

Early praise for Functional Web Development with Elixir, OTP, and Phoenix

A must-have for new Elixir programmers ready to take on modern web development
with the unique features of the platform. Lance gently guides readers through
complex topics using fun, digestible examples. From OTP to proper Phoenix archi-
tecture, this book takes you step by step from the basics to building your own
powerful, real-time applications.

➤ Chris McCord
Author of the Phoenix Framework

What makes this book important and unique is the fact that it focuses more on
development practices and less on technology mechanics. I recommend this book
to anyone who wants to build production systems with Elixir and Phoenix.

➤ Saša Jurić
Software Developer, Aircloak

Every Elixir developer should buy and read Lance’s book. There are a lot of
questions in the rapidly growing Elixir community about how to structure apps
with Phoenix and OTP, and Lance provides compelling and thoughtful answers.
The Islands app that the reader builds throughout the book isn’t simply an app
to learn functional web development; it’s the blueprint for correctly building out
almost any Elixir app.

➤ Ben Marx
Lead Engineer, Bleacher Report

For many people, their first experience with Elixir is in the context of Phoenix,
and when they build their app it’s a “Phoenix app”—which is great! But eventually
they hit a wall and want to learn more about OTP and Elixir. This is the book they
should reach for, and the book I am sending to as many people as I can.

➤ Jason Stiebs
Partner, RokkinCat LLC

Functional Web Development with Elixir, OTP, and Phoenix teaches the radical de-
sign shift from traditional web development architecture to one that leverages
stateful servers, persistent client connections, and a full embrace of the separation
of concerns. If you’re interested in a modern web architecture that meets the de-
mands of today and tomorrow, I highly recommend this book.

➤ Moxley Stratton
Elixir Software Engineer, Weedmaps

I’m an experienced developer, but new to Elixir; to get maximum benefit from a new
language, I know it’s vital to learn to use its tools idiomatically. This book has shown
me new ways to think about structuring my Elixir applications. It’s full of great
examples and strategies for effective use of the tools provided by Erlang, Elixir,
and Phoenix’s standard libraries: it’s got the “how,” but it’s driven by the “why.”

➤ Bryan Stearns
Senior Software Engineer and Consultant

Lance Halvorsen continues to show a knack for finding the practical steps hidden
in complex problems. In this book, he tackles the future of functional web design
with the simple idea that “Phoenix is not your application.” Expanding on that
concept, he builds an essential guide for the next generation of Phoenix applica-
tions. This is an absolute must-read for all Elixir and Phoenix developers.

➤ Jesse J. Anderson
Front-End Developer, Planning Center

This book presents learning powerful OTP constructs wrapped up in the excitement
of completing a game in Elixir and Phoenix end to end. By the time you come up
for air, you’ve read most of the book and learned some very powerful skills to roll
into your own projects.

➤ Erik Ketcham
Engineering Manager, Le Tote

I’ve been using Elixir and Phoenix for several years and still managed to learn a
few new tips and tricks.

➤ Jeff Weiss
Software Engineer, Le Tote

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Functional Web Development
with Elixir, OTP, and Phoenix

Rethink the Modern Web App

Lance Halvorsen

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-243-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments xi
Introduction xiii

1. Mapping Our Route 1
Lay the Foundation with Elixir 3
Add a Web Interface with Phoenix 4
Functional Web Development 4
The Game of Islands 5

Part I — Define the Functional Core in Elixir

2. Model Data and Behavior 9
The Benefits 10
Let’s Build It 11
Discover the Entities and Model the Domain 12
Transforming Data 26
Putting the Pieces Together 36
Wrapping Up 40

3. Manage State with a State Machine 43
A Quick Look at State 43
A Bit of History 44
State Machines 46
A Functional State Machine for Islands 47
Working Through the States 49
Wrapping Up 61

Part II — Add OTP for Concurrency and Fault Tolerance

4. Wrap It Up in a GenServer 65
A Look at Micro-Services 65
OTP Solutions 67
Getting Started with GenServer 70
Initializing GenServer State 76
Customizing GenServer Behavior 78
Naming GenServer Processes 92
Wrapping Up 96

5. Process Supervision for Recovery 97
Fault Tolerance 97
Linking Processes 99
Introducing the Supervisor Behaviour 105
Supervision Strategies 105
The Child Specification 108
A Supervisor for the Game 110
Starting the Supervision Tree 112
Starting and Stopping Child Processes 114
Putting the Pieces Together 117
Recovering State After a Crash 119
Wrapping Up 128

Part III — Add a Web Interface with Phoenix

6. Generate a New Web Interface with Phoenix 131
Frameworks 131
Applications 135
Generate a New Phoenix Application 142
Adding a New Dependency 146
Call the Logic from the Interface 148
Wrapping Up 152

7. Create Persistent Connections with Phoenix Channels . . 153
The Beauty of Channels 153
The Pieces That Make a Channel 154
Let’s Build It 156
Establish a Client Connection 160
Converse Over a Channel 163

Contents • viii

Connect the Channel to the Game 169
Phoenix Presence 180
Authorization 184
Wrapping Up 187

A1. Installing System Dependencies 189
Elixir 189
Erlang 189
Phoenix 190
Node.js and NPM 190

Bibliography 191
Index 193

Contents • ix

Acknowledgments
Writing a book is so much more of a team effort than I would have imagined
before I began. A whole host of people have made this book incalculably better
than it would have been had I done everything alone.

The people who created the Elixir ecosystem have made this book possible.
That goes back to the creators of Erlang, Joe Armstrong, Robert Virding, and
Mike Williams. It continues on to the OTP team at Ericsson that codified the
design patterns and Behaviours this book relies on so much. Finally, there’s
José Valim and Chris McCord, creators of Elixir and Phoenix, respectively.

I give a hearty thanks to the folks at the Pragmatic Bookshelf, who have been
unfailingly kind, helpful, and supportive. I couldn’t ask for a more generous
organization to work with. And there are two people I need to thank in a more
personal way.

I have joked that Jacquelyn Carter has the hardest job in the world. Besides
her work as a development editor, she needs to be a coach, a project manager,
and a psychologist. That’s a lot of hats for one person to wear. I’m not sure
how I would have made it through this whole process without her help.

Bruce Tate, the Elixir series editor, came through just when I needed him
most with key inputs and insights that kept the book on track and on
message. He also spoke to the community on behalf of the book at times
when I could not.

Of course, all the technical reviewers shared their valuable insights and caught
a host of mistakes before they made it into the final version. A hearty thanks
to all of you—Brett Wise, Jason Stiebs, Wendy Smoak, Jeff Weiss, Matt Enlow,
Sonny Scroggin, Chris Keathley, Erik Ketcham, Maurice Kelly, Mark Goody,
Gabor Hajba, Kim Shrier, and Mitchell Henke.

Other reviewers went above and beyond, providing important feedback on
tight deadlines and short notice. James Fish and Andrea Leopardi fit that

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

bill, as did James Edward Gray II, who is working on his own book. Thank
you all for your generosity and expertise.

I also need to give special thanks to Saša Jurić . He gave me so much of his
time, sharing his experience and insights with discussion, code reviews, and
good humor. The first part of this book would not be the same without these
generous contributions.

I’ve saved my most heartfelt thanks for the person dearest to me on Earth,
my wife Laura, whose patience and support mean the world to me.

Acknowledgments • xii

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Introduction
I’ve been building web applications for a long, long time, well before web
frameworks existed. In those early days, a Perl script or two in an Apache cgi-
bin directory and a couple of static HTML files were all you needed.

In the intervening years, web frameworks for both the front and back ends
have become ubiquitous. This has been fantastic for the industry. The pro-
ductivity gains are undeniable, and the consistency across applications allows
us to onboard new developers more quickly.

But along with these gains have come some costs. The way we’re commonly
taught to use frameworks causes extremely tight coupling between the
framework components and our business logic. Databases have gone from
simply augmenting storage to dominating the way we model application
domains.

Most people come to Elixir and Phoenix for the performance, and there’s no
question that the performance is fantastic. Personally, I see Elixir—especially
the access it gives us to OTP—and Phoenix providing solid solutions to these
long-standing problems without sacrificing any of the gains. I also see them
opening up new possibilities—bringing back some of the benefits of stateful-
ness that we’ve lost with the rise of HTTP.

Throughout this book we’ll be building a web application together that shows
what Elixir, OTP, and Phoenix can really do when used well together. But
most of all, you’ll have fun and learn things you can use to make the code
for your day job or side projects more beautiful, easier to maintain, and a joy
to work on.

Who This Book Is For
On a practical level, this book is for people who have some familiarity with
Elixir and Phoenix, and who want to take that knowledge further. But there’s
a wider list for whom the ideas in this book will resonate.

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

For people who view OTP with a little trepidation, or for those who haven’t
quite mastered OTP Behaviours, this book will give you the confidence to use
OTP in any application.

For people who have felt the sting of tight coupling between business logic
and web frameworks, this book will show you a way out of that pain forever.

For people who feel constrained by traditional web development, you will
learn new techniques and new ways to structure apps that will spark your
imagination.

For people who are wondering what all the fuss is about with Elixir and
Phoenix, you’ll get a great taste of what makes people so excited. You just
might become a convert!

Who This Book Is Not For
Readers looking for an introduction to Elixir or Phoenix would do well to begin
with other resources.

We won’t cover the basics of Elixir. I’ll assume you know them before you
begin.

If you need to get up to speed first, don’t worry—we’ll be here when you’re
ready. In the meantime, Dave Thomas’s book, Programming Elixir 1.3 [Tho16],
is a great place to start.

The same is true for Phoenix. We will take a close look at channels and
Presence, but you won’t learn the rest of Phoenix here.

You should be able to follow along in this book without that information, but
if you want to fill in the gaps, Programming Phoenix [TV16] by Chris McCord,
Bruce Tate, and José Valim is the book to reach for.

About This Book
Throughout this book, we’ll be building a game in distinct layers—from the
bare essentials of the business logic to a web front end with stateful Phoenix
channels.

The book is divided up into three sequential parts that parallel those layers.
The first part lays the foundation, and each of the next two parts builds a
new layer that depends on the one that came before.

If you’re planning on implementing the game as you read, which is a great
idea, you’ll need to follow through the parts in order for the code to work.

Introduction • xiv

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

If you’re the sort of reader who likes to skip around, though, all is not lost.
You can read the first few sections of any chapter—up until where we start
to really implement the code—in any order, and they will still hold value.

Before we get to work in earnest, you’ll read an overview of the whole book
in Chapter 1, Mapping Our Route, on page 1.

Now let’s see what each part has to offer.

Define the Functional Core in Elixir
We’ll begin with only the most basic elements of Elixir—data structures,
functions, and modules.

In Chapter 2, Model Data and Behavior, on page 9, we’ll use data structures
to model our domain entities. We’ll define functions that work with these
data structures to establish the business logic of the game. We’ll also define
modules to organize these functions and keep the code legible and easy to
maintain.

In Chapter 3, Manage State with a State Machine, on page 43, we’ll build a
purely functional finite state machine to manage the game over time and
enforce the rules. We’ll proceed the same way we did in Chapter 2, with a
data structure, multiple clauses of a single function, and a module to hold
them all.

Add OTP for Concurrency and Fault Tolerance
This is where we’ll introduce OTP to provide concurrency, parallelism, and
fault tolerance.

In Chapter 4, Wrap It Up in a GenServer, on page 65 we’ll build a GenServer
module to contain the business logic and state machine we built in Part 1.
You’ll learn how to spawn a new, long-lived process from this GenServer for
each pair of players. That process will hold the state for their game as well
as provide an interface to interact with it.

In Chapter 5, Process Supervision for Recovery, on page 97 we’ll explore how
to make our game resilient to failures large and small. We’ll build a supervisor
to watch over each game process and restart it if it crashes. You’ll also see
how to restore a game process’s state after a crash and even after the whole
BEAM, Erlang’s virtual machine, crashes or restarts.

report erratum • discuss

About This Book • xv

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Add a Web Interface with Phoenix
With all the work we’ve done in the previous two parts, we’ll finally be ready
to build a web interface with Phoenix.

In Chapter 6, Generate a New Web Interface with Phoenix, on page 131 we’ll
create a new Phoenix project. You’ll learn how OTP applications let us seam-
lessly integrate our work from the first two parts into this new Phoenix project
as a dependency. Then we’ll explore how we can call into that earlier work
directly from different Phoenix components.

In Chapter 7, Create Persistent Connections with Phoenix Channels, on page
153 we’ll focus on the stateful, persistent connections that Phoenix provides
called channels. You’ll learn how to use JavaScript functions in a browser to
communicate directly over a channel with a specific game process on the
server. We’ll also explore how to use Phoenix Presence to keep track of which
players are actually playing an individual game.

Online Resources
The code we’ll develop is available at the Pragmatic Programmers site for this
book. There’s also a community forum and errata-submission form for you
to ask questions, report any problems with the text, or make suggestions for
future versions.1

1. https://pragprog.com/book/lhelph/functional-web-development-with-elixir-otp-and-phoenix

Introduction • xvi

report erratum • discuss

https://pragprog.com/book/lhelph/functional-web-development-with-elixir-otp-and-phoenix
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

CHAPTER 1

Mapping Our Route
Welcome! We’re about to go exploring, and it’s going to be a blast. We’re going
to do what many of us say we love most—play with new languages, experiment
with new techniques, and expand our understanding of writing software for
the web. Whenever you go exploring, it’s important to have a map, a good
idea of where you’re headed, and a plan for how you’ll get there. That’s what
this chapter is all about.

Many early client-server systems were stateful. Servers kept working state in
memory. They passed messages back and forth with their clients over persis-
tent connections. Think of a banking system with a central mainframe and
a dedicated terminal for each teller. This worked because the number of clients
was small. Having fewer clients limited the system resources necessary to
maintain those concurrent connections.

Then Tim Berners-Lee invented a new client-server system called the World
Wide Web.

The web is an incredibly successful software platform. It’s available almost
everywhere on Earth, on virtually any device. As the web has grown and
spread, so has HTTP. HTTP is a stateless protocol, so we think of web appli-
cations as stateless as well. This is an illusion. State is necessary for applica-
tions to do anything interesting, but instead of keeping it in memory on the
server, we push it off into a database where it awaits the next request.

Offloading state to a database provides some real advantages. HTTP-based
applications need to maintain temporary connections with clients only until they
send a response, so they require far fewer resources to serve the same number
of requests. Most languages can’t muster the concurrency necessary to maintain
enough persistent connections to be meaningful for a modern web application.

Going “stateless” has let us scale.

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

But statelessness comes at a cost. It introduces significant latency as appli-
cations need to make one or more trips to the database for the data to prepare
a response. It makes the database a scaling bottleneck, and it habituates us
to model data for databases rather than for application code.

Elixir offers more than enough concurrency to power stateful servers. Phoenix
channels provide the conduit. A single Phoenix application can maintain per-
sistent channel connections to hundreds of thousands or even millions of clients
simultaneously. Those clients can all broadcast messages to each other, coor-
dinated through the server. While processing those messages, the application
remains snappy and responsive. Elixir and Phoenix provide a legitimate alter-
native to stateless servers capable of handling modern web traffic.

We’re about to explore this new opportunity with a stateful application written
in Elixir and a persistent Phoenix channel ready to connect it to any front-
end application.

Stateful Server
in Elixir

Stateful UI

Web Interface
in Phoenix

We’ll do this by building a game called Islands. It may not be a top download
on your favorite gaming platform, but it will be fun to play. Most importantly,
you’ll learn a lot by building it. Game developers have always pushed the web
to the extreme. They’ve had to approach problems in novel ways to meet their
performance needs. We’ll be rethinking our approach as well, and what we’ll
learn will help us solve everyday business problems in radically improved ways.

We’re going to tackle Islands in distinct parts. We’ll start with a stateful game
engine written in Elixir, and then we’ll layer on a web interface with Phoenix.

Chapter 1. Mapping Our Route • 2

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We’ll stop just short of building out a full front-end application—there won’t
be any new territory for us to cover.

We will include code for a demo front-end application with the code bundle
for this book. Once you’ve built the full application, you’ll be able to download
those files and include them in the completed Phoenix project. That will allow
you to play a demo game locally on your machine.

We’re going to build Islands in a way you might not be used to, so let’s get
an idea of what lies ahead.

Lay the Foundation with Elixir
In Part 1, we’ll begin by defining the data structures and logic of the game in
pure Elixir. We won’t use a database to store the game state, and we’ll define
our domain elements with native Elixir data structures instead of ORM
models.

We will bring in a finite state machine to manage state transitions—like
switching from one player’s turn to the other, and moving from a game in
progress to one player winning.

Building the game engine solely in Elixir solves a long-standing problem in
web development, the tendency for framework code to completely entangle
application logic so the two can’t be easily separated. Without that separation,
it’s hard to reuse application logic in other contexts. As we build Islands, we
won’t even begin to work with the Phoenix framework until our game logic is
complete.

In Part 2, we’ll layer on OTP for concurrency and fault tolerance. We’ll hold
the data structures we’ve defined in the GenServer as state. Then we’ll build a
supervisor to monitor the GenServer and restart it with known, good state in
the event of a crash.

By the time we’re done with Parts 1 and 2, we’ll have a fast, fault-tolerant
game engine that can spin up a new GenServer for a game almost instantly.
We’ll be able to reuse it with any interface we want—the web, a native mobile
app, plain text, or whatever else we can think of. If we look at it the right way,
the GenServer for each game is really a microservice, or a nanoservice, living
right inside the virtual machine.1

1. http://blog.plataformatec.com.br/2015/06/elixir-in-times-of-microservices/

report erratum • discuss

Lay the Foundation with Elixir • 3

http://blog.plataformatec.com.br/2015/06/elixir-in-times-of-microservices/
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Add a Web Interface with Phoenix
In Part 3, we’ll generate a new Phoenix application without Ecto, the database
layer that ships with Phoenix. We’ll bring in our new Islands engine as a
dependency and make it part of our new Phoenix application’s supervision
tree. We’ll also see how to wire it up with the standard Phoenix MVC parts—the
router, a controller, a view, and some templates.

Then we’ll move on to the really exciting part: replacing HTTP’s temporary
client-server connections with persistent ones via Phoenix channels. Channels
provide a conduit for lightning-fast message passing between front-end
applications, and in our case, a stateful back-end server. We’ll make good
use of channel naming conventions to allow two players to connect to their
own private GenServer running Islands. And we’ll be able to run thousands of
games simultaneously on a single server. Many languages would struggle to
keep persistent connections open for all the players of all current games, but
Elixir’s incredible concurrency model will make it easy.

As we finish up, we’ll have a web interface to our Islands engine. The main
component will be a Phoenix channel able to connect two players directly to
an individual Islands game. We’ll customize the JavaScript files that Phoenix
provides to get it primed and ready for your favorite front-end framework.
When we’re done, it’ll have much less code and far fewer moving parts than
a conventional web application.

Functional Web Development
With all this in mind, you may be wondering about the title of the book and
how this represents functional web development.

One of the most characteristic patterns of functional programming is compo-
sition. With function composition, we take a big, complex piece of work and
split it up into smaller, decoupled, and more focused functions. Then we re-
create the full behavior by chaining these functions together. This not only
helps us reason about our programs because smaller functions reduce cogni-
tive load, but it helps with maintainability because smaller functions are
easier to work on.

In this book, we’ll take the idea of composition from the level of functions and
scale it up to the level of applications. We’ll take the full, complex behavior
of a web application and separate it into independent, decoupled layers. Each
layer will have a focused responsibility. It will do its job and nothing else.

Chapter 1. Mapping Our Route • 4

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Then we’ll re-create the full behavior of the application by having each layer
call into the next, passing the return values back up the chain and out to the
client. By doing this, we’ll gain clarity and maintainability for our whole
application.

Now we’re ready to introduce the game itself.

The Game of Islands
Let’s talk a little bit about Islands. It’s a game for two players, and each
player has a board, which consists of a grid of one hundred coordinates. The
grid is labeled with the numbers 1 through 10 across the top for the columns
and down the left side for the rows. We name individual coordinates with this
row-column combination.

The players cannot see each other’s boards.

The players have matching sets of islands of various shapes and sizes, which
they place on their own boards. The players can move the islands around as
much as they like until they say that they are set. After that, the islands must
stay where they are for the rest of the game.

Once both players have set their islands, they take turns guessing coordinates
on their opponent’s board, trying to find the islands. For every correct guess,
we plant a palm tree on the island at that coordinate. When all the coordinates
for an island have palm trees, the island is forested.

The first player to forest all of her opponent’s islands is the winner.

Before we get to work, let’s make sure we have all of our dependencies
installed. For the first part of the book, all we’ll need are Elixir and Erlang.
For the second part, we’ll need to install the Phoenix archive, Node.js, and
npm. Have a look at the Appendix 1, Installing System Dependencies, on page
189 for help getting them installed.

We’ve got a plan! Time to start building.

report erratum • discuss

The Game of Islands • 5

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Part I

Define the Functional Core in Elixir

In this first part, we will build all the logic for our
game in a new Elixir project. We’ll define the data
and behavior that determines the essence of our
application. We’ll do this in sequential Elixir, with
only modules and functions.

CHAPTER 2

What we’ll do in this chapter

• model domain elements as Elixir datatypes
• define behavior as data transformation

Model Data and Behavior
There is a powerful opportunity at the very beginning of a new application.
We’ve got ideas about what we want to build, but we haven’t opened a terminal
window or a text editor. The application is all potential, none of it yet actualized.

This is the perfect place to examine our habitual approaches and choose new
paths. The decisions we make here will shape the rest of the project in funda-
mental ways.

The path we’ll take is likely to be quite different from any you’re used to, but
it will simplify and clarify our code. It will build a foundation that the rest of
the application can grow from.

As web developers, we typically begin a new project by running a command
in our favorite framework to generate a new application we can customize.
We also think about how to persist application state between requests. We
define database schemas and write ORM models to do so.

We’re going to turn that plan inside out. We’ll begin by building the logic of the
entire game in pure Elixir, using only data structures, functions, and modules.
We won’t touch a web framework until we introduce Phoenix in Part 3 of the
book, and we won’t use a database to store working application state.

We won’t reach for OTP yet either. We’ll bring it in as it becomes necessary,
when we need concurrency and fault tolerance in Part 2.

The work we do in this chapter will define the most essential expression of any
application written in a functional style—data and the functions that transform
it. To get there, we’ll create a new Elixir project. We’ll take a good look at the
application we’re going to build and decide which data structures we’ll need.
Then we’ll design functions to transform that data, creating the behavior we want.

Before we start writing code, let’s think about what this approach will get us.

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The Benefits
We’re taking two radical steps with this approach, beginning an application
without a framework, and choosing not to use a database for working state. We
shouldn’t make those decisions lightly. There should be some tangible benefits
in return. By beginning this way, we gain focus, clarity, and simplicity.

Postpone Adding a Framework
Web frameworks are fantastic tools for developers. They give us real produc-
tivity gains by generalizing and automating the common, repetitive tasks of
handling web requests.

Frameworks have their own domains, with their own entities—routes, con-
trollers, models, views, and so on. These components are well suited for
building web interfaces, but they make poor substitutes for business logic.

Our applications should have their own domains, completely separate from
the framework. They should maintain a clean separation between the interface
and the core application domain.

But building an application with a framework from the very beginning makes
it nearly impossible to maintain that separation. This couples the interface
and business logic, and makes it all too easy to begin thinking of framework
components as part of the core application.

This has real consequences that we may not even notice. We’ll cover these in
detail in Chapter 6, Generate a New Web Interface with Phoenix, on page 131.
By waiting to introduce Phoenix until we really need to expose our application
to the web, we separate the concerns of our application from the concerns of
its web interface. It frees us to focus on the pure domain of our application.

Postpone Adding Data Storage
Nobody can dispute the incredible utility databases provide. There’s hardly
an area of computing that isn’t positively impacted by the ability to easily and
quickly access data.

But when we begin an application knowing that we’re going to use a database
to store working application state, another distortion happens. We begin to think
about our domain entities in database terms—foreign keys, join tables, even the
idea of tables at all. We confuse the domain of the database with our own domain.

Then we typically go on to model our domain entities with ORMs as interfaces
to the database. That makes us keep two representations of the domain

Chapter 2. Model Data and Behavior • 10

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

entities in our heads: the ORM model and the database schema itself. This
adds complexity and cognitive overhead.

In the end, we end up designing our application at least in part for the database
instead of native code. We tend to forget that there are simpler and clearer
ways to represent domain entities and the relationships between them.

We have wonderful tools right in front of us in the rich data structures that
Elixir provides. By waiting to think about data persistence, we’ll be able to
work in a way that’s natural for the application, not the database.

If the idea of avoiding a database completely is a nonstarter for you, hang
tight. We’ll talk about persistence for disaster recovery in Chapter 5, Process
Supervision for Recovery, on page 97. We don’t want anybody to lose any data!

Now that we’ve covered what we’re doing and why we’re doing it, it’s time to
get started.

Let’s Build It
We’ll begin by creating a brand-new Elixir application called islands_engine. We’ll
make it a supervised application, which most Elixir applications are, because
process supervision is the mechanism that provides the tremendous fault
tolerance we get from the BEAM. We’ll look at supervisors in a lot more detail
in Chapter 5, Process Supervision for Recovery, on page 97.

The command we’ll use to create our new application is mix new islands_engine --sup:

$ mix new islands_engine --sup
* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/islands_engine.ex
* creating lib/islands_engine/application.ex
* creating test
* creating test/test_helper.exs
* creating test/islands_engine_test.exs

Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

cd islands_engine
mix test

Run "mix help" for more commands.

Let’s take a look at what Mix generated for us:

report erratum • discuss

Let’s Build It • 11

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

$ cd islands_engine/
$ tree
.
├── README.md
├── config
│ └── config.exs
├── lib
│ ├── islands_engine
│ │ └── application.ex
│ └── islands_engine.ex
├── mix.exs
└── test

├── islands_engine_test.exs
└── test_helper.exs

4 directories, 7 files

Mix created the skeleton of a standard Elixir/OTP application.

The mix new task created a directory for configuration, a directory for tests,
and the lib/ directory for our code. The lib/islands_engine/application.ex file defines
the application. Later, when we build in fault tolerance with a supervision
tree, this is where we’ll do it.

With a new project in place, it’s time to get to work.

Discover the Entities and Model the Domain
This is the very first step in designing our application. We need to identify
the entities of a system and represent them with the data structures we have
available in Elixir.

To help us out, let’s look at a picture of the game:

Player’s Board

1

2

3

10

4

5

6

7

8

9

321 4 5 97 86 10
Opponent’s Board

1

2

3

10

4

5

6

7

8

9

321 4 5 97 86 10

Chapter 2. Model Data and Behavior • 12

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

This shows what each of the players would see as they play. On the left is a view
of their own board where players place their islands. The coordinates that make
up the islands are the color of sand. When the player’s opponent guesses cor-
rectly and hits an island, the coordinate the opponent hits will turn green. If
all the coordinates that make up an island are hit, the island is forested, and
when all of a player’s islands are forested, the opponent has won the game.

On the right is a view of the opponent’s board. This is where the player will
guess coordinates by clicking on them. If a guess hits an island, that coordi-
nate will turn green. Otherwise, it will turn black.

Just by describing that picture, we’ve identified four main entities: boards,
islands, guesses, and coordinates.

From the image, we can see that there are two different kinds of boards with
different representations. Each player’s own board has islands as well as
coordinates. The opponent’s board has only coordinates.

The player’s board has a set of islands, and each island is made up of a group
of coordinates. The opponent’s board is made up of three groups of coordi-
nates: guessed coordinates that hit an island, guessed coordinates that missed
all the islands, and all the unguessed coordinates.

We can also begin to think about this from another angle. As we talked about
the image of the boards, we also talked about actions that can take place in the
game. Any data structures we choose will need to support these actions as well:

• Players need to be able to position islands on their own boards.
• Players need to be able to guess coordinates on their opponent’s boards.
• The game needs to determine if a guess results in a hit or a miss.
• The game needs to determine if a guess results in a forested island.
• The game needs to determine if a guess results in a win.

Now that we have some information to work with, let’s start modeling the
most common entity, coordinates.

Coordinate
Coordinates are ubiquitous in the game. They are the basic units of both
players’ boards and of islands as well.

We can identify individual coordinates by the combination of numbers for the
row and the column. Passing around separate row and column values to
represent a coordinate, though, is a little messy, and it doesn’t capture the
idea that those numbers represent a single entity. It would be better to com-
bine them into a single data structure that we can pass around.

report erratum • discuss

Discover the Entities and Model the Domain • 13

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We have choices about how we could represent that. We might choose to use
a tuple like this: {1, 1}. We should be careful about tuples if we’re ever going
to encode our data as JSON, which doesn’t have a tuple type.

We might also choose a map, like this %{row: 1, col: 1}. It encapsulates both
numbers into a single entity and is easy to pattern match against.

A third option is to use a struct. We’ll be passing coordinates around to create
islands and for players to guess. Structs maintain all the qualities of maps,
but they offer compile-time checks on the keys, and they allow us to do run-
time checks on the struct’s type.

We’ll be using coordinates and passing them around quite a bit, so the extra
checks make structs seem like the way to go.

The first thing we’ll need is a Coordinate module that aliases itself. Let’s create
that at lib/islands_engine/coordinate.ex:

defmodule IslandsEngine.Coordinate do
alias __MODULE__

end

We can define a struct with row and col keys. Since we’ve aliased the Coordinate
module, we can now refer to coordinate structs as %Coordinate{} instead of
%IslandsEngine.Coordinate{}.

A coordinate needs both keys to have meaning. Neither a row nor a column
by itself is very useful. Since we’re using Elixir 1.4.0 or greater, we can include
the @enforce_keys module attribute to ensure that both keys are present
whenever we create a new struct:

model_data/lib/islands_engine/coordinate.ex
@enforce_keys [:row, :col]
defstruct [:row, :col]

Make sure that you define @enforce_keys before defstruct—otherwise it won’t have
any effect, and you’ll get a warning saying that @enforce_keys was defined but
never used.

We’ll be using coordinate structs a lot, so it would be convenient to have a
function that took in the row and column and gave us back a coordinate
struct. We could create a new one by simply returning a struct with the correct
values, like this:

def new(row, col), do:
{:ok, %Coordinate{row: row, col: col}}

Chapter 2. Model Data and Behavior • 14

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/coordinate.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Since we have a single point where we’re creating coordinate structs, we have
an opportunity that we shouldn’t miss. We saw in the image of the boards
that both the rows and columns are numbered one through ten. This means
that any values for row and col that are outside of that range are invalid.

We can use that range to validate the coordinate as we create it, returning
an {:error, :invalid_coordinate} tuple if either value is outside the range:

model_data/lib/islands_engine/coordinate.ex
@board_range 1..10

def new(row, col) when row in(@board_range) and col in(@board_range), do:
{:ok, %Coordinate{row: row, col: col}}

def new(_row, _col), do: {:error, :invalid_coordinate}

Let’s start up a new IEx session by running iex -S mix at the root of the project
directory to see how this works:

$ iex -S mix
Erlang/OTP 19 [erts-8.2] [source] [64-bit] [smp:8:8] [async-threads:10]

[hipe] [kernel-poll:false] [dtrace]

Compiling 2 files (.ex)
Interactive Elixir (1.4.2) - press Ctrl+C to exit (type h() ENTER for help)

Let’s alias the module to save some typing:

iex> alias IslandsEngine.Coordinate
IslandsEngine.Coordinate

If we create a new coordinate with valid row and column values, we get a full
coordinate struct back:

iex> Coordinate.new(1, 1)
{:ok, %IslandsEngine.Coordinate{col: 1, row: 1}}

If we give it values that are off the board, though, we get back an error:

iex> Coordinate.new(-1, 1)
{:error, :invalid_coordinate}

iex> Coordinate.new(11, 1)
{:error, :invalid_coordinate}

If we try to create a coordinate struct manually without both keys, we’ll get
an error:

iex> %Coordinate{row: 5}
** (ArgumentError) the following keys must also be given when building struct

IslandsEngine.Coordinate: [:col]
(new_islands) expanding struct: IslandsEngine.Coordinate.__struct__/1

iex:4: (file)

report erratum • discuss

Discover the Entities and Model the Domain • 15

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/coordinate.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

With coordinates represented, let’s move on to the less complex of the two
boards: the opponent’s board.

Guesses
The opponent’s board is nothing but a group of guessed coordinates separated
into those that hit an island and those that missed. There will be a large
number of unguessed coordinates as well, but if we identify all the guesses,
we can assume the rest are plain “ocean” coordinates.

This sounds like two lists: one list for hits and the other list for misses. We
could wrap those lists in a struct with :hits and :misses keys, just as we did for
coordinates.

There’s something else to consider here, though. We can’t necessarily guaran-
tee that we’ll receive any specific guess only once. Having unique lists of
guessed coordinates would make it more efficient to re-create the opponent’s
board from scratch.

We could write our own functions to ensure uniqueness, but there’s an easier
way. We can use Elixir’s MapSet data structure, which will guarantee that each
member of the MapSet will be unique.

As we did with coordinates, let’s create a new module for guesses at
lib/islands_engine/guesses.ex. Following the pattern we set in the Coordinate module,
we’ll alias the Guesses module to reduce typing, enforce the :hits and :misses
keys, and define the struct:

defmodule IslandsEngine.Guesses do
alias __MODULE__

@enforce_keys [:hits, :misses]
defstruct [:hits, :misses]

end

Then we’ll need a Guesses.new/0 function that returns a new guesses struct:

model_data/lib/islands_engine/guesses.ex
def new(), do:

%Guesses{hits: MapSet.new(), misses: MapSet.new()}

Now let’s start a new IEx session, alias the Coordinate and Guesses modules, and
see how guesses work:

iex> alias IslandsEngine.{Coordinate, Guesses}
[IslandsEngine.Coordinate, IslandsEngine.Guesses]

Let’s generate a new Guesses map and a few coordinates to experiment with:

Chapter 2. Model Data and Behavior • 16

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/guesses.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> guesses = Guesses.new
%IslandsEngine.Guesses{hits: #MapSet<[]>, misses: #MapSet<[]>}

iex> {:ok, coordinate1} = Coordinate.new(1, 1)
{:ok, %IslandsEngine.Coordinate{col: 1, row: 1}}

iex> {:ok, coordinate2} = Coordinate.new(2, 2)
{:ok, %IslandsEngine.Coordinate{col: 2, row: 2}}

Now let’s add coordinate1 to the set of hits with the Kernel.update_in/2 function.
update_in/2 takes a path to the nested data structure we want to update and a
function to transform its value. update_in/2 will pass that structure into the
function as the first argument.

iex> guesses = update_in(guesses.hits, &MapSet.put(&1, coordinate1))
%IslandsEngine.Guesses{

hits: #MapSet<[%IslandsEngine.Coordinate{col: 1, row: 1}]>,
misses: #MapSet<[]>

}

There’s the coordinate, in the hits set.

Note that what we did was just a transformation. The original value for
guesses still exists. In order to hang on to the new value, we needed to rebind
it to the guesses variable. Once that rebinding happens, the original value will
fall out of scope and be garbage collected.

Now let’s add coordinate2 to the :hits set as well:

iex> guesses = update_in(guesses.hits, &MapSet.put(&1, coordinate2))
%{hits: #MapSet<[

%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
misses: #MapSet<[]>}

That looks just the way we want it to.

Now let’s try adding coordinate1 to the :hits set again:

iex> guesses = update_in(guesses.hits, &MapSet.put(&1, coordinate1))
%{hits: #MapSet<[

%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
misses: #MapSet<[]>}

That’s great—coordinate1 still appears only once in the :hits set. It kept the set
unique.

Let’s move on to islands.

report erratum • discuss

Discover the Entities and Model the Domain • 17

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Islands
Islands are more complex than coordinates or guesses. They come in five
different shapes: :atoll, :dot, :l_shape, :s_shape, and :square. Players can position
them on the board, and their opponents try to guess their position.

Islands are made up of groups of coordinates. This suggests that we can use
a list to represent them.

Looking back on our list of actions, one of the things we need to do is deter-
mine whether or not an island is forested—in other words, determine if all
the coordinates of an island have been hit.

If we use a list to represent an island, we’ll need to do two things. First, we’ll
need to mark coordinates as hit. Then, every time we need to see if the island
is forested, we’ll need to enumerate through the list.

Checking for a win would mean enumerating through all the coordinates in
all the islands. The total number of coordinates is small, so it’s not a really
big deal, but we can do better.

If we saved two lists—one for the initial list of coordinates, and another to
which we add any coordinates that are hit during a guess—we can do a simple
comparison of the two lists.

There’s a small problem with this, though. If we compare lists, the order of
the elements matters.

iex> [1, 2] == [2, 1]
false

It’s really unlikely that guesses will happen in the same order that the coor-
dinates were added to an island, so that would force us to sort the lists each
time we did a comparison or better yet, sort the initial coordinate list once,
and subsequently sort only the list of hits every time we add a new one.

Fortunately, there’s a really simple solution. If we use MapSet to store the two
lists, order doesn’t matter. We can use the built-in MapSet.equal?/2 function to
determine equality:

iex> MapSet.equal?(MapSet.new([1, 2]), MapSet.new([2, 1]))
true

Just as we did with coordinates and guesses, we can wrap these two sets in
a struct to package them as a single entity.

Now we’re getting somewhere.

Chapter 2. Model Data and Behavior • 18

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Let’s create new Island module at lib/islands_engine/island.ex to capture what we’ve
come up with so far:

defmodule IslandsEngine.Island do
alias IslandsEngine.{Coordinate, Island}

@enforce_keys [:coordinates, :hit_coordinates]
defstruct [:coordinates, :hit_coordinates]

def new(), do:
%Island{coordinates: MapSet.new(), hit_coordinates: MapSet.new()}

end

We could keep the new/0 function as is, but there’s something to consider.
Each time a player places an island at a new position on the board, we’ll need
to pass it a full list of coordinates to store under the coordinates key. That’s
not a big problem, but if we leave the implementation as is, we would miss
an opportunity.

It would be great if the new function could build all the coordinates for a full
island automatically if we told it what type of island we wanted and gave it a
coordinate to start from.

Let’s solve that problem now.

We’ll start with a :square island because it’s a very regular shape that will make
our technique easy to demonstrate. We’ll also say that for all islands, we’ll
assume that the starting coordinate is in the upper-left corner.

With the starting coordinate set, we can think about what it would take to
transform the row and column values of the starting coordinate in such a
way that we generate all the other coordinates.

Here’s how we could think about their relationships:

same row
column + 1

row + 1
same column

row + 1
column + 1

321
1

2

3

report erratum • discuss

Discover the Entities and Model the Domain • 19

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

With that picture in mind, we can see the coordinates as a series of offsets
from the starting coordinate:

{1,0} {1,1}

{0,1}
321

1

2

3

{0,0}

Let’s experiment in the console to see how that might work.

Go ahead and alias the Coordinate module, and bind new row and col variables
to 1, which represents the upper-left coordinate of the :square island:

iex> alias IslandsEngine.Coordinate
IslandsEngine.Coordinate

iex> row = 1
1

iex> col = 1
1

We can represent each of the offsets as a tuple, then pattern match on it to
bind variables to the offset values:

iex> {row_offset, col_offset} = {0, 0}
{0, 0}

That gives us a way to build new coordinates based on their offsets from the
original row and column values:

iex> Coordinate.new(row + row_offset, col + col_offset)
{:ok, %IslandsEngine.Coordinate{col: 1, row: 1}}

Fantastic. That’s how we could build an actual %Coordinate{} for the upper-left
part of a :square.

We could do the exact same thing for all the remaining coordinates represented
by offset tuples, {0, 1}, {1, 0}, and {1, 1}. But constructing islands like this
would be tedious and error prone. Let’s create a list of offset tuples and
automate the process with Enum.map/2:

iex> offsets = [{0, 0}, {0, 1}, {1, 0}, {1, 1}]
[{0, 0}, {0, 1}, {1, 0}, {1, 1}]

Chapter 2. Model Data and Behavior • 20

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> Enum.map(offsets, fn {row_offset, col_offset} ->
...> Coordinate.new(row + row_offset, col + col_offset)
...> end)
[ok: %IslandsEngine.Coordinate{col: 1, row: 1},
ok: %IslandsEngine.Coordinate{col: 2, row: 1},
ok: %IslandsEngine.Coordinate{col: 1, row: 2},
ok: %IslandsEngine.Coordinate{col: 2, row: 2}]

Perfect. Now we can capture that list of offsets behind a private function that
pattern matches for the type. We’ll use this while creating an island in a
minute.

defp offsets(:square), do: [{0, 0}, {0, 1}, {1, 0}, {1, 1}]

That’s the pattern we’ll follow for the rest of the islands—determine the offsets
we’ll need to construct the island’s coordinates and make them available with
a private function.

Let’s take a look at the atoll next.

{0,1}

{1,1}

{2,0} {2,1}

321
1

2

3

{0,0}

That gives us this list of offsets [{0, 0}, {0, 1}, {1, 1}, {2, 0}, {2, 1}] for the full
island.

We’ll add this to another clause of offsets/1:

defp offsets(:atoll), do: [{0, 0}, {0, 1}, {1, 1}, {2, 0}, {2, 1}]

The dot island is the simplest:

321
1

2

3

{0,0}

report erratum • discuss

Discover the Entities and Model the Domain • 21

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We simply use the row and col values for the starting coordinate itself:

defp offsets(:dot), do: [{0, 0}]

On to the l-shaped island…

{1,0}

{2,0}

{2,1}

321
1

2

3

{0,0}

…which gives us this clause of offsets/1:

defp offsets(:l_shape), do: [{0, 0}, {1, 0}, {2, 0}, {2, 1}]

The s-shaped island is different because it doesn’t actually use the starting
coordinate in the island itself:

{1,0} {1,1}

321
1

2

3

{0,2}{0,1}

That gives us this clause of offsets/1:

defp offsets(:s_shape), do: [{0, 1}, {0, 2}, {1, 0}, {1, 1}]

In order to handle the case of an invalid island type, let’s add one more clause
to offsets/1 that matches anything and returns an error tuple:

defp offsets(_), do: {:error, :invalid_island_type}

Our plan will be to take the type, get the list of offsets for it with the private
functions we defined, create coordinates with those offsets and the starting
coordinate, populate a new MapSet with them, and finally assemble a complete
island map.

Chapter 2. Model Data and Behavior • 22

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Let’s focus on creating all the coordinates for an island next. The idea is to
enumerate over the list of offsets, create a new coordinate for each one, and
put them all into the same set.

Enum.reduce/3 sounds like the right function to do that, but there’s an issue
here. It’s quite possible that any of the offsets can create an invalid coordinate,
one that’s off the board.

Consider the case of a :square, which has an upper-left coordinate at row 10 and
column 10. The offset {0, 1} would produce a new coordinate at row 10 and col-
umn 11, which is invalid.

This means we need to validate each coordinate as we build it and stop if we
get an invalid one. Enum.reduce_while/3 is perfect for this. It takes an enumerable,
a starting value for an accumulator, and a function to apply to each enumer-
ated value. For us, those three arguments will be the list of offsets, a new
MapSet, and a new function we’ll get to in a minute.

The function we pass to Enum.reduce_while/3 must return one of two tagged tuples:
either {:cont, some_value} to continue the enumeration, or {:halt, some_value} to end it.

We’ll need a new function, add_coordinates/2, to wrap Enum.reduce_while/3 and return
either the complete set of coordinates if all goes well, or an error tuple if we
get an invalid coordinate. add_coordinates/2 will need to take both a list of offsets,
and the upper-left coordinate so we know where to begin building the island
coordinates from.

model_data/lib/islands_engine/island.ex
defp add_coordinates(offsets, upper_left) do

Enum.reduce_while(offsets, MapSet.new(), fn offset, acc ->
add_coordinate(acc, upper_left, offset)

end)
end

Now we’ll need to define that add_coordinate/3 function we just used in add_coordi-
nates/2. It will take the set of coordinates we’re building up, the upper-left
coordinate, and the offset tuple.

model_data/lib/islands_engine/island.ex
defp add_coordinate(coordinates, %Coordinate{row: row, col: col},

{row_offset, col_offset}) do
case Coordinate.new(row + row_offset, col + col_offset) do

{:ok, coordinate} ->
{:cont, MapSet.put(coordinates, coordinate)}

{:error, :invalid_coordinate} ->
{:halt, {:error, :invalid_coordinate}}

end
end

report erratum • discuss

Discover the Entities and Model the Domain • 23

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/island.ex
http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/island.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Each time we build a new coordinate, we check to see if it is valid. If it is, we
use MapSet.put/2 to add the new coordinate to the set and return it in the tagged
:cont tuple. If the coordinate is invalid, we return {:halt, {:error, :invalid_coordinate}}
to stop the enumeration. The error tuple will bubble up through add_coordinates/2
to the original caller.

Now it’s time to delete the new/0 function we originally wrote, and put these
pieces together in a new function to create an island.

The new/2 function will need an island type as well as the upper-left coordinate.
We can do a runtime check of the upper-left coordinate by pattern matching
for a %Coordinate{} struct.

The offsets/1 function we wrote earlier will check the island type. All valid types
have a clause that returns a list of offset tuples, and the catchall clause will
return an error.

def new(type, %Coordinate{} = upper_left) do
end

Within the body of new/2, there are two conditions we have to meet in order
to produce a valid island. The offsets/1 function has to return a list of offsets
instead of an invalid island key error, and add_coordinates/2 needs to return a
MapSet instead of an invalid coordinate error. If both of those conditions pass,
we can return a tagged tuple with :ok and the complete island.

In Elixir, the preferred way to handle multiple conditions like this is with the
with/1 special form. This keeps all the validation in one place, and it gives us
a single place to handle any errors that might come up.

model_data/lib/islands_engine/island.ex
def new(type, %Coordinate{} = upper_left) do

with [_|_] = offsets <- offsets(type),
%MapSet{} = coordinates <- add_coordinates(offsets, upper_left)

do
{:ok, %Island{coordinates: coordinates, hit_coordinates: MapSet.new()}}

else
error -> error

end
end

The else clause matches any error that might arise and passes it on. In practice,
we’re expecting this to be one of two types: either {:error, :invalid_island_type} if
we’ve provided the wrong type, or {:error, :invalid_coordinate} if one of the offsets
built an invalid coordinate.

Chapter 2. Model Data and Behavior • 24

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/island.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Let’s try this out in a new IEx session. We’ll need to alias the Coordinate and
Island modules:

iex> alias IslandsEngine.{Coordinate, Island}
[IslandsEngine.Coordinate, IslandsEngine.Island]

We’ll try the successful case first by building an l-shaped island beginning
at row 4 and column 6:

iex> {:ok, coordinate} = Coordinate.new(4, 6)
{:ok, %IslandsEngine.Coordinate{col: 6, row: 4}}

iex> Island.new(:l_shape, coordinate)
{:ok,

%IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 6, row: 4},
%IslandsEngine.Coordinate{col: 6, row: 5},
%IslandsEngine.Coordinate{col: 6, row: 6},
%IslandsEngine.Coordinate{col: 7, row: 6}

]>,
hit_coordinates: #MapSet<[]>

}
}

Nice! That worked.

Now let’s try some things that should return an error, starting with passing
in an invalid island key:

iex> Island.new(:wrong, coordinate)
{:error, :invalid_island_type}

That’s perfect. Now let’s use a valid type and coordinate, which happens to
build an invalid coordinate as it applies the offsets:

iex> {:ok, coordinate} = Coordinate.new(10, 10)
{:ok, %IslandsEngine.Coordinate{col: 10, row: 10}}

iex> Island.new(:l_shape, coordinate)
{:error, :invalid_coordinate}

That’s great—just what we want.

We’ve got one last entity to define: the player’s board. Let’s move on to that
one now.

Boards
The player’s board contains his islands, but it also brokers messages for them.
Sometimes it will need to reference individual islands, like when it’s checking

report erratum • discuss

Discover the Entities and Model the Domain • 25

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

to see if one is forested. Sometimes it will need to enumerate over all the
islands—when it’s checking for a win, for instance.

This points to representing them with a map, using island names as the keys.
We can reference a given island with its key, ensure there are no duplicate island
types, and enumerate over all the islands with any of the Enumerable functions.

Getting a new board is as simple as returning an empty map. We could do
without this simple function, but it makes boards consistent with the rest of
our domain entities.

Let’s create a new Board module at lib/islands_engine/board.ex for this:

defmodule IslandsEngine.Board do
def new(), do: %{}

end

That does it for data definition. Time to move on to more dynamic things.

Transforming Data
Applications need to actually do things to be useful. The essence of creating
that behavior in functional programming is transforming data. This whole
next section will be about just that—defining functions that transform the
data structures we’ve defined.

Elixir gives us the pipeline operator |>, which allows us to elegantly take the
output of a function and give it to another function as its first argument. It’s
tailor-made for the kind of work we’ll be doing, and it’s very idiomatic in Elixir.

We can think of pipelines as chaining functions together vertically. We can
also chain them horizontally—functions calling functions either in the same
module or across modules.

We’ll use both approaches to take complex work, break it into smaller pieces,
and compose the answer back together again.

Let’s go through each of the modules we’ve defined so far, and write the
functions we’ll need to play the game.

Coordinates don’t need to do anything more than they already do, so let’s
begin with guesses.

Guesses
As players guess coordinates in the game, we’ll need to keep track of those
guesses so that we can accurately represent their opponent’s board. We’ll
never need to remove guessed coordinates—only add them.

Chapter 2. Model Data and Behavior • 26

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We need a function to add guessed coordinates to a ‘Guesses‘ struct, and
determine whether they go into the set of hits or the set of misses. We’ll
create two function clauses for an ‘add/3‘ function. Each clause will pattern
match on whether the guess is a ‘:hit‘ or a ‘:miss‘ and put the coordinate in
the appropriate set.

In order for this to work, we’ll need to change the alias function slightly to
include the Coordinate module:

alias IslandsEngine.{Coordinate, Guesses}

Now let’s take a look at add/3:

model_data/lib/islands_engine/guesses.ex
def add(%Guesses{} = guesses, :hit, %Coordinate{} = coordinate), do:

update_in(guesses.hits, &MapSet.put(&1, coordinate))

def add(%Guesses{} = guesses, :miss, %Coordinate{} = coordinate), do:
update_in(guesses.misses, &MapSet.put(&1, coordinate))

We won’t need an error clause here. In order to have determined whether a
guessed coordinate was a hit or a miss, it must have gone through, and been
validated by, another function. If the coordinate is no longer valid by this
point, something is truly wrong and this function should cause a crash.

Let’s see what this looks like in practice. Go ahead and start a new IEx session,
and then alias IslandsEngine.Coordinate and IslandsEngine.Guesses:

iex> alias IslandsEngine.{Coordinate, Guesses}
[IslandsEngine.Coordinate, IslandsEngine.Guesses]

Now let’s generate a new guesses map and add a few coordinates to it of both
types:

iex> guesses = Guesses.new()
%IslandsEngine.Guesses{hits: #MapSet<[]>, misses: #MapSet<[]>}

iex> {:ok, coordinate1} = Coordinate.new(8, 3)
{:ok, %IslandsEngine.Coordinate{col: 3, row: 8}}

iex> guesses = Guesses.add(guesses, :hit, coordinate1)
%IslandsEngine.Guesses{

hits: #MapSet<[%IslandsEngine.Coordinate{col: 3,
row: 8}]>, misses: #MapSet<[]>

}

iex> {:ok, coordinate2} = Coordinate.new(9, 7)
{:ok, %IslandsEngine.Coordinate{col: 7, row: 9}}

iex> guesses = Guesses.add(guesses, :hit, coordinate2)
%IslandsEngine.Guesses{

hits: #MapSet<[

report erratum • discuss

Transforming Data • 27

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/guesses.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

%IslandsEngine.Coordinate{col: 3, row: 8},
%IslandsEngine.Coordinate{col: 7, row: 9}

]>,
misses: #MapSet<[]>

}

iex> {:ok, coordinate3} = Coordinate.new(1, 2)
{:ok, %IslandsEngine.Coordinate{col: 2, row: 1}}

iex> guesses = Guesses.add(guesses, :miss, coordinate3)
%IslandsEngine.Guesses{

hits: #MapSet<[
%IslandsEngine.Coordinate{col: 3, row: 8},
%IslandsEngine.Coordinate{col: 7, row: 9}

]>,
misses: #MapSet<[

%IslandsEngine.Coordinate{col: 2, row: 1}
]>

}

That’s exactly what we expected. Hit coordinates end up in the hits set and
missed ones in the misses.

Islands have a little bit more to do during a game. Let’s tackle islands next.

Island
An island has a role to play in three actions we’ve defined in the game: posi-
tioning islands, guessing coordinates, and checking for a forested island.

Since we’ve chosen MapSets to store coordinates and hit coordinates, we’ve got
some powerful functions to help us out.

One thing we want to check for when positioning islands is that they don’t
overlap. We could rely solely on the front end to do this for us, but it’s easy
to check for and good to have backup validation on the back end.

We’re representing islands as sets of coordinates. One way to determine if
islands overlap is to look for any coordinates that they have in common. If
there are any common coordinates between two islands, those islands overlap.

There’s a great function to test for this: MapSet.disjoint?/2. Disjointed sets share no
members, so if the coordinates of two islands are disjointed, they don’t overlap.

model_data/lib/islands_engine/island.ex
def overlaps?(existing_island, new_island), do:

not MapSet.disjoint?(existing_island.coordinates, new_island.coordinates)

We’ll use this overlaps?/2 function later from a board to compare one island to
all the existing ones.

Chapter 2. Model Data and Behavior • 28

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/island.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Let’s try this out in a new IEx session.

We’ll need to generate a :square island as well as a :dot island that overlaps it.
As a check, let’s also generate an :l_shape island that doesn’t overlap either of
the other two.

iex> alias IslandsEngine.{Coordinate, Island}
[IslandsEngine.Coordinate, IslandsEngine.Island]

iex> {:ok, square_coordinate} = Coordinate.new(1, 1)
{:ok, %IslandsEngine.Coordinate{col: 1, row: 1}}

iex> {:ok, square} = Island.new(:square, square_coordinate)
{:ok,

%IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[]>

}
}

iex> {:ok, dot_coordinate} = Coordinate.new(1, 2)
{:ok, %IslandsEngine.Coordinate{col: 2, row: 1}}

iex> {:ok, dot} = Island.new(:dot, dot_coordinate)
{:ok,

%IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 2, row: 1}

]>,
hit_coordinates: #MapSet<[]>

}
}

iex> {:ok, l_shape_coordinate} = Coordinate.new(5, 5)
{:ok, %IslandsEngine.Coordinate{col: 5, row: 5}}

iex> {:ok, l_shape} = Island.new(:l_shape, l_shape_coordinate)
{:ok,

%IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 5, row: 5},
%IslandsEngine.Coordinate{col: 5, row: 6},
%IslandsEngine.Coordinate{col: 5, row: 7},
%IslandsEngine.Coordinate{col: 6, row: 7}

]>,
hit_coordinates: #MapSet<[]>

}
}

report erratum • discuss

Transforming Data • 29

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

With those islands created, we can use them to see overlaps?/2 in action:

iex> Island.overlaps?(square, dot)
true

iex> Island.overlaps?(square, l_shape)
false

iex> Island.overlaps?(dot, l_shape)
false

Perfect. That’s exactly the right result.

Let’s turn our attention to guessing a coordinate. We’ll need a guess/2 function
to do that. It will take an island and a coordinate.

If a guessed coordinate is a member of the coordinates set, we need to
transform the island by adding the coordinate to the hit coordinates set, and
then return a tuple containing :hit and the transformed island.

If the guessed coordinate isn’t in the coordinates set, we don’t need to do any
transformation, and we can just return :miss.

The MapSet module provides a member?/2 function that tests whether something
is a member of a given set. That will make this check easy.

model_data/lib/islands_engine/island.ex
def guess(island, coordinate) do

case MapSet.member?(island.coordinates, coordinate) do
true ->
hit_coordinates = MapSet.put(island.hit_coordinates, coordinate)
{:hit, %{island | hit_coordinates: hit_coordinates}}

false -> :miss
end

end

The board will use this function as it tests all islands for a guessed coordinate.

Now that we have guessing covered, let’s work on checking whether an island
is forested. We just need to return a Boolean, so we won’t actually transform
any data. Here again, a MapSet function comes in handy. We can make this a
one-liner by comparing the equality of an island’s coordinates and hit coordi-
nates. If they are equal, the island is forested; otherwise it isn’t.

model_data/lib/islands_engine/island.ex
def forested?(island), do:

MapSet.equal?(island.coordinates, island.hit_coordinates)

We’re ready to try out these two functions in the IEx session we had going a
moment ago.

Chapter 2. Model Data and Behavior • 30

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/island.ex
http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/island.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

First, let’s recompile the Island module so that we’ll have access to the guess/2
and forested?/1 functions we just wrote:

iex> r Island
warning: redefining module IslandsEngine.Island (current version defined in memory)

lib/islands_engine/island.ex:1

{:reloaded, IslandsEngine.Island, [IslandsEngine.Island]}

The r/1 Function

The IEx helper function r/1 recompiles a single module and loads
the newly recompiled code into memory. It won’t touch the .beam
file for that module on disk.

This is different from another IEx helper function, recompile/0.
recompile/0 recompiles the whole project from IEx instead of a single
module.

Then let’s create a new dot island. It’ll take one successful guess to forest it.

iex> {:ok, dot_coordinate} = Coordinate.new(4, 4)
{:ok, %IslandsEngine.Coordinate{col: 4, row: 4}}

iex> {:ok, dot} = Island.new(:dot, dot_coordinate)
{:ok,
%IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 4,row: 4}

]>,
hit_coordinates: #MapSet<[]>}

}

If we guess an incorrect coordinate, we should get only :miss in return. Since
there was no data transformation, the island itself should remain exactly as
it was.

iex> {:ok, coordinate} = Coordinate.new(2, 2)
{:ok, %IslandsEngine.Coordinate{col: 2, row: 2}}

iex> :miss = Island.guess(dot, coordinate)
:miss

iex> dot
%IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 4, row: 4}

]>,
hit_coordinates: #MapSet<[]>}

Perfect—that’s exactly what we expected.

report erratum • discuss

Transforming Data • 31

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now let’s guess the correct coordinate. That should do two things: add the
coordinate to the hit coordinates set, and return {:hit, island} with the trans-
formed island.

iex> {:ok, new_coordinate} = Coordinate.new(4, 4)
{:ok, %IslandsEngine.Coordinate{col: 4, row: 4}}

iex> {:hit, dot} = Island.guess(dot, new_coordinate)
{:hit,
%IslandsEngine.Island{
coordinates: #MapSet<[%IslandsEngine.Coordinate{col: 4, row: 4}]>,
hit_coordinates: #MapSet<[%IslandsEngine.Coordinate{col: 4, row: 4}]>}

}

That makes the coordinates and the hit coordinates sets equal, so now forest-
ed?/1 should return true.

iex> Island.forested?(dot)
true

That’s perfect. There’s one last function we’ll need—just a small one that
returns the list of valid island types. The board will need this to check whether
the board has positioned all the valid types.

model_data/lib/islands_engine/island.ex
def types(), do: [:atoll, :dot, :l_shape, :s_shape, :square]

That covers all the functionality we’ll need for islands. Let’s move on to the
last module: Board.

Board
The board has a dual role to play. It knows about and can address all the
islands. It can delegate function calls down to them individually or as a group.
That makes a board both an orchestrator as well as an interface for actions
that involve islands.

The actions that a board needs to handle include positioning islands, ensuring
that all islands are positioned, and guessing coordinates. Let’s tackle them
in order.

Players will be able to move their islands around the board until they declare
them set. Each time they move them, the front end of the application will
pass down an atom key representing the type of the island, as well as the row
and column of the starting coordinate.

Layers above this one will convert those to an actual island as well as passing
both the key and the island into the board here. As long as the island
matches an %Island{}, we know it’s valid. If it doesn’t match, this will raise a

Chapter 2. Model Data and Behavior • 32

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/island.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

FunctionClauseError. That’s appropriate because it means something went really
wrong with the island after it was created.

In order to shorten that runtime check on an %Island{} struct, let’s add an
alias at the top of the module file:

alias IslandsEngine.Island

If the island doesn’t overlap any existing islands, we set it in the board map
with the key we passed in. Otherwise, we return {:error, :overlapping_island}.

model_data/lib/islands_engine/board.ex
def position_island(board, key, %Island{} = island) do

case overlaps_existing_island?(board, key, island) do
true -> {:error, :overlapping_island}
false -> Map.put(board, key, island)

end
end

The private function overlaps_existing_island?/3 lets us know if there is any overlap.
It does this by enumerating over the islands to see if there are any for which
Island.overlaps?/2 returns true.

It also does a quick check to make sure we’re only checking the islands that
we aren’t replacing. We don’t care about the one we are replacing because
it’s going away.

model_data/lib/islands_engine/board.ex
defp overlaps_existing_island?(board, new_key, new_island) do

Enum.any?(board, fn {key, island} ->
key != new_key and Island.overlaps?(island, new_island)

end)
end

In the course of the game, players can move their islands around as often as
they want until they declare them set. After both players declare their islands
set, it will be the first player’s turn to guess.

We want to make sure that a player has positioned an island for all the island
types before declaring his islands set, and that’s what all_islands_positioned?/1
does. It gets the list of valid island types from the Island.types/0 function.

model_data/lib/islands_engine/board.ex
def all_islands_positioned?(board), do:

Enum.all?(Island.types, &(Map.has_key?(board, &1)))

Now let’s move on to guessing coordinates. We’ll need a guess/2 function that
takes a board map and a coordinate, and checks the board to see if that
coordinate matches any in an island.

report erratum • discuss

Transforming Data • 33

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/board.ex
http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/board.ex
http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/board.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The goal of the guess/2 function is to reply with four pieces of information:
whether the guess was a hit or a miss, either :none or the type of island that
was forested, :win or :no_win, and finally the board map itself.

We’ve ensured that no island will overlap any other. That means that every
coordinate in an island is unique. No other island will have that coordinate.
Because of that, each guess could match at most one coordinate.

We’ll do a runtime check to make sure we get a valid coordinate struct, so
let’s add the Coordinate module to our aliases:

alias IslandsEngine.{Coordinate, Island}

The sequence we’ll follow is to check all the islands in the board for a match
and then formulate the full response. That sounds like a great fit for a pipeline.

model_data/lib/islands_engine/board.ex
def guess(board, %Coordinate{} = coordinate) do

board
|> check_all_islands(coordinate)
|> guess_response(board)

end

We don’t yet have the ‘check_all_islands/2‘ or ‘guess_response/2‘ functions.
Let’s fix that next.

Board.check_all_islands/2 will need a board so it will have access to that board’s
islands, and it will need a coordinate to check for. With those, we can use
Enum.find_value/3 to do the checking.

Enum.find_value/3 works like Enum.find/3. Both functions take an enumerable, a
default value, and a function to apply on each enumeration. Both will halt
the enumeration once the function returns a truthy value.

The main difference is that find/3 returns the element for the enumeration,
and find_value/3 sends back the return value of the function.

We’ll set the default return to be :miss. That’s what check_all_islands/3 will return
if Enum.find_value/3 doesn’t get a truthy value.

model_data/lib/islands_engine/board.ex
defp check_all_islands(board, coordinate) do

Enum.find_value(board, :miss, fn {key, island} ->
case Island.guess(island, coordinate) do
{:hit, island} -> {key, island}
:miss -> false

end
end)

end

Chapter 2. Model Data and Behavior • 34

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/board.ex
http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/board.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

If the guess does result in a hit, we’ll need to return both the island key and the
island itself. When a guess hits a coordinate, we store that coordinate in the
island. That means we’ll need to replace the new island value in the board using
the key. We’ll also need to check whether or not that island was forested.

Now let’s tackle the last piece we’ll need for guesses: the response.

If the guess is a miss, we know that it could not have forested an island, and
it could not have won the game. That makes the response easy.

If the guess was a hit, we need to check whether the guess forested the island
and whether it won the game.

model_data/lib/islands_engine/board.ex
defp guess_response({key, island}, board) do

board = %{board | key => island}
{:hit, forest_check(board, key), win_check(board), board}

end
defp guess_response(:miss, board), do: {:miss, :none, :no_win, board}

In guess_response/2, we reference forest_check/2 and win_check/1 that we don’t cur-
rently have. Let’s take care of those next.

Let’s look at the forested part of the response first. The Island.forested?/2 function
only returns a Boolean, not the island type. We’ll need two extra functions in
this chain to get that data. Board.forest_check/2 calls into Board.forested?/2, which
is a pass through to the Island function of the same name. If Island.forested?/2
returns true, so will Board.forested/2, and that will trigger Board.forest_check/2 to
return the type. Otherwise, it will return :none.

model_data/lib/islands_engine/board.ex
defp forest_check(board, key) do

case forested?(board, key) do
true -> key
false -> :none

end
end

defp forested?(board, key) do
board
|> Map.fetch!(key)
|> Island.forested?()

end

In the course of a guess, the board will also need to determine whether or not
the guess resulted in a win. This will require a function chain as well. Checking
for a win means checking to see if all the islands on that board are forested.
We’ll need to check in with Island.forested?/1 for each island on the board. The
function that does that is Board. all_forested?/1.

report erratum • discuss

Transforming Data • 35

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/board.ex
http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/board.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The return value we need will be either :win or :no_win. Board.all_forested?/1 returns
a Boolean, so we’ll need another function to translate that Boolean into one
of the two possible responses. If Board.all_forested?/1 returns true, we return :win.
Otherwise, we return :no_win.

model_data/lib/islands_engine/board.ex
defp win_check(board) do

case all_forested?(board) do
true -> :win
false -> :no_win

end
end

defp all_forested?(board), do:
Enum.all?(board, fn {_key, island} -> Island.forested?(island) end)

Now we’re ready to take the code we’ve written so far out for a spin in IEx.

Putting the Pieces Together
A player’s own board acts as an interface. It’s the front door to the data and
functions that make up the game. Now that we’ve completely defined the Board
module, we’re ready to see how all of the work we’ve done so far fits together.

Let’s start a new session with iex -S mix, and alias the Board, Coordinate, and Island
modules:

iex> alias IslandsEngine.{Board, Coordinate, Island}
[IslandsEngine.Board, IslandsEngine.Coordinate, IslandsEngine.Island]

Then we can generate a new board:

iex> board = Board.new()
%{}

Now let’s generate a new square island and position it on the board:

iex> {:ok, square_coordinate} = Coordinate.new(1, 1)
{:ok, %IslandsEngine.Coordinate{col: 1, row: 1}}

iex> {:ok, square} = Island.new(:square, square_coordinate)
{:ok,

%IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[]>

}
}

Chapter 2. Model Data and Behavior • 36

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/model_data/lib/islands_engine/board.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> board = Board.position_island(board, :square, square)
%{square: %IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[]>}

}

As a test, let’s create a new dot island that overlaps the square and try to
position it on the board:

iex> {:ok, dot_coordinate} = Coordinate.new(2, 2)
{:ok, %IslandsEngine.Coordinate{col: 2, row: 2}}

iex> {:ok, dot} = Island.new(:dot, dot_coordinate)
{:ok,

%IslandsEngine.Island{
coordinates: #MapSet<[%IslandsEngine.Coordinate{col: 2, row: 2}]>,
hit_coordinates: #MapSet<[]>

}
}

iex> Board.position_island(board, :dot, dot)
{:error, :overlapping_island}

We get an error, which is exactly what we would expect. Note that we didn’t
rebind the board variable, so it has remained unchanged. Now let’s generate
a new dot island that doesn’t overlap the square, and position it on the board:

iex> {:ok, new_dot_coordinate} = Coordinate.new(3, 3)
{:ok, %IslandsEngine.Coordinate{col: 3, row: 3}}

iex> {:ok, dot} = Island.new(:dot, new_dot_coordinate)
{:ok,

%IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 3, row: 3}

]>,
hit_coordinates: #MapSet<[]>

}
}

iex> board = Board.position_island(board, :dot, dot)
%{dot: %IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 3, row: 3}

]>,
hit_coordinates: #MapSet<[]>

},

report erratum • discuss

Putting the Pieces Together • 37

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

square: %IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[]>
}

}

Great—we’re able to position it on the board the way we want. Now we can
try a guess. Let’s try for a miss first. We should get back a four tuple that
looks like {:miss, :none, :no_win, board}.

iex> {:ok, guess_coordinate} = Coordinate.new(10, 10)
{:ok, %IslandsEngine.Coordinate{col: 10, row: 10}}

iex> {:miss, :none, :no_win, board} = Board.guess(board, guess_coordinate)
{:miss, :none, :no_win,
%{dot: %IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 3, row: 3}

]>,
hit_coordinates: #MapSet<[]>

},
square: %IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[]>}

}
}

That’s exactly what we do get back. Now let’s try for a guess that doesn’t forest
an island or win. We can guess one of the coordinates in the square. That should
also give us back a four tuple, but this time it’ll look like {:hit, :none, :no_win, board}.

iex> {:ok, hit_coordinate} = Coordinate.new(1, 1)
{:ok, %IslandsEngine.Coordinate{col: 1, row: 1}}
iex> {:hit, :none, :no_win, board} = Board.guess(board, hit_coordinate)
{:hit, :none, :no_win,
%{dot: %IslandsEngine.Island{

coordinates: #MapSet<[%IslandsEngine.Coordinate{col: 3, row: 3}]>,
hit_coordinates: #MapSet<[]>},

square: %IslandsEngine.Island{
coordinates: #MapSet<[

%IslandsEngine.Coordinate{col: 1,row: 1},

Chapter 2. Model Data and Behavior • 38

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[%IslandsEngine.Coordinate{col: 1, row: 1}]>}}}

Again that’s just what we expected.

Next we’ll try for a win. Instead of tediously guessing the rest of the coordi-
nates, we’ll cheat a little. We can make the square’s hit coordinates equal to
its coordinates. That will automatically make it a forested island, and it will
leave the single coordinate of the dot island as the only unguessed coordinate.

iex> square = %{square | hit_coordinates: square.coordinates}
%IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[

%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>}

We’ll need to reposition the square after we manipulate it:

iex> board = Board.position_island(board, :square, square)
%{dot: %IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 3, row: 3}

]>,
hit_coordinates: #MapSet<[]>},

square: %IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[

%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>
}

}

report erratum • discuss

Putting the Pieces Together • 39

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now when we guess the dot coordinate, we should get a :hit, the :dot island
should be forested, and we should get a :win.

iex> {:ok, win_coordinate} = Coordinate.new(3, 3)
{:ok, %IslandsEngine.Coordinate{col: 3, row: 3}}

iex> {:hit, :dot, :win, board} = Board.guess(board, win_coordinate)
{:hit, :dot, :win,
%{dot: %IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 3, row: 3}

]>,
hit_coordinates: #MapSet<[

%IslandsEngine.Coordinate{col: 3, row: 3}
]>},

square: %IslandsEngine.Island{
coordinates: #MapSet<[

%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[

%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>
}

}
}

Fantastic—that’s exactly what we do get.

With that, we’ve defined all the behavior we need from the entities we’ve
defined.

Wrapping Up
We’ve made good progress so far. We modeled the most important building
blocks of the game. We can see how coordinates compose into islands and
boards.

Our domain is simpler because of the approach we’ve taken. Our domain
entities live single lives in our application instead of double lives in both the
application and the database. Application behavior comes from simple func-
tions that transform data. There’s not an ORM in sight.

Chapter 2. Model Data and Behavior • 40

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

While we are in a good position, the code we currently have allows any action
to happen at any time. There’s no sense of sequence to the events. There’s
nothing to prevent us from guessing coordinates before we position any
islands.

Before the code we now have can become a real game, we’ll need to define
and enforce the order in which events can happen. That’s what our task will
be for the next chapter.

report erratum • discuss

Wrapping Up • 41

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

CHAPTER 3

What we’ll do in this chapter

• get an overview of how state machines work
• model application rules as states and transitions
• build a state machine to embody the rules

Manage State with a State Machine
Handling state is an important topic in web development these days. We’re
seeing changing ideas and practices in both the front- and back-end worlds.
It’s time we talk more directly about how to manage state in an Elixir project.

The BEAM’s concurrency and fault tolerance bring truly stateful web applica-
tions within reach. But stateful applications bring their own challenges.
Managing state over time requires great care and coordination. Keeping code
clean in the process provides an extra level of difficulty.

We’ll meet these challenges with a purely functional state machine. We’ll see
how to use a data structure and multiple clauses of a single function to make
decisions and enforce rules in an application.

Our state machine will help us coordinate events and transitions as well.
Most importantly, we’ll keep our code clean by separating state management
from business logic.

Our first step will be to think a little bit about what state really means.

A Quick Look at State
Holding state is an act of remembering. What we’re remembering is the data
that models our system. We especially care about the transformation of that
data resulting from actions taken in the system over time. The way we
remember is to commit the data to memory on the host machine.

The reason we save state is so future actions can be consistent with the past.
Say we created a new user profile in an application. If the user wants to change
his email address later on, we better still have access to his original profile.

Most web applications present a twist to this story. As we mentioned in
Chapter 1, Mapping Our Route, on page 1, HTTP is a stateless protocol. It is

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

specifically designed not to remember anything about requests—–actions in
the system—as soon as they are fulfilled.

As web developers, we typically get around this by storing state in a database.
Since we’re not using a database, we need another place to store state data
over time. In Islands, we’ll store it in long-running Elixir processes, specifically
GenServer processes.

In Chapter 2, Model Data and Behavior, on page 9, we developed the data
to model the domain for Islands. We also wrote functions to transform that
data. This is where we currently stand; we have data, but it is not yet state.

In Chapter 4, Wrap It Up in a GenServer, on page 65, we’ll see how to hold
that data and its subsequent transformations in GenServer processes. This act
of holding data in a process over time will transform the data structures we
now have into state.

Before we move on to where we’re going, though, let’s see where we’ve been.

A Bit of History
Early client-server applications were stateful. Clients connected to the server
and stayed connected while they passed messages back and forth. Think
mainframe applications with dedicated terminals as clients.

That worked well, but it meant that the number of possible clients was limited
by system resources like memory, CPU, and the number of concurrent pro-
cesses the system could support.

The web gets around these limitations because of the nature of HTTP. When
a client makes an HTTP request to a server, it must supply all the data the
server will need to fulfill that request. Once the server sends its response, it
forgets everything it just knew about both the request and the client.

This request-response cycle has been critical to the success and scaling of
the web. It requires fewer system resources to handle vastly more requests
because the server doesn’t need to keep track of anything once it sends a
response. This allows applications to use less expensive shared pools for
resources like database or mainframe connections instead of more expensive
dedicated resources for each client. Applications can manage other resources
like threads and memory the same way.

HTTP shed resource costs, but it picked up others along the way. It’s
impractical to pass all the state a complex application needs to do its work.
Instead, servers store that state in a database, and clients pass along only

Chapter 3. Manage State with a State Machine • 44

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

enough information for the server to fetch that data to fulfill the request. If
the request involves any change in state, the server needs to write those
changes back to the database. These trips to and from the database add
latency. Modeling a domain for a database adds unnecessary complexity.

As developers, we pick up the tab for these added costs in terms of extra code
to write and maintain as well as extra cognitive load when reasoning about
our applications.

Change Is Afoot
As applications grow and traffic increases, these costs begin to really add up.
At serious scale, they can become prohibitive, so people are looking for ways
to get around them.

We’re at the beginning of a sea change in web development. We’re seeing the
return of stateful servers with persistent client connections. Modern hardware
provides abundant system resources. Elixir provides more than enough
power and concurrency to handle application state and persistent connections
at scale. Phoenix channels make writing those persistent connections a breeze.

With stateful applications, we no longer have the luxury of clean state with
every new request. We have to manage state over time, and make sure it
remains consistent. We need to understand the stages an application can go
through, and handle the transitions between them. We need to ensure that
events in the system are consistent with the stage the application is in.

The Front-end World

Front-end JavaScript developers have already walked this path from a mostly stateless
to a stateful environment. With the rise of Ajax requests a number of years ago, front-
end web applications could fetch data outside of the normal request-response cycle.
They could update the DOM without a full page reload that would wipe the state clean.

The rise of Ajax opened up incredible possibilities in user interactions. Web applica-
tions became as complex and interesting as desktop apps—map applications, email,
and office suites. With the vastly increased time between page reloads, the browser
suddenly became a stateful environment, and developers quickly found that they
needed strategies to manage state.

The JavaScript world is still grappling with this shift. The community is continually
inventing new solutions to ease the difficulty of handling state—frameworks, data
binding libraries, promise libraries, generators, and more. The sheer number of
solutions out there and the speed with which they hit the ecosystem creates a very
real sense of fatigue.

report erratum • discuss

A Bit of History • 45

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

A Different Path
You might think that we could make decisions about application stages, stage
transitions, and events with conditional logic. You would be right, but the
costs would be high. The number of nested “if” statements necessary to do
the job would lead to a snarl of code paths. Real readability and maintainabil-
ity problems would be our reward.

We’re going to choose a different direction. We’ll implement our own purely
functional state machine to handle all the stages that Islands will go through
in the course of a full game. It’s going to make decisions for the application
about which actions to allow and which to deny at a given stage. It will
manage transitions from one stage to the next, and it will help the game
enforce the rules.

By implementing our own state machine, we’ll keep the logic for managing
state separate from the rest of the game logic. This separation of concerns
will keep our code clean, readable, and maintainable.

Before we go any further, let’s get a better understanding of state machines
in general and take a look at an example of a problem that’s ideal for a state
machine to solve.

State Machines
State machines are fundamental to computation. A finite state machine is a
form of abstract machine. It defines a finite number of states a system can
be in, as well as any events in the system that can trigger transitions between
those states. Any time we need to model a complex process that proceeds
through a number of states, especially ones that might loop back to earlier
states, we should think about reaching for a finite state machine.

The Meaning of “State”

We need to resolve an ambiguity with the word “state.” In Elixir,
when we say “state,” we mean data held in an Elixir process. In a
state machine, a “state” is the name of a stage an application can
go through. In this chapter, we’ll use “state” to mean the name of
a stage in an application.

Let’s walk through an example of a problem that’s perfect for a state machine.
Imagine you’re working at an e-commerce site with its own warehouse. As
part of your job, you need to model and control the life cycle of a product from
the first time a buyer sees it at a trade show until it’s stocked in the warehouse
and available for sale.

Chapter 3. Manage State with a State Machine • 46

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

There are a surprising number of states a product can go through. If a buyer
sees a product they like and adds it to the system, that first state could be
called scouted. After that, a buyer might order a sample. We could call that
state sample_ordered. Once the sample arrives, the buyer might accept it and
order a larger number of them. We might call that state inventory_ordered. The
buyer might also reject the sample and have the state go back to scouted.

There are rules here, and a sense of progression. Buyers can’t order a sample
unless they’ve scouted the product. They can’t order inventory until they’ve
ordered a sample, and so on.

This process might continue until the buyer accepts the production run, the
warehouse completes the intake of the merchandise, and the warehouse has
stocked the product in preparation for fulfillment. It might also stop at any
point and go back to a previous state if something goes wrong.

This scenario demonstrates the transitions between states, but it glosses
over a really important component. There are events in the system that
trigger the state transitions. Buyers add products to the system. That’s an
event. Buyers order samples. Shipments arrive. Buyers accept samples, and
so on. All events.

These are the keys to understanding state machines. Events trigger state
transitions. The state machine may progress to a new state or regress to a
previous one depending on the event and the current state.

That’s all great information, but now we need to translate it into executable
code for our game.

A Functional State Machine for Islands
Many language ecosystems provide ready-made state machine packages that
we can customize to fit our own applications. Elixir is no exception to this in
that OTP has a fine state machine called :gen_statem built in.

We could use :gen_statem to implement our state machine, but we’re going to
build our own from scratch instead. We’ll be able to do it in much fewer lines
of code, and we won’t need to spin up a new process for each state machine
the way we would if we used :gen_statem.

Instead, we’ll define a new module, multiple clauses of a single function, and
a data structure to represent the state. Each time we invoke the function,
we’ll pass in the state as well as an event. The function will decide whether
or not to permit that combination of state and event. It will also decide whether
or not to transition to a new state.

report erratum • discuss

A Functional State Machine for Islands • 47

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

If we return a tuple tagged with :ok, that means the combination is permissible.
By returning :error, we signify that it is not. In effect, we’ll be creating a whitelist
of permissible state/event combinations.

This may all seem a little abstract at the moment. Hang in there. It’ll become
clear as we go along. Let’s get started!

Defining the Rules
We’re about to see just how flexible a data structure and a single function
can be. We could use this same pattern to create state machines that fit the
needs of any application we’re working on.

Before we write any code, it’s helpful to have a picture of what we need to
build, what the pieces look like, and how they fit together. Here’s a represen-
tation of the state machine we need to implement, including all the states
and the direction of the transitions between them.

initialized players_set player2_turn game_overplayer1_turn

We’re going to build our state machine one state at a time in the order the
states follow as the game progresses. For each state, we’ll add to the whitelist
of allowable event/state combinations and trigger state transitions where
they are needed. The place to begin is with a new module and function. That’s
where we’ll go next.

Start with a Catchall Clause
Our goal is to build a whitelist, but we still need to account for all the error
cases that won’t match it. That’s the job of a catchall clause, and that’s what
we’ll define in this section.

Let’s start with a new file at lib/islands_engine/rules.ex. We’ll need to define the
IslandsEngine.Rules module in it and alias it as well:

defmodule IslandsEngine.Rules do
alias __MODULE__

end

We’ll need to address the basic question of how to represent the state in the
system. We can start with a struct that has a :state key. The initial state for
Islands is :initialized, so we can set the state key to that when we define the struct:

defstruct state: :initialized

Chapter 3. Manage State with a State Machine • 48

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

With this representation, transitioning state means transforming the value
of the :state key for this struct.

As we’ve done with all the modules we’ve defined so far, let’s define a function
that returns a new data structure that represents this module:

state_machine/lib/islands_engine/rules.ex
def new(), do: %Rules{}

The one function we’ll need for all the whitelist definition work will be check/2.
The catchall clause for it will take a state and an action. Then it will just
return :error. We won’t pattern match on any specific values, so this clause
will always match.

state_machine/lib/islands_engine/rules.ex
def check(_state, _action), do: :error

Clause Order Matters

Since this catchall clause will always match, it’s important to define
it after all the other clauses of check/2. Otherwise, it will prevent any
other ‘check/2‘ clauses defined after it from ever matching.

For any state/event combination that ends up in this catchall, we don’t want
to transition the state. By simply returning :error, we don’t transform the value
of the :state key. Leaving it unchanged keeps the game in the same state.

Working Through the States
With the catchall in place, all we need to do from now on is define the positive
cases. We’ll add a new clause of check/2 for each new state/event pair that we
want to add to the whitelist. By the end of this section, we will have a complete
state machine that will describe all the rules of Islands.

Let’s start with the first state, :initialized.

Initialized
When we’re in :initialized, the only permissible action is adding the second
player. We’re going to focus on that one action and the transition it triggers,
from :initialized to :players_set.

initialized players_set

We’ll need a clause of check/2 for this that adds this combination of state and
event to the whitelist.

report erratum • discuss

Working Through the States • 49

http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The idea that we want to express is that when we’re in the :initialized state, it’s
okay to add a new player, and when that action happens, we should transition
the state to :players_set.

This clause of check/2 will need to pattern match for a state of :initialized as well
as the action :add_player. Then we’ll return a two tuple tagged with :ok. In order
to represent the state change, the second element of that return tuple will be
a transformed %Rules{} struct with a new state value, :players_set.

Just by returning that new value for the state key, we’ll have a new state. We
won’t need to configure all the possible states beforehand.

state_machine/lib/islands_engine/rules.ex
def check(%Rules{state: :initialized} = rules, :add_player), do:

{:ok, %Rules{rules | state: :players_set}}

We’re doing a runtime check on the %Rules{} struct to make sure that’s what
we’re getting, and then we pattern match on the state from there.

It’s important to mention that this function doesn’t actually add another player.
It makes a decision about whether it’s okay to add another player based on the
current state of the game. That’s all there is to it. Let’s give it a try in IEx:

iex> alias IslandsEngine.Rules
IslandsEngine.Rules

iex> rules = Rules.new()
%IslandsEngine.Rules{state: :initialized}

iex> {:ok, rules} = Rules.check(rules, :add_player)
{:ok, %IslandsEngine.Rules{state: :players_set}}

iex> rules.state
:players_set

That’s exactly what we want. Calling the check/2 function with :add_player when
we’re in the :initialized state returns {:ok, <new rules>} and moves us into the
:players_set state.

Adding a player is the only event we allow in the :initialized state. We need to
return an error for any other event associated with that state. The catchall
clause we’ve already defined should already handle this. Let’s try it out:

iex> rules = Rules.new()
%IslandsEngine.Rules{state: :initialized}

iex> :error = Rules.check(rules, :completely_wrong_action)
:error

iex> rules.state
:initialized

Chapter 3. Manage State with a State Machine • 50

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

That’s just what we were looking for. With that, we’re ready to move on to the
next state.

Players Set
At this point, the second player has joined the game so we are in the :players_set
state. In :players_set, the players can position and reposition their islands on
the board without transitioning the state.

They can also set their islands, declaring their positions fixed for the rest of
the game. When only one player has set her islands, the game remains in
:players_set. When the second player sets his islands, the game transitions to
the :player1_turn state. That’s when the game really begins.

Those are the events and the transition we’ll focus on here, from :players_set to
:player1_turn.

players_set player1_turn

Let’s begin by defining a clause of check/2 for players positioning their islands.

The idea that we would like to express with this clause is that when the game
is in :players_set, it’s okay for either of the players to position their islands.

def check(%Rules{state: :players_set} = rules, {:position_islands, player}) do
{:ok, rules}

end

That definition seems fine, but there’s a subtlety here that we need to capture.

Players can move their islands at any time until they set them. Both players
are almost certain to set their islands at different times. If player1 has set
her islands but player2 hasn’t, player1 should no longer be able to move her
islands, but player2 should still be able to. While this condition exists, the
state machine should remain in the :players_set state.

In other words, when in the :players_set state, the state machine can have two
different conditions:

• neither player has set his islands
• one player has set her islands and the other hasn’t

The second player setting his islands is the event that triggers a state change.

To handle this properly, we need to keep track of whether each of the players
have set their islands individually. We need to save this data in the state

report erratum • discuss

Working Through the States • 51

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

machine, and the rules struct is the right place to do it. Let’s add to the struct
definition at the top of the Rules module. The new keys will be :player1 and
:player2. The default values will be :islands_not_set.

state_machine/lib/islands_engine/rules.ex
defstruct state: :initialized,

player1: :islands_not_set,
player2: :islands_not_set

Now we can use the data in the rules struct to make the right decisions. We
get the player in the tuple representing the action. With that and a case
statement, we can craft a response.

state_machine/lib/islands_engine/rules.ex
def check(%Rules{state: :players_set} = rules, {:position_islands, player}) do

case Map.fetch!(rules, player) do
:islands_set -> :error
:islands_not_set -> {:ok, rules}

end
end

If the value for the player key is :islands_not_set, it’s fine for that player to move
her islands, so we return {:ok, rules}. If the values is :islands_set, it’s not okay for
her to move her islands, so we return :error. Neither action is enough to tran-
sition the state out of :players_set, so we leave the rules struct alone.

Let’s check this in a new console session. We’ll need a new rules struct with
the state set to :players_set.

If you’ve still got the session running from the last section, remember to
recompile the Rules module with the r/1 function. Otherwise, alias IslandsEngine.Rules.

iex> r Rules
warning: redefining module IslandsEngine.Rules (current version loaded

from _build/dev/lib/new_islands/ebin/Elixir.IslandsEngine.Rules.beam)
lib/new_islands/rules.ex:1

{:reloaded, IslandsEngine.Rules, [IslandsEngine.Rules]}

iex> rules = Rules.new()
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :initialized}

iex> rules = %{rules | state: :players_set}
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :players_set}

iex> rules.state
:players_set

Great! Now let’s try out this new clause:

Chapter 3. Manage State with a State Machine • 52

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> {:ok, rules} = Rules.check(rules, {:position_islands, :player1})
{:ok,
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :players_set}}

iex> {:ok, rules} = Rules.check(rules, {:position_islands, :player2})
{:ok,

%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :players_set}}

iex> rules.state
:players_set

Perfect! That’s what we want.

We still need to handle players setting their islands. Let’s define a new clause
for that next.

We should always let a player set his islands, but we only transition the state
when both players have their islands set.

We can handle the first part, changing the value of the player key, with this:

def check(%Rules{state: :players_set} = rules, {:set_islands, player}) do
rules = Map.put(rules, player, :islands_set)

end

Now we need to handle the second part. The question is whether check/2 should
transition the state machine to :player1_turn. That should happen only if both
players have set their islands. We can check for that with a private function:

state_machine/lib/islands_engine/rules.ex
defp both_players_islands_set?(rules), do:

rules.player1 == :islands_set && rules.player2 == :islands_set

If both_players_islands_set?/1 returns true, then we should transition to :player1_turn.
Otherwise, we should just return {:ok, <current rules>}.

state_machine/lib/islands_engine/rules.ex
def check(%Rules{state: :players_set} = rules, {:set_islands, player}) do

rules = Map.put(rules, player, :islands_set)
case both_players_islands_set?(rules) do

true -> {:ok, %Rules{rules | state: :player1_turn}}
false -> {:ok, rules}

end
end

Let’s see how this works in the console. We’ll get a new rules struct and set
its state to :players_set.

Again, either recompile or alias IslandsEngine.Rules.

report erratum • discuss

Working Through the States • 53

http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> rules = Rules.new()
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :initialized}

iex> rules = %{rules | state: :players_set}
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :players_set}

Let’s have :player1 set her islands. There should be nothing stopping her from
doing this multiple times, but if only :player1 has set her islands, the state
should remain :players_set.

iex> {:ok, rules} = Rules.check(rules, {:set_islands, :player1})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_not_set,
state: :players_set}}

iex> {:ok, rules} = Rules.check(rules, {:set_islands, :player1})
{:ok,

%IslandsEngine.Rules{player1: :islands_set, player2: :islands_not_set,
state: :players_set}}

iex> rules.state
:players_set

That’s exactly what we see.

Since :player1 just set her islands, she shouldn’t be able to position them any
more, but :player2 still should be able to:

iex> Rules.check(rules, {:position_islands, :player1})
:error

iex> {:ok, rules} = Rules.check(rules, {:position_islands, :player2})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_not_set,
state: :players_set}}

Perfect. That’s what we want.

Now let’s have :player2 set his islands and do the same check. After we do this,
both players will have set their islands, so the state should transition to
:player1_turn:

iex> {:ok, rules} = Rules.check(rules, {:set_islands, :player2})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_set,
state: :player1_turn}}

iex> Rules.check(rules, {:position_islands, :player2})
:error

iex> rules.state
:player1_turn

Chapter 3. Manage State with a State Machine • 54

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We said that a player can set his islands as many times as he wants when
the game is in :players_set. Let’s see if :player2 can set her islands again:

iex> Rules.check(rules, {:set_islands, :player2})
:error

Apparently, she can’t.

The reason :player2 can’t set her islands a second time is that the state is now
:player1_turn and we haven’t defined any permissible actions for that state yet.

Now that we’re in a state that we haven’t created any whitelisted actions for,
we shouldn’t be able to do anything:

iex> rules.state
:player1_turn

iex> Rules.check(rules, :add_player)
:error

iex> Rules.check(rules, {:position_islands, :player1})
:error

iex> Rules.check(rules, {:position_islands, :player2})
:error

iex> Rules.check(rules, {:set_islands, :player1})
:error

This behaves exactly as we want it to. Time to tackle the next state.

Player One’s Turn
Not all state transitions are one-way. State machines often need to revisit
previous states based on events in the system. Taking turns in a game is a
perfect example of this. In a two-person game, the state will transition back
and forth between one player’s turn and the other until one of them wins.

We’re at the point where both players have set their islands, and the game is
in :player1_turn. When it’s the first player’s turn, that player may guess a coor-
dinate, and that player may win the game. No other events are permissible.

When :player1 guesses a coordinate, the state should transition to :player2_turn.
And if :player1 wins, the state should transition to :game_over. We’ll focus on the
transition from :player1_turn to :player2_turn first.

player1_turn player2_turn

report erratum • discuss

Working Through the States • 55

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We’ll need a new clause of check/2 for this. What we want to express with this
clause is that when it is player1’s turn, it is okay for player1 to guess a
coordinate, and the state should transition to :player2_turn.

This new clause will need to pattern match for the state :player1_turn and a
tuple representing the idea that :player1 wants to guess a coordinate.

state_machine/lib/islands_engine/rules.ex
def check(%Rules{state: :player1_turn} = rules, {:guess_coordinate, :player1}), do:

{:ok, %Rules{rules | state: :player2_turn}}

That should do it. Let’s take it out for a spin in a new IEx session to make
sure. Let’s get a new rules struct, and set the state to :player1_turn:

iex> rules = Rules.new()
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :initialized}

iex> rules = %{rules | state: :player1_turn}
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :player1_turn}

iex> rules.state
:player1_turn

We should get an error if :player2 tries to guess a coordinate:

iex> Rules.check(rules, {:guess_coordinate, :player2})
:error

So far, so good. It should be okay for :player1 to guess a coordinate, and that
should transition the state to :player2_turn.

iex> {:ok, rules} = Rules.check(rules, {:guess_coordinate, :player1})
{:ok,
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :player2_turn}}

iex> rules.state
:player2_turn

Fabulous. That worked just as we expected. The game alternates between
:player1_turn and :player2_turn until one player wins. When a player does win, the
game transitions to the :game_over state.

player1_turn player2_turn game_over

Chapter 3. Manage State with a State Machine • 56

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We’ll need a new clause of check/2 that describes winning when the game is in
:player1_turn.

When we defined the Board.guess/2 function, we made sure part of its return
tuple specified whether the guess resulted in a win or not with :win or :no_win.

We can use those values in two new clauses of check/2 to determine whether
or not the state machine should transition to :game_over. If it does transition,
we’ll need to transform the rules struct to reflect that transition before we
return it.

state_machine/lib/islands_engine/rules.ex
def check(%Rules{state: :player1_turn} = rules, {:win_check, win_or_not}) do

case win_or_not do
:no_win -> {:ok, rules}
:win -> {:ok, %Rules{rules | state: :game_over}}

end
end

Let’s try it out in IEx. If you’re continuing with the same session, remember
to recompile the Rules module; otherwise, alias it.

We’ll need a new rules struct set to :player1_turn:

iex> rules = Rules.new()
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :initialized}

iex> rules = %{rules | state: :player1_turn}
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :player1_turn}

Then we can test out the :no_win clause of check/2:

iex> {:ok, rules} = Rules.check(rules, {:win_check, :no_win})
{:ok,
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :player1_turn}}

iex> rules.state
:player1_turn

Perfect—that left us in the :player1_turn state. Now let’s try the :win clause:

iex> {:ok, rules} = Rules.check(rules, {:win_check, :win})
{:ok,
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :game_over}}

iex> rules.state
:game_over

It works! Now let’s build the transition back to :player1_turn.

report erratum • discuss

Working Through the States • 57

http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Player Two’s Turn
This state is the mirror image of :player1_turn. When it’s the second player’s
turn, he can guess a coordinate or win the game. No other events are permis-
sible. Much of this will seem familiar as we’ll need the same two clauses we
defined for :player1_turn and :player1, but this time for :player2_turn and :player2.

The first clause should say that when the state is :player2_turn, :player2 is allowed
to guess, and that guess will transition the state to :player1_turn:

state_machine/lib/islands_engine/rules.ex
def check(%Rules{state: :player2_turn} = rules, {:guess_coordinate, :player2}), do:

{:ok, %Rules{rules | state: :player1_turn}}

The other two states should say that if a guess didn’t result in a win, we don’t
transition the state, but if it did result in a win, we should transition to :game_over.

state_machine/lib/islands_engine/rules.ex
def check(%Rules{state: :player2_turn} = rules, {:win_check, win_or_not}) do

case win_or_not do
:no_win -> {:ok, rules}
:win -> {:ok, %Rules{rules | state: :game_over}}

end
end

Now that we have these function clauses defined, let’s move on to the last
state of the game.

Game Over
State machines often, but not always, have an end state, one from which we
can’t transition. In Islands, we do have an end state: :game_over.

We won’t need any new clauses of check/2 for the :game_over state because there
are no new actions to add to the whitelist. The catchall clause will return an
error no matter what we try to do when the state is :game_over.

At this point we can see our state machine make it through all the states,
trying all the events. Let’s start a new IEx session, get a new rules struct, and
make sure it’s in the :initialized state:

iex> alias IslandsEngine.Rules
IslandsEngine.Rules

iex> rules = Rules.new()
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :initialized}

iex> rules.state
:initialized

Chapter 3. Manage State with a State Machine • 58

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://media.pragprog.com/titles/lhelph/code/state_machine/lib/islands_engine/rules.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Then we can check on adding a player and make sure that we transition to
:players_set:

iex> {:ok, rules} = Rules.check(rules, :add_player)
{:ok,
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :players_set}}

iex> rules.state
:players_set

Each player should be able to move an island and the state should still be
:players_set:

iex> {:ok, rules} = Rules.check(rules, {:position_islands, :player1})
{:ok,
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :players_set}}

iex> rules.state
:players_set

iex> {:ok, rules} = Rules.check(rules, {:position_islands, :player2})
{:ok,
%IslandsEngine.Rules{player1: :islands_not_set, player2: :islands_not_set,
state: :players_set}}

iex> rules.state
:players_set

When one player sets her islands, she should no longer be able to position
them, but the other player still should be able to:

iex> {:ok, rules} = Rules.check(rules, {:set_islands, :player1})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_not_set,
state: :players_set}}

iex> rules.state
:players_set

iex> Rules.check(rules, {:position_islands, :player1})
:error

iex> {:ok, rules} = Rules.check(rules, {:position_islands, :player2})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_not_set,
state: :players_set}}

iex> rules.state
:players_set

When both players set their islands, the state should transition to :player1_turn:

report erratum • discuss

Working Through the States • 59

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> {:ok, rules} = Rules.check(rules, {:set_islands, :player2})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_set,
state: :player1_turn}}

iex> rules.state
:player1_turn

Now the players should be able to alternate guessing coordinates, beginning
with :player1. If :player2 tries to guess first, that should be an error. After that,
the players will alternate guesses.

iex> Rules.check(rules, {:guess_coordinate, :player2})
:error

iex> {:ok, rules} = Rules.check(rules, {:guess_coordinate, :player1})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_set,
state: :player2_turn}}

iex> rules.state
:player2_turn

iex> Rules.check(rules, {:guess_coordinate, :player1})
:error

iex> {:ok, rules} = Rules.check(rules, {:guess_coordinate, :player2})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_set,
state: :player1_turn}}

iex> rules.state
:player1_turn

Any guess that doesn’t result in a win should not transition the state. But
when somebody does win, the state should become :game_over:

iex> {:ok, rules} = Rules.check(rules, {:win_check, :no_win})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_set,
state: :player1_turn}}

iex> rules.state
:player1_turn

iex> {:ok, rules} = Rules.check(rules, {:win_check, :win})
{:ok,
%IslandsEngine.Rules{player1: :islands_set, player2: :islands_set,
state: :game_over}}

iex> rules.state
:game_over

That all looks fantastic.

Chapter 3. Manage State with a State Machine • 60

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

This brings us to the end of the game. We’ve defined all the function clauses
of check/2 that represent the permissible events in each state of the game.
We’ve got a catchall clause to handle any combination not on the whitelist.

But we’ve actually done more than that. We’ve created a simple system, sep-
arate from the business logic, that can help manage complex, long-running
processes. We can use the ideas we’ve covered in this chapter anywhere we
need to make decisions about application state.

Now the application logic needs to make use of it. That’s coming up next.

Wrapping Up
We’ve done a lot of great work in this chapter. We’ve built a state machine
from scratch, encapsulating all the rules of Islands with a data structure and
a handful of clauses for a single function.

Along the way, you learned a lot about finite state machines in general. You
saw how to map events to states in order to make decisions about behavior.
You learned how to manage state and state transitions.

The implementation we came up with is completely decoupled from any of
the other modules we’ve written so far. It can decide whether actions follow
the rules independently, without any knowledge of the application logic for
the rest of the game.

Now we’re ready to put all the work we’ve done so far together in a single
entity, with a single interface. As we move into Part 2 of the book, we’ll define
a GenServer for the game. In it, we’ll get the application logic working together
with the rules.

By the end of the next chapter, Islands is really going to take shape. It’s going
to feel a lot more like a complete game. Let’s get to it!

report erratum • discuss

Wrapping Up • 61

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Part II

Add OTP for Concurrency
and Fault Tolerance

With the logical core of our application complete,
it’s time to step into the world of concurrency and
parallelism. OTP will guide our way as we build a
GenServer for concurrency and add a supervisor
for fault tolerance and recovery.

CHAPTER 4

What we’ll do in this chapter

• implement a GenServer for the game logic
• define a public interface for the game server process
• practice common patterns in OTP Behaviours
• initialize GenServers with the correct state
• use process registration to name individual games

Wrap It Up in a GenServer
We’re about to make a big leap. Up to this point, we’ve focused on modules,
functions, and data. This is the synchronous side of Elixir, the world within
a process where code executes sequentially. In this chapter, we’ll be moving
into the asynchronous side, the world of processes and message passing that
provides Elixir’s world-class concurrency and parallelism.

We’re going to build a GenServer that contains all the data and game logic for
Islands. We’ll spin up new instances of this GenServer as separate processes,
one for each individual game. By the time it’s complete, all the work we’ve
done so far will come together in a single entity with a unified interface.

This move is important on its own, but on a deeper level, it points to something
even more significant. We’ll see the ways in which GenServers provide much of
what we want from micro-services while solving many of the problems micro-
services can cause.

Here’s the plan. We’ll define a new module and turn it into a GenServer. We’ll
see how to spawn new processes with it, and have those processes hold game
data as their state. As we customize its behavior, we’ll define public functions
that will act as the interface to the game. In Part 3, as we layer on Phoenix,
we’ll use these functions as a way of interacting with each game process.

Before we execute that plan, let’s take a closer look at micro-services, and
the problems they’re intended to solve as well as the problems they create.
Then we’ll see how OTP addresses the problems without creating new ones.

A Look at Micro-Services
Let’s face it—applications just naturally grow, and often they grow too large and
complex to easily manage. The impulse to break large applications up into
smaller, independent ones has been around a long time. Micro-services are

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

currently the most popular approach for this, but long before micro-services,
there was SOA, service-oriented architecture.

Breaking up large applications is a scaled-up version of the impulse we have
to break up larger functions into smaller ones with intention-revealing names,
and then compose those functions back together to re-create the original
behavior. We get the bigger picture from the recomposition, and we can dig
into the details by looking at the individual functions.

The key to that recomposition for services is communication. Since they are
separate, services need an external mechanism to talk to each other. Most
often, that is an HTTP request from one service to another, but it can also be
a message queue like RabbitMQ or a streaming log like Kafka.

This separation—and need for communication—is exactly the source of all the
benefits as well as all the problems associated with breaking an application up
into services. Let’s take a closer look at both sides of the micro-services coin.

The Advantages
The forces that push developers to reach for services are direct and easy to
enumerate: the need for focus, encapsulation, and scale.

Unix taught us the virtue of doing one thing and doing it well. Code that is
smaller and more focused is easier to write and maintain. Unix also taught
us that we can compose smaller commands together to build more complex
behavior. These same ideas scale up to services.

Well-designed services hide all their data and implementation details behind a
public interface. This allows us to change the implementation behind the scenes
as much as we need to as long as we preserve the contract of the interface.

Different parts of a monolithic application often have very different resource
needs. By breaking applications up into services, we can address those needs
individually, on a service-by-service basis.

The Pain Points
The benefits services provide come at a cost, and that cost can be high.
Development, testing, and deployment all become more complex. Handling
failure when a service crashes or loses communication over the network takes
extra thought, preparation, and work.

Development and testing pose similar problems. When services depend on
one another for the full application to work, either we need to start all the

Chapter 4. Wrap It Up in a GenServer • 66

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

services up for the system to work, or we need to provide mock services in
their stead.

If we choose to use live services, we need to make sure we keep the versions
up to date. If we choose mock services, we need to make sure they haven’t
drifted and that they still accurately represent the real service.

Deployment is vulnerable to the versioning problem as well. Managing version
changes across multiple services requires careful planning. Handling breaking
changes to one service means that we’ll need to update others that depend
on it. That often leads to multiple deployments at once to keep the whole
system consistent.

We also need a new strategy for cross-service fault tolerance—how we keep
other services up and running well when one of the services is down or
unavailable. One way of doing this is with a circuit breaker pattern.

Circuit breakers monitor external calls for failure or timeouts. They keep the
whole system from failing by providing predetermined responses instead of
crashing. They may also implement retry strategies to determine when a failed
service comes back.

One of the biggest pain points of all is determining where to break a monolith
apart. As an industry, we don’t yet have a well-defined language of patterns
we can rely on to make these decisions the way we do for object-oriented (OO)
design and refactoring.

When we do OO design or refactoring, we have language-level structures
appropriate for the job—classes, methods, modules, and functions. But when
we’re breaking a monolith into services, most languages don’t have constructs
at the scale needed to hold a service.

Other languages and ecosystems offer solutions to these problems, but the
solutions often add complexity and friction to our workflow. In the Erlang
and Elixir ecosystems, OTP provides solutions without the extra overhead.

Let’s take a look at what OTP has to offer.

OTP Solutions
OTP is Erlang’s extended standard library. It includes a number of software
tools and a set of design patterns. Together, these are a treasure trove of
collected wisdom and best practices for building concurrent and fault-tolerant
programs in Elixir and Erlang.

report erratum • discuss

OTP Solutions • 67

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

OTP stands for Open Telecom Platform. The name reflects Erlang’s origin in
the telecom industry at Ericsson. In practice, OTP is much more general than
the name suggests. We can build any type of application with OTP.

OTP’s toolset is extensive. It includes an in-memory key-value store (ETS), a
relational database (Mnesia), monitoring and debugging tools (Observer,
Debugger), a release management tool (Reltool), a static analysis tool (Dialyz-
er)—and that list just begins to scratch the surface. We won’t cover these
here, but it’s good to know that they are there if you need them.

One of the most common and powerful tools OTP provides are the design
patterns called Behaviours. Two Behaviours in particular give us much of
what we want from micro-services without the problems—GenServer and
Application.

We’ll take a look at those in just a minute, but first let’s see what Behaviours
are all about.

Behaviours
For the next few chapters, we’re going to see a lot of OTP Behaviours. Coming
up with a concise explanation of what OTP Behaviours are is difficult. In
concrete terms, they are modules in OTP as well as modules that we define
in our Elixir applications. But they are also design patterns that reflect best
practices. The rest of this section should clear things up.

Behaviours grew out of the experience of early Erlang developers at Ericsson.
Concurrency is hard. Fault tolerance is hard. The Erlang team put a lot of
work into getting them right. Behaviours standardize their best practices and
make them easy to use in our own applications.

OTP defines Behaviours for different types of specialized processes that we
can use to build our own applications. We’ve already mentioned GenServer and
Application, but there are others. There’s one for finite state machines, one
for creating and handling system events, and one for creating supervisors for
fault tolerance. We can also define our own custom Behaviours to work in
our own domains if we need to.

Each Behaviour is a module in OTP that contains the common code necessary
for a process of that type. A GenServer, for instance, needs to be able to start
new server processes, hold state, handle synchronous calls with a return
value, as well as handle asynchronous casts without a return. The Behaviour
module defines all that wiring and plumbing.

Chapter 4. Wrap It Up in a GenServer • 68

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

For real applications, the wiring and plumbing are not enough. We need to
be able to customize a GenServer to handle the very specific requests our
applications require.

Fortunately, there’s an easy way to do this. We start by defining a normal
module in our application. Then we inject the Behaviour module code into our
new module. A Behaviour stores a list of callbacks—specific to it—that modules
like ours need to implement in order to be an instance of that Behaviour. By
writing those callbacks with code specific to our application, we customize
our implementation of the Behaviour to work exactly the way we need it to.

That’s the process we’ll follow to build a GenServer for Islands.

GenServer
GenServer is an Elixir Behaviour that wraps its Erlang counterpart, :gen_server.
GenServer automatically creates default implementations of the :gen_server call-
backs so that we only write code specific to our GenServer. We’ll use the Elixir
GenServer as we build our game server, which will spare us from writing a lot
of boilerplate.

GenServer processes provide most of what we want from services, and they
address the problems that services create as well. They are separate Elixir
processes that listen for and respond to messages from other processes. They
can hold state as well as take action in the system.

Because they are separate processes that share nothing with other processes,
we get the isolation and encapsulation that we’re looking for. We can spawn
new processes to address scaling needs, and do it at a very granular level.

Elixir applications that use GenServer processes are just normal Elixir applica-
tions. There’s no extra work necessary to set up a development environment.
We won’t need any external means to allow a GenServer process to communicate
with the rest of the application.

Testing works exactly the same as with any other Elixir app. There’s no need
to mock another service because the application remains a single whole.

Deployments are the same as well. Whatever deployment strategy you currently
use will just work. Since the GenServer is integrated with the rest of the appli-
cation, there’s no way to create a version mismatch.

We don’t need extra planning or work to ensure fault tolerance. GenServer
processes can be supervised, so we naturally get a level of fault tolerance
that’s very difficult to match in any other system.

report erratum • discuss

OTP Solutions • 69

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Application
Elixir Application Behaviours take on the “where to divide a monolith into
services” question. They are that intermediary organizing construct that most
languages lack.

Like GenServer, Application is an Elixir Behaviour that wraps its OTP counter-
part, :application. Application provides default implementations for :application
callbacks.

The first thing we need to clear up is the name. An Application is not what we
usually think of as a complete software application. It’s closer to what we would
call a library or a package in other ecosystems. They are a little different, though.
Applications are supervised units of code that start and stop as a single entity.

We can use them as libraries or packages if we want, but they can also be
integral, named, delineated parts of an application. They naturally define
facets we can break an application apart by if our needs demand it.

Back when we generated our islands_engine project in Chapter 2, Model Data
and Behavior, on page 9, we noted that Elixir had generated it as an Appli-
cation for us. That’s good news because we’ve been working with an Applica-
tion all along without any extra effort on our part.

We’ll see how using an Application makes separating game logic from the web
interface easy in Chapter 6, Generate a New Web Interface with Phoenix, on
page 131. We’ll also see that Applications have a role to play in process
supervision in Chapter 5, Process Supervision for Recovery, on page 97.

Now it’s time to write some code.

Getting Started with GenServer
GenServers are everywhere in Elixir code. Becoming proficient with GenServer is
one of the best things you can do to level up as an Elixir developer. It will
require some work on your part. You’ll need to learn how client functions,
module functions, and callbacks work and interact.

But honestly, implementing a GenServer is pretty straightforward. We’ll get lots
of practice in this chapter, so you’ll come out of it knowing your way around.

Let’s begin with a new file in the lib directory called lib/islands_engine/game.ex. This
will define a new module that will become our GenServer.

defmodule IslandsEngine.Game do
use GenServer

end

Chapter 4. Wrap It Up in a GenServer • 70

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

By adding the use GenServer line, we already have the beginnings of a functioning
GenServer.

The GenServer module defines the start_link/3 and start/3 functions for spawning
new processes. They take the name of the module to spawn, an initial state,
and an optional list of options.

Let’s try it out in the console, specifying our new Game module to spawn as
well as an empty map for the state.

start_link/3 will return a tagged tuple—{:ok, <PID>} on success and {:error, <reason>}
on failure. We can pattern match on the return and bind a variable to the
PID on success.

$ iex -S mix
. . .
iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> {:ok, pid} = GenServer.start_link(Game, %{})
{:ok, #PID<0.104.0>}

Great! We’re already able to start the server, and we’ve hardly written any code.

The GenServer Pattern
There’s a simple pattern at the heart of every bit of functionality we build in
a GenServer. It has three moving parts—a client function, a function from the
GenServer module, and a callback. The client function is the public interface,
the part that other processes will call. Within the client function we’ll call a
GenServer module function that does some internal work before it triggers a
callback. The callback is where we do the real work and return a response.

GameOther
Process

Gen
Server

That’s the pattern: a client function wraps a GenServer module function, which
triggers a callback. We’ll see it again and again, both in GenServers and more
generally in other OTP Behaviours.

Client functions hold no surprises. They’re just everyday Elixir functions. We
can name them whatever we want, and they can take any number of arguments.

report erratum • discuss

Getting Started with GenServer • 71

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

GenServer defines its own module functions, so we need to abide by their names
and arities. GenServer is specific about callback names and arities as well. We
can’t invent our own.

There’s a direct mapping between GenServer module functions and callbacks.
Calling GenServer.start_link/3 will always trigger GenServer.init/1. GenServer.call/3 calls
GenServer.handle_call/3, and GenServer.cast/2 maps to GenServer.handle_cast/2.

These three pairs of module functions and callbacks are the ones we’ll need
to build the GenServer for our game.

:gen_server Callbacks

The Erlang online documentation has a full list of :gen_server module
functions and callbacks.1 In a slightly confusing twist, the docs
prepend the callback names with “Module:”. These module func-
tions and callbacks handle everything from initializing a process
to cleaning up when a process terminates.

Don’t worry if this seems abstract at the moment. We’ll work through a
number of concrete examples in the next few sections.

Passing Messages
The simplest thing we can do with a GenServer is spawn a new server process
and send it a message. We’ve just seen how to spawn a new game server
process and bind the resulting PID to a variable. Once we have that PID, we
can use Kernel.send/2 to send it a message. Once we have message passing
down, we can customize behavior based on that message.

Let’s see how this all works.

In a new IEx session, let’s start a new game process and send it the message
:first:

iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> {:ok, game} = GenServer.start_link(Game, %{}, [])
{:ok, #PID<0.128.0>}

iex> send(game, :first)
:first
20:49:47.773 [warn] IslandsEngine.Game #PID<0.128.0>

received unexpected in handle_info/2: :first

That worked, after a fashion. At least it didn’t crash the IEx process.

1. http://erlang.org/doc/man/gen_server.html#Module:code_change-3

Chapter 4. Wrap It Up in a GenServer • 72

report erratum • discuss

http://erlang.org/doc/man/gen_server.html#Module:code_change-3
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The use GenServer line we added to IslandsEngine.Game triggers a macro that com-
piles default implementations for all of the GenServer callbacks into our Game
module. That’s why we can actually start the ultra-minimal GenServer we cur-
rently have. We’ll implement new clauses of these callbacks that override the
defaults to fit our needs as we customize the game server.

The warning we got is the compiler’s way of telling us we need to implement
a clause of the handle_info/2 callback to override the default and match the
message we sent.

Let’s go ahead and define a handle_info/2 clause in our game server that
matches the message :first:

def handle_info(:first, state) do
IO.puts "This message has been handled by handle_info/2, matching on :first."
{:noreply, state}

end

The GenServer module itself provides the second argument, state, when it triggers
the handle_info/2 callback. state represents the data structure that the individual
GenServer process holds. In this case, we defined it as an empty map when we
spawned the process.

The return tuple {:noreply, state} tells the GenServer Behaviour that we don’t need
to send a message back to the caller, and that the value bound to the state
variable should become the new state of the GenServer process. In this case,
we haven’t transformed the state, so it will still be an empty map.

Now we can recompile Game and try again:

iex> {:ok, game} = GenServer.start_link(Game, %{}, [])
{:ok, #PID<0.128.0>}

iex> send(game, :first)
This message has been handled by handle_info/2, matching on :first.
:first

That’s definitely an improvement over our first try.

Now that we have the idea of sending messages to a GenServer process, let’s
add a little complexity.

Introducing Calls
More often than not, we’re going to want a meaningful response when we
send a GenServer process a message. We might query the process’s state, or
we might want to see the result of a command we’ve sent it. This is where
calls come in.

report erratum • discuss

Getting Started with GenServer • 73

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

GenServer calls are synchronous. They can return any arbitrary value to the
caller, and if the caller is waiting for a return, it will block until it gets one.
The GenServer callback that handles calls is handle_call/3. It’s similar to handle_info/2
in that it pattern matches for a message as its first argument.

It’s different from handle_info/2 in that it doesn’t accept messages sent directly
from other processes. Instead, it’s triggered whenever we call GenServer.call/2.

Let’s try this out. In lib/islands_engine/game.ex add a clause of handle_call/3 that looks
like this one. Our aim is to simply have it return the initial server state.

def handle_call(:demo_call, _from, state) do
{:reply, state, state}

end

The key here is the first argument, :demo_call. This is the pattern that will
determine which clause of handle_call/3 to execute. We’ll see where it comes
from shortly.

Don’t worry about the other arguments. GenServer itself will provide them
internally.

The return value is different from the one we used in handle_info/2. It indicates
that we’ll be replying to the caller. The middle element is the actual reply,
and the third element is what we want the state of the GenServer process to be.

Now let’s go back to the IEx session we had going and recompile the Game
module. Then let’s start a new server with %{test: "test value"} as the initial state.
Make sure to pattern match on the return so we’ll bind the PID to the game
variable.

iex> {:ok, game} = GenServer.start_link(Game, %{test: "test value"})
{:ok, #PID<0.130.0>}

Now invoke GenServer.call/3 with the PID and the atom :demo_call that we specified
as the first argument to our clause of handle_call/3. We should get back the state
we set when we started the process.

iex> GenServer.call(game, :demo_call)
%{test: "test value"}

Success! We got the initial state back.

When we invoke GenServer.call/3, GenServer keeps track of the second argument
we passed, grabs the PID of the calling process, and gets the process’s state.
Then it invokes GenServer.handle_call/3 with those arguments, in order:

def handle_call(:demo_call, _from, state) do

Chapter 4. Wrap It Up in a GenServer • 74

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

_from is a tuple that contains the PID of the calling process, the IEx session
in our case. We could use it to send messages back to the caller, but we don’t
need to here, so we prepend it with an underscore.

Wait a Minute…

Our callback returned a tagged tuple, but we only saw the server
state in the console. That’s because the GenServer processed our
callback’s return value internally in order to formulate a final reply
to the caller. It stripped out the :reply tag and used the final state
element to set the new state in the GenServer.

In order to expose this functionality as part of the public interface, we need
to define a client function to wrap GenServer.call/3 in lib/islands_engine/game.ex. The
only argument it needs is the server PID.

def demo_call(game) do
GenServer.call(game, :demo_call)

end

This should behave exactly the same as using GenServer.call/3 directly. Let’s try
it out. We’ll need to recompile the Game module or else start a new session
and alias IslandsEngine.Game.

iex> {:ok, game} = GenServer.start_link(Game, %{test: "test value"})
{:ok, #PID<0.125.0>}

iex> Game.demo_call(game)
%{test: "test value"}

It returns the server state, which is just what we want.

Introducing Casts
Casts work a lot like calls, so this section will seem familiar. The difference
is that casts are asynchronous; they don’t return a specific reply, so the caller
won’t wait for one.

Casts can increase throughput if synchronous processing becomes a bottle-
neck. But we should prefer calls to casts because they provide a kind of back
pressure, limiting the amount of work a process will accept at any given time
and preventing it from getting overloaded.

It’s good to know how to use casts, though, so we’ll practice writing one here.
Let’s start by defining a handle_cast/2 callback.

We’ll have it take a tuple containing the atom :demo_cast as well as a new value
we want to set in the state. Then we’ll use the Map.put/3 to set a new value for
the state’s :test key.

report erratum • discuss

Getting Started with GenServer • 75

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Casts don’t reply to the calling process, so GenServer won’t pass in a reference
to it into handle_cast/2.

def handle_cast({:demo_cast, new_value}, state) do
{:noreply, Map.put(state, :test, new_value)}

end

We’ll return a tagged tuple as our handle_call/3 did. We won’t need to reply to
the caller, so it will only have two elements—:noreply and the new server state.

To set this up, let’s start up a new GenServer and call Game.call_demo/1 with the
PID to check the state we have:

iex> {:ok, game} = GenServer.start_link(Game, %{test: "test value"})
{:ok, #PID<0.130.0>}

iex> Game.demo_call(game)
%{test: "test value"}

We get the initial state back, which is what we expect.

Now let’s run the cast, followed by the call to return the state. If all goes well,
we should get the new state back:

iex> GenServer.cast(game, {:demo_cast, "another value"})
:ok

iex> Game.demo_call(game)
%{test: "another value"}

Indeed, the cast did work.

We can wrap the GenServer.cast/2 call in a client function, and it should behave
the same as the bare GenServer.cast/2 call.

def demo_cast(pid, new_value) do
GenServer.cast(pid, {:demo_cast, new_value})

end

Now that we have the basics down, we can delete the handle_info/2, handle_call/3,
and handle_cast/2 callbacks as well as the demo_call/1 and demo_cast/2 functions.
We won’t need them for the rest of our work here.

Initializing GenServer State
Until now, we’ve relied directly on GenServer’s built-in start_link/3 function for
starting new processes. This works, but we can do better.

When we run GenServer.start_link(Game, <initial state>), the idea that we’re starting
a new game process is buried in the arguments. It would be much clearer if
we could bring the Game module out front by writing Game.start_link(<initial state>).

Chapter 4. Wrap It Up in a GenServer • 76

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

To do this, we’ll follow the GenServer pattern—define a public function that
wraps a GenServer module function that triggers a callback.

Let’s start with a public start_link/1 function in the Game module and have it
wrap the GenServer.start_link/3 function. One player will start the game, and the
second will join later. Let’s have Game.start_link/1 take the first player’s name in
order to help build the state we’ll need.

While we’re at it, let’s add a guard to make sure the name is a string:

def start_link(name) when is_binary(name), do:
GenServer.start_link(__MODULE__, name, [])

We’ve used __MODULE__, a macro which returns the name of the current module,
instead of hard-coding the module name. That will avoid errors if we ever
change the module name.

GenServer uses the middle argument, in this case name, as the only argument
to the callback that GenServer.start_link/3 triggers, init/1.

The third argument is an optional list of options. We’ll take advantage of it
later on when we work on naming GenServer processes.

This public function has greater significance than its single line might suggest.
This is the beginning of the public interface for a game. It allows other pro-
cesses to programmatically start new game processes.

Currently, we’ve built two thirds of the GenServer pattern—the public function
and the GenServer module function. The remaining part is the init/1 callback.
Let’s define that next.

We’ll be working with some new modules in this function, so let’s alias them
up front:

alias IslandsEngine.{Board, Guesses, Rules}

The general form of init/1 is to pattern match on an argument, perform any
necessary initializations, and return a tagged tuple of the form {:ok, initial_state}.

GenServer provides the name argument, and our job is to use it to help build
the state we’ll need to play the game.

Islands requires two players for each game. Each player needs a name, a
board, and guesses representing their opponent’s board. The game itself needs
a rules struct so it can manage the game.

We can model the structure of that state with a couple of maps.

report erratum • discuss

Initializing GenServer State • 77

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

gen_server/lib/islands_engine/game.ex
def init(name) do

player1 = %{name: name, board: Board.new(), guesses: Guesses.new()}
player2 = %{name: nil, board: Board.new(), guesses: Guesses.new()}
{:ok, %{player1: player1, player2: player2, rules: %Rules{}}}

end

Notice we only set the name for the first player. One player starts the game.
We’ll show how we’ll add the second player in a bit. Let’s see it in action.

In a new console session, first alias IslandsEngine.Game.

iex> alias IslandsEngine.Game
IslandsEngine.Game

Then start a new game with the username “Frank,” binding the variable game
to the new game PID along the way:

iex> {:ok, game} = Game.start_link("Frank")
{:ok, #PID<0.99.0>}

The Erlang :sys module includes a function called get_state/1 that will return the
state of a :gen_server process. It’s not intended for use in production code, but
it’s perfect for debugging, testing, and general exploring like we’re doing here.

iex> state_data = :sys.get_state(game)
%{player1: %{board: %{},

guesses: %IslandsEngine.Guesses{hits: #MapSet<[]>, misses: #MapSet<[]>},
name: "Frank"},

player2: %{board: %{},
guesses: %IslandsEngine.Guesses{hits: #MapSet<[]>, misses: #MapSet<[]>},
name: nil},

rules: %IslandsEngine.Rules{player1: :islands_not_set,
player2: :islands_not_set, state: :initialized}}

This is what we’re looking for. We’ve got two player maps and a rules struct
set in the game’s state.

Now let’s make sure that we actually set the first player’s name when we
started the game:

iex> state_data.player1.name
"Frank"

Which it did; that’s exactly what we want.

Customizing GenServer Behavior
Spawning and initializing a new GenServer process is a great start, but the
default callback implementations we got with use GenServer don’t go very far.

Chapter 4. Wrap It Up in a GenServer • 78

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

In order to build real applications, we need to change the way a GenServer
behaves to fit each application’s needs.

To do this, we’re going to follow the pattern we’ve used so far—write a client
function that wraps a GenServer function that triggers a callback. The callback
is where we’ll define the new behavior.

Each time we add a new public function, we build a new piece of the interface
for the game. As we go along, we’ll expose more and more of the game’s
behavior. This interface acts as a boundary between the rest of the system
and a game. That makes it the exact right place to check any values passed
into the public functions.

In each of the callbacks, we’ll need to check some conditions before we can
determine whether the action went as planned. At a minimum, we’ll need to
check the rules for each action. Additionally, we might have to check that
coordinates and islands are valid or that a player has positioned all his islands.

We could do this with conditional logic, but that could easily turn into a
mess. Instead, we will rely on Elixir’s with/1 special form. with/1 was designed
to test multiple conditions in the same place, in a sane way, without nested
conditionals.

Each time we use with/1, we’ll employ the same three blocks. The with block
will contain all the conditions we’re testing. The do block is for the actions
we’ll take when all the conditions pass, and the else block is where we’ll handle
errors.

Besides starting a new game, there are four behaviors we need to define:
adding a second player, positioning islands, setting islands, and guessing
coordinates. We’ll handle them in that order.

Let’s get to it.

Add a New Player
Each game will need to add a second player in order to begin play. This really
amounts to assigning a value to the :name key for the second player.

We’ll begin with a public client function, add_player/2, which will take the PID
of the game process and the second player’s name. We’ll have add_player/2 wrap
GenServer.call/2 so that it will be synchronous. Then we’ll need a new clause of
handle_call/3 to define the new behavior.

gen_server/lib/islands_engine/game.ex
def add_player(game, name) when is_binary(name), do:

GenServer.call(game, {:add_player, name})

report erratum • discuss

Customizing GenServer Behavior • 79

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We’ve added a guard clause here to make sure the name is a string.

Next up is a handle_call/3 clause that pattern matches for the {:add_player, name}
tuple we passed into GenServer.call/3:

def handle_call({:add_player, name}, _from, state_data) do

There’s only one condition we need to check for in the with block: whether the
rules allow us to add another player:

with
{:ok, rules} <- Rules.check(state_data.rules, :add_player)

When the result of Rules.check/2 matches {:ok, rules}, we’ll have some work to do
in the do block. We’ll need to transform the game state by updating player2’s
name, updating the rules struct, and sending a reply back to the caller.

That sounds like it’s just made for a pipeline:

do
state_data
|> update_player2_name(name)
|> update_rules(rules)
|> reply_success(:ok)

That pipeline calls some functions we don’t currently have, but we’ll get to
those in a minute.

The only error we would expect to see from the with block is :error if the rules
didn’t allow the action. Let’s handle that in the else block:

else
:error -> {:reply, :error, state_data}

end

Now let’s fill in the missing functions from the pipeline. These will all be private
functions. The first one we’ll need will be one to update the player’s name in
the state data:

gen_server/lib/islands_engine/game.ex
defp update_player2_name(state_data, name), do:

put_in(state_data.player2.name, name)

Kernel.put_in/2 is a great choice here because it will transform values nested in
a map and return the whole, transformed map. The next thing we’ll need to
do is set the transformed rules struct back in the state data:

gen_server/lib/islands_engine/game.ex
defp update_rules(state_data, rules), do: %{state_data | rules: rules}

The map update syntax is fine for this.

Chapter 4. Wrap It Up in a GenServer • 80

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The last thing we need to do is send a reply tuple. We’ve got a nice pipeline
going here, so let’s keep it going with a function that takes the transformed
state data as well as a reply value and crafts a reply tuple from those.

gen_server/lib/islands_engine/game.ex
defp reply_success(state_data, reply), do: {:reply, reply, state_data}

When we put all three blocks together, the whole clause of handle_call/3 looks
like this:

gen_server/lib/islands_engine/game.ex
def handle_call({:add_player, name}, _from, state_data) do

with {:ok, rules} <- Rules.check(state_data.rules, :add_player)
do

state_data
|> update_player2_name(name)
|> update_rules(rules)
|> reply_success(:ok)

else
:error -> {:reply, :error, state_data}

end
end

Let’s see it in action. In a new console session, let’s alias IslandsEngine.Game and
start a new game server:

iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> {:ok, game} = Game.start_link("Frank")
{:ok, #PID<0.99.0>}

Now let’s try to add a second player:

iex> Game.add_player(game, "Dweezil")
:ok

That seemed to work, so let’s check the data:

iex> state_data = :sys.get_state(game)
. . .

iex> state_data.player2.name
"Dweezil"

Yay! It works.

Now that we can add a second player, it’s time to handle positioning islands.

Position Islands
When players move their islands around on the board, the UI will send mes-
sages back to the server. Those messages will include a key for the island

report erratum • discuss

Customizing GenServer Behavior • 81

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

type as well as the row and column numbers for the upper-left coordinate of
the island.

The Board module knows how to position an island with a key and a full island.
The Coordinate module can turn the row and column value into a coordinate,
and the Island module can turn the island key and the coordinate into a full
island. The Game module will coordinate between these, check to see that all
the values are valid, and formulate a response.

Since we’ll be working with boards, islands, and coordinates, let’s add those
modules to our list of aliases:

alias IslandsEngine.{Board, Coordinate, Guesses, Island, Rules}

We’ll start with a public function for the interface as we have before. It will
take the game process PID, the player, the island key, as well as the row and
column of the island’s upper-left coordinate. We’ll use GenServer.call/2 so that
we can send a response back to the caller.

We will want to make sure that the value we get for the player matches
either :player1 or :player2. Let’s add a module attribute with both those atoms
in a list:

@players [:player1, :player2]

Now we can add a guard for that in the function head:

gen_server/lib/islands_engine/game.ex
def position_island(game, player, key, row, col) when player in @players, do:

GenServer.call(game, {:position_island, player, key, row, col})

For the rest of the game, we’ll need to work with individual players’ boards,
so let’s define a convenience function for extracting them from the game
state:

gen_server/lib/islands_engine/game.ex
defp player_board(state_data, player), do: Map.get(state_data, player).board

With that, we’re ready to define the handle_call/3 callback for positioning islands.

For success, we need to check a number of conditions:

• that the rules permit players to position their islands
• that the row and col values generate a valid coordinate
• that the island key and the upper-left coordinate generate a valid island
• that positioning the island doesn’t generate an error

This is where with/1 really shows its power. In most languages we would need
a tangle of conditionals to check for the success of all of these. Those checks

Chapter 4. Wrap It Up in a GenServer • 82

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

might be physically separated from one another, so we would lose the overall
picture of what we’re checking for.

Using with/1, we put all the checks in one place. We see the whole story at a
glance, and we can do all the error handling in a single else block as well:

with {:ok, rules} <-
Rules.check(state_data.rules, {:position_islands, player}),

{:ok, coordinate} <-
Coordinate.new(row, col),

{:ok, island} <-
Island.new(key, coordinate),

%{} = board <-
Board.position_island(board, key, island)

These checks all rely on pattern matching, so order is important. The first
pattern that doesn’t match will halt the execution.

In our case, the rules check comes first. If the rules say that the action isn’t
allowed, there’s no reason to do any of the other checks.

Similarly, we need to make sure that the row and col values generate a valid
coordinate before we use that coordinate to generate an island. If the island
is invalid, there’s no point trying to position it.

If there are no errors to this point, Board.position_island/2 has already done the
work. All that’s left is to update the game state.

Rules.check/2 returns a transformed rules struct, and Board.position_island/2 returns
a transformed board map. We’ll need to reset both of those as well as send a
reply indicating success.

do
state_data
|> update_board(player, board)
|> update_rules(rules)
|> reply_success(:ok)

We’ve already defined functions to update the rules and to return a successful
reply. The one we need now is the one to update the board:

gen_server/lib/islands_engine/game.ex
defp update_board(state_data, player, board), do:

Map.update!(state_data, player, fn player -> %{player | board: board} end)

That’s the happy path, but we need to handle errors as well. We want to be
specific about the possible errors we can encounter. If we get anything that’s
not in the list of normal errors, that would be exceptional and we should let
the process throw an error and crash.

report erratum • discuss

Customizing GenServer Behavior • 83

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

else
:error ->

{:reply, :error, state_data}
{:error, :invalid_coordinate} ->

{:reply, {:error, :invalid_coordinate}, state_data}
{:error, :invalid_island_type} ->

{:reply, {:error, :invalid_island_type}, state_data}
end

Putting all the pieces together, we get the full clause of handle_call/3:

gen_server/lib/islands_engine/game.ex
def handle_call({:position_island, player, key, row, col}, _from, state_data)
do

board = player_board(state_data, player)
with {:ok, rules} <-

Rules.check(state_data.rules, {:position_islands, player}),
{:ok, coordinate} <-

Coordinate.new(row, col),
{:ok, island} <-

Island.new(key, coordinate),
%{} = board <-

Board.position_island(board, key, island)
do

state_data
|> update_board(player, board)
|> update_rules(rules)
|> reply_success(:ok)

else
:error -> {:reply, :error, state_data}
{:error, :invalid_coordinate} ->
{:reply, {:error, :invalid_coordinate}, state_data}

{:error, :invalid_island_type} ->
{:reply, {:error, :invalid_island_type}, state_data}

end
end

Let’s take it out for a spin to see how it behaves. We’ll take a look at the
happy path first.

We’ll need to alias all the modules we’ll use, start a new game process, and
add a second player so that the game will be in the :players_set state:

iex> alias IslandsEngine.{Game, Rules}
[IslandsEngine.Game, IslandsEngine.Rules]

iex> {:ok, game} = Game.start_link("Fred")
{:ok, #PID<0.115.0>}

iex> Game.add_player(game, "Wilma")
:ok

Chapter 4. Wrap It Up in a GenServer • 84

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> state_data = :sys.get_state(game)
. . .

iex> state_data.rules.state
:players_set

Then we should be able to have player1 position a square island beginning
at row 1 and column 1:

iex> Game.position_island(game, :player1, :square, 1, 1)
:ok

iex> state_data = :sys.get_state(game)
. . .

iex> state_data.player1.board
%{square:

%IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2}

]>,
hit_coordinates: #MapSet<[]>

}
}

Fantastic. That’s just what we want.

If we try to position an island with an invalid row or column, we should get
an :invalid_coordinate error:

iex> Game.position_island(game, :player1, :dot, 12, 1)
{:error, :invalid_coordinate}

Great—that’s what we do get.

If we pass in an invalid island key, we should get an :invalid_island_type error:

iex> Game.position_island(game, :player1, :wrong, 1, 1)
{:error, :invalid_island_type}

Perfect. Now let’s try positioning an island with a valid row and column that
will generate a coordinate that’s off the board. That should also return an
:invalid_coordinate error:

iex> Game.position_island(game, :player1, :l_shape, 10, 10)
{:error, :invalid_coordinate}

Nice.

report erratum • discuss

Customizing GenServer Behavior • 85

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

There’s one more type of error we might regularly run into: when the rules
don’t allow the action. To try this, we can use Erlang’s :sys.replace_state/2 func-
tion. It takes the PID of the process to replace the state for, and an anonymous
function that returns the new state to use.

Let’s set our game process to :player1_turn, where neither player should be able
to position islands anymore:

iex> state_data = :sys.replace_state(game, fn state_data ->
...> %{state_data | rules: %Rules{state: :player1_turn}}
...> end)
. . .

iex> state_data.rules.state
:player1_turn

That looks correct. With the new state set, we should get a plain :error back:

iex> Game.position_island(game, :player1, :dot, 5, 5)
:error

That’s perfect. The happy path works, and we get the errors we expect when
we expect them.

Let’s move on to setting islands next.

Set Islands
Once the players are done positioning their islands, they mark them as set.
After that, they can no longer move them around the board.

The game itself doesn’t track this. Only the Rules module knows whether
players have set their islands. But the Board module has a role to play in the
decision. It knows whether or not players have positioned all their islands.

The Rules module cares that the state is in :players_set, and it cares that players
have not already set their islands.

The decision as to whether players should be able to set their islands depends
partly on the Rules and partly on the Board—whether or not players have posi-
tioned all their islands.

We’ll test these two conditions in our with/1 clause. Let’s begin with public
interface function set_islands/2. Since this action is per player, we’ll need it to
take the player as an argument in addition to the game PID:

gen_server/lib/islands_engine/game.ex
def set_islands(game, player) when player in @players, do:

GenServer.call(game, {:set_islands, player})

Chapter 4. Wrap It Up in a GenServer • 86

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

There are two conditions we need to check for here. The first is that the rules
allow the player to set his islands. The second is that the player has already
positioned all of his islands on the board.

with {:ok, rules} <- Rules.check(state_data.rules, {:set_islands, player}),
true <- Board.all_islands_positioned?(board)

We don’t transform any information in the board during this operation, but
we do in the rules struct. When both of these conditions are met, all we need
to do is update the rules in the state data and send a successful response.

That successful response will include the board with all its islands. This will
only go to the player who set her islands, and it will make it easy for the front-
end code to represent the full board.

do
state_data
|> update_rules(rules)
|> reply_success({:ok, board})

There are two errors that we would expect to encounter: one with the rules,
:error, and another if not all of a player’s islands are set, false.

else
:error -> {:reply, :error, state_data}
false -> {:reply, {:error, :not_all_islands_positioned}, state_data}

end

When we assemble all the pieces, this is what we get:

gen_server/lib/islands_engine/game.ex
def handle_call({:set_islands, player}, _from, state_data) do

board = player_board(state_data, player)
with {:ok, rules} <- Rules.check(state_data.rules, {:set_islands, player}),

true <- Board.all_islands_positioned?(board)
do

state_data
|> update_rules(rules)
|> reply_success({:ok, board})

else
:error -> {:reply, :error, state_data}
false -> {:reply, {:error, :not_all_islands_positioned}, state_data}

end
end

Let’s try this out in the console.

We’ll need to alias the Game and Rules modules and then start a new game
server process:

report erratum • discuss

Customizing GenServer Behavior • 87

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> {:ok, game} = Game.start_link("Dino")
{:ok, #PID<0.115.0>}

Then we’ll need to add a second player in order to transition the state to
:players_set:

iex> Game.add_player(game, "Pebbles")
:ok

At this point, if we try to set player1’s islands, we should get an error because
even though the game is in the correct state, player1 hasn’t positioned all her
islands yet:

iex> Game.set_islands(game, :player1)
{:error, :not_all_islands_positioned}

That’s the exact error we do get. Let’s fix that by positioning each of the islands
so that they don’t overlap:

iex> Game.position_island(game, :player1, :atoll, 1, 1)
:ok

iex> Game.position_island(game, :player1, :dot, 1, 4)
:ok

iex> Game.position_island(game, :player1, :l_shape, 1, 5)
:ok

iex> Game.position_island(game, :player1, :s_shape, 5, 1)
:ok

iex> Game.position_island(game, :player1, :square, 5, 5)
:ok

Now when we try to set player1’s islands, we should be successful:

iex> Game.set_islands(game, :player1)
{:ok,
%{atoll: %IslandsEngine.Island{

coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 3},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 3}

]>,
hit_coordinates: #MapSet<[]>

},
. . .
}}

Chapter 4. Wrap It Up in a GenServer • 88

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We are. That’s great!

Let’s check the game’s state data to make sure we’re still in the :players_set
state and that the rules struct knows that player1 has set her islands:

iex> state_data = :sys.get_state(game)
. . .

iex> state_data.rules.player1
:islands_set

iex> state_data.rules.state
:players_set

That all works as it should. The next thing we need to tackle is guessing a
coordinate.

Guess a Coordinate
Guessing coordinates is the most important action in the game of Islands. In
order to process a guess, we’ll need to know which player is doing the
guessing as well as the row and column values that the player is guessing.

We’ll start with a client function, guess_coordinate/4, that takes those values.
That will wrap a GenServer.call/2 with a tuple representing the four arguments
and the action:

gen_server/lib/islands_engine/game.ex
def guess_coordinate(game, player, row, col) when player in @players, do:

GenServer.call(game, {:guess_coordinate, player, row, col})

One of the tricky things to remember about guessing is that players guess
against their opponent’s board. Let’s write a convenience function for getting
the key of a player’s opponent. From there, we can get the opponent’s board
with player_board/1.

gen_server/lib/islands_engine/game.ex
defp opponent(:player1), do: :player2
defp opponent(:player2), do: :player1

We’ll need to check a number of conditions—whether:

• the rules allow the given player to guess

• the row and column values make a valid coordinate

• the guess was a hit or a miss, whether it forested an island, and whether
it won the game

• the state should transition to :game_over

report erratum • discuss

Customizing GenServer Behavior • 89

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Those checks define our with block:

with {:ok, rules} <-
Rules.check(state_data.rules, {:guess_coordinate, player_key}),

{:ok, coordinate} <-
Coordinate.new(row, col),

{hit_or_miss, forested_island, win_status, opponent_board} <-
Board.guess(opponent_board, coordinate),

{:ok, rules} <-
Rules.check(rules, {:win_check, win_status})

In the cases where all of those checks pass, we’ll need to update the state
data and the rules struct. We’ll have to add the current guess to the guessing
player’s guesses.

We’ll also go ahead and update the opponent’s board because a hit would
transform an island by adding a coordinate to the :hit_coordinates set.

We are making a trade-off here by adding an extra operation for some cases
in order to eliminate the complexity of checking whether the guess was a hit.
That informs what we need to put in the pipeline of the do block:

do
state_data
|> update_board(opponent_key, opponent_board)
|> update_guesses(player_key, hit_or_miss, coordinate)
|> update_rules(rules)
|> reply_success({hit_or_miss, forested_island, win_status})

There’s one new function in this pipeline: update_guesses/4. The Guesses module
provides the add/3 function; the problem is that each player’s guesses struct
is two layers deep in the state data. We could extract that struct manually,
transform it, and put it back, but there’s an easier way. Elixir’s Kernel.update_in/2
allows us to easily update nested data:

gen_server/lib/islands_engine/game.ex
defp update_guesses(state_data, player_key, hit_or_miss, coordinate) do

update_in(state_data[player_key].guesses, fn guesses ->
Guesses.add(guesses, hit_or_miss, coordinate)

end)
end

The first argument to update_in/2 is the path to the data. The second is an
anonymous function to do the transformation.

There are only two error conditions we should see from all this: when the
rules say an action isn’t allowed, and when the row and column values gen-
erate an invalid coordinate. We’ll cover those in the else block. Any other error
will raise, as it should.

Chapter 4. Wrap It Up in a GenServer • 90

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

else
:error ->

{:reply, :error, state_data}
{:error, :invalid_coordinate} ->

{:reply, {:error, :invalid_coordinate}, state_data}
end

Now let’s put all those pieces together into a single clause of handle_call/3:

gen_server/lib/islands_engine/game.ex
def handle_call({:guess_coordinate, player_key, row, col}, _from, state_data)
do

opponent_key = opponent(player_key)
opponent_board = player_board(state_data, opponent_key)

with {:ok, rules} <-
Rules.check(state_data.rules, {:guess_coordinate, player_key}),

{:ok, coordinate} <-
Coordinate.new(row, col),

{hit_or_miss, forested_island, win_status, opponent_board} <-
Board.guess(opponent_board, coordinate),

{:ok, rules} <-
Rules.check(rules, {:win_check, win_status})

do
state_data
|> update_board(opponent_key, opponent_board)
|> update_guesses(player_key, hit_or_miss, coordinate)
|> update_rules(rules)
|> reply_success({hit_or_miss, forested_island, win_status})

else
:error ->
{:reply, :error, state_data}

{:error, :invalid_coordinate} ->
{:reply, {:error, :invalid_coordinate}, state_data}

end
end

Let’s try this out in the console:

iex> alias IslandsEngine.{Game, Rules}
[IslandsEngine.Game, IslandsEngine.Rules]

iex> {:ok, game} = Game.start_link("Miles")
{:ok, #PID<0.129.0>}

If we try guessing a coordinate right away, Rules.check/2 should return :error
because the game is still in the :initialized state:

iex> Game.guess_coordinate(game, :player1, 1, 1)
:error

That’s exactly the error we get.

report erratum • discuss

Customizing GenServer Behavior • 91

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now let’s add a second player and position an island for both players:

iex> Game.add_player(game, "Trane")
:ok

iex> Game.position_island(game, :player1, :dot, 1, 1)
:ok

iex> Game.position_island(game, :player2, :square, 1, 1)
:ok

To save some time, let’s cut a corner and manually set the state to :player1_turn:

iex> state_data = :sys.get_state(game)
. . .

iex> state_data = :sys.replace_state(game, fn data ->
...> %{state_data | rules: %Rules{state: :player1_turn}}
...> end)
. . .

iex> state_data.rules.state
:player1_turn

Let’s have :player1 guess a wrong coordinate. The response we get should be
{:miss, :none, :no_win}:

iex> Game.guess_coordinate(game, :player1, 5, 5)
{:miss, :none, :no_win}

That’s perfect.

If :player1 tries to guess again, the rules should catch that and return :error:

iex> Game.guess_coordinate(game, :player1, 3, 1)
:error

Excellent! That was just what we expected.

If :player2 guesses the single coordinate in :dot island, he should win the game:

iex> Game.guess_coordinate(game, :player2, 1, 1)
{:hit, :dot, :win}

That’s exactly what happens.

With that, we’ve defined the interface and all the behavior we’ll need from the
Game module. The last thing we’ll need is to be able to address each game
process by name in the system.

Naming GenServer Processes
This whole chapter we’ve been starting new GenServer processes and binding
their PIDs to variables. Whenever we’ve needed to call a public function on a

Chapter 4. Wrap It Up in a GenServer • 92

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

process, we’ve passed that variable in as the first argument. That clearly
works, but it leaves us with a problem.

In a full application, we’d need to keep track of every variable for every process
we started. We’d need to always keep them in scope, and we’d need to clear
individual variables out when their process stopped. If that sounds really
messy, it is.

It would be great if we could just name each process as we start it, and pass
that name in whenever we wanted to call a function. It would be even better
if we didn’t have to remember the name, but were able to reconstruct it on
the fly when we needed to. If wishes came true, these names would clear
themselves out when their process stopped.

Wishes can come true. Process registration will do all of this for us.

There are several ways to register GenServer processes by name. Let’s explore
them and see which best fits our needs.

The first thing we can do is simply specify a name as an atom as the third
argument to GenServer.start_link/3. Let’s open up a new console to test that out:

iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> GenServer.start_link(Game, "Frank", name: :islands_game)
{:ok, #PID<0.90.0>}

We are fine using the raw GenServer.start_link/3 function here. We need to
specify the module name instead of using __MODULE__ because this function
call is not originating inside the Game module the way it is in IslandsEn-
gine.Game.start_link/1.

The part to watch is the keyword list we specified as the third argument,
name: :islands_game. This clearly works. We get {:ok, #PID<0.90.0>} as the return
value.

Now we can use the atom :islands_game instead of a PID whenever we call client
functions in the Game module:

iex> :sys.get_state(:islands_game)
%{player1: %{board: %{},

guesses: %IslandsEngine.Guesses{hits: #MapSet<[]>, misses: #MapSet<[]>},
name: "Frank"},

player2: %{board: %{},
guesses: %IslandsEngine.Guesses{hits: #MapSet<[]>, misses: #MapSet<[]>},
name: nil},

rules: %IslandsEngine.Rules{player1: :islands_not_set,
player2: :islands_not_set, state: :initialized}}

report erratum • discuss

Naming GenServer Processes • 93

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The atom has a direct one-to-one mapping to the PID of a single game process.
If we try to start another one with the same atom for the name, we get an
error saying that the server is already running:

iex> GenServer.start_link(Game, "Frank", name: :islands_game)
{:error, {:already_started, #PID<0.90.0>}}

Using Process Registration to Our Advantage

This property of naming GenServers can be useful. If we ever need to
enforce that there be only a single instance of a given GenServer, we
can name it with a hard-coded atom. The Erlang virtual machine
will not allow more than one GenServer of that type to start up.

This type of process registration is called a local name. It is visible only on the
same node on which the process is spawned, and the name must be an atom.

This leads to a problem for our use case. In Islands, we’ll be spinning up a
new game process for each pair of players. Elixir doesn’t garbage-collect atoms,
so the list of atoms will grow as we spawn more games. The BEAM enforces
a hard limit of about a million atoms. If we reach that limit, the whole node
will crash, no exceptions. Those are the kinds of things that trigger system
alerts in the middle of the night.

We might also register a process name as a string with Erlang’s global name
service. This requires hardly any change at all. We just specify the value of
the name as a tagged tuple.

The one bit of data we have whenever we start a new game is the first player’s
name. That’s a value we’ll have around as long as the game exists, and it’s
perfect to construct a name with.

iex> GenServer.start_link(Game, "Frank", name: {:global, "game:Frank"})
{:ok, #PID<0.137.0>}

The global registry won’t let us register the same string for a new process. If
we try, we get the same error as when we tried to register the same local name
twice.

The global name registry works across all connected nodes in the system. If
we add more nodes, they will automatically know about—and be able to
use—the globally registered processes. It will also take care of remapping
PIDs when supervisors restart their processes as well as removing entries for
terminated processes.

This functionality comes at a cost, though. There is overhead associated with
keeping track of processes across nodes. Global registration can be the right

Chapter 4. Wrap It Up in a GenServer • 94

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

choice when our application runs on multiple nodes, but there are other
choices when we’re working in a single-node environment.

The :via Option

If we want, we can define our own module to register process
names in any way that fits our purpose. Any module that defines
register_name/2, unregister_name/1, whereis_name/1, and send/2 will do. With
a module like that in place, we can register our process name with
{:via, module_name, term_for_name}. :global is the name of one such
module that happens to be built into Erlang.

As of Elixir 1.4, there is another path to process registration: the Registry
module. In order to use it, we need to have a via tuple. That’s a three-element
tuple tagged with :via. The middle element is the module that will register
processes, Registry, and the third element is the key to register the processes
under. We’ll use the tuple {Registry.Game, name}.

Typing this via tuple out whenever we’ll need it would get old pretty fast, so
let’s write a function to do it for us:

gen_server/lib/islands_engine/game.ex
def via_tuple(name), do: {:via, Registry, {Registry.Game, name}}

We can use that function to name each process in Game.start_link/1:

gen_server/lib/islands_engine/game.ex
def start_link(name) when is_binary(name), do:

GenServer.start_link(__MODULE__, name, name: via_tuple(name))

There’s one last step to make this work. We’ll need to start a Registry process
when we start the IslandsEngine application.

Open up lib/islands_engine/application.ex and look for the start/2 function. Inside
start/2, you’ll see an empty list bound to the children variable. Go ahead and add
{Registry, keys: :unique, name: Registry.Game)} to that list:

children = [
{Registry, keys: :unique, name: Registry.Game}

]

We’ll talk about supervisors in the next chapter. For now, know that this line
will start the Registry, and specify that keys should be unique for the Registry.Game
module. We don’t need to further define the Registry.Game module. This will
simply work. The reason it’ll work is that in Elixir, module names are just atoms.

iex> :"Elixir.Registry.Game" == Registry.Game
true

report erratum • discuss

Naming GenServer Processes • 95

http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://media.pragprog.com/titles/lhelph/code/gen_server/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

That makes the third element of our via tuple equal to {:"Elixir.Registry.Game",
name}. That’s just a tagged tuple used as a key that maps to the game PID.

Let’s see how this works in the console:

iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> via = Game.via_tuple("Lena")
{:via, Registry, {Registry.Game, "Lena"}}

iex> GenServer.start_link(Game, "Lena", name: via)
{:ok, #PID<0.119.0>}

iex> :sys.get_state(via)
%{player1: %{board: %{},

guesses: %IslandsEngine.Guesses{hits: #MapSet<[]>, misses: #MapSet<[]>},
name: "Lena"},

player2: %{board: %{},
guesses: %IslandsEngine.Guesses{hits: #MapSet<[]>, misses: #MapSet<[]>},
name: nil},

rules: %IslandsEngine.Rules{player1: :islands_not_set,
player2: :islands_not_set, state: :initialized}}

iex> GenServer.start_link(Game, "Lena", name: via)
{:error, {:already_started, #PID<0.119.0>}}

That’s fantastic—just what we need.

With that, our GenServer is complete. Starting with a new module, we’ve seen
how to start new GenServer processes, initialize state, customize behavior, and
name individual processes.

Wrapping Up
You’ve come a long way in this chapter.

You’ve learned about OTP Behaviours. That knowledge will stand you in good
stead for the next few chapters. More importantly, it’ll come in handy when-
ever we’re building applications in Elixir.

We showed you how to build a custom GenServer. We drilled the pattern of
client function wrapping a GenServer function, which triggers a callback, into
your head. And you saw how to register names to individual GenServer processes
so that they are addressable from anywhere.

The game itself has come a long way. We’ve built an interface that allows any
external process to play the game. At this point, the game is nearly complete.
The question we have to answer next is, what happens when things go wrong?

Chapter 4. Wrap It Up in a GenServer • 96

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

CHAPTER 5

What we’ll do in this chapter

• look at linking process and trapping exits
• examine the strategies for process supervision
• build a custom supervisor
• restore game state after a crash

Process Supervision for Recovery
We all work with computers. We know it’s inevitable that things will go wrong,
sometimes really wrong. In spite of our best laid plans, state goes bad, systems
raise exceptions, and servers crash. These failures often seem to come out of
nowhere, unpredictably and without warning.

To combat these inevitable problems, we need to boost fault tolerance. We
need to isolate failures as much as possible, handle them, and have the system
as a whole carry on.

Elixir and OTP provide a world-class mechanism for handling problems and
moving on: process supervision. Process supervision means we can have spe-
cialized processes that watch other processes, and restart them when they crash.

The mechanism we use to define and spawn these specialized processes is
the supervisor.

We’re going to build our own supervisor for the Game module. We’ll make sure
it starts a new process when we start the game engine. We’ll use that super-
visor process to start and supervise each game process.

Along the way, we’ll look at some ideas about fault tolerance, examine different
ways we can spawn processes in Elixir, and take a really good look at the
supervisor Behaviour.

The first step in this path is understanding the ways different languages
provide fault tolerance.

Fault Tolerance
Erlang and Elixir have reputations for tremendous fault tolerance. This is
well deserved, but not because they prevent errors. Instead they give us the
tools to recover gracefully from any errors that crop up at runtime.

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Almost all languages, including Elixir, have built-in mechanisms to handle
exceptions. These require that we identify risky code in advance, wrap it in
a block that tries to execute it, and provide a block to rescue the situation if
the code fails. In most languages, this kind of exception handling is essential,
but in Elixir we hardly ever have to reach for it.

The OTP team at Ericsson took an interesting tack around this pattern. For
them, extreme fault tolerance wasn’t a “nice to have.” It was a critical
requirement of the language. Telephone utilities have very stringent uptime
requirements. The phones need to work no matter what, even in the event of
a natural disaster.

The team reasoned that it’s nearly impossible to predict all possible failures
in advance, so they decided to focus on recovering from failure instead. They
wanted to code for the happy path and have a separate mechanism get things
back on track when the inevitable errors happen.

The design they came up with is the supervisor Behaviour. It extracts error
handling code from business logic into its own modules. Supervisor modules
spawn supervisor processes that link to other processes and watch for failure,
restarting those linked processes if they crash.

This separation of concerns makes our code clearer and easier to maintain.
It keeps our business logic free of diversions for handling exceptions. We end
up writing more confident code that assumes success, but supervisors always
have our back when things go wrong.

The supervisor Behaviour is based on ideas that build on and reinforce each
other:

1) Most runtime errors are transient and happen because of bad state.

2) The best way to fix bad state is to let the process crash and restart it with
good state.

3) Restarts works best on systems like the BEAM that have small, independent
processes. Having independent processes lets us isolate errors to the smallest
area possible, minimizing any disruption during restarts.

History shows the OTP team’s approach is more effective than exception
handling. We’ve built more fault-tolerant systems not because we anticipated
specific errors, but because we have the tools to recover gracefully from all
errors when they inevitably crop up.

We’re going to look at process supervision from all angles. We’ll start with the
different ways we can spawn new processes and the implications that has for

Chapter 5. Process Supervision for Recovery • 98

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

how processes interact. That will lead us to the way supervisors interact with
the processes they supervise. We’ll see the different strategies supervisors
can use for restarting crashed processes, and then we’ll talk about different
ways of recovering state after processes restart.

To illustrate how process supervision works, let’s start with the different ways
we can spawn processes and the effect those different ways have on the way
processes interact.

Linking Processes
Supervisors may sound magical, but there are two simple, practical mecha-
nisms behind their magic: linking processes and trapping exits. We’re going
to see how they work together to make supervisors work.

The key to process supervision is for one process to be able to link to other
processes and know when those other processes crash. Beyond that, the
supervising process needs to be able to keep running if it gets crash notifica-
tions from processes it’s linked to.

When one process in a group of linked processes crashes, it sends a special
kind of message called an exit signal to all the other processes it’s linked to. Any
process that receives an exit signal will also exit and send an exit signal to all
the other processes that it is linked to, forming a kind of chain reaction of exits.

This chain reaction makes it hard to fulfill one of the main ideas behind
supervisor processes—which is not to crash—when one of the processes
they’re monitoring does crash.

The mechanism to fix this is called trapping exits. When a process traps exits,
it transforms exit signals into regular messages that end up in the process’s
mailbox. That process can then handle those regular messages just as it
would any other. That’s the key to making supervisors work.

Those are nice words, and they help us understand supervisors from one
angle, but digging in and watching processes interact in the console will
deepen our understanding. That’s what we’re about to do.

Sending and Receiving Messages
We’re going to see how unlinked processes behave when they exit. Then we’ll
do the same for linked processes as well as linked processes where one is
trapping exits.

Much of this work involves passing and retrieving messages directly. We’ll
use send/2 to send messages and receive/1 to pull them from a process’s mailbox.

report erratum • discuss

Linking Processes • 99

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Let’s take a quick practice run with these functions in IEx.

The first step is to check the IEx process PID with self/0:

iex> self()
#PID<0.122.0>

Next, we can have IEx send itself a message, “Hello World!”:

iex> send(self(), "Hello World!")
"Hello World!"

send/2 gives us back the message as its return value, but that’s not the same
as retrieving the message from IEx’s mailbox. We need receive/1 for that:

iex> receive do
...> msg -> "Here's the message: #{msg}"
...> after 100 -> "Nothing to see here."
...> end
"Here's the message: Hello World!"

receive/1 works a lot like case/2. We pattern match for messages on the left side
of the arrow and define what to do with that message on the right. We’re
matching with a variable msg, so this will always match.

We added an after clause to avoid locking up IEx. receive/1 blocks until there
is a message in the mailbox. If we had tried to run receive/1 without a message
in the mailbox and without an after clause, it would have blocked forever,
leaving us without an easy way to actually send a message and unblock it.
The after clause releases receive/1 after the specified number of milliseconds,
executing the code on the right side of the arrow.

If you ever do lock up IEx accidentally with receive/1, pressing Ctrl+C twice will
still exit the session and get you back to the command prompt.

Long-Running Processes
To see how linking processes and trapping exits behave, we’ll need processes
that hang around long enough for us to observe them. IEx is a long-running
process that is readily available, but we’ll need to spawn others for it to
interact with.

To do that, let’s define a new module at lib/islands_engine/demo_proc.ex. All we’ll
need is a single function that implements an infinite recursion. We’ll call ours
loop/0. In the middle, we’ll use receive/1 to retrieve the next message from the
mailbox.

Chapter 5. Process Supervision for Recovery • 100

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

supervisor/lib/islands_engine/demo_proc.ex
defmodule IslandsEngine.DemoProc do

def loop() do
receive do
message -> IO.puts "I got a message: #{message}"

end
loop()

end
end

We don’t need an after block here. This code will run in a separate process,
so it will never block IEx. More importantly, though, we want this to block
until there is a new message. It creates a little back pressure to keep this
infinite recursion from just spinning and spinning.

With the DemoProc module in place, let’s start a new IEx session and try this out:

iex> alias IslandsEngine.DemoProc
IslandsEngine.DemoProc

iex> self()
#PID<0.122.0>

Great; so we know what the IEx PID is. We’ll check it again later to see whether
or not it has changed.

Now let’s use spawn/3 to spawn a new process, passing it the module DemoProc,
the function :loop, and an empty list of arguments. We’ll also bind the PID
that spawn/3 returns to the spawned variable.

iex> spawned = spawn(DemoProc, :loop, [])
#PID<0.125.0>

To make sure we’re working with a truly long-running process as we had
hoped, we can check that the PID bound to the spawned variable points to a
living process:

iex> Process.alive?(spawned)
true

We can also send this new process a message and check to make sure it
receives it:

iex> send(spawned, "Hello World!")
I got a message: Hello World!
"Hello World!"

It does, and that all looks great. Now we’re going to force that process to exit
and see what happens:

report erratum • discuss

Linking Processes • 101

http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/demo_proc.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> Process.exit(spawned, :kaboom)
true

Process.exit/2 takes the process to terminate as well as a reason for termination.
The reason can be any Elixir term, but we’ll just give it the atom :kaboom.

There are three categories of reasons for a process to terminate: :normal, :kill,
and any other failure. A normal termination won’t send an exit signal, so it
won’t terminate any other linked processes. :kill and any other reason will
cause the process to send an exit signal.

iex> Process.alive?(spawned)
false

iex> self()
#PID<0.122.0>

iex> receive do
...> msg -> "Here's the message: #{msg}"
...> after 100 -> "Nothing to see here."
...> end
"Nothing to see here."

That process just vanished without a trace. The IEx process has the same
PID that it did before, and the process we killed didn’t send a message to IEx
when it exited.

Recall that we want a supervising process to know if one of those processes
should crash. Let’s go fix that now.

Linking Processes
The way to get processes to know when other processes crash is to link them.
That’s what we’ll explore next.

In the same IEx session, let’s start by spawning a new process and have the
IEx process link to it:

iex> linked = spawn(DemoProc, :loop, [])
#PID<0.128.0>

iex> Process.link(linked)
true

iex> Process.alive?(linked)
true

iex> send(linked, "Hello Process!")
I got a message: Hello Process!
"Hello Process!"

Chapter 5. Process Supervision for Recovery • 102

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Use spawn_link to Avoid Race Conditions

When we spawn a process first, then link to it, there’s a small
window of time where either process might terminate before the
link is complete.

Kernel.spawn_link/3 eliminates that race condition. It is like spawning
a process and then linking, except that it’s an atomic action.
There’s no time separation between spawning and linking.

Now that we’ve linked the two processes, let’s force the linked one to exit:

iex> Process.exit(linked, :kaboom)
** (EXIT from #PID<0.122.0>) evaluator process exited with reason: :kaboom

Interactive Elixir (1.5.1) - press Ctrl+C to exit (type h() ENTER for help)

That was a little different from the last time. Looks like IEx—PID 122—crashed.

When one of a group of linked processes crashes, it sends an exit signal to
all the other processes that it’s linked to, and they will all crash as well.

On the other hand, we still have a session, so it looks like IEx restarted. Let’s
check its PID to be sure:

iex> self()
#PID<0.131.0>

That’s a new PID, so it did restart. We’ve just seen process supervision in
action. IEx crashed, and its supervisor restarted it without much fuss.

Trapping Exits
Despite the crash, we’re closer to the goal. The next step is for IEx to handle
the exit signal from a linked process without crashing. This is where trapping
exits comes in, and it’s what we’ll take a look at next.

Since IEx restarted, it lost all of its history. We’ll need to re-alias DemoProc
before we get going:

iex> alias IslandsEngine.DemoProc
IslandsEngine.DemoProc

iex> self()
#PID<0.131.0>

Great! Now let’s spawn a new process:

iex> linked2 = spawn(DemoProc, :loop, [])
#PID<0.133.0>

Then let’s have the IEx process trap exits.

report erratum • discuss

Linking Processes • 103

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Process.flag/2 allows us to set values for predetermined keys for a given process’s
metadata. It returns the last value the key we’re resetting had. Previously,
:trap_exit was false, and that’s what we get back:

iex> Process.flag(:trap_exit, true)
false

By default, when a process receives an exit signal with any reason other than
:normal, the process exits and propagates that exit signal to any other process
it is linked to.

When :trap_exit is set to true, the process converts exit signals to messages of
the form {:EXIT, from, reason}, which the process can handle like any ordinary
message.

Now let’s go ahead and link the new process and force it to exit:

iex> Process.link(linked2)
true

iex> send(linked2, "Hello Process!")
I got a message: Hello Process!
"Hello Process!"

iex> Process.exit(linked2, :kaboom)
true

iex> Process.alive?(linked2)
false

So far, so good. Now let’s check IEx’s mailbox for the message:

iex> receive do
...> msg -> "Here's the message: #{inspect(msg)}"
...> after 100 -> "Nothing to see here."
...> end
"Here's the message: {:EXIT, #PID<0.233.0>, :kaboom}"

iex> self()
#PID<0.131.0>

That behaved exactly as we had expected. IEx converted the exit signal from
linked2 into a regular message that it could handle without crashing.

Supervisors handle all this behind the scenes for us. By implementing a
supervisor, we’ll eliminate the need to manually trap exits and link to other
processes, but it’s useful to know what they’re doing on our behalf.

Now that you have a good understanding of what supervisors are doing behind
the scenes, let’s start working with them directly.

Chapter 5. Process Supervision for Recovery • 104

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Introducing the Supervisor Behaviour
Process supervision begins with the supervisor Behaviour. You’ll get an
overview of it in this section. Over the next few sections, you’ll see how to
customize supervisor processes. Then we’ll build a supervisor to monitor all
the game processes in Islands.

Like GenServer, supervisor is an Elixir Behaviour that wraps an OTP Behaviour.
In this case, that is :supervisor. Also like GenServer, we can spawn new processes
from supervisor modules. These supervisor processes will do all the starting,
monitoring, restarting, and stopping of other processes within an application.

We call any process under supervision a child process of the supervisor. Child
processes can be workers, like ‘GenServer‘ processes, or other supervisor
processes.

Since supervisors can supervise other supervisors, we can build tree structures
of supervised processes. These supervision trees allow us to be specific about
how we supervise processes. By specifying different startup options, we can
tailor the way a supervisor behaves for a given type of process.

When we define a new supervisor module, we describe how we want it to
supervise its children, what restart strategy to use, and specify under which
circumstances the supervisor should restart the process.

We can also define some circumstances under which the supervisor itself
should terminate and restart. Consider the case of a process that crashes
continually and doesn’t successfully restart. There’s clearly something wrong
that restarts aren’t fixing, and we wouldn’t want those restarts to continue
indefinitely.

Supervisors allow us to configure the maximum allowable number of restarts
over a given period of time with the :max_restarts and :max_seconds options. The
default value for :max_restarts is 3, and the default value for :max_seconds is 5.

Restart strategies are a little more involved than restart thresholds. Let’s take
a closer look at them next.

Supervision Strategies
Processes often depend on one another to do their work. If a child process
crashes, restarting just that one process might not stabilize the application.
In the event of a crash, a supervisor needs to decide whether to restart just
the one crashed process or other processes as well. If it needs to restart others,

report erratum • discuss

Introducing the Supervisor Behaviour • 105

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

it must decide which ones. Supervisors depend on restart strategies to make
those decisions.

We’re going to look at all the available strategies, see how they work, and
learn how to choose the right one for a given situation.

Each supervisor process can supervise a number of child processes. Those
child processes might have different types of relationships with one another.

Sometimes all the child processes depend on one another, so if one of them
crashes, the others will be invalid. Sometimes they are all completely indepen-
dent, so if one crashes, the others will be fine.

Child processes all start in a temporal order. In some cases, each depends
on the processes that spawned before it, so that if one crashes, all the pro-
cesses that started after it will be invalid.

The pattern supervisors follow when starting child processes matters as well.
Some supervisors will start a fixed number of child processes at once, when
the application starts. Others will need to start and stop a variable number
of child processes at runtime.

Islands falls into that second category. We’ll be starting and stopping Game
processes all the time.

All of these conditions have an impact on which strategy we choose. Let’s
take a closer look at the strategies next.

One for One
With the one-for-one strategy, if a single process terminates, the supervisor
will restart just that one process. This is best if the group of supervised pro-
cesses can work independently of one another—in other words, if restarting
the one process will not upset the functioning of the whole group of processes.

Let’s say we have one supervisor supervising three workers. Then one of those
workers crashes. The supervisor will restart only that one worker.

S

W W W

S

W W W

S

W W W

Chapter 5. Process Supervision for Recovery • 106

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

One for All
With the one-for-all strategy, if a single process terminates, the supervisor
will terminate all the rest of the supervised processes and restart them all.
This strategy is best if the group of processes do depend on each other, and
each other’s state, to work properly.

Imagine we have the same setup as before, and one worker crashes:

S

W W W

S

W W W

This time the supervisor will restart all the workers.

Rest for One
With the rest-for-one strategy, we need to look at a group of supervised pro-
cesses as having a temporal order: the order they were started in. Let’s assume
that order goes from earliest to latest, left to right. If a process in the middle
terminates, the supervisor will terminate all the processes that started after
the problem process; then it will restart all the terminated processes. This
strategy works best for groups of processes that have a temporal dependen-
cy—in other words, more newly spawned processes depend on the state and
integrity of the processes started before them.

S

W W W

S

W W W

Simple One for One
The previous strategies are all fine, but they are not dynamic. They require
the supervisor to start the new processes when we start the BEAM.

report erratum • discuss

Supervision Strategies • 107

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Islands is different; we’ll be starting games and ending games all the time. For
that, there’s another strategy, simple one for one. This has a restart strategy
similar to one-for-one. If an individual process terminates, the supervisor will
restart just that one process.

S

W

S

W

The strategies are one way we can customize the way supervisors behave,
but there are others. Let’s take a look at another big piece of the puzzle next.

The Child Specification
The strategies describe a lot of how a supervisor will work with child processes,
but they are not the whole story. There are a number of other options we can
specify. Those options are stored in the child specification.

Fortunately, we don’t have too much work to do here. The GenServer Behaviour
creates a default child specification for us whenever we add the use GenServer
line to a module. We can check the child spec for the Game module in IEx with
child_spec/1, passing it the argument we want the supervisor to use as it starts
a game.

iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> Game.child_spec("Kusama")
%{id: IslandsEngine.Game,

restart: :permanent,
shutdown: 5000,
start: {IslandsEngine.Game, :start_link, ["Kusama"]},
type: :worker}

Let’s run through these keys and see what they mean:

• :id is what the supervisor uses to identify each child specification.

• :restart tells the supervisor whether it should restart its child processes.
:permanent means always restart the children. :temporary means never restart
the children. And :transient means restart them only if they crash.

Chapter 5. Process Supervision for Recovery • 108

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

• :shutdown refers to the amount of time the supervisor should wait for the
child process to shut down on its own before the supervisor actively
kills it.

• :start is a three-element tuple that tells the supervisor which module,
function, and arguments to use when starting or restarting child processes.

• :type is the type of child process the specification is for, either a worker or
a supervisor.

With all that in mind, there are a couple of things we need to change about
the default child specification for the Game module: the :start tuple, and the
:restart type.

When we start games of Islands at runtime, we need to specify the name of
the first player. We can’t know that ahead of time, so we need to have the
:start tuple reflect the fact that we can pass in any argument instead of speci-
fying just one, as we did earlier.

Players will also need to stop game processes as well as start them. Otherwise,
the BEAM wouldn’t be able to reclaim the memory of completed game process-
es, and it would eventually crash. We’ll need to specify the restart type as
:transient.

We can generate a new child specification, passing in a keyword list of the
new values we want, with Supervisor.child_spec/2. Let’s take a look at how it works
in IEx:

iex> spec = Supervisor.child_spec(Game, start: {Game, :start_link, []},
restart: :transient)

%{id: IslandsEngine.Game,
restart: :transient,
shutdown: 5000,
start: {IslandsEngine.Game, :start_link, []},
type: :worker}

While Supervisor.child_spec/2 generates a new specification, it doesn’t affect the
existing Game module specification:

iex> Game.child_spec("Kusama")
%{id: IslandsEngine.Game,

restart: :permanent,
shutdown: 5000,
start: {IslandsEngine.Game, :start_link, ["Kusama"]},
type: :worker}

report erratum • discuss

The Child Specification • 109

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

This is exactly the same as it was before. We can change the Game specification
permanently by passing in the keyword list of new values into the use
GenServer line in lib/islands_engine/game.ex:

use GenServer, start: {__MODULE__, :start_link, []}, restart: :transient

Let’s recompile the Game module in IEx and check to make sure that the child
specification reflects these changes:

iex> r Game
warning: redefining module IslandsEngine.Game
. . .
{:reloaded, IslandsEngine.Game, [IslandsEngine.Game]}

iex> Game.child_spec("Kusama")
%{id: IslandsEngine.Game,

restart: :transient,
shutdown: 5000,
start: {IslandsEngine.Game, :start_link, []},
type: :worker}

That’s perfect. Notice that even though we passed the argument "Kusama" into
Game.child_spec/1, because the function requires an argument, the child specifi-
cation’s :start tuple shows an empty list of arguments. That means that we
can pass in any player’s name at runtime and still start a new game.

We’ve done a lot of exploration and prep work. Time to build a supervisor for
our game processes.

A Supervisor for the Game
Now that we have the Game module’s child specification showing the values
we want, we’re ready to create a custom supervisor. We’ll explore two ways
to do this. One is as simple as starting a supervisor process with the right
options. The other involves creating a new module that contains the callbacks
we’ll need as well as some helper functions we’ll want.

Each game in Islands is a separate GenServer process. These processes will
come and go as players start new games and then end them. We’ll need a
supervisor specifically to monitor games, and the :simple_one_for_one strategy is
perfect for processes that we need to start and stop at runtime.

Most of the work of creating a custom supervisor comes in starting a new
supervisor process with the right options. After that, the supervisor process
itself does the rest. There are two ways to do this.

Chapter 5. Process Supervision for Recovery • 110

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The most straightforward way is with the Supervisor.start_link/2 function. start_link/2
takes a list of child modules to start as well as a list of options. In our case,
that would be the Game module and the :simple_one_for_one strategy.

We could also include new values for :max_restarts or :max_seconds in the list of
options as well, but their default values are fine for our purposes.

The first thing that Supervisor.start_link/2 will do is get the child specification from
any modules we specify. Because of that, we could pass in a list of child
specifications instead, but we’ve already customized the specification for the
Game module, so we can just pass in the module name.

Let’s open up an IEx session to see how that works:

iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> {:ok, sup} = Supervisor.start_link([Game], strategy: :simple_one_for_one)
{:ok, #PID<0.135.0>}

Now we have the PID of the supervisor process bound to the sup variable. We
can use it to start any game processes we want, and they will all be supervised.

Supervisor.start_link/2 gets us going, but there is another approach we can take:
creating a new module for our game supervisor. We’ll be adding a couple of
convenience functions for starting and stopping game processes, and a
module will give us a convenient place to put them.

For this, we’ll need to define a new GameSupervisor module at
/lib/islands_engine/game_supervisor.ex. We’ll bring in all the supervisor Behaviour
code with use Supervisor. Let’s go ahead and alias the Game module as well:

defmodule IslandsEngine.GameSupervisor do
use Supervisor

alias IslandsEngine.Game
end

Just as use GenServer created a child specification for us in the Game module,
use Supervisor created one for the GameSupervisor module. We can see that specifi-
cation with the child_spec/1 function.

iex> alias IslandsEngine.{Game, GameSupervisor}
[IslandsEngine.Game, IslandsEngine.GameSupervisor]

iex> GameSupervisor.child_spec(:any_argument)
%{id: IslandsEngine.GameSupervisor,

restart: :permanent,
start: {IslandsEngine.GameSupervisor, :start_link, [:any_argument]},
type: :supervisor}

report erratum • discuss

A Supervisor for the Game • 111

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

This is where we gain more control over the supervisor. If we needed to, we
could pass in overrides to the child specification in the use Supervisor line just
as we did for use GenServer in the Game module. We can also add public functions
to this module for starting and stopping child processes. We’ll do that a little
later in the chapter.

Supervisor is a Behaviour, so we’ll follow the same pattern we used for
GenServer, adding a public function that wraps a module function that triggers
a callback.

We can see from the :start tuple in the child specification that the GameSupervisor
says that it will have a :start_link function to start a new supervisor process with.

Let’s start there.

supervisor/lib/islands_engine/game_supervisor.ex
def start_link(_options), do:

Supervisor.start_link(__MODULE__, :ok, name: __MODULE__)

start_link/1 wraps Supervisor.start_link/3, which is different from the Supervisor.start_link/2
that we used at the beginning of this section. It’s much closer to the GenServ-
er.start_link/3 we’ve used before.

We’ll use the local name name: __MODULE__, ensuring that there can be only one
supervisor process for this module. This also makes it possible to reference
that process by the name of the module instead of the PID.

Supervisor.start_link/3 triggers the init/1 callback function. The main thing init/1 has
to do is initialize the new supervisor process with Supervisor.init/2.

supervisor/lib/islands_engine/game_supervisor.ex
def init(:ok), do:

Supervisor.init([Game], strategy: :simple_one_for_one)

Supervisor.init/2 works a lot like Supervisor.start_link/2. It takes a list of the kinds of
processes we want it to supervise as well as a strategy.

Now that we have a GameSupervisor, we need to make sure it’s started whenever
we start up the BEAM so it will be available whenever we need it.

Starting the Supervision Tree
Supervisor processes can do their job only if they are running. We can’t know
in advance when a player is going to start a new game, so we need to make
sure that the GameSupervisor is running as soon as the application starts up.
That’s what we’ll focus on in this section.

Chapter 5. Process Supervision for Recovery • 112

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game_supervisor.ex
http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game_supervisor.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We mentioned that since supervisors can supervise both workers and other
supervisors, they can form trees of supervised processes. This implies that
there is a single process at the root of the tree, and that the root node begins
the process of starting the whole tree.

GameIslandsEngine
Supervisor

Game
Supervisor

Game

Game

Back in Chapter 2, Model Data and Behavior, on page 9, when we generated
the islands_engine project, we passed in the --sup flag to mix new. That automati-
cally created an application.ex file for us, and the start/2 function in that file starts
a top-level supervisor process called IslandsEngine.Supervisor.

def start(_type, _args) do
children = [

{Registry, keys: :unique, name: Registry.Game}
]

opts = [strategy: :one_for_one, name: IslandsEngine.Supervisor]
Supervisor.start_link(children, opts)

end

Currently, that supervisor process starts the Registry as a worker, but we’ll also
have it start a new GameSupervisor process whenever we start the application. We’ll
use that GameSupervisor process to start and supervise each new game.

To do that, we just need to add IslandsEngine.GameSupervisor to the list of children,
and IslandsEngine.Supervisor will start it when we start the application.

children = [
{Registry, keys: :unique, name: Registry.Game},
IslandsEngine.GameSupervisor

]

report erratum • discuss

Starting the Supervision Tree • 113

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

That’s great. We can start a new GameSupervisor process when the application
starts, so it will be available as players want to start new games. Now we need
to have that process start worker processes, which is to say games of Islands.

Starting and Stopping Child Processes
We want each new game to be supervised. That means that we need the
GameSupervisor process to start them. As the GameSupervisor process starts new
game processes, under the hood it will link to them and trap exits so that it
can receive ordinary messages if any of the games should crash.

Let’s start by adding a public start_game/1 function in the GameSupervisor module
to start games with. Once we have the supervisor starting the processes, it
will take care of the rest for us.

supervisor/lib/islands_engine/game_supervisor.ex
def start_game(name), do:

Supervisor.start_child(__MODULE__, [name])

Here’s what happens when we call start_game/1:

• __MODULE__ here evaluates to GameSupervisor, which is the local name we gave
the supervisor process. The supervisor Behaviour will translate this into
the supervisor process PID.

• GameSupervisor looks up the child_spec for the Game module, which is the type
of child we told it to start in GameSupervisor.init/1, Supervisor.init([Game], strategy:
:simple_one_for_one).

• The Game module’s child_spec tells the supervisor to use the Game module
and the start_link/1 function to start the child.

• GameSupervisor passes in the argument we supplied name to Game.start_link/1
to start and supervise the game.

And with that, the players can have fun playing the game.

Once the game is over, we don’t want idle game processes hanging around
in the BEAM using memory. We need a programmatic way of stopping games
when they’re over.

Let’s add a stop_game/1 function to GameSupervisor. We’ll have it take the first
player’s name, just as start_game/1 does:

def stop_game(name) do
Supervisor.terminate_child(__MODULE__, pid_from_name(name))

end

Chapter 5. Process Supervision for Recovery • 114

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game_supervisor.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Supervisor.terminate_child/2 does the real work of stopping the process, but it
expects to receive both the supervisor module and the PID to stop.

We will need a new pid_from_name/1 function to find the actual PID with the
player’s name:

supervisor/lib/islands_engine/game_supervisor.ex
defp pid_from_name(name) do

name
|> Game.via_tuple()
|> GenServer.whereis()

end

Let’s take these functions out for a spin in IEx.

After we alias the Game and GameSupervisor, we can start a game with start_game/1:

iex> alias IslandsEngine.{Game, GameSupervisor}
[IslandsEngine.Game, IslandsEngine.GameSupervisor]

iex> {:ok, game} = GameSupervisor.start_game("Cassatt")
{:ok, #PID<0.119.0>}

Great—we got a new game. Now let’s get a via tuple that we’ll use in a minute.

iex> via = Game.via_tuple("Cassatt")
{:via, Registry, {Registry.Game, "Cassatt"}}

While we’re here, Supervisor gives us a couple of useful functions. count_children/1
takes a supervisor module and returns a map describing all the child pro-
cesses for it:

iex> Supervisor.count_children(GameSupervisor)
%{active: 1, specs: 1, supervisors: 0, workers: 1}

which_children/1 also takes a supervisor module and returns a list of tuples
describing each child process under supervision:

iex> Supervisor.which_children(GameSupervisor)
[{:undefined, #PID<0.119.0>, :worker, [IslandsEngine.Game]}]

Now let’s call stop_game/1 and check to make sure that the GameSupervisor kills
the original PID but doesn’t restart a new one:

iex> GameSupervisor.stop_game("Cassatt")
:ok

iex> Process.alive?(game)
false

iex> GenServer.whereis(via)
nil

report erratum • discuss

Starting and Stopping Child Processes • 115

http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game_supervisor.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

That’s just what we wanted. Not only is the original game process no longer
alive, but there is no other process registered with the via tuple either.

There’s another case we need to handle before we’re done with this section.
What happens if a player starts a game and then abandons it somewhere
along the way? We don’t want to let those processes just sit there taking up
system resources.

Fortunately, GenServer gives us an automated way to have processes time out
and shut themselves down if they haven’t received a new message in a given
number of milliseconds. All we need to do is add a fourth element to any of
the GenServer reply tuples: a positive integer representing the number of mil-
liseconds to wait before timing out {:reply, :some_reply, %{}, 1000}.

Let’s add some modifications to the Game module so that game processes will
time themselves out when they’re inactive. First, let’s set a module attribute
to fifteen seconds—long enough to write quick commands in IEx, but short
enough to wait for:

@timeout 15000

Then let’s add it to the return tuple for Game.init/1:

def init(name) do
. . .

{:ok, %{player1: player1, player2: player2, rules: %Rules{}}, @timeout}
end

We also wrote the reply_success/2 function in the Game for handling all successful
replies from the server process. Let’s add the timeout value to the end of that
reply tuple as well:

defp reply_success(state_data, reply) do
{:reply, reply, state_data, @timeout}

end

For the sake of completeness, you could add timeout to all the error clauses.
Alternately, you could create a reply_error/2 function to handle errors and
refactor all the error tuples in the Game module to use it.

When a GenServer process times out, it will receive a :timeout message. In order
to really stop the GenServer, though, we need to handle that message and return
a :stop tuple. We can do that with a new clause of handle_info/2.

supervisor/lib/islands_engine/game.ex
def handle_info(:timeout, state_data) do

{:stop, {:shutdown, :timeout}, state_data}
end

Chapter 5. Process Supervision for Recovery • 116

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Tagging the return tuple with :stop causes the Behaviour to trigger the terminate/2
callback. GenServer provides a default implementation of terminate/2 for us, so
we should be all set.

With the timeouts set, let’s start a new game, check to see whether the game
process is alive, and then wait a little while and check again:

iex> alias IslandsEngine.{Game, GameSupervisor}
[IslandsEngine.Game, IslandsEngine.GameSupervisor]

iex> {:ok, game} = GameSupervisor.start_game("Cassatt")
{:ok, #PID<0.130.0>}

iex> Process.alive?(game)
true

iex> Process.alive?(game)
false

That’s perfect. The game starts up fine but times out after fifteen seconds—just
as we wanted it to.

In order to keep game processes from timing out prematurely while we’re
working on the rest of the book, go ahead and set the @timeout value to some
high value, like a day’s worth of milliseconds:

@timeout 60 * 60 * 24 * 1000

We’re in a good place. We’ve got a GameSupervisor process started as part of the
whole supervision tree. We’ve also got functions to start and stop games that
make them a part of this supervision tree as well.

It’s time to see how all of this work we’ve done so far behaves in the console.

Putting the Pieces Together
Now that we have all the pieces assembled, let’s see how they all work together
in IEx. We can start by aliasing the Game and GameSupervisor modules:

iex> alias IslandsEngine.{Game, GameSupervisor}
[IslandsEngine.Game, IslandsEngine.GameSupervisor]

Now we can use the GameSupervisor.start_game/1 function to start a new game:

iex> {:ok, game} = GameSupervisor.start_game("Hopper")
{:ok, #PID<0.119.0>}

Note that the PID is number 119. If we generate a via tuple for the first player’s
name and check its PID with GenServer.whereis/1, it should be the same:

report erratum • discuss

Putting the Pieces Together • 117

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> via = Game.via_tuple("Hopper")
{:via, Registry, {Registry.Game, "Hopper"}}

iex> GenServer.whereis(via)
#PID<0.119.0>

Great—we do get the same PID.

Now let’s add a second player and check the game process’s state to make
sure we’ve got both players’ names:

iex> Game.add_player(via, "Hockney")
:ok

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.player1.name
"Hopper"

iex> state_data.player2.name
"Hockney"

Good—they’re both set.

Now let’s force the game to exit and see what happens:

iex> Process.exit(game, :kaboom)
true

iex> GenServer.whereis(via)
#PID<0.128.0>

The first thing we see is that the via tuple points to a different PID. This tells
us a couple of things. Not only did the the supervisor restart the process after
the exit, but the Registry noticed and reset the new PID to the old key. That’s
pretty nice.

Now let’s check the state to see which players’ names we have set:

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.player1.name
"Hopper"

iex> state_data.player2.name
nil

Interesting. The first player’s name is still correct, but we don’t have the second
player’s name at all.

Chapter 5. Process Supervision for Recovery • 118

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The supervisor remembered the original argument we started the game with,
the first player’s name, but that’s it. The rest of the state is gone. In some
cases, this is just fine. For Islands, though, losing state toward the end of a
long game would be really frustrating.

In the next section, you’ll learn how to hang on to that state and restore it if
a process happens to exit abnormally.

Recovering State After a Crash
This is where we really fulfill the promise of fault tolerance. It’s one thing to
restart a process if it crashes and then move on. It’s another thing entirely
to restart it and restore the last known good state.

The way we’ll do this is to save a copy of the data outside of the current pro-
cess, or any other process the current one is linked to. We’ll do this when we
initialize the process, and then again whenever the state changes.

Whenever we start a new process, or restart a crashed process, we’ll check
for that saved state. If it exists, that means we’re restarting, so we’ll use the
saved version. If it doesn’t exist, that means it’s a new process, so we’ll use
fresh state.

The storage engine we’ll use is ETS, which is short for Erlang Term Storage.
ETS comes with OTP, and it allows us to store data in in-memory tables as
two-element tuples. The first element of each tuple is the key; the second is
the value.

ETS tables offer a number of different options to choose from to specify how
they store data and which processes can access it.

There are four different types of ETS tables: :set, :ordered_set, :bag, :duplicate_bag.
:set is the default type.

• :set tables store exactly one value per key.

• :ordered_set tables behave the same as :set tables, except that they order
the keys.

• :bag tables store multiple values under the same key, as long as the values
are not exact duplicates.

• :duplicate_bag tables store multiple values under the same key, even if they
are exact duplicates.

report erratum • discuss

Recovering State After a Crash • 119

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

There are three levels of privacy: :private, :protected, and :public. :protected is the
default.

• :private means that only the process that started the table can read to or
write from it.

• :protected means that the process that started the table can read from and
write to the table. All other processes can only read from it.

• :public means that all processes can read from and write to the table.

There is also the :named_table option, which allows us to reference that table
by the name instead of needing to keep track of a reference to it.

Getting Started with ETS
In order to start using ETS, we need to create a new table with the Erlang
:ets.new/2 function. :ets.new/2 takes an atom for the name of the table we’re cre-
ating as well as a list of options. Once we have a new table, we’ll see how the
CRUD operations work—creating, retrieving, updating, and deleting records.

Let’s try this out with a test example. We’ll make a public set table named
:test_table. Since :set is the default table type, we don’t need to include it in the
list of options.

iex> :ets.new(:test_table, [:public, :named_table])
:test_table

We can insert values into the table with :ets.insert/2, which takes the table name
and a two-element tuple with both the key and the value:

iex> :ets.insert(:test_table, {:key, "value"})
true

We can retrieve values with :ets.lookup/2, which takes the table name and the
key we want the value for:

iex> :ets.lookup(:test_table, :key)
[key: "value"]

This returns a keyword list containing both the key and the value.

:ets.insert/2 will overwrite any existing value for the key. If we call it with the
same key and a different value, it will store only the new value:

iex> :ets.insert(:test_table, {:key, "new value"})
true

iex> :ets.lookup(:test_table, :key)
[key: "new value"]

Chapter 5. Process Supervision for Recovery • 120

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

If we try to look up a key that doesn’t exist, we’ll get an empty list in return:

iex> :ets.lookup(:test_table, :wrong_key)
[]

We can also delete a key and its value with :ets.delete/2, passing it the table
name and the key to delete:

iex> :ets.delete(:test_table, :key)
true

iex> :ets.lookup(:test_table, :key)
[]

That gets us through the basics of ETS. We’re ready to use it to solve our data
recovery problem.

Step one is to make sure we have a table available whenever IslandsEngine
is running. We’ll need it to be public so that all game processes will have read
and write access. It should be a set so that we can have only one game state
per key. Let’s call the table :game_state.

We can make the table available by adding a call to :ets.new/2 in the start/2
function in lib/islands_engine/application.ex:

def start(_type, _args) do
. . .

:ets.new(:game_state, [:public, :named_table])
opts = [strategy: :one_for_one, name: IslandsEngine.Supervisor]
Supervisor.start_link(children, opts)

end
end

Now that we’ll have a table available at runtime, we need to make sure to
store game state and retrieve it when we need to.

Storing and Retrieving Game State
We’ll want to store the full state for each game in the :game_state table whenever
it changes. We register each game process by the name of the first player, so
that name makes a great key to store the state under.

For game processes, some state will change whenever there is a successful
reply—either in the game itself or in the state machine data. Luckily, we wrote
a single function in the Game module to handle successful replies: reply_success/2.
A call to :ets.insert/2 with the name of :player1 as the key and the full game state
as the value is all we need.

report erratum • discuss

Recovering State After a Crash • 121

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

supervisor/lib/islands_engine/game.ex
defp reply_success(state_data, reply) do

:ets.insert(:game_state, {state_data.player1.name, state_data})
{:reply, reply, state_data, @timeout}

end

Any time we start or restart a process, GenServer will trigger the init/1 callback.
That makes init/1 a good place to check the :game_state table for any state stored
under the first player’s name.

If :ets.lookup/2 returns an empty list, we generate fresh state the way init/1 had
done before. If :ets.lookup/2 returns some state, we’ll use that instead.

We can add a new private function that returns the state of a new game given
the first player’s name:

supervisor/lib/islands_engine/game.ex
defp fresh_state(name) do

player1 = %{name: name, board: Board.new(), guesses: Guesses.new()}
player2 = %{name: nil, board: Board.new(), guesses: Guesses.new()}
%{player1: player1, player2: player2, rules: %Rules{}}

end

Then we can use that new function in init/1:

def init(name) do
state_data =
case :ets.lookup(:game_state, name) do

[] -> fresh_state(name)
[{_key, state}] -> state

end

:ets.insert(:game_state, {name, state_data})
{:ok, state_data, @timeout}

end

This will work for Islands because the ETS lookup is quite fast. But init/1 blocks
while it is evaluating. If the lookup happened to take a long time, this would
block the GameSupervisor.start_game/1 function until init/1 returned. In a really
busy system, that could cause problems.

We can fix this by having the process send a message to itself inside init/1
asking to set the state:

supervisor/lib/islands_engine/game.ex
def init(name) do

send(self(), {:set_state, name})
{:ok, fresh_state(name)}

end

Chapter 5. Process Supervision for Recovery • 122

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game.ex
http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game.ex
http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

This will let init/1 return immediately, and the {:set_state, name} message will
appear in the new process’s mailbox.

Moot @timeout

We should remove the @timeout from the return tuple in init/1
because the game process will always receive a new message
immediately from send(self(), {:set_state, name}). This makes it impos-
sible for the process to ever time out.

In GenServers, the callback for handling regular messages is handle_info/2, so let’s
define a new clause that matches that message. Then we can move all the
state checking and setting logic into this new handle_info/2 clause:

supervisor/lib/islands_engine/game.ex
def handle_info({:set_state, name}, _state_data) do

state_data =
case :ets.lookup(:game_state, name) do

[] -> fresh_state(name)
[{_key, state}] -> state

end
:ets.insert(:game_state, {name, state_data})
{:noreply, state_data, @timeout}

end

That should handle it.

We removed the @timeout from the return tuple of init/1, but we put it back here.
This is now the last callback to return from the initial call to start_link/1. There
won’t automatically be a new message in the game process’s mailbox right
after this, so the timeout will be able to do its job.

While this works, it does introduce a race condition. It’s important to under-
stand why we have a race condition and talk about the code we’ve written
that mitigates the risk.

We register game processes by name with the Registry. Other processes can
send messages to them with a :via tuple at any time—whether the PID exists
or not, and whether the state is properly reset after a crash or not. This means
it’s possible for another message to get in front of our :set_state message during
a restart. In Islands, this risk is low because of the small number of messages
sent to any single game.

The state machine offers a level of protection here as well. When init/1 returns,
it sets fresh state in the game, which means that the state is :initialized. The
only action we can take in that state is adding another player. Any other
action will return an error, effectively ignoring that message and bringing

report erratum • discuss

Recovering State After a Crash • 123

http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

the :set_state message to the top, or one step closer to the top, of the game’s
mailbox. This is not an ironclad guarantee, but we have minimized the
potential for harm.

Let’s take this new code out for a spin in IEx and see if it behaves the way we
want it to. We’ll alias the Game and GameSupervisor modules, and then start a
new game:

iex> alias IslandsEngine.{Game, GameSupervisor}
[IslandsEngine.Game, IslandsEngine.GameSupervisor]

iex> {:ok, game} = GameSupervisor.start_game("Morandi")
{:ok, #PID<0.130.0>}

Let’s look up the game state for the "Morandi" key. The first player should have
a name, but the second player shouldn’t:

iex> [{"Morandi", value}] = :ets.lookup(:game_state, "Morandi")
. . .

iex> value.player1.name
"Morandi"

iex> value.player2.name
nil

Nice—exactly what we expected to see.

Now let’s add a second player and check the state in the :game_state table. If
everything worked correctly, both players should have names set this time:

iex> Game.add_player(game, "Rothko")
:ok

iex> [{"Morandi", value}] = :ets.lookup(:game_state, "Morandi")
. . .

iex> value.player1.name
"Morandi"

iex> value.player2.name
"Rothko"

That’s perfect.

Now for the moment of truth. Let’s force the game process to exit. That will
kill the process for the PID bound to the game variable. Generating a via tuple
will get us back to the new process the supervisor restarted for us. We can
check its state with :sys.get_state/1, and if this all worked, both players will have
the correct names.

iex> Process.exit(game, :kaboom)
true

Chapter 5. Process Supervision for Recovery • 124

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> via = Game.via_tuple("Morandi")
{:via, Registry, {Registry.Game, "Morandi"}}

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.player1.name
"Morandi"

iex> state_data.player2.name
"Rothko"

That’s fantastic—just what we were looking for.

We’re almost done; all we have left is some housekeeping to take care of when
a process exits.

Cleaning Up After a Game
We’re saving the state of each game in the :game_state table, but so far, we
haven’t removed that state when the game is over. :game_state will continue to
grow and use memory unless we delete a game’s key from the :game_state table
when the supervisor terminates the child process, or when the child process
times out.

In order to clean that data up when a game ends normally, we’ll add a call to
:ets.delete/2 in the GameSupervisor.stop_game/1 function.

supervisor/lib/islands_engine/game_supervisor.ex
def stop_game(name) do

:ets.delete(:game_state, name)
Supervisor.terminate_child(__MODULE__, pid_from_name(name))

end

Cleaning up the data after a GenServer timeout is a little more involved, but
not much. One of the callbacks the GenServer Behaviour defines is terminate/2.
This is the proper place to do any cleanup before the process exits, and it’s
where the call to :ets.delete/2 should go.

The wrinkle is that we shouldn’t call :ets.delete/2 every time a game process
terminates, but only when it times out. If a process crashes, we still want to
keep the data.

We’ve already got a clause of handle_info/2 that handles the :timeout message and
returns a tagged :stop tuple.

Tagging the return tuple with :stop causes the Behaviour to trigger the terminate/2
callback. It will pass the middle term of the return tuple in as the first argu-
ment so we can pattern match on it.

report erratum • discuss

Recovering State After a Crash • 125

http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game_supervisor.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We’ll need a terminate/2 clause that matches {:shutdown, :timeout}. In it, we’ll call
:ets.delete/2 to clean up the game state. Then we’ll create a catchall clause to
handle any other kind of exit.

supervisor/lib/islands_engine/game.ex
def terminate({:shutdown, :timeout}, state_data) do

:ets.delete(:game_state, state_data.player1.name)
:ok

end
def terminate(_reason, _state), do: :ok

All either clause of terminate/2 needs to return is :ok.

Let’s see how this works in the console. We’ll start by aliasing the modules
we’ll need and then starting a game:

iex> alias IslandsEngine.{Game, GameSupervisor}
[IslandsEngine.Game, IslandsEngine.GameSupervisor]

iex> {:ok, game} = GameSupervisor.start_game("Agnes")
:ok, #PID<0.119.0>}

Let’s check to make sure that the via tuple for this game matches the PID of
the game we just started:

iex> via = Game.via_tuple("Agnes")
{:via, Registry, {Registry.Game, "Agnes"}}

iex> GenServer.whereis(via)
:ok, #PID<0.119.0>}

Then let’s stop the game and check to make sure that the game process is
no longer alive:

iex> GameSupervisor.stop_game("Agnes")
:ok

iex> Process.alive? game
false

Now we can make sure that the GameSupervisor didn’t start a new process, and
that there is no lingering data in the :game_state table:

iex> GenServer.whereis(via)
nil

iex> :ets.lookup(:game_state, "Agnes")
[]

That’s exactly what we expected to see.

What we have so far will let us recover from almost anything, but there’s a
little more work we can do. ETS is an in-memory data store. What happens

Chapter 5. Process Supervision for Recovery • 126

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/supervisor/lib/islands_engine/game.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

when the BEAM’s memory goes away? What happens when the host reboots?
We’ll answer those questions next.

Data Durability
The code we’ve written so far will work great as long as the BEAM stays up. If
we restart the BEAM for any reason, though, the ETS table we created will be
gone along with all its data. To handle BEAM restarts, we need more durability.

The way to get that durability looks a lot like the way we’re recovering data
from ETS, just taken one step further. To recover state when a process restarts,
we store it outside of the process, or any processes linked to it. To recover state
after a BEAM restart, we need to store the state outside the BEAM.

The shape of the code we currently have will work for this. All the functions
are in place and working the way we want them to. We’ll just need to swap
out ETS for another storage mechanism.

This is where the number of available options grows enormously. There’s no
way to cover them all in a single section of this chapter. What we can do is
look at some OTP options as well as a strategy that will apply broadly to a lot
of other options.

OTP offers two options right off the bat. DETS is a disk-based version of ETS.1

DETS starts tables with :dets.open_file/2 instead of :ets.new/2, but the query API
is remarkably similar to ETS. This is the durable option with the least change
to the existing code.

Mnesia is OTP’s distributed database management system. It’s considerably
more complex to set up and use than ETS or DETS. While it is likely to be overkill
for the needs of a game like Islands, it might be a great fit for other applications
you might be working on. Take a look at the documentation if you’re interested.2

Stepping outside of OTP, a single broad strategy will work with a large number
of data stores. The idea is to convert the game state to JSON. Once the data
is in JSON, the data storage world is our oyster. We can store the game state
as a JSON data type practically anywhere.

With any of these strategies, the game state will be stored safely out of the
BEAM in case the node goes down for any reason. Using the functions and
callbacks that we’ve already set up, we’ll query for it, and set it back in each
process’s state.

1. http://erlang.org/doc/man/dets.html
2. http://erlang.org/doc/apps/mnesia/Mnesia_chap1.html

report erratum • discuss

Recovering State After a Crash • 127

http://erlang.org/doc/man/dets.html
http://erlang.org/doc/apps/mnesia/Mnesia_chap1.html
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Wrapping Up
What we’ve done in this chapter is really pretty remarkable. We started with
game processes that could crash and lose all their state at any time. We’ve
ended up with games that will recover from any crash and restore their state
to the last good version, automatically.

Try that in any other language.

Along the way, we’ve explored linking processes and trapping exits. We’ve
looked at ways to customize the way supervisors behave with restart strategies
and child specifications. We’ve also seen how to start and stop supervised
processes. As a bonus, we’ve gotten an introduction to ETS as well.

We’re headed into Part 3 of the book next. That’s where we’ll layer on a Phoenix
interface and make Islands available on the web.

Chapter 5. Process Supervision for Recovery • 128

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Part III

Add a Web Interface with Phoenix

Now that we have our game engine, it’s time to
provide a way to interact with that logic via the
web. Phoenix does a fabulous job at this. We’ll be
generating a fresh Phoenix application and pulling
in our game engine as a dependency. Since our
game engine maintains state, we are in an ideal
situation to make use of the persistent, multiplexed
connections that Phoenix channels provide.

Let’s get to it!

CHAPTER 6

What we’ll do in this chapter

• generate a new Phoenix application—without Ecto
• bring in our game engine as a dependency
• incorporate our game engine in the web interface’s super-

vision tree

Generate a New Web Interface
with Phoenix

Phoenix is a great web framework. It’s fast, really fast. Its components are
familiar and easy to work with. Phoenix is lightweight, modular, and explicit.
There’s almost no hidden magic. That’s a big boost for maintainability.

Frameworks are nearly ubiquitous in web development today. For either the
front end or back end, almost everyone uses some form of framework to build
web applications.

There’s good reason for this. Frameworks get us up and running quickly.
They remove the need to reimplement common tasks for every project—routing,
handling request parameters, and the like. Frameworks let us focus on our
individual application’s behavior instead of repetitive tasks.

The slippery slope is that frameworks make it all too easy to tangle the framework
components and the application together in ways that really hurt us.

Elixir Applications let us get around this in an elegant way. Phoenix itself is
an Application. The game engine we built in Parts 1 and 2 of the book is also
an Application.

Our task in Part 3 of this book is to create a web interface with Phoenix for
our game. We’re going to use the Phoenix and game engine Applications as
building blocks to create a third Application that will keep the Phoenix inter-
face separate from the game in a way that will make our job trivially easy.

Frameworks
Framework components represent what is common to all web applications.
That’s why the framework creators extracted them out into the framework.

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

This is a great boon to developers because we don’t need to solve the same
problems over and over again. Things like routing requests to the right handler
functions, getting the request parameters, handling response templates, setting
cookies—the framework takes care of all that for us. The framework compo-
nents make it easy to interact with the business logic over the web. They
make up the web interface for the application.

The business logic is unique to each application. This is the part that we can’t
extract into a common framework. It’s what makes our application do inter-
esting things and gives it value. It’s the most important part to us, because
the success or failure of our application depends on how well this works.

But there’s a serious, hidden-in-plain-sight problem here. We’re so accustomed
to it that we hardly even notice.

Coupling
The way we normally build business logic with a framework is completely
backward. We create application behavior by adding more pieces of the
framework—routes, controllers, models, and views. Each new model or con-
troller we add contains a bit more logic. This mixes our business domain with
the domain of the framework, and it couples the two inextricably and forever.

Why is that a big deal? We can’t easily reuse the business logic with another
interface. We can’t test our business logic in isolation, outside the context of
the framework code.

Let’s say we wanted both a web interface and a Nerves device version of
Islands. If we didn’t have a separate Application for Islands, we would need
to completely reimplement the business logic for each interface.

Whenever we need to send an HTTP request to test a business rule, an alarm
should go off at our workstation. Business rules should be completely separate
from how we handle HTTP requests. Yet this is how we’ve been trained to test
web applications.

This is why upgrading a framework to a new major version can sometimes
be so painful. It’s also why switching frameworks entirely seems like a her-
culean task. The way we normally work with frameworks makes this pain
almost inevitable.

Which brings us to one of the most important points in the entire book.

Chapter 6. Generate a New Web Interface with Phoenix • 132

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Phoenix Is Not Your Application
It’s important to think about how we got into this situation, so we know how
to get out of it.

The way we talk about web applications gets us in trouble right away. We say,
“I’m building a Rails app” or an Ember app or a Phoenix app or an Elm app.

But that’s not true. What we’re really doing is building a chat app, or a
banking app, or a game called Islands, with a Phoenix interface or an Ember
interface or an Elm interface.

The problem is deeper than that, though. There are a number of ways to look
at it, but this resonates most with me. ORMs lead us directly into this coupling
of business logic and framework components.

ActiveRecord models in Rails offer the clearest example of this, but the same
idea applies across many frameworks. Let’s say we are working in a domain
in which one of the entities is a bicycle. We could begin modeling this with a
plain Ruby class:

class Bicycle
We define bicycle-specific properties and behavior here.

end

We might define bicycle properties here like wheels, handlebars, pedals, and
brakes. We could also define behaviors like pedaling, steering, and braking.

Rails tends to push us toward putting domain models, like our Bicycle class,
in a database. ActiveRecord makes this very easy. We just have a model class
inherit from ActiveRecord::Base:

class Bicycle < ActiveRecord::Base
Suddenly, bicycle behavior is mixed with database behavior.

end

With this small change, everything is different. Our Bicycle class suddenly
knows a lot more than just bicycle things. It knows how to connect to a
database, read from and write to a table, validate data, perform transactions,
generate queries, and a whole host of other things.

Our domain, in which a bicycle is just a bicycle, is suddenly entwined with
the Rails domain, in which a Bicycle model is an interface to a database table.
Once this happens, the two domains become glued together and can’t be
separated without a rewrite.

report erratum • discuss

Frameworks • 133

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Decoupling
That’s not going to happen here. We already have our game logic separated
out. Now we’re going to layer on the web interface. The two will live happily
side by side, and they won’t be tightly coupled.

We built the core logic of the game as an Application. That means we can
bring it into any other Application as a dependency, and all of its functional-
ity will be available to us. Phoenix happens to be an Application, which makes
this job a snap. This one idea, this way of managing dependencies and
building applications, is quietly revolutionary. It’s going to make the rest of
our work with Phoenix seem trivial.

Islands
Interface

Islands
Engine Phoenix

Of course, Erlang developers have been working in this quietly revolutionary
way for a couple of decades now.

All our core logic needs is a web interface, and we’ll use Phoenix to build one.
Phoenix has all of the MVC components you’re used to for those times when
HTTP’s request/response cycle fits best. It’s also got a real-time, persistent
connection layer called channels built right in.

This is where all our hard work up to now is going to really pay off. From
here, we’ll be able to generate a fresh Phoenix project and bring our whole
game in as a dependency. As we build out the interface, we won’t be mixing
in any application logic. We’ll just call into the public interface of the game
server that we’ve already built. There won’t be any entanglement between the
game and the interface.

Applications are what allow us to build these separate, self-contained compo-
nents. They’re what allow us to compose them back together into larger
applications as well. We’ll explore them next.

Chapter 6. Generate a New Web Interface with Phoenix • 134

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Applications
Despite the name, Applications are not what we normally think of as software
applications. They are reusable units of code that are bigger than modules.
In fact, they most often contain multiple modules. They’re similar in scale to
libraries in other ecosystems. While they can function as libraries, they can
also be so much more.

Applications can act as true building blocks for our programs, a means of
putting together integral pieces of business logic to build a larger whole.
Working with larger building blocks like these makes us really productive.

Applications can also stand on their own as what we traditionally think of as
an application. The IslandsEngine Application we developed in the first part
of the book is one example. It is a fully functioning game just as it is, albeit
with a pretty unfriendly user interface. As complete as it is, we can still use
it as a building block for something larger, as we’ll soon see.

:application is a specific OTP Behaviour written in Erlang, just like :gen_server.
There is a module in OTP that defines :application-specific functions as well as
a list of callbacks we need to implement. Elixir provides a wrapper module
around the pure Erlang one called Application. We’ll be using the Elixir
wrapper most often in this chapter.

The Application Behaviour lets us do three things. It lets us define and name
Applications. It facilitates dependency management among Applications. We
can define hierarchies of Application dependencies, and the Behaviour will
make sure they work correctly. The Behaviour also facilitates cleanly starting
and stopping individual applications in a running BEAM.

“Cleanly” here means two things. It makes sure to start any dependent
Applications before it starts itself. It also keeps track of any processes the
Application spawns during startup or while it’s running, and makes sure to
stop them when the Application stops.

Now that we’ve got an idea of the significance of Applications, let’s dig a little
deeper and see how they work.

Understanding Applications
The good news is that we’ve been working with an Application all along. At
the beginning of the book, when we generated the brand-new IslandsEngine
project, Mix automatically created it as an Application. We didn’t need to look

report erratum • discuss

Applications • 135

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

deeply at the Application Behaviour then because IslandsEngine stood on its
own for our purposes.

Now, though, we need to use it as a dependency, as a building block to create
a larger project—the web interface we’re going to build in this chapter.
Understanding Application dependencies will clarify our work on this project,
and any other Elixir projects we work on.

We already have examples of the Application Behaviour–related files in
IslandsEngine. We’ll use them to understand dependency management as
well as starting and stopping individual applications inside the BEAM. We’ll
see firsthand the independence of Applications that lets us solve the coupling
problem so prevalent in web applications.

There are three parts to the implementation of an Application, and Mix has
a hand in all of them.

When we generate a project with mix new we get a file named mix.exs at the root
of our project. mix.exs defines key aspects of the Application, everything from
its name and version number to a list of applications it depends on to build
the project.

Mix also generates a Behaviour callback module in the /lib directory that is
named after our project. In the case of our game engine, it generated
/lib/islands_engine/application.ex. If we supply the --sup flag to mix new, the callback
module will contain the start/2 callback function necessary to start the top-
level supervisor for the Application. Without --sup, the file will be there, but it
will be empty.

Once we compile the project, mix will generate an application resource file,
written in Erlang, that the BEAM will use to work with our Application.

Let’s take a look at these files now starting with mix.exs.

Managing Dependencies
Any project’s mix.exs file has two main functions—defining a project’s metadata
and managing its dependencies. Of the two, dependency management is by
far the most common thing developers do, and it’s the most important for our
purposes as well.

Three functions defined in mix.exs do all the work for us. The project/0 function
returns a keyword list of metadata about the application.

Chapter 6. Generate a New Web Interface with Phoenix • 136

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

def project do
[

app: :islands_engine,
version: "0.1.0",
elixir: "~> 1.5",
start_permanent: Mix.env == :prod,
deps: deps()

]
end

The app name, version number, and Elixir version are pretty self-explanatory.
start_permanent: starts the system in such a way that the BEAM will crash if the
top-level supervisor crashes. This will be true for the production environment
as well.

The deps: key holds a list of build-time dependencies this application depends
on. The value here is the return value of the deps/0 function, also defined in
mix.exs.

defp deps do
[]

end

IslandsEngine has no dependencies, so the return value here is an empty
list. When we generate a new Phoenix project in the next section, we’ll see an
example with a number of dependencies.

There are actually two types of dependencies for Applications: those that
matter for runtime, and those that come into play for build/compile time.
Mix uses the dependencies listed in the deps/0 function to build the project.
Any Application in this list can have its own dependencies. This is how we
can compose a larger tree of dependencies, just as we saw with supervision
trees in Chapter 5, Process Supervision for Recovery, on page 97.

The last function in mix.exs is application/0. It returns a keyword list of data
related to starting the application. The value of the :extra_applications key is a
list of application names, which are the runtime dependencies. Mix will make
sure these are running before it starts :islands_engine. :mod holds a tuple for the
module name of the callback module as well as a list of options that the start/2
function in that module might need.

def application do
[extra_applications: [:logger],
mod: {IslandsEngine.Application, []}]

end

report erratum • discuss

Applications • 137

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

IslandsEngine depends only on the :logger Application at runtime. This depen-
dency is a default for all Applications Mix generates. Elixir itself supplies this,
so we don’t need to list it in the deps/0 function.

The reason that there are two different places to define dependencies is that
it’s possible to need a dependency for compilation but not need it to be running
inside the BEAM, and vice versa.

If our Application doesn’t have a supervision tree—for example, if we omitted
the --sup flag when we generated the project—we can omit the mod key completely:

def application do
[extra_applications: [:logger]]

end

You might be thinking that this seems a little redundant. Shouldn’t Mix be
able to infer the Application list from the deps list as long as we give it some
clues? As of Mix 1.4, it can.

If the runtime dependencies are the same as the compile-time ones, we can
omit the :extra_applications key in application/0:

def application do
[mod: {IslandsEngine.Application, []}]

end

If there are runtime dependencies not listed in the deps/0 function—:logger, for
instance—we can handle that with the :extra_applications key:

def application do
[extra_applications: [:logger],
mod: {IslandsEngine.Application, []}]

end

And if we have compile-time dependencies that we don’t need to start when we
start our application, we can mark them as runtime: false in the deps/0 function:

defp deps do
[{:some_new_dep, "> 0.0.0", runtime: false}]

end

That brings us to the end of dependency management in mix.exs. Once we have
defined the dependencies, we need to be able to start them inside the BEAM.
That’s where we’re headed next.

Starting and Stopping Applications
Applications are so independent, we can start and stop them individually
in the BEAM. When we start an individual Application, OTP will start any

Chapter 6. Generate a New Web Interface with Phoenix • 138

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

necessary supervisor or worker processes along with it. When we stop that
same Application, OTP makes sure to stop those supervisors and workers
as well.

The work of defining which processes to start all comes together in the call-
backs file. In the IslandsEngine project, that’s /lib/islands_engine/application.ex.

Back in Chapter 5, Process Supervision for Recovery, on page 97, we took a
good look at this file in the context of supervision trees. We won’t need to go
over it in much detail, but we should point out the use Application line that
makes this module an Application Behaviour.

We should also quickly mention the start/2 function, which is there to start
the top-level supervisor for the Application. Along the way, it’s going to make
sure that any child processes—supervisors or workers—get started as well.

defmodule IslandsEngine.Application do
@moduledoc false

use Application

def start(_type, _args) do
children = [
{Registry, keys: :unique, name: Registry.Game},
IslandsEngine.GameSupervisor)

]

:ets.new(:game_state, [:public, :named_table])
opts = [strategy: :one_for_one, name: IslandsEngine.Supervisor]
Supervisor.start_link(children, opts)

end
end

When we compile the project, Mix takes information from mix.exs and produces
an application resource file, like this one at /_build/dev/lib/islands_engine/ebin/islands_
engine.app.

This will always live in the /_build/dev/lib/<application_name>/ebin/ directory and be
named after our Application, with an .app file extension.

The contents of this file are what the BEAM needs in order to properly handle
our Application.

{application,islands_engine,
[{applications,[kernel,stdlib,elixir,logger]},
{description,"islands_engine"},
{modules,['Elixir.IslandsEngine',

'Elixir.IslandsEngine.Application',
'Elixir.IslandsEngine.Board',
'Elixir.IslandsEngine.Coordinate',
'Elixir.IslandsEngine.Game',

report erratum • discuss

Applications • 139

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

'Elixir.IslandsEngine.GameSupervisor',
'Elixir.IslandsEngine.Guesses',
'Elixir.IslandsEngine.Island',
'Elixir.IslandsEngine.Rules']},

{registered,[]},
{vsn,"0.1.0"},
{extra_applications,[logger]},
{mod,{'Elixir.IslandsEngine.Application',[]}}]}.

Now that we’ve taken a good look at all the pieces, let’s take this out for a
spin to see if we can learn more about how it behaves.

If you’ve ever wondered why running iex at the root of a project doesn’t load
that project and start the applications but running iex -S mix does, you’re about
to see why.

The -S flag tells IEx to run a script before opening the shell. Notice that mix.exs
has the .exs file extension, signifying that it’s a script file. The mix part is short
for mix run, which will run a given script in the context of an Application. The
default script to run is mix.exs.

Running mix.exs triggers the Behaviour callback function start/2 that we just
saw in the callback module. That will start our Application as well as any
Applications it depends on.

Let’s go ahead and start a plain iex session from the root of our islands_engine
project. This will be a generic IEx session that will not start :islands_engine.

:application exposes a handy function called which_applications/0 that will show us
which Applications are currently running. This function isn’t defined on
Elixir’s Application wrapper module, so we call it on the Erlang module instead.
Let’s see what it tells us:

iex> :application.which_applications
[{:logger, 'logger', '1.5.1'}, {:iex, 'iex', '1.5.1'},
{:elixir, 'elixir', '1.5.1'}, {:compiler, 'ERTS CXC 138 10', '7.1'},
{:stdlib, 'ERTS CXC 138 10', '3.4'}, {:kernel, 'ERTS CXC 138 10', '5.3'}]

Each running Application shows up as a three-tuple. Among the others, Elixir itself
is an Application. This is pretty much the bare minimum for running an IEx session.

Now let’s quit out of that session and start a new one with iex -S mix, and then
run :application.which_applications/0 again:

iex> :application.which_applications
[{:islands_engine, 'islands_engine', '0.1.0'}, {:logger, 'logger', '1.5.1'},
{:mix, 'mix', '1.5.1'}, {:iex, 'iex', '1.5.1'}, {:elixir, 'elixir', '1.5.1'},
{:compiler, 'ERTS CXC 138 10', '7.1'}, {:stdlib, 'ERTS CXC 138 10', '3.4'},
{:kernel, 'ERTS CXC 138 10', '5.3'}]

Chapter 6. Generate a New Web Interface with Phoenix • 140

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Great—now we see our :islands_engine Application, and we also see :mix itself,
since we implicitly invoked mix run.

If we start a new IEx session without starting the Application—like this:
iex -S mix run --no-start—we’ll see that the :islands_engine Application isn’t running
but :mix still is:

iex> :application.which_applications
[{:logger, 'logger', '1.5.1'}, {:mix, 'mix', '1.5.1'}, {:iex, 'iex', '1.5.1'},
{:elixir, 'elixir', '1.5.1'}, {:compiler, 'ERTS CXC 138 10', '7.1'},
{:stdlib, 'ERTS CXC 138 10', '3.4'}, {:kernel, 'ERTS CXC 138 10', '5.3'}]

We can start :islands_engine manually with Application.start(:islands_engine):

iex> Application.start(:islands_engine)
:ok

iex> :application.which_applications
[{:islands_engine, 'islands_engine', '0.1.0'}, {:logger, 'logger', '1.5.1'},
{:mix, 'mix', '1.5.1'}, {:iex, 'iex', '1.5.1'}, {:elixir, 'elixir', '1.5.1'},
{:compiler, 'ERTS CXC 138 10', '7.1'}, {:stdlib, 'ERTS CXC 138 10', '3.4'},
{:kernel, 'ERTS CXC 138 10', '5.3'}]

If we try to start it again, we get an error saying that it’s already started:

iex> :application.start(:islands_engine)
{:error, {:already_started, :islands_engine}}

We can also stop it with Application.stop(:islands_engine):

iex> Application.stop(:islands_engine)
:ok

20:55:42.291 [info] Application islands_engine exited: :stopped
nil

iex> :application.which_applications
[{:logger, 'logger', '1.5.1'}, {:mix, 'mix', '1.5.1'}, {:iex, 'iex', '1.5.1'},
{:elixir, 'elixir', '1.5.1'}, {:compiler, 'ERTS CXC 138 10', '7.1'},
{:stdlib, 'ERTS CXC 138 10', '3.4'}, {:kernel, 'ERTS CXC 138 10', '5.3'}]

Now let’s see the Application Behaviour’s runtime dependency management in
action. While :islands_engine is stopped, let’s also stop :logger, and then try to restart
:islands_engine:

iex> :application.stop(:logger)
:ok

iex>
=INFO REPORT==== 20-Jan-2017::21:32:08 ===

application: logger
exited: stopped
type: temporary

nil

report erratum • discuss

Applications • 141

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> :application.which_applications
[{:mix, 'mix', '1.5.1'}, {:iex, 'iex', '1.5.1'}, {:elixir, 'elixir', '1.5.1'},
{:compiler, 'ERTS CXC 138 10', '7.1'}, {:stdlib, 'ERTS CXC 138 10', '3.4'},
{:kernel, 'ERTS CXC 138 10', '5.3'}]

iex> :application.start(:islands_engine)
{:error, {:not_started, :logger}}

The Behaviour correctly remembered that :islands_engine depends on :logger and
wouldn’t start :islands_engine because :logger wasn’t running.

:application exposes another handy function, ensure_all_started/1, which will behave
the same as start/2, making sure all the runtime dependencies are running
before trying to start the Application we pass in.

iex> :application.ensure_all_started(:islands_engine)
{:ok, [:logger, :islands_engine]}

iex> :application.which_applications
[{:islands_engine, 'islands_engine', '0.1.0'}, {:logger, 'logger', '1.5.1'},
{:mix, 'mix', '1.5.1'}, {:iex, 'iex', '1.5.1'}, {:elixir, 'elixir', '1.5.1'},
{:compiler, 'ERTS CXC 138 10', '7.1'}, {:stdlib, 'ERTS CXC 138 10', '3.4'},
{:kernel, 'ERTS CXC 138 10', '5.3'}]

That’s great. It’s exactly what we expected to see.

Now that we’ve seen how Applications work, we’re ready to generate a new
Phoenix project and bring IslandsEngine in as a dependency.

Generate a New Phoenix Application
This is where the fun really begins. With just a couple of shell commands
we’ll have a new web app up and serving pages, and Phoenix will serve them
faster than you might have thought possible.

Before we start, make sure you have the Phoenix installer archive as well as
Node.js installed on your system. Take a look at Appendix 1, Installing System
Dependencies, on page 189 if you need help installing them. Node.js is only nec-
essary to manage front-end dependencies, including Brunch, which Phoenix
uses as a build tool. Node.js doesn’t play a role within Phoenix proper.

By default, the Phoenix project generator will install Ecto, the Elixir data
wrapping and query generating package. The generator will also install Brunch
by default.

We won’t need to use Ecto because we won’t be using a database. We will use
Brunch, though, because we’ll need to serve some assets for the web version
of our game.

Chapter 6. Generate a New Web Interface with Phoenix • 142

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We will call the Phoenix interface project islands_interface. We will pass that
name into the phx.new Mix task that the installer archive exposes as well as
the --no-ecto flag telling phx.new not to install Ecto.

Let’s change out of the the islands_engine into its parent directory. That way,
when we run the phx.new task, we’ll create the interface directory parallel to
the engine directory.

$ mix phx.new islands_interface --no-ecto
* creating islands_interface/config/config.exs
. . . # Creating lots more files here
* creating islands_interface/web/views/page_view.ex

Once the project generator is done creating files, it will ask if we want to install
the application dependencies. We should say yes by either typing a “y” or just
pressing Return.

Fetch and install dependencies? [Yn] y
* running mix deps.get
* running npm install && node node_modules/brunch/bin/brunch build

Before we move on, let’s take a quick look at the functions in mix.exs that the
project generator created. We’ll start with the project/0:

def project do
[app: :islands_interface,
version: "0.0.1",
elixir: "~> 1.3",
elixirc_paths: elixirc_paths(Mix.env),
compilers: [:phoenix, :gettext] ++ Mix.compilers,
build_embedded: Mix.env == :prod,
start_permanent: Mix.env == :prod,
deps: deps()]

end

The most important thing to notice here is the name of our Application. It’s
:islands_interface, not :phoenix. The project generator didn’t create a “Phoenix
Application”—it created a new Application for us with its own identity, above
Phoenix itself.

The deps/0 function tells us more:

defp deps do
[{:phoenix, "~> 1.2.1"},
{:phoenix_pubsub, "~> 1.0"},
{:phoenix_html, "~> 2.6"},
{:phoenix_live_reload, "~> 1.0", only: :dev},
{:gettext, "~> 0.11"},
{:cowboy, "~> 1.0"}]

end

report erratum • discuss

Generate a New Phoenix Application • 143

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Our :islands_interface Application brings in :phoenix, the Application, as well as
other Phoenix-related Applications as dependencies. :islands_interface is the
root node of a tree of dependencies, and these others are the next layer of
nodes down.

The application/0 function doesn’t hold any surprises. It makes sure that we
start all the dependencies listed in deps/0:

def application do
[

mod: {IslandsInterface.Application, []},
extra_applications: [:logger, :runtime_tools]

]
end

Okay, let’s get back to the installation process. After Mix fetched all our
project’s dependencies, it told us what our next steps should be:

We are all set! Run your Phoenix application:

$ cd islands_interface
$ mix phx.server

You can also run your app inside IEx (Interactive Elixir) as:

$ iex -S mix phx.server

Let’s follow those directions now. Change into the project directory and start
the server with mix phx.server:

$ cd islands_interface/
$ mix phx.server
==> fs (compile)
Compiled src/sys/inotifywait_win32.erl

. . . # Lots of compilation here

==> islands_interface
Compiling 11 files (.ex)
Generated islands_interface app
[info] Running IslandsInterface.Endpoint with Cowboy using http on port 4000
22 Jul 09:12:05 - info: compiled 5 files into 2 files, copied 3 in 1.2 sec

By executing mix phx.server, we trigger the initial compilation of all the Elixir
files in the project. That will generate the application resource file at
/_build/dev/lib/islands_interface/ebin/islands_interface.app.

You might also see a warning about a new hex version that’s available. Feel
free to follow the instructions for upgrading.

A new Hex version is available (0.12.1), please update with `mix local.hex`

Chapter 6. Generate a New Web Interface with Phoenix • 144

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now for the really exciting part. The very last bit of the compilation message
lets us know that the Erlang web server Cowboy is running our app on port
4000. Let’s point a web browser at http://localhost:4000 and see what we get.

Just for fun, go ahead and reload the welcome screen a few times and take
a look at the terminal screen that you started the Application from.

[info] GET /
[debug] Processing by IslandsInterface.PageController.index/2

Parameters: %{}
Pipelines: [:browser]

[info] Sent 200 in 263µs
[info] GET /
[debug] Processing by IslandsInterface.PageController.index/2

Parameters: %{}
Pipelines: [:browser]

[info] Sent 200 in 224µs
[info] GET /
[debug] Processing by IslandsInterface.PageController.index/2

Parameters: %{}
Pipelines: [:browser]

[info] Sent 200 in 186µs
[info] GET /
[debug] Processing by IslandsInterface.PageController.index/2

Parameters: %{}
Pipelines: [:browser]

[info] Sent 200 in 197µs

Yes, with Phoenix, we can measure the page load times in microseconds.

report erratum • discuss

Generate a New Phoenix Application • 145

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

We’re ready to perform the quietly revolutionary act we talked about at the
beginning of this chapter. We’re going to bring in the logic for Islands as both
a build-time and runtime dependency for our new application.

Adding a New Dependency
Now that we have a new Application to act as the web interface, we need to
bring the game engine in as a dependency. The interface needs to have access
to all the game logic we wrote in the first two parts of the book. In particular,
it must be able to see all the public functions in the IslandsEngine.Game module.

This works just like any other dependency in Elixir, and it is about as easy
as it can possibly be. Only two steps are involved.

We’ll need to compile IslandsEngine in with the rest of the project as well as
start it when we start the IslandsInterface Application.

To make :islands_engine a compile-time dependency, we’ll add it to the deps/0
function in islands_interface/mix.exs:

defp deps do
[

{:phoenix, "~> 1.3.0"},
{:phoenix_pubsub, "~> 1.0"},
{:phoenix_html, "~> 2.10"},
{:phoenix_live_reload, "~> 1.0", only: :dev},
{:gettext, "~> 0.11"},
{:cowboy, "~> 1.0"},
{:islands_engine, path: "../islands_engine"}

]
end

Notice that we used a path dependency for :islands_engine. That allows us to
provide the pathname to a project on the local filesystem, and the Elixir
package manager, Hex, will take care of the rest. That’s it. We can give this
a try in the console by running iex -S mix phx.server at the root of the islands_interface
project.

The first thing we should do is see which Applications are running with
:application.which_applications/0:

iex> :application.which_applications()
[{:islands_interface, 'islands_interface', '0.0.1'},
{:phoenix_live_reload, 'Provides live-reload functionality for Phoenix',
'1.1.3'},

{:file_system,
'A file system change watcher wrapper based on

[fs](https://github.com/synrc/fs)',
'0.2.2'},

Chapter 6. Generate a New Web Interface with Phoenix • 146

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

{:phoenix_html,
'Phoenix.HTML functions for working with HTML strings and templates',
'2.10.5'}, {:cowboy, 'Small, fast, modular HTTP server.', '1.1.2'},

{:cowlib, 'Support library for manipulating Web protocols.', '1.0.2'},
{:ranch, 'Socket acceptor pool for TCP protocols.', '1.3.2'},
{:islands_engine, 'islands_engine', '0.1.0'},
{:runtime_tools, 'RUNTIME_TOOLS', '1.12'}, {:logger, 'logger', '1.5.1'},
{:gettext, 'Internationalization and localization through gettext', '0.13.1'},
{:phoenix,
'Productive. Reliable. Fast. A productive web framework that
does not compromise speed and maintainability.\n',

'1.3.0'},
{:phoenix_pubsub, 'Distributed PubSub and Presence platform\n', '1.0.2'},
{:eex, 'eex', '1.5.1'},
{:poison, 'An incredibly fast, pure Elixir JSON library', '3.1.0'},
{:plug,
'A specification and conveniences for composable modules between
web applications',

'1.4.3'}, {:mime, 'A MIME type module for Elixir', '1.1.0'},
{:hex, 'hex', '0.15.0'}, {:inets, 'INETS CXC 138 49', '6.4'},
{:ssl, 'Erlang/OTP SSL application', '8.2'},
{:public_key, 'Public key infrastructure', '1.4.1'},
{:asn1, 'The Erlang ASN1 compiler version 5.0', '5.0'},
{:crypto, 'CRYPTO', '4.0'}, {:mix, 'mix', '1.5.1'}, {:iex, 'iex', '1.5.1'},
{:elixir, 'elixir', '1.5.1'}, {:compiler, 'ERTS CXC 138 10', '7.1'},
{:stdlib, 'ERTS CXC 138 10', '3.4'}, {:kernel, 'ERTS CXC 138 10', '5.3'}]

That’s a lot more Applications running than we had with :islands_engine. The
main things to note are that both :islands_engine and :islands_interface started. Also
note that Phoenix itself is listed as a started Application.

Since both the :islands_engine and :islands_interface Applications are available, let’s
see if we can start a new game from the console using the public interface of
IslandsEngine.Game:

iex> IslandsEngine.Game.start_link("Betty")
{:ok, #PID<0.465.0>}

That’s perfect. We can start up a new game from within the Phoenix interface.
Once we have the game’s PID, we can use it to call any of the public IslandsEn-
gine.Game functions.

With :application.which_applications/0 we can see which applications are running at
any given time, but we don’t get a sense of the structure—the tree of Applica-
tions and their dependencies.

Mix gives us a tool to do this: the deps.tree task. Let’s run it at the root of the
islands_interface project:

report erratum • discuss

Adding a New Dependency • 147

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

$ mix deps.tree
islands_interface
├── gettext ~> 0.11 (Hex package)
├── islands_engine (../../new_islands)
├── phoenix_pubsub ~> 1.0 (Hex package)
├── cowboy ~> 1.0 (Hex package)
│ ├── cowlib ~> 1.0.2 (Hex package)
│ └── ranch ~> 1.3.2 (Hex package)
├── phoenix_html ~> 2.10 (Hex package)
│ └── plug ~> 1.0 (Hex package)
│ ├── cowboy ~> 1.0.1 or ~> 1.1 (Hex package)
│ └── mime ~> 1.0 (Hex package)
├── phoenix ~> 1.3.0 (Hex package)
│ ├── cowboy ~> 1.0 (Hex package)
│ ├── phoenix_pubsub ~> 1.0 (Hex package)
│ ├── plug ~> 1.3.3 or ~> 1.4 (Hex package)
│ └── poison ~> 2.2 or ~> 3.0 (Hex package)
└── phoenix_live_reload ~> 1.0 (Hex package)

├── file_system ~> 0.2.1 or ~> 0.3 (Hex package)
└── phoenix ~> 1.0 or ~> 1.2 or ~> 1.3 (Hex package))

This confirms what we suspected, that :islands_interface is at the root of this
tree. The important thing to notice is that both :islands_engine and :phoenix are
parallel and equal in this tree. Both live under :islands_interface, and both provide
functionality to make the whole web application work.

This is a subtle but critical point. It’s what allows us to let the interface talk
to the game logic’s public interface, and keeps the two nicely decoupled. That’s
the theory. Now let’s prove it.

Call the Logic from the Interface
We’ve seen that we can start a new game from within an IEx session begun
with iex -S mix phx.server. That means we can call the public functions of the
IslandsEngine.Game module from any Phoenix component.

At the beginning of this chapter, we talked a lot about decoupling the interface
from the business logic. We made a bold claim and said that this would make
our work trivially easy. Throughout the chapter, we’ve shown how we can
keep the two separated but included in a common project. What we haven’t
yet shown is how those two will communicate. It’s time to back up that claim.

We’re going to walk through this pretty quickly. We’ll be working with a few
new files, but we won’t be spending a lot of time explaining them.

The good news is that Phoenix provides a full, working example of all the files
we’ll need. It’s the welcome page we saw when we started the server for the
first time. We’re going to modify some of those files to perform an experiment.

Chapter 6. Generate a New Web Interface with Phoenix • 148

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The first thing we’ll do is create a form in the index template /islands_inter-
face/web/templates/page/index.html.eex. We’ll use the form_tag/2 and tag/2 functions
from the :phoenix_html Application. You’ll recall that we saw :phoenix_html in our
list of dependencies from mix.exs.

<div class="jumbotron">
<h2><%= gettext "Welcome to %{name}", name: "Phoenix!" %></h2>
<p class="lead">

A productive web framework that does not compromise speed and
maintainability.

</p>
<p>

<%= form_tag("/test") do
[tag(:input, type: "text", name: "name"),
tag(:input, type: "submit", value: "New Game")]

end%>
</p>

</div>

With form_tag/2, the default action is POST, and we pass it the route /test. The
tag/2 functions create a text input for a player’s name and a submit button.

We just told that form to post all requests to /test, which is a route we don’t
currently have. Let’s add it now in islands_interface/web/router.ex:

scope "/", IslandsInterface do
pipe_through :browser # Use the default browser stack

get "/", PageController, :index
post "/test", PageController, :test

end

That route says that any POST request to /test should be handled by the test
function in the IslandsInterface.PageController module. That module exists, but the
function doesn’t, so let’s add it now to islands_interface/web/controllers/page_controller.ex:

defmodule IslandsInterface.PageController do
use IslandsInterface.Web, :controller

alias IslandsEngine.GameSupervisor

def index(conn, _params) do
render conn, "index.html"

end

def test(conn, %{"name" => name}) do
{:ok, _pid} = GameSupervisor.start_game(name)
conn
|> put_flash(:info, "You entered the name: " <> name)
|> render("index.html")

end
end

report erratum • discuss

Call the Logic from the Interface • 149

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

In the function head, we pattern match on %{"name" => name}. This second
argument is the incoming parameters map from the request. The match binds
the value of the "name" key to the name variable, and makes it available inside
the body of the test function.

Notice that we’re pattern matching for a successful start of the game server
{:ok, _pid} = GameSupervisor.start_game(name). If the game server fails to start, we’ll
get an error page.

We’re also setting a flash message that will let us know which name we entered
into the form, and then we’re re-rendering the same index page we were just on.

Go ahead and start the server from the root of the IslandsInterface project
with $ iex -S mix phx.server. Then head over to http://localhost:4000/ with your favorite
browser. The form we just put in the index.html.eex file should now be there.

Before we do anything, let’s make sure that the game supervisor hasn’t
started any games yet:

iex> alias IslandsEngine.GameSupervisor
IslandsEngine.GameSupervisor

iex> Supervisor.which_children(GameSupervisor)
[]

Chapter 6. Generate a New Web Interface with Phoenix • 150

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now go ahead and add a name to the input field and hit submit. That should
take you right back to the welcome page, and you should see the name you
entered at the top of the page in a flash message.

At this point, you can go back to the terminal window to check for the POST
request you should have gotten by submitting the form:

iex> [info] POST /test
[debug] Processing by IslandsInterface.PageController.test/2

Parameters: %{"_csrf_token" => "<long_string_omitted>",
"_utf8" => "✓", "name" => "Frank"}

Pipelines: [:browser]
[info] Sent 200 in 55ms

Great—that looks like just what we want.

Let’s check that the game supervisor actually started a new game process:

iex> Supervisor.which_children(GameSupervisor)
[{:undefined, #PID<0.361.0>, :worker, [IslandsEngine.Game]}]

And we can see that it did. Excellent.

For fun, try entering exactly the same name into the form and hitting submit
again. You should get an error page telling you that the game server was
already started as shown in the figure on page 152. Recall that we registered
each game server with a name based on the string we pass in to start the
game, and we can start only one server at a time with that name.

report erratum • discuss

Call the Logic from the Interface • 151

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

That’s exactly the error we get.

Now that we can start a game server, and we know that the IslandsEngine.Game
module is available inside Phoenix components in IslandsInterface, the world
is our oyster. We can call any of the game server’s public functions from
any module in IslandsInterface. This is what will allow us to play Islands
on the web.

Wrapping Up
We’ve done a lot in this chapter in a short amount of time. We created a new
project for our web interface. We brought the game logic in as a dependency,
and we got the interface to call into the game server.

That’s the surface-level view. Looking at it more deeply, we’ve solved one of
the most vexing problems related to using web frameworks. We’ve created a
clean separation between logic and interface that will make testing and
maintaining our application a breeze. If we ever need to upgrade to a newer
major version of Phoenix, it’ll be a much, much easier task than it would be
with other frameworks.

At this point, we’re ready to tackle one of the most exciting parts of
Phoenix—channels. Channels provide persistent, stateful connections between
stateful back ends and front ends, and they scale beautifully. That’s where
we’re headed next.

Chapter 6. Generate a New Web Interface with Phoenix • 152

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

CHAPTER 7

What we’ll do in this chapter

• create a channel that communicates directly with a GenServer
• use the topic:subtopic convention to focus communication

on a single GenServer
• define separate handle_in events for each game command—

new game, join game, fire shot, and so on
• interact with our channel in the console to see it work

Create Persistent Connections
with Phoenix Channels

Phoenix channels are just amazing. They really are Phoenix’s killer feature.
They provide persistent connections between stateful servers and stateful
clients. They’re incredibly fast, and they can truly scale.

Channels allow us to fulfill the promise we made in the very beginning of this
book: to connect a stateful back end to a stateful front end with a persistent,
stateful connection.

We’re going to build a channel that will allow us to directly interact with the
game engine. The channel callback functions we define will match the public
interface of the game. We’ll build new functionality with callbacks in our own
new channel module, and then we’ll exercise those callbacks in two browser
window consoles to mimic two players playing the game.

The Beauty of Channels
Channels fundamentally change the nature of what we are able to do on
the web.

Channels scale incredibly well. In one test on a powerful machine, the Phoenix
team was able to establish two million simultaneous channel connections.
These weren’t just static connections. The team was able to broadcast mes-
sages to all two million clients within a few seconds.

Let that sink in for a minute. Think about what your application would look
like if every user of your system had her own persistent connection to the
server.

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Channels are soft-real-time communication conduits. Clients join a channel
on a specific topic. That’s the same as saying that clients subscribe to a topic
on a channel. Then they’re able to facilitate conversations on those topics.
Channels are multiplexed, so a single channel can support bidirectional
messages on many topics.

Most often, the client is a front-end web client, but it could be anything that
knows how to send a message to a channel, including another server.

It’s tempting to think of channels as equivalent to raw WebSockets, the most
common protocol that channels use for transporting data. The reality is that
channels offer a lot of nice features over WebSockets alone. Channels can
transport data over a number of different protocols, including custom ones
you can write yourself. By default, they’ll use WebSockets, and fall back to
long polling if WebSockets aren’t available.

Channels also handle failure well. When networks lose connection, channels
know how to reestablish communication and carry on where they left off. That’s
the kind of thing you need to build yourself if you’re using WebSockets alone.

Channels require less code to implement than traditional MVC components.
There’s a single module to write callbacks in instead of a controller, view,
template, and schema.

The key to our game channel implementation is that there will be no business
logic in the channel. All the channel callbacks will simply call directly into
the game engine, pattern match on the response, and determine the correct
reply to send back to the client.

Another way to look at this is that the channel will be concerned only with
the behavior that is appropriate for this layer—determining which response
to reply with and figuring out which clients to send that response to.

Before we move on to implementing our own channel, let’s take a look at the
moving parts that make up a channel.

The Pieces That Make a Channel
We often talk about Phoenix channels as if each one is a single, monolithic
entity that works on its own. In fact, there are a number of moving parts
acting in harmony across multiple layers that make channels work as well
as they do.

Let’s take a quick look at the most important ones to get a better feeling for
the whole.

Chapter 7. Create Persistent Connections with Phoenix Channels • 154

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The Channel Module
The channel module is the tip of the iceberg, the visible part that we will
interact with the most. It’s a custom Behaviour defined within Phoenix. The
Behaviour specifies that we define a join/3 callback for allowing clients to join
a specific topic as well as multiple handle_in/3 callbacks to match, handle, and
respond to messages sent from clients.

Socket
Phoenix.Socket is also a custom Behaviour defined in the Phoenix application.
It is responsible for establishing and maintaining the connection between
clients and a channel. The socket also keeps track of which transport method
the channel uses.

Socket is also a struct used to define and hold the state of the connection.
It’s analogous to the connection struct in the stateless MVC parts of Phoenix.

Transport
Channels rely on protocols to move messages between the client and the
server. That’s what the transport layer is for. Phoenix ships with two types
of transports built in: WebSockets and long polling.

Socket.Transport is also an API for building transports. It’s possible to create
your own custom transport layer for whatever protocol you like by following
the Socket.Transport API.

Phoenix PubSub
Channels are very flexible in the way they allow us to route messages from
the channel to clients. That’s handled by a separate package called
phoenix_pubsub. PubSub is short for “publish and subscribe,” and it’s a way for
clients to register with a channel (subscribe) in order to get sent published
messages. The way clients subscribe is via the join/3 callback function.

Presence
Phoenix Presence is an incredible piece of technology. It uses data types from
cutting-edge computer science research—conflict-free replicated data types
(CRDTs)—in a web framework you can use right now.

Presence solves the hardest and most extreme edge cases in keeping track of
clients in channels—multiple nodes in a distributed cluster, clients connected
on multiple devices, and anything going wrong with either the network or the
clients. Presence solves these problems in a mathematically provable way.

report erratum • discuss

The Pieces That Make a Channel • 155

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Not only does Presence solve the original problem of channel membership, it
also promises to be useful for service discovery, process discovery, and any-
thing that we need to track on BEAM nodes distributed across a network.

Client Code
Channels on the server are only half the story. We need clients to complete
the picture. Channel client packages exist for a number of different languages
and platforms. We’ll use the JavaScript client that ships with Phoenix as we
write functions directly in a browser window’s JavaScript console.

That’s the lay of the land. We’ve got all the info we need to get started, so we
might as well dive right in. We’re going to implement the channel as well as
the JavaScript necessary for the front end to talk to it.

Let’s Build It
The big picture for this final chapter is that we’re opening up the public
interface we created for the game server to the web. The game server is a
stateful system. Modern web front ends are also stateful. We’re going to build
a Phoenix channel as a stateful, persistent connection between these two
stateful systems. This new channel’s public interface will become the mecha-
nism clients will use to interact with the game.

Here’s the Plan
We’re going to build that channel function by function, and we’ll check its
behavior at each step along the way by calling JavaScript code in the browser’s
developer tools console. We want the new channel to communicate directly
with an individual GenServer process for a game. Since channels multiplex
messages, a single channel can handle clients sending messages to many
topics—which is to say that a single channel can handle the communication
for many games. Checking that this communication works means that we’ll
need to be able to see what’s happening from the browser all the way down
to the server.

To fully exercise this, we’re going to use two separate browser windows. That
will mimic two players playing the game on the web. We’ll work with the
developer tools JavaScript console in each browser window. We’ll also have
an IEx session open to check what’s happening to the state of the game
server.

That setup is going to look like the figure on page 157.

Chapter 7. Create Persistent Connections with Phoenix Channels • 156

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Player 1
Browser
Console

Game
Channel

IEx
Console

Player 2
Browser
Console

There are a lot of moving parts here, and at times it might seem like building
a model ship in a bottle. I’m going to err on the side of clarity over brevity to
make this easier to follow.

To help with clarity, let’s stick with a convention. We’ll keep the two browser
windows open side by side, and we’ll say that the window on the left represents
player1, and the window on the right is player2.

Go ahead and run iex -S mix phx.server at the root of the islands_interface project.

Then open up two browser windows and go to localhost:4000 in each. Once you’re
there, open up the developer tools console in each window. For Chrome,
they’re under the View menu, View -> Developer -> Developer Tools. When
the developer tools pane opens up, click on the Console link.

That should look like this:

report erratum • discuss

Let’s Build It • 157

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

With the server started, we already have a stateful back end running. The
good news is that we won’t have to build out a full front-end application to
exercise this. Your favorite browser’s JavaScript engine is a fine stateful front-
end environment to work with. The browser’s developer tools console will let
us run code directly in that environment.

Here’s the plan for how we’ll work for the rest of the chapter. We’ll write some
code in a new channel module and recompile it in the IEx session. Then we’ll
go into the JavaScript console, push some messages down the channel to
exercise that code, and then check in the IEx console to see what happened.
We’ll follow that pattern for each new piece of functionality we build.

Define a New Module
The first thing we need is a channel module. Let’s get one started at
lib/islands_interface_web/channels/game_channel.ex:

channel/lib/islands_interface_web/game_channel.ex
defmodule IslandsInterfaceWeb.GameChannel do

use IslandsInterfaceWeb, :channel

alias IslandsEngine.{Game, GameSupervisor}

In order to make it behave like a channel, we use IslandsInterfaceWeb :channel. That
triggers the existing channel/0 function in the IslandsInterfaceWeb module, located
at lib/islands_interface_web/islands_interface_web.ex:

def channel do
quote do

use Phoenix.Channel
import IslandsInterfaceWeb.Gettext

end
end

We’ll also be working with the Game and GameSupervisor modules, so we need to
alias them here.

With the proto-channel module in place, there are two pieces of housekeeping
that we need to check in on: routing requests to our socket, and registering
our channel with a socket.

The “route” to our socket appears in our project’s endpoint at lib/islands_inter-
face_web/endpoint.ex. Phoenix generated this for us when it created our project.

defmodule IslandsInterfaceWeb.Endpoint do
use Phoenix.Endpoint, otp_app: :islands_interface

socket "/socket", IslandsInterface.UserSocket
. . .

Chapter 7. Create Persistent Connections with Phoenix Channels • 158

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The next step is to define a socket so we can establish a connection to the
channel. Phoenix generated one for us already at web/channels/user_socket.ex. All
we need to do is register our new game channel there:

defmodule IslandsInterface.UserSocket do
use Phoenix.Socket

channel "game:*", IslandsInterfaceWeb.GameChannel

The meaning here is that we want any messages with a topic that begins with
“game:” to go through the GameChannel.

There’s one more interesting piece to look at in IslandsInterface.UserSocket: the
connect/2 function. Whenever a client attempts to connect to the socket, the
request will make its way through the connect/2 function Phoenix defined for us:

def connect(_params, socket) do
{:ok, socket}

end

This is a great spot to do any authentication work, or to assign any values to
the socket so that they will pass through the system into the channel. For
our purposes, we’ll just pass right through by returning {:ok, socket}. We’ll see
the client side of this in action later.

With that configuration housekeeping out of the way, we’re ready to start doing
more with our game channel. We’ll start with letting clients subscribe to it.

Join a Channel
Before clients can do anything more meaningful in a channel, they need to
join it on a topic-subtopic combination. To let users do that, we need to
implement a join/3 function in the IslandsInterfaceWeb.GameChannel module.

For now, we’ll do the simplest thing we can and just let anybody join. We do
that by just returning {:ok, socket}. We’ll see how to get a little more picky about
letting players join a little later on.

def join("game:" <> _player, _payload, socket) do
{:ok, socket}

end

join/3 always takes a topic-subtopic string, some form of payload, and a socket
struct. The return will either be {:ok, socket} or {:error, %{reason: "<whatever reason
you like>"}}. This is slightly different from other return tuples we’ll see in a
minute, but the {:ok, socket} return is an echo of the {:ok, state} tuple we return
from init/1 when starting a GenServer.

report erratum • discuss

Let’s Build It • 159

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now that we have a simple clause of the join/3 function, let’s go to the IEx
session we have running and compile our new GameChannel:

iex> c "lib/islands_interface_web/channels/game_channel.ex"
[IslandsInterfaceWeb.GameChannel]

Great—that’s just what we wanted to see. Now we need to get a client to use
join/3. For that, we’ll need some JavaScript, and we’ll write some in the next
section.

Establish a Client Connection
Our goal in this section is to write client code that can invoke the join/3 function
we now have on the server. There are a few steps we’ll need to take to make
that happen.

We’ll need to define a client socket and use it to establish a connection to the
socket on the server. Then we’ll need to define a new channel object on the
client, and use it to join the channel on the server.

Phoenix ships with phoenix.js, a JavaScript file that knows all about working
with sockets and channels. It’s indispensable for writing JavaScript client
code for channels, and our first task is to make it available in the browser’s
console window.

Let’s go to player1’s JavaScript console—that’s the browser window on the
left—and require the phoenix.js file:

> var phoenix = require("phoenix")
undefined

Next we need to instantiate a new socket object so we can establish a connec-
tion from the client to the channel running on the server. As we do that, we
need to pass it a path to the socket as well as any parameters we want to
pass in as we establish a connection. We don’t need to pass any in, so we use
a blank object:

> var socket = new phoenix.Socket("/socket", {})
undefined

Once we have the socket object, we can have it establish a connection to the
path we defined when we created it:

> socket.connect()
undefined

Chapter 7. Create Persistent Connections with Phoenix Channels • 160

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now that we’re connected, we need to define a new channel object before we’re
ready to start pushing messages down the server. To do that, we invoke the
socket.channel function with the topic-subtopic, and some parameters.

The general form of that call looks like this:

> var new_channel = socket.channel("topic:subtopic", {some_key: "some_value"})

The parameters are important. The ones we specify here are the ones that
will get passed to the join/3 function in the GameChannel, even if we pass other
parameters into the client’s join function later on.

def join("game:" <> _player, parameters, socket) do

To make this a little neater and more flexible, let’s wrap that socket.channel call
in a new function called new_channel. It will take a subtopic and the screen
name of the player who wants to join. The one parameter we want to send
into the channel object itself is the player’s screen name.

Go ahead and type the function definitions in at player1’s console prompt:

> function new_channel(subtopic, screen_name) {
return socket.channel("game:" + subtopic, {screen_name: screen_name});

}
undefined

Now we can invoke the new_channel function with a player’s name to generate
a new channel object. This will already have the parameters we specified
baked into it:

> var game_channel = new_channel("moon", "moon")
undefined

If we click on the game_channel object in the console to inspect it, we’ll see the
params object itself:

> game_channel
Channel
. . .
params: Object

screen_name: "moon"
__proto__: Object

. . .

That’s exactly what we want.

There’s one more function we’ll need to define in player1’s console, and that’s
the join function itself.

report erratum • discuss

Establish a Client Connection • 161

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

As a practical matter, the game_channel object already has a join function. We
could call it directly, but the return value would be an object that, on the face
of it, wouldn’t tell us whether or not it worked.

In order to see that something is really happening in the JavaScript console,
we’ll define a wrapper function around the channel’s join function:

> function join(channel) {
channel.join()

.receive("ok", response => {
console.log("Joined successfully!", response)

})
.receive("error", response => {

console.log("Unable to join", response)
})

}
undefined

Inside our wrapper function, we chain receive function calls to check for a
return of "ok" or "error" and log out a different message depending on which
one we get.

Now that we have our own join function defined, we can invoke it, and if all
goes well, that will invoke the join/3 function we wrote in the channel.

This message path is going to be from player1 to the channel and only back
to player1, like this:

Player 1
Browser
Console

Game
Channel

IEx
Console

Player 2
Browser
Console

Let’s try it out in player1’s console:

> join(game_channel)
undefined
Joined successfully! Object {}

That worked!

Back in our IEx session, we’ll see that the join call worked:

Chapter 7. Create Persistent Connections with Phoenix Channels • 162

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

iex> JOIN game:moon to IslandsInterfaceWeb.GameChannel
Transport: Phoenix.Transports.WebSocket
Parameters: %{"screen_name" => "moon"}

[info] Replied game:moon :ok

Clients can also leave a channel. We can give the same treatment to a leave
function:

> function leave(channel) {
channel.leave()
.receive("ok", response => {

console.log("Left successfully", response)
})

.receive("error", response => {
console.log("Unable to leave", response)

})
}

Now that we can get a client to join a channel on the server, we’re ready to
get a dialogue going between the client and the server.

Converse Over a Channel
This is where things start to get interesting. So far, we’ve sent a join message
and gotten an ok back, but channels support much richer forms of bidirectional
communications between clients and the server. We’re going to take a closer
look at the most common of these, and they will help us a lot through the
rest of this chapter and while building your own applications.

The simplest way to send a message back from the server is to return a :reply
tuple from the channel callback. This is a three-element tuple {:reply,
some_response, socket}, where the middle element gets sent back to the client
that originally sent the message. This should look really familiar after our
work with GenServer.

Another way to talk back from a channel is with the push/3 function. push/3
sends the caller back a string that represents a new event along with a data
payload. The caller needs to listen for that event, and we can define whatever
actions to take in response to it that we want.

Broadcasting is another way for the server to send messages back to clients.
The broadcast/3 and broadcast!/3 functions also send a string that represents a
new event, along with a payload, but they send that event to every client that
has subscribed to that specific topic-subtopic.

Let’s take a look at reply tuples first. The path of the message passing will go
from player1, to the channel on the server, and back to player1.

report erratum • discuss

Converse Over a Channel • 163

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Player 1
Browser
Console

Game
Channel

IEx
Console

Player 2
Browser
Console

Just as we saw in OTP Behaviours, there’s a mapping in channels between
function calls and specific callbacks. When a channel object in the client calls
the push function with a message and a payload, that triggers the handle_in/3
callback in the channel on the server.

Also as in OTP Behaviours, we’ll define multiple clauses of handle_in/3 that each
pattern match on a different message, or a different payload.

The first thing we’ll need in the GameChannel is a clause of handle_in/3 that
matches the message "hello" and replies with :ok:

def handle_in("hello", payload, socket) do
{:reply, {:ok, payload}, socket}

end

Remember to recompile the GameChannel module in the IEx session—otherwise,
this callback function won’t exist in the running BEAM:

iex> r IslandsInterfaceWeb.GameChannel
warning: redefining module IslandsInterfaceWeb.GameChannel
(current version loaded from
_build/dev/lib/islands_interface/ebin/Elixir.IslandsInterfaceWeb.GameChannel.beam)
web/channels/game_channel.ex:1

{:reloaded, IslandsInterfaceWeb.GameChannel, [IslandsInterfaceWeb.GameChannel]}

We could trigger this callback from player1’s console with game_channel.push(),
but we would get an object back that wouldn’t tell us much on first glance.

To see how this behaves more clearly, let’s write another wrapper function in
player1’s console that will give us some feedback. For the payload, we’ll pass
a JavaScript object with a greeting:

Chapter 7. Create Persistent Connections with Phoenix Channels • 164

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

> function say_hello(channel, greeting) {
channel.push("hello", {"message": greeting})

.receive("ok", response => {
console.log("Hello", response.message)

})
.receive("error", response => {

console.log("Unable to say hello to the channel.", response.message)
})

}
undefined

Let’s check out how this works in player1’s console:

> say_hello(game_channel, "World!")
undefined
Hello World!

Of course, we can do anything we would like before we return the payload,
as long as we adhere to the rules for the return value. We need to reply with
either a status atom—:ok or :error—by itself, or a tagged tuple with a status
atom and a map for the second element.

Just to prove that the error condition works, let’s change the function to alter
the payload and always return an error:

def handle_in("hello", payload, socket) do
payload = %{message: "We forced this error."}
{:reply, {:error, payload}, socket}

end

Go ahead and recompile the GameChannel in the IEx session.

Then let’s go to player1’s browser console and send a "hello" message to the
channel again:

> say_hello(game_channel, "World!")
undefined
Unable to say hello to the channel. We forced this error.

Now let’s take a look at how push/3 works inside the GameChannel. Instead of a
reply tuple, this will send a new event down the channel, but only to the
original caller. Since we’re not relying on a reply tuple to communicate back
to the client, we’ll replace it with {:noreply, socket}.

The path of message passing will look the same as reply as shown in the figure
on page 166.

Let’s go to the channel and change the handle_in/3 clause to use push/3. We could
leave the :reply tuple there and get two responses, but since push/3 will already
send a reply, it makes more sense to swap in {:noreply, socket} instead.

report erratum • discuss

Converse Over a Channel • 165

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Player 1
Browser
Console

Game
Channel

IEx
Console

Player 2
Browser
Console

Let’s recompile the GameChannel so we can see this in action:

def handle_in("hello", payload, socket) do
push socket, "said_hello", payload
{:noreply, socket}

end

Then let’s head over to player1’s console to give it a try:

> say_hello(game_channel, "World!")
undefined

And we get nothing.

Here’s why. The handle_in/3 clause is pushing a new event, "said_hello", to the
caller. The problem is that we don’t have any code in the browser that is lis-
tening for that event.

We need to use the on function defined on the channel object to listen for the
"said_hello" event and respond in a way we define. We’ll just have it log “Returned
Greeting” and send the response to the console.

Let’s go ahead and define an event listener in player1’s console and try again:

> game_channel.on("said_hello", response => {
console.log("Returned Greeting:", response.message)

})
undefined

> say_hello(game_channel, "World!")
undefined
Returned Greeting: World!

That’s exactly what we want.

Chapter 7. Create Persistent Connections with Phoenix Channels • 166

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now let’s take a look at broadcast/3 or the bang version, broadcast!/3. The bang
version will raise an exception if it fails. The non-bang version will return an
error tuple instead.

The message path for broadcast is going to look a little different. The message
will originate from player1 to the channel, but the channel will send event
messages to both player1 and player2.

Player 1
Browser
Console

Game
Channel

IEx
Console

Player 2
Browser
Console

This will also send an event, which is the second argument after the socket,
to all members who have joined the channel.

Let’s use the bang version to simplify our code. We can change our "hello"
clause of handle_in/3 to look like this:

def handle_in("hello", payload, socket) do
broadcast! socket, "said_hello", payload
{:noreply, socket}

end

Since we’re going to broadcast an event to all users who have joined the
channel instead of returning a reply, use the {:noreply, socket} return value.

Now to see this really work, let’s go over to player2’s console and get it set up
to communicate over the channel. We’ll need to do all the setup we did
before—requiring the Phoenix.js file, defining a socket, connecting, and joining
the channel.

> var phoenix = require("phoenix")
undefined

> var socket = new phoenix.Socket("/socket", {})
undefined

report erratum • discuss

Converse Over a Channel • 167

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

> socket.connect()
undefined

> function new_channel(player, screen_name) {
return socket.channel("game:" + player, {screen_name: screen_name});

}
undefined

function join(channel) {
channel.join()

.receive("ok", response => {
console.log("Joined successfully!", response)

})
.receive("error", response => {

console.log("Unable to join", response)
})

}
undefined

We want to be sure to communicate on exactly the same topic-subtopic, so
we pass in the same name, "moon", to the join function that we did in player1’s
console. But this is a different player, so we pass in a different screen name.

> var game_channel = new_channel("moon", "diva")
undefined

> join(game_channel)
undefined
Joined successfully Object {}

Now we need to make sure that player2’s console is listening for the "said_hello"
event, just like player1:

> game_channel.on("said_hello", response => {
console.log("Returned Greeting", response.message)

})
undefined

Now for the interesting part. Let’s go back to player1’s console and say hello
again:

> say_hello(game_channel, "World!")
undefined
Returned Greeting: World!

Great—it caught the event. If we take a look at player2’s console, we’ll see
that it caught the same event.

That’s exactly what we want to see.

Chapter 7. Create Persistent Connections with Phoenix Channels • 168

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Connect the Channel to the Game
Here’s where we begin to do the real work of getting our new game channel
talking to the game server. We’re going to build out new clauses of handle_in/3
that correspond to the public interface functions we wrote for IslandsEngine.Game.
We’ll pick the right communication strategy for each action, and we’ll continue
to check our work at each step, both in the browser consoles and in IEx.

The mechanics of making these connections is so easy, it’s going to feel like
cheating. When we’re done, all the actions a player can take in the game will
be exposed on the web through a channel interface.

For all of these new actions, we’re going to follow the same pattern we used
for the "hello" function. We’ll define a new clause of handle_in/3 that calls directly
to the game server, define a function in the browser console that pushes a
message to that clause, call the function, and check the response.

Now that we’re talking to the game server, though, we have the opportunity
to check the game server state before and after we call the function in the
console to make sure that the action worked.

We’re ready to go, and the place to begin is with initializing a new game.

Start a New Game
This is where we begin to expose the actual game to the web. We’ll start with
a clause of handle_in/3 that will match on the “new_game” action. Within that
function, we’ll call directly into the GameSupervisor.start_game/1 function to start
the game, and report back on the success or failure to start the GenServer.

All we need to start a new game is the first player’s name. We decided in this
chapter that the first player’s name will also be the subtopic of the channel.
Because of that, we don’t need to pass in the player’s name to start the
game—we can derive it from the topic stored on the socket struct.

Since there will be only one player at this point, we need to respond only to
that one player. Sending back a :reply tuple fits the bill.

def handle_in("new_game", _payload, socket) do
"game:" <> player = socket.topic
case GameSupervisor.start_game(player) do

{:ok, _pid} ->
{:reply, :ok, socket}

{:error, reason} ->
{:reply, {:error, %{reason: reason}}, socket}

end
end

report erratum • discuss

Connect the Channel to the Game • 169

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Before we try this in the browser, let’s make sure that the game server process
hasn’t yet been started.

Head over to the IEx session we have running and check for a game process
named after the first player who joined the channel. We’ll also need to
recompile the GameChannel.

iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> via = Game.via_tuple("moon")
{:via, Registry, {Registry.Game, "moon"}}

iex> GenServer.whereis(via)
nil

Fantastic. There is no process with that global name.

Back in player1’s browser console, let’s define a new function that will push
the "new_game" message to the channel:

> function new_game(channel) {
channel.push("new_game")

.receive("ok", response => {
console.log("New Game!", response)

})
.receive("error", response => {

console.log("Unable to start a new game.", response)
})

}
undefined

And when we call that function in player1’s console, it works!

> new_game(game_channel)
undefined
New Game! Object {}

Now let’s check back in IEx to see if the game process exists:

iex> GenServer.whereis(via)
#PID<0.402.0>

Great! We started a new game from the browser.

Now let’s see what happens when we do something we know will fail, like
starting a game with the same name. Recall that we can start only one game
with the same name at a time.

> new_game(game_channel)
undefined
Joined successfully Object {}

Chapter 7. Create Persistent Connections with Phoenix Channels • 170

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

That’s strange. The console says that we rejoined.

This happens because the channel crashed. After the crash, the client tried,
and succeeded, to reconnect.

But why did the channel crash? Won’t GenServer throw a polite error if we try
to start another game with the same name? Yes, it will, but the polite error
it throws includes a PID. Poison, the JSON encoder, doesn’t know how to
encode PIDs. Let’s take a look back at the IEx console to see the evidence:

[error] GenServer #PID<0.375.0> terminating
** (Poison.EncodeError) unable to encode value:

{:already_started, #PID<0.376.0>}
. . .

The easiest thing we can do to fix this is just pass the reason for the error
through the inspect/1 function in the error reply. Then the handle_in/3 for new_game
would look like this:

channel/lib/islands_interface_web/game_channel.ex
def handle_in("new_game", _payload, socket) do

"game:" <> player = socket.topic
case GameSupervisor.start_game(player) do

{:ok, _pid} ->
{:reply, :ok, socket}

{:error, reason} ->
{:reply, {:error, %{reason: inspect(reason)}}, socket}

end
end

After we recompile the game channel and try to start the game twice, we get
an entirely different result:

> new_game(game)
undefined
Unable to start a new game.
Object {reason: "{:already_started, #PID<0.386.0>}"}

That’s much nicer.

Now it’s time to work on adding a second player.

Add a Second Player
In order to add a second player, we just need to pass that player’s name to the
Game.add_player/2 function along with the via tuple that maps to the game PID.

Successfully adding a second player is something we want both players to
know about. But if we fail to add the second player, only that player really

report erratum • discuss

Connect the Channel to the Game • 171

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

needs to know. This is a case where we can use broadcast!/3 on success, and
:reply tuple if something goes wrong.

Fortunately, we have an easy way of deriving the via tuple to address the right
game process. The socket.topic will always be a string that begins with “game:”
and ends with the first player’s name. We can do a little binary pattern
matching to extract just the name. That player’s name is all we need to get
the via tuple from Game.via_tuple/1.

channel/lib/islands_interface_web/game_channel.ex
defp via("game:" <> player), do: Game.via_tuple(player)

With that information, let’s define a new handle_in/3 clause for the "add_player"
action:

channel/lib/islands_interface_web/game_channel.ex
def handle_in("add_player", player, socket) do

case Game.add_player(via(socket.topic), player) do
:ok ->
broadcast! socket, "player_added", %{message:
"New player just joined: " <> player}
{:noreply, socket}

{:error, reason} ->
{:reply, {:error, %{reason: inspect(reason)}}, socket}

:error -> {:reply, :error, socket}
end

end

Now let’s go over to player2’s browser console and add a function to push the
"add_player" message to the channel, with the new player’s name as the payload:

> function add_player(channel, player) {
channel.push("add_player", player)

.receive("error", response => {
console.log("Unable to add new player: " + player, response)

})
}
undefined

In order to catch the "player_added" event on the channel, in the case where we
are successful, we need to add a new on function to the game channel.

Let’s add this to both players’ browser consoles:

> game_channel.on("player_added", response => {
console.log("Player Added", response)

})
undefined

Chapter 7. Create Persistent Connections with Phoenix Channels • 172

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now we can go back to the IEx session to check the state of the game. Since
we’ve got a new game started, player1 should already have the name "moon",
but player2 should not yet have a name.

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.player1.name
"moon"

iex> state_data.player2.name
nil

That’s exactly what we wanted. In the second player’s browser console, let’s
actually add the second player:

> add_player(game_channel, "diva")
undefined
Player Added Object {message: "New player just joined: diva"}

Nice! We’ve captured the "player_added" event and logged its message to the
console. If we check in the first player’s browser console, we should see the
message there as well.

Finally, let’s take a look at the game state in IEx to make sure that player2
has a name:

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.player1.name
"moon"

iex> state_data.player2.name
"diva"

Yes, that worked exactly the way we expected it to. Now let’s move on to setting
an island’s coordinates.

Positioning Islands
Positioning islands requires a player, an island key, and the row and column
values of the upper-left coordinate. This is an action that needs to be secret,
for the eyes of the player setting her island coordinate only. Giving that
information away is like giving the game away.

As we define a new handle_in/3 clause to do this, we’re going to use a :reply tuple,
so that only the player setting his island’s coordinates will see the response.

The "position_island" message originates in JavaScript. JavaScript doesn’t have
an atom type, so we’ll send the player and island key values over as strings.

report erratum • discuss

Connect the Channel to the Game • 173

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

That means we’ll need to convert them to atoms in the handle_in/3 function
before we pass them into the game server.

Atoms are really appropriate in the Elixir world, but they don’t exist in Java-
Script. We’re okay doing these translations here because this is a boundary
of the system. There won’t be any other way to interact with the game engine
from the web.

channel/lib/islands_interface_web/game_channel.ex
def handle_in("position_island", payload, socket) do

%{"player" => player, "island" => island,
"row" => row, "col" => col} = payload

player = String.to_existing_atom(player)
island = String.to_existing_atom(island)
case Game.position_island(via(socket.topic), player, island, row, col) do

:ok -> {:reply, :ok, socket}
_ -> {:reply, :error, socket}

end
end

Atoms and User-Generated Content

Using String.to_existing_atom/1 to convert user-generated strings into
atoms closes an attack vector. This function will do the conversion
only if the atom already exists in the system, and it will throw an
error if the atom doesn’t currently exist.

The BEAM has a hard limit on the number of atoms it allows, and
it never garbage-collects them. If we didn’t convert to only preex-
isting atoms, malicious players could write a script to flood the
system with previously nonexistent players and island types, which
would crash the BEAM.

As we have with all these new actions so far, we’ll need a new function to
wrap the channel.push call and show us what the result is. Let’s add this to both
players’ browser consoles:

> function position_island(channel, player, island, row, col) {
var params = {"player": player, "island": island, "row": row, "col": col}
channel.push("position_island", params)

.receive("ok", response => {
console.log("Island positioned!", response)

})
.receive("error", response => {

console.log("Unable to position island.", response)
})

}
undefined

Chapter 7. Create Persistent Connections with Phoenix Channels • 174

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Before we set coordinates in any islands, let’s take a look at player2’s board:

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.player2.board
%{}

Excellent! All of player2’s islands are empty, as we would expect.

Let’s go to player2’s console and position an "atoll" island at row 1, column 1:

> position_island(game_channel, "player2", "atoll", 1, 1)
undefined
Island positioned! Object {}

Success! Now let’s go to the IEx console and see if it really worked:

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.player2.board
%{atoll:

%IslandsEngine.Island{
coordinates: #MapSet<[
%IslandsEngine.Coordinate{col: 1, row: 1},
%IslandsEngine.Coordinate{col: 1, row: 3},
%IslandsEngine.Coordinate{col: 2, row: 1},
%IslandsEngine.Coordinate{col: 2, row: 2},
%IslandsEngine.Coordinate{col: 2, row: 3}

]>,
hit_coordinates: #MapSet<[]>

}
}

It did work. Player2’s board clearly has an atoll positioned.

Before we move on to setting islands, let’s get the game state ready for it. The
rules check to make sure that a player has all of his islands positioned before
it will allow that player to set his islands. Player2 already has an atoll posi-
tioned, so let’s go ahead and position all of player2’s other islands:

> position_island(game_channel, "player2", "dot", 1, 5)
undefined
Island positioned! Object {}

> position_island(game_channel, "player2", "l_shape", 1, 7)
undefined
Island positioned! Object {}

> position_island(game_channel, "player2", "s_shape", 5, 1)
undefined
Island positioned! Object {}

report erratum • discuss

Connect the Channel to the Game • 175

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

> position_island(game_channel, "player2", "square", 5, 5)
undefined
Island positioned! Object {}

Then let’s populate one of player1’s islands from her console:

> position_island(game_channel, "player1", "dot", 1, 1)
undefined
Island positioned! Object {}

With that, we’re ready to move on to setting players’ islands.

Setting Islands
Once players are done moving their islands around, they need to mark their
islands as set in place. All the channel needs to do is pass an atom represent-
ing the player down to Game.set_islands/2 and pattern match on the result to
send the right response.

A player successfully setting his islands is something we want both players
to know about, so we will use broadcast!/3 to respond when Game.set_islands/2
succeeds. If it fails, we want to let only that player know, so we use a :reply
tuple.

In order to make it easier for any front-end code to display all the islands
once they are successfully set, we will also have to send a :reply tuple with the
full map of islands, but just to the caller. We would not want the opponent
to see this!

channel/lib/islands_interface_web/game_channel.ex
def handle_in("set_islands", player, socket) do

player = String.to_existing_atom(player)
case Game.set_islands(via(socket.topic), player) do

{:ok, board} ->
broadcast! socket, "player_set_islands", %{player: player}
{:reply, {:ok, %{board: board}}, socket}

_ -> {:reply, :error, socket}
end

end

We’ll need to transform the player from a string into an atom again because
that’s what the game server expects.

Now let’s add a function wrapping the channel.push call to the server. If the
function succeeds, the player that sent the message will receive an "ok"
response, which will include the board as its payload. Let’s log both of those
to the console. Let’s go ahead and add this to both players’ consoles:

Chapter 7. Create Persistent Connections with Phoenix Channels • 176

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

> function set_islands(channel, player) {
channel.push("set_islands", player)

.receive("ok", response => {
console.log("Here is the board:");
console.dir(response.board);

})
.receive("error", response => {

console.log("Unable to set islands for: " + player, response)
})

}
undefined

We’ll also need to listen for the "player_set_islands" event the server will broadcast
on success. We’ll need this in both players’ consoles as well:

> game_channel.on("player_set_islands", response => {
console.log("Player Set Islands", response)

})
undefined

There won’t be any changes in the game server state to check here, but the
rules struct will change along the way. Let’s check in with that in the IEx
session. We would expect the state machine to be in the :players_set state at
this point, and we would expect it to stay there until both players have set
their islands.

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.rules.state
:players_set

That’s exactly what we expected.

Now let’s call the set_islands function in player2’s browser window:

> set_islands(game_channel, "player2")
undefined
Player Set Islands Object {player: "player2"}

Here is the board:
Object

> atoll: Object
> dot: Object
> l_shape: Object
> s_shape: Object
> square: Object
> __proto__: Object

Great. We got the "player_set_islands" event signifying success. We should also
see the same response in player1’s console.

report erratum • discuss

Connect the Channel to the Game • 177

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now let’s check back with the state machine in the the IEx session. It should
still be in the :players_set state.

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.rules.state
:players_set

Nice—that’s just what we expected to see.

Now that we can set a player’s islands, we’re off to guessing coordinates, the
last and arguably most important part of playing the game.

Before we move on, we’re going to cheat a little. Normally both players would
need to position all their islands and then set them before either player could
guess. Showing a win would require a lot of guesses.

Currently, player2 has positioned and set his islands, but player1 has posi-
tioned only her dot island. If we manually reset the state to :player1_turn, player1
can begin guessing, and player2 can win with a single correct guess.

We’re going to reference the rules struct, so let’s alias the Rules module first:

iex> alias IslandsEngine.Rules
IslandsEngine.Rules

iex> state_data = :sys.get_state(via)
. . .

iex> state_data = :sys.replace_state(via, fn state_data ->
...> %{state_data | rules: %Rules{state: :player1_turn}}
...> end)
. . .

iex> state_data.rules.state
:player1_turn

With that out of the way, we’re ready to tackle guessing coordinates.

Guessing Coordinates
For this final piece, we’ll need to pass a player and a coordinate into
Game.guess_coordinate/3. We should show the result of a successful guess to both
players, so we’ll broadcast those. If a guess fails, we’ll return a :reply tuple.

That’s exactly what we’ve done for the past few handle_in/3 clauses, but this
one has a twist. The response we’ll get back from Game.guess_coordinate/3 will be
a tuple, but we need to use a map for the payload of our broadcast. That
means that we’ll need to do a little pattern matching to destructure the tuple
and build it back up again as a map.

Chapter 7. Create Persistent Connections with Phoenix Channels • 178

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

channel/lib/islands_interface_web/game_channel.ex
def handle_in("guess_coordinate", params, socket) do

%{"player" => player, "row" => row, "col" => col} = params
player = String.to_existing_atom(player)
case Game.guess_coordinate(via(socket.topic), player, row, col) do

{:hit, island, win} ->
result = %{hit: true, island: island, win: win}
broadcast! socket, "player_guessed_coordinate",

%{player: player, row: row, col: col, result: result}
{:noreply, socket}

{:miss, island, win} ->
result = %{hit: false, island: island, win: win}
broadcast! socket, "player_guessed_coordinate",

%{player: player, row: row, col: col, result: result}
{:noreply, socket}

:error ->
{:reply, {:error, %{player: player, reason: "Not your turn."}}, socket}

{:error, reason} ->
{:reply, {:error, %{player: player, reason: reason}}, socket}

end
end

Great! Now let’s add a wrapper function to push this message to the channel.
We’ll need it in both players’ consoles.

> function guess_coordinate(channel, player, row, col) {
var params = {"player": player, "row": row, "col": col}
channel.push("guess_coordinate", params)

.receive("error", response => {
console.log("Unable to guess a coordinate: " + player, response)

})
}
undefined

Since we’re broadcasting from the handle_in/3 on success, we need to listen for
the "player_guessed_coordinate" event in both players’ consoles:

> game_channel.on("player_guessed_coordinate", response => {
console.log("Player Guessed Coordinate: ", response.result)

})
undefined

We’ve manually set the state to be :player1_turn, so let’s have player1 make an
incorrect guess to start with. We just positioned all of player2’s islands, and
the highest row we put them in was 5, so any guess in row 10 will miss.

> guess_coordinate(game_channel, "player1", 10, 1)
undefined
Player Guessed Coordinate: player1

Object {win: "no_win", island: "none", hit: false}

report erratum • discuss

Connect the Channel to the Game • 179

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

That tells us all the right things. It wasn’t a hit, no island was forested, and
it didn’t result in a win.

Let’s check player1’s guesses in IEx one more time to make sure they still
look right:

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.player1.guesses
%IslandsEngine.Guesses{hits: #MapSet<[]>,
misses: #MapSet<[%IslandsEngine.Coordinate{col: 1, row: 10}]>}

That’s correct. Now it’s player2’s turn to guess. Player1 positioned a single
dot island at row 1, column 1. If we have player2 guess it, then player2 should
win.

> guess_coordinate(game_channel, "player2", 1, 1)
undefined
Player Guessed Coordinate: player2

Object {win: "win", island: "dot", hit: true}

Player2 does in fact win. That should have transitioned the game state to
:game_over. Let’s check to make sure:

iex> state_data = :sys.get_state(via)
. . .

iex> state_data.rules.state
:game_over

That’s exactly what we should have seen. That wraps up all the functionality
the game itself needs. We could call the channel done if we wanted to and
people could still play the game.

There’s one nagging little bit, though. We said early on that each game should
be private to two players. We currently don’t have a way to limit the number
of players who can join the channel on a given topic-subtopic combination.

Phoenix Presence is going to help us out with this, and that’s where we’re
going next.

Phoenix Presence
From the earliest days of Phoenix channels, developers have asked how to
tell who is currently subscribed to a channel. Until recently, the answer was
to create a custom solution that best fits an individual application’s circum-
stances. But now, we have Phoenix Presence to solve that problem in a gen-
eral way for all of us.

Chapter 7. Create Persistent Connections with Phoenix Channels • 180

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Presence has one job to do: to keep track of the clients subscribed to a topic
on a channel. For us, that means keeping track of the players in each game.
Presence does this amazingly well. This might sound like a trivial task, but
it’s deceptively difficult.

If you were to roll your own version of Presence, your first thought might be
to maintain a list of the subscribers, adding clients to the list when they join
and removing them when they leave. This might work for a system with a
single node.

With a single data structure on multiple nodes, though, you would have to
make sure that the data is available to all nodes in the cluster. But nodes
don’t stay up forever, and a crash could lose all of the subscription data.

You could put the data in an external database to solve that data durability
problem, but then network hiccups could disrupt communication to the
database, and the system would miss clients joining or leaving. That would
make the data out of sync with the real state of the channel.

The scenarios only get more complex from there. Add in users subscribing to
the same topic from multiple devices as well as flakey mobile connections,
and a solid solution might seem evasive indeed.

That’s where CRDTs (conflict-free replicated datatypes) come to the rescue.
They track the sequence of clients joining and leaving, across nodes and
clients. They do it without relying on clock time, which can drift from machine
to machine. CRDTs allow Presence to reconstruct the sequence of events to
accurately determine which clients are currently subscribed to a topic on a
channel.

In the future, this job might even be expanded to keep track of other things
that can join or leave a group, like nodes, services, and processes. Stay tuned!

The power of Phoenix Presence is compounded by how easy it is to set up
and use. We’ll need a new and mostly empty Presence module, and we’ll need
to make sure that it’s started when IslandsInterface is.

After that, we’ll need a single callback function in the channel to make it
work, though we’ll add another just to help us see Presence in action.

The plan is that as a player is joining, before we return {:ok, socket}, the
channel will send itself a message with the player’s screen name. The first
callback we write will match that message and have Presence start tracking
that screen name.

report erratum • discuss

Phoenix Presence • 181

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

The browser consoles we’ve been using are already full of state from playing
a game. Let’s start with a clean slate by shutting the server down and
reloading both players’ windows.

We need to begin with an empty Presence module in our application. Let’s
put it in lib/islands_interface_web/channels/presence.ex:

defmodule IslandsInterfaceWeb.Presence do
use Phoenix.Presence, otp_app: :islands_interface,

pubsub_server: IslandsInterface.PubSub
end

This module brings in Phoenix.Presence, specifies our Application name, and
specifies which PubSub server we’ll use. We’re using the one that Phoenix
provided for us when we generated the project.

We won’t need to add anything to this module. It’s fine as it is.

Next we need to make sure that the Presence module gets started in our
supervision tree when we start the application. Open up lib/islands_interface/appli-
cation.ex and add the Presence module in the list of children:

children = [
supervisor(IslandsInterfaceWeb.Endpoint, []),
supervisor(IslandsInterfaceWeb.Presence, []),

]

That’s it for the application setup. Hardly anything to it.

Before we can begin to use Presence, in the GameChannel, we’ll need to alias it:

alias IslandsInterfaceWeb.Presence

Now we need a single callback in game_channel.ex. In order to handle a raw
message the channel will send to itself, we’ll use a handle_info/2 callback. We’ll
have this callback match on {:after_join, player_name}.

channel/lib/islands_interface_web/game_channel.ex
def handle_info({:after_join, screen_name}, socket) do

{:ok, _} = Presence.track(socket, screen_name, %{
online_at: inspect(System.system_time(:seconds))

})
{:noreply, socket}

end

The body of the callback tells Presence to start tracking this user by her screen
name, and notes when that user joined the channel.

The way we trigger that callback is by having the channel send itself the
{:after_join, screen_name} message we matched for in the handle_info/2 callback.

Chapter 7. Create Persistent Connections with Phoenix Channels • 182

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

def join("game:" <> _player, %{"screen_name" => screen_name}, socket) do
send(self(), {:after_join, screen_name})
{:ok, socket}

end

In order to see Presence info from the browser, though, we’ll need another handle_in
clause that will broadcast the list of players that Presence is currently tracking:

channel/lib/islands_interface_web/game_channel.ex
def handle_in("show_subscribers", _payload, socket) do

broadcast! socket, "subscribers", Presence.list(socket)
{:noreply, socket}

end

Then we’ll need to listen for and respond to the “subscribers” event in both
players’ consoles. Go ahead and recompile the IslandsInterfaceWeb.GameChannel
module in the IEx console. Then let’s test this out. In each player’s browser
console, let’s begin to set up the state, just as we did before:

> var phoenix = require("phoenix")
undefined

> var socket = new phoenix.Socket("/socket", {})
undefined

> socket.connect()
undefined

> function new_channel(player, screen_name) {
return socket.channel("game:" + player, {screen_name: screen_name});

}
undefined

> function join(channel) {
channel.join()

.receive("ok", response => {
console.log("Joined successfully!", response)

})
.receive("error", response => { console.log("Unable to join", response) })

}
undefined

Then in player1’s console, let’s create a new channel object and listen for the
"subscribers" event:

> var game_channel = new_channel("moon", "moon")
undefined

> game_channel.on("subscribers", response => {
console.log("These players have joined: ", response)

})
undefined

report erratum • discuss

Phoenix Presence • 183

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now let’s do the same thing for player2 in his console, but this time changing
the arguments to new_channel:

> var game_channel = new_channel("moon", "diva")
undefined

> game_channel.on("subscribers", response => {
console.log("These players have joined: ", response)

})
undefined

With both players set up, let’s have player1 join the channel. After player1
joins, we can push the "show_subscribers" message over the channel:

> join(game_channel)
undefined
Joined successfully! Object {}

> game_channel.push("show_subscribers")
. . .
These players have joined: Object {moon: Object}

That correctly tells us that the first player has joined. Nice.

Even though we are broadcasting from the channel, we will not yet see the
logged message in player2’s console because that player has not joined the
channel yet.

Let’s take care of that now:

> join(game_channel)
undefined
Joined successfully! Object {}

> game_channel.push("show_subscribers")
. . .
These players have joined: Object {moon: Object, diva: Object}

That’s perfect. In player2’s console, we see a message telling us that both
players have joined. Since player1 had joined previously, that player will see
this logged message as well.

Now that we can tell which players are subscribed to a channel on a given
topic, we can implement the one last feature we need: authorization.

Authorization
In this last section, we’ll be tackling authorization—deciding if an action is
permissible. The action we really care about is joining a channel. The rules
for this are simple. We want only two players to join a channel on any given
topic-subtopic, and we want those two players to have different screen names.

Chapter 7. Create Persistent Connections with Phoenix Channels • 184

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Authentication Resources

In Islands, we don’t have any need for authentication—determining if users are who
they say they are. If your application does need authentication, there are resources
out there to help. Check out the documentation for Phoenix.Token if you need token-
based authentication. Alternately, Programming Phoenix by Chris McCord, José Valim,
and Bruce Tate has a lot of great information on authentication.

Now that we have Presence, we can write functions to check both of the
authorization conditions we outlined, and we can roll them up into a single
function that determines whether a given player can join.

The first condition we need to check is how many players have already joined
the channel. Presence.list/1 returns a map. The keys of this map are the screen
names of all the players who have joined the channel on a specific topic-
subtopic. We can write a function to return that number by getting the Pres-
ence list and counting the keys.

channel/lib/islands_interface_web/game_channel.ex
defp number_of_players(socket) do

socket
|> Presence.list()
|> Map.keys()
|> length()

end

We can also tell if a player is already subscribed to this game channel by
seeing if a given screen name is already a key in the Presence map.

channel/lib/islands_interface_web/game_channel.ex
defp existing_player?(socket, screen_name) do

socket
|> Presence.list()
|> Map.has_key?(screen_name)

end

With those two functions, we have enough information to see if a player is
authorized to join the channel:

channel/lib/islands_interface_web/game_channel.ex
defp authorized?(socket, screen_name) do

number_of_players(socket) < 2 && !existing_player?(socket, screen_name)
end

Now we can use this authorized?/2 function in join/3 to decide if we should let a
new player join.

report erratum • discuss

Authorization • 185

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

channel/lib/islands_interface_web/game_channel.ex
def join("game:" <> _player, %{"screen_name" => screen_name}, socket) do

if authorized?(socket, screen_name) do
send(self(), {:after_join, screen_name})
{:ok, socket}

else
{:error, %{reason: "unauthorized"}}

end
end

To see this in action, let’s stop the server and reload the two browser windows
again, just to start from a clean slate. Then let’s open a third window repre-
senting a third player who will not be able to join.

In each of the three browser consoles, go ahead and set up the state and
functions that we’ll need:

> var phoenix = require("phoenix")
undefined

> var socket = new phoenix.Socket("/socket", {})
undefined

> socket.connect()
undefined

> function new_channel(player, screen_name) {
return socket.channel("game:" + player, {screen_name: screen_name});

}
undefined

> function join(channel) {
channel.join()

.receive("ok", response => {
console.log("Joined successfully!", response)

})
.receive("error", response => { console.log("Unable to join", response) })

}
undefined

Now let’s have each player instantiate a new channel object and try to join
the channel, starting with player1. What we’re expecting is that player1 and
player2 will be able to join, but the third player won’t:

> var game_channel = new_channel("moon", "moon")
undefined

> join(game_channel)
undefined
Joined successfully! Object {}

Player1 joined successfully.

Chapter 7. Create Persistent Connections with Phoenix Channels • 186

report erratum • discuss

http://media.pragprog.com/titles/lhelph/code/channel/lib/islands_interface_web/game_channel.ex
http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Now let’s try player2.

> var game_channel = new_channel("moon", "diva")
undefined

> join(game_channel)
undefined
Joined successfully! Object {}

Player2 joined without a problem, so let’s try the third player in the new
browser console.

> var game_channel = new_channel("moon", "nope")
undefined

> join(game_channel)
undefined
Unable to join Object {reason: "unauthorized"}

Great! As we expected, the third player wasn’t allowed to join.

That’s all the behavior we’ll need from our channel.

This brings us right up to the boundary of conventional front-end web devel-
opment. The steps that remain are to model the game state, render the player
and opponent boards for each player, and map DOM events to the functions
we just wrote, updating the game state appropriately along the way.

There’s nothing revolutionary from here on out, and there are a number of
sources available that show you how to do it in the front-end language and
framework of your choice.

We won’t leave you hanging, though. We’ve included the code for a demo
front-end application written in React.js in the code bundle for the book. You
can add that code to the islands_interface project and play through a game on
your local machine.

Wrapping Up
Congratulations! You’ve made it.

You’ve built a Phoenix channel that provides an interface to the game engine
you wrote in Part 1. You did it without coupling the logic to the interface in
any way. The game engine concerns itself entirely with the business logic of
the game. The channel concerns itself entirely with brokering messages
between clients and the game engine.

report erratum • discuss

Wrapping Up • 187

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

You’ve seen how to use Phoenix Presence to track clients who have subscribed
to a channel on a topic, and you’ve seen how to use that to implement an
authorization scheme for joining the channel.

With that, we’ve completed the last layer we’re going to cover in this book.
Now go build some amazing new web apps!

Chapter 7. Create Persistent Connections with Phoenix Channels • 188

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

APPENDIX 1

Installing System Dependencies
Working through the examples in the book yourself is the best way to absorb
the ideas. Having the right versions of the right software installed on your
system will ease your way. You’ll need Elixir first and foremost, and Elixir
depends on Erlang. You’ll also need the Phoenix installer to generate a new
Phoenix interface, and you’ll need Node.js and NPM to manage your front-end
dependencies and assets.

Elixir
The Elixir site has great instructions on installing the latest Elixir for practi-
cally any system.1 All the code in this book has been written with Elixir 1.5.1.
For the best results, install a version equal to or greater than that.

If the installer prompts you to install Hex or Rebar 3, go ahead and say yes.

You can verify that the installation was successful by checking the Elixir
version number:

$ elixir -v
Erlang/OTP 20 [erts-9.0] [source] [64-bit] [smp:8:8] [ds:8:8:10]

[async-threads:10] [hipe] [kernel-poll:false] [dtrace]

Elixir 1.5.1

Erlang
Elixir depends on Erlang, so you’ll need that too. In many cases, installing
Elixir through a package management system will install Erlang as well. If
you’ve installed Elixir but don’t yet have Erlang, head to the downloads section

1. http://elixir-lang.org

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

of the Erlang website to find installation instructions for your system.2 You’ll
want version 20 or greater to work with Elixir 1.5.

You can check the Erlang installation by opening up erl, the Erlang shell:

$ erl
Erlang/OTP 20 [erts-9.0] [source] [64-bit] [smp:8:8] [ds:8:8:10]

[async-threads:10] [hipe] [kernel-poll:false] [dtrace]

Eshell V9.0 (abort with ^G)

Phoenix
You’ll need the Phoenix installer archive as well. This is essentially the Mix
command that allows us to generate a new Phoenix project. There’s a single,
albeit long, command to do this:

mix archive.install https://github.com/phoenixframework/archives/raw/master/phx_new.ez

That command just installed a Mix archive locally. Mix archives package up
Elixir projects and allow us to run their Mix tasks. The particular task we’re
looking for is phx.new, which generates a new Phoenix project in much the
same way that mix new generates a vanilla Elixir project.

Node.js and NPM
Phoenix uses Brunch to compile front-end assets like JavaScript and CSS
files. Brunch requires NPM, the Node.js package manager bundled with
Node.js. The easiest way to fulfill this dependency is to install Node.js version
5.0 or greater. Installation instructions are available at the Node.js site.3

With all of our installation complete, we’re ready to get to work.

2. http://www.erlang.org
3. https://nodejs.org

Appendix 1. Installing System Dependencies • 190

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Bibliography

[Tho16] Dave Thomas. Programming Elixir 1.3. The Pragmatic Bookshelf, Raleigh,
NC, 2016.

[TV16] Chris McCord, Bruce Tate, and José Valim. Programming Phoenix. The
Pragmatic Bookshelf, Raleigh, NC, 2016.

report erratum • discuss

http://pragprog.com/titles/lhelph/errata/add
http://forums.pragprog.com/forums/lhelph

Index

SYMBOLS
|> (pipeline operator), 26

A
add, guesses, 26–28, 90

Ajax, 45

aliasing modules, 14

application function, 137, 144

:application module, 135

application resource file, 144

Applications, 68, 188, see al-
so Islands game web inter-
face; Phoenix

about, 70, 135
adding as a dependency,

146
creating, 135–138
decoupling with, 134
defining, 135
dependency manage-

ment, 135–138, 141,
143

Islands game as, 70,
131, 135

metadata, 136
names, 135, 143
starting and stopping,

135, 138–142
understanding, 135–142
viewing running, 140,

146

applications paradigm, 133

atoms
BEAM limit on, 94, 174
converting strings into,

174, 176

JavaScript and, 174
local names, 94

authentication, 159, 185

authorization, 184–185

authorized?, 185

B
:bag ETS tables, 119

BEAM
atoms limit, 94, 174
restarts and ETS tables,

127
setting to crash when su-

pervisor crashes, 137
starting and stopping Ap-

plications, 135, 138–
142

Behaviours, 68, see also Ap-
plications, GenServer, super-
vision

Berners-Lee, Tim, 1

boards
defining, 13, 25, 36
guessing coordinates, 89–

92
positioning islands, 81–

86
setting islands, 86–89
transformations, 32–36
validating, 32

broadcast, 163, 167–168

broadcast!
about, 163
connecting channel to

game, 171
conversation over chan-

nels, 167–168
positioning islands, 176

broadcasting with channels
about, 163
connecting channel to

game, 171
conversation over chan-

nels, 167–168
guessing coordinates,

178–180

Brunch, 142, 190

build-time dependencies,
137, 146

C
call

about, 72
adding players, 79
vs. casts, 75
passing messages, 73–75
positioning islands, 82

callbacks
GenServer defaults, 73
in GenServer pattern, 71

cast, 72, 75

casts, 72, 75

channel function, 158, 161

channel module, see al-
so channels

about, 155
defining, 158

channels, 153–187
about, 4, 152
adding new player, 171–

173
advantages, 2, 45, 153
authorization, 184–185
building, 156–160
channel module, 155,

158

client packages, 156
clients, limiting with

Presence, 180–187
components, 154
connections, 159–163,

169–180
conversing over, 163–168
guessing coordinates,

178–180
joining, 159–163, 182–

187
leaving, 163
long polling, 154–155
membership, 156
pattern matching and,

154
positioning islands, 173–

176
Presence, 155, 182–187
Pub/Sub, 155, 182
publishing, 155, 182
registering, 158
setting islands, 176–178
sockets, 155, 158
starting new game, 169–

171
subscribing, 155, 182
transport layer, 155

check
state machine, 49–61
updating, 80

child processes
about, 105
child specification, 108–

111, 114
mapping, 115
order, 106–107
restart strategies, 106–

108
starting and stopping,

112, 114–117, 139
type key, 108

child specification, 108–111,
114

child_spec, 108, 111

circuit breakers, 67

cleanup, 125–127

client functions in GenServer
pattern, 71

code
for this book, xvi
Islands game demo, 3,

187

concurrency, see also GenServ-
er, OTP

early stateful systems, 1
Elixir advantages, 2, 4,

45

conditional logic, managing
state with, 46

conflict-free replicated data
types (CRDTs), 155, 181

connect, 159

connections, with channels,
159–163, 169–180

coordinates
defining, 13–16, 36
errors, 90–92
generating automatically,

19–25
guessing, 89–92, 178–

180
identifying, 13
passing, 13
positioning islands, 81–

86, 173–176
setting islands, 86–89
starting coordinates, 19
validating, 15, 23–25, 27

count_children, 115

coupling, frameworks and,
xiii, 10, 131–134

crashes, see also restarts;
supervision

avoiding cleanup after,
125

PIDs and Poison, 171
recovering state after a

crash, 119–127
restarting with good

state, 98
setting BEAM to crash

when supervisor crash-
es, 137

trapping exits, 99

CRDTs (conflict-free replicat-
ed data types), 155, 181

D
data entities, defining for Is-

lands game, 12–26

databases
Mnesia, 68, 127
postponing adding, 10

Debugger, 68

decoupling and Applications,
134

delete, 121, 125

deleting
keys and values in ETS

tables, 121
state, 125

dependencies
adding Applications as,

146
adding game engine as

new, 146
build-time, 137, 146
dependency management

with Applications, 135–
138, 141, 143

dependency management
with Mix, 136–138,
141, 143

hierarchies, 135
installing, 189
path dependency, 146
runtime, 137
tree, 137, 144, 147

dependency management
with Applications, 135–

138, 141, 143
Mix, 136–138, 141, 143

deployment
with GenServer, 69
versioning and microser-

vices, 67

deps function, 137, 143, 146

deps: key, 137

DETS, 127

Dialyzer, 68

disjoint?, 28

disjointed sets, 28

do block in with, 79

domains
defining for Islands game,

12–26
separating application

from framework and
database, 10, 132–134

:duplicate_bag ETS tables, 119

E
Ecto, 142

Elixir, see also GenServer, su-
pervision

about, 3
advantages, xiii, 2, 4, 45
creating new applica-

tions, 11
defining entities and

modeling domain, 12–
26

Index • 194

exiting IEx session when
locked, 100

handling multiple condi-
tions with with special
form, 24

installing, 189
recompiling helper func-

tions, 31
resources on, xiv, 189
running scripts before

opening shell, 140
starting new IEx session,

15
version, 137, 189

else
block in with, 79
validations, 24

encapsulation, GenServer pro-
cesses, 69

@enforce_keys, 14, 16

enforcement
keys, 14, 16
single instance of GenServ-
er, 94

ensure_all_started, 142

equal?, 18, 30

equality, 18, 30

erl (Erlang shell), 190

Erlang, see also ETS; OTP
erl, 190
fault tolerance, 97
global name service, 94
installing, 189
resources on, 72, 189
version, 189

Erlang Term Storage, see ETS

errors
bad state and runtime

errors, 98
guessing coordinates, 90–

92
passing with inspect, 171
positioning islands, 83–

86
setting islands, 87
timeouts, 116

ETS, 68
about, 68
BEAM restarts, 127
cleanup, 125–127
recovering state after a

crash, 119–125

event listeners, channel com-
munications, 166

events, transitions in state
machines, 47–61

exit signals, 99–100, 102–104

exits, trapping, 99, 103–104,
114

:extra_applications key, 137

F
fault tolerance, see also recov-

ery; supervision
BEAM, 43
circuit breakers, 67
in Elixir, 97–99
in Erlang, 68, 97

file structure for Islands
game, 12

find, 34

find_value, 34

finite state machines,
see state machines

flash messages, 150

form_tag, 149

forms, modifying, 148–152

frameworks, see also Phoenix
about, 131
advantages, 10, 131
coupling and, xiii, 10,

131–134
postponing adding, 10

function composition, 4, 9

functional programming
about, 4
approach to Islands

game, 9
transformations and, 26

FunctionClauseError, 32

functions in GenServer pattern,
71

G
game interface, see Islands

game web interface

game over state, 57–61, 89,
92

:gen_statem, 47

GenServer, 68
about, 69
adding players, 79–81
basics, 70–76
child specification, 108–

110
creating, 71
customizing, 78–92
enforcing single instance,

94
guesses, 89–92
initializing state, 76–78

as microservice, 3
passing messages, 72–76
pattern, 71, 77, 79
positioning islands, 81–

86
process registration, 92–

96, 115, 118
resources on, 72
setting islands, 86–89
timeouts, 116, 123

get_state, 78, 124

guards, names as strings,
77, 80

guesses
defining, 13, 16–17
with GenServer, 89–92
transformations, 17, 26–

28, 30, 33–36, 38–40
winning game, 35, 39, 57

H
handle_call

adding players, 79
and call, 72
passing messages, 73–75
positioning islands, 82

handle_cast, 75

handle_in
about, 155
connecting channel to

game, 169–180
conversing over channels,

164–168

handle_info
passing messages, 73
Presence module, 182
state checking, 123
timeouts, 116

Hex, 144, 146, 189

HTTP, as stateless, 1, 43

I
:id key, child specification,

108

IEx
exiting session when

locked, 100
recompiling helper func-

tions, 31
running scripts before

opening shell, 140
starting new session, 15

iex -S mix, 15

init, 77, 112, 122

initialization
with GenServer, 76–78

Index • 195

state, 49
storing state, 122
supervisors, 112

:initialized state, 49

insert, 120–121

inserting
players, 121
values into ETS tables,

120

inspect, 171

installing
dependencies, 189
Phoenix installer archive,

142, 190

Interactive Elixir, see IEx

interface, web, see Islands
game web interface

islands
building automatically,

19–25
checking for overlaps,

28, 33, 37
defining, 13, 18–25, 36
positioning, 81–86, 173–

176
setting, 53, 59, 86–89,

176–178
shapes, 18
transformations, 28–32
validating, 24, 32

Islands game, see also chan-
nels; Islands game web in-
terface; supervision

about, 2, 5
adding players, 50–55,

59, 77, 79–81, 171–173
as Application, 70, 131,

135
authorization, 184–185
child specification, 108–

111, 114
cleanup, 125–127
creating, 11
customizing interface

with GenServer, 78–92
data definitions, 12–26
demo code, 3, 187
dependency management

with Mix, 136–138,
141, 143

file structure, 12
game logic, 26–40
GenServer basics, 70–76
guessing coordinates with
GenServer, 89–92

guessing coordinates with
channels, 178–180

initializing, 49
initializing state with
GenServer, 76–78

limiting players with
Presence, 180–187

passing messages with
GenServer, 72–76

players’ turns and state,
55–61

positioning islands, 81–
86, 173–176

recovering state after a
crash, 119–127

restart strategies, 106,
108, 110

setting islands, 53, 59,
86–89, 176–178

setup summary, 36–40
starting and stopping in

BEAM, 138–142
starting new game from

channel, 169–171
state machines, 47–61
storing state, 121–125
transformation functions,

26–36, 38–40
winning game, checking

for, 35, 39, 57
winning game, state, 57–

61, 92
winning game, with

channels, 180

Islands game web interface
adding game engine as

dependency, 146
adding new player, 171–

173
as Application, 131
authorization, 184–185
calling game logic, 148–

152
channels, building, 156–

160
channels, connecting to

game, 169–180
channels, conversing

over, 163–168
generating with Phoenix,

142–148
guessing coordinates,

178–180
limiting players with

Presence, 180–187
positioning islands, 173–

176
setting islands, 176–178

starting game from, 147
starting new game, 169–

171

isolation, GenServer processes,
69

J
JavaScript

atoms, 173
building channels, 156–

160
channel connections,

160–163
channels client, 156
conversing over channels,

163–168
phoenix.js file, 160
rise of stateful environ-

ments, 45

join
channels, 155, 159–163
channels with Presence,

182–187
wrapping, 162

JSON
PIDs and crashes, 171
storing state with, 127
tuples and, 14

K
keys

coordinate structs, 14
enforcing, 14, 16
ETS tables, 68, 119–121
guesses structs, 16
positioning islands, 81,

85, 173
registering processes with

via tuple, 95

:kill, 102

L
latency and stateless systems,

2

leave, 163

libraries, Applications as, 135

linking, processes, 99–103,
114

lists, 18

local names, 94

:logger, 138

long polling, 154–155

lookup, 120

Index • 196

M
map, 20–25

maps
building islands automat-

ically, 20–25
child processes, 115
passing coordinates, 14

MapSet
defining islands, 18
island equality, 18, 30
island transformations,

28–32
uniqueness, 16
validating coordinates, 24

:max_restarts, 105

:max_seconds, 105

McCord, Chris, xiv, 185

member?, 30

membership
channels, 156
checking, 30

messages
exit signals, 99–100,

102–104
flash messages, 150
GenServer processes, 69
passing with GenServer,

72–76
race condition, 123
sending and receiving

unlinked processes, 99

metadata, Applications, 136

microservices
about, 65–67
GenServer as, 3

Mix
adding new dependency,

146
creating applications, 11,

135–138
creating new applica-

tions, 143
dependency manage-

ment, 136–138, 141,
143

dependency tree, 147
generating new Phoenix

application, 143
installing Phoenix, 190
starting Applications, 139
starting servers, 144

mix.exs file, 136

Mnesia, 68, 127

:mod, 137

__MODULE__ macro, 77, 112,
114

module functions
in GenServer pattern, 71
listing, 72

modules
aliasing, 14
names, 77, 93, 112, 114,

143

N
:named_table option in ETS, 120

names
Applications, 135, 143
enforcing single instance

of GenServer, 94
Erlang global name ser-

vice, 94
GenServer process registra-

tion, 92–96, 115, 118
getting PID from, 115
guards, 77, 80
local names, 94
modules, 77, 93, 143
pattern matching to ex-

tract, 172
Phoenix channels, 4
players, 77, 172
processes, 92–96, 115,

118
referencing ETS tables by

name, 120
supervisor module, 112,

114

nanoservices, GenServer as, 3

new
creating new applications

with Mix, 11
defining entities for Is-

lands game, 12–26
ETS tables, 120

--no-ecto flag, 143

--no-start flag, 141

Node.js, 142, 190

NPM, 190

O
Observer, 68

on function, 166

one-for-all restart strategy,
107

one-for-one restart strategy,
simple, 106–107, 110

Open Telecom Platform,
see OTP

order
catchall clauses and, 49
checking state, 49

child processes, 106–107
pattern matching, 83
restart strategies, 106–

107
using with, 83

:ordered_set ETS tables, 119

ORMs, 10

OTP, see also Applications,
Behaviours, ETS, GenServer

about, xiv, 67
built-in state machine, 47
storage mechanisms, 68,

127
toolset, 68

overlaps
checking, 28, 33, 37
preventing, 88

overriding, child specification,
112

P
pathname, 146

pattern matching
channels and, 154
extracting name of sec-

ond player, 172
order and, 83
payload for broadcasting,

178
starting game server, 150

:permanent restart option, 108

Phoenix, see also channels
about, 4, 134
advantages, xiii, 2, 131
as Application, 131
calling game logic, 148–

152
generating new applica-

tion, 142–148
installer archive, 142,

190
modifying welcome page

form, 148–152
page load times, 145
Presence, 155, 180–187
resources on, xiv
starting game from web

interface, 147

phoenix.js file, 160

phoenix_pubsub, 155

pid_from_name, 115

PIDs
binding supervisor pro-

cess, 111
binding variables, 71
crashes and Poison, 171

Index • 197

passing messages with
GenServer, 72–76

process registration, 92–
96, 115, 118

starting game from web
interface, 147

terminating processes,
115

pipeline operator (|>), 26

pipelines, using, 26

players
adding, 50–55, 59, 77,

79–81, 171–173
limiting with Presence,

180–187
names, 77, 172
set state, 50–55, 59
turns and state, 55–61

Poison, 171

POST, 149

Presence, 155, 180–187

privacy, ETS tables, 120

:private level in ETS tables, 120

process registration, 92–96,
115, 118

process supervision, see su-
pervision

Process.flag, 104

processes, see also supervi-
sion

about, 69, 105
checking if alive, 126
child specification, 108–

111, 114
linking, 99–103, 114
long-running, 100–102
mapping child processes,

115
names, 92–96
naming, 115, 118
order, 106–107
passing messages, 72–76
registering, 92–96, 115,

118
restart strategies, 106–

108
spawning, 69, 71, 101,

103
starting, 71, 76
starting and stopping

child processes, 112,
114–117, 139

state of, 69, 78, 86
state, replacing, 86
stopping, 102, 115–116,

125

timeouts, 116, 123
trapping exits, 99, 103–

104, 114

Programming Elixir 1.3, xiv

Programming Phoenix, xiv,
185

project, 136, 143

:protected level in ETS tables,
120

:public level in ETS tables, 120

publishing, channels, 155,
182

PubSub, 155, 182

push, 163–165

put, 24

put_in, 80

R
r function (recompiling), 31

race conditions
spawning processes, 103
timeouts and messages,

123

Rebar 3, 189

receive, 100

recompile function, 31

recompiling helper functions,
31

recovery, see also supervision
child specification, 108
for good state, 98
need for, 97
recovering state after a

crash, 119–127
restart strategies, 105–

108, 110
trapping exits, 99

reduce, 23

reduce_while, 23–25

registration
channels, 158
process, 92–96, 115, 118

Registry module, 95–96

release management with
OTP, 68

Reltool, 68

replace_state, 86

:reply
adding a new player, 171
conversing over channels,

163–165
guessing coordinates ,

178

positioning islands, 173,
176

starting new game, 169

reply_success, 116, 121

resources for this book
authentication, 185
code files, xvi
Elixir, xiv, 189
Erlang, 72, 189
GenServer, 72
Mnesia, 127
Node.js, 190
Phoenix, xiv

rest-for-one restart strategy,
107

:restart key, child specification,
108

restarts
allowable number of, 105
BEAM, 127
child specification, 108
for good state, 98
strategies, 105–108, 110

retrieving, values into ETS
tables, 120

routing requests with chan-
nels, 158

runtime
dependencies, 137
errors and bad state, 98

S
-S flag, 140

scripts, running before open-
ing shell, 140

security, atoms, 174

self, 100

send
passing messages with
GenServer, 72

removing timeouts from
init, 123

in unlinked processes,
100

servers, starting with Mix,
144

:set ETS tables, 119

sets
checking membership, 30
disjointed, 28

:shutdown key, child specifica-
tion, 108

simple one-for-one restart
strategy, 106–107, 110

sockets, 160–163

Index • 198

sockets, channel, 155

spawn_link, 103

spawning processes, 69, 71,
101, 103

start, 71, 137, 139

:start key, child specification,
108, 112

start_link
custom supervisor, 111–

112, 114
game from web interface,

147
GenServer module, 71
processes, 71, 76

start_permanent:, 137

starting
Applications, 135, 138–

142
Applications manually,

141
child processes, 112,

114–117, 139
game from web interface,

147
game server with pattern

matching, 150
game with supervisor,

114–117
new IEx session, 15
new game from channel,

169–171
servers with Mix, 144
supervisors, 139

state, see also state ma-
chines; stateful systems;
stateless systems

about, 43
checking, 49, 78, 124
cleanup, 125–127
game over state, 57–61,

89, 92
:initialized state, 49
initializing with GenServer,

76–78
managing with condition-

al logic, 46
manually setting, 92
passing messages with
GenServer, 73–76

players’ turns, 55–61
processes, 69, 78, 86
recovering after BEAM

restarts, 127
recovering state after a

crash, 119–127
replacing, 86
restarting after crash, 98

runtime errors, 98
setting islands, 89
setting players, 50–55, 59
storing in ETS, 121–125
as term, 46
winning game state, 57–

61, 92

state machines
about, 43, 46
advantages, 46
catchall clause, 48
diagram, 48
:gen_statem built-in, 47
players’ turns, 55–61
setting players, 50–55, 59
winning game state, 57–

61, 92

stateful systems, see also Is-
lands game; state machines

early, 1
JavaScript and, 45
trend toward, 44–46

stateless systems
advantages, 1, 44
disadvantages, 2

static analysis with OTP, 68

:stop for timeouts, 116, 125

stopping
Applications, 138–142
Applications manually,

141
game with supervisor,

114–117
IEx session when locked,

100
processes, 102, 115–

116, 125
supervisor, 105

String_to_existing_atom, 174, 176

strings
converting into atoms,

174, 176
guards for names as

strings, 77, 80

structs
advantages, 14
coordinates, 14
defining, 14
guesses, 16
islands, 18
sockets as, 155

subscribing
channels, 155, 182
limiting clients with Pres-

ence, 180–187

--sup flag, 113, 136

sup variable, binding PID to,
111

supervision, 68, 97–127
about, 11, 97–98, 105
calling game engine from

Phoenix welcome page,
150

child specification, 108–
111, 114

cleanup, 125–127
creating new applica-

tions, 11
linking processes, 99–

103, 114
Presence module, 182
:restart key, 108
restart strategies, 105–

108, 110
starting and stopping

game with, 114–117
starting supervisors, 139
supervision tree, 105,

112, 182
terminating supervisor,

105
top level supervisor with
--sup flag, 113, 136

trapping exits, 99, 103–
104, 114

supervision trees, 105, 112,
182

supervisors, see also supervi-
sion

about, 11, 97–98, 105
binding supervisor pro-

cess, 111
calling game engine from

Phoenix welcome page,
150

creating custom, 110–112
starting, 139
starting and stopping

game with, 114–117
terminating, 105
top level with --sup flag,

113, 136

:sys module, 78

T
tag, 149

Tate, Bruce, xiv, 185

:temporary restart option, 108

terminate, 116, 125

terminate_child, 115

testing, GenServer, 69

Thomas, Dave, xiv

Index • 199

timeouts
cleanup and, 125
processes, 116, 123
removing from init, 123
stopping, 116

token-based authentication,
185

transformations
adding players, 79
boards, 32–36
functions, 26–36, 38–40
guesses, 17, 26–28, 30,

33–36, 38–40
islands, 28–32

:transient restart option, 108

transport layer, connections,
155

:trap_exit, 104

trapping exits, 99, 103–104,
114

tuples
building islands automat-

ically with offset, 20–25
JSON and, 14

:type key, child specification,
108

U
uniqueness with MapSet, 16

update_in, 17, 90

use Application, 139

V
validations

boards, 32
coordinates, 15, 23–25,

27
guesses, 27
islands, 24, 32
transformations, 28

Valim, José, xiv, 185

values, ETS tables, 119–121

versions
Elixir, 137, 189
Erlang, 189
microservices, 67

Node.js, 190
version number in meta-

data, 137

via tuple, registering process-
es with, 95–96, 115, 118

W
web interface, see Islands

game web interface

WebSockets, 154–155

which_applications, 140, 146

which_children, 115

whitelist, state/event combi-
nations in state machines,
47–61

winning game
with channels, 180
checking for, 35, 39, 57
state, 57–61, 92

with special form
creating interface with
GenServer, 78–92

validations, 24

World Wide Web, invention
of, 1

Index • 200

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2017 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2017

https://pragprog.com

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang. Add in the unparalleled beauty and ease of the
Phoenix web framework, and enjoy the web again!

Programming Elixir ≥ 1.6
This book is the introduction to Elixir for experienced
programmers, completely updated for Elixir 1.6 and
beyond. Explore functional programming without the
academic overtones (tell me about monads just one
more time). Create concurrent applications, but get
them right without all the locking and consistency
headaches. Meet Elixir, a modern, functional, concur-
rent language built on the rock-solid Erlang VM. Elixir’s
pragmatic syntax and built-in support for metaprogram-
ming will make you productive and keep you interested
for the long haul. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(398 pages) ISBN: 9781680502992. $47.95
https://pragprog.com/book/elixir16

Programming Phoenix
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights, this definitive guide will
be your constant companion in your journey from
Phoenix novice to expert, as you build the next gener-
ation of web applications.

Chris McCord, Bruce Tate, and José Valim
(298 pages) ISBN: 9781680501452. $34
https://pragprog.com/book/phoenix

https://pragprog.com/book/elixir16
https://pragprog.com/book/phoenix

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux 2
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. With this updated
second edition for tmux 2.3, you’ll customize, script,
and leverage tmux’s unique abilities to craft a produc-
tive terminal environment that lets you keep your fin-
gers on your keyboard’s home row.

Brian P. Hogan
(102 pages) ISBN: 9781680502213. $21.95
https://pragprog.com/book/bhtmux2

Modern Vim
Turn Vim into a full-blown development environment
using Vim 8’s new features and this sequel to the
beloved bestseller Practical Vim. Integrate your editor
with tools for building, testing, linting, indexing, and
searching your codebase. Discover the future of Vim
with Neovim: a fork of Vim that includes a built-in
terminal emulator that will transform your workflow.
Whether you choose to switch to Neovim or stick with
Vim 8, you’ll be a better developer.

Drew Neil
(190 pages) ISBN: 9781680502626. $39.95
https://pragprog.com/book/modvim

https://pragprog.com/book/bhtmux2
https://pragprog.com/book/modvim

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/lhelph
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/lhelph

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/lhelph
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/lhelph
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	Who This Book Is Not For
	About This Book
	Online Resources

	1. Mapping Our Route
	Lay the Foundation with Elixir
	Add a Web Interface with Phoenix
	Functional Web Development
	The Game of Islands

	Part I—Define the Functional Core in Elixir
	2. Model Data and Behavior
	The Benefits
	Let’s Build It
	Discover the Entities and Model the Domain
	Transforming Data
	Putting the Pieces Together
	Wrapping Up

	3. Manage State with a State Machine
	A Quick Look at State
	A Bit of History
	State Machines
	A Functional State Machine for Islands
	Working Through the States
	Wrapping Up

	Part II—Add OTP for Concurrency and Fault Tolerance
	4. Wrap It Up in a GenServer
	A Look at Micro-Services
	OTP Solutions
	Getting Started with GenServer
	Initializing GenServer State
	Customizing GenServer Behavior
	Naming GenServer Processes
	Wrapping Up

	5. Process Supervision for Recovery
	Fault Tolerance
	Linking Processes
	Introducing the Supervisor Behaviour
	Supervision Strategies
	The Child Specification
	A Supervisor for the Game
	Starting the Supervision Tree
	Starting and Stopping Child Processes
	Putting the Pieces Together
	Recovering State After a Crash
	Wrapping Up

	Part III—Add a Web Interface with Phoenix
	6. Generate a New Web Interface with Phoenix
	Frameworks
	Applications
	Generate a New Phoenix Application
	Adding a New Dependency
	Call the Logic from the Interface
	Wrapping Up

	7. Create Persistent Connections with Phoenix Channels
	The Beauty of Channels
	The Pieces That Make a Channel
	Let’s Build It
	Establish a Client Connection
	Converse Over a Channel
	Connect the Channel to the Game
	Phoenix Presence
	Authorization
	Wrapping Up

	A1. Installing System Dependencies
	Elixir
	Erlang
	Phoenix
	Node.js and NPM

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

