

Early Praise for Exploring Graphs with Elixir

This book opens up and makes accessible a technology which few developers have
used so far in creating cutting-edge products, especially in the Elixir world. It will
help Elixir software developers understand better why graph technology is great,
and how easy it is to use to build applications in ways they had never thought of
before.

➤ Dmitry Russ
Lead Engineer, Appian Corporation

In Exploring Graphs with Elixir, Tony takes the reader through a hands-on journey
with several major graph databases. While I had worked with a few already, the
hands-on comparison across several provided a refreshing perspective. Enrich
yourself by joining Tony on this journey and confidently tackle your next graph
problem with ease.

➤ David Swafford
VP, Product Engineering, LynkState

I really like that this book gives such a full overview of contemporary ways of
working with graphs. I have never read anything that brings all the different types
of graphs together so comprehensively, and I feel that for this reason the book
gives valuable insights even to people like myself who are not working with Elixir.

➤ Tony Seale
Developer, UBS

This book presents cutting-edge topics that will be of interest to developers
working in the field and utilizing graph databases, and it is certain to be a very
valuable resource.

➤ Eoghan O’Donnell
Senior Staff Engineer

Exploring Graphs with Elixir
Connect Data with Native Graph Libraries and Graph Databases

Tony Hammond

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Corina Lebegioara
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-840-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix
Introduction xi

Part I — Graphs Everywhere

1. Engaging with Graphs 3
First Contact 5
Coding a Hello World Graph 7
Modeling a Book Graph 8
Our Plan of Action 10
Wrapping Up 11

2. Getting Started 13
General Project Outline 15
Creating the Umbrella and Child Projects 15
Packaging Graphs and Queries 19
Building a Graph Store 24
Defining a Graph Service API 29
Wrapping Up 32

Part II — Getting to Grips with Graphs

3. Managing Graphs Natively with Elixir 35
Creating the NativeGraph Project 35
Basic Workout 37
Storing Graphs in the Graph Store 41
Visualizing Graphs 47
Wrapping Up 54

4. Exploring Graph Structures 55
A Worked Example 55
Modeling the Book Graph 61
Generating Graphs 68
Wrapping Up 70

5. Navigating Graphs with Neo4j 71
Property Graph Model 72
Creating the PropertyGraph Project 73
Querying with Cypher and APOC 76
Trying Out the Bolt Driver 79
Setting Up a Graph Service 84
Wrapping Up 92

6. Querying Neo4j with Cypher 93
Getting Started with Cypher 94
Modeling the Book Graph 98
Recalling the ARPANET 105
Passing Parameters to Queries 109
Schemas and Types in Cypher 111
Wrapping Up 114

7. Graphing Globally with RDF 115
What’s Different About RDF? 116
RDF Model 118
Creating the RDFGraph Project 119
Modeling the Book Graph 121
Building an RDF Graph 125
Setting Up a Graph Service 134
Wrapping Up 142

8. Querying RDF with SPARQL 143
Getting Started with SPARQL 143
Querying the Local RDF Service 144
Case #1: Tokyo Metro 149
Querying a Remote RDF Service 155
Case #2: Graph Walk (Querying) 156
Browsing Linked Data 159
Case #3: Graph Walk (Browsing) 159
Wrapping Up 162

Contents • vi

9. Traversing Graphs with Gremlin 163
Using Gremlin 163
Creating the TinkerGraph Project 164
Querying with Gremlin 166
Setting Up a Graph Service 169
Creating the Book Graph 172
Wrapping Up 174

10. Delivering Data with Dgraph 177
GraphQL and DQL 178
Dgraph Model 179
Creating the DGraph Project 181
Setting Up a Graph Service 185
Modeling the Book Graph 187
Reaching Back to the ARPANET 193
Wrapping Up 198

Part III — Graph to Graph

11. Transforming Graph Models 201
Serializing Graphs 201
Importing RDF with n10s—A Neo4j Plugin 203
A Graph-to-Graph Example 207
Stage 1: Getting RDF into an LPG Store 209
Stage 2: Getting RDF out of an LPG Store 217
Federated Querying 222
Wrapping Up 223

12. Processing the Graph 225
Creating the GraphCompute Project 226
Adding a Supervision Tree (or Two) 228
Building a Dynamic Process Graph 231
Restoring the State for a Node 234
Recovering the Graph 235
Simulating a Network 236
Wrapping Up 243

A1. Project Setups 245
A2. Database Setups 247

Installing Neo4j 247
Installing GraphDB 248

Contents • vii

Installing Gremlin Server 249
Installing Dgraph 250
Starting the Databases 251

A3. Graph Anatomy 253
Structural Elements 254
Semantic Elements 254

Bibliography 257
Index 259

Contents • viii

Acknowledgments
My beginning with this book, I suppose, was almost 30 years ago, in the
sunshine, in Italy. I had just discovered the web and the graph of documents.
Since then, I have been hooked. I don’t think I had ever really focused on
graphs much before that.

Then after a handful and more years, I got hooked again a second time
with the semantic web. I had the good fortune to work on a number of
linked data projects in my day job in science publishing over the next
twenty years. And then when that run eventually came to an end, I was
lucky enough to find the time to do some new learning, explore Elixir, and
start working on this book.

For the last couple of years, I’ve been working for a new outfit to build out a
knowledge graph. I’ve continued to learn still more with a whole new group
of incredible colleagues while having competing demands on my time to finish
this book. But now it’s done.

My first callout is to Marcel Otto. When I was learning Elixir, I also wanted
to see if I could apply it to any domain with which I was familiar. Was
there any support in Elixir for graphs, especially RDF graphs? Marcel was
there and had the whole thing covered with his wonderful set of Elixir
packages (rdf, sparql, sparql_client, and json_ld). He has also been especially
helpful to me both at the beginning of this trek and several times since in
answering questions I have had.

I’d also like to thank the developers of the other Elixir packages I’ve used in
this book. They all have taken the time to answer my questions: Paul
Schoenfelder (libgraph), Florin Pătraşcu (bolt_sips), Barak Karavani (gremlex), and
Dmitry Russ (dlex).

I didn’t shop around for a publisher. I didn’t have to. I only had The Pragmatic
Bookshelf in my sights ever since they published the PickAxe Book. That book
was such a joy to read. That publisher was the one for me.

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

As series editor, Bruce Tate has been really supportive in helping this book
become a reality, believing in it, and helping me turn a bunch of blog posts
into a more coherent package.

And then also my development editor Jackie Carter—what can I say? Maybe
I should have listened to her from the outset. But then I had to learn for
myself. She has kept me focused and helped me find a simpler, more direct
voice. She has helped me turn my various writings into a book. She has stayed
with me throughout this long haul.

And to all the other folks at The Pragmatic Bookshelf who have worked on
this book. I can only mention a few names here: Michael Swaine who did an
early review, Margaret Eldridge and Erica Sadun in publicity, Janet Furlow
in operations, and Brian MacDonald as my acquisitions editor.

I especially need to thank all those who took the time to review the book and
to provide heaps of feedback and constructive comments: Jesús Barrasa, Bob
DuCharme, Victor Felder, Carlo Gilmar, Amos King, Carlos Krauss, Eoghan
O’Donnell, Marcel Otto, Dmitry Russ, Tony Seale, Kim Shrier, Jason Stewart,
Jo Stichbury, Alvise Susmel, David Swafford, and Dominique Vassard. You
have all made this book so much better.

Other folks took time to answer questions I had along the way, in particular
Bradley Fidler on ARPANET topology.

I’d also like to call out a couple of my former colleagues who acted as helpful
sounding boards when I first started to work on the book: Azhar Jassal and
Evangelos Theodoridis. Thank you, both. Your support was very much
appreciated. And a special shoutout to Ilya Venger who hired me into my
current gig on building an enterprise knowledge graph and who got to be
such a graph enthusiast on the project.

Finally, I would like to thank my family who had to bear the burden of me
talking about this book. I would especially like to thank my parents Peter and
Elinor who started me out on my journey in life. I owe them so much.

And the very last words of thanks for being there go to my daughter Elsa, my
son Ollie, and my grandchildren Corin and Juliet. You mean the world to me.

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Introduction
This is a book about connections and disconnections. It’s about graph data
structures and Elixir. It’s about distributed data and distributed compute.
It’s about the graph.

Graphs as an organizational pattern operate at all levels, from the smallest
static structures—for example, chemical compounds such as a water
molecule—to large-scale dynamic structures—for example, web-based social
networks such as Facebook or Twitter. They allow us to link data points
together with a minimum of fuss or overhead. As often noted, graphs lend
themselves well to a schema-less style of data connection.

What kinds of graph models are there and how can we access them from our
preferred language, Elixir? This is what we’ll look to answer in this book. How
easy is it to get started with graphs? How can we build native graph structures
in Elixir? How can we query graph databases with Cypher, Gremlin, and
GraphQL? How can we query linked open data with SPARQL?

We’ll see how.

Graph structures are great at helping us connect data, but in practice, graphs
tend to be disconnected from each other both physically in terms of location
and conceptually in terms of a data model. We want to be able to move our
graph data between graph models and graph databases. We want to straddle
across different implementations.

We’ll aim to get a better understanding of graph models and of Elixir packages
that can be used to build graphs and query graph databases. We’ll also see
how we can use Elixir’s support for concurrency in managing connected and
distributed data.

Who This Book Is For
This book is directed primarily at the practicing Elixir programmer who wants
to get a better understanding of the graph-processing landscape and see both

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

what support already exists within Elixir and also what can be readily accessed
from Elixir.

We’ll be mainly interested in using graphs for creating and supporting infor-
mation networks. The aim is more to move data around and work with, and
across, different types of graph models rather than to explore graph algorithms
per se. There are other resources for that. Here we want to focus on the graph
models themselves and how we might bridge from one model to another.

The book works its way through developing a complete application and as
such can be used as an Elixir learning aid. Some basic knowledge of Elixir
is assumed, although the book proceeds at a gentle pace and will explain new
concepts as they are encountered. The book will use a number of standard
Elixir technologies:

• umbrella apps
• behaviours
• macros
• protocols
• OTP

The book may also be of interest to those who don’t know Elixir but have
some acquaintance with graphs and are curious to learn more about how the
two main graph paradigms—property graphs and RDF graphs—intersect and
the tooling to make them interoperate. In this case, the use of Elixir code
examples throughout the book may be read as a kind of pseudocode.

How to Read This Book
The book is organized into three parts:

• Part I—Graphs Everywhere
• Part II—Getting to Grips with Graphs
• Part III—Graph to Graph

Part I will give a simple introduction to graphs and networks and then go on
to set up the project that we will develop together. This entails creating an
umbrella app and a common library app that will be used by the apps devel-
oped later.

We’ll also spend a little time setting up project storage areas for graphs and
queries for the various graph types and data structures for managing access
to those areas. The goal of this exercise is to make it much simpler to reuse
these components so that we can focus on graph manipulations rather than
file operations.

Introduction • xii

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Part II will be a hands-on investigation of a number of Elixir packages for
working with graphs:

• libgraph
• bolt_sips
• rdf, sparql, sparql_query
• gremlex
• dlex

We’ll first look at developing native graph models within Elixir and then look
at applied graph models and interacting with graph databases. In this area,
we’ll look at the two main paradigms for modeling information networks:
property graphs and RDF graphs.

We’ll work with various graph types and their associated graph query lan-
guages and will introduce shorthand query forms to make querying simpler.

Part III will then look at moving between graphs, how we can transform graph
models from one standard form to another, and how we can use Elixir’s con-
current processing capabilities to manage distributed graphs and distributed
compute.

That at least is the plan.

About the Code
The following conventions are followed in this book.

If something needs to be invoked on the command-line terminal, you’ll see a
$ sign preceding it in the text:

$ iex
Erlang/OTP 24 [erts-12.3.1] ...

Interactive Elixir (1.13.4) - press Ctrl+C to exit (type h() ENTER for help)
iex>

If something needs to be invoked from within the Elixir interactive shell IEx,
you’ll see a iex> sign preceding it in the text:

iex> g = Graph.new |> Graph.add_vertices([:a, :b])

Otherwise, if it’s a source file listing, you’ll usually see a file name banner:

apps/native_graph/lib/native_graph/builder.ex
def random_graph(limit) do

for(n <- 1..limit, m <- (n + 1)..limit, do: do_evaluate(n, m))
|> Enum.reject(&is_nil/1)
|> Enum.reduce(

Graph.new(),

report erratum • discuss

About the Code • xiii

http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph/builder.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

fn [rs, re], g ->
Graph.add_edge(g, rs, re)

end
)

end

Some other conventions are also used.

While we follow the general convention to use pipes only for functions with
multiple arguments, we do make an exception for query strings. Given the
length of some of the query strings we will encounter, it seems more natural
to pipe the query string into the query function instead of adding it as an
argument:

iex> "MATCH p = ()-[*]->() RETURN DISTINCT length(p)" |> cypher!
[%{"length(p)" => 1}, %{"length(p)" => 2}, %{"length(p)" => 3}]

This also allows us to focus on the query itself and not the query function:

iex> """
...> {
...> q(func: has(EX)) {
...> uid
...> EX { uid }
...> }
...> }
...> """ |> dgraph!

%{"q" => [%{"EX" => [%{"uid" => "0x4ebb"}], "uid" => "0x4eba"}]}

The emphasis in this book will mostly be on interactive exploration using IEx
so certain practices are followed to simplify data entry and the number of
keystrokes. For example, importing functions will be common so that we can
reuse the same functions for different graph models, such as query_graph,
read_graph, and others.

About the Software
To follow along with the book, you should have Elixir 1.10+ installed. The
book will guide you through setting up an umbrella application for a graph
test bed using a variety of graph databases. Instructions for installing the
graph databases are given in an appendix.

This book was written in 2022, and the versions of the various software
packages used in this book’s development are listed in the table shown on
page xv.

Introduction • xiv

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Version TestedSoftware

Languages

1.13.4Elixir

Databases

21.12.0Dgraph

9.11.1GraphDB Free

3.6.0Gremlin Server

4.4.5Neo4j Community Edition

Online Resources
The sample code for this book is available from the book page on the Pragmatic
Programmers website.1 You’ll also find the errata-submission form there,
where you can report problems with the text or make suggestions for future
versions.

Tony Hammond

November 2022

1. https://pragprog.com/titles/thgraphs

report erratum • discuss

Online Resources • xv

https://pragprog.com/titles/thgraphs
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Part I

Graphs Everywhere

Graphs are simple data abstractions that lie behind
networks of all stripes.

The graph provides the basic connection matrix,
while the network maps the graph to a given subject
domain and uses the wiring plan for its specific
business goals.

Networks are found wherever distributed processes
and systems occur and are used for all kinds of
purposes. Yes, graphs are everywhere.

CHAPTER 1

Engaging with Graphs
Graphs and graph databases are everywhere. This is no big surprise given
that graphs can address the two main concerns we have in dealing with the
huge volumes of data all around us—organization and scale. Differently from
the more usual “buckets of data” or relational data approaches, graphs can
bring both order and growth to data as data goes large. And they can do this
both organically and holistically. This is what makes graphs such a fascinating
field to work with.

As an organizational pattern, graphs operate at all levels from the smallest
static structures, such as chemical compounds—think of a water molecule—to
large-scale dynamic structures, such as web-based social networks—think
Facebook or Twitter.

Graphs are especially useful in dealing with messy and irregular datasets
and hard-to-fit data. They cope particularly well with sparse datasets. Unlike
the relational model, with fixed tables optimized for transactional database
requests, graphs tend to turn things on their head. Instead of dealing with
objects as sets of relations and then attempting joins over these sets, it is
the relationships between objects that become the chief organizing principle.
It’s all about the connections rather than the records. Schemas take a
backseat—still incredibly useful but not overly restrictive. We have a much
more fluid way to relate our data items.

With graphs, we are typically working with an open-world assumption and
thus with partial knowledge. We can’t conclude anything definite from missing
data. Any missing data may arrive at any future time. This is in contrast to
more familiar data models which commonly use a closed-world assumption
where everything is known ahead of time and locked down. Those data models
are predictable and provide solid guarantees about data integrity. The down-
side is that they are regimented.

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

More simply said, graphs are great at gluing pieces of data together.

Although graph data structures can connect data items, in practice graphs
themselves tend to be disconnected from each other both physically in separate
graph databases and conceptually in terms of data models. To move data
between graphs, it helps to understand their respective data models and how
we can transform data from one graph model to another.

In later chapters, we’ll work with the different graph models and also look at
graph transformations. The graph-to-graph problem is almost as challenging
as the structured-data-to-graph (table or document to graph) problem.

So what’s this book about then? Maybe this concept map (and yes, it’s a
graph) can assist in indicating some of the things we’ll explore.

Elixir

Property graphs

Graphs vs relational

Semantic graphs

Distributed data

Concurrent compute

Graphs

Transforms

Graph databases
RDF

Cypher GraphQL

SPARQL

Query languages

Gremlin

Native

We’ll deal with graphs as structures for organizing data at large. We’ll see
how we can use Elixir to process both database graphs and distributed graphs.
We’ll focus on the so-called “semantic” graphs—that is, graphs with an
information-bearing capacity. We’ll need to consider different graph models,
what they provide, and how they can be related, and we’ll need to work with
different query languages. We’ll cover all of these in this book.

First, let’s look into what graphs actually are and also some common paradigms
for graph models. In later chapters, we’ll work with different graph packages
in Elixir, but until then we can try our hand at building a graph with a library
that ships with Elixir. To compare the different graph packages with their
respective graph models, we’ll need a reference graph model. We’ll define one
here so we can see how these graph models variously deal with this reference
model.

Chapter 1. Engaging with Graphs • 4

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

First Contact
Before going further, let’s establish some of the terms we’ll be using in this
book. First of all, when we talk about graphs, we obviously mean networks—not
charts. Traditionally the term “graph” has referred to a diagram or plot of one
quantity against another. This is the more widely understood sense of the
term. But that’s not our concern here. We’ll use the term “graph” in its other
sense of a data structure used to model relationships between things. That
is, we have one set of things and another set of relationships between those
things. Those two sets together constitute a graph. In its most general sense,
a graph is a data model for relating a collection of things.

Network vs. Graph

We mentioned the word “network” before. This is the term used
by network science as opposed to “graph,” which is the preferred
term used in graph theory, a branch of mathematics. A network
is an engineering implementation of a graph. There are other dif-
ferences too. A network is typically a dynamic system concerned
with flows through a structure. A graph, on the other hand, is
typically understood holistically as a static construct.

Vertex/Edge—What?
As noted, there are two components in a graph: things and relationships. In
practice, you’ll find many different terms for these graph building blocks:

vertex/edge
terms used by graph theory, a formal theory in math

node/link
terms used in network science theory

node/relationship
terms used by the Neo4j graph database

node/arc
terms used by the RDF graph data model

dot/line
terms sometimes used in graph diagrams

object/arrow
terms used by category theory, a foundational theory in math (a category
is a graph with additional structure)

report erratum • discuss

First Contact • 5

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

But it doesn’t matter which terms we use. It’s probably best to keep the ver-
tex/edge pairing when dealing with graph theory topics and use the node/link
pairing when talking about networks. In this book, however, we’re going to
use the terms node and edge, although we’ll sometimes also use the term
vertex for node.

Graph Models
Of course, there is more to all this than just nodes and edges. There are code
libraries for modeling graphs and running graph algorithms. There are graph
databases that implement particular graph models. It’s important to establish
now that there are two main graph models which are supported by graph
databases: the property graph model, sometimes referred to as the labeled
property graph, and the RDF model. The following table shows a direct feature
comparison between these two graph models:

RDFProperty Graph

W3Cindustrysponsor

yesnostandards

documents (web)databasefield of origin

19992007?published

data integrationgraph explorationstrength

SPARQLCypher, Gremlinquery language

global (IRI)systemnames

annotations

edges (with string nodes)attributesnodes

—attributesedges

This is obviously an oversimplification of the current position. For example,
although property graphs are not standards-based, there is work ongoing to
surface aspects of the model within various standards bodies. At the same
time, there is the new development of RDF* (with SPARQL*), which seeks to
close the gap between property graphs and RDF graphs by addressing the
edge annotation problem.

But this is all getting ahead of ourselves. We’ll look more closely at the different
graph models as we explore the actual graph packages. And we haven’t even
seen a graph yet. So let’s remedy that now.

Chapter 1. Engaging with Graphs • 6

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Coding a Hello World Graph
As Elixir programmers, it’s only natural to wonder what kind of support Elixir
has for working with graph technologies. Quite a bit as it turns out. A growing
number of Elixir graph packages have been in active development for some
time now, and they are addressing all of the major graph types.

In this book, we’re going to develop a project that will allow us to explore some
of the main graph databases, graph query languages, and graph models. We’ll
also look at interchanging between graph types and transforming data from
one to another.

But first, let’s try something out of the box—no setup required.

Elixir comes with built-in graph support. We can use the Erlang library :digraph
that ships with the Elixir distribution. Let’s use this to string a couple of
words together. Just fire up Elixir’s interactive shell IEx from the command
line:

$ iex
Erlang/OTP 24 [erts-12.3.1] ...

Interactive Elixir (1.13.4) - press Ctrl+C to exit (type h() ENTER for help)
iex>

Now that we’re in IEx, import the :digraph library:

iex> import :digraph
:digraph

iex> g = new
{:digraph, #Reference<0.148244651.2766536707.134565>, ..., true}

iex> v1 = add_vertex(g, "Hello")
"Hello"

iex> v2 = add_vertex(g, "World")
"World"

iex> get_path(g, v1, v2)
false

So, here we created a couple of vertices and tried to get the path between
them and, of course, we failed because we haven’t yet defined any edges in
our graph. Let’s fix that and try again:

iex> add_edge(g, v1, v2)
[:"$e" | 0]

iex> get_path(g, v1, v2)
["Hello", "World"]

report erratum • discuss

Coding a Hello World Graph • 7

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Ah, that’s better. Our very first graph—a “Hello World” graph.

Modeling a Book Graph
We’re going to explore different graph models in this book, so it might be
handy to have a reference graph that we can use to gauge how each model
behaves. Let’s do that by creating a simple graph for a book catalog.

We’ll start by populating our book graph with one book:

• Adopting Elixir [Tat18] by Ben Marx, José Valim, and Bruce Tate.

This simple exercise is meant to familiarize you with some basic semantic
elements and later show you how these elements can be represented in the
different graph models we’ll encounter.

We can visualize our book graph in the following figure.

AUTHOR

AUTHOR

AUTHOR

PUBLISHER

Book

Author

Publisher

Author

Author

#n5

#n2

#n3

#n4

#n1

#e5

#e2

#e3

#e4

#e1
BOOK

This is a diagrammatic representation. We’ll see later how to represent this
in the various graph models and how to query it.

This simple graph shows a small set of things and how they are related. The
labels on the nodes (Author, Book, and Publisher) and edges (AUTHOR, BOOK, and PUB-
LISHER) tell us what kinds of things are being related and how they are related.
We’ve also added IDs for the nodes (such as #n1) and edges (such as #e1).

But this doesn’t tell us much. There aren’t any details.

What we’d like to do is to attach properties to the nodes and edges to better
describe which book, author, and publisher they are relating to. Let’s do that
now. Let’s add some properties to our book graph as shown in the figure on
page 9.

Chapter 1. Engaging with Graphs • 8

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

AUTHOR

AUTHOR

AUTHOR

PUBLISHER
role:
second author

role:
third author

role:
first author

Book

Author

Publisher

Author

Author

id: bruce_tate
url: https://
twitter.com/
redrapids
name: Bruce Tate

id: ben_marx
url: https://
twitter.com/
bgmarx
name: Ben Marx

id: jose_valim
url: https://
twitter.com/
josevalim
name: José Valim

id: pragmatic
url: https://prag-
prog.com/
name: The Prag-
matic Bookshelf

id: adopting_
elixir
url: https://
pragprog.com/
titles/tvmelixir/…

Isbn: 978-1-
68050-252-7
date: 2018-03-14
format: Paper
title: Adopting …

#n5

#n2

#n3

#n4

#n1

#e5

#e2

#e3

#e4

#e1
BOOK

We’ve annotated our graph by adding some properties on the nodes to specify
more precisely the things we’re describing here. We’ve also added a property
on some of the edges to qualify the relationships between those things.

Our book graph is now a semantic graph and carries information about the
things it relates and the relationships between those things.

Let’s dig in a little more.

Nodes
This simple graph relates five things: a Book node, three Author nodes, and a
Publisher node. We’ve also added a minimal set of properties for each node, as
shown in the following table.

PropertiesTypeNode

id: "adopting_elixir", url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/",
isbn: "978-1-68050-252-7", date: "2018-03-14", format: "Paper", title: "Adopting
Elixir"

Book#n1

id: "ben_marx", url: "https://twitter.com/bgmarx", name: "Ben Marx"Author#n2
id: "jose_valim", url: "https://twitter.com/josevalim", name: "José Valim"Author#n3
id: "bruce_tate", url: "https://twitter.com/redrapids", name: "Bruce Tate"Author#n4

id: "pragmatic", url: "https://pragprog.com/", name: "The Pragmatic Bookshelf"Publisher#n5

report erratum • discuss

Modeling a Book Graph • 9

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Edges
We’ve created three relationships to relate the nodes: AUTHOR, BOOK, and
PUBLISHER.

We’ve also added in a role property on the AUTHOR relationship with simple
string values showing the priority of authorship, as seen in the following table.

PropertiesTypeNodesEdge

(none)BOOK(#n5, #n1)#e1
role: "first author"AUTHOR(#n1, #n2)#e2
role: "second author"AUTHOR(#n1, #n3)#e3
role: "third author"AUTHOR(#n1, #n4)#e4
(none)PUBLISHER(#n1, #n5)#e5

And that pretty much is that for this simple graph.

But having only one book in our book catalog seems a little stingy. Let’s add
a few more books:

• Designing Elixir Systems with OTP [IT19] by James Edward Gray, II and
Bruce A. Tate.

• Craft GraphQL APIs in Elixir with Absinthe [WW18] by Bruce Williams and
Ben Wilson.

• Graph Algorithms [HN19] by Amy Hodler and Mark Needham.

Now we have a fuller book graph as shown in the figure on page 11.

To make it easier this time to see the nodes and edges, we don’t show the
properties but label each node with its id property value.

Our Plan of Action
We have some options for how we might go about reviewing the various Elixir
graph packages. We could treat them as separate things and talk about each
of their idiosyncrasies. We could also focus on some real-world problems and
see how each package might be able to support each particular use case. But
that’s not what we’re going to do in this book.

We want to focus on the similarities—not the differences—between the various
graph data models. We would like to have some of the following:

• an easy means to store graph queries and graph data
• an easy way to switch between different graph models
• an easy way to access different graph databases

Chapter 1. Engaging with Graphs • 10

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

AUTHOR

PUBLISHER
AUTHOR

AUTHOR

AUTHOR

PUBLISHER

AUTHOR

PUBLISHER

AUTHOR

AUTHOR

Author
bruce_tate

Author
jose_valim

Author
ben_marx

Publisher
pragmatic

Book
graphql_apis

Author
bruce_williams

Author
james_gray

Author
ben_wilson

Book
adopting_elixir

Book
designing_elixir

PUBLISHERAUTHOR

AUTHOR

Publisher
oreilly

Book
graph_algorithms

Author
amy_hodler

Author
mark_needham

BOOK

BOOK

BOOK

BOOK

To do this, we’re going to create a graph test bed application—a small
laboratory—for testing and comparing graphs. In Elixir terms, this will be an
umbrella app that is nothing more than a loose federation of related apps.

We’ll describe how we build this app. In some places, we might go a little deep
for an Elixir beginner. In other places, we’ll belabor points that are probably
well understood by more seasoned Elixir developers. Somewhere in the middle,
we hope to offer something for everybody.

Wrapping Up
In this chapter, we’ve looked at graphs as a basic data structuring principle
and considered how they compare to more familiar means of organizing data.
Their open-data model and general flexibility are capabilities that are especially
well suited to meeting the challenges posed by large and dispersed datasets.

We’ve introduced some common terms that we’ll use in the book. We’ve con-
trasted the main graph models we’ll be working with—property graphs and
RDF graphs.

We’ve also used a built-in library to create our first graph—“Hello World.” We
then defined a simple book graph as a reference graph that we’ll use later.

report erratum • discuss

Wrapping Up • 11

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We’re almost ready to start some coding. So let’s set up an Elixir project and
a common library that we’ll use to build out our graph laboratory. We’ll explore
different graph models with this graph laboratory. We’ll also use our book
graph to see how that can be implemented with the different graph models
we’ll encounter.

Chapter 1. Engaging with Graphs • 12

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

CHAPTER 2

Getting Started
In this book, we’ll explore some of the graph packages that currently exist
in the Elixir ecosystem, and we’ll develop a set of applications to drill down
into the various graph models. We’ll build native Elixir graph models with
the libgraph package, and we’ll query remote graph databases of different
flavors—property graphs with bolt_sips, RDF graphs with sparql_client, TinkerPop
graphs with gremlex, and Dgraph graphs with dlex.

The overall plan is to get into some in-depth exploration of the individual graph
models in Part II and then to see how they can interoperate in Part III. We’d like
to make it super easy for you to work with different graph types, compare and
contrast their data models, and see how they can be queried. Ideally, what we
want is something like a graph playground that we can run from within an IEx
session and that allows us to interact directly with the graphs.

We’re going to build such a graph playground.

But we’re going to need some organization first. We’ll have to manage the code in
our applications and the access to the data we’re going to be working with.

In this chapter, you’re going to create an Elixir umbrella app, which is a set
of apps managed under a single container app. We’ll use this as our code
foundation for the book. We’re going to be dealing with half a dozen or so
separately managed apps.

The figure on page 14 shows the apps and data organizations and how they
are related. The top half of the figure shows how the various apps are organized
under the umbrella app and how they are introduced within the book. The
bottom half of the figure shows how our graph data is managed and accessed
both from a local graph store and via remote graph services. The graph stores
are also shown in relation to their specific graph apps.

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

new/3

Graph Services Graph

graph_*

G
ra

ph
 S

er
vi

ce

Apps

Data

G
ra

ph
 S

to
re

neo4j

graphdb

gremlin

server

dgraph

server

.dot

property

.cypher

rdf

.ttl

tinker

.gremlin

dgraph

.dgraph

Part I Part II Part III

 native_graph graph_commons

 ex_graphs_book

 property_graph

 rdf_graph

U
m

br
el

la
 A

pp

 tinker_graph

 d_graph

libgraph native

.dot

property

.cypher

rdf

.ttl

tinker

.gremlin

dgraph

.dgraph

 graph_compute

Ch
ild

 A
pp

s

To simplify our experiments, we’ll want to save graphs and queries for later
reuse. We’re going to build a graph store for managing these artifacts for the
different graph types we’ll be looking at. You’ll first build some common data
structures for saving graph queries and for serializing graphs. You’ll also
employ the use/__using__ macro pair to inject a set of generic read/write func-
tions into the specific graph modules.

We’ll also want to query the different graph types. But this means interacting
with graph databases and graph libraries of different stripes. To make this
simpler, we’ll build up a set of graph services with a common interface. You’ll
be using the OTP behaviour pattern. You’ll also learn how to install and run
some common graph databases. Details for this will be given in the appendices.

Chapter 2. Getting Started • 14

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

General Project Outline
The project that we’ll develop in this book falls into three main pieces: general
setup, graph-specific apps, and graph applications.

In Part I of this book, we’ll build a common library module graph_commons.

In Part II, we’ll take an in-depth look at five separate Elixir graph packages
(libgraph, bolt_sips, sparql_client, gremlex, and dlex), which we’ll explore with a set of
dedicated apps.

And then in Part III, we’ll build a couple of graph applications that either
reuse the existing apps or introduce new apps.

Essentially, we’re dealing with two sets of apps plus a common library app.
That’s a lot of apps that we’ll manage under a single umbrella app.

So let’s set up our umbrella app and the common library app. We’ll gradually
introduce the other apps in the chapters to come.

Creating the Umbrella and Child Projects
We’re going to start with some general project setups for organizing our code
and data. For managing the code we’ll use an umbrella app as this provides
a simple but effective compromise when working with diverse packages
within a single framework. On the data side, we’ll separate out graph storage
from graph services and use common interfaces for each of the graph models
we’ll consider.

We’re going to do the following main project setups in this chapter, although
we’ll deal with specific service implementations in upcoming chapters:

Umbrella app
We’ll set up a modular app framework so that each of the separate graph
projects we are going to create can be managed and related. We’ll also
add our first app—a library for common data structures.

Graph store
We’ll set up a common storage area for our graphs. This is for both storing
example instances and queries for each separate graph type, as well as
for imports and exports from other graph types.

Graph service
We’ll set up a common interface for graph services. These services will be
provided by external databases. The one exception is for native Elixir
graphs which have no service implementation.

report erratum • discuss

General Project Outline • 15

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

So, let’s get to it.

ExGraphsBook Umbrella
We’re going to structure our code as an Elixir umbrella app. Let’s call this
umbrella project ExGraphsBook, which seems about right for an Elixir book on
graphs. In Elixir, an umbrella app refers to a close-knit family of related apps
which can be sourced together in a single repo, aka the “monorepo”1 pattern.
In essence, what we have is something like an app collective where apps
loosely cooperate. This will allow us to follow a simple modular development
as we initially progress through the early chapters and then move on to work
across multiple apps in later chapters. We can consider the umbrella app as
a parent app that manages a set of child apps.

At this point, we can set out the road map for this book. If you take another
look at the previous diagram, you’ll see the apps panel at the top with the
umbrella app above and the child apps and their dependencies below. The
diagram also shows the order of introducing the apps into the umbrella, that
is in the left-to-right and top-to-bottom order, and how this order corresponds
to the overall book organization. The shaded apps are supervised apps and
have application callback modules. We’ll discuss this more when we get to
adding those apps.

For now, let’s kick things off by creating the umbrella app itself.

ExGraphsBook Project Setup

See Appendix 1, Project Setups, on page 245, for details on retrieving
a working project with code and data.

Switch to your Elixir projects directory and use Elixir’s build tool Mix to create
an umbrella app by using the mix new command with an --umbrella flag:

$ mix new ex_graphs_book --umbrella

You’ve just created a new ExGraphsBook project in the ex_graphs_book directory:

.
├── ex_graphs_book➤

Let’s cd into the ex_graphs_book directory. You should have a project top-level
directory structure that looks like this:

1. https://en.wikipedia.org/wiki/Monorepo

Chapter 2. Getting Started • 16

report erratum • discuss

https://en.wikipedia.org/wiki/Monorepo
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

.
├── README.md
├── apps➤

├── config
│ └── config.exs
└── mix.exs

In an umbrella app, the project file mix.exs is largely empty and acts more as
an organizer. It only contains a pointer apps_path to the apps directory:

mix.exs
def project do

[
apps_path: "apps",
version: "0.1.0",
start_permanent: Mix.env() == :prod,
deps: deps()

]
end

We’re ready now to begin adding apps to our umbrella.

GraphCommons Library
We want to build out a common storage area for saving graph experiments
and define a common services API for querying test graphs. This is our
rationale for developing a GraphCommons project.

You’ll need to cd down into the apps directory. This is where we’re going to
create our first app—graph_commons.

So, without more ado, create a new project GraphCommons:

$ mix new graph_commons

Now we have our first app in the umbrella:

.
├── apps
│ └── graph_commons➤

Next, cd down into the graph_commons directory. Here we have the GraphCommons
project top-level directory structure:

.
├── README.md
├── lib➤

│ └── graph_commons.ex
├── mix.exs
└── test

└── ...

report erratum • discuss

Creating the Umbrella and Child Projects • 17

http://media.pragprog.com/titles/thgraphs/code/mix.exs
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

For the sake of brevity, we won’t show any dependencies for documentation
and testing in the projects we’ll be creating in this book.

We’re going to create a storage area in Creating a Storage Area, on page 25.
For that, we are going to set up a priv directory in the GraphCommons project as
our common holding area.

We’ll need to somehow reference that location. Add this to the project config
file config.exs in the config directory at the project top level:

config/config.exs
config :graph_commons, root_dir: File.cwd!

When we run IEx from the project directory, this will give us the current
working directory and associate it with the graph_commons app which is where
we will create our priv directory.

We can now read that location back in our GraphCommons module:

apps/graph_commons/lib/graph_commons.ex
@root_dir Application.fetch_env!(:graph_commons, :root_dir)

Let’s also define a couple of functions for getting the locations of our apps and
priv directories:

apps/graph_commons/lib/graph_commons.ex
def apps_dir(), do: @root_dir <> "/apps"
def priv_dir(), do: @root_dir <> "/apps/graph_commons/priv"

We’ll use the priv_dir/0 function later.

We also want to add a space for tools. Create a new GraphCommons.Utils module,
and then open up a new utils.ex file and place it under a lib/graph_commons
directory:

lib
├── graph_commons➤

│ └── utils.ex
└── graph_commons.ex

Add the new module GraphCommons.Utils here:

defmodule GraphCommons.Utils do

...

end

Now fetch and compile the dependencies with the following Mix calls:

$ mix deps.get; mix deps.compile

Chapter 2. Getting Started • 18

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/config/config.exs
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

You’ll need to run IEx with the project loaded as:

$ iex -S mix
Erlang/OTP 24 [erts-12.3.1] ...

Interactive Elixir (1.13.4) - press Ctrl+C to exit (type h() ENTER for help)
iex>

And now we’re ready to start building out some structures to contain our
graphs and graph queries.

Packaging Graphs and Queries
We’re going to save our graph serializations and database queries in the graph
store, and we’ll need some data access properties to describe them. To keep
things simple, let’s say we’re going to work with text-based formats only.

We’ll want to encapsulate those graph and query serializations, along with
the properties for accessing them, into data packages for transporting to and
from the graph store. Essentially, we’re building containers for the graphs
and queries. We’ll use structs for those data packages—one for graphs and
one for queries.

So let’s extend our module structure to add in a new module for a %GraphCom-
mons.Graph{} struct to capture a graph serialization. We’ll also add a module
for a %GraphCommons.Query{} struct to capture a graph database query.

You’ll need to cd back to the apps/graph_commons directory and create a file for
each of the structs in the graph_commons directory under lib:

lib
├── graph_commons
│ ├── graph.ex➤

│ ├── query.ex➤

│ └── utils.ex
└── graph_commons.ex

Now we need to build the structs.

Graph Struct
Let’s start with the graph struct %GraphCommons.Graph{} and define a new
module GraphCommons.Graph:

defmodule GraphCommons.Graph do

...

end

report erratum • discuss

Packaging Graphs and Queries • 19

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Then we add a @storage_dir attribute:

apps/graph_commons/lib/graph_commons/graph.ex
@storage_dir GraphCommons.storage_dir()

Note that we haven’t defined the GraphCommons.storage_dir/0 function. That’s
coming up in Creating a Storage Area, on page 25.

Now add the following fields:

• :data—graph serialization
• :file—name of graph_file (within the graphs_dir)
• :type—graph type

For the actual storage we’ll need an absolute path location on the filesystem,
as well as an absolute URI for network access:

• :path—absolute path of graph_file
• :uri—absolute URI of graph_file

So we define this simply enough as:

apps/graph_commons/lib/graph_commons/graph.ex
@enforce_keys ~w[data file type]a
defstruct ~w[data file path type uri]a

We’re using the sigil syntax ~w for bare words, and the modifier a marks these
out as atoms.

We only enforce the user-supplied keys (:data, :file, and :type). The other two
keys (:path and :uri) will be derived from the :file name and :type.

We’ll also want a constructor—and note the guard which we’ll need to define
first:

apps/graph_commons/lib/graph_commons/graph.ex
def new(graph_data, graph_file, graph_type)

when is_graph_type(graph_type) do
graph_path = "#{@storage_dir}/#{graph_type}/graphs/#{graph_file}"

%__MODULE__{
user
data: graph_data,
file: graph_file,
type: graph_type,
system
path: graph_path,
uri: "file://" <> graph_path

}
end

Chapter 2. Getting Started • 20

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Here we’ve put the is_graph_type/1 guard in place to check the graph_type:

apps/graph_commons/lib/graph_commons/graph.ex
defguard is_graph_type(graph_type)

when graph_type in [:dgraph, :native, :property, :rdf, :tinker]

We’ll use the graph_type and graph_file args to build a graph_path and use that to
populate the :path and :uri fields.

We haven’t said anything yet about types for our struct. So let’s define a type
t for the struct as shown here:

apps/graph_commons/lib/graph_commons/graph.ex
@type graph_data :: String.t()
@type graph_file :: String.t()
@type graph_path :: String.t()
@type graph_type :: GraphCommons.graph_type()
@type graph_uri :: String.t()

@type t :: %__MODULE__{
user
data: graph_data,
file: graph_file,
type: graph_type,
system
path: graph_path,
uri: graph_uri

}

We’ve set the various fields as strings apart from the graph_type which is
restricted to the GraphCommons.graph_type() types (:dgraph, :native, :property, :rdf, and
:tinker). We need to add these types too:

apps/graph_commons/lib/graph_commons.ex
@type base_type :: :dgraph | :native | :property | :rdf | :tinker
@type graph_type :: base_type()
@type query_type :: base_type()

@type file_test :: :dir? | :regular? | :exists?

To check the graph_type we can use the IEx helper t/1:

iex> t GraphCommons.graph_type
@type graph_type() :: base_type()

iex> t GraphCommons.base_type
@type base_type() :: :dgraph | :native |:property | :rdf | :tinker

Types for graph storage.

report erratum • discuss

Packaging Graphs and Queries • 21

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Query Struct
Next, let’s turn to our query struct %GraphCommons.Query{}. This will be a direct
analog to the %GraphCommons.Graph{} struct in its own module GraphCommons.Query:

defmodule GraphCommons.Query do

...

end

Since there is no real difference between the two modules other than replacing
the term “query” for “graph” everywhere, we won’t go through this here, but
you can always check the code listings—see Appendix 1, Project Setups, on
page 245.

By the way, we’re using a separate struct for queries because some graph
models maintain a clear distinction between serialization and query language.
For example, RDF has many serializations—we’re using Turtle (or .ttl)
here—while SPARQL has its own representations for query (.rq) and update
(.ru). By contrast, property graphs may use the same Cypher representation
for both serialization and query.

Inspecting the Structs
So, let’s try out the %GraphCommons.Graph{} struct by creating a new graph.
We’ll use a property graph model example here which generates a minimal
graph with two nodes and one edge between them. (We’ll look at querying
property graphs in more detail in Chapter 5, Navigating Graphs with Neo4j,
on page 71.)

The simple example shown in the figure will serve as our default graph.

a bEX

We can create this simple graph with the Cypher string:

CREATE (a)-[:EX]->(b)

If we use the new/3 constructor, we’ll get a presentation for the struct that
looks something like this (but here the :path and :uri fields are truncated for
legibility):

iex> "CREATE (a)-[:EX]->(b)" |>
...> GraphCommons.Graph.new("test.cypher", :property)
%GraphCommons.Graph{

Chapter 2. Getting Started • 22

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

data: "CREATE (a)-[:EX]->(b)",
file: "test.cypher",
path: ".../graph_commons/priv/storage/property/graphs/test.cypher",
type: :property,
uri: "file:///.../graph_commons/priv/storage/property/graphs/test.cypher"

}

Frankly, that’s not too smart because now we’re exposing the :path and :uri
fields which are implementation-dependent, that is they depend on where
our project is installed and on which Mix environment we are using.

We could hide the :path and :uri fields by deriving the Inspect protocol and hiding
those fields:

apps/graph_commons/lib/graph_commons/graph.ex
@derive {Inspect, except: [:path, :uri]}

This yields the following presentation:

iex> "CREATE (a)-[:EX]->(b)" |>
...> GraphCommons.Graph.new("test.cypher", :property)
#GraphCommons.Graph<

data: "CREATE (a)-[:EX]->(b)",
file: "test.cypher",
type: :property,
...

>

It’s better, but we still have a problem. We’re going to be showing the full
graph serialization, which may be rather large, in the :data field. Ideally, we
want to see a snippet of the graph serialization.

Let’s define a more user-friendly view for use with inspect:

apps/graph_commons/lib/graph_commons/graph.ex
defimpl Inspect, for: __MODULE__ doLine 1

@slice 16-

@quote <<?">>-

-

def inspect(%GraphCommons.Graph{} = graph, _opts) do5

type = graph.type-

file = @quote <> graph.file <> @quote-

-

str =-

graph.data10

|> String.replace("\n", "\\n")-

|> String.replace(@quote, "\\" <> @quote)-

|> String.slice(0, @slice)-

-

data =15

case String.length(str) < @slice do-

report erratum • discuss

Packaging Graphs and Queries • 23

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

true -> @quote <> str <> @quote-

false -> @quote <> str <> "..." <> @quote-

end-

20

"#GraphCommons.Graph<type: #{type}, file: #{file}, data: #{data}>"-

end-

end-

We’ll restrict our view to the :type, :file, and :data fields with an Inspect protocol
implementation. We’ll also truncate the graph serialization to a small number
of chars (16 here, but we could also make this configurable) so that a string
representation of the whole struct can be shown on a single line. For that,
we’ll need to escape any newlines and quote chars. And we’ll also show an
ellipsis for any truncation.

We’ve done several interesting things here. On line 2 we’ve set @slice as our
string truncation length, and on line 3 we’ve set @quote as <<?">>, or the bit-
string for a double quote (") char. We escape newlines at line 11 and double
quotes at line 12 before the actual truncation at line 13. We test at line 16
whether to add an ellipsis. Our struct representation for display with inspect
is shown at line 21.

So let’s try this:

iex> "CREATE (a)-[:EX]->(b)" |>
...> GraphCommons.Graph.new("test.cypher", :property)
#GraphCommons.Graph<type: property, file: "...", data: "CREATE (a)-[:EX]...">

That’s much better. We only have an overview and no system-related info.

The code listings in this book will always use an ellipsis for the :file field value
so the presentation fits the book’s display width. The code will still display
the filename.

One thing to mention in passing is that the order of the fields is inverted in
the new/3 constructor and the inspect display. This is because we want to be
able to pipe the :data field to the constructor although it seems more logical
in the display to present it last.

Building a Graph Store

It’s time to look at persistence.

We’re going to work with graphs of various types. We’ll want a place to store
the graphs that we create and another place to source example graphs. We’ll
also want to save the selected queries for the various graph types, each of
which has its own query language.

Chapter 2. Getting Started • 24

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

In short, we’ll want a graph store. Let’s build one.

Creating a Storage Area
You’re going to set up a storage area in the usual place we use for bundling
a project’s static files—the priv directory. First, create a new directory priv:

.
├── README.md
├── lib
│ └── ...
├── mix.exs
├── priv➤

└── test
└── ...

Here’s the file organization we’ll create under priv:

priv
├── scripts➤

│ ├── elixir
│ └── shell
└── storage➤

├── dgraph
│ ├── graphs
│ └── queries
├── native
│ ├── graphs
│ └── queries
├── property
│ ├── graphs
│ └── queries
├── rdf
│ ├── graphs
│ └── queries
└── tinker

├── graphs
└── queries

Add that directory tree now:

$ mkdir -p \
> priv/scripts/{elixir,shell} \
> priv/storage/{dgraph,native,property,rdf,tinker}/{graphs,queries}

We’re going to use the priv directory of this project as our common holding
area. Under the priv directory, we’ll partition two trees (scripts and storage) and
define a couple of functions for key access points (scripts_dir/0 and storage_dir/0).

Now add some definitions to lib/graph_commons.ex:

report erratum • discuss

Building a Graph Store • 25

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/graph_commons/lib/graph_commons.ex
def scripts_dir(), do: priv_dir() <> "/scripts"
def storage_dir(), do: priv_dir() <> "/storage"

And import the GraphCommons module in our IEx startup file .iex.exs:

$ cat .iex.exs
import GraphCommons

If you don’t already have a .iex.exs file, you may want to create one now as this
is read in when IEx is started and is useful to set defaults.

Good. We’ve created a storage area—somewhere to save our graphs and
queries. All we need now is to define a mechanism for reading and writing to
this area.

Storing Graphs and Queries
So far, we’ve created data structs for transporting graphs and queries and
carved out a directory tree for storing graphs and queries. We’ll want to define
a simple API for reading and writing from the structs to the graph store.

The following figure diagrams out a couple of data flows to and from the graph
store.

Graph Services

G
ra

ph
 S

to
re

:graph_commons

PropertyGraph

.write_graph(_,_)

TinkerGraph

.read_graph(_)

native

.dot

property

.cypher

rdf

.ttl

tinker

.gremlin

dgraph

.dgraph

Here you can see two specific calls to the graph store—write_graph/2 and
read_graph/1 for the PropertyGraph and TnkerGraph modules, respectively.

Chapter 2. Getting Started • 26

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Reading and Writing

We’ve already defined our %GraphCommon.Graph{} struct for graph serializations.
We only need some read/write functions to create new instances of the struct
and to read/write a file.

So, add now a simple read_graph/2 function for reading a graph_file of graph_type:

apps/graph_commons/lib/graph_commons/graph.ex
def read_graph(graph_file, graph_type)

when graph_file != "" and is_graph_type(graph_type) do
graphs_dir = "#{@storage_dir}/#{graph_type}/graphs/"
graph_data = File.read!(graphs_dir <> graph_file)

new(graph_data, graph_file, graph_type)
end

Note that we have a guard clause which tests that the graph_file arg is non-
empty and the graph_type is a valid graph type.

We’ll add a corresponding write_graph/3 function for writing graph_data to a graph_file
of graph_type:

apps/graph_commons/lib/graph_commons/graph.ex
def write_graph(graph_data, graph_file, graph_type)

when graph_data != "" and
graph_file != "" and is_graph_type(graph_type) do

graphs_dir = "#{@storage_dir}/#{graph_type}/graphs/"
File.write!(graphs_dir <> graph_file, graph_data)

new(graph_data, graph_file, graph_type)
end

We have the same guard clause as before, but this time, we’re also testing
that the graph_data arg is non-empty.

In practice, we’ll be calling these functions with lower-arity wrappers—the
graph_type will be made implicit. We’ll see examples later of how we’ll define
wrappers for these functions.

We’ll also define a read_query/2 and a write_query/3 function pair.

Listing

We still need something more. We need to be able to get listings of the graphs
and queries we’re saving. And we’ll also want to be able to access graphs and
queries within any directories that we may add manually to our store.

Let’s start with graphs—queries will be treated the same.

First, add a file_test type. We’ll use this to select directories or regular file types:

report erratum • discuss

Building a Graph Store • 27

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/graph_commons/lib/graph_commons/graph.ex
@type file_test :: GraphCommons.file_test()

And we can check that with the IEx helper t/1:

iex> t GraphCommons.file_test
@type file_test() :: :dir? | :regular? | :exists?

Type for testing file types.

We’re going to define the function pair list_graphs/2 and list_graphs_dir/3. As with
the read/write functions, these will generally be accessed via lower-arity
wrappers.

The list_graphs/2 function calls list_graphs_dir/3 with an empty graph_file arg:

apps/graph_commons/lib/graph_commons/graph.ex
def list_graphs(graph_type, file_test \\ :exists?) do

list_graphs_dir("", graph_type, file_test)
end

The list_graphs_dir/3 function is our main listing function:

apps/graph_commons/lib/graph_commons/graph.ex
def list_graphs_dir(graph_file, graph_type, file_test \\ :exists?) do

path = "#{@storage_dir}/#{graph_type}/graphs/"

(path <> graph_file)
|> File.ls!()
|> do_filter(path, file_test)
|> Enum.sort()
|> Enum.map(fn f ->

File.dir?(path <> f)
|> case do
true -> "#{String.upcase(f)}"
false -> f

end
end)

end

This takes a graph_file arg in case we want to access directories or regular files
only. The graph_type arg will be passed by the wrapper functions. The optional
arg file_test allows for filtering.

After listing, filtering, and sorting, the file list is scanned, and directories are
mapped in uppercase to better distinguish them from regular files.

The private do_filter/3 function filters the file list:

apps/graph_commons/lib/graph_commons/graph.ex
defp do_filter(files, path, file_test) do

files
|> Enum.filter(fn f ->

Chapter 2. Getting Started • 28

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

case file_test do
:dir? -> File.dir?(path <> f)
:regular? -> File.regular?(path <> f)
:exists? -> true

end
end)

end

File filtering is based on the file_test arg which takes values :dir? for directories
and :regular? for regular files. Otherwise, the default :exists? keyword applies,
and all files (both directories and regular files) will be returned.

This brings the graph store development to an end. We can turn now to the
graph service component.

Defining a Graph Service API
Now let’s look at querying graphs.

The graph databases we’ll look at have web interfaces and support CRUD
operations2 on graphs in their own graph stores. They all have their own APIs
and data representations, which can be a bit of a burden when switching
between these services.

Let’s define a common interface for these graph services. We can use the OTP
behaviour pattern to define a set of callbacks which will be implemented by
any module that adopts this behaviour. This allows us to define a graph service
contract—an API.

We’re looking to create a simple interface with the following operations:

• graph_create/1
• graph_read/0
• graph_update/1
• graph_delete/0

And to these we’ll add an optional callback if supported by the service:

• graph_info/0

To be properly useful, graph databases also generally support a query interface
so that subgraphs and individual data elements of the stored graphs can be
returned. For that, we’ll want to have a couple of query service callbacks for
both simple and parametrized queries (queries plus parameters):

2. https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

report erratum • discuss

Defining a Graph Service API • 29

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

• query_graph/1
• query_graph/2

For interactive querying, it’ll be handy to have a couple of bang-style callbacks
which return a result value directly instead of being wrapped in a tuple:

• query_graph!/1
• query_graph!/2

The following figure diagrams out the data flows for a couple of graph API
calls on the graph service.

G
ra

ph
 S

er
vi

ce

G
ra

ph
 S

to
re

PropertyGraph

.graph_read()

:property_graph

PropertyGraph

.graph_create(_)

native

.dot

property

.cypher

rdf

.ttl

tinker

.dot

dgraph

.dgraph

graphdb

gremlin

server

dgraph

server

libgraph

neo4j

Here you can see graph_create/1 and graph_read/0 calls from the PropertyGraph module
which implements the GraphCommons.Service behaviour.

By the way, the first graph type we’ll explore in the next chapter uses the
libgraph package which encodes graphs natively in Elixir. There is no corre-
sponding graph database for this type, so we won’t be able to create a graph
service for it.

Let’s create a new GraphCommons.Service module. Open up a new service.ex file
and place it under the lib/graph_commons directory:

lib
├── graph_commons
│ ├── graph.ex
│ ├── query.ex
│ ├── service.ex➤

│ └── utils.ex
└── graph_commons.ex

Chapter 2. Getting Started • 30

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We need to list out our service callbacks that take a function head with a
typespec signature and no body:

apps/graph_commons/lib/graph_commons/service.ex
defmodule GraphCommons.Service do

@optional_callbacks graph_info: 0
@optional_callbacks query_graph: 2
@optional_callbacks query_graph!: 2

GRAPH
@callback graph_create(GraphCommons.Graph.t()) :: any()
@callback graph_delete() :: any()
@callback graph_info() :: any()
@callback graph_read() :: any()
@callback graph_update(GraphCommons.Graph.t()) :: any()

QUERY
@callback query_graph(GraphCommons.Query.t()) :: any()
@callback query_graph!(GraphCommons.Query.t()) :: any()
@callback query_graph(GraphCommons.Query.t(), map()) :: any()
@callback query_graph!(GraphCommons.Query.t(), map()) :: any()

end

The typespec attribute @optional_callbacks lists graph_info/0 graph_query/2 and
graph_query!/2 as optional callbacks.

Note that we’ll define callback modules for the specific graph types as we
come to deal with each type in the chapters ahead.

One more thing. We’ll define a GraphInfo struct for our service to return infor-
mation about the graph held in the service, and we’ll locate that under the
GraphCommons.Service module. So create a new directory service under graph_commons
and add a graph_info.ex file:

lib
├── graph_commons
│ ├── graph.ex
│ ├── query.ex
│ ├── service➤

│ │ └── graph_info.ex
│ ├── service.ex
│ └── utils.ex
└── graph_commons.ex

Now that we have that, add the GraphInfo struct:

apps/graph_commons/lib/graph_commons/service/graph_info.ex
defmodule GraphCommons.Service.GraphInfo do

defstruct ~w[type file num_nodes num_edges labels]a

@type t :: %__MODULE__{

report erratum • discuss

Defining a Graph Service API • 31

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/service/graph_info.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

type: :dgraph | :native | :property | :rdf | :tinker,
file: String.t(),
num_nodes: integer,
num_edges: integer,
labels: list

}
end

That’s it. We’ve got our groundwork all set.

Wrapping Up
This chapter has all been about setting up a simple graph playground so that
we can explore different graph types and pass easily between one type and
another. Our focus in this book will be on accessing graphs and graph data
irrespective of the underlying graph model.

We’ve organized our code by creating an umbrella project for this book,
ExGraphsBook, and also created a first child project, the GraphCommons library.

We’ve organized our data by creating a graph store. We’ve built this with the
following components: dedicated structs for annotating our graphs and
queries, a file directory tree for storing the raw data structures, and functions
for reading, writing, and listing them.

We’ve also created an Elixir behaviour for a graph service interface. We’ll be
implementing this service interface later for the various graph types we’ll
encounter.

We’re ready to build some new projects to add to the umbrella, which we’ll
use for exploring the graph models themselves. This will be our focus in Part
II, coming up.

Chapter 2. Getting Started • 32

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Part II

Getting to Grips with Graphs

Elixir packages are on hand for dealing with native
graph data structures, as well as for interacting
with local and remote graph databases.

Graph databases also have their own graph models
and organizations.

Let’s dig into some of these packages now as we
work our way through the various graph models.

CHAPTER 3

Managing Graphs Natively with Elixir
We now have some structures in place for code and data organization, and
we’ve set up an umbrella app. We also have some common infrastructure for
storing graphs and queries and a common service interface for serving graphs.
We’re more than ready to begin exploring graphs.

Before we start experimenting with graph databases for property and RDF graphs
in the chapters to come, we’re first going to see how to represent graph data
structures natively in Elixir using a native data model. With graph databases,
we’ll be more concerned with sending queries and retrieving result sets. Here,
though, we’ll have immediate access to the graphs themselves.

As we work with graph data structures natively in Elixir, we’ll use the libgraph1

package by Paul Schoenfelder2. We’ll start with a quick introduction to the
libgraph package by checking out some graph basics.

Next, we’ll show how to extend our graph store API with the use/__using__ macro
pair which will allow us to inject GraphCommons.Graph read/write functions into
specific graph modules. And with that covered, we’ll discuss a couple of routes
to visualizing libgraph graphs and some issues regarding labeling.

But first, we’ll create a new project specifically for managing our work with
native graphs.

Creating the NativeGraph Project
To support working with the libgraph package, we’re going to create the
NativeGraph project which will provide us with an environment for running a
dedicated graph store.

1. https://hex.pm/packages/libgraph
2. https://twitter.com/gotbones

report erratum • discuss

https://hex.pm/packages/libgraph
https://twitter.com/gotbones
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

NativeGraph Project Setup

See Appendix 1, Project Setups, on page 245, for details on retrieving
a working project with code and data.

The libgraph project page3 provides a rationale for why this package was
developed. It addresses a number of shortcomings in the Erlang module
digraph4 (see Coding a Hello World Graph, on page 7) regarding performance
and extensibility. Moreover, it provides an idiomatic Elixir API for manipulating
graphs which allows functions to be pipelined by passing along a Graph struct
as their first parameter.

Let’s cd down into the apps directory of our ExGraphsBook project (see
ExGraphsBook Umbrella, on page 16) and create a new project NativeGraph:

$ mix new native_graph

You should now have an apps directory that looks like this:

.
├── apps
│ ├── graph_commons
│ └── native_graph➤

Now let’s cd into the native_graph directory:

.
├── lib
│ └── native_graph.ex
├── mix.exs
└── test

└── ...

And add some dependencies to mix.exs:

apps/native_graph/mix.exs
defp deps do

[
graph_commons
{:graph_commons, in_umbrella: true},

native graphs
{:libgraph, "~> 0.13"}

]
end

3. https://github.com/bitwalker/libgraph
4. http://erlang.org/doc/man/digraph.html

Chapter 3. Managing Graphs Natively with Elixir • 36

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/mix.exs
https://github.com/bitwalker/libgraph
http://erlang.org/doc/man/digraph.html
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Besides the dependency on :libgraph, note that we also have a dependency on
:graph_commons, which is one of our umbrella apps, so we use the :in_umbrella
keyword and set it to true.

We’ll fetch and compile the dependencies as usual:

$ mix deps.get; mix deps.compile
...

A quick word on graphs. We could risk creating some confusion here because
we now have two Graph modules in play:

• Graph—a native graph data structure
• GraphCommons.Graph—a struct for serialized graph data access

We’ll always make clear which kind of graph we’re working with at any time,
and we’ll tend to use letters (for example, g) for Graph structs, and words (for
example, graph) for GraphCommons.Graph structs.

Later we’ll also encounter a couple more Graph modules. In Chapter 8,
Querying RDF with SPARQL, on page 143, we’ll introduce the RDF.Graph module
which describes a set of RDF triples. In this case, though, RDF.Graph datasets
will typically be invoked through wrapper functions. And in Chapter 9,
Traversing Graphs with Gremlin, on page 163, we’ll introduce the Gremlex.Graph
module for traversing graphs.

Basic Workout
Let’s first give the libgraph package a simple workout just to kick the tires.

As previously noted, the libgraph package uses the Graph module as its base
namespace. This module defines a graph data structure, which supports
directed and undirected graphs, in both acyclic and cyclic forms. It also defines
the API for creating, manipulating, and querying that structure.

Directed Graph
Let’s cd back to our ExGraphsBook root and open up IEx:

$ iex -S mix

Create a new directed graph:

iex> g = Graph.new
#Graph<type: directed, vertices: [], edges: []>

Note that this is of type directed by default.

report erratum • discuss

Basic Workout • 37

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We can inspect the graph with the info/1 function:

iex> Graph.info(g)
%{num_edges: 0, num_vertices: 0, size_in_bytes: 312, type: :directed}

It’s empty, of course.

So add a couple of nodes, :a and :b, like this:

iex> g = Graph.add_vertex(g, :a)
#Graph<type: directed, vertices: [:a], edges: []>

iex> g = Graph.add_vertex(g, :b)
#Graph<type: directed, vertices: [:a, :b], edges: []>

Or do this in one line by piping:

iex> g = Graph.new |> Graph.add_vertices([:a, :b])
#Graph<type: directed, vertices: [:a, :b], edges: []>

What’s in a Node?

The libgraph package allows any Elixir term to be used for ver-
tices—simple or structured. Our initial experiments will use simple
forms for nodes, although we’ll see a case later in Using Maps for
Nodes, on page 64, of using structured forms for nodes.

As we’ll often be referring to nodes in query strings, it’s generally
going to be more straightforward to use atoms or integers in simple
forms rather than using strings, which would need to be quoted.

Also, note that since libgraph requires nodes to be created with an
Elixir term as a value, there is no notion of an empty node.

We add labels ("foo", "bar", and "baz") to the vertices again by piping:

iex> g = (g |> Graph.label_vertex(:a, ["foo"]) |>
...> Graph.label_vertex(:b, ["bar", "baz"]))
#Graph<type: directed, vertices: [:a, :b], edges: []>

Let’s check those labels:

iex> Graph.vertex_labels(g, :a)
["foo"]

iex> Graph.vertex_labels(g, :b)
["bar", "baz"]

Note that vertex labels aren’t shown in Graph string forms even if we can access
them with the vertex_labels/2 function. But we can still see them if we want by
inspecting the %Graph{} struct as a map:

Chapter 3. Managing Graphs Natively with Elixir • 38

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> IO.inspect g, structs: false
%{

__struct__: Graph,
edges: %{},
in_edges: %{},
out_edges: %{},
type: :directed,
vertex_labels: %{97 => ["foo"], 98 => ["bar", "baz"]},
vertices: %{97 => :a, 98 => :b}

}
#Graph<type: directed, vertices: [:a, :b], edges: []>

Now create a labeled edge (:EX) between those two nodes:

iex> g = Graph.add_edge(g, :a, :b, label: "EX")
#Graph<type: directed, vertices: [:a, :b], edges: [:a -[EX]-> :b]>

Use the info/1 function to inspect:

iex> Graph.info(g)
%{num_edges: 1, num_vertices: 2, size_in_bytes: 800, type: :directed}

Now let’s look at that %Graph{} struct again:

iex> IO.inspect g, structs: false
%{

__struct__: Graph,
edges: %{{97, 98} => %{"EX" => 1}},
in_edges: %{98 => %{__struct__: MapSet, map: %{97 => []}, version: 2}},
out_edges: %{97 => %{__struct__: MapSet, map: %{98 => []}, version: 2}},
type: :directed,
vertex_labels: %{97 => ["foo"], 98 => ["bar", "baz"]},
vertices: %{97 => :a, 98 => :b}

}
#Graph<type: directed, vertices: [:a, :b], edges: [:a -[EX]-> :b]>

We can get at both the vertices and the edges:

iex> Graph.vertices(g)
[:a, :b]

iex> Graph.edges(g)
[%Graph.Edge{label: :EX, v1: :a, v2: :b, weight: 1}]

We can also get counts of the vertices and edges:

iex> Graph.num_vertices(g)
2

iex> Graph.num_edges(g)
1

report erratum • discuss

Basic Workout • 39

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Note that we don’t have to create nodes explicitly if they are connected by
edges because the add_edge functions will create any nodes required. So we
could create a one-edge graph (with two nodes) as:

iex> Graph.new |> Graph.add_edge(:a, :b, label: :EX)
#Graph<type: directed, vertices: [:a, :b], edges: [:a -[EX]-> :b]>

This is our default graph, which we saw before in Inspecting the Structs, on
page 22.

Undirected Graph
For undirected graphs, we’ll need to explicitly set the type as undirected like this:

iex> Graph.new(type: :undirected) |> Graph.add_edge(:a, :b, label: :EX)
#Graph<type: undirected, vertices: [:a, :b], edges: [:a <-[EX]-> :b]>

Note that this graph is of type undirected and that the edge arrows point both ways.

This graph (like the previous default graph) is unlabeled—that is, the nodes
aren’t labeled.

There’s much more to the Graph module. For a quick overview, use the IEx auto-
complete feature for listing module functions.5 It’s enough to enter the module
name followed by a . char (for example, Graph.) and then press the Tab key:

iex> Graph.[TAB]
Directed Edge EdgeSpecificationError
Pathfinding Reducer Reducers
Serializer Serializers Utils
a_star/4 add_edge/2 add_edge/3
add_edge/4 add_edges/2 add_vertex/2
add_vertex/3 add_vertices/2 arborescence_root/1
...

You can then inspect any given function with the h/1 IEx helper:

iex> h Graph.is_acyclic?

def is_acyclic?(g)

@spec is_acyclic?(t()) :: boolean()

delegate_to: Graph.Directed.is_acyclic?/1

Returns true if and only if the graph g is acyclic.

Alternatively, you can always go to the libgraph API reference docs.6

5. https://hexdocs.pm/iex/IEx.html
6. https://hexdocs.pm/libgraph/Graph.html

Chapter 3. Managing Graphs Natively with Elixir • 40

report erratum • discuss

https://hexdocs.pm/iex/IEx.html
https://hexdocs.pm/libgraph/Graph.html
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Storing Graphs in the Graph Store
It’s fine to enter the graph data interactively, but it can get a little tiresome
after a while. We’d rather read our graphs back from a filestore, so we’ll need
to be able to write the graphs out to some text format—that is, to serialize
the graph data structures—for disk-based storage.

The libgraph package includes two serialization functions in the Graph module:
to_dot/1 and to_edgelist/1. The former renders the graph using the well-known
DOT format from the Graphviz7 distribution, while the latter is a plaintext
rendering of graph edges suitable for using with graph libraries such as the
igraph8 library.

We’ll work with the DOT format here as this is a common serialization used
by many software packages for visualizing graphs. Essentially, the DOT format
provides a text-based language specification for laying out graphs.

We’ve already defined the read_graph/2 and write_graph/3 functions in our GraphCom-
mons.Graph module in Storing Graphs and Queries, on page 26. All we need to
do here is provide simple wrappers, read_graph/1 and write_graph/2, in the NativeGraph
module which will implicitly pass a :native atom for the graph_type field. That
means that our generic read/write functions will be specific to this graph
type (:native) so that we’ll read/write to the correct bin in the storage area.

The read_graph/1 function takes a single argument—the graph_file to read:

def read_graph(graph_file), do:
GraphCommons.Graph.read_graph(graph_file, :native)

And the write_graph/2 function works similarly:

def write_graph(graph_data, graph_file), do:
GraphCommons.Graph.write_graph(graph_data, graph_file, :native)

Well, this isn’t too bad.

At least it seems like that until we realize that we also need to add these
functions for the other graph types. And we haven’t added in the listing
functions yet. We’ll also want to do the same for queries and graphs. Let’s
not forget there are type @spec directives and doc strings we need to add in
too. So, in all, a lot of duplication.

There must be a better way.

7. https://www.graphviz.org/
8. https://igraph.org/

report erratum • discuss

Storing Graphs in the Graph Store • 41

https://www.graphviz.org/
https://igraph.org/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

There is. We can use macros to generate the functions for us on demand for
a specific graph type and to pull those into the graph type module.

Here’s how.

Using Macros
The idea is to build these wrapper functions in the common library and inject
them into the particular graph type library. We’ll use the __using__/1 macro for
this, which will be called by the use/2 macro.

Let’s outline this first for the common graph module GraphCommons.Graph. (We’ll
handle the common query module GraphCommons.Query in the same way.)

Here’s our graph type library module, which has a use/2 macro for the common
graph module GraphCommons.Graph:

defmodule NativeGraph do
use GraphCommons.Graph, graph_type: :native, graph_module: __MODULE__

...

end

This also passes the keyword pair graph_type: :native.

And here’s the common graph module GraphCommons.Graph, which defines a
__using__/1 macro and passes in the options using the opts keyword list:

defmodule GraphCommons.Graph do

defmacro __using__(opts) do
graph_type = Keyword.get(opts, :graph_type)
graph_module = Keyword.get(opts, :graph_module)

quote do

...

end

end

end

From this, we can recover the :graph_type using Keyword.get/2. This is ready for
use within the quote/2 block.

It’s in the quote/2 block that the real magic happens. The quote/2 macro produces
a quoted expression, in essence, something like an AST (abstract syntax tree)
of the Elixir code. This allows us the opportunity to manipulate the code at
the elemental, building block level. To escape this quoted expression, we use

Chapter 3. Managing Graphs Natively with Elixir • 42

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

the unquote/1 macro. So here we can add in the graph_type keyword that we
passed back from the calling module.

So, in our commons library we have this:

apps/graph_commons/lib/graph_commons/graph.ex
defmacro __using__(opts) do

graph_type = Keyword.get(opts, :graph_type)
graph_module = Keyword.get(opts, :graph_module)

quote do

TYPES

@type graph_file_test :: GraphCommons.file_test()

@type graph_data :: GraphCommons.Graph.graph_data()
@type graph_file :: GraphCommons.Graph.graph_file()
@type graph_path :: GraphCommons.Graph.graph_path()
@type graph_type :: GraphCommons.Graph.graph_type()
@type graph_uri :: GraphCommons.Graph.graph_uri()

@type graph_t :: GraphCommons.Graph.t()

FUNCTIONS

def graph_context(), do: unquote(graph_module)

def list_graphs(graph_file_test \\ :exists?),
do: GraphCommons.Graph.list_graphs(

unquote(graph_type), graph_file_test)

def list_graphs_dir(dir, graph_file_test \\ :exists?),
do: GraphCommons.Graph.list_graphs_dir(dir,

unquote(graph_type), graph_file_test)

def new_graph(graph_data), do: new_graph(graph_data, "")

def new_graph(graph_data, graph_file),
do: GraphCommons.Graph.new(graph_data, graph_file,

unquote(graph_type))

def read_graph(graph_file),
do: GraphCommons.Graph.read_graph(graph_file,

unquote(graph_type))

def write_graph(graph_data, graph_file),
do: GraphCommons.Graph.write_graph(graph_data, graph_file,

unquote(graph_type))
end

end

We also have an equivalent macro for queries in the GraphCommons.Query module
with query substituted for graph everywhere.

report erratum • discuss

Storing Graphs in the Graph Store • 43

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/graph_commons/lib/graph_commons/query.ex
defmacro __using__(opts) do

query_type = Keyword.get(opts, :query_type)
query_module = Keyword.get(opts, :query_module)

quote do

TYPES

@type query_file_test :: GraphCommons.file_test()

@type query_data :: GraphCommons.Query.query_data()
@type query_file :: GraphCommons.Query.query_file()
@type query_path :: GraphCommons.Query.query_path()
@type query_type :: GraphCommons.Query.query_type()
@type query_uri :: GraphCommons.Query.query_uri()

@type query_t :: GraphCommons.Query.t()

FUNCTIONS

def query_context(), do: unquote(query_module)

def list_queries(query_file_test \\ :exists?),
do: GraphCommons.Query.list_queries(

unquote(query_type), query_file_test)

def list_queries_dir(dir, query_file_test \\ :exists?),
do: GraphCommons.Query.list_queries_dir(dir,

unquote(query_type), query_file_test)

def new_query(query_data), do: new_query(query_data, "")

def new_query(query_data, query_file),
do: GraphCommons.Query.new(query_data, query_file,

unquote(query_type))

def read_query(query_file),
do: GraphCommons.Query.read_query(query_file,

unquote(query_type))

def write_query(query_data, query_file),
do: GraphCommons.Query.write_query(query_data, query_file,

unquote(query_type))
end

end

So in the graph type library module, we have these two use/2 macros:

apps/native_graph/lib/native_graph.ex
use GraphCommons.Graph, graph_type: :native, graph_module: __MODULE__
use GraphCommons.Query, query_type: :native, query_module: __MODULE__

From those two macros alone, all these functions get added to the NativeGraph
module. This includes the listings functions which we haven’t seen here. You
can see this with the IEx autocomplete feature:

Chapter 3. Managing Graphs Natively with Elixir • 44

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/query.ex
http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> NativeGraph.[TAB]
...
list_graphs/0 list_graphs/1 list_graphs_dir/1
list_graphs_dir/2 list_queries/0 list_queries/1
list_queries_dir/1 list_queries_dir/2 new_graph/1
new_graph/2 new_query/1 new_query/2
read_graph/1 read_query/1 write_graph/2
write_query/2

Well, that’s a handsome haul for a couple of simple use/2 macro calls. And
that’s just the graph functions shown here—we also have a parallel set of
query functions.

Note that the type @spec directives and doc strings for the functions aren’t
shown here. Also, to keep things working smoothly in the receiving module,
a lot of @type directives are added in the quote block.

The following figure shows roughly what’s happening.

defmodule GraphCommons.Graph

 # read_graph/2
 def read_graph(file, type) do
 …
 end

 defmacro __using__(opts) do

 type = Keyword.get(opts, :type)

 quote do

 def read_graph(file),
 do: GraphCommons.Graph
 .read_graph(file,
 unquote(type))

 …

 end

 end

end

defmodule NativeGraph

use GraphCommons.Graph,
 type: :native

 # read_graph/1
 def read_graph(file),
 do: GraphCommons.Graph
 read_graph(file, :native)

 …

end

NativeGraph GraphCommons

With the use/2 macro call, the NativeGraph module creates new functions defined
by the __using__/1 macro in the GraphCommons.Graph module, and those functions
are effectively customized for the NativeGraph module.

Writing
So, let’s try this out now.

report erratum • discuss

Storing Graphs in the Graph Store • 45

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We’ll import the functions we just added to the NativeGraph module so that we
can drop the NativeGraph. prefix when calling these functions:

iex> import NativeGraph

If we want to persist this across IEx sessions, we can also add it to our IEx
config file .iex.exs.

We already have our graphs folder, but let’s say we want to create a couple of
subfolders under that—for example, dot for DOT files, and images for PNG files.

priv
...
└── storage

...
├── native
│ ├── graphs
│ │ ├── dot
│ │ └── images
│ ...
...

Let’s create those directories now:

$ mkdir -p priv/storage/native/graphs/{dot,images}

We can write out a graph serialization in DOT format to a default.dot file in our
dot folder:

iex> g = Graph.new |> Graph.add_edge(:a, :b, label: "EX")
#Graph<type: directed, vertices: [:a, :b], edges: [:a -[EX]-> :b]>

iex> {:ok, dot} = Graph.to_dot(g)

iex> write_graph(dot, "dot/default.dot")
#GraphCommons.Graph<type: native, file: "...", data: "strict digraph {...">

Reading
We can also read a graph serialization back in from a file:

iex> graph = read_graph("dot/default.dot")
#GraphCommons.Graph<type: native, file: "...", data: "strict digraph {...">

And we can print out the graph data:

iex> IO.puts graph.data
strict digraph {

"a"
"b"
"a" -> "b" [label="EX"; weight=1]

}

:ok

Chapter 3. Managing Graphs Natively with Elixir • 46

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

And if we had a deserializer we could read that back into an Elixir Graph data
structure. Unfortunately, the libgraph library stops short at this point—it allows
us to serialize only. So, effectively, we can publish graphs but we can’t con-
sume graphs. Reader exercise, anyone?

One way around this impasse to reading graphs back in, at least for the
purpose of this book, is to add a module to our NativeGraph library that provides
some basic example graphs. Let’s do that now:

defmodule NativeGraph.Examples do

...

end

We can then extend this as required.

Listing
If we want to get a file listing, we can call the list_graphs/1 function where the
file_test argument is optional:

iex> list_graphs
[..., "default.graph", "DOT", "IMAGES", ...]

This lists all files—both regular files and directories—and capitalizes the
directory names. In this case, we’ve manually added an images/ directory.

To list regular files only, we can pass in the file_test argument :regular?:

iex> list_graphs(:regular?)
[..., "default.graph", ...]

To list directories only, we can pass in the file_test argument :dir?:

iex> list_graphs(:dir?)
[..., "DOT", "IMAGES", ...]

Visualizing Graphs
To render these DOT files, we can use either the Graphviz tools or a generic
drawing package such as OmniGraffle for the Mac or the GraphVizio plugin
for Visio on Windows. Let’s look at rendering with Graphviz and also with
OmniGraffle.

report erratum • discuss

Visualizing Graphs • 47

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Rendering with Graphviz
Graphviz9 is an open-source graph visualization software developed by AT&T
Labs which is distributed with various layout programs. If you don’t already
have this installed, you can get a copy from the Graphviz download page.10

Graphviz ships with a number of tools for rendering DOT files. Typically, these
are installed into /usr/local/bin on a Unix platform, but you need to check your
own system for details of where they are located.

Now we can call the appropriate Graphviz tool from Elixir by using the Sys-
tem.cmd/3 function. Let’s create a new module Format and put that under
NativeGraph, and we’ll add the function to_png/1 :

apps/native_graph/lib/native_graph/format.ex
@graph_images_dir GraphCommons.storage_dir() <> "/native/graphs/images/"
@dot_exe "/usr/local/bin/dot"

def to_png(%GraphCommons.Graph{} = graph) do
dot_file = graph.path
png_file = @graph_images_dir <> Path.basename(dot_file, ".dot") <> ".png"

with {_, 0} <-
System.cmd(@dot_exe, ["-T", "png", dot_file, "-o", png_file]) do

{:ok, Path.basename(png_file)}
else
_ -> {:error, "! Error"}

end
end

This function takes a %GraphCommons.Graph struct which wraps a DOT file.

The dot_file is read from the graph.path, and the png_file name is derived from this.

The System.cmd calls the installed Graphviz tool and passes command args as
a list of strings as usual. For confirmation, the png_file name is returned.

To make this more accessible, we’ll also add a delegate function to the Native-
Graph module, so we can call Format.to_png/1 more simply as write_image/1:

apps/native_graph/lib/native_graph.ex
defdelegate write_image(arg), to: NativeGraph.Format, as: :to_png

Let’s try it out. For better graph management, note that we’ve manually added
the dot/ and images/ directories in our graph store:

iex> g = Graph.new |> Graph.add_edge(:a, :b, label: :EX)
#Graph<type: directed, vertices: [:a, :b], edges: [:a -[EX]-> :b]>

9. https://www.graphviz.org/
10. https://www.graphviz.org/download/

Chapter 3. Managing Graphs Natively with Elixir • 48

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph/format.ex
http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph.ex
https://www.graphviz.org/
https://www.graphviz.org/download/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> {:ok, dot} = Graph.to_dot(g)
{:ok,
"strict digraph {\n \"a\"\n \"b\"\n \"a\" -> \"b\" [label=\"EX\";
weight=1]\n}\n"}

iex> write_graph(dot, "dot/default.dot")
#GraphCommons.Graph<type: native, file: "...", data: "strict digraph {...">

iex> write_image read_graph("dot/default.dot")
{:ok, "default.png"}

iex> list_graphs_dir("images")
[..., "default.png", ...]

And here’s the image saved in default.png:

Now let’s try another example graph, this time one with two edges. For this,
we’ll pick the chemical description for the water molecule—H2O. This is an
example of an undirected, labeled graph:

iex> g = Graph.new(type: :undirected) |>
...> Graph.add_vertex(:h1, "H") |>
...> Graph.add_vertex(:h2, "H") |>
...> Graph.add_vertex(:o, "O") |>
...> Graph.add_edge(:o, :h1) |>
...> Graph.add_edge(:o, :h2)

Let’s generate a DOT file for this and save it to our graph store:

iex> {:ok, dot} = Graph.to_dot(g)

iex> write_graph(dot, "dot/h2o.dot")
#GraphCommons.Graph<type: native, file: "...", data: "strict graph {\n...">

iex> IO.puts read_graph("dot/h2o.dot").data
strict graph {

"O"
"H"
"H"
"H" -- "O" [weight=1]
"H" -- "O" [weight=1]

}

:ok

We can check that this dot/h2o.dot file was indeed saved:

report erratum • discuss

Visualizing Graphs • 49

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> list_graphs_dir("dot")
[..., "h2o.dot", ...]

Now we can read this DOT graph and pass it to the write_image/1 function:

iex> write_image read_graph("dot/h2o.dot")
{:ok, "h2o.png"}

This is the image that is saved in h2o.png:

What? Well, there’s something clearly not right here. We have only two nodes
instead of the three we were expecting to see. We were expecting a water
molecule—H2O—and ended up with a hydroxyl radical—OH—instead!

It turns out that the DOT serializer in libgraph uses the node label to name the
node in the DOT serialization, instead of using the actual node term provided.
But the label isn’t guaranteed to be unique and here it is not unique. We have
two nodes with labels “H”. Compare this graph with the previous default graph
where no node label properties were present.

Let’s patch this for now in our project and push ahead. We’ve copied the
Graph.Serializer11 and Graph.Serializers.DOT12 modules as NativeGraph.Serializer and
NativeGraph.Serializers.DOT, respectively, and made some changes to preserve the
node term, even if a label is present. Check the code listings for the changed
versions in Appendix 1, Project Setups, on page 245.

Now we can provide our own version of to_dot/1 and to_dot!/1 under NativeGraph:

apps/native_graph/lib/native_graph.ex
defdelegate to_dot(arg), to: NativeGraph.Serializers.DOT, as: :serialize
defdelegate to_dot!(arg), to: NativeGraph.Serializers.DOT, as: :serialize!

So we can try this NativeGraph version of to_dot/1:

iex> {:ok, dot} = NativeGraph.to_dot(g)

iex> write_graph(dot, "dot/h2o.dot")
#GraphCommons.Graph<type: native, file: "...", data: "strict graph {\n...">

iex> IO.puts read_graph("dot/h2o.dot").data
strict graph {

"o" [label="O"]

11. https://github.com/bitwalker/libgraph/blob/main/lib/graph/serializer.ex
12. https://github.com/bitwalker/libgraph/blob/main/lib/graph/serializers/dot.ex

Chapter 3. Managing Graphs Natively with Elixir • 50

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph.ex
https://github.com/bitwalker/libgraph/blob/main/lib/graph/serializer.ex
https://github.com/bitwalker/libgraph/blob/main/lib/graph/serializers/dot.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

"h1" [label="H"]
"h2" [label="H"]
"h1" -- "o" [weight=1]
"h2" -- "o" [weight=1]

}

:ok

That DOT description already looks better. We can now generate a PNG image
from it as before:

Much better.

Rendering with OmniGraffle
A number of drawing tools can import DOT format files. OmniGraffle13 for the
Mac is one such package that allows for greater control over the presentation
form. (Another tool is the GraphVizio14 plugin for Visio on Windows, although
I haven’t yet tried that.)

In fact, OmniGraffle can open DOT files directly, which will bring up a Dot
Import pop-up menu with some layout options—Hierarchical, Force-Directed, Circular,
and Radial. Choose one and afterward visit the Canvas sidebar and scoot down
to the Diagram Layout and Style panel. There you can uncheck the Auto layout button
to allow the graph shape to be rearranged. You can also change the Layout
option you selected on opening the file.

For a more interesting graph to render, let’s anticipate an actual network
graph we’ll be querying later with Cypher in Recalling the ARPANET, on page
105—Arpanet (1969). We’ll add a libgraph version of this as one of our example
graphs.

First, we’ll create a module for Arpanet examples:

defmodule NativeGraph.Examples.Arpa do

...

end

Let’s add in an arpa/0 function to define the graph:

13. https://www.omnigroup.com/omnigraffle/
14. http://www.calvert.ch/graphvizio/

report erratum • discuss

Visualizing Graphs • 51

https://www.omnigroup.com/omnigraffle/
http://www.calvert.ch/graphvizio/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/native_graph/lib/native_graph/examples/arpa.ex
def arpa do

GRAPH

g = Graph.new(type: :undirected)

SEGMENT 1 - Outer Circuit (Clockwise from UCLA to SRI)

Site: UCLA
g =

g
|> Graph.add_vertex(:ucla, "UCLA")
|> Graph.add_vertex(:ucla_h1, "SIGMA7")
|> Graph.add_edge(:ucla_h1, :ucla)

Site: UCSB
g =

g
|> Graph.add_vertex(:ucsb, "UCSB")
|> Graph.add_vertex(:ucsb_h1, "360")
|> Graph.add_edge(:ucsb_h1, :ucsb)

Site: SRI
g =

g
|> Graph.add_vertex(:sri, "SRI")
|> Graph.add_vertex(:sri_h1, "940")
|> Graph.add_edge(:sri_h1, :sri)

##
SEGMENT 2 - Inner Path (Right from SRI to UTAH)

Site: UTAH
g =

g
|> Graph.add_vertex(:utah, "UTAH")
|> Graph.add_vertex(:utah_h1, "PDP-10")
|> Graph.add_edge(:utah_h1, :utah)

##
NETWORK (3+1=4)

g =
g
SEGMENT 1 - Outer Circuit (Clockwise from UCLA to SRI)
|> Graph.add_edge(:ucla, :ucsb)
|> Graph.add_edge(:ucsb, :sri)
|> Graph.add_edge(:sri, :ucla)
SEGMENT 2 - Inner Path (Right from SRI to UTAH)
|> Graph.add_edge(:sri, :utah)

add reversed edges
g =

g
|> Graph.edges()

Chapter 3. Managing Graphs Natively with Elixir • 52

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph/examples/arpa.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

|> Enum.reduce(g, fn %{v1: v1, v2: v2, label: label} = _e, g ->
Graph.add_edge(g, v2, v1, label: label)

end)
g

end

One thing to note in this example is that even though we’ve declared the graph
to be of type :undirected we still need to explicitly add in reverse edges if we
want to traverse the graph in either direction. That’s what the last section
here does.

We can use this example as follows:

iex> arpa = NativeGraph.Examples.Arpa.arpa
#Graph<type: undirected, vertices: [:sri, :ucla, :ucsb, :utah, :sri_h1,
...
:utah_h1]>

iex> {:ok, dot} = Graph.to_dot(arpa)
{:ok,
"strict graph {\n \"SRI\"\n \"UCLA\"\n \"UCSB\"\n \"UTAH\"\n
...
[weight=1]\n \"UTAH\" -- \"PDP-10\" [weight=1]\n}\n"}

iex> write_graph(dot, "dot/arpa.dot")
#GraphCommons.Graph<type: native, file: "...", data: "strict graph {\n...">

We can open this DOT file directly in OmniGraffle and edit it as shown in the
following figure.

SRI

UCLA

UCSB

UTAH

940

SIGMA7

360

PDP-10

If you have problems importing the files—see the DOT Serialization warning
here—you’ll need to edit the DOT file for the “;” char. The NativeGraph patch for
the to_dot/1 function already fixes this.

report erratum • discuss

Visualizing Graphs • 53

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

A DOT Serialization Gotcha

There is a small bug in the libgraph serializer for DOT. The serializer
currently writes out a “;” char separator between edge attributes,
whereas according to the published grammar for DOT (see Appendix
D in the Drawing graphs with dot15 guide) the separator should
either be a “,” char separator or be empty.

Apparently, this isn’t problematic for the dot command-line tool
but does cause OmniGraffle to complain, requiring a hand edit.

Wrapping Up
We’ve seen in this chapter how we can use Elixir to build native graph data
structures using the libgraph package.

We started with some graph basics. Then we looked at how to serialize libgraph
graphs and how we can use macros to simplify building wrapper functions
to our GraphCommons functions for working with stored graphs and queries.

We next looked at how to visualize these graphs by using the DOT serializer
and either converting them to PNG format for display or importing them into
a drawing program for further elaboration.

We’ll carry on with our native graph explorations in the next chapter using
our book graph model.

15. https://graphviz.gitlab.io/_pages/pdf/dotguide.pdf

Chapter 3. Managing Graphs Natively with Elixir • 54

report erratum • discuss

https://graphviz.gitlab.io/_pages/pdf/dotguide.pdf
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

CHAPTER 4

Exploring Graph Structures
In this chapter, we’ll explore some graph structures with the libgraph package.

We’ll work first with the book graph, an example graph that has been created
in the libgraph format, and then see how to model our basic book graph building
block using the libgraph library package.

We’ll also build a simple graph generator to demonstrate using synthetic data.

So let’s start by exploring a real example graph that is modeled using libgraph.

A Worked Example
It’s time to get in some practice with an extended workout with a real graph
to see what we can discover about it when using the libgraph package. This
will give us a sense of the completeness of libgraph as a graph library.

As an initial worked example, we’ll add the book graph to our library examples.
This example will be helpful because of its small size and because we can get
a simple visualization of the complete graph.

We’ll start off by creating a module for the book example:

defmodule NativeGraph.Examples.Book do

...

end

Next, we’ll create the example graph. Because we’ll want to retrieve either one
book or all books, let’s create two public entry points: book/1 (for one book)
and books/1 (for all books), which both call the private function do_books/2. The
public functions implicitly pass the first arg (all_books?) in do_books/2 which will
select either one book or all books.

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/native_graph/lib/native_graph/examples/book.ex
def book(use_id? \\ true), do: do_books(false, use_id?)
def books(use_id? \\ true), do: do_books(true, use_id?)

Here’s the skeleton code for do_books/2:

defp do_books(all_books?, use_id?) do
function to select id/map based on use_id? setting
val = fn map -> if use_id?, do: map.id, else: map end

book 1
bk1 = val.(%{ id: :adopting_elixir, ... })
...

book 2
bk2 = val.(%{ id: :graphql_apis, ... })
...

book 3
bk3 = val.(%{ id: :designing_elixir, ... })
...

book 4
bk4 = val.(%{ id: :graph_algorithms, ... })
...

build graph
g =

Graph.new(type: :directed)
#
|> Graph.add_vertex(bk1, "Book")
...

g =
if all_books? do
g
|> Graph.add_vertex(bk2, "Book")
...
#
|> Graph.add_vertex(bk3, "Book")
...
#
|> Graph.add_vertex(bk4, "Book")
...

else
g

end

g
end

The use_id? parameter which is passed to do_books/2 sets an anonymous function
to return either the id element from a map or the map itself. This will be used
for the vertex identifier.

Chapter 4. Exploring Graph Structures • 56

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph/examples/book.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Let’s take this book node as an example:

bk1 =
val.(%{

id: :adopting_elixir,
date: "2018-03-14",
format: "Paper",
isbn: "978-1-68050-252-7",
title: "Adopting Elixir",
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

})

If we call book(true), for example, we’ll get this for our book node:

bk1 = :adopting_elixir

If, on the other hand, we call book(false) we’ll get this for our book node:

bk1 = %{
id: :adopting_elixir,
date: "2018-03-14",
format: "Paper",
isbn: "978-1-68050-252-7",
title: "Adopting Elixir",
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

}

We’ll look at what this all means in the next section, Modeling the Book Graph,
on page 61, but for now, it’s enough to know we have a graph with a number
of nodes and that these nodes are by default identified simply by Elixir atoms,
but can also be identified with Elixir maps.

The next section will give you enough code to build the do_books/2 function to
support the book/1 function. You’ll have to consult the code listings to get the
full implementation of the books/1 function.

That said, let’s now see the books/1 function in action:

iex> g = NativeGraph.Examples.Book.books
#Graph<type: directed, vertices: [:graph_algorithms, :graphql_apis,
:mark_needham, :adopting_elixir, :amy_hodler, :oreilly, :ben_wilson,
:bruce_williams, :pragmatic, :bruce_tate, :designing_elixir, :jose_valim,
:ben_marx,
:james_gray], edges: [:graph_algorithms -[AUTHOR]-> :mark_needham,
:graph_algorithms -[AUTHOR]-> :amy_hodler, :graph_algorithms -[PUBLISHER]->
:oreilly, :graphql_apis -[AUTHOR]-> :ben_wilson, :graphql_apis -[AUTHOR]->
:bruce_williams, :graphql_apis -[PUBLISHER]-> :pragmatic, :adopting_elixir
[PUBLISHER]-> :pragmatic, :adopting_elixir -[AUTHOR]-> :bruce_tate,
:adopting_elixir -[AUTHOR]-> :jose_valim, :adopting_elixir -[AUTHOR]->
:ben_marx, :oreilly -[BOOK]-> :graph_algorithms, :pragmatic -[BOOK]->
:graphql_apis, :pragmatic -[BOOK]-> :adopting_elixir, :pragmatic -[BOOK]->

report erratum • discuss

A Worked Example • 57

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

:designing_elixir, :designing_elixir -[PUBLISHER]-> :pragmatic,
:designing_elixir -[AUTHOR]-> :bruce_tate, :designing_elixir -[AUTHOR]
:james_gray]>

Now let’s check that we have a valid graph model:

iex> Graph.vertices(g)
[:graph_algorithms, :graphql_apis, :mark_needham, :adopting_elixir,
:amy_hodler, :oreilly, :ben_wilson, :bruce_williams, :pragmatic,
:bruce_tate, :designing_elixir, :jose_valim, :ben_marx, :james_gray]

iex> Graph.edges(g)
[

%Graph.Edge{
label: "AUTHOR",
v1: :graph_algorithms,
v2: :mark_needham,
weight: 1

},
...

]

Before going further, let’s serialize the graph as a DOT file, which we’ll import
into OmniGraffle and prettify:

iex> {:ok, dot} = Graph.to_dot(g)
iex> write_graph(dot, "dot/books.dot")
#GraphCommons.Graph<type: native, file: "...", data: "strict digraph {...">

The following figure shows what we can do with OmniGraffle.

graphql_apis

adopting_elixir

amy_hodler

oreilly

ben_wilson

bruce_williams

pragmatic

bruce_tate

designing_elixir

jose_valim

ben_marx

james_gray

AUTHOR

AUTHOR

PUBLISHER

AUTHOR

AUTHOR

PUBLISHER

PUBLISHER

AUTHOR

AUTHOR

AUTHOR

BOOK

BOOK

BOOK

BOOK

PUBLISHER

AUTHOR AUTHOR

graph_agorithms

mark_needham

We can now begin exploring.

Chapter 4. Exploring Graph Structures • 58

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

What are the neighbors of the node :pragmatic?

iex> Graph.neighbors(g, :pragmatic)
[:graphql_apis, :adopting_elixir, :designing_elixir]

What are the out-edges from the node :pragmatic?

iex> Graph.out_edges(g, :pragmatic)
[

%Graph.Edge{
label: "BOOK",
v1: :pragmatic,
v2: :graphql_apis,
weight: 1

},
%Graph.Edge{

label: "BOOK",
v1: :pragmatic,
v2: :adopting_elixir,
weight: 1

},
%Graph.Edge{

label: "BOOK",
v1: :pragmatic,
v2: :designing_elixir,
weight: 1

}
]

So, there are three as confirmed by the out-degree:

iex> Graph.out_degree(g, :pragmatic)
3

And what are the in-edges to the node :pragmatic, then?

iex> Graph.in_edges(g, :pragmatic)
[

%Graph.Edge{
label: "PUBLISHER",
v1: :graphql_apis,
v2: :pragmatic,
weight: 1

},
%Graph.Edge{

label: "PUBLISHER",
v1: :adopting_elixir,
v2: :pragmatic,
weight: 1

},
%Graph.Edge{

label: "PUBLISHER",

report erratum • discuss

A Worked Example • 59

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

v1: :designing_elixir,
v2: :pragmatic,
weight: 1

}
]

Again, three. As confirmed by the in-degree:

iex> Graph.in_degree(g, :pragmatic)
3

Let’s look at some paths. How many paths are between the node :pragmatic and
the node :bruce_tate?

iex> Graph.get_paths(g, :pragmatic, :bruce_tate)
[

[:pragmatic, :designing_elixir, :bruce_tate],
[:pragmatic, :adopting_elixir, :bruce_tate]

]

Well, that’s two.

Both paths are the same length. So if we aim to get the shortest path, we’ll
get one of these paths randomly:

iex> Graph.get_shortest_path(g, :pragmatic, :bruce_tate)
[:pragmatic, :adopting_elixir, :bruce_tate]

And there are no paths between the node :pragmatic and the node :bruce_tate
with the edges reversed:

iex> g |> Graph.transpose |> Graph.get_paths(:pragmatic, :bruce_tate)
[]

But what about the overall structure?

iex> Graph.components(g)
[

[:bruce_williams, :ben_wilson, :ben_marx, :jose_valim, :james_gray,
:designing_elixir, :bruce_tate, :adopting_elixir, :pragmatic,
:graphql_apis],

[:amy_hodler, :mark_needham, :oreilly, :graph_algorithms]
]

So, libgraph clearly identifies the two islands we saw in the previous graph figure
which correspond to different publishers.

We can extract one of those islands from graph g as subgraph g1:

iex> nodes = (g |> Graph.components |> List.first)
[:bruce_williams, :ben_wilson, :ben_marx, :jose_valim, :james_gray,
:designing_elixir, :bruce_tate, :adopting_elixir, :pragmatic, :graphql_apis]

Chapter 4. Exploring Graph Structures • 60

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> g1 = Graph.subgraph(g, nodes)
#Graph<type: directed, vertices: [:graphql_apis, :adopting_elixir, ...]>

And we can compare the graph and subgraph:

iex> Graph.info(g)
%{num_edges: 17, num_vertices: 14, size_in_bytes: 7072, type: :directed}

iex> Graph.info(g1)
%{num_edges: 13, num_vertices: 10, size_in_bytes: 4608, type: :directed}

We can also ask some basic graph questions, such as:

iex> Graph.is_tree?(g)
false

iex> Graph.is_arborescence?(g)
false

iex> Graph.is_acyclic?(g)
false

There’s more. But that should at least give some idea of what can be done.

Modeling the Book Graph
Recall the book graph we introduced in our first chapter. (You might want to
refer back to Modeling a Book Graph, on page 8, for specific details.) This
is a simple reference graph we created to test implementations under different
graph models. We’re defining a book catalog where each catalog entry has
book, author, and publisher entities and a few basic properties.

We want to implement the book graph now using libgraph. Note that libgraph
supports labels that we can use for the node and edge types. And while it
allows for node properties, we have to exclude edge properties since libgraph
doesn’t natively support them. Of course, this is something of a requirement
as far as implementing a property graph is concerned, but we’ll see a way of
managing edge properties for libgraph in Adding Edge Properties, on page 234.

So, here’s one way of building the book graph. For this example, you’ll want
to copy the example that is provided in the NativeGraph.Examples.Book module in
the sample code. Since libgraph creates nodes using Elixir terms, we can choose
whether to use, for example, an atom or a map for the node value. We’ll
specify our node values as maps and use an anonymous function as a simple
toggle to select either an atom from the map or the map itself.

We’ll first define our anonymous function and bind this to a val variable:

report erratum • discuss

Modeling the Book Graph • 61

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/native_graph/lib/native_graph/examples/book.ex
function to select id/map based on use_id? setting
val = fn map -> if use_id?, do: map.id, else: map end

Note that this is hardwired in the source graph file and is preset to select an
atom value associated with the :id key. To select the full map as the value,
simply set use_id? = false in the file.

Next, we’ll define our nodes as maps filtered through the val.() function:

apps/native_graph/lib/native_graph/examples/book.ex
book 1
bk1 =

val.(%{
id: :adopting_elixir,
date: "2018-03-14",
format: "Paper",
isbn: "978-1-68050-252-7",
title: "Adopting Elixir",
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

})

bk1_au1 =
val.(%{

id: :ben_marx,
name: "Ben Marx",
url: "https://twitter.com/bgmarx"

})

bk1_au2 =
val.(%{

id: :jose_valim,
name: "José Valim",
url: "https://twitter.com/josevalim"

})

bk1_au3 =
val.(%{

id: :bruce_tate,
name: "Bruce Tate",
url: "https://twitter.com/redrapids"

})

bk1_pub =
val.(%{

id: :pragmatic,
name: "The Pragmatic Bookshelf",
url: "https://pragprog.com/"

})

Note that for the id: key value we’ll use an atom rather than a string.

And lastly, we’ll build the graph:

Chapter 4. Exploring Graph Structures • 62

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph/examples/book.ex
http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph/examples/book.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/native_graph/lib/native_graph/examples/book.ex
build graph
g =

Graph.new(type: :directed)
#
|> Graph.add_vertex(bk1, "Book")
|> Graph.add_vertex(bk1_au1, "Author")
|> Graph.add_vertex(bk1_au2, "Author")
|> Graph.add_vertex(bk1_au3, "Author")
|> Graph.add_vertex(bk1_pub, "Publisher")
|> Graph.add_edge(bk1_pub, bk1, label: "BOOK")
|> Graph.add_edge(bk1, bk1_au1, label: "AUTHOR")
|> Graph.add_edge(bk1, bk1_au2, label: "AUTHOR")
|> Graph.add_edge(bk1, bk1_au3, label: "AUTHOR")
|> Graph.add_edge(bk1, bk1_pub, label: "PUBLISHER")

Using Atoms for Nodes
The following figure shows how the book graph looks when using atoms for
node values.

AUTHOR

AUTHOR

AUTHOR

PUBLISHER

Book

Author

Publisher

Author

Author

:id

:id

:id

:id

BOOK

:id

We can read our book graph selecting atoms for node values as:

iex> g = NativeGraph.Examples.Book.book(true)
#Graph<type: directed, vertices: [:adopting_elixir, :pragmatic, :bruce_tate,
:jose_valim,
:ben_marx], edges: [:adopting_elixir -[PUBLISHER]-> :pragmatic,
:adopting_elixir -[AUTHOR]-> :bruce_tate, :adopting_elixir -[AUTHOR]
:jose_valim, :adopting_elixir -[AUTHOR]-> :ben_marx, :pragmatic -[BOOK]
:adopting_elixir]>

report erratum • discuss

Modeling the Book Graph • 63

http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph/examples/book.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

And now we can query this graph in the usual way. For example, to get the
vertices, we do this:

iex> Graph.vertices(g)
[:adopting_elixir, :pragmatic, :bruce_tate, :jose_valim, :ben_marx]

Or let’s say we want to find all edges (inbound and outbound) to the node
with the property id: :pragmatic:

iex> Graph.in_edges(g, :pragmatic)
[

%Graph.Edge{
label: "PUBLISHER",
v1: :adopting_elixir,
v2: :pragmatic,
weight: 1

}
]

iex> Graph.out_edges(g, :pragmatic)
[

%Graph.Edge{
label: "BOOK",
v1: :pragmatic,
v2: :adopting_elixir,
weight: 1

}
]

Here we have one inbound edge and one outbound edge.

The book graph is a directed graph, and there should be a path from the
Publisher node p to an Author node a. Let’s test that:

iex> p = :pragmatic

iex> a = :ben_marx

Now is there a path between nodes p and a?

iex> Graph.get_paths(g, p, a)
[[:pragmatic, :adopting_elixir, :ben_marx]]

There is indeed a path, via the Book node :adopting_elixir.

Using Maps for Nodes
Alternately, we can use a map for node values, as shown in the figure on
page 65.

Chapter 4. Exploring Graph Structures • 64

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

AUTHOR

AUTHOR

AUTHOR

PUBLISHER

Book

Author

Publisher

Author

Author

%{…}

%{…}

%{…}

%{…}

BOOK

%{…}

We can read our book graph selecting maps for node values as:

iex> g = NativeGraph.Examples.Book.book(false)
#Graph<type: directed, vertices: [

%{id: :jose_valim, url: "https://twitter.com/josevalim", name: "José Valim"},
%{id: :ben_marx, url: "https://twitter.com/bgmarx", name: "Ben Marx"},
%{id: :bruce_tate, url: "https://twitter.com/redrapids", name: "Bruce Tate"},
%{

date: "2018-03-14",
format: "Paper",
id: :adopting_elixir,
isbn: "978-1-68050-252-7",
title: "Adopting Elixir",
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

},
%{

id: :pragmatic,
name: "The Pragmatic Bookshelf",
url: "https://pragprog.com/"

}
], edges: [%{

date: "2018-03-14",
format: "Paper",
id: :adopting_elixir,
isbn: "978-1-68050-252-7",
title: "Adopting Elixir"
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/",

} -[AUTHOR]-> %{
id: :jose_valim,
name: "José Valim",
url: "https://twitter.com/josevalim"

},
...
]>

report erratum • discuss

Modeling the Book Graph • 65

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

And now we can query this graph in the usual way. For example, to get the
vertices we can do this:

iex> Graph.vertices(g)
[

%{
id: :jose_valim,
name: "José Valim",
url: "https://twitter.com/josevalim"

},
%{

id: :ben_marx,
name: "Ben Marx",
url: "https://twitter.com/bgmarx"

},
%{

id: :bruce_tate,
name: "Bruce Tate",
url: "https://twitter.com/redrapids"

},
%{

date: "2018-03-14",
format: "Paper",
id: :adopting_elixir,
isbn: "978-1-68050-252-7",
title: "Adopting Elixir",
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

},
%{

id: :pragmatic,
name: "The Pragmatic Bookshelf",
url: "https://pragprog.com/"

}
]

Or, let’s say we want to find all edges (inbound and outbound) to the node
whose property id: is equal to :pragmatic:

iex> prag = g |> Graph.vertices |>
...> Enum.find(&(match?(%{id: :pragmatic}, &1)))
%{

id: :pragmatic,
url: "https://pragprog.com/",
name: "The Pragmatic Bookshelf"

}

iex> Graph.in_edges(g, prag)
[

%Graph.Edge{
label: "PUBLISHER",
v1: %{

Chapter 4. Exploring Graph Structures • 66

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

date: "2018-03-14",
format: "Paper",
id: :adopting_elixir,
isbn: "978-1-68050-252-7",
title: "Adopting Elixir",
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

},
v2: %{
id: :pragmatic,
name: "The Pragmatic Bookshelf",
url: "https://pragprog.com/"

},
weight: 1

}
]

iex> Graph.out_edges(g, prag)
[

%Graph.Edge{
label: "BOOK",
v1: %{
id: :pragmatic,
name: "The Pragmatic Bookshelf",
url: "https://pragprog.com/"

},
v2: %{
date: "2018-03-14",
format: "Paper",
id: :adopting_elixir,
isbn: "978-1-68050-252-7",
title: "Adopting Elixir",
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

},
weight: 1

}
]

Here we have one inbound edge and one outbound edge.

The book graph is a directed graph, and there should be a path from the
Publisher node p to an Author node a.

Let’s test that:

iex> nodes = Graph.vertices(g)
[

%{id: :jose_valim,
name: "José Valim",
url: "https://twitter.com/josevalim"

},
...

]

report erratum • discuss

Modeling the Book Graph • 67

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> p = (nodes |> Enum.find(&(match?(%{id: :pragmatic}, &1))))
%{

id: :pragmatic,
name: "The Pragmatic Bookshelf",
url: "https://pragprog.com/"

}

iex> a = (nodes |> Enum.find(&(match?(%{id: :ben_marx}, &1))))
%{

id: :ben_marx,
name: "Ben Marx",
url: "https://twitter.com/bgmarx"

}

Now is there a path between nodes p and a?

iex> Graph.get_paths(g, p, a)
[

[
%{
id: :pragmatic,
name: "The Pragmatic Bookshelf",
url: "https://pragprog.com/"

},
%{
date: "2018-03-14",
format: "Paper",
id: :adopting_elixir,
isbn: "978-1-68050-252-7",
title: "Adopting Elixir",
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

},
%{
id: :ben_marx,
name: "Ben Marx",
url: "https://twitter.com/bgmarx"

}
]

]

There is indeed a path, via the Book node %{id: :adopting_elixir}.

Now that we’ve seen a real graph example, let’s consider testing with synthetic
graphs and see how we might generate those.

Generating Graphs
One of the challenges with testing data structures is to have a suitable
number of test examples. We have two approaches to dealing with this: 1)
include a library with a large number of instances, and 2) provide a set of

Chapter 4. Exploring Graph Structures • 68

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

generator functions. We’d ideally like to have both an atlas full of standard
and example graphs and a library of graph generators.

We already have a few examples of graphs in our NativeGraph.Examples module.
This library could be expanded.

As for graph generators, let’s create a simple graph generator to get a taste
of what can be done.

Create a new module NativeGraph.Builder and add this random_graph/1 function:

apps/native_graph/lib/native_graph/builder.ex
def random_graph(limit) do

for(n <- 1..limit, m <- (n + 1)..limit, do: do_evaluate(n, m))
|> Enum.reject(&is_nil/1)
|> Enum.reduce(

Graph.new(),
fn [rs, re], g ->
Graph.add_edge(g, rs, re)

end
)

end

Also add a delegate function to the NativeGraph module, so we can call
Builder.random_graph/1 more simply as random_graph/1:

apps/native_graph/lib/native_graph.ex
defdelegate random_graph(arg), to: NativeGraph.Builder, as: :random_graph

This is a naive attempt to build a random connected graph. Since it’s a con-
nected graph, we’ll only need to add edges—the vertices are implicit. We’ll
take one argument limit—the number of vertices—and use a comprehension
to build up vertex pairs for the edges.

We’ll drop some of the edges to make this an incomplete graph and use a
crude test based on the system clock:

apps/native_graph/lib/native_graph/builder.ex
defp do_evaluate(n, m) do

case Integer.is_even(Kernel.trunc(System.os_time() / 1000)) do
true -> [n, m]
false -> nil

end
end

Note that we’re using the Integer.is_even/1 macro here, so we’ll first need to add
a require Integer directive in our module.

Here’s how we can generate such a random graph:

report erratum • discuss

Generating Graphs • 69

http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph/builder.ex
http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/native_graph/lib/native_graph/builder.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> g7 = random_graph(7)
#Graph<type: directed, vertices: [1, ...], edges: [1 -> 2, ...]>

iex> g7 |> Graph.to_dot |> elem(1) |>
...> write_graph("dot/g7.dot") |> write_image
{:ok, "g7.png"}

This is the image that is saved in g7.png:

We’ve just shown here a simple example of a graph generator.

Wrapping Up
In this chapter, we explored querying some native graph structures built
using the libgraph Elixir package.

We got in some initial practice with the example book graph and then imple-
mented our reference book graph with libgraph. We noted that there is no native
support in libgraph for edge properties, although we’ll see in Chapter 11,
Transforming Graph Models, on page 201, how we can enhance libgraph to work
with edge properties.

We also touched on graph generators with a naive example.

Now let’s move on to a full-blown implementation of the property graph
model backed by a best-of-breed graph database.

Chapter 4. Exploring Graph Structures • 70

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

CHAPTER 5

Navigating Graphs with Neo4j
We are now going to turn our attention to property graphs. The property graph
is perhaps the best-known data model for semantic graphs (graphs with an
explicit information superstructure).

Property graphs—also known as labeled property graphs—are graphs in which
both nodes and edges may be attributed properties and in which nodes may
be labeled for grouping.

To study property graphs in a more controlled way, we’ll benefit greatly by
using a database to store our graphs so that we can requery them without
having to rebuild them. And a true graph database—a database that deals
with graphs as first-class data structures—would be even better. Unquestion-
ably, one of the most popular graph databases is Neo4j,1 which was one of
the initial movers in this field. Neo4j has been a major player in driving forward
the current interest in graph databases.

We should call out here a couple of key Neo4j technologies that we’ll be using
for connecting to the database and for querying over the graphs it manages:

• Bolt2 is a high-performance network protocol that was introduced with
the Neo4j 3.0 release in 2016 to speed up database connections. It uses
binary encoding over TCP or web sockets and has built-in TLS support.

• Cypher3 is the declarative graph query language developed by Neo4j and
is now open-sourced to the openCypher4 project. (See the Cypher Refcard5

for a handy quick reference.)

1. https://neo4j.com/
2. https://boltprotocol.org/
3. https://neo4j.com/docs/cypher-manual/current/
4. http://www.opencypher.org/
5. https://neo4j.com/docs/cypher-refcard/current/

report erratum • discuss

https://neo4j.com/
https://boltprotocol.org/
https://neo4j.com/docs/cypher-manual/current/
http://www.opencypher.org/
https://neo4j.com/docs/cypher-refcard/current/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We’re going to use the bolt_sips6 package from Florin Pătraşcu7 that implements
a Neo4j driver for Elixir wrapped around the Bolt protocol. (The package
integrates and continues work from boltex,8 an independent implementation
of the Bolt protocol in Elixir by Michael Schaefermeyer.9)

But before we get to that, let’s first review the property graph model. We’ll
then create a new PropertyGraph project and look at querying with Cypher, and
we’ll also try out the Bolt driver. And then we’ll implement a graph service
for the project using our common graph services API. Lastly, we’ll see how to
switch graph service contexts easily.

Property Graph Model
The distinguishing feature of a property graph is that graph vertices and edges
may be decorated with attributes (or properties). In Neo4j parlance, we talk
about nodes (for vertices) and relationships (for edges).

We’ll discuss property graphs here from a Neo4j perspective.

The graph elements we’ll talk about are nodes, relationships, and paths, along
with their associated IDs, properties, labels, and types. See Graph Database
Concepts10 in the Neo4j documentation for more details.

The following diagram here shows some of these graph constructs:

Paths

T3

T4

T1

T2

Relationships

L2

L2,
L4

L1,
L3

L1,
L3

L1

Nodes

Nodes are shown with optional labels L1, L2, and so on, while the required
single-value relationship types are shown as T1, T2, and so on. Property maps

6. https://hex.pm/packages/bolt_sips
7. https://hex.pm/users/florin
8. https://hex.pm/packages/boltex
9. https://about.me/mschae
10. https://neo4j.com/docs/getting-started/current/graphdb-concepts/

Chapter 5. Navigating Graphs with Neo4j • 72

report erratum • discuss

https://hex.pm/packages/bolt_sips
https://hex.pm/users/florin
https://hex.pm/packages/boltex
https://about.me/mschae
https://neo4j.com/docs/getting-started/current/graphdb-concepts/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

are shown with yellow document icons for nodes and green document icons
for relationships. Some various paths are shown between node pairs.

Nodes
Nodes in Neo4j are graph vertices and are allocated a system ID. They may
have zero or more user-defined labels associated with them. Labels are used
for grouping nodes into sets.

Nodes may additionally have a map of property names and property values
associated with them.

Relationships
Relationships in Neo4j are graph edges that relate two nodes and are allocated
a system ID. They take a single user-defined relationship type.

Relationships may additionally have a map of property names and property
values associated with them.

Note that relationships in Neo4j always have a direction that is defined at
create time but may be omitted at query time.

Paths
Paths in Neo4j are sequences of relationships that join sequences of nodes
and are used to answer traversal questions. The sequence of relationships in
the path is always distinct, whereas the sequence of nodes may or may not
be distinct.

One common traversal question is: “What is the shortest path between two
given nodes?” This also brings up the notion of path length. Cypher includes
many handy functions to answer such questions.

Creating the PropertyGraph Project
OK, enough of the theory. Let’s try querying some property graphs for real.
We’re going to need a couple of things: a database and a database driver.

PropertyGraph Project/Database Setup

See Appendix 1, Project Setups, on page 245, for details on retrieving
a working project with code and data.

And see Appendix 2, Database Setups, on page 247, for help on
setting up a local copy of Neo4j.

report erratum • discuss

Creating the PropertyGraph Project • 73

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

For the database driver, we’ll use the bolt_sips package. We’ll want to create a
new project under our umbrella app. Let’s call this project PropertyGraph. (See
the bolt_sips project for detailed installation instructions.11)

Follow the usual drill for creating the new project, PropertyGraph. Go to the
ExGraphsBook home project (see ExGraphsBook Umbrella, on page 16), cd down
into the apps directory, and open up the new PropertyGraph project:

$ mix new property_graph --sup

This will generate an app with a supervision tree and an application callback.
We’ll use the PropertyGraph.Application module to set up the supervision tree.

You should now have an apps directory that looks like this:

.
├── apps
│ ├── graph_commons
│ ├── native_graph
│ └── property_graph➤

Now cd into the property_graph directory:

.
├── README.md
├── lib
│ ├── property_graph➤

│ │ └── application.ex
│ └── property_graph.ex
├── mix.exs
└── test

└── ...

Note that the --sup flag has generated an extra directory property_graph under lib
with an application.ex file.

We can declare a dependency on bolt_sips by adding the :bolt_sips dependency
to the mix.exs file:

apps/property_graph/mix.exs
defp deps do

[
graph_commons
{:graph_commons, in_umbrella: true},

property graphs
{:bolt_sips, "~> 2.0"}

]
end

11. https://github.com/florinpatrascu/bolt_sips

Chapter 5. Navigating Graphs with Neo4j • 74

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/mix.exs
https://github.com/florinpatrascu/bolt_sips
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

As usual, use Mix to add in the dependency:

$ mix deps.get; mix deps.compile

We’ll need to specify our connection details:

config :bolt_sips, Bolt,
url: "bolt://localhost:7687",
basic_auth: [username: "neo4j", password: "neo4jtest"]

Add these lines (with details updated as required) to the umbrella config.exs
file in the main project directory or to an environment-specific import (for
example, dev.exs). Note that the url: option uses an explicit bolt: URI scheme.

We’ll also need to start up our PropertyGraph.Application module:

apps/property_graph/mix.exs
def application do

[
extra_applications: [:logger],
mod: {PropertyGraph.Application, []}➤

]
end

The :mod option specifies the application callback module, followed by any
arguments to be passed on application start. The application callback module
is any module that implements the Application behaviour.

We update the start/2 function in lib/property_graph/application.ex as:

apps/property_graph/lib/property_graph/application.ex
defmodule PropertyGraph.Application do

use Application

def start(_type, _args) do
children = [
{Bolt.Sips, Application.get_env(:bolt_sips, Bolt)}➤

]

opts = [strategy: :one_for_one, name: PropertyGraph.Service]➤

Supervisor.start_link(children, opts)
end

end

The application will now be started automatically and can be tested by calling
the info/0 function in Bolt.Sips:

iex> Bolt.Sips.info()
%{

default: %{
connections: %{direct: %{"localhost:7687" => 0}, routing_query: nil},
user_options: [

report erratum • discuss

Creating the PropertyGraph Project • 75

http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/mix.exs
http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph/application.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

socket: Bolt.Sips.Socket,
basic_auth: [username: "neo4j", password: "neo4jtest"],
port: 7687,
routing_context: %{},
schema: "bolt",
hostname: "localhost",
pool_size: 15,
max_overflow: 0,
timeout: 15000,
ssl: false,
with_etls: false,
retry_linear_backoff: [delay: 150, factor: 2, tries: 3],
prefix: :default,
url: "bolt://neo4j:neo4jtest@localhost:7687"

]
}

}

Let’s get a database connection:

iex> Bolt.Sips.conn()
#PID<0.352.0>

In direct mode, which is our current configuration, all the operations—read/write
and delete—are sent to the database using a common connection (from a
connection pool). The conn/0 function returns the process ID for this pool
connection.

Finally, let’s wire our graph storage into the PropertyGraph module with these
use/2 macros:

apps/property_graph/lib/property_graph.ex
use GraphCommons.Graph, graph_type: :property, graph_module: __MODULE__
use GraphCommons.Query, query_type: :property, query_module: __MODULE__

Well, that about covers the setup. But before we get into any real querying,
which we’ll cover in Chapter 6, Querying Neo4j with Cypher, on page 93, we’ll
spend the rest of this chapter looking at how to create queries and send them
to the database.

Querying with Cypher and APOC
It’s time to talk about how to query Neo4j, which will be our prime interface
for interacting with the graph database.

The query language used by Neo4j is called Cypher (no points here for spotting
the common name origin in The Matrix). Cypher supports the full range of
CRUD operations to manage graph structures within the database. This query
language has been augmented with a stored procedure library known as

Chapter 5. Navigating Graphs with Neo4j • 76

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

APOC that provides hundreds of procedures and functions, adding a lot of
new functionality.

Cypher
Cypher is a declarative graph query language that was developed in 2011 by
Neo4j to query and manipulate graphs. It has subsequently been open-
sourced, and the openCypher project is developing an open language specification
and a reference implementation. It was inspired by the existing query lan-
guages SQL, XPath, and SPARQL.

As a declarative language, Cypher focuses on the “what” rather than the “how.”
It provides a specification for graph operations rather than an imperative proce-
dure for implementation. This allows the user to focus on the business problem
to be solved rather than any particular technical solution. It’s the query engine
that takes care of translating the business logic into the best execution plan
for the current graph structure.

To give a flavor of the language, here’s a query which looks for a friend of a
friend (fof) of a given person (john):

MATCH (john:Person {name: 'John'})-[:friend]->()-[:friend]->(fof)
RETURN john.name, fof.name

This roughly looks like an upside-down SQL query, with the RETURN clause
following the MATCH clause instead of leading the match as with SQL’s SELECT
clause.

We would send this query to the database using the query!/2 function in Bolt.Sips:

iex> query_string = """
...> MATCH (john:Person {name: 'John'})-[:friend]->()-[:friend]->(fof)
...> RETURN john.name, fof.name
...> """

iex> Bolt.Sips.query!(Bolt.Sips.conn(), query_string)
...

The main thing to note here is that Cypher uses an ASCII art style of writing
down query match patterns, for example, ()-[]->() or ()<-[]-() for directed relation-
ships and ()-[]-() for undirected relationships. Nodes are indicated with
parentheses and relationships with brackets.

Nodes and relationships may be referenced with variable names (john, fof).
Nodes may also be qualified with a label and relationships with a type. In this
query, john has a Person label, and the two relationships have a type of friend.

report erratum • discuss

Querying with Cypher and APOC • 77

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Both nodes and relationships may be further constrained with a set of prop-
erty key/value pairs. Here, the node referenced by john has a name property
with the value John.

For more information on Cypher, see the Cypher Resources12 page and the
Neo4j Cypher Manual.13

APOC
On the Neo4j platform, Cypher may be extended via a library of stored proce-
dures known as APOC, or Awesome Procedures on Cypher. This has now
matured into a rather impressive collection of procedures and functions.

For a primer on APOC, see the Neo4j APOC Library manual.14

The APOC Core library is packaged as a jar file with the Neo4j distribution,
although, if you want to use the APOC Full library, you’ll have to download
that jar file separately. Whichever library you choose, you’ll need to copy it to
the plugins/ folder. Instructions for installing APOC are provided on the Instal-
lation page.15

You may also need to review the security settings in the conf/neo4j.conf file. A
server restart is required.

These procedures are invoked using the CALL clause in Cypher. So, for example,
we could get a report on the contents of the database by calling the procedure
apoc.meta.stats. Here is the JSON result we get for the book graph:

iex> Bolt.Sips.query!(Bolt.Sips.conn(), "CALL apoc.meta.stats")
%Bolt.Sips.Response{

...
results: [

%{
...
"stats" => %{

"labelCount" => 39,
"labels" => %{"Author" => 9, "Book" => 4, "Publisher" => 4},
"nodeCount" => 17,
"propertyKeyCount" => 63,
"relCount" => 17,
"relTypeCount" => 24,
"relTypes" => %{

12. https://neo4j.com/developer/cypher/resources/
13. https://neo4j.com/docs/cypher-manual/current/
14. https://neo4j.com/developer/neo4j-apoc/
15. https://neo4j.com/labs/apoc/4.4/installation/

Chapter 5. Navigating Graphs with Neo4j • 78

report erratum • discuss

https://neo4j.com/developer/cypher/resources/
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/developer/neo4j-apoc/
https://neo4j.com/labs/apoc/4.4/installation/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

"()-[:AUTHOR]->()" => 9,
"()-[:AUTHOR]->(:Author)" => 9,
"()-[:BOOK]->()" => 4,
"()-[:BOOK]->(:Book)" => 4,
"()-[:PUBLISHER]->()" => 4,
"()-[:PUBLISHER]->(:Publisher)" => 4,
"(:Book)-[:AUTHOR]->()" => 9,
"(:Book)-[:PUBLISHER]->()" => 4,
"(:Publisher)-[:BOOK]->()" => 4

}
}

}
],
...

}

We can also get a comprehensive list of all of the procedures:

iex> Bolt.Sips.query!(Bolt.Sips.conn(), "CALL apoc.help('apoc')")
%Bolt.Sips.Response{

...
results: [

%{
"name" => "apoc.algo.aStar",
...

},
...

],
...

}

We’ve seen briefly what Cypher queries look like and how Cypher can be used
to run stored procedures using APOC. Next, we’ll see how Cypher queries can
be sent to the database using Bolt and how responses are received.

Trying Out the Bolt Driver
Before we get down to the nitty-gritty of querying graphs, let’s look at some
raw Bolt.Sips responses to gain some familiarity with how graph data is shipped
across our comms channel—the Bolt connection.

Let’s first take a quick peek at the %Bolt.Sips.Response{} struct to get a feel for
how this is structured and what kinds of data fields are supported:

iex> %Bolt.Sips.Response{}
%Bolt.Sips.Response{

bookmark: nil,
fields: nil,
notifications: [],
plan: nil,

report erratum • discuss

Trying Out the Bolt Driver • 79

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

profile: nil,
records: [],
results: [],➤

stats: [],➤

type: nil
}

For now, we are going to be mainly looking at the results and stats fields, and
later we’ll use the type field as a means to select between the two.

We’ll keep things simple here by importing the Bolt.Sips namespace:

iex> import Bolt.Sips

Now we can try out a minimal Cypher query with the query!/2 function:

iex> query!(conn(), "RETURN 1 AS n")
%Bolt.Sips.Response{

bookmark: "FB:kcwQ0rvNq4LvQBm2WwphACLw5xmQ",
fields: ["n"],
notifications: [],
plan: nil,
profile: nil,
records: [[1]],
results: [%{"n" => 1}],
stats: [],
type: "r"

}

The query "RETURN 1 AS n" is sufficient to exercise the server without requiring
any loaded data and to show the full %Bolt.Sips.Response{} struct.

Note that we use the bang form query!/2 rather than query/2 as this is more
convenient for interactive use.

We can use simple pattern matching to pull out the results field from the struct:

iex> %Bolt.Sips.Response{results: results} = query!(conn(), "RETURN 1 AS n")
%Bolt.Sips.Response{

...
}

iex> results
[%{"n" => 1}]

By the end of this chapter, we’ll find a better way to query with Bolt.Sips so that
we can streamline our querying.

Chapter 5. Navigating Graphs with Neo4j • 80

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Types
The bolt_sips package defines types for a number of graph entities in the
Bolt.Sips.Types module.16 We have types for nodes, relationships, and paths.
There is also a type for unbound relationships.

For details on how these entities are serialized in Bolt protocol messages, see
Graph Type Structures on the Message Serialization page.17

The structs for node and relationship types have common id and properties
fields, with nodes taking an additional labels field and relationships taking an
additional type field along with start and end fields for the start and end node
IDs of the relationship:

iex> t Bolt.Sips.Types.Node
@type t() :: %Bolt.Sips.Types.Node{

id: integer(),
labels: [String.t()],
properties: map()

}

iex> t Bolt.Sips.Types.Relationship
@type t() :: %Bolt.Sips.Types.Relationship{

end: term(),
id: integer(),
properties: map(),
start: term(),
type: term()

}

The unbound relationship type is the same as the relationship type:

iex> t Bolt.Sips.Types.UnboundRelationship
@type t() :: %Bolt.Sips.Types.UnboundRelationship{

end: term(),
id: integer(),
properties: map(),
start: term(),
type: term()

}

Lastly, the path type is a container type with node and relationship lists (nodes
and relationships fields) and a sequence field for indexing into these lists:

iex> t Bolt.Sips.Types.Path
@type t() :: %Bolt.Sips.Types.Path{

16. https://hexdocs.pm/bolt_sips/Bolt.Sips.Types.html
17. https://github.com/boltprotocol/boltprotocol/blob/master/v1/_serialization.asciidoc

report erratum • discuss

Trying Out the Bolt Driver • 81

https://hexdocs.pm/bolt_sips/Bolt.Sips.Types.html
https://github.com/boltprotocol/boltprotocol/blob/master/v1/_serialization.asciidoc
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

nodes: list() | nil,
relationships: list() | nil,
sequence: list() | nil

}

Let’s see what this looks like in practice.

Nodes
We’re going to need some data to do real querying. Let’s assume that you’ve
loaded the demo movies graph in your Neo4j database.

This will depend on how you’ve installed Neo4j (see Installing Neo4j, on page
247). If you’ve installed Neo4j Desktop, you should already have the movies
graph loaded. If you’ve installed a standalone server, for example, the Neo4j
Community Edition, you’ll need to download the movies graph—see Movies
Graph Example18 for instructions.

(More example graphs are available on the Guide: Example Datasets19 page.)

Let’s get one node with the query "MATCH (n) RETURN n LIMIT 1":

iex> %Bolt.Sips.Response{results: results} =
...> query!(conn(), "MATCH (n) RETURN n LIMIT 1")
%Bolt.Sips.Response{

...
}

iex> results
[

%{
"n" => %Bolt.Sips.Types.Node{
id: 2634,
labels: ["Movie"],
properties: %{

"released" => 1999,
"tagline" => "Welcome to the Real World",
"title" => "The Matrix"

}
}

}
]

This is returned as a %Bolt.Sips.Types.Node{} struct with an integer id, a list of
labels, and a map of properties.

18. https://github.com/neo4j-graph-examples/movies
19. https://neo4j.com/developer/example-data/

Chapter 5. Navigating Graphs with Neo4j • 82

report erratum • discuss

https://github.com/neo4j-graph-examples/movies
https://neo4j.com/developer/example-data/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Relationships
Let’s get one relationship with the query "MATCH ()-[r]-() RETURN r LIMIT 1":

iex> %Bolt.Sips.Response{results: results} =
...> query!(conn(), "MATCH ()-[r]-() RETURN r LIMIT 1")
%Bolt.Sips.Response{

...
}

iex> results
[

%{
"r" => %Bolt.Sips.Types.Relationship{
end: 2634,
id: 1034,
properties: %{"roles" => ["Agent Smith"]},
start: 2638,
type: "ACTED_IN"

}
}

]

This is returned as a %Bolt.Sips.Types.Relationship{} struct with an integer id, a
string type, a map of properties, and integer start and end fields.

Paths
Let’s get one path with the query "MATCH p = ()--() RETURN p LIMIT 1":

iex> %Bolt.Sips.Response{results: results} =
...> query!(conn(), "MATCH p = ()--() RETURN p LIMIT 1")
%Bolt.Sips.Response{

...
}

iex> results
[

%{
"p" => %Bolt.Sips.Types.Path{
nodes: [

%Bolt.Sips.Types.Node{
id: 2638,
labels: ["Person"],
properties: %{"born" => 1960, "name" => "Hugo Weaving"}

},
%Bolt.Sips.Types.Node{

id: 2634,
labels: ["Movie"],
properties: %{

report erratum • discuss

Trying Out the Bolt Driver • 83

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

"released" => 1999,
"tagline" => "Welcome to the Real World",
"title" => "The Matrix"

}
}

],
relationships: [

%Bolt.Sips.Types.UnboundRelationship{
end: nil,
id: 1034,
properties: %{"roles" => ["Agent Smith"]},
start: nil,
type: "ACTED_IN"

}
],
sequence: [1, 1]

}
}

]

This is returned as a %Bolt.Sips.Types.Path{} struct, which is a more complicated
affair with lists of nodes and (unbounded) relationships fields and a list of integers
for the sequence field.

Setting Up a Graph Service
We can do graph management of our Neo4j instance using Cypher queries
over Bolt.Sips to add and delete graphs. But we’d ideally like to bring this under
our common graph services API so we can operate at a higher level of
abstraction, which will make for less context switching when swapping
between graph services.

Let’s set up a graph service for our PropertyGraph project now:

defmodule PropertyGraph.Service do
@behaviour GraphCommons.Service

...

end

Note that this module is going to implement the GraphCommons.Service behaviour
so we use the module attribute @behaviour.

Graph API
We’ll first need to set up our Cypher queries for deleting all nodes and rela-
tionships and for reading them:

Chapter 5. Navigating Graphs with Neo4j • 84

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/property_graph/lib/property_graph/service.ex
@cypher_delete """
MATCH (n) OPTIONAL MATCH (n)-[r]-() DELETE n,r
"""

@cypher_read """
MATCH (n) OPTIONAL MATCH (n)-[r]-() RETURN DISTINCT n, r
"""

Both of these queries match all nodes, and then they optionally add any edges
attached to those nodes. This means that we can be sure of discovering the
complete graph, whether it’s connected or not.

By the way, a more idiomatic Cypher query for deleting nodes is:

@cypher_delete """
MATCH (n) DETACH DELETE n
"""

We can now simply define our graph services API as follows:

apps/property_graph/lib/property_graph/service.ex
def graph_create(graph) do

graph_delete()
graph_update(graph)

end

def graph_delete(), do: Bolt.Sips.query!(Bolt.Sips.conn(), @cypher_delete)

def graph_read(), do: Bolt.Sips.query!(Bolt.Sips.conn(), @cypher_read)

def graph_update(%GraphCommons.Graph{} = graph),
do: Bolt.Sips.query!(Bolt.Sips.conn(), graph.data)

This defines the API for CRUD operations, although we can expand the API
further with an optional reporting function graph_info/0.

Graph Info
For our optional graph_info/0 function, we can use the APOC procedure
apoc.meta.stats() and pull out the fields we need:

apps/property_graph/lib/property_graph/service.ex
@cypher_info """
CALL apoc.meta.stats()
YIELD labels, labelCount, nodeCount, relCount, relTypeCount
"""

We then send that query, and from the result set we can parse out the fields
we’re interested in and use them to populate the %GraphCommons.Service.GraphInfo{}
struct:

report erratum • discuss

Setting Up a Graph Service • 85

http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/property_graph/lib/property_graph/service.ex
def graph_info() do

{:ok, [stats]} =
@cypher_info
|> PropertyGraph.new_query()
|> query_graph

%GraphCommons.Service.GraphInfo{
type: :property,
file: "",
num_nodes: stats["nodeCount"],
num_edges: stats["relCount"],
labels: Map.keys(stats["labels"])

}
end

Query API
Now it’s time to look at the query API.

The query API is different from the graph API, which is used only for graph
management. Here we’d like to query within the current graph. To make this
separation between the two APIs clearer, we’ll use the differently named
query_graph/1 function instead of the graph_*/1 and graph_*/0 naming:

apps/property_graph/lib/property_graph/service.ex
def query_graph(%GraphCommons.Query{} = query), do: query_graph(query, %{})

def query_graph(%GraphCommons.Query{} = query, params) do
:property = query.type

Bolt.Sips.query(Bolt.Sips.conn(), query.data, params)
|> case do

{:ok, response} -> parse_response(response, false)
{:error, error} -> {:error, error}

end
end

We’ll also define a parallel query_graph!/1 function to simplify using this interac-
tively:

apps/property_graph/lib/property_graph/service.ex
def query_graph!(%GraphCommons.Query{} = query), do: query_graph!(query, %{})

def query_graph!(%GraphCommons.Query{} = query, params) do
:property = query.type

Bolt.Sips.query(Bolt.Sips.conn(), query.data, params)
|> case do

{:ok, response} -> parse_response(response, true)
{:error, error} -> raise "! #{inspect error}"

end
end

Chapter 5. Navigating Graphs with Neo4j • 86

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

In both cases, we’ll pass in a %GraphCommons.Query{} struct with the actual
query string contained in the :data field. If successful, we’ll call the private
function parse_response/2 with the %Bolt.Sips.Response{} struct and a boolean bang
as true for query_graph!/1 and false for query_graph/1:

apps/property_graph/lib/property_graph/service.ex
defp parse_response(%Bolt.Sips.Response{} = response, bang) do

%Bolt.Sips.Response{type: type} = response

case type do
r when r in ["r", "rw"] ->
%Bolt.Sips.Response{results: results} = response
unless bang, do: {:ok, results}, else: results

s when s in ["s"] ->
%Bolt.Sips.Response{results: results} = response
unless bang, do: {:ok, results}, else: results

w when w in ["w"] ->
%Bolt.Sips.Response{stats: stats} = response
unless bang, do: {:ok, stats}, else: stats

end
end

We use simple pattern matching to pull out the results or stats fields, depending
on whether the type field in the %Bolt.Sips.Response{} struct is r or w, respectively.

API Demo
As a demo, let’s add our default graph to the Neo4j database. But first, let’s
import the PropertyGraph functions to save on typing:

iex> import PropertyGraph
PropertyGraph

We defined the default graph in Inspecting the Structs, on page 22. Let’s now
save that down into our graph storage with the write_graph/2 function:

iex> "CREATE (a)-[:EX]->(b)" |> write_graph("default.cypher")
#GraphCommons.Graph<type: property, file: "...", data: "CREATE (a)-[:EX]...">

We’ll use the read_graph/1 function to read the default graph back from the
graph store:

iex> default_graph = read_graph("default.cypher")
#GraphCommons.Graph<type: property, file: "...", data: "CREATE (a)-[:EX]...">

We can then simply pipe this into the graph_create/1 function to create our
default graph in the graph service:

iex> graph_create default_graph
%Bolt.Sips.Response{

...

report erratum • discuss

Setting Up a Graph Service • 87

http://media.pragprog.com/titles/thgraphs/code/apps/property_graph/lib/property_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

stats: %{"nodes-created" => 2, "relationships-created" => 1},
type: "w"

}

We can use the graph_info/0 function to confirm the service graph:

iex> graph_info
%GraphCommons.Service.GraphInfo{

labels: [],
num_edges: 1,
num_nodes: 2,
type: :property

}

And we can query this as before:

iex> %Bolt.Sips.Response{results: results} =
...> query!(conn(), "MATCH (n) RETURN n"), do: results
%Bolt.Sips.Response{

...
}

iex> results
[

%{"n" => %Bolt.Sips.Types.Node{id: 2814, labels: [], properties: %{}}},
%{"n" => %Bolt.Sips.Types.Node{id: 2815, labels: [], properties: %{}}}

]

Now let’s see how we can simplify that without all the boilerplate so we can
focus more clearly on the query itself. It’s time to introduce some shorthand
techniques.

Query Helper
For interactive use in IEx, we can define a helper function cypher!/1 in
GraphCommons.Utils:

apps/graph_commons/lib/graph_commons/utils.ex
def cypher!(query_string), do: to_query_graph!(PropertyGraph, query_string)

This function takes a query string and calls the private function to_query_graph!/1
also in GraphCommons.Utils to convert the query string into a %GraphCommons.Query
struct:

apps/graph_commons/lib/graph_commons/utils.ex
defp to_query_graph!(graph_module, query_string)

when is_module(graph_module) do
query_string
|> graph_module.new_query()
|> graph_module.query_graph!()

end

Chapter 5. Navigating Graphs with Neo4j • 88

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/utils.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/utils.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We are using the is_module/1 guard to ensure that the graph_module argument is
a valid graph module. The guard definition itself is defined with the defguard/1
macro:

apps/graph_commons/lib/graph_commons/utils.ex
defguard is_module(graph_module)

when graph_module in [DGraph, NativeGraph, PropertyGraph, RDFGraph,
TinkerGraph]

And to simplify access to this helper function, let’s import the GraphCommons.Utils
module in our IEx startup file .iex.exs:

import GraphCommons
import GraphCommons.Utils ; alias GraphCommons.Utils➤

Let’s try this now:

iex> "MATCH (n) RETURN n" |> cypher!
[

%{"n" => %Bolt.Sips.Types.Node{id: 2814, labels: [], properties: %{}}},
%{"n" => %Bolt.Sips.Types.Node{id: 2815, labels: [], properties: %{}}}

]

This is much better. It eliminates the need to pass in the database connection,
manage namespaces, and extract the results field from the %Bolt.Sips.Response{}
struct. We can simply focus on the query string and the result types.

We’ll use this form for querying from now on.

Graph Contexts
We’ve talked here about importing the PropertyGraph module to allow simplified
access to the module functions without using the module namespace. And
in the previous chapter, we also talked about importing the NativeGraph module.

If we import a second graph module, we’ll run into a conflict in our function
names:

iex> import NativeGraph
NativeGraph

iex> import PropertyGraph
PropertyGraph

iex> list_graphs
** (CompileError) iex:10: function list_graphs/0 imported from both
PropertyGraph and NativeGraph, call is ambiguous

(elixir) src/elixir_dispatch.erl:111: :elixir_dispatch.expand_import/6
(elixir) src/elixir_dispatch.erl:81: :elixir_dispatch.dispatch_import/5

This won’t do.

report erratum • discuss

Setting Up a Graph Service • 89

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/utils.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We need to be able to delete any previous graph module import before
attempting a new import.

There is a way, although I haven’t seen it documented. If you do an import,
restricting it to an empty set of functions will clear out the module from the
environment.

Let’s try this out. If we inspect the environment after the two previous imports
of NativeGraph and PropertyGraph, we can see that we have list_graphs/0 imported
under both modules:

iex> __ENV__.functions()
[

...
{PropertyGraph,
[

...
list_graphs: 0,
...

]},
{NativeGraph,
[

...
list_graphs: 0,
...

]},
...

]}
]

Try now to import an empty list of NativeGraph functions:

iex> import NativeGraph, only: []
PropertyGraph

And now inspect the environment again:

iex> __ENV__.functions()
[

...
{PropertyGraph,
[

...
list_graphs: 0,
...

]},
...

]}
]

Chapter 5. Navigating Graphs with Neo4j • 90

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Notice that the NativeGraph module functions are gone. There’s no longer any
conflict.

We can use this technique in the graph_context/1 macro we’ll import by default,
along with the other GraphCommons.Utils functions:

apps/graph_commons/lib/graph_commons/utils.ex
defmacro graph_context(graph_module) do

quote do
unimport any existing graph modules
import DGraph, only: []
import NativeGraph, only: []
import PropertyGraph, only: []
import RDFGraph, only: []
import TinkerGraph, only: []
import graph module argument
import unquote(graph_module)

end
end

This macro will effectively do an unimport of all the graph modules and then
will import the graph module supplied.

Now if we try this, we see that we have an effective means of switching between
graph contexts. At any time, there will only be one graph context accessible
without namespacing. Of course, all the graph contexts are available if full
namespacing is used.

We can define the function graph_context/0 within the body of the __using__/1 macro
in the GraphCommons.Graph module so that it’ll be injected into each of the graph
modules that call use/1:

apps/graph_commons/lib/graph_commons/graph.ex
def graph_context(), do: unquote(graph_module)

Since these are imported with the graph module, we can find out which is
the default graph context at any time:

iex> graph_context PropertyGraph
PropertyGraph

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: ["Author", "Book", "Publisher"],
num_edges: 17,
num_nodes: 17,
type: :property

}

report erratum • discuss

Setting Up a Graph Service • 91

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/utils.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> graph_context RDFGraph
RDFGraph

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: ["Book", "Organization", "Person"],
num_edges: 27,
num_nodes: 8,
type: :rdf

}

This use of a graph context with the query helpers we introduced earlier
makes interacting with our graph services a much simpler task. We can now
focus on querying the various graph models and switch between graph con-
texts seamlessly.

Wrapping Up
In this chapter, we covered quite a bit of ground. We reviewed the property
graph model, which is perhaps the dominant graph model for representing
information within a graph framework.

We set up a new PropertyGraph project for exploring property graphs and used
the bolt_sips driver package to communicate with a Neo4j instance.

We met Cypher—the query language for Neo4j property graphs—and the
APOC library of procedures for extending Cypher with richer algorithms.

We spent some time looking at the response patterns from bolt_sips and the
structures used for returning nodes, relationships, and paths.

We also looked at implementing a graph service for property graphs so that
we can use a common API for graph management and for sending queries
to the graph service. Lastly, we talked about service contexts that allow us
to switch between different graph services seamlessly.

With this in place, we’re finally ready to query property graphs.

Chapter 5. Navigating Graphs with Neo4j • 92

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

CHAPTER 6

Querying Neo4j with Cypher
We’re finally ready to query a real graph database—Neo4j. We’re going to use
Cypher for this.

Let’s review the things we’ve done so far. We’ve got our graph database (Neo4j)
running and a connection to the database (Bolt) set up. We’ve also created
our property graph service API (PropertyGraph) and have added in a query helper
cypher!/1 for sending Cypher queries.

Now we want to get down to the business of querying the graph database.

We’re going to focus on a couple of simple applications by getting acquainted
with Neo4j property graphs using Elixir. We’ll start off with some basics for
creating and querying nodes, relationships, and paths, and we’ll provide a
rudimentary test query library.

We’ll then create a simple graph—the book graph—and see how this is
implemented in Cypher. And then we’ll create a larger graph—the ARPANET
graph—to look at an example of a real network.

Parameter passing in queries is an important capability so we’ll cover that.
We’ll extend our query API to support parameters and also show some
examples of this in action.

We’ll round this out with some general remarks on property graphs and
schemas and anticipate the RDF schemas that we’ll meet in the following
chapters.

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Getting Started with Cypher
We can’t possibly do any real justice to a language as rich as Cypher here. For
more information, you should consult the Cypher Query Language1 developer
resource, The Neo4j Cypher Manual,2 and the openCypher Resources page.3

Let’s review some basics of Cypher patterns, which are used in CREATE clauses
for construction and in MATCH clauses for querying. These patterns are used
to specify nodes, relationships, and paths. This should be enough to get us
started.

Some Basic Cypher Syntax
As earlier noted, Cypher uses an ASCII art style for writing down its queries.
This helps because with Cypher’s labels and properties we are essentially
dealing with structured values for nodes and relationships.

Nodes

The pattern for creating and matching a node in Cypher is:

(variable? :label* {properties}?)

Here we use the standard regex quantifiers, ? and *, which show that all parts
are optional. The only required syntax is the pair of parentheses, (), which
marks a node. The node may be referenced with a variable name, and can
optionally be labeled with one or more labels. Additionally, properties may be
attached using a property map construct properties, marked with braces, {},
and enclosing a comma-separated list of key/value pairs:

{key: value, ...}

Here’s an example of a node with two labels:

iex> "CREATE (a:Foo:Bar)" |> cypher!
%{"labels-added" => 2, "nodes-created" => 1}

iex> "MATCH (a:Foo) RETURN labels(a)" |> cypher!
[%{"labels(a)" => ["Foo", "Bar"]}]

iex> "MERGE (a:Baz) RETURN labels(a)" |> cypher!
[%{"labels(a)" => ["Baz"]}]

Note that a variable name is needed for MATCH. (Also note that the MERGE clause
here is like a combination of CREATE and MATCH.)

1. https://neo4j.com/developer/cypher-query-language/
2. https://neo4j.com/docs/cypher-manual/current/
3. https://www.opencypher.org/resources

Chapter 6. Querying Neo4j with Cypher • 94

report erratum • discuss

https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/docs/cypher-manual/current/
https://www.opencypher.org/resources
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Here’s an example of an unlabeled node with a property map:

iex> "CREATE (a {blue: [1, 2, 3]})" |> cypher!
%{"nodes-created" => 1, "properties-set" => 1}

iex> [%{"n.blue" => blue}] =
...> "MATCH (n) WHERE exists(n.blue) RETURN n.blue" |> cypher! ; blue
[1, 2, 3]

Relationships

The pattern for creating and matching a relationship in Cypher is:

() - [variable? :type {properties}?] - ()

Note that the relationship includes the two nodes it links. For CREATE queries,
a directed arrow (either -[...]-> or <-[...]-) is required. For MATCH queries, where
the direction isn’t important, an undirected link (-[...]-) is used.

Here’s an example of a relationship with a property map:

iex> "CREATE (a)-[r:REL_TYPE {baz: 123}]->(b)" |> cypher!
%{"nodes-created" => 2, "properties-set" => 1, "relationships-created" => 1}

iex> "MATCH ()-[r:REL_TYPE]-() RETURN r" |> cypher!
[

%{
"r" => %Bolt.Sips.Types.Relationship{
end: 22512,
id: 1518,
properties: %{"baz" => 123},
start: 22540,
type: "REL_TYPE"

}
}

]

So, variable is used for cross-referencing within a single query part, type is the
type for the relationship, and properties is a property map as before.

Paths

The pattern for creating and matching a path in Cypher is:

() - [] -> () - [] -> () ...

Here’s an example of a path with four nodes:

iex> """
...> CREATE (a {name: 'a'})-[:X]->()<-[:Y]-()-[:Z]->(b {name: 'b'})
...> """ |> cypher!
%{"nodes-created" => 4, "properties-set" => 2, "relationships-created" => 3}

report erratum • discuss

Getting Started with Cypher • 95

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

The path syntax is the same as that for a relationship, but it’s extended to
include all the nodes in the path. As with relationships, the path links use a
directed arrow (either -[...]-> or <-[...]-) between node pairs for CREATE queries.

For MATCH queries, where the direction isn’t important, an undirected link
(-[...]-) is used. It’s also possible to specify a path length using the [*n] syntax:

iex> "MATCH p = ({name: 'a'})-[*3]-({name: 'b'}) RETURN p" |> cypher!
[

%{
"p" => %Bolt.Sips.Types.Path{
nodes: [...],
relationships: [...],
sequence: [1, 1, -2, 2, 3, 3]

}
}

]

And with that in hand, let’s try out some test queries.

First Queries with Cypher
Let’s cd back to our ExGraphsBook root and open up IEx:

$ iex -S mix
Erlang/OTP 24 [erts-12.3.1] ...

We can then use the graph_context/1 macro to switch our context to use the
PropertyGraph module:

iex> graph_context PropertyGraph
PropertyGraph

And we can inspect the graph service with a graph_info/0 call:

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: ["Movie", "Person"],
num_edges: 253,
num_nodes: 171,
type: :property

}

What you see in the graph_info summary will depend on how you’ve set up your
Neo4j instance. If you’ve installed the demo movies graph that comes with
Neo4j, you may see something similar to the summary shown here. But this
doesn’t matter as long as there is something to query on.

Chapter 6. Querying Neo4j with Cypher • 96

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

For a simple initial exploration, we’ve defined some basic graph queries
(nodes.cypher, nodes_and_relationships.cypher, paths.cypher, and relationships.cypher) and
their variant forms to get a single entity (node1.cypher, node1_and_relationships.cypher,
path1.cypher, and relationship1.cypher) in a lib folder under queries in the code listings.
But you can also create them here.

priv
...
└── storage

...
├── property
│ ├── ...
│ └── queries
│ └── lib
...

Let’s create that directory now:

$ mkdir -p priv/storage/property/queries/lib

You can either copy those queries over from the code listings or create them
yourself from the following examples.

You can then list out those queries by filename:

iex> list_queries_dir("lib") |> Enum.each(
...> fn f -> IO.puts "* " <> f; read_query("lib/" <> f).data |> IO.puts end
...>)
* node1.cypher
MATCH (n) RETURN n LIMIT 1

* node1_and_relationships.cypher
MATCH (n) MATCH (n)-[r]-() RETURN DISTINCT n, r

* node_id1.cypher
MATCH (n) RETURN n LIMIT 1

* node_ids.cypher
MATCH (n) RETURN DISTINCT id(n)

* nodes.cypher
MATCH (n) RETURN DISTINCT n

* nodes_and_relationships.cypher
MATCH (n) MATCH ()-[r]-() RETURN DISTINCT n, r

* path1.cypher
MATCH p = ()--() RETURN p LIMIT 1

* paths.cypher
MATCH p = ()--() RETURN DISTINCT p

* relationship1.cypher
MATCH ()-[r]-() RETURN r LIMIT 1

report erratum • discuss

Getting Started with Cypher • 97

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

* relationship_ids.cypher
MATCH ()-[r]-() RETURN DISTINCT id(r)

* relationships.cypher
MATCH ()-[r]-() RETURN DISTINCT r

:ok

Here’s how you might send a query directly from a query file, in this case for
a single node:

iex> read_query("lib/node1.cypher").data |> cypher!
[

%{
"n" => %Bolt.Sips.Types.Node{
id: 2634,
labels: ["Person"],
properties: %{"born" => 1971, "name" => "Regina King"}

}
}

]

But let’s look now at creating our own graph. We’ll start with our reference
graph—the book graph.

Modeling the Book Graph
We’re going to implement our book graph using the property graph model.
First, let’s remind ourselves what this book graph looks like—take a look at
this figure on page 9, which shows our reference book graph.

This book graph can be mapped into the property graph model as shown in
the following figure. As you can see, it maps almost exactly.

Book

Author

Publisher

Author

Author

{…}

{…}

{…}
{…}

{…}

{…}
AUTHOR

{…}
AUTHOR

{…}
AUTHOR

{…}
PUBLISHER

{…}
BOOK

Chapter 6. Querying Neo4j with Cypher • 98

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Yes, that’s right. It looks like the property graph model has full support for
all the features we require.

We can express this book graph in Cypher as:

// book 1
CREATE
(bk1:Book {

id: "adopting_elixir",
date: "2018-03-14",
format: "Paper",
isbn: "978-1-68050-252-7",
title: "Adopting Elixir",
url: "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

}),
(bk1_au1:Author {

id: "ben_marx",
name: "Ben Marx",
url: "https://twitter.com/bgmarx"

}),
(bk1_au2:Author {

id: "jose_valim",
name: "José Valim",
url: "https://twitter.com/josevalim"

}),
(bk1_au3:Author {

id: "bruce_tate",
name: "Bruce Tate",
url: "https://twitter.com/redrapids"

}),
(bk1_pub:Publisher {

id: "pragmatic",
name: "The Pragmatic Bookshelf",
url: "https://pragprog.com/"

})

CREATE
(bk1)-[:AUTHOR { role: "first author" }]->(bk1_au1),
(bk1)-[:AUTHOR { role: "second author" }]->(bk1_au2),
(bk1)-[:AUTHOR { role: "third author" }]->(bk1_au3),
(bk1)-[:PUBLISHER]->(bk1_pub),
(bk1_pub)-[:BOOK]->(bk1)

;

Here bk1, bk1_au1, bk1_au2, bk1_au3, and bk1_pub are internal variables being used
for cross-referencing in the Cypher query.

Now let’s create a new database and import the book graph we just created:

report erratum • discuss

Modeling the Book Graph • 99

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> graph_delete
%Bolt.Sips.Response{

...
stats: %{"nodes-deleted" => 17, "relationships-deleted" => 17},
type: "w"

}

iex> graph_create read_graph("book.cypher")
%Bolt.Sips.Response{

...
stats: %{

"labels-added" => 5,
"nodes-created" => 5,
"properties-set" => 21,
"relationships-created" => 5

},
type: "w"

}

We can get a summary with the graph_info/0 function:

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: ["Author", "Book", "Publisher"],
num_edges: 5,
num_nodes: 5,
type: :property

}

This confirms that five labeled nodes and five relationships have been created
together with 20 properties.

Querying for Nodes
We can now test this graph by querying over all the nodes. Let’s get system
IDs and labels:

iex> "MATCH (n) RETURN id(n), labels(n)" |> cypher!
[

%{"id(n)" => 0, "labels(n)" => ["Book"]},
%{"id(n)" => 1, "labels(n)" => ["Author"]},
%{"id(n)" => 2, "labels(n)" => ["Author"]},
%{"id(n)" => 3, "labels(n)" => ["Author"]},
%{"id(n)" => 4, "labels(n)" => ["Publisher"]}

]

So let’s get system IDs and properties for those nodes with an Author label:

Chapter 6. Querying Neo4j with Cypher • 100

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> "MATCH (n:Author) RETURN id(n), properties(n)" |> cypher!
[

%{
"id(n)" => 1,
"properties(n)" => %{
"id" => "ben_marx",
"name" => "Ben Marx",
"url" => "https://twitter.com/bgmarx"

}
},
%{

"id(n)" => 2,
"properties(n)" => %{
"id" => "jose_valim",
"name" => "José Valim",
"url" => "https://twitter.com/josevalim"

}
},
%{

"id(n)" => 3,
"properties(n)" => %{
"id" => "bruce_tate",
"name" => "Bruce Tate",
"url" => "https://twitter.com/redrapids"

}
}

]

It’s worth pointing out here that there might be some confusion between the
system ID returned by the id(n) function and the id property on a node. One
way around this would be to use aliases as:

iex> """
...> MATCH (n:Author) RETURN id(n) AS sys_id, properties(n) AS properties
...> """ |> cypher!
[

%{
"properties" => %{
"id" => "ben_marx",
"name" => "Ben Marx",
"url" => "https://twitter.com/bgmarx"

},
"sys_id" => 1

},
...

But let’s carry on as we are for now.

report erratum • discuss

Modeling the Book Graph • 101

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Querying for Relationships
Likewise, we can query over all the relationships:

iex> "MATCH ()-[r]->() RETURN id(r), type(r)" |> cypher!
[

%{"id(r)" => 3, "type(r)" => "PUBLISHER"},
%{"id(r)" => 2, "type(r)" => "AUTHOR"},
%{"id(r)" => 1, "type(r)" => "AUTHOR"},
%{"id(r)" => 0, "type(r)" => "AUTHOR"},
%{"id(r)" => 4, "type(r)" => "BOOK"}

]

And we can also query for the properties of a given relationship:

iex> "MATCH ()-[r:AUTHOR]->() RETURN id(r), properties(r)" |> cypher!
[

%{"id(r)" => 0, "properties(r)" => %{"role" => "first author"}},
%{"id(r)" => 1, "properties(r)" => %{"role" => "second author"}},
%{"id(r)" => 2, "properties(r)" => %{"role" => "third author"}}

]

Querying for Paths
Now let’s try querying over paths. Here we look for the path between a node
with a :Book label and a node with an :Author label with a :url property of
"https://twitter.com/redrapids":

iex> nodes = """
...> MATCH p = (n)-[*]->(m)
...> WHERE n.id = "pragmatic" AND m.id = "ben_marx"
...> RETURN nodes(p)
...> """ |> cypher!
[

%{
"nodes(p)" => [
%Bolt.Sips.Types.Node{

id: 4,
labels: ["Publisher"],
properties: %{

"id" => "pragmatic",
"name" => "The Pragmatic Bookshelf",
"url" => "https://pragprog.com/"

}
},
%Bolt.Sips.Types.Node{

id: 0,
labels: ["Book"],
properties: %{

"date" => "2018-03-14",
"format" => "Paper",

Chapter 6. Querying Neo4j with Cypher • 102

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

"id" => "adopting_elixir",
"isbn" => "978-1-68050-252-7",
"title" => "Adopting Elixir",
"url" => "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

}
},
%Bolt.Sips.Types.Node{

id: 1,
labels: ["Author"],
properties: %{

"id" => "ben_marx",
"name" => "Ben Marx",
"url" => "https://twitter.com/bgmarx"

}
}

]
}

]

iex> nodes |> Enum.map(&(&1["nodes(p)"] |>
...> Enum.reduce([], fn n, acc -> [n.properties["id"] | acc] end)))
[["ben_marx", "adopting_elixir", "pragmatic"]]

Alternatively, we can do this in Cypher using list comprehension:

iex> """
...> MATCH p = (n)-[*]->(m)
...> WHERE n.id = "pragmatic" AND m.id = "ben_marx"
...> RETURN [n IN nodes(p) | n.id] AS node
...> """ |> cypher!
[%{"node" => ["pragmatic", "adopting_elixir", "ben_marx"]}]

If we want to find the longest path in our graph, we could try listing all unique
path lengths:

iex> "MATCH p = ()-[*]->() RETURN DISTINCT length(p)" |> cypher!
[%{"length(p)" => 1}, %{"length(p)" => 2}, %{"length(p)" => 3}]

Or we could get the longest path length directly as:

iex> """
...> MATCH p = ()-[*]->() RETURN DISTINCT length(p)
...> ORDER BY length(p) DESC LIMIT 1
...> """ |> cypher!
[%{"length(p)" => 3}]

Of course, we should note that computing all paths in the graph is feasible
only for smaller graphs and can quickly become extremely expensive for
graphs of any real size.

report erratum • discuss

Modeling the Book Graph • 103

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

So, let’s see an example of one of those paths of length 1:

iex> """
...> MATCH p = ()-[*]->() WHERE length(p) = 1
...> RETURN p LIMIT 1
...> """ |> cypher!
[

%{
"p" => %Bolt.Sips.Types.Path{
nodes: [

%Bolt.Sips.Types.Node{
id: 0,
labels: ["Book"],
properties: %{
"date" => "2018-03-14",
"format" => "Paper",
"id" => "adopting_elixir",
"isbn" => "978-1-68050-252-7",
"title" => "Adopting Elixir",
"url" => "https://pragprog.com/titles/tvmelixir/adopting-elixir/"

}
},
%Bolt.Sips.Types.Node{

id: 1,
labels: ["Author"],
properties: %{
"id" => "ben_marx",
"name" => "Ben Marx",
"url" => "https://twitter.com/bgmarx"

}
}

],
relationships: [

%Bolt.Sips.Types.UnboundRelationship{
end: nil,
id: 0,
properties: %{"role" => "first author"},
start: nil,
type: "AUTHOR"

}
],
sequence: [1, 1]

}
}

]

As noted, the book graph is a simple graph, so for more expressive queries,
we’ll need to upgrade to a more interesting graph such as the ARPANET graph.
Let’s look at that now.

Chapter 6. Querying Neo4j with Cypher • 104

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Recalling the ARPANET
Before there was the Internet, there was the ARPANET. The ARPANET was
founded by the Advanced Research Projects Agency (ARPA) of the United States
Department of Defense as a prototype of a packet-switched network for connect-
ing computer resources. It would be developed into a coherent computer network
and later subsumed into the larger global internetwork—the Internet.

The first connection between a pair of ARPANET hosts was made in October
1969, following the Moon landing in July that same year (with the Woodstock
music festival sandwiched somewhere in between). A four-host network
appeared in December 1969 and the network was progressively scaled up
through the ’70s and ’80s and finally decommissioned in 1990. This was
where the Internet protocol suite and the TCP/IP set of protocols were first
born and trialed.

The growth of the fledgling network was described in a series of ARPANET logical
maps, which make for compelling reading. These show the nascent network as
graphs of (network) nodes and (computer) hosts with lines connecting them,
which get progressively more complex. A published example of network topology
for December 1972 is given in RFC-432 (Network logical map).4

The following figure shows the state of the network in December 1970, with 13
nodes (in blue), 21 hosts (in white), and 40 edges between them. (There are also
two user hosts that are connected via the server hosts but aren’t shown.)

DDP-516

360/75

IBM
1800

360/91

MIT

CARNEGIE

PDP-10

XDS-940

PDP-10

SDC PDP-10

GE-645

UCSB

PDP-10

UTAH

PDP-10

TSP

PDP-10

360/67

CASE

PDP-10

LINCOLN

DDP-516

PDP-10

TX2

SRIPDP-1

BBN

UCLA

HARVARD
XDS

SIGMA7

RAND

PDP-10

STANFORD

4. https://www.rfc-editor.org/rfc/rfc432.pdf

report erratum • discuss

Recalling the ARPANET • 105

https://www.rfc-editor.org/rfc/rfc432.pdf
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Let’s see how we can model this more simply. To make things easier, let’s roll
back a couple of years to the four-node network from December of that
standout year—1969. In the following figure, we have one host computer at
each of the four sites (UCLA, UCSB, SRI, and Utah). Each site has a dedicated
minicomputer—the Interface Message Processor (IMP), which functions as a
node on the network backbone. The host computers are satellites and are
attached directly to the IMPs.

SRI

UCLA

UCSB

UTAH

940

SIGMA7

360 PDP-10

Moving on from name labels to type labels (Node and Host) with ID strings (sri,
ucla, and so on) we can represent the graph as shown in the next figure.

NodeHost
ucsbucsb_h1

sri utah

ucla

Node Node

Node

sri_h1

utah_h1

ucla_h1

Host

Host

Host

We can model this similar to the book graph from earlier in the chapter. We
have two types of (graph) nodes, which we can distinguish with the labels
Node and Host. We can then add id and name properties to these nodes, and for
the Node nodes we can add a type property as variants of the IMP begin to
appear.

Chapter 6. Querying Neo4j with Cypher • 106

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

The graph is undirected although a direction is needed in Cypher CREATE
statements. Also needed but not shown in the diagrams is a type for the
relationship. There are two main kinds of links: links between IMP and IMP
and links between Host and IMP. There are no obvious unique names for
these, so let’s go with N_LINK for Node (to Node) links and H_LINK for Host (to Node)
links, respectively.

So we can now describe the December 1969 network with this chunk of
Cypher:

//
// SEGMENT 1 - Outer Circuit (Clockwise from UCLA to SRI)

// Site: UCLA

CREATE (ucla:Node { id: "ucla", type: "IMP", name: "UCLA" })
CREATE (ucla_h1:Host { id: "ucla_h1", name: "SIGMA7" })
CREATE (ucla_h1)-[:H_LINK]->(ucla)

// Site: UCSB

CREATE (ucsb:Node { id: "ucsb", type: "IMP", name: "UCSB" })
CREATE (ucsb_h1:Host { id: "ucsb_h1", name: "360" })
CREATE (ucsb_h1)-[:H_LINK]->(ucsb)

// Site: SRI

CREATE (sri:Node { id: "sri", type: "IMP", name: "SRI" })
CREATE (sri_h1:Host { id: "sri_h1", name: "940" })
CREATE (sri_h1)-[:H_LINK]->(sri)

//
// SEGMENT 2 - Outer Path (Right from SRI to UTAH)

// Site: UTAH

CREATE (utah:Node { id: "utah", type: "IMP", name: "UTAH" })
CREATE (utah_h1:Host { id: "utah_h1", name: "PDP-10" })
CREATE (utah_h1)-[:H_LINK]->(utah)

// NETWORK (3+1=4)

//
// SEGMENT 1 - Outer Circuit (Clockwise from UCLA to SRI)
CREATE (ucla)-[:N_LINK]->(ucsb)
CREATE (ucsb)-[:N_LINK]->(sri)
CREATE (sri)-[:N_LINK]->(ucla)
//
// SEGMENT 2 - Outer Path (Right from SRI to UTAH)
CREATE (sri)-[:N_LINK]->(utah)

report erratum • discuss

Recalling the ARPANET • 107

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We can take this out for a spin now. But let’s use the slightly more developed
network for December 1970, which is formed in the same manner.

We’ll first need to read this graph into our graph service:

iex> graph_create read_graph("arpa/arpa70.cypher")
%Bolt.Sips.Response{

...
stats: %{

"labels-added" => 36,
"nodes-created" => 36,
"properties-set" => 85,
"relationships-created" => 40

},
...

}

Let’s say we want to get the shortest path between two host computers: a
PDP-1 at Harvard and an XDS SIGMA7 at UCLA. Here’s one way to do that:

iex> """
...> MATCH (n), (m), p = shortestPath((n)-[*]-(m))
...> WHERE n.id = "harvard_h1" AND m.id = "ucla_h2"
...> RETURN [n IN nodes(p) | n.name] AS node
...> """ |> cypher!
[%{"node" => ["PDP-1", "HARVARD", "BBN", "RAND", "UCLA", "XDS SIGMA7"]}]

We can see this path in the figure marked out with the red line.

DDP-516

360/75

IBM
1800

360/91

MIT

CARNEGIE

PDP-10

XDS-940

PDP-10

SDC PDP-10

GE-645

UCSB

PDP-10

UTAH

PDP-10

TSP

PDP-10

360/67

CASE

PDP-10

LINCOLN

DDP-516

PDP-10

TX2

SRIPDP-1

BBN

UCLA

HARVARD
XDS

SIGMA7

RAND

PDP-10

STANFORD

And, of course, we can replace this graph with other graphs of interest by
clearing the database and querying with a Cypher query string for creating
graphs.

Chapter 6. Querying Neo4j with Cypher • 108

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Passing Parameters to Queries
Cypher supports querying with parameters.5 This simplifies query reuse and
makes caching of execution plans easier, in turn leading to faster query exe-
cution times.

The Bolt.Sips module allows us to pass our parameters as a map in a third
argument to the query/3 function. (The first argument is the database connec-
tion, and the second is the query string.)

But the query functions we’ve created so far take the query string and implicitly
supply the database connection. We’ll need to do something about that.

Supporting Parameters
We’ve already updated the GraphCommons.Service behaviour with a couple of
optional callbacks:

@optional_callbacks query_graph: 2
@optional_callbacks query_graph!: 2

@callback query_graph(GraphCommons.Query.t(), map()) :: any()
@callback query_graph!(GraphCommons.Query.t(), map()) :: any()

This allows us to extend the basic PropertyGraph.Service implementation.

We need to add a cypher!/2 query helper in GraphCommons.Utils to pair off with the
cypher!/1 query helper:

apps/graph_commons/lib/graph_commons/utils.ex
def cypher!(query_string, query_params),

do: to_query_graph!(PropertyGraph, query_string, query_params)

Querying with Parameters
Let’s query first for a system ID using the id() function on our nodes:

iex> "MATCH (n) WHERE id(n) = $id RETURN n" >| cypher!(%{id: 22484})
[

%{
"n" => %Bolt.Sips.Types.Node{
id: 22484,
labels: ["Node"],
properties: %{"id" => "rand", "name" => "RAND", "type" => "IMP"}

}
}

]

5. https://neo4j.com/docs/cypher-manual/current/syntax/parameters/

report erratum • discuss

Passing Parameters to Queries • 109

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/utils.ex
https://neo4j.com/docs/cypher-manual/current/syntax/parameters/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Here we’ve added a query parameter using the param map. Note that the
actual :id value is a system property and is not guaranteed to be reliable—it’ll
vary from system to system. We are using it here as a simple illustration.

Here’s the corresponding query for a user ID using the :id property of the nodes:

iex> "MATCH (n) WHERE n.id = $id RETURN n" |> cypher!(%{id: "rand"})
[

%{
"n" => %Bolt.Sips.Types.Node{
id: 22484,
labels: ["Node"],
properties: %{"id" => "rand", "name" => "RAND", "type" => "IMP"}

}
}

]

Another parametrized query might be a string search. There are many different
host computers attached to the network. Let’s say we want to search hosts
by name—we can use Cypher’s STARTS WITH operator. For now, let’s insert a
variable $char into the query string and then we can run a query with the key
:char passed in the parameter map:

iex> q = """
...> MATCH (n:Host) WHERE n.name STARTS WITH $char
...> RETURN n.id, n.name
...> """

The ARPANET era was also the heyday of minicomputers—especially the PDP
from DEC. (And the PDP minicomputer will always resonate strongly with me
as the first computer I used. That machine was a PDP-11, although the
machines listed here are of an earlier vintage.) So, how many of the hosts
were PDPs on our December 1970 map, and where were they?

iex> pdp = q |> cypher!(%{char: "PDP"})
[

%{"n.id" => "bbn_h2", "n.name" => "PDP-10"},
%{"n.id" => "stanford_h1", "n.name" => "PDP-10"},
%{"n.id" => "sri_h1", "n.name" => "PDP-10"},
%{"n.id" => "case_h1", "n.name" => "PDP-10"},
%{"n.id" => "carnegie_h1", "n.name" => "PDP-10"},
%{"n.id" => "harvard_h1", "n.name" => "PDP-1"},
%{"n.id" => "harvard_h2", "n.name" => "PDP-10"},
%{"n.id" => "utah_h1", "n.name" => "PDP-10"},
%{"n.id" => "mit_h1", "n.name" => "PDP-10"},
%{"n.id" => "mit_h2", "n.name" => "PDP-10"}

]

iex> length pdp
10

Chapter 6. Querying Neo4j with Cypher • 110

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

So, this has been a brief introduction to Cypher as a query language. But
what can Cypher do in terms of modeling the data structures used in the
graph? Let’s turn to that now.

Schemas and Types in Cypher
Obviously, we’ve barely touched upon the full power of Cypher for building
and querying graph stores and its special capabilities to query over paths
within the graph. But what about the data models that can be supported in
property graphs? Well, Cypher provides some strong data management facil-
ities—schemas and data typing.

Schemas
One aspect that we haven’t discussed yet is schemas. Cypher includes support
for managing both indexes and constraints over labels, which together consti-
tute a property graph schema.

Indexes

Indexes (both simple and composite) are used for expediting query lookup.
For nodes with a given label, an index can be created on a single property
(simple) or a number of properties (composite).

Let’s say we want an index on the name property for nodes with an Author label,
as we have in the book graph:

iex> "CREATE INDEX ON :Author(name)" |> cypher!
%{"indexes-added" => 1}

Now we’ll get a performance boost when we query on that property:

iex> "MATCH (n:Author) WHERE n.name = 'Bruce Tate' RETURN n.id" |> cypher!
[%{"n.id" => "bruce_tate"}]

We can list out the indexes that are present in the database using a built-in
procedure:

iex> "CALL db.indexes" |> cypher!
[

%{
"description" => "INDEX ON :Author(name)",
...
"type" => "node_unique_property"

},
...
]

And we can explicitly remove indexes with the DROP command.

report erratum • discuss

Schemas and Types in Cypher • 111

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Note that indexes are implicitly created when we set up constraints.

Constraints

Constraints can be used to ensure node property uniqueness, node and
relationship property existence, and node keys. The node keys ensure that
all nodes with a particular label have a set of defined properties with a unique
combined value. Property existence and node key constraints are only available
in the Enterprise Edition of Neo4j. We’ll look at an example here of a property
uniqueness constraint.

Recall the H2O graph which has two hydrogen atoms with label H and property
label H:

iex> IO.puts read_graph("h2o.cypher").data
CREATE
(:H {label: 'H'})<-[:BOND]-(:O {label: 'O'})-[:BOND]->(:H {label: 'H'})

:ok

If we create that graph and then set a constraint that the property labels
should be unique, we should get an error. Let’s try that:

iex> graph_create read_graph("h2o.cypher")
%Bolt.Sips.Response{

...
stats: %{

"labels-added" => 3,
"nodes-created" => 3,
"properties-set" => 3,
"relationships-created" => 2

},
type: "w"

}

iex> "CREATE CONSTRAINT ON (a:H) ASSERT a.label IS UNIQUE" |> cypher!
** (RuntimeError) ! %Bolt.Sips.Error{code:
"Neo.DatabaseError.Schema.ConstraintCreationFailed", message: "Unable to
create CONSTRAINT ON (h:H) ASSERT h.label IS UNIQUE:\nBoth Node(22532) and
Node(22534) have the label `H` and property `label` = 'H'"}

(property_graph) lib/property_graph/service.ex:98:
PropertyGraph.Service.query_graph!/2

And indeed, that is just what we see.

Now if we do this in the normal (expected) order—that is, create the constraint
and then the graph—we should fail when we try to create the graph with two
property labels H:

Chapter 6. Querying Neo4j with Cypher • 112

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> "CREATE CONSTRAINT ON (a:H) ASSERT a.label IS UNIQUE" |> cypher!
[]

iex> graph_create read_graph("h2o.cypher")

** (Bolt.Sips.Exception) Node(22629) already exists with label `H` and property
`label` = 'H'

(elixir) lib/process.ex:767: Process.info/2
(bolt_sips) lib/bolt_sips/query.ex:116: Bolt.Sips.Query.query_commit/3
(bolt_sips) lib/bolt_sips/query.ex:58: Bolt.Sips.Query.query!/3
(stdlib) erl_eval.erl:680: :erl_eval.do_apply/6
(iex) lib/iex/evaluator.ex:257: IEx.Evaluator.handle_eval/5
(iex) lib/iex/evaluator.ex:237: IEx.Evaluator.do_eval/3

And again, this is what we see.

As with indexes, we can list out any constraints in the database.

iex> "CALL db.constraints" |> cypher!
[

%{"description" => "CONSTRAINT ON (h:H) ASSERT h.label IS UNIQUE"},
...

]

We can also remove constraints with the DROP command.

The schema constraint mechanism here is more about data integrity and
doesn’t support inferencing—the generation of new data—which is something
the RDF graphs, which we’ll explore in the next chapter, allow for.

Types
The type system used by Cypher is documented on the Values and types page
of the Neo4j Cypher Manual.6

Property types include:

• numeric—integer, float
• string
• boolean
• spatial—point
• temporal—date, time, datetime, duration, and so on

We’ll see later that RDF graphs have a more rigorous datatyping based on
XML Schema datatypes for recognized datatypes but are also extensible to
allow adding in custom datatypes.

6. https://neo4j.com/docs/cypher-manual/current/syntax/values/

report erratum • discuss

Schemas and Types in Cypher • 113

https://neo4j.com/docs/cypher-manual/current/syntax/values/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Looking for More Cypher Graphs?

If you’re looking for more examples of Cypher graphs, note that
Neo4j supports a teaching tool format called GraphGists. These
are simple text-based documents based on the AsciiDoc7 format
that support GraphGist directives through special comments.

The intention is to build up a library of user-supplied graph
models, which can be displayed through the GraphGist application
and in a browser for instructional purposes. Check the GraphGists
page8 for examples and also the GitHub project.9

Wrapping Up
We’ve seen in this chapter how we can query property graphs using the Cypher
query language. We started off by giving a quick recap of Cypher patterns for
building and querying nodes, relationships, and paths. We also showed off a
simple test query library.

Next, we looked at our reference book graph and saw how we could implement
that in Cypher as a property graph. It turns out that Cypher is expressive
enough to capture all the features we want to model. We looked at some basic
queries on this simple graph.

To make things a little more interesting, we then turned to the ARPANET
graphs and saw how we could render the early ARPANET logical network
maps as property graphs. And we got to try out some path queries on those
historical networks.

To extend our querying capability, we added support for query parameters
and showed some example queries using parameters.

Lastly, we took the opportunity to review some aspects of the Neo4j graph
database, such as data types and schema support through indexes and con-
straints.

At this point, it almost looks like property graphs have everything we could
need. But as we’ll see in the next chapter, RDF graphs promise much in the
way of large-scale data integration—and we’re talking here about web-scale
data integration. They will also introduce us to a whole new world of reasoning
and inference. Semantic graphs are about to get a lot more real.

7. http://asciidoc.org/
8. https://neo4j.com/graphgists/
9. https://github.com/neo4j-examples/graphgists

Chapter 6. Querying Neo4j with Cypher • 114

report erratum • discuss

http://asciidoc.org/
https://neo4j.com/graphgists/
https://github.com/neo4j-examples/graphgists
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

CHAPTER 7

Graphing Globally with RDF
While property graphs focus on solving a range of immediate tactical problems,
the RDF graph model focuses on the longer-term strategic goals of large-scale
data integration, especially public data integration. This has been one of the
driving forces behind the semantic web vision.

The Resource Description Framework (RDF) is a data model standardized by
the W3C for describing resources on the web. But note that it’s the descriptions
that are on the web, not necessarily the resources that are being described. This
means that we can use RDF to describe anything, whether it’s online or not.
Put simply, we might say anything that can be named. In fact, we can also
describe unnamed things too. So, “anything” can be described. And these
descriptions are built up using the common web-naming convention—the URI.

Of course, we can also use property graphs to describe things, but here’s the
real kicker. Without any common naming convention, it’s difficult to exchange
any meanings except by some prior arrangement, which means an application
has to keep track of what goes with what, and what means what. With a
common naming system, however, we can freely share our descriptions of
things with others—with no ambiguity. And we can share our meanings too,
which is a crazy big win.

So how does all this work?

The RDF data model describes resources in terms of statements which
can be interpreted as a basic graph structure—a directed labeled graph.
The labels used in RDF graphs are URIs. This is that little bit of magic
that allows one RDF graph to be added to another RDF graph. This leads
to an incredibly simple way of doing data integration. Just add your RDF
datasets together—the names, or labels, that are used will take care of
joining the data elements together.

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

By the way, the title of this chapter implies the use of URIs as global names,
which allows for building global data structures. In practice, this also allows
for building out a global graph, which is kind of awesome. More awesome
though is the fact that this global graph already exists in the form of the
linked open data (LOD) cloud1 and is essentially a growing graph of graphs
of open data.

Web Names—A Crib Sheet

URL—Uniform Resource Locator
A web document address

URI—Uniform Resource Identifier
A web identifier for a resource, which may also be located

IRI—Internationalized Resource Identifier
An international form for a URI

RDF is a data model and not a data format, which means that we can write
out an RDF graph in many different ways. There are a number of standard
serializations by the W3C, and these allow for a high degree of interoperability
in reading and writing RDF data. We thus have a standard means of sharing
RDF graphs and can input and output them with ease.

But there is more to RDF than this. We can also define and express standard
schema languages in RDF, and then layer this schema RDF on top of an
existing RDF dataset. This allows us to query over a richer graph of data—one
that has now been augmented with the actual data model that the data con-
forms to. And as the schema languages encode a given logic, we can then
make inferences over the data and add these new inferred statements back
into our graph.

What’s Different About RDF?
RDF is about sharing data—essentially sharing descriptions of things. And
those descriptions are expressed as graphs.

Two of the most notable features of the RDF graph model seen from a graph
perspective are global identity and inference. The first greatly simplifies data
integration and the second helps in building out knowledge graphs.

Let’s talk about each of these.

1. https://lod-cloud.net/

Chapter 7. Graphing Globally with RDF • 116

report erratum • discuss

https://lod-cloud.net/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Integrating Data at Scale
RDF uses web names, or URIs, for identifying the nodes and edges in its data
model. What does that mean? It means everything.

The URI has been a key development in the ongoing integration of the global
telecoms network. It builds on the DNS system for naming computers as
nodes on the (inter)network. By extending it with a network protocol scheme
and a local address on the host system we can identify (and retrieve) docu-
ments using the web. The same URI pattern that we use for documents can
also be used to identify data points within an RDF graph. The thinking here
is that descriptions of things (that is, documents) can be sent in place of the
actual things themselves, which may not be so easy to transmit without Star
Trek transporters to beam them down. So, in principle, information about
any resource (be it physical or abstract) can be returned. We can build out a
global information network.

There’s another benefit to using URIs—namespacing. With namespacing based
on DNS names, we get naming authorities, branding, and trust, and with the
DNS name as the namespace root, we get guarantees of uniqueness. It follows
that we effectively have a commons for developing a shared semantics with
types and properties all globally namespaced. There is now no confusion as
to where names come from.

OK, so far, we’ve talked about sharing data and the semantics for that data,
but we haven’t talked about data integration. Let’s look at the way data inte-
gration happens. If user A makes statements about a subject S, and user B
also makes statements about a subject S, then those sets of statements can
be simply added together because the subject S is the same in both cases.
And we know the subject S is the same because we are using a global name.
What we effectively have with RDF are self-joining datasets based on the use
of URIs, or global names.

Extracting Knowledge from Graphs
Graphs are an excellent choice for representing knowledge bases as they allow
easy and arbitrary connections to be set up between the data items. This
naturally leads to the notion of knowledge graphs.

But knowledge graphs are more than fixed data stores. They generally follow
an open-world model that allows new data to be added as required, and the
shape of the data isn’t constrained as is the case in a relational database.

report erratum • discuss

What’s Different About RDF? • 117

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

In a sense, they are programmable knowledge stores. New data can be added
from the outside, new data can be generated from the inside, and new inter-
pretations over the data can be made. They are more akin to knowledge
machines.

RDF builds on common standards for naming, which allows for different
datasets to be readily mixed together. Formal reasoning systems from the
knowledge representation communities have been layered on top of the basic
RDF model. RDF datasets can then be modeled according to RDF schemas
(or “ontologies” as they are sometimes called) which are also expressed in
RDF. These RDF schemas are built on a formal semantics and a system of
logic. This means we can reason over the data, deduce logical inferences, and
extract new facts, or statements, which can be added to the dataset. We can
thus “grow” the dataset.

At this point, we should probably take a quick look at the RDF data model
before we get some real experience with generating RDF from Elixir.

RDF Model
An RDF description is built up of a set of RDF statements where each RDF
statement is comprised of a subject, a predicate (or property), and an
object—or, as it is called, an RDF triple. Each RDF triple encodes an RDF
statement. These RDF statements (or triples) are modeled in graph terms as
a node, an edge, and a node as shown in this figure:

:a EX :b:EX

PredicateSubject Object

Triple

:a :b:EX

St
at
em

en
t

G
ra
ph

So, subjects link to objects via predicates (or properties). In our simple graph,
subject :a links to object :b via the predicate (or property) :EX.

Chapter 7. Graphing Globally with RDF • 118

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

The terms here are all shown in the default namespace (indicated by the
empty prefix before the : separator), but usually, each term will be taken from
its own namespace. Suppose we have an RDF statement such as the following:

ns1:a ns2:EX ns3:b .

Here the namespace prefixes ns1:, ns2:, and ns3: are all paired off with URI
namespaces. Writing that RDF statement out in its full form would give
us this:

<http://ns1.com/a> <http://ns2.com/EX> <http://ns3.com/b> .

Here the <, > brackets mark out a URI.

This is the RDF triple. And an RDF dataset is a set of RDF triples. In fact,
this RDF triple expresses a graph edge between two graph nodes.

Now this RDF triple shows the linkages between things. To add descriptions
to these things, we add strings like this:

ns1:a ns2:EX_NAME "Example name" .

Or, in long form like this:

<http://ns1.com/a> <http://ns2.com/EX_NAME> "Example name" .

These descriptions are encoded as RDF triples, but with the object now as a
string. This is how we add subject attributes in RDF.

Well, right about now, you might want to start coding. Let’s crack on with that.

Creating the RDFGraph Project
To get some experience working with RDF graphs from Elixir, we’ll set up an
RDFGraph project under our umbrella application.

We’re also going to need an RDF graph database for local experiments. We’ll
use the free version of Ontotext GraphDB.2

RDFGraph Project/Database Setup

See Appendix 1, Project Setups, on page 245, for details on retrieving
a working project with code and data.

And see Appendix 2, Database Setups, on page 247, for help on
setting up a local copy of GraphDB.

2. https://www.ontotext.com/products/graphdb/

report erratum • discuss

Creating the RDFGraph Project • 119

https://www.ontotext.com/products/graphdb/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We typically connect to RDF graph databases over the web using SPARQL
endpoints, which is what we’ll do here. SPARQL is the query language for
RDF graphs, and we’ll have more to say about this later.

We could use some help to make building and querying RDF from Elixir eas-
ier. When I first looked around for any hint of an RDF library in Elixir, I was
excited to find the rdf3 package from Marcel Otto,4 which has exceptional
support for working with RDF. He’s also published the sparql5 and sparql_client6

packages for querying RDF, as well as the json_ld7 package for serializing RDF.
Check out the RDF on Elixir8 page for more info.

Without further ado, let’s create a new project RDFGraph. Go to the ExGraphsBook
home project (see ExGraphsBook Umbrella, on page 16), cd down into the apps
directory, and open up the new RDFGraph project:

$ mix new rdf_graph --module RDFGraph

Note that this time we use the --module option to override the default naming
of the module.

We now have an apps directory that looks like this:

.
├── apps
│ ├── graph_commons
│ ├── native_graph
│ ├── property_graph
│ └── rdf_graph➤

Let’s cd into the rdf_graph directory:

.
├── lib
│ └── rdf_graph.ex
├── mix.exs
└── test

└── ...

We’ll declare a dependency on the sparql_client package (from the SPARQL.Client
project) in the mix.exs file. (This will bring in the rdf and sparql package modules

3. https://hex.pm/packages/rdf
4. http://marcelotto.net/
5. https://hex.pm/packages/sparql
6. https://hex.pm/packages/sparql_client
7. https://hex.pm/packages/json_ld
8. https://rdf-elixir.dev/

Chapter 7. Graphing Globally with RDF • 120

report erratum • discuss

https://hex.pm/packages/rdf
http://marcelotto.net/
https://hex.pm/packages/sparql
https://hex.pm/packages/sparql_client
https://hex.pm/packages/json_ld
https://rdf-elixir.dev/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

from the RDF.ex and SPARQL.ex projects too.) We’ll also use the hackney HTTP
client in Erlang as recommended:

apps/rdf_graph/mix.exs
defp deps do

[
graph_commons
{:graph_commons, in_umbrella: true},

rdf graphs
{:sparql_client, "~> 0.4"},
{:hackney, "~> 1.17"}

]
end

As usual, use Mix to add in the dependency:

$ mix deps.get; mix deps.compile

We also need to add in the HTTP client:

config :tesla, :adapter, Tesla.Adapter.Hackney

Add these lines to the umbrella config.exs file in the main project directory
or to an environment-specific import (for example, dev.exs).

Finally, let’s wire our graph storage into the RDFGraph module with these use/2
macros:

apps/rdf_graph/lib/rdf_graph.ex
use GraphCommons.Graph, graph_type: :rdf, graph_module: __MODULE__
use GraphCommons.Query, query_type: :rdf, query_module: __MODULE__

Well, that’s our setup. Our plan here is to spend some time first in this
chapter looking at building RDF models, which may not be so familiar, and
then to get into querying RDF graphs with SPARQL in Chapter 8, Querying
RDF with SPARQL, on page 143.

Modeling the Book Graph
Before we start building and querying RDF, we’ll want a better understanding
of how to work with it. To get a better feel for what the RDF model looks like,
let’s revisit the book graph we introduced in the first chapter—see this figure
on page 9, which shows our reference book graph.

The book graph can be mapped to RDF as shown in the figure on page 122.

One thing that we can immediately see is that RDF is more “graphy” than the
property graph we saw earlier in Modeling the Book Graph, on page 98, because
labels and attributes are modeled as independent nodes. (The attributes here

report erratum • discuss

Modeling the Book Graph • 121

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/mix.exs
http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

:AUTHOR

:AUTHOR

:AUTHOR

:PUBLISHER

:n1

:n2

:n5

:n3

:n4

:BOOK

:Publisher

:Book

:Author

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

are shown for convenience as a single document icon, but in reality, each
attribute is represented with its own node and a link from the original node.)
This means an RDF graph is typically much larger than a corresponding prop-
erty graph because the RDF graph has a more primitive data structure than a
property graph. Specifically, in an RDF graph, there are no internal structures.

There are four things to note:

nodes (:n1, :n2, :n3, :n4, :n5) and edges (:AUTHOR, :BOOK, :PUBLISHER)
are identified with web names, or URIs, shown here in the short-form
prefix notation with a : character joining a namespace to a name (an
empty namespace is assigned the default namespace)

node labels (:Author, :Book, :Publisher)
are also identified with web names, or URIs, and are unbundled from the
nodes and represented as new nodes in the graph with rdf:type links from
the original node to these new label nodes—or types, as RDF calls them

node properties (yellow note)
are unbundled from the nodes and represented as new nodes in the graph
with links from the original node to these new property nodes

edge properties
are not supported in the RDF model, although RDF*9—an extension to
RDF—does support edge properties

9. http://blog.liu.se/olafhartig/2019/01/10/position-statement-rdf-star-and-sparql-star/

Chapter 7. Graphing Globally with RDF • 122

report erratum • discuss

http://blog.liu.se/olafhartig/2019/01/10/position-statement-rdf-star-and-sparql-star/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We’ve also touched on node properties here. These are shown with a yellow
note icon as a single thing to simplify the diagram, but they actually represent
a basket of properties, and each property separately will be linked to from
the node. In our case, all the property values are simple datatypes. If any of
the property values were resources in their own right, they would become a
new node in the graph with a URI.

This clearly shows that RDF has a primitive data model, with nodes and edges
having URIs for labels but no intrinsic structure. Node labels (or types) and
properties are separately managed in an extrinsic manner as part of the graph.
The advantage of this from a semantic point of view is that these are global
things and are not local to the node. This results from the open-data model
of RDF and allows for statements to be added at will to the descriptions.

Enough with the theory. Let’s see this in practice.

So, remember we said at the beginning of this chapter that RDF is a data
model. Well, we can serialize an instance of this model in many ways, a
number of which have been standardized by the W3C.

We’re going to use Turtle10 format, or Terse RDF Triple Language—a user-
friendly plain text format for RDF.

We can express our book graph in Turtle as:

@prefix : <https://example/> .

<https://pragprog.com/>
:id "pragmatic" ;
:name "The Pragmatic Bookshelf" ;
:url "https://pragprog.com/" ;
:BOOK <https://pragprog.com/titles/tvmelixir/adopting-elixir/> ;
a :Publisher .

<https://twitter.com/bgmarx>
:id "ben_marx" ;
:name "Ben Marx" ;
:url "https://twitter.com/bgmarx" ;
a :Author .

...

<https://pragprog.com/titles/tvmelixir/adopting-elixir/>
:id "adopting_elixir" ;
:date "2018-03-14";
:format "Paper" ;
:isbn "978-1-68050-252-7" ;
:title "Adopting Elixir" ;

10. https://www.w3.org/TR/turtle/

report erratum • discuss

Modeling the Book Graph • 123

https://www.w3.org/TR/turtle/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

:url "https://pragprog.com/titles/tvmelixir/adopting-elixir/" ;
:AUTHOR <https://twitter.com/bgmarx>, <https://twitter.com/josevalim>,

<https://twitter.com/redrapids> ;
:PUBLISHER <https://pragprog.com/> ;
a :Book .

Some things are worth mentioning here. The most important one is that RDF
uses URIs for IDs—both for nodes and edges. To make handling URIs simpler,
Turtle has a namespace mechanism using prefix declarations, where a base
URI can be associated with a namespace prefix. Our default namespace (here
<https://example/>) is mapped to an empty namespace prefix. If we were to use
an explicit namespace prefix (for example, “ex,” although we could use any
other prefix name, such as “foo”), we’d need to include a prefix declaration
like this:

@prefix ex: <https://example/> .

<https://pragprog.com/>
ex:id "pragmatic" ;
ex:name "The Pragmatic Bookshelf" ;
ex:url "https://pragprog.com/" ;
ex:BOOK <https://pragprog.com/titles/tvmelixir/adopting-elixir/> ;
a ex:Publisher .

...

URIs are delimited with <>, and strings with "". Also, the special form “a” in
Turtle is short for rdf:type—a property that relates a class type.

The basic folded pattern shows a subject followed by a set of property/object
pairs. If we were to write this out in a long-hand form with each statement
written separately as subject/property/object (and with namespace prefixes
substituted), we would then arrive at classic RDF triples:

<https://pragprog.com/> <https://example/id> "pragmatic" .
<https://pragprog.com/> <https://example/name> "The Pragmatic Bookshelf" .
<https://pragprog.com/> <https://example/url> "https://pragprog.com/" .
<https://pragprog.com/> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<https://example/Publisher> .

This is an example of N-Triples11 format—a canonical line-based format for
RDF. Each triple is an independent statement, which makes it easier to work
with but harder to read.

Note that we’ve also used a standard Turtle abbreviation on repeated
properties—in this case, the :AUTHOR property is repeated, and it can be shown
just once with a comma-separated list of values.

11. https://www.w3.org/TR/n-triples/

Chapter 7. Graphing Globally with RDF • 124

report erratum • discuss

https://www.w3.org/TR/n-triples/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Our next step will be to create an RDF graph directly with Elixir. We’ll start
by generating an RDF vocabulary for our terms and then go on to build up a
semantic RDF graph in Elixir.

Building an RDF Graph
We’ll switch gears here and see how we can build up an RDF graph using
RDF.ex rather than writing out the RDF explicitly as in the examples we
just saw.

One of the challenges to working with RDF is managing URI strings. We’ll
need to deal with node names ourselves (for instance data) as these will
generally use application-specific naming. But for edges and node labels,
we don’t want to be dealing with URI strings every time we add a property
or a class name.

We can use one particular aspect of RDF.ex—its support for RDF vocabularies.
This will abstract away the URI strings.

Let’s see how we might do this.

Adding a SCHEMA Vocabulary for Schema.org Terms
We could generate a set of example terms as used in the previous example.
But this would be rather limited. Somebody receiving such a graph using
these example terms would have no idea about their meaning. And RDF is
fundamentally about sharing graph data—and meanings. So, it’s better to
use a set of well-known terms that have a standard meaning.

An excellent candidate vocabulary that we could use is Schema.org,12 which
is a community activity founded by Google, Microsoft, Yahoo, and Yandex.
Schema.org maintains a fairly large set of schemas. The schemas are a set
of “types,” each associated with a set of properties. Currently, the vocabulary
has almost 800 types and 1500 properties.

We can usefully start by inspecting the Book13 schema and seeing which
terms we could use for our book graph.

Let’s see how we might map our book terms into Schema.org terms, as shown
in the table on page 126.

12. https://schema.org/
13. https://schema.org/Book

report erratum • discuss

Building an RDF Graph • 125

https://schema.org/
https://schema.org/Book
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Schema.org TermBook Term

PersonAuthorTypes

BookBook

OrganizationPublisher

authorAUTHORProperties

–BOOK

publisherPUBLISHER

datePublisheddate

bookFormat (“Paperback”)format (“Paper”)

identifierid

–url

isbnisbn

namename

nametitle

Let’s create a module RDFGraph.Vocab in the lib/rdf_graph/vocab.ex file and add a use
RDF.Vocabulary.Namespace declaration:

defmodule RDFGraph.Vocab do
use RDF.Vocabulary.Namespace

...

end

Now we can add a defvocab definition block for SCHEMA:

apps/rdf_graph/lib/rdf_graph/vocab.ex
defvocab(SCHEMA,

base_iri: "https://schema.org/",
terms: ~w[

Book Organization Person
author book bookFormat datePublished
identifier isbn name publisher

]
)

Note that in the defvocab definition block we have two keywords: base_iri, which
is a string specifying the base IRI for the vocabulary, and terms, which takes
a word list of the vocabulary terms.

Let’s try this out in IEx:

iex> alias RDFGraph.Vocab.SCHEMA
RDFGraph.Vocab.SCHEMA

Chapter 7. Graphing Globally with RDF • 126

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/vocab.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> SCHEMA.name
~I<https://schema.org/name>

iex> SCHEMA.datePublished
~I<https://schema.org/datePublished>

So, there we have it, a simple means of generating RDF IRIs in the SCHEMA
namespace. Note that RDF.ex maintains IRIs as Elixir structs, which we can
inspect by using the i/1 helper in IEx:

iex> i SCHEMA.name
Term

~I<https://schema.org/name>
Data type

RDF.IRI
Description

This is a struct. Structs are maps with a __struct__ key.
Reference modules

RDF.IRI, Map
Implemented protocols

...

The ~I sigil is used to provide a simple string representation for the IRI struct.
We can access the IRI string by using the value field of the struct:

iex> SCHEMA.name.value
"https://schema.org/name"

It looks good so far for properties.

Classes behave a little differently. They don’t resolve directly to IRIs as prop-
erties do but can be made to resolve using the RDF.iri/1 function. They are,
however, allowed by RDF.ex in any place that an IRI is expected:

iex> SCHEMA.Book
RDFGraph.Vocab.SCHEMA.Book

iex> RDF.iri(SCHEMA.Book)
~I<https://schema.org/Book>

iex> i SCHEMA.Book
Term

RDFGraph.Vocab.SCHEMA.Book
Data type

Atom
Raw representation

:"Elixir.RDFGraph.Vocab.SCHEMA.Book"
Reference modules

Atom
Implemented protocols

...

report erratum • discuss

Building an RDF Graph • 127

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Using the SCHEMA Vocabulary to Build an RDF Graph
Let’s put this to use now and build an RDF graph in Elixir. And of course,
we’ll use the book graph as our example.

Here we use two RDF.ex features: sigils for RDF terms and variant property
function calls, which implement a description builder style. To glue it all
together, we’ll use the Elixir pipe operator |>.

Let’s add this book/0 function to our RDFGraph.Vocab module:

apps/rdf_graph/lib/rdf_graph/vocab.ex
def book() do

import RDF.Sigils

[
~I<https://pragprog.com/titles/tvmelixir/adopting-elixir/>
|> RDF.type(SCHEMA.Book)
|> SCHEMA.author(
~I<https://twitter.com/bgmarx>,
~I<https://twitter.com/josevalim>,
~I<https://twitter.com/redrapids>

)
|> SCHEMA.datePublished("2018-03-14")
|> SCHEMA.bookFormat(~L"Paperback")
|> SCHEMA.identifier(~L"adopting_elixir")
|> SCHEMA.isbn(~L"978-1-68050-252-7")
|> SCHEMA.publisher(~I<https://pragprog.com/>)
|> SCHEMA.name(~L"Adopting Elixir"),

~I<https://pragprog.com/>
|> RDF.type(SCHEMA.Organization)
|> SCHEMA.identifier(~L"pragmatic")
|> SCHEMA.name(~L"The Pragmatic Bookshelf"),

~I<https://twitter.com/bgmarx>
|> RDF.type(SCHEMA.Person)
|> SCHEMA.identifier(~L"ben_marx")
|> SCHEMA.name(~L"Ben Marx"),

~I<https://twitter.com/josevalim>
|> RDF.type(SCHEMA.Person)
|> SCHEMA.identifier(~L"jose_valim")
|> SCHEMA.name(~L"José Valim"),

~I<https://twitter.com/redrapids>
|> RDF.type(SCHEMA.Person)
|> SCHEMA.identifier(~L"bruce_tate")
|> SCHEMA.name(~L"Bruce Tate")

]

end

Chapter 7. Graphing Globally with RDF • 128

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/vocab.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

So, briefly, we can construct new RDF terms using the sigils defined in the
RDF.Sigils module (which we import):

• ~I for IRIs (for example, ~I<https://pragprog.com/>)
• ~L for literals (for example, ~L"Paperback")

This book/0 function provides RDF descriptions for the five things in our book
graph—one book, one publisher, and three authors.

Serializing the RDF Graph
There are various options for reading and writing the RDF descriptions in our
book graph as a string or as a file. See the documentation for RDF.Serialization.14

But the simplest solution for serializing in Turtle format is using the RDF.Turtle15

module functions.

Let’s first create our book graph:

iex> book = RDFGraph.Vocab.book
[#RDF.Description<

<https://pragprog.com/titles/tvmelixir/adopting-elixir/>
a <https://schema.org/Book> ;
<https://schema.org/author> <https://twitter.com/bgmarx>,

<https://twitter.com/josevalim>, <https://twitter.com/redrapids> ;
<https://schema.org/bookFormat> "Paperback" ;
<https://schema.org/datePublished> "2018-03-14" ;
<https://schema.org/identifier> "adopting_elixir" ;
<https://schema.org/isbn> "978-1-68050-252-7" ;
<https://schema.org/name> "Adopting Elixir" ;
<https://schema.org/publisher> <https://pragprog.com/> .

>,
#RDF.Description<
<https://pragprog.com/>

a <https://schema.org/Organization> ;
<https://schema.org/identifier> "pragmatic" ;
<https://schema.org/name> "The Pragmatic Bookshelf" .

>,
#RDF.Description<
<https://twitter.com/bgmarx>

a <https://schema.org/Person> ;
<https://schema.org/identifier> "ben_marx" ;
<https://schema.org/name> "Ben Marx" .

>,
#RDF.Description<
<https://twitter.com/josevalim>

a <https://schema.org/Person> ;

14. https://hexdocs.pm/rdf/RDF.Serialization.html
15. https://hexdocs.pm/rdf/RDF.Turtle.html

report erratum • discuss

Building an RDF Graph • 129

https://hexdocs.pm/rdf/RDF.Serialization.html
https://hexdocs.pm/rdf/RDF.Turtle.html
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

<https://schema.org/identifier> "jose_valim" ;
<https://schema.org/name> "José Valim" .

>,
#RDF.Description<
<https://twitter.com/redrapids>

a <https://schema.org/Person> ;
<https://schema.org/identifier> "bruce_tate" ;
<https://schema.org/name> "Bruce Tate" .

>]

Remember that Turtle has a namespacing mechanism where we can associate
a namespace prefix with a namespace URI. Well, we would like to abbreviate
all our Schema.org URIs having a "https://schema.org/" base URI with the "schema:"
namespace prefix. We can do this by building a prefix map:

iex> import RDF.Sigils
RDF.Sigils

iex> prefixes = RDF.PrefixMap.new(schema: ~I<https://schema.org/>)
%RDF.PrefixMap{schema: ~I<https://schema.org/>}

And we can add this prefix map to the book graph:

iex> graph = RDF.Graph.add_prefixes(RDF.Graph.new(book), prefixes)
#RDF.Graph<name: nil

@prefix schema: <https://schema.org/> .

<https://pragprog.com/>
a schema:Organization ;
schema:identifier "pragmatic" ;
schema:name "The Pragmatic Bookshelf" .

...
>

We can now write out the book graph as a Turtle string:

iex> graph |> RDF.Turtle.write_string! |> IO.puts
@prefix schema: <https://schema.org/> .

<https://pragprog.com/>
a schema:Organization ;
schema:identifier "pragmatic" ;
schema:name "The Pragmatic Bookshelf" .

<https://pragprog.com/titles/tvmelixir/adopting-elixir/>
a schema:Book ;
schema:author <https://twitter.com/bgmarx>,

<https://twitter.com/josevalim>, <https://twitter.com/redrapids> ;
schema:bookFormat "Paperback" ;
schema:datePublished "2018-03-14" ;

Chapter 7. Graphing Globally with RDF • 130

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

schema:identifier "adopting_elixir" ;
schema:isbn "978-1-68050-252-7" ;
schema:name "Adopting Elixir" ;
schema:publisher <https://pragprog.com/> .

<https://twitter.com/bgmarx>
a schema:Person ;
schema:identifier "ben_marx" ;
schema:name "Ben Marx" .

...

:ok

There we go—a valid RDF Turtle string with a "schema:" namespace.

While we’re here, let’s save that down into our graph store. We’re going to
query against that later.

iex> graph |> RDF.Turtle.write_string! |> write_graph("book.ttl")

So, that might be perfectly good for sharing with RDF applications, but if we
want to share our graph with other applications by using a more familiar
serialization, we would probably choose something like JSON. We’re in luck.
There is a JSON specification that is specifically tailored for expressing linked
data—JSON-LD.16 We also have the JSON-LD Elixir package.

So if we want to write our graph out as a JSON-LD string, we can do that as
simply as this:

iex> graph |> JSON.LD.write_string!(pretty: true) |> IO.puts
[

{
"@id": "https://pragprog.com/",
"@type": [
"https://schema.org/Organization"

],
"https://schema.org/identifier": [
{

"@value": "pragmatic"
}

],
"https://schema.org/name": [
{

"@value": "The Pragmatic Bookshelf"
}

]
},

16. https://json-ld.org/

report erratum • discuss

Building an RDF Graph • 131

https://json-ld.org/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

{
"@id": "https://pragprog.com/titles/tvmelixir/adopting-elixir/",
"@type": [
"https://schema.org/Book"

],
"https://schema.org/author": [
{

"@id": "https://twitter.com/bgmarx"
},
{

"@id": "https://twitter.com/josevalim"
},
{

"@id": "https://twitter.com/redrapids"
}

],
"https://schema.org/bookFormat": [
{

"@value": "Paperback"
}

],
"https://schema.org/datePublished": [
{

"@value": "2018-03-14"
}

],
"https://schema.org/identifier": [
{

"@value": "adopting_elixir"
}

],
"https://schema.org/isbn": [
{

"@value": "978-1-68050-252-7"
}

],
"https://schema.org/name": [
{

"@value": "Adopting Elixir"
}

],
"https://schema.org/publisher": [
{

"@id": "https://pragprog.com/"
}

]
},
...

]
:ok

Chapter 7. Graphing Globally with RDF • 132

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Whoa! What’s going on here? This is both good and bad. We’ve got a valid
JSON-LD document here, but there’s a lot of substructure that we don’t want
to see.

It turns out that JSON-LD has a neat way to handle this—the “context.” This
is essentially an instruction set to map simple terms used in a generic JSON
format to IRIs used in a specific application format. In JSON-LD we can define
our context as an Elixir map:

ctxt = %{
"author" => %{"@id" => "https://schema.org/author", "@type" => "@id"},
"bookFormat" => "https://schema.org/bookFormat",
"datePublished" => "https://schema.org/datePublished",
"identifier" => "https://schema.org/identifier",
"isbn" => "https://schema.org/isbn",
"name" => "https://schema.org/name",
"publisher" => %{"@id" => "https://schema.org/publisher", "@type" => "@id"}

}

We won’t spend any time here discussing the mapping, except to note that
the "@id" term on the "@type" key specifies that type is taken from the referenced
object.

Now let’s write out that JSON document again but this time passing in our
ctxt using the :context keyword:

iex> graph |> JSON.LD.write_string!(context: ctxt, pretty: true) |> IO.puts
{

"@context": {
"author": {
"@id": "https://schema.org/author",
"@type": "@id"

},
"bookFormat": "https://schema.org/bookFormat",
"datePublished": "https://schema.org/datePublished",
"identifier": "https://schema.org/identifier",
"isbn": "https://schema.org/isbn",
"name": "https://schema.org/name",
"publisher": {
"@id": "https://schema.org/publisher",
"@type": "@id"

}
},
"@graph": [

{
"@id": "https://pragprog.com/",
"@type": "https://schema.org/Organization",
"identifier": "pragmatic",
"name": "The Pragmatic Bookshelf"

},

report erratum • discuss

Building an RDF Graph • 133

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

{
"@id": "https://pragprog.com/titles/tvmelixir/adopting-elixir/",
"@type": "https://schema.org/Book",
"author": [

"https://twitter.com/bgmarx",
"https://twitter.com/josevalim",
"https://twitter.com/redrapids"

],
"bookFormat": "Paperback",
"datePublished": "2018-03-14",
"identifier": "adopting_elixir",
"isbn": "978-1-68050-252-7",
"name": "Adopting Elixir",
"publisher": "https://pragprog.com/"

},
...

]
}
:ok

Much better. This time it looks more like a regular JSON document with
simple keys.

You can experiment further with JSON-LD using the handy JSON-LD Play-
ground.17

Now it’s time to look at connecting to an actual RDF graph database.

Setting Up a Graph Service
As we did with property graphs, we’re going to set up an RDF graph service
to abstract over any RDF graph database that we want to query. The graph
service will provide us with a common API for graph management and for
sending queries to the graph database.

While we’ll use a local RDF graph database for testing, many public RDF
graph databases are also available for querying. We’d like to try some of these
out too. We can query these RDF graph databases through their public
SPARQL endpoints. (We’ll be covering the RDF query language SPARQL in
Chapter 8, Querying RDF with SPARQL, on page 143.)

The SPARQL standard also defines a graph store HTTP protocol for graph
admin. Our local RDF graph database supports this. We could use this API
directly, but for uniformity, we’d rather bring this under our common graph
services API so that we can operate at a higher level of abstraction. This will
make for less context switching when swapping between graph services.

17. https://json-ld.org/playground/

Chapter 7. Graphing Globally with RDF • 134

report erratum • discuss

https://json-ld.org/playground/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Let’s set up a graph service for our RDFGraph project now. We’ll add our new
module RDFGraph.Service:

defmodule RDFGraph.Service do

...

end

The first thing we need to keep track of is which RDF service we are currently
querying.

Tracking the Current Graph Store
There are many RDF graph stores we’d like to query, so we could do with a
simple means of changing between them. We’ll need to keep track of their
query endpoints as well as any graph store API endpoints. And we’ll need to
track the graph store we are currently working with.

We can use the application environment to store this info. Let’s define an
admin property for the graph store API endpoint and a query property for the
query endpoint. We’ll record this property pair for each store we are interested
in. We can use a graph_store map for this and save each graph store with its
own key and the endpoints as a value map:

config/config.exs
config :rdf_graph,

cur_graph_store: :local,
graph_store: %{

local: %{
admin: "http://localhost:7200/repositories/ex-graphs-book/rdf-graphs/"

<> "service?default",
query: "http://localhost:7200/repositories/ex-graphs-book",
update: "http://localhost:7200/repositories/ex-graphs-book/statements"

},
dbpedia: %{
admin: nil,
query: "https://dbpedia.org/sparql",
update: nil

},
wikidata: %{
admin: nil,
query: "https://query.wikidata.org/bigdata/namespace/wdq/sparql",
update: nil

}
}

Here we’ve defined a local graph store.

report erratum • discuss

Setting Up a Graph Service • 135

http://media.pragprog.com/titles/thgraphs/code/config/config.exs
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We’ve set up a local GraphDB instance—see Appendix 2, Database Setups,
on page 247, for help on setting up a local copy of GraphDB and creating a
repository. Note that we’ve created the repository ex-graphs-book for working on
this book. The config shows the query and update endpoints for this repository,
as well as an admin endpoint. We’ve also defined a couple of well-known RDF
graph stores: DBpedia18 and Wikidata.19 Note that we only have query endpoints
for these so we set the admin property as nil.

We’ve added a cur_graph_store field to track the current graph store. We need a
couple of functions to read this—rdf_store/0 for reading and rdf_store/1 for writing:

apps/rdf_graph/lib/rdf_graph/service.ex
def rdf_store do

Application.get_env(:rdf_graph, :rdf_store)
end
def rdf_store(store) do

Application.put_env(:rdf_graph, :rdf_store, store)
end

We also need a helper function list_rdf_stores/0 to list out the graph stores:

apps/rdf_graph/lib/rdf_graph/service.ex
def list_rdf_stores do

Map.keys Application.get_env(:rdf_graph, :graph_store)
end

Lastly, we need a couple of functions—rdf_store_admin/0 and rdf_store_query/0—to
return the current admin and query endpoints, respectively:

apps/rdf_graph/lib/rdf_graph/service.ex
def rdf_store_admin do

store = rdf_store()
Application.get_env(:rdf_graph, :graph_store)[store][:admin]

end
def rdf_store_query do

store = rdf_store()
Application.get_env(:rdf_graph, :graph_store)[store][:query]

end
def rdf_store_update do

store = rdf_store()
Application.get_env(:rdf_graph, :graph_store)[store][:update]

end

We can make these more accessible via delegates in our top-level RDFGraph
module:

18. https://wiki.dbpedia.org/
19. https://www.wikidata.org/

Chapter 7. Graphing Globally with RDF • 136

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/service.ex
https://wiki.dbpedia.org/
https://www.wikidata.org/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/rdf_graph/lib/rdf_graph.ex
defdelegate rdf_store(), to: RDFGraph.Service, as: :rdf_store
defdelegate rdf_store(arg), to: RDFGraph.Service, as: :rdf_store
defdelegate list_rdf_stores(), to: RDFGraph.Service, as: :list_rdf_stores
defdelegate rdf_store_admin(), to: RDFGraph.Service, as: :rdf_store_admin
defdelegate rdf_store_query(), to: RDFGraph.Service, as: :rdf_store_query
defdelegate rdf_store_update(), to: RDFGraph.Service, as: :rdf_store_update

We can now select the rdf_store for querying:

iex> RDFGraph.rdf_store :local
:ok

Then we switch to the graph service which imports the RDFGraph module:

iex> import GraphCommons.Utils
GraphCommons.Utils

iex> graph_context RDFGraph
RDFGraph

Or better still, add that to the IEx startup file .iex.exs.

But, of course, we’ll need some functionality to operate the API.

Graph API
We can define our graph services API as follows:

apps/rdf_graph/lib/rdf_graph/service.ex
def graph_create(%GraphCommons.Graph{} = graph) do

if rdf_store_admin() do
graph_delete()
graph_update(graph)

else
{:error, rdf_store()}

end
end

def graph_delete() do
if rdf_store_admin() do

{:ok, env} = Tesla.delete(rdf_store_admin())
GraphCommons.Graph.new(env.body, "", :rdf)
env

else
{:error, rdf_store()}

end
end

def graph_read() do
if rdf_store_admin() do

{:ok, env} = Tesla.get(rdf_store_admin())
GraphCommons.Graph.new(env.body, "", :rdf)

report erratum • discuss

Setting Up a Graph Service • 137

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph.ex
http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

else
{:error, rdf_store()}

end
end

def graph_update(%GraphCommons.Graph{} = graph) do
if rdf_store_admin() do

{:ok, env} = Tesla.post(rdf_store_admin(),
graph.data, headers: [{"content-type", "text/turtle"}])

GraphCommons.Graph.new(env.body, "", :rdf)
else

{:error, rdf_store()}
end

end

This defines the API for CRUD operations, although we can expand the API
further with an optional reporting function graph_info/0.

Graph Info
To get some metrics over the graph service, we’ll first define some module
attributes with SPARQL query strings:

apps/rdf_graph/lib/rdf_graph/service.ex
@sparql_count_nodes """
SELECT (count(DISTINCT ?vertex) AS ?total)
WHERE
{

{ ?vertex ?p [] }
UNION
{

[] ?p ?vertex
FILTER(!IsLiteral(?vertex))

}
}
"""

@sparql_count_edges """
SELECT (count(?vertex) AS ?total)
WHERE
{

?vertex ?edge []
}
"""

@sparql_list_types """
SELECT distinct ?type
WHERE
{

?vertex a ?type
}
"""

Chapter 7. Graphing Globally with RDF • 138

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Here the SPARQL query bodies are stubbed out to save space, but look into
the project if you’re interested.

The graph_info/0 function makes use of the Query API we’ll define next.

apps/rdf_graph/lib/rdf_graph/service.ex
def graph_info() do

import RDFGraph, only: [new_query: 1]
if rdf_store_admin() do

{:ok, %SPARQL.Query.Result{results: [%{"total" => total}]}} =
@sparql_count_nodes
|> new_query
|> query_graph

nodes = RDF.Literal.value(total)

{:ok, %SPARQL.Query.Result{results: [%{"total" => total}]}} =
@sparql_count_edges
|> new_query
|> query_graph

edges = RDF.Literal.value(total)

{:ok, %SPARQL.Query.Result{results: types}} =
@sparql_list_types
|> new_query
|> query_graph

labels =
types
|> Enum.map(fn t ->

%{"type" => type} = t
URI.parse(type.value).path |> Path.basename

end)
|> Enum.sort

%GraphCommons.Service.GraphInfo{
type: :rdf,
file: "",
num_nodes: nodes,
num_edges: edges,
labels: labels

}
else

{:ok, rdf_store()}
end

end

Query API
Now it’s time to look at the query API.

report erratum • discuss

Setting Up a Graph Service • 139

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

This is something additional to the graph API which is only used for graph
management. Here we’d like to query within the current graph. To make this
separation between the two APIs clearer, we’ll use the differently named
query_graph/1 function instead of the graph_*/1 and graph_*/0 naming:

apps/rdf_graph/lib/rdf_graph/service.ex
def query_graph(%GraphCommons.Query{} = query, params \\ []) do

:rdf = query.type
SPARQL.Client.query(query.data, rdf_store_query(), params)

end

def query_graph!(%GraphCommons.Query{} = query, params \\ []) do
:rdf = query.type

update = Keyword.has_key?(params, :update) && Keyword.get(params, :update)

unless update do
SPARQL.Client.query(query.data, rdf_store_query(), params)
|> case do

{:ok, response} -> response
{:error, message} -> raise "! #{message}"

end
else

SPARQL.Client.update(query.data, rdf_store_update(), raw_mode: true)
|> case do

:ok -> :ok
{:error, message} -> raise "! #{message}"

end
end

end

API Demo
As a demo, let’s add our default graph to the RDF graph service. We’ll start
by importing our RDFGraph functions via the graph_context/1 macro:

iex> graph_context RDFGraph
RDFGraph

We’ll use the read_graph/1 function to read the default graph from the graph
store:

iex> default_graph = read_graph("default.ttl")
#GraphCommons.Graph<type: rdf, file: "...", data: "@prefix ex: <htt...">

We can then simply pipe this into the graph_create/1 function to create our
default graph in the graph service:

iex> graph_create default_graph
#GraphCommons.Graph<type: rdf, file: "", data: "">

Chapter 7. Graphing Globally with RDF • 140

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We can use the graph_info/0 function to confirm the service graph:

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: [],
num_edges: 1,
num_nodes: 2,
type: :rdf

}

And we can query this as before:

iex> "SELECT * WHERE {?s ?p ?o}" |> new_query |> query_graph!
%SPARQL.Query.Result{

results: [
%{
"o" => ~I<http://example/b>,
"p" => ~I<http://example/EX>,
"s" => ~I<http://example/a>

}
],
variables: ["s", "p", "o"]

}

Let’s see now how to do that query more simply without all the boilerplate so
we can focus more clearly on the query itself.

Query Helper
As we’ve seen earlier (see Query Helper, on page 88), we can define a query
helper to make querying simpler:

apps/graph_commons/lib/graph_commons/utils.ex
def sparql!(query_string), do: to_query_graph!(RDFGraph, query_string)

To simplify access to this helper function, let’s import the GraphCommons.Utils
module in our IEx startup file .iex.exs:

import GraphCommons
import GraphCommons.Utils ; alias GraphCommons.Utils➤

Let’s try this now:

iex> "SELECT * WHERE {?s ?p ?o}" |> sparql!
%SPARQL.Query.Result{

results: [
...

],
variables: ["s", "p", "o"]

}

report erratum • discuss

Setting Up a Graph Service • 141

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/utils.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We’ll use this query form when we start querying with SPARQL in the next
chapter. And we’ll also use SPARQL to query against a local RDF graph
database as well as public RDF graph databases using our RDF graph service.

Wrapping Up
In this chapter, we briefly reviewed the RDF data model, which underlies the
semantic web and its linked data offspring—W3C standardized approaches
to connecting and querying data from across the web. We saw that RDF’s
common naming system and primitive data model simplify public data sharing,
which more readily leads to global semantics and data integration at web
scale. These factors together with the support for formal reasoning provide a
useful basis for building knowledge graphs.

We then set up a new RDFGraph project for exploring RDF graphs.

Next, we used RDF.ex to define an RDF vocabulary for the Schema.org book
schema. Using this vocabulary, we saw how to build a set of RDF descriptions
for the book graph and how to serialize this both as an RDF Turtle string and
as a JSON-LD document.

Finally, we implemented a graph service for RDF graphs so that we can use
our common API for graph management and for sending queries to the graph
service. And since there are many public query endpoints for RDF graphs,
we also saw how we can simply configure our graph service to point to any
of those.

We’re now ready for SPARQL—the query language for RDF.

Chapter 7. Graphing Globally with RDF • 142

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

CHAPTER 8

Querying RDF with SPARQL
In the previous chapter, we talked about the rdf package from the RDF.ex
project for RDF processing in Elixir. But there is also a sparql_client package
for querying RDF graph stores with SPARQL. So let’s have a look at that. In
fact, there are two SPARQL packages: sparql1 (from the SPARQL.ex project) for
querying in-memory RDF models and sparql_client2 (from the SPARQL.Client
project) for dispatching queries to RDF graph databases, or RDF triplestores
as they’re usually referred to. We’re going to focus here on querying graph
services using the sparql_client package, although we’ll also discuss querying
in-memory models with the sparql package.

Getting Started with SPARQL
Let’s start with some background. The query language for RDF is known as
SPARQL, and there is an accompanying graph admin language, SPARQL Update.
(The name SPARQL, by the way, is a recursive acronym—“SPARQL Protocol
and RDF Query Language.”) We’ll focus on the query language here for reasons
of space.

SPARQL
SPARQL looks nominally a bit like SQL, which was an intentional move to
help foster a wider acceptance. A SPARQL query provides a number of graph
patterns for matching against. In essence, a SPARQL query simply scans a
set of RDF triples and provides filtered values as solutions.

There are four query forms—two major and two minor—as shown in the table
on page 144. The major query forms return either a table of values (SELECT) or

1. https://hex.pm/packages/sparql
2. https://hex.pm/packages/sparql_client

report erratum • discuss

https://hex.pm/packages/sparql
https://hex.pm/packages/sparql_client
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

a graph of triples (CONSTRUCT). The minor query forms support testing (ASK)
and inspection (DESCRIBE).

Return TypeQuery PurposeQuery Form

tableextract valuesSELECT
graphcreate graphCONSTRUCT
booleantest graphASK
(server dependent)inspect nodesDESCRIBE

The majority of queries tend to use the SELECT form to return a value set in
table form, although a more canny use of SPARQL will prefer the CONSTRUCT
form to generate a new graph from the existing graph.

SPARQL Update
SPARQL Update allows for graph admin operations and can be seen as a kind
of write complement to SPARQL, which is a read-only language. It allows for
specifying and executing updates to RDF graphs in a graph store and supports
two categories of update operations: graph update (INSERT DATA, DELETE DATA,
DELETE/INSERT, and so on) and graph management (CREATE, DROP, COPY, MOVE, and
so on). But here we’ll focus on the SPARQL query language.

And that concludes our brief introduction to SPARQL. Now let’s see it in action.

Querying the Local RDF Service
We’re going to need some RDF data. To keep it simple, we’ll take the RDF description
we generated in the previous chapter for a book resource—the book graph:

iex> graph_context RDFGraph
RDFGraph

iex> graph_create read_graph("book.ttl")
#GraphCommons.Graph<type: rdf, file: "", data: "">

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: ["Book", "Organization", "Person"],
num_edges: 27,
num_nodes: 8,
type: :rdf

}

Here we selected the RDFGraph graph service and then created a new graph
using the book.ttl stored graph.

Chapter 8. Querying RDF with SPARQL • 144

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Now let’s have a look at the SELECT and CONSTRUCT query forms.

SELECT
Let’s use a simple SELECT query that returns all the RDF terms under the
variables ?s, ?p, and ?o:

iex> IO.puts (select_q = read_query("lib/select.rq").data)
SELECT ?s ?p ?o
WHERE {

?s ?p ?o
}

:ok

We’ve saved that query string as the variable select_q.

Now send this SPARQL query select_q to your local graph service. The result
is a SPARQL.Query.Result struct:

iex> result = select_q |> sparql!
%SPARQL.Query.Result{

results: [
%{
"o" => ~I<https://schema.org/Organization>,
"p" => ~I<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
"s" => ~I<https://pragprog.com/>

},
...

],
variables: ["s", "p", "o"]

}

You can process this query result using, for example, the get/2 function from
the SPARQL.Query.Result module:

iex> result |> SPARQL.Query.Result.get(:o)
[~I<https://schema.org/Organization>, ~I<https://schema.org/Book>,
~I<https://schema.org/Person>, ~I<https://schema.org/Person>,
~I<https://schema.org/Person>,
%RDF.Literal{literal: %RDF.XSD.String{value: "pragmatic", lexical:
"pragmatic"}, valid: true},
%RDF.Literal{literal: %RDF.XSD.String{value: "adopting_elixir", lexical:
"adopting_elixir"}, valid: true},
...]

CONSTRUCT
Let’s now use a simple CONSTRUCT query that creates a new graph from the
variables ?s, ?p, and ?o:

report erratum • discuss

Querying the Local RDF Service • 145

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> IO.puts (construct_q = read_query("lib/construct.rq").data)
CONSTRUCT { ?s ?p ?o }
WHERE {

?s ?p ?o
}

:ok

We’ve saved that query string as the variable construct_q.

Sending the SPARQL query construct_q to your local graph service returns an
RDF.Graph struct:

iex> result = construct_q |> sparql!
#RDF.Graph<name: nil

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix schema: <https://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://pragprog.com/>
a schema:Organization ;
schema:identifier "pragmatic" ;
schema:name "The Pragmatic Bookshelf" .

<https://pragprog.com/titles/tvmelixir/adopting-elixir/>
a schema:Book ;

...
}

You can access this RDF.Graph data structure by using some of the RDF.ex data
accessors—see RDF Data Structures3 for more info:

iex> result |> RDF.Graph.get(~I<https://pragprog.com/>) |>
...> RDF.Description.get(~I<https://schema.org/name>)
[%RDF.Literal{literal: %RDF.XSD.String{value: "The Pragmatic Bookshelf",
lexical: "The Pragmatic Bookshelf"}, valid: true}]

We can simplify this further by using the SCHEMA vocabulary we defined earlier
(see Adding a SCHEMA Vocabulary for Schema.org Terms, on page 125):

iex> alias RDFGraph.Vocab.SCHEMA
RDFGraph.Vocab.SCHEMA

iex> result |> RDF.Graph.get(~I<https://pragprog.com/>) |>
...> RDF.Description.get(SCHEMA.name)
[%RDF.Literal{literal: %RDF.XSD.String{value: "The Pragmatic Bookshelf",
lexical: "The Pragmatic Bookshelf"}, valid: true}]

3. https://rdf-elixir.dev/rdf-ex/data-structures.html

Chapter 8. Querying RDF with SPARQL • 146

report erratum • discuss

https://rdf-elixir.dev/rdf-ex/data-structures.html
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Well, those are the two major query forms. Now let’s take a look at the two
minor query forms. And by the way, we’ll also see examples of all these query
forms in action later in the chapter.

ASK
Here’s a simple ASK query that tests a graph with the graph pattern it supplies:

iex> IO.puts (ask_q = read_query("lib/ask.rq").data)
ASK
WHERE {

?s ?p ?o
}

:ok

We’ve saved that query string as the variable ask_q.

In this case, we are simply asking if any triple exists within the graph.

Sending the SPARQL query ask_q to your local graph service returns a single
boolean result wrapped in a SPARQL.Query.Result struct:

iex> result = ask_q |> sparql!
%SPARQL.Query.Result{results: true, variables: nil}

iex> result.results
true

You could almost think of the ASK result as being a degenerate table with a
single cell. In this case, however, there are no variable bindings—just a single
boolean value.

Lastly, we have DESCRIBE.

DESCRIBE
Here’s a qualified DESCRIBE query that inspects a resource matched via a graph
pattern:

iex> IO.puts (describe_q = read_query("lib/describe.rq").data)
DESCRIBE ?s
WHERE {

?s ?p "Bruce Tate"
}

:ok

iex> IO.puts (RDF.Turtle.write_string! (describe_q |> sparql!))
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix schema: <https://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

report erratum • discuss

Querying the Local RDF Service • 147

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

<https://pragprog.com/titles/tvmelixir/adopting-elixir/>
schema:author <https://twitter.com/redrapids> .

<https://twitter.com/redrapids>
a schema:Person ;
schema:identifier "bruce_tate" ;
schema:name "Bruce Tate" .

:ok

We’ve saved that query string as the variable describe_q.

Often, however, DESCRIBE will be used with a direct value, for example:

iex> "DESCRIBE <https://twitter.com/redrapids>" |> sparql!
#RDF.Graph<name: nil

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix schema: <https://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://pragprog.com/titles/tvmelixir/adopting-elixir/>
schema:author <https://twitter.com/redrapids> .

<https://twitter.com/redrapids>
a schema:Person ;
schema:identifier "bruce_tate" ;
schema:name "Bruce Tate" .

>

Now that we’ve seen these query forms, let’s see them again in action.

Querying In-Memory RDF Graphs

By the way, we’re using the sparql_client package here to query graph
services through their published SPARQL endpoints. In this
chapter, we’re querying a local service as well as a couple of remote
services. Because we’re accessing the local service via its web
interface, the only real difference from a remote service is that we
have admin control over the data and write access to the graph
database.

But what if you don’t have access to a local graph database or
don’t wish to install one? Well in that case you can use the sparql
package to query in-memory RDF graphs. There are some limita-
tions in terms of coverage of SPARQL features supported, 4 but
some of these limitations may be worked around either by using
emulated query forms or by coding over result sets.

4. https://rdf-elixir.dev/sparql-ex/limitations.html

Chapter 8. Querying RDF with SPARQL • 148

report erratum • discuss

https://rdf-elixir.dev/sparql-ex/limitations.html
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Case #1: Tokyo Metro
Rail networks make for great examples of applied graphs. In the early years
of RDF development, I felt compelled to model the London Underground (or
Tube) map as an RDF graph. (I’m surely not the only person who ever tried
that.) Here we are going to use an example of the Tokyo Metro that has been
modeled as an RDF graph and published as public domain open data—see
RDF datasets from DataDock.5 There are three separate RDF datasets for the
lines, stations, and stops listed as tokyo_metro-*.nt.gz. You can simply download,
unzip, and concatenate those files into a single source file tokyo_metro.nt. These
are in RDF N-Triples format, a subset of the RDF Turtle format.

So now, we’ve got a local copy of the graph, and we can save that to the graph
store. We’ll also want to build some queries and save them to the graph store
as well. (You can get the queries from either the code listings or the examples
as we get to them.) Let’s put both the graph and queries under their own metro
directory.

Next, let’s load our graph into the graph service:

iex> graph_context RDFGraph
RDFGraph

iex> graph_create read_graph("metro/tokyo_metro.nt")
#GraphCommons.Graph<type: rdf, file: "", data: "">

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: [],
num_edges: 1065,
num_nodes: 520,
type: :rdf

}

We can also list out the queries we’re going to use:

iex> list_queries_dir("metro")
["list-line-names-english.rq", "list-line-names.rq", "list-properties.rq",
"list-station-names-on-line.rq", "list-types.rq"]

Querying the Graph
One of the first things we can do with a new graph is inspect the types of its nodes:

iex> IO.puts (types_q = read_query("metro/list-types.rq").data)
SELECT DISTINCT ?type

5. http://datadock.io/kal/data/

report erratum • discuss

Case #1: Tokyo Metro • 149

http://datadock.io/kal/data/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

WHERE {
?s a ?type .

}
ORDER BY ?type

:ok

Here we use the special keyword ‘a’ which is shorthand for rdf:type. We also
sort the result set with ORDER BY and deduplicate with DISTINCT.

Now try this query:

iex> result = types_q |> sparql!
%SPARQL.Query.Result{results: [], variables: ["type"]}

And we get nothing. It turns out that this RDF dataset contains instances
only and includes no type information. We’ll see soon how we can add type
information to the graph.

Our next strategy will be to list out all the predicates:

iex> IO.puts (properties_q = read_query("metro/list-properties.rq").data)
SELECT DISTINCT ?p
WHERE {

?s ?p ?o .
}
ORDER BY ?p

:ok

Let’s try this query:

iex> result = properties_q |> sparql!
%SPARQL.Query.Result{

results: [
%{"p" => ~I<http://.../dataset/tokyo_metro_stations.csv#on_line>},
%{"p" => ~I<http://.../dataset/tokyo_metro_stops.csv#at_station>},
%{"p" => ~I<http://.../dataset/tokyo_metro_stops.csv#on_line>},
%{"p" => ~I<http://.../dataset/tokyo_metro_stops.csv#seealso>},
%{"p" => ~I<http://.../definition/line_colour>},
%{"p" => ~I<http://.../definition/line_name>},
%{"p" => ~I<http://.../definition/line_name_english>},
%{"p" => ~I<http://.../definition/line_name_french>},
%{"p" => ~I<http://.../definition/station_name>},
%{"p" => ~I<http://.../definition/station_name_english>}

],
variables: ["p"]

}

This time, we have a list of properties. Note that we’re showing the predicate
URLs here truncated in the middle for display purposes only.

Chapter 8. Querying RDF with SPARQL • 150

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

What if we try to get a list of line names using the line_name property?

iex> IO.puts (lines_q = read_query("metro/list-line-names.rq").data)
PREFIX schema: <http://.../definition/>

SELECT ?line_name
WHERE {

?s schema:line_name ?line_name .
}

:ok

We use prefix notation to make the query more readable. Again, here we’re
truncating the namespace URL in the middle.

Let’s try this query:

iex> result = lines_q |> sparql!
%SPARQL.Query.Result{

results: [
%{"line_name" => ~L"千代田線"},
%{"line_name" => ~L"副都心線"},
%{"line_name" => ~L"銀座線"},
%{"line_name" => ~L"日比谷線"},
%{"line_name" => ~L"丸ノ内線"},
%{"line_name" => ~L"丸ノ内線分岐線"},
%{"line_name" => ~L"南北線"},
%{"line_name" => ~L"東西線"},
%{"line_name" => ~L"有楽町線"},
%{"line_name" => ~L"半蔵門線"}

],
variables: ["line_name"]

}

Well, this is fine. But maybe we could add in some English names as well:

iex> IO.puts (line-english_q =
...> read_query("metro/list-line-names-english.rq").data)
PREFIX schema: <http://.../definition/>

SELECT ?line_name ?line_name_english
WHERE {

?s schema:line_name ?line_name .
?s schema:line_name_english ?line_name_english .

}

:ok

Let’s try this query:

iex> result = line-english_q |> sparql!
%SPARQL.Query.Result{

results: [
%{"line_name_english" => ~L"Chiyoda Line", "line_name" => ~L"千代田線"},

report erratum • discuss

Case #1: Tokyo Metro • 151

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

%{"line_name_english" => ~L"Fukutoshin Line", "line_name" => ~L"副都心線"},
%{"line_name_english" => ~L"Ginza Line", "line_name" => ~L"銀座線"},
%{"line_name_english" => ~L"Hibiya Line", "line_name" => ~L"日比谷線"},
%{"line_name_english" => ~L"Marunouchi Line", "line_name" => ~L"丸ノ内線"},
%{
"line_name_english" => ~L"Marunouchi Line Branch Line",
"line_name" => ~L"丸ノ内線分岐線"

},
%{"line_name_english" => ~L"Namboku Line", "line_name" => ~L"南北線"},
%{"line_name_english" => ~L"Tōzai Line", "line_name" => ~L"東西線"},
%{"line_name_english" => ~L"Yūrakuchō Line", "line_name" => ~L"有楽町線"},
%{"line_name_english" => ~L"Hanzōmon Line", "line_name" => ~L"半蔵門線"}

],
variables: ["line_name", "line_name_english"]

}

So, those are the line names in Japanese and English for this RDF dataset.

Maybe we could now try listing the stations on a given line, the Ginza line,
for example. Here’s a query that will do that:

iex> IO.puts (stations_q =
...> read_query("metro/list-station-names-on-line.rq").data)
PREFIX schema: <http://.../definition/>
PREFIX stations: <http://.../dataset/tokyo_metro_stations.csv#>

SELECT ?station_name ?station_name_english
WHERE {

BIND ("Ginza Line" AS ?line_name_english)
?line schema:line_name_english ?line_name_english .
?s stations:on_line ?line .
?s schema:station_name ?station_name .
?s schema:station_name_english ?station_name_english .

}

There are a couple of things to note. We’re using BIND to assign a value to the
variable ?line_name_english. And we’re using the property on_line in the stations:
namespace, which relates stations to lines.

This query gives us the expected result:

iex> result = stations_q |> sparql!
%SPARQL.Query.Result{

results: [
%{
"station_name" => ~L"三越前駅",
"station_name_english" => ~L"Mitsukoshimae"

},
...

],
variables: ["station_name", "station_name_english"]

}

Chapter 8. Querying RDF with SPARQL • 152

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

If we want to grab only the station_name values, we can use the get/2 function
in the SPARQL.Query.Result module:

iex> names = result |> SPARQL.Query.Result.get(:station_name)
[~L"三越前駅", ~L"上野広小路駅", ~L"上野駅", ~L"京橋駅",
~L"外苑前駅", ~L"新橋駅", ~L"日本橋駅", ~L"末広町駅",
~L"浅草駅", ~L"渋谷駅", ~L"溜池山王駅", ~L"田原町駅",
~L"神田駅", ~L"稲荷町駅", ~L"虎ノ門駅", ~L"表参道駅",
~L"赤坂見附駅", ~L"赤坂見附駅", ~L"銀座駅",
~L"青山一丁目駅", ~L"青山一丁目駅"]

We can do likewise for the station_name_english values:

iex> names_english = result |> SPARQL.Query.Result.get(:station_name_english)
[~L"Mitsukoshimae", ~L"Ueno-Hirokōji", ~L"Ueno", ~L"Kyōbashi", ~L"Gaiemmae",
~L"Shimbashi", ~L"Nihombashi", ~L"Suehirochō", ~L"Asakusa", ~L"Shibuya",
~L"Tameike-Sannō", ~L"Tawaramachi", ~L"Kanda", ~L"Inarichō", ~L"Toranomon",
~L"Omotesandō", ~L"Akasaka-Mitsuke", ~L"Akasaka-mitsuke", ~L"Ginza",
~L"Aoyama-Itchōme", ~L"Aoyama-itchōme"]

And we can always zip these two lists together as:

iex> Enum.zip(names, names_english)
[

{~L"三越前駅", ~L"Mitsukoshimae"},
{~L"上野広小路駅", ~L"Ueno-Hirokōji"},
{~L"上野駅", ~L"Ueno"},
{~L"京橋駅", ~L"Kyōbashi"},
{~L"外苑前駅", ~L"Gaiemmae"},
{~L"新橋駅", ~L"Shimbashi"},
{~L"日本橋駅", ~L"Nihombashi"},
{~L"末広町駅", ~L"Suehirochō"},
{~L"浅草駅", ~L"Asakusa"},
{~L"渋谷駅", ~L"Shibuya"},
{~L"溜池山王駅", ~L"Tameike-Sannō"},
{~L"田原町駅", ~L"Tawaramachi"},
{~L"神田駅", ~L"Kanda"},
{~L"稲荷町駅", ~L"Inarichō"},
{~L"虎ノ門駅", ~L"Toranomon"},
{~L"表参道駅", ~L"Omotesandō"},
{~L"赤坂見附駅", ~L"Akasaka-Mitsuke"},
{~L"赤坂見附駅", ~L"Akasaka-mitsuke"},
{~L"銀座駅", ~L"Ginza"},
{~L"青山一丁目駅", ~L"Aoyama-Itchōme"},
{~L"青山一丁目駅", ~L"Aoyama-itchōme"}

]

Enriching the Graph
Do you remember that we said this RDF dataset had no types? Well, we can
fix that.

report erratum • discuss

Case #1: Tokyo Metro • 153

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

This query uses the SPARQL form CONSTRUCT to return a graph. We’ll say that
any subject that has a schema:line_name property is a line type.

For this demo, we’ll add a type Line from an example namespace ex: to any
matched subjects:

iex> IO.puts (line_types_q = read_query("metro/add-line-types.rq").data)
PREFIX ex: <http://example/>
PREFIX schema: <http://datadock.io/kal/data/id/definition/>

CONSTRUCT {
?s a ex:Line

}
WHERE {

?s schema:line_name ?line_name .
}

:ok

The query returns an RDF.Graph struct:

iex> result = line_types_q |> sparql!
#RDF.Graph{name: nil

~I<http://datadock.io/kal/data/id/resource/line/tokyo-metro-C>
~I<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

~I<http://example/Line>
...
~I<http://datadock.io/kal/data/id/resource/line/tokyo-metro-Z>

~I<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
~I<http://example/Line>}

We can generate an RDF Turtle string from this struct and add that to the
graph service by piping through the new_graph/1 function:

iex> (RDF.Turtle.write_string! result) |> new_graph |> graph_update
#GraphCommons.Graph<type: rdf, file: "", data: "">

We’ve now added an ex:Line type in our dataset using the local graph service.

We can verify that by querying:

iex> result = read_query("metro/list-types.rq").data |> sparql!
%SPARQL.Query.Result{

results: [%{"type" => ~I<http://example/Line>}],
variables: ["type"]

}

Let’s look now at a couple of remote graph services where we will only have
read access.

Chapter 8. Querying RDF with SPARQL • 154

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Querying a Remote RDF Service
Let’s try querying a remote RDF graph store. We’re going to use DBpedia6 and
the DBpedia SPARQL endpoint7 for our remote querying. So, we use the
rdf_store/1 function we defined in the RDFGraph module with the atom :dbpedia as
our key:

iex> rdf_store :dbpedia
:ok

Now if we check with the graph_info/0 function, we don’t get a %GraphCommons.Ser-
vice.GraphInfo{} struct returned as we would with a local graph store, but instead
we get a tuple returning the store token:

iex> graph_info
{:ok, :dbpedia}

Note that later in A Graph-to-Graph Example, on page 207, we’ll also be
querying against Wikidata8 and using the Wikidata SPARQL endpoint.9

DBpedia vs. Wikidata

DBpedia and Wikidata are two related and similar, but different,
linked data projects, both built around Wikipedia:

• DBpedia extracts structured data from Wikipedia documents.
• Wikidata creates structured data for Wikipedia documents.

Before we get into querying, you might want to experiment with the SPARQL
query form at the DBpedia SPARQL endpoint. There is also a DBpedia ontol-
ogy10 which models the instances, types, and relationships found in the
DBpedia dataset.

Let’s put together a simple “Hello World” query. Fortunately, most resources
in DBpedia are named under a "http://dbpedia.org/resource/" namespace. So, we
can expect a “Hello World” page to be named "http://dbpedia.org/resource/Hello_World".

iex> hello_q = """
PREFIX dbr: <http://dbpedia.org/resource/>

CONSTRUCT { ?s ?p ?o }
WHERE {

6. https://wiki.dbpedia.org/
7. https://dbpedia.org/sparql/
8. https://www.wikidata.org/
9. https://query.wikidata.org/bigdata/namespace/wdq/sparql
10. https://www.dbpedia.org/resources/ontology/

report erratum • discuss

Querying a Remote RDF Service • 155

https://wiki.dbpedia.org/
https://dbpedia.org/sparql/
https://www.wikidata.org/
https://query.wikidata.org/bigdata/namespace/wdq/sparql
https://www.dbpedia.org/resources/ontology/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

BIND (dbr:Hello_World AS ?s)
?s ?p ?o

}
FILTER (isLiteral(?o) && langMatches(lang(?o), "en"))
"""

This will query the dbr:Hello_World resource at the DBpedia SPARQL endpoint
and will construct a new graph with any statements that have English-
language values.

So, let’s try it:

iex> result = hello_q |> sparql!
#RDF.Graph{name: nil

~I<http://dbpedia.org/resource/Hello_World>
~I<http://www.w3.org/2000/01/rdf-schema#label>

~L"Hello World"en}

Of course, we’ll be able to read that better if we convert it to a Turtle string:

iex> IO.puts (RDF.Turtle.write_string! result)
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

dbr:Hello_World
rdfs:label "Hello World"@en .

:ok

Great. We just queried DBpedia and parsed the result set for English language
strings. We got one: “Hello World.”

Now we’re ready for something else. We’re going to take a (short) random walk
through DBpedia. We’re going to do this in two different ways—first by
querying DBpedia as we’ve already done and second by browsing DBpedia.
Let’s start with querying.

Case #2: Graph Walk (Querying)
The first thing we’ll do is create a new module. Create a new folder examples/
under our rdf_graph/lib/rdf_graph/ folder and under that create a walk_query.ex file.

.
├── rdf_graph
│ ├── examples
│ │ └── walk_query.ex➤

│ ├── service.ex
│ └── vocab.ex
└── rdf_graph.ex

Then create a new module:

Chapter 8. Querying RDF with SPARQL • 156

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

defmodule RDFGraph.Examples.WalkQuery do

...

end

Now add in a walk_query/2 function as follows:

apps/rdf_graph/lib/rdf_graph/examples/walk_query.ex
def walk_query(link \\ "http://dbpedia.org/resource/Bob_Dylan", count \\ 0)Line 1

def walk_query(_, count) when count >= 7, do: :ok-

-

def walk_query(link, count) do-

IO.puts link5

query =-

~S"""-

PREFIX dbo: <http://dbpedia.org/ontology/>-

SELECT DISTINCT ?new_link-

WHERE10

{-

BIND (<LINK> AS ?link)-

?link dbo:wikiPageWikiLink ?new_link-

}-

"""15

query = String.replace(query, "LINK", link)-

store = RDFGraph.Service.rdf_store_query()-

list = with {:ok, result} = SPARQL.Client.query(query, store),-

do: SPARQL.Query.Result.get(result, :new_link)-

if Enum.empty?(list) do20

:ok-

else-

link = Enum.random(list) |> RDF.IRI.to_string-

walk_query(link, count + 1)-

end25

end-

It’s important to note a few things. We’ve defined our walk_query/2 function at
line 1 with two optional parameters: a link for our graph start node (and
defaulting to "http://dbpedia.org/resource/Bob_Dylan") and a count to control our path
length (and defaulting to 0). We’re going to recursively call this function
until we reach our maximum path length as set by the guard at line 2, or
until nothing more is returned.

The SPARQL query is defined at line 6, and we replace the LINK placeholder
text with the link value at line 16. We match on the dbo:wikiPageWikiLink11

property, which links a wiki page (bound to ?link) with another wiki page (the
as yet unbound ?new_link).

11. https://dbpedia.org/ontology/wikiPageWikiLink

report erratum • discuss

Case #2: Graph Walk (Querying) • 157

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/examples/walk_query.ex
https://dbpedia.org/ontology/wikiPageWikiLink
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

The rdf_store name is read at line 17, and we query with SPARQL.Client.query/3 at
line 18 with any matched new_link values added to the list.

Lastly, on line 20 we test the list and, if empty, return :ok or else call walk_query/2
again with a random link from the list. (Note that this is a simpler strategy than
trying to return a random link directly from the query because of server-side
caching. Without the caching we could have returned a single random link
from the query.)

OK, it’s time to try this out. To make things simpler, let’s import that module:

iex> import RDFGraph.Examples.WalkQuery
RDFGraph.Examples.WalkQuery

So, try first with our default subject:

iex> walk_query
http://dbpedia.org/resource/Bob_Dylan
http://dbpedia.org/resource/John_Lennon
http://dbpedia.org/resource/I_Met_the_Walrus
http://dbpedia.org/resource/The_Omni_King_Edward_Hotel
http://dbpedia.org/resource/Yoko_Ono
http://dbpedia.org/resource/Flipside_(Canadian_TV_program)
http://dbpedia.org/resource/Queen's_University_at_Kingston
:ok

And try again, but this time we reach a dead end:

iex> walk_query
http://dbpedia.org/resource/Bob_Dylan
http://dbpedia.org/resource/Category:American_folk_singers
:ok

Now try with a different start point:

iex> walk_query "http://dbpedia.org/resource/Black_hole"
http://dbpedia.org/resource/Black_hole
http://dbpedia.org/resource/Einstein_field_equations
http://dbpedia.org/resource/Schwarzschild_metric
http://dbpedia.org/resource/Schwarzschild_coordinates
http://dbpedia.org/resource/Pressure
http://dbpedia.org/resource/Solid
http://dbpedia.org/resource/Periodic_table
:ok

Honestly, this is just way too much fun. We could easily keep looking for new
examples.

Now, this is all well and good and shows that we can walk the graph. But we
are querying against a public SPARQL endpoint so there’s nothing too surpris-
ing here. We ran a query, and we got some results. More surprising will be

Chapter 8. Querying RDF with SPARQL • 158

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

to navigate the graph without querying a central database, only by touching
each node and getting a new node in the graph. This is linked data (or dis-
tributed data) in action, and we’ll try that out now.

Browsing Linked Data
By definition, graphs connect data. (IDs, labels, and other attributes will
either be implicit or explicit.) But since RDF graphs use URIs for node names,
they can typically be dereferenced, that is they may return a document when
the link is followed. What’s more, the document they return is a graph—a
graph of semantically linked data.

One could say that a web page usually returns a graph via its DOM model,
but this is just a structure for HTML documents—there is no real semantics
beyond the operational parse tree. One could also say that any web page may
link to additional web pages through HTML links and these links actually
form a graph.

And while this may be true, HTML links are anonymous—there are no names,
no meaning. We’re missing semantics again.

What we mean by linked data here is that a given node in the graph can be
inspected—it’ll return a graph fragment describing its local context. And this
graph fragment can be queried locally, and further nodes can be dereferenced
to obtain another graph fragment. And so on. So, essentially, we retrieve
graph fragments and query locally. We can thus walk the graph in a meaning-
ful way. We know what the links mean.

Case #3: Graph Walk (Browsing)
Let’s build a small toy—a linked data explorer. We’re going to look up
Wikipedia links in DBpedia and see if there’s a link from one Wikipedia page
to another. We can then follow our nose and see if that link is linked to
another Wikipedia page, and so on.

Create a new walk_links.ex file under the rdf_graph/lib/rdf_graph/examples/ folder:

.
├── rdf_graph
│ ├── examples
│ │ ├── walk_links.ex➤

│ │ └── walk_query.ex
│ ├── service.ex
│ └── vocab.ex
└── rdf_graph.ex

report erratum • discuss

Browsing Linked Data • 159

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

And create a new module:

defmodule RDFGraph.Examples.WalkLinks do
use Tesla

...

end

Note that we add a use Tesla macro as we’ll be using the Tesla framework for
HTTP requests.

We can then add a couple of middleware plugs to follow redirects and to set
our preferred content type as:

apps/rdf_graph/lib/rdf_graph/examples/walk_links.ex
plug Tesla.Middleware.FollowRedirects, max_redirects: 3
plug Tesla.Middleware.Headers, [{"accept", "text/turtle"}]

Now let’s add in a walk_links/2 function as follows:

apps/rdf_graph/lib/rdf_graph/examples/walk_links.ex
def walk_links(link \\ "http://dbpedia.org/resource/Bob_Dylan", count \\ 0)Line 1

def walk_links(_, count) when count >= 7, do: :ok-

-

def walk_links(link, count) do-

IO.puts link5

{:ok, result} = get(link)-

id = String.slice(link, 28..-1)-

RDFGraph.write_graph(result.body, "walk/" <> id <> ".ttl")-

graph = RDF.Turtle.read_string!(result.body)-

query = ~S"""10

PREFIX dbo: <http://dbpedia.org/ontology/>-

SELECT DISTINCT ?new_link-

WHERE-

{-

BIND (<LINK> AS ?link)15

?link dbo:wikiPageWikiLink ?new_link-

}-

"""-

query = String.replace(query, "LINK", link)-

list = SPARQL.execute_query(graph, query) |>20

SPARQL.Query.Result.get(:new_link)-

if Enum.empty?(list) do-

:ok-

else-

link = Enum.random(list) |> RDF.IRI.to_string25

walk_links(link, count + 1)-

end-

end-

Chapter 8. Querying RDF with SPARQL • 160

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/examples/walk_links.ex
http://media.pragprog.com/titles/thgraphs/code/apps/rdf_graph/lib/rdf_graph/examples/walk_links.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

This is similar to the walk_query/2 function we discussed earlier in Case #2:
Graph Walk (Querying), on page 156). There are two main differences though.
After line 5, where we write out the node link, there is a short section between
lines 6 and 9 where we first use Tesla.get/1 to retrieve the document at link. Then
we get the local ID by stripping out the "http://dbpedia.org/resource/" namespace,
which we can then use as a filename for saving the document into our RDF
storage. Then finally, at line 9 we read the RDF Turtle in the document into
a graph variable.

The second difference is at line 20 where we use SPARQL.execute_query/2 to apply
our query against the graph, but this time, the query is local and is run against
the in-memory graph, rather than querying DBpedia itself.

OK, it’s time to try this out. To make things simpler, let’s import the module:

iex> import RDFGraph.Examples.WalkLinks
RDFGraph.Examples.WalkLinks

Let’s try first with our default resource:

iex> walk_links
http://dbpedia.org/resource/Bob_Dylan
http://dbpedia.org/resource/Cinéma_vérité
http://dbpedia.org/resource/Dziga_Vertov
http://dbpedia.org/resource/Ukrainian_language
http://dbpedia.org/resource/Vistula_Land
http://dbpedia.org/resource/Scorched_earth
http://dbpedia.org/resource/1999_East_Timorese_crisis
:ok

And try again. This time we hit a dead end:

iex> walk_links
http://dbpedia.org/resource/Bob_Dylan
http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/resource/Category:17th-century_English_male_actors
:ok

Now try with a new start node:

iex> walk_links "http://dbpedia.org/resource/Renoir"
http://dbpedia.org/resource/Renoir
http://dbpedia.org/resource/Pierre-Auguste_Renoir
http://dbpedia.org/resource/Diego_Velázquez
http://dbpedia.org/resource/Hans-Adam_II,_Prince_of_Liechtenstein
http://dbpedia.org/resource/Prince_Alfred_of_Liechtenstein
http://dbpedia.org/resource/Franz_Joseph_II,_Prince_of_Liechtenstein
http://dbpedia.org/resource/Liechtenstein
:ok

report erratum • discuss

Case #3: Graph Walk (Browsing) • 161

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Repeat as required.

But note that in the meantime we are also building up a small graph library
in our RDF storage:

iex> list_graphs_dir("walk")
["A&M_Records.ttl", "Barbara_Carroll.ttl", "Black_Bottom_(dance).ttl",
"Bob_Dylan.ttl", "Brian_Griffin.ttl", "Broadway_theatre.ttl",
"Bruce_Springsteen.ttl", "Carroll_Dickerson.ttl",
...
"Music_from_Big_Pink.ttl", "Satchmo.ttl",
"Sgt._Pepper's_Lonely_Hearts_Club_Band.ttl", "The_Stooges.ttl",
"Thurgood_Marshall.ttl", "Traditional_pop.ttl",
"We_Have_All_the_Time_in_the_World.ttl", "Édouard_Vuillard.ttl"]

And we can read these graphs back in and query against them.

Wrapping Up
In this chapter, we looked at the SPARQL query language and saw how it can
be used to query RDF graphs.

Specifically, we used the sparql_client package to query RDF graph services from
Elixir. (We also discussed querying in-memory RDF data structures using
the sparql package.)

We queried a local graph service using our book graph RDF model and also
a public RDF dataset for the Tokyo Metro. And since we control the local
graph service, we can also write to it. We saw an example of enriching the
RDF dataset by adding in rdf:type statements which are used for classifying
entities.

A number of public SPARQL endpoints on the web are available for querying.
We used our sparql! function to query a couple of them. First, we demonstrated
a simple “Hello World” query on DBpedia. We then tried our hand at a random
walk over DBpedia, first querying DBpedia directly and then using DBpedia’s
built-in support for linked data to browse the graph.

The special thing about RDF graphs is that they are uniquely designed for
publishing and sharing. The use of global identifiers means that any RDF
datasets from whatever source can be merged together with no supervision
at all. When you think about it, that’s heady stuff.

But we still want to cover another couple of graph query languages that we
can access from Elixir: Gremlin and GraphQL.

Chapter 8. Querying RDF with SPARQL • 162

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

CHAPTER 9

Traversing Graphs with Gremlin
Cypher and SPARQL are the two main declarative query languages for graphs,
but for directly traversing graphs, perhaps the best-known language used by
graph databases is Gremlin.1 And as an imperative language, Gremlin may
even provide a performance boost in some cases, as its execution is more
finely controlled.

Gremlin is the graph traversal language of the Apache TinkerPop project.2

This traversal language is supported on many different graph implementations
and is something of a de facto standard in the graph query landscape. So
we’ll definitely want to get acquainted with it.

We need to clarify a couple of terms: TinkerPop and TinkerGraph. TinkerPop
is the underlying graph framework that is distributed by the Apache project,
while TinkerGraph is an in-memory reference implementation that is deployed
with TinkerPop. We’ll be using TinkerGraph with our graph service.

We’re going to create our own TinkerGraph project so that we can play with
Gremlin queries. And we’ll implement a graph service for the project using
our common graph services API.

But first, let’s have a quick look at Gremlin itself.

Using Gremlin
Gremlin is a graph traversal language for property graphs that is being
developed by the Apache TinkerPop project and is supported by various graph
system vendors for both OLTP graph databases and OLAP graph processors.

1. https://tinkerpop.apache.org/gremlin.html
2. http://tinkerpop.apache.org/

report erratum • discuss

https://tinkerpop.apache.org/gremlin.html
http://tinkerpop.apache.org/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Gremlin traverses the graph by following a sequence of steps, with each step
performing a single operation on the data. The basic steps are transforms
(which modify data), filters (which exclude data), or compute steps (which
provide stats, and so on).

The Apache TinkerPop distribution is written in Java, and as such it supports
a Groovy-based query syntax with methods for steps and method chaining
for sequencing the steps. Here’s an example of a Gremlin query string piped
into a Gremlin client:

iex> "g.V().hasLabel('Book').out().values('name').dedup()" |> gremlin!
["O'Reilly Media", "Amy E. Hodler", "Mark Needham",
"The Pragmatic Bookshelf", "Ben Marx", "José Valim", "Bruce Tate",
"Ben Wilson", "Bruce Williams", "James Edward Gray II"]

We can break this down as:

1. g: use the current graph traversal
2. V(): for all nodes (that is, vertices) in the graph
3. hasLabel('Book'): filter nodes with the label Book
4. out(): traverse outgoing edges from Book nodes
5. values('name'): get the name property of the outgoing nodes
6. dedup(): deduplicate the list of names

We’ll see some more examples of this shortly.

For more information on querying with Gremlin, check out the excellent online
book “Practical Gremlin: An Apache TinkerPop Tutorial”3 by Kelvin R.
Lawrence.

Now let’s see this in practice.

Creating the TinkerGraph Project
Fortunately, there already is an Elixir package we can use to test out querying
Gremlin—the gremlex4 package by CarLabs5 which provides an Elixir client for
Apache TinkerPop. For a general introduction to Gremlex, be sure to see the
post “Introducing Gremlex” by Kevin Moore.6

3. https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
4. https://hex.pm/packages/gremlex
5. https://www.carlabs.ai/
6. https://medium.com/carlabs/introducing-gremlex-6f685adf73bd

Chapter 9. Traversing Graphs with Gremlin • 164

report erratum • discuss

https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
https://hex.pm/packages/gremlex
https://www.carlabs.ai/
https://medium.com/carlabs/introducing-gremlex-6f685adf73bd
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

TinkerGraph Project/Database Setup

See Appendix 1, Project Setups, on page 245, for details on retrieving
a working project with code and data.

And see Appendix 2, Database Setups, on page 247, for help on
setting up a local copy of Gremlin Server.

So, without further ado, let’s create a new project, TinkerGraph. Go to the
ExGraphsBook home project (see ExGraphsBook Umbrella, on page 16), cd down
into the apps directory, and open up the new TinkerGraph project:

$ mix new tinker_graph

You should have an apps directory that looks like this:

.
├── apps
│ ├── graph_commons
│ ├── native_graph
│ ├── property_graph
│ ├── rdf_graph
│ └── tinker_graph➤

Now cd into the tinker_graph directory:

.
├── lib
│ └── tinker_graph.ex
├── mix.exs
└── test

└── ...

You need to declare a dependency on gremlex by adding the line {:gremlex, "~>
0.3"} to the mix.exs file:

apps/tinker_graph/mix.exs
defp deps do

[
graph_commons
{:graph_commons, in_umbrella: true},

tinker graphs
{:gremlex, "~> 0.3"},
{:httpoison, "~> 1.8", override: true}

]
end

Note that we also added the line {:httpoison, ~> 1.8", override: true} to the mix.exs
file as gremlex has a fixed dependency for an earlier version of httpoison.

report erratum • discuss

Creating the TinkerGraph Project • 165

http://media.pragprog.com/titles/thgraphs/code/apps/tinker_graph/mix.exs
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Now use Mix to add in the dependencies:

$ mix deps.get
Resolving Hex dependencies...

Then add the connection details to your config:

config :gremlex,
host: "127.0.0.1",
port: 8182,
path: "/gremlin",
pool_size: 10,
secure: false,
ping_delay: 90_000

Finally, wire the graph storage into the TinkerGraph module with these use/2
macros:

apps/tinker_graph/lib/tinker_graph.ex
use GraphCommons.Graph, graph_type: :tinker, graph_module: __MODULE__
use GraphCommons.Query, query_type: :tinker, query_module: __MODULE__

And with that, we’re all set to do some querying.

Querying with Gremlin
Let’s start with some basic Gremlin queries to get an idea of what to expect.

The gremlex package provides two main modules: Gremlex.Graph and Gremlex.Client.

We’ll first bring these modules into our default namespace to make for easier
handling in IEx:

iex> alias Gremlex.{Client,Graph}
[Gremlex.Client, Gremlex.Graph]

Now that that’s done, here’s a sample graph build and query:

iex> Graph.g() |> Graph.add_v("Foo") |> Client.query
{:ok, [%Gremlex.Vertex{id: 0, label: "Foo", properties: %{}}]}

The Graph module supports some, but not all, Gremlin functions and is still
in early development. For the sake of brevity, we’ll focus here on sending raw
Gremlin queries using the Client module and receiving results back as Elixir
data structures.

So here’s the same graph build using a Gremlin traversal:

iex> "g.addV('Foo')" |> Client.query
{:ok, [%Gremlex.Vertex{id: 919, label: "Foo", properties: %{}}]}

Chapter 9. Traversing Graphs with Gremlin • 166

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/tinker_graph/lib/tinker_graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We’ll start by wiping the current graph:

iex> "g.V().drop()" |> Client.query
{:ok, []}

If we now inspect the Gremlin graph instance, we’ll see that it’s empty:

iex> "graph" |> Client.query
{:ok, [%{"edges" => [], "vertices" => []}]}

We can also inspect the graph traversal object:

iex> "g.toString()" |> Client.query
{:ok, ["graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]"]}

Now let’s read a graph from our graph store:

iex> IO.puts (default = read_graph("default.groovy").data)
// Default graph

a = graph.addVertex('a')
b = graph.addVertex('b')
a.addEdge('EX', b)

:ok

This is our standard default graph with two nodes and one edge:

iex> default |> Client.query
{:ok,
[

%Gremlex.Edge{
id: 949,
in_vertex: %Gremlex.Vertex{id: 948, label: "b", properties: nil},
label: "EX",
out_vertex: %Gremlex.Vertex{id: 947, label: "a", properties: nil},
properties: %{}

}
]}

We can inspect the Gremlin graph instance again:

iex> "graph" |> Client.query
{:ok,
[

%{
"edges" => [

%{
"@type" => "g:Edge",
"@value" => %{
"id" => %{"@type" => "g:Int64", "@value" => 934},
"inV" => %{"@type" => "g:Int64", "@value" => 933},
"inVLabel" => "b",
"label" => "EX",

report erratum • discuss

Querying with Gremlin • 167

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

"outV" => %{"@type" => "g:Int64", "@value" => 932},
"outVLabel" => "a"

}
}

],
"vertices" => [

%{
"@type" => "g:Vertex",
"@value" => %{
"id" => %{"@type" => "g:Int64", "@value" => 932},
"label" => "a"

}
},
%{

"@type" => "g:Vertex",
"@value" => %{
"id" => %{"@type" => "g:Int64", "@value" => 933},
"label" => "b"

}
}

]
}

]}

Now let’s query the graph traversal object for nodes:

iex> "g.V()" |> Client.query
{:ok,
[

%Gremlex.Vertex{id: 932, label: "a", properties: %{}},
%Gremlex.Vertex{id: 933, label: "b", properties: %{}}

]}

Let’s do the same for edges:

iex> "g.E()" |> Client.query
{:ok,
[

%Gremlex.Edge{
id: 934,
in_vertex: %Gremlex.Vertex{id: 933, label: "b", properties: nil},
label: "EX",
out_vertex: %Gremlex.Vertex{id: 932, label: "a", properties: nil},
properties: %{}

}
]}

Well, we’ve covered the basics. We’ll now want to create some larger graphs
and use Gremlin’s traversal object for more elaborate querying. But before
that, let’s set up our own graph service to abstract away the Gremlex API so
that we can more easily switch between different graph types.

Chapter 9. Traversing Graphs with Gremlin • 168

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Setting Up a Graph Service
As we’ve done with the previous graph types, we’ll layer our own graph service
API over the Gremlex API so that we can focus on the Gremlin query language
itself and not be concerned with the details of any particular package API.
The other reason for defining our own API is to achieve a certain brevity as
we are particularly focused on querying graphs interactively with IEx.

Graph API
We can set up our TinkerGraph graph service API by simply wrapping the Grem-
lex.Client.query/2 function. The TinkerGraph graph service functions are now defined as:

apps/tinker_graph/lib/tinker_graph/service.ex
def graph_create(graph) do

graph_delete()
graph_update(graph)

end

def graph_delete() do
Gremlex.Client.query("g.V().drop()")

end

def graph_read() do
end

def graph_update(%GraphCommons.Graph{type: :tinker} = graph) do
Gremlex.Client.query(graph.data)

end

This gives us our basic graph service API.

Graph Info
We’ll also want a graph_info/0 function:

apps/tinker_graph/lib/tinker_graph/service.ex
def graph_info() do

{:ok, [num_vertices]} = Gremlex.Client.query("g.V().count()")
{:ok, vertex_labels} = Gremlex.Client.query("g.V().label().dedup()")
{:ok, [num_edges]} = Gremlex.Client.query("g.E().count()")
{:ok, edge_labels} = Gremlex.Client.query("g.E().label().dedup()")

%GraphCommons.Service.GraphInfo{
type: :tinker,
num_nodes: num_vertices,
num_edges: num_edges,
labels: vertex_labels ++ edge_labels

}
end

This gives us a simple means to introspect graphs.

report erratum • discuss

Setting Up a Graph Service • 169

http://media.pragprog.com/titles/thgraphs/code/apps/tinker_graph/lib/tinker_graph/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/tinker_graph/lib/tinker_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Query API
Finally, let’s create a couple of simple wrappers for our query functions:

apps/tinker_graph/lib/tinker_graph/service.ex
def query_graph(%GraphCommons.Query{type: :tinker} = query) do

Gremlex.Client.query(query.data)
end

def query_graph!(%GraphCommons.Query{type: :tinker} = query) do
Gremlex.Client.query(query.data)
|>
case do

{:ok, response} -> response
{:error, message} -> raise "! #{message}"

end
end

OK, we’re good to query.

But let’s add one last touch. As before, we can define a query helper gremlin!/1
in GraphCommons.Utils as:

apps/graph_commons/lib/graph_commons/utils.ex
def gremlin!(query_string), do: to_query_graph!(TinkerGraph, query_string)

This function takes a query string and calls the private function to_query_graph!/1
(also in GraphCommons.Utils) to convert the query string into a %GraphCommons.Query
struct:

apps/graph_commons/lib/graph_commons/utils.ex
defp to_query_graph!(graph_module, query_string)

when is_module(graph_module) do
query_string
|> graph_module.new_query()
|> graph_module.query_graph!()

end

This function uses the is_module/1 guard to ensure that the graph_module argument
is one of the valid graph modules:

apps/graph_commons/lib/graph_commons/utils.ex
defguard is_module(graph_module)

when graph_module in [DGraph, NativeGraph, PropertyGraph, RDFGraph,
TinkerGraph]

So now we’re all set to do some querying.

API Demo
Let’s try our API out. But first, let’s switch our graph context and import the
TinkerGraph module:

Chapter 9. Traversing Graphs with Gremlin • 170

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/tinker_graph/lib/tinker_graph/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/utils.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/utils.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/lib/graph_commons/utils.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> graph_context TinkerGraph
TinkerGraph

We’ll need some data, so let’s reload our default graph from the graph store.

iex> graph_create read_graph("default.groovy")
{:ok,
[

%Gremlex.Edge{
id: 937,
in_vertex: %Gremlex.Vertex{id: 936, label: "b", properties: nil},
label: "EX",
out_vertex: %Gremlex.Vertex{id: 935, label: "a", properties: nil},
properties: %{}

}
]}

Now we can query this simply as:

iex> "g.V()" |> gremlin!
[

%Gremlex.Vertex{id: 3, label: "a", properties: %{}},
%Gremlex.Vertex{id: 4, label: "b", properties: %{}}

]

This gives us the nodes in the graph.

And to get the edges we can query as:

iex> "g.E()" |> gremlin!
[

%Gremlex.Edge{
id: 2,
in_vertex: %Gremlex.Vertex{id: 1, label: "b", properties: nil},
label: "EX",
out_vertex: %Gremlex.Vertex{id: 0, label: "a", properties: nil},
properties: %{}

}
]

Now let’s get some counts:

iex> "g.V().count()" |> gremlin!
[2]

iex> "g.E().count()" |> gremlin!
[1]

That’s right—we have two nodes and one edge, exactly as we expected.

We’re able to read and write into our graph service and query over that. So
let’s move on to a slightly larger graph.

report erratum • discuss

Setting Up a Graph Service • 171

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Creating the Book Graph
In this section, we’re going to use Gremlin to query over the book graph we’ve
been using as our reference graph. We’ll also see how that differs from the
other query languages we’ve seen.

As Gremlin models a property graph, we can expect our graph model to be
pretty much the same as the one we modeled earlier with Cypher—see Mod-
eling the Book Graph, on page 98, for a reminder of how that looked.

We can simply create our book graph in Gremlin, using the addVertex and addEdge
steps on our graph instance and listing out the properties on both nodes and edges:

// Book 1
adopting_elixir = graph.addVertex(label, 'Book',

'id', 'adopting_elixir',
'date', '2018-03-14',
'format', 'Paper',
'isbn', '978-1-68050-252-7',
'title', 'Adopting Elixir',
'url', 'https://pragprog.com/titles/tvmelixir/adopting-elixir/',

)
ben_marx = graph.addVertex(label, 'Author',

'id', 'ben_marx',
'name', 'Ben Marx',
'url', 'https://twitter.com/bgmarx',

)
jose_valim = graph.addVertex(label, 'Author',

'id', 'jose_valim',
'name', 'José Valim',
'url', 'https://twitter.com/josevalim',

)
bruce_tate = graph.addVertex(label, 'Author',

'id', 'bruce_tate',
'name', 'Bruce Tate',
'url', 'https://twitter.com/redrapids',

)
pragmatic = graph.addVertex(label, 'Publisher',

'id', 'pragmatic',
'name', 'The Pragmatic Bookshelf',
'url', 'https://pragprog.com/',

)

// add edges
adopting_elixir.addEdge('AUTHOR', ben_marx,

'role', 'first author',
)
adopting_elixir.addEdge('AUTHOR', jose_valim,

'role', 'second author',
)

Chapter 9. Traversing Graphs with Gremlin • 172

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

adopting_elixir.addEdge('AUTHOR', bruce_tate,
'role', 'third author',

)
adopting_elixir.addEdge('PUBLISHER', pragmatic,
)
pragmatic.addEdge('BOOK', adopting_elixir,
)

// Book 2
...

Let’s save this down into the graph store in the file books.groovy. We can now
load this into our graph service as:

iex> graph_create read_graph("books.groovy")
{:ok,
[

%Gremlex.Edge{
...

}
]}

And we can check the status of our graph service as:

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: nil,
labels: ["Book", "Author", "Publisher", "AUTHOR", "PUBLISHER", "BOOK"],
num_edges: 17,
num_nodes: 14,
type: :tinker

}

Now let’s query the book graph using the graph traversal object. Let’s check
on one of the authors using the name property:

iex> "g.V().has('name', 'Ben Marx').values('name')" |> gremlin!
["Ben Marx"]

Yup, he’s there.

We can list out properties for this author as:

iex> "g.V().has('name', 'Ben Marx').properties()" |> gremlin!
[

%Gremlex.VertexProperty{
id: 845,
label: "url",
value: "https://twitter.com/bgmarx",
vertex: nil

},

report erratum • discuss

Creating the Book Graph • 173

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

%Gremlex.VertexProperty{
id: 846,
label: "name",
value: "Ben Marx",
vertex: nil

},
%Gremlex.VertexProperty{

id: 402,
label: "id",
value: "ben_marx",
vertex: nil

}
]

And if we want to list all the author names, we can query for the label Author
and get the name property:

iex> "g.V().hasLabel('Author').values('name')" |> gremlin!
["Amy E. Hodler", "Mark Needham", "Ben Marx", "José Valim", "Bruce Tate",
"Bruce Williams", "Ben Wilson", "James Edward Gray II"]

As a property graph query, let’s say we want to get all the third authors of
our books by querying for edges with a third_author value for the role property:

iex> "g.E().has('role', 'third author')" |> gremlin!
[

%Gremlex.Edge{
id: 861,
in_vertex: %Gremlex.Vertex{id: 851, label: "Author", properties: nil},
label: "AUTHOR",
out_vertex: %Gremlex.Vertex{id: 837, label: "Book", properties: nil},
properties: %{}

}
]

Note that this gives us the edges, but we want to just get the in_vertex:

iex> "g.E().has('role', 'third author').inV().values('name')" |> gremlin!
["Bruce Tate"]

At this point, you’ll probably want to go off and create some more interesting
graphs to query against. Gremlin is a rich query language with plenty to learn.

Wrapping Up
In this chapter, we’ve seen how to use the graph traversal language Gremlin
from Elixir.

We’ve used the gremlex package to query against a TinkerGraph model main-
tained by a local Gremlin Server. As before, we built a graph service to abstract

Chapter 9. Traversing Graphs with Gremlin • 174

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

away the specific interface details so that we could focus more on the graph
model and query language.

We’ve also seen how our reference book graph can be modeled using Gremlin’s
query syntax, and we tried out some queries to get an overall feel for what
this looks like in practice.

Truth be told, we could spend a lot more time experimenting with Gremlin
and graph traversals, but I’m sure we’re eager at this point to continue with
the last of the graph query types we’ll be meeting in this book—GraphQL.

report erratum • discuss

Wrapping Up • 175

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

CHAPTER 10

Delivering Data with Dgraph
These days whenever we talk about web APIs, GraphQL1 invariably springs
to mind. Created by Facebook and open-sourced since 2015, GraphQL sup-
ports data access through APIs for reading, writing, and subscribing to
changes to data.

It sounds like we have a new graph query language to play with. But despite
the suggestive name, GraphQL isn’t strictly a query language for graphs. The
name comes from its ability to query over a mixed-source object graph,
although it isn’t limited to any particular backend data model. Rather it
defines a query interface in which queries are tree-shaped affairs and result
sets are returned as document trees. Users get to specify the data items and
the shapes that they need. In short, GraphQL acts essentially like a mixing
desk for data.

It would be great if there were a GraphQL interface to an actual graph
database. Enter Dgraph.

Dgraph2 is a transaction-distributed graph database. It is written in Go and
is open-sourced under the Apache 2.0 license. It shards data horizontally
and provides shard rebalancing with an automated synchronous replication.
With its flexible schema model, it can break queries down and run them in
parallel to achieve low latency and reliably high throughput.

Dgraph has developed its own variant of GraphQL, originally named
GraphQL+- and now renamed DQL (Dgraph Query Language), which it has
tailored specifically for graph databases.

1. https://graphql.org/
2. https://dgraph.io/

report erratum • discuss

https://graphql.org/
https://dgraph.io/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

What Is GraphQL?

GraphQL provides a graph layer over backend data sources and
provides a query language that traverses the data graph to produce
a query result tree. In the case of Dgraph, however, there is no
abstraction layer, and the query language interrogates a graph
database directly.

For more information about using GraphQL with Elixir, see Craft
GraphQL APIs in Elixir with Absinthe [WW18] by Bruce Williams
and Ben Wilson.

With a couple of Elixir packages for interfacing to Dgraph, this looks like an
excellent opportunity for us to contrast a GraphQL-like query syntax with
SQL-based query syntaxes such as Cypher and SPARQL. (In passing, we note
that Dgraph has declared intentions to also provide support for Cypher and
Gremlin.)

Dgraph supports an RDF-like data ingest model, but it also supports facets
on edges similar to a regular property graph model. So it seems to be imple-
menting some kind of hybrid graph data model. Let’s see what’s going on.

But first, let’s see how DQL differs from GraphQL.

GraphQL and DQL
GraphQL provides a nested object query language that looks nominally like
a JSON template, with the resulting format being an actual JSON document.
Queries are built up from types and fields, which are declared in a schema
using GraphQL’s Schema Definition Language (SDL). GraphQL also provides
a means to modify data using what it calls mutations, which use the query
language format and tap into the schema data definitions. Queries and
mutations are also declared in the schema and may be introspected.

This gives the client a lot of flexibility in how it requests data. Clients can
query for the query forms and then request just the types and fields that they
have an interest in.

DQL extends the GraphQL query and schema styles with some additions and
omissions. It adds these features: transactions, upserts, variables (query
blocks), math functions, aggregations, group by, facets, geo, datetime, and
i18n. The removed features include enums, interfaces, unions, strong types,
and introspection.

Chapter 10. Delivering Data with Dgraph • 178

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

For more information, see the blog post “Building a Native GraphQL Database:
Challenges, Learnings and Future” by Manish Jain,3 and also the article “New
to Dgraph? DQL vs. GraphQL, Endpoints, Headers, and Schema Translation”
by Anthony Master.4

Let’s take a look now at DQL and the Dgraph data model.

Dgraph Model
The Dgraph data model is a little curious. Superficially, it resembles RDF in
that nodes connect to both nodes and literal values via edges. But critically,
it does away with RDF’s key feature—external IDs. This is the very feature
that allows for web-scale data integration. As such, it corresponds to an RDF
that uses blank nodes.

Dgraph’s Take on RDF

Dgraph uses an RDF-like N-Triples syntax for data mutations. (The
documentation talks about N-Quads, although all the examples are
in N-Triples format.) Note that this isn’t strictly RDF as properties
are typically expressed using local names, whereas RDF requires
properties to be identified using absolute URI names. Be warned also
that this RDF mutation format won’t validate with an RDF parser. It
does, however, provide a simple means of expressing edges.

Mutation
To update data in Dgraph or add new data, we need to perform a mutation.
Dgraph has two mutation formats: RDF and JSON. We’ll show the RDF format
here because it’s more compact.

This is what a simple graph looks like in Dgraph’s RDF mutation format:

{
set {

triples in here
}

}

And here are the RDF triples:

object predicates
_:n1 <FOO> _:m1 .
_:n1 <FOO> _:m2 .

3. https://dgraph.io/blog/post/building-native-graphql-database-dgraph/
4. https://discuss.dgraph.io/t/new-to-dgraph-dql-vs-graphql-endpoints-headers-and-schema-translation/10443

report erratum • discuss

Dgraph Model • 179

https://dgraph.io/blog/post/building-native-graphql-database-dgraph/
https://discuss.dgraph.io/t/new-to-dgraph-dql-vs-graphql-endpoints-headers-and-schema-translation/10443
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

string predicates
_:n1 <foo> "bar" .
_:n1 <foo> "baz" .

Here we have one node _:n1 that links to nodes _:m1 and _:m2 via the <FOO>
object predicate. It also adds two simple string values via the <foo> string
predicate. We’re using a simple convention here with object predicates labeled
in uppercase and string predicates labeled in lowercase, although this isn’t
required. In fact, the only real difference between the two is that object pred-
icates are of type uid whereas string values are one of the scalar types such
as int or string.

The example shows one main divergence from the property graph model. Like
the RDF graph model, properties are added as edges pointing at literal values,
rather than being attributes of the node itself.

And in a nod to the property graph model, Dgraph supports properties on
edges via facets. This is what facets look like in Dgraph’s RDF mutation format:

object predicates
_:n1 <FOO> _:m1 (test="one") .
_:n1 <FOO> _:m2 (test="two") .

string predicates
_:n1 <foo> "bar" (test="three") .
_:n1 <foo> "baz" (test="four") .

Here we’ve added a facet test to the edges with string values.

Schema
A Dgraph schema lists out the predicates and types separately. Predicates
are indicated using the following form, which declares the scalar type:

FOO: uid .
foo: string .

These may be further enhanced using directives to specify indexing and other
features, for example:

foo: string @index(term).

Object types are defined using a GraphQL-like syntax:

type Test {
FOO
foo

}

Each attribute in an object type will have a predicate definition.

Chapter 10. Delivering Data with Dgraph • 180

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Schema mutations are used to add or modify a schema. If no schema is pro-
vided, then Dgraph will generate default predicate definitions. Typically,
however, a schema will be added before any data mutation.

Query
Queries in Dgraph use GraphQL’s nested object query language. They are
always named, and use one of DQL’s built-in functions:

{
test_query(func: has(foo)) {

foo
}

}

The test_query here uses the has() built-in function after a func: key and returns
all objects with a foo predicate. With the data listed earlier, this would return
the following JSON document:

{
"data": {

"test_query": [
{

"foo": "bar"
},
{

"foo": "baz"
}

]
},
...

}

Of course, there’s a lot more to DQL but this example here gives the essence
of querying in Dgraph. So, let’s set up a new project now to try this out.

Creating the DGraph Project
We’re going to be using the dlex5 package by Dmitry Russ6 which provides a
gRPC-based Dgraph client for Elixir. (This was inspired by the earlier ex_dgraph7

package by Ole Spaarmann.8)

5. https://hex.pm/packages/dlex
6. https://github.com/liveforeverx
7. https://hex.pm/packages/ex_dgraph
8. https://twitter.com/olespaarmann

report erratum • discuss

Creating the DGraph Project • 181

https://hex.pm/packages/dlex
https://github.com/liveforeverx
https://hex.pm/packages/ex_dgraph
https://twitter.com/olespaarmann
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

DGraph Project/Database Setup

See Appendix 1, Project Setups, on page 245, for details on retrieving
a working project with code and data.

And see Appendix 2, Database Setups, on page 247, for help on
setting up a local copy of Dgraph.

Let’s create a project DGraph. Go to the ExGraphsBook home project (see
ExGraphsBook Umbrella, on page 16), cd down into the apps directory, and
open up the new DGraph project:

$ mix new d_graph --sup

Note that we are using the --sup flag as we’re going to use a supervised process.
This will add in a new d_graph app:

.
├── apps
│ ├── d_graph➤

│ ├── graph_commons
│ ├── native_graph
│ ├── property_graph
│ ├── rdf_graph
│ └── tinker_graph

Let’s cd into the d_graph directory:

.
├── README.md
├── lib
│ ├── d_graph➤

│ │ └── application.ex
│ └── d_graph.ex
├── mix.exs
└── test

└── ...

Note that the --sup flag has generated an extra directory d_graph under lib with
an application.ex file. Now let’s add the :dlex dependency into mix.exs:

apps/d_graph/mix.exs
defp deps do

[
graph_commons
{:graph_commons, in_umbrella: true},

dgraph graphs
{:dlex, "~> 0.5"},
{:protobuf, "~> 0.5.0"}

]
end

Chapter 10. Delivering Data with Dgraph • 182

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/d_graph/mix.exs
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Note that we’ve also added a dependency restriction on protobuf as the latest
version isn’t compatible with dlex.

As usual, use Mix to add in the dependencies:

$ mix deps.get; mix deps.compile

We’ll also need to start up our DGraph.Application module:

def application do
[

extra_applications: [:logger],
mod: { DGraph.Application, [] }➤

]
end

The :mod option specifies the application callback module, followed by any
arguments to be passed on application start. The application callback module
is any module that implements the Application behaviour.

And we update the start/2 function in lib/d_graph/application.ex as:

apps/d_graph/lib/d_graph/application.ex
def start(_type, _args) do

children = [
{Dlex, Application.get_env(:dlex, Dlex, [])},

]

opts = [strategy: :one_for_one, name: DGraph.Service]
{:ok, pid} = Supervisor.start_link(children, opts)➤

[{_, child_pid, _, _}] = Supervisor.which_children(pid)
Application.put_env(:dlex, PID, child_pid)
{:ok, pid}

end

The application will now be started automatically.

Note that we get the pid of the supervisor process and use that to get the
child_pid of the Dlex process which we then save into our application envi-
ronment.

We can then define a simple get_pid/0 accessor function in a DGraph.Service
module:

apps/d_graph/lib/d_graph/service.ex
def get_pid() do

Application.get_env(:dlex, PID)
end

report erratum • discuss

Creating the DGraph Project • 183

http://media.pragprog.com/titles/thgraphs/code/apps/d_graph/lib/d_graph/application.ex
http://media.pragprog.com/titles/thgraphs/code/apps/d_graph/lib/d_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Whenever we want a database connection, we can simply call this function:

iex> conn = DGraph.Service.get_pid
#PID<0.284.0>

Finally, let’s wire our graph storage into the DGraph module with these use/2
macros:

apps/d_graph/lib/d_graph.ex
use GraphCommons.Graph, graph_type: :dgraph, graph_module: __MODULE__
use GraphCommons.Query, query_type: :dgraph, query_module: __MODULE__

At this point, we’re all set to store and query our first graph. We’ll start by
opening up a new IEx session and getting our database connection:

iex> conn = DGraph.Service.get_pid
#PID<0.378.0>

To ensure we start off with a clean slate, let’s drop any previous schemas and
data:

iex> Dlex.alter!(conn, %{drop_all: true})
""

We can now define our default graph with two nodes and one edge between
them and use the Dlex.mutate/2 function to ingest it:

iex> default = "_:a <EX> _:b ."
"_:a <EX> _:b ."

iex> Dlex.mutate(conn, %{set: default})
{:ok, %{queries: %{}, uids: %{"a" => "0x4fff", "b" => "0x5000"}}}

We can go ahead and query as follows:

iex> default_q = """
...> {
...> q(func: has(EX)) {
...> uid
...> EX { uid }
...> }
...> }
...> """
"{\n q(func: has(EX)) {\n uid\n EX { uid }\n }\n}\n"

iex> Dlex.query(conn, default_q)
{:ok, %{"q" => [%{"EX" => [%{"uid" => "0x5000"}], "uid" => "0x4fff"}]}}

You can see that Dgraph has automatically added a predicate EX to the schema:

iex> Dlex.query(conn, "schema {}")
{:ok,
%{

Chapter 10. Delivering Data with Dgraph • 184

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/d_graph/lib/d_graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

"schema" => [
%{"list" => true, "predicate" => "EX", "type" => "uid"},
...

],
"types" => [

...
]

}}

Note that there is a handy wrapper Dlex.query_schema/1 function which will return
the same result. But the basic Dlex.query/4 function allows us to query our
schema by predicate or type with pred and type args, respectively:

iex> Dlex.query(conn, "schema(pred: EX) {}")
{:ok,
%{"schema" => [%{"list" => true, "predicate" => "EX", "type" => "uid"}]
}}

So that’s a quick run-through of some of the standard Dlex library functions.
Now we’re going to hide them away behind our common graph services API.

Setting Up a Graph Service
To use the graph services API, we’re going to define some wrapper functions
for the Dlex library functions.

Schema API
First, let’s add a special function to the DGraph.Service module to upload our
Dgraph schema:

apps/d_graph/lib/d_graph/service.ex
def schema_update(%GraphCommons.Graph{} = graph) do

Dlex.alter(DGraph.Service.get_pid(), graph.data)
end

We’ll use a %GraphCommons.Graph{} struct to hold the schema data, which we’ll
access with the usual read_graph/1 function. We can then retrieve the schema
body and pass that to Dlex.alter/3.

Graph API
The graph service functions are simply defined as:

apps/d_graph/lib/d_graph/service.ex
def graph_create(graph) do

graph_delete()
graph_update(graph)

end

report erratum • discuss

Setting Up a Graph Service • 185

http://media.pragprog.com/titles/thgraphs/code/apps/d_graph/lib/d_graph/service.ex
http://media.pragprog.com/titles/thgraphs/code/apps/d_graph/lib/d_graph/service.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

def graph_delete() do
Dlex.alter!(DGraph.Service.get_pid(), %{drop_all: true})

end

def graph_read() do
#

end

def graph_update(%GraphCommons.Graph{} = graph) do
Dlex.mutate(DGraph.Service.get_pid(), %{set: graph.data})

end

Note that with graph_delete/0 we clear both schemas and data.

Query API
Let’s also create a simple wrapper for our query function:

def query_graph(%GraphCommons.Query{} = query) do
:dgraph = query.type

Dlex.query(DGraph.Service.get_pid(), query.data)
|> case do

{:ok, response} -> response
{:error, error} -> raise "! #{inspect error}"

end
end

And as before, we can define a query helper for this as:

def dgraph!(query_string), do: to_query_graph(DGraph, query_string)

API Demo
Let’s try our API out. But first, let’s switch our graph context and import the
DGraph module:

iex> graph_context DGraph
DGraph

We’ll need some data, so let’s reload our default graph.

iex> read_graph("default.dgraph") |> graph_create
{:ok, %{queries: %{}, uids: %{"a" => "0x4eba", "b" => "0x4ebb"}}}

Now we can query this using one of two built-in functions: has() or uid(). The
has() function will query over a predicate, while the uid() function will query
over a node UID. (And if we had defined custom types, we could have used a
type() function.)

Let’s try both approaches. First, we’ll try querying by predicate EX:

Chapter 10. Delivering Data with Dgraph • 186

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> """
...> {
...> q(func: has(EX)) {
...> uid
...> EX { uid }
...> }
...> }
...> """ |> dgraph!

%{"q" => [%{"EX" => [%{"uid" => "0x4ebb"}], "uid" => "0x4eba"}]}

Now that we have the UIDs we can query by UID:

iex> """
...> {
...> q(func: uid(0x4eba)) {
...> uid
...> EX { uid }
...> }
...> }
...> """ |> dgraph!
%{"q" => [%{"EX" => [%{"uid" => "0x4ebb"}], "uid" => "0x4eba"}]}

Yes, this works just fine. We are ready to query. So now we need some graphs.

Modeling the Book Graph
Once again, let’s go back to our book graph—see this figure on page 9 which
shows our reference book graph.

The following figure shows how this reference graph can be mapped in Dgraph.

AUTHOR

AUTHOR

AUTHOR

PUBLISHER

BOOK

Publisher

Book

Author
dgraph.type

dgraph.type

dgraph.type

dgraph.type

dgraph.type

report erratum • discuss

Modeling the Book Graph • 187

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Note that this resembles the RDF graph but with properties added to the
edges.

We have some choices in how we load our book graph. We can load the data
directly, and Dgraph will auto-generate predicates for us. A more principled
way of proceeding would be to define a schema with types and predicates and
to load that first.

Again, we have another choice. We can define a GraphQL schema, and Dgraph
will auto-generate a DQL schema, or we can define a DQL schema and use
that directly. We’re going to look at both approaches to creating a DQL schema.

Loading a Schema into Dgraph
Let’s have a look at a simple GraphQL schema for our book graph:

type Book {
id: ID!
date: DateTime
format: String
isbn: String
title: String! @search(by: [term])
url: String
AUTHORED_BY: [Author]!
PUBLISHED_BY: Publisher!

}

type Author {
id: ID!
name: String! @search(by: [term])
url: String

}

type Publisher {
id: ID!
name: String! @search(by: [term])
url: String

}

Here we’ve defined three types (Author, Book, and Publisher) with the fields we
require.

We can post this up to the /admin/schema endpoint using Postman or some
other tool. This will auto-generate a DQL schema which can be inspected
from our service using Dlex:

iex> "schema(pred: Author.url) {}" |> dgraph!
%{"schema" => [%{"predicate" => "Author.url", "type" => "string"}]}

Chapter 10. Delivering Data with Dgraph • 188

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> "schema(type: Author) {}" |> dgraph!
%{

"types" => [
%{
"fields" => [%{"name" => "Author.name"}, %{"name" => "Author.url"}],
"name" => "Author"

}
]

}

One thing to note is that Dgraph adds a type namespace to auto-generated
DQL predicates, that is title becomes Author.title. We can override this action by
using a @dgraph directive as follows:

title: String! @search(by: [term]) @dgraph(pred: "title")

We can add this to each of the predicates if we want to use simple predicate
names.

The advantage of using a GraphQL schema is that we’ll be then able to query
Dgraph using its GraphQL endpoint (/graphql) with standard tools such as
GraphiQL or Insomnia.

But let’s put that aside and focus on querying with DQL and let’s ingest a
DQL schema. This is similar to the GraphQL schema but the predicates and
types are separately specified:

iex> IO.puts (books_schema = read_graph("schemas/books.schema")).data
date: dateTime .
format: string @index(term) .
isbn: string @index(exact) .
name: string @index(term) .
title: string @index(term) .
url: string @index(exact) .

AUTHORED_BY: [uid] .
PUBLISHED_BY: [uid] .

type Book {
date
format
isbn
title
url
AUTHORED_BY
PUBLISHED_BY

}

type Author {
name
url

}

report erratum • discuss

Modeling the Book Graph • 189

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

type Publisher {
name
url

}

:ok

iex> books_schema |> schema_update
{:ok, ""}

And we can query the predicates and types again as shown earlier.

Loading Data into Dgraph
We’ll now want to load some data. We’re going to use our standard book graph
which is expressed in Dgraph’s RDF mutation format:

iex> IO.puts (books_graph = read_graph "books.dgraph").data
Book 1
_:adopting-elixir <date> "2018-03-14" .
_:adopting-elixir <format> "Paper" .
_:adopting-elixir <isbn> "978-1-68050-252-7" .
_:adopting-elixir <title> "Adopting Elixir" .
_:adopting-elixir <url> "https://pragprog.com/titles/tvmelixir/adopting-elixir/" .
_:adopting-elixir <dgraph.type> "Book" .

_:bgmarx <name> "Ben Marx" .
_:bgmarx <url> "https://twitter.com/bgmarx" .
_:bgmarx <dgraph.type> "Author" .

_:josevalim <name> "José Valim" .
_:josevalim <url> "https://twitter.com/josevalim" .
_:josevalim <dgraph.type> "Author" .

_:redrapids <name> "Bruce Tate" .
_:redrapids <url> "https://twitter.com/redrapids" .
_:redrapids <dgraph.type> "Author" .

_:pragprog <name> "The Pragmatic Bookshelf" .
_:pragprog <url> "https://pragprog.com/" .
_:pragprog <dgraph.type> "Publisher" .

_:adopting-elixir <AUTHORED_BY> _:bgmarx (role="first author") .➤

_:adopting-elixir <AUTHORED_BY> _:josevalim (role="second author") .
_:adopting-elixir <AUTHORED_BY> _:redrapids (role="third author") .
_:adopting-elixir <PUBLISHED_BY> _:pragprog .
...

:ok

You’ll notice that a fourth term is present in the mutation format for facets
as highlighted.

Let’s load this into our graph service:

Chapter 10. Delivering Data with Dgraph • 190

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> graph_update books_graph
{:ok,
%{

queries: %{},
uids: %{

"JEG2" => "0x4fa7",
"adopting-elixir" => "0x4fa0",
"amyhodler" => "0x4fab",
"benwilson512" => "0x4faa",
"bgmarx" => "0x4fa9",
"craft-graphql" => "0x4fa3",
"designing-elixir" => "0x4fa5",
"graph-algorithms" => "0x4fa8",
"josevalim" => "0x4fa1",
...

}
}}

Querying Dgraph
We’re ready to do some querying. Let’s read back a query that we saved earlier:

iex> IO.puts (query = read_query("books.dql")).data
{

books(func: type(Book)) {
uid
date
format
isbn
title
url
AUTHORED_BY { uid expand(_all_)} @facets(role)
PUBLISHED_BY { uid expand(_all_)}

}
}

:ok

iex> result = query.data |> dgraph!
%{

"books" => [
%{
"AUTHORED_BY" => [

%{
"AUTHORED_BY|role" => "second author",
"name" => "José Valim",
"url" => "https://twitter.com/josevalim",
"uid" => "0x4fa1"

},
%{

"AUTHORED_BY|role" => "third author",
"name" => "Bruce Tate",

report erratum • discuss

Modeling the Book Graph • 191

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

"url" => "https://twitter.com/redrapids",
"uid" => "0x4fa6"

},
%{

"AUTHORED_BY|role" => "first author",
"name" => "Ben Marx",
"url" => "https://twitter.com/bgmarx",
"uid" => "0x4fa9"

}
],
"PUBLISHED_BY" => [

%{
"name" => "The Pragmatic Bookshelf",
"url" => "https://pragprog.com/",
"uid" => "0x4fa2"

}
],
"date" => "2018-03-14T00:00:00Z",
"format" => "Paper",
"isbn" => "978-1-68050-252-7",
"title" => "Adopting Elixir",
"url" => "https://pragprog.com/titles/tvmelixir/adopting-elixir/",
"uid" => "0x4fa0"

},
...

]
}

Note that the edge properties (facets) are included in this response by
namespacing the facet name with the predicate name, that is AUTHORED_BY|role.

Facets
Now let’s look at querying over facets. Let’s say we want to find all books with
second authors. Well, we can filter on a predicate using a @facets directive:

iex> IO.puts (q = read_query("books_facets.dql")).data
{

q(func: has(title)) {
uid
title
AUTHORED_BY @facets(eq(role, "second author")) {
uid
name

}
}

}

:ok

Chapter 10. Delivering Data with Dgraph • 192

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> q.data |> dgraph!
%{

"q" => [
%{
"AUTHORED_BY" => [%{"name" => ["José Valim"], "uid" => "0x4f0e"}],
"title" => "Adopting Elixir",
"uid" => "0x4f07"

},
%{
"AUTHORED_BY" => [%{"name" => ["Bruce Tate"], "uid" => "0x4f08"}],
"title" => "Designing Elixir Systems with OTP",
"uid" => "0x4f10"

},
...

]
}

It works. We can query by facets. It’s time now for another graph.

Reaching Back to the ARPANET
We’re going to revisit another graph we’ve seen before, the ARPANET, and
look at some additional DQL features: inverses, paths, and recursion. So,
let’s set up a Dgraph schema for this.

We start by clearing out the graph service of schemas and data:

iex> graph_delete
""

We can now read our Dgraph schema from the graph store:

iex> IO.puts (arpa70_schema = read_graph "schemas/arpa70.schema").data
name: string @index(term) .
type: string @index(term) .

H_LINK: [uid] @reverse .
N_LINK: [uid] .

type Host {
name
type
<~H_LINK>

}

type Node {
name
type
N_LINK

}

:ok

report erratum • discuss

Reaching Back to the ARPANET • 193

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

No surprise here, apart from the @reverse directive set on the H_LINK predicate.
Also, note the ~ syntax used to indicate an inverse predicate in the type Host.
We can add this schema using our schema_update/1 function:

iex> schema_update arpa70_schema
{:ok, ""}

Now we’re ready to ingest our ARPANET graph. We’ll read that back from the
graph store:

iex> IO.puts (arpa70 = read_graph "arpa70.dgraph").data
...
SEGMENT 1 - Outer Circuit (Clockwise from UCLA to RAND)

Site: UCLA

_:ucla <dgraph.type> "Node" .
_:ucla <type> "IMP" .
_:ucla <name> "UCLA" .
_:ucla_h1 <dgraph.type> "Host" .
_:ucla_h1 <name> "360/91" .
_:ucla_h2 <dgraph.type> "Host" .
_:ucla_h2 <name> "XDS SIGMA7" .
_:ucla_h1 <H_LINK> _:ucla .
_:ucla_h2 <H_LINK> _:ucla .
...

SEGMENT 1 - Outer Circuit (Clockwise from UCLA to RAND)
_:ucla <N_LINK> _:sri .
_:sri <N_LINK> _:utah .
_:utah <N_LINK> _:mit .
_:mit <N_LINK> _:lincoln .
_:lincoln <N_LINK> _:case .
_:case <N_LINK> _:carnegie .
_:carnegie <N_LINK> _:harvard .
_:harvard <N_LINK> _:bbn .
_:bbn <N_LINK> _:rand .
...

:ok

And we can ingest the graph:

iex> graph_update arpa70
{:ok,
%{

queries: %{},
uids: %{
"sri" => "0x5088",
"ucsb_h1" => "0x5089",
"harvard_h1" => "0x5096",
"lincoln_h1" => "0x5098",
"ucsb" => "0x508c",

Chapter 10. Delivering Data with Dgraph • 194

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

"case" => "0x50a3",
"ucla_h2" => "0x50aa",
"rand" => "0x50a0",
"sdc_h1" => "0x5087",
...
}

}}

So we can now query for all ARPANET nodes and the hosts attached to them
by using a query like this:

iex> IO.puts (query = read_query("arpa70.dql")).data
{

arpa70(func: type(Node)) {
uid
name
type
<~H_LINK> { uid expand(_all_)}
N_LINK { uid expand(_all_)}

}
}

:ok

Sending that query we get a result set as follows:

iex> query.data |> dgraph!
%{

"arpa70" => [
%{
"N_LINK" => [%{"name" => "SRI", "type" => "IMP", "uid" => "0x4ff4"}],
"name" => "STANFORD",
"type" => "IMP",
"uid" => "0x4fd7",
"~H_LINK" => [%{"name" => "PDP-10", "uid" => "0x4fd8"}]

},
%{
"N_LINK" => [

%{"name" => "RAND", "type" => "IMP", "uid" => "0x4fe1"},
%{"name" => "MIT", "type" => "IMP", "uid" => "0x4fe3"}

],
"name" => "BBN",
"type" => "IMP",
"uid" => "0x4fdc",
"~H_LINK" => [

%{"name" => "DDP-516", "uid" => "0x4fd6"},
%{"name" => "PDP-10", "uid" => "0x4fe0"}

]
},
...

]
}

report erratum • discuss

Reaching Back to the ARPANET • 195

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

The next thing to try with DQL is path queries.

Paths
With DQL we can also do shortest path queries as:

iex> IO.puts (path_query = read_query "arpa70-path.dql").data
{

A as var(func: eq(name, "HARVARD"))
B as var(func: eq(name, "UCLA"))

path as shortest(from: uid(A), to: uid(B), numpaths: 1) {
N_LINK

}
path(func: uid(path)) {

name
}

}

:ok

Note that we’re using the query variables A, B, and path.

iex> path_query.data |> dgraph!
%{

"_path_" => [
%{
"N_LINK" => %{

"N_LINK" => %{"N_LINK" => %{"uid" => "0x4fe7"}, "uid" => "0x4fe1"},
"uid" => "0x4fdc"

},
"_weight_" => 3.0,
"uid" => "0x4ff9"

}
],
"path" => [

%{"name" => "HARVARD"},
%{"name" => "BBN"},
%{"name" => "RAND"},
%{"name" => "UCLA"}

]
}

So that’s how we do path queries.

Recursion
Sometimes we’ll want to follow a predicate until we reach a boundary in the
graph (no further edges) or until some depth has been met. We can do this
with the @recurse directive:

Chapter 10. Delivering Data with Dgraph • 196

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> q = """
...> {
...> q(func: has(type), first: 1) @recurse(depth: 5, loop: true)
...> {
...> uid
...> expand(_all_)
...> }
...> }
...> """
"{\n q(func: has(type), first: 1) @recurse(depth: 5, loop: true)

{\nuid\n expand(_all_)\n }\n}\n"

iex> q |> dgraph!
%{

"q" => [
%{
"N_LINK" => [

%{
"N_LINK" => [
%{

"N_LINK" => [
%{
"N_LINK" => [

%{"name" => "CASE", "type" => "IMP", "uid" => "0x5078"}
],
"name" => "LINCOLN",
"type" => "IMP",
"uid" => "0x5080"

}
],
"name" => "MIT",
"type" => "IMP",
"uid" => "0x5075"

}
],
"name" => "UTAH",
"type" => "IMP",
"uid" => "0x506f"

}
],
"name" => "SRI",
"type" => "IMP",
"uid" => "0x5066"

}
]

}

Note that some care is required to keep the result set manageable and ensure
this doesn’t get out of hand.

report erratum • discuss

Reaching Back to the ARPANET • 197

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Well, this seems like a useful place to stop. We’ve seen some features that
Dgraph has to offer above and beyond GraphQL, although there is still much
more to be explored.

Wrapping Up
Let’s recap what we’ve done in this chapter. We worked with Dgraph—a
distributed graph database that supports GraphQL as a native database query
language. This is impressive as not only do we have GraphQL as a standard
API but we also have those same structures down at the database level. It’s
GraphQL all the way down.

We also tried out DQL—the Dgraph version of GraphQL. We ran those
mutations and queries using Elixir functions guided by the schemas we
created.

There’s still some way to go for Dgraph to integrate DQL and GraphQL
together. But this is a rather interesting development in graph databases that
warrants a lot more attention.

That effectively concludes our survey of the different graph models and how
to access them from Elixir. Next, we’ll move on to Part III to apply what we’ve
learned so far and to build out a couple of extended applications that deal
with graph-to-graph and graph-to-compute scenarios.

Chapter 10. Delivering Data with Dgraph • 198

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Part III

Graph to Graph

How do we repurpose graphs from one model type
to another? We’ll look at how to transform graphs
and how to move graphs from one graph database
to another.

We’ll also review how Elixir supports concurrency
by managing supervision networks. We’ll see how
to set up dynamic graphs using Elixir processes as
active graph nodes.

We’ll show these two use cases with a couple of
worked examples which should give us a good feel
for how we can work with graphs using Elixir.

CHAPTER 11

Transforming Graph Models
In Part II, we looked at different graph models, but we skimmed over how
they could be serialized and saved to our graph store. Each of these models
can be expressed in their own various ways.

In this chapter, we’ll first talk about some ways to serialize graphs and also
list the pros and cons of using common formats such as CSV for exchanging
graph data.

We’ll then go on to work through a more robust solution with the Neo4j plugin
neosemantics (n10s), which supports importing and exporting RDF graphs
into and out of a property graph store and querying RDF graph models using
the Cypher query language.

Lastly, we’ll touch briefly on the topic of federated querying, which is querying
against multiple graph databases.

Serializing Graphs
Let’s start with the main reason for wanting to serialize graphs, which is to
be able to share graphs across space (different graph databases), across time
(different graph instances), and across models (different graph data structures).

There are many different means available for expressing graphs. They extend
from visualizations and layouts to algorithms, query and data definition
languages, and dedicated graph languages and formats. Some of these are
proprietary formats or de facto standards. Others have been through the
standards mill.

We won’t be so much concerned here with visualizations as with capturing
annotations attached to the graph. The layout of graphs is a whole subject
in itself, although in Storing Graphs in the Graph Store, on page 41, we saw
one format supported by libgraph, the DOT format. The DOT language not only

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

expresses graph topologies and annotations but also provides a language for
graph layouts. Currently, the libgraph library only supports export graphs in
DOT format, so this isn’t available for use as an interchange format.

If we consider graph topology, the most common algorithms for graph repre-
sentations are the adjacency list, adjacency matrix, and incidence matrix.
These provide techniques for capturing the node and edge sets. What they
don’t especially address are the labels and attributes which are often overlaid
onto a basic graph structure—the information. We get wiring but no meaning.
These forms can be extended to capture annotations, but we are hampered
by a lack of reference implementations. This is bespoke territory. Each
application will generally need its own definition.

One example of this algorithmic approach is the edgelist, a variant of the
adjacency list, which is the other format supported in libgraph. This provides
some limited potential, but only for export. Only a serializer is provided but
no deserializer.

Moving beyond algorithms and on to data structures, a common graph
exchange format is CSV. We can use a format like CSV to encode the nodes,
edges, and attributes of a graph. The upside of this is that CSV is a common
format for data interchange. The downside is that the details of how those
graph elements are arranged in the CSV form are application-dependent. The
contract is with the importing database and not with the serialization format.

A good example of this is the CSV import and export capability in Neo4j. Note
that this is defined for Neo4j only. We’d need to construct a CSV instance
according to the prevailing Neo4j specifications. This would be one way to
import into and export from a Neo4j database, but it’s somewhat brittle.

Further along, we have attempts at specific languages for expressing graphs.
These may be text-based, such as JSON, or markup-based, such as XML.
There are no official standards here, although some attempts are better known
than others, for example, GraphML,1 which is based on XML. Support for
these languages for describing graphs depends on the libraries and databases
that are being used.

Other means for expressing graphs use the graph query language. For
example, Neo4j supports importing and exporting of property graphs as Cypher
scripts, while Gremlin can also read in Groovy scripts. We could also generate
RDF graphs using SPARQL CONSTRUCT queries and SPARQL Update INSERT
queries.

1. http://graphml.graphdrawing.org/

Chapter 11. Transforming Graph Models • 202

report erratum • discuss

http://graphml.graphdrawing.org/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

But this isn’t the way that RDF graphs are generally shared. RDF has a rich
set of serialization formats that have been standardized by the W3C and are
well supported by various RDF libraries. And we’ve already seen these with
the rdf package for Elixir.

So these RDF formats are suited to the interchange of RDF graphs. But the
RDF model doesn’t support all graph types. Especially missing are edge
properties. More recently, however, the RDF* extension to RDF is being
developed and would provide support for these cases.

Well, this has been the briefest of summaries of graph serializations; the best
approach for you depends on your use case. One direction we could explore
would be to define a CSV serializer extension for libgraph (and a corresponding
deserializer would also be useful), but this would entail following some partic-
ular specification, such as that used by Neo4j, so maybe that’s best left as a
reader exercise.

Instead, we’re going to go down another road. We’re going to make RDF seri-
alizations as standard formats for graph interchange. We already know that
these formats can be used with RDF graph databases and are well supported
in Elixir with the rdf package. And Neo4j now also supports importing and
exporting of graphs using RDF formats. So, let’s first see how that works, and
then we’ll try a larger example of exchanging graphs between property graph
and RDF graph databases.

Importing RDF with n10s—A Neo4j Plugin
We looked earlier at property graphs in Chapter 5, Navigating Graphs with
Neo4j, on page 71, and RDF graphs in Chapter 7, Graphing Globally with RDF,
on page 115. These may seem to be separate worlds we would need to bridge,
but there is a way.

You’ll recall from earlier that RDF provides a number of standard serializations.
This should make graph interchange simpler. Neosemantics (n10s) is a Neo4j
plugin for importing and exporting RDF graphs into Neo4j—a property graph
store—and claims to do that losslessly. That sounds perfect. Let’s explore it.

There is a super helpful Neosemantics (n10s) User Guide2 to help you get
started. Installation is simple. You copy the neosemantics jar file into the
plugins/ folder of your local Neo4j instance, update the Neo4j config file, and
restart the server. For details, see the Installation3 guidelines.

2. https://neo4j.com/labs/neosemantics/4.0/
3. https://neo4j.com/labs/neosemantics/4.0/install/

report erratum • discuss

Importing RDF with n10s—A Neo4j Plugin • 203

https://neo4j.com/labs/neosemantics/4.0/
https://neo4j.com/labs/neosemantics/4.0/install/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

At this point, you may want to look back at the section on APOC, on page 78,
where we installed the APOC library. You may also want to review your
security settings.

Let’s cd back to our ExGraphsBook root now and open up IEx:

$ iex -S mix
Erlang/OTP 24 [erts-12.3.1] ...

So, we’ll first switch our graph service to PropertyGraph:

iex> graph_context PropertyGraph
PropertyGraph

Let’s now check on the n10s procedures to see if they are loaded:

iex> """
...> CALL dbms.procedures()
...> YIELD name WITH * WHERE name CONTAINS 'n10s'
...> RETURN *
...> """ |> cypher!
[

...
%{"name" => "n10s.graphconfig.drop"},
%{"name" => "n10s.graphconfig.init"},
%{"name" => "n10s.graphconfig.set"},
%{"name" => "n10s.graphconfig.show"},
...
%{"name" => "n10s.rdf.export.cypher"},
%{"name" => "n10s.rdf.export.spo"},
%{"name" => "n10s.rdf.import.fetch"},
%{"name" => "n10s.rdf.import.inline"},
...

]

Well, indeed they are. There are more procedures than shown but these are
the ones we’ll be using initially.

The first order of business is to prepare Neo4j for importing an RDF graph.
For this, we need a graph config object. This is simply managed by calling
the n10s.graphconfig.init procedure:

iex> "CALL n10s.graphconfig.init()" |> cypher!
[

%{"param" => "handleVocabUris", "value" => "SHORTEN"},
%{"param" => "handleMultival", "value" => "OVERWRITE"},
%{"param" => "handleRDFTypes", "value" => "LABELS"},
...

]

Chapter 11. Transforming Graph Models • 204

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Note that there are multiple parameters, each of which can be set with the
n10s.graphconfig.set procedure. There are also procedures for deleting the graph
config (n10s.graphconfig.drop) and for displaying it (n10s.graphconfig.show).

Let’s check the state of our graph service:

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: ["_GraphConfig"],
num_edges: 0,
num_nodes: 1,
type: :property

}

We have one node for the graph config (_GraphConfig).

Now we can try importing some RDF. For this, there is the n10s.rdf.import.fetch
procedure, and we’ll also need an RDF document at an HTTP endpoint. Here
I just copied over the book.ttl graph we created in Serializing the RDF Graph,
on page 129, onto my local webserver:

iex> """
...> CALL n10s.rdf.import.fetch("http://localhost/~tony/book.ttl",
...> "Turtle")
...> """ |> cypher!
[

%{
"callParams" => %{},
"extraInfo" => "",
"namespaces" => %{"ns0" => "https://schema.org/"},
"terminationStatus" => "OK",
"triplesLoaded" => 22,
"triplesParsed" => 22

}
]

Well, it looks like we’ve successfully loaded something. Let’s try our graph_info/0
function to see what we have:

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: ["Resource", "_GraphConfig", "_NsPrefDef", "ns0__Book",
"ns0__Organization", "ns0__Person"],

num_edges: 4,
num_nodes: 7,
type: :property

}

report erratum • discuss

Importing RDF with n10s—A Neo4j Plugin • 205

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

So, there are seven nodes. Let’s see what they are:

iex> "MATCH (n) RETURN n" |> cypher!
[

%{
"n" => %Bolt.Sips.Types.Node{
id: 0,
labels: ["_GraphConfig"],
properties: %{

"_applyNeo4jNaming" => false,
"_classLabel" => "Class",
"_dataTypePropertyLabel" => "Property",
...

}
}

},
%{

"n" => %Bolt.Sips.Types.Node{
id: 1,
labels: ["_NsPrefDef"],
properties: %{"ns0" => "https://schema.org/"}

}
},
%{

"n" => %Bolt.Sips.Types.Node{
id: 2,
labels: ["Resource", "ns0__Person"],
properties: %{

"ns0__identifier" => "jose_valim",
"ns0__name" => "José Valim",
"uri" => "https://twitter.com/josevalim"

}
}

},
...

]

This shows us that there’s one node for the graph config (_GraphConfig) and one
node for the namespace table (_NsPrefDef), and then there are five more nodes
for our graph data with three-person nodes (ns0__Person), an organization node
(ns0__Organization), and a book node (ns1__Book).

We can verify that with a query like this:

iex> "MATCH (n) RETURN labels(n)" |> cypher!
[

%{"labels(n)" => ["_GraphConfig"]},
%{"labels(n)" => ["_NsPrefDef"]},
%{"labels(n)" => ["Resource", "ns0__Person"]},
%{"labels(n)" => ["Resource", "ns0__Person"]},

Chapter 11. Transforming Graph Models • 206

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

%{"labels(n)" => ["Resource", "ns0__Organization"]},
%{"labels(n)" => ["Resource", "ns0__Book"]},
%{"labels(n)" => ["Resource", "ns0__Person"]}

]

Or we can also query for a specific property—ns0__name:

iex> "MATCH (n) RETURN n.ns0__name" |> cypher!
[

%{"n.ns0__name" => nil},
%{"n.ns0__name" => nil},
%{"n.ns0__name" => "José Valim"},
%{"n.ns0__name" => "Ben Marx"},
%{"n.ns0__name" => "The Pragmatic Bookshelf"},
%{"n.ns0__name" => "Adopting Elixir"},
%{"n.ns0__name" => "Bruce Tate"}

]

Yes, that looks a lot like our RDF graph, but now queried as a property graph
with Cypher. Note that we didn’t find a ns0__name property for the _GraphConfig
and _NsPrefDef nodes.

We could have omitted those control nodes by restricting our query to resource
nodes, or nodes with Resource labels:

iex> "MATCH (n:Resource) RETURN n.ns0__name" |> cypher!
[

%{"n.ns0__name" => "José Valim"},
...

]

Let’s move on to something a little more elaborate.

A Graph-to-Graph Example
As a better example of a graph-to-graph exercise, let’s try our hand at an
extended journey.

We’ve already seen that there are public endpoints for RDF data. Let’s scoop
up some of that RDF data, mix it together, and then add that into a local
property graph database. For good measure, we’ll operate on that property
graph in some way and then what? Well, let’s get that graph out of our local
property graph database, add it back into a local RDF graph database, and
operate on it some more as an RDF graph.

The figure on page 208 shows our user and the endpoints we’ll be querying.
The remote endpoints A and B are shown with a cloud frame, whereas local
endpoints C and D are shown without.

report erratum • discuss

A Graph-to-Graph Example • 207

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

:wikidata

B.
RDF

sparql!

sparql! cypher!

sparql!

D.
RDF

(GraphDB)

C.
LPG

(Neo4j)

:dbpedia

A.
RDF

Of course, as we are querying over HTTP there is no essential difference
between remote and local endpoints. The remote endpoints are SPARQL
endpoints serving RDF data, and we have no special knowledge of the backend
systems. On the other hand, our local endpoints are serviced by a pair of
local graph databases, one an RDF graph store (GraphDB) and the other a
(labeled) property graph, or LPG, store (Neo4j). We’ll query the RDF endpoints
with SPARQL (using our sparql!/1 function) and the LPG endpoint with Cypher
(using our cypher!/1 function).

Our plan is to combine multiple graphs into a single graph, transform that
into a new graph model, extend that graph, and then transform it back into
the original graph model and extend that graph again.

Let’s break that journey down like this:

• 1st stage

– step 1—query remote SPARQL endpoints for RDF (A and B)
– step 2—put RDF into the local property graph database (C)
– step 3—modify RDF in the local property graph database (C)

• 2nd stage

– step 4—get RDF out of the local property graph database (C)
– step 5—put RDF into the local RDF graph database (D)
– step 6—modify RDF in the local RDF graph database (D)

The letters A to D reference the separate endpoints shown in the figure.

Chapter 11. Transforming Graph Models • 208

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

The main takeaways we’re aiming to demonstrate here are the following:

• data integration
• model transformation

Data integration will be shown by querying multiple remote endpoints for
separate graphs and merging those graphs into a single graph.

Model transformation will be shown by roundtripping RDF through a property
graph database using the n10s library from Neo4j.

So, let’s get started on that journey.

Stage 1: Getting RDF into an LPG Store
This stage of the journey will be to import RDF data into a property graph
database. The first step is obviously to acquire some RDF data.

In the top part of the previous figure, you saw the remote endpoints we will
query to get some RDF data. The following figure shows just that part again.

:wikidata

B.
RDF

sparql!sparql!

:dbpedia

A.
RDF

Step 1—Querying Remote SPARQL Endpoints for RDF
We are going to query two public SPARQL endpoints for data: DBpedia and
Wikidata. We’re going to get a separate RDF graph from each of these two
endpoints and then merge those two graphs into a single RDF graph for further
processing.

So, let’s switch our graph service to RDFGraph:

iex> graph_context RDFGraph
RDFGraph

report erratum • discuss

Stage 1: Getting RDF into an LPG Store • 209

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We’re now ready to query for RDF.

It’s probably useful at this point to mention that both databases maintain
graphs of things with properties and relationships to other things. These
things (and their properties) are identified with URIs and can be queried to
return different RDF serializations through HTTP content negotiation. By
default, they will redirect to an HTML page view for easy browsing.

We’re going to query in this example for the “Bob Dylan” thing. And to short-
circuit any long discovery process, we’ll simply list the IDs for this concept
here:

Concept URLService

http://dbpedia.org/resource/Bob_DylanDBpedia

http://www.wikidata.org/entity/Q392Wikidata

If you try entering either of these URLs into a web browser, you’ll be redirected
to a linked data page URL:

Page URLService

http://dbpedia.org/page/Bob_DylanDBpedia

https://www.wikidata.org/wiki/Special:EntityData/Q392Wikidata

=> https://wikidata.org/wiki/Q392

You can either use the linked data browser to discover the concept URLs, or
query against the SPARQL endpoint and look for a "Bob Dylan" string, but you’ll
probably need to look instead for the string "Bob Dylan"@en with a language tag.

See Linked Data Access4 and Wikidata:Data access5 for DBpedia and Wikidata
linked data naming practices, respectively.

To get started, you can use the concept URLs listed above.

Querying DBpedia

First, we’re going to query DBpedia. Let’s switch the RDF store now to :dbpedia
to set our graph service:

iex> rdf_store :dbpedia
:ok

Let’s try querying on that using a DESCRIBE query form as we discussed in
Querying the Local RDF Service, on page 144:

4. https://www.dbpedia.org/resources/linked-data/
5. https://www.wikidata.org/wiki/Wikidata:Data_access

Chapter 11. Transforming Graph Models • 210

report erratum • discuss

https://www.dbpedia.org/resources/linked-data/
https://www.wikidata.org/wiki/Wikidata:Data_access
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> bob1 = "DESCRIBE <http://dbpedia.org/resource/Bob_Dylan>" |> sparql!
#RDF.Graph<name: nil

@prefix ns219: <http://dbpedia.org/resource/Amazing_Journey:> .
...
@prefix owl: <http://www.w3.org/2002/07/owl#> .

...

dbr:Thunder_on_the_Mountain
dbo:artist dbr:Bob_Dylan ;
dbo:wikiPageWikiLink dbr:Bob_Dylan ;
dbo:writer dbr:Bob_Dylan ;
dbp:artist dbr:Bob_Dylan .

...

dbr:Bob_Dylan
...
dbp:birthDate "1941-05-24"^^xsd:date ;
...

...
>

You can see that this DESCRIBE result includes both incoming (dbr:Thun-
der_on_the_Mountain) and outgoing links (dbr:Bob_Dylan), so there’s some useful
context here.

Now let’s see if we have a link to our Wikidata URL. We can use a DESCRIBE
query form again:

iex> "DESCRIBE <http://www.wikidata.org/entity/Q392>" |> sparql!
#RDF.Graph<name: nil

@prefix dbr: <http://dbpedia.org/resource/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix wikidata: <http://www.wikidata.org/entity/> .

dbr:Bob_Dylan
owl:sameAs wikidata:Q392 .

>

Ah, a match! So, we have a link for this entity in DBpedia to an entity in
Wikidata. We can see that the entity named as dbr:Bob_Dylan is owl:sameAs (or
the “same as”) the entity known as wikidata:Q392.

So that’s our bob1.

Querying Wikidata

Now let’s try the same exercise in Wikidata. But first, we’ll reset our rdf_store:

iex> rdf_store :wikidata
:ok

report erratum • discuss

Stage 1: Getting RDF into an LPG Store • 211

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We do a DESCRIBE again on our Wikidata URL:

iex> bob2 = "DESCRIBE <http://www.wikidata.org/entity/Q392>" |> sparql!
#RDF.Graph<name: nil

@prefix geo: <http://www.opengis.net/ont/geosparql#> .
...
@prefix owl: <http://www.w3.org/2002/07/owl#> .

...

wd:Q109954776
wdt:P175 wd:Q392 ;
wdt:P5202 wd:Q392 ;
wdt:P676 wd:Q392 ;
wdt:P86 wd:Q392 .

...

wd:Q392
...
wdt:P569 "1941-05-24T00:00:00Z"^^xsd:dateTime ;
....

...
>

And again we have both incoming (wd:Q109954776) and outgoing (wd:Q392) links.

Now, do we also have a link to our DBpedia entity?

iex> "DESCRIBE <http://dbpedia.org/resource/Bob_Dylan>" |> sparql!
#RDF.Graph<name: nil

@prefix geo: <http://www.opengis.net/ont/geosparql#> .
...
@prefix owl: <http://www.w3.org/2002/07/owl#> .

>

Nothing there. It looks like we have no link from the Wikidata entity to the
DBpedia entity. But at least we have the one assertion that the DBpedia
entity is the same as the Wikidata entity.

Wikidata Names

One thing that’s worth noting here is that Wikidata uses opaque
names (here Q392), which can be challenging to work with. But
naming practices aren’t something we’re investigating here, so
let’s use what we’ve got. It’s enough that we have a stable ID.

We have a lot of opaque names, for sure, but that’s our bob2.

Merging the Graphs

OK. So, we have a couple of Bobs—bob1 and bob2. Let’s save them before we
do anything else:

Chapter 11. Transforming Graph Models • 212

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> bob1_graph = (RDF.Turtle.write_string! bob1) |> write_graph("bob1.ttl")
#GraphCommons.Graph<type: rdf, file: "bob1.ttl", data: "@prefix rdf: <ht...">

iex> bob2_graph = (RDF.Turtle.write_string! bob2) |> write_graph("bob2.ttl")
#GraphCommons.Graph<type: rdf, file: "bob2.ttl", data: "@prefix rdf: <ht...">

We can also look at the number of edges for each graph:

iex> Enum.each [bob1, bob2],
...> fn g -> IO.puts RDF.Graph.triple_count(g) end
13
3386
10609
:ok

Now let’s merge those graphs.

Remember this is RDF. We’re using global names so we can merge our graphs
by simple string concatenation. How cool is that?

iex> (bob1_graph.data <> bob2_graph.data) |> write_graph("bob.ttl")

So we’ve stored our merged graph in Turtle format:

iex> bob_graph = read_graph("bob.ttl")
#GraphCommons.Graph<type: rdf, file: "bob.ttl", data: "@prefix rdf: <ht...">

And we can read this merged graph back into an RDF.Graph as:

iex> bob = RDF.Serialization.read_string!(bob_graph.data, [format: :turtle])
#RDF.Graph<name: nil

...
>

Let’s check the number of RDF statements:

iex> RDF.Graph.triple_count bob
14008

And that’s bob.

Of course, we can also just merge the RDF.Graph structs directly as:

iex> bob = Enum.reduce([bob1, bob2], fn(g, acc) -> RDF.Graph.add(g, acc) end)
#RDF.Graph<name: nil

...
>

Same old bob.

Using a Script to Query

If we wanted to replay that set of queries for batch querying, we could just
put the commands into a script:

report erratum • discuss

Stage 1: Getting RDF into an LPG Store • 213

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

apps/graph_commons/priv/scripts/elixir/bob.exs
import GraphCommons.Utils, only: [sparql!: 1]
import RDFGraph, only: [rdf_store: 1, write_graph: 2]

query :dbpedia
rdf_store :dbpedia
bob1 = "DESCRIBE <http://dbpedia.org/resource/Bob_Dylan>" |> sparql!

query :wikidata
rdf_store :wikidata
bob2 = "DESCRIBE <http://www.wikidata.org/entity/Q392>" |> sparql!

write to graph store
bob1_graph = (RDF.Turtle.write_string! bob1) |> write_graph("bob1.ttl")
bob2_graph = (RDF.Turtle.write_string! bob2) |> write_graph("bob2.ttl")

write graph merge to graph store
(bob1_graph.data <> bob2_graph.data) |> write_graph("bob.ttl")

We can then simply run that script as:

$ mix run priv/scripts/elixir/bob.exs

If all goes well, we’ll have some new files added to our RDF graph store.

Step 2—Putting RDF into the Local Property Graph Database
We’re going to switch now to our PropertyGraph service. Let’s do that and clear
out any current state:

iex> graph_context PropertyGraph
PropertyGraph

iex> graph_delete
%Bolt.Sips.Response{

...
stats: %{"nodes-deleted" => 10, "relationships-deleted" => 7},
type: "w"

}

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: [],
num_edges: 0,
num_nodes: 0,
type: :property

}

Blank slate. Ready to go.

As before, let’s set the n10s graph config:

Chapter 11. Transforming Graph Models • 214

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/priv/scripts/elixir/bob.exs
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> "CALL n10s.graphconfig.init()" |> cypher!
[

%{"param" => "handleVocabUris", "value" => "SHORTEN"},
%{"param" => "handleMultival", "value" => "OVERWRITE"},
%{"param" => "handleRDFTypes", "value" => "LABELS"},
...

]

Now we can try importing some RDF:

iex> bob_uri = "file://" <> bob_graph.path

iex> "CALL n10s.rdf.import.fetch('" <> bob_uri <> "', 'Turtle')" |> cypher!
[

%{
"callParams" => %{},
"extraInfo" => "",
"namespaces" => %{
...

},
"terminationStatus" => "OK",
"triplesLoaded" => 13,
"triplesParsed" => 13

}
]

Now let’s see what we’ve got:

iex> graph_info
%GraphCommons.Service.GraphInfo{

file: "",
labels: ["ns7__WikicatPopSingers", "ns7__WikicatJewishAmericanMusicians",
"ns7__WikicatAmericanHarmonicaPlayers", "ns7__WikicatFolkSingers",
...
"ns7__WikicatAmericanRockGuitarists", "ns7__WikicatActors", ...],

num_edges: 13199,
num_nodes: 10777,
type: :property

}

Yes, we’ve got that RDF graph imported into our property graph database.

Simpler RDF Import into the LPG Store

To import RDF into our property graph database, we don’t have
to save our RDF graphs and then merge them before importing.
We could just as well have done this for each graph in a single
step by importing directly from the SPARQL endpoint and using
a GET request for the SPARQL query (or from a linked data URI
dereference). The fact that the data is already modeled as RDF will
allow the merge to succeed directly on import.

report erratum • discuss

Stage 1: Getting RDF into an LPG Store • 215

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Step 3—Modifying RDF in the Local Property Graph Database
Now that we’ve got the RDF in our property graph database, let’s do something
with it.

One obvious candidate for augmenting the RDF graph would be one of the
APOC procedures we discussed earlier in APOC, on page 78.

Let’s do something trivial as a simple proof of concept. Let’s add a uuid prop-
erty to the node with ID http://dbpedia.org/resource/Bob_Dylan.

But hang on! Since we’re dealing with RDF data, we really want to give a
global name to this property. Let’s say we want to add the property
http://example/uuid, or in prefix notation ex:uuid.

One way to do this is to add a new prefix to the namespace prefix table. This
n10s method returns the current list of namespaces that are registered:

iex> "CALL n10s.nsprefixes.list()" |> cypher!
[

%{"namespace" => "http://purl.org/dc/terms/", "prefix" => "dct"},
%{"namespace" => "http://www.w3.org/ns/prov#", "prefix" => "ns14"},
...
}

]

We can then add our ex namespace prefix as:

iex> "CALL n10s.nsprefixes.add(\"ex\", \"http://example/\")" |> cypher! [
%{"namespace" => "http://www.w3.org/2002/07/owl#", "prefix" => "owl"},
%{"namespace" => "http://www.w3.org/2004/02/skos/core#", "prefix" => "skos"},
...
%{"namespace" => "http://example/", "prefix" => "ex"},
...

]

And now we can create an ex__uuid property following the standard n10s naming
pattern for RDF properties:

iex> """
...> MATCH (n {uri: "http://dbpedia.org/resource/Bob_Dylan"})
...> SET n.ex__uuid = apoc.create.uuid()
...> RETURN n
...> """ |> cypher!
[

%{
"n" => %Bolt.Sips.Types.Node{
id: 9221,
...

Chapter 11. Transforming Graph Models • 216

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

"ex__uuid" => "e029be4e-49ee-4830-9cfb-907b15663d8f",➤

...
}

}
]

This isn’t especially exciting but it does at least prove the point. Note that we
could have instead used a SPARQL CONSTRUCT query to add an ex:uuid property
before we imported the RDF.

Stage 2: Getting RDF out of an LPG Store
Given that we’ve successfully modified our RDF graph directly, let’s move on
to the next stage and extract the new graph from the property graph database
and import it into an RDF graph database.

Let’s look again at the bottom part of the earlier figure. The following figure
shows the local endpoints over our RDF and LPG graph databases.

sparql! cypher!D.
RDF

(GraphDB)

C.
LPG

(Neo4j)

Step 4—Getting RDF out of the Local Property Graph Database
We can export RDF data from Neo4j by using the /rdf endpoint.

We can do this in three main ways. We can select a single node in the graph
by its unique identifier, we can select a group of nodes by label and property
value, or we can use a Cypher query. We’ll show each method for a neo4j
database.

Export by Node ID

We can query by a given subject ID like this:

:GET http://localhost:7474/rdf/neo4j/describe/{ID}

This is a GET request directed at the neo4j database that will pull statements
for a given ID. This ID is either the Neo4j system-generated ID for a created
node, or the %-encoded URI for an imported node.

report erratum • discuss

Stage 2: Getting RDF out of an LPG Store • 217

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Export by Label and Property Value

We can query by a given label and property value:

:GET http://localhost:7474/rdf/neo4j/describe/find/{Label}/{poperty}/{value}

This is a GET request directed at the neo4j database that will pull statements
for a given label and property value.

Export by Cypher Query

We can query by a Cypher query:

:POST http://localhost:7474/rdf/neo4j/cypher

This is the most general form for extracting RDF from a property value
database. In this case, we use a POST request with a JSON map as the payload
body with a cypher key and Cypher query as a value. This is also directed at
the neo4j database.

Note that we already have tesla in our umbrella app dependency graph (we
loaded that with the rdf dependency), so let’s go ahead and use the Tesla client
directly for this API.

To make things simpler for querying, I’ve disabled authentication on my local
Neo4j instance. This can be done by updating the neo4j.conf file that comes
with the server:

To disable authentication, uncomment this line
dbms.security.auth_enabled=false

We can now query without using credentials.

In our case, we’d like to get the complete graph back. So, we’ll need to use
the Cypher query method to return all nodes and edges. We can build a
simple JSON map to do this as:

iex> data = """
...> { "cypher" : "MATCH (n:Resource)-[r]-(m) RETURN *" }
...> """
"{ \"cypher\" : \"MATCH (n:Resource)-[r]-(m) RETURN *\" }\n"

We can post that up as:

iex> result = Tesla.post!("http://localhost:7474/rdf/neo4j/cypher", data)
%Tesla.Env{

client: %Tesla.Client{adapter: nil, fun: nil, post: [], pre: []},
module: Tesla,
body: "@prefix owl: <http://www.w3.org/2002/07/owl#> ...",
headers: [

{"date", "Mon, 24 May 2021 12:28:00 GMT"},

Chapter 11. Transforming Graph Models • 218

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

{"access-control-allow-origin", "*"},
{"content-type", "application/rdf+xml"},
{"transfer-encoding", "chunked"}

],
method: :post,
opts: [],
query: [],
status: 200,
url: "http://localhost:7474/rdf/neo4j/cypher"

}

We can extract the body with a simple pattern match:

iex> %Tesla.Env{body: bob_neo} = result
%Tesla.Env{

...
}

So, we then have the extracted RDF as:

iex> IO.puts bob_neo
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
...
<http://dbpedia.org/resource/Changing_of_the_Guards> ns6:artist

<http://dbpedia.org/resource/Bob_Dylan>;
ns2:artist <http://dbpedia.org/resource/Bob_Dylan>;
ns2:writer <http://dbpedia.org/resource/Bob_Dylan>;
ns6:wikiPageWikiLink <http://dbpedia.org/resource/Bob_Dylan>;
ns6:writer <http://dbpedia.org/resource/Bob_Dylan> .

...

Now that we’ve got the RDF out, let’s save it back to our RDF service.

Step 5—Putting RDF into the Local RDF Graph Database
We’ll switch the graph context back to our RDFGraph service:

iex> graph_context RDFGraph
RDFGraph

Now we can write that RDF back to our graph store:

iex> bob_neo |> write_graph("bob_neo.ttl")
#GraphCommons .Graph<type: rdf, file: "neo.ttl", data: "@prefix owl: <ht...">

Let’s also switch the RDF endpoint to our :local RDF graph service:

iex> rdf_store :local
:ok

And let’s read back the RDF graph we just stored and add that to the :local
RDF service:

report erratum • discuss

Stage 2: Getting RDF out of an LPG Store • 219

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> read_graph("bob_neo.ttl") |> graph_create
#GraphCommons .Graph<type: rdf, file: "neo.ttl", data: "@prefix owl: <ht...">

We can now query over the RDF graph:

iex> """
...> PREFIX ex: <http://example/>
...> SELECT * WHERE { ?s ex:uuid ?uuid }
...> """ |> sparql!
%SPARQL.Query.Result{

results: [
%{
"s" => ~I<http://dbpedia.org/resource/Bob_Dylan>,
"uuid" => %RDF.Literal{literal: %RDF.XSD.String{value: "65f2ac53-b1e0-
4351-8a2e-dddc0075dd40", lexical: "65f2ac53-b1e0-4351-8a2e-
dddc0075dd40"}, valid: true}

}
],
variables: ["s", "uuid"]

}

Look at that. We’ve got an RDF statement here in our local GraphDB graph
database (or triplestore, if you will) as an RDF graph that was created in our
Neo4j graph database as a property graph.

This goes to show that we can indeed move semantic graphs around.

Step 6—Modifying RDF in the Local RDF Graph Database
Now let’s modify the RDF graph we just ingested. Suppose we want to add
an ex:count property to all nodes with multiple edges. Since this is RDF, an
edge may connect a node with another object node or with a string value.
Let’s count the object nodes.

We could do this with the following SPARQL Update query:

PREFIX ex: <http://example/>
INSERT {

?s ex:count ?count .
}
WHERE {

{
SELECT ?s (count(?s) as ?count)
WHERE { ?s ?p ?o FILTER (isIRI(?o)) }
GROUP BY ?s

}
FILTER (?count > 1)

}

Chapter 11. Transforming Graph Models • 220

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Let’s add that SPARQL Update query to our query store as add_count.ru:

iex> IO.puts (add_count_update = read_query("add_count.ru").data)
PREFIX ex: <http://example/>
INSERT {

?s ex:count ?count .
}
WHERE {

...
}

:ok

We can update the RDF graph service as:

iex> add_count_update |> sparql!(update: true)
...

Here we’re using the update: keyword to signal that this is an update query so
that it’ll be passed to the update endpoints and not the regular query endpoint.

Let’s query to see if that update was applied. And in this case, let’s query
against those resources with the UUIDs we added to the property graph
database:

iex> """
...> PREFIX ex: <http://example/>
...> CONSTRUCT { ?s ex:uuid ?uuid ; ex:count ?count }
...> WHERE {
...> ?s ex:uuid ?uuid
...> OPTIONAL { ?s ex:count ?count }
...> }
...> """ |> sparql!
#RDF.Graph<name: nil

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://dbpedia.org/resource/Bob_Dylan>
<http://example/count> 1226 ;
<http://example/uuid> "65f2ac53-b1e0-4351-8a2e-dddc0075dd40" .

>

Note that we include the keyword OPTIONAL for our ex:count properties as these
may not have multiple instances.

So, here we have one property added in the RDF graph database and another
property added in the property graph database. While a property graph for-
malism would treat both of these properties as node attributes, in RDF they
are both treated as edges. We could, of course, have added new object nodes
which would be treated as edges in both graph models.

report erratum • discuss

Stage 2: Getting RDF out of an LPG Store • 221

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Federated Querying
Something we’ve not touched on before is a neat feature of SPARQL that opens
up the game—federated querying. This extension to SPARQL allows for a
portion of a query to be directed to any other SPARQL endpoint.

This means that instead of making two separate queries to two separate
endpoints in the example we just walked through, we could have done this
within a single query.

Let’s see how.

Well, we need to wrap a portion of a SPARQL query with the SERVICE keyword,
followed by the endpoint URI. So, we could have queried both endpoints with
a single query like this:

CONSTRUCT {
?s ?p ?o

}
WHERE {

{
SERVICE <https://dbpedia.org/sparql> {

BIND (<http://dbpedia.org/resource/Bob_Dylan> AS ?s)
?s ?p ?o .

}
}
UNION
{

SERVICE <https://query.wikidata.org/bigdata/namespace/wdq/sparql> {
BIND (<http://www.wikidata.org/entity/Q392> AS ?s)
?s ?p ?o .

}
}

}

Let’s try this out. If we’ve previously saved that query into our graph store,
we can read it back as:

iex> IO.puts (federated_q = read_query("federated.rq").data)
CONSTRUCT {

?s ?p ?o
}
...

:ok

Let’s switch our RDF service to the :local RDF service:

iex> rdf_store :local
:ok

Chapter 11. Transforming Graph Models • 222

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Now we can run this federated query as:

iex> two_g = federated_q |> sparql!
#RDF.Graph<name: nil

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://dbpedia.org/resource/Bob_Dylan>
...

<http://www.wikidata.org/entity/Q392>
...

Yes, we’re getting stuff back. We can get a quick count of the RDF statements
in the result set as:

iex> RDF.Graph.triple_count two_g
2391

So, as you can see from this example, SPARQL can do distributed querying.
This has been a key feature of the SPARQL toolkit for over the last decade.

Nice. Although we should also note that there may be some limitations on
the size of the datasets that can be realistically returned from this type of
query.

For balance, note that Neo4j has also recently introduced an extension to
support federated querying and data sharding. This feature is known as
Fabric,6 although at the time of this writing this feature is only available in
the Neo4j Enterprise Edition.

Wrapping Up
In this chapter, we’ve taken a brief look at how graphs can be serialized and
exchanged.

A great advantage of RDF is its number of standardized serializations, which
makes exchanging graphs a simple process. The caveat is that these are tar-
geted at RDF graphs that build on the RDF model, URIs for nodes and edges,
and so on.

We then ran through a worked example which demoed how we can query
multiple RDF graph stores for a single thing and then simply add that data
together—a trivial matter now since all the names are global. We then
imported this into the Neo4j property graph store using their n10s library
for mapping an RDF graph onto a property graph. Here we used an APOC

6. https://neo4j.com/docs/operations-manual/current/fabric/

report erratum • discuss

Wrapping Up • 223

https://neo4j.com/docs/operations-manual/current/fabric/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

procedure to do something on the new property graph and exported the
result out as an RDF graph that we then stored in our RDF graph store
as well as in a local RDF service for further enrichment.

Then, to cap things off, we touched on one of SPARQL’s lesser-known
features—federated querying.

Now that we’ve looked at transforming graphs with essentially static graph
descriptions, we’re going to move on to dealing with dynamic graphs in the
next chapter.

Chapter 11. Transforming Graph Models • 224

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

CHAPTER 12

Processing the Graph
In the previous chapter, we looked at converting graph models. Now it’s time
to come back to Elixir. We’re going to return to native graphs. And we’re going
to use some parts of OTP machinery—agents, generic servers (or genservers),
and supervisors.

We’re going to have some fun.

Remember back in Basic Workout, on page 37, when we said that libgraph
nodes could contain any Elixir term? Well, that also means we could use an
Elixir process as a graph node.

Let’s try something here. Let’s try to create a graph with processes for nodes and
then build a supervision tree over that graph. We’ll use genservers for those
processes and attach them to a supervisor to manage the process lifecycle.

To keep things simple, let’s reuse one of our example graphs and map that
to a process graph. And we’ll save the example graph node term in the process
graph node state.

So, if we have the new process graph under a supervision tree, we should be
able to terminate any of the processes and have that automatically restored.
But there are a couple of issues we need to deal with. The new process will
have no memory. When this process is generated, it won’t have any state that
was carried by the old process. And worse, it will fall outside of the process
graph—it won’t be connected to any other node.

But we can fix these issues. We simply need a couple more processes (agents
in this case) one to cache the state of any failing process and another to save
the process graph itself. The figure on page 226 shows the notion.

At the top left, we have a regular graph data structure built using libgraph. We are
going to map this to a new libgraph data structure as shown at the bottom where

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Graph

1

3

#PID<0.414.0>

2

4

Process
Graph

#PID<0.430.0>

#PID<0.411.0> #PID<0.412.0>

#PID<0.413.0>

id: 4

id: 1 id: 2

id: 3

Supervisor

each source node is mapped to a target node instantiated as a process
(genserver) with its state capturing the source node term in its id field. So here,
for example, in our source graph, we have the source nodes 1, 2, 3, and 4 which
are mapped to processes #PID<0.411.0>, #PID<0.412.0>, #PID<0.413.0>, and
#PID<0.414.0>. These processes maintain the original source terms in their id field,
as shown. The edges connecting the nodes are mapped from source to target so
that the target graph has the same graph structure as the source graph.

So far, so good. We have one graph mapped to another graph—the process
graph. But we also have a supervisor in its own process #PID<0.430.0>, as
shown at the top right. We will create our graph processes under this super-
visor. To make this easier, we will use a dynamic supervisor and build these
supervision links at process create time. So the supervisor is watching over
the nodes in our process graph, but not the edges. We’ll get to that later.

And with that, let’s get started.

Creating the GraphCompute Project
Follow the usual drill for creating the new project GraphCompute:

$ mix new graph_compute --sup

This will generate an app with a supervision tree and an application callback.
We’ll be using the GraphCompute.Application module to set up the supervision tree.

You should now have an apps directory that looks like this:

Chapter 12. Processing the Graph • 226

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

.
├── apps
│ ├── d_graph
│ ├── graph_commons
│ ├── graph_compute➤

│ ├── native_graph
│ ├── property_graph
│ ├── rdf_graph
│ └── tinker_graph

Now cd into the graph_compute directory:

.
├── README.md
├── lib
│ ├── graph_compute➤

│ │ └── application.ex
│ └── graph_compute.ex
├── mix.exs
└── test

├── graph_compute_test.exs
└── test_helper.exs

Note that the --sup flag has generated an extra directory graph_compute under lib
with an application.ex file.

We can declare a dependency on libgraph by adding the:libgraph dependency to
the mix.exs file:

apps/graph_compute/mix.exs
defp deps do

[
graph_commons
{:graph_commons, in_umbrella: true},

native graphs
{:libgraph, "~> 0.13"}

]
end

As usual, use Mix to add in the dependency:

$ mix deps.get; mix deps.compile

We’ll also need to start up our GraphCompute.Application module:

def application do
[

extra_applications: [:logger],
mod: { GraphCompute.Application, [] }➤

]
end

report erratum • discuss

Creating the GraphCompute Project • 227

http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/mix.exs
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

The :mod option specifies the application callback module, followed by any
arguments to be passed on application start.

Adding a Supervision Tree (or Two)
We want to build a supervision tree over the process graph. And we’ll want
to use a dynamic supervision tree with a DynamicSupervisor so that we can stand
up new nodes and tear them down on demand.

So that’s our supervision tree. But we’ll also want to manage a couple of agent
processes for caching the node state and storing the graph as a whole. For
these, we can set up a static supervision tree with a regular Supervisor.

We can set up both trees with the start/2 function in lib/graph_compute/application.ex.
Let’s create that module now:

defmodule GraphCompute.Application do
use Application

...

end

And let’s add in our start/2 function:

apps/graph_compute/lib/graph_compute/application.ex
def start(type, args) do

do_dynamic_supervisor(type, args)
do_static_supervisor(type, args)

end

defp do_dynamic_supervisor(_type, _args) do
opts = [

name: GraphCompute.DynamicSupervisor,
strategy: :one_for_one

]
DynamicSupervisor.start_link(opts)

end

defp do_static_supervisor(_type, _args) do
children = [

{GraphCompute.Graph, %{}},
{GraphCompute.State, %{}}

]
opts = [

name: GraphCompute.Supervisor,
strategy: :one_for_one

]
Supervisor.start_link(children, opts)

end

Chapter 12. Processing the Graph • 228

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/application.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Note that the do_static_supervisor/2 function declares two direct children for the
Supervisor process—GraphCompute.Graph for graph management and GraphCom-
pute.State for node state management.

The do_dynamic_supervisor/2 function declares no children for the DynamicSupervisor
process—they will be created on demand.

Let’s add a genserver/0 function to create a new genserver process on demand
for the dynamic supervision tree:

apps/graph_compute/lib/graph_compute/application.ex
def genserver() do

case DynamicSupervisor.start_child(
GraphCompute.DynamicSupervisor, GraphCompute.Process

) do
{:ok, pid} ->
pid

{:error, reason} ->
IO.puts "! Error: #{inspect reason}"

end
end

Both trees will be created automatically when the application starts.

Agents
We’ll also use a couple of agents for managing the state. We’ll create a pair
of new modules for these.

First, we’ll define an agent for managing a copy of the graph state:

apps/graph_compute/lib/graph_compute/graph.ex
defmodule GraphCompute.Graph do

use Agent

def start_link(initial_value) do
Agent.start_link(fn -> initial_value end, name: __MODULE__)

end

def get() do
Agent.get(__MODULE__, & &1)

end

def update(new_value) do
Agent.update(__MODULE__, fn _state -> new_value end)

end

end

report erratum • discuss

Adding a Supervision Tree (or Two) • 229

http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/application.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

And we’ll also want an agent for managing the state of a terminating process:

apps/graph_compute/lib/graph_compute/state.ex
defmodule GraphCompute.State do

use Agent

def start_link(initial_value) do
Agent.start_link(fn -> initial_value end, name: __MODULE__)

end

def get() do
Agent.get(__MODULE__, & &1)

end

def update(new_value) do
Agent.update(__MODULE__, fn _state -> new_value end)

end

end

Nothing fancy there.

Genservers
For the process graph nodes, we’ll define a simple genserver interface. Let’s
create a module for that:

defmodule GraphCompute.Process do
use GenServer

...

end

Let’s add a constructor:

apps/graph_compute/lib/graph_compute/process.ex
def start_link(opts \\ []) do

case GenServer.start_link(__MODULE__, opts) do
{:ok, pid} -> {:ok, pid}
{:error, reason} -> {:error, reason}

end
end

We’ll add a minimal client API with a get/1 function and get/2 and put/3 functions
to manage our state:

apps/graph_compute/lib/graph_compute/process.ex
def get(pid) do

GenServer.call(pid, {:get})
end

def get(pid, key) do
GenServer.call(pid, {:get, key})

end

Chapter 12. Processing the Graph • 230

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/state.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/process.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/process.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

def put(pid, key, value) do
GenServer.cast(pid, {:put, key, value})

end

We’ll also add some callbacks. Let’s start first with init/1 and terminate/2—we’ll
define the process lifecycle handling later:

apps/graph_compute/lib/graph_compute/process.ex
@impl true
def init(_), do: do_init()

@impl true
def terminate(_reason, state), do: do_terminate(state)

Note that we preface these functions with the @impl attribute and set it as true
to signal that these are callbacks.

For the other callbacks we’ll need to service the get/1, get/2, and put/3 functions
for our client API:

apps/graph_compute/lib/graph_compute/process.ex
@impl true
def handle_call({:get}, _from, state) do

{:reply, state, state}
end

@impl true
def handle_call({:get, key}, _from, state) do

{:reply, Map.fetch!(state, key), state}
end

@impl true
def handle_cast({:put, key, value}, state) do

{:noreply, Map.put(state, key, value)}
end

We have one more thing to do. We’ll also need a callback to handle any other
messages received:

apps/graph_compute/lib/graph_compute/process.ex
@impl true
def handle_info(_reason, state) do

{:stop, :normal, state}
end

That should be enough to get us started.

Building a Dynamic Process Graph
Now that we’ve defined some of the machinery for creating and maintaining
a supervision tree, we can turn to the process graph itself.

report erratum • discuss

Building a Dynamic Process Graph • 231

http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/process.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/process.ex
http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/process.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Let’s create a new module:

defmodule GraphCompute.ProcessGraph do

...

end

We should now have a module library tree that looks like this:

.
├── README.md
├── lib
│ ├── graph_compute
│ │ ├── application.ex
│ │ ├── graph.ex
│ │ ├── process_graph.ex➤

│ │ ├── process.ex
│ │ └── state.ex
│ └── graph_compute.ex

We now want to add a simple function—let’s call it graph_up/1—that will map
any %Graph{} struct to a new %Graph{} struct, where nodes are replaced by
supervised processes and the node terms are stored away in the supervised
node’s process state.

And since we want it to have a generic capability, we will need to use
dynamic supervisors for our processes.

So we have a simple four-step plan—map the nodes (or vertices), create a
lookup table to link the graph node (or vertex) ID to the process graph node
PID, map the edges, and then save a copy of the graph:

apps/graph_compute/lib/graph_compute/process_graph.ex
def graph_up(%Graph{} = g) do

h = Graph.new()
m = Map.new()

vertices❶
h =

g
|> Graph.vertices()
|> Enum.reduce(h, fn v, h ->
p = GraphCompute.Application.genserver()
GraphCompute.Process.put(p, :id, v)
Graph.add_vertex(h, p)

end)

map (vertex ID -> PID)❷
m =

h
|> Graph.vertices()
|> Enum.reduce(m, fn p, m ->

Chapter 12. Processing the Graph • 232

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/process_graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

v = GraphCompute.Process.get(p, :id)
Map.put(m, v, p)

end)

edges❸
h =

g
|> Graph.edges()
|> Enum.reduce(h, fn e, h ->
%Graph.Edge{label: label, v1: v1, v2: v2, weight: _} = e
Graph.add_edge(h, Map.get(m, v1), Map.get(m, v2), label: label)

end)

graph❹
GraphCompute.Graph.update(h)
h

end

Let’s go through that in some more detail:

❶ We run through our graph nodes first. For each node (or vertex) we use
the GraphCompute.Application.genserver/0 function to create a genserver and add
the graph node term to the :id field in the process state map. We then add
this process as a node to the process graph.

❷ Next we run again through our graph nodes and build up a map of the
graph node ID to process the graph node PID.

❸ We then run through the graph edges. We pattern match over the graph
edge, and using our lookup map of ID to PID, we create a new edge for
the process graph.

❹ Finally, we save a copy of the new process graph in the GraphCompute.Graph
agent.

This gives us our process graph.

We can also define a couple of helper functions:

apps/graph_compute/lib/graph_compute/process_graph.ex
def get_state(p) do

GraphCompute.Process.get(p)
end

def put_state(p, {name, value}) do
GraphCompute.Process.put(p, name, value)

end

These will be helpful to inspect and modify the process graph node state.

Note that we haven’t said anything yet about the process graph edge state or
the edge properties. Let’s consider those now.

report erratum • discuss

Building a Dynamic Process Graph • 233

http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/process_graph.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Adding Edge Properties
Currently, libgraph has no support for edge properties other than the label and
weight. One technique for dealing with this would be to stand up processes
for edges and capture the state just as we’ve done for nodes. We would need
to make the following addition (line 6 to line 9) to the edge handling:

h =Line 1

g-

|> Graph.edges()-

|> Enum.reduce(h, fn e, h ->-

%Graph.Edge{label: label, v1: v1, v2: v2, weight: _} = e5

p = GraphCompute.Application.genserver()-

GraphCompute.Process.put(p, :label, label)-

GraphCompute.Process.put(p, :v1, Map.get(m, v1))-

GraphCompute.Process.put(p, :v2, Map.get(m, v2))-

Graph.add_edge(h, Map.get(m, v1), Map.get(m, v2), label: label)10

end)-

This would create managed processes also for the edges, which have a state
map that could be used to capture edge properties.

But for now, let’s carry on with our nodes-only process graph.

Restoring the State for a Node
Our process graph nodes are supervised, which means that they will get
restarted when they die after erroring—which is a handy thing. But there’s
a gotcha. They will get reborn as new blank nodes with no previous state.
Another process will be set up to take over from the old process.

Obviously, we would like to capture any state from the old process and forward
it to the new process—rather like a baton handover in a relay race.

As we saw earlier in Agents, on page 229, we can use an agent to maintain the
process state at this handover point. The trick here will be to push any process
state onto the agent at the process termination and to fetch that back at the
process initiation.

It’s time to fill out those do_init/0 and do_terminate/1 private functions that we intro-
duced earlier in the genserver callbacks listed in Genservers, on page 230.

First, we’ll deal with the process initiation case. We’ll want to handle any
process exits by using Process.flag/2 to set the :trap_exit flag to true. And then we’ll
read any state from our agent and return that:

defp do_init() do
Process.flag(:trap_exit, true)

Chapter 12. Processing the Graph • 234

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

state = GraphCompute.State.get()
{:ok, state}

end

Our processes will be relaunched with a new identity and with the old state.

Then we’ll deal with the process termination case. Nothing more is required
here than pushing the process state onto the agent:

defp do_terminate(state) do
GraphCompute.State.update(state)

end

This should almost be enough. We’ve recreated the process and the state to
go with that process. But there is one more thing we need to take care of—the
graph. Our graph has both a node set and an edge set, and any new node
will necessarily fall outside both of those sets. That is, it will fall outside the
graph. We’ll need to fix that.

Recovering the Graph
Let’s recap our scenario here. We have a node process terminated for some
reason and recreated by the supervisor. We also managed to restore the state
to that node process. But the process is now running with a new PID. So the
process is under supervision but is outside of our process graph structure.

We need a few things to deal with this. We have to remember the old PID that
it was running under before it crashed, and then with the old PID and the
new PID, we can use the Graph.replace_vertex/3 function to update the process
graph itself as:

iex> pg = Graph.replace_vertex(pg, old_pid, new_pid)

But we don’t want to have to do this by hand. We’ll want to do this when a
new process is initiated.

Caching Old and New PIDs
The first problem to address is managing the old_pid and the new_pid. We can
get hold of the new_pid (or PID) at process create time by calling self/0, and we
can store that PID in a :pid field. We can also get hold of the old_pid from the
stored process state using the :old_pid field or nil if there is no previous PID,
and we then store that PID in the :old_pid field:

defp do_init() do
Process.flag(:trap_exit, true)

state = GraphCompute.State.get()
new_pid = self()

report erratum • discuss

Recovering the Graph • 235

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

old_pid = Map.get(state, :pid)
state = Map.put(state, :pid, new_pid)
state = Map.put(state, :old_pid, old_pid)

{:ok, state}
end

Good. We’ve managed the old and new PIDs. We now need to swap them over
in the graph. Let’s see one way to do that.

Storing the Process Graph
We can use an agent to store the process graph. So we’ll set up a new module
GraphCompute.Graph as we saw in Agents, on page 229.

We can then call it when we create a new process graph pg by adding this:

iex> pg = GraphCompute.Graph.update(pg)

And when a process transitions to a new PID, we can call this sequence:

iex> pg = Graph.replace_vertex(GraphCompute.Graph.get(), old_pid, new_pid)
GraphCompute.Graph.update(pg)

Let’s add that now into our do_init/0 function, taking care to pattern match
that our agent returns a valid graph structure:

apps/graph_compute/lib/graph_compute/process.ex
defp do_init() do

Process.flag(:trap_exit, true)

state = GraphCompute.State.get()
new_pid = self()
old_pid = Map.get(state, :pid)
state = Map.put(state, :pid, new_pid)
state = Map.put(state, :old_pid, old_pid)

with %Graph{} = graph <- GraphCompute.Graph.get() do➤

GraphCompute.Graph.update(
Graph.replace_vertex(graph, old_pid, new_pid)

)
end

{:ok, state}
end

So now we’ve not only restored the process node state but also restored the
process node graph.

Simulating a Network
Let’s get an example NativeGraph graph.

Chapter 12. Processing the Graph • 236

report erratum • discuss

http://media.pragprog.com/titles/thgraphs/code/apps/graph_compute/lib/graph_compute/process.ex
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

We previously stored an example of the early ARPANET—see Rendering with
OmniGraffle, on page 51. This would make a good candidate.

Although ARPANET may not have been built specifically to survive a nuclear
attack, it was still designed to be resilient in the event of network losses and
to reroute traffic as required. This small simulation here will aim to demon-
strate a similar survivability of a network against inflicted outages.

Let’s start off with this small ARPANET graph:

iex> arpa = NativeGraph.Examples.Arpa.arpa
#Graph<type: undirected, vertices: [:sri, :ucla, :ucsb, :utah, :sri_h1,
:ucla_h1, :ucsb_h1, :utah_h1], edges: [:sri <-> :ucla, :sri <-> :ucsb, :sri
<-> :utah, :sri <-> :sri_h1, :ucla <-> :ucsb, :ucla <-> :ucla_h1, :ucsb <->
:ucsb_h1, :utah <-> :utah_h1]>

This is a simple undirected graph with atoms for nodes. Let’s now create a
new graph with processes for nodes on the back of this graph. We’ll import
the GraphCompute.ProcessGraph module to save on typing:

iex> import GraphCompute.ProcessGraph
GraphCompute.ProcessGraph

We then bring up the process graph as:

iex> pg = arpa |> graph_up
#Graph<type: directed, vertices: [#PID<0.513.0>, #PID<0.510.0>,
#PID<0.506.0>, ...], edges: [#PID<0.506.0> -> #PID<0.510.0>,
#PID<0.506.0> -> #PID<0.509.0>, #PID<0.506.0> -> #PID<0.507.0>, ...]>

This process graph is a regular graph built using libgraph and can be inspected
and manipulated with the standard libgraph library functions:

iex> Graph.vertices(pg) |> Enum.sort
[#PID<0.506.0>, #PID<0.507.0>, #PID<0.508.0>, #PID<0.509.0>, #PID<0.510.0>,
#PID<0.511.0>, #PID<0.512.0>, #PID<0.513.0>]

iex> Graph.edges(pg) |> Enum.sort
[

%Graph.Edge{label: nil, v1: #PID<0.506.0>, v2: #PID<0.507.0>, weight: 1},
%Graph.Edge{label: nil, v1: #PID<0.506.0>, v2: #PID<0.508.0>, weight: 1},
%Graph.Edge{label: nil, v1: #PID<0.506.0>, v2: #PID<0.509.0>, weight: 1},
%Graph.Edge{label: nil, v1: #PID<0.506.0>, v2: #PID<0.510.0>, weight: 1},
...
%Graph.Edge{label: nil, v1: #PID<0.509.0>, v2: #PID<0.513.0>, weight: 1}

]

All these nodes are processes, and moreover, they are supervised processes.
This means we can discover these processes from the supervisor’s point of
view:

report erratum • discuss

Simulating a Network • 237

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> Supervisor.which_children(GraphCompute.DynamicSupervisor)
[

{:undefined, #PID<0.506.0>, :worker, [GraphCompute.Process]},
{:undefined, #PID<0.507.0>, :worker, [GraphCompute.Process]},
{:undefined, #PID<0.508.0>, :worker, [GraphCompute.Process]},
...
{:undefined, #PID<0.513.0>, :worker, [GraphCompute.Process]}

]

We can also inspect a given process:

iex> get_state(pid(0,506,0))
%{id: :sri, old_pid: nil, pid: #PID<0.506.0>}

This nil value for old_pid shows that this is a new process and has no history.

Let’s exit this process and see what happens. We send an exit signal with the
reason :stop, which the process callbacks will handle:

iex> Process.exit(pid(0,506,0), :stop)
true

iex> Supervisor.which_children(GraphCompute.DynamicSupervisor)
[

{:undefined, #PID<0.507.0>, :worker, [GraphCompute.Process]},
{:undefined, #PID<0.508.0>, :worker, [GraphCompute.Process]},
{:undefined, #PID<0.509.0>, :worker, [GraphCompute.Process]},
...
{:undefined, #PID<0.523.0>, :worker, [GraphCompute.Process]}

]

Here we’ve exited #PID<0.506.0> which was then recreated as #PID<0.523.0>. If
we inspect this process, we can now see that it has captured the previous
PID, #PID<0.506.0>:

iex> get_state(pid(0,523,0))
%{id: :sri, old_pid: #PID<0.506.0>, pid: #PID<0.523.0>}

So, this is good. The supervision tree holds. A new process was created for
the stopped process. But what about the graph? Let’s fetch our updated graph
back from the GraphCompute.Graph agent:

iex> pg1 = GraphCompute.Graph.get
#Graph<type: directed, vertices: [#PID<0.513.0>, #PID<0.510.0>,
#PID<0.511.0>, ...], edges: [#PID<0.509.0> -> #PID<0.513.0>,
#PID<0.507.0> -> #PID<0.511.0>, #PID<0.507.0> -> #PID<0.508.0>, ...]>

Now let’s inspect that graph:

iex> Graph.vertices(pg1) |> Enum.sort
[#PID<0.507.0>, #PID<0.508.0>, #PID<0.509.0>, #PID<0.510.0>, #PID<0.511.0>,
#PID<0.512.0>, #PID<0.513.0>, #PID<0.523.0>]

Chapter 12. Processing the Graph • 238

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

iex> Graph.edges(pg1) |> Enum.sort
[

%Graph.Edge{label: nil, v1: #PID<0.507.0>, v2: #PID<0.508.0>, weight: 1},
...
%Graph.Edge{label: nil, v1: #PID<0.523.0>, v2: #PID<0.507.0>, weight: 1},
%Graph.Edge{label: nil, v1: #PID<0.523.0>, v2: #PID<0.508.0>, weight: 1},
%Graph.Edge{label: nil, v1: #PID<0.523.0>, v2: #PID<0.509.0>, weight: 1},
%Graph.Edge{label: nil, v1: #PID<0.523.0>, v2: #PID<0.510.0>, weight: 1}

]

We can see from the vertices/1 listing that the graph now has the new process
#PID<0.523.0> as a graph node and the old node #PID<0.506.0> has been removed.
Also, the edges/1 listing shows that the #PID<0.523.0> node is linked to the same
nodes that the #PID<0.523.0> node was previously linked to. It looks like our
graph is intact.

At this point, it’s probably more helpful to view this with the Erlang Observer
tool that ships with Elixir. Let’s open that up:

iex> :observer.start

Go to the Observer window and select the “Applications” tab from the menu
bar. Then from the list of applications displayed on the left-hand side, choose
graph_compute and double-click on that. You should see something like the
screenshot shown in the following figure. (If nothing is displayed, it may be
that you need to force a screen redraw, for example, by altering the window
size or toggling the tabs.)

The first thing to note here is that there are two supervision trees: the dynamic
tree for process graph nodes and the static tree for graph and node state.

report erratum • discuss

Simulating a Network • 239

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

You can double-click any of the processes shown, and from the “Process Info”
pane, you can select the “State” tab from the menu bar to see the state stored
in that process. For example, by clicking on the highlighted process, we can
inspect the state for that process as shown in this next screenshot.

We can see the original values, especially the PIDs with the old_pid showing
as nil and the pid showing as <0.507.0>.

To exit a process, close the window to go back to the “Applications” view and right-
click over the process name and a menu will pop up. If we select the “Kill process”
option, this will bring up an input asking for the reason to terminate.

The default reason is kill, which will bypass the terminate/2 callback. That’s not our
intention here. Let’s try something else—for example, stop. The following screenshot
shows the input asking for the reason to terminate and our stop reason.

Chapter 12. Processing the Graph • 240

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

This message is passed on to the terminate/2 callback, which takes care of
saving the node process state and its PID value <0.507.0> to the agent process.
It then starts a new process with PID <0.1152.0> and assigns the state from
the agent process to that new process.

In the next screenshot, we can see a new process <0.1152.0> under the Dynam-
icSupervisor which is named with the new PID.

If we now inspect the new process state, as shown in the following screenshot,
we can see the updated values, especially the PIDs with the old_pid showing
as <0.507.0> and the pid showing as <0.1152.0>.

These are the same values we get when using the get_state/0 function:

iex> get_state(pid(0,1152,0))
%{old_pid: #PID<0.507.0>, id: :ucla, pid: #PID<0.1152.0>}

report erratum • discuss

Simulating a Network • 241

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

One other thing to look at in passing is the saved graph state. If you go back
to the graph_compute application under the “Applications” view and then double-
click the Elixir.GraphCompute.State process button under the static tree, you can
see the saved graph state. Not pretty, but it’s all in there as this last screenshot
shows.

This exercise has shown that a source graph can be mapped to a process
graph and its state preserved across the spawning of new processes. The state
here is any Elixir term used as the node ID in the source graph and that could
carry much more information via a more complex data structure. Note also
that we didn’t handle labels yet, although these would be simple to map over
to the new process graph. And if we wanted to also add in edge attributes,
we could bring up some processes for managing edges as discussed earlier.

This is only intended as an example, and we’ve made no effort to test the
viability of this approach for larger graphs. This is a proof of concept—activat-
ing the graph by adding processes to the nodes (and to the edges if required),
and then putting those under supervision.

But the real thing that we haven’t explored here is graph compute capability.
That would be fun to play with. We’ve set up the processes, but haven’t
specified any action beyond lifecycle support. The next steps here could be

Chapter 12. Processing the Graph • 242

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

to run up some simple applications over this network, for example, message
passing and capturing the message in the process node state. But I’m sure
you’ll all have much better ideas on how to work this up than I do.

Wrapping Up
Well, we’ve come quite a way in this book. We started off with graphs and
ended up with Elixir processes.

We’ve looked at native libraries (:digraph, and :libgraph) for building graph
structures in Elixir. We’ve interacted with graph databases using a number
of packages (:bolt_sips, :sparql_client, :gremlex, and :dlex). And we’ve tried our hand
at a couple of extended applications. We’ve queried over multiple graph stores
and then imported and exported this aggregate graph into and out of different
graph databases. We’ve also run up an OTP supervision tree over some graph
structures and played around with that.

There are plenty of things we didn’t get to cover in this book—there just wasn’t
the space. We could have looked at graph algorithms with PropertyGraph models,
rules and inference with RDFGraph models, graph visualizations, graph serial-
izations, graph embeddings, and more. We also could have spent more time
on the concurrent and distributed side of things.

What we’ve seen anyway is that graphs are super useful data structures for
working with loose sets of data. Graphs excel at providing the joins that typi-
cally can be challenging when using relational and other database types. They
are also excellent discovery tools as they can literally network data like crazy.
And we’ve also seen that Elixir has a growing number of tools for working
with graphs. This can only be a good thing.

So, in closing, only one thing is left to say. Go graphs!

report erratum • discuss

Wrapping Up • 243

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

APPENDIX 1

Project Setups
Before setting up a working project, you’ll first need to install the graph
databases you’ll be working with. See Appendix 2, Database Setups, on
page 247, for details on where to download the databases from and how to
set them up.

The project may be created manually by following along with the descriptions
in the book. Code listings are available from the Pragmatic site.1 Go to their
page and follow the instructions or else you can get the download directly
from the command line as:

$ curl -L -O http://media.pragprog.com/titles/thgraphs/code/thgraphs-code.tgz
$ tar xzf thgraphs-code.tgz

There is also a .zip bundle if you prefer that over the .tgz bundle.

Example graphs and queries are included in the bundle.

You’ll then cd down into the project directory.

$ cd code

If you haven’t installed all the graph databases, you should take a moment
to remove the respective apps.

Right, we’ve customized our project for the graph databases (if any) we’ll be
using.

Now you need to install the project dependencies.

$ mix deps.get

You might also want to configure the IEx startup file .iex.exs:

1. https://pragprog.com/titles/thgraphs/source_code

report erratum • discuss

https://pragprog.com/titles/thgraphs/source_code
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

import GraphCommons
import GraphCommons.Utils ; alias GraphCommons.Utils

IEx.configure(default_prompt: "%prefix>", alive_prompt: "%prefix>")

GraphCommons.hello()

At this point, you should be good to go.

$ iex -S mix
Erlang/OTP 24 [erts-12.3.1] ...

Interactive Elixir (1.13.4) - press Ctrl+C to exit (type h() ENTER for help)
This is ExGraphsBook - an Elixir umbrella app:

[:d_graph, :graph_commons, :graph_compute, :native_graph, :property_graph,
:rdf_graph, :tinker_graph]

iex>

Appendix 1. Project Setups • 246

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

APPENDIX 2

Database Setups
This appendix covers download details and some setups for the graph
databases we are using in this book.

Here are the databases in order of introduction in this book:

TechnologyLicenseVersionDatabase

JavaGPL v34.4.5Neo4j Community Edition

JavaOntotext9.11.1GraphDB Free

JavaApache 2.03.6.0Gremlin Server

GoApache 2.020.11.0Dgraph

The version numbers shown here are those used in writing this book.

Installing Neo4j
There are various options for installing a local copy of Neo4j. See the Neo4j
Download Center.1

You can install native applications with the Neo4j Desktop, which provides
its own GUI interface. This may be your preferred solution.

Or you can simply install Neo4j as a standalone server, using either the
Community Server or the Enterprise Server edition. In this book, we are using
the Community Server for Linux/Mac.

For this, you need to download the Neo4j distribution file and unzip it. You
can then execute the startup script which is located in the bin directory of
the Neo4j distribution:

$ bin/neo4j start

1. https://neo4j.com/download-center/

report erratum • discuss

https://neo4j.com/download-center/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

The start parameter will run Neo4j as a daemon.

There is also a web browser2 for interacting with the server. Go to port 7474
on localhost. From here you can query and visualize graphs in the database.

And finally, Neo4j can also be installed as a Docker3 image. For more details
see the Neo4j with Docker4 page.

Alternate solutions to local installation are to use the Neo4j Sandbox5 or try
out the Neo4j AuraDB6 cloud service.

Neo4j is free to use but is not open-source software. It’s available under a
GPL v3 license.

Installing GraphDB
While there are a number of excellent RDF triplestores available, in this book,
we’ve used only one—GraphDB Free from Ontotext.7

See the Installation8 and Quick Start Guide9 pages for more details. You can
download a copy from Ontotext’s products page.10

The easiest way to set up and run GraphDB is to use one of the native
installations provided for the GraphDB Desktop distribution.11 These come
shipped with their own GUI interfaces.

The default way is to install GraphDB as a standalone server. Essentially,
you need to download the GraphDB distribution file and unzip it. You can
then execute the startup script which is located in the bin directory of the
GraphDB distribution:

$ bin/graphdb -d

The -d flag will run the GraphDB server as a daemon.

2. http://localhost:7474/
3. https://www.docker.com/
4. https://neo4j.com/developer/docker/
5. https://neo4j.com/sandbox/
6. https://neo4j.com/cloud/platform/aura-graph-database/
7. http://graphdb.ontotext.com/documentation/free/
8. http://graphdb.ontotext.com/documentation/free/installation.html
9. https://graphdb.ontotext.com/documentation/free/quick-start-guide.html
10. https://www.ontotext.com/products/graphdb/
11. https://graphdb.ontotext.com/documentation/free/run-desktop-installation.html

Appendix 2. Database Setups • 248

report erratum • discuss

http://localhost:7474/
https://www.docker.com/
https://neo4j.com/developer/docker/
https://neo4j.com/sandbox/
https://neo4j.com/cloud/platform/aura-graph-database/
http://graphdb.ontotext.com/documentation/free/
http://graphdb.ontotext.com/documentation/free/installation.html
https://graphdb.ontotext.com/documentation/free/quick-start-guide.html
https://www.ontotext.com/products/graphdb/
https://graphdb.ontotext.com/documentation/free/run-desktop-installation.html
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

To admin the server you can bring up the Workbench12 which is the GraphDB
web-based administration tool. This will be at port 7200 on localhost. There
are a lot of goodies there, but go to Repositories13 (under Setup) to create a
new repository.

GraphDB can also be installed as a Docker image. For more details see the
Docker Hub14 page.

GraphDB Free is free to use but is not open-source software. It’s available
under an RDBMS-like free license.

Installing Gremlin Server
Gremlin Server is available from the Apache TinkerPop project.15

See the Download Apache TinkerPop16 page for downloads and the Getting
Started17 page for a walkthrough.

You need to download the Gremlin Server distribution file and unzip it. You
can then execute the startup script, which is located in the bin directory of
the Gremlin Server distribution:

$ bin/gremlin-server.sh start

The start parameter will run Gremlin Server as a daemon.

Note that the source code is available if you prefer to build it.

There is also a Gremlin Console distribution for interacting directly with the
Gremlin Server. See the Gremlin Console tutorial page18 for more info.

Gremlin Server is also packaged as a Docker image. And this may be a more
convenient option (assuming that you already have Docker installed).

First, get the Docker image:

$ docker pull tinkerpop/gremlin-server

And then run the Docker image:

$ docker run -itd --rm -p 8182:8182 --name gremlin tinkerpop/gremlin-server

12. http://localhost:7200/
13. http://localhost:7200/repository
14. https://hub.docker.com/r/ontotext/graphdb/
15. http://tinkerpop.apache.org/
16. http://tinkerpop.apache.org/download.html
17. http://tinkerpop.apache.org/docs/current/tutorials/getting-started/
18. https://tinkerpop.apache.org/docs/3.6.0/tutorials/the-gremlin-console/

report erratum • discuss

Installing Gremlin Server • 249

http://localhost:7200/
http://localhost:7200/repository
https://hub.docker.com/r/ontotext/graphdb/
http://tinkerpop.apache.org/
http://tinkerpop.apache.org/download.html
http://tinkerpop.apache.org/docs/current/tutorials/getting-started/
https://tinkerpop.apache.org/docs/3.6.0/tutorials/the-gremlin-console/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Gremlin Server is open-source software and is available under an Apache 2.0
license.

Installing Dgraph
Dgraph is available from Dgraph Labs.19

For help with installing Dgraph, you should go to the site’s Get Started20 page,
or for a tutorial walkthrough, go to the Tour21 page.

Dgraph no longer supports Windows and Macs directly but instead makes
the latest versions of Dgraph available as Docker images. So, you’ll need to
install Docker first. See the Download page.22

Create a folder to store Dgraph data outside of the container:

$ mkdir -p ~/dgraph

Now get the Docker image:

$ docker pull dgraph/standalone

And then run the Docker image:

$ docker run -itd --rm -p 5080:5080 -p 6080:6080 -p 8080:8080 -p 9080:9080 \
-p 8000:8000 -v ~/dgraph:/dgraph --name dgraph dgraph/standalone:v21.03.0

There is also a standalone server for Linux/Mac which I’ve installed but it’s
a bit more cumbersome to use. The Dgraph cluster consists of three different
nodes (Zero, Alpha, and Ratel), where each node serves a different purpose.
Dgraph Zero controls the Dgraph cluster, Dgraph Alpha hosts predicates and
indexes, and Ratel serves the UI for running queries, mutations, and altering
the schema.

To access the UI with Dgraph Ratel23, go to port 8000 on localhost.

An alternative solution to running locally is to use Dgraph Cloud.24

Dgraph is open-source software and is available under an Apache 2.0 license.

19. https://dgraph.io/
20. https://dgraph.io/docs/get-started
21. https://dgraph.io/tour/
22. https://dgraph.io/downloads/
23. http://localhost:8000/
24. https://cloud.dgraph.io/

Appendix 2. Database Setups • 250

report erratum • discuss

https://dgraph.io/
https://dgraph.io/docs/get-started
https://dgraph.io/tour/
https://dgraph.io/downloads/
http://localhost:8000/
https://cloud.dgraph.io/
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Starting the Databases
It’s often easier to have a simple script to restart all services. This is the script
I’ve been using, but you’ll need to customize it as appropriate.

apps/graph_commons/priv/scripts/shell/services.sh
#!/bin/bash

BOOK

export GRAPHS_HOME=/Users/tony/Projects/graphs

BOOK - NEO4J

export NEO4J_VERSION=4.4.5
export NEO4J_HOME=${GRAPHS_HOME}/neo4j/neo4j-community-${NEO4J_VERSION}
export NEO4J_CONF=${NEO4J_HOME}/conf
export PATH=${PATH}:$NEO4J_HOME/bin

neo4j restart

BOOK - GRAPHDB

export GRAPHDB_VERSION=10.0.0
export GRAPHDB_HOME=${GRAPHS_HOME}/graphdb/graphdb-${GRAPHDB_VERSION}
export PATH=${PATH}:$GRAPHDB_HOME/bin

kill -9 `cat ${GRAPHDB_HOME}/pid.txt`
graphdb -d -p ${GRAPHDB_HOME}/pid.txt

BOOK - GREMLIN

export GREMLIN_VERSION=3.6.0
export GREMLIN_SERVER=apache-tinkerpop-gremlin-server-${GREMLIN_VERSION}
export GREMLIN_SERVER_HOME=${GRAPHS_HOME}/gremlin/${GREMLIN_SERVER}
export PATH=${PATH}:$GREMLIN_SERVER_HOME/bin
gremlin-server.sh restart

BOOK - DGRAPH

export DGRAPH_HOME=${GRAPHS_HOME}/dgraph

cur_dir=`pwd`
cd $DGRAPH_HOME
dgraph alpha --lru_mb 1024 --graphql_extensions=false &
dgraph zero &
dgraph-ratel &
cd $cur_dir

###

report erratum • discuss

Starting the Databases • 251

http://media.pragprog.com/titles/thgraphs/code/apps/graph_commons/priv/scripts/shell/services.sh
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

APPENDIX 3

Graph Anatomy
Graphs are data models used to manage relationships between things. Or as
Wikipedia1 puts it, graphs are:

“… data structures used to model pairwise relations between objects.”

“Objects” here can be any things, or entities if that’s a better word for you.
And “pairwise relation” simply means some kind of link or connection between
a pair of these things (or objects or entities).

Now, in math terms, a graph is an ordered pair consisting of a vertex set
(representing objects) and an edge set (representing links between objects),
or G = (V,E) in the usual math notation, as shown in the following figure.

Vertex Set: V Vertex

Edge Set: E Edge (a 2-Set)

Graph Model Graph Diagram

G
ra

ph
: G

 =
 (V

,E
)

The vertex set is a basic set of vertex objects—vertices. The edge set is a set
of edges which themselves are 2-sets, or sets with two members. Each member
of an edge is a vertex object. In some cases, the 2-sets are ordered. That is,

1. https://en.m.wikipedia.org/wiki/Graph_theory

report erratum • discuss

https://en.m.wikipedia.org/wiki/Graph_theory
http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

they form an ordered pair. We then talk about directed graphs, or digraphs,
otherwise, we talk about undirected graphs.

Also, while for simple graphs the edge set has unique members, in the case
of a multigraph, the edge set itself is a multiset and allows for duplicate edges.
That is, we can have multiple edges between the same vertex pairs.

In the case of connected graphs, where each vertex is paired with another,
there is a path running through all the vertices. The vertex set may then be
unnecessary as all the vertices are contained within the edge set.

Roughly, we can divide the elements of graphs into two main types: structural
elements and semantic elements. Let’s look at each in turn.

Structural Elements
The graph proper is a set of nodes together with a set of edges relating node
pairs and giving rise to paths between any two nodes that are traversable by
a sequence of connected edges. The edges may also have an associated
directionality depending on whether the graph is directional or not. These
elements together constitute the structure or framework of the graph. In a
sense, they could be said to define the skeleton on which information elements
are added and thus determine the information-bearing capacity.

Semantic Elements
In contrast with the structural elements, the semantic elements provide the
information content and include the label, weight, and property elements.
How these semantic elements are supported is where the main differences
between the various graph models arise.

Semantic elements are typically in some sense “attached” to the main structure.
Properties can be regarded as attributes of a structuring element—a node or an
edge. Not all graph models, however, support properties on edges.

They may be implemented as an associated data structure, for example, a
dictionary. This is the case for the property graph model.

In the RDF graph model, however, properties may only be attached to nodes
and are implemented as edge/node spurs on those nodes, where the attached
node is a string literal and is a terminus in the graph network and thus not
available for onward connections.

Appendix 3. Graph Anatomy • 254

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

So, in a property graph, properties are squirreled away within the graph
somehow, while in an RDF graph, properties are represented as an integral
part of the graph but are located on the periphery of the graph.

Regardless of the implementation, properties qualify the node (or edge) to
which they are attached.

report erratum • discuss

Semantic Elements • 255

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Bibliography

[HN19] Amy E. Hodler and Mark Needham. Graph Algorithms. O’Reilly & Associates,
Inc., Sebastopol, CA, 2019.

[IT19] James Edward Gray, II and Bruce A. Tate. Designing Elixir Systems with
OTP. The Pragmatic Bookshelf, Raleigh, NC, 2019.

[Tat18] Ben Marx, José Valim, Bruce Tate. Adopting Elixir. The Pragmatic Bookshelf,
Raleigh, NC, 2018.

[WW18] Bruce Williams and Ben Wilson. Craft GraphQL APIs in Elixir with Absinthe.
The Pragmatic Bookshelf, Raleigh, NC, 2018.

report erratum • discuss

http://pragprog.com/titles/thgraphs/errata/add
http://forums.pragprog.com/forums/thgraphs

Index

SYMBOLS
" (double quotes)

escaping, 24
for URIs, 124

() (parentheses), nodes in
Cypher syntax, 77, 94

* (asterisk) in Cypher syntax,
94

<> (brackets) for URIs, 119,
124

? (question mark) in Cypher
syntax, 94

[] (brackets) for relationships
in Cypher syntax, 77

{} (braces) for nodes in
Cypher syntax, 94

|> (pipe operator)
building RDF graphs, 128
for query strings, xiv

~ (tilde) for inverse predicates,
194

A
“a” (Turtle), 124, 150

add_edge (:digraph), 7
add_edge (libgraph), 39

add_vertex (:digraph), 7
add_vertex (libgraph), 38

adjacency lists, 202

adjacency matrix, 202

Adopting Elixir, 8

Advanced Research Projects
Agency (ARPA), 105, see al-
so ARPANET

agents
caching processes, 226,

228–230
defining, 229
storing process graph in

GraphCompute Project,
236

algorithms for graph expres-
sion, 202

alter! (Dgraph), 184

APOC (Awesome Procedures
on Cypher), 78, 85, 204,
216

arc, as term, 5

ARPANET
about, 105
Dgraph example, 193–

198
PropertyGraph Project,

querying with Cypher,
105–111

simulating network in
GraphCompute Project,
236–243

visualizations with Omni-
Graffle example, 51–54

arrow, as term, 5

ASK (SPARQL), 144, 147

asterisk (*) in Cypher syntax,
94

atoms, nodes identified with,
57, 61, 63

authentication, disabling, 218

B
base_iri, 126

BIND, 152

Bob Dylan query examples,
156–162, 210–221

Bolt
about, xiii, 71
connection details, 75
passing parameters in

queries, 109
PropertyGraph Project,

querying with Cypher,
77–84

PropertyGraph Project,
setup, 74–76

PropertyGraph Project,
understanding connec-
tion, 79–84

resources on, 81
types and, 81

bolt_sips package, 72, 74

boltex package, 72

book graph
attaching properties to

nodes and edges, 8–10
creating module for, 55
with DGraph Project,

187–193
exploring graph struc-

tures with, 55–70
graph service, 134–142
modeling, 8–10, 61–68
populating, 8, 10
PropertyGraph Project,

graph services API, 84–
92

PropertyGraph Project,
querying with Cypher,
98–104

public entry points for,
55

querying, 59, 64–68

querying with SPARQL,
143–162

RDF graphs, serializing
with n10s, 205–207

RDFGraph Project, build-
ing in, 125–134

RDFGraph Project, model-
ing in, 121–125

RDFGraph Project, serial-
izing in, 129–134

SCHEMA vocabulary for,
125–134

skeleton code, 56
traversing with Gremlin,

172–174
visualizations, 8–10, 58

booleans, Cypher types, 113

braces ({}) for nodes in
Cypher syntax, 94

brackets (<>) for URIs, 119,
124

brackets ([]) for relationships
in Cypher syntax, 77

“Building a Native GraphQL
Database”, 179

C
caching

processes, 225, 228–
230, 235

queries with parameters,
109

querying remote RDF
services and, 158

CALL (Cypher), 78, 111, 113

CarLabs, 164

category theory, 5

class types, properties and,
124

classes, building RDF graphs
and, 127

closed-world assumption, 3

code
book graph code, 61
conventions for this book,

xiii
sample code for this

book, xv, 245
setup tips, 245

common storage area
about, 15
creating, 17–19
creating new graphs, 22
NativeGraph setup, 37
packaging graphs and

queries, 19–24

RDFGraph Project, query
helper, 141

RDFGraph Project, setup,
121

using macros to
read/write in NativeG-
raph Project, 42–47

components (libgraph), 60

concept URLs, 210

concept map, 4

configuration
common storage area, 18
IEx startup file, 245

connected graphs
edge sets and, 254
vertexes in, 69

constraints, Cypher and,
111–113

CONSTRUCT (SPARQL), 144–
145, 154, 202, 217

:context keyword, 133

contexts
finding default, 91
importing PropertyGraph

Project with, 89–92, 96
JSON-LD and, 133
switching, 91, 96

COPY (SPARQL Update), 144

counts, querying in Gremlin,
171

Craft GraphQL APIs in Elixir
with Absinthe, 10, 178

CREATE (Cypher), 22, 94–96,
107

CREATE (SPARQL Update), 144

CRUD operations, graph ser-
vice API setup, 29–32

CSV as exchange format, 202

Cypher
about, 71, 77
with APOC, 78, 85, 204,

216
ARPANET, querying, 105–

111
constraints on labels,

111–113
creating new graphs, 22
deleting nodes and rela-

tionships, 84
Dgraph and, 178
exporting with, 218
expressing graph for-

mats, 202
indexes and, 111

list comprehension in,
103

Neo4j and, 202
parameters, querying

with, 109–111
path length and, 73
PropertyGraph Project,

76–92
PropertyGraph Project,

graph services API, 84–
92

PropertyGraph Project,
querying book graph,
98–104

query basics, 76–79, 94–
98

resources on, 71, 78, 94,
113–114

schemas, 111–113
serialization representa-

tion, 22
serializing RDF graphs

with n10s, 204
types in, 111, 113

cypher key, 218

Cypher Refcard, 71

D
-d flag, GraphDB server, 248

data
data integration and seri-

alization from RDFs to
property graphs, 209

data naming practices,
210, 212

loading into Dgraph, 190

data accessors, 146

:data field, 20

data types, see types

databases, see also Dgraph;
GraphDB; Neo4j

setup, 247–251
starting with script, 251
versions, xv, 247

DataDock, 149

DBpedia
about, 155
book graph in RDFGraph

Project, 136
data naming practices,

210
querying with SPARQL

example, 155–162
resources on, 210
serialization from RDF to

property graph exam-
ple, 207–221

Index • 260

DELETE DATA (SPARQL Update),
144

deleting
common interface for in

graph service API, 29
graphs in Gremlin, 167
nodes and relationships

in Cypher, 84
with SPARQL Update,

144

dependencies
fetching and compiling,

18
installing, 245

DESCRIBE (SPARQL), 144, 147,
149, 210

deserialization, libgraph and,
47

Designing Elixir Systems with
OT, 10

Dgraph
about, 177
ARPANET example, 193–

198
data model, 179–181
vs. GraphQL, 178, 189
loading data, 190
queries with DQL, 177,

181, 184, 186, 191–
193, 195

recursion, 196
resources on, 179
setup, 250
syntax, 179
version, xv, 247

Dgraph Alpha, 250

Dgraph Cloud, 250

@dgraph directive, 189

Dgraph Labs, 250

DGraph Project
with book graph, 187–

193
creating, 181–185
graph service, 185–187

Dgraph Query Language,
see Dgraph

Dgraph Ratel, 250

Dgraph Zero, 250

digraph
Hello Word example, 7
performance and, 36

:dir?, 29, 47

directed graphs
creating with libgraph, 37–

40

defined, 254
testing paths, 64, 67

directories
filtering, 28, 47
listing in graph store set-

up, 27
listing in libgraph, 47
priv directory setup, 18,

25

dlex package, xiii, 181

do_dynamic_supervisor, 229

do_static_supervisor, 229

Docker, 249–250

DOT format
importing files, 53
libgraph and, 41, 46–54
limits of as interchange

format, 201
rendering, 47–54
serialization and, 50, 53

dot term, 5

DQL, see Dgraph

drop () (Gremlin), 167

DROP (Cypher), 111, 113

DROP (SPARQL Update), 144

dynamic process graphs,
building, 231–234

dynamic supervision, Graph-
Compute Project, 228–231

E
edge sets, 253

edgelists, 202

edges, see also relationships
(Neo4j)

adding with :digraph, 7
in algorithms for graph

expression, 202
in connected graphs, 69
creating in GraphCom-

pute Project, 233
creating in libgraph, 39–40
edge annotation problem

in RDF graphs, 6
edge arrows in undirected

graphs, 40
edge properties and lib-
graph, 61, 234

edge properties in
GraphCompute Project,
234

edge properties in RDF
graphs, 122, 254

edge properties in book
graph, 8–10

edge sets, 253

graph anatomy and, 254
inspecting in GraphCom-

pute Project, 238
in property graph model,

72
querying graph struc-

tures with libgraph, 59,
64, 66

querying in Gremlin,
168, 171, 174

reverse edges for traver-
sal, 53

as term, 5

Elixir
about, 4
graph packages overview,

15
GraphCompute Project,

225–243
Hello World graph, 7
helpers, 40
importing in, 7
inspecting functions in,

40
listing Graph module func-

tions, 40
NativeGraph Project, 35–

54
starting shell, 7
version, xiv

ellipsis, 24

endpoints
federated queries, 222
querying remote RDF

services with SPARQL,
155

serialization from RDF to
property graph exam-
ple, 207

tracking graph store, 135

Erlang
graph support, 7
Observer tool, 239

escaping
new lines and quote

characters, 24
quoted expressions, 42

ex_dgraph package, 181

:exists?, 29

exporting RDFs out of proper-
ty graph store, 217–221

expressions, quoted, 42

F
Fabric, 223

Facebook, 177

Index • 261

facets, querying in Dgraph,
192

federated queries, 222

fetch (n10s), 205–207

fields, order of, 24

:file field (graph store), 20

files
filtering, 28, 47
importing DOT, 53
listing in graph store set-

up, 27
listing in libgraph, 47

filtering
in Dgraph, 192
with Gremlin, 164
lists, 28, 47

flag, 234

floats, Cypher types, 113

functions, inspecting in Elixir,
40

G
generators, graph, 68

genservers
creating, 229
GraphCompute Project,

225, 229, 234
interface, 230

GET
exporting RDFs out of

property graph store
with Neo4j, 217

importing RDFs into
property graph store,
215

get (SPARQL), 145, 153

get_paths (libgraph), 60, 64, 68

get_shortest_path (libgraph), 60

get_state, 238

Graph Algorithms, 10

graph databases,
see databases

graph service
API setup, 29–32
book graph in RDFGraph

Project, 134–142
common interface for, 29
data flow diagram, 30
DGraph Project, 185–187
with Gremlin, 169–171
information struct setup,

31
PropertyGraph Project,

84–92

serializing RDFs into
property graph store,
219

in umbrella app overview,
13

graph store
book graph in RDFGraph

Project, 134–142
building, 24–29
data flow diagram, 26
DGraph Project, 184
exporting RDFs out of

property graph store,
217–221

importing RDFs into
property graph store,
209–217

importing RDFs into
property graph store,
simpler, 215

with libgraph, 41–47
listing, 136
packaging graphs and

queries in umbrella
app, 19–24

RDFGraph Project, setup,
121

read/write functions, 26–
28

setup, 15
tracking for RDF graphs,

135
in umbrella app overview,

13

graph theory, 5

graph walk
DBpedia browsing exam-

ple, 159–162
DBpedia example of

querying, 156–159

graph_context macro, 91, 96

GraphCommons Project
about, 15
creating, 17–19
creating new graphs, 22
NativeGraph setup, 37
packaging graphs and

queries, 19–24
PropertyGraph Project,

graph services API, 84–
92

RDFGraph Project, query
helper, 141

RDFGraph Project, setup,
121

using macros to
read/write in NativeG-
raph Project, 42–47

GraphCompute Project
creating, 226
dynamic process graph,

building, 231–234
overview, 225
recovering graphs, 235–

236
simulating network with

ARPANET example,
236–243

supervision, 225, 227–
231, 235–243

GraphDB
book graph in RDFGraph

Project, 136
serialization from RDF to

property graph exam-
ple, 208–221

setup, 248
version, xv, 247

GraphGists, 114

GraphML, 202

GraphQL, 177–179, 189, see
also Dgraph

GraphQL+-, see Dgraph

graphs, see also connected
graphs; directed graphs;
dynamic process graphs;
in-memory graphs; knowl-
edge graphs; property
graphs; RDF graphs; undi-
rected graphs

anatomy, 253–255
challenges of moving data

between, xi
concept map, 4
defined, 253
as disconnected, xi, 4
multigraph, 254
name conventions, 37
options for expressing,

201
overview of, 3–12
relationship to networks,

1
relationships concept

overview, 3–6
terminology, 5
types, xi, 3
ubiquity of, 1–3
uses, xi, 3, 243

Graphviz, 41, 47–51

GraphVizio, 47, 51

Gray, James Edward, II, 10

gremlex package, xiii, 164

Gremlin
about, 37

Index • 262

book graph, 172–174
Dgraph and, 178
graph service with, 169–

171
Groovy and, 202
resources on, 164
setup, 249
syntax, 164
TinkerGraph Project,

164–175
traversing graphs with,

37, 163–175
version, xv, 247

Gremlin Console, 249

Gremlin Server, xv, 174, 247,
249

Groovy, 164, 202

H
hackney, 120

handle_call, 231

handle_cast, 231

has(), 181, 186

Hello World graph, 7, 155

Hodler, Amy, 10

HTTP
content negotiation and

concept URLs, 210
RDFGraph Project, setup,

121
Tesla and, 160

I
i helper, 127

~I sigil, building RDF graphs,
127–129

id: key value, 62

IEx
configuring startup file,

245
.iex.exs file, 26
inspection helper, 127
query helpers, 88

igraph, 41

IMP (Interface Message Proces-
sor), 106

importing
with contexts, 89–92, 96
with CSV, 202
DOT files, 53
in Elixir, 7
importing RDFs into

property graph store,
215

RDFs into property graph
store, 209–217

RDFs with n10s, 203–221

in-memory graphs, 161

in_degree (libgraph), 60

in_edges (libgraph), 59, 64, 66

incidence matrix, 202

indexes
Cypher and, 111
Dgraph and, 180

info (Bolt), 75

info (libgraph), 61

init
in GraphCompute

Project, 231, 234
n10s, 204

INSERT (SPARQL Update), 144,
202

INSERT DATA (SPARQL Update),
144, 202

Inspect, 23–24

inspection
common interface for in

graph service, 29
functions in Elixir, 40
GraphCompute Project,

238
IEx helper, 127
in SPARQL, 144, 147,

149

Integer module, 69

Interface Message Processor
(IMP), 106

inverse predicates, 194

iri function, 127

IRIs, 116, 127

is_acyclic? (libgraph), 61

is_arborescence? (libgraph), 61

is_even (Integer), 69

is_graph_type, 21

is_module guard, 89, 170

is_tree? (libgraph), 61

J
Jain, Manish, 179

JSON
Dgraph mutations, 179
expressing graphs with,

202
JSON maps and export-

ing with Cypher, 218
serializing RDF graphs,

131–134

JSON-LD, 131–134

json_ld package, 120

K
kill, 240

knowledge graphs, RDF
graphs as, 117

L
~L sigil, building RDF graphs,

129

label_vertex, 38

labeled property graphs,
see property graphs

labels
adding in libgraph, 38
in algorithms for graph

expression, 202
constraints on in Cypher,

111–113
conventions for predi-

cates, 180
creating labeled edges in
libgraph, 39

Cypher queries and, 77
exporting by, 218
graph anatomy and, 254
libgraph support, 61
in property graphs, 71–72
querying in Gremlin, 174
in RDF graph figures,

122
rendering DOT visualiza-

tions and, 50
viewing vertex labels, 38

Lawrence, Kelvin R., 164

libgraph
about, xiii, 30, 35–36
adding, 227
basic commands, 58–61
creating directed graphs,

37–40
creating undirected

graphs, 40
edge properties in, 61,

234
edgelists and, 202
exploring graph struc-

tures with book graph,
55–70

label support, 61
listing functions in, 44
modeling book graph, 61–

68
NativeGraph Project, 35–

54

Index • 263

nodes identified with
atoms in, 57, 63

nodes identified with
maps in, 57, 61–68

processing graphs, 225–
243

resources on, 40
storing graphs, 41–47
visualizations, 41, 47–54

line, as term, 5

linked open data (LOD) cloud,
116

links, as term, 5, see al-
so nodes

list comprehension, Cypher
and, 103

list_graphs/, 47

listing
constraints, 113
functions in Elixir, 40
graph store setup, 27
graph stores, 136
indexes, 111
listing files in libgraph, 47
listing functions in lib-
graph, 44

namespaces, 216
queries in Cypher, 97
zipping lists together, 153

local id, obtaining, 161

LOD (linked open data) cloud,
116

M
maps

mapping property names
and values to nodes in
Neo4j, 73

nodes identified with, 57,
61–68

Marx, Ben, 8

Master, Anthony, 179

MATCH (Cypher)
with query helper, 89
querying with parame-

ters, 109
shortest path query, 108
using, 77, 82–85, 94–98,

100–104

memory
in-memory graphs, 161
querying RDF graphs,

148, 161

MERGE (Cypher), 94

merging
with Cypher, 94
graphs in importing RDF

into property graph ex-
ample, 212

Mix, 16, 18

:mod option (Dgraph), 183,
228

mod: option (Bolt), 75

--module option, 120

modules
book graph module, creat-

ing, 55
defining, 19
listing module functions,

40
names, overriding de-

fault, 120
specifying application

callback module, 183,
228

monorepo pattern, 16

Moore, Kevin, 164

MOVE (SPARQL Update), 144

movies graph demo, 82–84

multigraphs, edge sets and,
254

mutate (Dgraph), 184

mutations
Dgraph, 179, 181, 184,

190
GraphQL, 178
schemas, 181

N
N-Triples format, 124, 179

n10s
about, 201, 203
listing namespaces, 216
model transformation,

209
serialization project, 203–

221

names
data naming practices,

210, 212
modules, overriding de-

fault, 120
name conventions for

graphs and structs, 37
nodes, 77
properties in n10s, 216
RDF data model, under-

standing, 115–118
relationships (Neo4j), 77

namespaces
adding prefixes, 216
listing, 216
URIs and, 117, 124, 130

NativeGraph Project
creating, 35–37
directed graphs, creating,

37–40
generating graphs, 69
GraphCompute Project

with ARPANET, 236–
243

storing graphs, 41–47
undirected graphs, creat-

ing, 40
visualizations, 41, 47–54

Needham, Mark, 10

neighbors (libgraph), 59

Neo4j, see also Cypher; rela-
tionships (Neo4j)

about, 71
CSV exchange format,

202
exporting RDFs out of

property graph store,
217

expressing graph for-
mats, 202

federated queries, 223
PropertyGraph Project,

graph services API, 84–
92

PropertyGraph Project,
loading movies graph
demo, 82–84

PropertyGraph Project,
querying with Cypher,
76–92

PropertyGraph Project,
setup, 73–76

relationship term, 5
resources on, 72, 78
serialization, 203–221
serialization from RDF to

property graph exam-
ple, 208–221

setup, 247
version, xv, 247

Neo4j Enterprise Edition, 223

Neosemantics, see ns10

network, as term, 5

network science theory, 5

networks
network as term, 5
relationship to graphs, 1

Index • 264

simulating network in
ARPANET, 236–243

uses, 1

new (Mix), 16

new constructor, 22

new lines, escaping, 24

“New to Dgraph?”, 179

nodes
in algorithms for graph

expression, 202
attaching properties to in

book graph, 8–10
caching processes, 228–

230
creating in Cypher, 94
creating in book graph,

56
creating in libgraph, 38, 40
creating with add_edge

functions, 40
Cypher querying with

Bolt, 84
Cypher syntax, 77, 94
deleting in Cypher, 84
empty, 38
exporting RDFs out of

property graph store,
217

extracting, 60
finding neighbors of, 59
graph anatomy and, 254
identified with Elixir

maps, 57, 61–68
identified with atoms,

57, 61, 63
inspecting in SPARQL,

144, 149
labeled nodes in property

graphs, 71–72
names, 77
in property graph model,

72
querying in Bolt and

Cypher, 82
querying book graph with

Cypher, 100
querying with Gremlin,

168, 171
in RDF graph figures,

122
RDF graph serialization

with n10s, 206
replacing with supervised

processes, 232
restoring node state, 234
strings for vs. atoms/inte-

gers, 38

as term, 5
types and Bolt, 81

numbers, Cypher types, 113

O
objects

RDF graphs syntax, 118,
124

as term, 5

OmniGraffle, 47, 51–54, 58

Ontotext, 119, 248

open-world assumption, 3

openCypher project, 71, 77

OPTIONAL keyword, 221

@optional_callbacks, 31

opts keyword list, 42

order, fields, 24

ORDER BY (SPARQL), 150

OTP
behaviour pattern, 14, 29
GraphCompute Project,

225–243

Otto, Marcel, 120

out_degree (libgraph), 59

out_edges (libgraph), 59, 64, 66

P
parameters, querying with

Cypher, 109–111

parentheses (()), nodes in
Cypher syntax, 77, 94

parse_response (Bolt), 87

:path field, 20, 23–24

paths
creating in Cypher, 95
Cypher syntax, 95
finding shortest/longest,

60, 73, 103, 108, 196
hiding with Inspect, 23–24
path location for graph

store, 20
in property graphs, 72
querying in Bolt and

Cypher, 83
querying with Dgraph,

196
querying book graph with

Cypher, 102–104
querying graph struc-

tures, 60, 64, 67
testing paths in directed

graphs, 64, 67
types and Bolt, 81

PDP minicomputer, 110

performance
Gremlin and, 163
indexes and, 111
querying with parameters

and, 109

pipe operator (|>)
building RDF graphs, 128
for query strings, xiv

PNG visualizations, 48

POST, exporting with, 218

Practical Gremlin, 164

predicates
in Dgraph, 180, 188–

190, 192, 194
inverse, 194
labeling conventions, 180
RDF graphs, querying

with SPARQL, 150
RDF graphs, syntax,

118, 124

prefixes, adding, 216

priv directory, 24

procedures
modifying when serializ-

ing RDFs into property
graphs, 216

running stored proce-
dures with APOC, 78,
85

serializing RDF graphs
with n10s, 204

process graphs
dynamic process graph,

building, 231–234
recovering graphs in

GraphCompute Project,
235–236

processes
caching, 225–226, 228–

230, 235
exiting, 234, 238, 240
GraphCompute Project,

225–243
GraphCompute Project

with ARPANET, 237–
243

GraphCompute Project,
storing process graph
in, 236

inspecting state, 238
replacing nodes with su-

pervised, 232
supervised processes

with Dgraph, 182–183

Index • 265

properties, see also predicates
adding when serializing

RDFs into property
graph store, 220–221

attaching to nodes and
edges in book graph, 8–
10

building RDF graphs, 127
class types, 124
Cypher queries and, 78,

94
in Dgraph, 180
edge properties and lib-
graph, 234

edge properties in
GraphCompute Project,
234

edge properties in RDF
graphs, 122, 254

exporting by property
value, 218

graph anatomy and, 254
indexes and, 111
libgraph support, 61
naming pattern in n10s,

216
querying in Gremlin, 174
in RDF graph figures,

122
RDF graphs, querying

with SPARQL, 150
RDF graphs, serialization

with n10s, 207

property graphs, see al-
so PropertyGraph Project

about, xii, 71
creating new graphs, 22
Dgraph and, 178, 180
expressing graph for-

mats, 202
features, 6
querying ARPANET, 105–

111
vs. RDF graphs, 6
serialization from RDF

example, 207–221
serialization representa-

tion, 22
size compared to RDF

graphs, 122
traversing with Gremlin,

163–175
understanding model, 72

PropertyGraph Project
graph services, 84–92
importing with contexts,

89–92, 96
movies graph example,

loading, 82–84

querying book graph, 98–
104

querying with Cypher,
76–92

setup, 73–76

Pătraşcu, Florin, 72

Q
queries

ARPANET, querying with
Cypher, 105–111

bang-style, 30
book graph, querying

with Cypher, 98–104
common interface for in

graph service, 29
converting query strings

into structs, 88
Cypher basic, 76–79, 94–

98
with Dgraph, 177, 181,

184, 186, 191–193,
195

federated queries, 222
graph service API setup,

29–32
graph service in RDF-

Graph Project, 138–142
graph stores, 135
graph structures in book

graph example, 59, 64–
68

with Gremlin, 164–175
listing in Cypher, 97
packaging in umbrella

app, 19–24
with parameters in

Cypher, 109–111
PropertyGraph Project

with Cypher, 76–92
query helpers in Dgraph,

186
query helpers in Gremlin,

170
query helpers in IEx, 88
query struct for Graph-

Commons Project, cre-
ating, 22

querying within current
graph, specifying, 140

RDF graph serialization
to property graph exam-
ple, 208–221

RDF graph serialization,
with n10s, 206

RDFGraph Project with
SPARQL, Tokyo Metro
example, 149–154

read/write functions to
graph store setup, 27

with scripts, 213
in umbrella app overview,

14
using macros to

read/write in NativeG-
raph project, 43

query (Bolt), 80

query (Dgraph), 185

query! (Bolt), 77–84

query_schema (Dgraph), 185

question mark (?) in Cypher
syntax, 94

@quote, 24

quote macro, 42

quoted expressions, 42

quotes (")
escaping, 24
for URIs, 124

R
random_graph, 69

RDF graphs, see also RDF-
Graph Project

about, xii, 114–115
arc term, 5
data accessors, 146
data model, understand-

ing, 115–119, 124
datasets resources, 149
Dgraph and, 178–179
edge annotation chal-

lenges, 6
exporting out of property

graph store, 217–221
expressing graph for-

mats, 202
features, 6
identity and integration

at scale, 117
importing into property

graph store, 209–217
importing into property

graph store, simpler,
215

importing with n10s, 203–
221

inference and, 117
as knowledge graphs, 117
modifying in local graph

store, 220–221
modifying when serializ-

ing into property
graphs, 216

mutations with Dgraph,
179, 190

Index • 266

vs. property graphs, 6
RDF triple syntax, 37,

118, 124, 143
resources on, 120
schemas, 118
serialization, 22, 129–

134, 203–221
serialization to property

graph example, 207–
221

size compared to property
graphs, 122

syntax, 118, 124, 143
uses, 162
vocabularies, 125–134,

146

rdf package, 120

RDF*, 6, 122

RDFGraph Project
building book graph,

125–134
creating, 119–121
graph service, 134–142
modeling book graph,

121–125
querying with SPARQL,

143–162
querying with SPARQL,

DBpedia example, 155–
162

querying with SPARQL,
Tokyo Metro example,
149–154

serializing book graph,
129–134

read/write functions
common interface for in

graph service API, 29
graph store, 26–28
with macros, 42–47
storing graphs in NativeG-

raph project, 41–47
with use and __using__, 14,

35

@recurse, 196

recursions, with Dgraph, 196

:regular?, 29, 47

relationships
concept overview, 3–6
objects in graphs and, 5

relationships (Neo4j)
creating in Cypher, 95
Cypher querying with

Bolt, 84
Cypher syntax, 95
deleting in Cypher, 84
names, 77

in property graph model,
72

querying in Bolt and
Cypher, 83

querying book graph with
Cypher, 102

syntax, 77
as term, 5
types and Bolt, 81
unbounded relationships,

81, 84

replace_vertex, 235

repositories, GraphDB server,
249

Resource Description Frame-
work, see RDF graphs

resources for this book
APOC, 78
ARPANET, 105
Bolt, 81
book graph code, 61
Cypher, 71, 78, 94, 113–

114
data accessors, 146
DBpedia, 210
Dgraph, 179
DQL, 179
GraphQL, 178–179
Gremlin, 164
JSON-LD, 134
libgraph, 40
Neo4j, 72, 78
RDF graphs, 120
sample code, xv
Wikidata, 210

@reverse, 194

reverse edges, adding explicit-
ly for traversal, 53

reversing predicates, 194

RFC-432, 105

Russ, Dmitry, 181

S
Schaefermeyer, Michael, 72

Schema Definition Language
(SDL), 178

SCHEMA vocabulary, 125–
134, 146

Schema.org, 125

schemas
Cypher, 111–113
Dgraph, 180, 185, 188–

190
DQL, 188–190
GraphQL, 178, 189
RDF graphs, 118

Schoenfelder, Paul, 35

scripts
queries, 213
starting databases with,

251

SDL (Schema Definition Lan-
guage), 178

security, APOC and security
settings, 78

SELECT (SPARQL), 143, 145

semantic graphs, see graphs

serialization
Bolt and, 81
book graph, 58
book graph in RDFGraph

Project, 129–134
DOT format and, 50, 53
libgraph and, 46, 50
Neo4j, 203–221
options for, 201–203
packaging graphs and

queries in umbrella
app, 19–24

RDF graphs, 22, 129–
134, 203–221

RDF graphs, with json_ld
package, 120

RDF graphs to property
graphs example, 207–
221

storing graphs with lib-
graph, 41–47

using separate structs
for, 22

Serializer module, 50

Serializers.DOT module, 50

SERVICE (SPARQL Update), 222

sets, grouping nodes in Neo4j,
73

@slice, 24

Spaarmann, Ole, 181

SPARQL
about, xiii, 143
endpoints for RDF

graphs, 120
expressing graph for-

mats, 202
federated queries, 222
graph info setup, 138
graph store protocol,

134–142
query helper, 142
querying RDF graphs,

143–162

Index • 267

querying RDF graphs,
DBpedia example, 155–
162

querying RDF graphs,
Tokyo Metro example,
149–154

RDFGraph Project, query
helper, 142

RDFGraph Project, setup,
120

serialization from RDF to
property graph exam-
ple, 208–221

serialization representa-
tion, 22

syntax, 143

sparql package, 120, 143, 148

SPARQL Update
about, 143
commands, 144
expressing graph for-

mats, 202
modifying RDFs, 220

SPARQL*, RDF* and, 6

sparql_client package, 120, 143,
148

spatial point, Cypher type,
113

start parameter
Gremlin, 249
Neo4j, 248

STARTS WITH (Cypher), 110

state
finding in GraphCompute

Project, 238
GraphCompute Project,

225, 228–230
replacing nodes with su-

pervised processes, 233
restoring node state, 234
saved graph, 242

stats() (APOC), 85

stop, 240

@storage_dir attribute, 20

storing graphs, see graph
store

strings
converting query strings

into structs, 88
Cypher types, 113
generating RDF Turtle

strings, 154
truncating, 24
using in nodes, 38

structs
converting query strings

into, 88
defining types, 21
generating RDF Turtle

strings from, 154
name conventions, 37
packaging graphs and

queries in umbrella
app, 19–24

replacing nodes with su-
pervised processes, 232

using separate structs for
queries, 22

subgraph (libgraph), 60

subgraphs
comparing to graphs, 61
extracting, 60

subjects, RDF graphs syntax,
118, 124

--sup flag, 74, 182, 227

supervision
with Dgraph, 182–183
GraphCompute Project,

225, 227–231, 235–236
GraphCompute Project

with ARPANET, 237
PropertyGraph Project,

74
recovering graphs, 235–

236

System.cmd, 48

T
Tate, Bruce A., 8, 10

temporal types, Cypher, 113

terminate, 231, 234, 240

terms, 126

Terse RDF Triple Language,
see Turtle

Tesla
browsing DBpedia exam-

ple, 160
exporting RDFs out of

property graph store,
218

testing
graph generators, 69
paths in directed graphs,

64, 67
SPARQL and, 144, 147

tilde (~) for inverse predicates,
194

TinkerGraph Project, 163–175

TinkerPop, 163–164, see al-
so Gremlin

to_dot, 41, 46, 53

to_edgelist, 41

to_png, 48

Tokyo Metro example of
querying with SPARQL,
149–154

transforming graphs, see seri-
alization

transforms, with Gremlin,
164

transpose (libgraph), 60

:trap_exit, 234

traversing graphs
explicitly adding reverse

edges for, 53
with Gremlin, 37, 163–

175
TinkerGraph Project,

164–175

truncating, 24

Turtle
about, 123
expressing book graph as

RDF graph, 123–125
generating RDF Turtle

strings, 154
as serialization option, 22
serializing book graph in

RDFGraph Project,
129–134

:type field, 20

type guards
graph store, 20
read/write functions to

graph store, 27

types
adding in RDF graphs

with SPARQL queries,
153

Bolt and, 81
class types properties,

124
in Cypher, 111, 113
defining, 21
JSON serialization of RDF

graphs and, 133
SPARQL queries and, 149

U
uid(), 186

UIDs, querying with Dgraph,
186

umbrella app
about, 11, 13
creating, 15–19
defined, 16

Index • 268

diagram, 16
organization, 13
packaging graphs and

queries, 19–24

--umbrella flag, 16

unbounded relationships,
Bolt and, 81, 84

undirected graphs
creating with libgraph, 40
visualization example, 49

unquote macro, 43

update: keyword, 221

updating, common interface
for in graph service API, 29

:uri field, 20, 23–24

URIs
" (double quotes) for in

RDFs, 124
<> (brackets) for in RDFs,

119, 124
defined, 116
development of, 117
hiding with Inspect, 23–24
managing strings in RDF

graphs, 125
path location for graph

store, 20
RDF data model, under-

standing, 115–117, 124
in RDF graph figures,

122
Turtle support, 124, 130

url: option (Bolt), 75

URLs
Bolt and, 75
concept URLs, 210
defined, 116

use
with libgraph, 35
storing graphs in NativeG-

raph Project, 42–47
in umbrella app overview,

14

use_id? parameter (libgraph), 56,
62

__using__
contexts and, 91
with libgraph, 35
storing graphs in NativeG-

raph Project, 42–47
in umbrella app overview,

14

V
Valim, José, 8

values
assigning to variables,

152
exporting by property

value, 218
table of values from

SPARQL queries, 143

variables, assigning values to,
152

versions
Dgraph, xv, 247
Elixir, xiv
GraphDB, xv, 247
Gremlin, xv, 247
Neo4j, xv, 247

vertex sets, defined, 253

vertex_labels, 38

vertexes, see also edges
adding with :digraph, 7
in connected graphs, 69
creating vertex identifiers

with libgraph, 56
finding with libgraph, 64,

66
inspecting in GraphCom-

pute Project, 238
labels, adding, 38
labels, viewing, 38
node state and, 233
in property graph model,

72

querying in Gremlin,
166, 174

recovering graphs and,
235

as term, 5
vertex sets, 253

vertices (libgraph), 64, 66

visualizations, see also DOT
format

with Graphviz, 41, 47–51
libgraph and, 41, 46–54
with OmniGraffle, 47, 51–

54, 58
options for, 201

vocabularies, RDF graphs,
125–134, 146

W
~w for bare words, 20

water molecule examples
constraints, 112
visualizations, 49

wikiPageWikiLinks, 157

Wikidata
about, 155
book graph in RDFGraph

Project, 136
data naming practices,

210, 212
resources on, 210
serialization from RDF to

property graph exam-
ple, 207–221

Williams, Bruce, 10, 178

Wilson, Ben, 10, 178

Workbench, 249

wrapping, read/write func-
tions to graph store, 27

write_graph (libgraph), 58

Z
zipping lists, 153

Index • 269

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2022 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With up to a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

We thank you for your continued support, and we hope to hear from you
again soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2022

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

Real-Time Phoenix
Give users the real-time experience they expect, by
using Elixir and Phoenix Channels to build applications
that instantly react to changes and reflect the applica-
tion’s true state. Learn how Elixir and Phoenix make
it easy and enjoyable to create real-time applications
that scale to a large number of users. Apply system
design and development best practices to create appli-
cations that are easy to maintain. Gain confidence by
learning how to break your applications before your
users do. Deploy applications with minimized resource
use and maximized performance.

Stephen Bussey
(326 pages) ISBN: 9781680507195. $45.95
https://pragprog.com/book/sbsockets

Designing Elixir Systems with OTP
You know how to code in Elixir; now learn to think in
it. Learn to design libraries with intelligent layers that
shape the right data structures, flow from one function
into the next, and present the right APIs. Embrace the
same OTP that’s kept our telephone systems reliable
and fast for over 30 years. Move beyond understanding
the OTP functions to knowing what’s happening under
the hood, and why that matters. Using that knowledge,
instinctively know how to design systems that deliver
fast and resilient services to your users, all with an
Elixir focus.

James Edward Gray, II and Bruce A. Tate
(246 pages) ISBN: 9781680506617. $41.95
https://pragprog.com/book/jgotp

https://pragprog.com/book/sbsockets
https://pragprog.com/book/jgotp

Programming Ecto
Languages may come and go, but the relational
database endures. Learn how to use Ecto, the premier
database library for Elixir, to connect your Elixir and
Phoenix apps to databases. Get a firm handle on Ecto
fundamentals with a module-by-module tour of the
critical parts of Ecto. Then move on to more advanced
topics and advice on best practices with a series of
recipes that provide clear, step-by-step instructions
on scenarios commonly encountered by app developers.
Co-authored by the creator of Ecto, this title provides
all the essentials you need to use Ecto effectively.

Darin Wilson and Eric Meadows-Jönsson
(242 pages) ISBN: 9781680502824. $45.95
https://pragprog.com/book/wmecto

Craft GraphQL APIs in Elixir with Absinthe
Your domain is rich and interconnected, and your API
should be too. Upgrade your web API to GraphQL,
leveraging its flexible queries to empower your users,
and its declarative structure to simplify your code.
Absinthe is the GraphQL toolkit for Elixir, a functional
programming language designed to enable massive
concurrency atop robust application architectures.
Written by the creators of Absinthe, this book will help
you take full advantage of these two groundbreaking
technologies. Build your own flexible, high-performance
APIs using step-by-step guidance and expert advice
you won’t find anywhere else.

Bruce Williams and Ben Wilson
(302 pages) ISBN: 9781680502558. $47.95
https://pragprog.com/book/wwgraphql

https://pragprog.com/book/wmecto
https://pragprog.com/book/wwgraphql

Modern Front-End Development for Rails, Second Edition
Improve the user experience for your Rails app with
rich, engaging client-side interactions. Learn to use
the Rails 7 tools and simplify the complex JavaScript
ecosystem. It’s easier than ever to build user interac-
tions with Hotwire, Turbo, and Stimulus. You can add
great front-end flair without much extra complication.
Use React to build a more complex set of client-side
features. Structure your code for different levels of
client-side needs with these powerful options. Add to
your toolkit today!

Noel Rappin
(408 pages) ISBN: 9781680509618. $55.95
https://pragprog.com/book/nrclient2

Build a Binary Clock with Elixir and Nerves
Want to get better at coding Elixir? Write a hardware
project with Nerves. As you build this binary clock,
you’ll build in resiliency using OTP, the same libraries
powering many commercial phone switches. You’ll at-
tack complexity the way the experts do, using a layered
approach. You’ll sharpen your debugging skills by
taking small, easily verified steps toward your goal.
When you’re done, you’ll have a working binary clock
and a good appreciation of the work that goes into a
hardware system. You’ll also be able to apply that un-
derstanding to every new line of Elixir you write.

Frank Hunleth and Bruce A. Tate
(106 pages) ISBN: 9781680509236. $29.95
https://pragprog.com/book/thnerves

https://pragprog.com/book/nrclient2
https://pragprog.com/book/thnerves

Program Management for Open Source Projects
Every organization develops a bureaucracy, and open
source projects are no exception. When your structure
is intentional and serves the project, it can lead to a
successful and predictable conclusion. But project
management alone won’t get you there. Take the next
step to full program management. Become an expert
at facilitating communication between teams, managing
schedules and project lifecycle, coordinating a process
for changes, and keeping meetings productive. Make
decisions that get buy-in from all concerned. Learn
how to guide your community-driven open source
project with just the right amount of structure.

Ben Cotton
(190 pages) ISBN: 9781680509243. $35.95
https://pragprog.com/book/bcosp

Build Talking Apps for Alexa
Voice recognition is here at last. Alexa and other voice
assistants have now become widespread and main-
stream. Is your app ready for voice interaction? Learn
how to develop your own voice applications for Amazon
Alexa. Start with techniques for building conversational
user interfaces and dialog management. Integrate with
existing applications and visual interfaces to comple-
ment voice-first applications. The future of human-
computer interaction is voice, and we’ll help you get
ready for it.

Craig Walls
(388 pages) ISBN: 9781680507256. $47.95
https://pragprog.com/book/cwalexa

https://pragprog.com/book/bcosp
https://pragprog.com/book/cwalexa

Python Testing with pytest, Second Edition
Test applications, packages, and libraries large and
small with pytest, Python’s most powerful testing
framework. pytest helps you write tests quickly and
keep them readable and maintainable. In this fully re-
vised edition, explore pytest’s superpowers—simple
asserts, fixtures, parametrization, markers, and plug-
ins—while creating simple tests and test suites against
a small database application. Using a robust yet simple
fixture model, it’s just as easy to write small tests with
pytest as it is to scale up to complex functional testing.
This book shows you how.

Brian Okken
(272 pages) ISBN: 9781680508604. $45.95
https://pragprog.com/book/bopytest2

Pythonic Programming
Make your good Python code even better by following
proven and effective pythonic programming tips. Avoid
logical errors that usually go undetected by Python
linters and code formatters, such as frequent data
look-ups in long lists, improper use of local and global
variables, and mishandled user input. Discover rare
language features, like rational numbers, set compre-
hensions, counters, and pickling, that may boost your
productivity. Discover how to apply general program-
ming patterns, including caching, in your Python code.
Become a better-than-average Python programmer,
and develop self-documented, maintainable, easy-to-
understand programs that are fast to run and hard to
break.

Dmitry Zinoviev
(150 pages) ISBN: 9781680508611. $26.95
https://pragprog.com/book/dzpythonic

https://pragprog.com/book/bopytest2
https://pragprog.com/book/dzpythonic

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/thgraphs
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/thgraphs
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	How to Read This Book
	About the Code
	About the Software
	Online Resources

	Part I—Graphs Everywhere
	1. Engaging with Graphs
	First Contact
	Coding a Hello World Graph
	Modeling a Book Graph
	Our Plan of Action
	Wrapping Up

	2. Getting Started
	General Project Outline
	Creating the Umbrella and Child Projects
	Packaging Graphs and Queries
	Building a Graph Store
	Defining a Graph Service API
	Wrapping Up

	Part II—Getting to Grips with Graphs
	3. Managing Graphs Natively with Elixir
	Creating the NativeGraph Project
	Basic Workout
	Storing Graphs in the Graph Store
	Visualizing Graphs
	Wrapping Up

	4. Exploring Graph Structures
	A Worked Example
	Modeling the Book Graph
	Generating Graphs
	Wrapping Up

	5. Navigating Graphs with Neo4j
	Property Graph Model
	Creating the PropertyGraph Project
	Querying with Cypher and APOC
	Trying Out the Bolt Driver
	Setting Up a Graph Service
	Wrapping Up

	6. Querying Neo4j with Cypher
	Getting Started with Cypher
	Modeling the Book Graph
	Recalling the ARPANET
	Passing Parameters to Queries
	Schemas and Types in Cypher
	Wrapping Up

	7. Graphing Globally with RDF
	What’s Different About RDF?
	RDF Model
	Creating the RDFGraph Project
	Modeling the Book Graph
	Building an RDF Graph
	Setting Up a Graph Service
	Wrapping Up

	8. Querying RDF with SPARQL
	Getting Started with SPARQL
	Querying the Local RDF Service
	Case #1: Tokyo Metro
	Querying a Remote RDF Service
	Case #2: Graph Walk (Querying)
	Browsing Linked Data
	Case #3: Graph Walk (Browsing)
	Wrapping Up

	9. Traversing Graphs with Gremlin
	Using Gremlin
	Creating the TinkerGraph Project
	Querying with Gremlin
	Setting Up a Graph Service
	Creating the Book Graph
	Wrapping Up

	10. Delivering Data with Dgraph
	GraphQL and DQL
	Dgraph Model
	Creating the DGraph Project
	Setting Up a Graph Service
	Modeling the Book Graph
	Reaching Back to the ARPANET
	Wrapping Up

	Part III—Graph to Graph
	11. Transforming Graph Models
	Serializing Graphs
	Importing RDF with n10s—A Neo4j Plugin
	A Graph-to-Graph Example
	Stage 1: Getting RDF into an LPG Store
	Stage 2: Getting RDF out of an LPG Store
	Federated Querying
	Wrapping Up

	12. Processing the Graph
	Creating the GraphCompute Project
	Adding a Supervision Tree (or Two)
	Building a Dynamic Process Graph
	Restoring the State for a Node
	Recovering the Graph
	Simulating a Network
	Wrapping Up

	A1. Project Setups
	A2. Database Setups
	Installing Neo4j
	Installing GraphDB
	Installing Gremlin Server
	Installing Dgraph
	Starting the Databases

	A3. Graph Anatomy
	Structural Elements
	Semantic Elements

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Z –

