-chp.serverui/5-history/lib/plate_slate_web/schema/menu_types.ex
alias PlateSlateWeb.Resolvers
alias PlateSlateWeb.Schema.Middleware
«Rest of file»
object :menu_item do
«Rest of menu item object»

field :order_history, :order_history do
arg :since, :date
middleware Middleware.Authorize, "employee"
resolve &Resolvers.Ordering.order_history/3

end
end

object :order_history do
field :orders, list_of(:order) do

resolve &Resolvers.Ordering.orders/3
end

field :quantity, non_null(:integer) do
resolve Resolvers.Ordering.stat(:quantity)

end

@desc "Gross Revenue"
field :gross, non_null(:float) do

resolve Resolvers.Ordering.stat(:gross)
end

end

Instead of doing something like field:order_history,list_of(:order), we have this interstitial
:order_history object, and what it does is provide us a place to expose metadata
alongside the actual orders themselves. In a way, it’s a lot like what we did
in Chapter 4, Adding Flexibility, on page 59 when we created a :menu_item_result
object to manage error information. This pattern of creating intermediate
objects to provide metadata is a good one to keep in mind, and we’ll see it
again in the next chapter when we look at pagination.

report erratum • discuss

Complex Queries • 211

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/schema/menu_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’re also doing something new with the :gross and :quantity fields. On the :orders
field, the resolve: key is provided an anonymous function literal, but on these
two statistics fields, we’re actually calling a function to build a resolver function
dynamically.

Last but not least, in our schema we need to add a top-level way to get a
menu item by ID:

10-chp.serverui/5-history/lib/plate_slate_web/schema.ex
query do

«Other query fields»
field :menu_item, :menu_item do

arg :id, non_null(:id)
resolve &Resolvers.Menu.get_item/3

end
end

And the corresponding resolver:

10-chp.serverui/5-history/lib/plate_slate_web/resolvers/menu.ex
import Absinthe.Resolution.Helpers
«Other resolvers»
def get_item(_, %{id: id}, %{context: %{loader: loader}}) do

loader
|> Dataloader.load(Menu, Menu.Item, id)
|> on_load(fn loader ->

{:ok, Dataloader.get(loader, Menu, Menu.Item, id)}
end)

end

While Dataloader isn’t mandatory here since it isn’t super common to have
a large number of top-level queries by ID, it makes the resolver function a bit
more versatile, and we could use the same function on any other field that
needs to look up an item by ID in the future.

This will enable queries like this:

{
menu_item(id: "1") {

name
order_history(since: "2017-01-01") {
quantity
gross
orders { orderedAt customerNumber }

}
}

}

Chapter 10. Driving Phoenix Actions with GraphQL • 212

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/resolvers/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

One challenge our resolvers will need to sort out is that while it makes sense
to place the since: argument on the order_history field itself, we really need that
value in all three resolvers underneath it. We’ll find all of them inside the
Resolvers.Ordering file, so let’s give them a look:

10-chp.serverui/5-history/lib/plate_slate_web/resolvers/ordering.ex
import Absinthe.Resolution.Helpers

def order_history(item, args, _) do
one_month_ago = Date.utc_today |> Date.add(-30)
args = Map.update(args, :since, one_month_ago, fn date ->

date || one_month_ago
end)
{:ok, %{item: item, args: args}}

end

Each resolver here is doing something a bit different. The resolver for the
order_history field itself simply grabs the arguments and the menu_item and it
passes those through as a map. This is how we can get access to those values
within the :quantity and :orders fields, because the order_history return value is
used as the parent value for each of their resolvers.

10-chp.serverui/5-history/lib/plate_slate_web/resolvers/ordering.ex
def orders(%{item: item, args: args}, _, _) do

batch({Ordering, :orders_by_item_name, args}, item.name, fn orders ->
{:ok, Map.get(orders, item.name, [])}

end)
end

To load the orders, we leverage the batch plugin that we covered in the last
chapter. Although there aren’t N+1 concerns when loading a single menu item,
we’ll be reusing these fields in the index at the end, and it’s generally a wise
approach to avoid N+1-style coding proactively. The batch plugin makes it
particularly easy to handle the statistics, so we’ll just use that for loading all
the data here instead of setting up a Dataloader source for the Ordering context.

To recap how batch works, the orders/3 resolver sets up a batch key of {Ordering,
:orders_by_item_name, args}, and it aggregates the item.name value, which means
that it will call the Ordering.orders_by_item_name/2 function as Ordering.orders_by_item_
name(args, aggregated_names). The output of that function will be a map containing
orders for each menu item by name, so we can just pull out the orders for
this specific item.

The batch function itself is where we use the order_items view we created earlier
to do some pretty ordinary filtering:

report erratum • discuss

Complex Queries • 213

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/resolvers/ordering.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/resolvers/ordering.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

10-chp.serverui/5-history/lib/plate_slate/ordering/ordering.ex
def orders_by_item_name(%{since: since}, names) do

query = from [i, o] in name_query(since, names),
order_by: [desc: o.ordered_at],
select: %{name: i.name, order: o}

query
|> Repo.all
|> Enum.group_by(& &1.name, & &1.order)

end
defp name_query(since, names) do

from i in "order_items",
join: o in Order, on: o.id == i.order_id,
where: o.ordered_at >= type(^since, :date),
where: i.name in ^names

end

The meat of the query happens in the name_query helper function, which we’ll also
use for the stats retrieval here in a moment. Together, these functions receive
the :since argument and aggregated names, and create a mapping of menu item
names to orders on that item. Aggregating the statistics on the orders works in
a similar way:

10-chp.serverui/5-history/lib/plate_slate/ordering/ordering.ex
def orders_stats_by_name(%{since: since}, names) do

Map.new Repo.all from i in name_query(since, names),
group_by: i.name,
select: {i.name, %{

quantity: sum(i.quantity),
gross: type(sum(fragment("? * ?", i.price, i.quantity)), :decimal)

}}
end

The main thing to notice here is that we’re computing both statistics at the
same time, so the shape of the returned data structure will look like this:

%{
"Chocolate Milkshake" => %{quantity: 4, gross: 12.0},
"French Fries" => %{quantity: 2, gross: 1.0},

}

By returning both statistics, we can reduce the boilerplate in our resolver
related to loading these statistics:

10-chp.serverui/5-history/lib/plate_slate_web/resolvers/ordering.ex
def stat(stat) do

fn %{item: item, args: args}, _, _ ->
batch({Ordering, :orders_stats_by_name, args}, item.name, fn results ->
{:ok, results[item.name][stat] || 0}

end)
end

end

Chapter 10. Driving Phoenix Actions with GraphQL • 214

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate/ordering/ordering.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate/ordering/ordering.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/resolvers/ordering.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

You can think of the stat/1 function as a resolver function builder. We pass in
the statistic that we want from the schema like Resolvers.Ordering.stat(:quantity) or
Resolvers.Ordering.stat(:gross), and then it returns a resolver function that sets up
the generic batch. It then pulls out the specific statistic we care about via
results[item.name][stat].

While the database design didn’t make it trivial to connect menu items to orders,
it provided us a good opportunity to experiment with some helpful batching
techniques, and we learned about resolver building functions along the way.
If you haven’t reset your database since earlier in the book, you may still have
some orders around. Otherwise, if you check out the book code for this chapter,
you’ll see that the seed data has been updated to include a user and a large
number of orders over time. (Having a lot of orders will make the filtering by
time a bit more interesting when we get to actually showing it in the UI.)

Displaying Order History
Our GraphQL schema is good to go at this point, so it’s all UI work from here.
What we want to do is put together a page that shows the details of a specific
menu item, along with its order history and the statistics we compute. The
controller action itself is nice and simple:

10-chp.serverui/5-history/lib/plate_slate_web/controllers/item_controller.ex
use Absinthe.Phoenix.Controller,

schema: PlateSlateWeb.Schema,
action: [mode: :internal]

«Rest of controller»
@graphql """
query ($id: ID!, $since: Date) {

menu_item(id: $id) @put {
order_history(since: $since) {

quantity
gross
orders

}
}

}
"""
def show(conn, %{data: %{menu_item: nil}}) do

conn
|> put_flash(:info, "Menu item not found")
|> redirect(to: "/admin/items")

end
def show(conn, %{data: %{menu_item: item}}) do

since = variables(conn)["since"] || "2018-01-01"
render(conn, "show.html", item: item, since: since)

end

report erratum • discuss

Complex Queries • 215

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/controllers/item_controller.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

One thing that’s different from before is that instead of including an @action
directive on this particular GraphQL query, we’re setting a configuration value
on the use Absinthe.Phoenix.Controller invocation. When all of the GraphQL docu-
ments within a controller should all use the mode: :internal option, you can
simply specify this on the use call, so that you don’t have to add that boilerplate
to every document.

The callback itself has two clauses: one if the ID we’re given fails to turn up
a menu item, and another if it doesn’t fail. The query is exactly what we had
envisioned earlier and will get us the info on a particular menu item along
with its history. We’re also passing in a since variable, which we’ll drive from
a date select in the template. In order to make sure the date input gets a
value, we also need to pass since to our render function. The variables/1 function
comes from Absinthe.Phoenix, and is a way for us to access the bare inputs to
the GraphQL query, which is exactly what we need to fill the date input.

This template is the largest we’ve used in this chapter, so we’ll look at it in
two parts. Up at the top, we’ve got a header and the form to enter the date:

10-chp.serverui/5-history/lib/plate_slate_web/templates/item/show.html.eex
<h2>

<%= @item.name %>
</h2>

<%= form_tag item_path(@conn, :show, @item), method: :get do %>
<div class="form-group">

<label for="since">Since</label>
<input type="date" id="since" name="since" value="<%= @since %>"/>

</div>
<%= submit "Filter Orders", class: "btn btn-primary" %>

<% end %>

The form is pretty simple. The path we’re using just routes back to where we
are right now with whatever the new since value would be. If we have order
information, we then use that to display some interesting history:

10-chp.serverui/5-history/lib/plate_slate_web/templates/item/show.html.eex
<%= if Enum.empty?(@item.order_history.orders) do %>

<p>No units have been sold during this time period.</p>
<% else %>

<h3>
Sold
<%= @item.order_history.quantity %>
($<%= Decimal.round(@item.order_history.gross, 2) %> gross)

</h3>

Chapter 10. Driving Phoenix Actions with GraphQL • 216

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/templates/item/show.html.eex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/templates/item/show.html.eex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

<table class="table">
<thead>
<tr>

<th>Date</th>
<th>Count</th>

</tr>
</thead>
<tbody>

<%= for order <- @item.order_history.orders do %>
<tr>

<td><%= order.ordered_at |> DateTime.to_date %></td>
<td><%= order.items |> Enum.map(&(&1.quantity)) |> Enum.sum %></td>

</tr>
<% end %>

</tbody>
</table>

<% end %>

<p>
<%= link "Back",

to: item_path(@conn, :index),
class: "btn btn-default btn-xs" %>

</p>

To see this template in action, we just need to get our server going again.
Start it with this:

$ iex -S mix phx.server

Now, let’s browse to http://localhost:4000/admin/items and click the “show” button
on any of the menu item rows that have orders.

There we have it! If you use the date select box, you can change the date and
see how this affects the list and order count.

report erratum • discuss

Complex Queries • 217

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

If you don’t see any orders, take a look at the seed data and make sure you
actually have orders for the span of time you’re searching! If not, either create
some via GraphiQL or go to IEx and enter:

PlateSlate.Ordering.create_order(%{
items: [%{menu_item_id: "1", quantity: 4}]

})

What’s particularly cool is that we can add the same feature to the index page
with almost no additional effort:

10-chp.serverui/5-history/lib/plate_slate_web/controllers/item_controller.ex
@graphql """
query {

menu_items @put {
category
order_history {

quantity
}

}
}
"""
def index(conn, result) do

render(conn, "index.html", items: result.data.menu_items)
end

Here we’re just getting the quantity value from the order_history, since it wouldn’t
make sense to try to add the orders themselves to the table. This value,
however, fits in nicely in the template if we add another column:

10-chp.serverui/5-history/lib/plate_slate_web/templates/item/index.html.eex
<table class="table">

<thead>
<tr>
<th>Menu Item</th>
<th>Category</th>
<th>Quantity</th>➤

<th></th>
</tr>

</thead>
<tbody>

<%= for item <- @items do %>
<tr>
<td><%= item.name %></td>
<td><%= item.category.name %></td>
<td><%= item.order_history.quantity %></td>➤

This additional column makes the index page a lot more useful as shown in
the figure on page 219.

Chapter 10. Driving Phoenix Actions with GraphQL • 218

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/controllers/item_controller.ex
http://media.pragprog.com/titles/wwgraphql/code/10-chp.serverui/5-history/lib/plate_slate_web/templates/item/index.html.eex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

So we’ve added a nice feature to both the menu item show and index page—by
making what’s effectively one change to our schema. The benefit of that one
change, however, goes beyond the user interface. While we expanded the
scope of our schema to support the UI, we’ve also kept our GraphQL API in
sync—effortlessly. This symbiosis between UI and API is a compelling reason
to use GraphQL to power both. By sharing the same data access pattern, it’s
easy to keep each apace with the other.

Moving On
Throughout this chapter, you’ve gotten a feel for a new way of building Phoenix
controller actions, a declarative approach to defining their data requirements,
and a way to reuse the GraphQL schema logic that we’ve already defined from
within the same Elixir application. This approach is still new, and we’ve only
scratched the surface on the possibilities.

Now that we’ve looked at server-side user interfaces, it’s about time to move
on to the dynamic world of client-side GraphQL frameworks. Let’s take a
moment and think about some interesting ways that you could expand the
administrative interface using what you’ve learned.

1. You can add menu items—and list them—but what happens if you want
to change or add a new one? Think about how you might add basic support
for adding or editing menu items. They’re just mutations!

2. Your menu could get pretty large. Think through how you might add a
search box to the index to filter the list of menu items.

3. Build an administrative UI for categories. Follow the same pattern that
we did throughout the chapter, but this time focus on categories by
building PlateSlateWeb.CategoryController.

In the next (and final) chapter of the book, we’ll take a look at the most pop-
ular GraphQL client-side frameworks, giving you a primer on how to inte-
grate them with Absinthe, and what specialized support has already been
prepackaged for you to use.

report erratum • discuss

Moving On • 219

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

CHAPTER 11

Integrating with the Frontend
Welcome to the client-side framework chapter, where you’ll learn how to
connect JavaScript-based web applications to a GraphQL API—including how
to take advantage of Absinthe-specific features like Phoenix channel-based
subscriptions using the plug-and-play packages that are already available.

Through this chapter, we’re going to gradually step up the complexity of the
front-end applications we’re integrating. We’ll start with a basic, single-file
JavaScript application, then move on to the two most popular approaches to
using GraphQL from JavaScript today: Relay (the original GraphQL framework)
and Apollo Client.

The JavaScript ecosystem is full of choices, and we know that the choices
that we’ve made in this chapter aren’t going to appeal to every JavaScript
developer’s personal tastes. That’s okay. If you’re more comfortable with
other frameworks and tools, you’ll still find plenty of material here that you
can repurpose to work with your day-to-day favorites.

Let’s start by implementing the simplest of integrations, but one that still
illustrates the most important feature: how to make a request to a GraphQL
server from JavaScript. If you’re planning on using Apollo or Relay, feel free
to jump ahead, but this initial look at plain JavaScript will be especially
useful to people building ultralight clients or working with another program-
ming language.

Starting Simple
Using a GraphQL API from the client side doesn’t necessitate a big framework
or a lot of tooling. A plain old JavaScript script will do. We’re going to start
by building the simplest of JavaScript projects just to illustrate how to config-
ure a basic client.

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’ll set this up as a separate project from the PlateSlate Phoenix-based
application. As noted in System Dependencies, on page xiv, you’re going to
need Node.js,1 so if you don’t already have a working installation, now’s the
time to get it set up and running. We recommend installation by using your
favorite package manager, or a Node.js version manager if you see yourself
using different versions in the future.

Once you have Node.js installed, you should be able to execute commands
using the Node Package Manager (npm). Something like this should work:

$ npm --version
3.10.3

Now let’s install yarn,2 which will make management of our project dependen-
cies easier:

$ npm install -g yarn

We’ll make a new directory for our project (alongside rather than inside our
Elixir PlateSlate application), change to that directory, and instruct yarn to
bootstrap it with a basic package.json file to keep track of our project metadata
and dependencies:

$ mkdir plate-slate-basic-ui
$ cd plate-slate-basic-ui
$ yarn init -y

The -y option here tells yarn just to assume we typed y (yes) to the various
questions it would normally ask.

If you open up package.json in an editor, you’ll see the basic boilerplate content
that yarn added:

11-chp.frontend/plate-slate-basic-ui/1-start/package.json
{

"name": "plate-slate-basic-ui",
"version": "1.0.0",
"main": "index.js",
"license": "MIT"

}

There’s not a lot here yet; we’ll be adding a bit to this file shortly.

Now, let’s create a subdirectory within our project that will hold the HTML
and JavaScript files we’ll be adding:

$ mkdir public

1. http://nodejs.org
2. https://yarnpkg.com

Chapter 11. Integrating with the Frontend • 222

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/1-start/package.json
http://nodejs.org
https://yarnpkg.com
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Dashes and Underscores

We use dashes instead of underscores when creating JavaScript
projects because it’s common JavaScript package naming style,
and it makes it easy to identify Elixir vs. JavaScript projects from
directory listings.

Inside that directory, we’ll create a basic HTML document—something that
we’ll expand on later:

11-chp.frontend/plate-slate-basic-ui/2-server/public/index.html
<!doctype html>
<html lang="en">

<head>
<title>PlateSlate (Basic UI)</title>

</head>
<body>

Hi.
</body>

</html>

For the moment, we have it just greet the viewer; it doesn’t hurt to be polite,
and it would be nice to see something besides a blank page when we check
to make sure we’re serving the page. We could do that with a number of dif-
ferent tools, but since we’re already using Node.js, let’s configure a tiny static
web server to make index.html available via a localhost port.

Adding a Static Web Server
The most common web server utility package for Node.js projects is Express,3

and configuring it to serve a directory of static assets is pretty straightforward.

First, we need to add it as a development dependency using yarn:

$ yarn add express --dev

Now that we have Express available, let’s write the configuration we need in
our index.js file. We’ll configure it to serve up our public/ directory on port 3000:

11-chp.frontend/plate-slate-basic-ui/2-server/index.js
const express = require('express');
const app = express();

app.use(express.static('public'));
app.listen(3000, () => console.log('Listening on port 3000!'))

3. http://expressjs.com

report erratum • discuss

Starting Simple • 223

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/2-server/public/index.html
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/2-server/index.js
http://expressjs.com
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

To make kicking off this little web server as easy as possible, let’s add a script
entry to our package.json file. It will just execute node ./ (which will run the script
defined by the main setting—our index.js file):

11-chp.frontend/plate-slate-basic-ui/2-server/package.json
{

"name": "plate-slate-basic-ui",
"version": "1.0.0",
"main": "index.js",
"license": "MIT",
"devDependencies": {

"express": "^4.16.2"
},
"scripts": {

"dev": "node ./"
}

}

This lets us use yarn dev to kick off our web server:

$ yarn dev
Listening on port 3000!

If we check http://localhost:3000 in our browser, we’ll see our Hi!.

So we have a (very) basic static web server set up, just using Node.js! Our
web application is just a bit underwhelming at the moment. To test our ability
to access data from our GraphQL API, we’d like to pull the list of menu items
and display them.

Fetching a GraphQL Query
Let’s shut down our fancy “Hi!” web server and work on our web application
a bit more. We’ll start by modifying our index.html document to do two things:

• Load a polyfill for the browser fetch4 API
• Load our application code, which we’ll put at public/js/app.js

Polyfill

A web polyfill is a piece of code that acts as a shim, adding a
capability to older or less advanced browsers so that applications
can transparently use modern browser APIs without needing to
work around issues with browser-specific support.

This will involve two script tags—and we might as well remove our pithy
greeting while we’re at it:

4. https://fetch.spec.whatwg.org/#fetch-api

Chapter 11. Integrating with the Frontend • 224

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/2-server/package.json
https://fetch.spec.whatwg.org/#fetch-api
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

11-chp.frontend/plate-slate-basic-ui/3-fetch/public/index.html
<!doctype html>
<html lang="en">

<head>
<title>PlateSlate (Basic UI)</title>
<script src="https://cdn.jsdelivr.net/npm/whatwg-fetch"></script>➤

<script src="/js/app.js"></script>➤

</head>
<body>

</body>
</html>

We’ll define three named functions in our JavaScript application—first, the
piece that uses fetch() to retrieve the menu items from our GraphQL API.
Unsurprisingly, we’ll call it fetchMenuItems():

11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
function fetchMenuItems() {

return window.fetch('http://localhost:4000/api', {
method: 'POST',
headers: {

'Content-Type': 'application/json'
},
body: JSON.stringify({
query: '{ menuItems { name } }'

})
}).then(function(response) {

return response.json();
});

}

Notice this looks like a completely normal HTTP POST—because it is. Since
we’re doing a query operation to get our menu items, we could be using GET,
but it’s easier and more consistent to encode our GraphQL document as part
of an application/json POST body. We return the result of fetch(), which just happens
to be a JavaScript Promise—an object that represents the completion or failure
of an asynchronous action.

If fetchMenuItems() is unsuccessful, we want to display a simple message to users
and log the details to the console. We’ll do that with a function, displayFetchError():

11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
function displayFetchError(response) {

var element = document.createElement('p');
element.innerHTML = 'Could not contact API.';
console.error("Fetch Error", response);
document.body.appendChild(element);

}

report erratum • discuss

Starting Simple • 225

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/3-fetch/public/index.html
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

If fetchMenuItems() is successful, however, we’ll take a look at the result from
our GraphQL API and then show the appropriate information:

11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
function displayMenuItems(result) {

var element;
if (result.errors) {

var element = document.createElement('p');
element.innerHTML = 'Could not retrieve menu items.';
console.error("GraphQL Errors", result.errors);

} else if (result.data.menuItems) {
var element = document.createElement('ul');
result.data.menuItems.forEach(function(item) {

var itemElement = document.createElement('li');
itemElement.innerHTML = item.name;
element.appendChild(itemElement);

});
}
document.body.appendChild(element);

}

It’s possible that the GraphQL API might return an error, so we deal with that
similarly to how we handled a fetchMenuItems() failure: we’ll display a simple
error message and log the details. It’s much more likely that we’ll get a list of
menu items back, however—and in that case, we’ll build up a list of the menu
items and display them for our users.

You’ll notice that in both our failure and success cases, we’re manipulating
the HTML Document Object Model (DOM). To do this, our application script
needs to make sure that our document is fully loaded—so we can safely muck
around with the contents of its body.

We can do this by watching for the DOMContentLoaded event with an event listener:

11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
document.addEventListener('DOMContentLoaded', function() {

// «Stuff to do once the page is loaded»
});

We’ll go ahead and wire in our fetchMenuItems() there. We’ll configure the
resulting Promise object to trigger displayMenuItems() when it’s successful, and
displayFetchError() when it fails:

11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
document.addEventListener('DOMContentLoaded', function() {

fetchMenuItems()➤

.then(displayMenuItems)➤

.catch(displayFetchError);➤

});

Chapter 11. Integrating with the Frontend • 226

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/3-fetch/public/js/app.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

If we were to run both our PlateSlate GraphQL API (on port 4000) and our little
web server (on port 3000) right now, we’d run full tilt into an issue with
browser security, and we’d see something like this:

First off, congratulate yourself for a nicely inserted “Could not contact API”
message, just as we planned for fetch errors.

The error messages you see in the console here are because we need to use
cross-origin resource sharing (CORS)5 to contact our server.

Configuring for CORS
CORS is a mechanism used by browsers and servers to allow resources with
certain restrictions to be requested from another location on the web. It does
this using a series of HTTP headers whose contents lay out a server’s specific
rules about what resources can be accessed and how.

The default rule for asynchronous JavaScript requests limits access to a
same-origin policy, and because our web application isn’t being served up by
our PlateSlate itself, we need to configure our server to respond to the CORS-
preflight requests appropriately, allowing cross-origin requests. Thankfully,
there’s a plug for that—cors_plug.6 We’ll use it directly in our Phoenix endpoint,
with the default options.

Restrict Your CORS

You can restrict access to your server to a limited set of origin
domains and HTTP methods by passing additional options to plug
CORSPlug. Check the documentation for the cors_plug package for
more information.

First, let’s add the package to the list of declared dependencies in our
PlateSlate mix.exs (the server, not our JavaScript UI, of course):

5. https://fetch.spec.whatwg.org/#http-cors-protocol
6. https://hex.pm/packages/cors_plug

report erratum • discuss

Starting Simple • 227

https://fetch.spec.whatwg.org/#http-cors-protocol
https://hex.pm/packages/cors_plug
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

11-chp.frontend/plate_slate/1-start/mix.exs
defp deps do

[
«Other deps»
{:cors_plug, "~> 1.5"},➤

]
end

We make sure we stop our PlateSlate Elixir application if it’s still running,
and install the package using mix:

$ mix deps.get

Once that is downloaded and ready to go, let’s add the plug to our endpoint,
which lives under lib/plate_slate_web. We will put it right after the socket
configuration:

11-chp.frontend/plate_slate/1-start/lib/plate_slate_web/endpoint.ex
defmodule PlateSlateWeb.Endpoint do

use Phoenix.Endpoint, otp_app: :plate_slate
use Absinthe.Phoenix.Endpoint

socket "/socket", PlateSlateWeb.UserSocket

plug CORSPlug➤

«Rest of configuration»
end

We also need to tweak our web application to use CORS. We do this by setting
the mode option for fetch():

11-chp.frontend/plate-slate-basic-ui/4-cors/public/js/app.js
function fetchMenuItems() {

return window.fetch('http://localhost:4000/api', {
method: 'POST',
mode: 'cors',➤

headers: {
'Content-Type': 'application/json'

},
body: JSON.stringify({
query: '{ menuItems { name } }'

})
}).then(function(response) {

return response.json();
});

}

If we start up our PlateSlate application (with mix phx.server) and our web
application (with yarn dev), now we’ll see a much more encouraging result in
our web browser at http://localhost:3000 as shown in the figure on page 229.

Chapter 11. Integrating with the Frontend • 228

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/1-start/mix.exs
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/1-start/lib/plate_slate_web/endpoint.ex
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-basic-ui/4-cors/public/js/app.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Congratulations, you’ve rendered a list of menu items—in a tiny web applica-
tion using basic, vanilla JavaScript from another server. Sure, the list is
almost unforgivably ugly—Cascading Style Sheets (CSS) being an entirely
different book, after all—but you’re displaying live data, and the full capabil-
ities of GraphQL queries are available to you, even from this toy-sized web
application.

Want to show a menu item price? Displaying it—or any other data you could
request via walking your data graph–is a simple matter of modifying your
query and inserting the resulting data via the DOM elements of your choice.
You’re not limited to GraphQL query operations either. You can use mutation
operations just as easily from an HTTP POST.

To use subscription operations, however, you’re going to need to add some
additional dependencies.

Choosing a Framework
Absinthe subscriptions, as you’ve read about in Chapter 6, Going Live with
Subscriptions, on page 97, use Phoenix channels (by default, at least), and
that takes some specialized handling. If you’re going to support subscriptions,
it’s probably a good idea to go beyond the vanilla JavaScript that we’ve been
using up to this point and look at more advanced GraphQL clients and
framework projects that can make your life easier.

We’ll cover two of them: Apollo Client and Relay.

At the current time, there are two major client-side JavaScript frameworks
that developers use to build user interfaces on top of GraphQL: Relay and
the Apollo GraphQL platform.

report erratum • discuss

Choosing a Framework • 229

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Beyond JavaScript

Just as on the server, your options for client-side GraphQL aren’t strictly limited to
JavaScript. We’re limiting our examples to client-side JavaScript in the book only
because it’s got the widest, most active community of users and the most well-
established use patterns.

If you are a proponent of Elm, ReasonML, ClojureScript, PureScript, or any other
client-side language or framework on the web—as long as it can speak HTTP and
WebSockets—you can make GraphQL work for you. The same goes for native mobile
applications: Swift, Java, and other languages have already been integrated with
GraphQL APIs.

It might take a little more footwork to find the right packages and tools that work for
your language, but you can do it. Hopefully, learning about how JavaScript connects
to a GraphQL server will help—either directly as something you can access externally
from your language of choice, or as something that informs how you go about doing
it directly.

Relay7 is the original project that illustrated the use of GraphQL, released by
Facebook at the same time in 2015, although it’s progressed quite considerably
since then. While the Apollo platform is, effectively, a collection of related
tools and product offerings built around GraphQL, Relay is the more prescrip-
tive, opinionated framework for building GraphQL-based web applications
with React,8 Facebook’s library for building user interfaces. Relay sets certain
additional expectations about the way you’ve built your GraphQL schema,
and it supports some out-of-the-box patterns (like pagination) as a benefit of
adhering to those constraints.

The Apollo GraphQL platform takes another approach. Originating from the
Meteor Development Group,9 Apollo is a large set of open source packages,
projects, and tools that work in concert to provide a GraphQL client frame-
work—a more a la carte approach than Relay. Apollo isn’t tied to React and
can be more readily layered on existing client applications. This flexibility has
made Apollo a popular alternative to the more prepackaged Relay framework.

Both systems have Node.js-based server components that, since we’re using
Absinthe, we’ll ignore for the purposes of this book. We’ll focus on the client-
side portions of Relay and the Apollo Platform (which is to say, Apollo Client).

7. https://facebook.github.io/relay
8. https://reactjs.org
9. https://www.meteor.io

Chapter 11. Integrating with the Frontend • 230

report erratum • discuss

https://facebook.github.io/relay
https://reactjs.org
https://www.meteor.io
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We won’t be able to give you a full workup of their relative pros and cons in the
course of a single chapter, but hopefully you’ll get a feel for their differences.

It’s up to you which system you decide to use for your own projects. We recom-
mend you dig into both more comprehensively after reading this chapter, per-
haps by building on the simple example we’ll create to use the PlateSlate API.

First up: Apollo Client, the more casual and flexible of the two options.

Using Apollo Client
For the sake of equal comparison, we’re going to build our Apollo-based
application on top of React. As we mentioned before, one of Apollo’s benefits
is that it isn’t coupled to a specific UI framework (for example, we could also
use Vue.js,10 another popular option), but React is, by far, still the most
popular choice for working with Apollo. Giving you the ability to build UI
components with HTML, JavaScript, and even CSS in the same file, React
has become one of the most widespread tools on the modern web.

We’re going to build a fresh user interface for our PlateSlate application, dis-
playing the same list of menu items that we did before. We’ll also be adding
support for live updating, showing you how you can use Apollo Client to work
with Absinthe’s implementation of GraphQL subscriptions.

We’ll start by generating our application boilerplate. We’re going to use a
handy tool, create-react-app, that will build in all the development server and
compilation toolchain configuration that we’ll need to get down to work.

First, let’s install create-react-app:

Rather than forcing you to structure your application in a specific way,
Apollo Client gives you the ability to connect your web-based user inter-
face—regardless of what you use to build it—to a GraphQL API.

$ npm install -g create-react-app

After it’s installed, we’ll generate our project, giving it the name of plate-slate-
apollo-ui:

$ create-react-app plate-slate-apollo-ui

Creating a new React app in /path/to/plate-slate-apollo-ui.

Installing packages. This might take a couple of minutes.
Installing react, react-dom, and react-scripts...

«More output»

10. https://vuejs.org

report erratum • discuss

Using Apollo Client • 231

https://vuejs.org
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Success! Created plate-slate-apollo-ui at /path/to/plate-slate-apollo-ui
Inside that directory, you can run several commands:

yarn start
Starts the development server.

yarn build
Bundles the app into static files for production.

yarn test
Starts the test runner.

yarn eject
Removes this tool and copies build dependencies, configuration files
and scripts into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing:

cd plate-slate-apollo-ui
yarn start

Happy hacking!

That’s a lot of output, but it’s useful stuff. create-react-app generated our appli-
cation with a development web server, a test harness, and a number of other
tools we can use as we build our application.

Let’s give the server a try, jumping into the project directory and running
yarn start:

$ cd plate-slate-apollo-ui
$ yarn start

If the server starts up correctly, you should see a message showing how to
connect to the application in your console—and your browser should auto-
matically pull it up for you!

Now that we’re sure things work, let’s edit our App.js and build out a basic
menu list. If you’re unfamiliar with React, don’t worry. We’re not going to get
fancy and build out a complex set of components or styles.

Chapter 11. Integrating with the Frontend • 232

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

At the moment, this is what the file looks like:

11-chp.frontend/plate-slate-apollo-ui/1-start/src/App.js
import React, { Component } from 'react';
import logo from './logo.svg';
import './App.css';

class App extends Component {
render() {

return (
<div className="App">

<header className="App-header">

<h1 className="App-title">Welcome to React</h1>

</header>
<p className="App-intro">

To get started, edit <code>src/App.js</code> and save to reload.
</p>

</div>
);

}
}

export default App;

The most important thing for you to understand here is that it’s defining a
React component, and the return value of the component’s render() function
is what will be displayed to the user. This matches up with what we’re seeing
in our browser.

This Is JavaScript?

If you’re surprised by the appearance of import, class, the shorthand
for function definitions, or the raw HTML just hanging out in a .js
file, this might be the first time you’ve run into modern JavaScript
(ES6) and JSX.11 It’s a brave new world!

Let’s simplify things and render a simple listing of menu items. We’ll start
with some stub data, then switch it out for our real menu item data when we
connect it to our API:

11-chp.frontend/plate-slate-apollo-ui/2-stub/src/App.js
import React, { Component } from 'react';Line 1

-

class App extends Component {-

-

// Retrieves current data for menu items5

get menuItems() {-

// TODO: Replace with real data!-

11. https://facebook.github.io/jsx

report erratum • discuss

Using Apollo Client • 233

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-apollo-ui/1-start/src/App.js
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-apollo-ui/2-stub/src/App.js
https://facebook.github.io/jsx
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

return [-

{id: "stub-1", name: "Stub Menu Item 1"},-

{id: "stub-2", name: "Stub Menu Item 2"},10

{id: "stub-3", name: "Stub Menu Item 3"},-

];-

}-

-

renderMenuItem(menuItem) {15

return (-

<li key={menuItem.id}>{menuItem.name}-

);-

}-

20

// Build the DOM-

render() {-

return (-

-

{this.menuItems.map(menuItem => this.renderMenuItem(menuItem))}25

-

);-

}-

-

}30

-

export default App;-

We’ve changed the render() to build an unordered list, taking the data that
menuItems() provides and passing it to renderMenuItem() to build each list item.

The key attribute you see on line 17 is required because it helps React keep
track of list item identity across changes to our data, so it knows what’s been
added, removed, and changed. You need to make sure the values you pass
to key are unique, and that’s easy to do: our menu items will all have unique
id values, and we’ve made our stub data items have the same property.

Now that we’ve rebuilt our menu list—this time on top of React—let’s look at
how we’re going to integrate Apollo Client and the packages that support
using it with Absinthe.

Wiring in GraphQL
We’ll start by pulling in the @absinthe/socket-apollo-link package, an officially sup-
ported Absinthe JavaScript package that’s custom-built to add support for
Absinthe’s use of Phoenix WebSockets and channels. The package will pull
in a few dependencies it needs.

$ yarn add @absinthe/socket-apollo-link

Chapter 11. Integrating with the Frontend • 234

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’re going to create a directory, src/client, in our JavaScript application. It will
contain all our GraphQL client-related configuration.

The first bit of configuration will be for the Absinthe WebSocket configuration.
We’ll put it in a new file, absinthe-socket-link.js:

11-chp.frontend/plate-slate-apollo-ui/3-config/src/client/absinthe-socket-link.js
import * as AbsintheSocket from "@absinthe/socket";
import { createAbsintheSocketLink } from "@absinthe/socket-apollo-link";
import { Socket as PhoenixSocket } from "phoenix";

export default createAbsintheSocketLink(AbsintheSocket.create(
new PhoenixSocket("ws://localhost:4000/socket")

));

Most of this file is just importing the bits it needs: the base socket definition
that @absinthe/socket provides, a utility function that knows how Apollo needs
the socket to behave, and the underlying Phoenix socket code.

The most important thing to get right here is our socket URL. (If you remember,
our PlateSlateWeb.UserSocket is available at /socket, based on the setup we did in
PlateSlateWeb.Endpoint back on Setting Up Subscriptions, on page 98).

Mind Your URLs

You’ll want to make sure that the URLs here are build-specific,
supporting development, production, and any other targets you
plan on using. The create-react-app boilerplate, like most React-based
systems, leverages Webpack12 to build our application, and you
can use a Webpack plugin to support different build configurations.

Don’t forget about the difference between ws:// and wss://. The latter
indicates a secure WebSocket connection. You should probably
only be using the insecure variant, ws://, in development.

Okay, so we have our WebSocket link configuration ready. Now let’s add some
basic setup for Apollo Client using it, and adding Apollo’s standard in-memory
caching facility. For the moment, we’ll send all our GraphQL traffic over our
WebSocket connection, but we’ll build a hybrid configuration (sending query
and mutation operations over HTTP) next.

First, let’s pull in two new dependencies:

$ yarn add apollo-client
$ yarn add apollo-cache-inmemory

12. https://webpack.js.org

report erratum • discuss

Using Apollo Client • 235

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-apollo-ui/3-config/src/client/absinthe-socket-link.js
https://webpack.js.org
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Here’s the client configuration. It’s even more simplistic than the socket’s:

11-chp.frontend/plate-slate-apollo-ui/3-config/src/client/index.js
import ApolloClient from "apollo-client";
import { InMemoryCache } from "apollo-cache-inmemory";

import absintheSocketLink from "./absinthe-socket-link";

export default new ApolloClient({
link: absintheSocketLink,
cache: new InMemoryCache()

});

We start the file with imports. Our two new dependencies put in an appearance
first, followed directly after by our WebSocket link. We then instantiate our
client, providing the link and cache options. That’s all the setup we need to do
to have a working GraphQL client, sending requests and receiving responses
over Phoenix’s rock-solid WebSocket implementation.

Now all we need to do is make sure our user interface can get the data. It’s
time to throw away the menu item stub data.

Apollo Client doesn’t know anything about React directly. A specialized
package, react-apollo, provides the necessary integration features. We’ll also
pull in graphql-tag, used to define GraphQL documents in our application code.

$ yarn add react-apollo
$ yarn add graphql-tag

The application’s main index.js needs to make use of our brand-new GraphQL
client and provide it to our React component. We make the necessary changes
to the file:

11-chp.frontend/plate-slate-apollo-ui/3-config/src/index.js
import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import registerServiceWorker from './registerServiceWorker';

// GraphQL➤

import { ApolloProvider } from 'react-apollo';➤

import client from './client';➤

ReactDOM.render(
<ApolloProvider client={client}>➤

<App />➤

</ApolloProvider>,➤

document.getElementById('root')
);
registerServiceWorker();

Chapter 11. Integrating with the Frontend • 236

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-apollo-ui/3-config/src/client/index.js
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-apollo-ui/3-config/src/index.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The real work happens inside the component file, where we define the GraphQL
query for the menu items and use the react-apollo graphql() function to build it
into a higher-order component13 that wraps the App component:

11-chp.frontend/plate-slate-apollo-ui/3-config/src/App.js
import React, { Component } from 'react';

// GraphQL➤

import { graphql } from 'react-apollo';➤

import gql from 'graphql-tag';➤

class App extends Component {

// Retrieves current data for menu items
get menuItems() {

const { data } = this.props;➤

if (data && data.menuItems) {➤

return data.menuItems;➤

} else {➤

return [];➤

}➤

}

renderMenuItem(menuItem) {
return (
<li key={menuItem.id}>{menuItem.name}

);
}

// Build the DOM
render() {

return (

{this.menuItems.map(menuItem => this.renderMenuItem(menuItem))}

);
}

}

const query = gql`➤

{ menuItems { id name } }➤

`;➤
➤

export default graphql(query)(App);➤

The nice thing about this approach is that you don’t need to deal with the
GraphQL request, and the result from your API is provided to the App compo-
nent automatically as React properties. In the menuItems() getter, you can see
where we check to see if the data property is available and whether it has
menuItems, returning them if so.

13. https://reactjs.org/docs/higher-order-components.html

report erratum • discuss

Using Apollo Client • 237

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-apollo-ui/3-config/src/App.js
https://reactjs.org/docs/higher-order-components.html
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Let’s see if it works! Start up your JavaScript application again with yarn:

$ yarn start

If you don’t have the PlateSlate GraphQL API application still running some-
where, when the browser pops up (if you open the Developer Tools), you’ll see
errors when the application attempts to connect via WebSocket:

If everything is running as expected, the JavaScript application will connect
and the Elixir application log will look something like this:

[debug] INCOMING "doc" on "__absinthe__:control" to Absinthe.Phoenix.Channel
Transport: Phoenix.Transports.WebSocket
«Parameter details»

[debug] ABSINTHE schema=PlateSlateWeb.Schema variables=%{}

{

menuItems {
id
name
__typename

}
}

[debug] QUERY OK source="items" db=3.7ms decode=0.1ms
SELECT i0."id", i0."added_on", i0."description", i0."name", i0."price",
i0."allergy_info", i0."category_id", i0."inserted_at", i0."updated_at"
FROM "items" AS i0 ORDER BY i0."name" []

You can see the GraphQL query come across the Phoenix channel, and the
Ecto query firing.

GraphQL Client-Side Caching

You may notice the addition of __typename to our GraphQL query.
This is done automatically by Apollo to help facilitate client-side
caching, which is done by type.

Look at the browser! As shown in the top figure on page 239, our menu items
look real again!

Let’s dig in a little further on the browser side so we can check out exactly
how we got the data.

If we open up our browser development tools, we can see the requests being
sent across the WebSocket. We’re using Chrome, so the information can be
found under the Network tab, then by clicking on a WebSocket request’s

Chapter 11. Integrating with the Frontend • 238

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Frames tab. Here you see the result of our GraphQL query (with the request
and channel join right before it):

It’s great to have GraphQL over WebSockets working, but we want to use normal
HTTP requests for non–subscription-related operations. It’s a straightforward
process to modify our GraphQL client configuration to make that work.

Using a Hybrid Configuration
Giving our GraphQL client the ability to talk HTTP/S requires us to pull in
another dependency, apollo-link-http:

$ yarn add apollo-link-http

report erratum • discuss

Using Apollo Client • 239

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Now we’ll modify our client code and use a special function, ApolloLink.split(), to
configure when each transport method should be used:

11-chp.frontend/plate-slate-apollo-ui/4-hybrid/src/client/index.js
import ApolloClient from "apollo-client";
import { InMemoryCache } from "apollo-cache-inmemory";
import { ApolloLink } from "apollo-link";➤

import { createHttpLink } from "apollo-link-http";➤

import { hasSubscription } from "@jumpn/utils-graphql";➤

import absintheSocketLink from "./absinthe-socket-link";

const link = new ApolloLink.split(➤

operation => hasSubscription(operation.query),➤

absintheSocketLink,➤

createHttpLink({uri: "http://localhost:4000/api/graphql"})➤

);➤
➤

export default new ApolloClient({➤

link,➤

cache: new InMemoryCache()➤

});➤

The hasSubscription() function, from one of @absinthe/socket’s dependencies, is a
handy utility that lets us check our GraphQL for a subscription. In the event
one is found, we use our WebSocket link. Otherwise, we send the request
over HTTP to the configured URL.

Let’s see if this works.

After starting up our application again with yarn start (and making sure the
API is still running in our other terminal), our page still displays our menu
items, but this time the query happened over HTTP. In our Chrome Developer
Tools panel, the request is accessible as a discrete item on the left-hand side
(as graphql), and by clicking it we can preview the result as shown in the figure
on page 241.

With all of this talk of subscriptions, it’s probably time to make one work with
our client-side application.

Using Subscriptions
We’re going to add another subscription field to our GraphQL schema—this
time so our user interface is notified when a new menu item is added. We’re
not going to connect it to any of our mutations, since for this example we’re
focused on just making sure the client integration works. (If you need a
reminder of how Absinthe subscriptions are configured, see Chapter 6, Going
Live with Subscriptions, on page 97.)

Chapter 11. Integrating with the Frontend • 240

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-apollo-ui/4-hybrid/src/client/index.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

11-chp.frontend/plate_slate/2-subscription/lib/plate_slate_web/schema.ex
subscription do

«Other fields»
field :new_menu_item, :menu_item do

config fn _args, _info ->
{:ok, topic: "*"}

end
end

end

With our subscription in place, we just need to make some edits to our App
component in the JavaScript application to support the client making the
subscription and receiving its results.

At the bottom of App.js, we’ll define the subscription and add some configuration
to the graphql() higher-order component to handle sending the subscription
document and inserting any new menu items that are received:

11-chp.frontend/plate-slate-apollo-ui/5-subscription/src/App.js
const query = gql`Line 1

{ menuItems { id name } }-

`;-

-

const subscription = gql`5

subscription {-

newMenuItem { id name }-

}-

`;-

10

report erratum • discuss

Using Apollo Client • 241

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/2-subscription/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-apollo-ui/5-subscription/src/App.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

export default graphql(query, {-

props: props => {-

return Object.assign(props, {-

subscribeToNewMenuItems: params => {-

return props.data.subscribeToMore({15

document: subscription,-

updateQuery: (prev, { subscriptionData }) => {-

if (!subscriptionData.data) {-

return prev;-

}20

const newMenuItem = subscriptionData.data.newMenuItem;-

return Object.assign({}, prev, {-

menuItems: [newMenuItem, ...prev.menuItems]-

});-

}25

})-

}-

});-

}-

})(App);30

We’re not going to go into depth about Apollo subscription configuration, but the
most important pieces here are that we’re defining a function, subscribeToNewMenu-
Items(), on line 14, which uses subscribeToMore() to send our subscription—and update
the components properties with updateQuery().

To create the subscription, we define a componentWillMount() function for our component.
React will automatically call it for us, as it’s a special life-cycle function. It calls
the subscribeToNewMenuItems() function we defined, which kicks off our subscription:

11-chp.frontend/plate-slate-apollo-ui/5-subscription/src/App.js
componentWillMount() {

this.props.subscribeToNewMenuItems();
}

If you have the PlateSlate GraphQL API application running, stop it and restart
it using IEx so that you’ll have a console you can use to execute functions in
the application:

$ iex -S mix phx.server

Make sure the JavaScript application is running (refresh the browser window),
and then in your Elixir console type the following. We’re going to manually
invoke our subscription publishing, passing it a new menu item:

iex> Absinthe.Subscription.publish(
PlateSlateWeb.Endpoint,
%{id: "stub-new-1", name: "New Menu Item"},
new_menu_item: "*"

)

Chapter 11. Integrating with the Frontend • 242

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-apollo-ui/5-subscription/src/App.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

With everything in place, here’s what you’ll see in your browser window. Notice
that the new menu item is displayed right at the top of the menu item listing,
and the WebSocket frames shows the subscription information we just sent:

Try it again if you like, substituting new menu item id and name values.

Over the last few pages, you’ve worked from a blank slate up to a working
React application talking to Absinthe over HTTP and WebSockets using
Apollo Client. Apollo Client is a great tool, but we’re going to take a look at a
more opinionated alternative: Relay.

Using Relay
If you’re looking for a more opinionated, prepackaged GraphQL framework
for your application, Relay is the gold standard. With an API that’s been
reimagined since its initial release in 2015, it’s lighter, faster, and easier to
use than before. “Relay Modern,” as it’s called, is worth a serious look when
you evaluate a GraphQL framework for your application.

Let’s reimplement our PlateSlate user interface using Relay Modern.

As with our Apollo example in the previous section, we’ll use the create-react-
app package to build the boilerplate for our new Relay application, just to save
some time:

$ create-react-app plate-slate-relay-ui

report erratum • discuss

Using Relay • 243

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Once our application is generated, we can verify that the development server
is working correctly by going into the directory and running yarn start:

$ cd plate-slate-relay-ui
$ yarn start

This should open a browser window to http://localhost:3000 and show a basic
starter page.

Up to this point, there’s nothing Relay-related about the application at all.
We’ll pull in some basic Relay dependencies that we know will be needed.

$ yarn add react-relay
$ yarn add relay-compiler babel-plugin-relay --dev

The react-relay package provides the runtime features that Relay needs to
interact with the React UI framework, while relay-compiler and babel-plugin-relay
include development utilities that are used to prepare GraphQL queries,
schemas, and related tooling for Relay’s use.

Because we need to make some special modifications to our application’s
build process, we use create-react-app’s ejection feature, which unpacks the
configuration and scripts that create-react-app usually manages for us so that
we can make changes:

$ yarn eject

Open up the package.json file. You’ll see that a variety of project configuration
options have been added.

We’ll make one small change. Look for the "babel" section, and add the following
"plugins" setting:

"babel": {
"presets": [

"react-app"
],
"plugins": [

"relay"
]

},

This will add the GraphQL transpiling support that Relay needs. Now, let’s
wire in our Absinthe socket so that the application can talk to the PlateSlate
GraphQL API. We need the @absinthe/socket-relay package:

$ yarn add @absinthe/socket-relay

Chapter 11. Integrating with the Frontend • 244

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

We’ll use the package to build a Relay environment, which is how the frame-
work bundles together the configuration that it needs to operate. Let’s put it
in relay-environment.js:

11-chp.frontend/plate-slate-relay-ui/1-start/src/relay-environment.js
import { createFetcher, createSubscriber } from "@absinthe/socket-relay";
import {

Environment,
Network,
RecordSource,
Store

} from "relay-runtime";

import absintheSocket from "./absinthe-socket";

export default new Environment({
network: Network.create(

createFetcher(absintheSocket),
createSubscriber(absintheSocket)

),
store: new Store(new RecordSource())

});

Similar to the way our Apollo Client application was configured, this lets us
set up Relay cache storage and network-handling the way we want. Here we’re
using an in-memory cache and a WebSocket for our GraphQL requests. We
configure the WebSocket itself in another file, absinthe-socket.js:

11-chp.frontend/plate-slate-relay-ui/1-start/src/absinthe-socket.js
import * as AbsintheSocket from "@absinthe/socket";
import { Socket as PhoenixSocket } from "phoenix";

export default AbsintheSocket.create(
new PhoenixSocket("ws://localhost:4000/socket")

);

Our Relay application is configured, but it needs to have a static copy of
the schema it will be using—the PlateSlate schema—in a format that the
Relay compiler can understand. We can use a utility, get-graphql-schema, to grab
it from our API using introspection and save it to a file. First we need to
install it:

$ npm install -g get-graphql-schema

We run the utility, giving our API URL as the lone argument and piping the
results to a new file, schema.graphql, at the root of the project:

$ get-graphql-schema http://localhost:4000/api/ > ./schema.graphql

report erratum • discuss

Using Relay • 245

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-relay-ui/1-start/src/relay-environment.js
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-relay-ui/1-start/src/absinthe-socket.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Now let’s build the App component. We’ll make use of Relay’s QueryRenderer,
which takes the environment we’ve defined, our query (constructed using the
graphql() function), and the logic to run based on the result of executing the
query:

11-chp.frontend/plate-slate-relay-ui/1-start/src/App.js
import React, { Component } from 'react';

import { QueryRenderer, graphql } from 'react-relay';

import environment from './relay-environment';

const query = graphql`
query AppQuery { menuItems { id name } }

`;

class App extends Component {

renderMenuItem(menuItem) {
return (
<li key={menuItem.id}>{menuItem.name}

);
}

render() {
return (
<QueryRenderer

environment={environment}
query={query}
render={({ error, props }) => {

if (error) {
return (

<div>{error.message}</div>
);

} else if (props) {
return (

{props.menuItems.map(this.renderMenuItem)}

);

} else {
return (

<div>Loading...</div>
)

}
}}
/>

);
}

}

export default App;

Chapter 11. Integrating with the Frontend • 246

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-relay-ui/1-start/src/App.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

It’s important to note that the query we use here needs to have the operation
name AppQuery, because that’s what the Relay compiler will expect (the name
of the component, which is App, followed by the type of operation, Query).

Now we just need to run the compiler to extract our query and prepare a
generated copy. We’ll add an entry to the "scripts" section of our package.json file
so we can do that easily (now and in the future):

"scripts": {
"start": "node scripts/start.js",
"build": "node scripts/build.js",
"test": "node scripts/test.js --env=jsdom",
"compile": "relay-compiler --src ./src --schema ./schema.graphql"

},

Now let’s use the new script entry:

$ yarn compile
relay-compiler --src ./src --schema ./schema.graphql
«Output»
Created:
- AppQuery.graphql.js

Great! This built a new file, AppQuery.graphql.js, and put it in a new directory,
src/__generated__. If you take a peek inside the file, you’ll see something like this:

11-chp.frontend/plate-slate-relay-ui/2-compile/src/__generated__/AppQuery.graphql.js
"text": "query AppQuery {\n menuItems {\n id\n name\n }\n}\n"

};

module.exports = batch;

Now we have everything that we need to try running the query. If you run
your application again with yarn start (and make sure your PlateSlate GraphQL
API is running in another terminal), here’s what you should see:

Success!

report erratum • discuss

Using Relay • 247

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-relay-ui/2-compile/src/__generated__/AppQuery.graphql.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Now let’s see how we can take our Relay application to the next level: adding
our newMenuItem subscription.

Adding a Subscription
Adding a subscription to a client-side Relay application involves packaging
up the actual GraphQL subscription operation with a configuration that
defines how it’s requested and how data should be interpreted when it’s
received.

We’ll add our subscription in a new directory, src/subscriptions, and call it NewMenu-
ItemSubscription:

11-chp.frontend/plate-slate-relay-ui/3-subscription/src/subscriptions/NewMenuItemSubscription.js
import { graphql, requestSubscription } from 'react-relay';

import environment from '../relay-environment';

const newMenuItemSubscription = graphql`
subscription NewMenuItemSubscription {

newMenuItem { id name }
}

`

export default () => {

const subscriptionConfig = {
subscription: newMenuItemSubscription,
variables: {},
updater: proxyStore => {

// Get the new menu item
const newMenuItem = proxyStore.getRootField('newMenuItem');
// Get existing menu items
const root = proxyStore.getRoot();
const menuItems = root.getLinkedRecords('menuItems');
// Prepend the new menu item
root.setLinkedRecords([newMenuItem, ...menuItems], 'menuItems');

},
onError: error => console.log(`An error occured:`, error)

}

requestSubscription(
environment,
subscriptionConfig

)

}

The file defines the subscription and couples it with an updater, which gets the
reference to the new menu item in the cache and adds it to the menu item list.
It provides a function that will request the subscription using requestSubscription.

Chapter 11. Integrating with the Frontend • 248

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-relay-ui/3-subscription/src/subscriptions/NewMenuItemSubscription.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Let’s use that function from our App component. As with the Apollo example,
we’ll trigger the subscription from the componentWillMount React life-cycle function:

11-chp.frontend/plate-slate-relay-ui/3-subscription/src/App.js
import NewMenuItemSubscription from './subscriptions/NewMenuItemSubscription';

class App extends Component {

componentDidMount() {
NewMenuItemSubscription();

}

// «Rest of component»
}

We need to remember to compile our subscription. We use yarn compile again.
It’s smart enough to only compile the new pieces of GraphQL:

$ yarn compile
relay-compiler --src ./src --schema ./schema.graphql
«Output»
Created:
- NewMenuItemSubscription.graphql.js

Great, now we’ll give this a shot in our running Relay application. First, make
sure that the PlateSlate GraphQL API application is running inside an IEx
session, so that we can manually publish the result of a newMenuItem subscrip-
tion for testing:

$ iex -S mix phx.server

Once both applications are up and running, execute the following in the IEx
session, keeping an eye on the web browser:

iex> Absinthe.Subscription.publish(
PlateSlateWeb.Endpoint,
%{id: "stub-new-1", name: "New Menu Item"},
new_menu_item: "*"

)

If everything’s working as it should, “New Menu Item” should suddenly appear
at the top of the menu item list. The figure on page 250 shows what it should
look like, complete with the details in Developer Tools.

Now that we have a working app with some impressive bells and whistles
(even if it’s missing a designer’s touch, to say the least), let’s look at some of
the special patterns that Relay uses and that Absinthe supports: nodes and
connections.

report erratum • discuss

Using Relay • 249

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate-slate-relay-ui/3-subscription/src/App.js
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Supporting Relay Nodes
To support refetching records from a GraphQL server, Relay has certain
expectations14 about the way records are identified and can be retrieved.

Absinthe ships specialized support for the Node pattern as part of the
absinthe_relay Elixir package. Let’s configure our PlateSlate application to support
refetching menu items using the macros that the package provides.

If you look at the source of mix.exs in our PlateSlate Elixir application, you can
see that we’ve already included absinthe_relay as a dependency:

11-chp.frontend/plate_slate/3-node/mix.exs
defp deps do

[
«Other deps»
{:absinthe_relay, "~> 1.4.0"},➤

]
end

To add Node support in our schema, we need to do three things:

• Define a new interface, :node, that declares an :id field.

14. https://facebook.github.io/relay/graphql/objectidentification.htm

Chapter 11. Integrating with the Frontend • 250

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/3-node/mix.exs
https://facebook.github.io/relay/graphql/objectidentification.htm
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

• Implement the :node interface in any object type we’d like to use it.
• Define a root-level query field, :node, that can fetch any implementing

object type records by :id.

All of these can be done with a single macro: node.

First let’s pull it into our application by modifying our schema:

11-chp.frontend/plate_slate/3-node/lib/plate_slate_web/schema.ex
defmodule PlateSlateWeb.Schema do

use Absinthe.Schema
use Absinthe.Relay.Schema, :modern➤

«Rest of schema»
end

Note the special :modern argument that indicates we’re targeting Relay v1
(Modern) client applications.

Setting a Relay Flavor

In future versions of absinthe_relay, the :modern argument to use
Absinthe.Relay.Schema won’t be necessary, as it will default without
warnings. For the moment, be explicit and set :modern (or :classic, if
you’re supporting an older application).

We’ll add the :node interface here in the main schema file using the node macro.
It’s almost identical to a normal use of interface; we don’t have to provide a
name or any of the field details, but we do need to tell Absinthe how to map
records to the specific type of object by providing a resolve_type function. (If
you’re a bit rusty on how interfaces work, see Using Interfaces, on page 71.)

11-chp.frontend/plate_slate/3-node/lib/plate_slate_web/schema.ex
node interface do

resolve_type fn
%PlateSlate.Menu.Item{}, _ ->

:menu_item
_, _ ->
nil

end
end

This will create an interface (:node) that expects one field (:id) to be defined—and
the ID will be a global identifier. The fact the ID needs to be a global identifier
makes sense, since the node field we’ll be adding will need to look up any node
object. Thankfully, absinthe_relay makes exposing object IDs using a globally
unique scheme easy.

report erratum • discuss

Using Relay • 251

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/3-node/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/3-node/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Let’s configure our menu item object type as a node and see how it works.
We use the node macro again, this time as node object. We’ll edit our menu types
file and make the change to our :menu_item type:

11-chp.frontend/plate_slate/3-node/lib/plate_slate_web/schema/menu_types.ex
defmodule PlateSlateWeb.Schema.MenuTypes do

use Absinthe.Schema.Notation
use Absinthe.Relay.Schema.Notation, :modern➤

«Other definitions»
node object :menu_item do

«Rest of definition, with the :id field removed!»
end

end

We’ve removed the :id field from the object definition, since the node macro will
create one for us—with support for generating global IDs. If we start the
application and use GraphiQL (at http://localhost:4000/graphiql) to list the menu
items, we can see what the IDs look like:

By default, the IDs are base64-encoded versions of the object type name and
the local (database) ID. We can verify this using IEx:

$ iex -S mix
iex> Base.decode64("TWVudUl0ZW06NA==")
{:ok, "MenuItem:4"}

In practice, Absinthe uses a special function, Absinthe.Relay.Node.from_global_id/2,
which checks the ID against the schema:

Chapter 11. Integrating with the Frontend • 252

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/3-node/lib/plate_slate_web/schema/menu_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

$ iex -S mix
iex> Absinthe.Relay.Node.from_global_id("TWVudUl0ZW06NA==",

PlateSlateWeb.Schema)

{:ok, %{id: "4", type: :menu_item}}

Now let’s build our node field: the third and final piece that we need to add to
support Relay’s refetching. It will use from_global_id/2 on the argument it’s given
and execute a resolver function we provide:

11-chp.frontend/plate_slate/3-node/lib/plate_slate_web/schema.ex
query do

node field do
resolve fn
%{type: :menu_item, id: local_id}, _ ->

{:ok, PlateSlate.Repo.get(PlateSlate.Menu.Item, local_id)}
_, _ ->

{:error, "Unknown node"}
end

end
«Other query fields»

end

Because the IDs are already parsed for us, we just need to match against the
result. At the moment, we’re handling menu items, but we could expand this
to match other node types, too.

We can check the field works as expected using GraphiQL:

report erratum • discuss

Using Relay • 253

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/3-node/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

With these parts in place, our menu item object refetching is good to go. If
we’d like to support any other node types, we just need to:

• Expand the :node interface resolve_type match

• Make sure the object definition uses the node macro and doesn’t define
its own :id field

• Expand the :node query field’s argument match for parsed IDs

Supporting Global IDs in Other Resolvers

Passing opaque global IDs back to your client applications obviously means that
they’re going to be using those IDs in any subsequent queries, mutations, and sub-
scriptions. To help handle these global IDs transparently, even when nested in
arguments, Absinthe provides a piece of middleware, Absinthe.Relay.Node.ParseIDs.a

a. https://hexdocs.pm/absinthe_relay/Absinthe.Relay.Node.ParseIDs.html

Meeting Relay’s expectation for globally identifiable records can feel like a
high bar at first, but once you get used to using the node macro and the tools
that ship with absinthe_relay to support it, it will feel like second nature.

Now let’s look at a very useful pattern that Relay provides: connections.

Supporting Relay Connections
To support pagination, Relay has defined a set of conventions15 used to
model lists of records and the related metadata. As an example, let’s review
the :menu_items field in the PlateSlate schema. In its current, simplistic state,
it looks something like this:

MenuItemMenuItem

In short, the root query type has a field, menuItems (or :menu_items, in Absinthe’s
Elixir parlance), that returns a list of MenuItem (that is, :menu_item) records.

15. https://facebook.github.io/relay/graphql/connections.htm

Chapter 11. Integrating with the Frontend • 254

report erratum • discuss

https://hexdocs.pm/absinthe_relay/Absinthe.Relay.Node.ParseIDs.html
https://facebook.github.io/relay/graphql/connections.htm
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

If we model the field as a Relay connection, it will change to look something
like this:

MenuItemConnection

menuItems

MenuItemEdgeMenuItemEdge

This necessitates the addition of two new object types:

• MenuItemConnection, an object type that contains the edges and the pageInfo
fields

• MenuItemEdge, an object type modeling a single node result (the actual data)
and its placement in the list

It also makes use of a statically defined type, PageInfo, with important paging
information like hasNextPage and hasPreviousPage.

In addition, our field would need to accept some new arguments (first and since
for forward pagination, last and before for backward pagination).

Cursor-Based Pagination

Relay connection pagination is cursor-based, meaning that it’s all
about retrieving a number of records since or before a given
(optional) cursor value. Every connection edge has a cursor.

This sure seems like a lot of things to do. Thankfully, as was the case with
the global identification needs of Relay (and the node macro), the absinthe_relay
Elixir package provides tools to make supporting connections a lot easier.

Let’s go ahead and open up our PlateSlate schema and see what it would take
to convert it to a full-blown Relay connection field. We’re going to be using

report erratum • discuss

Using Relay • 255

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

the connection macro, so if you didn’t follow along with Supporting Relay Nodes,
on page 250, make sure to include the use line you see here:

11-chp.frontend/plate_slate/4-connection/lib/plate_slate_web/schema.ex
defmodule PlateSlateWeb.Schema do

use Absinthe.Schema
use Absinthe.Relay.Schema, :modern➤

«Rest of schema»
query do

«Other query fields»
connection field :menu_items, node_type: :menu_item do➤

arg :filter, :menu_item_filter
arg :order, type: :sort_order, default_value: :asc
resolve &Resolvers.Menu.menu_items/3

end

end

end

We have changed the :menu_items field by prefixing it with connection and,
instead of declaring that it’s of type list_of(:menu_item), we declare a :node_type.
The connection macro uses this node type to infer the name of the associated
connection type, which we’ll add in our PlateSlateWeb.Schema.MenuTypes module
here momentarily.

Note that the :filter and :order arguments were left untouched. While the connection
macro automatically adds the pagination-related arguments for you, it doesn’t
get in the way of custom arguments that you might want (and we do) for your
queries.

Here’s the very minor changes that are necessary in our menu types file:
pulling in the connection macro from Absinthe.Relay.Schema.Notation and using it to
define our connection type, tied to the :menu_item node type:

11-chp.frontend/plate_slate/4-connection/lib/plate_slate_web/schema/menu_types.ex
defmodule PlateSlateWeb.Schema.MenuTypes do

use Absinthe.Schema.Notation
use Absinthe.Relay.Schema.Notation, :modern➤

«Other definitions»
connection node_type: :menu_item➤

end

Not a lot here. You can customize the contents of the connection if you like
(by providing a do block and the usual use of the field macro), but ours is just
a vanilla connection with the usual node and pageInfo trappings, so we can
leave it as a single line.

Chapter 11. Integrating with the Frontend • 256

report erratum • discuss

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/4-connection/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/4-connection/lib/plate_slate_web/schema/menu_types.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

The most substantive changes that we need to do are in our field resolver,
since we need to describe how the query will be executed:

11-chp.frontend/plate_slate/4-connection/lib/plate_slate_web/resolvers/menu.ex
def menu_items(_, args, _) do

Absinthe.Relay.Connection.from_query(
Menu.items_query(args),
&PlateSlate.Repo.all/1,
args

)
end

Previously, this function just passed the arguments to Menu.list_items/1, but
because we want to use Absinthe.Relay.Connection’s useful from_query/4 function to
handle the actual pagination of records and the construction of a valid
:menu_item_connection result, instead we use Menu.items_query/2. Instead of returning
the result of the database query, this returns the query itself (an Ecto.Queryable.t,
to be precise), which from_query/4 uses (along with the repository function and
the arguments) to take care of matters for us.

We just need to make a couple small changes to the behavior of Menu.items_
query/1, though. It needs to be made public (it’s defined with defp at the
moment), and it should gracefully handle additional arguments that it doesn’t
use (like the pagination arguments that the connection macro defined for us
and that from_query/4 needs):

11-chp.frontend/plate_slate/4-connection/lib/plate_slate/menu/menu.ex
def items_query(args) do➤

Enum.reduce(args, Item, fn
{:order, order}, query ->
query |> order_by({^order, :name})

{:filter, filter}, query ->
query |> filter_with(filter)

_, query ->➤

query➤

end)
end

With the function made public so that our resolver can call it, and with the
fall-through match keeping the function from exploding in the event of an
argument it doesn’t care about, we’re ready to play with our connection.

Popping open a terminal, running the PlateSlate application (for one final,
bittersweet time), and pointing our browser to GraphiQL running at
http://localhost:4000/graphiql, we can query our menuItems using both our pagination
and custom arguments.

report erratum • discuss

Using Relay • 257

http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/4-connection/lib/plate_slate_web/resolvers/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/11-chp.frontend/plate_slate/4-connection/lib/plate_slate/menu/menu.ex
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Here we are paging in threes, and filtering for menu items that contain the
letter “u.”

Another successful GraphQL query with Absinthe.

Relay Conventions Outside Relay

If you like Relay’s take on global identification or record pagination,
but don’t want to use Relay itself, never fear. You can still make
use of the absinthe_relay package on the server side with whatever
client-side system that you want. While things might not work as
transparently as they would with Relay, at the end of the day it’s
just GraphQL in and JSON out. If you build the necessary support
into your client-side applications, there’s nothing stopping you
from using a Relay-supporting GraphQL API.

Wrapping Up
Through this chapter, you’ve discovered how to integrate a client-side appli-
cation—vanilla, Apollo, or Relay—with an Absinthe-based GraphQL API, and
you’ve learned about some of the framework-specific features that are avail-
able. The instructions here are mostly just illustrative; new client-side
frameworks, tools, and even languages are constantly changing, and a lot of

Chapter 11. Integrating with the Frontend • 258

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

factors are involved in your choice of the right UI and GraphQL technologies
for your team.

As a GraphQL server implementation, Absinthe can work with anything that
talks GraphQL; just keep an eye on the project documentation16 to see if
there’s been any specialized support added to make integrating with your
technology of choice even easier.

Whether you were new to GraphQL, new to Elixir, or just wanted a refresher
on how they can work together, we have covered a lot of material in this
book—but this is just the beginning! GraphQL and Elixir are both relatively
new technologies, after all. Where can we take them from here, working
together?

16. https://hexdocs.pm/absinthe

report erratum • discuss

Wrapping Up • 259

https://hexdocs.pm/absinthe
http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

APPENDIX 1

GraphQL Types
Object
Description

GraphQL objects represent a list of named fields, each of which yields a
value of a specific type.

Note that object types cannot be used for input (instead, see “InputObject”
below).

Absinthe Macro
object

Examples
In an Absinthe schema:

@desc "A person"
object :person do

field :name, non_null(:string)
«Other fields»

end

InputObject
Description

Defines a set of input fields; the input fields are either scalars, enums,
or other input objects. This allows arguments to accept arbitrarily complex
values.

Absinthe Macro
input_object

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Examples
In an Absinthe schema:

@desc "Profile information to modify"
input_object :profile_input do

field :name, non_null(:string)
«Other fields»

end

Enum
Description

Represents one of a finite set of possible values. GraphQL enums are not
references for a numeric value, but are unique values in their own right.
They serialize as a string: the name of the represented value.

Absinthe Macro
enum

Examples
In an Absinthe schema, defining the enum and the internal representation
it will map to:

@desc "The selected color channel"
enum :color_channel do

@desc "Red Color Channel"
value :red, as: :r

@desc "Green Color Channel"
value :green, as: :g

@desc "Blue Color Channel"
value :blue, as: :b

«Other values»
end

There is also a shorthand values option available, if default settings are
appropriate:

enum :color_channel, values: [:red, :green, :blue]

Appendix 1. GraphQL Types • 262

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Interface
Description

Represents a list of named fields and their arguments. GraphQL objects
can then implement an interface, which guarantees that they will contain
the specified fields.

Absinthe Macro
interface

Examples
In an Absinthe schema, defining the interface and mapping results to the
associated GraphQL type:

@desc "A named object"
interface :named do

field :name, :string
«Other fields to be implemented»
resolve_type fn

%Item{}, _ ->
:item

_, _ ->
nil

end
end

An object type implementing the interface:

@desc "An item"
object :item do

interfaces [:named]➤

field :name, :string
«Other fields»

end

Union
Description

Represents an object that could be one of a list of GraphQL object types,
but provides for no guaranteed fields between those types. They also differ
from interfaces in that object types declare what interfaces they implement,
but are not aware of what unions contain them.

Absinthe Macro
union

report erratum • discuss

Interface • 263

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Examples
In an Absinthe schema, defining the union and mapping results to the asso-
ciated GraphQL type:

@desc "A search result"
union :search_result do

types [:person, :business]
resolve_type fn

%Person{}, _ ->
:person

%Business{}, _ ->
:business

_, _ ->
nil

end
end

Scalar Types
Description

Represents a primitive value in GraphQL. GraphQL responses take the
form of a hierarchical tree; the leaves on these trees are GraphQL scalars.

Absinthe Macro
scalar

Examples
In an Absinthe schema, defining a custom scalar type by providing functions
to parse input and serialize results:

scalar :datetime, name: "DateTime" do
serialize &DateTime.to_iso8601/1
parse &parse_datetime/1

end

Built-in Scalars
A number of built-in scalar types are part of the specification and are prede-
fined for you by Absinthe.

Boolean (Built-in)
Description

The Boolean scalar type represents true or false.

Absinthe Identifier
:boolean

Appendix 1. GraphQL Types • 264

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Float (Built-in)
Description

The Float scalar type represents signed double-precision fractional values
as specified by IEEE 754. Response formats that support an appropriate
double-precision number type should use that type to represent this
scalar.

Absinthe Identifier
:float

ID (Built-in)
Description

The ID scalar type represents a unique identifier, often used to refetch an
object or as the key for a cache. The ID type is serialized in the same way
as a String; however, it is not intended to be human-readable. While it is
often numeric, it should always serialize as a String.

Absinthe Identifier
:id

Int (Built-in)
Description

The Int scalar type represents a signed 32-bit numeric non-fractional value.
Response formats that support a 32-bit integer or a number type should
use that type to represent this scalar.

Absinthe Identifier
:integer

String (Built-in)
Description

Represents textual data as UTF-8 character sequences. The String type is
most often used by GraphQL to represent free-form human-readable text.

Absinthe Identifier
:string

report erratum • discuss

Scalar Types • 265

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Absinthe Scalars
Absinthe ships with a number of custom scalars predefined for convenience.
They are found in Absinthe.Type.Custom and include:

• :datetime
• :naive_datetime
• :date
• :time
• :decimal (when the decimal package is a dependency)

To use these scalar types, add the following to your Absinthe schema:

import_types Absinthe.Type.Custom

Special Types

Lists (Collection Type)
Description

Lists are ordered sequences of values.

Examples

In an Absinthe schema, use the list_of/1 macro to declare the type as a list of
a given type:

object :person do
field :pets, list_of(:pets)➤

«Other fields»
end

Non-Null (Constraint)
Description

To declare a type that disallows null values, the GraphQL NonNull type can
be used. This type wraps an underlying type, and this type acts identically
to that wrapped type, with the exception that null values are not valid
responses for the wrapping type.

Appendix 1. GraphQL Types • 266

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Examples

In an Absinthe schema, use the non_null/1 macro to declare the type as non-
nullable:

input_object :contact_input do
field :name, non_null(:string)➤

«Other fields»
end

Null (Input Value)
GraphQL has two semantically different ways to represent the lack of a value:

• Explicitly providing the GraphQL literal value, null, or as a variable value.
Absinthe will pass on that value as nil to resolvers.

• Implicitly not providing a value at all, in which case Absinthe will omit
the value when invoking resolvers.

report erratum • discuss

Special Types • 267

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Bibliography

[Tho18] Dave Thomas. Programming Elixir 1.6. The Pragmatic Bookshelf, Raleigh,
NC, 2018.

[TV19] Chris McCord, Bruce Tate and José Valim. Programming Phoenix 1.4. The
Pragmatic Bookshelf, Raleigh, NC, 2019.

report erratum • discuss

http://pragprog.com/titles/wwgraphql/errata/add
http://forums.pragprog.com/forums/wwgraphql

Index

SYMBOLS
! (exclamation point), manda-

tory variables, 44, 48

" (quotes), string literals, 28,
35

$ (dollar sign), variable
names, 38

& function capture special
form, 34

: (colon)
argument values, 35
field aliases, 84
variable names, 38

__ notation for introspection,
70

{} (curly braces)
format for argument val-

ues, 47
simple query notation, 37

A
Absinthe, see also middleware

about, xi, 13
Apollo support, 234
Async plugin, 176–181,

192
atom-keyed maps, 33
Batch plugin, 181–184,

191, 213–215
Blueprints, 56, 168, 179
cycle detection, 76
dataloader function, 191
Dataloader integration,

185–188
defining field arguments,

32–34
defining mutations, 77

defining object types, 17–
21

distribution, xiii
execution context, 148–

153
exercises, 192
field arguments, 31–40,

50
filtering with input ob-

jects, 47
global ID special func-

tion, 252
global IDs, 254
in-memory caching, 131
language conventions, 22
“N+1” problem with mid-

dleware, 169–176
non-null arguments, 48–

50, 266
organizing schema, 59–

63
Phoenix contexts and, 63
Phoenix project, 99
pipeline command, 180
pipeline, diagram, 168
pipeline, understanding,

167–169
plugins, 167, 176–184,

187, 191, 213–215
queries, building basic,

21–24
queries, running basic,

24–27
queries, testing basic, 27
relationship to Plug, 149
Relay nodes support,

250–254
in request diagram, 14
Resolution middleware,

123–138

resources on, xiii, 259
scalar types, 19–20, 50–

56, 79, 264–266
scalar types, built-in, 19–

20, 50, 79, 264–266
scalar types, custom, 20,

50–56, 266
subscriptions setup, 98
triggering subscriptions,

109, 116–120
type modules, 60–62
union macro, 66, 263
using schema with multi-

ple modules, 60

absinthe package, xiii

absinthe-socket.js, 245

%Absinthe.Resolution{} struct
authorization middle-

ware, 157
changeset errors, 126
compared to %Plug.Conn{}

struct, 126
:middleware key, 171, 179

absinthe_phoenix, xiii

absinthe_plug, xiii, 24

absinthe_relay, 250, 254–255,
258

abstract types
Absinthe support, 19
interfaces, 19, 71–74,

76, 263
understanding, 63–74
unions, 19, 65–71, 76,

263

@action directive, 200, 203

/admin scope, administrative
interface, 196

:admin_auth pipeline, administra-
tive interface, 205

after_resolution, 180, 183

alias, 23

aliasing
fields, 84–86
module names, 23

all, 23

API tokens, see tokens

Apollo
about, 229
connecting to GraphQL,

234–239
hybrid configuration,

239–243
using client, 231–243

apollo-cache-inmemory, 235

apollo-client, 235

apollo-link-http, 239

App, 246

AppQuery, 247

AppQuery.graphql.js file, 247

arguments, see also field argu-
ments

declaration format, 41
dependent, 50
enums, 41
filtering with input ob-

jects, 44–48
formatting values, 47
modeling input objects,

44–48
non-null, 48–50, 266
syntax, 35

assert_reply, 160

:assigns, 197

assoc, 174

association names, Dataload-
er and, 186

async, 177, 179

Async plugin, 176–181, 192

atom keys
adding field arguments to

atom-keyed maps, 33
using with Phoenix ac-

tions, 199

authenticate, 142–144

authentication, see also au-
thorization

about, 139
administrative interface,

204–209

execution context, 148–
153

logging in, 139–148, 157,
159, 206–209

authorization, see also au-
thentication

about, 139
execution context, 148–

153
exercises, 165
inline, 153–155
login form, 207–209
middleware, 156–160
securing fields, 153–160
storing info in context

with Plug, 149–153
structuring for, 162–165
subscriptions, 160–162

autocompletion, 25, 69

await, 180

B
babel-plugin-relay, 244

batch function, 181

Batch plugin, 181–184, 191,
213–215

before, 255

before_resolution, 179, 187

@behaviour Absinthe.Middleware,
157

Blueprints
about, 56
Async plugin, 179
in pipeline diagram, 168

Boolean scalar type, 20, 264

:boolean scalar type, 20, 264

Booleans, built-in scalar type,
20, 264

bounded context modules, 63

braces ({})
format for argument val-

ues, 47
simple query notation, 37

:browser pipeline, administra-
tive interface, 196, 205

browsers, polyfills for, 224

build_context, 151

C
cache option, Apollo, 236

caching
Absinthe, 131
Apollo, 235, 238
Relay, 245

call, 126, 128, 151, 157

canonical names, 19, 38, 44

case
canonical names, 38, 44
enums, 43
error messages, 88
filtering with input ob-

jects, 47

case command, error mes-
sages, 88

:category_for_item, 190

changesets
error handling with mid-

dleware, 125–137
error messages and Ab-

sinthe, 124
error messages for muta-

tions, 88–91
mutations, 81

channels, Phoenix, xiii, 112–
114

circular references, input ob-
ject types, 48

:classic, 251

client directory, 235

ClojureScript, 230

code for this book, xiii–xiv,
215

colon (:)
argument values, 35
field aliases, 84
variable names, 38

column value, 90

:comeonin_ecto_password package,
141

componentWillMount(), 242, 249

components, React
building, 237
creating subscriptions,

242, 249
defining, 233

concrete types, getting with
introspection, 70

config macro, 108, 116

ConnCase helper module, 27,
111

connection macro, 255–258

connections, Relay, 254–258

constraints
adding, 86–88
mandatory variables, 44

:context, authorization middle-
ware, 157

context function, 186

Index • 272

context generator, Phoenix,
100

contexts
about, 148
Async plugin, 179
authorization middle-

ware, 157
availability, 149
bounded context mod-

ules, 63
Dataloader, 186
execution, 148–153
Phoenix, 63, 100
storing info in with Plug,

149–153

controllers
about, 195
administrative interface,

205–209, 215
building actions, 196–203
Dataloader and, 184
setup, 196

cookies, 204, 209

CORS (cross-origin resource
sharing), 227–229

cors_plug, 227

create, 207

create-react-app, 231, 235, 243

cross-origin resource sharing
(CORS), 227–229

curly braces ({})
format for argument val-

ues, 47
simple query notation, 37

cursor-based pagination, 255

cycles
cycle detection, 76
named fragments, 76
object types, 79

D
data validation, see validation

databases, see also Post-
greSQL

Dataloader, 184–191, 212
resetting, 134

Dataloader, 184–191, 212

dataloader function, 187, 191

dataloader() helper, 192

:date, scalar type, 266

dates
parsing with custom

scalar types, 50–56
scalar types, 266

:datetime, scalar type, 266

debugging and getting con-
crete types, 70

decimal package, 79

:decimal scalar type, 79, 96,
266

decimals, scalar type, 79, 96,
266

def call, 179

dependent arguments, 50

deps.get, 16

@desc, 27, 29

description for object type, 19

:description value, fields, 26

descriptions
about, 19
adding field, 26
exercises, 29

development environment,
setup, 15

directives
defined, 195, 199
security, 203
using with Phoenix ac-

tions, 199–203

do block, 256

document literals, see literals

documentation, see also re-
sources

adding descriptions, 27
with introspection, 19,

25, 69
link, 26

documents, in process dia-
gram, 3

dollar sign ($), variable
names, 38

DOM manipulation, 226

DOMContentLoaded, 226

E
ECMAScript 6, 68, 233

Ecto, see also changesets
about, 13
adding field arguments,

33
from macro, 33
“N+1” problem example,

174
ordering with, 42, 46
PlateSlate setup, 16
quirks, 184
resetting database, 134
resources on, 22
where macro, 46

ecto.setup, 16

edges, as term, 11, see also re-
lationships

edges field, 255

ejection, 244

Elixir
aliasing module names,

23
building basic queries,

21–24
compilation process, 59
creating custom scalars,

52
field arguments, 31–40
filtering with input ob-

jects, 47
package dependencies,

16
running basic queries,

24–27
starting IEx, 18
testing basic queries, 27
version, xiv, 15

Elm, 230

email, authentication, 143

Endpoint module, subscriptions
setup, 99

enum macro, 41, 262

enums, 41–44, 262

env prefix, 172

Erlang, version, xiv, 16

error messages
authentication, 157
exercises, 96
fetching queries with ba-

sic JavaScript client,
225

invalid dates, 55
non-null arguments, 49
with tuples, 88–91
user input, 10, 36
variable types and, 38

errors, see also resolvers
error values as change-

sets, 88
example of handling

without middleware,
123–125

modeling as data, 88, 91–
95

mutations, 86–95
mutations diagram, 92
serialization and, 89
subscriptions, 105, 108,

114
validation, 10

Index • 273

:errors key, resolution structs,
126

ES6, 68, 233

exclamation point (!), manda-
tory variables, 44, 48

execution context, 148–153

Express, 223

ExUnit, 27, see also testing

F
Facebook, 184, 230

fetch API, 224

fetch(), 225–229

fetching
basic JavaScript client,

224–229
with Relay nodes, 250–

254

field arguments
defined, 31
defining, 31–34
dependent arguments

and, 50
providing values, 35–40

field macro, 19–21, 72, 256

field resolvers
adding field arguments,

32–40
modeling errors as data,

93

fields, see also field argu-
ments; field resolvers

about, 31
adding to object types,

19–21
aliasing, 84–86
authentication, 157
canonical names, 19
defining field type, 19
enforcing authorization,

153–160
executing in parallel, 174
exercises, 29
importing, 60, 62
input object types, 45, 48
interfaces, 71–74
introspection on value

types, 69–71
list_of macro, 22, 105, 266
mutation, 78
non-nullable fields for in-

put object types, 49–50
resolution with middle-

ware, 130
specifying, 5

specifying additional, 26
suspending resolution,

183

fields for object type, 19

$filter variable, 47

filtering
with custom scalar types,

50–56
in Dataloader, 188–191
with field arguments, 32–

40
with input objects, 44–48
with non-null arguments,

48–50

:finish option, middleware, 170

first, 255

fish (friendly interactive shell),
172

Float scalar type, 20, 265

:float scalar type, 20, 79, 96,
265

floats, built-in scalar type,
20, 79, 96, 265

form_for, 206

format_error, 89

forms
login, 206–209
Phoenix templates, 206

fragment keyword, 75

fragment spread, 68, 75

fragments
defined, 68
named fragments, 74–76

frameworks, see also Apollo;
Relay

about, 221
choosing, 229
mutations and, 82
subscriptions and, 229

friendly interactive shell (fish),
172

from macro, adding field argu-
ments, 33

from_global_id, 252

from_query, 257

G
__generated__ directory, 247

GET
fetching queries with ba-

sic JavaScript client,
225

in GraphQL process, 5

get, 16, 186

get-graphql-schema, 245

get_many, 186

get_session, 204, 208

global IDs
Relay nodes, 251–254
resolvers, 254

graph theory terminology, 11

GraphiQL, see also introspec-
tion

advanced version, 24,
151

configuring headers, 151–
153

interface, 25
running basic queries,

24–27
versions, 24

GraphQL, see also GraphiQL;
middleware; mutations;
plugins; resolvers; schema;
subscriptions

about, xi, 3
API uses, 195
client-side, understand-

ing, 3–7
compared to REST, 4
key concepts, 3–14
process diagram, 3
request diagram, 14
server-side, understand-

ing, 8–13
vs. SQL, 7
types list, 261–267

@graphql module attribute, 197

GraphQL Playground, 24

graphql(), 241, 246

graphql-tag, 236

H
happy path, 86

hasNextPage, 255

hasPreviousPage, 255

hasSubscription(), 240

hashing, passwords, 141

headers, configuring, 151–
153

HTML
basic JavaScript client,

222–229
building UI with Phoenix,

197–203
DOM manipulation, 226

HTTP
Apollo hybrid configura-

tion, 239–243

Index • 274

building UI with Phoenix,
197–203

CORS (cross-origin re-
source sharing), 227–
229

mutations, 229

I
ID scalar type, 20, 265

:id scalar type, 20, 265

identifier for object type, 18,
130

IDs
built-in scalar type, 20,

265
Relay nodes, 250–254
subscriptions, 113

IEx, starting, 18

import_fields macro, 60, 62

import_types macro, 60–62, 76

importing
fields, 60, 62
types, 60–62, 76

in-memory caching
Absinthe, 131
Apollo, 235, 238
Relay, 245

index, 197, 199

init, storing authorization infor-
mation, 150

input object types
about, 261
built-in, 33
filtering with, 44–48
modeling mutations, 78
non-nullable fields, 49–

50
vs. object types, 79
rules, 48

input.value vs. input, 55

input_object macro, 45, 261

Int scalar type, 11, 20, 265

:integer scalar type, 20, 265

integers, built-in scalar type,
11, 20, 265

Interactive Elixir, starting, 18

interface macro, 72, 263

interfaces
about, 263
Absinthe support, 19
defined, 71
exercises, 76
vs. unions, 263
using, 71–74

interfaces value for object type,
19

INTERNAL mode, queries, 200,
216

introspection
autocompletion, 25, 69
documentation with, 19,

25, 69
getting concrete types

with, 70
metadata, 25
modeling errors as data,

91–95
resources on, 69
unions, 69–71

is_type_of value for object type,
19

items_for_category, 189–190

J
Java, support for, 230

JavaScript
Apollo, 229–243
basic client, 221–229
package naming style,

223
Promises, 225
Relay, 229, 243–258
syntax, 233

JSON, in process diagram, 3

JSX, 233

K
key attribute, React, 234

L
languages

Absinthe support, 22
GraphQL support, 22,

230

last, 255

leex, 90

link option, Apollo, 236

list_items, 188–191

list_of macro, 22, 105, 266

lists
list_of macro, 22, 105, 266
multiple topics, 118
non-null, 105
ordering, 41–44, 100–107

literals, providing field argu-
ment values, 35–37

loader struct, 186

logger and printing, 183

logging in, 139–148, 157, 159

logging out, 209

login, 145

:login mutation field, 144–148

lookup, 151

lookup_type, 18

M
mandatory variables, 44, 48

map key matching, adding
field arguments, 33

MapGet, 136–137

maps
adding field arguments,

33
aggregating queries, 213
filtering with input ob-

jects, 47
resolvers, 134–137

me pattern, 163

memory
Absinthe, 131
Apollo, 235, 238
Relay, 245

:message, errors and serializa-
tion, 89

messages, see error messages

metadata
intermediate objects, 211
introspection, 25

Meteor Development Group,
230

middleware, 123–138
applying, 127–132
authorization, 156–160
building, 125–127
callback approach, 129–

132
compared to Plug, 126,

129
Dataloader, 184–191
exercises, 138
order, 128, 132, 171
placing, 170
plugins and, 176
re-enqueuing, 180
running selectively, 171

Middleware behaviour, 126

:middleware key, 171, 179

middleware macro, 127–132,
136, 138, 156–157

mix, schema setup, 15

mode option, 228

:modern, 251

Index • 275

modules
aliasing, 23
extracting resolvers into,

33–34
type modules, 60–62
using multiple, 60

multiline """ string literal, 28

:mutation identifier, middle-
ware, 131

mutation macro, 37, 77

mutations, 77–96
about, 37
aliasing fields, 84–86
defining root mutation

type, 77–80
exercises, 96
frameworks and, 82
handling errors, 86–95
login API, 144–148
names, 80, 84–86
non-nullable arguments

and, 50
on HTTP, 229
relationship diagrams,

92–93
returning data from, 81
subscription changes

and, 111, 116

N
“N+1” problem

Dataloader example, 184–
191

first example, 66
naïve example, 169–176
plugins examples, 176–

191

:naive_datetime, scalar type, 266

:name field, interfaces, 72

name for object type, 19

named fragments, 74–76

named operations, 38

names
aliasing fields, 84–86
aliasing module names,

23
association names, 186
avoiding duplication with

constraints, 86–88
canonical names, 19, 38,

44
JavaScript package nam-

ing style, 223
mutations, 80, 84–86
object types in interfaces,

72
variables, 38

nesting, input object types,
48

node ./ script, 224

:node field, 250, 253

:node interface, 250–254

node macro, 250, 254

Node Package Manager (npm),
222

Node.js
basic client, 222–224
installation and setup,

222
version, xiv

nodes
Relay, 250–254, 256
as term, 11

non-null arguments, 48–50,
105, 266

non_null macro, 48–50, 105,
266

Notation module, 60–61, 256

npm (Node Package Manager),
222

Null scalar type, 20, 267

:null scalar type, 20, 267

null values
built-in scalar type, 20,

267
non-null arguments, 48–

50, 266
non-null lists, 105

O
object macro, 17, 261

object types
about, 261
adding fields, 19–21
cycles, 79
defined, 11, 17
defining, 17–21
vs. input types, 79
resolution with middle-

ware, 130

on_load, 188

operation types
defined, 37
named operations, 38
variables and, 37

order_by macro, 42, 46

ordering system, see PlateS-
late

output object fields, non-nul-
lability, 49

P
packages, naming style, 223

pageInfo field, 255

PageInfo type, 255

pagination
cursor-based, 255
with Relay connections,

254–258

Param protocol, 201

parse, custom scalars, 52

ParseIDs, 254

parsing
global IDs, 254
input.value vs. input, 55
strings into structs, 51

passwords
authentication, 141, 143
hashing, 141

path, 90

paths
checking name, 206
error messages, 90
path helpers, Phoenix,

201

performance, validation er-
rors, 10

persistence, mutations, 81

phases, understanding Ab-
sinthe pipeline, 167–169

Phoenix, see also controllers
about, 13
Absinthe.Phoenix project, 99
building actions, 196–203
channels, xiii, 112–114
complex queries, 209–

219
context generator, 100
contexts, 63, 100
Dataloader and con-

trollers, 184
generator for user model

data, 140
handling input in admin-

istrative interface, 203–
209

Param protocol, 201
path helpers, 201
in request diagram, 14
subscriptions setup, 98
templates, 195, 198,

206, 215–219
testing basic queries, 27
testing subscriptions,

111–114
token generation, 146

pipeline command, 180

Index • 276

pipelines
Absinthe, 167–169, 180
Phoenix, 196, 205

PlateSlate, see also testing
about, 13
adding allergy informa-

tion, 133–137
administrative interface,

195–219
authentication, 140–153,

157, 204–209
authorization, 148–165
building basic queries,

21–24
enumeration types, 41–

44
error handling with mid-

dleware, 123–137
exercises, 29, 57, 95,

192, 219
field arguments, 31–40
filtering by date with

custom scalar types,
50–56

filtering with input ob-
jects, 44–48

list ordering, 41–44
logging in, 139–148, 157,

159, 206–209
modeling input objects,

44–48
“N+1” problem with plug-

ins, 176–191
“N+1” problem, naïve so-

lution, 169–176
order history page, 209–

219
order tracking system

with subscriptions, 98–
120

ordering items, 100–107
organizing schema, 60–

63
pagination, 254–258
running basic queries,

24–27
schema setup, 15–29
schema structure deci-

sions, 63
search function with ab-

stract types, 63–74
search function with

named fragments, 74–
76

UI with Apollo frame-
work, 231–243

UI with basic JavaScript
client, 221–229

UI with Relay framework,
243–258

user creation of menu
items, 77–96

user input, 31–57

Plug
about, 13
administrative interface

authentication, 204–
209

compared to Absinthe
middleware, 126, 129

filtering with input ob-
jects, 47

relationship to Absinthe,
149

in request diagram, 14
running basic queries, 25
storing authorization in-

formation, 149–153
testing basic queries, 28

%Plug.Conn{} struct
compared to %Absinthe.Res-
olution{} struct, 126

storing authorization in-
formation, 151

plugins
about, 167, 191
Absinthe, 167, 176–184,

191, 213–215
Async, 176–181, 192
Batch, 181–184, 191,

213–215
Dataloader, 184–191, 212
running in Absinthe, 187
understanding Absinthe

pipeline, 167–169
using, 176–191

plugins function, 187

plugs
administrative interface

authentication, 204–
209

CORS (cross-origin re-
source sharing), 227

storing authorization in-
formation, 149–153

polyfills, 224

POST
fetching queries with ba-

sic JavaScript client,
225

in GraphQL process, 5
login forms, 206

post, testing mutations, 82–84

PostgreSQL
configuration, 16

roles, 16
version, xiv
views, 210

printing logger, 183

private key, storing authoriza-
tion information, 151

Programming Elixir 1.6, xii

Programming Phoenix 1.4, xii

Promises, 225

publish, 109, 118

PureScript, 230

pushing, channels, 112

@put directive, 202–203

put_session, 208

Q
queries

with abstract types, 63–
74

aggregating, 181–184,
213

building UI with Phoenix,
197–203

building basic, 21–24
complex, 209–219
diagram of process, 10
enumeration types, 41–

44
executing in Relay, 246
fetching with basic Java-

Script client, 224–229
field aliases, 85
field arguments, 31–40
with input object types,

46–47
INTERNAL mode, 200, 216
need for abstract types,

64
Relay connections, 257–

258
running basic, 24–27
simple notation, 37
testing basic, 27
understanding, 10–13

query function, 188

query macro, 21, 37

QueryRenderer, 246

QueryRootType, 11

quotes ("), string literals, 28,
35

R
React, see also Apollo

components, building,
237

Index • 277

components, creating
subscriptions, 242, 249

components, defining,
233

connecting to Apollo, 236
Relay and, 230, 243
Webpack and, 235

react-apollo, 236

react-relay, 244

readability, resolvers and, 33

ReasonML, 230

relationships
diagramming, 12
exercises, 14
mutation diagrams, 92–

93
REST, 6
terms, 11
understanding, 5–7

Relay
about, 229, 243
caching, 245
connections, 254–258
connections diagram, 255
me pattern, 164
mutation names, 80
nodes, 250–254, 256
subscriptions, 248–249
user interface, 243–258
using Relay conventions

outside Relay, 258
version, 251

Relay Classic, 164

Relay Modern, see Relay

relay-compiler, 244

relay-environment.js file, 245

render(), 233

requestSubscription, 248

reset, 134

resetting, database, 134

Resolution middleware, 123–138

resolve function, 128

resolve macro, 23

resolve_type macro, 67, 72, 254

resolvers
adding field arguments,

32–40
authentication, 145
authorization, 153–160
building basic queries,

22–24
building dynamically,

212–215
complex queries, 212–

215

default, 132–137
defined, 22
error messages with tu-

ples, 88–91
extracting into modules,

33–34
field resolvers, 32–40, 93
global IDs, 254
interfaces, 72
middleware, 123–138
mutations, 80–86, 116
“N+1” problem example

with Async plugin,
176–181

“N+1” problem example
with Batch plugin,
181–184

“N+1” problem example
with Dataloader, 184–
191

“N+1” problem example,
naive, 169–176

ordering, 213
Phoenix contexts and, 63
Relay connections, 257–

258
running collectively, 174
stat and, 215
subscriptions, 105, 110,

114, 117
suspending resolution,

179, 183
undefined, 23
unions, 66

resources
Absinthe, xiii, 259
for this book, xiv
code for this book, xiii–xiv
Ecto, 22
introspection, 69

resources, REST, 4

REST
client role, 4
complexity, 3, 5
relationships in, 6
user input validation, 8
WebSockets, 97

restaurant ordering system,
see PlateSlate

roles
authentication, 140–144,

146
PostgreSQL, 16

root objects
about, 12
avoiding multiple types,

61
exercises, 14

importing fields, 62
importing types, 61
mutations, 77–80
Relay connections, 254

root scope, storing authoriza-
tion information, 149

root values, subscriptions,
110

routers
administrative interface,

205
building actions, 196–203
setup, 196
storing authorization in-

formation, 149

routes
checking name, 206
Phoenix path helpers,

201
running basic queries, 25

run
Absinthe phases, 168
Dataloader, 186
testing subscriptions,

113

S
-S mix option, 18

scalar macro, 51, 79, 264

scalar types, see also enums
about, 264
built-in, 19, 50, 79, 264–

266
custom, 20, 50–56, 266
defined, 11
defining, 79
exercises, 29, 57

schema
abstract types, 63–74
as abstraction layer, 17
diagrams, 3, 10
exercises, 76
grabbing for Relay, 245
named fragments, 74–76
organizing, 59–63
in process, 3, 5, 8–13
Relay connections dia-

gram, 254
in request diagram, 14
setup, 15–29
structure decisions, 63
structuring for authoriza-

tion, 162–165
understanding queries,

10–13

Index • 278

using with multiple mod-
ules, 60

verification in compilation
process, 59

schema.ex file, 76

schema.graphql file, 245

scope
administrative interface,

196, 204
authorizing subscrip-

tions, 160–162
storing authorization in-

formation, 149
topics, 108

search resolver function, 67

searches, see queries

security, see also authentica-
tion; authorization

administrative interface
input, 203–209

CORS (cross-origin re-
source sharing), 227–
229

directives, 203
WebSockets, 235

seed data for this book, 16,
134, 215

self(), 184

separation of concerns, 34

serialization
errors and, 89
scalars, 52

serialize, custom scalars, 52

servers
in process diagram, 3
role in GraphQL process,

8–13

:session type, 144

session_path, 206

sessions
administrative interface

input, 203–209
authentication, 144, 146

shell, non-standard, 172

since
ordering with, 216
pagination, 255

snapshotting, 101–104, 210

socket, 235

socket-apollo-link, 234

socket-relay, 244

sockets, see WebSockets

:sort_order enum type, 41–44

split(), 240

splitting
REST APIs, 4
types into modules, 60

SQL, compared to GraphQL,
7

src/client directory, 235

src/subscriptions directory, 248

:start option, middleware, 170

stat, 215

statistics, aggregating, 214

String scalar type, 11, 20, 265

:string scalar type, 20, 33, 265

strings
converting error info to,

89
parsing into structs, 51
scalar types, 11, 20, 33,

265
string literals, 28, 35
string-keyed maps, 134–

136
topics as, 117

structs, parsing strings into,
51

subscribeToMore(), 242

subscription field, 108

subscription macro, 37

Subscription supervisor, 98

subscriptionId, 113

subscriptions, 97–120
about, 37, 97
with Apollo, 239–243
authorization, 160–162
errors, 105, 108, 114
event modeling, 100–107
exercises, 120
frameworks and, 229
with Relay, 248–249
setup, 98–100
submitting, 108–111
testing, 111–114, 118,

159
triggering, 108–109, 114–

120
updating, 115–120

subscriptions directory, 248

supervision tree, subscrip-
tions, 98

suspending resolution, 179,
183

Swift, 230

T
templates, administrative in-

terface, 195, 198, 206,
215–219

testing
authentication, 146–148
authorization, 154–155,

158
basic queries, 27
error handling of muta-

tions, 87, 91, 94
filtering by date with

custom scalar type, 54–
55

filtering with input ob-
jects, 47

list ordering, 42–44
literals query, 35
login, 146–148
mutations, 82–84
ordering, 102–104
resolution with middle-

ware, 132
search function with ab-

stract types, 71, 73
subscriptions, 111–114,

118, 159
variables query, 39

:time, scalar type, 266

timeouts, authorization, 160

times, scalar types, 56, 266

tokens
authentication, 140, 145–

148
login form, 207
storing authorization in-

formation, 151–153

topics
authorizing subscrip-

tions, 162
configuring, 108
multiple, 118
scope, 108
as strings, 117
trigger topic function,

117–120

traverse_errors, 89

trigger macro, 116–120

trigger topic function, 117–
120

triggers, subscriptions, 108–
109, 114–120

tuples, error messages with,
88–91

type modules, 60–62

:type option, 41

Index • 279

__typename introspection field,
70, 238

types, see also enums; object
types; scalar types

about, 11
abstract types, 19, 63–74
converting to interfaces,

72
explicitly providing, 41
getting concrete types

with introspection, 70
importing, 60–62, 76
list, 261–267
splitting into modules, 60

types macro, 66

U
union macro, 66, 263

unions
about, 19, 263
defined, 65
exercises, 76
vs. interfaces, 263
using, 65–71

unique constraint, 86–88

updateQuery(), 242

updater, 248

URLs
parameters from structs,

201
WebSockets and Apollo,

235

user field, authentication, 145

user input, 31–57
creating scalar types, 50–

56
enumeration types, 41–

44
error messages, 10, 36
field arguments, 31–40
modeling input objects,

44–48
mutations, 77–96

non-null arguments, 48–
50

validation in GraphQL ,
8–13

validation in REST, 8

user interface
administrative interface

for PlateSlate, 195–219
Apollo framework, 231–

243
basic JavaScript client,

221–229
displaying order history,

215–219
handling input, 203–209
Relay framework, 243–

258

User type, in query diagram,
11

users table, authentication,
140–144

V
validation

errors, 10
user input, 8–13
variable types and, 38

:value key, resolution structs,
126

value macro, 41, 43

values, see also enums
aggregating with Batch

plugin, 181–184
argument format, 47
case, 43
copying and pasting, 107
defining, 41
introspection on value

types, 69–71
mandatory, 44, 48
providing field argument,

35–40
providing for variables,

39

values option for enums, 262

variables
copying and pasting val-

ues, 107
declaring, 38
error messages and vari-

able types, 38
filtering with input ob-

jects, 47
input objects, 47
mandatory, 44, 48
names, 38
providing field argument

values, 37–40
providing values for, 39,

44

variables function, 216

views, PostgreSQL, 210

Vue.js, 231

W
web server utility package for

basic JavaScript client, 223

Webpack, 235

WebSockets
connecting Apollo to

GraphQL, 234
Relay, 244
REST, 97
security, 235
subscriptions setup, 98,

100
testing subscriptions,

112–114
URLs, 235

where macro, 46

with pattern, 126

ws://, 235

wss://, 235

Y
-y option for yarn, 222

yarn, installation, 222

Index • 280

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2020 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2020

https://pragprog.com

Learn Why, Then Learn How
Get started on your Elixir journey today.

Adopting Elixir
Adoption is more than programming. Elixir is an excit-
ing new language, but to successfully get your applica-
tion from start to finish, you’re going to need to know
more than just the language. You need the case studies
and strategies in this book. Learn the best practices
for the whole life of your application, from design and
team-building, to managing stakeholders, to deploy-
ment and monitoring. Go beyond the syntax and the
tools to learn the techniques you need to develop your
Elixir application from concept to production.

Ben Marx, José Valim, Bruce Tate
(242 pages) ISBN: 9781680502527. $42.95
https://pragprog.com/book/tvmelixir

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

https://pragprog.com/book/tvmelixir
https://pragprog.com/book/lhelph

A Better Web with Phoenix and Elm
Elixir and Phoenix on the server side with Elm on the front end gets you the best of both
worlds in both worlds!

Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that runtime errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(308 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

https://pragprog.com/book/jfelm

Fix Your Hidden Problems
From technical debt to deployment in the very real, very messy world, we’ve got the tools
you need to fix the hidden problems before they become disasters.

Software Design X-Rays
Are you working on a codebase where cost overruns,
death marches, and heroic fights with legacy code
monsters are the norm? Battle these adversaries with
novel ways to identify and prioritize technical debt,
based on behavioral data from how developers work
with code. And that’s just for starters. Because good
code involves social design, as well as technical design,
you can find surprising dependencies between people
and code to resolve coordination bottlenecks among
teams. Best of all, the techniques build on behavioral
data that you already have: your version-control sys-
tem. Join the fight for better code!

Adam Tornhill
(274 pages) ISBN: 9781680502725. $45.95
https://pragprog.com/book/atevol

Release It! Second Edition
A single dramatic software failure can cost a company
millions of dollars—but can be avoided with simple
changes to design and architecture. This new edition
of the best-selling industry standard shows you how
to create systems that run longer, with fewer failures,
and recover better when bad things happen. New cov-
erage includes DevOps, microservices, and cloud-native
architecture. Stability antipatterns have grown to in-
clude systemic problems in large-scale systems. This
is a must-have pragmatic guide to engineering for
production systems.

Michael Nygard
(376 pages) ISBN: 9781680502398. $47.95
https://pragprog.com/book/mnee2

https://pragprog.com/book/atevol
https://pragprog.com/book/mnee2

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux 2
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. With this updated
second edition for tmux 2.3, you’ll customize, script,
and leverage tmux’s unique abilities to craft a produc-
tive terminal environment that lets you keep your fin-
gers on your keyboard’s home row.

Brian P. Hogan
(102 pages) ISBN: 9781680502213. $21.95
https://pragprog.com/book/bhtmux2

Modern Vim
Turn Vim into a full-blown development environment
using Vim 8’s new features and this sequel to the
beloved bestseller Practical Vim. Integrate your editor
with tools for building, testing, linting, indexing, and
searching your codebase. Discover the future of Vim
with Neovim: a fork of Vim that includes a built-in
terminal emulator that will transform your workflow.
Whether you choose to switch to Neovim or stick with
Vim 8, you’ll be a better developer.

Drew Neil
(166 pages) ISBN: 9781680502626. $39.95
https://pragprog.com/book/modvim

https://pragprog.com/book/bhtmux2
https://pragprog.com/book/modvim

Exercises and Teams
From exercises to make you a better programmer to techniques for creating better teams,
we’ve got you covered.

Exercises for Programmers
When you write software, you need to be at the top of
your game. Great programmers practice to keep their
skills sharp. Get sharp and stay sharp with more than
fifty practice exercises rooted in real-world scenarios.
If you’re a new programmer, these challenges will help
you learn what you need to break into the field, and if
you’re a seasoned pro, you can use these exercises to
learn that hot new language for your next gig.

Brian P. Hogan
(118 pages) ISBN: 9781680501223. $24
https://pragprog.com/book/bhwb

Creating Great Teams
People are happiest and most productive if they can
choose what they work on and who they work with.
Self-selecting teams give people that choice. Build well-
designed and efficient teams to get the most out of your
organization, with step-by-step instructions on how to
set up teams quickly and efficiently. You’ll create a
process that works for you, whether you need to form
teams from scratch, improve the design of existing
teams, or are on the verge of a big team re-shuffle.

Sandy Mamoli and David Mole
(102 pages) ISBN: 9781680501285. $17
https://pragprog.com/book/mmteams

https://pragprog.com/book/bhwb
https://pragprog.com/book/mmteams

Pragmatic Programming
We’ll show you how to be more pragmatic and effective, for new code and old.

Your Code as a Crime Scene
Jack the Ripper and legacy codebases have more in
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring
direction, and understand how your team influences
the design. With its unique blend of forensic psychology
and code analysis, this book arms you with the
strategies you need, no matter what programming
language you use.

Adam Tornhill
(218 pages) ISBN: 9781680500387. $36
https://pragprog.com/book/atcrime

The Nature of Software Development
You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(176 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjnsd

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/wwgraphql
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/wwgraphql
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgements
	Introduction
	About This Book
	About the Code
	Online Resources

	Part I—Build a GraphQL API
	1. Meet GraphQL
	On the Client
	On the Server
	Absinthe and the Tech Stack
	Moving On

	2. Building a Schema
	Preparing the Application
	Our Schema Module
	Making a Query
	Running Our Query with GraphiQL
	Testing Our Query
	Moving On

	3. Taking User Input
	Defining Field Arguments
	Providing Field Argument Values
	Using Enumeration Types
	Modeling Input Objects
	Marking Arguments as Non-Null
	Creating Your Own Scalar Types
	Moving On

	4. Adding Flexibility
	Organizing a Schema
	Understanding Abstract Types
	Using Named Fragments
	Moving On

	5. Making a Change with Mutations
	Defining a Root Mutation Type
	Building the Resolver
	Handling Mutation Errors
	Moving On

	6. Going Live with Subscriptions
	Setting Up Subscriptions
	Event Modeling
	Submitting Subscriptions
	Testing Subscriptions
	Subscription Triggers
	Moving On

	Part II—Publish Your API
	7. Resolution Middleware
	Our First Module
	Applying Middleware
	Setting Defaults
	Moving On

	8. Securing with Authentication and Authorization
	Logging In
	Using the Execution Context
	Securing Fields
	Structuring for Authorization
	Moving On

	9. Tuning Resolution
	Understanding the Problem
	Using Built-in Plugins
	Discovering Dataloader
	Moving On

	Part III—Use Your API
	10. Driving Phoenix Actions with GraphQL
	Building an Action
	Handling Input
	Complex Queries
	Moving On

	11. Integrating with the Frontend
	Starting Simple
	Choosing a Framework
	Using Apollo Client
	Using Relay
	Wrapping Up

	A1. GraphQL Types
	Object
	InputObject
	Enum
	Interface
	Union
	Scalar Types
	Special Types

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –

