




Early Praise for From Ruby to Elixir

Stephen’s second book knocks it out of the park. Stephen is the ultimate Sherpa
providing essential tools and sage advice to take the leap into a world of concur-
rency, simplicity, and power.

➤ Amos King
Founder, Binary Noggin

As a long-time Ruby developer, this book helped me quickly get up to speed when
I joined an Elixir-based startup. It goes beyond syntax by teaching the philosophies
that make the language a pleasure to work with. Consider this your invitation
into the welcoming Elixir community.

➤ Joe Chiarella
Software Engineer, Adpipe

This book is the best introduction to Elixir that you can get and the last one you
will need. It provides a firm grasp of the fundamentals and enough practical ex-
amples to get you started. It is the perfect guide for any developer who wants to
switch from an object-oriented language to Elixir.

➤ Peter Ullrich
Founder, PCX IT



Even for someone without a specific background in Ruby, I have found this book
extremely compelling and easy to follow. The examples and code still will make
sense to those with a solid programming background, and it certainly will inspire
you to check out Elixir further as it has for me.

➤ Adam Haertter
Configuration Developer, Donegal Insurance Group



From Ruby to Elixir
Unleash the Full Potential of Functional Programming

Stephen Bussey

The Pragmatic Bookshelf
Dallas, Texas



For our complete catalog of hands-on, practical, and Pragmatic
content for software developers, please visit https://pragprog.com.

Contact support@pragprog.com for sales, volume licensing, and support.

For international rights, please contact rights@pragprog.com.

The team that produced this book includes:

Dave ThomasPublisher:

Janet FurlowCOO:

Susannah DavidsonExecutive Editor:

Sophie DeBenedettoSeries Editor:

Jacquelyn CarterDevelopment Editor:

Corina LebegioaraCopy Editor:

Potomac Indexing, LLCIndexing:

Gilson GraphicsLayout:

Copyright © 2024 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

When we are aware that a term used in this book is claimed as a trademark, the designation is
printed with an initial capital letter or in all capitals.

The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf,
PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

ISBN-13: 979-8-88865-031-8
Encoded using recycled binary digits.
Book version: P1.0—June 2024

https://pragprog.com
support@pragprog.com
rights@pragprog.com


Contents

Acknowledgments . . . . . . . . . . . ix
Introduction . . . . . . . . . . . . . xi

Part I — Fundamentals of Elixir

1. Why Elixir? Why Now? . . . . . . . . . . 3
The Joy of Ruby 3
The Case for Elixir 5
Erlang, OTP, Elixir, and Friends 7
Install Elixir on Your Computer 10
Write Your First Elixir Code 11
Wrapping Up 12

2. New Language, New Syntax . . . . . . . . . 13
The Big Picture 13
Data Types 14
Operators 16
Module and Function Basics 18
Fun with Functions 22
Capturing Functions 25
Advanced Module Keywords 27
Compile Time vs. Runtime 30
Wrapping Up 31

3. Working with Data . . . . . . . . . . . 33
Lists—Not Arrays 33
Maps—Your Data Layer Foundation 37
Implementing Data Structures 41
Enumerating Data Structures 43
Wrapping Up 47



4. Pattern Matching Your Way to Success . . . . . . 49
Pattern Matching Basics 50
Use Patterns for Control Flow 55
Level Up Your Functions 60
Wrapping Up 64

5. GenServers: Build Cities, Not Skyscrapers . . . . . 65
Parallelism vs. Concurrency 66
Explore Elixir Processes 70
Go Parallel with GenServers 76
Be Parallel, Be Cautious 81
Build Cities, Not Skyscrapers 81
Wrapping Up 82

Part II — Tools of the Trade

6. Persisting Data with Ecto . . . . . . . . . 87
What Will We Build? 88
The Foundations of Ecto 91
Write an Ecto Schema 93
Use Migrations to Create Database Tables 98
Use Changesets to Persist Data 101
Query Data with Ecto.Query 105
Put Everything in a Context 112
Wrapping Up 114

7. Serving Requests with Phoenix . . . . . . . . 117
Explore the Foundations of Phoenix 117
Route Requests Through Phoenix 122
Serve Requests with Phoenix Controllers 125
Manage Static Assets 132
Use Components to Keep Your User Interface Clean 134
Phoenix Is More Than Controllers 138
Wrapping Up 139

8. Outbound HTTP Requests with Req . . . . . . . 141
Decide on Which HTTP Client to Use 141
Prep Your Project for Req 145
Use Req to Make Requests 147
See Your App in Action 150
Wrapping Up 152

Contents • vi



9. Asynchronous Jobs with Oban . . . . . . . . 153
Understand Async Job Systems 154
Explore Asynchronous Jobs in Elixir 157
Implement an Oban Worker 161
More About Oban 166
Wrapping Up 169

10. Testing Elixir . . . . . . . . . . . . 171
Create Your First Test 171
Test an Ecto Query 175
Test External API Requests 176
Test Phoenix Requests 179
Test Oban Jobs 183
Wrapping Up 185

11. The Future of Elixir . . . . . . . . . . 187
Deployment and Observability 187
Real-Time Apps with LiveView 189
GraphQL with Absinthe 190
Machine Learning with Nx and Bumblebee 190
Type Systems 191
Wrapping Up 192
The End of Our Journey 193

Bibliography . . . . . . . . . . . . 195
Index . . . . . . . . . . . . . . 197

Contents • vii



Acknowledgments
This is my second book, but it still took a village to create the best book pos-
sible. I truly appreciate the people who helped make this a reality. Their
suggestions, feedback, and participation in the process are invaluable to me.

I love working with the staff at Pragmatic Bookshelf. Thank you Jackie
Carter—the editor for this book—for all of the work that you did through the
writing process. Your eye for what works well in a tech book tangibly improved
every aspect of this book. Thanks to Sophie DeBenedetto—the Elixir series
editor—for providing strategic advice at key times (especially when I became
stuck!).

It takes a team of people to review a tech book. These people help validate
the book’s content, presentation style, pacing, structure, and more. Thank
you to the following people for submitting technical reviews: Adam Haertter,
Amos King, Brian Culler, Dan Dresselhaus, Dave Lively, De Wet Blomerus,
Jess Burns, Joe Chiarella, Kurt Landrus, and Peter Ullrich. In addition, thanks
to anyone who submitted an errata during the beta period.

This book covers powerful technology. The foundation is the Elixir program-
ming language, so thank you to José Valim and the maintainers of Elixir. In
addition, Ecto, Phoenix, Req, and Oban are all critical for the success of Elixir
today and in the future. Thank you to the authors and maintainers of these
libraries. Writing open-source software can be a thankless job, but your work
is appreciated.

She is in the acknowledgments already, but a special thank you to my wife
Jess. You are so supportive of my writing and every other crazy venture that
I pursue. I’m able to do these things because of you.

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Introduction
I have a confession about my journey into Elixir: it was a struggle. I could
follow the guides and type out programs, but I didn’t quite understand how
everything fit together. Even though I was coming from Ruby, the topics were
just not connecting. It wasn’t until my third attempt that everything clicked.

I was missing the complete picture—the development of a real application
combined with an understanding of the underlying concepts. Once I got it—it
clicked quickly. I had an excellent mentor, Ben, who guided me throughout
my journey.

Elixir has transformed the way that I think about, design, and code applica-
tions. The creators, community, and libraries empower me to think about
code with a fresh perspective. My time with Elixir has been filled with
enthusiasm, to say the least. My continued use of Elixir isn’t only because it
has one of the most high-tech runtimes, but also because it’s simply more
fun to use than other languages.

The goal of this book is to be your guide as you learn Elixir. The use of theory
and practical examples will provide you with the full picture needed to succeed
in your own journey—From Ruby to Elixir.

Who Should Read This Book?
This book is written for those coming from the Ruby programming language.
If you’re an intermediate-level Ruby programmer, then this book is perfect
for you!

But this isn’t the full picture! The Ruby examples in this book are likely to
be relevant to any object-oriented programming language. There are some
Ruby-specific comparisons, but the general approach still applies even if
you’re coming from Java, Python, C#, or others.

This book is ideal for those who have no Elixir knowledge or are at a beginner
level. It’s almost guaranteed that an Elixirist of any level will learn something

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


new, but the majority of the content is about first steps with Elixir. In this
book, you’ll find Elixir code listings that walk you through theoretical examples
and a practical application. We’ll cover every example and project from start
to finish, so you’ll always know what to do next.

And if you’re an experienced Elixirist reading this, maybe get a copy for your
teammates.

About This Book
This book is organized into two parts. Part I is focused entirely on the funda-
mentals of the Elixir language. You’ll learn how to read and write Elixir code
during this part of the book, which will be necessary in Part II. We’ll also
cover slightly more advanced topics such as GenServer and the full power of
pattern matching. Each section of Part I is designed to be completely stand-
alone. The code examples are all chapter-specific, so you won’t be in the dark
if you decide to start out of order.

Part II is where theory meets practice. You’ll write a real application that uses
an API to send and receive text messages. The purpose of Part II is to introduce
you to the best libraries in Elixir that are used to build robust applications.
We’ll cover database access, Phoenix web framework, a database-powered
job system, and more. The examples in this part all build on the previous
chapters, but you can start out of order with the provided code snapshots.

About the Code
Elixir is required for this book. Setup will depend on your operating system,
but it’s important that you’re set up for success. I strongly recommend using
the asdf1 version manager to configure both Erlang and Elixir.

You’ll learn about why you need different libraries in the first chapter, but
it’s important that you pick compatible versions of Elixir and Erlang. I recom-
mend the versions found in Install Elixir on Your Computer, on page 10.
There will be newer versions of these libraries by the time you’re reading this
book, so you may be able to substitute other versions. But always make sure
that your Erlang version matches the OTP version of Elixir.

You’ll also need to have Phoenix installed for the samples in this book. You
can follow the HexDocs Installation guide2 to get Phoenix set up. We’ll cover
this further at the appropriate time.

1. https://github.com/asdf-vm/asdf
2. https://hexdocs.pm/phoenix/installation.html

Introduction • xii

report erratum  •  discuss

https://github.com/asdf-vm/asdf
https://hexdocs.pm/phoenix/installation.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The Elixir snippets in this book aren’t formatted according to the Mix formatter
due to book formatting needs. You can use mix format to make sure that all
snippets that you copy or hand-type are formatted properly.

You’ll need to have PostgreSQL3 installed for Part II. If you use Mac OS, then
I recommend the postgres.app4 installer to manage PostgreSQL.

Part II provides a mock SMS API application. This application simulates the
Twilio SMS API, so you can use this book’s code without setting up a real Twilio
account. There will be instructions on how to set up the mock SMS API when
it’s time to do so.

Online Resources
The examples and source code shown in this book can be found under the source
code link on the Pragmatic Bookshelf website.5 You’ll also find the sample
application for Part II there.

Please report any errors or suggestions using the errata link that’s available
on the Pragmatic Bookshelf website.6

If you like this book and it serves you well, I hope that you’ll let others know
about it—your reviews really do help. Tweets and posts are a great way to
help spread the word. You can find me on Twitter at @yoooodaaaa, or you
can tweet @pragprog directly.

Stephen Bussey

May 2024

3. https://www.postgresql.org/download/
4. https://postgres.app
5. https://pragprog.com/titles/sbelixir/from-ruby-to-elixir
6. https://pragprog.com/titles/sbelixir/from-ruby-to-elixir

report erratum  •  discuss

Online Resources • xiii

https://www.postgresql.org/download/
https://postgres.app
https://pragprog.com/titles/sbelixir/from-ruby-to-elixir
https://pragprog.com/titles/sbelixir/from-ruby-to-elixir
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Part I

Fundamentals of Elixir

We’ll start with the fundamentals of the Elixir lan-
guage. You’ll learn the core syntax of Elixir, the
power of pattern matching, and what a GenServer
is. We’ll connect all of the material back to Ruby,
so you’ll have a familiar foundation to compare
against.



CHAPTER 1

Why Elixir? Why Now?
Elixir has emerged over the past few years as a “most loved” language1 that’s
used by many businesses and hobbyists to write reliable software systems.
Many Elixirists consider it their superpower of productivity and stability.
Hopefully, by the end of this book, you’ll see why this is the case.

It’s hard to learn a new language, harder to become production-ready with
it, and even harder still to convince your boss to actually let you use the new
language in production. The juice is worth the squeeze, though. Elixir opens
a new way of thinking about programming that carries over into other lan-
guages as well.

Your knowledge of Ruby influences how you view and write in other program-
ming languages. Similarly, as you develop an understanding of Elixir, it will
also influence how you think when writing code. Even if you were to never
use Elixir in production, you’ll still benefit and grow as a programmer.

We’ll start this chapter by taking a look at what makes Ruby such a great
language. You’ll see why Elixir is a similarly great language and why its future
is bright. You’ll learn about the technology that Elixir is built on top of: Erlang,
OTP, and the BEAM. Finally, you’ll write a bit of Elixir code and run it on
your computer.

Before we talk about Elixir, let’s talk about Ruby.

The Joy of Ruby
Some people have pitted Elixir as being “against Ruby,” but that’s not the
case. When you learn a new language, it doesn’t have to come with a reduced
respect for what you used in the past. It also doesn’t mean that you can’t use

1. https://survey.stackoverflow.co/2022/#technology-most-loved-dreaded-and-wanted

report erratum  •  discuss

https://survey.stackoverflow.co/2022/#technology-most-loved-dreaded-and-wanted
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


that language anymore. Especially with the rise of microservices, it’s possible
that you can program in Ruby and Elixir at the same company!

Ruby is a language founded with joy at its core, which leads to several non-
technical aspects that make it an appealing language: a healthy foundational
philosophy, a strong community, and continual improvement. Let’s go over
each point and how it benefits Ruby.

Solid Foundations
Yukihiro Matsumoto (Matz) created Ruby with a philosophy that programmers
who use it should feel joy. To this day, his philosophy influences the design
of the language, the way that libraries are built, and everything about Ruby.

The happiness of programmers is just as important as what those program-
mers create because happiness affects all aspects of one’s life. Businesses
benefit from this as well. A happy programmer is more likely to be happy with
their job, stay with their company, and create a better product.

A Strong Community
Matz’s philosophy is felt in the community and is captured in the phrase “Matz
is nice, so we are nice” or MINSWAN.2 The Ruby community is welcoming and
helpful, which is critical for the adoption of a language over time. New developers
won’t want to learn a language if they are pushed away due to negativity.

Another strength of the Ruby community is a culture of testing. This might be
obvious to people who have spent a lot of time with Ruby, but it’s certainly not
true in all language communities. Having a culture of testing creates better
libraries and applications. This testing culture contributes to joy over time.

Continual Improvement
Ruby isn’t a static language. The language doesn’t push many breaking
changes (this would certainly not elicit joy), but it has continued to evolve.
Many smart people and companies deliver performance improvements,
increased security, and even large projects like type checking.

Plus, Ruby’s major libraries have continued to innovate over the years. Ruby
on Rails 73 is the best release of Rails yet. It continues to set a high bar for
programmer productivity and happiness.

2. https://en.wiktionary.org/wiki/MINASWAN
3. https://rubyonrails.org/

Chapter 1. Why Elixir? Why Now? • 4

report erratum  •  discuss

https://en.wiktionary.org/wiki/MINASWAN
https://rubyonrails.org/
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The continued improvements to Ruby guarantee relevance for Ruby developers.
Ruby isn’t going anywhere, and it isn’t a goal of this book to try to replace Ruby
with Elixir.

Next, let’s explore a bit of what makes Elixir special.

The Case for Elixir
Anytime you pick a new technology, you’ll have to make a case for it. The first
consideration is your personal decision of whether you want to spend time
learning the language. Next, you’ll need to bring it to your professional peers
and get their buy-in that they also want to spend time learning it. Finally,
your business will need to make the case of whether they want to invest in
it. Even if you’re just a hobbyist who is curious about Elixir, you still need to
justify learning it over other languages.

The technical aspects of a language are obviously important in these decisions,
but the nontechnical aspects are just as important. In the previous section,
we spent a lot of time talking about the nontechnical aspects that make Ruby
a joy to use and learn.

We’ll briefly cover a few nontechnical strengths of Elixir, but we’ll also look
at why the technology itself is appealing.

Nontechnical Strengths
Elixir is small and relatively new. These are two things that you’ll be working
against when you make the case for it. However, Elixir finds strength in its
community, innovation, and philosophy.

Close-Knit Community
The Elixir Forums4 and Elixir Slack5 are a wealth of knowledge and
friendly faces. It’s rare that a question goes unanswered in these places
because the community shows up to help.

Culture of Testing
Elixir, like Ruby, has a healthy testing culture that permeates every layer
of the technical stack. It’s rare to find untested libraries.

Language Design Philosophy
Elixir doesn’t have a vocalized philosophy like Ruby does, but it’s clear
that it’s influenced by other languages. Elixir’s creator, José Valim6, has

4. https://elixirforum.com
5. https://elixir-slack.community/
6. https://twitter.com/josevalim

report erratum  •  discuss

The Case for Elixir • 5

https://elixirforum.com
https://elixir-slack.community/
https://twitter.com/josevalim
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


talked about being inspired by Ruby, Clojure, and Erlang. In fact, José
was on the Rails Core Team, as well as the team that created the popular
Devise library.

Elixir’s language syntax is pleasant to use and elicits joy, much like
Ruby’s. For example, the Elixir core team works hard to avoid breaking
changes—you can usually upgrade Elixir versions without too much work.
That creates joy when upgrading from one version to another—an other-
wise notoriously painful task.

Continual Innovation
Over the past few years, a ton of innovative features and libraries have
been added to the Elixir ecosystem. These have been developed by the
core team but also by private companies developing edge-pushing libraries.

The most well-known innovations in this space are Phoenix LiveView,7

machine learning with Nx,8 and hardware development with Nerves.9

A healthy foundation wouldn’t matter if the technical aspects weren’t also strong.
Let’s look at why Elixir is appealing for modern application development.

A Solid Foundation with the BEAM
Elixir is a functional programming language that’s built on top of an almost
forty-year-old foundation, the BEAM (Bogdan/Björn’s Erlang Abstract
Machine). We’ll be going into what that is in the next section, but for now the
important takeaway is that it’s a unique runtime that empowers parallelism
and fault tolerance in a way that isn’t common in other languages.

The combination of fault tolerance and isolation is a premier strength of Elixir
and the BEAM. Errors are going to happen, whether they are bugs, service
outages, or anything in between. The BEAM provides ways for us to determine
how errors should affect our application. Do you want an error to bring down
the whole thing? Do you want an error to only affect the request that it was
serving? Do you want to restart a piece of your system when an error occurs?
Select the failure mode of your application so your application behaves pre-
dictably when things go wrong.

It’s human nature to focus on the happy path. When evaluating a program-
ming language, that would mean evaluating how you code in it, the libraries
you use, and how data flows through your system. But the unhappy path is

7. https://github.com/phoenixframework/phoenix_live_view
8. https://github.com/elixir-nx
9. https://www.nerves-project.org/

Chapter 1. Why Elixir? Why Now? • 6

report erratum  •  discuss

https://github.com/phoenixframework/phoenix_live_view
https://github.com/elixir-nx
https://www.nerves-project.org/
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


just as (or sometimes more!) important. Elixir and the BEAM provide a core
foundation for programming the unhappy path you want, rather than taking
whatever you get.

Technical Benefits
Elixir applications can fully utilize their host CPU cores (parallelism) without
having to write complex code. It’s possible for other languages to achieve this
same level of parallelism, but the unique aspect is how simple it is to achieve
this with Elixir—it’s nearly free.

It’s easy to overlook the impact of this. If your web application is served on a
4-core server and you increase it to an 8-core server, you’ll likely get twice
the throughput out of it without making any changes. Despite it seeming like
it should be common in other languages, it’s not. Many languages (including
Ruby) become bound as the server size grows, and applications can’t utilize
all of their cores when that happens.

Parallelism is crucial for modern programming, but the opposite of parallelism
is just as important—serial code. Elixir provides excellent ways to control
when code executes in parallel and when it executes serially.

The combination of parallel and serial code gives you complete control over
your system runtime performance. This is unmatched in almost any other
programming language today. Elixir (and BEAM languages) are equipped with
these world-class capabilities out of the box.

Elixir is well-suited for building reliable, modern systems. This especially
applies to web systems, but Elixir can be used in hardware systems, commu-
nication systems, machine learning, and more. You’ll write more performant
systems that are cheaper to run when you use Elixir.

These are only a few of the technical benefits of Elixir. A lot of Elixir’s greatest
strengths come from its foundation with Erlang and the BEAM. Let’s dive into
what those are next.

Erlang, OTP, Elixir, and Friends
Elixir stands on the shoulders of giants that have been around for decades,
like Erlang, OTP, and the BEAM. You can be confident that Elixir’s runtime
is world-class, even though it’s new when compared to other languages.

You don’t have to know a ton about Erlang, OTP, and the BEAM to use Elixir,
but you’ll run into the edges of them at some point. For example, when installing
Elixir you also had to ensure that the proper Erlang version was installed.

report erratum  •  discuss

Erlang, OTP, Elixir, and Friends • 7

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


We’ll cover all of these terms so that you understand what each is, how they
differ from each other, and how you’ll interact with each over time. We’re
going to start at the top and work our way down, with Elixir first.

Elixir Builds on Erlang
Elixir10 is a functional programming language that was first released in 2012.
It places an emphasis on expressive syntax that conveys the meaning of code
quickly.

Elixir is a compiled language. This means that the code you write will be
transformed into “something else” before it runs. Ruby, on the other hand,
is an interpreted language, which means that source code is directly executed
by a Ruby interpreter. The Ruby interpreter might still make optimizations
to your code—like apply JIT optimizations to your code—but you can save a
Ruby file and run it as is.

You’ll write Elixir code when you work on your app, but it’s compiled into a
totally different programming language called Erlang. This seems confusing
at first, but it’s not magic. The Elixir compiler runs a few passes over your
code to turn it into Erlang code. This Erlang code gets compiled into .beam
files that are executed by the BEAM virtual machine. You’ll likely never have
to worry about this unless you have very advanced deployment needs.

Due to this compilation strategy, Elixir and Erlang code can be used in the
same application. You wouldn’t normally do this yourself, but you’ll definitely
use libraries in your Elixir application that are written in Erlang. And you
likely won’t even know unless you look at a library’s source code.

A lot of things in the Elixir ecosystem are directly built on top of what Erlang
provides. Let’s look at Erlang and its set of libraries called OTP.

Erlang/OTP
Erlang11 is a functional programming language that was first released in 1998.
It started its journey as a closed-source language developed in 1986 by the tele-
communications company Ericsson. As such, it was designed for the challenges
of telecommunications. Parallelism, fault isolation, and data isolation were
built into the language runtime instead of being tacked on later.

Erlang is a programming language, but its core set of libraries is separate from
it. These libraries are referred to as OTP, an acronym for Open Telecom Platform.

10. https://elixir-lang.org/
11. https://www.erlang.org/

Chapter 1. Why Elixir? Why Now? • 8

report erratum  •  discuss

https://elixir-lang.org/
https://www.erlang.org/
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


This often confuses many new Elixir developers. OTP does have “Telecom” in
the name, but it has nothing to do with phone systems. It’s simply a relic of the
development history of Erlang and its corporate relationship with Ericsson.

OTP consists of Erlang libraries, the Erlang runtime system, ready-to-use
components, and a set of design principles that can be followed by Erlang
programs. While OTP is technically separate from Erlang, in practice they are
always shipped as a unit. When you download Erlang, you’ll download a
package called “Erlang/OTP” which includes both the Erlang language and
the OTP libraries.

The BEAM
Erlang, Elixir, and OTP don’t really do much by themselves. They need a
runtime to execute on top of. This is where the BEAM comes in. BEAM stands
for “Bogdan/Björn’s Erlang Abstract Machine,” but everyone simply calls it
“the BEAM.”

We’ll be taking a look at parallelism in Chapter 5, GenServers: Build Cities,
Not Skyscrapers, on page 65, but the important thing for now is that the
BEAM natively supports the primitives that allow Elixir to work like it does.
If you took Elixir code and tried to run it on a runtime that didn’t work the
same way, a lot of the strengths would weaken or even disappear. The combi-
nation of Elixir and the BEAM is what makes it world-class.

The BEAM has evolved and changed over time. Its name has also changed,
so who knows if we’ll see a totally different iteration of it at some point in the
future! There’s an excellent timeline12 that goes over the history of Erlang and
the various runtimes. This may not be interesting to everyone, but it’s a fas-
cinating collection of the evolution of Erlang over time.

Put It All Together
It seems like a lot, but you need to know only a few things to get started:

• Elixir is the programming language that you’ll directly work with.

• Erlang is a language that you likely won’t need to worry about.

• OTP is a set of libraries that Elixir uses to provide critical concepts and
features.

• The BEAM is what runs your code.

12. https://www.erlang.org/blog/beam-compiler-history/

report erratum  •  discuss

Erlang, OTP, Elixir, and Friends • 9

https://www.erlang.org/blog/beam-compiler-history/
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The most complicated time that requires explicit control over Elixir, Erlang,
and the BEAM is during installation. Unfortunately, this is also the first
experience you’ll have! So let’s specifically cover best practices for installation.

Install Elixir on Your Computer
When you install Elixir on your computer, you must properly install the right
Erlang/OTP versions or you could run into frustrating errors. You should
always specify versions of each so that everything works as you expect it to.
This is because Elixir frequently calls OTP functions, which rely on having
the correct version installed.

If you don’t know where to get started, just pick the latest version for each.
Things might slightly change over time, but you can always adapt or combine
different versions as needed.

I recommend the asdf13 version manager with plugins for asdf-elixir14 and
asdf-erlang.15 These plugins do a good job at managing the installation needs
of compiling Erlang/OTP over time, so you’re most likely to succeed with
them. You can find online guides16 that walk you through how to set up asdf.

You can use asdf in a few ways, but you’ll have the most success if you create
a .tool-versions file in your project root and commit it to version control. Here’s
an example of that file with the tool versions used during the production of
this book:

.tool-versions
elixir 1.16.0-otp-26
erlang 26.2.1

Once you have asdf installed—along with the Elixir and Erlang plugins—you
can run asdf install in the directory with this file, and it will install the correct
versions.

Notice that the Elixir version uses the -otp suffix. This tells asdf to install the
Elixir version that has been compiled with a specific Erlang/OTP version.

The .tool-versions file allows your entire team to have the same version of Elixir
and Erlang/OTP. This also makes it clear which versions are required when
you deploy code to production.

13. https://github.com/asdf-vm/asdf
14. https://github.com/asdf-vm/asdf-elixir
15. https://github.com/asdf-vm/asdf-erlang
16. https://thinkingelixir.com/install-elixir-using-asdf/

Chapter 1. Why Elixir? Why Now? • 10

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/.tool-versions
https://github.com/asdf-vm/asdf
https://github.com/asdf-vm/asdf-elixir
https://github.com/asdf-vm/asdf-erlang
https://thinkingelixir.com/install-elixir-using-asdf/
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


I don’t suggest using brew install elixir or other global package managers. There’s
too much that inevitably goes wrong. This is especially true if you’re working
on multiple projects that may update at different times.

Before we wrap up this chapter, let’s write a bit of code!

Write Your First Elixir Code
While Elixir is a compiled language, it has an interactive console that makes
it easy to quickly experiment with code. We’ll use Elixir’s console—IEx—to
write and execute basic code. IEx (Interactive Elixir) is the equivalent of IRB
(Interactive Ruby) in the Ruby world.

IEx is commonly used to quickly prototype code locally, although it’s a bit
more powerful than that. One of the convenient techniques that you can
use—and you will later in the book—is to run your web server and interactive
console at the same time. This allows you to directly experiment with and
modify a running application.

It’s easy to start an IEx session. Run the following command on your command
line. If you see an error, then go back to the previous section and make sure
that Elixir and Erlang/OTP are properly installed.

$ iex
Erlang/OTP 24 [erts-12.0.3]...

Interactive Elixir (1.12.3) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

Enter a few lines of code to see things working:

iex(1)> 1 + 1
2

iex(2)> IO.puts("A string")
A string
:ok

iex(3)> adder = fn (a, b) -> a + b end
#Function<43.40011524/2 in :erl_eval.expr/5>

iex(4)> adder.(17, 25)
42

When you’re done, hit Ctrl + C, followed by A, and then ENTER. This is the
easiest way to exit out of the IEx session.

Okay, I’ll admit this isn’t that exciting yet. But you have written your first
lines of Elixir! As you enter each line, IEx evaluates it, executes it, and outputs
the result on the next line—just like IRB does.

report erratum  •  discuss

Write Your First Elixir Code • 11

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


This example demonstrates two different types of functions. The first is a
module-based function (IO.puts/1) and the second is an anonymous function
that we’ve assigned to the adder variable.

This looks a bit foreign right now, but the next chapter will clear it all up!

Wrapping Up
Ruby is a language with joy at its core. The philosophy that pins the founda-
tion of the language’s design also drives the community and culture that has
evolved around Ruby. This has allowed Ruby to remain relevant and contin-
ually evolve over the years. It has been and remains a great language.

When looking for a new language, these qualities shouldn’t be sacrificed: joy,
pragmatism, healthy community, and continual innovation. Elixir delivers
on these qualities, and it has emerged into a language loved by many.
Deciding to learn a new language is a big decision, but Elixir is worth the
effort.

Elixir provides a world-class technical foundation for all types of applications.
Web development is a primary use case, but hardware and machine learning
are also handled really well. Elixir’s focus on easy parallelism and fault toler-
ance gives it a huge advantage over other languages.

Elixir doesn’t exist by itself—it stands on the shoulders of giants that have
been in development for decades. Erlang, OTP, and the BEAM help Elixir
deliver a world-class development and production experience. But it’s done
in such a way that you don’t need to worry about the foundations that it’s
built on. You can write and ship Elixir but still benefit from the rock-solid
BEAM runtime.

You wrote some of your first lines of Elixir code in this chapter. In the next
chapter, we’ll dive deeper into the Elixir language. You’ll learn about basic
syntax, modules, functions, lists, and structs. Along the way, these concepts
will be compared to equivalent concepts in Ruby. Let’s get to it!

Chapter 1. Why Elixir? Why Now? • 12

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CHAPTER 2

New Language, New Syntax
The first look at a new language is a daunting task. Symbols look foreign,
and you’re trying to understand how everything fits together. It’s the same
for all languages, and Elixir is no different. But Elixir has a fairly small amount
of syntax, which makes it relatively quick to learn.

Elixir has three distinct parts that you’ll need to be comfortable with before
you are ready to build applications. The first, and most basic, is the syntax
of Elixir. Next is the process model and how to leverage OTP. And finally,
you’ll need to know about the common libraries that you’ll use when you
write applications. We’ll cover all of these topics throughout this book, but
this chapter focuses on Elixir’s syntax.

The goal is that, by the end of Part I, you’ll be able to read everyday Elixir
code without fear, although you won’t have yet put it together into an appli-
cation. Don’t worry, we’ll write an application in Part II. You’ll see comparisons
made with Ruby along the way. This will help you more quickly turn your
Ruby knowledge into Elixir experience.

In this chapter, we’ll go over data types, operators, modules, and functions.
You’ll see how these things fit together to create the foundations of Elixir
applications. And you’ll see where danger can lurk in some of the syntaxes.
But first, let’s step back and take a look at some differences between Elixir
and Ruby.

The Big Picture
On the surface, Ruby and Elixir code appear very similar to each other, but
make no mistake, they are quite different. It’s best to acknowledge their
visual similarities, but don’t dwell on it or get frustrated that things work
differently between them.

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The most foundational difference between the languages is that Ruby is object-
oriented while Elixir is function-oriented. Objects combine data and methods
(functions) into a single instance, and objects interact with each other to form
your application. Elixir has no objects, so functions must be provided the
data that they operate on. You’ll see Elixir patterns and concepts that feel a
bit like objects, but don’t be tricked—Elixir doesn’t have objects.

Elixir has fewer features compared to Ruby. Because there are no objects,
there is no inheritance. Additionally, data like integers, strings, and maps
cannot be directly extended with helper methods. This can create the feeling
of “how can I build the same app with fewer features at my disposal?” Don’t
worry, Elixir has everything you need to write great software.

Another big difference between Ruby and Elixir is data mutability. This refers
to whether or not data can be directly modified after it’s created. A simple
demonstration of this is with a list of [1, 2, 3]. In Ruby, you can call list.pop and
you’ll receive the result (3). But the underlying data in list changes to [1, 2]. In
Elixir, you can call List.pop_at(list, -1) and you’ll receive both the result and the
new list. The data in list remains the same.

There isn’t an objectively right answer to which of these designs is better. But
many people, including myself, prefer Elixir’s immutable data and functional
nature because it increases predictability and readability.

These are just some of the major differences between the languages. There
are many more, ranging from the typical program’s structure to the way that
code executes. You’ll undoubtedly see and make comparisons between the
two as you learn Elixir. This is a good thing because you’ll more quickly grasp
concepts, but don’t try to turn Elixir into Ruby, or vice-versa.

With that out of the way, let’s look more closely at Elixir! We’ll start with data
types.

Data Types
Elixir has a simple set of data types—the usual suspects are all here. You
use these types to store your application data and pass it as arguments to
functions.

Ruby differs a bit in what you can do with basic data types. Everything in Ruby
(including basic data types) is an object, so you can add methods to the object
class in order to extend the data type. For example, Ruby on Rails has
implemented methods to make syntax like 10.days.from_now possible. This works
because ActiveSupport has extended the Integer class with these methods.

Chapter 2. New Language, New Syntax • 14

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The design of Ruby’s object extension is elegant, but you won’t find it in Elixir.
This isn’t necessarily a bad thing though. Functions in Elixir are explicitly
invoked with the module name—more on this later—so you know exactly where
a function is defined, and you can quickly find its documentation or source
code. Every design decision has trade-offs, and Elixir’s function-oriented
approach trades elegance for explicitness.

Let’s quickly go over Elixir’s data types. These aren’t all of them, but they are
the most common ones you’ll use. Some are simple, but others require a bit
more explanation:

Atom
Atoms are named constants expressed with a colon (:an_atom). They are
like symbols in Ruby.

Boolean
Booleans are special atoms that represent truth (true or false).

Nil
nil is a special atom that represents the absence of a value.

Integer
Integers are expressed with digits (123) or via alternative base representa-
tions (0xA). You can add _ to integers to visually break up large numbers
(1_000_000). Integers don’t have a maximum size.

Float
Floats are expressed using digits and a period (10.53). They can also be
expressed in scientific notation (1.0e10). Floats have a maximum size of
1.7976931348623157e+308.

Bitstring, Binary
Bitstrings represent a collection of bits. They are expressed using angle
brackets (<<1, 2>>). Binaries are a type of bitstring with a number of bits
divisible by 8. The most common type of binary is a string. Bitstrings can
be slightly jarring to see in real-world code—because they’re not common
in other languages—but they allow for easy interaction with binary data.

String
Strings are expressed using double quotations, like "Hello!". Strings are
easy to work with, as in Ruby, but are actually stored as binary bitstrings
under the hood. In practice you won’t have to worry about this, but
sometimes you’ll see function calls like is_binary(var), which is commonly
used to check for a string argument.

report erratum  •  discuss

Data Types • 15

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


A common mistake is to use single quotations (‘Hello!’) to express a string.
This often ends with confusion and frustration because "hello" != 'hello'.
Single quotation marks are used to represent Erlang’s version of a string
(charlist) and are really only used in Elixir code that directly interacts
with Erlang code.

List
Lists are expressed using brackets—[1, 2, 3]. The next chapter has a section
dedicated to them.

Tuple
Tuples are fixed-size lists that are expressed using braces—{1, 2, 3}. The
differences between tuples and lists are covered in the next chapter.

Map
Maps are key-value dictionaries expressed with percent-brace—%{a: "map"}.
They also appear in the next chapter.

We’ll dig deeper into several of these data types throughout the chapter. First,
let’s go over the operators that are built into Elixir.

Operators
Elixir comes with a set of basic operators that largely work the way that you
would expect. Most operators will feel similar to the operators you use in
Ruby, and you’ll be right at home. But a few of these operators will behave
much differently than similar operators in Ruby.

We’ll cover the most commonly used Elixir operators, and you’ll see the
important differences that a few of these operators have compared to Ruby.

Assignment (Match)
= is called the match operator. You can use this as you would in Ruby
(my_var = 1), but it does much more than just assignment.

It’s also used for pattern matching and complex structural comparisons
([a, b] = [1, 2]). Pattern matching is one of the most important parts of Elixir’s
syntax, so Chapter 4, Pattern Matching Your Way to Success, on page 49
is dedicated to it.

Comparison
Elixir provides ==, !=, >, >=, <, <=, ===, !== operators. These largely work
as you would expect, with a couple of twists.

Chapter 2. New Language, New Syntax • 16

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


=== and !== are more strict versions of the two-character counterparts
(1 !== 1.0 but 1 == 1.0). The three-character comparison operators are not
commonly seen in Elixir codebases.

Comparison can be done on any data type ("hi" > 3). This might cause some
head-scratching at first, but it simplifies the implementation of data
comparison and makes it easier to write sorting functions.

Arithmetic
+, -, *, / are the built-in arithmetic operators. Other math operators
(modulo, power, rounding) are implemented in the Integer and Float modules.

Boolean Operators
There are two flavors of boolean operators, just as in Ruby. and, or, and
not are strict boolean operators. &&, ||, and ! are truthy boolean operators.

Strict boolean operators expect the first argument to be a boolean. Truthy
boolean operators work on any data type. So, 1 && true is valid but 1 and
true throws an error. Truthy boolean operators are more commonly used
than strict boolean operators.

In Ruby, and has a different precedence than &&. This leads to subtle bugs
in certain situations. This isn’t the case in Elixir because and and && have
the same precedence.

Throw and Raise
Elixir supports throw and raise operators to bubble exceptions through the
stack. throw can be used to propagate any Elixir term, but raise is only for
Elixir exceptions. In practice, these aren’t used often. Most Elixirists prefer
to use pattern matching to handle errors in their application. (You’ll learn
about this in Chapter 4, Pattern Matching Your Way to Success, on page 49.)

Function Piping
The pipe operator |> is heavily used by Elixir programmers. This operator
takes a value and passes it as the first argument to a provided function.
You use this to create a chain of function calls that’s easily readable and
well-formatted. Each return value is then piped into the next function.
This is similar to method chaining in Ruby.

"a string"
|> String.upcase()
|> String.replace("A", "THE")

# "THE STRING"

report erratum  •  discuss

Operators • 17

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Without using function piping, this would be equivalent to:

String.replace(String.upcase("a string"), "A", "THE")

You’ll encounter other operators and data types as you learn Elixir, but this
covers the majority of what you’ll use day-to-day. We’ll cover a few other
operators (such as string concatenation and combining lists) in Chapter 4,
Pattern Matching Your Way to Success, on page 49.

If you run into something you don’t understand, review the Kernel module
documentation.1 It has information about types, operators, and additional
best practice considerations.

The Kernel Module

Elixir operators are either implemented by the compiler or in a
special module called Kernel. The Kernel module is automatically
available to all Elixir code, so you never have to think about it.

Elixir, unlike Ruby, doesn’t let you extend modules like Kernel.
So you can’t automatically include functions in all modules.

Now, let’s move on to modules and functions.

Module and Function Basics
Elixir is a functional language, so—as you would expect—the work of an Elixir
application is done in functions. Functions take input data, process it
according to the function’s code, and then return a result. Modules are con-
tainers of functions that you have grouped together. They are mainly used
as an organizational tool.

We are talking about modules and functions at the same time because they
go hand-in-hand with each other. A module doesn’t serve a purpose without
functions, and functions need a module to exist in.

The main purpose of modules is to hold functions, but they actually do more
than this. Later in this chapter, we’ll look at additional syntax that’s available
to modules.

We’ll cover two types of functions in this chapter: named functions and
anonymous functions. Named functions are the most commonly used functions
in an Elixir app (over 90% of a typical Elixir app). Especially as you start out,
lean toward using named functions instead of anonymous functions.

1. https://hexdocs.pm/elixir/1.14/Kernel.html

Chapter 2. New Language, New Syntax • 18

report erratum  •  discuss

https://hexdocs.pm/elixir/1.14/Kernel.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


As you read this section, you’ll likely make comparisons to Ruby modules
and classes. Elixir modules are similar to Ruby modules because they each
serve the purpose of organization. However, Elixir modules offer hook points
that can be used for metaprogramming. This makes them similar to classes
as well. It’s best to acknowledge the similarities in name and syntax but accept
that Ruby and Elixir have their differences.

Before we write a module, we need an easier way to run our code. Manually
typing code into an IEx session is a bit cumbersome. Luckily, Elixir has Mix.

Mix Projects
Mix2 is a tool that helps us create, manage, compile, and deploy Elixir appli-
cations. Plus, it manages our dependencies for us too! It ships with Elixir, so
you already have it available. It’s similar to Ruby’s Rake tool combined with
Bundler.

You could compile and execute Elixir files yourself, but it would be a pretty
messy process. You would need to worry about dependencies, loading the
compiled files, and then executing a script. Mix handles all of this for us. An
application that uses Mix is referred to as a Mix project.

The next few chapters use a Mix project to compile longer sections of code.
You’re going to create that project now, but make sure to put it in a convenient
directory because you’ll be coming back to it several times.

Run the following command in a directory that you want to create the Mix
project in:

$ mix new examples
$ cd examples
$ mix test

Nice! You just made a new Mix project called examples. This will allow you to
easily run the scripts in this chapter. If you saw green when you ran mix test,
then everything is set up properly. If you see red, then check to make sure
that your Elixir and Erlang versions are installed correctly.

Inside of the newly created examples directory, you’ll see lib and test folders.
Application code goes into the lib folder and tests go into the test folder. Tech-
nically, you could implement a different code organization, but it’s extremely
rare to see any other type of code structure in Elixir applications.

Now we can write some Elixir!

2. https://hexdocs.pm/mix/Mix.html

report erratum  •  discuss

Module and Function Basics • 19

https://hexdocs.pm/mix/Mix.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Create a Module
You’re ready to write code in your Mix project. We’ll start with a simple module
containing a few functions. Create the following file in lib/examples/modules/one.ex:

elixir_examples/lib/examples/modules/one.ex
defmodule Examples.Modules.One do

def hello do
:world

end

def welcome(name) do
"Welcome #{name}"

end
end

The code inside of the defmodule block becomes the module once Elixir compiles
it. defmodule is a special type of syntax called a macro.

Similarly, def is a macro that defines a function. Functions can have arguments
(like welcome/1 does) or they can exclude arguments (like hello/0).

These functions are inside of a module and are named, so we call them named
functions. We refer to named functions with the syntax Module.function/arity, like
Examples.Modules.One.welcome/1. (Arity refers to the number of arguments passed
into a function.) Sometimes the module name is excluded if it’s referring to
the current module that you’re in.

Macros: With Power Comes Responsibility

The best advice about macros is “don’t write macros,” as Chris
McCord wrote in Metaprogramming Elixir [McC15].

This is slightly sarcastic advice, but it highlights the fact macros
can be tricky to write. Especially when you’re first starting out.

Macros are functions that emit code when compiled. Macros let
you quickly integrate complex libraries or functions into your code.
They are most often used by library authors or by developers
who are creating an abstraction. This is referred to as metapro-
gramming.

We won’t cover macros in depth in this book, although they will
pop up occasionally. Chris McCord’s book is my go-to resource
for macros, and the official documentation is also very good.

It’s not required to make your module names match the file name, but the
convention is to do so because it helps with organization. Every .ex file inside

Chapter 2. New Language, New Syntax • 20

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/modules/one.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


of your lib folder will be available to your application when you run it. You’re
probably used to Ruby’s auto-loading gem—Zeitwerk—but Mix handles all of
this for us.

Let’s execute the functions by loading a Mix-enabled IEx session. You do this
by passing the -S mix flag to iex:

$ iex -S mix
Compiling 2 files (.ex)
iex(1)> Examples.Modules.One.hello()
:world

iex(2)> Examples.Modules.One.welcome("Steve")
"Welcome Steve"

iex(3)> Examples.Modules.One.welcome()
** (UndefinedFunctionError) function Examples.Modules.One.welcome/0

is undefined or private. Did you mean one of:

* welcome/1

(examples 0.1.0) Examples.Modules.One.welcome()

You can easily invoke the functions defined in your module, but giving a name
that doesn’t exist or an incorrect number of arguments will result in an error.

Take a look at comparable code in Ruby. It’s very similar, but there are signif-
icant differences:

ruby_examples/one.rb
class One

def hello
:world

end

def welcome(name)
"Welcome #{name}"

end
end

one = One.new
one.hello #> :world
one.welcome("You") #> "Welcome You"

Ruby methods can be class-level or object-level, and classes can be instanti-
ated as object instances. Remember that Elixir has no objects, only functions.

This section covered one type of function (named functions), but there’s
another type of function that’s used in different scenarios. Let’s take a look
at anonymous functions next.

report erratum  •  discuss

Module and Function Basics • 21

http://media.pragprog.com/titles/sbelixir/code/ruby_examples/one.rb
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Fun with Functions
Functions are simple at first glance—they have a name, arguments, and a
body. But Elixir allows you to overload functions in several different ways
that aren’t possible in most other languages. Even though they are simple,
this ability to overload them makes functions very powerful.

You wrote named functions in the previous section. In this section, you’ll deal
with anonymous functions. Anonymous functions are a quick and convenient
way to define functions inline in your code.

Let’s get started with anonymous functions.

Anonymous Functions
Anonymous functions are ones that have no name. They are commonly used
when passing behavior into a different function, such as an enumeration
function.

Anonymous functions are quick and easy to define, and they keep behavior
directly next to the call site. These attributes make them convenient to write
and easy to read. However, the biggest benefit of them is that scoping is
maintained. All of the variables that are in-scope where the anonymous
function is defined can be used by the anonymous function.

Here’s an example of anonymous functions. Type the following into IEx:

$ iex
iex(1)> Enum.map([1, 2, 3], fn num -> num * 2 end)
[2, 4, 6]

iex(2)> iterate = fn num -> num * 2 end
#Function<44.40011524/1 in :erl_eval.expr/5>

iex(3)> Enum.map([1, 2, 3], iterate)
[2, 4, 6]

iex(4)> iterate.(2)
4

Anonymous functions are similar to Procs in Ruby. Let’s look at Ruby code
that uses Procs to enumerate over an array.

$ irb
irb(main)> [1, 2, 3].map { |num| num * 2 }
=> [2, 4, 6]

irb(main)> iterate = ->(num) { num * 2 }
=> #<Proc:0x000000014422e918 (irb):1 (lambda)>

Chapter 2. New Language, New Syntax • 22

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


irb(main)> [1, 2, 3].map(&iterate)
=> [2, 4, 6]

irb(main)> iterate.(2)
4

Ruby Procs can be assigned to variables and passed around or can be defined
inline and used only by a single method. This is exactly how anonymous
functions in Elixir work.

Anonymous functions can be defined across multiple lines (similar to Ruby
Procs) or can be defined on a single line. You must put a period character
between the variable name and the function arguments when you invoke an
anonymous function, like my_function.(my_argument).

A major similarity between Ruby and Elixir is that the last statement executed
by a function is returned. There is no explicit return syntax in Elixir. Instead,
you use conditionals and pattern matching to structure your functions so
the intended value is returned. This becomes fairly natural as you get the
hang of Elixir.

Next, let’s look at how functions can be overloaded.

Overloading Your Functions
An overloaded function is a function that has multiple entry points based on
the input arguments. Some languages limit function overloading to the
number of arguments—my_func/0 and my_func/1 would be considered overloaded.
But Elixir goes beyond this.

In Elixir, you can overload the same function based on the argument data
itself. So, my_func("hello") could have a different function body than my_func("hola").

Let’s write an overloaded function in Elixir. Create lib/examples/modules/two.ex and
add the following code:

elixir_examples/lib/examples/modules/two.ex
defmodule Examples.Modules.Two do

def hello do
"Hello"

end

# This is a reference to Erlang: The Movie
def hello("Mike") do

"Hello Mike, Hello Joe"
end

def hello(name) do
"Hello #{name}"

end

report erratum  •  discuss

Fun with Functions • 23

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/modules/two.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


def hi(name \\ "Reader") do
"Hi #{name}"

end
end

This code also demonstrates that Elixir supports default function arguments
using the \\ operator. This creates two versions of our function—hi/0 and
hi/1—that have different values for the name argument.

When you run this in IEx, you’ll see that our functions behave differently
based on the number of arguments and the data in those arguments:

$ iex -S mix

iex> Examples.Modules.Two.hello()
"Hello"

iex> Examples.Modules.Two.hello("Steve")
"Hello Steve"

iex> Examples.Modules.Two.hello("Mike")
"Hello Mike, Hello Joe"

iex> Examples.Modules.Two.hi()
"Hi Reader"

iex> Examples.Modules.Two.hi("Steve")
"Hi Steve"

This technique may be completely new to you because Ruby doesn’t have
method overloading. If you define a Ruby method with the same name as a
previously defined method, then the old definition will be skipped. For
example, the following Ruby method returns “hello”:

ruby_examples/two.rb
class Overload

def hello(name)
"Hi #{name}"

end

def hello
"hello"

end
end

Overload.new.hello #> "hello"
Overload.new.hello("Steve") #> ArgumentError (given 1, expected 0)

Even if the Ruby method was defined with a different number of arguments,
there would still be only one version of that method. You would need to
implement a different behavior in the body of the method instead of having
multiple definitions.

Chapter 2. New Language, New Syntax • 24

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/ruby_examples/two.rb
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Overloaded functions are extremely common in Elixir applications. They are
regularly used for recursive functions and for changing behavior based on
configuration. You’ll see more examples of overloading throughout Part I.

Up next, we’re going to take a look at a convenient shorthand to create
anonymous functions.

Capturing Functions
Anonymous functions are created using the fn keyword. But there’s another
technique to create anonymous functions called function capturing. This tech-
nique lets you define an anonymous function with a short syntax. It’s very
popular when defining a one- or two-line function for use in modules like Enum.

We’ll go over the syntax for function capturing as well as how it can be used
on named functions. It’s a quick bit of syntax, so let’s dive right in!

Capturing Anonymous Functions
Captured functions begin with the & symbol. Inside the body of the function,
&1 is used to refer to the first argument. Here’s an example:

$ iex
iex(1)> Enum.map([1, 2, 3], & &1 * 2)
[2, 4, 6]

The phrase & &1 * 2 is a captured function. It’s equivalent to fn x -> x * 2 end. For
each enumeration of our list, the argument is passed into &1 and then multi-
plied by 2.

Captured functions can reference multiple arguments. In the previous
example, Enum.map/2 calls a function that accepts a single argument. But a
function like Enum.reduce/2 calls a function that accepts two arguments. If we
wanted to use this in an anonymous function, it would look like this:

iex(2)> Enum.reduce([1, 2, 3], 0, & &1 + &2)
6

It’s fairly rare to see a captured function that uses &2 or even &3. It just
becomes too difficult to follow along with. In these cases, it’s better to use fn
to define the anonymous function.

The captured function syntax is a bit daunting at first, but it’s a convenient
way to define simple functions that span a single line. Many Elixir developers
prefer this syntax for short iteration functions.

report erratum  •  discuss

Capturing Functions • 25

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Function capturing has multiple use cases. Let’s look at how it can be used
to reference a named function.

Capturing Named Functions
You just saw how you can create a new anonymous function using the &
operator. But we can use this same technique to capture a named function.
Capturing a named function lets us treat it like an anonymous function.

Named functions in Elixir are referred to by Module.name/arity. This same format
is used to capture a named function. For example, the code my_fn = & IO.puts/1
assigns the IO.puts/1 function to the my_fn variable. You could then call it using
my_fn.("hi"). Let’s see this in action. The next example captures the IO.puts/1
function and uses it in an enumerator over a list:

$ iex
iex(1)> Enum.each([1, 2], & IO.puts/1)
1
2
:ok

Capturing is also possible in Ruby, but it looks slightly different because you
use the method method:

$ irb
irb(main)> [1,2].each(&method(:puts))
1
2
=> [1, 2]

Elixir’s function capturing helps you keep your code clean. If you have multi-
line anonymous functions, it’s often better to create a named function and
use function capturing to reference it.

Let’s go over an example of extracting an anonymous function into a named
one. The following code has inline/0 and extracted/0 functions. inline/0 passes a
multi-line anonymous function as an argument to Enum.each/2. But extracted/0
captures the print_name/1 function and passes that into Enum.each/2 instead.

elixir_examples/lib/examples/modules/extract.ex
defmodule Examples.Modules.Extract do

def inline do
Enum.each(names(), fn name ->
capitalized = String.capitalize(name)
phrase = "Hello, #{capitalized}"
IO.puts(phrase)

end)
end

Chapter 2. New Language, New Syntax • 26

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/modules/extract.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


def extracted do
Enum.each(names(), & print_name/1)

end

defp print_name(name) do
capitalized = String.capitalize(name)
phrase = "Hello, #{capitalized}"
IO.puts(phrase)

end

defp names do
["joe", "robert", "mike"]

end
end

These functions are identical in behavior, but the extracted function is easier
to understand when read in isolation. This is a personal preference, but the
Elixir community generally leans toward extracting multi-line functions.

Now that you’ve seen how to put functions together, let’s go back to modules
and look at some of the more advanced convenience-oriented concepts.

Advanced Module Keywords
You won’t get too far into an Elixir application without seeing one of the fol-
lowing keywords: alias, require, import, or use. They all serve different pur-
poses and are extensively used in Elixir modules. We’ll go over each of them,
including when you would use each.

Each of these module keywords can be used as many times as you want in
a module. For example, you could alias two modules, require another, and use
three more.

This section uses examples that won’t actually compile, so you don’t need to
type them out. They’re here to illustrate how the various keywords are used.

Alias
As you create your application, you will have long module names like
MyApp.Widgets.Query.WidgetStore. Long module names allow you to cleanly name-
space your application, but they are cumbersome to type everywhere. The
alias keyword allows you to refer to a module using its shorter name.

defmodule ExampleModule do
alias MyApp.Widgets.Query.WidgetStore
alias MyApp.Widgets.Workers.WidgetSync

report erratum  •  discuss

Advanced Module Keywords • 27

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


def save_widget!(params) do
widget = WidgetStore.create_widget!(params)
WidgetSync.enqueue!(widget)

end
end

The alias keyword refers to the provided module name using the last part of
its name. So in this example, you can write WidgetStore instead of the fully
qualified name.

You can specify multiple modules at once by using the syntax alias ParentMod-
ule.{First, Second}. This syntax has mixed reviews in the community—many
people prefer to write each alias on its own line.

Import
The import keyword scopes a module’s public functions into the current mod-
ule. The function effectively becomes local to your module at that point. A
common example of this is the Ecto.Changeset module:

defmodule ExampleModule do
import Ecto.Changeset

def changeset(attrs) do
%MySchema{}
|> cast(attrs, [:field])
|> validate_required([:field])

end
end

In this example, cast/3 and validate_required/2 are functions defined in the Ecto.
Changeset module. (The arity may be higher than you are expecting. Remember
that the pipe operator provides the first argument.)

To keep our code clean, we import the Ecto.Changeset module’s functions and
then use them directly. This syntax is most useful for a domain-specific lan-
guage (DSL). It’s common in Ecto primarily because Ecto is a DSL over
database operations. We’ll be using Ecto in Chapter 6, Persisting Data with
Ecto, on page 87.

Require
If you want to use a macro function in your module, then you must require
the module before you do so. If you forget to require the macro’s module first,
Elixir will give you a helpful warning.

Chapter 2. New Language, New Syntax • 28

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The following code uses the Integer.is_even/1 macro, so the require Integer must be
added to the module:

defmodule ExampleModule do
require Integer

def print_when_even(number) do
if Integer.is_even(number) do
IO.puts "It's even!"

end
end

end

If you try to use Integer.is_even/1 without requiring it, you’ll get an error.

** (CompileError) you must require Integer before invoking
the macro Integer.is_even/1

Use
The use keyword serves as a hook point during the compilation of a mod-
ule. The module that’s “used” will be able to add code to the module with
the use statement. There is no like-for-like comparison with Ruby because
Elixir’s use is executed at compile time, but it’s most similar to how ActiveSup-
port::Concern works.

use is often used by some libraries to create a seamless developer experience.
The next example shows what an Ecto Schema looks like. This example shows
several functions that make up a schema-building DSL:

defmodule SmsMessage do
use Ecto.Schema

schema "sms_messages" do
field :body, :string
field :from, :string
field :to, :string

end
end

The schema/2 and field/3 functions are all defined in the Ecto.Schema module. The
line use Ecto.Schema makes these functions available inside of the module. A lot
of complex setup is involved in pulling this off, so import won’t work here.

To truly understand use, you have to understand that Elixir is a compiled
language. Let’s dive into what this means.

report erratum  •  discuss

Advanced Module Keywords • 29

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Compile Time vs. Runtime
Elixir is a compiled language, so your code is transformed before it executes.
(Mix handles compilation for us, and files are only recompiled when they
change.) Elixir’s compiler reads your files from top to bottom to construct the
modules and functions that are used in your application.

This is a big departure from Ruby, where code is evaluated and executed at
runtime. Many new Elixir developers get confused by what is compile time
and what is runtime. The difference matters because you can introduce
subtle bugs—or absolute show-stoppers—without being able to identify where
the problem is. This section will equip you with just enough to minimize that
confusion.

The simplest explanation is everything inside of a function is executed at run-
time, and everything outside of a function is executed during compile time.

Let’s demonstrate this with an example. Type the following code at lib/exam-
ples/modules/compile.ex:

elixir_examples/lib/examples/modules/compile.ex
defmodule Examples.Modules.Compile doLine 1

IO.puts "I'm at compile-time"-

-

@now Time.utc_now()-

5

def runtime do-

IO.puts "This was compiled at #{@now}. It is #{runtime_now()}"-

end-

-

defp runtime_now do10

Time.utc_now()-

end-

end-

The @now statement on line 4 is called a module attribute. Module attributes
are set during the compilation phase and hold a value or list of values. They
are used like read-only variables inside of your module.

When you run this example, note the compile-time message and the differences
in timestamps.

$ iex -S mix
Compiling 1 file (.ex)
I'm at compile-time

iex> Examples.Modules.Compile.runtime()
This was compiled at 20:26:17.999151. It is 20:26:19.832422

Chapter 2. New Language, New Syntax • 30

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/modules/compile.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


iex> Examples.Modules.Compile.runtime()
This was compiled at 20:26:17.999151. It is 20:26:47.052395

And if you open iex -S mix again, you won’t see the "I'm at compile-time" message.
You’ll see the message again when you change the module and Elixir recom-
piles it.

This gets to the heart of the confusion for many new Elixir developers. They
will put a value inside of a module attribute (@now in our example) and assume
that it updates every time they use it. Instead, this type of code is executed
at compile time and the value doesn’t change.

A great way to avoid a problem is to put everything in functions when you
are starting out. Whether you are accessing the database, collecting a system
configuration variable, or reading a file, do it in a named function.

You’ll bump up against this more as you write Elixir code. The good news is
that the language maintainers have put a lot of work into making it obvious
where the compile-time boundaries are. So, issues about compilation have
steadily decreased over time.

Wrapping Up
Elixir can be strange to look at when you first start out, but its surface area
is fairly small and easy to learn. Putting it together into a meaningful applica-
tion is where the fun begins.

Elixir comes with a common set of data types and operators. These largely
behave as you would expect, but a few rough edges sometimes trip up new
Elixir programmers. You’ll be set up for success by simply knowing that these
edges exist.

Modules and functions are the building blocks of an Elixir application. Modules
are containers of functions that you have grouped together. There are a few
keywords that make modules more enjoyable to work with. The most powerful
is the use keyword, which offers a hook point for library authors to create
seamless domain-specific languages.

Functions are conceptually simple, but quite a few syntaxes are available to
use in different situations. You’ll most commonly use named functions, but
you’ll work with anonymous functions as well. Plus, Elixir comes with powerful
function overloading capabilities.

It’s easy to get tripped up when going from an interpreted language to a
compiled language. Elixir’s compiler transforms your text files into the modules
and functions that make up your application. Put all of your code into named

report erratum  •  discuss

Wrapping Up • 31

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


functions when starting out. This will prevent compile time versus runtime
bugs from tripping you up. The easiest thing to remember when starting is
that everything inside of a function is executed at runtime, and everything
outside of a function is executed during compile time.

You have seen the basics of Elixir’s syntax, but we didn’t go into how you use
it to create data structures. The next chapter is all about defining and iterating
over your application’s data structures.

Chapter 2. New Language, New Syntax • 32

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CHAPTER 3

Working with Data
Conceptually, most software applications can be simplified to this: collect
data, operate on data, and then return data to the user. This simplification
avoids a whole host of complexities (user interface, database, and so on), but
it holds true more often than not. Data and operations on that data are
basically the entirety of an application.

In the previous chapter, you learned that functions and modules are used to
organize your application. Functions do the work of your application, but
they operate on data. So, the way that your data is defined has a big impact
on how easy it is to write functions. Luckily, Elixir gives you all of the tools
needed to create a clean data layer.

We’ll explore two of the data types that we didn’t cover in the previous chapter:
lists and maps. You’ll see the most common ways to create and interact with
these data types. You’ll also learn how to implement a clean data layer using
a special type of map. Finally, we’ll go over how you can iterate and modify
your data structures.

We’ll start with lists.

Lists—Not Arrays
Lists contain data and can be enumerated on. On the surface, they are similar
to Ruby arrays, but there are pretty significant differences under the hood
that result in totally different performance characteristics. As a result, you’ll
use lists differently in Elixir than you would in Ruby.

In addition to lists, there’s a list alternative that throws a bit of a wrench at
new Elixir programmers. You’ll learn about tuples and how they differ from
lists. Don’t worry though, it’s a pretty straightforward difference.

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The Basics
Lists are represented with the bracket [] syntax. You can easily create them,
add to them, and work with them just as in Ruby. Enter the following code
in an IEx session:

$ iex
iex> list = [1, 2, 3]
[1, 2, 3]

iex> list ++ [4, 5]
[1, 2, 3, 4, 5]

iex> list -- [2, 3]
[1]

iex> [0 | list]
[0, 1, 2, 3]

iex> length(list)
3

++ concatenates the second list onto the end of the first. This is equivalent
to list + list in Ruby.

-- removes the first occurrence of the right list from the left. This is similar to
list - list in Ruby but differs from it because Ruby removes all occurrences and
Elixir only removes a single occurrence.

[element | list] adds the given element to the beginning of a list. This is useful
for performance reasons, which we’ll cover shortly.

The List1 module provided by Elixir has many utility functions in it. One
function that seems to be missing from the module is a function that gets
the length of a list. Elixir provides length/1 in the Kernel module, so you can
invoke length(list) directly.

Tuples
Tuples appear to be similar to lists but are used completely differently. Tuples
are fixed-size containers that are efficiently stored in memory. Enter the fol-
lowing code in an IEx session to see them in action:

$ iex
iex> tuple = {:ok, 1}
{:ok, 1}

iex> tuple_size(tuple)
2

1. https://hexdocs.pm/elixir/List.html

Chapter 3. Working with Data • 34

report erratum  •  discuss

https://hexdocs.pm/elixir/List.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


You can manipulate a tuple with functions, but you really shouldn’t. The
reason is that they are fixed-size containers and operations on them are more
costly.

When you add to the beginning of a list, it’s a quick operation that touches
a minimal amount of memory. When you add to a tuple, it completely recreates
the data structure in memory.

Tuples are often used to represent the success or failure of a function or as
containers for functions with multiple return values. It’s easiest to see this
in a real Elixir function:

$ iex
iex> File.read("./")
{:error, :eisdir}

iex> File.ls("./")
{:ok, ["your", "files"]}

iex> File.read!("./")
** (File.Error) could not read file ".": illegal operation on a directory

Similar to Ruby, the convention is to put a ! symbol at the end of a function
if it raises an error. This is why there are File.read!/1 and File.ls!/1 functions that
raise errors instead of returning a tuple result.

Tuple results play well with pattern matching, so you can easily handle the
success or failure of an operation without catching errors. This is considered
pragmatic Elixir and is commonly seen. We’ll cover that in the next chapter.

Performance Dangers
Lists look similar to Ruby arrays, so it’s easy to think that you can use them
the same way. But there’s a nonobvious risk that you may run into. Elixir
lists are linked lists with O(n) performance on many common operations.

This section needs a disclaimer. You’ll likely not run into problems in your
everyday usage of Elixir lists due to how large a list would need to be to give
you problems. However, it’s still an important topic to understand when
learning Elixir, or if you’re implementing algorithms in Elixir. Elixirists use
lists a lot, so they’re quite useful despite any performance dangers.

When you access an element in an Elixir list, the entire list up to that element
is traversed. As you perform operations on a list that’s large, the CPU
requirements and time needed to complete the operation increase.

List performance is why it’s not common to access list elements by index in
Elixir. It’s common in Ruby to access a list element using a list[5] syntax or to

report erratum  •  discuss

Lists—Not Arrays • 35

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


set a value with list[5] = "five". The Elixir language doesn’t provide a convenient
syntax to access lists using index positions. Some functions let you access a
list by index, but they aren’t often used.

One pragmatic example of this is that you’ll rarely see if length(list) == 0. The
length/1 function is O(n), and there’s a better way to make this comparison.
Instead, use if list == [] to check if a list is empty. This is quick and doesn’t
involve iterating over the list. This applies to any data structure—Elixir is
very efficient at checking data equality.

Keyword Lists
There’s a special type of list that has its own syntax. A keyword list consists
of tuple-pair elements in a list where the first element is an atom. This defini-
tion is a little complex, so it’s best to see it in action by entering this code
into IEx:

$ iex
iex> [hello: 1]
[hello: 1]

iex> [hello: 1, another: "value"] == [{:hello, 1}, {:another, "value"}]
true

Elixir expresses keyword lists with shorthand syntax of [atom: value, atom: value].
They are most commonly used to pass options into a function. For example,
create lib/examples/modules/keyword_list.ex and enter the following code:

elixir_examples/lib/examples/modules/keyword_list.ex
defmodule Examples.Modules.KeywordList do

def maybe_print(arg, opts) do
print? = Keyword.get(opts, :print?, true)

if print? do
IO.puts("printing #{arg}")

end

arg
end

end

Then run it in IEx:

$ iex -S mix
iex> alias Examples.Modules.KeywordList
iex> KeywordList.maybe_print(1, [])
printing 1
1

iex> KeywordList.maybe_print(1, print?: false)
1

Chapter 3. Working with Data • 36

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/modules/keyword_list.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


iex> KeywordList.maybe_print(1, print?: false, example: "unused")
1

You didn’t need to put the keyword list in [] brackets. This is a syntax conve-
nience when a keyword list is the last argument to a function.

Although this syntax seems to be visually similar to keyword arguments in
Ruby, the differences between Elixir keyword lists and Ruby keyword argu-
ments are actually quite significant.

The Keyword2 module has all of the functions you’ll need to read or modify
keyword lists. You’ll commonly use the functions Keyword.get/3, Keyword.put/3,
and Keyword.merge/2.

Let’s move on to another core data type—maps.

Maps—Your Data Layer Foundation
Maps are the most important data type in your Elixir toolbox. A map consists
of key-value pairs, where the key and value can be any data type. In practice,
you’ll use maps to hold and pass around all of the data in your application.

The Basics
Maps are created with the %{} syntax. You can create an empty map or set
the initial key-value pairs in the map. Try it out in IEx:

$ iex
iex> empty = %{}
%{}

iex> populated = %{key: "value", another: "entry"}
%{another: "entry", key: "value"}

iex> Map.get(populated, :another)
"entry"

iex> populated[:another]
"entry"

iex> populated.another
"entry"

You’ll notice that the second map came out in a different order than we typed.
Maps aren’t in the same order as you added the keys. Smaller maps (of 32
keys or less) are ordered, but you should never rely on the order of a map.

2. https://hexdocs.pm/elixir/1.14/Keyword.html

report erratum  •  discuss

Maps—Your Data Layer Foundation • 37

https://hexdocs.pm/elixir/1.14/Keyword.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


You can put any key or value into a map, but only atom keys can use the key:
value shorthand. If you want to set a key that isn’t an atom, then you have to
use the => syntax, like this:

iex> map = %{1 => "an integer", 2 => %{another: :map}}

iex> Map.keys(map)
[1, 2]

iex> Map.values(map)
["an integer", %{another: :map}]

iex> Map.get(map, 1)
"an integer"

iex> map[1]
"an integer"

iex> map.1
# SyntaxError

Elixir’s Map3 module is used to read and modify maps. This is a commonly
used module, so you should look over it to see what’s available to you. There
are lots of functions in the Map module, but here are a few of the basic ones:

iex> map = %{}
iex> map = Map.put(map, :key, :value)
%{key: :value}

iex> map2 = Map.put(map, "list", [])
%{key: :value, "list" => []}

iex> map
%{key: :value}

iex> [Map.get(map, :key), Map.get(map, :not_in_map)]
[:value, nil]

iex> Map.delete(map2, "list")
%{key: :value}

Maps don’t have the same performance problem that lists have. They are
implemented to be very efficient, so you can access or modify maps by key
without concern.

The previous example highlights a core concept in Elixir: data is immutable.
Map.put/3 was used on the map variable, but the original map wasn’t changed.

Let’s take a closer look at immutability.

3. https://hexdocs.pm/elixir/1.14/Map.html

Chapter 3. Working with Data • 38

report erratum  •  discuss

https://hexdocs.pm/elixir/1.14/Map.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Immutability
Immutability refers to whether a piece of data can be changed once it’s created.
The previous section showed how maps are immutable, but this applies to
all data types in Elixir.

Immutability also applies across function boundaries. Let’s write some code
to demonstrate this. Create lib/examples/modules/immutable.ex and enter the following
code to see immutability in action:

elixir_examples/lib/examples/modules/immutable.ex
defmodule Examples.Modules.Immutable do

def map_change(map) do
Map.merge(map, %{a: 1, b: 2})

end
end

$ iex -S mix
iex> map = %{number: 1}

iex> Examples.Modules.Immutable.map_change(map)
%{a: 1, b: 2, number: 1}

iex> map
%{number: 1}

We passed the map variable into map_change/1, but the original map didn’t
change.

Immutability makes it significantly easier to reason about data as it’s passed
around because we know that a variable’s data cannot change unless we
reassign the variable.

Immutability is a bit of a double-edged sword, though. In Ruby, you can
directly modify hashes, lists, or object values. In Elixir, you must iterate and
rebuild the data structure to change it.

The best solution to this—and most other things—is practice. As you learn
how to effectively use Enum and Map functions, you’ll become more comfortable
with immutability. We’ll dig further into data enumeration later in this
chapter.

Structs
You can use maps to store all of your key-value data, but they are missing a
few conveniences. Maps aren’t named, so you can’t tell the purpose of a map
without inspecting the contents. Maps don’t have the concept of required
keys or default values, which means you would have to implement protection

report erratum  •  discuss

Maps—Your Data Layer Foundation • 39

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/modules/immutable.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


in your code. There’s a special type of map—structs—that solves these
problems.

Structs are maps, but they have additional features added to them. Structs
are named maps that have predefined keys, required keys, and default values.

Let’s model an SMS message using a struct. Create lib/structs/sms.ex and add
the following code:

elixir_examples/lib/examples/structs/sms_1.ex
defmodule Examples.Structs.SmsBasic do

defstruct [:from, :to, :body]
end

And then run it:

$ iex -S mix
iex> sms = %Examples.Structs.SmsBasic{}
%Examples.Structs.SmsBasic{body: nil, from: nil, to: nil}

iex> is_map(sms)
true

iex> is_struct(sms)
true

iex> sms = %Examples.Structs.SmsBasic{to: "111-222-3333"}
%Examples.Structs.SmsBasic{body: nil, from: nil, to: "111-222-3333"}

iex> sms = Map.put(sms, :body, "A text message")
%Examples.Structs.SmsBasic{

body: "A text message",
from: nil,
to: "111-222-3333"

}

iex> sms = %Examples.Structs.SmsBasic{nope: true}
** (KeyError) key :nope not found

You initialized the struct by writing the name of the module between the %
and { symbols. By default, all of the provided keys are nil. You can initialize
the struct with data, just like a map, but the keys must be part of the defined
set or you get an error. Once you have the struct initialized, you use Map
functions to manipulate it.

The way that structs are defined means that you can only have a single struct
defined in a single module. If you want multiple structs, you need to create
multiple modules.

Let’s take our struct a step further by implementing required and default-
value keys. Rewrite the module to the following code:

Chapter 3. Working with Data • 40

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/structs/sms_1.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


elixir_examples/lib/examples/structs/sms_2.ex
defmodule Examples.Structs.Sms do

@enforce_keys [:from, :to]
defstruct @enforce_keys ++ [:body, status: "delivered"]

def other_party(sms) do
case sms.status do

"delivered" -> sms.to
"received" -> sms.from

end
end

end

$ iex -S mix
iex> sms = %Examples.Structs.Sms{}
** (ArgumentError) the following keys must also be given when

building struct Examples.Structs.Sms: [:from, :to]

iex> sms = %Examples.Structs.Sms{to: "you", from: "me"}
%Examples.Structs.Sms{body: nil, from: "me", status: "delivered", to: "you"}

iex> Examples.Structs.Sms.other_party(sms)
"you"

There’s nothing stopping you from initializing this with bad data, but required
keys (via the @enforce_keys module attribute) and default values significantly
improve the developer experience of your application data structures.

The function other_party/1 demonstrates a common technique of putting func-
tions that operate on a struct in the same file as the struct. Let’s see how this
is used to implement contained data structures.

Implementing Data Structures
Data is the heart of programming. You need to be able to create clean data
structures so that you can hold, read, and modify data easily. Doing this well
will make it easier to read and maintain software applications.

Ruby is object-oriented. So, you write a class that has instance variables
and public or private methods. You modify the data through these methods and
build your program by implementing your application domain through
classes. At runtime, classes are initialized as objects that hold a specific set
of data.

But Elixir is functional. It doesn’t have classes, and data is immutable, so
you might be scratching your head at how to go about implementing your
data structures. We can take what we’ve learned so far—modules, functions,
and structs—to implement a clean data layer.

report erratum  •  discuss

Implementing Data Structures • 41

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/structs/sms_2.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Create a new file at lib/examples/structs/conversation.ex and add the following code:

elixir_examples/lib/examples/structs/conversation.ex
defmodule Examples.Structs.Conversation do

defstruct [:other_party, messages: []]

def new(sms_list) do
other_party = List.first(sms_list) |> Examples.Structs.Sms.other_party()
%__MODULE__{other_party: other_party, messages: sms_list}

end

def append(conversation, sms) do
new_messages = conversation.messages ++ [sms]
Map.put(conversation, :messages, new_messages)

end

def clear(conversation) do
Map.put(conversation, :messages, [])

end
end

And try it out:

$ iex -S mix
iex> alias Examples.Structs.{Conversation, Sms}
iex> from_me = %Sms{from: "me", to: "you", status: "delivered"}
iex> from_you = %Sms{from: "you", to: "me", status: "received"}
iex> convo = Conversation.new([from_me])

%Examples.Structs.Conversation{
messages: [

%Examples.Structs.Sms{
body: nil, from: "me", status: "delivered", to: "you"

}
],
other_party: "you"

}

iex> convo = Conversation.append(convo, from_you)

%Examples.Structs.Conversation{
messages: [

%Examples.Structs.Sms{
body: nil, from: "me", status: "delivered", to: "you"

},
%Examples.Structs.Sms{

body: nil, from: "you", status: "received", to: "me"
}

],
other_party: "you"

}

This example combines the things you’ve learned so far in a way that you’ll
likely see in an Elixir application. The one new concept is the __MODULE__

Chapter 3. Working with Data • 42

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/structs/conversation.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


variable. This is called a compilation environment macro,4 and it returns the
current module name as an atom.

It’s common to have a new function in the same module that defines the struct,
which takes arguments to build the struct. Another common pattern is modi-
fier functions that take the struct as the first argument and return a modified
version.

This technique allows structs and classes to feel similar to each other, even
though they are different things. But you’ll still need to enumerate over your
data structures to read or modify them. Let’s look at some techniques for
doing that.

Enumerating Data Structures
You’ll perform two types of operations on your data. Iteration reads the con-
tents of the data structure, so you can do something meaningful with it. Map
(or reduce) transforms the contents of the data structure to modify it or to
create something totally different.

Elixir has several options for iterating and mapping your data structures.
We’re going to look at a few of the built-in options that Elixir gives for iteration
and mapping. We’ll cover the Enum module and comprehensions.

Enum Module
The Enum5 module is arguably the most useful module in the standard library.
It does lots of things, but we’ll cover some of the most commonly used func-
tions. It’s built on top of the Enumerable protocol, which lets us enumerate maps
and lists out of the box.

Enumerable Protocol

Protocols allow code to change behavior based on the input data.
Enum relies on the Enumerable protocol to support all of the
functions in the Enum module.

You can implement a protocol for any data type or struct. This
means that your own data structure could implement Enumerable
and you could use Enum functions with it.

The use case varies for protocols, but it’s not a beginner-level
feature. So we won’t cover protocols in this book.

4. https://hexdocs.pm/elixir/Macro.html#expand_once/2
5. https://hexdocs.pm/elixir/1.14/Enum.html

report erratum  •  discuss

Enumerating Data Structures • 43

https://hexdocs.pm/elixir/Macro.html#expand_once/2
https://hexdocs.pm/elixir/1.14/Enum.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Enum.each

Enum.each/2 is used to iterate over an enumerable. Anything in Elixir that
implements the Enumerable Protocol can be enumerated over, but you’ll most
frequently enumerate lists and maps. Enum.each/2 doesn’t return any value
from the iteration. Because Elixir is immutable, you cannot modify data that
exists outside of the enumeration function.

Let’s enumerate a map using Enum.each/2:

$ iex
iex> Enum.each(%{a: "value", b: "another"}, fn {key, value} ->

IO.puts "Key: #{key}; Value: #{value}"
end)

Key: a; Value: value
Key: b; Value: another

Maps are key-value pairs, so the enumeration function accepts each value
in a tuple pair. This is an example of how tuples are frequently used for fixed-
size data types.

One of the techniques that’s common in Ruby apps is to define an empty
hash, iterate over some data, build up the hash as you go, and then return
the hash. You can’t do that in Elixir because data is immutable. The next
example demonstrates what happens if you try to. This Elixir code compiles
and runs, but the final result is empty:

iex> result = %{}

iex> Enum.each([1, 2, 3], fn i ->
result = Map.put(result, i, true)

end)

iex> result
%{}

You’ll see a warning that “variable result is unused” when you run this
example, and the final result is unchanged. If you want to build up a result,
you’ll need to use different functions, like Enum.map or Enum.reduce.

Enum.map

Enum.map/2 is one way to transform data. It returns a new list based on the
result of the function you give it:

$ iex
iex> Enum.map([1, 2, 3], & &1 * 2)
[2, 4, 6]

iex> Enum.map([%{a: 1}, %{a: 2}], & Map.put(&1, :a, "updated"))
[%{a: "updated"}, %{a: "updated"}]

Chapter 3. Working with Data • 44

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Each item in the list is passed into the provided function, and the return
value of each function is returned inside of a new list. The number of elements
in the list does not change: if five elements are in the input list, five ele-
ments are returned.

Enum.reduce

Finally, Enum.reduce/3 iterates over each value in a list and transforms the
accumulator. The accumulator can be any value that you want. Here’s an
example of a reduce function that finds the largest value in a list:

$ iex
iex> Enum.reduce([1, 2, 3, 1], 0, fn num, accumulator ->

if num > accumulator do
num

else
accumulator

end
end)

3

The return value of each iteration becomes the next iteration’s accumulator. You
can build up any result that you want with this technique. You could build
a new map, modify a custom struct, or keep track of a single value or multiple
values.

Here’s the same code in Ruby:

$ irb
irb(main)> [1, 2, 3, 1].reduce(0) do |accumulator, num|

num > accumulator ? num : accumulator
end

Functionally, these are similar. But the actual syntax between Ruby and
Elixir is quite different.

reduce takes a bit of time to get used to. But once you do, it becomes an
important tool for iterating over data structures.

Comprehensions
Comprehensions6 are a built-in syntax for iterating and reducing data. Com-
prehensions use the for keyword, but it’s nothing like a traditional for-loop.
Comprehensions can iterate a single source of data, combine multiple sources
of data, filter data, and reduce data into any result format.

6. https://hexdocs.pm/elixir/Kernel.SpecialForms.html#for/1

report erratum  •  discuss

Enumerating Data Structures • 45

https://hexdocs.pm/elixir/Kernel.SpecialForms.html#for/1
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Try out these comprehensions in an IEx session:

$ iex
iex> for i <- [1, 2, 3], do: i * 2
[2, 4, 6]

iex> for i <- 1..6,
Integer.mod(i, 2) == 0,
into: %{},
do: {i, "even!"}

%{2 => "even!", 4 => "even!", 6 => "even!"}

The first example is the most basic form of a comprehension and is likely
what you’ll use most of the time. The second shows features that turn com-
prehensions into a powerful tool.

The Integer.mod(i, 2) == 0 clause acts as a filter for the data. Elixir checks the
data against this function and only executes the iteration function if the result
is truthy. In this case, it’s checking if the remainder of i / 2 is 0, which is true
only for even numbers.

The into: option puts the result into the given data structure. In our example,
a map is returned instead of a list. By default, comprehensions are returned
as a list (equivalent to into: []), so you only need to type this out if you want
the result in something other than a list.

The next example extracts data from the Conversation struct that we created
earlier. This is presented as a .exs file, but type it out in an IEx shell.

$ iex -S mix

elixir_examples/convo.exs
alias Examples.Structs.{Conversation, Sms}

from_steve = %Sms{
from: "Steve", to: "Reader", status: "delivered"

}

from_reader = %Sms{
from: "Reader", to: "Steve", status: "received", body: "text"

}

other = %Sms{
from: "+1-222-333-4444", to: "Steve", status: "received"

}

failed_other = Map.put(other, :status, "failed")

convos = [
Conversation.new([from_steve, from_reader, from_steve]),
Conversation.new([other, failed_other]),

]

Chapter 3. Working with Data • 46

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/convo.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


for convo <- convos,
message <- convo.messages,
String.starts_with?(message.from, "+1") or message.from == "Reader",
message.status == "received" do

{message.from, message.body, length(convo.messages)}
end

# => [{"Reader", "text", 3}, {"+1-222-333-4444", nil, 2}]

This example iterates over each convo, iterates over each message, filters to
only include messages that start with "+1" or "Reader", filters to only include
received messages, and then constructs a result based on the message and
conversation. That’s a lot of stuff in a small amount of code!

This code would be more verbose if we wrote it using Enum functions, so
comprehensions provide a clean syntax for data enumeration. But it’s totally
okay to use Enum. Start with the technique you feel most comfortable with.

Wrapping Up
A clean data layer makes it easier to work with, maintain, and extend a soft-
ware application. Elixir provides a whole host of data types, but lists and
maps are among the most important as you model an application’s data.

Lists hold any data in your application. They are easy to work with, but their
performance characteristics mean that you need to be a bit cautious about
how you use them. Keyword lists are a special type of list that are most
commonly used to pass around options in your application.

Maps are the heart of an application’s data layer. They are simply containers
that hold key-value pairs, but their performance and ease of use make them
the most common data type. Structs are a special type of map with additional
features like specified fields, required fields, and default values. At their core,
structs are just maps, so they are easy to work with.

You can create self-contained data structures by putting the functions that
modify or read your data structures into the same module that defines the
struct. Elixir provides several options for how you can iterate or reduce a data
structure. The Enum module and for comprehensions are usually the best
options for working with a complex data structure.

Up next, we’re going to cover one of the most exciting features in the Elixir
language—pattern matching.

report erratum  •  discuss

Wrapping Up • 47

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CHAPTER 4

Pattern Matching Your Way to Success
Pattern matching will change the way that you write code. It’s a simple—yet
extremely powerful—feature that’s built into the foundation of Elixir. Pattern
matching is used in function definitions, variable assignments, and control
flows—it’s a core port of the language’s design. And once you master it, you
won’t want to go back.

In Ruby (and most languages), the core structures for control flow are if
statements. This is easy to use if you want to check whether a value is one
of two candidate values—true or false. It becomes cumbersome if you want
to check whether a value is one of many possible values—based on string
contents, array values, map keys, and so on. Elixir has if statements, but it
also has something more powerful.

In this chapter, you’ll see how Elixir’s case statement completely replaces if
and switch statements. Elixirists use case statements a lot, so it’s good to get
comfortable with it. Luckily, it’s also simple. You just need to know how pat-
tern matching works. The syntax of pattern matching is simple, but its roots
run deep and it takes a little bit of practice to get used to. This chapter builds
up slowly so that you have everything you need to be confident with patterns.

We’ll start by looking at the most basic forms of pattern matching. Then,
you’ll see how case statements are used in control flow. Finally, we’ll combine
everything to see how pattern matching affects function definitions and makes
recursive functions much easier to write.

Pattern matching is a game changer, so let’s dive in!

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Pattern Matching Basics
Elixir doesn’t have a normal assignment operator. In most languages, the =
operator is used for simple left = "value" statements. In Elixir, this operator is
called the match operator, and it initiates pattern matching.

Pattern matching is implemented by the BEAM, so it’s baked into the runtime
of the language. Some optimizations make it efficient even for a large number of
pattern clauses. So, you can use pattern matching without worrying about
a negative performance impact on your application.

In this section, we’ll go over different pattern-matching syntaxes for basic
data types, lists, maps, tuples, and more.

Match Basic Types
Let’s start with the most basic syntax for pattern matching. Open a new IEx
session and type the following:

$ iex
iex> 1 = 1
1

iex> a_number = 1
1

iex> 1 = a_number
1

This first example is seemingly simple, but 1 = 1 is rather unusual. In Ruby, you
can only have variables on the left side of =. Clearly, that’s not the case here.

To evaluate a pattern mentally, execute the right side and then compare the
result with the left side. Assign any variables that are on the left side. If
the patterns don’t match, then you get a MatchError:

iex> 1 = 2
** (MatchError) no match of right hand side value: 2

Variable assignment works just as it does in Ruby. Values are reassigned
when they’re on the left side:

iex> a_number = 1
iex> a_number = 2
iex> a_number
2

Chapter 4. Pattern Matching Your Way to Success • 50

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


It’s important to understand that this doesn’t transform the data of the vari-
able. It simply reassigns the variable to a different value.

One thing that trips up many new Elixir programmers is that you cannot
have function calls inside of the pattern.

iex> 1 + 1 = 2
CompileError: cannot invoke remote function :erlang.+/2 inside a match

iex>
defmodule Local do

def call do
test() = 1

end

defp test do
1

end
end

** (CompileError): cannot find or invoke local test/0 inside match.
Only macros can be invoked in a match and they must be defined
before their invocation. Called as: test()

This is a useful error message. It tells us about our coding error and also lets
us know that some functions (macros) can be invoked in a match clause.

It’s not common to write macro-based match functions yourself, but you’ll
frequently use ones provided by Elixir. Besides lists and maps—which we
will cover next—string concatenation is commonly used. Here’s an example
that uses string concatenation (<>) in a match clause:

iex> "store:" <> data_command = "store:Widget:process"
"store:Widget:process"

iex> data_command
"Widget:process"

The <> appears on the left side of the = symbol, and a variable is used where
a string part would be. Elixir pattern-matches the string and extracts the
relevant text into the data_command variable.

This is a powerful way to split apart text without calling String.split/2. But it’s
not without its limitations. The variable must always be the last part of the
concatenation. You can do this:

iex> "text" <> ":" <> number = "text:7"
iex> number
"7"

report erratum  •  discuss

Pattern Matching Basics • 51

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


But you can’t do this:

iex> "text" <> symbol <> number = "text:7"
** (ArgumentError) the left argument of <> operator inside a match

should always be a literal binary because its size can't be
verified. Got: symbol

Even with this limitation, it’s still extremely useful.

Let’s explore other powerful pattern-matching forms. We’ll look at lists, maps,
and tuples next.

Match Data Structures
Lists, tuples, and maps are fully compatible with pattern matching. You’ll
commonly use this in two ways. The first is to extract data structure compo-
nents into variables so you can operate on them. The second is to check if
an input matches a certain structure, as part of control flow.

This section focuses on extracting the components of data structures. Open
a new IEx session and type the following:

$ iex
iex> [a] = [1]
iex> a
1

iex> {:ok, result} = {:ok, "my result"}
iex> result
"my result"

iex> [a, 2, c] = [1, 2, 3]
iex> {a, c}
{1, 3}

iex> [a] = [1, 2]
** (MatchError) no match of right hand side value: [1, 2]

Lists and tuples can be matched on an exact-position basis. Each position
on the right and left must have compatible patterns. You can even separate
a data structure into multiple variables, like a and c in the previous code. If
your structure doesn’t match the pattern provided, you get a MatchError.

Parts of a list are matched with the | and ++ operators:

iex> [head | tail] = [1, 2, 3, 4]
iex> head
1

iex> tail
[2, 3, 4]

Chapter 4. Pattern Matching Your Way to Success • 52

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


iex> [first, second | rest] = [1, 2, 3, 4]
iex> {first, second}
{1, 2}

iex> [first, second] ++ rest = [1, 2, 3, 4]
iex> {first, second}
{1, 2}

The | operator is used inside of the list brackets to represent the beginning
of the list. One or more elements can be matched at a time.

The ++ operator is used to capture the concatenation of two lists. It’s less
common to see this syntax, though.

One thing you’ll notice from these match clauses is that they behave exactly
like their function versions. This makes the syntax intuitive to use. If you can
use <> or [ | ] in your code, then you can use it in a pattern match clause. For
example:

iex> [1, 2] ++ [3, 4]
[1, 2, 3, 4]

iex> [1, 2] ++ rest = [1, 2, 3]
iex> rest
[3]

In this example, we’re able to use the ++ operator as a function (left ++ right)
and as a match.

Pattern matching with maps is also intuitive, as in the following example:

iex> %{a: a} = %{a: 1, b: 2}
iex> a
1

iex> %{a: 1, b: nil} = %{a: 1, b: 2}
** (MatchError) no match of right hand side value: %{a: 1, b: 2}

iex> %{list: [%{a: ["a"]}, %{b: [b]}]} = %{list: [%{a: ["a"]}, %{b: ["b"]}]}
iex> b
"b"

This example is a bit dense, but it shows you that the complexity of the match
clause isn’t limited as long as it uses valid syntax.

Map matching behaves differently than lists because maps don’t have to
perfectly match. In the first example, the left side doesn’t mention the b key
at all. Maps are loosely matched when the key isn’t specified. This is useful
in practice because you often extract a few keys of a map. Here’s a simple
example to demonstrate this:

report erratum  •  discuss

Pattern Matching Basics • 53

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


iex> [] = [1]
** (MatchError) no match of right hand side value: [1]

iex> %{} = %{a: 1}
%{a: 1}

The left side of the list match is empty, and it doesn’t match the right side
list. The left side of the map match is empty, but it still matches the right
side map. Maps are loosely matched, but lists are strictly matched.

Let’s see how we can reference existing values in a pattern match clause.

Pinned Values
You are not limited to only assigning variables in a pattern match. The pin
operator lets you use the value of an existing variable inside of your pattern
match. This is most useful in test suites, where you want to guarantee that
different values match inside of a data structure.

Prepend the variable with the ̂  symbol to pin its value. Let’s see this in action:

iex> var = :match
iex> ^var = :match
:match

iex> ^var = :no_match
** (MatchError) no match of right hand side value: :no_match

iex> [^var, second] = [:match, :other]
iex> second
:other

Pinned values are strictly enforced, so the result must perfectly match or you’ll
receive an error. This is intuitive for most data types, but be careful with maps:

iex> map = %{a: 1}
iex> ^map = %{a: 1}
%{a: 1}

iex> ^map = %{a: 1, b: 2}
** (MatchError) no match of right hand side value: %{a: 1, b: 2}

The map didn’t exactly equal the pinned value, so a MatchError was thrown.

You might be wondering what happens if you use a variable twice on the left
side of a match. This isn’t considered a pinned value, but it behaves similarly.

iex> {x, x} = {1, 1}
iex> x
1

iex> {x, x} = {1, 2}
** (MatchError) no match of right hand side value: {1, 2}

Chapter 4. Pattern Matching Your Way to Success • 54

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The duplicated variable must be equal in all positions of the match clause.
Otherwise, you’ll get a MatchError.

Now that you have the basics of pattern matching, let’s see how it can be
used to control the flow of a program.

Use Patterns for Control Flow
Pattern matching goes well beyond assigning variables. Control flow—the
branching logic of your application—is performed with pattern matching.
Most programming languages rely on if statements for all (or close to all) of
an application’s control flow. But Elixir offers more choices.

We’ll go over four control flow structures: if, case, with, and cond. They all have
different purposes and situations where you’ll use them, but case statements
are the most commonly used.

Let’s start with if statements.

If Statements
If statements are so common that it would be a bit strange for Elixir to not
have them. Elixir’s if statements work largely like you’re used to. Use if to
quickly check whether a value is truthy or falsy. Here’s an example of a simple
if statement:

$ iex
iex>
if 3 > 5 do

"if body"
else

"else body"
end

"else body"

Sometimes you’ll see if statements on a single line. Elixir allows this single-
line syntax for many different keywords:

$ iex
iex> if 6 > 5, do: "if body", else: "else body"
"if body"

If statements are used to check a single value for truthiness. They can’t be
used to split a value apart or to compare multiple potential values at the same
time. Often, Elixirists will reach for other control flow structures instead of
if statements due to these drawbacks. But that doesn’t mean if statements
are bad! You’ll still frequently see and use if statements.

report erratum  •  discuss

Use Patterns for Control Flow • 55

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


How Elixir Implements If Statements

Elixir implements if statements as a macro that expands to a single
case statement. You can see this in the Elixir Kernel source.1

This means that if statements are a subset of case statements. A
case statement can do everything that an if statement in Elixir
can do, but it can do additional things as well.

Elixir doesn’t provide an else if syntax. You can nest if statements to create
this type of comparison waterfall, but it quickly becomes messy. Instead, case
and cond statements are well-suited for checking multiple potential match
values. Let’s look at case statements now.

Case Statements
A case statement evaluates a given term (any piece of data) against multiple
potential patterns. The first pattern that matches the term executes a given
block of code.

Case statements are the most commonly used and foundational control flow
structure. Use case to check a single term against a number of potential pat-
terns. The first clause that matches will have its body executed and returned.

The next code example demonstrates a case statement with multiple clauses:

$ iex
iex>
case {:ok, "a string"} do

:not_a_match ->
IO.puts "will not run"

{:ok, string} ->
IO.puts(string)
"return value"

end

a string
"return value"

This case statement evaluates each pattern against the given term {:ok, "a
string"}. The first term doesn’t match, so its code is ignored. The second term
does match, so the code is executed and its value is returned.

Case statements are meant to be exhaustive. This means that every possible
outcome should be checked against, or else you’ll receive a CaseClauseError:

1. https://github.com/elixir-lang/elixir/blob/v1.14.1/lib/elixir/lib/kernel.ex#L3720

Chapter 4. Pattern Matching Your Way to Success • 56

report erratum  •  discuss

https://github.com/elixir-lang/elixir/blob/v1.14.1/lib/elixir/lib/kernel.ex#L3720
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


$ iex
iex>
case "fail" do

false -> nil
end

** (CaseClauseError) no case clause matching: "fail"

If you want to include a fallback in your case statement, capture the result
into a variable:

$ iex
iex>
case "passed" do

false -> nil
var -> "It #{var}!"

end

"It passed!"

Use _ instead of a variable name if you want to match any value but you don’t
use the value in your code. This special variable name tells Elixir that you
are intentionally not using the variable, so the compiler won’t emit a warning.

Remember, you can have any number of case clauses in a case statement.
It’s a best practice to keep the number of clauses to a manageable size (up
to three), but you have the ability to use as many as needed.

Case statements are used to match a single term against many patterns.
There’s a different control flow structure that adds pattern matching to a
series of operations. Let’s take a look at with statements next.

With Statements
A common task in programming is to run many functions and expect a suc-
cessful result at each step. The final result of all of the functions together is
what you want, but an error at any step results in the whole operation failing.

Elixir’s with statements capture the successful outcome of a series of opera-
tions, plus there’s a built-in way to handle any errors. Use with statements
when you have several operations—especially if they are prone to failing—that
must all succeed to return a result.

Here’s an example of hypothetical code—that doesn’t use a with statement—
showing a chain of function calls:

{:ok, response} = MyApi.request()
{:ok, json} = Jason.decode(response)
{:ok, status} = Map.fetch!(json, "status")

report erratum  •  discuss

Use Patterns for Control Flow • 57

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


This isn’t necessarily bad, but handling errors becomes cumbersome. We
would check each line against possible error responses and handle an error
appropriately. With statements make this easier for us to implement.

A with statement consists of clause lines, followed by a main body, followed
optionally by else clauses. Each clause line (pattern <- term) is evaluated top to
bottom until all are evaluated, or until one of the lines doesn’t match. Once
all lines are matched, the main body is executed and its value is returned.

If a line doesn’t match and there’s an else body, then the else is evaluated like
a case statement is. It pattern-matches against the error value based on your
provided error handling code. You use this opportunity to gracefully handle
the error—log it out, throw an exception, return an error tuple, and so on. If
there isn’t an else body, then the result that didn’t match is directly returned.

Here’s an example of multiple steps coming together to produce a result. Any
of these steps could fail, and we want to gracefully handle the result:

$ iex
iex>
with {:ok, files} <- File.ls("."),

[first_file | _rest] <- Enum.sort(files),
{:ok, %{ctime: created}} <- File.lstat(first_file) do

IO.puts("The file #{first_file} was created at #{inspect created}")
else

{:error, _} -> {:error, "file system failed"}
[] -> {:error, "no files"}

end

# Your result will vary
The file .DS_Store was created at {{2022, 9, 21}, {20, 43, 29}}

One thing that trips up new Elixirists is using = instead of <- in a with state-
ment. This will compile and even run, but any failure that would normally
have triggered the else clause will instead raise a MatchError. If you acciden-
tally do this, you may be unpleasantly surprised because the with statement
loses its error-handling ability.

What happens if we run this code in a directory that doesn’t have any files
in it? Create a new empty directory and start iex in it:

$ mkdir empty && cd empty
$ iex
iex> # same code from previous example
{:error, "no files"}

Chapter 4. Pattern Matching Your Way to Success • 58

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


In this case, the Enum.sort(files) line returns an empty list [], so the pattern
[first_file | _rest] doesn’t match. The else statement is evaluated and [] matches
this pattern, so the error clause executes and an error tuple is returned.

With statements are useful if your function has many steps that could fail,
such as issuing, parsing, and handling an external HTTP request. If you want
to gracefully handle any errors, use with.

Let’s look at the last control flow structure, cond.

Cond Statements
The last control flow structure at our disposal is the most simple. A cond
statement evaluates a number of clauses until the first truthy value is reached.
The first matching clause will execute the body statement. Elixir doesn’t
provide an else if syntax, but cond statements fill this gap.

The other control flow structures are more commonly seen than cond is, but
it still has its place. Use a cond statement when checking multiple separate
expressions at once. And when your check uses a function (like String.contains?/2),
then you have to use a cond statement because you can’t use functions inside
of pattern matches. Let’s take a look:

$ iex
iex>
cond do

false -> "no"

true ->
IO.puts "Multiple-lines can be used"
"yes"

end

# Output:
Multiple-lines can be used
"yes"

The power of cond is that you can execute functions in the clauses—something
that you cannot do with pattern matching. So you can check any statement:

$ iex
iex> str = "The fox jumped over the dog"
iex>
cond do

String.contains?(str, "z") -> "not this"
2 * 2 == 100 -> "certainly not this"
length(String.split(str, " ")) >= 5 -> "5 words or more"

end

"5 words or more"

report erratum  •  discuss

Use Patterns for Control Flow • 59

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


If none of the clauses evaluate truthy, you’ll receive a CondClauseError. Add true
-> as the final clause for a fallback that guarantees a match.

Let’s switch gears to see how pattern matching affects functions.

Level Up Your Functions
Pattern matching takes function overloading to a new level. The most basic
type of function overloading lets you define the same function name with a
different number of arguments, but Elixir supports more than this.

We’ll go over function overloading, how it’s implemented, and how it can be
used to create seamless recursive functions. But first, we need to cover a
helpful addition to pattern matching called guards.

Guards
While pattern matching is really powerful, it can’t do certain things. Pattern
matching operates on the structure of a value, but sometimes we want to go
beyond that. For example, we may want to know whether a number is within
a certain range, whether a value is in a predefined list, or what the type of a
value is. Guards let us do all of these things.

Guards are statements that use functions or operators to add additional
checks to a pattern match. They can be used anywhere that pattern matching
is used: case and with statements, comprehensions, and function definitions.
Plus, you can write your own guards—as long as they follow limitations
enforced by Elixir’s compiler. But that’s not common, so we won’t cover it in
this book.

Let’s start with a simple example. We’ll use a guard to check whether an
integer is within a particular range. The guards appear after when in each line:

$ iex
iex> number = 7
case number do

n when n < 5 -> :low
n when n >= 5 and n < 10 -> :medium
n when is_number(n) -> :high

end

:medium

Try this example out with different values for number. Use 0, 10, and "string".
Let’s consider what happens if you put "string" into this case statement. We
get a CaseClauseError, despite it matching n in every single clause. The guards
that appear after when cause the value to match nothing.

Chapter 4. Pattern Matching Your Way to Success • 60

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Certain guards start with is_, such as is_number, is_bitstring, is_map, is_list, and so on.
These are used as a form of type checking. They only are checked at runtime,
so it’s not going to offer compile errors to you, but it’s incredibly useful to
guarantee that your functions will only operate on certain types of data.

The functions that can be used with guards are limited. This is for your own
good though—guards are guaranteed to not mutate data and their performance
can be optimized. The Elixir documentation2 has a great breakdown of avail-
able guards, limitations, and how to write your own guards.

Let’s look at function overloading next.

Overloading with Pattern Matching
A function in Elixir can be defined with multiple function heads—each function
head is a definition of that function for a specific pattern. When a function
is called, the first function that matches the provided arguments is used. So,
you can define my_func/2 multiple times with different patterns.

Let’s write a to_bool/1 function that works with multiple function heads. In your
examples project from the previous chapter, create lib/examples/patterns/boolean.ex:

elixir_examples/lib/examples/patterns/boolean.ex
defmodule Examples.Patterns.Boolean doLine 1

@false_s ["", "undefined", "false", "nil", "null", "-0", "0", "no", "off"]-

-

def to_bool(bool) when is_boolean(bool), do: bool-

5

def to_bool(0), do: false-

-

def to_bool(nil), do: false-

-

def to_bool(str) when is_bitstring(str) and str in @false_s, do: false10

-

def to_bool(str) when is_bitstring(str) do-

String.downcase(str) not in @false_s-

end-

15

def to_bool(_), do: true-

end-

Run test values through it to see it working:

$ iex -S mix
iex> import Examples.Patterns.Boolean

iex> to_bool(0) # false
iex> to_bool("0") # false

2. https://hexdocs.pm/elixir/guards.html

report erratum  •  discuss

Level Up Your Functions • 61

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/patterns/boolean.ex
https://hexdocs.pm/elixir/guards.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


iex> to_bool("undefined") # false
iex> to_bool("UNDEFINED") # false
iex> to_bool(false) # false

iex> to_bool(true) # true
iex> to_bool("A string") # true
iex> to_bool(1) # true

Even though we’ve defined to_bool/1 over five times, everything still works as
expected. A mix of pattern matching and guards pulls this off for us.

An example of guard limitations is seen on line 10. We would ideally check
the input value in a case-insensitive way, but there’s no way to do this in the
guard. A solution to this is seen on line 12. The input is guarded as a string,
and then the function body performs the downcasing.

The final trick is seen on line 16. This function accepts any value, so to_bool/1
is guaranteed to always have a matching function. If you remove this line,
you’ll see a FunctionClauseError for inputs like to_bool(1).

The Secret to Function Overloading
There’s no magic in Elixir’s function overloading—it’s entirely based on things
you already know! And once you know how it works, you’ll better understand
why functions are evaluated from top to bottom.

A function with multiple heads gets converted to a single function consisting
of a case statement. A more basic to_bool/1 function might look like this:

elixir_examples/lib/examples/patterns/boolean_case.ex
defmodule Examples.Patterns.BooleanCase do

def to_bool(value) do
case value do
bool when is_boolean(bool) -> bool
0 -> false
nil -> false
str when str in ["undefined", "false"] -> false
_ -> true

end
end

end

This is all handled by the Elixir compiler, and it completely explains the top-
to-bottom definition order. If we define a function that accepts any value at
the top of our file, then it will be first in the case statement and will always
be triggered. This also shows that guards work in case statements because
they’re converted to case statements by Elixir’s compiler.

Chapter 4. Pattern Matching Your Way to Success • 62

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/patterns/boolean_case.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Recursion with Pattern Matching
Recursion is the most primitive form of iteration and reduction in Elixir. A
recursive function is one that calls itself. If a function can call itself, it needs
some idea of when to stop. This is called the base case, and every recursive
function needs one, or it will execute infinitely.

Some problems are most easy to solve when thought about recursively.
Because of this, you’ll often see recursion appear in libraries or even in your
own code. It’s a little scary at first, but you’ll appreciate its value as you get
comfortable with it.

Pattern matching goes hand in hand with recursion because you can build
the base case using pattern matching. The most practical example of this is
list iteration. Create lib/examples/patterns/recursion.ex with the following code:

elixir_examples/lib/examples/patterns/recursion.ex
defmodule Examples.Patterns.Recursion doLine 1

def biggest_number(list) do-

biggest_number(list, nil)-

end-

5

defp biggest_number([], max), do: max-

-

defp biggest_number([head | tail], current_max) do-

next_max = max(head, current_max || head)-

biggest_number(tail, next_max)10

end-

end-

$ iex -S mix
iex> Examples.Patterns.Recursion.biggest_number([2, 1, 5, 1])
5

iex> Examples.Patterns.Recursion.biggest_number([])
nil

Line 2 is a public function definition that accepts a single argument. This
allows biggest_number/1 to be called without worrying about the accumulator
(current_max) being set.

Line 6 is the base case for when the input list is empty. This function relies
on pattern matching to execute only when the list is empty. It returns the
accumulated biggest_number, which gets returned back to the function caller.

Line 8 is the main body of the recursive function. The argument list uses
pattern matching to grab the first element of the input list (head) and the rest
of the input list (tail). The function then calculates the maximum value and
recursively invokes itself.

report erratum  •  discuss

Level Up Your Functions • 63

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/patterns/recursion.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


When you write a recursive function, you’re always moving forward in the
input. In this case, our list elements are iterated one by one, and the reduced
value at the end is the biggest value in the list.

One great thing about Elixir is that you don’t need to worry about having a
recursive function that runs too long. Elixir is tail-call optimized, which means
that it doesn’t create a new stack entry for the final function call inside of a
function. So you won’t ever see a StackOverflow exception. Of course, you still
need your base case or your function will run forever.

Wrapping Up
Pattern matching is one of the standout features of Elixir. You’ll frequently
use pattern matching, so it’s important to get comfortable with it. The most
basic form of pattern matching is the match operator =. Use the match oper-
ator to break values apart or for simple variable assignment. Pattern matching
works with any term in Elixir, so you can use it for lists, maps, or any other
data type.

Pattern matching is crucial in most of Elixir’s control flow structures. case is
the most common and foundational control flow structure. Use it to check a
term against a number of candidate patterns. Use with to capture the successful
outcome of a series of operations or to handle an error if something goes
wrong. Finally, use cond when you need to check a statement’s truthiness
without the limitations of pattern matching.

Functions seem straightforward, but pattern matching supercharges them.
You can overload a function not only with the number of arguments but also
with pattern matching. Define the same function multiple times with different
patterns in order to build recursive functions or functions that have differ-
ent behavior for different input arguments.

Along with pattern matching, parallelism is often touted as Elixir’s strength.
The next chapter is all about processes, parallelism, and GenServers.

Chapter 4. Pattern Matching Your Way to Success • 64

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CHAPTER 5

GenServers: Build Cities, Not Skyscrapers
Elixir has one of the best concurrency models of any programming language
today. In fact, there’s a good chance that you’re reading this book because
you heard big claims about Elixir’s ability to scale automatically across all
CPU cores. The hype is real, and you’re going to understand how it works by
the end of this chapter.

Parallelism and concurrency have always been hot topics, but they are espe-
cially important when we’re designing high-performance systems that run at
low cost. A system with a high degree of parallelism is able to handle more
simultaneous requests—from a web browser, an async job system, and so
on—on fewer machines.

Ruby and Elixir have different concurrency models. In fact, Elixir has a con-
currency model that’s unlike pretty much any other mainstream language.
We’ll be going over those differences in this chapter, in addition to defining
foundational terms that are important for you to understand.

We’ll look at exactly how BEAM processes work and what makes BEAM pro-
cesses so special. You’ll spawn basic processes and then evolve them into
GenServer processes. You’ll learn that GenServers are actually not magic but
are simply a well-built abstraction on top of the BEAM’s process model.
Finally, we’ll bring it all together by thinking about how the BEAM’s process
model lets us build entirely different types of systems than we would build
in Ruby or other languages.

But first, there’s a little disclaimer that’s necessary before you dive into the
chapter.

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


You Don’t Need GenServer

This chapter is very important, but it’s going to teach you something that you won’t
use immediately. However, you’ll be better prepared to debug your application, run
your application in production, and test your application when you understand the
material in this chapter.

The reason why you won’t use this material immediately is because good Elixir libraries
(certainly the ones presented later in this book) use best practices to ensure that they
are stable and give you the best possible starting point. Phoenix, Ecto, and Oban will
ensure that your application is scalable and error-resilient.

These libraries are designed to not only be appropriately parallel but to also handle
errors. They use OTP best practices to help prevent your application from getting in
a bad state. You don’t know these best practices yet, so your system will be better if
you use the libraries.

You’ll eventually need GenServers, and you definitely should understand how the
process model works from day one. But you may not need to write code that uses
them for some time. Instead, lean on the libraries that Elixir experts have written to
achieve what you need. At some point, you’ll need to write your own GenServer, and
you’ll be ready to do so.

Let’s start this chapter by comparing parallelism and concurrency.

Parallelism vs. Concurrency
It takes a bit of time to fully grasp parallel computing. It’s okay if you don’t
pick it up all at once. But, to give you the best shot, let’s start at the ground
floor. We’ll look at what concurrency and parallelism are and then go into
how Ruby and Elixir operate in these areas.

Concurrency Is Not Parallelism
The terms parallelism and concurrency are the source of a lot of confusion.
While they seem interchangeable, they refer to distinctly different, but related,
topics.

Concurrency is the ability to coordinate multiple tasks at the same time.
Imagine that there’s a single CPU core on a server. Concurrency allows that
single CPU core to weave together and execute tasks that are necessary to
serve requests. From an outsider’s perspective, it would appear that requests
are handled at the same time.

Chapter 5. GenServers: Build Cities, Not Skyscrapers • 66

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


But that’s not necessarily true. Concurrent tasks are coordinated in such a
way that they overlap in their execution, but their execution may or may not
not be done at the same point in time. We need parallelism to execute different
tasks at the same point in time.

Parallelism is the ability to execute multiple tasks at the same time. Imagine
that there are multiple CPU cores on a server. Parallelism allows those CPU
cores to work at the same time to execute different tasks simultaneously.
Multiple CPU cores are required for this to work because a single CPU core
can only run one set of instructions at a time.

Parallelism provides advantages when it comes to system throughput and
overall performance. A parallel system will be able to fully use its compute
resources to serve requests. You often require less CPU to serve the same
requests when adding parallelism to an application.

Concurrency is a property of programming languages, but the actual imple-
mentation of that language determines how parallelism is achieved. It’s pos-
sible to have a concurrent language that isn’t parallel, for example. In fact,
you’ll learn about this next.

Let’s go into how Ruby’s concurrency works.

Ruby’s Concurrency Model
Ruby uses threads to achieve concurrency. In Ruby, Thread.new runs a block
of code concurrently with other code in that process. Concurrent code can
finish in any order. Here’s a simple example that uses Thread.new to print out
characters. If you run this code multiple times, you’ll see that the print order
changes.

irb> Thread.new{ puts "a" }; Thread.new{ puts "b" }
a
b

irb> Thread.new{ puts "a" }; Thread.new{ puts "b" }
b
a

Ruby threads share memory. This means that you can change a variable in
one thread, and reading that variable in another thread will reflect the changed
value. This isn’t a bad thing by itself, but it leads to a whole class of program-
ming bugs called race conditions.

report erratum  •  discuss

Parallelism vs. Concurrency • 67

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


To solve these race conditions, you often need to reach for Thread::Mutex1 to
coordinate memory access between different threads.

Shared memory is especially risky in multi-tenant SaaS environments where
a bug could lead to data being accessed by the wrong users in an application.

Concurrency in Ruby becomes very complex as a system scales, so many
Ruby developers don’t use threads. Instead, it’s more common to run every-
thing top-to-bottom in a single thread. Relatively new changes are happening
in Ruby that add a new option for true parallelism. We’ll look at that new
parallelism option later in this section.

Parallelism in Ruby
Different Ruby implementations are available today. The most common, by
far, is MRI Ruby. This section will focus on that implementation due to its
popularity.

MRI Ruby doesn’t have parallelism within a single process. There’s a Global
Virtual Machine Lock (GVL) that prevents multiple threads from executing in
a process at the same time. This is because the Ruby Virtual Machine isn’t
internally thread-safe, so you really don’t want multiple things running in
parallel.

The way around this in Ruby has traditionally been to fork multiple Ruby
processes. Popular libraries like Puma and Sidekiq take this approach to
parallelism (in addition to multi-threading for increased concurrency). Each
forked process has its own GVL, so they run fully in parallel with each other.
But memory requirements become multiplicative for each process, so machines
need to have more RAM to do this in practice.

MRI Ruby is the most popular Ruby implementation. There are other imple-
mentations like JRuby and TruffleRuby that are implemented on top of virtual
machines that provide parallel execution. There can be compatibility issues
and other tradeoffs with these implementations though, which is why their
popularity hasn’t increased.

Ruby Ractors
Ruby Ractor2 is a new actor-model abstraction that provides thread-safe
concurrency and parallel execution in Ruby. This is very exciting! It’s fairly
new, so we haven’t seen how it will change Ruby, but it has a lot of promise.

1. https://docs.ruby-lang.org/en/3.2/Thread/Mutex.html
2. https://ruby-doc.org/core-3.0.0/Ractor.html

Chapter 5. GenServers: Build Cities, Not Skyscrapers • 68

report erratum  •  discuss

https://docs.ruby-lang.org/en/3.2/Thread/Mutex.html
https://ruby-doc.org/core-3.0.0/Ractor.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Ractors don’t share memory, so they can only access memory that they own.
Ractors communicate with each other by sending messages, which are then
received and handled.

This is actually similar to how Elixir’s concurrency model works. Let’s explore
that next.

Elixir’s Concurrency Model
Elixir uses processes to achieve concurrency. Don’t be fooled by the name
because Elixir’s processes are not operating system processes. Instead, these
processes are lightweight virtual processes implemented by the BEAM. The
BEAM’s process implementation forms the foundation for all code execution.

Processes don’t share memory with each other—they can only access their
own memory. (We’ll cover some exceptions to this later in this chapter.) Pro-
cesses send and receive messages between themselves to coordinate work.
Messages are stored in a process mailbox. This lines up closely with how
Ractors in Ruby work, which makes sense because both the BEAM and Ractors
are actor-based.

Actors are the foundation of concurrency in actor-based programming. Each
actor receives messages (from other actors) and then processes each message.
Actors can respond to messages, send messages to other actors, or execute
code locally. This lines up exactly with how Elixir works.

In Elixir, a process executes work by taking a message out of its mailbox—it
will always process messages in the order that it receives them. The message
is then executed by the process, and this process repeats. Processes can
execute infinitely—always waiting for a new message—or they can be set to
only handle a fixed number of messages.

A process can only ever execute one message at a time. This means that
there’s no concurrency inside of a process. This is an often overlooked benefit
of Elixir’s concurrency model. In Elixir, you’re in complete control over whether
code runs in parallel or not.

Parallelism in Elixir
If there’s no concurrency within a process, you may be wondering how the
BEAM executes code in parallel. The magic comes from the ability to have
tens of thousands of processes (or more!) executing concurrently with each
other.

report erratum  •  discuss

Parallelism vs. Concurrency • 69

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The BEAM uses schedulers to coordinate and execute functions on a CPU.
By default, one scheduler is available for every logical CPU processor. So a
quad-core hyper-threaded CPU will have eight schedulers. Each scheduler
has a run queue that holds information about which processes are requesting
execution.

Schedulers execute functions until either the process is done or a certain
amount of work (called reductions) has occurred. If this happens, that process
is kicked off of the scheduler and placed at the back of a run queue. This
means that an infinite loop in Elixir will run forever, but it will only hold up
a CPU for a fixed number of reductions at a time. This property is great for
building scalable systems because a high-CPU request won’t dramatically
affect other requests on that server.

This explains how Elixir scales across your CPU without any work from you.
By correctly using processes, you automatically get CPU scalability. And all
of the major libraries use processes in the right way, so following the best
practices in this book will set you up for success!

Let’s take this knowledge and put it into action by implementing several dif-
ferent processes in Elixir.

Explore Elixir Processes
Processes are the foundation of concurrency in Elixir. They are small, easy
to spawn, and you can run as many of them as you have memory for—in
production, tens to hundreds of thousands would be normal. You don’t need
to know much about the BEAM’s process architecture to use processes, but
the details highlight how powerful they are.

In addition to being scalable, processes form the foundation of durable Elixir
applications. Processes are able to crash without taking down the rest of the
system. This durability is one of the main traits of the BEAM.

We’re going to cover the basics of processes in this section, but we’ll also
cover some of the interesting details of the process architecture. You’ll learn
how to spawn a process and pass messages to it, and you’ll make an
infinitely running process that responds to incoming messages. We’ll also go
over error isolation, memory isolation, and garbage collection.

Spawn a Process
Elixir makes it easy to start a new process. The spawn/1 function takes a
function and executes it inside of a new process. Let’s do that in IEx:

Chapter 5. GenServers: Build Cities, Not Skyscrapers • 70

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


iex> self()
#PID<0.109.0>

iex> pid = spawn(fn -> IO.puts("Hello from #{inspect self()}") end)
Hello from #PID<0.112.0>
#PID<0.112.0>

iex> Process.alive?(pid)
false

We pass a function into spawn/1 that prints out some information about the
executing process. Your exact numbers will be different than mine, but notice
that the spawned function prints out as 0.112.0 and the originating process is
0.109.0. This is called a process ID (PID) and is one of the core data types in
Elixir. The difference in PIDs proves that the spawned function is actually
executing inside of a different process.

This spawned process would be useful if we wanted to fire off some asyn-
chronous code, but it’s not really that useful right now. We need to be able
to send messages into the process and receive responses from it in order to
turn it into a useful tool. The receive function lets us do just that. And, to send
a message to the process, we’ll use the send function.

Type this code into your IEx session:

iex> pid = spawn(fn ->
receive do

:hello -> IO.puts("Hello World")
{:hello, name} -> IO.puts("Hello #{name}")

end
end)

iex> Process.alive?(pid)
true

iex> send(pid, :hello)
Hello World
:hello

iex> Process.alive?(pid)
false

We were able to process the message :hello and see that the correct output
was printed. If you try the example again with send(pid, {:hello, "Your Name"}), you’ll
see that it responds with a different message. The receive function uses pattern
matching to determine which code to run, just like you’re already familiar
with from Chapter 4, Pattern Matching Your Way to Success, on page 49.

We aren’t going to do the exercise here, but if you wanted to receive a response
from the spawned server, you would use send to respond back to the originating

report erratum  •  discuss

Explore Elixir Processes • 71

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


process. This requires you to pass the PID of the current process as part of
the message and then to receive a response. That’s pretty cumbersome, but
by the end of this chapter, you’ll see how GenServer makes this easy.

Our process is no longer alive after a single message—it terminated after its
code finished executing. Let’s make it process messages forever.

Process Messages Forever
Recursion is very useful to create infinite loops. Usually, an infinite loop would
be a bad thing, but it’s totally fine when used in a controlled way.

Create lib/examples/spawn/infinite.ex and add the following code:

elixir_examples/lib/examples/spawn/infinite.ex
defmodule Examples.Spawn.Infinite do

def start do
spawn(& loop/0)

end

defp loop do
receive do
{:add, a, b} ->

IO.puts(a + b)
loop()➤

:memory ->
{:memory, bytes} = Process.info(self(), :memory)
IO.puts("I am using #{bytes} bytes")
loop()➤

:crash ->
raise "I crashed"

:bye ->
IO.puts("Goodbye")

end
end

end

The start/0 function uses spawn/1 to kick off our looped process. The loop function
is simple—it’s just a receive block with a variety of messages handled. For all
messages, except :bye, the loop/0 function is called as the last thing the function
does. This creates a recursive loop that will handle messages forever. Let’s
try it out:

$ iex -S mix
iex> pid = Examples.Spawn.Infinite.start()

iex> send(pid, :memory)
I am using 2608 bytes

Chapter 5. GenServers: Build Cities, Not Skyscrapers • 72

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/spawn/infinite.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


iex> send(pid, {:add, 1, 2})
3

iex> send(pid, {:add, 50, 50})
100

You could extend this exercise by turning loop/0 into loop/1 and keeping track
of state for each message. If you did this, you would have a server that changes
state based on messages it has received from the outside world. This is a
pretty small change but is still pretty cumbersome. Don’t worry, GenServer
will make this easy for us too.

Before we get into GenServer, let’s look at some of the interesting details of
how processes are implemented. These may seem unimportant at first, but
they drastically shape the runtime characteristics of an Elixir application.

Error Isolation in Processes
There’s an argument to be made that the genius of the BEAM is not its parallel
execution ability but, rather, its ability to isolate errors. Let’s put that into
perspective: if two requests come into a web server at the same time, and one
of the requests crashes, then we wouldn’t expect the other request to also
crash.

Let’s spawn two processes and then crash one of them to create a basic
demonstration:

$ iex -S mix
iex> p1 = Examples.Spawn.Infinite.start()
#PID<0.161.0>

iex> p2 = Examples.Spawn.Infinite.start()
#PID<0.163.0>

iex> send(p1, :crash)
[error] Process #PID<0.161.0> raised an exception
** (RuntimeError) I crashed

iex> [Process.alive?(p1), Process.alive?(p2)]
[false, true]

This is a simple example, but it serves to demonstrate that we didn’t have to
do anything to isolate this error. In fact, it wouldn’t be possible to crash one
of these processes from the other. Of course, an event like a database failure
is going to cause errors all over an application, but that would be due to an
external factor rather than an internal one.

It’s easy to take error isolation for granted. Frameworks in languages that
don’t provide error isolation use clever programming to make it feel like there’s

report erratum  •  discuss

Explore Elixir Processes • 73

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


isolation, but a guarantee from the virtual machine runtime is another level
of confidence.

Process Memory Architecture
Each process in Elixir has its own memory space. This consists of a heap and
a stack that grow toward each other. Eventually, if they are unable to grow,
the BEAM will allocate more memory to the process.

Processes start off with a fairly small amount of memory. On my computer,
I see 2608 bytes taken up for a brand new process:

$ iex -S mix
iex> pid = Examples.Spawn.Infinite.start()
iex> Process.info(pid, :memory)
{:memory, 2608}

Process.info(pid) is a useful source of information about any process that’s actively
running. It tells you things like heap size, stack size, reductions (which roughly
equate to CPU usage), and the number of unprocessed messages. Here, we used
Process.info/2 to return a focused version of the available data.

Data in Elixir is copied between processes. So, if you send a message to a
process, that memory will be duplicated and then passed as a message. This
has benefits for small bits of data, but it would be a bit of a waste to copy
every single message between processes. Elixir has a little trick up its sleeve
to optimize copies.

Elixir uses a binary heap3 to globally store large (> 64 bytes) binary data. This
binary heap is shared between processes and uses reference counting to
determine when the memory can be cleaned up. Because the BEAM uses
immutable data, you don’t need to worry about this causing bugs in your
application. The memory here is safe to use and can be referenced by multiple
processes without fear.

The small memory size of processes is part of what makes them easy to spawn
and destroy. But sometimes you’ll find yourself debugging a problem where
too much memory is being used. So, let’s cover how garbage collection works.

Garbage Collection
Garbage collection isn’t fun, right? Actually, the BEAM’s garbage collector is
rather interesting. I wrote about this in fairly deep detail in Real-Time Phoenix
[Bus20], so we’ll cover much less in this book.

3. https://www.erlang.org/doc/apps/erts/garbagecollection#binary-heap

Chapter 5. GenServers: Build Cities, Not Skyscrapers • 74

report erratum  •  discuss

https://www.erlang.org/doc/apps/erts/garbagecollection#binary-heap
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Because each process in Elixir has its own memory heap and stack, each
process performs its own garbage collection. The binary heap that was men-
tioned in the previous section is globally shared, so there’s a global collection
process to handle it. However, it’s relatively lightweight because the binary
heap uses reference-counted binaries.

Each garbage collection process runs fast because it deals with less memory,
and it happens on a cycle according to how much that process is churning
data. If the process is frequently processing messages or is running out of
memory, it will experience a collection cycle more often than a process that
isn’t doing much.

But you have to be cautious of a hidden danger. Sometimes long-lived pro-
cesses can take up more memory than they need, but they won’t undergo a
garbage collection cycle because they aren’t active enough to kick one off. In
this situation, a process can take up more memory than it needs for a long
period of time. Let’s create an artificial example:

$ iex -S mix
iex> pid = Examples.Spawn.Infinite.start()
iex> Enum.each(1..1000, & send(pid, {:add, &1, &1}))

iex> send(pid, :memory)
I am using 62816 bytes

Your numbers may vary here, but you should expect to see that this number
is higher than the 2.6 KB that it started out as. This doesn’t immediately
make sense because our process has no state, and it has processed all of its
messages. So, why is it taking up thirty times more memory?

The issue here is that the process mailbox lives on the heap of the process.
As we inundated it with messages, it had to allocate more memory to hold
those messages. The garbage collection process only occurs based on running
out of memory or processing a given number of reductions—neither of which
is occurring.

We can manually trigger garbage collection with :erlang.garbage_collect(pid). Once
you do this and query the process memory, you’ll see that it’s back to its
starting size.

iex> :erlang.garbage_collect(pid)
iex> send(pid, :memory)
I am using 2608 bytes

The number of long-lived processes is usually small enough that this doesn’t
matter. But, if it becomes a problem, then look at the ERL_FULLSWEEP_AFTER
system variable and set it to a number like 20. This causes garbage collection

report erratum  •  discuss

Explore Elixir Processes • 75

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


to run more frequently—at the cost of a bit more CPU. This flag is enabled
on every single production system I’ve worked on, and it has never caused
problems for me—mainly because frequent garbage collection is fast and
handled on a per-process basis.

There’s another option to prevent memory bloat. You can put individual pro-
cesses into a hibernation state. A hibernating process has its memory reduced
as much as possible. But when the process receives a message, it will incur
a cost to exit the hibernation state and handle the message. GenServer4 has a
hibernate_after option that will automatically enter hibernation when the
GenServer is idle.

Both techniques are important to know about, but you likely won’t need to
use them for some time. Frameworks like Phoenix use hibernation with sane
defaults so that you often don’t need to think about it.

Now that you have the basics of processes down, let’s take a look at how Elixir
makes them easy with GenServer.

Go Parallel with GenServers
Processes are the lowest-level concurrency primitives in Elixir, but it’s pretty
rare to use them directly. Instead, you’ll use libraries that let you build pro-
cesses without worrying about the details. GenServer stands for “generic
server,” and it’s the most common process library.

GenServer is part of OTP, so it’s actually written in Erlang. Elixir provides
the GenServer module to seamlessly bring this Erlang library into Elixir. It’s a
very important library, so it has been integrated into the language very well.

GenServer solves a few problems that you have already seen:

State Management
A GenServer stores state and makes it available to all message handlers.
This state can be modified in response to a message.

Seamless Messaging APIs
GenServer provides functions to synchronously call into the process or to
asynchronously cast into the process. These functions are built using send
and receive. Plus, they handle cumbersome details like timeout, respons-
es, and so on.

4. https://hexdocs.pm/elixir/GenServer.html

Chapter 5. GenServers: Build Cities, Not Skyscrapers • 76

report erratum  •  discuss

https://hexdocs.pm/elixir/GenServer.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Prebuilt Best Practices
When you use processes directly, small problems pop up that can lead
to errors. For example, you could send a process an incorrect message
that it doesn’t receive. If you did this, the process mailbox would slowly fill
up and exhaust your system memory. GenServer builds in best practices
to ensure things like this don’t happen.

Now, it’s time to create a GenServer. It’s actually easier than creating a process!

Write Your First GenServer
We’re going to focus on four different functions in this example: init, handle_cast,
handle_call, and handle_info. These are special function names that GenServer
uses to call your code properly.

Create lib/examples/gen_server/simple_server.ex and add the following code:

elixir_examples/lib/examples/gen_server/simple_server.ex
defmodule Examples.GenServer.SimpleServer doLine 1

use GenServer-

require Logger-

-

def start_link(init_args, name: name) do5

GenServer.start_link(__MODULE__, init_args, name: name)-

end-

-

def init(speaker: speaker) do-

{:ok, %{speaker: speaker, last_result: nil}}10

end-

-

def handle_cast(-

:announce,-

state = %{speaker: speaker, last_result: result}15

) do-

Logger.info("#{speaker}: The last result I computed was #{result}")-

{:noreply, state}-

end-

20

def handle_call({:add, a, b}, _from, state) do-

result = a + b-

{:reply, result, %{state | last_result: result}}-

end-

end25

Spin up an IEx instance to test this out:

$ iex -S mix
iex> alias Examples.GenServer.SimpleServer
iex> {:ok, pid} = SimpleServer.start_link([speaker: "Genny"], name: nil)
{:ok, #PID<0.149.0>}

report erratum  •  discuss

Go Parallel with GenServers • 77

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/gen_server/simple_server.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


iex> GenServer.call(pid, {:add, 5, 10})
15

iex> GenServer.cast(pid, :announce)
:ok
[info] Genny: The last result I computed was 15

Let’s break each function down to understand what is happening. The start_link/2
function on line 5 starts the GenServer and kicks off initialization. start_link is
able to pass initialization arguments into the process. We’re using this to
accept a speaker parameter that’s placed in the GenServer state.

The init/1 function on line 9 receives the provided arguments and starts with
a given state. Maps or structs are great for state because they are easy to
update and access in the message handlers.

GenServer.cast/2 sends a message to the process. The handle_cast/2 callback on
line 13 is then invoked with the message contents and the state of the process.
Cast messages are asynchronous, which means that the calling process doesn’t
receive a reply and won’t wait for the message to be processed.

GenServer.call/2 sends a message to the process. The handle_call/3 callback on line
21 is invoked with the message contents, some info about the calling process,
and the state of the process. Call messages are synchronous and will wait for
a default 5 seconds before raising an error. Call messages receive a response,
which allows you to extract information from the GenServer.

The init, handle_cast, and handle_call functions are all executed inside of the
GenServer process. start_link, GenServer.cast, and GenServer.call are all performed
inside of the calling process.

Expand Our GenServer
It’s rare to use GenServer functions directly outside of a GenServer-implemented
module. It’s a best practice to create wrapper functions that invoke them for
you. Put these helper functions above start_link/2:

def announce(server \\ __MODULE__) do
GenServer.cast(server, :announce)

end

def add(a, b, server \\ __MODULE__) do
GenServer.call(server, {:add, a, b})

end

This code does the exact same thing as calling the GenServer functions
manually, but callers no longer need to concern themselves with the internals
of GenServer.

Chapter 5. GenServers: Build Cities, Not Skyscrapers • 78

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


There’s one final GenServer callback that’s important to know about. Modify
the existing init/1 function:

def init(speaker: speaker) do
:timer.send_interval(5000, :announce)
{:ok, %{speaker: speaker, last_result: nil}}

end

And add a corresponding handle_info/2 at the bottom of the file:

def handle_info(
:announce,
state = %{speaker: speaker, last_result: result}

) do
Logger.info("#{speaker}: The last result I computed was #{result}")
{:noreply, state}

end

handle_info/2 looks similar to handle_cast/2, but it’s used for non-GenServer mes-
sages. For example, if you send a message to this process, then it’s handled
by the handle_info/2 callback. We use the :timer.interval/2 function to automatically
send a message to the process every five seconds.

When you start this process, you’ll see a message every five seconds:

$ iex -S mix
iex> alias Examples.GenServer.SimpleServer
iex> {:ok, pid} = SimpleServer.start_link([speaker: "Genny"], name: nil)
{:ok, #PID<0.149.0>}

iex> SimpleServer.add(5, 10, pid)
15
[info] Genny: The last result I computed was 15

iex(5)> SimpleServer.add(50, 70, pid)
120
[info] Genny: The last result I computed was 120
[info] Genny: The last result I computed was 120
...continues forever

The GenServer process will log out its last result forever because the pro-
cess runs until it’s explicitly exited. We won’t get into the details of all of
the ways that a process can exit, but you do have full control of how a
process terminates.

Is a GenServer an Object?
A common reaction when seeing GenServer is to think “oh, that’s an object!”
Objects and GenServers have a lot in common. They both hold state, the
modifications to the state are colocated in code, they receive messages (at

report erratum  •  discuss

Go Parallel with GenServers • 79

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


least in Ruby), and they can respond to the messages they receive. But
GenServers are not objects, and you should not treat them like objects.

It’s important to consider that GenServers are a concurrency mechanism and
objects are a programming development primitive. Their runtime performance
characteristics are also completely different. You can create and destroy many
more objects per second in Ruby than you could processes in Elixir—simply
because Ruby objects are lighter weight and are designed to be created and
destroyed rapidly.

Another aspect that GenServers handle that objects don’t is time. Every pro-
gram that we write runs over a period of time. Often, we want to do things
based on a certain frequency. An object in Ruby lacks the ability to easily
deal with time. We would need to build that ourselves and deal with all of the
challenges that would be introduced. However, we can easily create a
GenServer that changes over time by sending messages in an interval.

This time aspect lets you think of GenServers as a living thing. They can change
over time (in the constraints that are coded for them). They emit messages to
other GenServers in the system. They can be entirely contained or very
sociable. They can exist for the duration of a web request, a WebSocket con-
nection, or even exist as long as the system is up. Thinking of them in this
way lets you build things that would be considered complex but are intuitive
to develop and reason about.

Now that you know how to create a GenServer, let’s step back and understand
some risks that come with them.

What About Supervisors?

Supervisors are an important type of process in BEAM applications.
A Supervisor keeps track of child processes and can strategically
restart them if one dies. You’ll see a type of Supervisor later in
this book when we discuss the Application module.

This book doesn’t cover Supervisors because you don’t need to
know much about them this early in your Elixir journey. As you
learn Elixir and get more comfortable, you’ll likely end up using
them. When that happens, read the Supervisor documentation.5

5. https://hexdocs.pm/elixir/1.12/Supervisor.html

Chapter 5. GenServers: Build Cities, Not Skyscrapers • 80

report erratum  •  discuss

https://hexdocs.pm/elixir/1.12/Supervisor.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Be Parallel, Be Cautious
With great power comes great responsibility. Elixir is a powerhouse when it
comes to running parallel processes. You can literally spin up thousands of
concurrent requests that are active at the same time. But this can cause
problems.

Programs don’t exist in a vacuum. They interact with other programs like
databases or external APIs. A program can only handle so many parallel
requests before it becomes overwhelmed. You could easily exhaust a database
connection pool or downstream API service by sending too many simultaneous
requests.

It’s best to always have control over the amount of parallelism in your system.
Libraries that you’ll see later in this book, like Ecto and Oban, all include a
limited number of parallel processes so that you’re less likely to overwhelm
your system. You can raise the limits if you have a system that can handle
it, or you can decrease them to deal with a resource-constrained system.

Built-in libraries like Task6 and functions like spawn/1 will let you create one-
time processes for parallel execution. This often ends badly if done in an
uncontrolled way because it’s easy to accidentally create too many simultane-
ous processes. Instead, stick to plain GenServers or build a data pipeline with
a library like Oban to maintain control of your application’s parallelism.

I wrote about creating a stable data pipeline in the “Avoid Performance Pitfalls”
chapter of Real-Time Phoenix [Bus20], but if you use Oban then you’ll be in
a good place.

We’re going to switch gears to a more conceptual topic. You’ve learned about
processes and established foundations to use them, but this leaves a big
question remaining. What does the BEAM’s process model allow us to do that
we can’t do in other programming languages? Let’s tackle this next.

Build Cities, Not Skyscrapers
The traditional model of building applications—especially web applications—is
single-stack-oriented. This means that applications work from an entry point
(web request, CLI command, background worker, and so on) and execute
code in a single stack or process to achieve their purpose. This programming
model is clearly the dominant one in the Ruby community.

6. https://hexdocs.pm/elixir/main/Task.html

report erratum  •  discuss

Be Parallel, Be Cautious • 81

https://hexdocs.pm/elixir/main/Task.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


This traditional model has its benefits, but it’s an uphill battle to work
against the grain. It’s difficult to colocate web and background workers for
cost optimizations. And it’s near impossible to create in-memory data
structures that are shared across the entire application. Effectively, you
end up writing applications a certain way, even if it’s not how you want to
build the application.

The properties of BEAM processes allow for a completely different style of
application development. The entry points to the application are the same,
but we are no longer limited to a single stack. In fact, we can build applications
that consist of many smaller subsystems that have an API used by other parts
of our application. Each subsystem has its own stack, garbage collection,
and error handling. But they’re all deployed as part of the larger application,
so complexity is kept to a minimum.

Think of the traditional stack-oriented programming model as a skyscraper.
There’s a set of doors at the bottom, and you can go all the way to the top
before going back out through the doors. But the BEAM programming model
lets us build cities instead of skyscrapers. We have the option of building
small purpose-driven subsystems that exist for a single purpose, or we can
build large monolithic subsystems that operate just like a stack-oriented
system does.

In an Elixir app, you’ll have many small subsystems that you don’t even think
about. Talking to the database is a subsystem. Responding to web requests
is a subsystem. Background jobs are a subsystem. They all live under the
same application and deployment, but they have their own data and perfor-
mance constraints. These subsystems communicate with each other via
message-passing, so they’re connected where it matters.

With Elixir, you can truly build a city of subsystems that all work together
to create a cohesive application. You can optimize certain parts of the city
that become performance bottlenecks. You can add new subsystems
without interfering with the rest. It’s a beautiful thing when everything
comes together in this way, and the BEAM’s process model is what makes
it possible.

Wrapping Up
Concurrency and parallelism are tough topics at first, but they can be distilled
down to a difference between coordinating multiple tasks and executing
multiple tasks at the same time. Ruby is a concurrent language, but the
Global Virtual Machine Lock prevents it from executing in parallel. The BEAM

Chapter 5. GenServers: Build Cities, Not Skyscrapers • 82

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


is a highly parallel runtime that allows Elixir to seamlessly scale across all
CPU cores. This gives it an advantage when it comes to squeezing more per-
formance out of a system for less total cost.

Processes are the foundation of concurrency in Elixir. Processes send and
receive messages with other processes, and it’s common to run hundreds of
thousands of processes in a production system. This is because processes
are lightweight, with each having a separate memory allocation and garbage
collector.

Processes are easy to work with, but building production systems requires a
lot of cumbersome tasks to get right. The GenServer module takes care of these
tasks for us. GenServer lets us create long-lived processes that maintain state
and process messages easily. There’s no magic here though—GenServer is
built on top of processes, so we get all of the benefits of processes like error
isolation and memory independence.

Elixir is highly parallel, but systems usually can’t run at full firepower. It’s
important to control the amount of parallelism in an application so that you
don’t overwhelm external systems like databases or APIs. Libraries usually
handle this pretty well for you, so you have a good starting place to make
sure your application is stable from day one. In fact, existing libraries do so
much for you that you may not actually need to worry about GenServers and
processes for some time.

The BEAM’s process model allows us to build completely different styles of
applications than we would otherwise. Instead of traditional single-stack-
oriented applications where everything is in one big stack, we can separate
our system into smaller subsystems that communicate using message passing.
Think of your system as a city that you can expand or shrink easily over time.

This wraps up the first part of this book. The next part of this book is going
to see us through a real-world project. You’ll learn about the most popular
libraries and how they enable you to build scalable applications built on the
BEAM’s process model.

report erratum  •  discuss

Wrapping Up • 83

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Part II

Tools of the Trade

You have seen the foundations, but now it’s time
to build a real application. You’ll learn the most
popular Elixir libraries that help you solve common
problems. You’ll interact with a database, build a
web interface, write asynchronous jobs, and make
outbound HTTP requests. Plus, you’ll have a pretty
cool application at the end!



CHAPTER 6

Persisting Data with Ecto
Welcome to Part II! We’re going to change things up a bit in the second part
of this book. The first part was focused on learning the language and getting
comfortable with Elixir, but the second part is focused on learning tools and
building a real application. Throughout these next chapters, you’ll build an SMS
app that sends real text messages. We’ll implement new features in each
chapter until there’s a complete product.

It’s important to build things from scratch. That’s how you learn the fine
details. So, you’ll start with mix phx.new and write all of the code yourself.
However, some things like CSS styles and HTML are provided in a way that
you can easily copy into your application. This is because they are often long
code listings that are tedious to type by hand. And don’t worry—you can start
with a provided code package at the beginning of each chapter if that’s your
preference.

Data is the foundation of all applications. We ingest data from users or APIs,
we manipulate data with queries and processing, and we show users their
data so they can act on it. Data persistence and access is a pretty big deal!

Ecto is Elixir’s answer for everything data and database-related. Ecto differs
significantly from ActiveRecord, but it still feels familiar due to a design that’s
focused on developer productivity.

We’ll start the chapter by going over the project we’re going to build. Then
we’ll cover Ecto’s design and the philosophy it takes. Of course, we’ll compare
it to ActiveRecord along the way. You’ll write an Ecto schema to represent
SMS messages and then use Ecto changesets to persist data into the database.
Finally, you’ll learn several different ways to query data and how to best
expose data functions to your application. We’ll wrap all of our functions into
a context that will be used later in the project.

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


There are entire books (such as the excellent Programming Ecto [WM19])
written about Ecto, so there’s no way we can cover everything in a single
chapter. Instead, this chapter gives you the basics and points you to the Ecto
documentation1 to learn more.

Let’s look at the project that we’ll be writing during Part II.

What Will We Build?
I love building web applications that interact with the real world in some way.
One of the “secret tricks” that has served me well over my career is the use
of SMS and Phone to connect applications to users. So, our project is an SMS
client that sends and receives SMS using a mock SMS API.

This project is compatible with a real SMS provider—Twilio—and is capable
of sending and receiving real SMS messages. However, regulation was passed
that requires verification to deliver SMS messages in the USA. Instead, we’ll
use a mock SMS API that’s 100% compatible with Twilio—you could take the
project at the end of the book and connect it to a real Twilio account!

Here’s what the final product will look like. We’ll have a list of SMS conversa-
tions on the left and a detailed view of the current conversation on the right:

1. https://hexdocs.pm/ecto/Ecto.html

Chapter 6. Persisting Data with Ecto • 88

report erratum  •  discuss

https://hexdocs.pm/ecto/Ecto.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The mock API server is included with this book. It uses LiveView to provide
a real-time interface to view the SMS messages that have passed through it.
And it uses a GenServer to hold the SMS state. This makes it a great resource
to look at after you’ve completed the project.

To start, we’ll generate our application skeleton.

Create an Empty Phoenix App
Phoenix is the primary web development framework in the Elixir ecosystem.
It’s a bit like Ruby on Rails, although future chapters will talk about how
different they are. We aren’t going to dig into Phoenix beyond this short
introduction yet, but we are going to use its generator to make our initial
project directory.

Phoenix’s generator provides us with a web server, a database client, and
more. Everything is correctly set up from the beginning so it works right out
of the box. This gives us the fastest path to using Ecto.

The installation instructions2 on Phoenix’s documentation give us everything
we need to get started. Follow along with these directions to get started. Make
sure that you have at least Elixir 1.14 and Erlang/OTP 25 installed. (This
book uses more recent versions that you can find in Install Elixir on Your
Computer, on page 10.)

$ mix local.hex
Are you sure you want to... [Yn] Y

$ mix archive.install hex phx_new
Are you sure you want to... [Yn] Y

# It's very important to use the name "phone_app"
$ mix phx.new phone_app
Fetch and install dependencies? [Yn] Y

$ cd phone_app

$ mix ecto.create
The database for PhoneApp.Repo has been created

$ mix test
.....
Finished in 0.2 seconds (0.1s async, 0.1s sync)
5 tests, 0 failures

If everything is green with your tests, then you’re good to go with the rest of
this chapter. If you run into issues, then make sure that you have Postgres
installed and that you have the latest versions of Elixir and Erlang.

2. https://hexdocs.pm/phoenix/installation.html

report erratum  •  discuss

What Will We Build? • 89

https://hexdocs.pm/phoenix/installation.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Before we jump into Ecto, let’s cover the different layers that we’re going to
build in the upcoming chapters.

Our Application’s Layers
We’re going to build a complete application over the next chapters. This
application consists of several well-structured layers that work together to
create the final product. An application can be structured in many different
ways, but starting from this perspective is usually a safe bet. As your appli-
cation develops over time, you may add or remove layers based on your needs.

Query Layer (Ecto)

Postgres

Schema (Ecto)

User

Web Page

HTML
CSS

JavaScript

Web Endpoints
(Phoenix)

Context Module

Async Jobs (Oban)

Outbound HTTP
Requests (Req)

We won’t go into each layer at this time, but our application consists of a web
UI frontend, Phoenix web endpoints, asynchronous jobs with Oban, outbound
HTTP requests with Req, and a data layer powered by Ecto. This chapter is
all about the data layer consisting of queries, schemas, and changesets.

Let’s jump right in and go over the basics of Ecto!

Chapter 6. Persisting Data with Ecto • 90

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The Foundations of Ecto
Ecto3 is an Elixir library for data mapping and database queries. Ecto is lan-
guage-integrated, so queries are written in a way that feels like Elixir and not
a third-party syntax. There are other data access libraries in Elixir, but Ecto
is by far the most popular. There are Ecto bindings for PostgresQL, MySQL,
MSSQL, and SQLite3, but we’ll only use PostgresQL in this book.

ActiveRecord is the most popular data access library in Ruby. ActiveRecord
and Ecto have different philosophies, so let’s compare them. After that, we’ll
take a high-level pass over Ecto’s concepts.

Ecto vs. ActiveRecord
Both ActiveRecord and Ecto have a significant focus on usability, security,
and flexibility. They both feel familiar and powerful after using them for only
a small amount of time. But they are implemented with entirely different
design patterns. These design differences make them feel like opposites.

ActiveRecord is implemented using the Active Record4 design pattern. (As a
note, this name existed before the ActiveRecord library did.) This design pat-
tern combines data access and persistence directly on the object that holds
the data. Everything you do in ActiveRecord happens on the model class
directly. Queries, preloads, updates, inserts, and the like all originate from
your model classes. If we wanted to fetch and update a Person record, it would
look like this:

irb> steve = MyApp.Person.find_by(name: "Steve")
irb> steve.update!(name: "Stephen")

Ecto is implemented using the Repository5 design pattern. This pattern
requires that all data mapping and query operations happen through a cen-
tralized Repository. This creates a different programming experience. Let’s
take a look at the previous example, implemented using Ecto:

iex> steve = Repo.get_by(MyApp.Person, name: "Steve")
iex> changes = Ecto.Changeset.change(steve, name: "Stephen")
iex> Repo.update!(changes)

“Magic” is a term that’s often used when talking about data access libraries.
There will always be some magic when translating between a database and
an application—the more removed from the database the app is, the more

3. https://github.com/elixir-ecto/ecto
4. https://www.martinfowler.com/eaaCatalog/activeRecord.html
5. https://martinfowler.com/eaaCatalog/repository.html

report erratum  •  discuss

The Foundations of Ecto • 91

https://github.com/elixir-ecto/ecto
https://www.martinfowler.com/eaaCatalog/activeRecord.html
https://martinfowler.com/eaaCatalog/repository.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


magical it feels. Magic makes the development experience easier, but it can
be much more difficult to reason about in a scaled application. For example,
hooks and automatic relationship loading significantly increase debugging
time, but they also decrease initial development effort.

Ecto makes a point of reducing magic. Operations are explicit and can be
easily reasoned about when reading an application’s source code. This philos-
ophy has resulted in Ecto not having hooks or automatic relationship loading,
in addition to other small changes that are present throughout the library.
Many people love that Ecto gets rid of magic.

In general, Ecto feels more like SQL, but it still protects you when it comes
to security and performance best practices. ActiveRecord feels more like
accessing an object. This is great in some situations, like querying a system
via the Rails console, but it results in more magic that can be difficult to
reason about.

Ecto Concepts
There are three main roles that Ecto satisfies: querying the database, trans-
lating data from the database into application structures, and providing ways
to change data. Here’s how Ecto tackles each of these roles:

Query the Database
Ecto has a built-in query language called Ecto.Query6 that you use to write
queries in Elixir. These queries are securely translated into SQL, and the
database executes the query. Ecto makes heavy use of macros, so queries
are validated at compile time for security and correctness.

Ecto’s Query language isn’t SQL, but it feels very similar. It’s rare that
you are unable to write a query that you want to write. Ecto.Query also lets you
load and reference relationships using built-in functions.

Translate Data from the Database
Ecto schemas7 map data from your database into an application struct
using type definitions provided in a schema. Schemas also define associ-
ations between other schemas, and Ecto provides functions to work with
these associations.

Schemas don’t provide any access to the database, so you don’t have to
worry about accidental database queries once a schema is realized from

6. https://hexdocs.pm/ecto/Ecto.Query.html
7. https://hexdocs.pm/ecto/Ecto.Schema.html

Chapter 6. Persisting Data with Ecto • 92

report erratum  •  discuss

https://hexdocs.pm/ecto/Ecto.Query.html
https://hexdocs.pm/ecto/Ecto.Schema.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


the database. For example, you are guaranteed that my_schema.some_field
won’t result in a database query.

Change and Validate Data
Ecto changesets8 cast and validate data from external sources into your
database. Ecto provides a variety of default validation functions that
let you check for the presence of data, ensure data consists of specific
values, and more. Plus, you can always add application-specific custom
validation.

We’ll be diving deeper into each of these concepts throughout the rest of
this chapter. Next, let’s use Ecto to define our application’s data struc-
tures!

Write an Ecto Schema
Databases revolve around data, so we need a way to define the types, tables,
and relationships of our application’s data layer. Ecto solves this with
schemas. We use schemas to define our data structure, and then Ecto uses
the schema definition to operate on our application’s data.

We’ll write a schema to hold SMS messages, and then we’ll look at how Ecto
fields and associations work. Let’s jump in!

Phoenix Generators

Phoenix provides a generator that’s used to define a schema file
and migration file all at once. The reason why we don’t use that
in this book is simple: I don’t like using most generators. I prefer
the control of writing the code myself, and it gives me time to think
about the schema I’m defining.

Many people like using generators because they allow you to
quickly implement commonly repeated code templates. If you want
to use the mix phx.gen.schema generator for your own projects, you
can read its documentation.9

Define an SMS Message Schema
Ecto.Schema uses macros to create a domain-specific language (DSL) that we
use to define our schema. This results in a data definition that’s easy to read
and write. Create a file at lib/phone_app/conversations/schema/sms_message.ex in the

8. https://hexdocs.pm/ecto/Ecto.Changeset.html
9. https://hexdocs.pm/phoenix/Mix.Tasks.Phx.Gen.Schema.html

report erratum  •  discuss

Write an Ecto Schema • 93

https://hexdocs.pm/ecto/Ecto.Changeset.html
https://hexdocs.pm/phoenix/Mix.Tasks.Phx.Gen.Schema.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app directory that you created earlier in this chapter. Add the following
content to it (the field comments are for your reference and don’t need to be
typed out in your file):

phone_app/lib/phone_app/conversations/schema/sms_message.ex
defmodule PhoneApp.Conversations.Schema.SmsMessage doLine 1

use Ecto.Schema-

-

@timestamps_opts [type: :utc_datetime_usec]-

schema "sms_messages" do5

# 1-to-many relationship with the other person in the conversation-

belongs_to :contact, PhoneApp.Conversations.Schema.Contact-

-

# Holds the message identifier for Twilio's message objects.-

field :message_sid, :string10

# Holds the account identifier that interacted with Twilio.-

field :account_sid, :string-

-

# Holds the full text contents of the SMS message.-

field :body, :string15

# The phone number that sent the SMS message.-

field :from, :string-

# The phone number that received the SMS message.-

field :to, :string-

20

# Holds the current state of the SMS message from Twilio.-

field :status, :string-

# Whether this message was received inbound or sent outbound.-

field :direction, Ecto.Enum, values: [:incoming, :outgoing]-

25

timestamps()-

end-

end-

Our module starts with a use statement on line 2 that brings the Ecto schema
macros into our module. Without this line, the schema/2 function would be
undefined and our code wouldn’t compile. The schema/2 function on line 5 says
that our database table is called sms_messages and its data definition is defined
inside of the do block.

Inside of the do block, we use the field macro function to define the individual
fields of our data structure. A comment describing each field is included, so
you can see how the field fits into our data structure. We’ll come back to the
belongs_to function later in this section.

We use timestamps/0 to define inserted_at and updated_at fields that Ecto manages
for us. When you add a record to the database, Ecto will automatically set
inserted_at for you. And when you update the record, the updated_at column will
be set.

Chapter 6. Persisting Data with Ecto • 94

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/schema/sms_message.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The @timestamp_opts module attribute on line 4 tells Ecto that our timestamps
should include microseconds (usec). Without this, our timestamps would only
contain seconds. It can be helpful to have this higher fidelity timestamp when
debugging a system, so I recommend that you always use utc_datetime_usec
timestamps.

Use the Schema as a Struct
Ecto schemas are just structs, so we can use them with the %Struct{} syntax
that you used earlier in this book. Let’s try this out with the SMS Message
schema. Start an IEx session with the -S mix option and try it out.

(You’ll see a warning that the Contact schema doesn’t exist, but this is safe
to ignore for now. The warning comes from our association referencing a
module that doesn’t exist. If it becomes a problem and your project won’t run,
then create the Schema.Contact module found at the end of this section.)

$ iex -S mix
iex> alias PhoneApp.Conversations.Schema.SmsMessage
iex> message = %SmsMessage{to: "+1-111-222-3333"}
%PhoneApp.Conversations.Schema.SmsMessage{

__meta__: #Ecto.Schema.Metadata<:built, "sms_messages">,
id: nil,
contact_id: nil,
contact: #Ecto.Association.NotLoaded<association :contact is not loaded>,
...
to: "+1-111-222-3333",
...

}

iex> message.to
"+1-111-222-3333"

Because schemas are mapped to structs, you can use most of the same
functions and operations that you are used to on structs. (Ecto doesn’t
implement the Access protocol for schemas, so some features are not available.)
For example, you can build a struct using the %{} syntax, and you can mod-
ify fields using the Map.put/3 function.

We’ll come back to the contact association in a moment, but let’s talk about
fields first.

Schema Fields
The field/3 macro function has many different options that you can use to
define a schema the way you want. We’ll cover a few of the different options,
but the most important is the field type.

report erratum  •  discuss

Write an Ecto Schema • 95

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Ecto’s “Types and Casting” documentation10 lists out all of the different field
types supported. Field types are either primitives or custom types. These are
some examples of primitive fields: :integer, :string, :utc_datetime_usec, :map, and
more. You can even specify array fields using the {:array, inner_type} field type.

Ecto.Enum and Ecto.UUID are examples of custom field types. There are many
different custom field types—and you can make your own—but you typically
only need to use them for special cases.

Ecto types map to native types in the database that you use. A single Ecto
type can map to multiple different native types. For example: varchar, string,
and text PostgreSQL types are all handled by Ecto’s :string type.

The field/3 function also accepts various options.11 The most common option
is :default, which lets you specify the default value for the column when null
values are written or read from the database.

Another common option is :virtual. Use virtual fields when you want to attach
custom data to a struct. You can add data to a virtual field either in
Elixir—using Map.put/3—or from database queries.

Fields and associations go hand-in-hand. Let’s take a look at associations
next.

Schema Associations
Ecto schemas support one-to-one, one-to-many, and many-to-many associa-
tions. These association types have largely been standardized across database
frameworks, so they will feel familiar. Here’s how each type works:

One-to-One
The belongs_to/3 function defines a relationship that’s either one-to-one or
one-to-many. You use belongs_to/3 in the schema that contains the ID of
the relationship. In our example, the SmsMessage schema includes a contact_id
field.

The other side of the relationship uses the has_one/3 function to define the
complete relationship.

One-to-Many
This type of relationship is similar to one-to-one, but the other side of the
relationship uses has_many/3 to define the complete relationship.

10. https://hexdocs.pm/ecto/Ecto.Schema.html#module-types-and-casting
11. https://hexdocs.pm/ecto/Ecto.Schema.html#field/3

Chapter 6. Persisting Data with Ecto • 96

report erratum  •  discuss

https://hexdocs.pm/ecto/Ecto.Schema.html#module-types-and-casting
https://hexdocs.pm/ecto/Ecto.Schema.html#field/3
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Many-to-Many
This is an advanced relationship type that’s implemented using a third
table. For example, we could implement a third table called ContactMessage
that holds both contact_id and sms_message_id columns. This third table acts
as a join table between the associated schemas. This would be helpful to
implement a feature like group chats, where the one-to-many relationship
type doesn’t work.

The many_to_many/3 function is used to define this relationship type. This
function requires a third table, which can either be another schema or a
database table name.

Each association can be customized with a variety of options. You can control
the relationship field names (these default to association_name_id), customize the
type (Ecto.UUID instead of integer IDs), and more. The documentation for each
function lays out all of the options available to you.

Ecto’s documentation has a cheatsheet12 that shows all of the various associ-
ation types, how to define them, and how to update them.

Let’s finish this section by completing the other side of the contact relationship.

Write the Contact Schema
Create lib/phone_app/conversations/schema/contact.ex and add the following code to it:

phone_app/lib/phone_app/conversations/schema/contact.ex
defmodule PhoneApp.Conversations.Schema.Contact do

use Ecto.Schema

@timestamps_opts [type: :utc_datetime_usec]
schema "contacts" do

has_many :sms_messages, PhoneApp.Conversations.Schema.SmsMessage

field :phone_number, :string
field :name, :string

timestamps()
end

end

This looks similar to the SmsMessage schema, but we use the has_many/2 function
to define the other side of the association.

Once you add this schema, your project will compile without warning about
the broken association. We’ll use this schema in the rest of this chapter. First,
we need to create our database tables.

12. https://hexdocs.pm/ecto/associations.html

report erratum  •  discuss

Write an Ecto Schema • 97

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/schema/contact.ex
https://hexdocs.pm/ecto/associations.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Use Migrations to Create Database Tables
We have two schemas in our app, but we don’t have corresponding database
tables yet. Luckily for us, Ecto includes migration support out of the box.
This will feel similar to ActiveRecord migrations, so you’ll quickly be comfort-
able if you’ve used those before.

Migrations are scripts that modify your database. They are often used to add
tables, add or modify columns, add indices, and so forth. You can even use
migrations to update the data in your database, but this is an advanced case
that we won’t cover in this book.

Let’s look at the basics of migrations and then define migrations for our two
schemas.

Migration Basics
Ecto.Migration is implemented in a child library of Ecto called ecto_sql. This
library contains all of the SQL-specific aspects of Ecto because Ecto isn’t tied
to a single database technology.

We’ll cover a few of the key migration functions, but the migration documen-
tation13 goes into great detail for all available functions. The “Phoenix: Ecto
Migrations Cheatsheet”14 is useful as it covers all of the main patterns you’ll
use in migrations.

Often, multiple migration functions will be combined together. For example,
the code create table(:widgets) do / end uses the create/2 and table/1 functions to create
a new table, and create index(:widgets, [:name]) uses create/1 with index/2 to create a
new index. The most commonly used functions are:

create table(:name) do / end
Creates a database table with the fields added in the do block.

add :field_name, :field_type
Adds a field to the database table. This can only be used inside of a create
table block.

modify :field_name, :field_type
Edits an existing field, such as changing the type or nullability of the field.
This can only be used inside of an alter table block.

13. https://hexdocs.pm/ecto_sql/Ecto.Migration.html
14. https://devhints.io/phoenix-migrations

Chapter 6. Persisting Data with Ecto • 98

report erratum  •  discuss

https://hexdocs.pm/ecto_sql/Ecto.Migration.html
https://devhints.io/phoenix-migrations
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


create index(:table_name, [:field_one, :field_two])
Creates an index on the specified table and field names. Additionally,
create unique_index is used to define a unique index.

We’ll use all of these in our migration. Let’s do that next.

Define Our Migrations
Ecto provides a generator that creates a new schema file. When you run it,
it will create an empty migration file. We’ll run it twice, one for each database
table:

$ mix ecto.gen.migration CreateSmsMessages
* creating priv/repo/migrations/20230507184727_create_sms_messages.exs

$ mix ecto.gen.migration CreateContacts
* creating priv/repo/migrations/20230507184731_create_contacts.exs

This format is exactly like ActiveRecord migrations: the current time is
prepended to the name of the migration. This generator differs from
ActiveRecord because you can’t specify columns and tables in it. The previ-
ously mentioned mix phx.gen.schema generator does offer this feature, but we
won’t use it in this book.

Fill out the CreateSmsMessages migration with the following code (note that the
file name will differ from yours):

phone_app/priv/repo/migrations/20230507184727_create_sms_messages.exs
defmodule PhoneApp.Repo.Migrations.CreateSmsMessages do

use Ecto.Migration

def change do
create table(:sms_messages) do
add :contact_id, :integer, null: false

add :message_sid, :text, null: false
add :account_sid, :text, null: false

add :body, :text, null: false
add :from, :text, null: false
add :to, :text, null: false

add :status, :text, null: false
add :direction, :text, null: false

timestamps(type: :utc_datetime_usec)
end

create index(:sms_messages, [:contact_id])
create unique_index(:sms_messages, [:message_sid])

end
end

report erratum  •  discuss

Use Migrations to Create Database Tables • 99

http://media.pragprog.com/titles/sbelixir/code/phone_app/priv/repo/migrations/20230507184727_create_sms_messages.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


And fill out the CreateContacts migration with the following code:

phone_app/priv/repo/migrations/20230507184731_create_contacts.exs
defmodule PhoneApp.Repo.Migrations.CreateContacts do

use Ecto.Migration

def change do
create table(:contacts) do
add :phone_number, :text, null: false
add :name, :text

timestamps(type: :utc_datetime_usec)
end

create unique_index(:contacts, [:phone_number])
end

end

A migration consists of either a single change/0 function or the combination of
up/0 and down/0 functions. Ecto runs the correct function based on whether
we are migrating forward or rolling back a migration. Similar to ActiveRecord
migrations, some operations are “reversible” and others are one-way. For
example, create table can be reversed by dropping the table. But if we were to
modify a column, then it would only be reversible if we provided the function
with the original column definition.

The migration files are fairly self-explanatory. The great part of the migration
DSL is that it’s easy to read—it’s inspired by the ActiveRecord migration for-
mat. All of the fields in our schemas are represented in the migration, with
a PostgreSQL type that corresponds to the Ecto schema field type.

Finally, run your migrations with the command line migrator:

$ mix ecto.migrate
15:06:04.213 [info] == Running...CreateSmsMessages.change/0 forward
15:06:04.217 [info] create table sms_messages
15:06:04.228 [info] create index sms_messages_contact_id_index
15:06:04.231 [info] create index sms_messages_message_sid_index
15:06:04.236 [info] == Migrated 20230507184727 in 0.0s

15:06:04.274 [info] == Running...CreateContacts.change/0 forward
15:06:04.274 [info] create table contacts
15:06:04.279 [info] create index contacts_phone_number_index
15:06:04.281 [info] == Migrated 20230507184731 in 0.0s

We now have our schema and corresponding (empty) database tables. Before we
move on, we’re going to look quickly at the dangers of migrations.

Chapter 6. Persisting Data with Ecto • 100

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/priv/repo/migrations/20230507184731_create_contacts.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Be Careful with Migrations
Migrations are inherently risky—this applies to Ecto, ActiveRecord, and any
other migration framework. The risk comes from the fact that we’re changing
the schema of a running database. There’s nothing that’s stopping us from
running drop table(:something_important) and losing all of our data, so we need to
be careful with migrations.

The Fly.io blog post15 about safe migrations can help you understand the risk
that you face, and it offers tips for how to mitigate that risk. You can get away
without knowing these dangers if you have a small amount of data, but a
database with more data and throughput increases the migration risk.

One final note on this topic is that—similar to ActiveRecord—Ecto migrations
have built-in protections to ensure that your database doesn’t end up in an
invalid state. The first protection is a DDL transaction that runs around the
entire migration file. This transaction ensures that if an error occurs during
different statements in our migration file, then the entire migration is rolled
back and the database is unaffected. The second protection is a migration lock
that’s taken out on the schema_migrations table. This ensures that two migrations
are not executed at the same time, which increases the chance for errors to occur.

You can disable these locks for certain operations, but you should rarely need
to worry about them. They are there for protection, so disable them only when
absolutely necessary. The most common operation that requires disabling
them is when you add an index with the concurrently: true option.

Next, let’s look at how to persist data in our database.

Use Changesets to Persist Data
Now that we have schemas, we need a way to insert data into the database.
The approach that Ecto takes is significantly different than ActiveRecord, but
it’s one of the most loved components of Ecto. Let’s dive into Ecto changesets.

Ecto.Changeset16 lets us turn data parameters into a persisted database record.
Changesets are used for creating new records or updating existing records.
We can also validate incoming data using changesets—this ensures our
database records match our application’s business rules.

Let’s write our first changeset. We’ll start with the Contact schema because it
has fewer fields.

15. https://fly.io/phoenix-files/safe-ecto-migrations/
16. https://hexdocs.pm/ecto/Ecto.Changeset.html

report erratum  •  discuss

Use Changesets to Persist Data • 101

https://fly.io/phoenix-files/safe-ecto-migrations/
https://hexdocs.pm/ecto/Ecto.Changeset.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Create Our First Changeset
The functional nature of Elixir is visibly seen in the changeset function we’re
going to write. Changesets are built up over multiple function calls, which is
perfect for the pipeline operator. This is usually done over several stages:

1. Cast the provided attributes to the types of our schema fields.
2. Apply validations on a per-attribute basis.
3. Define unique constraints on the schema.

Add the following code to the bottom of the Schema.Contact module:

phone_app/lib/phone_app/conversations/schema/contact.ex
import Ecto.Changeset

def changeset(attrs) do
fields = [:phone_number]

%__MODULE__{}
|> cast(attrs, fields)
|> validate_required(fields)
|> unique_constraint([:phone_number])

end

Our code starts by importing the Ecto.Changeset module. This allows us to call
changeset functions (like cast/3) without typing out the full module name.

Our changeset/1 function consists of a functional pipeline that calls various
Ecto.Changeset functions. We start by calling cast/3 with three arguments: an
empty schema struct, the input attributes, and the fields that we want to set
in the database.

We pass an empty struct because cast/3 is capable of accepting structs with
data, which is used to update a record. Passing an empty struct tells the
changeset that we want to create a new record.

We call validate_required/2 to set our fields as required. This ensures that a null
or empty :phone_number field will cause the changeset to fail. This is one of the
many validation functions that Ecto.Changeset implements.

Finally, we call unique_constraint/2 to add information about field uniqueness.
The unique_constraint function adds information about the constraint to the
changeset, but it doesn’t make any database queries. When we insert the change-
set in the database, it will intelligently return an error if this constraint is
violated.

The fields variable in this code is a convenience that has become my go-to pattern.
It’s important that required fields are properly defined, so it’s convenient to

Chapter 6. Persisting Data with Ecto • 102

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/schema/contact.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


start with code that says “everything is required” and then remove fields that
aren’t required using:

|> validate_required(fields -- [:non_required_field_name])

All of our fields are required, so we don’t remove any fields here. Our schema
does have a “name” field on it, but we’re not updating that in this changeset,
so we don’t refer to it.

We’ll use this changeset in a moment, but let’s create the SmsMessage change-
set next.

Create SmsMessage Changesets
We’re going to define two different changesets for the SmsMessage schema. We’ll
use different changesets when we create a new SmsMessage versus when we
update an existing SmsMessage. Add these functions to the bottom of the
Schema.SmsMessage module:

phone_app/lib/phone_app/conversations/schema/sms_message.ex
import Ecto.Changeset

def changeset(attrs) do
fields = [

:contact_id, :message_sid, :account_sid, :body,
:from, :to, :status, :direction

]

%__MODULE__{}
|> cast(attrs, fields)
|> validate_required(fields)
|> unique_constraint([:message_sid])

end

def update_changeset(attrs, struct = %__MODULE__{}) do
fields = [:status]

struct
|> cast(attrs, fields)
|> validate_required(fields)

end

Ecto doesn’t require specific names for the changeset functions—they can be
named anything we want. But you’ll often see these function names because
they clearly label how the changesets are intended to be used.

Use Our Changesets
We use the changeset functions by passing in input parameters. The return
value of the functions is an Ecto.Changeset struct that includes the source data,

report erratum  •  discuss

Use Changesets to Persist Data • 103

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/schema/sms_message.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


any changes to the data, and whether the changeset is valid or not. Start an
IEx session to try it out:

$ iex -S mix
iex> alias PhoneApp.Conversations.Schema.Contact
iex> Contact.changeset(%{})
#Ecto.Changeset<

action: nil,
changes: %{},
errors: [phone_number: {"can't be blank", [validation: :required]}],
data: #PhoneApp.Conversations.Schema.Contact<>,
valid?: false

>

iex> Contact.changeset(%{phone_number: "x"})
#Ecto.Changeset<

action: nil,
changes: %{phone_number: "x"},
errors: [],
data: #PhoneApp.Conversations.Schema.Contact<>,
valid?: true

>

We could write a validation function to guarantee that the phone_number field
is a valid E.164 formatted number, but that would be overkill for this project.

Try out the SmsMessage changeset as well. The update_changeset/2 function requires
that we pass a %SmsMessage{} struct in—this would be the existing data we’re
updating:

iex> alias PhoneApp.Conversations.Schema.SmsMessage
iex> struct = %SmsMessage{status: "test"}
iex> SmsMessage.update_changeset(%{}, struct)
#Ecto.Changeset<action: nil, changes: %{}, errors: [],
data: #PhoneApp.Conversations.Schema.SmsMessage<>, valid?: true>

iex> SmsMessage.update_changeset(%{status: ""}, struct)
#Ecto.Changeset<errors: [status: {"can't be blank", []}], valid?: false>

The last response is truncated, but the main point is that the combination
of the input struct and the parameters determines the changeset validity.
When we pass in a struct that has :status set, the changeset is valid. But when
we pass in the same struct and try to clear the :status field, it’s no longer valid.

We’ll use these changesets to create our data layer next.

Chapter 6. Persisting Data with Ecto • 104

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Query Data with Ecto.Query
Ecto provides robust query functions—you can write most queries without
writing SQL by hand. And if you run into a query that can’t be written with
the Ecto query language, you can safely use handwritten SQL.

We’re going to build our data layer—everything needed to query and persist
data in our application. The functions and patterns we use will be explained
along the way. But first, we need to go over a module that we’re going to use
many times in this section.

The Repo Module
The generator that we used to create our application included an important
(and simple) module. The PhoneApp.Repo module is how we’ll handle all interac-
tions with the database. The module is only one line of code:

phone_app/lib/phone_app/repo.ex
defmodule PhoneApp.Repo do

use Ecto.Repo,
otp_app: :phone_app,
adapter: Ecto.Adapters.Postgres

end

The single line of code in this module—use Ecto.Repo—defines a bunch of func-
tions. It includes functions to insert data, update data, make queries, execute
raw SQL statements, and more. These functions could be customized by overrid-
ing them, but that’s an advanced technique that you won’t commonly need.

The Repo module is a core part of Ecto’s design. Every single query in our
application goes through our Repo. A Repo connects to a single database, so
most applications have a single Repo module, but there’s nothing stopping
us from having multiple Repos that connect to different databases.

Let’s use the PhoneApp.Repo module to make some queries!

Query and Persist Contacts
Our application will interact with Schema.Contact in a simple way. We only need
to be able to retrieve a contact by its ID and create a new contact using a
unique phone number.

There are many different ways we could organize the queries for our applica-
tion. The approach used in this book is by no means the definitive way, but
it’s something that has served me well in small and scaled applications. To

report erratum  •  discuss

Query Data with Ecto.Query • 105

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/repo.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


get started, create a file located at lib/phone_app/conversations/query/contact_store.ex
and add the following code:

phone_app/lib/phone_app/conversations/query/contact_store.ex
defmodule PhoneApp.Conversations.Query.ContactStore do

alias PhoneApp.Repo
alias PhoneApp.Conversations.Schema.Contact

end

We’ll use these aliases throughout our module. Let’s add the first function to
fetch a contact by its id:

phone_app/lib/phone_app/conversations/query/contact_store.ex
def get_contact!(id) do

Repo.get!(Contact, id)
end

This function uses the PhoneApp.Repo.get!/2 function to retrieve an instance of
the specified schema module by its primary key. If a record can’t be found,
an error will be raised. Try it out:

$ iex -S mix
iex> iex(9)> PhoneApp.Conversations.Query.ContactStore.get_contact!(1)
** (Ecto.NoResultsError) expected at least one result but got none in query:

from c0 in PhoneApp.Conversations.Schema.Contact,
where: c0.id == ^1

If we were to use PhoneApp.Repo.get/2 instead, we would receive a nil response.
The ! in the function name communicates that the function will raise an error.
This pattern is idiomatic in Ruby and ActiveRecord, so it should feel familiar.

The next code is a bit more complex. Type it out, and then we’ll walk through it:

phone_app/lib/phone_app/conversations/query/contact_store.ex
def upsert_contact(%{from: from, to: to, direction: direction}) doLine 1

contact_number =-

case direction do-

:incoming -> from-

:outgoing -> to5

end-

-

cs = Contact.changeset(%{phone_number: contact_number})-

-

Repo.insert(10

cs,-

returning: true,-

on_conflict: {:replace, [:updated_at]},-

conflict_target: [:phone_number]-

)15

end-

Chapter 6. Persisting Data with Ecto • 106

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/contact_store.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/contact_store.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/contact_store.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The case on line 2 is necessary to determine the phone number of the contact
based on whether an SMS message is incoming or outgoing. This is purely
an application-level concern that will make sense when we write the SmsMes-
sageStore.

The Contact.changeset/1 function is used on line 8 to create a changeset for our
contact record. Then, that changeset is inserted into the database on line 10.

The function Repo.insert/2 is called with options that tell Ecto what to do if a
duplicate contact occurs. This happens when a contact with the phone
number already exists and the unique constraint is violated.

The insert pattern in this example is called an upsert (update or insert) and
is natively supported by PostgreSQL and other databases. It’s a bit complex
with many different options and strategies for dealing with the uniqueness
conflict. Ecto has great documentation17 that goes through many different
scenarios and outcomes.

Let’s write the Query.SmsMessageStore next.

Query and Persist SMS Messages
We’ll do more advanced things in the SmsMessageStore. Our store needs to insert
new SMS messages, update the status of existing messages, return messages
for a given contact, and load a list of messages for the sidebar view. We’ll
start with the create function because it’s similar to what we just used in
the ContactStore.

Create lib/phone_app/conversations/query/sms_message_store.ex and add the following code:

phone_app/lib/phone_app/conversations/query/sms_message_store.ex
defmodule PhoneApp.Conversations.Query.SmsMessageStore do

import Ecto.Query

alias PhoneApp.Repo
alias PhoneApp.Conversations.Schema.SmsMessage
alias PhoneApp.Conversations.Query.ContactStore

end

These aliases remove the need for us to type long module paths through our
module. The line import Ecto.Query is new. We’ll come back to this when we write
a query. For now, add the create function:

17. https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert/2-upserts

report erratum  •  discuss

Query Data with Ecto.Query • 107

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/sms_message_store.ex
https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert/2-upserts
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/lib/phone_app/conversations/query/sms_message_store.ex
def create_sms_message(params) do

{:ok, contact} = ContactStore.upsert_contact(params)

params
|> Map.merge(%{contact_id: contact.id})
|> SmsMessage.changeset()
|> Repo.insert()

end

The first line retrieves the contact from the database so that we can pass its
id field into our changeset.

This pattern for a create function is very useful: start with the provided param-
eters, overwrite (merge) any fields that the caller doesn’t need to provide, turn
it into the appropriate changeset, and then call Repo.insert/1 with that changeset.

When you use this pattern, you get the opportunity to overwrite the values
of the params argument. In our case, we find or create the associated contact,
so we fill out the contact_id in the changeset parameters.

Next, let’s write a function that updates an existing SMS message. This is
necessary because we’ll track the external status of the message as it flows
through the SMS network. Add the following code:

phone_app/lib/phone_app/conversations/query/sms_message_store.ex
def update_sms_message(message_sid, update_params) do

case Repo.get_by(SmsMessage, message_sid: message_sid) do
nil ->
{:error, :not_found}

existing ->
update_params
|> SmsMessage.update_changeset(existing)
|> Repo.update()

end
end

This function starts by calling Repo.get_by/2. This function looks up a schema
by fields other than its primary key. In our case, we look up by a single field
(message_sid), but we could look up by multiple fields.

We need to look up the associated schema so that we can call update_changeset/2
with it. Ecto is smart enough to know which fields have changed, and it sends
only changed fields to PostgreSQL.

Chapter 6. Persisting Data with Ecto • 108

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/sms_message_store.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/sms_message_store.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


We could use Repo.update_all/318 to directly send an UPDATE statement to the
database. update_all is useful in situations where you want to update in a
single operation, but it’s a best practice to update with a changeset. This
forces your application to verify that the user has access to the record being
updated, and you’ll receive a copy of the updated struct from the Repo.update/1
function.

We have the persistence functions we need for SMS messages, so let’s
move on to querying for data. We’ll be using Ecto’s query builder DSL
for this.

Association Functions

The Ecto.Changeset module exposes put_assoc/4 and cast_assoc/3
for interacting with associations, but they are optional.
When you use these functions, Ecto detects changes in the
association data and will insert or update those database
records.

I find that casting associations as regular fields—like we did
with contact_id—removes a layer of magic and is much simpler
to understand. So I don’t use the association changeset
functions.

Use Ecto.Query for More Advanced Queries
Ecto.Query19 provides a query builder DSL that gives you complete control over
your database queries. Ecto queries end up feeling like SQL, but they have
extra protection that comes from Elixir’s compile-time guarantees.

Ecto knows about our application schemas because they are defined in code.
It uses this knowledge to verify that we’re querying columns that exist and
that they are aliased correctly. Ecto uses macros and compile-time checks to
guarantee that any data sent to the database has been properly sanitized. In
the end, we get a familiar syntax with extra safety!

Let’s ease into Ecto.Query with a simple function that loads all messages with
a given contact. Add this to the bottom of SmsMessageStore:

18. https://hexdocs.pm/ecto/Ecto.Repo.html#c:update_all/3
19. https://hexdocs.pm/ecto/Ecto.Query.html

report erratum  •  discuss

Query Data with Ecto.Query • 109

https://hexdocs.pm/ecto/Ecto.Repo.html#c:update_all/3
https://hexdocs.pm/ecto/Ecto.Query.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/lib/phone_app/conversations/query/sms_message_store.ex
def load_messages_with(contact) do

from(
m in SmsMessage,
where: m.contact_id == ^contact.id,
order_by: [desc: m.inserted_at],
preload: [:contact]

)
|> Repo.all()

end

This sure does feel a lot like SQL! The close connection to SQL makes it easy
to convert handwritten queries into an application.

Our code works because of the import Ecto.Query function at the top of this module.
Typically, you’ll use this import anytime your code calls the Ecto.Query.from/2
function.

Let’s break apart this query. The code m in SmsMessage tells the query builder
that we are assigning the schema SmsMessage to the variable m. We use this to
reference columns on the table. Then, where: m.contact_id == ^contact.id filters the
query based on the contact_id column equaling the value of contact.id.

The caret symbol (^) is used to insert the contact’s id value into the query.
Don’t confuse this with the pin operator (^) that we used in pattern matching.
It’s just the symbol that Ecto’s authors chose to use.

The order_by: [desc: m.inserted_at] line sorts our query by the inserted_at column.
Finally, preload: [:contact] tells Ecto that we want it to load the contact association.
This works similarly to ActiveRecord, where an additional query is made to
load all of the contact associations.

Also like ActiveRecord, we have the choice to join the contact association
into our query and preload it without any additional queries. You don’t need
to type out the following code, but here’s what it would look like to join in the
contact and preload using the join data:

phone_app/lib/phone_app/conversations/query/sms_message_store.ex
def example_load_messages_with_join(contact) do

from(
m in SmsMessage,
join: c in assoc(m, :contact),
where: m.contact_id == ^contact.id,
order_by: [desc: m.inserted_at],
preload: [contact: c]

)
|> Repo.all()

end

Chapter 6. Persisting Data with Ecto • 110

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/sms_message_store.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/sms_message_store.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Once the from function is closed, nothing has happened. If you pipe into
IO.inspect here, you will see an Ecto.Query struct but no data. We tell Ecto to
execute this query using the Repo.all/1 function.

Let’s add one more query that’s a bit more complex. Type this out at the end
of the module:

phone_app/lib/phone_app/conversations/query/sms_message_store.ex
def load_message_list do

distinct_query =
from(
m in SmsMessage,
select: m.id,
distinct: [m.contact_id],
order_by: [desc: m.inserted_at]

)

from(
m in SmsMessage,
where: m.id in subquery(distinct_query),
order_by: [desc: m.inserted_at],
preload: [:contact]

)
|> Repo.all()

end

At a glance, this query looks a lot more complex, but upon closer inspection,
it’s similar to what you just wrote. There are a few additional keywords that
we’ll break down.

The line select: m.id results in the SELECT statement generated by Ecto to contain
only this one field. This is necessary in our subquery because we only care
about comparing the id field. Ecto has a lot of flexibility with how you can
use select:. You can use it to append virtual fields to your query, select data
into different data structures, and more.

The usage of distinct: [m.contact_id] is exactly what it looks like. This adds a DISTINCT
ON clause to the query so that the contact_id field is unique.

This subquery efficiently loads the sidebar view so that only the most recent
message for each contact appears. It gets pulled in with where: m.id in subquery(dis-
tinct_query). (Of course, you can do this in ActiveRecord as well.)

One benefit of Ecto’s query builder DSL is its readability. There’s very little
magic here. We write queries that are obvious in their functionality at a glance,
but we also benefit from Ecto’s security and helper functions. There’s a bit

report erratum  •  discuss

Query Data with Ecto.Query • 111

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/sms_message_store.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


of a learning curve because so many different options are available, but the
Ecto.Query documentation20 is very comprehensive.

And with this, our SmsMessageStore is complete! We could stop here and use
the store module in our application, but there’s a code organization technique
that helps create clarity. Let’s create a context to wrap our functions.

Put Everything in a Context
Code organization has been and always will be a hot topic. People have many
different opinions. Whether right or wrong, these opinions tend to solidify
into best practices based on the community’s preference. A code organization
technique called “contexts” has taken hold in the Elixir community.

Let’s break down what contexts are and then create one of our own.

What Is a Context?
Although they can be intimidating at first, contexts are simple. They are
modules that group together related functions. This grouping is typically done
based on the domain of the application you’re building—which means you
get to decide the context boundaries.

Contexts define a public API between different parts of your application. This
makes it harder for spaghetti code to pop up in your app because the callable
functions are clearly available in the context module. This context module is
typically one level below your main application module prefix.

In our PhoneApp application, we’ll create a context module called PhoneApp.Con-
versations. This module holds all of the functions that can be used by other
parts of the application (like Phoenix Controllers, which we’ll cover in the next
chapter.)

There’s nothing stopping other parts of the application from reaching in and
“violating” the context boundary. It’s more like an agreement to not do so.

The biggest obstacle for developers starting out with contexts is “what should
I put in my context module?” The best answer is to make a decision with the
information you have on hand and don’t sweat the details too much. You can
always change the context as needed. And you don’t need to strictly follow
the context rules—nothing prevents you from making the best decision for
your app.

20. https://hexdocs.pm/ecto/Ecto.Query.html#content

Chapter 6. Persisting Data with Ecto • 112

report erratum  •  discuss

https://hexdocs.pm/ecto/Ecto.Query.html#content
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Create PhoneApp.Conversations Context
Contexts are entirely opinion-based, so we’re going to cover a technique that
has worked well for me personally. This technique uses a combination of
delegated functions and regular functions to create a context. Delegated
functions live in another module (like our store modules defining database
operations) and are supported out of the box in Elixir with defdelegate. Let’s
use it to create delegates for many of our store functions.

Create lib/phone_app/conversations/conversations.ex with the following code:

phone_app/lib/phone_app/conversations/conversations.ex
defmodule PhoneApp.Conversations do

alias PhoneApp.Conversations.Query
alias PhoneApp.Conversations.Schema

defdelegate get_contact!(id), to: Query.ContactStore

defdelegate create_sms_message(params), to: Query.SmsMessageStore
defdelegate update_sms_message(sid, params), to: Query.SmsMessageStore

end

defdelegate/2 is an incredibly useful function. It defines a function on the module
that calls a function in another module. (You can customize the function
name if they don’t match.) This lets us write our query code in an isolated
module and then export it to the rest of the app in the context.

You may have noticed that this context doesn’t include the data-loading
functions that we wrote in our store. This is because we’re going to improve
on the API of these functions by wrapping them in a struct.

Create lib/phone_app/conversations/schema/conversation.ex with the following code:

phone_app/lib/phone_app/conversations/schema/conversation.ex
defmodule PhoneApp.Conversations.Schema.Conversation do

@enforce_keys [:contact, :messages]
defstruct @enforce_keys

end

This is a struct that requires contact and messages fields to be provided. This is
added to the schema folder—even though it’s not an Ecto schema—because it
serves a role as part of our application’s data structure.

Go back to the PhoneApp.Conversations context module and add these functions
to the bottom:

phone_app/lib/phone_app/conversations/conversations.ex
def load_conversation_list do

messages = Query.SmsMessageStore.load_message_list()

report erratum  •  discuss

Put Everything in a Context • 113

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/conversations.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/schema/conversation.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/conversations.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Enum.map(messages, fn message ->
%Schema.Conversation{

contact: message.contact,
messages: [message]

}
end)

end

def load_conversation_with(contact) do
messages = Query.SmsMessageStore.load_messages_with(contact)
%Schema.Conversation{contact: contact, messages: messages}

end

These functions use the queries that we wrote earlier, but they each wrap the
result in a helpful Conversation struct. This is entirely optional, but it leads to
a nicer function for the rest of the application.

And that’s it for our application’s query layer! We aren’t actually doing any-
thing with it yet, but the next chapter pulls everything together to make our
application take shape.

Wrapping Up
Ecto is a library for data mapping and database queries. It takes a different
design approach than Ruby’s ActiveRecord library, but somehow it ends up
feeling familiar. Many of the concepts and terms are similar between the
libraries, so you’ll be right at home as you learn to use it. Ecto is used to
query the database, translate data into your application, and change data
from your application.

Ecto schemas are modules that define your application’s data structure. Ecto
uses a schema to know how to map data from the database into an Elixir
struct. You can define associations in your Ecto schema, such as one-to-one,
one-to-many, and many-to-many associations. These associations are stan-
dardized across database libraries, so they feel identical to ActiveRecord
associations.

Migrations are used to create your database tables, fields, and indices. Ecto
has a robust data migration format that’s similar to ActiveRecord migrations.
But you have to be careful with migrations. Anytime that you change the
structure of a database, you run the risk of causing problems in your appli-
cation or with your database performance. These risks exist in any migration
library, so they aren’t an Ecto issue. There are best practices that you can
follow to reduce the risks.

Chapter 6. Persisting Data with Ecto • 114

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Ecto changesets are used to insert or update data, and they are significantly
different than the approach ActiveRecord takes. Changesets really highlight
the functional nature of Elixir. Changesets are built over several function
calls: start with the source data, cast input parameters to the right format,
and validate that the data is in a valid format. Once you have a valid
changeset, you use Repo.insert or Repo.update to persist the data to the database.

Every application needs to query data from a database. Ecto provides some
helpful functions like Repo.get_by that quickly find data in the database. But
you often need to write custom queries with advanced filters, joins, and
ordering. The Ecto.Query module provides a complete query DSL that feels a bit
like SQL. Ecto.Query is integrated into the Elixir language, so it feels natural to
use. And it knows about your Ecto schemas, so it can verify that fields exist
and are in the correct format.

Finally, you created a context module to expose the public functions of our
application. Contexts are useful to organize your application into distinct
groupings. But don’t sweat the details of contexts too much. Make the best
decision for your application contexts based on the information you have at
the moment, but remember that you can easily change a context over time.

We’ll use this chapter’s queries and data in the next chapter. We’ll create an
API and interface for our application using the Phoenix framework. Things
will take shape rapidly, so get ready!

report erratum  •  discuss

Wrapping Up • 115

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CHAPTER 7

Serving Requests with Phoenix
Phoenix is the biggest name in the Elixir ecosystem. If you’ve heard of Elixir
before this book, there’s a high chance that you’ve heard about Phoenix or
Phoenix LiveView. We can’t cover everything that Phoenix can do in a single
chapter, but you’ll learn enough to be dangerous with it.

Phoenix is a web-development framework that uses the Model-View-Controller
(MVC) design pattern. It’s well-integrated into the Elixir ecosystem primarily
due to it being the most widely used framework in Elixir. On the surface, it’s
similar to Ruby on Rails, but it’s fundamentally different in its goals and
philosophy.

We’ll go over the basics of Phoenix in this chapter. You’ll serve web requests
with controllers, use an asset pipeline for static assets, and learn about
components for a clean UI. We’ll use the Ecto-based data layer that we wrote
in the previous chapter in order to read and write data.

Finally, we’ll finish the chapter by looking at what else Phoenix can do.
Phoenix’s primary use case is web requests, but there are other offerings such
as Phoenix Channels, Phoenix LiveView, and the authentication generator.
We won’t go deep into these topics, but you can continue learning about them
in the official docs.

Let’s start by going over what Phoenix is and how it compares to Rails!

Explore the Foundations of Phoenix
Phoenix is Elixir’s most popular web-development framework. On the surface,
this seems like it would be a large library with a ton of code, but it’s actually
fairly lightweight. (As of writing this paragraph, there are 46 files in the main
lib/phoenix folder of the project.) This simplicity means that it’s relatively quick
to learn how to effectively use Phoenix to write web applications.

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The differences between Rails and Phoenix are numerous—they are different
frameworks, have different goals, and are built for different programming
paradigms! Instead of attempting to list specific differences, this section covers
major differences in the goals and development of each framework.

We’re covering as much of Phoenix in this chapter as we can, but there’s a
dedicated book if you want more. Check out Programming Phoenix 1.4 [TV19]
by Chris McCord (Phoenix’s creator), Bruce Tate, and José Valim.

Let’s first look at how Phoenix can work with so little code, and then we’ll
compare Phoenix and Rails. Let’s get started!

What Is Phoenix?
Phoenix is a fairly lightweight library, but it has a ton of features. This is due
to the core Phoenix library integrating with other libraries to achieve key
features. You won’t often interface with these other libraries directly, but it’s
important to know about them in case something goes wrong or you need to
change a setting.

Here are the features that Phoenix brings to the table, either directly or
through integrations with other libraries:

Serve Web Requests via Controller Modules
Serving web requests is the core feature of Phoenix. Phoenix interfaces
with the Plug1 library to make this possible. Plug consists of a pipeline
that lets you modify a web request via composable middleware modules.
This is similar to how Rack2 works in Ruby.

Provide HTML Helpers, Templates, and Components
Phoenix provides the Phoenix.HTML3 package for HTML-related helper
modules. Phoenix also provides a component framework4 via the phoenix_
live_view package, so you can easily convert frontend code into components
and use them across your application. Phoenix components are becoming
more prominent, and they will likely replace Phoenix.HTML in the future.

Integrate with a Web Server That Works out of the Box
Phoenix doesn’t provide a web server, but it uses Bandit5 instead. Bandit
is a pure-Elixir web server that’s built for high concurrency and safety.

1. https://hexdocs.pm/plug/readme.html
2. https://github.com/rack/rack
3. https://github.com/phoenixframework/phoenix_html
4. https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html
5. https://github.com/mtrudel/bandit

Chapter 7. Serving Requests with Phoenix • 118

report erratum  •  discuss

https://hexdocs.pm/plug/readme.html
https://github.com/rack/rack
https://github.com/phoenixframework/phoenix_html
https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html
https://github.com/mtrudel/bandit
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Previously, a pure-Erlang web server called Cowboy6 was the default web
server.

Integrate with Ecto to Provide Data Access
Ecto works well with Phoenix. The Phoenix/Ecto7 package integrates Ecto
changesets and structures into Phoenix’s form helpers. This creates a
seamless experience when using Ecto changesets in Phoenix controllers
and views.

Provide Real-Time Foundations
Phoenix provides the foundation for creating real-time web applications
via Channels. Phoenix provides WebSocket support as well as helpers
that make it easy to write real-time applications. The Phoenix LiveView8

package takes this a step further with server-rendered real-time HTML.

You may have noticed something: these features are all web-request related.
There’s no mailer, job system, database, or storage code found in Phoenix.
This highlights a fundamental difference between Rails and Phoenix. Let’s
dig into that.

External Web Servers

BEAM-based web servers are scalable enough to use without a
proxy in front of them. It’s a common pattern in many other lan-
guages (including Ruby) to use a proxy (nginx, Apache, and so on)
that can handle a large amount of concurrent connections. This
is due to concurrency limitations in Ruby and other languages.

Due to the BEAM’s concurrency model, it’s possible to run a pro-
duction-grade web application without a proxy in front of it. This
simplifies deployments without sacrificing safety.

How Does Phoenix Compare to Rails?
It has been a goal from the beginning of Rails that “Rails is omakase.”9

Omakase means “I leave the details up to you,” so Rails intends to provide
all of the features needed to create a high-quality application. Ruby has a
rich gem ecosystem, but Rails has absorbed and recreated popular gems into
the framework itself. The all-in-one nature of Rails—and how the framework

6. https://github.com/ninenines/cowboy
7. https://hexdocs.pm/phoenix_ecto/main.html
8. https://github.com/phoenixframework/phoenix_live_view
9. https://dhh.dk/2012/rails-is-omakase.html

report erratum  •  discuss

Explore the Foundations of Phoenix • 119

https://github.com/ninenines/cowboy
https://hexdocs.pm/phoenix_ecto/main.html
https://github.com/phoenixframework/phoenix_live_view
https://dhh.dk/2012/rails-is-omakase.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


actually extends parts of the language itself—leads to a distinction in the
Ruby community between “Ruby developers” and “Rails developers.”

This philosophy is entirely different in Phoenix.10 Phoenix aims to be a high-
quality web framework. It provides a relatively minimal set of web-oriented
features (listed in the previous section) that have a specific focus. If you want
to do things it doesn’t offer, it encourages you to pull in external libraries to
solve those goals.

A big difference between Rails and Phoenix is the amount of “magic” in each.
Magic refers to things that work in a particular way, but it’s difficult to trace
how exactly they work. This is also known as implicit behavior.

Rails is full of magic. This feels great in many ways, but it becomes difficult
to debug problems as your application scales. Phoenix avoids magic. When-
ever possible, things are done explicitly and in a way that you can trace more
easily. As an example, look at how each framework handles HTTP middleware.
Rails implicitly loads a default set of middleware that can be confusing to find
and modify. Phoenix lists all of the middleware in MyAppWeb.Endpoint, so you
can quickly see exactly what is running and in what order.

This chapter isn’t meant to come across as “Phoenix is better than Rails.” It’s
meant to highlight some of the differences between them so that you can
decide what’s best for yourself. On the surface, they share a lot of similarities,
but the differences run deep and are often based on differences of opinion.

Before we can get started actually working with Phoenix, you’ll need to make
sure your code is ready.

Prep Your Project
We’ll continue the project started in the previous chapter. Some of the code
that we need to write is tedious and isn’t well-suited for a book. Instead, you
can copy the code from the online code listings into your project.

Book Source Code

The source code for this book can be found in its zip file on the
PragProg website.11 When you extract this zip file, you’ll receive a
code directory with subfolders under it.

10. https://dockyard.com/blog/2015/11/18/phoenix-is-not-rails
11. https://media.pragprog.com/titles/sbelixir/code/sbelixir-code.zip

Chapter 7. Serving Requests with Phoenix • 120

report erratum  •  discuss

https://dockyard.com/blog/2015/11/18/phoenix-is-not-rails
https://media.pragprog.com/titles/sbelixir/code/sbelixir-code.zip
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Execute the following commands to copy important files over. The prefix code
refers to the folder you just downloaded. Run this in the phone_app project
folder that you started in the previous chapter.

$ cp code/phone_app/priv/repo/seeds.exs priv/repo/seeds.exs
$ cp code/phone_app/priv/repo/delete_seeds.exs priv/repo/delete_seeds.exs
$ cp code/phone_app/lib/phone_app_web/components/layouts/app.html.heex

lib/phone_app_web/components/layouts/app.html.heex
$ cp -R code/phone_app/lib/phone_app_web/controllers/message_html

lib/phone_app_web/controllers
$ cp code/phone_app/lib/phone_app/conversations/schema/new_message.ex

lib/phone_app/conversations/schema/new_message.ex

Add the following dependencies to mix.exs at the end of the deps/0 function and
then run mix deps.get:

phone_app/mix.exs
{:ex_phone_number, "~> 0.3"},
{:faker, "~> 0.17", only: [:dev, :test]},

Run the seeds.exs script that you just grabbed from the code listing. A “seed
script” is a script that sets up test data for local use. Our script creates records
for 500 different SMS messages between 20 different phone numbers.

At this point, you should be able to start the app with minimum warnings:

$ mix run priv/repo/delete_seeds.exs
$ mix run priv/repo/seeds.exs

You’ll see warnings about missing routes at this point. We’ll fix those up
throughout the chapter.

Port 4004 Instead of 4000
Update your config/dev.exs file to point to port 4004 instead of 4000:

phone_app/config/dev.exs
config :phone_app, PhoneAppWeb.Endpoint,

http: [ip: {127, 0, 0, 1}, port: 4004],

This change will remove potential headaches where your application is running
on the default port that may already be in use. The rest of this book will
assume port 4004 for all requests.

Let’s finally get started with Phoenix. We’ll start by looking at the request
lifecycle, and then we’ll write our controller.

report erratum  •  discuss

Explore the Foundations of Phoenix • 121

http://media.pragprog.com/titles/sbelixir/code/phone_app/mix.exs
http://media.pragprog.com/titles/sbelixir/code/phone_app/config/dev.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Route Requests Through Phoenix
As requests come into an application, it’s important that they get sent to the
right function in your application. Along the way, they’ll get transformed and
interacted with by middleware functions. Middleware can serve any purpose,
but you’ll often write middleware to set common data and validate that the
request can be served.

Phoenix uses the Plug12 library, which refers to middleware as “plugs.” Plugs
can be either functions or modules.

Let’s look at how Phoenix encapsulates plugs inside of the Phoenix.Endpoint
module. Once we get these basics down, we’ll move on to our controller.

How Requests Flow
The Phoenix generator creates several files as part of its generation process.
These files relate to one of three things: your application code that lives in
PhoneApp, your web-specific code that lives in PhoneAppWeb, or the configuration
files. The App and AppWeb namespaces are best practices that encourage sepa-
ration and clarity between your application logic and web logic.

One of the files that the Phoenix generator created—when you ran mix phx.new
in Chapter 6—is called PhoneAppWeb.Endpoint. An Endpoint13 manages the request
lifecycle for any requests sent to it. (By default, your application has a single
endpoint, but you can actually mount multiple endpoints on different ports.)

Our PhoneAppWeb.Endpoint module found at lib/phone_app_web/endpoint.ex has about
50 lines of code that outline exactly what happens in our application request
lifecycle. The basic shell looks like this:

phone_app/lib/phone_app_web/endpoint.ex
defmodule PhoneAppWeb.Endpoint do

use Phoenix.Endpoint, otp_app: :phone_app

# ... Many lines outlining your application's request flow
end

The line usePhoenix.Endpoint brings in all of the functionality needed for this module
to be an endpoint. This file has many more lines, but we won’t go through each
one. Instead, here’s the most important section:

12. https://hexdocs.pm/plug/Plug.html
13. https://hexdocs.pm/phoenix/Phoenix.Endpoint.html

Chapter 7. Serving Requests with Phoenix • 122

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/endpoint.ex
https://hexdocs.pm/plug/Plug.html
https://hexdocs.pm/phoenix/Phoenix.Endpoint.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/lib/phone_app_web/endpoint.ex
plug Plug.MethodOverride
plug Plug.Head
plug Plug.Session, @session_options
plug PhoneAppWeb.Router

The plug function is used to define the middleware that each request goes
through. You don’t need to worry about all of the default plugs that Phoenix
includes, but you can always view the source or remove the plug from the
endpoint if needed. There are no magic (implicit) plugs in your applica-
tion—only what you see in this file.

The line plug PhoneAppWeb.Router passes a request through our application-specific
routing code. Let’s dive into this module.

Routing Basics
Phoenix and Rails both use a central router to dispatch a request to the correct
handler. These routers use a similar scheme to each other, so they feel familiar.

The Phoenix generator created the PhoneAppWeb.Router module for us. This
module serves as the central router for your application, and it comes with
a few lines of code to help you get started:

phone_app/lib/phone_app_web/router.ex
defmodule PhoneAppWeb.Router do

use PhoneAppWeb, :router

pipeline :browser do
plug :accepts, ["html"]
plug :fetch_session
plug :fetch_live_flash
plug :put_root_layout, {PhoneAppWeb.Layouts, :root}
plug :protect_from_forgery
plug :put_secure_browser_headers

end

pipeline :api do
plug :accepts, ["json"]

end

scope "/", PhoneAppWeb do
pipe_through :browser

get "/", PageController, :home
end

end

The first line is a use function, but it looks a bit odd. Rather than using an
external Phoenix module, it’s using PhoneAppWeb. This pattern is used by

report erratum  •  discuss

Route Requests Through Phoenix • 123

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/endpoint.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/router.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Phoenix’s generator to help your application feel a bit cleaner. The generated
code for this module uses a bit of dynamic programming, but we can see that
the router function just uses and imports other modules:

phone_app/lib/phone_app_web.ex
defmodule PhoneAppWeb do

# Phoenix uses dynamic programming to clean up the `use` function
defmacro __using__(which) when is_atom(which) do

apply(__MODULE__, which, [])
end

def router do
quote do

use Phoenix.Router, helpers: false

# Import common connection and controller functions to use in pipelines
import Plug.Conn
import Phoenix.Controller
import Phoenix.LiveView.Router

end
end

end

You’ll see this pattern in most modules that use Phoenix modules—it keeps
your application code cleaner.

Let’s go back to our router. The pipeline function defines a set of plugs that a
particular request will flow through. This lets you conditionally invoke mid-
dleware based on the route being called.

A pipeline is referenced with the pipe_through/1 function. If necessary, you can
pipe through multiple pipelines, such as pipe_through [:api, :authenticated].

The scope function is used to group a collection of routes together. The way
that you scope your requests will depend on your application but is often
done based on different authentication needs or URL grouping.

The line get "/", PageController, :home defines a handler for requests to GET /. A request
will be sent to the PhoneAppWeb.PageController.home/2 function. There are other func-
tions corresponding to different HTTP verbs, such as post, put, and delete.

In addition to individual HTTP verbs, you can use resources/414 to define a full
suite of endpoints in one line. For example, the following line of code would
produce the noted routes:

resources "/widgets", WidgetController

# The following routes are generated, viewable with `mix phx.routes`

14. https://hexdocs.pm/phoenix/Phoenix.Router.html#resources/4

Chapter 7. Serving Requests with Phoenix • 124

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web.ex
https://hexdocs.pm/phoenix/Phoenix.Router.html#resources/4
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


GET /widgets PhoneAppWeb.WidgetController :index
GET /widgets/:id/edit PhoneAppWeb.WidgetController :edit
GET /widgets/new PhoneAppWeb.WidgetController :new
GET /widgets/:id PhoneAppWeb.WidgetController :show
POST /widgets PhoneAppWeb.WidgetController :create
PATCH /widgets/:id PhoneAppWeb.WidgetController :update
PUT /widgets/:id PhoneAppWeb.WidgetController :update
DELETE /widgets/:id PhoneAppWeb.WidgetController :delete

Notice that some of the routes have :id in them. This is a route parameter that
will be passed to the controller action. All of this should feel familiar—routes
are defined almost identically to how they are in Rails.

That’s enough theory, let’s get to code. We’ll define our first route, create the
controller and action, and render HTML via a template.

Serve Requests with Phoenix Controllers
Phoenix uses the Model-View-Controller (MVC) design pattern. MVC manifests
in different ways depending on the framework and use case. MVC has three
distinct parts. Models hold and operate on the data of the application. Views
represent what the user sees and interacts with. Controllers accept input
from a client and coordinate all of the important logic that’s needed to serve
a request. This all happens in a repetitive cycle as a user uses your application.

Rails uses this same pattern, so this should feel familiar. This pattern emerges
naturally as you use Phoenix, so you don’t need to worry about the details
too much right now. As you proceed through the chapter, you’ll see the sepa-
ration between views, controllers, and your application logic. Let’s jump right
in and create a controller action.

Write Our First Controller Action
A good strategy to start a new endpoint is to work as the request flows. This
means that we’ll work from router, to controller, to data, and finally to views.
This takes place over several modules across the entire application—everything
works together to give us the final result. Add the following routes to the
PhoneAppWeb.Router module:

phone_app/lib/phone_app_web/router.ex
scope "/", PhoneAppWeb do

pipe_through :browser

get "/messages", MessageController, :index
get "/messages/new", MessageController, :new
post "/messages/new", MessageController, :create
get "/messages/:contact_id", MessageController, :show

end

report erratum  •  discuss

Serve Requests with Phoenix Controllers • 125

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/router.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Don’t remove the default PageController route in your project—normally you
would delete this route, but keep it so you don’t get test failures in Chapter
10, Testing Elixir, on page 171.

We’ll work through each of these four routes by the end of the chapter.

We could have used resources/4 for our routes, but it doesn’t quite fit with the
URL structure. So we use the longer form instead.

If you tried to start the app now, you would see many warnings about Message-
Controller being undefined. Let’s create that module and add our first action:

phone_app/lib/phone_app_web/controllers/message_controller.ex
defmodule PhoneAppWeb.MessageController doLine 1

use PhoneAppWeb, :controller-

-

plug :load_conversation_list-

5

def index(conn, _params) do-

case conn.assigns.conversation_list do-

[%{contact: contact} | _] ->-

path = ~p(/messages/#{contact.id})-

redirect(conn, to: path)10

-

[] ->-

redirect(conn, to: ~p(/messages/new))-

end-

end15

-

defp load_conversation_list(conn, _params) do-

conversations = PhoneApp.Conversations.load_conversation_list()-

assign(conn, :conversation_list, conversations)-

end20

end-

A lot is going on here, so let’s break it all down. The first thing you’ll notice
is the use function on line 2. This is the same pattern that was used in the
router earlier—it sets up the necessary code to make our controller work.

The plug on line 4 acts like a before_action filter in Rails. The load_conversation_list/2
function will be called for every action in this controller. Each page of this
app has a sidebar that contains all conversations, so the plug ensures the
data is always loaded.

The load_conversation_list/2 function calls the Conversations context module to load
the conversation list. (You added these functions in the previous chapter.)
assign/3 is used on line 19 to set this data in a special location called assigns.
Assigns can be accessed in the conn struct—as on line 7—and in templates.

Chapter 7. Serving Requests with Phoenix • 126

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_controller.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The index/2 function is called whenever the URL http://localhost:4004/messages is
loaded. It’s called with a Plug.Conn struct that includes everything about the
request, and the params provided for the request. If the conversation list has
a conversation, then the request will be routed by the redirect/2 function to the
detail page for that message. If the conversation list doesn’t have any mes-
sages, then the request will redirect to a form to send a new message.

The code path = ~p(/messages/#{contact.id}) uses an important concept called ver-
ified routes.15 The ~p sigil verifies that the provided route is present in your
application and can be used. It would emit a warning if you were to replace
the path with ~p(/nope).

Start the app with iex -S mix phx.server and navigate to http://localhost:4004/messages.
Your browser will redirect to the detail page. We haven’t defined it yet, so
Phoenix shows the error “function PhoneAppWeb.MessageController.show/2
is undefined or private.” If you get redirected to /messages/new, make sure that
you run the seed functions from the previous section.

Next, let’s define the show action.

Serve HTML via a Controller Action
The show action will be the main view for our user interface. It will display the
selected conversation and will present a form to send a new SMS message.

To achieve this behavior, our action will need to load the contact, load the
conversation with that contact, and assign a changeset to power the form.
Add the following code to the MessageController module:

phone_app/lib/phone_app_web/controllers/message_controller.ex
def show(conn, params = %{"contact_id" => contact_id}) do

contact = PhoneApp.Conversations.get_contact!(contact_id)
conversation = PhoneApp.Conversations.load_conversation_with(contact)

conn
|> assign(:conversation, conversation)
|> assign(:changeset, changeset(params))
|> render("show.html")

end

defp changeset(params) do
conversation_params = Map.get(params, "message", %{})
PhoneApp.Conversations.new_message_changeset(conversation_params)

end

15. https://hexdocs.pm/phoenix/routing.html#verified-routes

report erratum  •  discuss

Serve Requests with Phoenix Controllers • 127

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_controller.ex
https://hexdocs.pm/phoenix/routing.html#verified-routes
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


In addition, add the following line to the Conversations module:

phone_app/lib/phone_app/conversations/conversations.ex
defdelegate new_message_changeset(params),

to: Schema.NewMessage,
as: :changeset

The show function is fairly straightforward. We use the context functions to
query for our data and to set up a changeset. (You copied the NewMessage
module into the app earlier in this chapter.)

We won’t cover the entire NewMessage changeset, but it follows a powerful pat-
tern for forms:

phone_app/lib/phone_app/conversations/schema/new_message.ex
defmodule PhoneApp.Conversations.Schema.NewMessage do

use Ecto.Schema
import Ecto.Changeset

embedded_schema do
field :to, :string
field :body, :string

end

def changeset(attrs) do
fields = [:to, :body]
attrs = force_country_code(attrs)

%__MODULE__{}
|> cast(attrs, fields)
|> validate_required(fields)
|> validate_change(:to, &validate_phone_number/2)

end

# ...data functions below
end

This schema and changeset don’t write data to the database. They only validate
data and turn it into a predictable format. The Phoenix form helpers know how
to work with this data to create a form. It all fits together pretty seamlessly!

If you load the app at this point, you’ll see an error that “no show html tem-
plate defined for PhoneAppWeb.MessageHTML.” We need to create a view that
Phoenix can use to render HTML.

Create a file at phone_app_web/controllers/message_html.ex with the following contents:

phone_app/lib/phone_app_web/controllers/message_html.ex
defmodule PhoneAppWeb.MessageHTML do

use PhoneAppWeb, :html

embed_templates "message_html/*"
end

Chapter 7. Serving Requests with Phoenix • 128

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/conversations.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/schema/new_message.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_html.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


A bit of magic is going on here. Phoenix will use the PhoneAppWeb.MessageHTML
module when the PhoneAppWeb.MessageController calls the render function. If the
request was for JSON data, then PhoneAppWeb.MessageJSON would be used instead.
This lets you build a single controller that responds to both HTML and JSON
data through the relevant views. (This is similar to Rail’s render method.)

The embed_templates/1 function tells the view to use external HTML templates.
You can also use inline HTML with the ~H16 sigil, but our views are large
enough to warrant separate files. You’ll see how to use ~H later in this chapter.

You already copied the .html.heex templates earlier in this chapter, so the views
are already in your project.

Start your server with iex -S mix phx.server and load http://localhost:4004/messages.
You’ll see a list of conversations on the left-hand sidebar and a loaded conver-
sation in the center, as in the following figure.

If you try to submit the form, you’ll see it doesn’t work. We’ll add that next!

Take Action on User Input
We don’t have a create action defined, so our form raises “function PhoneApp-
Web.MessageController.create/2 is undefined or private” when we submit it.

16. https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html#sigil_H/2

report erratum  •  discuss

Serve Requests with Phoenix Controllers • 129

https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html#sigil_H/2
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Let’s create a basic action that creates an SMS message. (In the next chapter,
we’ll connect our app to a mock SMS server that sends and receives Twilio-
compatible SMS messages.)

Add the following functions to the MessageController:

phone_app/lib/phone_app_web/controllers/message_controller.ex
def new(conn, params) do

render(conn, "new.html", changeset: changeset(params))
end

phone_app/lib/phone_app_web/controllers/message_controller.ex
def create(conn, params) do

create_changeset = changeset(params)

case Ecto.Changeset.apply_action(create_changeset, :insert) do
{:ok, message_params} ->

case PhoneApp.Conversations.send_sms_message(message_params) do
{:error, err} when is_bitstring(err) ->

conn
|> put_flash(:error, err)
|> new(params)

{:ok, _result} ->
redirect(conn, to: ~p(/messages))

end

{:error, changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

This function first checks if the NewMessage changeset is valid or not. This
checks that the phone number is correct and that all fields are included cor-
rectly. If the parameters are valid, then the send_sms_message/1 context function
is called.

The controller will either render the new.html template with errors, render
new.html with a flash message, or redirect to the contact conversation.

Flash is the only concept we haven’t talked about already. Flash messages17

are session-persisted messages that display on the next page load. In our
app, they are rendered in the layouts/app.html.heex file.

Our app doesn’t have a send_sms_message/1 function. Let’s add a mock version
that persists to the database but doesn’t actually send an SMS message.

17. https://hexdocs.pm/phoenix/controllers.html#flash-messages

Chapter 7. Serving Requests with Phoenix • 130

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_controller.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_controller.ex
https://hexdocs.pm/phoenix/controllers.html#flash-messages
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/lib/phone_app/conversations/conversations.ex
def send_sms_message(params = %Schema.NewMessage{}) do

# This version of send_sms_message uses mock data, it doesn't
# make an HTTP request.
#
# Later, we will write a new version that sends an HTTP request
# to a mock SMS server.
params = %{

message_sid: "mock-" <> Ecto.UUID.generate(),
account_sid: "mock",
body: params.body,
from: "mock",
to: params.to,
status: "mock",
direction: :outgoing

}

create_sms_message(params)
end

Nothing is exciting here. We’re simply calling the create_sms_message/1 function
with mock data. We’ll fill this out in the next chapter!

Try to fill out the form with various messages. You’ll see that they get added
to the conversation you’re in. You can also press the large plus button at the
top left18 to create a new contact. Attempt to send invalid messages as well.
You can use invalid phone numbers, or submit a message consisting of only
spaces. Everything should work, and errors are presented back to you when
something goes wrong.

Let’s switch gears and end this section by looking at how our web server is
started.

How Does Our Server Start?
In this chapter, you started a web server with iex -S mix phx.server. It’s easy to
take this for granted, but it’s useful to recognize why a server starts and what
port it starts on.

Phoenix uses configuration files to set up certain parts of the framework. If
you look at the config/dev.exs file, you’ll see a line that tells Phoenix to configure
a server on port 4004:

phone_app/config/dev.exs
config :phone_app, PhoneAppWeb.Endpoint,

http: [ip: {127, 0, 0, 1}, port: 4004],

18. http://localhost:4004/messages/new

report erratum  •  discuss

Serve Requests with Phoenix Controllers • 131

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/conversations.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/config/dev.exs
http://localhost:4004/messages/new
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


You could change this line to change the port that Phoenix dev environment
runs on.

This configuration alone doesn’t actually start a server. The mix phx.server
command that we run has special instructions19 that tell Phoenix to start a
server. It looks something like this:

def run(args) do
Application.put_env(:phoenix, :serve_endpoints, true, persistent: true)
Mix.Tasks.Run.run(open_args(args) ++ run_args())

end

Because you have to explicitly tell Phoenix to start a server, one of the big
mistakes that people make when deploying a Phoenix app isn’t starting the
server. This has largely been fixed by clearer documentation in the Phoenix
deployment guides and generated code that configures it correctly. But keep
an eye on this if you notice that your application is starting without a web
server.

Let’s briefly talk about bundling and serving static assets in Phoenix.

Manage Static Assets
Phoenix takes a hands-off approach to your asset pipeline. This lets you build
and bundle your JavaScript, CSS, images, fonts, and other assets the way
that you want to. It would be a bit cumbersome if there wasn’t some way to
manage assets out of the box, so the phx.new generator sets up a basic asset
pipeline for you.

Phoenix 1.7 installs an esbuild-powered20 asset pipeline. Esbuild is an asset
bundler that’s extremely fast and doesn’t rely on external languages to be
installed. It dramatically simplifies the development and deployment of assets
when compared to Webpack-based pipelines.

The Phoenix generator also sets up Tailwind CSS21 for you. Tailwind is a class-
based CSS library that has become very popular. Tailwind lets you apply
styles directly in your HTML instead of writing custom CSS. (I personally love
Tailwind.)

The asset pipeline is configured inside of the config.exs file. You can see the
relevant lines here—these are already in your project so you don’t need to
type anything out:

19. https://github.com/phoenixframework/phoenix/blob/v1.7.6/lib/mix/tasks/phx.server.ex
20. https://esbuild.github.io/
21. https://tailwindcss.com/

Chapter 7. Serving Requests with Phoenix • 132

report erratum  •  discuss

https://github.com/phoenixframework/phoenix/blob/v1.7.6/lib/mix/tasks/phx.server.ex
https://esbuild.github.io/
https://tailwindcss.com/
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/config/config.exs
# Configure esbuild (the version is required)
config :esbuild,

version: "0.17.11",
default: [

args:
~w(

js/app.js
--bundle
--target=es2017
--outdir=../priv/static/assets
--external:/fonts/*
--external:/images/*

),
cd: Path.expand("../assets", __DIR__),
env: %{"NODE_PATH" => Path.expand("../deps", __DIR__)}

]

# Configure tailwind (the version is required)
config :tailwind,

version: "3.2.7",
default: [

args: ~w(
--config=tailwind.config.js
--input=css/app.css
--output=../priv/static/assets/app.css

),
cd: Path.expand("../assets", __DIR__)

]

Plus, the dev environment will automatically reload assets using watcher
scripts:

phone_app/config/dev.exs
watchers: [

esbuild:
{Esbuild, :install_and_run, [:default, ~w(--sourcemap=inline --watch)]},

tailwind:
{Tailwind, :install_and_run, [:default, ~w(--watch)]}

]

You don’t need to worry about changing these options until you have specific
asset needs—they work great out of the box.

The most important part of the asset pipeline is the output directory. Phoenix
expects to find assets in the priv/static/assets folder. The generator sets this up
properly, but keep this in mind if you choose to use another asset pipeline
tool like Webpack.

report erratum  •  discuss

Manage Static Assets • 133

http://media.pragprog.com/titles/sbelixir/code/phone_app/config/config.exs
http://media.pragprog.com/titles/sbelixir/code/phone_app/config/dev.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


If you want to leverage esbuild plugins, or if you want to use something else,
then follow the instructions in the Phoenix Asset Management docs.22 You
can also generate your Phoenix application to not include assets by changing
the options passed to mix phx.new.23

When you are ready to ship to production, it’s important to “digest” your
assets. Digesting gives a unique hash to each file—based on its contents—so
you can easily cache your assets. Your build pipeline should call mix phx.digest
to achieve this, and Phoenix will include the correct files automatically. Asset
instructions are included in the Phoenix deployment docs, so we won’t go
over it further in this chapter.

Let’s switch over to a topic that’s frontend-adjacent. We’ll look at how to use
components to clean up your frontend HTML code.

Use Components to Keep Your User Interface Clean
It’s important to give your users consistent style and interaction across your
application. Your buttons, modals, lists, tables, and so on should all feel like
they belong together. This is done by using consistent CSS styles and Java-
Script code across your frontend. You could do this by ensuring perfect HTML
and CSS class usage across your application, but that’s bound to have inconsis-
tencies appear. Of course, Phoenix supports a better way—components.

Components are self-contained HTML templates, but they offer benefits over
normal HTML. Components let you define the attributes that are required to
use them, so you can be sure they’re used in the proper way across your app.
They can do a lot more, but we’ll only go over their basics in this chapter.

Components are implemented in modules that include use Phoenix.Component.
Similar to routers and controllers, the PhoneAppWeb module has a function that
handles this for us. So, when you see use PhoneAppWeb, :html, know that it’s
pulling in Phoenix.Component.

You’ve already used a component without knowing it. The templates that you
copied earlier in the chapter have a message_form component that defines the
form used to send an SMS message. We’ll take this message_form component
and define the attributes that go into it. Then we’ll create a few example
components that are separate from our app.

Let’s start by defining our attributes!

22. https://hexdocs.pm/phoenix/asset_management.html
23. https://hexdocs.pm/phoenix/Mix.Tasks.Phx.New.html

Chapter 7. Serving Requests with Phoenix • 134

report erratum  •  discuss

https://hexdocs.pm/phoenix/asset_management.html
https://hexdocs.pm/phoenix/Mix.Tasks.Phx.New.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Component Attributes
Here’s the MessageHTML module that we defined earlier in this chapter:

phone_app/lib/phone_app_web/controllers/message_html.ex
defmodule PhoneAppWeb.MessageHTML do

use PhoneAppWeb, :html

embed_templates "message_html/*"
end

The use of embed_templates automatically turns any templates in the folder into
a component. We have an HTML file located at lib/phone_app_web/controllers/mes-
sage_html/message_form.html.heex, so this makes a message_form component available
for us to use.

We use this component like so:

phone_app/lib/phone_app_web/controllers/message_html/show.html.heex
<li class="w-full">

<.message_form changeset={@changeset} contact={@conversation.contact} />
</li>

We also use it like so:

phone_app/lib/phone_app_web/controllers/message_html/new.html.heex
<div class="mt-4">

<.message_form changeset={@changeset} contact={nil} />
</div>

These files were included with the files you copied in, so you have them in
your project, but you may not have looked through them yet.

This component is pretty simple to use, but it would benefit from defining
the attributes that can go into it. Let’s do so by modifying the MessageHTML
module:

phone_app/lib/phone_app_web/controllers/message_html.ex
# Define the attributes that go into the message_form component, located
# inside of the templates directory.
alias PhoneApp.Conversations

attr :changeset, Ecto.Changeset, required: true
attr :contact, Conversations.Schema.Contact, required: false, default: nil

def message_form(assigns)

Yes, this function head without a body is intentional! The Phoenix.Component
code picks this up and associates the attributes to the correct component.
This means that you can define multiple components inside of the same file.

report erratum  •  discuss

Use Components to Keep Your User Interface Clean • 135

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_html.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_html/show.html.heex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_html/new.html.heex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_html.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Each attribute and its corresponding type are defined by the attr function.
The type can either be a struct or one of a few predefined types such as :string,
:integer, :any, or others.

In addition to the type of attribute, we can define whether it’s required as well
as a default value. Our form always requires an Ecto.Changeset struct, but the
contact attribute is allowed to be nil. There are a few other attribute options24

that you can use. These options serve as compile-time warnings and provide
documentation.

If you start your application, you’ll see that a warning now appears for the
message_html/new.html.heex file:

warning: attribute "contact" in component
PhoneAppWeb.MessageHTML.message_form/1 must be a
{:struct, PhoneApp.Conversations.Schema.Contact}, got: nil

lib/phone_app_web/controllers/message_html/new.html.heex:6

To fix the warning, you can remove the contact: nil attribute from the noted line
(new.html.heex:6).

We get this warning because we’re passing nil in for a component that must
be a Contact struct. This was accepted by the compiler before we defined the
attribute as having a specific type. Once we define its type as a Contact struct,
the compiler provides us with this helpful warning message.

The message_form component is about as basic as it gets. It takes a few known
inputs and renders HTML based on them. But components can actually do
more than that. Let’s look at some of the more advanced features.

Advanced Component Features
Our app is pretty basic, so we don’t have any complex components in it. But
there are a few features that are useful as you’re building out your component
library: ~H sigil and slots.

The ~H sigil lets you embed the HTML for a component directly in an Elixir
function. This is largely a matter of personal preference, but the embedded
template style can be a bit easier to work with. To use it, you simply return
an ~H wrapped string from your component function.

Here’s a basic button component:

24. https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html#attr/3

Chapter 7. Serving Requests with Phoenix • 136

report erratum  •  discuss

https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html#attr/3
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/lib/phone_app_web/controllers/message_html.ex
attr :type, :string, default: "button", values: ["button", "submit"]
attr :text, :string, required: true

def simple_button(assigns) do
~H"""
<button

type={@type}
class="rounded border bg-white text-gray-700 px-4 py-2"

>
<%= @text %>

</button>
"""

end

Everything inside of the ~H sigil will be rendered when we use the simple_com-
ponent:

<.simple_button text="Deliver" type="submit" />

If we wanted to have HTML inside of our button, it wouldn’t work with this
implementation. We can use slots to create a better button interface:

phone_app/lib/phone_app_web/controllers/message_html.ex
attr :type, :string, default: "button", values: ["button", "submit"]
slot :inner_block, required: true

def slot_button(assigns) do
~H"""
<button

type={@type}
class="rounded border bg-white text-gray-700 px-4 py-2"

>
<%= render_slot(@inner_block) %>

</button>
"""

end

Now we can pass in HTML for the button contents:

<.slot_button type="submit">
<strong>Strong Button!</strong>

</.slot_button>

This example uses the default slot called inner_block, but you can have as many
slots as you want by naming the slot. Named slots let you create a component
that consumes and renders multiple content areas. Slots can do even more,
so make sure to check out the excellent docs.25

25. https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html#module-slots

report erratum  •  discuss

Use Components to Keep Your User Interface Clean • 137

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_html.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/message_html.ex
https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html#module-slots
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Core Components
Phoenix includes a (fairly large) module that creates a simple component
system for you. You don’t have to use this module, but it has several useful
components inside of it.

Open up the PhoneAppWeb.CoreComponents module at lib/phone_app_web/components/
core_components.ex and check it out. This module may be a bit intimidating if
you’re new to web development—don’t worry too much about it in that case.

The message_form component uses the input component defined in CoreComponents.
This component renders the styled input—handling different input types
properly—and includes an error section when the form has invalid data.

We won’t go over this file too much, but it’s important to know that it’s here.
You can change this file to fit your application, or you can use it as a pattern
for your own application components.

Before we wrap this chapter, let’s go over a few aspects of Phoenix that didn’t
make it into this book’s project.

Phoenix Is More Than Controllers
Phoenix isn’t an all-in-one web framework, but it does more than just HTTP
requests. This chapter focuses on controllers, views, and components because
those are the foundations, but there’s even more that you can do with Phoenix.

We’ll briefly touch on a few different major features that Phoenix offers:
authentication, Phoenix Channels, and LiveView.

Authentication Generator
There’s a good chance your application will need to support registering users,
logging in, logging out, and restricting access to routes. Phoenix solves this
by offering a generator26 that adds authentication code to your application.

All you have to do is type mix phx.gen.auth Accounts User users to create the user
system inside of the Accounts context. This will create all of the schemas,
migrations, mailers, controllers, and tests. (If you run this in the book project,
make sure to back up the project first.)

The Phoenix generator creates an authentication system in your app, but there
are other libraries that are more like Devise—Ruby’s all-in-one authentication

26. https://hexdocs.pm/phoenix/mix_phx_gen_auth.html

Chapter 7. Serving Requests with Phoenix • 138

report erratum  •  discuss

https://hexdocs.pm/phoenix/mix_phx_gen_auth.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


library. The Pow27 library gives you an integrated authentication solution that
works quite well. (This is my personal authentication library of choice.)

Phoenix Channels
Real-time features have become a staple of the modern tech stack. Real-time
applications push changes from the backend to the frontend so the updated
data is available to users without them having to take action. This creates a
seamless experience that can make an application feel polished and snappy.

Phoenix Channels28 provide an out-of-the-box way to quickly add real-time
features to your application. Channels are backed by Elixir’s process model
and use WebSockets to communicate in soft real-time between the frontend and
backend.

My other book, Real-Time Phoenix [Bus20], covers close to everything about
channels. They come with their own complexities, but Phoenix’s implementa-
tion is truly top-notch.

Phoenix LiveView
Phoenix LiveView29 takes real-time applications to the next level. LiveView is
built on top of channels to provide a new real-time programming model.

In LiveView, the server manages all of the HTML and state of your application.
The server pushes the HTML to the client and ensures it’s updated as the
state changes on the server. Essentially, LiveView completely replaces con-
trollers and a lot of JavaScript.

One of the great things about LiveView is that Phoenix templates and compo-
nents work there. If you learn how to write templates and business logic with
Phoenix Controllers, you can take everything you’ve learned and move it over
to LiveView!

Make sure to check out Programming Phoenix LiveView [TD24] by Bruce Tate
and Sophie DeBenedetto. It’s the best book to get started with LiveView!

Wrapping Up
Phoenix is one of the main libraries for Elixir application development. Phoenix
is a bit like Rails in that it is the most prominent library in the ecosystem,
but it has a significantly different objective than Rails does. Rails seeks to be

27. https://github.com/pow-auth/pow
28. https://hexdocs.pm/phoenix/channels.html
29. https://hexdocs.pm/phoenix_live_view/welcome.html

report erratum  •  discuss

Wrapping Up • 139

https://github.com/pow-auth/pow
https://hexdocs.pm/phoenix/channels.html
https://hexdocs.pm/phoenix_live_view/welcome.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


everything you need to build web apps, but Phoenix focuses only on serving
requests. Phoenix integrates with other key libraries—like Ecto—to create a
seamless experience for Elixir web developers.

Requests flow through Phoenix in a similar way to Rails apps. Requests enter
the application and run through an Endpoint module. The endpoint processes
the request and eventually submits it to the Router module. Your application
router will determine how the request should be processed and then will
submit it to a Controller module. Finally, your controller executes the request
and returns a result to the client. This entire process is explicit in Phoenix,
so you can trace exactly how a request is handled by your application.

Controllers accept input from users and determine how to process a request.
They coordinate with the rest of your application. It’s most common to have
controllers call into your application code to do things like read and write
from the database. Once a controller has processed a request, it renders a
response (HTML, JSON, or other formats) that’s returned to the client. Often,
view-modules (like MessageHTML) are used to render the correct HTML.

The frontend of large applications can quickly become unwieldy. Use Phoenix
components to create self-contained components. You can optionally define
the attributes that a component supports—this helps ensure you always call
a component the right way, with attributes of the correct type. Phoenix comes
with a CoreComponents module that defines many helpful components for
quickly building an application.

Phoenix doesn’t care too much about your asset pipeline, but it does come
with an esbuild-powered pipeline that includes TailwindCSS. You can swap
out the asset pipeline for any other system you prefer. But make sure to hash
your assets properly and include your assets in the application-build process.

Phoenix provides some awesome libraries and features that we don’t cover in
this book. The authentication generator gives you an entire user-based
authentication system in a few commands. Phoenix channels provide a
foundation to create real-time enabled applications. Finally, Phoenix LiveView
provides a totally new paradigm for web development with a real-time web
framework that lives on the server.

Phoenix is one of the most important libraries, so you’ll get familiar with it
as you build more Elixir applications. One thing that it doesn’t do is make
outbound HTTP requests. In the next chapter, we’ll explore how the Req library
allows us to perform outbound HTTP requests in our app.

Chapter 7. Serving Requests with Phoenix • 140

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CHAPTER 8

Outbound HTTP Requests with Req
Applications rarely exist in isolation. They use APIs (Application Programming
Interfaces) to interact with other applications—whether internal or external—to
achieve their value. Applications interact with each other in many different ways,
but the most common form of interaction is an HTTP-based API. By the end of this
chapter, you’ll have what you need to make your own HTTP requests from Elixir.

On the surface, making HTTP requests seems like an easy problem to solve.
We pick an HTTP request library, integrate it into our application, and then
move on with our day. But the problem is a bit more complex than that. (Don’t
worry, the end result will be straightforward.)

HTTP clients in Elixir have been continually evolving and growing over the
years. When compared to Ruby, you’ll see a lot of different Elixir HTTP clients.
This means that several options can fill our needs, and it can be a little bit
confusing as to which library we should use. Libraries also sit at different
levels of abstraction, so they have different purposes. But don’t worry, we’ll
use a client that’s great for all applications.

In this chapter, we’ll look at several of the different HTTP clients that are out
there. We’ll settle on Req as our first-choice client, and you’ll use it to imple-
ment an API in our SMS app. And along the way, we’ll cover additional topics
such as application configuration and secrets.

Let’s look at the different HTTP clients that are available in the Elixir ecosystem.

Decide on Which HTTP Client to Use
HTTP clients in Elixir have a long history. Even before Elixir, there were Erlang
clients that are still used to this day in Elixir apps. Knowing the whole history
doesn’t provide you with much benefit, but it will be helpful to understand
the different abstraction levels that clients can sit on top of.

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Once you understand that, we can take a look at the major players and where
they sit. There isn’t a single right answer in the end, but you’ll have a solid
grasp of why we pick Req as our preferred client.

The Various Levels of Abstraction
Let’s walk through the different levels of abstraction from the lowest to the highest.

Sockets
At the lowest level, HTTP requests are made over sockets. These sockets
usually speak TCP.

It’s not common to interface with a raw socket. Erlang provides the :gen_tcp
module to interact with raw sockets over TCP.

Socket Protocol
Sockets exchange packets back and forth, but they need a defined protocol
to communicate effectively with each other. In an HTTP API, the HTTP/1
or HTTP/2 protocol will be used.

Socket protocols are usually implemented by libraries that serve as a
foundation for other libraries. For example, the Postgrex1 library imple-
ments the Postgres protocol on top of a TCP socket.

Pooled Connections
A socket is a single connection, but we need multiple, simultaneous con-
nections to scale our application. Pooled connections use a socket protocol
library and add connection pooling to it.

It’s important to have a handle on connection pooling as you scale an
application. If your pool is too small, then you won’t be able to achieve
the scalability you need. If your pool is too large, then you can send too
many requests to another service and cause it to crash.

A non-HTTP example of this is the pooling library PgBouncer. This library
only pools Postgres connections, but it’s one of the most important tools
for scaling Postgres to high throughput.

All-Included Libraries
At the highest level of abstraction, there are libraries that provide all of
the bells and whistles you’ll need when building your own application.

Simple libraries will provide minimal features but generally give you what
you need to be successful. Extensible libraries give you options that you

1. https://github.com/elixir-ecto/postgrex

Chapter 8. Outbound HTTP Requests with Req • 142

report erratum  •  discuss

https://github.com/elixir-ecto/postgrex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


can override, provide ways to extend the core functionality, and are gen-
erally easier to use in your applications.

Ecto is an example of an extensible library that sits at the highest level
of abstraction. It sits on top of Postgrex for socket protocol and DBCon-
nection for connection pooling.

The Major Players
Let’s look at a few of the major HTTP client libraries. You’ll see these names
in the Elixir community, so it’s important to know what they are and the dif-
ferent roles they fill.

The history of HTTP clients in Elixir actually starts with a familiar face: Erlang.
Let’s look at the clients:

:httpc
Erlang ships with an included HTTP client module called :httpc. It only
supports HTTP/1.1 protocol—not HTTP/2—and is a bit cumbersome to
use. The options needed to properly make SSL requests, for example, are
complex to remember and use.

Because of its relative difficulty, :httpc isn’t commonly used. You’ll see it
used by some low-level libraries that don’t want to include an HTTP library
dependency, but very rarely.

Hackney and HTTPoison
The hackney2 library is an all-included library that lets you make HTTP
requests in Erlang. This isn’t commonly used directly in Elixir. Instead,
HTTPoison3 wraps it and provides a friendly interface.

In the past, there were some problems with Hackney’s security defaults
(particularly around SSL) that caused people to move away from it. Despite
this, you’ll see HTTPoison commonly used even today.

Mint
Mint4 is a socket protocol library for HTTP/1 and HTTP/2. It was written
by members of the Elixir core team (but it isn’t maintained by the core
team) to solve shortcomings with the existing low-level HTTP clients at
the time. It provides a better foundation for higher-abstraction HTTP
clients than :httpc does.

2. https://github.com/benoitc/hackney
3. https://github.com/edgurgel/httpoison
4. https://github.com/elixir-mint/mint

report erratum  •  discuss

Decide on Which HTTP Client to Use • 143

https://github.com/benoitc/hackney
https://github.com/edgurgel/httpoison
https://github.com/elixir-mint/mint
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Mint serves as the foundation for other libraries with higher levels of
abstraction, but you won’t use this in applications.

Finch
Finch5 provides connection pooling on top of Mint.

You could use this in an application, but it’s more common to reach for the
next level of abstraction. Despite this, Finch is very popular even for people
using it directly.

Tesla
Tesla6 is an everything-included Elixir HTTP client. It’s based on a Ruby
library called Faraday. Tesla features an extensible plugin system as well
as provides implementations for common tasks.

Some people prefer Tesla’s module-based configuration and test-mocking
features.

Req
Req7 is an everything-included Elixir HTTP client built on top of Finch. It
features an extensible plugin system as well as provided implementations
for many common tasks.

There are quite a few options here, especially compared to Ruby. Let’s dig
into that.

Compared to Ruby
Ruby has a few commonly used HTTP clients: HTTParty, Faraday, and http.rb.
These clients have been around for some time and appear to be largely
adopted by the community. So, it comes as a bit of a surprise that there are
so many options in Elixir.

There are two potential reasons for this. The first is that Elixir’s concurrency
model means that it’s necessary to have a firm grip on the concurrency of
your HTTP client. For example, if you accidentally issue 500 queries to the
same URL at the same time, you may find that the other side crashes. So,
you’ll see libraries focused on pooling control in Elixir. Ruby is less concurrent,
so you won’t have this same problem and developers don’t have to create
solutions for it.

5. https://github.com/sneako/finch
6. https://github.com/elixir-tesla/tesla
7. https://github.com/wojtekmach/req

Chapter 8. Outbound HTTP Requests with Req • 144

report erratum  •  discuss

https://github.com/sneako/finch
https://github.com/elixir-tesla/tesla
https://github.com/wojtekmach/req
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Another potential reason for the difference in HTTP libraries is that there
hasn’t been a pure-Elixir HTTP client until recently. All of the previous clients
were based on Erlang foundations. Mint, Finch, and Req are all pure-Elixir
libraries, so the chance of these sticking as the go-to libraries is higher than
if they were Erlang-based.

Next, let’s talk about why we’ll use Req in this book.

The Decision
We have only three real choices: HTTPoison, Req, or Tesla. The other choices
are too low-level or aren’t friendly enough for us to even consider.

We’ll immediately remove HTTPoison from consideration because it’s based
on dated foundations when compared to Req or Tesla. However, HTTPoison
is still used by many apps and is actually not a bad client.

Let’s consider Tesla next. This book was originally written to use Tesla, but
it was changed because Req appears to be the future of Elixir HTTP clients.
Tesla and Req both use Finch as their default HTTP adapter, so it’s only a
matter of preference.

Req is relatively new when compared to Tesla, but it has more approval in
the ecosystem and provides all of the features we need. It works securely out
of the box, is easy to use, allows for creating client libraries, and supports a
rich set of HTTP features. It’s a great fit for this book, so we’ll use it.

Now, let’s set up and then use Req!

Prep Your Project for Req
We’ll start off by setting up Req and the application configuration that we’ll
use throughout this section. Then, in the next section, we’ll write our HTTP
client and connect it to our existing app.

Let’s make sure that your project is prepared for this chapter. We’ll use a
provided helper app called mock_server that implements a Twilio-compatible
SMS API, so you need to have this downloaded to your local computer if you
want to see it in action.

Prep Your Project
We’ll continue the project that you developed in the previous chapter. It’s best
to continue your own project from start to finish, but you can start with a
clean version of the code by working out of the phone_app_end_7 directory pro-
vided in the book source code.

report erratum  •  discuss

Prep Your Project for Req • 145

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Book Source Code

The source code for this book can be found in its zip file on the
PragProg website.8 When you extract this zip file, you’ll receive a
code directory with subfolders under it.

In addition, we’ll be using the mock_server codebase throughout this chapter. This is
included in the code directory downloaded from the PragProg website, so make sure
you grab it. You can start it by navigating into the project and starting the mix server:

$ cd mock_server
$ mix setup
$ mix phx.server
[info] Mock SMS server is starting. Access at the specified URL below.
[info] Follow book instructions for basic auth setup.

Credentials = (username:mock-key-sid, password:mock-key)
[info] Access MockServerWeb.Endpoint at http://localhost:4005

Keep this running throughout the chapter. Let’s set up Req next.

Set Up Req and Config
To use Req, you need to add it to your mix.exs file. Add the :req dependency to
the end of the deps/0 function and then run mix deps.get:

phone_app/mix.exs
{:req, "~> 0.4"},

Next, we need to specify a few configuration values that our code will use to
authenticate the API request. We do this with Config, which is a module that
Mix provides out of the box.

In Ruby, it would be common to have a .env file and load development secrets
via that file. In Elixir, it’s more common to rely on application config and to
have a secret configuration file that isn’t checked into version control.

For our app, you’ll create a dev.secret.exs file. The contents of it aren’t actually secret,
but we’re treating them as if they were real-life API keys. If this were a real project
that was stored in version control, you would always want to make sure that your
secret files aren’t committed up. Treat them like you would a .env file in a Ruby app!

First, update your config/dev.exs file to reference the config/dev.secret.exs file:

phone_app/config/dev.exs
import_config "./dev.secret.exs"

Next, create config/dev.secret.exs with the following contents:

8. media.pragprog.com/titles/sbelixir/code/sbelixir-code.zip

Chapter 8. Outbound HTTP Requests with Req • 146

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/mix.exs
http://media.pragprog.com/titles/sbelixir/code/phone_app/config/dev.exs
http://media.pragprog.com/titles/sbelixir/code/sbelixir-code.zip
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/config/dev.secret.exs
import Config

config :phone_app, :twilio,
key_sid: "mock-key-sid",
key_secret: "mock-key",
account_sid: "mock-account",
number: "+19998887777",
base_url: "http://localhost:4005/2010-04-01"

These config values allow your app to communicate with and authenticate to
the mock Twilio API that this book provides. You’ll see how to access them
in your app in the next section.

Use Req to Make Requests
Req is quite simple to use for a majority of cases. For example, you would
call Req.get!("https://www.google.com") to fetch the Google home page. For more
advanced use cases, Req can be customized to include custom headers,
authentication, or anything that you need.

For our app, we’ll take advantage of Req.new/1 to create an HTTP client that
can be used against our API. Once we have that, we’ll create a context module
to use the API in our application. Let’s dive in!

Implement API-Client Module
Create a file at lib/phone_app/twilio/api.ex and type the following code:

phone_app/lib/phone_app/twilio/api.ex
defmodule PhoneApp.Twilio.Api doLine 1

defp twilio_config do-

Application.fetch_env!(:phone_app, :twilio)-

end-

5

def req_client(opts \\ []) do-

config = twilio_config()-

default_base_url = Keyword.fetch!(config, :base_url)-

base_url = Keyword.get(opts, :base_url, default_base_url)-

key_sid = Keyword.fetch!(config, :key_sid)10

key_secret = Keyword.fetch!(config, :key_secret)-

force_base_url = Process.get(:twilio_base_url) # testing helper-

-

Req.new(-

base_url: force_base_url || base_url,15

auth: {:basic, "#{key_sid}:#{key_secret}"}-

)-

end-

end-

report erratum  •  discuss

Use Req to Make Requests • 147

http://media.pragprog.com/titles/sbelixir/code/phone_app/config/dev.secret.exs
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/twilio/api.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The function Application.fetch_env!/2 on line 3 returns the values that you configured
in the dev.secret.exs config file. Everything inside of your config files is available to
your application, so it’s straightforward to use for application configuration.

Our config is defined as a keyword list, so we use the Keyword module to access
individual values. You’ll see on line 9 that the base_url value can be overridden
via a function parameter. This pattern is extremely useful for testing, as you
can swap out the URL for a library like Bypass.9

Finally, we use Req.new/1 on line 14 to configure a base set of options for our
HTTP client. This lets us make API calls without having to set the options on
each individual request. You’ll see how clean this makes our API functions.

Add the following functions to the top of the file:

phone_app/lib/phone_app/twilio/api.ex
def get_sms_message!(params, client \\ req_client()) doLine 1

%{account_sid: account, message_sid: id} = params-

-

Req.get!(client, url: "/Accounts/#{account}/Messages/#{id}.json")-

end5

-

def send_sms_message!(params, client \\ req_client()) do-

account_sid = Keyword.fetch!(twilio_config(), :account_sid)-

%{from: from, to: to, body: body} = params-

body = %{From: from, To: to, Body: body}10

-

url = "/Accounts/#{account_sid}/Messages.json"-

Req.post!(client, url: url, form: body)-

end-

These functions make HTTP calls to our API. Req provides a set of common
HTTP functions such as Req.get!/2, Req.post!/2, Req.put!/2, and so on. These func-
tions are quite easy to use!

We pass the form option to Req.post! on line 13. This encodes the body as a
URL-encoded form. We could use the json option instead, but the Twilio API
requires the form encoding to be used.

There is one unusual bit of syntax that you haven’t seen before. In both of our function
heads, we define client\\req_client(). This isn’t a typo—Elixir’s default function arguments
can invoke other functions! Each time that the function is invoked without a client
argument provided, the req_client/0 function is called and passed into the function.

We won’t cover it in this book, but you can completely customize any step
of the Req request lifecycle. You could swap out the HTTP library that it

9. https://hexdocs.pm/bypass/Bypass.html

Chapter 8. Outbound HTTP Requests with Req • 148

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/twilio/api.ex
https://hexdocs.pm/bypass/Bypass.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


uses and add middleware that transforms requests or responses. It may
not be needed in every app, but it’s nice to have full control when you
need it.

Next, let’s connect this client module to our app.

Use the API Client in Your App
As usual, we’re going to expose our functions inside of a context module.
Create lib/phone_app/twilio/twilio.ex and add the following delegates:

phone_app/lib/phone_app/twilio/twilio.ex
defmodule PhoneApp.Twilio do

defdelegate send_sms_message!(msg), to: PhoneApp.Twilio.Api
defdelegate get_sms_message!(msg), to: PhoneApp.Twilio.Api

end

Now, we can replace the PhoneApp.Conversations.send_sms_message/1 to deliver a
message using our SMS API. Replace the existing function in lib/phone_app/con-
versations/conversations.ex with the following code:

phone_app/lib/phone_app/conversations/conversations.ex
def send_sms_message(params = %Schema.NewMessage{}) doLine 1

msg = %{-

from: your_number(),-

to: params.to,-

body: params.body5

}-

-

case PhoneApp.Twilio.send_sms_message!(msg) do-

%{body: resp = %{}} ->-

params = %{10

message_sid: resp["sid"],-

account_sid: resp["account_sid"],-

body: resp["body"],-

from: resp["from"],-

to: resp["to"],15

status: resp["status"],-

direction: :outgoing-

}-

-

create_sms_message(params)20

-

%{body: %{"code" => _, "message" => err}} ->-

{:error, err}-

-

_err ->25

{:error, "Failed to send message"}-

end-

end-

-

report erratum  •  discuss

Use Req to Make Requests • 149

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/twilio/twilio.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/conversations.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


def your_number do30

twilio_config = Application.get_env(:phone_app, :twilio, [])-

Keyword.fetch!(twilio_config, :number)-

end-

At this point, all of these lines of code should feel right at home to you.

Our function starts on line 2 by defining the parameters needed to deliver an
SMS message. We invoke our SMS API context function on line 8, which sends
a message over HTTP. Finally, we handle success on line 20 by persisting our
SMS message to the database. And if we get errors along the way, we return
those to the caller.

We’re almost done with the code for this section. Let’s make one more
adjustment, and then you can try out your app!

See Your App in Action
An SMS app needs two parties to make a conversation. Because this is a
mock API, you’ll have to talk to yourself. The MockServer app includes a way to
reply to messages, but it requires a new route to be created. Let’s add that
and then use it from end to end.

Create the Webhook Controller
Create lib/phone_app_web/controllers/webhook/twilio_controller.ex and add the following
code:

phone_app/lib/phone_app_web/controllers/webhook/twilio_controller.ex
defmodule PhoneAppWeb.Webhook.TwilioController do

use PhoneAppWeb, :controller

def sms(conn, params) do
persist_message(params)

conn
|> put_resp_content_type("text/xml")
|> send_resp(200, incoming_sms_response())

end

defp persist_message(params) do
message = %{

message_sid: params["MessageSid"],
account_sid: params["AccountSid"],
body: params["Body"],
from: params["From"],
to: params["To"],
status: params["SmsStatus"],
direction: :incoming

}

Chapter 8. Outbound HTTP Requests with Req • 150

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/controllers/webhook/twilio_controller.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


PhoneApp.Conversations.create_sms_message(message)
end

defp incoming_sms_response do
"""
<?xml version="1.0" encoding="UTF-8"?>
<Response></Response>
"""

end
end

This controller route receives a payload and then persists the received SMS
message to the database. This is just like the other controllers that we created
in the previous chapter, except it replies with an XML payload instead of
JSON or HTML. (XML is the format that Twilio requires for webhook
responses.)

In addition, you need to add this route to the PhoneAppWeb.Router module. Add
the following code to lib/phone_app_web/router.ex:

phone_app/lib/phone_app_web/router.ex
scope "/webhook", PhoneAppWeb.Webhook do

pipe_through [:api]

post "/sms", TwilioController, :sms
end

This routes POST requests to /webhook/sms to the PhoneAppWeb.Webhook.TwilioCon-
troller.sms/3 function.

Use the App
Start the PhoneApp project using mix phx.server. In addition, start the MockServer
project—from earlier in this chapter—with the same command.

Open two different tabs in your browser. Load the first to http://localhost:4004/
messages/new and the second to http://localhost:4005.

On the first tab (PhoneApp), you’ll see the message form to deliver a new mes-
sage. Enter your phone number and type a message. In the second tab
(MockServer), you’ll see the message appears instantly in the table. There is a
“reply” button that lets you send a message in response.

We don’t cover real-time in this book, so you have to refresh the PhoneApp page
to see the response come through. However, the MockServer app is built using
LiveView, so messages will instantly appear without a page refresh. You can
see the potential here even if we didn’t implement it in our own project. We
won’t dedicate a chapter to LiveView in this book, but we’ll touch on it in the
final chapter.

report erratum  •  discuss

See Your App in Action • 151

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app_web/router.ex
http://localhost:4004/messages/new
http://localhost:4004/messages/new
http://localhost:4005
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


We’re almost done with our app. In the next chapter, we’ll use an asyn-
chronous job to update the status of our SMS message, so that it doesn’t say
“queued” in the UI.

Wrapping Up
HTTP clients are relatively easy libraries to use, but a lot of complexity hides
beneath the surface. The varying levels of abstraction can create a bit of
confusion regarding which library you should use for your app. Libraries at
the lower levels of abstraction (such as socket protocols or pooled connections)
are usable but will usually leave you wishing that they had more features.
Full-featured libraries such as Req and Tesla will provide a solid foundation
for any app out there. It’s largely a matter of preference, but we picked Req for
our app.

It’s easy to use Req to make HTTP requests, but you’ll likely need a configu-
ration that tells the system which URL domain to send requests to, which
authentication to use, and so on. You can store all of your application-specific
configuration inside of the config directory, which is automatically loaded into
your application. You can even set up a secret configuration such as
dev.secret.exs, which you would then exclude from version control.

Req provides top-level functions such as Req.post!/2 and Req.get!/1 that make it
a breeze to issue HTTP requests. But you can wrap up commonly used options
into a base configuration with the Req.new/1 function. Plus, if your app has
more advanced needs, you can customize the entire request and response
lifecycle of Req. We were able to use our Req-based API in the send_sms_message/1
function without changing the rest of our app because we initially built it in
a mocked-out way in the previous chapter.

Our last application-oriented chapter is up next. We’ll be looking at asyn-
chronous jobs in Elixir and specifically diving into the Oban library.

Chapter 8. Outbound HTTP Requests with Req • 152

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CHAPTER 9

Asynchronous Jobs with Oban
There’s a major tool missing from your Elixir toolbox right now—asynchronous
jobs. They are a critical component for scaling up an application. Elixir has big
shoes to fill here because Ruby comes with one of the best asynchronous job
libraries out there—Sidekiq.

In their most basic form, async jobs run small or large units of work in the
background of your application. Once the user has submitted a request, we
use async jobs to process additional tasks such as sending emails, performing
calculations, or triggering application-specific workflows. With more advanced
usage, async jobs are used to power complex business logic with concerns
such as uniqueness constraints and rate-limiting.

The first reaction to async jobs that many new Elixirists have is: “don’t we
have everything we need with GenServer?” It’s true that Elixir provides async
capabilities out of the box, but libraries provide a lot of functionality that
would be complex to build ourselves. We’ll talk about one of these
libraries—Oban—and some of its capabilities in this chapter.

We’ll start by looking at the use cases and implementation concerns that
async job libraries handle. You’ll understand why job systems are useful and
what the traits of a good job system are. Due to Elixir’s process model, there
are a few different options for how we could handle running async code. We’ll
go over the different options before finally settling on the Oban1 library to
implement a simple worker in our SMS app.

Let’s start by diving into what async jobs are used for.

1. https://hexdocs.pm/oban/Oban.html

report erratum  •  discuss

https://hexdocs.pm/oban/Oban.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Understand Async Job Systems
Async jobs simplify our application by letting us extract side effects out of
the main path of our code. This can dramatically improve the performance
of our application in a variety of situations. We don’t have to worry about
whether we should make the expensive HTTP call in our controller. We can
simply fire a background job and let it process!

A good async job system will do much more than this. Complex tasks can be
broken into subtasks and orchestrated to solve difficult problems with less
code than if you built it yourself.

Let’s start by looking at use cases for async jobs, followed by a litmus test
for when to extract code into an async job. We’ll finish this section by consid-
ering what makes a good job system.

Async Job Use Cases
Async jobs can be used for a variety of different tasks. On one hand, we have
extremely simple tasks like sending emails. On the other, we can build entire
data pipelines with fan-out fan-in style processing.

As you’re reading these use cases, it’s important to consider that async jobs
execute as fast as they can, but they are not time-guaranteed. For example,
we may expect that enqueuing an email will send it immediately, but the job
system could be backed up and the email may take seconds, minutes, or even
longer to process.

Let’s break down some common use cases:

Send emails after a request (basic)
Emails are commonly executed asynchronously because they (almost
always) require sending requests to external systems to deliver. Those
systems could be slow or experience an outage. If we’re implementing a
“new user signup flow,” then we may want to immediately create the user
in our database, but we’ll be okay if the welcome email is delivered behind
the scenes.

Inform another system of an operation (basic)
An operation happens in our system, and we want to let another system
know over an API. We could do that inside of the operation request itself,
but we’d encounter the same potential problems as with sending an email.
Making the request inside of an async job gives us a more stable and
scalable solution.

Chapter 9. Asynchronous Jobs with Oban • 154

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Execute code at some point in the future (medium)
We want to respond to an operation that happens in our system, but we
want to do so minutes or hours in the future. We need to use an async
job to schedule code to execute at that point in the future. This is called
a scheduled job.

Optimize repeating task (advanced)
An operation happens frequently in our system, and it results in an
expensive operation that calculates a cache value. We could let it calculate
as many times as the operation happens, but that would be wasteful
because it occurs frequently. Instead, we can leverage a unique job that
ensures the operation only occurs once every so often.

Robust data pipeline (advanced)
We have a data pipeline that requires a batch of jobs to finish before the next
step occurs. That step produces many more tasks, which have to complete
before the final task occurs. This is called a workflow and is fairly
complex to implement. Job systems can help us by allowing us to tap
into existing abstractions to write this complex data pipeline.

These are only a few use cases for async jobs. There are so many possibilities,
and you’ll start seeing more of them once you get comfortable with an async
job system.

Let’s go over a litmus test that you can use to determine whether a piece of
code is a good candidate for an async job.

Async Job Litmus Test
Consider the following questions when evaluating a piece of code to see if it
can be made async:

Is this code inherently costly?
Sending HTTP requests, interacting with SMTP servers, and processing
data-intensive requests are all things that have an inherent cost to them.
If you execute this type of code in the main controller, it can hold up the
connection and prevent a response from being received by the user.
Instead, consider extracting it into an async job and allow it to finish
behind the scenes.

Is this code at a relatively-high risk of failure?
Certain pieces of code are more likely to experience intermittent fail-
ures that have nothing to do with the operation itself. For example,
sending an HTTP request to a service that’s experiencing an outage

report erratum  •  discuss

Understand Async Job Systems • 155

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


will result in that request failing. If we’re able to extract this code into an
async job, then we can retry it after the system has had a chance to
recover.

Do we need to control this code’s concurrency?
Elixir will let you run a lot of requests simultaneously. This is both a good
and bad thing. Often, we need to throttle the amount of concurrency that
can happen with a given piece of code. If we use an async job system, we
have full control over the amount of concurrency.

Does this piece of code need to execute immediately, or can it wait a bit?
If the code must run as part of the request, then it will be difficult to make
async. But if it’s acceptable to happen after the fact, then we’re free to
extract it into an async job.

Does the job system have features that simplify my development process?
Job systems often offer more than just executing units of work. They
provide features like uniqueness, workflow management, batching, and
more. You can tap into these features to save massive amounts of time
on certain problems.

It helps to know what your job system can do so you know what is a good
fit for it!

Now that we’ve established when we need a job system, here’s how to pick a
good one.

Requirements of a Good Job System
Not all job systems are built the same. Some are simple and seek to solve a
single problem—execute async jobs. Other job systems provide robust features
that make them quite powerful by comparison. Truly great job systems will
provide the advanced features you need, but they make basic operation so
easy that anyone can use them. Sidekiq in Ruby is a great example of a great
job system that pulls this off well.

Here are some things to consider when looking at a job system:

Is it audited?
We need to know whether a job failed or succeeded, its progress, and so
on. We should be in control of how long we hold this audit for.

Is it modular?
Ideally, we won’t need to update the code powering our job system. But
it’s helpful to be able to implement our own logic or feature for any
uncommon use cases we may have.

Chapter 9. Asynchronous Jobs with Oban • 156

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Does it have the advanced features we want?
You may be looking only for executing basic jobs, but what happens as
your application grows? A great job system will provide features like
uniqueness control, rate-limiting, retry management, scheduled jobs, and
workflow lifecycles.

(You may need to pay for some of these features, similar to Sidekiq’s
licensing model.)

Is it scalable?
The best job systems give us a ton of scalability without a ton of ceremony.
In Elixir, that means expertly leveraging OTP to give us full control over
scalability.

Is it observable?
We need to know what’s happening in the job system. It should be
observed by metrics that are deployed to an external logging system. Or
it should have a dashboard so we can observe the current state of the
system.

Does it support transactions (ideally, it should)?
Transactions are one of the greatest benefits of using a database. Job
systems that tap into this will be easier to integrate into our system and
have fewer bugs. The most popular Ruby job system—Sidekiq—is Redis-
based and doesn’t support transactions.

With this list of what makes a good job system, let’s look at our options in
Elixir and pick the best path forward.

Explore Asynchronous Jobs in Elixir
You have several options for how you can approach asynchronous jobs in
Elixir. This is due to Elixir’s process model—we can build simple or complex
job systems inside of our existing application. The number of available options
can be a bit overwhelming when you first start, so we’ll look at a few common
options before settling on a generic one that works for many situations.

The following examples will use a made-up piece of code that we want to make
asynchronous. You don’t have to type this code anywhere; it’s only an example.
Our scenario is that we have an HTTP endpoint that receives a data payload.
We want to persist the payload to our database, but we also want to enrich
the payload with data from a third-party API.

Let’s jump in.

report erratum  •  discuss

Explore Asynchronous Jobs in Elixir • 157

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Do Nothing
The first technique can be easy to overlook—we can simply do nothing. Our
code would run inside of the HTTP endpoint and directly enrich the data. It
might look like this:

def create(conn, params) do
enriched = enrich_data_via_api!(params)
data = DataStore.persist!(enriched)
json(conn, %{id: data.id})

end

In this example, we fetch the enriched data and then persist it into the
database. This approach has a few benefits. The enriched data is immediately
available—so our application could use it right away. Plus, we’ve written the
simplest code possible to solve our problem, so that’s an advantage for code
cleanliness.

However, we have some significant drawbacks to this approach. If the
enrichment API is down, then our API call will fail. If the enrichment API is
slow, then users will feel that slowness in our API. Plus, the server has a
connection held up while this request processes. (This last drawback is less
significant in Elixir because servers have large connection limits compared
to Ruby.)

These drawbacks are fairly significant, so let’s make the code asynchronous.

Use a Task Process
Elixir provides a module called Task2 that lets us easily spawn short-lived,
task-specific processes. You could do this yourself, of course, but the Task
module greatly simplifies it. However, there are shortcomings with Task that
make it not a great fit for a job system.

Here’s what that could might look like:

def create(conn, params) do
data = DataStore.persist!(params)

Task.Supervisor.start_child(MyTaskSupervisor, fn ->
enriched = enrich_data_via_api!(params)
DataStore.update_enriched!(data, enriched)

end)

json(conn, %{id: data.id})
end

2. https://hexdocs.pm/elixir/Task.html

Chapter 9. Asynchronous Jobs with Oban • 158

report erratum  •  discuss

https://hexdocs.pm/elixir/Task.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


In this code sample, data is persisted in its basic, unenriched form. Our task
then enriches the data and updates the database record. We could have used
the simpler Task.start/1 function, but we used Task.Supervisor.start_child/2 because
it ensures that tasks are given time to complete when an application shuts
down. This is important to consider because applications stop and start
during deployments.

This approach makes the basic data available immediately, and the enriched
data will be available after the enrichment period. Our app would feel fast
while making this API call, so the experience would feel significantly better
to the end user.

This approach has a few major problems that are so severe that I’ve regretted
it every time I’ve used it. Our app will spawn as many tasks as it can. If our
API is hit with a large throughput, then the downstream requests will be sig-
nificant. We’ve given up control over the parallelism of our async code, which
is a big drawback! We also have no bookkeeping of the request. What if the
API crashes, or our app reboots while processing? We have no guarantees
that this code will ever finish!

With these drawbacks in mind, let’s look at the last approach.

Use Oban
Oban is an Elixir job processing library that uses Postgres (or SQLite3) for
coordinating and managing jobs. Oban is most similar to GoodJob3 and
Sidekiq.4

Oban uses processes to isolate jobs and provides complete control over job
concurrency. Each job executes inside of its own process, which is started
and handled by an Oban queue process.

Oban doesn’t have the same problems that Task does. Oban controls the
amount of concurrency automatically, has complete bookkeeping of our jobs,
and handles application crashes well.

It’s easy to define an Oban worker. Here’s what our code might look like if we
used Oban:

3. https://github.com/bensheldon/good_job
4. https://github.com/sidekiq/sidekiq

report erratum  •  discuss

Explore Asynchronous Jobs in Elixir • 159

https://github.com/bensheldon/good_job
https://github.com/sidekiq/sidekiq
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


def create(conn, params) do
data = DataStore.persist!(params)
EnrichWorker.enqueue!(data, params)
json(conn, %{id: data.id})

end

# Example of an Oban Worker

defmodule EnrichWorker do
use Oban.Worker

def enqueue!(data, params) do
%{id: data.id, params: params}
|> new()
|> Oban.insert!()

end

def perform(%Oban.Job{args: %{"id" => data_id, "params" => params}}) do
enriched = enrich_data_via_api!(params)
DataStore.update_enriched!(data_id, enriched)
:ok

end
end

You can see from this example that Oban workers are modules that implement
the perform/1 function and they use Oban.Worker. That’s all you need to create
an Oban worker. You don’t need to know anything about the underlying
process model to use it, but you benefit from OTP best practices without even
thinking about it!

We need to consider the potential downsides of this approach. There is
slightly more code than the alternatives, but it’s actually quite reasonable.
The biggest downside is that a Postgres row is inserted and processed for
each job placed into the queue. You won’t run into a problem with this unless
you’re processing a lot of jobs per second, but it’s worth mentioning. (Later
in this chapter, we’ll talk about why Postgres is actually a great choice for a
job system.)

Overall, Oban is an excellent choice for asynchronous jobs. If you’re building
a system and looking to run code asynchronously, save yourself the hassle
and start with Oban.

Chapter 9. Asynchronous Jobs with Oban • 160

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Oban vs. Sidekiq

Ruby’s Sidekiq library has been around for a while, and Ruby
developers as a whole (myself included) are pretty comfortable
with it. It’s incredibly stable in production and can process a large
throughput of jobs each second. Sidekiq uses Redis to store and
process jobs, so I was a bit skeptical at first when I learned that
Oban operates on top of a Postgres database.

While there are differences in how Redis is operated versus Post-
gres, it’s not difficult to use Oban at scale. Overall, the Elixir
community’s experience with Oban has proven that it’s a stable
job system that can process a large throughput of jobs. The added
benefits of transactions and not needing to run a Redis server
make it a compelling job system.

Next, let’s implement an Oban worker in our SMS app.

Implement an Oban Worker
In the previous section, you got a sneak peek of what an Oban worker module looks
like—it’s really simple to create one. But before we get to that point, we need to set
up Oban. Once Oban is set up for our app, we’ll add our worker and test it out.

Add Oban to Our SMS App
Oban has great guides to walk you through implementing it. It’s a fairly quick
process, but it might change slightly over time as the library grows and
changes. So if you do run into any issues, then make sure to read the Oban
Installation Guide.5

The first step is to include the Oban dependency in mix.exs:

phone_app/mix.exs
{:oban, "~> 2.16"},

And then run mix deps.get to bring it into your project.

Oban uses a database to store jobs, so next you need to set up the migrations
for it. Start by creating a new migration:

$ mix ecto.gen.migration add_oban_jobs_table

Then enter the following into the migration file. Your file name will vary
because it’s based on the time that you run the migration command:

5. https://hexdocs.pm/oban/installation.html

report erratum  •  discuss

Implement an Oban Worker • 161

http://media.pragprog.com/titles/sbelixir/code/phone_app/mix.exs
https://hexdocs.pm/oban/installation.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/priv/repo/migrations/20231112032011_add_oban_jobs_table.exs
defmodule PhoneApp.Repo.Migrations.AddObanJobsTable do

use Ecto.Migration

def up do
Oban.Migration.up(version: 11)

end

def down do
Oban.Migration.down(version: 1)

end
end

Then run mix ecto.migrate to run the migration.

This migration pattern puts all of the complex migrations behind an easy to
use function. Plus, it makes it easy to handle future migrations as you keep
Oban up-to-date over time.

Next, we need to add some configuration to set up our Oban queues. Add the
following config block to config.exs:

phone_app/config/config.exs
config :phone_app, Oban,

repo: PhoneApp.Repo,
plugins: [

# 1 hour
{Oban.Plugins.Pruner, max_age: 60 * 60}

],
queues: [default: 10]

The important options of this configuration are queues and plugins. Queues are
buckets that jobs fall into. A given queue has a certain amount of concurrency
available to it—in our case, ten workers can execute simultaneously. (This
number is per server, so three servers of ten workers would provide thirty
concurrent workers across a cluster.) You can define as many queues as you
want and however much concurrency you want.

Plugins extend the capabilities of Oban. The Pruner plugin removes completed
jobs from the database—in our case, after one hour.

Let’s also update the test.exs config so that you have control over jobs in the
test environment:

phone_app/config/test.exs
config :phone_app, Oban, testing: :manual

Finally, we need to add Oban to our application process list. Update the start
function in lib/phone_app/application.ex to include the Oban Supervisor:

Chapter 9. Asynchronous Jobs with Oban • 162

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/priv/repo/migrations/20231112032011_add_oban_jobs_table.exs
http://media.pragprog.com/titles/sbelixir/code/phone_app/config/config.exs
http://media.pragprog.com/titles/sbelixir/code/phone_app/config/test.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/lib/phone_app/application.ex
{Finch, name: PhoneApp.Finch},
{Oban, Application.fetch_env!(:phone_app, Oban)},
PhoneAppWeb.Endpoint

The order of entries in this list does matter. By placing Oban before our end-
point—but after our Ecto repo, PubSub, and Finch—we ensure that our async
jobs have access to the processes they need. Application supervision is too
advanced of a topic for this book, but know that you have complete control
over when processes start in your application.

You can verify that everything is working by checking the Oban config in your
application. To do this, start an IEx session:

$ iex -S mix
iex> Oban.config()
%Oban.Config{

...
}

Now that Oban is in our app, let’s create our worker!

Write an Oban Worker
Our SMS app has a problem when it’s sending messages. Messages are not
delivered instantly, so we need to keep track of the status of the message.
Usually, SMS messages are delivered fairly quickly—within 10 seconds—but
it’s actually fairly common for SMS messages to run into issues during
delivery. These issues can pop up minutes or hours after attempted delivery.

When we send a message, we’ll use an async job to check the status of the message
until it becomes finalized. The mock SMS server that’s included with this book
has a delay built in—up to 15 seconds—so we can test this flow out.

Let’s start by creating a new worker module and an enqueue/1 function. Create
lib/phone_app/conversations/worker/status_worker.ex and add the following code:

phone_app/lib/phone_app/conversations/worker/status_worker.ex
defmodule PhoneApp.Conversations.Worker.StatusWorker do

use Oban.Worker

alias PhoneApp.Conversations.Schema.SmsMessage

def enqueue(%SmsMessage{} = message) do
%{"id" => message.id}
|> new()
|> Oban.insert()

end
end

report erratum  •  discuss

Implement an Oban Worker • 163

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/application.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/worker/status_worker.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


The enqueue/1 function isn’t standardized by Oban, but it provides a convenient
way to enqueue jobs based on known arguments. In our case, an SmsMessage
struct is turned into a set of parameters that’s passed into the job.

Oban uses Ecto changesets and repo functions to insert jobs. The new/1 call
turns arguments into an Oban.Job changeset, and then the call to Oban.insert/1
places that job in the database.

Arguments in Oban have similar limitations to Sidekiq. It’s a best practice to
only pass identifiers into the job arguments—as opposed to complex structs
or maps—and load the data based on those identifiers in the job itself. Here’s
what that looks like when we write the perform/1 function:

phone_app/lib/phone_app/conversations/worker/status_worker.ex
alias PhoneApp.Conversations.Query.SmsMessageStore

def perform(%Oban.Job{args: %{"id" => message_id}}) do
message = SmsMessageStore.get_sms_message!(message_id)
%{body: resp} = PhoneApp.Twilio.get_sms_message!(message)

case resp["status"] do
"queued" ->
{:error, "Message not ready"}

status ->
PhoneApp.Conversations.update_sms_message(

message.message_sid,
%{status: status}

)
end

end

This job follows a simple formula: load the data from the arguments, query
the Twilio API for the current status, and then persist that status into the
database. The perform/1 function can return a variety of possible results, which
are all documented in the Oban documentation.6 The update_sms_message/2
function returns either an ok or error tuple, so it works perfectly as a return
value.

If we detect that the message still isn’t ready, then we cause the job to fail
and retry by returning {:error, reason}. Oban provides a default retry logic that’s
similar to Sidekiq—twenty retries over an exponential backoff period. (Like
most things, you have complete control over the retry logic.)

If you tried to start this now, you’d get an error about SmsMessageStore.get_sms_mes-
sage!/1 not existing. Let’s add that quickly:

6. https://hexdocs.pm/oban/Oban.Worker.html#t:result/0

Chapter 9. Asynchronous Jobs with Oban • 164

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/worker/status_worker.ex
https://hexdocs.pm/oban/Oban.Worker.html#t:result/0
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


phone_app/lib/phone_app/conversations/query/sms_message_store.ex
def get_sms_message!(id) do

Repo.get!(SmsMessage, id)
end

We’re almost done. Next, we’ll integrate this job into the SMS creation flow.

Enqueue a Job After SMS Creation
Our job should be enqueued when an SMS message is created with certain
properties (status = queued and direction = outgoing). We already have a
create_sms_message/1 function that all SMS messages are created through, but
it’s a defdelegate. If we want to hook into it, we need to turn the defdelegate into
a regular function.

In the lib/phone_app/conversations/conversations.ex file, delete the existing create_sms_mes-
sage delegate and add the following function:

phone_app/lib/phone_app/conversations/conversations.ex
def create_sms_message(params) do

PhoneApp.Repo.transaction(fn ->
with {:ok, message} <- Query.SmsMessageStore.create_sms_message(params),

{:ok, _} <- maybe_enqueue_status_worker(message) do
message

else
{:error, cs} -> PhoneApp.Repo.rollback(cs)

end
end)

end

defp maybe_enqueue_status_worker(message) do
case message do

%{direction: :outgoing, status: "queued"} ->
PhoneApp.Conversations.Worker.StatusWorker.enqueue(message)

_ ->
{:ok, :skipped}

end
end

This function looks a little dense at first, so let’s break it apart.

We start by wrapping the entire function body inside of Repo.transaction/1. This
function wraps the provided function inside of a SQL transaction. If an error
is raised or Repo.rollback/1 is called, the transaction rolls back and returns {:error,
tuple}. If the function doesn’t error, then the return value is wrapped in an
{:ok, tuple}. This transaction is optional—you could insert the Oban job without
one. However, it’s usually important to guarantee that jobs are created
alongside data.

report erratum  •  discuss

Implement an Oban Worker • 165

http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/query/sms_message_store.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/lib/phone_app/conversations/conversations.ex
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


We use a with statement to take advantage of the fact that our code follows a
happy path. Each step must be successful, and any deviation from success
should be rolled back. Our first step is to create the SMS message. After that,
we enqueue a job only if the created message matches the format we want.

Last, we return the message variable. The Repo.transaction/1 function wraps it in
an ok tuple, so our final result is transformed into {:ok, message}.

This code block highlights something important about Oban. Because it is a
Postgres-backed job system, you can use transactions to guarantee that your
job doesn’t execute until the data and any other jobs are enqueued. In Ruby’s
Sidekiq library, you need to use after_transaction hooks or other techniques to
only enqueue jobs after the transaction is finalized. With Oban, you don’t
have to think about it.

We’ve successfully added this job into our app, and we managed to do so
without changing much code.

Our Worker in Action
Start your phone_app application and also the included mock_server application.
Remember, you start each of them using mix phx.server. (If you need a reminder
on how to use the mock_server application, refer to the previous chapter.)

Visit http://localhost:4004/messages and create a new SMS message. Then visit the
mock server at http://localhost:4005/, and you’ll see your message there. You can
reply back from here as well.

Our SMS app initially says that the message is queued—you’ll see this in the
user interface. After a short time (up to 20 seconds or so) refresh the page
and you’ll see that “queued” has disappeared and our system is properly
recognizing the message as delivered.

This status update happened because of our job. Without it, the message
would appear to be queued forever, which would be rather confusing for users!

Our job is basic, let’s quickly go over some of the more advanced features
that Oban provides.

More About Oban
Oban is easy to get started with, plus it provides several features that make
it a powerful part of an application. Some of these features are open-source,
but there’s even a paid version that adds a lot of advanced functionality.

Chapter 9. Asynchronous Jobs with Oban • 166

report erratum  •  discuss

http://localhost:4004/messages
http://localhost:4005/
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


We’ll go over some of these features, although there are many more than we’ll
cover here. Let’s start with the open-source features that you can use on the
free version of Oban.

Telemetry (Open-Source)
Observability is a foundational requirement for a good job system. Oban uses
a standardized library called Telemetry to let you decide which events you
want to monitor.

All of Oban’s telemetry events are documented in the Oban.Telemetry guide.7 You
can use these events to update stats systems such as Datadog or NewRelic.
Here’s an example of telemetry from one of my applications:

defmodule Super.Application do
use Application

def start(_type, _args) do
events = [
[:oban, :job, :start],
[:oban, :job, :stop],
[:oban, :job, :exception]

]

:telemetry.attach_many("oban-logger", events,
&Super.ObanLogger.handle_event/4, [])

# rest of application setup
end

end

defmodule Super.ObanLogger do
require Logger

def handle_event([:oban, :job, :start], _measure, meta, _) do
Logger.info("[Oban] started #{meta.worker}")

end

def handle_event([:oban, :job, event], measure, meta, _) do
ms = ceil(measure.duration / 1_000_000)
Logger.info("[Oban] #{event} #{meta.worker} ran in #{ms}ms")

end
end

This is a basic example that only logs when jobs start, stop, or encounter an
error. The important thing is that you have full insight into the job execution
process.

7. https://hexdocs.pm/oban/Oban.Telemetry.html

report erratum  •  discuss

More About Oban • 167

https://hexdocs.pm/oban/Oban.Telemetry.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CRON Jobs (Open-Source)
Oban provides a CRON plugin8 that makes it easy to run jobs on a repeating
schedule. Repetitive tasks appear all the time in real-world systems, so Oban
can save you some time.

Here’s an example of the CRON format:

config :my_app, Oban,
plugins: [

{Oban.Plugins.Cron,
crontab: [

{"* * * * *", MyApp.MinuteWorker},
{"0 0 * * *", MyApp.DailyWorker, max_attempts: 1},
{"0 12 * * MON", MyApp.MondayWorker, queue: :scheduled},

]}
]

You have full control over when jobs execute, and you can customize their
options such as the queue, number of retries, and so on.

Recover Stuck Jobs (Open-Source)
Jobs will only be removed from the system if they are fully processed—or if
they fail enough times. However, it’s common for a job to be executing while
your application reboots or encounters an external problem (such as Kuber-
netes out-of-memory) that terminates it.

In these cases, the jobs will be stuck in an executing state that never goes
away. Oban has a plugin to recover these stuck jobs, called Lifeline.9

This is a distinct advantage over the free-version Sidekiq library. In Sidekiq,
a job that’s processing while your application shuts down is lost. You can
pay for Sidekiq Pro to solve this, but it works in Oban for free.

Web Interface (Paid)
Oban offers a web interface for a monthly fee. This is similar to Sidekiq’s pro
offering, although Oban’s web interface isn’t open-source. However, the fee
supports the development of Oban. New features are regularly added, and
the interface is kept up-to-date visually and feature-wise.

8. https://hexdocs.pm/oban/Oban.Plugins.Cron.html
9. https://hexdocs.pm/oban/Oban.Plugins.Lifeline.html

Chapter 9. Asynchronous Jobs with Oban • 168

report erratum  •  discuss

https://hexdocs.pm/oban/Oban.Plugins.Cron.html
https://hexdocs.pm/oban/Oban.Plugins.Lifeline.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Pro Features (Paid)
For an additional monthly fee, Oban offers a robust set of pro features. You
don’t need these features to build your app, but they are useful once you hit
a certain point or have an increased set of needs.

Some of the key pro features10 include a more powerful execution engine,
batched job support, strictly ordered job execution, and fan-in fan-out
workflows.

Wrapping Up
If you’re building an app, you will eventually need a solution to execute
asynchronous jobs. There are many tasks that become simplified when exe-
cuting them asynchronously, such as delivering emails, syncing data to other
systems, or building a data pipeline to process your data. Reach for a job system
if a piece of code has a high chance of failure, could be slow due to external factors,
or benefits from concurrency.

Elixir provides all of the building blocks you need to write highly parallel
systems, so you may be tempted to build your own solution to async jobs.
For example, you could use Task or GenServer to process jobs in an async
manner. Unless you have a really good reason not to, use an off-the-shelf
library that provides a solid foundation such as controlled concurrency,
transactions, and auditing.

Oban is the best job-processing library in the Elixir ecosystem. It’s easy to
get started with, but it offers many advanced features that let you grow your
application over time. The best part about using Oban is that your application
will follow best practices that have been laid out by the Oban developers.
You’ll be making good use of OTP and concurrency without even thinking
about it!

The Oban worker you built in this chapter was a simple module that imple-
mented a perform/1 function. You also added an enqueue/1 function to make it
easy to add jobs to the Oban queue. Oban is backed by Postgres, so you were
able to leverage transactions to guarantee that the data and job were inserted
at the same time.

Before we wrap up our application, we need to write some tests. The next
chapter will take us through tests for our entire application.

10. https://getoban.pro/docs/pro/overview.html

report erratum  •  discuss

Wrapping Up • 169

https://getoban.pro/docs/pro/overview.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CHAPTER 10

Testing Elixir
Tests are crucial for gaining confidence that your application works correctly
and predictably. Love them or hate them, they remain important and necessary
for professional software engineers. Elixir has an excellent built-in testing
framework, which we’ll cover in this chapter.

In the first chapter, you read that Elixir has a “culture of testing” that’s similar
to Ruby’s culture of testing. But this is the first time we’re mentioning tests! This
doesn’t mean that testing isn’t important or should be an afterthought. Instead,
it’s a byproduct of how this book is structured—the previous chapters focused
on how to use the library being shown. This dedicated testing chapter lets us
cover techniques to test all of our libraries in one place.

We’ll begin by testing our Ecto changesets. These tests won’t have database or
web requests in them, so they’re as simple as they can get. Then, we’ll cover
other libraries that have been covered in this book: Ecto queries, external API
requests, Phoenix requests, and Oban jobs.

By the end of this chapter, you’ll be able to read and write Elixir tests. Plus,
you’ll have patterns to test each of the libraries included in this book. We
won’t be able to cover everything about testing—there’s so much to it! Check
out Testing Elixir [LM21] by Andrea Leopardi and Jeffrey Mathias for a full
book on Elixir testing.

Let’s write some tests!

Create Your First Test
Tests can get complex when the code you’re testing includes dependencies
or complex flows. So, we’ll start simple and work our way up to more complex
testing cases. But first, let’s spend a little time comparing Ruby’s testing ideas
to Elixir’s.

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Ruby testing has historically been dominated by RSpec, but Minitest has
made a resurgence in recent years. Minitest is rooted in providing a minimal
set of assertions so that tests remain simple. RSpec rooted itself in a more
comprehensive assertion library and has many options for setting up data.

Elixir’s testing framework—ExUnit—is included with the language. You don’t
need to install anything to use it. In some languages, the built-in testing
framework isn’t great, but ExUnit is actually good. (This is evidenced by the
fact that there isn’t another mainstream testing framework in Elixir.)

ExUnit is similar to Minitest in that it uses a few simple assertions and has
minimal options for setting up test cases. This minimal approach has proven
to be powerful for ExUnit. It’s quick to learn, and you’ll often find that you
have everything you need to write clean, expressive tests.

Let’s dive in!

Test NewMessage Changeset
The first test we’re going to write is for an Ecto changeset. This is a great first
test to write because the test doesn’t involve database or web requests. All
that we need to do is call a function and check the output of it.

Let’s verify that your environment is correctly set up to run tests. Type mix
test and verify that your existing tests are green:

$ mix test
.....
Finished in 0.08 seconds (0.04s async, 0.04s sync)
5 tests, 0 failures

These five tests are the default tests included by Phoenix. You could remove
them, but we’ll keep them for now and move on.

Your tests should be green without any extra steps. If you do run into an
error, it would likely be around the database setup. If this occurs, run
MIX_ENV=test mix do ecto.drop, ecto.create, ecto.migrate to reset your test database. (You
can make an alias for this in mix.exs, but it isn’t included by default.)

Now let’s test the changeset. Create the file test/phone_app/conversations/schema/new_mes-
sage_test.exs and add the following code:

phone_app/test/phone_app/conversations/schema/new_message_test.exs
defmodule PhoneApp.Conversations.Schema.NewMessageTest do

use ExUnit.Case, async: true

alias PhoneApp.Conversations.Schema.NewMessage
end

Chapter 10. Testing Elixir • 172

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app/conversations/schema/new_message_test.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Make sure you named the file with the .exs file extension! Many new
Elixir developers get tripped up when they name a test file .ex and then it
doesn’t work.

This sets up a new ExUnit test case. The option async: true makes our tests
automatically run in parallel with other test files. This massively speeds up
tests across a large codebase. There are times when you wouldn’t want to
use async tests, but that’s outside of the scope of this chapter.

Let’s add a test case. We’ll test our required fields, that the country code is
automatically added, and that the phone number is valid.

phone_app/test/phone_app/conversations/schema/new_message_test.exs
describe "changeset/1" doLine 1

test "fields are required" do-

cs = NewMessage.changeset(%{})-

-

assert [5

to: {"can't be blank", _}, body: {"can't be blank", _}-

] = cs.errors-

end-

-

test "the country code is added if not present" do10

assert %{-

errors: [],-

changes: %{to: "+1 5005550006"}-

} = NewMessage.changeset(%{"body" => "test", "to" => "5005550006"})-

end15

-

test "the phone number is validated" do-

assert %{-

errors: [to: {"is an invalid phone number", _}]-

} = NewMessage.changeset(%{"body" => "test", "to" => "+1 111-222-3333"})20

end-

end-

Run mix test to see that your new tests are green. Let’s break these tests down
in the next section—we’ll go line by line to cover how the test works.

Going Through Our Changeset Tests
We wrap everything inside of the describe/2 macro. This isn’t required, but it’s
a best practice to group and name your tests—typically based on the function
name. Each test is wrapped inside of the test/2 macro. Everything inside of a
test block runs as an individual test case.

Inside of an individual test case, we have access to the same modules
and functions available to our application. We don’t need to do anything
special to access our application’s modules—ExUnit includes everything

report erratum  •  discuss

Create Your First Test • 173

http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app/conversations/schema/new_message_test.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


for us automatically. This lets us use the NewMessage.changeset/1 function
on line 3. (An alias at the top makes it more convenient for us to call this
function.)

The main test function that you’ll use is assert/1. This function is small but
mighty. You can do simple equality assertions. For example, assert 1 == 1 is a
valid assertion line. But you can also use pattern matching. For example,
assert %{a: _} = %{a: 1} is a valid assertion.

The power of the pattern assertion style is that ExUnit will show you exactly
what diverges when the pattern isn’t matched. It’s capable of printing this
out in an easy-to-read, color-coded format, so you can tell exactly what’s dif-
ferent between the left and right sides of the assertion.

All of our tests use pattern assertions to verify that our changeset shape
matches an expected value. For example, line 11 asserts that there are no
errors in the changeset and that the phone number matches a specific value.
Because pattern matching is used, we only need to check for the fields that
we care about. (If we were to use equality comparison, then we’d need to
exactly match every single field.)

Try changing the assertion pattern so that the test fails. You should see the
exact problem highlighted by ExUnit.

These tests are simple. They use functions that don’t touch the database or
require setup. Let’s look at a more complex test case next. You’ll see how to
test Ecto queries.

What to Test

I don’t believe that everything should be tested. There has to be a
balance between test value, effort, and business value. That said,
I strongly believe in the importance of testing and that you should
have a robust test suite for any production application.

Usually, I don’t test the framework. In the case of our Ecto
schemas, I wouldn’t test that our schema has fields or that it
operates a certain way. I know these things to be true. I would
test that the required fields work correctly and that any validations
work correctly because those are implemented by my application.

When in doubt, always test. But don’t let testing be the barrier to
finishing your feature.

Chapter 10. Testing Elixir • 174

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Test an Ecto Query
It’s simple to test code that uses database queries. We need to use a special
test case that’s provided to us by the Phoenix generator. This includes
transactional test cases, which means that our test database is cleaned up
after each test.

We’ll test the ContactStore module because it has functions for retrieving and
writing data. We will skip SmsMessageStore because it has many more func-
tions. But the book’s provided code (phone_app folder) has tests for the entire
application.

Create test/phone_app/conversations/query/contact_store_test.exs and add the fol-
lowing code:

phone_app/test/phone_app/conversations/query/contact_store_test.exs
defmodule PhoneApp.Conversations.Query.ContactStoreTest doLine 1

use PhoneApp.DataCase, async: true-

-

alias PhoneApp.Conversations.Query.ContactStore-

5

describe "upsert_contact/1" do-

@incoming %{-

from: "111-222-3333",-

to: "999-888-7777",-

direction: :incoming10

}-

-

@outgoing %{@incoming | direction: :outgoing}-

-

test "a new contact is created, based on direction" do15

assert {:ok, contact} = ContactStore.upsert_contact(@incoming)-

assert contact.id-

assert contact.phone_number == "111-222-3333"-

-

assert {:ok, contact2} = ContactStore.upsert_contact(@outgoing)20

assert contact2.id-

assert contact2.id != contact.id-

assert contact2.phone_number == "999-888-7777"-

end-

25

test "a contact with the same phone number is updated" do-

assert {:ok, contact} = ContactStore.upsert_contact(@incoming)-

assert {:ok, contact2} = ContactStore.upsert_contact(@incoming)-

-

assert contact2.updated_at != contact.updated_at30

assert Map.delete(contact2, :updated_at) ==-

Map.delete(contact, :updated_at)-

end-

end-

report erratum  •  discuss

Test an Ecto Query • 175

http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app/conversations/query/contact_store_test.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


35

describe "get_contact!/1" do-

test "no contact raises an error" do-

assert_raise(Ecto.NoResultsError, fn ->-

ContactStore.get_contact!(0)-

end)40

end-

-

test "a contact is returned" do-

assert {:ok, contact} = ContactStore.upsert_contact(@incoming)-

assert ContactStore.get_contact!(contact.id) == contact45

end-

end-

end-

The use statement on line 2 has changed to PhoneApp.DataCase. This module was
created by the Phoenix generator—you can find the module at test/sup-
port/data_case.ex. PhoneApp.DataCase is based on ExUnit.Case, but it sets up the
PhoneApp.Repo so it can be used in our test module.

These tests largely speak for themselves, but the module attribute on line 7
is new. Test modules are just normal Elixir code! This means we can use
module attributes to simplify our testing code. We don’t do it here, but we
can even define helper functions in our test to extract repeated code.

We use a mix of pattern assertions (line 16) and strict equality assertions
(line 18) throughout our test module. However, line 38 introduces the
assert_raise/2 assertion. This assertion macro accepts an anonymous function
and asserts that a particular error is raised from it.

To demonstrate the importance of tests, these tests revealed a bug in the original
Repo.insert/2 function. The fix was to add returning: true to the insert options. If you
run into an error with that particular test, make sure that option is used in
your Repo.insert/2 call in ContactStore.upsert_contact/1.

Let’s test our outbound HTTP requests next.

Test External API Requests
There are many opinions on how to test external requests. Rubyists use
mocking (RSpec and Minitest both include mocking capabilities) at the method
level or mocking at the HTTP level (VCR) to test external dependencies. Per-
sonally, I always reached for VCR because of how simple and powerful it was.

The solution for testing external requests in Elixir is largely the same: mock
the function or mock the HTTP request. Personally, I usually mock at the

Chapter 10. Testing Elixir • 176

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


HTTP request level. The best way to do HTTP mocking in Elixir is with the
Bypass library, so let’s add that to our project.

Bypass1 offers a pretty amazing testing capability. Because Elixir is able to
spin up multiple applications at once, Bypass takes advantage of this and
spins up actual HTTP servers. Instead of mocking the HTTP request at the
source, it mocks HTTP requests at the destination! This approach is useful
because it tests that your entire HTTP stack works as expected.

Add the Bypass library in your mix.exs file:

phone_app/mix.exs
{:bypass, "~> 2.1"}

And then run mix deps.get to pull in the dependency. In addition, add the fol-
lowing code to test.exs:

phone_app/config/test.exs
config :phone_app, :twilio,

key_sid: "mock-key-sid",
key_secret: "mock-key",
account_sid: "mock-account",
number: "+19998887777",
base_url: "http://localhost:4005/2010-04-01"

And also create the following JSON file at test/support/fixtures/success.json:

phone_app/test/support/fixtures/success.json
{

"account_sid": "account_sid",
"sid": "sid",
"body": "body",
"from": "+11112223333",
"to": "+19998887777",
"status": "sent"

}

Now, we can write a test for our API requests. We’ll do this by testing the
Conversations.send_sms_message/1 function. This test will ensure that our HTTP
request works and that it’s handled correctly by the send_sms_message/1 function.

Create test/phone_app/conversations/conversations_test.exs and add the following code:

phone_app/test/phone_app/conversations/conversations_test.exs
defmodule PhoneApp.ConversationsTest doLine 1

use PhoneApp.DataCase, async: true-

-

alias PhoneApp.Conversations-

alias PhoneApp.Conversations.Schema.NewMessage5

1. https://hexdocs.pm/bypass/Bypass.html

report erratum  •  discuss

Test External API Requests • 177

http://media.pragprog.com/titles/sbelixir/code/phone_app/mix.exs
http://media.pragprog.com/titles/sbelixir/code/phone_app/config/test.exs
http://media.pragprog.com/titles/sbelixir/code/phone_app/test/support/fixtures/success.json
http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app/conversations/conversations_test.exs
https://hexdocs.pm/bypass/Bypass.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


-

describe "send_sms_message/1" do-

test "successful request creates an SMS message" do-

bypass = Bypass.open()-

Process.put(:twilio_base_url, "http://localhost:#{bypass.port}")10

-

resp = Jason.decode!(File.read!("test/support/fixtures/success.json"))-

-

Bypass.expect_once(-

bypass,15

"POST",-

"/Accounts/mock-account/Messages.json",-

fn conn ->-

conn-

|> Plug.Conn.put_resp_header("Content-Type", "application/json")20

|> Plug.Conn.resp(201, Jason.encode!(resp))-

end-

)-

-

assert {:ok, message} = Conversations.send_sms_message(%NewMessage{})25

assert message.from == resp["from"]-

assert message.to == resp["to"]-

assert message.body == resp["body"]-

assert message.message_sid == resp["sid"]-

assert message.account_sid == resp["account_sid"]30

assert message.status == resp["status"]-

assert message.direction == :outgoing-

end-

-

test "a failed request returns an error" do35

bypass = Bypass.open()-

Process.put(:twilio_base_url, "http://localhost:#{bypass.port}")-

-

Bypass.expect_once(-

bypass,40

"POST",-

"/Accounts/mock-account/Messages.json",-

fn conn ->-

Plug.Conn.resp(conn, 500, "")-

end45

)-

-

assert Conversations.send_sms_message(%NewMessage{}) ==-

{:error, "Failed to send message"}-

end50

end-

end-

This test is fairly long, but the individual components are not complex. We
use the Bypass library by calling Bypass.open/0 on line 9. This creates a testing
server endpoint, but it doesn’t connect it to our request. Our PhoneApp.Twilio.Api

Chapter 10. Testing Elixir • 178

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


module looks for the :twilio_base_url process dictionary entry. By putting the
Bypass URL into the process dictionary (line 10), our API client makes requests
to Bypass instead of a real API.

Bypass works by expecting HTTP requests. We use Bypass.expect_once/4 on line
14 to do this. We specify the details of our expected HTTP request and pass
a function that will be used to return the HTTP response. In our case, we
return a JSON payload (line 21) that’s compatible with Twilio’s response
format.

Based on the response to the Twilio request, our code returns an ok tuple or
an error tuple. Our test asserts on both of these cases—line 25 versus line
48. This provides test coverage for our function because it compares both the
happy and failure paths.

It may take a while to become comfortable with Bypass. But once you do get
comfortable with it, it’s incredibly powerful. It’s become a critical tool in my
personal testing toolbox.

Let’s move on to Phoenix endpoint testing next.

Test Phoenix Requests
It’s more complex to test endpoints than it is to test pure functions or Ecto
queries, but Phoenix provides several helper functions to make it as easy as
possible. You’ll find more complexity in deciding what to test (complex HTML
responses, valid versus invalid parameters, full integration testing versus
mock testing, and so on) than you will in writing the actual tests. However,
lean toward testing more than less so that you have confidence in your system.

We’ll set up the test module and then walk through a few types of controller
tests. But first, let’s create a little helper to make our tests simpler.

Create Helper Factory
It’s common as you write tests to create the same test data over and over
again. Usually, setting up data correctly requires multiple lines of code and
is susceptible to change as the application develops further. It would be
tedious to manually create data again and again, but there’s a better way:
test factories.

A test factory is a function that initializes data depending on what you need
for a particular test. Factories let us set up data without duplicating complex
code across our entire application. In our test suite, we’re going to use a basic
factory function that creates an SMS message.

report erratum  •  discuss

Test Phoenix Requests • 179

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Create test/support/factory/sms_message.ex and add the following code:

phone_app/test/support/factory/sms_message.ex
defmodule Test.Factory.SmsMessageFactory do

def params(overrides \\ %{}) do
%{

from: "+11112223333",
to: "+19998887777",
direction: :outgoing,
message_sid: Ecto.UUID.generate(),
account_sid: "account_sid",
body: "body",
status: "queued"

}
|> Map.merge(overrides)

end

def create(overrides \\ %{}) do
{:ok, message} =
overrides
|> params()
|> PhoneApp.Conversations.create_sms_message()

message
end

end

ExUnit is configured by the Phoenix generator to include code inside of
test/support during test execution. This will make the factory available to all
of our test files.

There are factory libraries in Elixir, but my personal preference is to not use
them. Instead, create factory modules and explicitly set up dependencies as
needed.

Set Up Your Test Module
Create test/phone_app_web/controllers/message_controller_test.exs and add the following
skeleton:

phone_app/test/phone_app_web/controllers/message_controller_test.exs
defmodule PhoneAppWeb.MessageControllerTest do

use PhoneAppWeb.ConnCase, async: true

alias Test.Factory.SmsMessageFactory
end

This skeleton forms the basis of our controller test. We use PhoneAppWeb.ConnCase
this time. You’ll find that module at test/support/conn_case.ex. The ConnCase module
is created by Phoenix and sets up a conn dependency as well as the same
dependencies as DataCase.

Chapter 10. Testing Elixir • 180

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/test/support/factory/sms_message.ex
http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app_web/controllers/message_controller_test.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Test Redirection
Our first test will be for the request GET /messages. We want to ensure that the
request is redirected based on whether there’s an existing conversation or
not. Add the following describe block to your test module:

phone_app/test/phone_app_web/controllers/message_controller_test.exs
describe "GET /messages" do

test "empty messages redirects to new message", %{conn: conn} do
conn = get(conn, ~p"/messages")
assert redirected_to(conn, 302) == "/messages/new"

end

test "redirects to latest messages", %{conn: conn} do
_m1 = SmsMessageFactory.create(%{to: "111-222-3333", body: "Test 1"})
m2 = SmsMessageFactory.create(%{to: "211-222-3333", body: "Test 2"})

conn = get(conn, ~p"/messages")
assert redirected_to(conn, 302) == "/messages/#{m2.contact_id}"

end
end

The second argument of each test block—%{conn: conn}—takes the conn set
up by ConnCase and injects it into the test block. We pass the conn variable into
the get/2 function along with the route that we want to run against. The end-
point is then executed, and the conn variable is transformed based on the
output of the request.

In this test, we use the redirected_to/2 function to assert that our requests are
correctly redirected. We use our SMS factory to set up the data used in our test.

Test HTML Responses
Our next test will be for the request GET/messages/new. This controller returns HTML
containing a form, so we want to make sure that’s being returned correctly. Add
the following describe block to your test module:

phone_app/test/phone_app_web/controllers/message_controller_test.exs
describe "GET /messages/new" do

test "a message form is rendered", %{conn: conn} do
conn = get(conn, ~p"/messages/new")

assert html = html_response(conn, 200)
assert html =~ ~S(<form action="/messages/new" method="post")
assert html =~ "Send a message..."
assert html =~ "To (Phone Number)"

end
end

report erratum  •  discuss

Test Phoenix Requests • 181

http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app_web/controllers/message_controller_test.exs
http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app_web/controllers/message_controller_test.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


This test uses html_response/2 to prove that a 200 status is returned along with
an HTML body. The HTML is returned as a string, so we use regular expres-
sions to test against it.

Each line like assert html =~ "a string" proves that the HTML code is inside of the
response body. It’s a good practice to test only the key elements on your page.
If you test too many elements, then your test can become brittle. Brittle tests
are painful over time because updates can break unrelated tests.

Test Post Requests
Phoenix makes it just as easy to test POST requests as it is to test GET
requests. However, our test will be slightly more complex due to how our
endpoint works.

Our endpoint makes an outbound HTTP request to Twilio, so we need to use
Bypass to set up our test. Add the following describe block to your test module:

phone_app/test/phone_app_web/controllers/message_controller_test.exs
alias PhoneApp.Conversations.Schema.SmsMessageLine 1

-

describe "POST /messages/new" do-

test "invalid params is rejected", %{conn: conn} do-

conn = post(conn, ~p"/messages/new", %{})5

assert html_response(conn, 200) =~-

Plug.HTML.html_escape("can't be blank")-

end-

-

test "valid params creates a message", %{conn: conn} do10

bypass = Bypass.open()-

Process.put(:twilio_base_url, "http://localhost:#{bypass.port}")-

-

Bypass.expect_once(-

bypass,15

"POST",-

"/Accounts/mock-account/Messages.json",-

fn conn ->-

conn-

|> put_resp_header("Content-Type", "application/json")20

|> resp(201, File.read!("test/support/fixtures/success.json"))-

end-

)-

-

params = %{message: %{to: "+1111-222-3333", body: "Test"}}25

conn = post(conn, ~p"/messages/new", params)-

assert redirected_to(conn, 302) == "/messages"-

assert PhoneApp.Repo.aggregate(SmsMessage, :count) == 1-

end-

end30

Chapter 10. Testing Elixir • 182

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app_web/controllers/message_controller_test.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


This test is comparable to our previous tests, but it uses post/3 (lines 5 and 26)
instead of get/2. We pass our data payload as the third argument to post/3. It’s
important to test both happy and failure cases, so our tests include examples
for both.

Notice the use of Plug.HTML.html_escape/1 in our HTML assertion on line 7. Phoenix
will automatically escape HTML entities such as single quotation marks, so
our test also needs to escape single quotation marks. If we didn’t escape the
assertion, then you’d get a failed test.

Now that we’ve tested our Phoenix requests, it’s time to turn our attention to Oban.

Test Oban Jobs
You’ll often want to test two different things with Oban: that jobs are enqueued
properly and that jobs work as expected. Oban provides test helpers for each
of these situations. We’ll first test that our StatusWorker job is enqueued when
an outgoing SMS message is created.

Test Jobs Are Enqueued
When we create an SMS message in the PhoneApp.Conversations module, we con-
ditionally create an Oban job based on whether the SMS message is outgoing
or not. So, we need to test that certain SMS messages enqueue the StatusWorker
job, but other SMS messages don’t enqueue a job.

We’ll use the Oban.Testing module2 to verify that the create_sms_message/1 function
works correctly.

Add the following code to the existing ConversationsTest module:

phone_app/test/phone_app/conversations/conversations_test.exs
use Oban.Testing, repo: RepoLine 1

-

alias PhoneApp.Conversations.Worker.StatusWorker-

-

describe "create_sms_message/1" do5

test "a valid SMS message is created" do-

params = Test.Factory.SmsMessageFactory.params()-

assert {:ok, msg} = Conversations.create_sms_message(params)-

assert_enqueued(worker: StatusWorker, args: %{"id" => msg.id})-

end10

-

test "incoming SMS message doesn't enqueue a worker" do-

params = Test.Factory.SmsMessageFactory.params(%{direction: :incoming})-

assert {:ok, _msg} = Conversations.create_sms_message(params)-

2. https://hexdocs.pm/oban/Oban.Testing.html

report erratum  •  discuss

Test Oban Jobs • 183

http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app/conversations/conversations_test.exs
https://hexdocs.pm/oban/Oban.Testing.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


refute_enqueued(worker: StatusWorker)15

end-

-

test "an invalid message returns an error" do-

params = Test.Factory.SmsMessageFactory.params(%{message_sid: ""})-

assert {:error, _} = Conversations.create_sms_message(params)20

refute_enqueued(worker: StatusWorker)-

end-

end-

We are able to use the Oban test functions because Oban is configured to
manual testing mode (you updated config/text.exs in Add Oban to Our SMS App,
on page 161). The assert_enqueued (line 9) and refute_enqueued (lines 15 and 21)
functions are used to test whether a particular job is enqueued or not.

The arguments to the testing functions are optional, but they provide
scoping to the particular job you’re targeting. This is important because
you don’t want your tests to fail as more job types are introduced to your
application.

Test Job Implementation
In the previous section, we covered job creation. But we still need to test that
the job works correctly.

Our next test will cover the StatusWorker module. You can take different
approaches for testing Oban workers. Oban offers a perform_job/3 helper function,
but it’s often not needed. A worker is just a module that implements the per-
form/1 function, so we can call that function directly. We’ll use this simple
approach for our test.

Create test/phone_app/conversations/worker/status_worker_test.exs and add the fol-
lowing code:

phone_app/test/phone_app/conversations/worker/status_worker_test.exs
defmodule PhoneApp.Conversations.Worker.StatusWorkerTest doLine 1

use PhoneApp.DataCase, async: true-

-

alias PhoneApp.Conversations.Worker.StatusWorker-

alias Test.Factory.SmsMessageFactory5

-

defp setup_bypass(message, status: status) do-

bypass = Bypass.open()-

Process.put(:twilio_base_url, "http://localhost:#{bypass.port}")-

10

Bypass.expect_once(-

bypass,-

"GET",-

"/Accounts/account_sid/Messages/#{message.message_sid}.json",-

Chapter 10. Testing Elixir • 184

report erratum  •  discuss

http://media.pragprog.com/titles/sbelixir/code/phone_app/test/phone_app/conversations/worker/status_worker_test.exs
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


fn conn ->15

conn-

|> Plug.Conn.put_resp_header("Content-Type", "application/json")-

|> Plug.Conn.resp(200, Jason.encode!(%{status: status}))-

end-

)20

end-

-

test "a message status is updated" do-

message = SmsMessageFactory.create()-

setup_bypass(message, status: "delivered")25

-

assert {:ok, job} = StatusWorker.enqueue(message)-

assert {:ok, updated} = StatusWorker.perform(job)-

-

assert updated.status == "delivered"30

assert Repo.reload(message) == updated-

end-

-

test "not ready yet, enqueue" do-

message = SmsMessageFactory.create()35

setup_bypass(message, status: "queued")-

-

assert {:ok, job} = StatusWorker.enqueue(message)-

assert StatusWorker.perform(job) == {:error, "Message not ready"}-

assert Repo.reload(message) == message40

end-

end-

We use Bypass in our test to mock out several scenarios. It takes a few lines
of code to set up Bypass, so the setup_bypass/2 function on line 7 handles this
for us. Because of it, our test functions are easier to read.

Our test first enqueues a job (line 27) using the StatusWorker.enqueue/1 function.
Then, the job is performed (line 28) and the expected result is asserted. Our
test ensures that both enqueue/1 and perform/1 work. We repeat this process on
line 38 to prove that the different logic paths in our worker are correct.

With that, we have a tested StatusWorker module! All of the different components
of our application have tests too. There’s a lot more that could be taught about
testing, but this is a solid foundation for you to test your applications.

Wrapping Up
Tests are critical for production applications. They give you confidence that
your application works as expected and will handle errors correctly. The way
that you test doesn’t matter as much as having the tests, so start early!

report erratum  •  discuss

Wrapping Up • 185

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Elixir provides a built-in testing framework called ExUnit. It’s a great testing
library that has an intentionally limited number of features and assertions.
Despite being a small library, ExUnit is powerful and expressive—largely due
to its support for pattern matching. ExUnit verifies that asserted patterns
match correctly. And if a pattern doesn’t match, ExUnit highlights what
specifically was different between the left and right sides.

ExUnit tests are specified by using the ExUnit.Case module. This brings in all
of the testing functions so you have complete access to test your code. Other-
wise, ExUnit test modules are just plain modules. You can create private
functions and module attributes to create clean tests. Plus, you can use test-
only modules like testing factories to streamline your tests.

Phoenix provides the DataCase and ConnCase modules to enable the testing of
queries and endpoints. Other libraries, like Oban, provide their own testing
helpers to make it easy to test your application code. Sometimes your tests
get complex though, such as when testing external API requests. Bypass
solves testing external API requests by spinning up short-lived HTTP servers
that are used by your test suite.

That’s it for our application! But there’s still one more chapter. We’ll cover
developing and advanced libraries in Elixir that show a strong future for the
Elixir ecosystem.

Chapter 10. Testing Elixir • 186

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


CHAPTER 11

The Future of Elixir
This book is coming to an end, but your Elixir journey is just starting. There’s
so much more to see and learn about Elixir! In the past few years, major
advancements have come to the Elixir ecosystem that push many exciting
new use cases for Elixir. In addition to these exciting advancements, there
are useful topics for you to dive into after you finish this book.

It’s important to see forward progress in languages that you use—otherwise,
things feel stale. If you look at Ruby, a lot of exciting advances have been
made in the past few years, such as new real-time capabilities, improvements
to developer experience, consolidation of libraries into Rails core, and increased
performance. Luckily, Elixir has also been developing at an amazing speed.

We’ll look at the projects that are making up the future of Elixir: LiveView,
machine learning with Nx, and development toward a type system. But before
we cover those, there are a few key topics that are good to know about. We’ll
briefly cover deployment, observability, real-time apps, and GraphQL.

This chapter provides an intro to each topic—it’s a jumping off point for areas
that you’re interested in. Be sure to make a mental note of the topics you
want to explore in more detail later.

Let’s kick it off by looking at deployment and observability.

Deployment and Observability
Building the first version of an app is just step one in getting users to use it.
You need to deploy it to production, know that it’s working properly, market
it, support users, and so much more. This book won’t help you with marketing
or supporting an app, but it will help with deployment and observability!

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Elixir has had fairly large advances in deployment patterns over the last few
years. In 2019,1 the concept of Mix releases was made available. We’ll walk
through the benefits of releases and how you can use them. After that, we’ll
cover a few options for observing your app.

Deploy an Elixir App
You could bundle up your application and run it in production using mix
phx.server. But there’s a better option that will reduce long-term friction—
Mix releases.2

A release is a self-contained package that bundles your compiled code alongside
the Erlang VM and runtime. It provides benefits such as code preloading, more
configuration options, and not requiring source code in production. It also
includes management scripts that make it possible to do things like connect
to a running application.

Phoenix has a deployment guide3 that walks you through deploying an
application using Mix releases. We won’t walk through the guide here, but
this is the best way to deploy your first app. It even includes a Dockerfile that
you can use to spin up a containerized version of your application on AWS,
GCP, Fly.io, Render, or other cloud providers.

Once you have your app running in production, you need to know if it’s
working properly.

Observe Your Production Apps
Observability is the art of monitoring your application so that you know what’s
good and bad with it. There are many different types of observability. Applica-
tion logging, bug reporting, backend performance monitoring, and frontend
tracking are all examples of observability.

The Telemetry4 library serves as the modern foundation for collecting
observability metrics. Telemetry allows libraries like Phoenix, Ecto, and Oban
to provide you with metrics about performance. Each of these libraries emits
Telemetry events that can be consumed by your Telemetry handlers. The
entire system is standardized, so your handlers and a library’s events work
on top of the same foundation.

1. https://elixir-lang.org/blog/2019/06/24/elixir-v1-9-0-released/
2. https://hexdocs.pm/mix/Mix.Tasks.Release.html
3. https://hexdocs.pm/phoenix/releases.html
4. https://hexdocs.pm/telemetry/readme.html

Chapter 11. The Future of Elixir • 188

report erratum  •  discuss

https://elixir-lang.org/blog/2019/06/24/elixir-v1-9-0-released/
https://hexdocs.pm/mix/Mix.Tasks.Release.html
https://hexdocs.pm/phoenix/releases.html
https://hexdocs.pm/telemetry/readme.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


You can use Telemetry events to write to StatsD reporters such as Datadog,
or you can write your own custom handlers. Plus, due to standardization,
you can usually integrate a new library’s Telemetry events quickly into your
existing handlers.

Phoenix provides an in-depth guide5 on how to use Telemetry events to
monitor your application that uses Phoenix. Many other libraries include
similar documentation on their telemetry events.

Telemetry is just one type of observability. Another big one is backend perfor-
mance monitoring. Most of the major players like New Relic and Scout APM
support Elixir and provide guides on how to integrate it. This also applies for
bug-tracking platforms like Bugsnag, Rollbar, and Sentry.

The most important thing about observability is to do it early. You don’t want
to have a production problem and not be aware of it or not be able to diagnose
the cause of it.

Let’s change gears and look at how LiveView is powering the future of real-
time apps in Elixir.

Real-Time Apps with LiveView
Elixir has a solid foundation in real-time application development. It started
with Phoenix Channels, which I wrote all about in Real-Time Phoenix [Bus20].
But there’s been an awesome library that has completely dominated real-time
application development in Elixir—LiveView. (It’s so popular that it’s often
the first thing people hear about Elixir.)

LiveView6 is a library that enables a new breed of real-time applications. It is server-
centric, which means that all of the page HTML is processed on the server and
efficiently sent to clients on update. So, if a change happens on the server, connected
clients are instantly and automatically updated.

The magic of LiveView is that it enables you to create powerful applications
with minimal JavaScript. All of the page interactions are processed by the
LiveView process, so the server stays in control of the page interactions. In
my experience, the amount of JavaScript needed to create a single-page app
experience is reduced by 95% or more!

LiveView was briefly mentioned in Chapter 7, Serving Requests with Phoenix,
on page 117, but it’s so prevalent in the Elixir ecosystem that it deserves its

5. https://hexdocs.pm/phoenix/telemetry.html
6. https://hexdocs.pm/phoenix_live_view/welcome.html

report erratum  •  discuss

Real-Time Apps with LiveView • 189

https://hexdocs.pm/phoenix/telemetry.html
https://hexdocs.pm/phoenix_live_view/welcome.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


own spot in this chapter. Make sure to check out Programming Phoenix
LiveView [TD24] by Bruce Tate and Sophie DeBenedetto. It’s the best book to
get started with LiveView!

If you’re building a LiveView app, you likely won’t have a traditional HTTP-
based API. But if you’re not using LiveView, consider using GraphQL. Let’s
talk about that next.

GraphQL with Absinthe
GraphQL is a popular technology to build APIs with. It replaces traditional
REST-based APIs with a completely different approach to API development.
It can be a bit complex to get started with, but it’s a fast and effective approach
for API development. If you do decide to build a GraphQL API, the quality of
your server implementation is important. Luckily, Elixir has one of the best
implementations out there.

Absinthe7 is the leading server implementation of GraphQL in Elixir. It provides
all of the basics that you’d expect but also includes more advanced features
such as subscriptions, full middleware control, and Relay support.

One of the hardest things to get right with a GraphQL API is batched resolu-
tion—you want to grab the data you need in the fewest number of queries
possible. Absinthe has multiple approaches to solving this problem—arguably
in a better way than other languages provide.

GraphQL is a paradigm shift from traditional ways of building APIs, but in
my experience, it’s worth it. The book Craft GraphQL APIs in Elixir with
Absinthe [WW18] by Bruce Williams and Ben Wilson walks you through how
to build your GraphQL with Absinthe, directly from the creators of the
Absinthe framework.

Machine Learning with Nx and Bumblebee
Machine learning and artificial intelligence have been hot topics in recent
years. Python is the most important language in the machine learning com-
munity, but Elixir is working on becoming a contender. Machine learning is
vastly different than classical programming though, and it requires new ways
of executing code.

Nx (Numerical Elixir)8 was developed by Sean Moriarity and José Valim to
solve the problem of machine learning in Elixir. Nx provides primitives that

7. https://hexdocs.pm/absinthe/overview.html
8. https://hexdocs.pm/nx/Nx.html

Chapter 11. The Future of Elixir • 190

report erratum  •  discuss

https://hexdocs.pm/absinthe/overview.html
https://hexdocs.pm/nx/Nx.html
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


enable code to run on computing targets such as GPUs. Nx is a low-level
library that’s leveraged by higher-level libraries to implement common machine
learning patterns.

Bumblebee9 is a library that leverages Nx to execute pretrained neural
network models. It works out of the box with HuggingFace models, which
is the most popular host for machine learning models. Bumblebee has
been shown to work with popular models such as “Whisper” and “Stable
Diffusion.”

Livebook10 isn’t strictly machine learning related, but it’s commonly used in
a similar way to Jupyter notebooks, which are used in the Python community
to share executable code alongside the results of the code. Livebook executes
Elixir code located in cells and creates a formatted, documented notebook of
code that can be shared between team members.

The development of machine learning capabilities in Elixir is incredibly exciting.
Elixir’s capabilities with robust data pipelines and distributed code execution
make it a perfect contender in the machine learning space because of the
amount of work that goes into bringing machine learning models to production.
However, there’s still a lot of work to do in this space. Keep an eye on it
because it has shown so much promise so far.

For our final topic, let’s look at potential type system support in Elixir.

Type Systems
For better or worse, one of the most commonly asked questions by developers coming
from another language is whether Elixir provides types support. The common
argument is that static types defined in an application allow for more pre-
dictability and guarantees about how an application will perform. (Whether
those claims are true or not is a matter of opinion.)

Many Elixirists take advantage of pattern matching and structs to achieve a
loose version of typing. If you use a struct match like message = %SmsMessage{}
in your function head, then you know that message will be an SmsMessage. This
actually goes a long way, but it’s not a true types support.

Dialyzer is an Erlang package that provides a “success typing” implementation
for BEAM languages. There is an Elixir library that wraps it called Dialyxir.11

This package can catch a lot of logic mistakes in your code, but it’s not native

9. https://github.com/elixir-nx/bumblebee
10. https://livebook.dev/
11. https://github.com/jeremyjh/dialyxir

report erratum  •  discuss

Type Systems • 191

https://github.com/elixir-nx/bumblebee
https://livebook.dev/
https://github.com/jeremyjh/dialyxir
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


to the Elixir compiler. Plus, it can have problems with accuracy and speed.
It’s recommended that you use Dialyzer, but it’s not a true types support
either.

Dialyzer uses a concept called Typespecs12 to define types—in addition to
what it can automatically determine from your code. You may see @spec defi-
nitions in Elixir codebases that you work on. They look like this:

# Example from Typespecs docs
@spec long_word?(word()) :: boolean()
def long_word?(word) when is_binary(word) do

String.length(word) > 8
end

Typespecs are used for documentation and by tools like Dialyzer, but there
may be more uses for them in the future.

José Valim opened the discussion for a real type system in Elixir with a blog
post13 and presentation at ElixirConf 2022. The team has enlisted the help
of PhD researchers to develop an Elixir type system based on set-theoretic
types. This is big news because it was largely considered impossible to add
true types support to Erlang and Elixir.

There’s no guarantee that this research will result in a types implementation.
It will only be added if it’s performant, accurate, and easy to use. As of January
2024, José tweeted14 that “Elixir is, officially, a gradually typed language.” So
the future is bright, and the community is hoping to see a true types system
in Elixir one day!

Wrapping Up
Your Elixir toolbox has quite a few tools in it, but it’s nowhere near complete
yet. There’s so much to learn, and there are different paths that you can take
based on your interests. This is a good thing though because it means you
can expand your knowledge and interests over time.

The first thing you’ll need to do once you write your first Elixir app is deploy
it somewhere. Use Mix releases to create your release and package it up into
a container. You’ll be able to easily deploy to platforms like AWS, GCP, Fly.io,
or Render. Once your application is deployed, make sure that you have
proper observability in place, such as application logging, performance mon-
itoring, and bug tracking.

12. https://hexdocs.pm/elixir/typespecs.html
13. https://elixir-lang.org/blog/2022/10/05/my-future-with-elixir-set-theoretic-types/
14. https://twitter.com/josevalim/status/1744395345872683471

Chapter 11. The Future of Elixir • 192

report erratum  •  discuss

https://hexdocs.pm/elixir/typespecs.html
https://elixir-lang.org/blog/2022/10/05/my-future-with-elixir-set-theoretic-types/
https://twitter.com/josevalim/status/1744395345872683471
http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


If you’re looking for a different way to build applications, then Phoenix LiveView
may be the library for you. LiveView enables you to create real-time, rich user
interfaces with a minimal amount of JavaScript. When you create a LiveView app,
your code executes on the server, so you can stick to Elixir for most of your
application development. Cut 95% or more of your application’s JavaScript with
LiveView!

LiveView isn’t for you? Then consider GraphQL to build your application APIs.
Absinthe is an implementation of GraphQL that provides all of the bells and
whistles you need. It’s arguably one of the better GraphQL implementations,
and it even comes with subscriptions, Relay, and batch resolution support.

Machine learning and AI are coming to Elixir. The Nx project provides a
foundation for numerical computing in Elixir. With Nx, you can target code
to run on GPUs—which is crucial for machine learning applications. Bumble-
bee lets you run pretrained models with ease. Spin up the hottest machine
learning models in minutes, all without touching Python.

Finally, keep an eye out for type system development in Elixir. Nothing is
guaranteed, but there have been discussions of innovative type system
approaches that may finally bring types support to Elixir. But if those devel-
opments don’t come to fruition, we still have the Dialyzer library to provide
types to our Elixir apps.

The future of Elixir is bright!

The End of Our Journey
It’s the end of this book, but it’s just the beginning of your Elixir journey.
Thank you for letting me guide you as you took your first steps with Elixir!

The feeling I had when I first learned Elixir was that it would dramatically change
how I program—and it did. Not only did my Elixir skills improve over time, but I
also found that my system design as a whole dramatically improved as well. I know
that learning Elixir will positively affect how you build systems, too.

The Elixir ecosystem is continuing to grow—thanks to developers like yourself
who are curious about it. The Elixir community is very welcoming, so please
never feel alone as you continue your Elixir journey. Join one of the branches of
the community (forums, Slack, Discord, and more) and let us give you a hand!

Now, go forth and build awesome Elixir applications.

report erratum  •  discuss

The End of Our Journey • 193

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Bibliography

[Bus20] Stephen Bussey. Real-Time Phoenix. The Pragmatic Bookshelf, Dallas, TX,
2020.

[LM21] Andrea Leopardi and Jeffrey Matthias. Testing Elixir. The Pragmatic
Bookshelf, Dallas, TX, 2021.

[McC15] Chris McCord. Metaprogramming Elixir. The Pragmatic Bookshelf, Dallas,
TX, 2015.

[TD24] Bruce A. Tate and Sophie DeBenedetto. Programming Phoenix LiveView.
The Pragmatic Bookshelf, Dallas, TX, 2024.

[TV19] Chris McCord, Bruce Tate and José Valim. Programming Phoenix 1.4. The
Pragmatic Bookshelf, Dallas, TX, 2019.

[WM19] Darin Wilson and Eric Meadows-Jönsson. Programming Ecto. The Pragmatic
Bookshelf, Dallas, TX, 2019.

[WW18] Bruce Williams and Ben Wilson. Craft GraphQL APIs in Elixir with Absinthe.
The Pragmatic Bookshelf, Dallas, TX, 2018.

report erratum  •  discuss

http://pragprog.com/titles/sbelixir/errata/add
http://forums.pragprog.com/forums/sbelixir


Index

SYMBOLS
! (exclamation mark), function

error, 35

%{}, in map syntax, 37

& (ampersand), capturing
functions, 25

++ (double pluses)
list concatenation, 34
list pattern matching, 52–

53

-- (double hyphen), lists, 34

< > (angle brackets), string
concatenation, 51

<=, with statement, 58

= (match operator), 16, 50, 58

=>, non-atom keys, 38

[] square brackets, lists, 34

\\ (double backslash) operator,
24

^ (caret)
contact id value, 110
pinning variable value, 54

_ (underscore), as variable
name placeholder, 57

| (pipe) operator, 17, 52

A
Absinthe, 190

accumulator, Enum.reduce, 45

ActiveRecord, 87, 91–92, 99, 
110

actor-based programming, 68

add :field_name, :field_type func-
tion, 98

alias module keyword, 27

ampersand (&), capturing
functions, 25

angle brackets (< >), string
concatenation, 51

anonymous functions, 12, 
18, 22, 25

App and AppWeb names-
paces, 122

arithmetic operators, 17

arrays, see lists

asdf version manager, 10

assert_raise/2 assertion, 176

asset pipeline, managing in
Phoenix, 132–134

assignment operator,
see match operator

associations, Ecto schema,
96, 109

asynchronous jobs, 153–169
async job systems, 154
Elixir options for, 157–

160
litmus tests for using,

155
Oban library, 159–169
use cases, 154–155

atoms, 15, 38

attr function, 136

attributes, Phoenix compo-
nent, 135–136

authentication generator, 138

B
backend performance monitor-

ing, 189

Bandit web server, 119

BEAM (Bogdan/Björn’s Er-
lang Abstract Machine), 6, 
9

concurrency processes,
69

durability of, 70
parallelism execution, 69
in pattern matching, 50
programming advantages

of, 81
scalability of, 70
supervisors, 80
web servers, 119

belongs_to/3 function, 96

binary data type, 15

binary heap, storing data in,
74

bitstring data type, 15

boolean data type, 15

boolean operators, 17

branching logic, see control
flow

bug-tracking platforms, 189

Bumblebee library, 190

Bundler, 19

Bypass, 177–179, 185

C
caret (^)

contact id value, 110
pinning variable value, 54

case statement, 49, 55–57

CaseClauseError, 56

changesets, 93, 101–104
Ecto.Changeset, 101, 

109, 136



NewMessage, 128, 130, 
172–174

testing, 172–174
updating, 109

Channels, 119, 139

classes vs. structs, 43

comparison operators, 16

compilation environment
macro, 42

compile time vs. runtime, 30–
31

compiled vs. interpreted lan-
guages, 8

components, Phoenix, 118, 
134–138

comprehensions, 45–47

concurrency, see al-
so GenServer library

in Elixir, 69
HTTP clients, 144
vs. parallelism, 66–70
in Ruby, 65, 67

cond statements, 59

CondClauseError, 60

connection pooling, HTTP re-
quests, 142

contact data, persisting, 105–
107

context modules for func-
tions, 112–114

control flow, 49, 55–60

controller actions, 125–131

Cowboy web server, 119

create action, 129

create index(:table_name, [:field_one,
:field_two]) function, 99

create table(:name) do / end func-
tion, 98

CRON plugin, 168

D
data access libraries, “magic”

element, 91

data layer, see Ecto library

data mutability, 14, 39

data persistence, see Ecto li-
brary

data pipelines, writing with
job systems, 155

data structures, 33–47
enumerating, 43–47
implementing, 41–43
lists, 16, 33–37

maps, 16, 37–41
pattern matching, 52–54

data types, 14–16

database, querying,
see queries

def macro, 20

default-value keys, structs,
40

defdelegate, 113

defmodule macro, 20

Dialyzer package, 191

digesting pipeline assets, 134

do block, 94

domain-specific language
(DSL), 93

double backslash (\\) operator,
24

double hyphen (--), lists, 34

double pluses (++)
list concatenation, 34
list pattern matching, 52–

53

E
Ecto library, 87–115

changesets to persist da-
ta, 101–104

context modules for
functions, 112–114

foundations of, 91–93
and GenServers, 66
migrations to create

database tables, 98–
101

and Phoenix, 119
query data with Ec-

to.Query, 105–112
sample project to build,

88–90
schema construction, 93–

97
testing queries, 175–176

Ecto.Changeset, 101, 109, 136

Ecto.Migration module, 98

Ecto.Query, 105–112

Ecto.Repomodule, 105

Ecto.Schema module, 93–95

ecto_sql library, 98

[element | list], 34

Elixir, 5–12, 14, see also syn-
tax for Elixir

BEAM, 9
case for, 5–7

concurrency and paral-
lelism models, 69–70

deployment, 188
Erlang/OTP, 8, 10
function orientation of,

14, 41
installing, 10–11
writing first code process,

11–12

else clauses, with statement,
58

else if syntax, Elixir’s lack of,
56

email sending use case, async
jobs, 154

Endpoint, 122

endpoints, testing, 179

enqueued jobs, testing for,
183

Enum module, 43

Enum.each/2, 44

Enum.map/2, 44

Enum.reduce/3, 45

Enumerable protocol, 43

Erlang/OTP, 8, 10, 143, 191

error isolation, 73

esbuild asset bundler, 132

exact-position basis for pat-
tern matching, 52

exception operators, 17

exclamation mark (!), function
error, 35

external API requests, testing,
176–179

ExUnit, 172–174

F
field macro function, 94

fields, schema, 95

Finch HTTP request library,
144

Flash messages, 130

float data type, 15

fn keyword, 25

for keyword, 45

function-oriented language,
Elixir as, 14, 41

FunctionClauseError, 62

functions, 16–27
anonymous, 12, 18, 22, 

25
capturing, 25–27

Index • 198



context modules for, 112–
114

delegated, 113
Elixir’s lack of function

calls inside patterns,
51

GenServer helper func-
tions, 78

invoking with default ar-
guments, 148

macro-based match, 51
modifier, 43
named, 18, 20–21, 26–27
overloading, 22–25, 60–

64
passing options into, 36
types of, 12
writing GenServers, 77

G
garbage collection, 74–76

generators, Phoenix, 93, 138

GenServer library, 65–82
and async job systems,

153
creating a GenServer, 77–

78
going parallel with

GenServers, 76–80
SMS sample app, 88

GenServer.call/2, 78

GenServer.cast/2, 78

GET requests, 124, 181–182

Global Virtual Machine Lock
(GVL), 68

GoodJob library, 159

GraphQL, 190

guard statements, 60, 62

H
~H sigil, 136

hackney HTTP request li-
brary, 143

has_many/3 function, 96

helper functions, GenServer,
78

hibernation state, for process-
es, 76

HTML helpers, Phoenix, 118, 
128

HTTP requests, 141–152
deciding on a client, 141–

145
making requests with

Req, 147–150

preparing a project, 145–
147

testing outbound, 176–
179

using PhoneApp project,
151

Webhook controller, 150–
151

:httpc HTTP client, 143

HTTPoison request library,
143, 145

HuggingFace models, 191

I
:id route parameter, 125

IEx (Interactive Elixir) con-
sole, 11

if statements, control flow, 55

immutability of data, in Elixir,
14, 39

implicit behavior (“magic”),
91, 120

import Ecto.Query function, 110

import module keyword, 28

index, accessing lists by, 35

index/2 function, 127

init/1 function, 78

integer data type, 15

interpreted vs. compiled lan-
guages, 8

IRB (Interactive Ruby) con-
sole, 11

is_, guard statements, 61

K
Kernel module, 18

key-value pairs, maps, 37

keyword arguments, Ruby, 37

keyword lists, 36–37

L
lib folder, Mix project, 19

List module, 34

lists, 16, 33–37, 52–53

Livebook, 191

Liveline plugin, 168

LiveView library
as Phoenix feature, 119, 

139, 189
SMS sample app, 88

loop/0 function, 72

M
machine learning, 190

macro-based match func-
tions, 51

macros, 20, 28, 42

“magic” (implicit behavior),
91, 120

many-to-many Ecto schema
association, 97

many_to_many/3 function, 97

Map module, 38

maps, 16, 37–41, 54

match operator (=), 16, 50, 58

MatchError, 52

memory architecture, 74

message_form component, 136, 
138

MessageController module, 126–
131

MessageHTML module, 135

messaging APIs with
GenServer, 76

method chaining vs. function
piping, 17

migrations to create database
tables, 98–101

Minitest, 172

MINSWAN, 4

Mint HTTP request library,
144

mix phx.server command, 132

Mix projects, 19

mock_server helper app, 145

Model-View-Controller (MVC)
design pattern, 117, 125

modifier functions, 43

modify :field_name, :field_type func-
tion, 98

__MODULE__ variable, 42

module-based function type,
12

modules, 18–21, 27–29

MRI Ruby, 68

mutability of data, 14

MVC (Model-View-Controller)
design pattern, 117, 125

N
named functions, 18, 20–21, 

26–27

named maps, structs as, 40

new function, 43

Index • 199



NewMessage changeset, 128, 
130, 172–174

nil data type, 15

Nx (Numerical Elixir), 190

O
Oban library, 66, 81, 159–

169, 183–185

object-oriented language, Ru-
by as, 14, 41

objects vs. GenServer, 79

observability, 167, 188

one-to-many Ecto schema
association, 96

one-to-one Ecto schema asso-
ciation, 96

Open Telecom Platform (OTP),
8, 10

operators, 16–18

-otp suffix, 10

overloading functions, 22–25, 
60–64

P
~p sigil, 127

PageController route, 126

parallel and serial code execu-
tion, 7

parallelism, see al-
so GenServers

being cautious with, 81
and concurrency, 65–70
Elixir’s parallelism model,

69
Ruby’s parallelism model,

68

pattern matching, 49–64
control flow, 55–60
function overloading, 60–

64
lists and tuples, 52–53
map matching, 53
and operators, 16, 50–52
pinned values, 54

persisting data, see Ecto li-
brary

PgBouncer library, 142

Phoenix library, 117–140
authentication generator,

138
Channels, 119, 139
components for a clean

UI, 134–138
deployment guidance,

188

foundations of, 117–121
generators, 93
and GenServers, 66
LiveView, 119, 139, 189
vs. Rails, 119, 123
routing requests, 122–

125
serving requests with

controllers, 125–132
SMS sample app build,

89
static asset management,

132–134
testing an Ecto query,

175–176
testing requests, 179–183

Phoenix.Component module, 134

Phoenix.Endpoint module, 122

Phoenix.HTML, 118

Phoenix/Ecto package, 119

phoenix_live_view package, 118

PhoneApp, 122

PhoneApp.Conversations context,
113

PhoneApp.Repo module, 105

PhoneAppWeb, 122

PhoneAppWeb.CoreComponents
module, 138

PhoneAppWeb.Endpoint module,
122

PhoneAppWeb.MessageHTML mod-
ule, 128

PhoneAppWeb.Router module, 123

pinned values, 54

pipe (|) operator, 17, 52

pipeline function, 124

plug function, 123, 126

Plug library, 118, 122

Plug.Conn struct, 127

plugins, Oban, 162

pooled connections, HTTP re-
quests, 142

port for route requests, 121

POST requests, testing, 182

Postgres, and Oban, 159–
160, 166

pretrained neural network
models, 191

Process.info(pid), 74

processes in Elixir, 70–76
concurrency and paral-

lelism, 69–70
error isolation, 73

garbage collection, 74–76
GenServer library, 76–80
memory architecture, 74
recursion and processing

messages forever, 72
spawning, 70–72

Procs vs. anonymous func-
tions, 22

protocols, 43, 142

Q
queries, Ecto, 91–92, 105–

112, 175–176

queues, Oban, 162

R
race conditions, Ruby’s con-

currency model, 67

Rack library, 118

Ractors, Ruby, 69

Rails (Ruby on Rails), 118–
119, 123, 125–126

raise operator, 17

Rake tool, Ruby, 19

real-time web applications,
119

receive function, 71

recovering stuck async jobs,
168

recursion, 63–64, 72

reductions, in BEAM parallel
processing, 70

render function, 129

repeating tasks, optimizing
with async job, 155

Repo module, 105

Repository design pattern, 91

Req HTTP request client,
see HTTP requests

requests, serving, see Phoenix
library

require module keyword, 28

required keys, structs, 40

return syntax, Ruby vs. Elixir,
23

routing requests, 122–125

RSpec, 172

Ruby, 3–5
ActiveRecord, 87, 91–92, 

99, 110
concurrency in, 65, 67
data types, 14
enumeration syntax, 45

Index • 200



HTTP request clients,
141, 144

method capturing, 26
module creation and

functions in, 21
mutability of data, 39
object-oriented structure

of, 14, 41
objects vs. GenServers,

80
vs. Phoenix, 118
Procs vs. anonymous

functions, 22
proxy for web servers,

119
vs. Rails, 119
Sidekiq library, 153, 

159, 161
syntax vs. Elixir, 13
testing with, 172, 176

Ruby on Rails, 118–119, 
123, 125–126

Ruby Ractor, 68

runtime vs. compile time, 30–
31

S
schedulers, BEAM, 70

Schema.Contact, 105

schema/2 function, 94

schemas, Ecto, 92–97, 109

scope function, 124

send function, 71

serial and parallel code execu-
tion, 7

serving requests with Phoenix
controllers, 118, 125–132

show action, 127

Sidekiq library, 153, 159, 161

slots, 137

SMS sample app, 88

SmsMessageStore, persisting
messages, 107–109

sockets, HTTP requests, 142

source code for the book, 120

spawning a process, 70–72

SQL, and Ecto, 92, 105

SQLite3, 159

square brackets ([]), lists, 34

stack-oriented programming
vs. BEAM’s processes, 81

start/0 function, 72

start_link/2 function, 78

state management with
GenServer, 76

static assets, managing, 132–
134

string data type, 15

structs, 39–41, 43, 95

supervisors, BEAM, 80

syntax for Elixir, 13–32
data types, 14–16
functions, 16–27
modules, 18–21, 27–29
operators, 16–18

T
Tailwind CSS library, 132

Task library, 81, 158

Telemetry library, 167, 188

Tesla HTTP request library,
144–145

test factories, 179

test folder, Mix project, 19

testing, 4, 171–186
changeset, 172–174
Ecto query, 175–176
external API requests,

176–179
Oban jobs, 183–185
Phoenix requests, 179–

183

threads, in Ruby, 68

throw operator, 17

time-guarantee issue for
async jobs, 154

@timestamp_opts module at-
tribute, 95

timestamps/0, 94

.tool-versions, 10

translating data from
database, 92

tuple data type, 16, 34

type systems support, 191–
192

Typespecs, 192

U
underscore (_), as variable

name placeholder, 57

use module keyword, 29

use statement, 94

user interface (UI), Phoenix
components, 134–138

V
validating data, Ecto, 93

variable assignments, and
pattern matching, 50

verified routes, 127

W
web interface feature, Oban,

168

web server, 119, 131

web-development framework,
see Phoenix library

web-request foundation for
Phoenix vs. Rails,
see Phoenix library

Webhook controller, 150–151

WebSocket support, 119

with statements, 57–59

workflows, writing with job
systems, 155

wrapper functions, GenServ-
er, 78

Index • 201



Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2024 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With up to a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

Thank you for your continued support. We hope to hear from you again
soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2024

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/


Real-Time Phoenix
Give users the real-time experience they expect, by
using Elixir and Phoenix Channels to build applications
that instantly react to changes and reflect the applica-
tion’s true state. Learn how Elixir and Phoenix make
it easy and enjoyable to create real-time applications
that scale to a large number of users. Apply system
design and development best practices to create appli-
cations that are easy to maintain. Gain confidence by
learning how to break your applications before your
users do. Deploy applications with minimized resource
use and maximized performance.

Stephen Bussey
(326 pages) ISBN: 9781680507195. $45.95
https://pragprog.com/book/sbsockets

Adopting Elixir
Adoption is more than programming. Elixir is an excit-
ing new language, but to successfully get your applica-
tion from start to finish, you’re going to need to know
more than just the language. You need the case studies
and strategies in this book. Learn the best practices
for the whole life of your application, from design and
team-building, to managing stakeholders, to deploy-
ment and monitoring. Go beyond the syntax and the
tools to learn the techniques you need to develop your
Elixir application from concept to production.

Ben Marx, José Valim, Bruce Tate
(242 pages) ISBN: 9781680502527. $42.95
https://pragprog.com/book/tvmelixir

https://pragprog.com/book/sbsockets
https://pragprog.com/book/tvmelixir


Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

Metaprogramming Elixir
Write code that writes code with Elixir macros. Macros
make metaprogramming possible and define the lan-
guage itself. In this book, you’ll learn how to use
macros to extend the language with fast, maintainable
code and share functionality in ways you never thought
possible. You’ll discover how to extend Elixir with your
own first-class features, optimize performance, and
create domain-specific languages.

Chris McCord
(128 pages) ISBN: 9781680500417. $17
https://pragprog.com/book/cmelixir

https://pragprog.com/book/lhelph
https://pragprog.com/book/cmelixir


Designing Elixir Systems with OTP
You know how to code in Elixir; now learn to think in
it. Learn to design libraries with intelligent layers that
shape the right data structures, flow from one function
into the next, and present the right APIs. Embrace the
same OTP that’s kept our telephone systems reliable
and fast for over 30 years. Move beyond understanding
the OTP functions to knowing what’s happening under
the hood, and why that matters. Using that knowledge,
instinctively know how to design systems that deliver
fast and resilient services to your users, all with an
Elixir focus.

James Edward Gray, II and Bruce A. Tate
(246 pages) ISBN: 9781680506617. $41.95
https://pragprog.com/book/jgotp

Programming Elixir 1.6
This book is the introduction to Elixir for experienced
programmers, completely updated for Elixir 1.6 and
beyond. Explore functional programming without the
academic overtones (tell me about monads just one
more time). Create concurrent applications, but get
them right without all the locking and consistency
headaches. Meet Elixir, a modern, functional, concur-
rent language built on the rock-solid Erlang VM. Elixir’s
pragmatic syntax and built-in support for metaprogram-
ming will make you productive and keep you interested
for the long haul. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(410 pages) ISBN: 9781680502992. $47.95
https://pragprog.com/book/elixir16

https://pragprog.com/book/jgotp
https://pragprog.com/book/elixir16


Build a Binary Clock with Elixir and Nerves
Want to get better at coding Elixir? Write a hardware
project with Nerves. As you build this binary clock,
you’ll build in resiliency using OTP, the same libraries
powering many commercial phone switches. You’ll at-
tack complexity the way the experts do, using a layered
approach. You’ll sharpen your debugging skills by
taking small, easily verified steps toward your goal.
When you’re done, you’ll have a working binary clock
and a good appreciation of the work that goes into a
hardware system. You’ll also be able to apply that un-
derstanding to every new line of Elixir you write.

Frank Hunleth and Bruce A. Tate
(106 pages) ISBN: 9781680509236. $29.95
https://pragprog.com/book/thnerves

Build a Weather Station with Elixir and Nerves
The Elixir programming language has become a go-to
tool for creating reliable, fault-tolerant, and robust
server-side applications. Thanks to Nerves, those same
exact benefits can be realized in embedded applica-
tions. This book will teach you how to structure, build,
and deploy production grade Nerves applications to
network-enabled devices. The weather station sensor
hub project that you will be embarking upon will show
you how to create a full stack IoT solution in record
time. You will build everything from the embedded
Nerves device to the Phoenix backend and even the
Grafana time-series data visualizations.

Alexander Koutmos, Bruce A. Tate, Frank Hunleth
(90 pages) ISBN: 9781680509021. $26.95
https://pragprog.com/book/passweather

https://pragprog.com/book/thnerves
https://pragprog.com/book/passweather


Programming Phoenix 1.4
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.4, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert as you build the next generation of web appli-
cations.

Chris McCord, Bruce Tate and José Valim
(356 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix14

Programming Ecto
Languages may come and go, but the relational
database endures. Learn how to use Ecto, the premier
database library for Elixir, to connect your Elixir and
Phoenix apps to databases. Get a firm handle on Ecto
fundamentals with a module-by-module tour of the
critical parts of Ecto. Then move on to more advanced
topics and advice on best practices with a series of
recipes that provide clear, step-by-step instructions
on scenarios commonly encountered by app developers.
Co-authored by the creator of Ecto, this title provides
all the essentials you need to use Ecto effectively.

Darin Wilson and Eric Meadows-Jönsson
(242 pages) ISBN: 9781680502824. $45.95
https://pragprog.com/book/wmecto

https://pragprog.com/book/phoenix14
https://pragprog.com/book/wmecto


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/sbelixir
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up-to-Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on Twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest Pragmatic developments, new titles, and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

https://pragprog.com/book/sbelixir
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Who Should Read This Book?
	About This Book
	About the Code
	Online Resources

	Part I—Fundamentals of Elixir
	1. Why Elixir? Why Now?
	The Joy of Ruby
	The Case for Elixir
	Erlang, OTP, Elixir, and Friends
	Install Elixir on Your Computer
	Write Your First Elixir Code
	Wrapping Up

	2. New Language, New Syntax
	The Big Picture
	Data Types
	Operators
	Module and Function Basics
	Fun with Functions
	Capturing Functions
	Advanced Module Keywords
	Compile Time vs. Runtime
	Wrapping Up

	3. Working with Data
	Lists—Not Arrays
	Maps—Your Data Layer Foundation
	Implementing Data Structures
	Enumerating Data Structures
	Wrapping Up

	4. Pattern Matching Your Way to Success
	Pattern Matching Basics
	Use Patterns for Control Flow
	Level Up Your Functions
	Wrapping Up

	5. GenServers: Build Cities, Not Skyscrapers
	Parallelism vs. Concurrency
	Explore Elixir Processes
	Go Parallel with GenServers
	Be Parallel, Be Cautious
	Build Cities, Not Skyscrapers
	Wrapping Up


	Part II—Tools of the Trade
	6. Persisting Data with Ecto
	What Will We Build?
	The Foundations of Ecto
	Write an Ecto Schema
	Use Migrations to Create Database Tables
	Use Changesets to Persist Data
	Query Data with Ecto.Query
	Put Everything in a Context
	Wrapping Up

	7. Serving Requests with Phoenix
	Explore the Foundations of Phoenix
	Route Requests Through Phoenix
	Serve Requests with Phoenix Controllers
	Manage Static Assets
	Use Components to Keep Your User Interface Clean
	Phoenix Is More Than Controllers
	Wrapping Up

	8. Outbound HTTP Requests with Req
	Decide on Which HTTP Client to Use
	Prep Your Project for Req
	Use Req to Make Requests
	See Your App in Action
	Wrapping Up

	9. Asynchronous Jobs with Oban
	Understand Async Job Systems
	Explore Asynchronous Jobs in Elixir
	Implement an Oban Worker
	More About Oban
	Wrapping Up

	10. Testing Elixir
	Create Your First Test
	Test an Ecto Query
	Test External API Requests
	Test Phoenix Requests
	Test Oban Jobs
	Wrapping Up

	11. The Future of Elixir
	Deployment and Observability
	Real-Time Apps with LiveView
	GraphQL with Absinthe
	Machine Learning with Nx and Bumblebee
	Type Systems
	Wrapping Up
	The End of Our Journey


	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –


