

Early praise for Functional Programming with Elixir

Learning to program in a functional style requires one to think differently. When
learning a new way of thinking, you cannot rush it. I invite you to read the book
slowly and digest the material thoroughly. The essence of functional programming
is clearly laid out in this book and Elixir is a good language to use for exploring
this style of programming.

➤ Kim Shrier
Independent Software Developer, Shrier and Deihl

Some years ago it became apparent to me that functional and concurrent program-
ming is the standard that discriminates talented programmers from everyone else.
Elixir’s a modern functional language with the characteristic aptitude for crafting
concurrent code. This is a great resource on Elixir with substantial exercises and
encourages the adoption of the functional mindset.

➤ Nigel Lowry
Company Director and Principal Consultant, Lemmata

This is a great book for developers looking to join the world of functional program-
ming. The author has done a great job at teaching both the functional paradigm
and the Elixir programming language in a fun and engaging way.

➤ Carlos Souza
Software Developer, Pluralsight

This book covers the functional approach in Elixir very well. It is great for beginners
and gives a good foundation to get started with advanced topics like OTP, Phoenix,
and metaprogramming.

➤ Gábor László Hajba
Senior Consultant, EBCONT enterprise technologies

Hands down the best book to learn the basics of Elixir. It’s compact, easy to read,
and easy to understand. The author provides excellent code examples and a great
structure.

➤ Stefan Wintermeyer
Founder, Wintermeyer Consulting

Learn Functional Programming with Elixir
New Foundations for a New World

Ulisses Almeida

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series editor: Bruce A. Tate
Copy Editor: Candace Cunningham, Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-245-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments vii
Introduction ix

1. Thinking Functionally 1
Why Functional? 1
Working with Immutable Data 3
Building Programs with Functions 4
Declaring Code 7
Wrapping Up 9

2. Working with Variables and Functions 11
Representing Values 11
Executing Code and Generating a Result 12
Binding Values in Variables 15
Creating Anonymous Functions 17
Naming Functions 24
Wrapping Up 30

3. Using Pattern Matching to Control the Program Flow . . . 33
Making Two Things Match 33
Unpacking Values from Various Data Types 35
Control Flow with Functions 45
Expanding Control with Guard Clauses 48
Elixir Control-Flow Structures 53
Wrapping Up 56

4. Diving into Recursion 59
Surrounded by Boundaries 59
Conquering Recursion 65
Tail-Call Optimization 70
Functions Without Borders 73

Using Recursion with Anonymous Functions 78
Wrapping Up 79

5. Using Higher-Order Functions 81
Creating Higher-Order Functions for Lists 81
Using the Enum Module 87
Using Comprehensions 89
Pipelining Your Functions 89
Be Lazy 93
Wrapping Up 102

6. Designing Your Elixir Applications 105
Starting Your Project with Mix 105
Designing Entities with Structs 110
Using Protocols to Create Polymorphic Functions 117
Creating Module Behaviours 124
Wrapping Up 136

7. Handling Impure Functions 139
Pure vs. Impure Functions 140
Controlling the Flow of Impure Functions 143
Trying, Rescuing, and Catching 146
Handling Impure Functions with the Error Monad 150
Using with 155
Wrapping Up 158

A1. Adding Rooms to the Game 161
A2. Answers to Exercises 165

Answers for Chapter 2, Working with Variables and Functions 165
Answers for Chapter 3, Using Pattern Matching to Control the
Program Flow 166
Answers for Chapter 4, Diving into Recursion 168
Answers for Chapter 5, Using Higher-Order Functions 171

Bibliography 175
Index 177

Contents • vi

Acknowledgments
When it is your first time writing a book, it’s a great challenge. But when
English isn’t your native language, it’s a challenge on a whole new level. I did
it, but I wasn’t alone. This book has reached this level of quality with the help
of several amazing and kind people. I would like to highlight my editor,
Jackie Carter. Her contribution is what makes the release of this book possible.
Her experience and knowledge guided me in the right direction with patience
and humor. We faced tough decisions, rewrites, and corrections, and she was
always there to help and keep me motivated. I’m really grateful to have worked
with her.

Bruce Tate, the series editor, took the first technical look at the book early
in the writing process. His experience was invaluable to me. He helped me
transform introductions from boring to engaging, and helped me prioritize
the essential and useful functional programming techniques.

The Elixir core members Andrea Leopardi and James Fish provided great
technical advice throughout the writing of this book. Our technical reviewers
did superb work in catching broken code and pointing out concepts that
needed more clarity: thank you to Bernardo Araujo, Stéfanni Brasil, João
Britto, Thiago Colucci, Mark Goody, Gábor László Hajba, Maurice Kelly, Nigel
Lowry, Max Pleaner, Juan Ignacio Rizza, Kim Shrier, Carlos Souza, Elomar
Souza, and Richard Thai. Thank you also to our beta reviewers who did an
excellent job in reporting issues, especially Luciano Ramalho, who shared his
experience by providing excellent insights for the first examples of this book.

Thank you to Susannah Davidson Pfalzer for the excellent onboarding to The
Pragmatic Bookshelf, and for the early tips on how to write a great book;
Candace Cunningham, our copyeditor, who helped make the text fluid and
enjoyable to read; Janet Furlow, who helped with production details and
extractions; and Katharine Dvorak, who did an amazing job in guiding the
book through the final steps. She was always ready to answer any questions
and help me with book promotion.

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Thank you to Hugo Baraúna from Plataformatec and Adriano Almeida from
Casa do Código for introducing me to The Pragmatic Bookshelf; and to my
coworkers from Plataformatec, who helped keep me motivated, especially João
Britto and José Valim, who always helped me answer hard questions about
Elixir.

Finally, I want to thank my family—Ana Guerra, Sandra Regina, and Thamiris
Herrera—and friends for helping me focus on this project and filling me with
good energy. Thanks to them, I was able to keep my motivation to work hard
and finish the book.

Acknowledgments • viii

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Introduction
As a child, I played many games that were very similar—games like Super
Mario Bros., Donkey Kong, The Lion King, and Aladdin. I could switch between
them without much work; the learning ramp-up was quick. They all shared
the same core mechanics: you move straight to the right, jump on platforms,
and avoid being hit by enemies. They were all 2D platform games.

Switching between programming languages is similar. In my work, I have
needed to switch between Ruby, JavaScript, and CoffeeScript, and between
Java, Python, and Objective-C. It wasn’t too painful to do. All these languages
are very different, but in some ways they are similar. I could use object-ori-
ented programming with all of them. When I learned how to create objects
and methods, all the dots started to connect and the languages became
familiar quickly.

After playing 2D platform games, I switched to fighting games. They were still
games. They were still 2D. However, the challenges and mechanics were
completely different. Instead of going straight to the right and jumping the
obstacles, I needed to punch and kick the enemies in a limited space. I
needed to think differently to master this type of game.

That’s how I felt when I switched to functional programming. Where were my
objects and methods? I made the mistake of applying the concepts that I was
used to in a paradigm where they aren’t necessary. I was messing up the
codebase. I needed to change my thinking. I couldn’t program like I had before.

Switching to a new paradigm is very different from simply switching between
languages. You need to think differently, or you’ll get in trouble.

I invite you to reset your mind before learning functional programming. After
reading this book you’ll see your old code from a very different perspective.
The best part is that most of today’s main languages support some functional
concepts. Even if you can’t switch to Elixir today, you’ll be able to apply useful
functional concepts in your daily language.

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Is This Book for You?
This book is tailored for beginners in functional programming and Elixir. I
expect you have some experience in building simple algorithms, debugging
errors, and running commands in a terminal, and that you have at least an
entry-level knowledge of software development. Any experience in other lan-
guages will help you out. You don’t need to be an expert because we’ll start
from scratch.

If you’re an object-oriented programmer ready to take the next step, or a college
student graduating and looking for a language to work with, this book is for
you. If you’ve tried to program in Elixir before and had a hard time because
of the functional programming concepts, this book will give you the knowledge
that you need to become a future expert. If you’re already an Elixir or func-
tional programming expert, you may find some valuable tips here, but this
book probably isn’t for you.

What’s in This Book?
You’ll find a beginner’s guide to functional programming concepts and an
introduction to Elixir. The book is divided into seven chapters:

Chapter 1, Thinking Functionally, on page 1, introduces the main concepts
of functional programming that will persist throughout the book. You’ll learn
why functional concepts matter and help you create better software.

In Chapter 2, Working with Variables and Functions, on page 11, you’ll start
learning Elixir from scratch, from simple expressions to modules. We’ll explore
the base building blocks of a functional program: functions. Anonymous and
named functions are introduced here.

Then, in Chapter 3, Using Pattern Matching to Control the Program Flow, on
page 33, you’ll learn how to create conditional code with functions. Pattern
matching plays the central role.

Repetition is a fundamental task in any programming language. In Chapter
4, Diving into Recursion, on page 59, you’ll learn the functional way: recursive
functions.

In Chapter 5, Using Higher-Order Functions, on page 81, we’ll explore how to
create better functions that hide complex code. We’ll cover how to create
functions that can receive or return functions; you’ll learn higher-order
functions.

Introduction • x

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Chapter 6, Designing Your Elixir Applications, on page 105, is about creating
a larger application and organizing it. We’ll explore how to model data, create
contracts, and achieve polymorphism using Elixir.

Finally, in Chapter 7, Handling Impure Functions, on page 139, we’ll look at
the concept that finishes this journey: how to work with impure functions.
We’ll explore the pros and cons of four strategies: conditional code, exception
handling, monads, and Elixir’s with.

At the end of the book you’ll find two appendixes. In Appendix 1, Adding Rooms
to the Game, on page 161, you’ll find extra challenges for the game you developed
in Chapter 6, Designing Your Elixir Applications, on page 105. In Appendix 2,
Answers to Exercises, on page 165, you’ll find the answers for the exercises.

Using Elixir
Elixir is a functional programming language that runs in the Erlang VM, a
powerful environment to run distributed systems. I’ve chosen Elixir for this
book because of its fun syntax, the vibrant community, and the production-
ready tooling. Elixir syntax lets you focus on what’s important while learning
functional programming.

Installing Elixir
Elixir needs Erlang to run; the Elixir installer installs Erlang for you. There’s not
a lot to say about the Elixir install steps if you follow the official Elixir installation
guide.1 It covers everything you need to know to install Elixir in each of the
main operating systems. Read the guide, and be sure to install the latest Elixir
version (1.6.0 or newer) so you can follow along with the examples in the book.

Running the Code
For some examples, you’ll need to write commands in your terminal. They
will look like this:

$ elixir -v
Erlang/OTP 20 [erts-9.2] [source] [64-bit] [smp:4:4] [ds:4:4:10]
[async-threads:10] [hipe] [kernel-poll:false]

Elixir 1.6.0 (compiled with OTP 19)

The command elixir -v goes after the $ sign. Press Enter after typing the command
to see the result. If you try that command, the result will show you that you
have Elixir 1.6.0 installed (or a newer version).

1. https://elixir-lang.org/install.html

report erratum • discuss

Using Elixir • xi

https://elixir-lang.org/install.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We’ll also work with some Elixir tools that use the terminal, especially in
Chapter 6, Designing Your Elixir Applications, on page 105. The main tool we’ll
use in many examples is Elixir’s interactive shell, IEx. Try it:

$ iex
Erlang/OTP 20 [erts-9.2] [source] [64-bit] [smp:4:4] [ds:4:4:10]
[async-threads:10] [hipe] [kernel-poll:false]

Interactive Elixir (1.6.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

You’ll find this interactive shell very useful for quickly trying Elixir code and
concepts, and gathering information to debug local and remote systems. Type
the code that runs inside the IEx shell after the iex> prompt and press Enter
to see the result. For example,

iex> IO.puts "Hello, World"
Hello, World
:ok

Inside IEx, you can press the Tab key to use autocomplete. You can exit by
pressing Ctrl+C two times.

Moreover, some code will look like this:

introduction/hello_world.exs
IO.puts "Hello, World!"

The top line has the name of the file, with an exs (for script files) or ex (for
compiled files) extension. You can execute the code inside of the files using
the terminal, like this:

$ elixir hello_world.exs
Hello, World!

That’s everything you need to know to use Elixir and run most of the examples
in the book.

Online Resources
You can find all the examples, a form to submit errata, and a community
forum for this book on the Pragmatic Bookshelf website.2 Additionally, you
can get in touch with me and your fellow readers in the Elixir community
forum for this book.3

2. https://pragprog.com/book/cdc-elixir/learn-functional-programming-with-elixir
3. https://elixirforum.com/t/learn-functional-programming-with-elixir-pragprog/5114

Introduction • xii

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/introduction/hello_world.exs
https://pragprog.com/book/cdc-elixir/learn-functional-programming-with-elixir
https://elixirforum.com/t/learn-functional-programming-with-elixir-pragprog/5114
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

CHAPTER 1

Thinking Functionally
Our programming paradigm is changing. If that sentence doesn’t scare you,
let me try again. The rules that govern typical everyday programming are
changing. That doesn’t happen often. When it does, something important is
going on.

You see, languages come and go. Many things might prompt a new language,
such as a new problem (mobile development for Apple’s Swift), a critical
limitation (speed for C), or adoption across hardware platforms (portability
for Java).

When programming paradigms change, something serious is out of balance.

Why Functional?
A programming paradigm consists of the rules and design principles of
building software. A paradigm change is serious business. It means something
in how we’re building software isn’t meeting modern demands. We need to
process multiple tasks and huge amounts of data quickly and reliably. The
CPU isn’t getting faster—we can’t just write code and hope it will be faster
with a new CPU launch. Instead, we have multiple cores or even machines
to process stuff. We need to write code that takes advantage of concurrency
and parallelism. Unfortunately, when you’re working in imperative and object-
oriented languages, it’s hard to get it right. Let’s take a closer look.

The Limitations of Imperative Languages
Imperative languages have shared mutating values. This means that many
parts of the program can reference the same value, and it can change.
Mutating values can be dangerous for concurrency; you can easily introduce
hard-to-detect bugs. For example, take a look at this script in Ruby:

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

list = [1, 2, 3, 4]
list.pop
=> 4
list.push(1)
=> [1, 2, 3, 1]

puts list.inspect
=> [1, 2, 3, 1]

In this chapter you’ll see more code examples like the one above. Don’t worry
about the syntax or how the language works. The focus is on the concepts.
Here, you can mutate the data by adding or removing elements. Now imagine
multiple parts of an application running in parallel and having access to this
value at the same time. What could happen if, in the middle of some operation,
the value changes because of another process? It’s hard to predict. It causes
headaches for developers. That’s why many features and libraries in these
imperative languages offer mechanisms to help you lock and synchronize the
changes. However, that’s not the only way. Functional programming offers a
better alternative.

Moving to Functional Programming
Here’s a quick overview: in the functional programming paradigm, functions
are the basic building blocks, all values are immutable, and the code is
declarative.

When you search online for “functional programming,” a lot of unusual terms
pop up. It’s like it was made for mathematicians, not for programmers. It’s
no wonder some developers find functional programming languages have a
high initial barrier to learning.

From Lambda Calculus to Functional Programming

In this book you’ll learn about anonymous functions, free and bound variables, and
functions as first-class citizens. They come from the lambda calculus computation
model, created by Alonzo Church in the 1930s.a This model is the smallest universal
language that can simulate any real computation—that’s Turing complete. If you see
a programming language that has lambdas, you can be sure that Church’s model
has influenced it.

a. https://en.wikipedia.org/wiki/Lambda_calculus

Enter Elixir, a dynamic, functional language. The simple and pragmatic syntax
of Elixir makes it an accessible programming language for everyone, even for
those who haven’t learned the functional paradigm. Elixir is a robust and

Chapter 1. Thinking Functionally • 2

report erratum • discuss

https://en.wikipedia.org/wiki/Lambda_calculus
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

production-ready language, and it lives in the Erlang ecosystem, which has
existed for 30 years, delivering software with nine 9s reliability.1

With a functional language like Elixir, you’ll make better use of your CPU multi-
cores, writing shorter and more explicit code. When you apply the functional
paradigm in a functional language, you write code that lives harmoniously with
the language. But it doesn’t come for free. You must understand and follow these
core principles: immutability, functions, and declarative code. In this chapter,
we’ll examine these principles in detail and see how the functional foundation
is better prepared for modern demands. Let’s start with immutable data.

Working with Immutable Data
Conventional languages use mutating shared values that require thread and
lock mechanisms to work with concurrency and parallelism. In functional
programming, all values you create in your program are immutable. By default,
each function will have a stable value. That means we don’t need lock mech-
anisms, which simplifies the parallel work. It changes everything about
building software.

Look at this Elixir code:

list = [1, 2, 3, 4]
List.delete_at(list, -1)
=> [4]

list ++ [1]
=> [1, 2, 3, 4, 1]

IO.inspect list
=> [1, 2, 3, 4]

The value of list is immutable: no matter the operation we apply to it, it will
generate new values. If the list is immutable and each operation has a safe
value, the compiler can safely run these three lines in parallel without affecting
the final result. We get the benefits of parallelism just by writing simple func-
tions. It’s a huge win. You may think, “All this transformation generating new
values will be slow.” It’s not. Elixir has smart data structures that reuse values
in memory, making every operation of transforming values very efficient.

Immutability is showing up more in conventional languages. Those languages
usually provide the immutable mechanism by giving you an immutable-data-
type alternative, or a method to turn a value immutable. For example, in Ruby
you can create immutable values using the freeze method:

1. https://pragprog.com/articles/erlang

report erratum • discuss

Working with Immutable Data • 3

https://pragprog.com/articles/erlang
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

User = Struct.new(:name)
users = [User.new("Anna"), User.new("Billy")].freeze
=> [#<struct User name="Anna">, #<struct User name="Billy">]

users.push(User.new("James"))
=> can't modify frozen Array

users.first.name = "Karina"
puts users.inspect
=> [#<struct User name="Karina">, #<struct User name="Billy">]

In Ruby, when you freeze the array you can’t add or remove items, but you
still can modify the stored objects. I’ve seen many developers fall into a trap,
thinking that by using freeze they were creating a safe immutable value.

It’s easy to make mistakes when a language has mutability by default, and
such mistakes are costly when you’re dealing with concurrency. Although
the conventional languages are adopting some functional programming
concepts, they do not offer you the full advantage of a functional language
ecosystem.

Building Programs with Functions
In functional programming, functions are the primary tools for building a
program. You can’t create a useful program without writing or using functions.
They receive data, complete some operation, and return a value. They are
usually short and expressive.

We combine multiple little functions to create a larger program. The complex-
ity of building a larger application is reduced when the functions have these
properties:

• The values are immutable.
• The function’s result is affected only by the function’s arguments.
• The function doesn’t generate effects beyond the value it returns.

Functions that have these properties are called pure functions. A simple
example is a function that adds 2 to a given number:

add2 = fn (n) -> n + 2 end
add2.(2)
=> 4

This takes an input, processes it, and returns a value. This is the way most
functions work. A few functions will be more complex—their results are
unpredictable and they are known as impure functions. We’ll look at them in
Chapter 7, Handling Impure Functions, on page 139.

Chapter 1. Thinking Functionally • 4

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Using Values Explicitly
Functional programming always passes the values explicitly between the
functions, making clear to the developer what the inputs and outputs are.
The conventional object-oriented languages use objects to store a state, pro-
viding methods for operating on that state. The object’s state and methods
are very attached to each other. If we change the object’s state, the method
invocation will result in a different value. For example, take a look at this
Ruby code:

class MySet
attr_reader :items

def initialize()
@items = []

end

def push(item)
items.push(item) unless items.include?(item)

end
end

set = MySet.new
set.push("apple")

new_set = MySet.new
new_set.push("pie")

set.push("apple")
=> ["apple"]
new_set.push("apple")
=> ["pie", "apple"]

The MySet class doesn’t allow repeated values. When we call set.push, the push
method depends on the set object’s internal state. As software evolves, the
common tendency is for the object to accumulate more and more internal
states. This generates a complex dependency between the methods and the
states, which can be hard to debug and maintain. We need to be constantly
disciplined about applying good practices.

Functional programming gives us an alternative. We can use the same MySet
example in Elixir to do the same thing in a different way:

defmodule MySet do
defstruct items: []

def push(set = %{items: items}, item) do
if Enum.member?(items, item) do
set

report erratum • discuss

Building Programs with Functions • 5

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

else
%{set | items: items ++ [item]}

end
end

end

set = %MySet{}
set = MySet.push(set, "apple")

new_set = %MySet{}
new_set = MySet.push(new_set, "pie")

IO.inspect MySet.push(set, "apple")
=> ["apple"]
IO.inspect MySet.push(new_set, "apple")
=> ["pie", "apple"]

You’ll learn the details of how to create Elixir functions in Chapter 2, Working
with Variables and Functions, on page 11, and structs in Chapter 6, Designing
Your Elixir Applications, on page 105. The most important thing here is that
the operations and data are not attached to each other. While in our Ruby
example the operation must be called from a method that belongs to an object
that contains data, in Elixir the operation exists on its own. The data must
be explicitly sent to the MySet.push function. Every time we call the function,
it generates a new data structure with updated values. Then we update the
set variable to store the updated value and print it. The push function works
with its arguments and returns a new value. Nothing more.

Using Functions in Arguments
Functions are so interlaced with everything you do in functional programming
that they can be used in the arguments and results of functions:

iex> Enum.map(["dogs", "cats", "flowers"], &String.upcase/1)
["DOGS", "CATS", "FLOWERS"]

Here we’re executing a function called Enum.map and passing a list ("dogs", "cats",
and "flowers") and a function called String.upcase. The Enum.map function knows
how to apply String.upcase to each item in the list. The result is a new list with
all words uppercased. Passing functions to other functions is a powerful and
mind-blowing mechanism that we’ll explore in detail in Chapter 5, Using
Higher-Order Functions, on page 81. Functions are the star of the show in the
functional paradigm.

Transforming Values
Elixir’s focus is on the data-transformation flow, and it has a special operator
called pipe (|>) to combine multiple functions’ calls and results. Let’s say we

Chapter 1. Thinking Functionally • 6

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

want to write some code that takes text like "the dark tower" and transforms it
into a title, "The Dark Tower". Instead of writing it like this:

def capitalize_words(title) do
join_with_whitespace(

capitalize_all(
String.split(title)

)
)

end

you can write it like this:

def capitalize_words(title) do
title
|> String.split
|> capitalize_all
|> join_with_whitespace

end

Using the pipe operator, the result of each expression will be passed to the
next function. (You’ll learn more about it in Pipelining Your Functions, on page
89.) As you can see, this Elixir function is simple and easy to understand.
You can almost read it as plain English. The function capitalize_words receives
a title. The title will be split, transforming a list of words. The second trans-
formation will be a list of capitalized words. The final transformation is a
unique string with the words separated by whitespaces.

That’s our focus in functional programming; every basic building block is a
function. Those functions follow principles, such as immutability, that help
us build functions that are easier to understand and that are better citizens
in the concurrent world.

Declaring Code
Imperative programming focuses on how to solve a problem, describing each
step as actions. Functional programming, by contrast, is declarative.
Declarative programming focuses on what is necessary to solve a problem,
describing the data flow. Programming declaratively usually generates less
code than programming imperatively. Less code means fewer things to write,
more things done, and fewer bugs. Yay!

To see the difference between imperative and declarative, let’s look at a simple
example that transforms a list of strings into uppercase. The example will be
in JavaScript using the imperative mindset:

report erratum • discuss

Declaring Code • 7

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

var list = ["dogs", "hot dogs", "bananas"];

function upcase(list) {
var newList = [];
for (var i = 0; i < list.length; i++) {

newList.push(list[i].toUpperCase());
}
return newList;

}

upcase(list);
// => ["DOGS", "HOT DOGS", "BANANAS"]

When you use the imperative mindset, you’ll need control flow structures like
for to navigate through each element of the list, incrementing the variable i
one by one. Then, you need to push the new uppercased string in the newList
variable. The code is verbose. The what that needs to be done is obfuscated
by boilerplate actions and mutating values.

Let’s experiment with the declarative version in Elixir. Declarative program-
ming focuses on what is necessary, doing list navigations or repetition with
recursive functions (more about this in Chapter 4, Diving into Recursion, on
page 59):

defmodule StringList do
def upcase([]), do: []
def upcase([first | rest]), do: [String.upcase(first) | upcase(rest)]

end

StringList.upcase(["dogs", "hot dogs", "bananas"])
=> ["DOGS", "HOT DOGS", "BANANAS"]

The upcase result of an empty list is an empty list. When the list has items,
the result is a new list where the first string is uppercased and the rest of the
items are passed to the upcase function. We describe how the data must be,
not the actions to generate the result. This way of expressing the code is
possible thanks to pattern matching. You’ll see the details about it in Chapter
3, Using Pattern Matching to Control the Program Flow, on page 33.

The procedure of transforming a list of strings to uppercase can be simplified
using higher-order functions:

list = ["dogs", "hot dogs", "bananas"]
Enum.map(list, &String.upcase/1)
=> ["DOGS", "HOT DOGS", "BANANAS"]

This time we’re saying that we want to map a list, applying the upcase transfor-
mation on each item. The map function builds a new collection using the result
of the argument function. In this declarative version, we just say what needs

Chapter 1. Thinking Functionally • 8

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

to be done, and the how is abstracted for us. Today, Java, PHP, Ruby, Python,
and many other languages are embracing the declarative style. It generates
much simpler code. The important aspects of the task, the parts that matter,
are explicit.

Wrapping Up
Functional programming is a programming paradigm. A programming paradigm
consists of the rules and design principles of building software; it’s a way of
thinking about a programming language. The functional paradigm focuses
on building software using pure functions organized in a way that describes
what software must do, not how it must do it. Now, with this in mind, you’ll
learn the programming foundations in detail, from scratch. You’ll be intro-
duced to Elixir syntax at the same time you learn functional concepts, at the
right pace. Turn the page to start the journey.

report erratum • discuss

Wrapping Up • 9

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

CHAPTER 2

Working with Variables and Functions
Variables and functions are the fundamentals of any functional language,
and Elixir is no different. It’s important to have a solid understanding of how
they work so you can be comfortable working with the various types of func-
tions. In this chapter, we’ll use Elixir to explore the basics and build a solid
foundation for the upcoming advanced topics.

Our first topic will be values. In Elixir, valid values include strings, integers,
floats, lists, maps, functions, and a few more. Yes, functions are values here,
as you’ll see later in the chapter. But first, let’s take a look at how we can
represent common values and their types.

Representing Values
Values are anything that can represent data in Elixir. They are the number
of cars purchased, the text in a blog post, the price of a game, the password
text of a login. They are everything a program receives as input, computes,
and generates as a result.

Open your IEx shell and type this:

iex> 10
10

You have typed a value. I know—this short snippet doesn’t look very exciting,
but when we think of everything that happens in the background to let us
type a value like this, it’s fascinating. When you see it, it’s easy to guess that
it represents a number. Literals represent values that humans can easily
understand. Elixir does all the work to transform the literals into a format
for machines. We only need to worry about typing the number we like, and
Elixir will understand.

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The number 10 that we used previously has a type—the integer type, which,
of course, represents integers. Let’s try a different kind of value. Try typing
this in your IEx shell:

iex> "I don't like math"
"I don't like math"

Text surrounded by double quotes is a value of the String.t type. It’s a literal,
an abstraction that hides all the binary complexity for us. We can generate
any text values by putting anything we want within double quotes. Try writing
your messages using IEx. You can write the most popular program there is:
"Hello, World".

The following table shows some types you’ll find in Elixir, their uses, and
some examples to try in your IEx shell:

ExamplesUseful forType

"Hello, World!!!", "I like math"Textstring
42, 101, 10_000, -35Integer numbersinteger
10.8, 0.74678, -1.45Real numbersfloat
true, falseLogical operationsboolean
:ok, :error, :exitIdentifiersatom
{:ok, "Hello"}, {1, 2, 3}Building collections of known sizestuple
[1, 2], ["a", "b"]Building collections of unknown sizeslist
%{id: 123, name: "Anna"},
%{12 => "User"}

Looking up a value in a dictionary by keymap

nilRepresenting absence of valuenil

The atom type is a constant and its name is the value. Atoms are useful as
identifiers. For example, the Boolean values (true and false) and nil are the atoms
:true, :false, and :nil. Some types are more complex than others, but don’t worry.
We’ll see them in more detail in the following chapters.

Executing Code and Generating a Result
Elixir can generate a result for any expression. The process is similar to when
you were in high school solving mathematical equations: to generate a result,
you must add or multiply some numbers or change some Xs to Ys. We’ll create
expressions for the computer, and the computer will show us the result. The
simplest expression is a value, like this:

iex> 42
42

Chapter 2. Working with Variables and Functions • 12

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The number 42 is an expression that evaluates to the value we typed. Let’s
try a different expression:

iex> 1 + 1
2

The number 1 is a value, and + is an operator. Operators compute values and
generate a result. We can also combine multiple operators and values:

iex> (2 + 2) * 3
12
iex> 2 + 2 * 3
8

Each operator is executed in a particular order, which is called its precedence.
For example, * has higher precedence than +. In an expression that has both
operators, the * operator will be executed first. You can use parentheses to
change the precedence, however. Expressions within parentheses are comput-
ed first. You can always check the operator’s precedence in the Elixir official
documentation.1

When we create invalid expressions, the computation will fail with an error
message. Let’s create an invalid expression and watch our shell complain:

iex> "Hello, World!" + 5
** (ArithmeticError) bad argument in arithmetic expression

:erlang.+("Hello, World!", 5)

The arithmetic expression has an error because we can’t add text and a
number. The function behind the + operator expects number arguments, not
strings. It’s a common mistake. The execution will fail when we try to execute
invalid code, and the error message will tell us what went wrong.

It’s not always the case that an execution will fail when you use different
arguments types. Some operations permit you to use compatible types,
like this:

iex> 37 + 3.7
40.7

The sum of the integer 37 with the float 3.7 produced a float result of 40.7. The
+ operator works in this expression because both arguments are numbers.
The number type in Elixir is the union of the integer and float types.

The table on page 14 shows some common Elixir operators. You can try the
examples in IEx to get comfortable with them:

1. https://hexdocs.pm/elixir/operators.html

report erratum • discuss

Executing Code and Generating a Result • 13

https://hexdocs.pm/elixir/operators.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

ExamplesUseful forOperator

10 + 5, 3.7 + 8.1Adding numbers+
10 - 25, 9.7 - 8.1Subtracting numbers-
10 / 2, 0 / 10Dividing numbers/
10 * 2, 0 * 10Multiplying numbers*
1 == 1.0, 1 == 2Checking when two values are equal==
1 != 1.0, 1 != 2Checking when two values are not equal!=
1 < 2, 2 < 1Checking when the left value is less than the

right one
<

1 > 2, 2 > 1Checking when the left value is greater than
the right one

>

[1, 2] ++ [3, 4]Concatenating two lists++
"Hello, " <> "World"Concatenating two strings or binaries<>

You don’t need to memorize all these operators. You can always consult the
Elixir official documentation for more operators and a detailed explanation
of each.2

Creating Logical Expressions
Logical expressions are often used to create conditions that control the pro-
gram flow. In Elixir, we have two versions of the same logical operator—for
example, for the logical operator OR, we have || and or. It can be confusing for
newcomers. But don’t worry; let’s try the examples below and understand
their differences:

The operators and, or, and not are made to work with Boolean values. Try this
in your console:

iex> true and true
true
iex> true or false
true
iex> not true
false
iex> 1 and true
** (BadBooleanError) expected a Boolean on left side of "and", got: 1
iex> true and 1
1

2. https://hexdocs.pm/elixir/Kernel.html

Chapter 2. Working with Variables and Functions • 14

report erratum • discuss

https://hexdocs.pm/elixir/Kernel.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The left side of the operators and and or must be Boolean values, or an error
will be raised. The operators &&, ||, and ! accept truthy and falsy values on
their left side. Falsy values are false and nil, while truthy values are everything
that isn’t falsy. The value that will be returned depends on which operator
we use. Try this in your IEx:

iex> nil && 1
nil
iex> true && "Hello, World!"
"Hello, World!"
iex> "Hello, Word!" && true
true
iex> nil || 1
1
iex> 1 || "Hello, World!"
1
iex> !true
false
iex> !false
true
iex> !nil
true
iex> !"Hello, World!"
false

The && operator is a kind of and that works with Booleans and values. It returns
the second expression’s value when the first is truthy; otherwise, it returns the
first expression’s value. The || is kind of or operator that works with Booleans
and values. It returns the first truthy expression; otherwise, it returns the value
of the last expression. These operators are useful for creating short expressions
to return values such as cache_image || fresh_image. The ! operator returns true when
the value is falsy, and returns false when it’s truthy. It’s useful to have the
inverse boolean value of the truthy and falsy values.

Binding Values in Variables
Variables are containers that hold values. My friend works with office facilities,
and she organizes the office tools by putting them in boxes. She puts a label
on boxes to help workers know what’s inside without opening them. Variables
are like that; you can’t see what’s inside without checking, but the variable’s
name can give you a hint. Let’s create a variable using IEx:

iex> x = 42
42
iex> x
42

report erratum • discuss

Binding Values in Variables • 15

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We’ve used the = operator to assign the name x to the value 42. This action
of assigning a name to a value is called binding. We can bind new values and
results of expressions in variables. Try it:

iex> x = 6
6
iex> x = 7
7
iex> x = 9 + 1
10
iex> x
10

The most interesting part of variables is that we can use them in our expres-
sions instead of using the actual values. Here’s an example:

iex> x = 5
iex> y = 8
iex> z = x * y
40

Take a look at the expression z = x * y and forget the previous steps. We can’t
see the values there, but we can guess that the x and y variables are numbers
because we have the * operator. Variables encapsulate the values in programs;
we don’t need to work directly with values. We can create generic expressions
with variables that can use any value to produce different results.

Remember the “box with a label” analogy? Yep, I discourage you from choosing
names like x, y, and z for your variables, because they don’t indicate what’s
inside the variables. Instead, choose names that reveal your intentions,
knowing that the Elixir compiler doesn’t care which name you choose. It will
help your future self and your teammates when you’re building and maintain-
ing software. Take a look at the impact when we change the names of the
variables:

total_cost = product_price * quantity
total_distance = average_velocity * total_time
total_damage_bonus = strength_score * magic_enchantment

With explicit names that clarify our intentions, our code now has meaning
and purpose. From the expression z = x * y, we have opened up a world of
possibilities by changing the variables’ names.

You should use the Elixir community conventions when naming variables.
The variables follow the snake_case format. That means your variable names
should be lowercased and compound names should have the “_” (underline)
separator. Here are some examples:

Chapter 2. Working with Variables and Functions • 16

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

quantity = 10 # good
Quantity = 10 # match error
product_price = 15 # good
productPrice = 15 # works, but doesn't follow the Elixir style guide

You can’t start a variable name with a capital letter. If you try, you’ll get a match
error. Names that start with a capital letter are used in modules. (You can
learn more about Elixir naming conventions in the official documentation.3)

Naming Things Is Hard

To paraphrase the famous quote from Phil Karlton, the software architect of Netscape,
one of the hardest parts of computer science is naming things. When we’re program-
ming, we usually borrow names from the real world, but we often need to work with
things that have no parallel in reality. The impact of choosing a misleading name can
be critical to software evolution, leading to developers making mistakes or taking too
long to understand how the code works. It’s beneficial to take your time and have a
deep discussion with your teammates about choosing names that fit your intentions.

Creating Anonymous Functions
You can think of functions as subprograms of your program. They receive an
input, do some computation, and then return an output. The function body
is where we write expressions to do a computation. The last expression value
in the function body is the function’s output. Functions are useful for reusing
expressions. Let’s start with a simple example in which we’ll build messages
to say hello to Ana, John, and the world. Try typing this in your IEx:

iex> "Hello, Mary!"
"Hello, Mary!"
iex> "Hello, John!"
"Hello, John!"
iex> "Hello, World!"
"Hello, World!"

If we want to say hello to Alice and Mike, we could copy and paste the message
and replace the names. But instead we can create a function to make it easier
to say hello to anything we want. First, we need to identify the things that
change in the messages. In the preceding example, we can see that the only
thing that changes is the name of the person or group we want to say hello
to. We can write an expression that separates the name from the message.
Try it:

3. https://hexdocs.pm/elixir/naming-conventions.html

report erratum • discuss

Creating Anonymous Functions • 17

https://hexdocs.pm/elixir/naming-conventions.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

iex> name = "Alice"
iex> "Hello, " <> name <> "!"
"Hello, Alice!"

We created the name variable that represents something that can change.
Then we used the <> operator to join the strings with the name variable. To
transform these expressions into a function, we transform the name variable
in a parameter and the string concatenation in a function body. Let’s take a
look at the function-creation syntax. Try it in your IEx:

iex> hello = fn name -> "Hello, " <> name <> "!" end
iex> hello.("Ana")
"Hello, Ana!"
iex> hello.("John")
"Hello, John!"
iex> hello.("World")
"Hello, World!"

We created a function and bound it to a variable called hello. Then we invoked
that using the dot operator and passing values inside the parentheses. We
can invoke that function with different values in the argument. These types
of functions are called anonymous functions in Elixir because they have no
global name and must be bound to a variable to be reused. They are useful
for creating functions on the fly. (They are also known as lambdas and are
the only type of function in lambda calculus.)

Now let’s go step by step through how we have defined the function:

1. The fn indicates the beginning of the function.

2. The name is the function’s parameter. A function’s parameters are internal
function variables that force whoever is invoking the function to supply
them with values. When calling a function we need to pass the values in
the same order the parameters were defined.

3. We have the -> operator, which indicates the following expression will be
the body of a function clause.

4. The function body is the expression "Hello, " <> name<> "!". The return value
is the value of the last expression. In this example, there’s only one
expression, so the value of that expression will be returned.

5. The end marks the end of the function definition.

Elixir gives developers the power of redefining some of the language’s basic
functions and blocks by using metaprogramming. However, the fn and end
combination is an Elixir special form. Special forms are basic building blocks
that cannot be overridden by the developer. They’ll always work in the same

Chapter 2. Working with Variables and Functions • 18

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

way no matter the framework or library that you’re using in your application.
You can see more details about special forms in Elixir’s documentation.4

You can replace the <> operator with Elixir’s expressive string-interpolation
syntax:

iex> hello = fn name -> "Hello, #{name}!" end
iex> hello.("Ana")
"Hello, Ana!"

All the expressions inside of the brackets in the #{} code will be evaluated
and coerced to a string. Here’s an example:

iex> "1 + 1 = #{1+1}"
"1 + 1 = 2"

We commonly use anonymous functions for simple operations, and most of
them will be on one line. But we can create them with multiple lines; just
break the line after the -> operator:

iex> greet = fn name ->
...> greetings = "Hello, #{name}"
...> "#{greetings}! Enjoy your stay."
...> end
#Function<6.99386804/1 in :erl_eval.expr/5>

We can also create functions without arguments. We just need to omit them:

iex> one_plus_one = fn -> 1 + 1 end
iex> one_plus_one.()
2

We can create functions with multiple arguments, too, by separating them
with commas:

iex> total_price = fn price, quantity -> price * quantity end
iex> total_price.(5, 6)
30

We’ve used commas to separate the parameters price and quantity. Elixir has a
limit of 255 parameters in a function. That’s enough for any application.
However, it’s good maintenance practice to keep the number of parameters
below five. A higher number of parameters can be a good indication that you
need a data structure—tuples, lists, structs, or maps—or you need to split
your function into smaller ones.

4. https://hexdocs.pm/elixir/Kernel.SpecialForms.html

report erratum • discuss

Creating Anonymous Functions • 19

https://hexdocs.pm/elixir/Kernel.SpecialForms.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Functions as First-Class Citizens
The first time I read the term first-class citizens, I found it funny because I
imagined a bunch of functions flying first class to Europe. But it means the
opposite. When we say in programming that functions are first-class citizens,
we mean that they are like any other value. It’s an important feature that
came from lambda calculus.

In Elixir, functions are values of type function. Let’s build a function that expects
a function:

iex> total_price = fn price, fee -> price + fee.(price) end

The function total_price receives two arguments; one is a number that will rep-
resent the price. The fee parameter expects a function. We’ll call the given
function, passing the price. The final result of the function is the result of the
price plus the result of the fee function. Now, let’s build some fee functions:

iex> flat_fee = fn price -> 5 end
iex> proportional_fee = fn price -> price * 0.12 end

Now we can try these functions all together:

iex> total_price.(1000, flat_fee)
1005
iex> total_price.(1000, proportional_fee)
1120.0

We first call the total_price function, passing the flat_fee, and then we call total_price
another time, passing the proportional_fee function. In this example, we have
passed a function in an argument like any other value. Functions are the
actions in the program. Passing or returning actions in functions is what
makes functional programming so different from imperative programming.
We’ll explore it more in Chapter 5, Using Higher-Order Functions, on page 81.

Sharing Values Without Using Arguments
We can share values with functions using closures. A closure has access to
variable values both inside and outside of the code block. In Elixir we can
create an anonymous function and pass it a code block with the values of
the variables that were defined outside of it. It’s useful to be able to share
values with functions when you can’t control the functions’ invocation, since
you can’t pass values to functions’ parameters. You can’t control function
calls specially when you use functions that take other functions as arguments.
For example, we can use Elixir’s spawn to start a process and execute a function
asynchronously. The spawn will invoke the given function asynchronously,

Chapter 2. Working with Variables and Functions • 20

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

and we can’t pass arguments to it. One way to share values with that function
is by taking advantage of the closure:

iex> message = "Hello, World!"
iex> say_hello = fn -> Process.sleep(1000); IO.puts(message) end
iex> spawn(say_hello)
"Hello, World!"

The function say_hello remembered the value of the message variable and printed
the message on the console using IO.puts after one second using Process.sleep.
We used the printing and sleeping commands on the same line using the
semicolon. (The commands are named functions, and we’ll see these types of
functions in detail in the next section.) We have shared values with say_hello
without using arguments. This is possible because closures remember all the
free variables that were referenced in the lexical scope in which they were
created. Free variables? Lexical scope? Let’s see what these terms mean.

Hey, We Have a Side Effect Here

In this section, we used a say_hello function. It calls IO.puts, displaying a message in
our console session. The console and our program are different entities. When a
function interacts with anything that is external, it’s vulnerable to external problems.
We say that function has side effects; it’s impure. We’ll discuss pure and impure
functions in detail in Chapter 7, Handling Impure Functions, on page 139.

A scope is a part of a program—a code block, for example. The lexical scope
is related to the visibility of the variables in the code where they were defined.
When you use a variable in a function definition, the compiler will analyze
your code reading upwards and will bind the variable to the closest definition.
Everything defined before and outside of a function’s scope is the upward
scope. Try this example:

iex> answer = 42
iex> make_answer = fn -> other_answer = 88 + answer end
iex> make_answer.()
130
iex> other_answer
** (CompileError) iex:4: undefined function other_answer/0
iex> answer = 0
iex> make_answer.()
130

The function make_answer references the variable answer; the compiler will go to
the upward scope and find the answer definition. When we try to call other_answer
outside of the function’s scope, the program will generate an error. That’s

report erratum • discuss

Creating Anonymous Functions • 21

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

because other_answer exists only inside of the make_answer function’s scope, not
outside of it. It’s like a one-way mirror: the inner scope can see the variables
outside, but not vice versa.

Also note the unaffected make_answer result after we assign a new value to
answer. When we define a function referencing a variable outside of the func-
tion’s scope, we bind the current value and it will be immutable. That’s why
when answer has a new value, it doesn’t affect the make_answer function’s result.

The following diagram illustrates how scopes work. The white box is the scope
of the IEx shell, while the gray box is the scope of the anonymous function
make_answer.

answer = 42

make_answer =

make_answer.()

fn -> other_answer = 88 + answer end

Scope 1

Scope 2

We can see each code block has his own space. The next diagram shows that
each code block we create has a space that the code outside can’t see into.
But the code inside the space can see the variables defined outside and refer-
ence them. The gray shading color of the variable indicates that variable is
not visible by the scope. The following diagram shows each scope’s variable
visibility:

answer

make_answer

other_answer

Scope 1

Scope 2
answer

other_answer

Scope 1

Scope 2

make_answer

The outer scope can’t see the variables defined inside of the anonymous
function. The anonymous function can only see the variables defined before
its own definition. That’s why the anonymous function can’t see the make_answer
variable: it was defined after the function-creation expression.

With an understanding of how lexical scope works, we can now discuss free
and bound variables. Inside of a function, a variable is bound when it is

Chapter 2. Working with Variables and Functions • 22

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

defined as a function’s parameter or a local variable in a function’s body;
otherwise, it’s free. Let’s test the closure:

iex> product_price = 200
iex> quantity = 2
iex> calculate = fn quantity -> product_price * quantity end
iex> calculate.(4)
800

We’ve defined the variable quantity, but the function calculate has a parameter
with the same name. This means the variable is bound, and its value will not
be remembered. product_price is free, but it doesn’t exist in the calculate parameter
although it’s referenced in the body. Therefore, the product_price value will be
remembered no matter where the execution happens. The following diagram
illustrates the scopes’ definitions:

product_price = 120
quantity = 30

calculate =

calculate.(12)

fn quantity -> product_price * quantity end

Scope 1

Scope 2

We can see the variables’ visibility on each scope:

product_price

quantity

calculate

quantity

Scope 1

Scope 2
product_price

quantity

Scope 1

Scope 2

quantity

We can clearly see now that the quantity parameter defined in the inner scope
has higher precedence than the variable with the same name defined in the
outer scope. The outer variable quantity is shadowed by the quantity parameter
in the calculate function. Variable shadowing isn’t good practice because it
creates confusion about the variable’s value, generating code that is hard to
understand. Avoid this! That’s how closures work in Elixir: we can share
values with functions without using arguments.

report erratum • discuss

Creating Anonymous Functions • 23

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Naming Functions
We’ve covered how to create anonymous functions, and they are awesome.
We can bind them to variables, use them as a function’s arguments, and
return them in functions. However, having only anonymous functions can be
annoying. If the codebase of a large application used only anonymous func-
tions, it would be very complex. To solve this issue, programming languages
have a lot of predefined words that you can use anywhere in the code. These
predefined words in Elixir can be special forms, named functions, or macros.
We can also create our own named functions.

Named functions are defined inside of modules in Elixir. You can use an atom
or aliases to name a module. An alias in Elixir is any word that starts with
a capital letter, and only ASCII characters are allowed—for example, String,
Integer, Enum, or IO. All aliases will transform into atoms during compile time
with an Elixir prefix:

iex> String == :"Elixir.String"
true

Note that the atom :"Elixir.String" must have quotes because of the special
character—in this example we’re using a dot. You can invoke a function
module by typing the name of the module and the name of the function using
the dot operator between them. Try it:

iex> String.upcase("I'm using a module. Awesome!")
"I'M USING A MODULE. AWESOME!"

You can omit the parentheses by calling named functions. It’s a matter of
style over functionality. You should omit the parentheses when you want the
code to be more readable, as in this example:

iex> IO.puts "Sometimes omitting the parentheses is better"

The way we call named functions is similar to the way we call anonymous
functions, and we’ll look at that next.

Elixir’s Named Functions
Elixir provides many useful modules, and all of them are documented online
in the official Elixir documentation.5 The table on page 25 lists shows some
common ones that you can try in your IEx now to practice.

5. https://hexdocs.pm/elixir/

Chapter 2. Working with Variables and Functions • 24

report erratum • discuss

https://hexdocs.pm/elixir/
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

ExamplesUseful forModule

String.capitalize("hI Friends!"),
String.downcase("OW")

Manipulating textString

Integer.parse("123"), Integer.to_string(-890),
Integer.digits(890)

Working with integersInteger

Float.ceil(3.7), Float.floor(3.7),
Float.round(3.7576, 2)

Working with floatsFloat

IO.puts("Hello, World!"), IO.gets("What's your
name?"), IO.inspect({:ok, 123})

Handling the input/outputIO

div(1, 2), rem(1, 2), is_number("Hi")Providing common functionsKernel

The Kernel is a special Elixir module. Its functions are available to you without
using the module name. If you look at the Kernel documentation,6 you’ll notice
that all of operators and directives we have used and are going to use are
defined there. You’ll see also that all of them lead to functions. Elixir lets us
use the Kernel functions without using the module name and providing opera-
tors with infix notations. However, fundamentally we’re just calling functions.

Creating Modules and Functions
We’ve seen some useful Elixir named functions. When we’re writing applica-
tions, we may want to create our named functions to express our application’s
rules. The first step is to think about where we can create functions. We can
imagine that a function is a box with things inside. We need to put that box
somewhere. Then we have modules, which are big boxes that can accommo-
date functions. Modules are useful because we can put other modules inside
of them. With this feature, we have the flexibility to organize our application
to fit our needs.

We can create modules in our IEx sessions or in .ex files to be compiled. It’s
a good practice to keep our modules in files to facilitate their evolution. Let’s
create a file called checkout.ex. You can place the file anywhere you want. (In
an Elixir project, we’d put the files in the lib directory, but you don’t need to
worry about it now; you’ll see how to build a proper project in Chapter 6,
Designing Your Elixir Applications, on page 105.) Then, after you create the file,
we’ll define our first module in it with a function that calculates the total cost
of a product given its tax rate. Here’s the file:

work_with_functions/lib/checkout.ex
defmodule Checkout do
end

6. https://hexdocs.pm/elixir/Kernel.html

report erratum • discuss

Naming Functions • 25

http://media.pragprog.com/titles/cdc-elixir/code/work_with_functions/lib/checkout.ex
https://hexdocs.pm/elixir/Kernel.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Next we create a module called Checkout in the file. Note that the file name is
the same as the module name, but the file name is lowercase. We use the .ex
file extension for Elixir files that we want to compile. The defmodule indicates
the beginning of the module definition. After this, we must add our module
name. After it, we add do, which marks the beginning of the module body. Its
definition ends with end.

Inside the module body, we can add code to invoke, import, or create functions.
First let’s focus on the definition of the functions by adding one to our module:

work_with_functions/lib/checkout.ex
defmodule Checkout do

def total_cost(price, tax_rate) do
price * (tax_rate + 1)

end
end

We have added a function called total_cost. The def indicates the beginning of
the function definition. After this, we must add our function name. The
function name follows the same convention as variable names. We declare
the function parameters inside of the parentheses. Then we add do, which
marks the start of the function body. The function body definition ends with
end. Inside the function body, we can add however many expressions we need.
Like the anonymous functions, a named function returns the value of the
last expression.

Notice that the naming convention is different between modules, functions,
and variables. For modules, we use the CamelCase name format. This pattern
says that every word in the compound name starts with a capital letter. For
example, ShoppingCart, ProductBacklog, and CharacterSheet. The file names of the
module, functions, and variables use snake_case. This pattern says that we
should add an underscore (_) to separate the words in a compound name and
the words must be lowercase. For example, the respective file names for the
previous modules would be shopping_cart.ex, product_backlog.ex, and character_sheet.ex.

We can try our module using IEx. Open your session in the same directory
of the module file:

iex> c("checkout.ex")
iex> Checkout.total_cost(100, 0.2)
120.0

The c function compiles the given file and provides the Checkout module to the
current IEx session. Then we can call our module like any Elixir module we
have tested before. We can define a function in a single line by using do
optional syntax, like this:

Chapter 2. Working with Variables and Functions • 26

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/work_with_functions/lib/checkout.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

defmodule Checkout do
def total_cost(price, tax_rate), do: price * (tax_rate + 1)

end

In a large application, it can be confusing if the application modules’ names
are mixed with Elixir’s modules. It’s a good practice to start a new application
by putting a name—a namespace—before each of the custom modules’ names,
separated by dots. That will prevent name collisions since each module must
have a unique name. Try it:

work_with_functions/lib/ecommerce/checkout.ex
defmodule Ecommerce.Checkout do

def total_cost(price, tax_rate) do
price * (tax_rate + 1)

end
end

You can also try it using IEx:

iex> c("checkout.ex")
iex> Ecommerce.Checkout.total_cost(100, 0.2)
120.0

Let’s recap. In an Elixir project, we put a custom module in a file that has
the same name as the module, but in lowercase, with one module per file.
The modules go inside of a directory that has the same name of the module’s
namespace. For example, the Ecommerce.Checkout module has an ecommerce
directory with a checkout.ex file inside. With this simple convention, our appli-
cation can evolve with new modules, and they will be in the proper place. The
names in a program are organized in namespaces.

Importing Named Functions
The named functions we created work just like Elixir’s provided functions.
We can call any named function using the pattern ModuleName.name_of_the_function.
Depending on the module we’re creating, writing ModuleName all the time can
be repetitive. We can reduce the code using the import directive. It works like
the Kernel functions; we don’t need to type the name of the module before every
function name. Elixir imports all Kernel facilities to our programming environ-
ment by default.

Let’s see how we can use the import directive to create a module that stores a
list of tasks in a file. Since we’ll have file manipulation, we’ll use the File
module.7 Let’s create a file called task_list.ex:

7. https://hexdocs.pm/elixir/File.html

report erratum • discuss

Naming Functions • 27

http://media.pragprog.com/titles/cdc-elixir/code/work_with_functions/lib/ecommerce/checkout.ex
https://hexdocs.pm/elixir/File.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

work_with_functions/lib/task_list.ex
defmodule TaskList do

@file_name "task_list.md"

def add(task_name) do
task = "[] " <> task_name <> "\n"
File.write(@file_name, task, [:append])

end

def show_list do
File.read(@file_name)

end
end

The TaskList module adds tasks and lists them. The add function creates a task
by appending a line with its name to a file. The function show_list reads the file
contents. Don’t worry now about show_list’s ugly output and the errors that
may happen if you try to read a file that doesn’t exist. In this code, we’ll
understand what the module attributes are and how to import the file
functions.

Take a look at @file_name; it’s a module attribute. Module attributes can be
used as annotations, temporary storage, or constants. Here we’re using the
module attribute as a constant. It’s a special type of variable that will be
available in the entire module. It’s helpful because if we want to change the
file name, we only need to change it in one place.

We can reduce the necessity of writing File every time we call write or read
functions by importing the module functions. Let’s add the import directive to
our TaskList module:

work_with_functions/lib/task_list_with_import.ex
defmodule TaskListWithImport do

import File, only: [write: 3, read: 1]

@file_name "task_list.md"

def add(task_name) do
task = "[] " <> task_name <> "\n"
write(@file_name, task, [:append])

end

def show_list do
read(@file_name)

end
end

The number after the function name in the import directive is called the function
arity. A function arity is the number of arguments a function receives. In the
Elixir documentation, function arity is commonly expressed in this way:

Chapter 2. Working with Variables and Functions • 28

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/work_with_functions/lib/task_list.ex
http://media.pragprog.com/titles/cdc-elixir/code/work_with_functions/lib/task_list_with_import.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

name_of_the_function/arity—for example, File.read/1 or File.write/3. When we’re importing
a named function, we must always pass its name and its arity.

When we use import, we don’t need to write the full name of the function. While
that’s a nice shortcut, we’re being less explicit about where read and write
functions came from. We can also use import without the only option, and it
will implicitly import all functions. That can be a problem in a situation where
we’re importing multiple modules, because it will be hard to understand which
module each function came from. In Elixir, developers prefer being explicit,
writing the full name of the functions most of the time, using the only option
when importing functions, and using the implicit import when you know the
function names can’t cause confusion.

Using Named Functions as Values
When we’re using anonymous functions, we have the option of binding them
to variables or using them in arguments. What about named functions? Can
we do the same? Let’s try it:

iex> upcase = String.upcase
** (UndefinedFunctionError) undefined function String.upcase/0

Well, we can’t do it this way. Elixir is trying to invoke a function String.upcase
with an arity of zero; since parentheses are optional Elixir is trying to invoke
a function without arguments. If we want to use String.upcase/1 like a value, we
can wrap that function in an anonymous function. We’ll create an anonymous
function that will call String.upcase/1 delegating the given argument. Let’s do it:

iex> upcase = fn string -> String.upcase(string) end
iex> upcase.("hello, world!")
"HELLO, WORLD!"

This is a common pattern in functional programming. Elixir provides a handy
function-capturing operator. Using it, we can more easily use a named function
as a value. Check it out:

iex> upcase = &String.upcase/1
iex> upcase.("hello, world!")
"HELLO, WORLD!"

Here we used the & operator to capture a reference to the function String.upcase/1,
and the = operator to bind it to the upcase variable. The function that we pass
to the operator must respect the pattern function/arity. It’s a short way of
binding named functions to variables or functions’ arguments.

We can also use the & operator to create anonymous functions. Let’s define
the total_cost function using the capturing shortcut syntax:

report erratum • discuss

Naming Functions • 29

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

iex> total_cost = &(&1 * &2)
iex> total_cost.(10, 2)
20

The & operator defines the beginning of the function, and its body is inside
of the parentheses. There we have an expression that multiplies &1 by &2. &1
represents the first argument, and &2 the second. With this information, the
Elixir compiler creates a function that receives two arguments, multiplying
the first argument by the second. We can’t use the capture syntax for creating
anonymous functions with zero arity:

iex> check = &(true)
** (CompileError) tmp/src.exs:1: invalid args for &, expected an expression in
the format of &Mod.fun/arity, &local/arity or a capture containing at least one
argument as &1, got: true

In this case, we should use the explicit fn form:

iex> check = fn -> true end
iex> check.()
true

The parentheses are also optional:

iex> mult_by_2 = & &1 * 2
iex> mult_by_2.(3)
6

Use the capture syntax with caution, because its lack of argument names
can affect your code readability. Using it too much will make your code hard
to understand.

Wrapping Up
In this chapter, we started with the basics of functional programming, from
simple expressions to building named functions with modules. Let’s review
what we’ve done:

• We created simple expressions with Elixir values, literals, and operators.

• We created anonymous functions and used them as a new value type.

• We tested the variables’ immutability and scope.

• We created named functions and learned how to import functions to our
modules.

• We used named functions as values.

Chapter 2. Working with Variables and Functions • 30

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

In the next chapter, we’ll explore one of the most interesting features of
functional programming: pattern matching. Learning how to use it will take
your programming skills to a whole new level.

Your Turn
• Create an expression that solves the following problem: Sarah has bought

ten slices of bread for ten cents each, three bottles of milk for two dollars
each, and a cake for fifteen dollars. How many dollars has Sarah spent?

• Bob has traveled 200 km in four hours. Using variables, print a message
showing his travel distance, time, and average velocity.

• Build an anonymous function that applies a tax of 12% to a given price.
It should print a message with the new price and tax value. Bind the
anonymous function to a variable called apply_tax. You should use apply_tax
with Enum.each/2, like in the following example. Don’t worry about Enum.each/2
now; you’ll see it in detail in Chapter 5, Using Higher-Order Functions, on
page 81. You only need to know that Enum.each/2 will execute apply_tax in
each item of a list.

Enum.each [12.5, 30.99, 250.49, 18.80], apply_tax
Price: 14.0 - Tax: 1.5
Price: 34.7088 - Tax: 3.7188
Price: 280.5488 - Tax: 30.0588
Price: 21.056 - Tax: 2.256

• Create a module called MatchstickFactory and a function called boxes/1. The
function will calculate the number of boxes necessary to accommodate
some matchsticks. It returns a map with the number of boxes necessary
for each type of box. The factory has three types of boxes: the big ones
hold fifty matchsticks, the medium ones hold twenty, and the small ones
hold five. The boxes can’t have fewer matchstick that they can hold; they
must be full. The returning map should contain the remaining match-
sticks. It should work like this:

MatchstickFactory.boxes(98)
%{big: 1, medium: 2, remaining_matchsticks: 3, small: 1}
MatchstickFactory.boxes(39)
%{big: 0, medium: 1, remaining_matchsticks: 4, small: 3}

Tip: You’ll need to use the rem/2 and div/2 functions.8 9

8. https://hexdocs.pm/elixir/Kernel.html#rem/2
9. https://hexdocs.pm/elixir/Kernel.html#div/2

report erratum • discuss

Wrapping Up • 31

https://hexdocs.pm/elixir/Kernel.html#rem/2
https://hexdocs.pm/elixir/Kernel.html#div/2
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

CHAPTER 3

Using Pattern Matching to Control
the Program Flow

Controlling the program flow means controlling which functions and expres-
sions will be executed. Imperative languages rely mainly on conditional con-
structors like if, but here in the functional world, pattern matching plays the
central role. However, pattern matching is often misunderstood and hard for
beginners to comprehend. That’s why half of this chapter is dedicated to
understanding pattern matching. Then we’ll use pattern matching to decide
which function to dispatch so we can have a control flow mechanism. By the
end of this chapter, we’ll see some Elixir control-flow structures that use
logical and pattern-matching expressions to simplify common expressions.
Let’s take the first step and learn about pattern matching.

Making Two Things Match
Elixir’s pattern matching shapes everything you program. It’s useful for
assigning variables, unpacking values, and making decisions such as which
function to invoke. The basis of pattern matching is that it tries to make two
things match, and it does something when it fails to do so.

You’ll start to learn about pattern matching with the = operator. This operator
raises a MatchError when it fails to match two things, stopping the program
execution. Otherwise, when both sides of the operator have a match, the
program keeps running. Let’s see how it works in practice, step by step. Open
an IEx session and type the following pattern-matching expression:

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

iex> 1 = 1
1
iex> 2 = 1
** (MatchError) no match of right hand side value: 1
iex> 1 = 2
** (MatchError) no match of right hand side value: 2

1 = 1 matches, but 2 = 1 and 1 = 2 don’t because they’re different numbers.
Let’s experiment with a familiar expression using variables:

iex> x = 1
1

You’re probably saying to yourself, “What a disappointment! It’s just a variable
assignment!” Maybe you’re thinking it’s a joke. But it’s not. It’s pattern
matching. Elixir is making both sides equivalent by binding the value 1 to the
variable x. Let’s try something different:

iex> 1 = x
1

The value is on the left side, the variable is on the right side, and it’s a valid
Elixir expression. It’s fascinating, right? We said previously that x = 1, and
now the value 1 is bound to the x variable. When we type 1 = x, Elixir tries to
check if the value on the left side is equal to the right side. If the two sides
are equal, then we have a valid expression. Let’s look at another example:

iex> 2 = x
** (MatchError) no match of the right hand side value: 1

Elixir tries to match both sides. The value of the variable on the right side is
the number 1. The number 2 isn’t equal to 1, and it results in a MatchError. The
process of checking if both sides of the = operator are equivalent is pattern
matching. It can be hard to understand if this is the first time you’ve seen it.
To help you understand what’s happening in the background, let’s look at
an improvised imperative version of the preceding expression:

if 2 == x
2

else
raise MatchError

end

If x is not equal to 2, it raises an error. Now let’s see what happens when we
try to invert the sides of that expression:

iex> x = 2
2

Chapter 3. Using Pattern Matching to Control the Program Flow • 34

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Now that the variable x is on the left side, the behavior is different. When the
variable is on the left side, Elixir will match everything, binding the value of
the expression on the right side to the variable. We can bind new values for
existing variables. We call that rebinding. Elixir binds the number 2 to x to
make both sides match. We can avoid the rebinding by using the pin operator:
^. That operator lets you avoid the rebinding by using the value of the variable
to run the matching. Try the operator by yourself:

iex> x = 2
2
iex> ^x = 2
2
iex> ^x = 1
** (MatchError) no match of right hand side value: 1

With the pin operator, Elixir uses the value of the variable to match. Using
this simple = operator for pattern matching, we can check if both sides of
that operator have a match. When they don’t match, the program stops the
execution with a matching error. Realizing that = isn’t just for binding variables
can be hard if you’re accustomed to variable assignments in other program-
ming paradigms. To help you in this transition, you can use an algebra
analogy: if x = 1, then 1 = x is valid. The pattern matching doesn’t stop here.
We can create checks and unpack values of different types of data, allowing
us to solve more complex problems.

Unpacking Values from Various Data Types
Pattern matching is also useful for extracting parts of values to variables in
a process called destructuring. It’s our primary tool to get a string part, an
item from a list, and a value from the map. We use destructuring together
with pattern matching when we’re making two things match. In this section,
we’ll explore pattern matching with several data types and see how we can
extract values and make more complex matches.

Matching Parts of a String
Strings are a data type that we can use in pattern matching. We can use the
<> operator to check the beginning of a string. It’s useful for checking text
that’s organized in key/value pairs. For example, we can match one header
pattern in the HTTP protocol. In the following example, we’ll make a simple
match to get the credentials part of the following string:

iex> "Authentication: " <> credentials = "Authentication: Basic dXNlcjpwYXNz"
iex> credentials
"Basic dXNlcjpwYXNz"

report erratum • discuss

Unpacking Values from Various Data Types • 35

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The only restriction in pattern matching with strings is that we can’t use a
variable on the left side of the <> operator. Consider this example:

iex> first_name <> " Doe" = "John Doe"
** (CompileError) a binary field without size is only allowed at the end of a
binary pattern and never allowed in binary generators

Strings are binaries, and <> is a binary operator. The error means we can’t
start our expression with a variable without providing its binary size. It’s
saying that we can’t check the end of a string. We can easily avoid this by
reversing the string values. Take a look:

iex> "eoD " <> first_name = String.reverse("John Doe")
iex> String.reverse(first_name)
"John"

Using the workaround String.reverse, we have matched the string when the last
name is Doe and extracted the first name to a variable. It’s an unusual solu-
tion—you can create better matchings for strings by using Elixir regular
expressions. If you want to know more, take a look at the Regex module.1

Strings are binaries in Elixir. You can also use binary pattern-matching
syntax to achieve powerful and fast checks. We won’t cover binary pattern
matching in this book, but you can consult the Elixir official Getting Started
guide to understand how it works.2

Matching Tuples
Tuples are collections that are stored contiguously in memory, allowing fast
access to their elements by index. They are common in functions, results, and
messages sent to processes in Elixir’s core and community libraries. They are
often used to pass a signal with values. For example, we can use a tuple to say
whether the result of a function was a success or a failure, where the first item
indicates the success with an atom and the second item is a computed value:

{:ok, 42}
{:error, :not_found}

Here is an illustration of how tuples are stored in memory:

:ok

index: 0

42

index: 1

:error

index: 0

:not_found

index: 1

1. https://hexdocs.pm/elixir/Regex.html
2. http://elixir-lang.org/getting-started/binaries-strings-and-char-lists.html#binaries-and-bitstrings

Chapter 3. Using Pattern Matching to Control the Program Flow • 36

report erratum • discuss

https://hexdocs.pm/elixir/Regex.html
http://elixir-lang.org/getting-started/binaries-strings-and-char-lists.html#binaries-and-bitstrings
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We can store items in a tuple and bind them to variables with a simple
expression. Try it:

iex> {a, b, c} = {4, 5, 6}
{4, 5, 6}
iex> a
4
iex> b
5
iex> c
6

To make the left side match the right side of the expression, Elixir has done
multiple variable bindings. Now the variables a, b, and c have the values of
the elements in the tuple. It’s destructuring in action again. We’re unpacking
values from the tuple and binding them to variables.

Tuples are also useful for signaling successes and failures in a function’s
return. We can create a function that returns a tuple, where the first item
will be an :ok, indicating success. Then we can use pattern matching only to
let the program run when the result is successful. Try the following code to
see this in action:

iex> process_life_the_universe_and_everything = fn -> {:ok, 42} end
iex> {:ok, answer} = process_life_the_universe_and_everything.()
iex> IO.puts "The answer is #{answer}."
The answer is 42.

The function process_life_the_universe_and_everything returns a tuple. The first element
indicates success with an :ok atom, and the second item is the computed
value. We have matched it using the {:ok, answer} pattern. The pattern is a
tuple that expects the first item will be :ok and the second item will bind to
the variable answer. Then we printed the value of answer. This is how we can
use tuples and pattern matching to check more complex structures than
numbers or strings.

Functions Might Not Be Consistent When Returning Tuples

Elixir’s functions might be inconsistent when returning values to
indicate error or success. For example, some functions can return
an atom for the unsuccessful result and a tuple for a successful
one. It depends on what the creator of that function was trying to
express. It’s always good to check the documentation before using
a function. A good practice—one that’s very common in Elixir’s
functions and community libraries—is to return {:ok, value} for
success and {:error, :error_type} for failure.

report erratum • discuss

Unpacking Values from Various Data Types • 37

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We’ll create an example using Integer.parse/1 and see how we can use tuples in
different ways. Let’s build a script that helps paper-and-pen role-playing game
(RPG) players calculate the abilities of their characters. In an RPG, players
create and play roles in stories that they build together. Some players use
books with complicated rules about how they can make their characters, and
our script will help them.

A player types the number of her character’s ability score, and the program
shows the modifier value. Abilities and modifiers? If you’ve never played an
RPG, don’t worry. The most important part of this exercise is building a program
in which users can input a number that will be computed only when the
number is valid. It’s hard to predict all the things users will type. For example,
someone could type hot dogs and our program would stop with an error. We
want to ensure the program only does the math with valid numbers. Let’s create
an Elixir script file called ability_modifier.exs. Write the following program:

pattern_matching/lib/ability_modifier.exs
user_input = IO.gets "Write your ability score:\n"
{ability_score, _} = Integer.parse(user_input)
ability_modifier = (ability_score - 10) / 2
IO.puts "Your ability modifier is #{ability_modifier}"

The .exs extension is for Elixir scripts that don’t need to generate a compiled
version. It’s useful for simple scripts. The wildcard character _ in the {abili-
ty_score, _} expression matches everything. It’s used to ignore some parts of
the matching expression. We use the IO.gets/1 function to get user input—they
need to press Enter to send their input. We can run this script using the elixir
ability_modifier.exs command and interact with it:

Write your ability score:❮

16➾

Your ability modifier is 3.0❮

You can execute the script again and generate an error by typing hot dogs,
just for fun.

Now let’s discuss the tuple pattern on the second line of the script. The Inte-
ger.parse/1 functions return a tuple for a successful parsing. The first element
is the parsed value and the second item is the remaining text that wasn’t
parsed. When the input can’t be parsed to an integer, the function doesn’t
return a tuple; it returns an atom :error.

Notice that here we don’t have an atom saying the result was successful; a
tuple is enough to describe it. Then we use the pattern-matching expression
{ability_score, _} to check if the result is a tuple—in other words, if the parsing

Chapter 3. Using Pattern Matching to Control the Program Flow • 38

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/ability_modifier.exs
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The Difference Between the Various Equals Operators

In Elixir we have many equals operators that have different use cases. = is used for
pattern matching. == returns true when the elements are equal and when integers
and floats are equivalent numbers. === returns true when arguments are equivalent
and have the same type. Here are some examples:

1 = 1 # returns 1
2 = 1 # match error!
1 == 1.0 # returns true
2 == 1 # returns false
1.0 === 1.0 # returns true
1.0 === 1 # returns false

was successful. This expression also binds the first element to the variable
ability_score and ignores the remaining text using the wildcard. That’s how we
can use pattern matching with tuples to extract values and make some
matches.

Matching Lists
Tuples are for representing collections of a few items. We’ve used pattern
matching on them, taken values, and put them in variables. But tuples have
one limitation: they’re stored contiguously in memory. We need to know in
advance how many elements are inside of them. It’s a problem because we
can’t always predict a collection size and it’s impractical to write all the items
of a vast collection in an expression. To address these problems, Elixir uses
the list data type. In Elixir, lists are linked lists. That means each item of the
collection contains a value and an implicit reference to the next element. For
a list [:a, :b, :c, :d, :e], we’ll have something like this in memory:

:a :c:b :d :e []

A list ends by linking to an empty list, turning the list into a proper list. It’s
useful to avoid infinite loops by checking if the last item is a empty list and
stopping a recursive iteration. In some rare cases you can face an improper
list—one that doesn’t link to an empty list at its end.

Like with tuples, we can create pattern-matching expressions to extract values
from the collection and put them into variables or check if the list items are
following some pattern. For representing lists, we use the [] syntax. Let’s start
our exploration by creating an expression that tells if the items are the same.
Let’s try it in our IEx:

report erratum • discuss

Unpacking Values from Various Data Types • 39

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

iex> [a, a, a] = [1, 1, 1]
[1, 1, 1]
iex> [a, a, a] = [1, 2, 1]
** (MatchError) no match of right hand side value: [1, 2, 1]
iex> [a, b, a] = [1, 2, 1]
[1, 2, 1]
iex> [a, a, a] = ["apples", "apples", "apples"]
["apples", "apples", "apples"]

The pattern [a, a, a] means that a list must have three elements with the same
value. We see this because we’re using the variable a for the three items.
Variables have a unique value in an expression; the variable a can’t be the
number 1 and 2 at the same time. That’s why the list [1, 2, 1] results in a
MatchError with [a, a, a] but succeeds with [a, b, a]. We can create complex checks
like this one:

iex> [a, a, "pineapples"] = ["apples", "apples", "pineapples"]
["apples", "apples", "pineapples"]

The pattern [a, a, "pineapples"] means the first two list items must be the same
value, and the third item must be pineapples. It demonstrates how we can
use values in list patterns.

When we want to ignore some parts of a list, we can use the wildcard charac-
ter _. Type this in your IEx to see it in action:

iex> [_, a, _] = [10, 2, 12]
iex> a
2
iex> [_, a, a] = [16, 4, 4]
iex> a
4

We’ve used the wildcard character to tell Elixir that we don’t want it to check
certain elements. The wildcard character isn’t exclusive to lists. It can be
utilized in all pattern-matching expressions and data types.

Elixir provides a special | operator for lists. When we use it, we can separate
some elements of the list from the rest, enabling us to work with collections
of unknown size. Knowing that, open your IEx. Let’s try separating some list
elements using the | operator:

iex> [head | tail] = [:a, :b, :c, :d]
iex> head
:a
iex> tail
[:b, :c, :d]

Chapter 3. Using Pattern Matching to Control the Program Flow • 40

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The left side of the | operator matches the first items of a list; in this case,
we’re matching only one. The right side always matches the rest of the ele-
ments. We bound the first item to the variable head and the rest to the variable
tail. (When working with lists, the names head for the first element and tail
for the rest are common.) We have extracted values from the list without
worrying about its size, separating the first element from the rest of the list.

Let’s check what happens when we use the | operator in lists that have one
element. Can you guess the values of head and tail? Try it in your IEx:

iex> [head | tail] = [:a]

head has the value :a, and tail has an empty list. After Elixir extracts the unique
element to the variable head, all that’s left is an empty list. See what happens
if you use this operator in an empty list in your IEx:

iex> [head | tail] = []
** (MatchError) no match of right hand side value: []

Since we can’t separate an element of an empty list, it turns into an impossible
operation. When that happens, MatchError is raised. We can extract more than
one element on the left side of the | operator . Try it in your IEx:

iex> [a, b | rest] = [1, 2, 3, 4]
iex> a
1
iex> b
2
iex> rest
[3, 4]

We’re binding the first two elements to the variables a and b. We could bind
more variables or use the same names of the variables to check some patterns.
Using the | operator to access subparts of lists frees us from worry about list
size. We can explore it more, like how to apply a computation on each list
item, but let’s save it for the next chapters.

Matching Maps
Maps are data types structured in key/value pairs. They are used to represent
a set of values with labels that need to stay together. For example, if we want
to represent a user signup, we can use a map to store the fields and their
values in memory, like this:

iex> user_signup = %{email: "johndoe@mail.com", password: "12345678"}

report erratum • discuss

Unpacking Values from Various Data Types • 41

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The %{} is the syntax to create map values. email: is the key and expands to
an atom. "johndoe@mail.com" is the value of the key :email. The equivalent alter-
native syntax uses =>:

iex> user_signup = %{:email => "johndoe@mail.com", :password => "12345678"}

It’s little bit verbose, but this syntax is useful for storing any value in a key.
For example,

iex> sales = %{"2017/01" => 2000, "2017/02" => 2500}

We can also represent complex nested structures:

%{
name: "John Doe",
age: 20,
programming_languages: ["Ruby", "Elixir", "JavaScript", "Java"],
location: %{city: "São Paulo", country: "Brazil", state: "SP"}

}

We can check values and keys of maps by using pattern matching. Try the
following example in your IEx:

iex> abilities = %{strength: 16, dexterity: 12, intelligence: 10}
iex> %{strength: strength_value} = abilities
iex> strength_value
16

In this example, we’re accessing the key :strength and binding its value to the
variable strength_value. The pattern-matching expression always checks a subset
of the map, which means we don’t need to provide all the keys for a match
to be successful. We can use only the keys that we need. If the map doesn’t
have the key, a MatchError will arise. Check it out:

iex> %{wisdom: wisdom_value} = abilities
** (MatchError) no match of right hand side value...

If we use an empty map, it will match all maps. For example,

iex> %{} = abilities
%{dexterity: 12, intelligence: 10, strength: 16}
iex> %{} = %{a: 1, b: 2}
%{a: 1, b: 2}

We can use pattern-matching expressions to extract and check values at the
same time. Let’s demonstrate this by creating an expression using the same
variable, abilities, from the previous example. Try this new pattern in your IEx:

iex> %{intelligence: 10, dexterity: dexterity_value} = abilities
iex> dexterity_value
12

Chapter 3. Using Pattern Matching to Control the Program Flow • 42

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We’re telling Elixir that the abilities variable must have an :intelligence key with
the number 10. At the same time, we’re telling Elixir to check if the :dexterity
key exists and, if so, to extract its value to a variable.

We can use the = operator on the left side of the pattern-matching expression
to check and bind at the same time. Try it:

iex> %{strength: strength_value = 16 } = abilities
iex> strength_value
16

To understand it, look at strength_value = 16 in isolation. The expression binds
the 16 value to the strength_value variable. Knowing that strength_value is 16, it will
try to match against the abilities structure. The abilities structure has the key
and value strength: 16. It matches! We could do the same thing in two steps:

iex> strength_value = 16
iex> %{strength: ˆstrength_value} = abilities

Here we used the pin operator to match abilities using the value of the
strength_value variable. Use the one-step version for simple assignments, and
use the two-step version when you have some calculation or function call on
the variables assignment. This way, your code will be easy to understand.

Maps vs. Keyword Lists
A keyword list is a list of two-element tuples: it allows duplicated keys but
they must be atoms. We match them using the list syntax:

iex> [b, c] = [a: 1, a: 12]
iex> b
{:a, 1}
iex> c
{:a, 12}

Maps are structures that allow any value to be the key, but the key must be
unique. Keywords are useful for function options; for example, the import
directive takes a keyword list because named functions in Elixir can have
identical names but with different arity. For example,

iex> import String, only: [pad_leading: 2, pad_leading: 3]
String
iex> pad_leading("def", 6)
" def"
iex> pad_leading("def", 6, "-")
"---def"

Keyword lists permit you to create structures with identical keys but with
different values. Meanwhile, maps are useful for things like representing

report erratum • discuss

Unpacking Values from Various Data Types • 43

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

database rows, because column names are unique in a table. Here are some
examples:

x = %{a: 1, a: 12} # result in {a: 12}
x = [a: 1, a: 12] # OK
x = [{:a, 1}, {:a, 12}] # it's the same above
x = %{1 => :a, 2 => :b } # OK
x = [1 => :a, 2 => :b] # syntax error

The syntax of maps and keywords is very similar, but their limitations make
them handy for different use cases.

Matching Structs
Structs are extensions of mapping structures. They are useful for representing
consistent structures that have the same set of keys everywhere in the
application. All structs have a list of permitted attributes. It’s impossible to
create a struct with a key that’s not in the list of allowed attributes because
Elixir provides a compile-time guarantee. For example, take a look at the official
documentation of the Date struct.3 It has the following fields: year, month,
day, and calendar. We can’t create a Date struct with a key hot_dog. Using a
struct for dates guarantees all dates in Elixir to have a consistent structure.

Let’s use pattern matching to extract the values of a struct. We can use the
same %{} syntax that we have used with maps. After all, structs are extensions
of maps. Try the following code in your IEx:

iex> date = ~D[2018-01-01]
iex> %{year: year} = date
iex> year
2018

Pattern matching with structs works like it does with maps. This means we
can use everything we’ve learned about maps on structs. The date sigil ~D is
new here. Sigils are shortcuts to create values with a simplified text represen-
tation. For example, with the word-list sigil we could create a list of candies
without worrying about double quotes and commas:

iex> ~w(chocolate jelly mint)
["chocolate", "jelly", "mint"]

That sigil considers each word a string, and a whitespace separates each item
of the list. We won’t explore all sigils available in Elixir and how to customize
them, but you can learn more about them in the Elixir official guide.4

3. https://hexdocs.pm/elixir/Date.html
4. http://elixir-lang.org/getting-started/sigils.html

Chapter 3. Using Pattern Matching to Control the Program Flow • 44

report erratum • discuss

https://hexdocs.pm/elixir/Date.html
http://elixir-lang.org/getting-started/sigils.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

There is only one fundamental difference between structs and maps: The
name of the struct can be used to indicate which type of structure we’re
expecting. Try this in your IEx:

iex> date = ~D[2018-01-01]
iex> %Date{day: day} = date
iex> day
1
iex> %Date{day: day} = %{day: 1}
** (MatchError) no match of right hand side value: %{day: 1}

In the first attempt, the match works because we’re matching a Date struct.
The second attempt doesn’t work even though the map structure is valid,
because the value is a map and not a Date. With this check, we can ensure
that we’re working with the expected type, and our program can run safely.

Control Flow with Functions
Programs typically cover a variety of scenarios, and we need to create code
to handle each one. In functional programming, pattern matching and func-
tions are the fundamental tools we use to control the program flow. Until
now, we’ve used pattern matching with the = operator to make two things
match. It’s useful for making sure our program runs in an expected scenario.
When the match is not possible, Elixir raises an error and stops the program
process. When we use pattern matching with functions, we can do more than
just throw errors, and that’s what we’ll discuss in this section.

Let’s create a simple program that, given two numbers, will say which one is
greater. If the numbers are equal, we can show either one of them. For this
example we’ll use named functions, then create a file number_compare.ex and
type the following:

pattern_matching/lib/number_compare.ex
defmodule NumberCompare do

def greater(number, other_number) do
check(number >= other_number, number, other_number)

end

defp check(true, number, _), do: number
defp check(false, _, other_number), do: other_number

end

We have new stuff here: multiple function definitions with the same
name—some of them defined with a defp directive, and others with values in
the arguments. Don’t worry about those details right now. The main thing
here is that we’ve created multiple functions with different values in their

report erratum • discuss

Control Flow with Functions • 45

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/number_compare.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

arguments. Before we discuss the code in detail, let’s see it in action. Run
this in your IEx:

iex> c("number_compare.ex")
iex> NumberCompare.greater(6, 2)
6
iex> NumberCompare.greater(1, 8)
8
iex> NumberCompare.greater(2, 2)
2

Let’s examine the greater function first: we used the >= operator to compare
two numbers. It will be true when the first number is greater than or equal to
the second number, and false when the second number is the greater. We
needed to create code that handles these two possibilities. Then we created
an auxiliary function check to help us achieve the solution.

We created two versions of check, each one to handle a possibility of the Boolean
result: one for the true case and the other for the false case. It’s possible because,
in Elixir functions, the arguments can be pattern-matching expressions.

Let’s see the first definition of check again:

pattern_matching/lib/number_compare.ex
defp check(true, number, _), do: number

The first parameter is matching the true value. This function will handle the
case when the first number is the greater. Then we bind the higher number
to the variable number. The third argument is for the lower number; we don’t
need it and we tell Elixir that by using a wildcard for this argument. In the
function body, we return the number variable. Now we’ve covered the first
possibility.

Let’s look at the second one:

pattern_matching/lib/number_compare.ex
defp check(false, _, other_number), do: other_number

We’re using pattern matching to check if the first argument is false, meaning
the second number is the greater. We use the wildcard for the lower number
to tell Elixir that number doesn’t matter. Then we bind the higher number to
the variable other_number. In the function body, we return the other_number vari-
able. By creating it, we have covered the second possibility, of the second
number being the greater.

That’s it! We’ve handled both possibilities using functions and pattern
matching. In Elixir we call these multiple function definitions function clauses.

Chapter 3. Using Pattern Matching to Control the Program Flow • 46

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/number_compare.ex
http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/number_compare.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We can create as many function clauses as we need. The only requirement
is that they must be defined in sequence. This means we can’t create another
function between the check clauses’ definitions. When we call a function name
with multiple definitions, the order of the function clauses is very impor-
tant—Elixir will execute the function of the first clause that matches.

Let’s look at our entry function greater/2 again:

pattern_matching/lib/number_compare.ex
def greater(number, other_number) do

check(number >= other_number, number, other_number)
end

We call the helper function check/3, passing the result of the >= operator in
the first argument, and the numbers in the second and third arguments.
With this strategy, the helper function clauses can handle the Boolean value
and return the greater number. Other developers who may want to use this
functionality in other modules only need to use the greater/2 version. The check/3
is an internal function that helps us achieve our goal, so the other modules
don’t need to know about it. We can enforce that using the defp directive.

defp defines private functions of your module. Private functions are useful for
controlling the accessibility of the functions from outside. They can’t even be
imported from other modules. If in our IEx session we try to call the check/3
function, an UndefinedFunctionError is raised. Let’s try it:

iex> NumberCompare.check(true, 2, 2)
** (UndefinedFunctionError)

At this point, we’ve covered a lot of pattern-matching expressions, and we
can use all of them in function arguments. I don’t need to explain every pattern
because they work the same, but it’s a good idea to keep practicing.

Applying Default Values for Functions
We can apply a default value to named function arguments using the \\
operator. When we apply a default value to an argument in a function, Elixir
creates two versions of that function. In the first version, the argument marked
with the default value will not have a value, so it’s mandatory that it be sup-
plied. In the second version the argument doesn’t exist; internally Elixir will
invoke the first function version, passing the default value. Take a look at
how it works in practice:

defmodule Checkout do
def total_cost(price, quantity \\ 10), do: price * quantity

end

report erratum • discuss

Control Flow with Functions • 47

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/number_compare.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Try it in your IEx session:

iex> c("checkout.ex")
iex> Checkout.total_cost(12)
120
iex> Checkout.total_cost(12, 5)
60

When we don’t provide the second argument, Elixir uses the default value. We
can only have one default value for each parameter. If we try to define multiple
function clauses with different default values, Elixir will generate a compile
error. In the background, Elixir is creating multiple functions with different
arities. We have two different functions: Checkout.total_cost/1 and Checkout.total_cost/2.
We can see these different functions when we try it to capture them:

iex> using_default = &Checkout.total_cost/1
iex> not_using_default = &Checkout.total_cost/2
iex> using_default.(12)
120
iex> using_default.(12, 4)
** (BadArityError)
iex> not_using_default.(12)
** (BadArityError)
iex> not_using_default.(12, 5)
60

Let’s make clear what happens in the background by generating equivalent
code without using the \\ shortcut. It will be like this:

defmodule Checkout do
def total_cost(price), do: total_cost(price, 10)
def total_cost(price, quantity), do: price * quantity

end

total_cost/1 passes the default quantity 10 to total_cost/2. In Elixir, functions have
fixed arity. Functions with the same name but with a different number of
parameters are different functions. We consider the arity to be part of the func-
tion’s unique name, which is why we reference arities with name_of_the_function/arity
notation.

Expanding Control with Guard Clauses
Creating multiple functions with pattern matching to control the program
flow can be exhausting sometimes. In the example where we created the
NumberCompare module, we have to build auxiliary functions to handle the >=
operation result. Creating too many functions for trivial tasks can generate
code that is hard to maintain. We can improve this using Elixir guard clauses.

Chapter 3. Using Pattern Matching to Control the Program Flow • 48

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Guard clauses permit us to add Boolean expressions in our functions, adding
more power to our function clauses.

We can create guard clauses by using the when keyword after functions’
parameters. Let’s see how it works for improving our NumberCompare code:

pattern_matching/lib/guard_clauses/number_compare.ex
defmodule NumberCompare do

def greater(number, other_number) when number >= other_number, do: number
def greater(_, other_number), do: other_number

end

We can try the code above using IEx:

iex> c("number_compare.ex")
iex> NumberCompare.greater(2, 8)
8

We’ve used the guard clauses to check which number is greater; one function
returns the first number, and the other returns the second. The expression
when number >= other_number is the guard clause. When it’s true, the function will
be executed, returning the variable number. When the expression is false, it will
try to run the second function clause. The second clause will always match
because it doesn’t have any check to prevent execution.

Guard clauses help us to create better function signatures, reducing the need
for function helpers. We can also use guard clauses to enforce which data
we’re expecting. Let’s improve the Checkout module that we created in the pre-
vious chapter. It calculates the total cost of a product, applying a tax rate.
It’s good to establish that neither of these numbers can be negative. Type the
following module in your checkout.ex file:

pattern_matching/lib/guard_clauses/checkout.ex
defmodule Checkout do

def total_cost(price, tax_rate) when price >= 0 and tax_rate >= 0 do
price * (tax_rate + 1)

end
end

The price >= 0 and tax_rate >= 0 expression ensures they must be positives. We
can try the module using IEx:

iex> c("checkout.ex")
iex> Checkout.total_cost(40, 0.1)
44.0
iex> Checkout.total_cost(-2, 0.2)
** (FunctionClauseError) no function clause matching
iex> Checkout.total_cost(42.3, "Hello, World!")
** (ArithmeticError) bad argument in arithmetic expression

report erratum • discuss

Expanding Control with Guard Clauses • 49

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/guard_clauses/number_compare.ex
http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/guard_clauses/checkout.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We tried our guard clauses with different inputs, passing positive numbers,
and everything works great. When we tried to use negative numbers, it failed
with the FunctionClauseError, which means we have no total_cost/2 that handles
negative numbers. When we tried to pass the "Hello, World!", the error was dif-
ferent. The ArithmeticError happened in the price * (tax_rate + 1) expression, which
means the text "Hello, World" passed the guard check; in other words, "Hello, World!
is greater than 0.

Comparing a string to a number may look strange, but Elixir can compare text,
numbers, and other types. This makes it practical to sort lists with mixed item
types, and it’s why the guard check passed. In Elixir, we don’t need to be very
defensive about types. It’s a dynamically typed language and it is uncommon
for developers to create functions with long guard-clause expressions just for
type checking. If you want to have type safety in some functions, Elixir provides
useful functions—for example, Kernel.is_integer/1 to check if a value is an integer.

Elixir and Type Declaration

Elixir is a dynamically typed language; the compiler never uses
type specifications to optimize or modify the code. This means that
when we program with Elixir, we don’t need to worry about type
declaration for every function or variable definition. Instead, we
use automated tests and pattern matching to ensure we have a
working piece of software. But at the same time, type specifications
can be useful for creating documentation, and they have static
analysis to find inconsistencies and possible bugs. If you want to
learn more about type-specification tools in Elixir, consult the
official documentation.5

You can use pattern matching and guard clauses in anonymous function
arguments, as well. We use the -> operator between the function clause and
the body. The following example rewrites the function NumberCompare.check/2 in
the anonymous version:

number_compare = fn
number, other_number when number >= other_number -> number
_, other_number -> other_number

end

number_compare.(1, 2) # returns 2

You can see a list of functions and operators allowed in guard clauses in the
Elixir official documentation.6 You can’t use standard functions in guard

5. https://hexdocs.pm/elixir/typespecs.html
6. https://elixir-lang.org/getting-started/case-cond-and-if.html#expressions-in-guard-clauses

Chapter 3. Using Pattern Matching to Control the Program Flow • 50

report erratum • discuss

https://hexdocs.pm/elixir/typespecs.html
https://elixir-lang.org/getting-started/case-cond-and-if.html#expressions-in-guard-clauses
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

clauses because the algorithm that checks which arguments match needs to
be very fast and have no side effects to be practical. It means that only func-
tions that are pure and fast are allowed. Erlang and Elixir ensure purity and
speed by creating a list of authorized functions. That list can be expanded
with Elixir macro functions.

Let’s use macro functions to create a program that says if a number is even
or odd. Elixir has functions that will help do the job. They are localized in a
special section called Macros in the Elixir integer documentation.7 The func-
tions is_even/1 and is_odd/1 are what we’re looking for. Create a file called
even_or_odd.ex and type the following code:

pattern_matching/lib/guard_clauses/even_or_odd.ex
defmodule EvenOrOdd do

require Integer

def check(number) when Integer.is_even(number), do: "even"
def check(number) when Integer.is_odd(number), do: "odd"

end

We can run it using IEx:

iex> c("even_or_odd.ex")
iex> EvenOrOdd.check(42)
"even"
iex> EvenOrOdd.check(43)
"odd"

The new thing here is the directive require. We need to use it because is_even/1
and is_odd/1 are macro functions. When you use a macro, it generates code
before evaluating it. For example, when we use Integer.is_even(2), it generates
the code (2 &&& 1) == 0 during the compilation phase. Then when we run the
code the expression will be evaluated to true. Elixir’s compiler needs the require
directive to use the module in the compilation phase. The other important
aspect of the require directive is that it’s lexically scoped. Take a look:

pattern_matching/lib/lexical/even_or_odd.ex
defmodule EvenOrOdd do

def is_even(number) do
require Integer
Integer.is_even(number)

end

def is_odd(number), do: Integer.is_odd(number)
end

7. https://hexdocs.pm/elixir/Integer.html#macros

report erratum • discuss

Expanding Control with Guard Clauses • 51

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/guard_clauses/even_or_odd.ex
http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/lexical/even_or_odd.ex
https://hexdocs.pm/elixir/Integer.html#macros
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

require Integer is in the EvenOrOdd.is_even/1 function, and the lexical scope means
that Integer macro functions are available only there. The EvenOrOdd.is_odd/1
function is trying to use the Integer macro functions. If we attempt to compile
it, we’ll get a compile error complaining about the missing require Integer in the
EvenOrOdd.is_odd/1 function.

&&& is the bitwise operator AND. It checks each value bit by bit, and sets the
value to 1 when both bits are 1. Thanks to it, when you use the bitwise AND
with 1, if a number is odd the final result is 1. The bitwise operators are beyond
the scope of this book, but you can learn more about them in Elixir’s official
documentation.8

You can easily create macro functions to be used in guard clauses with the
defguard directive. It’s very handy to reuse common guard clauses in your
modules. For example, let’s add a new function to the Checkout module and
reuse the guard checks:

pattern_matching/lib/guard_clauses/macro/checkout.ex
defmodule Checkout do

defguard is_rate(value) when is_float(value) and value >= 0 and value <= 1
defguard is_cents(value) when is_integer(value) and value >= 0

def total_cost(price, tax_rate) when is_cents(price) and is_rate(tax_rate) do
price + tax_cost(price, tax_rate)

end

def tax_cost(price, tax_rate) when is_cents(price) and is_rate(tax_rate) do
price * tax_rate

end
end

You can try the code above:

iex> c("checkout.ex")
iex> Checkout.tax_cost(40, 0.1)
4.0
iex> Checkout.total_cost(40, 0.1)
44.0
iex> Checkout.tax_cost(-2, 0.2)
** (FunctionClauseError) no function clause matching
iex> Checkout.total_cost(42.3, "Hello, World!")
** (FunctionClauseError) no function clause matching

Macro functions enable Elixir programmers to create more functions to be
used in guard clauses. The only rule is that the generated code must respect
the list of allowed functions in guard clauses. Macros are part of Elixir

8. https://hexdocs.pm/elixir/Bitwise.html

Chapter 3. Using Pattern Matching to Control the Program Flow • 52

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/guard_clauses/macro/checkout.ex
https://hexdocs.pm/elixir/Bitwise.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

metaprogramming, a great subject that’s beyond the scope of this book; you
can read more about it in the official Elixir getting-started guide.9

Elixir Control-Flow Structures
Working with functional programming, we use function clauses to control
the flow of the program. It’s the expected behavior of a functional programmer,
but it doesn’t mean we can’t use some Elixir built-in control-flow structures,
such as case, cond, if, and unless, to develop features quickly. We’ll see how each
one can be useful and how it works.

Case: Control with Pattern Matching
case is useful when we want to check an expression with multiple pattern-
matching clauses. It’s helpful for dealing with functions that may have an
unexpected effect. To see how it works, we’ll change our script that calculates
the abilities modifier for RPG players:

pattern_matching/lib/elixir_flows/case/ability_modifier.exs
user_input = IO.gets "Write your ability score:\n"
case Integer.parse(user_input) do

:error -> IO.puts "Invalid ability score: #{user_input}"
{ability_score, _} ->

ability_modifier = (ability_score - 10) / 2
IO.puts "Your ability modifier is #{ability_modifier}"

end

We can run it with the elixir ability_modifier.exs command and interact with it:

Write your ability score:❮

hot dogs➾

Invalid ability score: hot dogs❮

We used case to handle two scenarios: one in which the user input is a valid
number, and the other in which the user provides invalid information. We
start to make the decision with the case directive. Then we add our expression
that we want to match the result. All lines after do can be used to create
clauses. We put the pattern-matching expression before the -> operator, and
the expression to be evaluated after it. It can be one line (adding the code
right after the ->) or multiple lines (if we create a line break). When a pattern-
matching expression passes, the expression associated with it will be executed,
and no more pattern-matching expressions will be evaluated.

9. https://elixir-lang.org/getting-started/meta/macros.html

report erratum • discuss

Elixir Control-Flow Structures • 53

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/elixir_flows/case/ability_modifier.exs
https://elixir-lang.org/getting-started/meta/macros.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The case directive returns the result of the expression that was evaluated.
Knowing that, we can refactor our script to take advantage of it and write the
code IO.puts once. Take a look:

pattern_matching/lib/elixir_flows/case_value/ability_modifier.exs
user_input = IO.gets "Write your ability score: "

result = case Integer.parse(user_input) do
:error ->

"Invalid ability score: #{user_input}"
{ability_score, _} ->

ability_modifier = (ability_score - 10) / 2
"Your ability modifier is #{ability_modifier}"

end

IO.puts result

It’s a good practice to use the case returning value; in the preceding example,
we’d need to modify the code in only one place to change where the result
will be printed. Like in functions, we can use guard clauses in the case control
flow. Let’s change our script again to indicate that the ability score must be
a positive number:

pattern_matching/lib/elixir_flows/case_guard/ability_modifier.exs
result = case Integer.parse(user_input) do

:error ->
"Invalid ability score: #{user_input}"

{ability_score, _} when ability_score >= 0 ->
ability_modifier = (ability_score - 10) / 2
"Your ability modifier is #{ability_modifier}"

end

Now that part of the code will be executed only if ability_score is greater than 0.
Remember, when using the case control flow, if neither of the lines matches,
an error will be raised and your process will stop.

Cond: Control with Logical Expressions
The cond control flow is useful when you want to check different variables and
values in logical expressions. That’s useful when you don’t need pattern
matching for solving a problem.

Let’s create a script that checks a person’s age and says if that person is a
kid, a teen, or an adult. Create check_age.exs:

pattern_matching/lib/elixir_flows/check_age.exs
{age, _} = Integer.parse IO.gets("Person's age:\n")

result = cond do
age < 13 -> "kid"
age <= 18 -> "teen"

Chapter 3. Using Pattern Matching to Control the Program Flow • 54

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/elixir_flows/case_value/ability_modifier.exs
http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/elixir_flows/case_guard/ability_modifier.exs
http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/elixir_flows/check_age.exs
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

age > 18 -> "adult"
end

IO.puts "Result: #{result}"

We can interact with this script by running elixir check_age.exs:

Person's age:❮

12➾

Result: kid❮

We’ve used the cond structure to verify each age range and evaluate the
description. Each line of our cond structure is composed of a condition and
its associated expression. It’s similar to how the case structure works. When
a condition evaluates to something truthy, the code associated with it will be
executed. Remember, something truthy in Elixir is everything that is not nil
or false.

The last condition is important. If it doesn’t return something truthy it will
raise an error. When you don’t want to create an overhead of functions for
simple tasks, the cond control flow can help you out.

Taking a Look at Our Old Friend if
All the popular languages have an if control flow, and Elixir is no different. if
is very useful when you want to execute a command when some expression
results in a truthy value. Let’s do a quick overview of the building blocks
using the number-comparison example. Let’s rewrite our NumberCompare.greater/2
function:

pattern_matching/lib/elixir_flows/if/number_compare.ex
defmodule NumberCompareWithIf do

def greater(number, other_number) do
if number >= other_number do
number

else
other_number

end
end

end

When the expression in if is truthy, the subsequent block will execute; other-
wise, it will be the else block.

unless is common in Ruby and works the same way in Elixir. It’s similar to the
if construction, but the unless block is executed when the expression is nil or
false. Take a look at the unless version:

report erratum • discuss

Elixir Control-Flow Structures • 55

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/elixir_flows/if/number_compare.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

pattern_matching/lib/elixir_flows/unless/number_compare.ex
defmodule NumberCompareWithUnless do

def greater(number, other_number) do
unless number < other_number do
number

else
other_number

end
end

end

Using unless and else in the same expression makes it very hard to understand
at first. It’s good to avoid creating expressions like this; use if instead.

if and unless are expressions that return the resulting value of the executed
code block. The else block is optional and the expression returns nil when the
condition is falsy in an omitted else.

case, cond, if, and unless are control-flow structures built with macro functions.
You can invoke them using the function-invocation syntax. In the following
example, you can see how to invoke the if control flow like a function:

if(number >= other_number, do: number, else: other_number)

The Elixir control-flow structures solve common problems by determining
which expressions should be executed. But be careful: creating too many
functions to control flow can sometimes damage your code health with
unnecessary indirection. When you overuse Elixir’s built-in control-flow
structures, such as if, your code will look more imperative than functional.
To program with functional thinking, your code should express what it needs
to do, and that means balancing the use of control-flow features and function
clauses.

Wrapping Up
This has been an eye-opening chapter. You’ll never look at equals signs and
function arguments the same. Pattern matching is an excellent feature; once
you take the first step, you won’t go back. Let’s see what we’ve explored:

• We can use pattern matching in simple variable assignments.

• The = operator lets us create a pattern-matching expression that makes
two things match, or fail if there’s no match.

• Pattern matching can extract values of complex data types in a process
called destructuring.

Chapter 3. Using Pattern Matching to Control the Program Flow • 56

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/lib/elixir_flows/unless/number_compare.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

• Function clauses and pattern matching can help us control the program
flow.

• We can use Elixir control-flow structures to solve simple tasks quickly.

Knowing how to control the program flow opens up the possibility of learning
how to repeat and stop program tasks to solve various problems. In the next
chapter you’ll learn that in a functional way, using function recursion.

Your Turn
• In RPGs, players have points to spend on their character attributes. Create

a function that returns the total number of points players have spent on
their characters. The function will receive a map containing the strength,
dexterity, and intelligence values. Each point in strength should be multi-
plied by two, and dexterity and intelligence should be multiplied by three.

• Create a function that returns Tic-Tac-Toe game winners. You can repre-
sent the board with a tuple of nine elements, where each group of three
items is a row. The return of the function should be a tuple. When we
have a winner, the first element should be the atom :winner, and the second
should be the player. When we have no winner, the tuple should contain
one item that is the atom :no_winner. It should work like this:

TicTacToe.winner({
:x, :o, :x,
:o, :x, :o,
:o, :o, :x

})
{:winner, :x}

TicTacToe.winner({
:x, :o, :x,
:o, :x, :o,
:o, :x, :o

})
:no_winner

• Create a function that calculates income tax following these rules: a salary
equal or below $2,000 pays no tax; below or equal to $3,000 pays 5%; below
or equal to $6,000 pays 10%; everything higher than $6,000 pays 15%.

• Create an Elixir script where users can type their salary and see the
income tax and the net wage. You can use the module from the previous
exercise, but this script should parse the user input and display a message
when users type something that is not a valid number.

report erratum • discuss

Wrapping Up • 57

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

CHAPTER 4

Diving into Recursion
A simple script that counts to 10, a homepage that shows recent news, a
program that parses each line of a CSV file. What do these programs have in
common? They all need to do repetitive tasks to determine the final result.
Recursive functions are the core of repetition in functional programming.

In imperative languages, the repetition is done using iterative features like
for and while loops, which rely on mutable state. In functional programming,
we have the immutable state, so we need a different approach. Here we use
recursive functions.

A recursive function is when a function calls itself, leading to successive calls
of the same function. In this chapter, we’ll look at strategies to work with
recursion and avoid common pitfalls of performance and infinite processing.
By the end of the chapter, we’ll see how to work with recursion in lambda
expressions. Our first step is to learn the most common type of recursion:
the bounded recursion.

Surrounded by Boundaries
A bounded recursion is a type of recursive function in which the successive
calls to itself have an end. It’s the most common type of recursive function,
present in all list-navigation code. Every time a recursive function calls itself,
that’s an iteration; every time a bounded recursion iterates, it requires fewer
iterations to finish. We’re diminishing the steps to finish the program execution
in each iteration, even if we can’t easily predict the total number of iterations.

The number of repetitions of a bounded recursive function is directly associated
with the arguments that it receives. We can see how it works by creating a pro-
gram that sums all integers from 0 up to a parameterized number. For example,
if we pass the number 3, the program will generate the sum 3+ 2+ 1+ 0. It must

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

repeat the task of adding the resulting number and decrementing the given
number by 1 until the given number reaches 0. If we pass a bigger number,
the number of repetitions increases. Let’s create this with a Sum module:

recursion/lib/sum.ex
defmodule Sum do

def up_to(0), do: 0
def up_to(n), do: n + up_to(n - 1)

end

And let’s run it using IEx:

iex> c("sum.ex")
iex> Sum.up_to(10)
55

We’ve created two function clauses for the up_to/1 function. The first clause is
executed when the argument matches 0, and it returns the number
0—nothing more. It’s our stop condition, and the returning value is the last
step of a series of repetitions. The other clause is the expression that will be
repeated. You can notice it because it calls the up_to function, decrementing
the number until it reaches the stop-condition clause. It receives a variable
n, then sums the numbers using the current value of n and calls the same
function by decreasing n by 1. Let’s see how it works step by step:

up_to(5)
= 5 + up_to(4)
= 5 + 4 + up_to(3)
= 5 + 4 + 3 + up_to(2)
= 5 + 4 + 3 + 2 + up_to(1)
= 5 + 4 + 3 + 2 + 1 + up_to(0)
= 5 + 4 + 3 + 2 + 1 + 0
= 15

Recursion works by calling the same function again and again, repeating
tasks until it reaches the clause that protects it from an infinite repetition.
The boundary clause is very important; it should always be defined before
the clauses that can be repeated. If we remove or swap the up_to(0) clause, it
won’t have a stop condition, and it will consume your machine resources
forever, or until you kill the process or turn off the computer. If you want to
feel the sensation of the infinite loop, you can remove or swap the boundary
clause, compile the module again, and run the same example in your IEx. Be
prepared to kill the process: you can use Ctrl+C twice in IEx to halt the execu-
tion and exit.

Chapter 4. Diving into Recursion • 60

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/sum.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Navigating Through Lists
Many programming tasks require you to work with lists, show database
records, or parse each line of a file. These are a few examples of a broad range
of tasks that use lists. They all are based on navigating through lists and
doing some computation for each item. We can use the list syntax [head | tail]
to navigate through the list elements using recursive functions. Let’s see how
we can work with lists by building a program that sums all the numbers of
a collection. Let’s build a sum function that does this job for us:

recursion/lib/math.ex
defmodule Math do

def sum([]), do: 0
def sum([head | tail]), do: head + sum(tail)

end

We can run it using IEx:

iex> c("math.ex")
iex> Math.sum([10, 5, 15])
30
iex> Math.sum([])
0

First let’s look at the recursive function clause. [head | tail] extracts the first
number to the variable head, and the rest of the elements in the list to the
variable tail. Then we use the + operator to sum the first number with a
recursive call of sum, passing the rest of the list. It repeats—decreasing the
number of items in each new call of sum—until it reaches the boundary clause
that matches an empty list. The clause sum([]) is the stop condition, and it
says that the sum of an empty list is 0. Let’s look at how it works step by step:

sum([10, 5, 15]])
= 10 + sum([5, 15])
= 10 + 5 + sum([15])
= 10 + 5 + 15 + sum([])
= 10 + 5 + 15 + 0
= 30

The function sum is called, and it generates a new sum call. For each iteration,
the number of elements of the list decreases until the list is empty. With the
same logic, we can use recursive functions to navigate through any data
structure. We only need to know how to reduce the data for the next iterations
and identify when the data reaches the stop condition.

report erratum • discuss

Surrounded by Boundaries • 61

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/math.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Transforming Lists
In daily programming, we often face situations in which we need to transform
things into other things. Lists are the main actors in the routine of data
transformations. Examples include transforming: debit accounts into blocked
accounts, draft blog posts into published posts, strings into data structures,
and user inputs into table rows. Data is immutable in functional programming,
so when we transform data, we’re building new data. The process of transfor-
mation in lists requires repetitive steps, and we can use recursive functions
to do it. Let’s see how we can build new lists using recursion in Elixir.

The [head | tail] syntax is useful for destructuring arguments, but it’s also useful
for constructing new lists. Try the following code in your IEx to see how it works:

iex> [:a | [:b, :c]]
[:a, :b, :c]
iex> [:a, :b | [:c]]
[:a, :b, :c]
iex> [:a, :b, :c]
[:a, :b, :c]

Using that syntax, the expressions [:a | [:b, :c]] and [:a, :b | [:c]] result in the same
list [:a, :b, :c]. With that in mind, we can use the same syntax to build a new
list, transforming one element at a time. Note: Using this syntax, we’re
prepending an element to a list, which is many times faster than appending
with the ++ operator. Let’s see how we can use recursive functions to build
an example in which we need to transform a list.

For this example, we’ll travel to a fantasy world where magic and dragons are
real. Edwin is a wizard who has a shop that sells magic items. His work—as
an enchanter and a businessperson—is to transform regular items into magic
items and apply a new selling price. Every item he enchants gets his name in
its title. The selling price of an enchanted item is the original price multiplied
by three. Let’s build a module for this process of enchantment and sales
preparation. Create a module called EnchanterShop in a file called enchanter_shop.ex.
First, let’s create a function with test data to understand how it’s structured:

recursion/lib/enchanter_shop.ex
def test_data do

[
%{title: "Longsword", price: 50, magic: false},
%{title: "Healing Potion", price: 60, magic: true},
%{title: "Rope", price: 10, magic: false},
%{title: "Dragon's Spear", price: 100, magic: true},

]
end

Chapter 4. Diving into Recursion • 62

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/enchanter_shop.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The items are a map structure. They have the item’s title and price, and a
flag saying whether the item is magic. Now we need to create the code that
navigates through this list and makes the transformation. Let’s create the
enchant_for_sale function:

recursion/lib/enchanter_shop.ex
@enchanter_name "Edwin"

def enchant_for_sale([]), do: []
def enchant_for_sale([item | incoming_items]) do

new_item = %{
title: "#{@enchanter_name}'s #{item.title}",
price: item.price * 3,
magic: true

}

[new_item | enchant_for_sale(incoming_items)]
end

The first function clause is for when the list of products is empty, which
results in an empty list of items for sale. The check clause for empty lists is
also the stop condition for the list navigation. The second clause is where the
recursive transformation happens. We use pattern matching to extract the
first item, and then we create a new magic item by applying the transformation
rules. The item’s title now receives the enchanter’s name, the price is tripled,
and the magic flag is true. Then in the last expression, we build a new list
using the [head | tail] syntax, where the first element is a new item transformed,
and the rest of the list is a recursive call of enchant_for_sale.

The Key-based Accessors

In Elixir, keywords and maps have a syntax to access values by using keys in []. If
the key is missing, a nil value is returned and no error is raised.

item = %{magic: true, price: 150, title: "Edwin's Longsword"}
item[:title] # returns "Edwin's Longsword"
item["owner"] # returns nil
item[:creator][:city] # returns nil

Elixir also provides key-based accessors for structs and maps to access values asso-
ciated with atom keys using dot notation. If the key is missing, an error is raised.

item = %{magic: true, price: 150, title: "Edwin's Longsword"}
item.title # returns "Edwin's Longsword"
item.owner # raises a KeyError

You can learn more about key-based accessors from the Elixir official documentation.a

a. https://hexdocs.pm/elixir/Access.html

report erratum • discuss

Surrounded by Boundaries • 63

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/enchanter_shop.ex
https://hexdocs.pm/elixir/Access.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Let’s see how it works using IEx:

iex> c("enchanter_shop.ex")
iex> EnchanterShop.enchant_for_sale(EnchanterShop.test_data)
[%{magic: true, price: 150, title: "Edwin's Longsword"},
%{magic: true, price: 180, title: "Edwin's Healing Potion"},
%{magic: true, price: 30, title: "Edwin's Rope"},
%{magic: true, price: 300, title: "Edwin's Dragon's Spear"}]

We have done the transformation. Now the simple longsword is the magical
and awesome Edwin’s Longsword. But wait a moment. Some of the items in
the list were already magical. We cannot enchant something that is already
enchanted.

Let’s fix our code by applying a clause that won’t do a transformation when
the item is already magical. Let’s put the new clause between the stop condi-
tion and the transformation clause:

recursion/lib/enchanter_shop.ex
def enchant_for_sale([]), do: []
def enchant_for_sale([item = %{magic: true} | incoming_items]) do➤

[item | enchant_for_sale(incoming_items)]➤

end➤

def enchant_for_sale([item | incoming_items]) do
new_item = %{

title: "#{@enchanter_name}'s #{item.title}",
price: item.price * 3,
magic: true

}

[new_item | enchant_for_sale(incoming_items)]
end

In the filter function clause, we check if an item is magical by using map
pattern matching. We check if the argument contains the subset %{magic: true}.
When it matches, we bind the map parameter to the variable item. Then we
don’t do any item transformation; instead, we build a list where the first
element is the same item, and the rest of the list is a recursive call to
enchant_for_sale.

We can compile it again and see the filter in action:

iex> c("enchanter_shop.ex")
iex> EnchanterShop.enchant_for_sale(EnchanterShop.test_data)
[%{magic: true, price: 150, title: "Edwin's Longsword"},
%{magic: true, price: 60, title: "Healing Potion"},
%{magic: true, price: 30, title: "Edwin's Rope"},
%{magic: true, price: 100, title: "Dragon's Spear"}]

Chapter 4. Diving into Recursion • 64

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/enchanter_shop.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

This time, the Healing Potion and the Dragon’s Spear keep their original
attributes since they were already magical. With this module, we have seen
how to transform lists and how to use function clauses to skip unnecessary
transformations.

Conquering Recursion
For many developers, recursive functions are one of the hardest things to
understand when moving to functional programming. Finding the stop-con-
dition clause and making the function call itself can be confusing. Functional
programmers work more with recursive functions than developers in other
paradigms, because recursive functions are the core of code repetition. If you
want to become a functional programmer, it’s important that you don’t get
stuck every time you face a recursive function.

There are two helpful techniques for solving problems using recursive func-
tions: decrease and conquer and divide and conquer. We’ll explore them next.

Decrease and Conquer
Decrease and conquer is a technique for reducing a problem to its simplest
form and starting to solve it incrementally. By doing this, we find the most
obvious solution to a tiny part of the problem. From there we start to conquer
progressively, incrementing the problem step by step. Let’s experiment with
this approach using a well-known problem: the factorial.

The factorial of a number is the product of all positive integers less than or
equal to it. If we want to know the factorial of 3, we use the 3 * 2 * 1 expression.
Using the decrease-and-conquer strategy, the first step is to find the base
case, the simplest factorial scenario. We’ll use the base case to help solve
more complex ones. Let’s write it in a module, expecting a number from 0 to 4:

recursion/lib/factorial.ex
defmodule Factorial do

def of(0), do: 1
def of(1), do: 1
def of(2), do: 2 * 1
def of(3), do: 3 * 2 * 1
def of(4), do: 4 * 3 * 2 * 1

end

The factorial for the number 4 is 4 * 3 * 2 * 1. For the number 3, it’s 3 * 2 * 1, and
so on until we find the solution. The base scenario for the factorial is when
the argument is 0 or 1. We can’t keep going because a factorial works only

report erratum • discuss

Conquering Recursion • 65

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/factorial.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

with positive numbers. We don’t need calculations for 0 and 1 because the
result is 1. We can compile the code and try what we have done using IEx:

iex> c("factorial.ex")
iex> Factorial.of(0)
1
iex> Factorial.of(1)
1
iex> Factorial.of(4)
24
iex> Factorial.of(5)
** (FunctionClauseError) no function clause matching in Factorial.of/1
iex> Factorial.of(-1)
** (FunctionClauseError) no function clause matching in Factorial.of/1

We can’t just take the biggest factorial number we want to calculate and write
all the functions until we reach it. Let’s take a closer look at the factorial of
3. With the expression 3 * 2 * 1, we can write it as 3 * (2 * 1) and it returns the
same result. The expression (2 * 1) is the same body as the factorial of 2. Then,
instead of writing (2 * 1), we can use a recursive function call. Let’s rewrite
this function, replacing the calculations with function calls:

recursion/lib/factorial.ex
defmodule Factorial do

def of(0), do: 1
def of(1), do: 1 * of(0)
def of(2), do: 2 * of(1)
def of(3), do: 3 * of(2)
def of(4), do: 4 * of(3)

end

We’re almost there. Now the pattern for the solution of the factorial is clear.
For a given number, we multiply it with the solution of the factorial of the
previous number. That’s how we conquer the problem. Let’s now rewrite these
functions to apply the pattern we’ve discovered:

recursion/lib/factorial.ex
defmodule Factorial do

def of(0), do: 1
def of(n) when n > 0, do: n * of(n - 1)

end

We’re done! We’ve created the solution for the factorial problem using recur-
sion. We’ve used the guard clause n > 0 to ensure that only numbers greater
than our base clause are permitted. That’s how to use the decrease-and-
conquer approach: First reduce the problem to find its base clause, then look
out for the recursive call pattern in the problem we’ve reduced.

Chapter 4. Diving into Recursion • 66

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/factorial.ex
http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/factorial.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Divide and Conquer
The divide-and-conquer technique is about separating the problem into two
or more parts that can be processed independently and can be combined in
the end. This technique is not only useful for recursive algorithms; it helps
with many other tasks in programming. For example, imagine that we need
to build a news homepage that will contain the most recent articles, headlines,
and sports and culture sections. If we try to fetch all this content from the
database at once, the SELECT query would be hard to write and maintain. The
best approach is to divide the query into smaller independent operations for
each desired piece of content. Then, in the end, we can combine all the results
from the database and conquer the solution of the news homepage. We can
use the same approach with recursive functions. Let’s experiment by creating
a function that sorts a list.

Sorting functions are useful for displaying ascending or descending content,
for creating a better visual experience for users, and for improving search
algorithms. We want to build a function that receives a list and returns a list
with items in ascending order. In functional programming, the data is
immutable; we can’t change the order of the values in a list. Instead, we need
to build a new list. In the process of generating a new list, we must guarantee
that it’s sorted. Thinking about a function that does it all at once is hard;
instead, we can divide the list in half. Now we have two lists to sort, but they’re
small. If we keep dividing, we’ll end up with lists that each contain one ele-
ment. Lists with one element are sorted! Then we need to merge these lists
in a sorted way to finish the algorithm.

That’s enough theory. Let’s write our sorting function. First we need to learn
how to divide a list in half. In Elixir the Enum.split/2 function generates two lists
from one, splitting the items. Let’s try it in an IEx session:

iex> Enum.split([:a, :b, :c], 1)
{[:a], [:b, :c]}
iex> Enum.split([:a, :b, :c], 2)
{[:a, :b], [:c]}
iex> Enum.split([:a, :b, :c], 3)
{[:a, :b, :c], []}

The Enum.split/2 returns a tuple with two lists, where the first list contains the
number of elements that we specified in the function call. The rest of the list
items go in the second list. To split it in half, we need to pass the median
number of elements of a list. We’ll use the Elixir function Enum.count/1 to calcu-
late the total, and then divide it by two. Try it in your IEx:

report erratum • discuss

Conquering Recursion • 67

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

iex> Enum.count([:a, :b, :c])
3
iex> Enum.count([:a, :b, :c, :d]) / 2
2.0
iex> Enum.count([:a, :b, :c]) / 2
1.5

It’s a problem when the number of elements in a list is odd, because we can’t
pass floats to the split function or it will generate an error. We need an integer
division here. We can do it using the Elixir Kernel.div/2 function. Try it:

iex> div(3, 2)
1
iex> div(4, 2)
2

Now we can combine all these functions to divide a list in half recursively.
It’s the first step in our sorting algorithm; the second step is to build a new
list in a sorted way. Let’s create the sorting function and put it in a Sort module.
Type the following code in your sort.ex file:

recursion/lib/sort.ex
defmodule Sort do

def ascending([]), do: []
def ascending([a]), do: [a]
def ascending(list) do

half_size = div(Enum.count(list), 2)
{list_a, list_b} = Enum.split(list, half_size)
We need to sort list_a and list_b
ascending(list_a)
ascending(list_b)
And merge them using some strategy

end
end

We created an ascending function that only splits the lists, but will soon sort the
elements. We created the stop-condition clauses for empty lists and lists con-
taining one element by using pattern matching in the function argument. For
lists with more than one item, we created a function clause that will divide it
in two. We’ve used some Elixir built-in functions, such as Enum.split/2 and
Enum.count/1, to help us focus on the sorting algorithm and not on list operations.

We divided the lists until they reached one element. Now we need to use these
one-item lists to build a new sorted list. We need a merge function that will
unify two lists by putting the smallest elements at the beginning of the list.
This way, if we try to merge [9] and [5], the result will be [5, 9]. Since the
arguments are sorted lists, we know that the first elements are the smallest.

Chapter 4. Diving into Recursion • 68

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/sort.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Then we can extract the first item from both lists, compare them, and put
the lower value in a new list. If we try to combine [5, 9] with [1, 2], it will be [1,
2, 5, 9]. Doing it recursively, we’ll generate a sorted list in the end. Let’s see
how it works when merging [5, 9] and [1, 4, 5]:

merge([5, 9], [1, 4, 5])
[1 | merge([5, 9], [4, 5])]
[1, 4 | merge([5, 9], [5])]
[1, 4, 5 | merge([9], [5])]
[1, 4, 5, 5 | merge([9], [])]
[1, 4, 5, 5, 9]

Let’s write the merge function that does this work for us:

recursion/lib/sort.ex
defp merge([], list_b), do: list_b
defp merge(list_a, []), do: list_a
defp merge([head_a | tail_a], list_b = [head_b | _]) when head_a <= head_b do

[head_a | merge(tail_a, list_b)]
end
defp merge(list_a = [head_a | _], [head_b | tail_b]) when head_a > head_b do

[head_b | merge(list_a, tail_b)]
end

The first two clauses are straightforward. If we try to merge an empty list with
any other list, the result will be that other list. The clause head_a <= head_b
means the first element of list_a is the smallest. Then we extract the first ele-
ment of list_a and put it in the first spot in the new list using the expression
[head_a | merge(tail_a, list_b)]. For the rest of the elements of the new list, we call
merge recursively, passing the rest of the elements of the list a and passing
the entire list_b. The clause head_a > head_b does the inverse operation, extracting
and putting the first element of list_b in the new list’s first spot.

Using the merge/2 function, we can now combine all the lists we’ve divided and
build a new one. Let’s add this call in our ascending function:

recursion/lib/sort.ex
def ascending([]), do: []
def ascending([a]), do: [a]
def ascending(list) do

half_size = div(Enum.count(list), 2)
{list_a, list_b} = Enum.split(list, half_size)
merge(➤

ascending(list_a),➤

ascending(list_b)➤

)➤

end

report erratum • discuss

Conquering Recursion • 69

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/sort.ex
http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/sort.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Before we pass the lists to the merge/2 function, we must ensure that lists are
sorted. That’s why we do a recursive call to the ascending function before the
merge. It will recursively merge the divided lists like this:

merge(merge([9], [5]), merge(merge([1], [5]), [4]))
merge([5, 9], merge([1, 5], [4]))
merge([5, 9], [1, 4, 5])
[1, 4, 5, 5, 9]

In this sorting function, the recursive call for ascending can work independently;
all the recursive calls are not connected with each other. For example, we
can compute them in parallel, although in the end we need to join both results
to present a sorted list using the merge function. We can try our Sort module
using IEx:

iex> c("sort.ex")
iex> Sort.ascending([9, 5, 1, 5, 4])
[1, 4, 5, 5, 9]
iex> Sort.ascending([2, 2, 3, 1])
[1, 2, 2, 3]
iex> Sort.ascending(["c", "d", "a", "c"])
["a", "c", "c", "d"]

We did it! The sorting algorithm is working. This algorithm is known as the
merge sort.1 It’s one of the most famous divide-and-conquer algorithms.

Divide and conquer, as you may have noticed, is very similar to decrease and
conquer. The main difference is that while the decrease strategy is focused
on reducing the problem until we find a base clause, the divide technique is
about separating the problem into two or more parts. These parts can be
processed independently and be combined in the end. As you can see,
recursion does a lot of function calls and it may cause performance bottle-
necks. In the next section you’ll learn how create recursive functions that
use your machine resources prudently.

Tail-Call Optimization
Every time we call a function, it consumes memory. Usually we don’t need to
worry much about it—machines today have plenty of memory, and the Erlang
VM does a great job keeping computation costs low for a decent amount of
data. But when some input makes our function do millions of recursive calls,
that consumes significant memory. In this section, we’ll discuss a way of
creating recursive functions that have constant and low memory consumption.
We’ll take advantage of compiler tail-call optimization.

1. https://en.wikipedia.org/wiki/Merge_sort

Chapter 4. Diving into Recursion • 70

report erratum • discuss

https://en.wikipedia.org/wiki/Merge_sort
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Tail-call optimization is when the compiler reduces functions in memory
without allocating more memory. It’s a common compiler feature in functional
programming languages. To use it, we need to ensure that the last expression
of our function is a function call. If the last expression is a new function call,
then the current function’s return is the return of the new function call and
it doesn’t need to keep the current function in memory. Consider this example:

iex> scream = fn word -> String.upcase("#{word}!!!") end
iex> scream.("help")
"HELP!!!!"

When we invoke scream.("help") the program will put it in the memory stack and
then execute the function’s body. The scream function will interpolate the word
help and that will result in "help!!!". The last expression will result in a function
call like this: String.upcase("help!!!"). This means the result of scream.("help") is the
same as String.upcase("help!!!"). Finally, the program will optimize the memory
by removing scream.("help") from the function call stack.

Let’s take another look at the recursive part of our Factorial module:

recursion/lib/factorial.ex
def of(n) when n > 0, do: n * of(n - 1)

We have a recursive call on the last line, but the last expression is a call to
the * operator. Elixir will execute the of(n - 1) call and use the result to calculate
the n * expression. This function is a body-recursive function—one in which
the last expression isn’t a recursive call—and it’s impossible take advantage
of the tail-call optimization. We can simulate the memory problem that body-
recursive function may face by using a big number to generate millions of
recursive calls. You can use a process monitor to see the huge impact it will
create in memory. Be ready to kill the process, because it will take a long time
to finish. Try it in your IEx:

iex> c("factorial.ex")
iex> Factorial.of(10_000_000)

Here’s what I measured when I did this experiment:

report erratum • discuss

Tail-Call Optimization • 71

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/factorial.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

You may see a different memory-consumption number on your machine, but
it will be very high. It takes a lot of memory to do repetitive tasks. We can
improve this by transforming that function into a tail-recursive function—a
function that has a recursive call in the last expression.

The common approach to creating tail-recursive functions is to replace the
use of the function result with an extra argument that accumulates the results
of each iteration. Let’s create a tail-recursive version of the Factorial module
and compare it to the previous version. Let’s create a module called TRFactorial:

recursion/lib/tr_factorial.ex
defmodule TRFactorial do

def of(n), do: factorial_of(n, 1)
defp factorial_of(0, acc), do: acc
defp factorial_of(n, acc) when n > 0, do: factorial_of(n - 1, n * acc)

end

We’ve created a factorial_of helper function that will have the extra argument
for accumulating the multiplications. The argument acc has the result of the
previous iteration. When we do the recursive call, we pass the result with the
expression acc * n. The last expression is a recursive call, not a call to the *
operator. Now the function is tail-recursive and can be optimized by the
compiler. We can try this new version using IEx and measure the memory
consumption. Be ready to stop the execution, because even with the memory
optimization it will take a long time to finish.

iex> c("tr_factorial.ex")
iex> TRFactorial.of(10_000_000)

Here’s what I measured on my machine:

That’s a huge improvement! However, at the same time we made our code a
bit more complex. It’s a serious trade-off that we need to think about before
deciding if we should write a body-recursive or a tail-recursive function. In
general, if you’re expecting millions of iterations or the tail-recursive function
isn’t hard to read and maintain, go with tail-recursive. If the number of itera-
tions is small and the tail-recursive function is hard to understand and
maintain, go with body-recursive.

Chapter 4. Diving into Recursion • 72

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/tr_factorial.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Functions Without Borders
Unbounded recursion is when we can’t predict the number of repetitions for
a recursive function. For example, it’s hard to predict how many iterations a
web crawler that navigates and downloads web pages will have. For each page
it browses, it finds new links to crawl. Since we’re not the owners of the pages,
we can’t predict how many links each page will have. For every page the
crawler downloads, the list of pages that needs to be crawled can increase.
The web crawler also needs to be cautious with pages it has already visited
so it avoids circular references and infinite recursion. All these characteristics
of the web crawler represent unbounded recursion challenges, and a functional
programmer must be prepared to face them. The following image illustrates
the nature of data that leads to an unbounded recursion.

page1.html

page2.html

page3.html

page4.html

page5.html

page6.html

circular reference

web page

links

We’re not necessarily reducing the problem with each step, and we can’t predict
how many steps will be required to finish. A similar problem occurs when soft-
ware tries to map a machine’s file system, even if it’s a more controlled environ-
ment than the web. Each directory it finds can have many more directories
inside. Let’s explore this type of recursion, creating a program that prints and
navigates through a given system directory. Create a module called Navigator:

report erratum • discuss

Functions Without Borders • 73

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

recursion/lib/navigator.ex
defmodule Navigator do

def navigate(dir) do
expanded_dir = Path.expand(dir)
go_through([expanded_dir])

end

defp go_through([]), do: nil
defp go_through([content | rest]) do

print_and_navigate(content, File.dir?(content))
go_through(rest)

end

defp print_and_navigate(_dir, false), do: nil
defp print_and_navigate(dir, true) do

IO.puts dir
children_dirs = File.ls!(dir)
go_through(expand_dirs(children_dirs, dir))

end

defp expand_dirs([], _relative_to), do: []
defp expand_dirs([dir | dirs], relative_to) do

expanded_dir = Path.expand(dir, relative_to)
[expanded_dir | expand_dirs(dirs, relative_to)]

end
end

The function navigate is our entry point. For example, we can pass .., which
Path.expand/1 will transform into a complete path. Then we call the go_through
helper, passing the directory in a list. Let’s see this function in detail:

recursion/lib/navigator.ex
defp go_through([]), do: nil
defp go_through([content | rest]) do

print_and_navigate(content, File.dir?(content))
go_through(rest)

end

In the go_through/1 function we have a stop clause for an empty directory and
another clause that navigates through the contents of that directory. For each
piece of content, we try to print its path and navigate through its children.
After that, we do a recursive call to keep navigating through the directory
contents. Let’s see print_and_navigate/2 in detail:

recursion/lib/navigator.ex
defp print_and_navigate(_dir, false), do: nil
defp print_and_navigate(dir, true) do

IO.puts dir
children_dirs = File.ls!(dir)
go_through(expand_dirs(children_dirs, dir))

end

Chapter 4. Diving into Recursion • 74

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/navigator.ex
http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/navigator.ex
http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/navigator.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

This function’s clause checks the directory flag. It stops the iteration when
it encounters something that’s not a directory. Otherwise, it lists all the con-
tents using the File.ls!/1. The function that lists the directory contents returns
only the name of the files and directories. To check if something is a directory,
we need the full path of that directory. Then we use our custom function
expand_dirs/2 to transform it. With the full path in hand, we can discover its
contents using the function go_through/1. This can take a long time. Be ready
to stop the execution if you don’t want to wait. Let’s try it using IEx:

iex> c("navigator.ex")
iex> Navigator.navigate("../..")

This example tries to navigate in two directories above the current one. Each
machine has a different structure, and the output and duration can be very
different. To create more predictable functions, let’s write some code to reduce
the number of iterations. We’ll explore two strategies—one that focuses on
limiting the number of iterations and another that focuses on avoiding infinite
loops.

Adding Boundaries
Now our navigator can dive into the directory children, the children of children,
and so on. We can create a stop condition that interrupts our unbounded
function and keeps it from running too long. We can add any restriction that
we think is appropriate. For example, it could be a timer that stops the process
after two minutes, or stops after accumulating a number of results. We can
be more accurate about when the function finishes, adding one or more
restrictions. Let’s experiment by creating a stop condition for our directory
navigator, and let’s add a limit to how deep it can dive.

We’ll add a depth restriction that will flag how many child directories deep
we want to dive from the given directory. For example, given a depth of two
and the directory root, we’ll navigate only as deep as root/children/children. It con-
siderably reduces the scope of navigation, and our recursion will be more
predictable. Let’s see in each step how to add the depth restriction. First, we
need to store a value indicating how deep we can dive. Let’s create a module
attribute for it:

recursion/lib/depth_navigator.ex
@max_depth 2

Now we need to start our navigation using an initial value. In our entry-point
function navigate, we can pass the initial value 0:

report erratum • discuss

Functions Without Borders • 75

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/depth_navigator.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

recursion/lib/depth_navigator.ex
def navigate(dir) do

expanded_dir = Path.expand(dir)
go_through([expanded_dir], 0)➤

end

Now we need to change our print_and_navigate function to accept a third argu-
ment. Then every time we navigate into a child directory, we can increment
the current depth value. Let’s see how:

recursion/lib/depth_navigator.ex
defp print_and_navigate(_dir, false, _current_depth), do: nil
defp print_and_navigate(dir, true, current_depth) do

IO.puts dir
children_dirs = File.ls!(dir)
go_through(expand_dirs(children_dirs, dir), current_depth + 1)➤

end

Now that we’re incrementing the depth value, we need to create a stop condi-
tion. We must change our go_through function to accept the current depth
argument. In the go_through definition, we can add a clause that will prevent
the navigation when the current depth is greater than the maximum depth:

recursion/lib/depth_navigator.ex
defp go_through([], _current_depth), do: nil
defp go_through(_dirs, current_depth) when current_depth > @max_depth, do: nil➤

defp go_through([content | rest], current_depth) do
print_and_navigate(content, File.dir?(content), current_depth)
go_through(rest, current_depth)

end

That’s it. We’ve added a restriction to control the number of repetitions for
our recursive function. The previous version was unpredictable because its
only condition was when the directories had no children. With this new ver-
sion, our function interactions are more controlled because there’s an addi-
tional stop condition that ends the iterations after a certain number of nesting
directories.

Avoiding Infinite Loops
Depending on the problem you’re solving, your recursion algorithm can fall
into an infinite loop and the program will run indefinitely. For example, when
a web crawler is navigating through pages it needs to extract links to visit
more pages. If it extracts links of a previously visited page, it will visit that
page again and extract more visited pages, starting an infinite loop. That
infinite loop is caused by a circular reference in the pages. There are various
strategies to detect and avoid circular references. You must find the one that

Chapter 4. Diving into Recursion • 76

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/depth_navigator.ex
http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/depth_navigator.ex
http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/depth_navigator.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

fits best for your problem. In the web-crawler example, we can store all the
visited URLs and check them before visiting a new page. In our directory-
navigator example, we may face the same web-crawler problem when our
operating system has symbolic-links support. Let’s explore how to avoid
unnecessary iterations by detecting directories with symbolic links.

As illustrated in the following figure, a symbolic link is when you create a
directory that’s a link to another directory in the system. It works like a portal:
if you go through it, you reach the other directory’s contents. If we have a
directory that contains a link for a parent directory, we have a circular refer-
ence. Navigating through it will lead us into an infinite loop.

directory_a

directory_b

symbolic_link

One way to solve this problem in our file-system navigator is by checking if
the directory is a real directory and not a symbolic link. We can use File.lstat/1
to get the content type. Passing a path, it returns a File.Stat struct that contains
the attribute type with an atom value. When the content is a directory, it
returns :directory. When it’s a symbolic link, it returns :symlink. We can create
our custom _dir? function to navigate only when something is a real directory.

recursion/lib/slink_skip_navigator.ex
def dir?(dir) do

{:ok, %{type: type}} = File.lstat(dir)
type == :directory

end

With this function, we can replace all the File.dir? calls to our custom function.
It ensures that our navigator will not follow symbolic links, avoiding falling
into a circular reference. Avoiding symbolic links isn’t a perfect solution
because for some use cases it might be useful to navigate into symbolic links.
Dealing with unbounded recursions isn’t easy, as it requires tests and an
incremental improvement to find a solution for your scenario.

report erratum • discuss

Functions Without Borders • 77

http://media.pragprog.com/titles/cdc-elixir/code/recursion/lib/slink_skip_navigator.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Using Recursion with Anonymous Functions
We’ve created and practiced many examples using recursion and named
functions. When we create recursive functions, we call functions that have
the same name of the function that we’re creating, and it has been working
great. The compiler knows how to use that function-name reference to call
the function that we creating. It’s very practical! But in the world of anony-
mous functions, it’s not that easy—we face problems in the anonymous
functions’ definition. Let’s see the problems in action, creating the factorial
example using anonymous functions:

iex> factorial = fn
0 -> 1
x when x > 0 -> x * factorial.(x - 1)

end
** (CompileError) undefined function factorial/0

We can’t do a recursive call to the factorial function because that variable
isn’t created yet. To use it, we need it to have been created previously. What
a dilemma! We need to create something that requires itself to have already
been created. We can solve this problem by wrapping the function in another
function and delaying recursive call execution. First we need to create a ref-
erence for the function itself in the argument. To avoid the problem of the
nonexistent function error, we can delay the function evaluation, wrapping
it inside of another function. Here’s how:

iex> fact_gen = fn me ->
fn

0 -> 1
x when x > 0 -> x * me.(me).(x - 1)

end
end
iex> factorial = fact_gen.(fact_gen)
iex> factorial.(5)
120
iex> factorial.(10)
3628800

It works! Let’s review it step by step. We created a function called fact_gen that
knows how to build a factorial function and expect itself to be passed in as
an argument. Then, the me argument represents the factorial generator, rep-
resenting itself. We can’t call it by directly passing a number to me since it’s
a factorial creator and the first argument must be a reference to itself. So, to
produce the factorial function we use the expression me.(me). With the function
built, we can finally call it, passing the number argument. Then the expression

Chapter 4. Diving into Recursion • 78

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

factorial = fact_gen.(fact_gen) generates our factorial to be used with numbers. The
problem here is that me.(me) is not expressive; it doesn’t look like the factorial
definition. Code must be expressive to be easier to maintain. Recursion with
anonymous functions isn’t straightforward, but is possible. In Elixir, we can
use the capturing feature to use named-function references like anonymous
functions:

iex> c("factorial.ex")
iex> factorial = &Factorial.of/1
iex> factorial.(5)
120

We explored the capturing operator in detail in Using Named Functions as
Values, on page 29. The & operator captures a reference to a function, provid-
ing a beautiful way of using named functions as values. So if you need an
anonymous recursive function, create a named function and use the & oper-
ator to capture the function’s reference.

Wrapping Up
We’ve reached the end of another chapter! You’ve learned that recursive
functions are the core of repetition in functional programming. Recursion is
a big subject. Let’s see what we’ve covered:

• We created recursive functions to solve tasks that need repetition.

• We transformed a collection of data into a new one using recursion.

• We studied the decrease-and-conquer and divide-and-conquer strategies
of solving problems.

• We saw how to avoid performance problems using tail-recursive functions.

• We covered strategies to work with unbounded recursion.

• We saw how named functions are simpler than anonymous functions
when working with recursion.

With this knowledge, we can face almost any problem that requires a repetition
task using functional programming. But the repetition subject isn’t over yet!
Despite recursion being a powerful technique, using it for all code that needs
to repeat tasks requires a lot of function definitions. With this extra code, it’s
easy to make a mistake, like forgetting some stop condition, which can result
in an infinite loop. We can improve the recursive code using powerful
abstractions created with higher-order functions. We’ll do that in the next
chapter.

report erratum • discuss

Wrapping Up • 79

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Your Turn
• Write two recursive functions: one that finds the biggest element of a list

and another that finds the smallest. You should use them like this:

MyList.max([4, 2, 16, 9, 10])
=> 16
MyList.min([4, 2, 16, 9, 10])
=> 2

• In the section Transforming Lists, on page 62, we traveled to a fantasy
world and enchanted some items. Create a new module called GeneralStore
where you can create a function that filters based on whether the products
are magical. You can use the same test data from EnchanterShop:

GeneralStore.filter_items(GeneralStore.test_data, magic: true)
=> [%{title: "Healing Potion", price: 60, magic: true},
%{title: "Dragon's Spear", price: 100, magic: true}]
GeneralStore.filter_items(GeneralStore.test_data, magic: false)
=> [%{title: "Longsword", price: 50, magic: false},
%{title: "Rope", price: 10, magic: false}]

• We’ve created a function that sorts the items of a list in ascending order.
Now create a Sort.descending/1 function that sorts the elements in descending
order.

• We’ve written a lot of recursive functions, but not all of them are tail
recursive. Write the tail-recursive versions of Sum.up_to/1 and Math.sum/1.
Extra challenge: write the tail-recursive version of Sort.merge/2.

• In the section Adding Boundaries, on page 75, we added a depth restriction
to limit how many directories deep our module should dive. Now create
a BreadthNavigator module that has a breadth constraint; it will be the
maximum number of sibling directories it can navigate.

Chapter 4. Diving into Recursion • 80

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

CHAPTER 5

Using Higher-Order Functions
Higher-order functions are those that have functions in their arguments
and/or can return functions. They are useful for hiding the complexity of
tedious and laborious routines. Having functions in input and output enables
developers to create simple interfaces to help other parts of the code focus
on what matters. For example, let’s try File.open/3 in an IEx session:

iex> File.open("file.txt", [:write], &(IO.write(&1, "Hello, World!")))

The last argument of File.open/3 is a function that receives the file device. We can
write and read its contents using the IO module. The main benefit of using it in
this way is we don’t need to worry if the file will be closed, because it will.
Another example of higher-order functions is spawning a process. Let’s try it:

iex> spawn fn -> IO.puts "Hello, World!" end

The spawn starts a process and calls the given function. It hides all the hard
work of allocating memory and making it available to some core of your CPU
to execute. It provides a simple interface for us; we only need to worry what
our function will do in the new process.

The primary purpose of the higher-order function is to provide a way to build
better functions with simple interfaces. In this chapter, we’ll explore how
higher-order functions help to create reusable code, combine functions, and
work with lazy computation. We’ll use the & operator a lot to create short
expressions to build and reference functions. If you don’t remember it, refer
back to Using Named Functions as Values, on page 29. Our first step will be
to practice how to build higher-order functions.

Creating Higher-Order Functions for Lists
Using functions in variables, like with any other value, can be hard to
remember for newcomers. To practice, we’ll work with a subject familiar to

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

us: lists. They’re a useful data type and are present in almost any program
we need to build. We’ve seen how to work with them using recursive functions,
but if we stop and look again at all that code we’ve written, we’ll see that they
are a little bit repetitive and boring. We always have code that navigates
through each item, and a stop condition when the list is empty. It’s time to
change it! We’ll look at how to build higher-order functions that hide the
tedious tasks and provide an interface for what matters. Let’s start with the
navigation routine.

Navigating Through Items of a List
A common task when working with lists is to travel through all the items and
do some computation on them. The first higher-order function we’ll create
permits us to navigate a list by passing a function that will compute each item.
Our first task is to create a variable that holds a list to test. Let’s go back to
our old fantasy friend Edwin and store some of his enchanted items in a vari-
able. Open your IEx and type the code that will create the magic recipient:

iex> enchanted_items = [
%{title: "Edwin's Longsword", price: 150},
%{title: "Healing Potion", price: 60},
%{title: "Edwin's Rope", price: 30},
%{title: "Dragon's Spear", price: 100}

]

Now people are coming to the store and want to know the items’ names. Let’s
create some code that prints that information. With this routine, Edwin can
prepare more magic potions while the program states the items’ names for
the buyers. To do that, we need to navigate through each list element. In this
chapter, we’ll create several functions for lists, then create a module called
MyList in a my_list.ex file and put all the functions there. The first function will
be called each/2. Write the following code:

higher_order_functions/0/my_list.ex
defmodule MyList do

def each([], _function), do: nil
def each([head | tail], function) do

function.(head)
each(tail, function)

end
end

The function receives two arguments: the first is the list that we’ll navigate,
and the second is a function that will be called, passing each element of the
list. The stop-condition clause is called when the list is empty; then it does

Chapter 5. Using Higher-Order Functions • 82

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/0/my_list.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

nothing. The other clause is called when the list has elements; then we use
the code function.(head) to call the function received in the argument, passing
an element of the list. It runs recursively when the list has multiple elements.
Let’s try it using our IEx:

iex> c("my_list.ex")
iex> MyList.each(enchanted_items, fn item -> IO.puts item.title end)
Edwin's Longsword
Healing Potion
Edwin's Rope
Dragon's Spear

We’ve used MyList.each/2 to navigate through each element of the list. The most
interesting part is that when we use that function, we don’t need to worry
about stop conditions or recursion. All that complexity is hidden. We only
need to pass the function that must be executed through each item. It’s the
same thing to say we have passed an action that will happen during the list
navigation. We can use this function with different lists and change the result
the way we like:

items = ["dogs", "cats", "flowers"]
iex> MyList.each(items, fn item -> IO.puts String.capitalize(item) end)
Dogs
Cats
Flowers
iex> MyList.each(items, fn item -> IO.puts String.upcase(item) end)
DOGS
CATS
FLOWERS
iex> MyList.each(items, fn item -> IO.puts String.length(item) end)
4
4
7

We’ve used the same collection and completed different tasks easily. It shows
how higher-order functions are powerful for helping us reuse code and hide
complexity.

Transforming Lists
Let’s practice more. Another common task is generating new lists. We can
reduce the complexity of this generation by creating a higher-order function.
Let’s imagine that the town where Edwin sells his items has increased the
sales tax rate; now he needs to increase the price of his items by 10% in order
to make the same profit. We need to generate a new list with the new prices.
Let’s go back to our module MyList and add this new function:

report erratum • discuss

Creating Higher-Order Functions for Lists • 83

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

higher_order_functions/my_list.ex
def map([], _function), do: []
def map([head | tail], function) do

[function.(head) | map(tail, function)]
end

The MyList.map/2 that we have created receives two arguments. The first is the
list that we’ll navigate and the second is the function that we’re going to pass
each item to and use its return to build a new list. The stop-condition clause
is when we have an empty list. The other clause uses the list syntax to make
a new list. On the new list head, we have the returning value of the given
function. That function receives the current list head. On the new list tail,
we have a recursive call of the map function. We created a function that gen-
erates a new list by applying some computation on each item. The map name
is an inheritance of mathematics terminology that means transforming a set
to another one. Let’s see it in action:

iex> c("my_list.ex")
iex> increase_price = fn i -> %{title: i.title, price: i.price * 1.1} end
iex> MyList.map(enchanted_items, increase_price)
[%{price: 165.0, title: "Edwin's Longsword"},
%{price: 66.0, title: "Healing Potion"},
%{price: 33.0, title: "Edwin's Rope"},
%{price: 110.00000000000001, title: "Dragon's Spear"}]

You can simplify increase_price by using Elixir’s built-in higher-order function
Kernel.update_in/2 to update a map. Take a look:

iex> increase_price = fn item -> update_in(item.price, &(&1 * 1.1)) end
iex> MyList.map(enchanted_items, increase_price)
[%{price: 165.0, title: "Edwin's Longsword"},
%{price: 66.0, title: "Healing Potion"},
%{price: 33.0, title: "Edwin's Rope"},
%{price: 110.00000000000001, title: "Dragon's Spear"}]

The update_in/2 function is useful for updating a map without having to write
all the keys to build a new one. We can use our map/2 function to transform
any list we want. Try it:

items = ["dogs", "cats", "flowers"]
iex> MyList.map(items, &String.capitalize/1)
["Dogs", "Cats", "Flowers"]
iex> MyList.map(items, &String.upcase/1)
["DOGS", "CATS", "FLOWERS"]
iex> MyList.map(["45.50", "32.12", "86.0"], &String.to_float/1)
[45.5, 32.12, 86.0]

Chapter 5. Using Higher-Order Functions • 84

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_list.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

When we use the map, the task of transforming lists becomes easier. All the
work of iterating and building a new list is hidden; we only need to think
about the transformation on each item.

Reducing Lists to One Value
The next task is to create a function that transforms a list into one value. For
example, it can be useful to discover how much income Edwin can have. To
see it, we need to sum all his items’ prices. Let’s write a higher-order function
that will make the job easier:

higher_order_functions/my_list.ex
def reduce([], acc, _function), do: acc
def reduce([head | tail], acc, function) do

reduce(tail, function.(head, acc), function)
end

In the first argument, the MyList.reduce/3 function expects a list that will be
navigated. The second parameter is an initial value to be accumulated during
navigation. The third argument is a function that will be used to apply a
computation on the list’s item and the value accumulated, generating a new
accumulated value. The first function clause is for empty lists. The second
clause iterates recursively on each item, updating the accumulated value.
Let’s sum all of Edwin’s items’ prices using this function:

iex> c("my_list.ex")
iex> sum_price = fn item, sum -> item.price + sum end
iex> MyList.reduce(enchanted_items, 0, sum_price)
340

The initial value to accumulate the items’ price is 0, then on each iteration
reduce uses the sum_price function result to update the accumulated value. The
sum_price function takes two parameters: the item of the list and the current
accumulated value. We sum both values, and the result is the new accumu-
lated value. We can use the reduce/3 function to work with any generic list we
want. Try it:

iex> MyList.reduce([10, 5, 5, 10], 0, &+/2)
30
iex> MyList.reduce([5, 4, 3, 2, 1], 1, &*/2)
120
iex> MyList.reduce([100, 20, 400, 200], 100, &max/2)
400
iex> MyList.reduce([100, 20, 400, 200], 100, &min/2)
20

report erratum • discuss

Creating Higher-Order Functions for Lists • 85

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_list.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Using the reduce/3 function, we can focus only on the operation that accumu-
lates the value. The work of iterating over each item by recursively updating
accumulated values is hidden from us.

Filtering Items of a List
The last function we’ll build for lists is very common and useful: filtering a
list by applying some criteria. Going back to Edwin’s shop, let’s imagine the
customers want to see only the products that cost less than 70 gold coins.
We need to filter the shop items by applying the criteria price less than 70.
When we’re filtering, we’re creating a new list with only the elements that
pass the criteria.

Let’s create the following function that will filter the items for us:

higher_order_functions/my_list.ex
def filter([], _function), do: []
def filter([head | tail], function) do

if function.(head) do
[head | filter(tail, function)]

else
filter(tail, function)

end
end

The MyList.filter/2 function calls the given criteria function by passing each list
item. If it returns a falsy value, it means the item should not be on the new
list. Everything that is truthy, not nil or false, means it has passed the criteria
and should be in the new list. For truthy or falsy cases, the function will keep
building the new list and make a recursive call on its tail. Let’s see how much
easier it is now to filter list items:

iex> c("my_list.ex")
iex> MyList.filter(enchanted_items, fn item -> item.price < 70 end)
[%{price: 60, title: "Healing Potion"}, %{price: 30, title: "Edwin's Rope"}]

Using our higher-order function filter/2, we just need to pass a function that
checks if the item’s price is less than 70 gold coins. We can use that function
to filter any list. Try it:

iex> MyList.filter(["a", "b", "c", "d"], &(&1 > "b"))
["c", "d"]
iex> MyList.filter([100, 200, 300, 400], &(&1 < 300))
[100, 200]
iex> MyList.filter(["Alex", "Mike", "Ana"], &String.starts_with?(&1, "A"))
["Alex", "Ana"]
iex> MyList.filter(["a@b", "t.t", "a@b.c"], &String.contains?(&1, "@"))
["a@b", "a@b.c"]

Chapter 5. Using Higher-Order Functions • 86

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_list.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

When we use the filter/2 function, it’s clear which data and filtering criteria we
need to apply. All the complexity of navigating through lists, filtering, building
new lists, and recursing is hidden from us.

Using the Enum Module
The each, map, reduce, and filter list operations are useful. Almost all of the pro-
gramming tasks you’ll do with lists can benefit from these functions. Thanks
to Elixir’s core team, you don’t need to write these higher-order functions
every time you start a new Elixir project, because they’re available in the Enum
module. You wrote all these functions to understand how to create higher-
order functions. From now on, you’ll use them directly from the Enum module.
Now we’ll experiment with more useful higher-order functions from that
module, starting with ones you’ve built. Open your IEx and try this:

iex> Enum.each(["dogs", "cats", "flowers"], &(IO.puts String.upcase(&1)))
DOGS
CATS
FLOWERS
iex> Enum.map(["dogs", "cats", "flowers"], &String.capitalize/1)
["Dogs", "Cats", "Flowers"]
iex> Enum.reduce([10, 5, 5, 10], 0, &+/2)
30
iex> Enum.filter(["a", "b", "c", "d"], &(&1 > "b"))
["c", "d"]

The Enum functions work like our homemade functions. The Enum module has
many useful functions; it’s easy to guess what they do from their names. Let’s
take a quick look:

iex> Enum.count(["dogs", "cats", "flowers"])
3
iex> Enum.uniq(["a", "a", "b", "b", "b", "c"])
["a", "b", "c"]
iex> Enum.sum([10, 5, 5, 10])
30
iex> Enum.sort(["c", "b", "d", "a"], &<=/2)
["a", "b", "c", "d"]
iex> Enum.sort(["c", "b", "d", "a"], &>=/2)
["d", "c", "b", "a"]
iex> Enum.member?([10, 20, 12], 10)
true
iex> Enum.join(["apples", "hot dogs", "flowers"], ", ")
"apples, hot dogs, flowers"

The count/1 function returns the total number of elements, and uniq/1 returns
a new list without duplicated elements. sum/1 returns the sum of all numbers
in a list, member?/2 checks if an item exists in a list, and join/2 combines the

report erratum • discuss

Using the Enum Module • 87

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

list items in one string. The sort/2 is a higher-order function that accepts a
function comparing the elements in a list. The Enum functions work with any
data type that respects the Enumerable protocol.1 Take a look:

iex> upcase = fn {_key, value} -> String.upcase(value) end
iex> Enum.map(%{name: "willy", last_name: "wonka"}, upcase)
["WONKA", "WILLY"]

The map is a data type that implements the Enumerable protocol, so you can
use it with the Enum module functions. On each iteration of a map structure,
we have a tuple with two elements: one for the map key and the other for the
value. We’ll see more about protocols in Chapter 6, Designing Your Elixir
Applications, on page 105.

In the Enum module, we also have useful and complex higher-order functions
that take two functions in the argument. For example, Enum.group_by/3 receives
a function that applies grouping criteria, and it takes a function that generates
the values for each group. Let’s try it with a list that contains medals and the
players who earned them. Create the following medals variable:

iex> medals = [
%{medal: :gold, player: "Anna"},
%{medal: :silver, player: "Joe"},
%{medal: :gold, player: "Zoe"},
%{medal: :bronze, player: "Anna"},
%{medal: :silver, player: "Anderson"},
%{medal: :silver, player: "Peter"}

]

Now let’s show the players that have won each type of medal. To do it, we
need to group by medal type (gold, silver, or bronze), and for each group we
need to build a list with players’ names. Using recursive functions manually
isn’t easy, but using Enum.group_by/3 can be simple. Try it:

iex> Enum.group_by(medals, &(&1.medal), &(&1.player))
%{bronze: ["Anna"], gold: ["Anna", "Zoe"], silver: ["Joe", "Anderson", "Peter"]}

We’ve done a great operation in one line of code. The grouping-criteria function
should return a value that will be used to group the items that have identical
values. The anonymous function we passed &(&1.medal) returns the value of
the medal; that can be :gold, :silver, or :bronze. Then the second function should
return a value that goes in the list of each group. Next we use &(&1.player),
which returns the player name. With this simple call, we’ve built a map that
contains the players grouped by the medals they’ve won.

1. https://hexdocs.pm/elixir/Enumerable.html

Chapter 5. Using Higher-Order Functions • 88

report erratum • discuss

https://hexdocs.pm/elixir/Enumerable.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The flexible and reusable functions of the Enum module are very common in
daily tasks, so take time to read about the Enum module and play with its
functions. It will help you create simple code since you’re taking advantage
of the facilities Elixir provides.

Using Comprehensions
Elixir has the for special form that offers a shortcut syntax over the most basic
operations of enumerables—it is also known as a comprehension. We can
iterate, map, and filter easily. Take a look:

iex> for a <- ["dogs", "cats", "flowers"], do: String.upcase(a)
["DOGS", "CATS", "FLOWERS"]

The expression after for is a generator expression that will assign each item
of the list to the variable a. The result of the expression in the do option will
be in the new list. We can have more than one generator:

iex> for a <- ["Willy", "Anna"], b <- ["Math", "English"], do: {a, b}
[{"Willy", "Math"}, {"Willy", "English"}, {"Anna", "Math"}, {"Anna", "English"}]

We’ve associated each student with a discipline using two generators. We can
filter using pattern matching, and the items that don’t match will be ignored:

iex> parseds = for i <- ["10", "hot dogs", "20"], do: Integer.parse(i)
[{10, ""}, :error, {20, ""}]
iex> for {n, _} <- parseds, do: n
[10, 20]

We can also filter with an expression for truthy values:

iex> for n <- [1, 2, 3, 4, 5, 6, 7], n > 3, do: n
[4, 5, 6, 7]

n > 3 is a filter expression that will check if the number is greater than 3. The
comprehensions are a nice syntax shortcut with a lot of use cases. You can
learn more in the Elixir official documentation.2

Pipelining Your Functions
Elixir has the famous pipe operator that’s useful for combining functions to
achieve a greater goal. It has a delightful syntax to execute many functions
in sequence, and it’s easy to read and understand. Other functional languages
have a higher-order function that can compose functions. Elixir doesn’t have
a built-in function or an operator for function composition, but we can create
it ourselves by using the pipe operator to combine two functions. Function

2. https://hexdocs.pm/elixir/Kernel.SpecialForms.html#for/1

report erratum • discuss

Using Comprehensions • 89

https://hexdocs.pm/elixir/Kernel.SpecialForms.html#for/1
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

composition and the pipe operator are useful for creating maintainable code
by combining many small and focused routines. Let’s see them in action, and
you’ll understand why you should prefer the pipe operator.

First, let’s create a function that composes functions in a HighOrderFunctions
module. Create this higher_order_functions.ex file:

higher_order_functions/higher_order_functions.ex
defmodule HigherOrderFunctions do

def compose(f, g) do
fn arg -> f.(g.(arg)) end

end
end

The function compose/2 receives two functions, and builds a new one that
accepts one argument. The function executes the g function with the given
argument and calls f with the result. This function permits wrapping two
function calls in one. We can use it like this:

iex> c("higher_order_functions.ex")
iex> import HighOrderFunctions
iex> first_letter_and_upcase = compose(&String.upcase/1, &String.first/1)
iex> first_letter_and_upcase.("works")
"W"
iex> first_letter_and_upcase.("combined")
"C"

We pass two functions to compose/2, and it combines them and creates one.
Then we can use the returning function anytime we want. Since Elixir doesn’t
have a special syntax for function composition, combining more than two
functions can be very confusing. The Elixir alternative is to use the pipe and
capture operators. Let’s build the same code again, combining those operators:

iex> first_letter_and_upcase = &(&1 |> String.first |> String.upcase)
iex> first_letter_and_upcase.("works")
"W"
iex> first_letter_and_upcase.("combined")
"C"

Different and beautiful, right? When we put a function call after the |>, Elixir
takes the result evaluated in the previous expression and passes in the first
argument of the function call. Let’s try an explicit version of the code and see
what’s happening step by step:

iex> "works" |> String.first
"w"
iex> "w" |> String.upcase
"W"

Chapter 5. Using Higher-Order Functions • 90

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/higher_order_functions.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

iex> "works" |> String.first |> String.upcase
"W"

It takes the evaluated value of the expression before the |> and passes it to the
next function call as the first parameter. This syntax shines when we have to
combine more than two functions. Let’s create a bigger function that will receive
some text and capitalize each word. For example, when it receives “a whole new
world,” it returns “A Whole New World.” Let’s call this function capitalize_words and
put it in a module MyString. Let’s write it only with simple functions:

higher_order_functions/my_string.ex
def capitalize_words(title) do

words = String.split(title)
capitalized_words = Enum.map(words, &String.capitalize/1)
Enum.join(capitalized_words, " ")

end

Before we go into the implementation details, let’s see it working in an IEx
session:

iex> c("my_string.ex")
iex> MyString.capitalize_words("a whole new world")
"A Whole New World"

The first step of the function is to split the text with whitespace to have a list
of words. Then we capitalize each word and join them all in a sentence, again
separating each word with whitespace. Note that for each step we put the
result in a variable to make clear each transformation we’re doing. If we want
to get rid of the variables in the function, the basic way to combine functions
is to use them directly in the function call. You don’t need to write the following
code; just take a look at how it can be done:

higher_order_functions/my_string.ex
def capitalize_words(title) do

Enum.join(
Enum.map(
String.split(title),
&String.capitalize/1

), " "
)

end

We have a readability problem here: the first step of the data transformation
is in the middle of the functions, and to follow the order of execution you
must read backward. It’s counterintuitive and hard to maintain. We can chain
the function calls to express a pipeline of data transformation using the pipe
operator. Let’s rewrite our capitalize_words/1 in the Elixir way:

report erratum • discuss

Pipelining Your Functions • 91

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_string.ex
http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_string.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

higher_order_functions/my_string.ex
def capitalize_words(title) do

title
|> String.split
|> Enum.map(&String.capitalize/1)
|> Enum.join(" ")

end

Look at the awesomeness of that code. Let’s read it step by step: we start with
the title variable, then we split and capitalize each word and join the words
with whitespaces. The transformation of the title is expressed in a clean way.
The order in which we read the code is the same order as the actual transfor-
mation. The pipe operator in Elixir is the best option to express a series of
function calls. Now let’s see what’s happening in detail. Open your IEx and
try the following expression:

iex> "a whole new world" |> String.split
["a", "whole", "new", "world"]

Elixir is taking the “a whole new world” string and passing it to String.split/1.
For simple function calls, it’s preferable to avoid the pipe syntax; the
String.split("a whole new world"), for example, has better readability, and reads even
better when you call a function with multiple arguments. Now let’s add one
more function call:

iex> "a whole new world" |> String.split |> Enum.map(&String.capitalize/1)
["A", "Whole", "New", "World"]

After splitting the string, the next function of the pipeline is Enum.map/2. That
function takes two arguments, and the first will be provided from the previous
expression. Then our work is to fill the second argument; we pass the function
String.capitalize/1. Note that when the function has multiple arguments, it’s
important to call the function with parentheses; otherwise, Elixir can get lost
in the pipeline of functions and an error will be raised. Using the pipe operator,
the process of data transformation is clean and direct. We can also rewrite
our capitalize_words/1 function to use helper functions:

higher_order_functions/my_string.ex
def capitalize_words(title) do

title
|> String.split
|> capitalize_all
|> join_with_whitespace

end

def capitalize_all(words) do
Enum.map(words, &String.capitalize/1)

end

Chapter 5. Using Higher-Order Functions • 92

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_string.ex
http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/my_string.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

def join_with_whitespace(words) do
Enum.join(words, " ")

end

We’ve created some auxiliary functions that give more meaning to code. We
have capitalize_all/1, which receives a list of words and returns a list of capitalized
words. And we’ve created join_with_whitespace/1, which receives a list of words and
returns them joined with whitespace. It’s good practice to create small functions
with meaningful names. The function composition is a good concept, and Elixir
has the pipe operator that is useful not only for composing functions but also
for chaining many function calls in a way that makes the data-transformation
steps clear, leading to code that is easier to write and understand.

Be Lazy
Wait! I’m not telling you to put the book away and pass the entire day watching
movies. I’m talking about lazy evaluation in programming. Lazy evaluation is
when we write a series of instructions that won’t be executed right now. Instead,
they will wait for a trigger that will tell them the right moment to run. It’s like
if a friend of yours is cooking a roast turkey for Christmas and gives you an
instruction to remove it from the oven. You can’t take it out right when she
tells you—that would be too soon. Instead, you need to wait for that little red
thing in the turkey to pop up; that’s the right moment.

Lazy operations provide alternative techniques of programming and creating
efficient programs. In functional programming, higher-order functions are
useful for working with lazy computation because we can pass functions that
will be executed later, at an appropriate moment. We’ll discuss some lazy
evaluation techniques with higher-order functions, starting with delaying a
function’s execution.

Delay the Function Call
Sometimes you want to give developers the flexibility to decide when a function
will be evaluated, by building a new function using the existing one. Other func-
tional languages have currying, which is a feature that delays a function’s evalu-
ation when you pass fewer arguments than the function requires. Elixir has partial
application, a feature you can use to postpone a function’s execution by wrapping
it in a new function and fixing a value to any of the function’s arguments.

While you can simulate function currying in Elixir (Patrik Storm covers how
to do it in a fantastic article, “Function Currying in Elixir”3), it is not very

3. http://blog.patrikstorm.com/function-currying-in-elixir

report erratum • discuss

Be Lazy • 93

http://blog.patrikstorm.com/function-currying-in-elixir
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

useful because the most important and the most often changed argument in
Elixir’s functions is always the first argument. Currying requires that you
pass values to the arguments in sequence, making the last argument the
most important because it will trigger the function call. Partial application
doesn’t care which argument is the most important, since you can pass a
fixed value in any argument position you want—that’s why it works better in
Elixir. Let’s try partial application by building an example.

Let’s imagine we want to build a word by passing a list of positions that use
a given series of letters to build words. This series of letters works like an
alphabet. For example, if the function receives the series "aorxd" and a list [4,
1, 1, 2], it returns the string “door.” Let’s create a module WordBuilder and write
the following code:

higher_order_functions/0/word_builder.ex
defmodule WordBuilder do

def build(alphabet, positions) do
letters = Enum.map(positions, String.at(alphabet))
Enum.join(letters)

end
end

We can try it using IEx:

iex> c("word_builder.ex")
iex> WordBuilder.build("world", [4, 1, 1, 2])
** (UndefinedFunctionError) undefined function: String.at/1

The code didn’t work. We can’t pass just one argument to String.at/2 because
Elixir will try to evaluate it and String.at/1 doesn’t exist. In Elixir, functions with
different arities are different functions; they have a fixed number of arguments.
If Elixir had support for curried functions, it would have returned a function
that would expect the remaining arguments. Anonymous functions with clo-
sures allow us to do partial application. It permits us to set values to argu-
ments of a function without invoking the function, giving us more flexibility
to decide when it should be executed. For example, let’s apply the partial
application in our build function:

higher_order_functions/word_builder.ex
def build(alphabet, positions) do

partial = fn at -> String.at(alphabet, at) end
letters = Enum.map(positions, partial)
Enum.join(letters)

end

Chapter 5. Using Higher-Order Functions • 94

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/0/word_builder.ex
http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/word_builder.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We wrapped String.at/2 with an anonymous function that takes one argument.
We took advantage of closures, referencing the alphabet variable, making our
anonymous function remember its value. Then our anonymous function only
needs the position to return the correct letter. Try it:

iex> c("word_builder.ex")
iex> WordBuilder.build("world", [4, 1, 1, 2])
"door"

It’s common in Elixir for simple partial applications to use the function-cap-
turing syntax. We can refactor our code to write something like this:

higher_order_functions/word_builder.ex
def build(alphabet, positions) do

letters = Enum.map(positions, &(String.at(alphabet, &1)))
Enum.join(letters)

end

You can try it again in your IEx; it will have the same effect. The partial
application permits you to delay a function call, predetermining some values
in the function call arguments and using values from closures. It gives you
more flexibility to build functions, helping you solve problems where some
arguments of a function call must be a fixed value.

Working with the Infinite
The infinite can have a lot of definitions in cosmology, philosophy, theology,
or mathematics. For programming, we can think of it as something that is
always expanding; there’s no limit. Examples include a web server that is
always handling new connections, a messaging broker handling upcoming
events, and a game console that listens to the players’ controller inputs. In
Elixir, we have the streams type that represents a flow of data that may not
have an end. Together with this data type, we have the Stream module that
contains many higher-order functions to operate and create our streams.
Let’s explore how to work with an endless stream of data.

The simplest stream we can create in Elixir uses the range literal. Try it in
your IEx:

iex> range = 1..10
1..10

range is a lazy collection. Lazy collections are evaluated only when necessary.
The range value only has the instructions to count from one to ten; it doesn’t

report erratum • discuss

Be Lazy • 95

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/word_builder.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

put all the numbers in memory. range values from one to ten and from one to
ten billion take the same space in memory. If we want to see all the numbers,
we need to do some operation that accesses all of them. For example, we can
navigate through each item using Enum.each/2:

iex> Enum.each(range, &IO.puts/1)
1
2
...
10
:ok

When we use the each/2 function, we tell Elixir it’s time to evaluate each
number of that collection, one at a time. Let’s try an advanced example. In
Chapter 4, Diving into Recursion, on page 59, we built a factorial example
using recursive functions. Now let’s use a different implementation of the
factorial algorithm using streams. Let’s start with a range that will work with
numbers from one to ten million. Let’s build the Factorial module:

higher_order_functions/finite/factorial.ex
defmodule Factorial do

def of(0), do: 1
def of(n) when n > 0 do

1..10_000_000
|> Enum.take(n)
|> Enum.reduce(&(&1* &2))

end
end

You can try it using IEx:

iex> c("factorial.ex")
iex> Factorial.of(5)
120

It’s a different way of thinking about how to solve the factorial problem. We
didn’t use recursive functions that multiply and decrement the number.
Instead, we solved the problem with a collection. We can think of the integers
as a collection. We take n numbers from it, and we multiply each of them with
the accumulator, from smallest to largest. It’s very fast! We used a stream
because it’s lazy, so the ten million numbers are not evaluated right away.

Everything is working, and it’s great. But it has a limitation; it only works up
to ten million. That’s a huge number that will solve most use cases, but we can
do better. It should work using all the machine resources, without boundaries,
to the infinite. Infinity is always expanding. In Elixir, we can represent a collec-
tion that is always expanding using the higher-order function Stream.iterate/2.

Chapter 5. Using Higher-Order Functions • 96

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/finite/factorial.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

It creates a stream where the items are evaluated dynamically. Every time
something asks for an item, the dynamic stream will determine the next ele-
ment. That function expects a starting value and an increment function. The
increment function receives the previous value, and it’s our job to say how
to calculate the next value. Let’s see it in action; try this in your IEx:

iex> integers = Stream.iterate(1, fn previous -> previous + 1 end)
iex> Enum.take(integers, 5)
[1, 2, 3, 4, 5]

We created a stream with an endless data flow of numbers that increment by
one with each iteration. We just took the first five numbers, but we can make
it run forever. If you want to see it counting forever, run the following code
and be prepared to halt the process:

iex> Enum.each(integers, &IO.puts/1)
1
2
3
#...

Now let’s improve our factorial function to use infinite numbers:

higher_order_functions/infinite/factorial.ex
defmodule Factorial do

def of(0), do: 1
def of(n) when n > 0 do

Stream.iterate(1, &(&1 + 1))
|> Enum.take(n)
|> Enum.reduce(&(&1* &2))

end
end

Try it in your IEx; it will work with any number:

iex> c("factorial.ex")
iex> Factorial.of(5)
120
iex> Factorial.of(10)
3628800

Elixir has other useful functions to generate infinite collections, such as
Stream.cycle/1. With the cycle function, we can easily create an infinite collection
that loops through the same items. Let’s say it’s Halloween and we need to
give candy to kids who come to our house. We have chocolates, jellies, and
mints, and we want to distribute each candy type equally. In other words,
one kid will receive chocolate, another jelly, another mint, another chocolate,
and the cycle repeats. Let’s build this example in Elixir by creating the Halloween
module:

report erratum • discuss

Be Lazy • 97

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/infinite/factorial.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

higher_order_functions/halloween.ex
defmodule Halloween do

def give_candy(kids) do
~w(chocolate jelly mint)
|> Stream.cycle
|> Enum.zip(kids)

end
end

Before going into implementation details, let’s test our code in IEx:

iex> c("halloween.ex")
iex> Halloween.give_candy(~w(Mike Anna Ted Mary Alex Emma))
[{"chocolate", "Mike"}, {"jelly", "Anna"}, {"mint", "Ted"},
{"chocolate", "Mary"}, {"jelly", "Alex"}, {"mint", "Emma"}]

The return of the function is a list of tuples, where each tuple has a kid and
their candy. Thanks to the Stream.cycle/1 function, after we give a mint we return
to the beginning of the list and start to give chocolate again.

The ~w is the sigil for word lists. The Enum.zip/2 function creates a new list by
combining two lists where the elements of the new list will follow the same
order as the original lists. Each new element is a tuple with one item of each
list. One list is endless and cycles between chocolate, jelly, and mint, and the
other list is finite and has the kids’ names. When we zip them together, the
function will stop combining them when it reaches the end of the shorter list.
We also have the Stream.zip/2 to use if we want to create a lazy combination.

The lazy computation permits us to represent the infinite collection and gives
us new possibilities to create different solutions. The Elixir Stream modules
provide useful higher-order functions that help developers work with lazy
collections easily.

Pipelining Data Streams
In this section, you’ll learn how to combine Elixir pipe operator and streams,
creating a pipeline of tasks to consume a data stream. We can do it in two
ways: eager or lazy. With the eager strategy, each computation will process
all the items before sending them to the next computation. With the lazy
approach, each computation can process a small number of elements and
send them to the next computation. The effect is that the eager strategy will
output a result only after all the items have been processed. The lazy strategy
will start to produce a result after a small number of elements have been
processed. Until now we have used a lot of the eager approach, and it has
worked very well. In this section, we’ll explore the benefits of the lazy strategy
using lazy collections and Stream higher-order functions.

Chapter 5. Using Higher-Order Functions • 98

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/halloween.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

To better understand how eager and lazy evaluation work, think of a mecha-
nized assembly line: it has a tray we can put items on, the assembly line will
start to run, and the items will be processed sequentially by the machines
that are connected to the tray. In the eager approach, all the elements on the
tray must be processed by a machine before it lets them go on to the next
step. So, if we have three items on the tray at the beginning, all of them must
be processed by the machine and then sent onward. If someone is waiting
for the result at the end of the assembly line, they will need to wait a long
time to see something done. With lazy evaluation, each machine can process
a small number of items and pass them onward rather than processing
everything at once. So, if we have three items on the tray at the beginning,
as soon as an item is processed by the first machine, it will be sent to the
next machine without waiting for the other two items to finish. If someone is
waiting for the result at the end of the assembly line, they will have fast
feedback because the first item will reach the end of the line quickly.

Let’s simulate this by building a ScrewsFactory module. It will be a simple version
of the process of manufacturing screws. Our module will have a function that
will receive several pieces of metal, and then it will apply a screw thread and
head. Each step of our process will wait some number of milliseconds to
simulate a process that takes time to finish. This forced wait time will be
useful so we can better see the consequences of working with a huge quantity
of screws. Write the module in a screws_factory.ex file:

higher_order_functions/0/screws_factory.ex
defmodule ScrewsFactory do

def run(pieces) do
pieces
|> Enum.map(&add_thread/1)
|> Enum.map(&add_head/1)
|> Enum.each(&output/1)

end

defp add_thread(piece) do
Process.sleep(50)
piece <> "--"

end

defp add_head(piece) do
Process.sleep(100)
"o" <> piece

end

defp output(screw) do
IO.inspect(screw)

end
end

report erratum • discuss

Be Lazy • 99

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/0/screws_factory.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Before we discuss the details of the code, you can try it using IEx. Be ready
to halt the program execution if you don’t want to wait for it to finish:

iex> c("screws_factory.ex")
iex> metal_pieces = Enum.take(Stream.cycle(["-"]), 1000)
iex> ScrewsFactory.run(metal_pieces)

It’s very slow to start manufacturing the screws because the approach we’ve
taken here is the eager strategy. It first adds the screw thread to all the metal
pieces. Then it adds the screw head to all the pieces. Finally, it starts to show
the screws in the end of pipeline. That slow feedback is a common problem
when we’re trying to do a task for each item of a collection that takes some
time—for example, accessing an external resource like a database or an API
REST call. Each access takes a few milliseconds and degrades the perfor-
mance. When we’re working with just a few items we can’t perceive the speed
problem, but when we’re working with hundreds of items the slowness will
scream in our ears.

Eager computation can solve most of the problems if we don’t need instant
feedback. However, our screw factory will be more efficient if we have some
screws ready to be packed before all the metal pieces are manufactured.

Let’s change our implementation to a lazy strategy with Elixir streams:

higher_order_functions/screws_factory.ex
def run(pieces) do

pieces
|> Stream.map(&add_thread/1)
|> Stream.map(&add_head/1)
|> Enum.each(&output/1)

end

Let’s process the file again:

iex> c("screws_factory.ex")
iex> ScrewsFactory.run(metal_pieces)

Now we have fast feedback of each item being processed! The amazing thing
is that we didn’t need to change our internal functions—only the pipeline.
We use the Stream.map/1 in the beginning of the pipeline to create a stream.
The next step of the pipeline adds another transformation on the stream. In
the last step, we use Enum.each/2 to start to show the screws in the console by
applying all defined transformations, one screw at a time.

The screw factory delivers the screws as soon as they’re done. Let’s imagine
that our company executives are jubilant about the improvement, and they

Chapter 5. Using Higher-Order Functions • 100

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/screws_factory.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

buy us new machines. The threading machine now can process 50 pieces at
once, while the heading machine can process 100 pieces. With these new
machines, we can be even more productive.

Let’s change our code to add the new machines:

higher_order_functions/screws_factory.ex
def run(pieces) do

pieces
|> Stream.chunk(50)
|> Stream.flat_map(&add_thread/1)
|> Stream.chunk(100)
|> Stream.flat_map(&add_head/1)
|> Enum.each(&output/1)

end

defp add_thread(pieces) do
Process.sleep(50)
Enum.map(pieces, &(&1 <> "--"))

end

defp add_head(pieces) do
Process.sleep(100)
Enum.map(pieces, &("o" <> &1))

end

defp output(screw) do
IO.inspect(screw)

end

Now try it and see how fast it will process:

iex> c("screws_factory.ex")
iex> ScrewsFactory.run(metal_pieces)

Super fast! Let’s understand how we’ve done it, focusing first on the run/1
function. The new things here are Stream.chunk/2 and Stream.flat_map/2. The chunk
function is responsible for accumulating some items before sending them to
the next function. It creates a queue in our processing pipeline. When the
queue is full or the stream is over, it sends the accumulated items to the next
function in the pipeline. It can be easier to understand in isolation:

iex> Enum.chunk([1, 2, 3, 4, 5, 6], 2)
[[1, 2], [3, 4], [5, 6]]

We’re using Enum, but the Stream version operates in the same way. We’ve
created a list of small lists that contain two accumulated items. Then comes
the flat_map, which returns a new list, appending the enumerable result of the
given function.

report erratum • discuss

Be Lazy • 101

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/screws_factory.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Let’s see it working in isolation:

iex> Enum.flat_map([[1, 2], [3, 4], [5, 6]], &(&1))
[1, 2, 3, 4, 5, 6]

Then, having our flow of items in the flat form, we can accumulate again to
create new groups of items for the next functions. Processing a bunch of ele-
ments simultaneously, in batches, has increased the overall speed. The speed
benefit happened because the cost of processing one item or a bunch of items
costs almost the same time.

The Stream higher-order functions and the lazy technique can help you create
a program that works more efficiently by providing faster feedback. This is
very useful when you have a pipeline with tasks that can take some time and
you don’t want to leave the consumer at the end of the pipeline waiting.

Wrapping Up
You’ve seen the full power of functions. Higher-order functions play an
important role in a lot of Elixir’s core functions and libraries. Let’s review
what you’ve learned about higher-order functions in this chapter:

• They are very handy for creating useful functions with a simple interface.

• They are present everywhere, such as when working with lists, files, pro-
cesses, and I/O.

• Elixir features such as the pipe operator and partial application are useful
for combining functions and delaying function evaluation.

• They build a fundamental interface to functions that have lazy compu-
tation.

In the next chapter, we’ll cover exciting features for designing our application
entities. We’ll see how to create structs, polymorphisms, and behaviours.

Your Turn
• In Chapter 4, Diving into Recursion, on page 59, we built a module called
EnchanterShop that transforms mundane items into magical items for sale.
Build this module again, but now apply the higher-order functions that
you learned in this chapter.

• In this chapter, we created a screw factory that processes metal pieces
and generates screws. A new requirement has arrived for us: we now need
to pack them. We can pack 30 screws per package, and it takes 70ms. A

Chapter 5. Using Higher-Order Functions • 102

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

screw is packed when the resulting string is "|o---|". Change the ScrewsFactory
module, adding the simulation of packing screws.

• Create a function that generates the Fibonacci sequence up to a given
quantity.4 Use streams to produce it. You’ll need to take a look at the
Stream.unfold/2 function. Tip: Try to make the recursive version first.

• Implement the Quicksort algorithm.5 Tip: You can use the first item of
the list to be the pivot, and employ the Enum.split_with/2 higher-order function.

4. https://en.wikipedia.org/wiki/Fibonacci_number
5. https://en.wikipedia.org/wiki/Quicksort

report erratum • discuss

Wrapping Up • 103

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Quicksort
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

CHAPTER 6

Designing Your Elixir Applications
Software that solves real-world problems has to maintain and organize various
files. It’s important that you learn language features that will help you organize
your code and design your application domain. A well-organized codebase
makes it easier to fix bugs and add or change features. In this chapter, we’ll
build a game and you’ll learn new techniques to build and design your own
application. You’ll learn how to design the application entities with Elixir
structs. You’ll see how to create polymorphic functions using Elixir protocols.
You’ll create function contracts with Elixir behaviours. The first step is to
learn the basics of Mix, the essential tool to start any new Elixir project.

We’ll use a lot of the concepts that we’ve already explored. For example, you’ll
see higher-order, recursive, and anonymous functions applied together to solve
a problem. Be ready; you’ll see and write a lot of code in this chapter. We’ll
move faster than in the previous chapters, focusing only on the new things.

Starting Your Project with Mix
Mix is a command-line interface (CLI) tool that provides the essentials for
building any Elixir application. Mix helps you create and maintain Elixir
projects, providing tasks to compile, debug, test, and manage dependencies
and your environment. All Elixir libraries and applications were built with
Mix. It comes by default with Elixir; you don’t need to install anything new.
We’ll use Mix CLI tasks to create the initial setup of the game, and the Mix
module guidelines to build a command-line task to run the game. These are
the essential features to build our small project. You can find other useful
features in the Mix official documentation.1 We’ll begin by making sure we
understand the application we’ll build. Then we’ll create the application’s
initial files and a command-line task to start the game.

1. https://hexdocs.pm/mix/Mix.html

report erratum • discuss

https://hexdocs.pm/mix/Mix.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

What We’ll Build
We’ll implement a small terminal game where the player must survive a
dungeon full of monsters and traps. The player wakes up in a room and must
walk through other rooms. The game ends when the player finds the exit. In
each chamber, the player must decide what to do. The result of these decisions
can lead the player to treasure, traps, enemies, more rooms to explore, or the
exit. The game starts with the player choosing a hero to play as. The following
diagram shows the game flow we’ll build.

confirm?

start

check
result

victory

game over

choose a hero

random room

select action

yes

no

hero HP == 0

else

result == :exit

The hero has hit points, which are reduced by taking damage from fighting
enemies or falling into traps. When the character reaches zero hit points, the
player loses the game. The character’s hit points can be restored by finding
healing potions or resting in safe rooms. The challenge is to find the exit room
before the hero reaches zero hit points. Now that you have the main idea of
the game, let’s start coding it.

Chapter 6. Designing Your Elixir Applications • 106

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Running the new Task
The mix new task creates the initial structure to code your application. You
just need to pass the application name, and it will do the rest. Let’s run it to
create the dungeon_crawl application:

$ mix new dungeon_crawl
* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/dungeon_crawl.ex
* creating test
* creating test/test_helper.exs
* creating test/dungeon_crawl_test.exs

Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

cd dungeon_crawl
mix test

Run "mix help" for more commands.

The output shows you the base structure of directories to start building your
Elixir application. The most relevant directories for now are lib and test. The
lib directory is where you’ll put your application code. The test directory is
where you’ll put the code that checks the lib application code’s correctness.
The command output also shows you the next steps: cd dungeon_crawl to enter
the application directory, and mix test to run the application tests. Let’s do it:

$ cd dungeon_crawl
$ mix test
Compiling 1 file (.ex)
Generated dungeon_crawl app
..

Finished in 0.05 seconds
2 tests, 0 failures

Randomized with seed 841143

When we run the mix test task, it automatically detects the files that need to
be compiled. Then it compiles the files and starts the application test suite.
The output says we have two tests and they are passing. The tests run in
random order, and we can repeat that order using the seed number. The first
test is in test/dungeon_crawl_test.exs:

report erratum • discuss

Starting Your Project with Mix • 107

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/dungeon_crawl/test/dungeon_crawl_test.exs
defmodule DungeonCrawlTest do

use ExUnit.Case
doctest DungeonCrawl

test "greets the world" do
assert DungeonCrawl.hello() == :world

end
end

In this file, we have new directives. use permits another module to take actions
and inject code on the calling module. It adds new capabilities to the current
module, mostly by using metaprogramming features. For example, when we
add the directive use ExUnit.Case, we’re adding the capacity to run tests and
utility functions for testing to our DungeonCrawlTest module.

The directive doctest came from ExUnit.Case. It parses our module documentation,
runs the code inside of it, and checks if it’s working. Finally, we have the test
code, which does a mere assertion: assert DungeonCrawl.hello() == :world. But wait.
The mix test command output says that we have two tests; the second test is
in lib/dungeon_crawl.ex file:

design_your_application/dungeon_crawl/lib/dungeon_crawl.ex
defmodule DungeonCrawl do

@moduledoc """
Documentation for DungeonCrawl.
"""

@doc """
Hello, world.

Examples

iex> DungeonCrawl.hello
:world

"""
def hello do

:world
end

end

In that file, we have a large documentation section. Thanks to the doctest
directive, the second test that Elixir runs is to take the example of the docu-
mentation and see if that code works as expected. It’s a very powerful feature
to keep the documentation up to date, and it’s a very useful feature for library
maintainers. Testing and documentation are big subjects that this book

Chapter 6. Designing Your Elixir Applications • 108

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/test/dungeon_crawl_test.exs
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

doesn’t cover. You can remove the test file, but if you want to learn more
about it, take a look at the ExUnit official documentation.2

Create the Start Task
Mix tasks are commands that you can invoke in the terminal that use Mix
utilities—for example, commands like mix new and mix test are Mix tasks. We
can add new tasks to our project by creating modules that follow the Mix.Task
contract. These tasks help developers set up and automate procedures and
provide a useful shortcut to run them. Let’s build a task that starts our game.
With it, we can see the game updates after changing the code. We can create
a Mix task by building a module in the Mix.Tasks namespace, adding the use
Mix.Task directive and implementing the run/1 function. The first step is to add
the task file, following this directory structure:

lib
└── mix

└── tasks
└── start.ex

You can add a new Mix task by creating a new file in the directory lib/mix/tasks.
We created start.ex. Now put this code inside:

design_your_application/tutorial/0/dungeon_crawl/lib/mix/tasks/start.ex
defmodule Mix.Tasks.Start do

use Mix.Task

def run(_), do: IO.puts "Hello, World!"
end

In this file, we’re turning the module into a Mix task by using the use Mix.Task
directive. We needed to put the name of our module in the namespace Mix.Tasks
and create a run function that must accept one argument. That argument will
be the parameters the user can pass when running a command. We’re
ignoring it because we only want to print a “Hello, World” message. Then we
can execute the mix start task and see the resulting output:

$ mix start
Compiling 1 file (.ex)
Hello, World!

This is how you can create tasks to run any code you want in your application.
The directory structure following the module namespaces isn’t required.
However, it’s a good convention that this book and many applications follow.
It keeps your code organized and makes your modules easier to find. You can

2. https://hexdocs.pm/ex_unit/ExUnit.html

report erratum • discuss

Starting Your Project with Mix • 109

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/mix/tasks/start.ex
https://hexdocs.pm/ex_unit/ExUnit.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

see more options for creating Mix tasks by reading the Mix.Task module official
documentation.3

Designing Entities with Structs
Programming language entities and data types are not enough when you’re
building a larger application. We need to create new data entities to express
the application domain. In Elixir, we employ structs. We covered how to use
them in Matching Structs, on page 44, but now we’ll see how to create them.
We’ll create a struct that represents the player’s hero. Then we’ll organize our
application, separating the domain entities from CLI code by listing the heroes’
options to the player. Then we’ll use some Mix command-line functions to let
the player choose a hero. The first step is to build a struct to describe the
Character domain entity.

Creating the Character with Structs
We’ll build a struct that will hold all the character’s related properties. The
character will be consistent across the entire application since structs don’t
let us add new attributes beyond their definition. Let’s create a file that will
have the struct in the following directory, under lib:

lib
├── dungeon_crawl
│ ├── character.ex
└── mix

When building Elixir’s applications it’s a good practice to put all the modules
and related code under your application domain namespace. The Character
struct will be under the DungeonCrawl game namespace, then inside of the dun-
geon_crawl folder. In the file character.ex, let’s define the character struct:

design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/character.ex
defmodule DungeonCrawl.Character do

defstruct name: nil,
description: nil,
hit_points: 0,
max_hit_points: 0,
attack_description: nil,
damage_range: nil

end

The module Character lives inside the DungeonCrawl namespace. We used the
defstruct directive to create the character struct, passing a keyword list. The

3. https://hexdocs.pm/mix/Mix.Task.html

Chapter 6. Designing Your Elixir Applications • 110

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/character.ex
https://hexdocs.pm/mix/Mix.Task.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

key is the attribute name, and the value will be the default value when we
initialize a struct. Let’s see the purpose of each attribute:

• name—a name that differentiates one character from others

• description—a long description that explains the character’s advantages and
disadvantages

• hit_points—current hit points

• max_hit_points—the maximum hit points a character can have

• attack_description—the text that explains how a character attacks another

• damage_range—the minimum and maximum damage a character can cause
when attacking

Let’s try our struct initialization inside an IEx shell. We can run a Mix task
to start the shell and load all modules automatically. Run the following com-
mand in the dungeon_crawl folder:

$ iex -S mix
Compiling 1 file (.ex)
Generated dungeon_crawl app
Interactive Elixir

The -S flag tells IEx to run a script on launch; passing mix will run the project’s
mix task, compiling and loading the project’s modules. We can create charac-
ters using our struct with the IEx session loaded:

iex> warrior = %DungeonCrawl.Character{name: "Warrior"}
%DungeonCrawl.Character{attack_description: nil, damage_range: nil,
description: nil, hit_points: 0, max_hit_points: 0, name: "Warrior"}

iex> warrior.name
"Warrior"

We’ve covered how to create a struct, define attributes, and initialize structs.
Structs permit us to define a group of related attributes that represent a
domain entity in our application.

Listing the Heroes
The next step is to make the game display a list of heroes to the player. The
actions of displaying an interface and displaying the heroes list are two differ-
ent contexts. You’ll learn how to separate them. First, let’s create the heroes
list by creating the heroes.ex file in the lib/dungeon_crawl folder. Your directory
structure should look like this:

report erratum • discuss

Designing Entities with Structs • 111

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

lib/
└── dungeon_crawl

├── character.ex
└── heroes.ex

In heroes.ex, build the following module:

design_your_application/dungeon_crawl/lib/dungeon_crawl/heroes.ex
defmodule DungeonCrawl.Heroes do

alias DungeonCrawl.Character

def all, do: [
%Character{

name: "Knight",
description: "Knight has strong defense and consistent damage.",
hit_points: 18,
max_hit_points: 18,
damage_range: 4..5,
attack_description: "a sword"

},
%Character{

name: "Wizard",
description: "Wizard has strong attack, but low health.",
hit_points: 8,
max_hit_points: 8,
damage_range: 6..10,
attack_description: "a fireball"

},
%Character{

name: "Rogue",
description: "Rogue has high variability of attack damage.",
hit_points: 12,
max_hit_points: 12,
damage_range: 1..12,
attack_description: "a dagger"

},
]

end

We’ve made a list of heroes using the DungeonCrawl.Character struct. The first line
of our module uses the alias directive. This alias creates a shortcut, allowing
us to type only %Character to reference the struct. The heroes described here
are just suggestions; you can build your heroes with your rules. Have fun!

To display the heroes, we need to build a central point of interaction with the
player. We’ll create a folder to store the CLI code and a main.ex file that will
start and end our game. Create the following file and directory structure:

Chapter 6. Designing Your Elixir Applications • 112

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/heroes.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

lib
├── dungeon_crawl
│ └── cli
│ └── main.ex
|

For now, main.ex will contain a welcome message with the introduction of
the game:

design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
defmodule DungeonCrawl.CLI.Main do

alias Mix.Shell.IO, as: Shell

def start_game do
welcome_message()

end

defp welcome_message do
Shell.info("== Dungeon Crawl ===")
Shell.info("You awake in a dungeon full of monsters.")
Shell.info("You need to survive and find the exit.")

end
end

DungeonCrawl.CLI.Main will orchestrate the game. Let’s see some details of the
implementation. Mix.Shell.IO brings useful functions to interact with the terminal.
For example, it has the yes?/1 function to get a positive or negative answer
from the player. We used info to print messages with the alias Shell to avoid
typing the full qualified name of Mix.Shell.IO. Now we need to invoke the
start_game/0 function from the Mix task that we created in the previous section:

design_your_application/dungeon_crawl/lib/mix/tasks/start.ex
defmodule Mix.Tasks.Start do

use Mix.Task

def run(_), do: DungeonCrawl.CLI.Main.start_game
end

Then we can run the game with mix start and see the introduction.

$ mix start
== Dungeon Crawl ===
You awake in a dungeon full of monsters.
You need to survive and find the exit.

Now, it’s time to list all available heroes for the player. Let’s build this func-
tionality in a separate module called DungeonCrawl.CLI.HeroChoice that will be in
lib/dungeon_crawl/cli/hero_choice.ex. Create the following code:

report erratum • discuss

Designing Entities with Structs • 113

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/mix/tasks/start.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
defmodule DungeonCrawl.CLI.HeroChoice do

alias Mix.Shell.IO, as: Shell

def start do
Shell.cmd("clear")
Shell.info("Start by choosing your hero:")

heroes = DungeonCrawl.Heroes.all()

heroes
|> Enum.map(&(&1.name))
|> display_options

end

def display_options(options) do
options
|> Enum.with_index(1)
|> Enum.each(fn {option, index} ->
Shell.info("#{index} - #{option}")

end)

options
end

end

We are again using the Mix.Shell.IO utilities to work with the shell. This time we’re
using cmd/1. It allows us to send terminal commands to our current shell. We clear
the screen before showing the user the available heroes. Then we take the list of
heroes, map their names, and display them in a numbered list, starting with 1.
We used the Enum.with_index function to generate a list of tuples that contain the
heroes’ names and their corresponding index numbers. Now let’s invoke this
module in our DungeonCrawl.CLI.Main function:

design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
defmodule DungeonCrawl.CLI.Main do

alias Mix.Shell.IO, as: Shell

def start_game do
welcome_message()
Shell.prompt("Press Enter to continue")
hero_choice()

end

defp welcome_message do
Shell.info("== Dungeon Crawl ===")
Shell.info("You awake in a dungeon full of monsters.")
Shell.info("You need to survive and find the exit.")

end

defp hero_choice do
DungeonCrawl.CLI.HeroChoice.start()

end
end

Chapter 6. Designing Your Elixir Applications • 114

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Now we can run it with mix start and see what we’ve done.

Start by choosing your hero:
1 - Knight
2 - Wizard
3 - Rogue

We’ve separated functions of CLI interactions in a different namespace to
create a boundary. (Creating boundaries makes your code consistent and
easier to maintain.) The next step is to ask the player to choose a hero.

Choosing a Hero
After the game lists the heroes, the player must type a number to choose one.
Let’s build that functionality. First, we need to generate a question with the
numbers that player can choose, get the player input, parse it, and select the
corresponding hero. Improve your lib/dungeon_crawl/cli/hero_choice.ex with the fol-
lowing code:

design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
def start do

Shell.cmd("clear")
Shell.info("Start by choosing your hero:")

heroes = DungeonCrawl.Heroes.all()
find_hero_by_index = &Enum.at(heroes, &1)

heroes
|> Enum.map(&(&1.name))
|> display_options
|> generate_question
|> Shell.prompt
|> parse_answer
|> find_hero_by_index.()
|> confirm_hero

end

The pipeline of functions says to take the heroes’ names, display them, gen-
erate a question, ask the user for input, parse the user’s answer, find the
corresponding hero, and confirm the player choice. The pipeline starts with
a list of heroes and ends with the chosen hero. So, after listing the heroes,
we must implement the generate_question/1 function:

design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
defp generate_question(options) do

options = Enum.join(1..Enum.count(options),",")
"Which one? [#{options}]\n"

end

report erratum • discuss

Designing Entities with Structs • 115

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

It starts generating a string by building a range from 1 to the number of ele-
ments and joins them with a comma, generating something like "1,2,3". It joins
the question and the numbers and returns the result. The next step of the
pipeline uses this result, invoking the prompt/1 function. It works like this: it
accepts a question in the argument, displays the question, awaits an input,
and returns what the user has typed. With the user input, we need to parse
it. We can do it with parse_answer/1:

design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
defp parse_answer(answer) do

{option, _} = Integer.parse(answer)
option - 1

end

It tries to parse an integer from the user input, then subtracts one to get the
index of the hero. You don’t need to worry now what happens if a user types
a number that doesn’t exist, or something like hot dogs. We’ll handle unex-
pected events in Chapter 7, Handling Impure Functions, on page 139. You can
keep coding for now and assume that nothing bad will happen.

The program uses the find_hero_by_index/1 anonymous function defined at start/0
to receive the parsed answer and return the hero. That anonymous function
is necessary because we can’t use Enum.at/2 directly in the pipeline. The Enum.at/2
argument is a list, and we need to pass the hero index. The anonymous
function also references the heroes variable by taking advantage of closures.
The last step is to confirm the player option with the chosen hero:

design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
defp confirm_hero(chosen_hero) do

Shell.cmd("clear")
Shell.info(chosen_hero.description)
if Shell.yes?("Confirm?"), do: chosen_hero, else: start()

end

In the confirm_hero/1 function we clear the screen, display the details of the chosen
hero, and ask the user to confirm the choice. Windows users need to replace
the clear command with cls to clear the screen. We use the yes?/1 function from
Mix.Shell.IO to get the user input, check if it’s a positive answer, and parse it to a
Boolean value. For example, when the user answers y, it parses to true and we
return the chosen hero. If the user answers n, we restart the process by making
a recursive call to the start/0 function. Let’s run mix start to try what we’ve built:

Start by choosing your hero:❮

1 - Knight
2 - Wizard
3 - Rogue
Which one? [1,2,3]

Chapter 6. Designing Your Elixir Applications • 116

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

1➾
❮

Knight has strong defense and consistent damage.
Confirm? [Yn]
yes➾

We’ve made the first part of the game. You’ve learned how to create structs,
separate different code contexts in different namespaces, and interact with
the user via the command-line interface. In the next section, we’ll add more
features, increasing our codebase. A kid needs good habits to have healthy
growth, and it’s the same thing for your codebase. As you develop new fea-
tures, you’ll learn refactoring techniques and how to use Elixir’s protocols,
good habits to make your codebase have healthy growth.

Using Protocols to Create Polymorphic Functions
Elixir’s protocol is a feature that lets you create a single interface that various
data types can implement. Using that, you can have polymorphism: a single
interface that works with different data types. If you came from object-oriented
languages like Java, you’ll see that it’s very similar to how interfaces work.
Elixir protocols will help you create simple interfaces, leading to a better
codebase design.

In this section we’ll explore more about structs, including structs that refer-
ence other structs. We’ll refactor our code to create a reusable module that
shares functions between heroes and action selections. Then we’ll build
polymorphic functions with protocols to display heroes and actions. The first
step is to define the essential attributes of the rooms and their actions.

Building Structs That Use Structs
When the hero is in a room, the player can choose an action and face the
consequences. We have two new structs to build and one will reference the
other. The Room struct will have many Action structs. Let’s define the room
action module in lib/dungeon_crawl/room/action.ex. Then we’ll add the following
module to the file:

design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/room/action.ex
defmodule DungeonCrawl.Room.Action do

alias DungeonCrawl.Room.Action
defstruct label: nil, id: nil

def forward, do: %Action{id: :forward, label: "Move forward."}
def rest, do: %Action{id: :rest, label: "Take a better look and rest."}
def search, do: %Action{id: :search, label: "Search the room."}

end

report erratum • discuss

Using Protocols to Create Polymorphic Functions • 117

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/room/action.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The DungeonCrawl.Room.Action struct has id and label attributes. We also created
helper functions to build common actions that we’ll need to build the rooms.
The next step is to create the room module. Create lib/dungeon_crawl/room.ex and
add this code to it:

design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/room.ex
defmodule DungeonCrawl.Room do

alias DungeonCrawl.Room

import DungeonCrawl.Room.Action

defstruct description: nil, actions: []

def all, do: [
%Room{

description: "You found a quiet place. Looks safe for a little nap.",
actions: [forward(), rest()],

},
]

end

The DungeonCrawl.Room struct has description and actions attributes. The module
has the function all/0 that lists all available rooms. We’ve defined a struct that
contains other structs to describe the room and its actions. For now we’re
making only one room to create the room actions listing and selection. Later
we’ll come back here and add more rooms.

Refactoring Modules and Reusing Functions
Now we’ll implement the interaction for the player to choose a room action
when the hero is in the room. The process is very similar to what we did for
hero choice. It means that we can reuse a lot of functions. But first we need
to refactor our code. Refactoring is organizing the code to better accommodate
new features without breaking the existing ones. It avoids duplicated code
and promotes better abstractions. Let’s create a reusable module that
will allow for hero and action listing and choice. Let’s create a module in
lib/dungeon_crawl/cli/base_commands.ex and put all the reusable functions from
hero_choice.ex in it:

design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
defmodule DungeonCrawl.CLI.BaseCommands do

alias Mix.Shell.IO, as: Shell

def display_options(options) do
options
|> Enum.with_index(1)
|> Enum.each(fn {option, index} ->
Shell.info("#{index} - #{option}")

end)

Chapter 6. Designing Your Elixir Applications • 118

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/room.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

options
end

def generate_question(options) do
options = Enum.join(1..Enum.count(options),",")
"Which one? [#{options}]\n"

end

def parse_answer(answer) do
{option, _} = Integer.parse(answer)
option - 1

end
end

Note that we’re moving the reusable functions and making them public by
replacing defp with def. We can now make the HeroChoice module reuse these
functions by importing the BaseCommands module. Your module should look
like this:

design_your_application/tutorial/2/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
defmodule DungeonCrawl.CLI.HeroChoice do

alias Mix.Shell.IO, as: Shell
import DungeonCrawl.CLI.BaseCommands

def start do
Shell.cmd("clear")
Shell.info("Start by choosing your hero:")

heroes = DungeonCrawl.Heroes.all()
find_hero_by_index = &Enum.at(heroes, &1)

heroes
|> Enum.map(&(&1.name))
|> display_options
|> generate_question
|> Shell.prompt
|> parse_answer
|> find_hero_by_index.()
|> confirm_hero

end

defp confirm_hero(chosen_hero) do
Shell.cmd("clear")
Shell.info(chosen_hero.description)
if Shell.yes?("Confirm?"), do: chosen_hero, else: start()

end
end

Then we can finally write the module that will handle the interaction to choose
the room actions. Create the file lib/dungeon_crawl/cli/room_actions_choice.ex and write
the following module in it:

report erratum • discuss

Using Protocols to Create Polymorphic Functions • 119

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/2/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/cli/room_actions_choice.ex
defmodule DungeonCrawl.CLI.RoomActionsChoice do

alias Mix.Shell.IO, as: Shell
import DungeonCrawl.CLI.BaseCommands

def start(room) do
room_actions = room.actions
find_action_by_index = &(Enum.at(room_actions, &1))

Shell.info(room.description())

chosen_action =
room_actions
|> Enum.map(&(&1.label))
|> display_options
|> generate_question
|> Shell.prompt
|> parse_answer
|> find_action_by_index.()

{room, chosen_action}
end

end

The pipeline of functions is very similar to HeroChoice. The main difference here
is the code that handles different structures of the room and its actions; also,
we don’t need to confirm what the player has chosen. The function returns
a tuple with the room and the selected action. Now we can update our Dungeon-
Crawl.CLI.Main module to call the action-selection function:

design_your_application/tutorial/2/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
def start_game do

welcome_message()
Shell.prompt("Press Enter to continue")
hero_choice()
crawl(DungeonCrawl.Room.all())➤

end

defp crawl(rooms) do
Shell.info("You keep moving forward to the next room.")
Shell.prompt("Press Enter to continue")
Shell.cmd("clear")

rooms
|> Enum.random
|> DungeonCrawl.CLI.RoomActionsChoice.start

end

The crawl/1 function expects a list of rooms. It takes a random room from the
list and starts the action-selection interaction. You can see what’s happening
by running mix start.

Chapter 6. Designing Your Elixir Applications • 120

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/cli/room_actions_choice.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/2/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

You keep moving forward to the next room.❮

Press Enter to continue

You found a quiet place. Looks safe for a little nap.
1 - Move forward
2 - Take a better look and rest
Which one? [1,2]
1➾

In RoomActionsChoice we reused some functions that we created in HeroChoice,
reducing the code and creating this functionality more quickly.

Displaying Heroes and Room Actions with Protocols
We listed the options for the player; these options can be room actions or
heroes. It means we need to work with different data types, the DungeonCrawl.Char-
acter and DungeonCrawl.Room.Action structs. Handling different data structures
with different attributes can be hard, making you create conditionals that
are difficult to follow. We mapped the attributes before displaying them, and
it was a good solution. Now we’ll create an alternative solution that takes
advantage of polymorphism. We’ll make a display function that works with
the DungeonCrawl.Character and DungeonCrawl.Room.Action structs. In Elixir we can
create polymorphic functions using protocols. In this section you’ll learn how
to build your own protocol and implement existing ones.

We want to create a single function that doesn’t care if you pass an action or
a hero. Let’s build the protocol for it in lib/dungeon_crawl/display.ex:

design_your_application/dungeon_crawl/lib/dungeon_crawl/display.ex
defprotocol DungeonCrawl.Display do

def info(value)
end

It’s very simple to define a protocol. We use the defprotocol directive, and then
we create a function with def but without defining its body. Then our Dungeon-
Crawl.Display protocol has one function called info/1. To make it work, we need
to implement the protocol for the data types we want. Let’s do it in the same
file we were using:

design_your_application/dungeon_crawl/lib/dungeon_crawl/display.ex
defimpl DungeonCrawl.Display, for: DungeonCrawl.Room.Action do

def info(action), do: action.label
end

defimpl DungeonCrawl.Display, for: DungeonCrawl.Character do
def info(character), do: character.name

end

report erratum • discuss

Using Protocols to Create Polymorphic Functions • 121

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/display.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/display.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We implemented the protocol with the directive defimpl. We used the for option
to specify the data type. Then, inside the directive body, we implemented the
info/1 function. With this change, we can use DungeonCrawl.Display.info/1 with any
of the implemented types. We added this extension without touching the data
type modules. Protocols are very extensible. Let’s update our Dungeon-
Crawl.CLI.BaseCommands:

design_your_application/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def display_options(options) do

options
|> Enum.with_index(1)
|> Enum.each(fn {option, index} ->

Shell.info("#{index} - #{DungeonCrawl.Display.info(option)}")➤

end)

options
end

Then we can remove the mapping attribute line with Enum.map/2 of Dungeon-
Crawl.CLI.HeroChoice and DungeonCrawl.CLI.RoomActionsChoice:

design_your_application/tutorial/3/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
heroes
|> display_options

design_your_application/tutorial/3/dungeon_crawl/lib/dungeon_crawl/cli/room_actions_choice.ex
room_actions
|> display_options

We’re passing the data types directly, with no previous transformation, to
display_options/1. Then display_options/1 will invoke DungeonCrawl.Display.info/1 to show
the information. You can run mix start to see the update working.

We’re using DungeonCrawl.DungeonCrawl.Display.info/1, and it’s a little bit verbose.
What if we could display the character or the room action with the Elixir
conventional interpolation syntax? For example, if we write "1 - #{character}"
and it displays the character name instead of the entire structure, it would
be interesting, right? Elixir has the String.Chars protocol that enables it. We
only need to implement the to_string/1 function. Let’s do that in the modules
DungeonCrawl.Character and DungeonCrawl.Room.Action:

design_your_application/dungeon_crawl/lib/dungeon_crawl/character.ex
defimpl String.Chars do

def to_string(character), do: character.name
end

Chapter 6. Designing Your Elixir Applications • 122

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/3/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/3/dungeon_crawl/lib/dungeon_crawl/cli/room_actions_choice.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/character.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/dungeon_crawl/lib/dungeon_crawl/room/action.ex
defimpl String.Chars do

def to_string(action), do: action.label
end

We don’t need to use the option for to specify a module here because we’re
implementing a protocol inside of a module. Elixir understands that imple-
mentation is for the current module. You can remove the DungeonCrawl.Dungeon-
Crawl.Display protocol since we won’t use that anymore. Now we can update
DungeonCrawl.CLI.BaseCommands.display_options/1 to use the string interpolation:

design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def display_options(options) do

options
|> Enum.with_index(1)
|> Enum.each(fn {option, index} ->

Shell.info("#{index} - #{option}")➤

end)

options
end

You can run mix start, and you’ll see everything working. Elixir’s protocols allow
the code that uses the interface to stay the same when new data types are
added. If you want to learn more about protocols and their options, take a
look at the Elixir official guide.4

Organizing Your Protocols

Here’s the convention for protocol code organization: If you own the struct, put the
implementation in the same file as the struct. If you don’t own the struct but you
own the protocol, put the implementation inside of the protocol file. If you own neither
the struct nor the protocol, create a file with the protocol name and put the implemen-
tation there.

You’ve learned how to create complex data structures by using structs that
reference other structs. You’ve learned to build a module with reusable
functions by refactoring existing code. Finally, you’ve learned how to extend
existing polymorphic functions and build new ones. However, it’s not enough;
protocols are good for structs but not for simple modules. In the next section
you’ll learn how to create interfaces for modules.

4. http://elixir-lang.org/getting-started/protocols.html

report erratum • discuss

Using Protocols to Create Polymorphic Functions • 123

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/room/action.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://elixir-lang.org/getting-started/protocols.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Creating Module Behaviours
A contract sets the rules in an agreement between parties, and indicates how
the parties will benefit. For example, think of a job contract. It has rules for
the employee and the employer, and by following those rules both parties will
reap specific benefits. If the rules are broken, though, those benefits aren’t
guaranteed. In Elixir, a behaviour is a contract between a module and the
client code that’s using it. It provides a common interface for a client across
multiple modules. It means a client can use multiple modules in the same
way since the modules provide the same functions with the same signatures
defined in the behaviour contract. For example, Mix.Task is a behaviour. When
we create a module that follows the Mix.Task behaviour, we must implement
the function run/1. If we don’t, Mix will have problems when trying to run our
module as a task. It’s very useful to enforce the practice of developers creating
consistent code when developing new features in an application.

In this section you’ll learn how to build your own behaviours. You’ll learn to
create better function signatures with type specifications. You’ll see how to
add a new library in your application. In the end, you’ll learn how to use
Dialyzer to check if your code has hidden bugs.

Building the Exit with Elixir Behaviour
Let’s return to our game example. The hero can walk for several rooms. Each
room has a list of actions. The player chooses one action, and it will trigger
a situation. Each situation can be very different, but it’d be nice if the situation
triggers had uniform input and output. Having multiple functions that respect
the same behaviour permits us to have a central point of execution and han-
dling, avoiding extra conditional code.

For each type of room, we’ll build a module. Inside each module we’ll have
the function that knows what to do when the user chooses an action for that
room. The function must accept the hero and the player action as an argument
and must return the hero with a flag. When the flag is :exit, the game is fin-
ished; when it’s :forward, the hero must keep crawling the dungeon. We’ll use
an Elixir behaviour feature that will be like a simple contract of how that
function should work. Create the file lib/dungeon_crawl/room/trigger.ex and write
this module in it:

design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/room/trigger.ex
defmodule DungeonCrawl.Room.Trigger do

@callback run(character :: any, action :: any) :: any
end

Chapter 6. Designing Your Elixir Applications • 124

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/room/trigger.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

We’ve used the @callback directive to tell Elixir we want to define a function
rule. The syntax is very similar to how we create functions. We have the
function called run. It must have two arguments; we’ll use character and action.
After the argument name we have the two colons, ::, with the word any indicat-
ing the arguments can be of any type. Then, after the function declaration
we have the :: again. It defines the function type return; again we’re using any.
With this line we’re saying any module that obeys this contract must have a
function called run that has two arguments of any type, and returns a value
of any type. I know it’s not a strict contract, but it’s enough to create our first
room trigger.

Let’s build the exit-room trigger. When a hero enters this room, nothing happens
to the character and we return the exit flag. Create the lib/dungeon_crawl/room/trig-
gers/exit.ex file with the following module:

design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/room/triggers/exit.ex
defmodule DungeonCrawl.Room.Triggers.Exit do

@behaviour DungeonCrawl.Room.Trigger
end

In this module we’ve used the @behaviour directive to tell Elixir the Exit module
follows the Room.Trigger contract. That contract says we need to implement a
run function. If we try to compile the project without implementing a run, the
compiler will complain about the missing function. Try to run mix and see the
error message:

$ mix
Compiling 1 file (.ex)
warning: undefined behaviour function run/2

(for behaviour DungeonCrawl.Room.Trigger)
lib/dungeon_crawl/room/triggers/exit.ex:1

It’s very useful to alert developers about missing functions. Now let’s imple-
ment the run/2 function:

design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/exit.ex
defmodule DungeonCrawl.Room.Triggers.Exit do

@behaviour DungeonCrawl.Room.Trigger
def run(character, _), do: {character, :exit}

end

The function is very simple. It returns a tuple with the given hero and a flag
saying that character has found the exit. The next step is to build a room
that contains the exit trigger. Let’s update our DungeonCrawl.Room module:

report erratum • discuss

Creating Module Behaviours • 125

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/0/dungeon_crawl/lib/dungeon_crawl/room/triggers/exit.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/exit.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/room.ex
defmodule DungeonCrawl.Room do

alias DungeonCrawl.Room
alias DungeonCrawl.Room.Triggers➤

import DungeonCrawl.Room.Action

defstruct description: nil, actions: [], trigger: nil➤

def all, do: [
%Room{

description: "You can see the light of day. You found the exit!",➤

actions: [forward()],➤

trigger: Triggers.Exit➤

},
]

end

We’ve added an alias for DungeonCrawl.Room.Triggers to simplify the use of the
room triggers in our module. We’ve added the trigger attribute to our room
struct. It will store a module that respects the Room.Trigger contract, having
the actions’ behavior and consequences. Then in the all/0 function we create
a room that has the exit trigger. Now we need to update the DungeonCrawl.CLI.Main
to run the trigger when the player chooses an option. First, the crawl function
must have a hero in the parameter:

design_your_application/tutorial/3/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
def start_game do

welcome_message()
Shell.prompt("Press Enter to continue")

crawl(hero_choice(), DungeonCrawl.Room.all())➤

end

defp crawl(character, rooms) do➤

Shell.info("You keep moving forward to the next room.")
Shell.prompt("Press Enter to continue")
Shell.cmd("clear")

rooms
|> Enum.random
|> DungeonCrawl.CLI.RoomActionsChoice.start
|> trigger_action(character)➤

|> handle_action_result➤

end

The hero is now in the crawl arguments because it will be helpful to update
the hero’s health based on actions triggered in the room. Now let’s add two
new auxiliary functions—one to run the trigger and another to handle the
result of the trigger:

Chapter 6. Designing Your Elixir Applications • 126

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/room.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/3/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/tutorial/3/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
defp trigger_action({room, action}, character) do

Shell.cmd("clear")
room.trigger.run(character, action)

end

defp handle_action_result({_, :exit}),
do: Shell.info("You found the exit. You won the game. Congratulations!")

defp handle_action_result({character, _}),
do: crawl(character, DungeonCrawl.Room.all())

The trigger_action/2 is very simple: it clears the screen and invokes the function
run/2 from the module that is stored in trigger attribute. The handle_action_result/2
function, when it matches the :exit flag, will finish the game. Otherwise it
starts a recursive call to crawl/2, passing the hero and the rooms. With this
change, we can run mix start and see the updates in our game:

You can see the light of day ahead. You found the exit!❮

1 - Move forward
Which one? [1]
1➾

❮
You found the exit. You won the game. Congratulations!

We’ve finished an important part of the game. It now has a beginning and an
end. We’ve used the behaviour feature to simplify the way developers imple-
ment new challenges in the game. They can add new room-trigger modules
and respect the Room.Trigger contract. The next step is to improve it with type
specifications, or typespecs.

Adding Type Specifications
Type specifications are notations that say what your functions expect and
return. In some languages the compiler uses the type specifications to optimize
the code and check its correctness. Elixir is a dynamic language, and the
compiler doesn’t use type specifications to optimize our code. However, the
Dialyzer tool uses type specifications to do a static check to verify if type usage
is correct, catching some hidden bugs. Type specifications are also good for
generating documentation, clarifying what is expected in our code. We’ll use
type specifications to improve the DungeonCrawl.Room.Trigger.run/2 contract, and
we’ll add them to document the expected structures in the function’s argu-
ments and return.

The DungeonCrawl.Room.Trigger.run/2 needs a character and a room action. We need
to create the character and room types. Then we can specify the run/2 function’s
arguments. Let’s define the character type in lib/dungeon_crawl/character.ex, adding
the following code:

report erratum • discuss

Creating Module Behaviours • 127

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/3/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/character.ex
@type t :: %DungeonCrawl.Character{

name: String.t,
description: String.t,
hit_points: non_neg_integer,
max_hit_points: non_neg_integer,
attack_description: String.t,
damage_range: Range.t

}

We used the @type directive to start the type definition. That type has the
name t, and the code after the :: is the type definition. We’re saying the type
is a DungeonCrawl.Character struct, and is composed of attributes with their
specified types. Some types we can reference with simple names, like integer.
Types like String we reference by accessing the t function from their modules.
It’s a common convention in Elixir to define the struct type with t. With the
type specification, it’s way more clear what is expected in each attribute of
the struct. The next step is to define the type specification of the room action:

design_your_application/dungeon_crawl/lib/dungeon_crawl/room/action.ex
@type t :: %Action{id: atom, label: String.t}

The id of the room should be an atom and the label should be a string. Then,
finally, we improve our run/2 specification by associating the types that we created:

design_your_application/dungeon_crawl/lib/dungeon_crawl/room/trigger.ex
defmodule DungeonCrawl.Room.Trigger do

alias DungeonCrawl.Character
alias DungeonCrawl.Room.Action

@callback run(Character.t, Action.t) :: {Character.t, atom}➤

end

In the first argument we expect a character type, and in the second we expect
a room action type. The function is expected to return a tuple, where the first
item is a character type and the second item is an atom. With this change,
we have a clear rule for what run/2 expects and returns.

Type specifications are not just documentation for developers. You can use
a tool that statically analyzes your code, checking that you didn’t call a
function passing the wrong type. Erlang’s Dialyzer tool can be used in Elixir.
We have the Dialyxir library that wraps Dialyzer, providing a default configu-
ration and useful Mix tasks.5

To install Dialyxir, we need to add a library to our application. Mix provides
an easy way of doing it. We need to update our library dependencies in mix.exs

5. https://github.com/jeremyjh/dialyxir

Chapter 6. Designing Your Elixir Applications • 128

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/1/dungeon_crawl/lib/dungeon_crawl/character.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/room/action.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/room/trigger.ex
https://github.com/jeremyjh/dialyxir
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

and run some Mix tasks, and Mix will do the job for us. Update mix.exs with
the following code:

design_your_application/dungeon_crawl/mix.exs
defp deps do

[
{:dialyxir, "~> 0.5", only: [:dev], runtime: false},

]
end

In the deps function we must return a list of tuples. The first item is the name
of the library, the second item is the version, and the third is an optional list
of keyword options. We’re saying here that we have the dialyxir library, the
version must be >=0.5.0 and <1.0.0, and we only need it in the dev environment.
The version scheme follows semantic versioning.6 Now we need to run the
tasks to download and compile this new library. The libraries for Elixir and
Erlang are available online in Hex.7 The Mix tasks will download the libraries
from Hex. Run the following command:

$ mix do deps.get, deps.compile
Running dependency resolution...
Dependency resolution completed:

dialyxir 0.5.0
* Getting dialyxir (Hex package)

Checking package (https://repo.hex.pm/tarballs/dialyxir-0.5.0.tar)
Fetched package

==> dialyxir
Compiling 5 files (.ex)
Generated dialyxir app

We’ve run multiple tasks with mix do—deps.get downloads the dependencies
and deps.compile compiles them. After running these commands, the dialyzer
task will be available for us to run in the terminal. When you run it initially,
it will take a long time because it analyzes all of Elixir’s language and libraries,
then finally examines your code. The good part is that it caches the analysis
to reuse in future runs, so it gets a lot faster. Run it:

$ mix dialyzer
...
:0: Unknown function 'Elixir.Mix.Shell.IO':cmd/1
:0: Unknown function 'Elixir.Mix.Shell.IO':info/1
:0: Unknown function 'Elixir.Mix.Shell.IO':prompt/1
:0: Unknown function 'Elixir.Mix.Shell.IO':'yes?'/1
lib/mix/tasks/start.ex:1: Callback info about the 'Elixir.Mix.Task' behaviour
is not available

6. http://semver.org
7. https://hex.pm

report erratum • discuss

Creating Module Behaviours • 129

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/mix.exs
http://semver.org
https://hex.pm
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

After a long run, you’ll see Dialyzer complaining about Mix missing functions.
Note: if you didn’t remove the protocol DungeonCrawl.DungeonCrawl.Display you may see
Dialyzer warnings about missing implementations. You can remove the protocol
to fix the warning messages or just ignore them since the protocol implementations
aren’t mandatory. It can easily be fixed by telling Dialyzer to include Mix in the
analysis. Change this line in your mix.exs file:

design_your_application/dungeon_crawl/mix.exs
def project do

[app: :dungeon_crawl,
version: "0.1.0",
elixir: "~> 1.5",
build_embedded: Mix.env == :prod,
start_permanent: Mix.env == :prod,
deps: deps(),
dialyzer: [plt_add_apps: [:mix]]]➤

end

Run the Dialyzer again, and you’ll see it stops complaining. To see it in action with
your application code, try to make DungeonCrawl.Room.Trigger.Exit return a string instead
of an atom. Then run it again, and it’ll show a result similar to the output here:

$ mix dialyzer
lib/dungeon_crawl/room/triggers/exit.ex:3: The inferred return type of run/2
({_,<<_:32>>}) has nothing in common with
{#{'__struct__':='Elixir.DungeonCrawl.Character',
'attack_description':=binary(), 'damage_range':=#{'__struct__':='Elixir.Range',
'first':=integer(), 'last':=integer()}, 'description':=binary(),
'hit_points':=integer(), 'max_hit_points':=integer(),
'name':=binary()},atom()}, which is the expected return type for the callback
of 'Elixir.DungeonCrawl.Room.Trigger' behaviour

It will complain that your run/2 function doesn’t respect the Elixir.Dungeon-
Crawl.Room.Trigger behaviour. Typespecs aren’t just used to document your
functions, structs, and behaviours. They can be used to catch some bugs
before you run your application in production with the dialyzer. If you want
to learn more about typespecs, read the official Elixir documentation with
the full list of built-in types and options.8 Now we need to finish the game by
developing a way the player can lose. In the next section, we’ll implement a
new room trigger using the behaviour that we created in this section.

Battling Through to the Exit
Our game needs a challenge, or it won’t be fun. A challenge will reduce the
chances of the player winning. We’ll implement a room with an enemy. The

8. https://hexdocs.pm/elixir/typespecs.html

Chapter 6. Designing Your Elixir Applications • 130

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/mix.exs
https://hexdocs.pm/elixir/typespecs.html
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

hero and the enemy will fight, and the first one to reach zero hit points is
defeated. We need to build a list of enemies, create functions to reduce and
restore character hit points, build a battle module, and create a room that
can trigger a battle. Once we have a room-trigger contract, we need to strictly
follow it. The first step will be to construct a list of enemies, creating the
lib/dungeon_crawl/enemies.ex file with the following code:

design_your_application/dungeon_crawl/lib/dungeon_crawl/enemies.ex
defmodule DungeonCrawl.Enemies do

alias DungeonCrawl.Character

def all, do: [
%Character{

name: "Ogre",
description: "A large creature. Big muscles. Angry and hungry.",
hit_points: 12,
max_hit_points: 12,
damage_range: 3..5,
attack_description: "a hammer"

},
%Character{

name: "Orc",
description: "A green evil creature. Wears armor and an axe.",
hit_points: 8,
max_hit_points: 8,
damage_range: 2..4,
attack_description: "an axe"

},
%Character{

name: "Goblin",
description: "A small green creature. Wears dirty clothes and a dagger.",
hit_points: 4,
max_hit_points: 4,
damage_range: 1..2,
attack_description: "a dagger"

},
]

end

We’ve used the same DungeonCrawl.Character struct of the hero to create the
enemies. (It’s a list of suggested enemies. Feel free to create more or change
the list.) The next step is to create functions that permit reduction or
restoration of a character’s hit points, and another function that displays the
character’s current hit points. Write these functions in your DungeonCrawl.Char-
acter module:

report erratum • discuss

Creating Module Behaviours • 131

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/enemies.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/dungeon_crawl/lib/dungeon_crawl/character.ex
def take_damage(character, damage) do

new_hit_points = max(0, character.hit_points - damage)
%{character | hit_points: new_hit_points}

end

def heal(character, healing_value) do
new_hit_points = min(

character.hit_points + healing_value,
character.max_hit_points

)
%{character | hit_points: new_hit_points}

end

def current_stats(character),
do: "Player Stats\nHP: #{character.hit_points}/#{character.max_hit_points}"

take_damage/2 receives a character and the number of hit points that character
should lose. The function won’t let the character have negative hit points, so
it uses the function max to guarantee the character has at least zero hit points.
We’re using the %{map | key: new_value } syntax to update the values of the struct;
it’s a handy Elixir shortcut. The function returns an updated character with
the new hit-points value. heal/2 receives a character and the number of hit
points that character should have restored. We use the min/2 function to
guarantee the hit points aren’t greater than the character’s maximum allowable
hit points. It returns an updated character with the new hit-points value.
current_stats/1 builds a message with the hero’s current hit points compared to
the maximum allowable.

The battle module will have functions that will make two characters fight. It
doesn’t matter if they’re heroes or enemies; it will make each one attack the
other until one of them reaches zero hit points. Create lib/dungeon_crawl/battle.ex
and write the following module:

design_your_application/dungeon_crawl/lib/dungeon_crawl/battle.ex
defmodule DungeonCrawl.Battle do

alias DungeonCrawl.Character
alias Mix.Shell.IO, as: Shell

def fight(
char_a = %{hit_points: hit_points_a},
char_b = %{hit_points: hit_points_b}

) when hit_points_a == 0 or hit_points_b == 0, do: {char_a, char_b}
def fight(char_a, char_b) do

char_b_after_damage = attack(char_a, char_b)
char_a_after_damage = attack(char_b_after_damage, char_a)
fight(char_a_after_damage, char_b_after_damage)

end

Chapter 6. Designing Your Elixir Applications • 132

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/character.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/battle.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

defp attack(%{hit_points: hit_points_a}, character_b)
when hit_points_a == 0, do: character_b

defp attack(char_a, char_b) do
damage = Enum.random(char_a.damage_range)
char_b_after_damage = Character.take_damage(char_b, damage)

char_a
|> attack_message(damage)
|> Shell.info

char_b_after_damage
|> receive_message(damage)
|> Shell.info

char_b_after_damage
end

defp attack_message(character = %{name: "You"}, damage) do
"You attack with #{character.attack_description} " <>
"and deal #{damage} damage."

end
defp attack_message(character, damage) do

"#{character.name} attacks with " <>
"#{character.attack_description} and " <>
"deals #{damage} damage."

end

defp receive_message(character = %{name: "You"}, damage) do
"You receive #{damage}. Current HP: #{character.hit_points}."

end
defp receive_message(character, damage) do

"#{character.name} receives #{damage}. " <>
"Current HP: #{character.hit_points}."

end
end

The function fight/2 has to check if one of the characters has zero hit points. If
yes, the battle is over and the function returns a tuple with the characters in
the same order as the given arguments. If not, the characters will attack each
other using the attack function. The function checks if the attacker has zero hit
points; if so, nothing happens to the attacked character. If not, the attacked
character receives a random amount of damage from the attacker’s damage
range. This function also prints on the console the damage taken and the cur-
rent character hit points with the functions attack_message and receive_message.
The message functions apply the proper grammar depending on whether the
message is about the enemy or the player. Now let’s build a room trigger that
can start a battle. Create the file lib/dungeon_crawl/room/triggers/enemy.ex:

report erratum • discuss

Creating Module Behaviours • 133

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/enemy.ex
defmodule DungeonCrawl.Room.Triggers.Enemy do

@behaviour DungeonCrawl.Room.Trigger

alias Mix.Shell.IO, as: Shell

def run(character, %DungeonCrawl.Room.Action{id: :forward}) do
enemy = Enum.random(DungeonCrawl.Enemies.all)

Shell.info(enemy.description)
Shell.info("The enemy #{enemy.name} wants to fight.")
Shell.info("You were prepared and attack first.")
{updated_char, _enemy} = DungeonCrawl.Battle.fight(character, enemy)

{updated_char, :forward}
end

end

The run/2 is simple. We take a random enemy from the list of enemies, and we
invoke DungeonCrawl.Battle.fight/2, passing the hero and the enemy. The function’s
return is the updated character after the battle, and the flag forward indicates
the player hasn’t found the exit yet. Now we can create a new room and put
it on the list with this trigger:

design_your_application/tutorial/2/dungeon_crawl/lib/dungeon_crawl/room.ex
def all, do: [

%Room{
description: "You can see the light of day. You found the exit!",
actions: [forward()],
trigger: Triggers.Exit

},
%Room{➤

description: "You can see an enemy blocking your path.",➤

actions: [forward()],➤

trigger: Triggers.Enemy➤

},➤

]

Now the hero encounters an enemy in the dungeon. When the hero survives,
he can keep crawling. However, when he reaches zero hit points, he can’t
keep crawling because he has too many wounds; it’s game over—the player
has lost. We need to update lib/dungeon_crawl/cli/main.ex with this new rule:

design_your_application/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
defp hero_choice do

hero = DungeonCrawl.CLI.HeroChoice.start()➤

%{hero | name: "You"}➤

end

defp crawl(%{hit_points: 0}, _) do➤

Shell.prompt("")➤

Shell.cmd("clear")➤

Chapter 6. Designing Your Elixir Applications • 134

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/enemy.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/tutorial/2/dungeon_crawl/lib/dungeon_crawl/room.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/cli/main.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Shell.info("Unfortunately your wounds are too many to keep walking.")➤

Shell.info("You fall onto the floor without strength to carry on.")➤

Shell.info("Game over!")➤

Shell.prompt("")➤

end➤

defp crawl(character, rooms) do
Shell.info("You keep moving forward to the next room.")
Shell.prompt("Press Enter to continue")
Shell.cmd("clear")

Shell.info(DungeonCrawl.Character.current_stats(character))➤

rooms
|> Enum.random
|> DungeonCrawl.CLI.RoomActionsChoice.start
|> trigger_action(character)
|> handle_action_result

end

We’ve updated hero_choice/0 to change the chosen hero name to you, providing
greater immersion for the player. We display the hero’s current hit points
before the player chooses an action; this way the player can better decide
what to do. We created the crawl/2 clause, which shows a “game over” message
and ends the game when the character reaches zero hit points. You can now
run mix start to see the updates in the game. With luck, you’ll fight an enemy
and survive.

A large monster. Big muscles. Angry and hungry.
The enemy Ogre wants to fight.
You were prepared and attack first.
You attack with a fireball and deal 7 damage
Ogre receives 7. Current HP: 5.
Ogre attacks with a hammer and deals 4 damage
You receive 4. Current HP: 4.
You attack with a fireball and deal 10 damage
Ogre receives 10. Current HP: 0.
You keep moving forward to the next room.
Press Enter to continue

Protocols vs. Behaviours

A quick comparison of protocols and behaviours: Protocols work with structs, and
behaviours work with modules. Protocols create a function interface to work with sev-
eral data types. Behaviours define a list of functions that a module should implement.

We’ve finished setting up how the game can end: the player wins or loses.
You’ve learned how to build module contracts using Elixir’s behaviours,
making explicit how to add new modules to make the game more challenging.

report erratum • discuss

Creating Module Behaviours • 135

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

You’ve seen how to add typespecs and analyze your code with Dialyzer to
catch hidden bugs. You’ve added new libraries in your application, learning
how to have new features without coding them yourself.

If you want to add more dungeon rooms, take a look at Appendix 1, Adding
Rooms to the Game, on page 161. There you’ll see some ideas to improve your
game, like a trap room that damages players if they try to search for treasure.

Wrapping Up
That was a challenging chapter! We’ve used everything we covered in the
previous chapters to build a larger application, and we faced some new con-
cepts. Let’s review:

• We covered how to start a project with Mix and its basic commands.
• We saw how to structure the project in folders and namespaces.
• We created customized structs to describe our domain.
• We used Elixir protocols to achieve polymorphism.
• We used Elixir behaviours to create a contract between modules.

In the next chapter, the final chapter, we’ll explore a topic that we ignored in
this chapter: what to do when things don’t work as expected. You’ll learn how
to handle errors and unexpected events.

Your Turn
This time you won’t have exercises with a right or wrong answer. Instead
you’ll have ideas to improve your game. You’ll need to find your way; you
must analyze trade-offs and decide on the solution you’ll implement. Don’t
be afraid to rewrite some part of the game to accommodate changes and
improvements. It’s your game, so don’t limit yourself to the ideas here!

• In the current game all the rooms have the same chance of appearing.
That means the exit room might show up immediately, leading to a very
short and dull game. Make it so certain rooms have a greater probability
of showing up than others do.

• Add an extra option at the beginning of the game to allow players to choose
the difficulty level. For example, when the player wants the game to be
hard, the exit and healing rooms will be difficult to find.

• Implement a feature that changes the probability of the exit room
appearing based on how many places the hero has visited. For example,
at the beginning of the game the exit room will have no probability of

Chapter 6. Designing Your Elixir Applications • 136

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

appearing, but after some certain number of rounds, the chances of it
appearing increase.

• Implement a scoring system. When the hero survives traps, defeats ene-
mies, or finds treasures, the player’s score will increase. When the player
beats the game, the score is saved in a file. The file must contain only the
top 10 scores.

• Make it so the hero can store items in his pocket to use later. For example,
he can pick up the healing potion in the treasure room and use it later,
when he’s lost hit points. Add an option to use the item when listing room
actions. It’s good to indicate the maximum number of items the hero can
accumulate.

• Improve the battle module by giving the player the option to run away or
attack in that round. When the hero is fleeing, he’ll receive one attack
from the enemy before making his escape.

Additionally, Appendix 1, Adding Rooms to the Game, on page 161, contains
more ideas you can implement to incorporate more dungeon rooms.

report erratum • discuss

Wrapping Up • 137

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

CHAPTER 7

Handling Impure Functions
The world is full of inconsistencies, and the resulting unpredictability is why
we have impure functions—functions that can return different values from
the same input. If you use a function that expects a number from users, what
prevents them from inputting hot dogs? If you have a sign-in form on a website,
what will prevent users from submitting the wrong password? If your program
fetches data from a database, what guarantees that data is always there?
Every program needs to handle errors and unexpected results. It’s the pro-
grammer’s job to code a friendly user experience in this wild world of events.
While creating code for every uncertain possibility can be boring, working
without any strategy will generate code that is hard to maintain. Real software
must be reliable.

The main strategy for creating a healthy codebase is to identify and isolate
the parts that can have unexpected results, and make them predictable. That
way, the rest of the system can work with consistent values. In this chapter,
we’ll discuss and compare four strategies for doing this:

• Conditional structures: These are case, if, and similar statements.

• Elixir’s try: Built for exception handling, this will be very familiar to people
who come from C++, Ruby, or Java.

• Error monad: Monads are very common in functional languages that have
static type systems.

• Elixir’s with: This is a special directive that combines pattern matching
with conditional execution.

You’ll need the dungeon crawl application from Chapter 6, Designing Your
Elixir Applications, on page 105, to experiment with the four strategies. If you
know how to use a version-control system like Git, it’s good to create
branches before experimenting with each strategy. Then you’ll have an easy

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

way of navigating between and comparing the strategies. If you don’t, you
can copy and paste the project in different directories to experiment.

Our first step will not be a strategy. Instead, we will explore how to identify
the functions that can have uncertain results in your program: the impure
functions.

Pure vs. Impure Functions
When we can’t predict the results of a function, the function is impure. But
before we can devise a strategy to handle impure functions, we need to know
how to identify them. In this section you’ll learn all the differences between
predictable pure functions and unpredictable impure functions. In this book,
you’ve seen many examples that contain impure and pure functions, but we
didn’t stop to understand their properties. Now the time has come. We’ll
explore them and understand how to identify them by writing some examples.

Pure Functions
Pure functions always return consistent output when given the same input,
and never produce effects beyond the function’s scope, making them pre-
dictable. For example, write the following function that calculates the total
from a given price and tax value:

iex> total = &(&1 * &2/100)
iex> total.(100, 8)
=> 8.0
iex> total.(100, 8)
=> 8.0
iex> total.(nil, 8)
** (ArithmeticError)
iex> total.(nil, 8)
** (ArithmeticError)

With a pure function, you can try total.(100, 8) a thousand times. No, wait. Try
it a million times! You’ll always see the same result (unless, of course, your
computer is influenced by cosmic rays). If you try calculate_tax.(nil, 8), it always
generates an error. Pure functions can result in errors, but the errors are
predictable.

Pure functions are very predictable. They’re so predictable that if you have
your program call something like total.(100, 8), you can replace the entire
function call with 8.0, and your program will work in the same way. It’s called
the referential transparency property of pure functions. Now that the definition
of pure functions is clear, let’s talk about impure functions.

Chapter 7. Handling Impure Functions • 140

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Impure Functions
Impure functions may not return consistent results when given the same inputs,
and they may produce effects beyond the function’s scope. That’s why they’re
unpredictable. Let’s experiment with one. In your IEx, try the following function:

iex> IO.gets "What's the meaning of life?\n"

You can type 42 and press Enter , and the result will be "42\n". Now you call
IO.gets/1, passing "What's the meaning of life?\n" in the argument again. The program
will ask again; type 43, press Enter , and the result will be "43\n". We’ve called
a function with the same argument and it has resulted in different values.
We have an impure function. Impure functions interact with content outside
of the program context, such as when you read or write a file, access an API,
fetch rows of a database, generate a random number, or ask for user input.
The IO.gets/1 expects input from the terminal’s user. We can’t predict what the
user will type; every time we call IO.gets/1, it can result in a different value.

And there’s another definition of impure functions: a function is impure when
it references values that aren’t in the function arguments. If a function uses
values outside of the function scope, it becomes impure. Let’s see a practical
example. Analyze this function:

iex> DateTime.utc_now()
%DateTime{calendar: Calendar.ISO, day: 5, hour: 1, microsecond: {961183, 6},
minute: 17, month: 5, second: 2, std_offset: 0, time_zone: "Etc/UTC",
utc_offset: 0, year: 2017, zone_abbr: "UTC"}

iex> DateTime.utc_now()
%DateTime{calendar: Calendar.ISO, day: 5, hour: 1, microsecond: {106169, 6},
minute: 18, month: 5, second: 5, std_offset: 0, time_zone: "Etc/UTC",
utc_offset: 0, year: 2017, zone_abbr: "UTC"}

The DateTime.utc_now() function is impure because every time we call it a new
result is returned. Internally it consults the global machine clock state. If we
create functions that rely on the DateTime.utc_now/0 result, they’ll become impure.
Let’s see another:

iex> tax = 10
iex> total = &(&1 * tax/100)
iex> total.(100)
10.0
iex> tax = 0.8
iex> total.(100)
10.0

The total function is an interesting case. It references the tax variable, which
is not a local variable. tax is outside of the function scope; thus total is impure.

report erratum • discuss

Pure vs. Impure Functions • 141

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

However, thanks to immutability, rebinding the tax variable doesn’t affect the
total function. The tax value for the total function is permanent, so every time
we call the total, passing the same argument will result in a consistent value.
Given that, is the total function pure or impure? What a dilemma! It’s pure
because its output is affected only by the input.

There’s one last definition of impure functions: a function is impure when it
produces side effects. Side effects involve value access or value manipulation
that your function does outside of its scope. Side effects include writing mes-
sages in the terminal, changing the global state, inserting or fetching rows in
a database, accessing an API, and so on. Consider the following function:

iex> total = fn val, tax -> total = val * tax/100; IO.puts(total); total end
iex> total.(100, 10)
10.0
10.0
iex> total.(100, 10)
10.0
10.0

The total function returns consistent results based on its arguments. However,
it’s printing a message using the IO module; that’s a side effect. Functions
with side effects are impure. Producing functions like this is a bad practice;
another developer using this function would not expect that total prints mes-
sages in the console. In a scenario that doesn’t have an IO device, this simple
function will result in an unexpected error. It’s better to limit the total function
to calculation responsibilities, and move IO.puts/1 outside of total. Here’s an
example:

iex> total = &(&1 * &2/100)
iex> IO.puts(total.(100, 10))
10.0

That’s one way we can isolate the impure functions from the pure ones: by
moving and separating them. You shouldn’t think impure functions are evil
and pure functions are good. You need both to write useful software. Pure
functions are simple to maintain because they are predictable. Impure func-
tions are necessary to build useful software. In order to build maintainable
software, you should produce more pure functions while isolating the impure
parts with proper handling.

Now that you know how to identify impure functions, it’s time to explore the
strategies to isolate their effects. We’ll look at how to make the functions more
predictable, isolating the unexpected results so they don’t propagate to the
entire system. Let’s start with conditional structures.

Chapter 7. Handling Impure Functions • 142

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Controlling the Flow of Impure Functions
The first strategy for handling unexpected events is to control the flow like we
covered in Chapter 3, Using Pattern Matching to Control the Program Flow, on
page 33. You can use conditional structures, like case, if, or function clauses, to
handle impure function results. They are flexible and good for handling simple
cases, but not so much for complex ones. Let’s see how they do the job well:

handle_the_uncertain/case/0/shop.ex
defmodule Shop do

def checkout(price) do
case ask_number("Quantity?") do

:error -> IO.puts("It's not a number")
{quantity, _} -> quantity * price

end
end

def ask_number(message) do
message <> "\n"
|> IO.gets
|> Integer.parse

end
end

In this example, the program asks the user to enter a number, and we use the
function IO.gets/1 to get the user’s input. We know IO.gets/1 is an impure function
and it can return anything; for instance, "42\n" or "hot dogs\n". If it’s not a number,
parsing it with Integer.parse/1 can result in an error. We use case to check it with
pattern matching. It’s very simple and quick to use, but we can easily mess
up the code when things get more complicated. For example, let’s imagine we
want to ask the price in addition to quantity and apply the same strategy.

handle_the_uncertain/case/1/shop.ex
def checkout() do

case ask_number("Quantity?") do
:error ->
IO.puts("It's not a number")

{quantity, _} ->
case ask_number("Price?") do

:error ->
IO.puts("It's not a number")

{price, _} ->
quantity * price

end
end

end

You can see the ugly conditional nesting of applying the strategy again. It’s
hard to understand. We can reduce the ugliness by using functions:

report erratum • discuss

Controlling the Flow of Impure Functions • 143

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/case/0/shop.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/case/1/shop.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

handle_the_uncertain/case/2/shop.ex
def checkout() do

quantity = ask_number("Quantity?")
price = ask_number("Price?")
calculate(quantity, price)

end

def calculate(:error, _), do: IO.puts("Quantity is not a number")
def calculate(_, :error), do: IO.puts("Price is not a number")
def calculate({quantity, _}, {price, _}), do: quantity * price

We’ve changed how checkout/0 works, using functions and pattern matching
to show when the price or quantity is not a valid number. Now let’s experiment
with the conventional control-flow statements to handle the user input in our
dungeon crawl application. In this application, the critical point of uncertain
values is when we ask users to choose an option by typing a number. We
have two possibilities of failure:

• Users can type "hot dogs", and it’s not valid a number.
• If we have three options, users can type 9999. It’s a valid number but is

not a valid option. It’s out of the possible values range.

If one of these things happens, our application will fail. Let’s improve it, asking
the user to try again when an invalid option is inputted. In the Dungeon-
Crawl.CLI.BaseCommands modules, write the following functions:

handle_the_uncertain/case/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def ask_for_index(options) do

answer =
options
|> display_options
|> generate_question
|> Shell.prompt
|> Integer.parse

case answer do
:error ->
display_invalid_option()
ask_for_index(options)

{option, _} ->
option - 1

end
end

def display_invalid_option do
Shell.cmd("clear")
Shell.error("Invalid option.")
Shell.prompt("Press Enter to try again.")
Shell.cmd("clear")

end

Chapter 7. Handling Impure Functions • 144

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/case/2/shop.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/case/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

In ask_for_index/1, we ask the user to input a number that will be used as an
index to find the correct option. We use Integer.parse/1 and check with case if
the user has typed a valid number. We display an error message with dis-
play_invalid_option/0 and make the user try again when the number is invalid. If
the user inputs a valid number, we just return the number. Now we need to
find the correct option given the index number. Write the following function:

handle_the_uncertain/case/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def ask_for_option(options) do

index = ask_for_index(options)
chosen_option = Enum.at(options, index)
chosen_option

|| (display_invalid_option() && ask_for_option(options))
end

Using Enum.at/2 we try to find the option with the index input by the user. It
returns nil when it doesn’t find an existing index. Remember, the nil value is
falsy. We return chose_option when it’s truthy. When it’s not, we use the operator
|| to display the invalid option message and ask the user to try again.

We’ll refactor the code of DungeonCrawl.CLI.HeroChoice and DungeonCrawl.CLI.RoomAc-
tionsChoice to take advantage of the new DungeonCrawl.CLI.BaseCommands.ask_for_option/1
function. Update your modules with this:

handle_the_uncertain/case/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
defmodule DungeonCrawl.CLI.HeroChoice do

alias Mix.Shell.IO, as: Shell
import DungeonCrawl.CLI.BaseCommands

def start do
Shell.cmd("clear")
Shell.info("Start by choosing your hero:")

DungeonCrawl.Heroes.all()
|> ask_for_option
|> confirm_hero

end

defp confirm_hero(chosen_hero) do
Shell.cmd("clear")
Shell.info(chosen_hero.description)
if Shell.yes?("Confirm?"), do: chosen_hero, else: start()

end
end

handle_the_uncertain/case/dungeon_crawl/lib/dungeon_crawl/cli/room_actions_choice.ex
defmodule DungeonCrawl.CLI.RoomActionsChoice do

alias Mix.Shell.IO, as: Shell
import DungeonCrawl.CLI.BaseCommands

report erratum • discuss

Controlling the Flow of Impure Functions • 145

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/case/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/case/dungeon_crawl/lib/dungeon_crawl/cli/hero_choice.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/case/dungeon_crawl/lib/dungeon_crawl/cli/room_actions_choice.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

def start(room) do
Shell.info(room.description())
chosen_action = ask_for_option(room.actions)
{room, chosen_action}

end
end

This refactoring will be very useful for the strategies we’ll experiment with.
Each approach will refactor the internals of ask_for_option/1, letting us focus on
one module. You can see the updates in the project by running mix start:

Start playing the game by choosing your hero:❮

1 - Knight
2 - Wizard
3 - Rogue
Which one? [1,2,3]
hot dogs➾

❮
Invalid option
Press Enter to continue.

1 - Knight
2 - Wizard
3 - Rogue
Which one? [1,2,3]

We have used conventional control-flow statements; they’re familiar to
developers of any level, they’re simple to build, and the functions always
return a value. But it’s hard to combine them with other functions, and the
code can get complex easily. You can use conditional structures when you
know the function is simple.

Trying, Rescuing, and Catching
With some functions, you don’t control the code—and it can raise errors or
throw values. You need the try statement to handle the unexpected results.
If you came from object-oriented languages like C++, Java, and Ruby, this
technique will be familiar to you.

Most of the time you can easily identify the functions that can raise errors or
throw values because their names end with an exclamation point. For example,
the File.cd!/1 function raises an exception when the path doesn’t exist.

try wraps a code block. If an error is raised, you can use rescue to recover. An
error (or exception) in Elixir is a special data structure that describes when
an exceptional thing happens in the code. You can also use try to capture
values with catch, because functions in Elixir can stop their own execution by
sending a value with the throw directive.

Chapter 7. Handling Impure Functions • 146

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Throwing values or raising errors is unusual in functional programming. However,
in large applications you’ll install libraries from other developers that use this
strategy, and you need to know how to properly handle the raised errors and
thrown values. In this section we’ll see the try, raise, and rescue combination for
exceptions, and the try, throw, and catch combination for values. You’ll learn how
to apply and handle them.

Try, Raise, and Rescue
In Elixir, functions can raise exceptions when they’re in a situation that’s
very wrong—so wrong that they must stop the execution and show a stack
trace. We’ll see how to raise and rescue exceptions. Let’s see how we can
rescue an exception by rewriting the Shop module example:

handle_the_uncertain/tryrescue/shop.ex
def checkout() do

try do
{quantity, _} = ask_number("Quantity?")
{price, _} = ask_number("Price?")
quantity * price

rescue
MatchError -> "It's not a number"

end
end

Inside the try block, we create the happy-path code. The happy path is the
code that handles only the success scenario. Then, in the rescue block, we
create the error-handling code. Still in the rescue block, for each line we should
provide an exception struct to match, and a code block. When the pattern
matching fails the MatchError exception will be raised, and then the list of pat-
tern-matching expressions in the rescue will try to match the exception and
execute the code block. If none of the pattern-matching expressions matches
an exception raised, Elixir will raise that exception again.

Let’s experiment with this strategy in the dungeon crawl application. We’ll
create an exception struct in lib/dungeon_crawl/cli/invalid_option.ex because rescuing
the MatchError exception is not the best solution. MatchError is too generic; it can
happen for several reasons. It’s better to provide specific error structs to
clarify the problem by adding more context:

handle_the_uncertain/tryrescue/dungeon_crawl/lib/dungeon_crawl/cli/invalid_option.ex
defmodule DungeonCrawl.CLI.InvalidOptionError do

defexception message: "Invalid option"
end

We’ve used the directive defexception to create our exception struct. We provided
a default error message using the option message: "Invalid option". You can see

report erratum • discuss

Trying, Rescuing, and Catching • 147

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/tryrescue/shop.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/tryrescue/dungeon_crawl/lib/dungeon_crawl/cli/invalid_option.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

more details about the defexception function and the Exception behaviour in the
Elixir official documentation.1 Now we can raise this exception when the user
enters an invalid number or an option that doesn’t exist. Go to the Dungeon-
Crawl.CLI.BaseCommands and write parse_answer/1 and find_option_by_index/2, like this:

handle_the_uncertain/tryrescue/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def parse_answer!(answer) do

case Integer.parse(answer) do
:error ->

raise DungeonCrawl.CLI.InvalidOptionError
{option, _} ->
option - 1

end
end

def find_option_by_index!(index, options) do
Enum.at(options, index)

|| raise DungeonCrawl.CLI.InvalidOptionError
end

We’re using the control-flow techniques to raise errors inside the functions
parse_answer!/1 and find_option_by_index!/2. The raise function expects an exception
structure. When raise is called, it stops the function’s execution. If no rescue
is used, the program stops showing the stack trace. Now let’s write the
ask_for_option/1 function that uses try and rescue:

handle_the_uncertain/tryrescue/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def ask_for_option(options) do

try do
options
|> display_options
|> generate_question
|> Shell.prompt
|> parse_answer!
|> find_option_by_index!(options)

rescue
e in DungeonCrawl.CLI.InvalidOptionError ->
display_error(e)
ask_for_option(options)

end
end

def display_error(e) do
Shell.cmd("clear")
Shell.error(e.message)
Shell.prompt("Press Enter to continue.")
Shell.cmd("clear")

end

1. https://hexdocs.pm/elixir/Kernel.html#defexception/1

Chapter 7. Handling Impure Functions • 148

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/tryrescue/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/tryrescue/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
https://hexdocs.pm/elixir/Kernel.html#defexception/1
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

In the try code block, we created the happy path of the pipeline of functions. In
the rescue block we matched DungeonCrawl.CLI.InvalidOptionError and put the struct in a
variable e. We used the display_error/1 function to show the error message. We also
forced the user to try again, making a recursive call. You can run mix start and see
the updates; it should work like before.

Try, Throw, and Catch
throw and catch are very similar to raise and rescue. The main difference is that the
throw/catch combination does not necessarily mean an error. It will stop the function
from throwing a value that must be caught; it works like a control-flow structure.
Let’s experiment with it in our code. First, instead of raise an exception, we’ll throw
a value:

handle_the_uncertain/trycatch/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
@invalid_option {:error, "Invalid option"}

def parse_answer(answer) do
case Integer.parse(answer) do

:error ->
throw @invalid_option

{option, _} ->
option - 1

end
end

def find_option_by_index(index, options) do
Enum.at(options, index) || throw @invalid_option

end

We created the tuple @invalid_option that contains an atom indicating an error, and a
string with an error message. Then we used the function throw to stop the function
execution from throwing the @invalid_option value when parse_answer/1 or find_option_by_index/2
results in an error. Now we need to catch the @invalid_option in ask_for_option/1.

handle_the_uncertain/trycatch/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def ask_for_option(options) do

try do
options
|> display_options
|> generate_question
|> Shell.prompt
|> parse_answer
|> find_option_by_index(options)

catch
{:error, message} ->
display_error(message)
ask_for_option(options)

end
end

report erratum • discuss

Trying, Rescuing, and Catching • 149

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/trycatch/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/trycatch/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

def display_error(message) do
Shell.cmd("clear")
Shell.error(message)
Shell.prompt("Press Enter to continue.")
Shell.cmd("clear")

end

This is very similar to how we used the try and rescue version. Inside the try
block we have the happy-path code. In the catch block we used pattern
matching to catch the values thrown. catch works very similarly to the case
statement: each line has a pattern-matching expression and a code block to
be executed.

If you only need one try block in your function, you can omit try do. Take a look:

handle_the_uncertain/trycatch/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def ask_for_option(options) do

options
|> display_options
|> generate_question
|> Shell.prompt
|> parse_answer
|> find_option_by_index(options)

catch
{:error, message} ->

display_error(message)
ask_for_option(options)

end

You can now see the updates by running mix start; everything should be
working.

Using try offers a clear view of the function’s happy path, but it also makes
our functions harder to use because of the additional language features (catch,
rescue, raise, and throw) to handle the exceptional results. Because of this addi-
tional complexity, Elixir developers tend to avoid the strategy of raising errors
or throwing values. They prefer the alternative strategies that are described
in this chapter. However, you may find some libraries that use this strategy,
and you’ll need to know how to handle them to create predictable code.

Handling Impure Functions with the Error Monad
The Error monad is a data structure that helps you combine functions that
can result in an error. It permits you to put functions into a clear sequence,
handling the error at a unique point. It helps you reduce conditional codes
when functions can have unexpected results. You should use it when your
codebase is filled with situations where you must put many functions in

Chapter 7. Handling Impure Functions • 150

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/trycatch/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

sequence and some of them can fail. For example, maybe you have five
functions that must be executed in sequence, but some of them are prone to
failure.

You may have heard of monads—they are famous in languages with strong
and static typing, such as Haskell. Monads have strong mathematical theory,
and concepts like functors, applicatives, and monoids. But don’t worry: we’ll
focus on how to use monads in practice.

In general, a monad wraps a value with properties that give more information
about that value—they give the context. Having a value with context makes
possible the process of combining functions with values to make automatic
decisions. For example, if we have context for when a value is an error or a
success, we can automatically skip function executions when the value is an
error. Take a look at this example:

Error Monad

{:error, ¨msg¨}

Example 2

bind fun1
&(&1 + 1) bind fun1

&(&1 + 2) {:error, ¨msg¨}

success path

error path

{:success, 42}

Example 1

bind fun1
&(&1 + 1) bind fun1

&(&1 + 2) {:success, 45}

success path

error path

With the Error monad, we have an automatic decision of skipping function
executions when the value has an error, bringing the failure handling to a
central point. To make it work, we need to pass the monad with the value
and the function to the bind function. The bind knows how to combine the
function and the value. It invokes the function, passing the value extracted
from the monad. The bind function knows to do any additional task that each
monad type needs. In this example, when we bind data to a function with an
Error monad, bind executes the function only if the data is marked as a success;
when it’s a failure, bind ignores the function invocation.

Let’s experiment with the monad strategy in our dungeon crawl application.
We aren’t going to write a monad implementation from scratch. Instead, we’ll
use a community library. We have some options in Elixir, such as Monad,2

2. https://github.com/rmies/monad

report erratum • discuss

Handling Impure Functions with the Error Monad • 151

https://github.com/rmies/monad
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Towel,3 witchcraft,4 and MonadEx.5 Each library has its merits and downsides;
the choice here is very subjective. We’ll use MonadEx because, today, it’s the
library that has the most stars, watchers, and forks on GitHub. The MonadEx
README contains a lot of useful links to learn more about monads. Go to your
mix.exs file and add MonadEx:

handle_the_uncertain/monad/dungeon_crawl/mix.exs
defp deps do

[
{:dialyxir, "~> 0.5", only: [:dev], runtime: false},
{:monadex, "~> 1.1"}

]
end

Run the following command to install and compile the MonadEx library:

$ mix do deps.get, deps.compile
Running dependency resolution...
* Getting monadex (Hex package)

Checking package (https://repo.hex.pm/tarballs/monadex-1.1.2.tar)
Fetched package

==> monadex
Compiling 16 files (.ex)
Generated monadex app

The MonadEx library will be downloaded and compiled, making it ready to
use in our application. Let’s experiment with something similar to the scenario
in the preceding image using our IEx. In your terminal, run iex -Smix and try it:

iex> use Monad.Operators
iex> import Monad.Result
iex> success(42) ~>> (& &1 + 1) ~>> (& &1 + 2)
45
iex> error("wrong") ~>> (& &1 + 1) ~>> (& &1 + 2)
%Monad.Result{error: "wrong", type: :error, value: nil}

We’ve employed the use Monad.Operators directive to add a ~>> operator—the
bind operator—to our session. This operator is the bind function that we’ve
discussed before. The left side expects a monad and the right side expects a
function. We import the functions from Monad.Result. The Result monad is the
same as the Error monad that we’ve discussed previously. (This library’s author
gave it a different name, but they are the same thing.) The success/1 function
wraps the value in a success context and error/1 wraps the value in an error

3. https://github.com/knrz/towel
4. https://github.com/expede/witchcraft
5. https://github.com/rob-brown/MonadEx

Chapter 7. Handling Impure Functions • 152

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/monad/dungeon_crawl/mix.exs
https://github.com/knrz/towel
https://github.com/expede/witchcraft
https://github.com/rob-brown/MonadEx
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

context. The ~>> operator executes values in a success context while skipping
values in an error context.

Let’s rewrite our DungeonCrawl.CLI.BaseCommands to experiment with the monad
strategy. In the beginning of the module, we’ll import some functions from
MonadEx:

handle_the_uncertain/monad/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
use Monad.Operators

alias Mix.Shell.IO, as: Shell
import Monad.Result, only: [success: 1, success?: 1, error: 1, return: 1]

Here are the functions we’ve imported from Monad.Result:

• success/1, which wraps the given value in a result monad marked with
success.

• return/1, which wraps the given value in a result monad marked with
success.

• error/1, which wraps the given message in a result monad marked with
failure.

• success?/1, which returns true when the given result monad is marked with
success; otherwise it returns false.

success/1 and return/1 do the same thing. We have two names because sometimes
it’s more favorable semantically to use one over another. Now let’s rewrite our
base command functions to return monads:

handle_the_uncertain/monad/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def display_options(options) do

options
|> Enum.with_index(1)
|> Enum.each(fn {option, index} ->

Shell.info("#{index} - #{option}")
end)

return(options)
end

def generate_question(options) do
options = Enum.join(1..Enum.count(options),",")
"Which one? [#{options}]\n"

end

In display_options/1 we use the function return to wrap the list of options in a
success result. That’s necessary because in this library lists are a type of
monad. If we pass a list to the bind operator, it will try to extract the items
of the list. We don’t want an extraction in this case. That’s why we wrap the

report erratum • discuss

Handling Impure Functions with the Error Monad • 153

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/monad/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/monad/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

list in a result monad. The generate_question/1 returns a string value. Using this
library, it’s optional to wrap a string value in a result monad. The bind function
doesn’t try to extract values that aren’t monads. Change the following func-
tions to return monads:

handle_the_uncertain/monad/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def parse_answer(answer) do

case Integer.parse(answer) do
:error -> error("Invalid option")
{option, _} -> success(option - 1)

end
end

def find_option_by_index(index, options) do
case Enum.at(options, index) do

nil -> error("Invalid option")
chosen_option -> success(chosen_option)

end
end

In parse_answer/1 the integer parsing can result in an error. We check it using
case with pattern matching. When the parsed result is an error, we use error/1
to return an error result with a message. When the parsed result is a valid
number, we use success/1 to return a success result wrapping the number.
find_option_by_index/2 follows the same logic. When it matches a nil value we return
an error result; when it matches a number we return a success result. After
adapting our functions with monads, we can update ask_for_option/1 to take
advantage of it:

handle_the_uncertain/monad/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def ask_for_option(options) do

result =
return(options)

~>> (&display_options/1)
~>> (&generate_question/1)
~>> (&Shell.prompt/1)
~>> (&parse_answer/1)
~>> (&(find_option_by_index(&1, options)))

if success?(result) do
result.value

else
display_error(result.error)
ask_for_option(options)

end
end

Chapter 7. Handling Impure Functions • 154

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/monad/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/monad/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

def display_error(message) do
Shell.cmd("clear")
Shell.error(message)
Shell.prompt("Press Enter to continue.")
Shell.cmd("clear")

end

We start the pipeline using the return/1 function to wrap the options list in a
result monad. We need to do that because lists are monads and will trigger
a different action in the bind operator. We use ~>>, the bind operator, to
pipeline the functions. It works in a very similar way to our old friend the
pipe operator, |>. The main difference here is that the right side of the ~>>
expects an anonymous function. The ~>> will decide automatically whether
it should execute the next function. If the value is marked with an error, ~>>
skips the next function; if the value is marked with a success, ~>> will execute
the next function. Thanks to this operator, we can create a clear function-
execution sequence and handle the error after it rather than immediately
when the error is happening.

We put the returning value of the pipeline execution in the result variable. We
check if the result is a success with the success?/1 function. If it returns true we
return the chosen option, accessing the value attribute. If it returns false we
display the error and ask the user to try again. You can run mix start and see
the application working with this new strategy.

We’ve used a monad to handle the invalid options. Here are the main advan-
tages: We have a clear happy path of the function pipeline. We put the error
handling at a unique point. The functions always return a value, returning
a consistent data structure that flags an error or a success. There are also
some disadvantages: Elixir doesn’t have built-in support for monads, so we
need to choose a library in the community. And the monad libraries may look
disconnected from the rest of the language—for example, using anonymous
functions with the ~>> operator is not clean like using the Elixir |> operator.

Using with
Elixir’s special form with permits you to combine multiple matching clauses.
If all clauses match, the code executes and returns the do block result. If one
clause doesn’t match, the code stops and returns the value of the non-
matching clause. It’s useful to combine clauses that can result in unexpected
values. Then you can handle the error at a convenient point, reducing the
conditional code for each error. You should use with when you have function
pipelines that can result in an error. We’ll use with in the dungeon crawl
application, but first let’s try it in a simple example:

report erratum • discuss

Using with • 155

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

handle_the_uncertain/with/0/shop.ex
def checkout() do

result =
with {quantity, _} <- ask_number("Quantity?"),

{price, _} <- ask_number("Price?"),
do: quantity * price

if result == :error, do: IO.puts("It's not a number"), else: result
end

We must put pattern-matching clauses inside the with clause; it’s similar to
how the case statement works. The big difference is the inversion of the execu-
tion highlighted by the <- operator . First, Elixir will execute the block on the
right side of the operator. The pattern-matching on the left side of the <-
operator will match the result of the block. When it matches, Elixir will execute
the next instruction. You can add many instructions inside of with by separat-
ing them with commas. The final execution is determined by the keyword do.
If one of the instructions doesn’t have a match, Elixir will stop and return
the unmatched value. Alternatively, we can use the else block of with to handle
the values that didn’t match. Here’s an example:

handle_the_uncertain/with/1/shop.ex
def checkout() do

with {quantity, _} <- ask_number("Quantity?"),
{price, _} <- ask_number("Price?") do

quantity * price
else

:error ->
IO.puts("It's not a number")

end
end

In the else block we can use the conventional pattern-matching clauses for
values that didn’t match in the with block. The value of the expression matched
in the else block will be returned. An error is raised if a value doesn’t match
in either the with or the else block.

Let’s apply with in our DungeonCrawl.CLI.BaseCommands. We can remove some
functions since with is very flexible about matching the errors:

handle_the_uncertain/with/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def display_options(options) do

options
|> Enum.with_index(1)
|> Enum.each(fn {option, index} ->

Shell.info("#{index} - #{option}")
end)

options
end

Chapter 7. Handling Impure Functions • 156

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/with/0/shop.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/with/1/shop.ex
http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/with/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

def generate_question(options) do
options = Enum.join(1..Enum.count(options),",")
"Which one? [#{options}]\n"

end

The with will require a different structure in our code. We removed the
parse_answer/1 and find_option_by_index/2 functions because they won’t be necessary
any more. We let display_options/1 and generate_question/1 do the job like we did in
previous chapters. We can write the ask_for_option/1 function using with:

handle_the_uncertain/with/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
def ask_for_option(options) do

answer =
options
|> display_options
|> generate_question
|> Shell.prompt

with {option, _} <- Integer.parse(answer),
chosen when chosen != nil <- Enum.at(options, option - 1) do

chosen
else

:error -> retry(options)
nil -> retry(options)

end
end

def retry(options) do
display_error("Invalid option")
ask_for_option(options)

end

def display_error(message) do
Shell.cmd("clear")
Shell.error(message)
Shell.prompt("Press Enter to continue.")
Shell.cmd("clear")

end

We can clearly see that the ask_for_option/1 function has three parts. In the first
one we display options to the user and get an answer. In the second part we
use with to parse and find the user’s chosen option. In the third part we use
the else block of with to handle invalid answers, asking the user to try again
with the function retry. Note that we aren’t using the wildcard operator to
match both nil and :error. It’s good to match the error explicitly so you’ll always
have a conscious decision about what to do when an error happens, avoiding
unexpected results and hard-to-detect bugs.

report erratum • discuss

Using with • 157

http://media.pragprog.com/titles/cdc-elixir/code/handle_the_uncertain/with/dungeon_crawl/lib/dungeon_crawl/cli/base_commands.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

The with statement combines expressions and handles their results. The
advantage of this strategy is flexibility. Using with combined with pattern
matching, we can check any value or pattern quickly and easily, without any
new data structure, concepts, or libraries. The disadvantage of with is that it
doesn’t combine with the pipe operator, breaking the beautiful structure of
the happy-path code.

Wrapping Up
We’ve reached the end of the book. We’ve discussed the advantages and dis-
advantages of four strategies to handle uncertain values in functions. With
this knowledge, you can promote changes in your codebase to achieve a low
maintenance cost. Let’s review what you’ve learned in this chapter:

• Impure functions can result in unexpected values because they depend
on values that are not in the function’s scope.

• case, if, and other control-flow statements are good for handling simple
cases. Combining multiple conditional statements produces code that’s
hard to understand. You should avoid it.

• The try statement works with libraries where you don’t control the code.
These libraries can raise errors or throw values. Functions that return
values are simpler and easier to handle than functions that raise errors
or throw values. Thus, you should avoid creating functions that use raise
and throw.

• You don’t need to learn all the theory behind monads—nor have a math-
ematics degree—to start using simple monads like Error. It helps generate
simple code and is easy to use. However, it’s not part of the Elixir built-
in ecosystem; the search for a library that fits your team’s needs and
tastes can be challenging.

• The with statement is very flexible for handling uncertain values thanks
to pattern matching. It’s the pragmatic strategy for most cases.

You’ve learned the final important concepts of functional programming. With
all these concepts you’re ready to build your own path to master functional
programming with Elixir.

Your Turn
In Chapter 6, Designing Your Elixir Applications, on page 105, we built the
dungeon crawl application. A lot of functions in it are impure because of the
IO operations. Review the dungeon crawl application: you’ll see some parts

Chapter 7. Handling Impure Functions • 158

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

that are mixing pure calculations with side effects and printing messages in
the terminal. Can we separate the pure and impure parts of the code? There’s
no wrong or right answer; it’s up to you decide the dissemination level of the
impure functions.

What’s Next?
You finished the book! I hope you enjoyed this journey. We traveled together
through many concepts in functional programming. We’ve seen a lot of features
that make Elixir shine. Functional programming has helped me build better
code in Elixir. And beyond Elixir, functional programming concepts have
helped me write better code in Ruby and JavaScript. I’m sure you’ll see the
same result. With the knowledge you have now, I’m confident you’ll be able
to overcome all the challenges you’ll face. Before we say goodbye, I have some
recommendations to continue your journey.

• Have you liked Elixir? Do you want to learn more about it? Programming
Elixir 1.6 [Tho18] will take you through all of Elixir’s most important fea-
tures for working with concurrent programming.

• Have you liked adding the use directive in your modules, giving them
powerful features? It was built with Elixir metaprogramming. If you want
to learn more about it, you can read Metaprogramming Elixir [McC15].

• Are you a web developer? Do you want to build web applications using
Elixir and functional programming? Take a look at Programming Phoenix
1.3 [TV18] and Functional Web Development with Elixir, OTP, and Phoenix
[Hal18].

• Elixir was built on top of the Erlang ecosystem. Why not dive in and learn
some Erlang? Programming Erlang (2nd edition) [Arm13] will guide you.

No matter what path you choose next, just remember to have fun.

report erratum • discuss

Wrapping Up • 159

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

APPENDIX 1

Adding Rooms to the Game
A game where you only face an enemy and find an exit isn’t that interesting.
A game should have more challenges and places to explore. You can use your
imagination to create additional interesting ideas for the game you built in
Chapter 6, Designing Your Elixir Applications, on page 105. Here are some
suggestions that you can implement in your game:

design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/trap.ex
defmodule DungeonCrawl.Room.Triggers.Trap do

alias DungeonCrawl.Room.Action
alias Mix.Shell.IO, as: Shell

@behaviour DungeonCrawl.Room.Trigger

def run(character, %Action{id: :forward}) do
Shell.info("You're walking cautiously and can see the next room.")
{character, :forward}

end
def run(character, %Action{id: :search}) do

damage = 3

Shell.info("You search the room looking for something useful.")
Shell.info("You step on a false floor and fall into a trap.")
Shell.info("You are hit by an arrow, losing #{damage} hit points.")

{
DungeonCrawl.Character.take_damage(character, damage),
:forward

}
end

end

The trap trigger works like this: if the player tries to search the room, she’ll
fall into a trap. When the clause matches, the :search action will make the hero
lose hit points. We use DungeonCrawl.Character.take_damage/2 to reduce the hero’s
health. We can make a similar version of this trigger and create one that
restores the hero’s health:

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/trap.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/treasure.ex
defmodule DungeonCrawl.Room.Triggers.Treasure do

alias DungeonCrawl.Room.Action
alias Mix.Shell.IO, as: Shell

@behaviour DungeonCrawl.Room.Trigger

def run(character, %Action{id: :forward}) do
Shell.info("You're walking cautiously and can see the next room.")
{character, :forward}

end
def run(character, %Action{id: :search}) do

healing = 5

Shell.info("You search the room looking for something useful.")
Shell.info("You find a treasure box with a healing potion inside.")
Shell.info("You drink the potion and restore #{healing} hit points.")

{
DungeonCrawl.Character.heal(character, healing),
:forward

}
end

end

The treasure trigger works like this: if the player tries to search the room,
she’ll find a healing potion. When the clause matches, the :search action will
make the hero regain health. We use DungeonCrawl.Character.heal/2 to restore the
hero’s health.

We can create more challenging rooms. Let’s create one where the enemy is
hidden and attacks the hero first:

design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/enemy_hidden.ex
defmodule DungeonCrawl.Room.Triggers.EnemyHidden do

alias DungeonCrawl.Room.Action
alias Mix.Shell.IO, as: Shell

@behaviour DungeonCrawl.Room.Trigger

def run(character, %Action{id: :forward}) do
Shell.info("You're walking cautiously and can see the next room.")
{character, :forward}

end
def run(character, %Action{id: :rest}) do

enemy = Enum.random(DungeonCrawl.Enemies.all)

Shell.info("You search the room for a comfortable place to rest.")
Shell.info("Suddenly...")
Shell.info(enemy.description)
Shell.info("The enemy #{enemy.name} surprises you and attacks first.")

Appendix 1. Adding Rooms to the Game • 162

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/treasure.ex
http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/enemy_hidden.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

{_enemy, updated_char} = DungeonCrawl.Battle.fight(enemy, character)

{
updated_char,
:forward

}
end

end

The hidden-enemy trigger works like this: if the player tries to rest in the
room, an enemy will appear and start a battle. When the clause matches the
rest action, it chooses a random enemy, invokes the fight/2 function, and makes
the enemy attack first, passing the enemy in the first argument. That causes
the enemy to attack first, making the hero always lose hit points and creating
a challenging encounter.

We can create a similar trigger that instead will be good for the hero:

design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/rest.ex
defmodule DungeonCrawl.Room.Triggers.Rest do

alias DungeonCrawl.Room.Action
alias Mix.Shell.IO, as: Shell

@behaviour DungeonCrawl.Room.Trigger

def run(character, %Action{id: :forward}) do
Shell.info("You're walking cautiously and can see the next room.")
{character, :forward}

end
def run(character, %Action{id: :rest}) do

healing = 3

Shell.info("You search the room for a comfortable place to rest.")
Shell.info("After a little rest you regain #{healing} hit points.")

{
DungeonCrawl.Character.heal(character, healing),
:forward

}
end

end

The rest trigger works like this: if the player tries to relax in the room, she’ll
take a nap and have some hit points restored. When the clause matches, the
rest action will make the hero restore health with the heal/2 function.

You can create even more triggers or combine them. For example, a trigger
that makes the hero fight a boss battle before going to the exit, or a trigger
that makes the player solve a puzzle. It’s up to you to enhance the game with
more challenges.

report erratum • discuss

Appendix 1. Adding Rooms to the Game • 163

http://media.pragprog.com/titles/cdc-elixir/code/design_your_application/dungeon_crawl/lib/dungeon_crawl/room/triggers/rest.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

APPENDIX 2

Answers to Exercises
In this book, you’ll find exercises from Chapter 2 through Chapter 5 to practice
what you have learned. If you get stuck or you want to compare your answers,
you can consult my answers here. The exercises of Chapters 6 and 7 were
designed to be open-ended, which is why you won’t find the answers here.
Feel free to share your answers and discuss the exercises with other readers
in this book’s forum.1

Answers for Chapter 2, Working with Variables
and Functions

• You’ll find how many dollars Sarah has spent by executing the following
expression:

work_with_functions/answers/exercise_2.exs
(10 * 0.1) + (3 * 2) + 15

• You can show Bob’s travel stats with the following code:

work_with_functions/answers/exercise_3.exs
distance = 200
hours = 4
velocity = distance / hours
IO.puts """
Travel distance: #{distance} km
Time: #{hours} hours
Average Velocity: #{velocity} km/h
"""

1. https://forums.pragprog.com/forums/440

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/work_with_functions/answers/exercise_2.exs
http://media.pragprog.com/titles/cdc-elixir/code/work_with_functions/answers/exercise_3.exs
https://forums.pragprog.com/forums/440
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

• The apply_tax function should be like this:

work_with_functions/answers/exercise_4.exs
apply_tax = fn price ->

tax = price * 0.12
IO.puts "Price: #{price + tax} - Tax: #{tax}"

end

Enum.each [12.5, 30.99, 250.49, 18.80], apply_tax

• Your MatchstickFactory should look like this:

work_with_functions/answers/exercise_5.ex
defmodule MatchstickFactory do

@size_big 50
@size_medium 20
@size_small 5

def boxes(matchsticks) do
big_boxes = div(matchsticks, @size_big)
remaining = rem(matchsticks, @size_big)

medium_boxes = div(remaining, @size_medium)
remaining = rem(remaining, @size_medium)

small_boxes = div(remaining, @size_small)
remaining = rem(remaining, @size_small)

%{
big: big_boxes,
medium: medium_boxes,
small: small_boxes,
remaining_matchsticks: remaining

}
end

end

Answers for Chapter 3, Using Pattern Matching to Control
the Program Flow

• Here’s the function that calculates the total points spent in attributes:

pattern_matching/answers/exercise_1.ex
defmodule CharacterAttributes do

def total_spent(%{strength: str, dexterity: dex, intelligence: int}) do
(str * 2) + (dex * 3) + (int * 3)

end
end

Appendix 2. Answers to Exercises • 166

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/work_with_functions/answers/exercise_4.exs
http://media.pragprog.com/titles/cdc-elixir/code/work_with_functions/answers/exercise_5.ex
http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/answers/exercise_1.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

• The Tic-Tac-Toe module should be like this:

pattern_matching/answers/exercise_2.ex
defmodule TicTacToe do

def winner({
x, x, x,
_, _, _,
_, _, _

}), do: {:winner, x}

def winner({
_, _, _,
x, x, x,
_, _, _

}), do: {:winner, x}

def winner({
_, _, _,
_, _, _,
x, x, x

}), do: {:winner, x}

def winner({
x, _, _,
x, _, _,
x, _, _

}), do: {:winner, x}

def winner({
_, x, _,
_, x, _,
_, x, _

}), do: {:winner, x}

def winner({
_, _, x,
_, _, x,
_, _, x

}), do: {:winner, x}

def winner({
x, _, _,
_, x, _,
_, _, x

}), do: {:winner, x}

def winner({
_, _, x,
_, x, _,
x, _, _

}), do: {:winner, x}

def winner(_board), do: :no_winner
end

report erratum • discuss

Answers for Chapter 3, Using Pattern Matching to Control the Program Flow • 167

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/answers/exercise_2.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

• Here’s how you can calculate the income tax of a salary:

pattern_matching/answers/exercise_3.ex
defmodule IncomeTax do

def total(salary) when salary <= 2000, do: 0
def total(salary) when salary <= 3000, do: salary * 0.05
def total(salary) when salary <= 6000, do: salary * 0.1
def total(salary), do: salary * 0.15

end

• Here’s how a user can enter their salary and display their income tax and
net wage:

pattern_matching/answers/exercise_4.exs
defmodule IncomeTax do

def total(salary) when salary <= 2000, do: 0
def total(salary) when salary <= 3000, do: salary * 0.05
def total(salary) when salary <= 6000, do: salary * 0.1
def total(salary), do: salary * 0.15

end

input = IO.gets "Your salary:\n"

case Float.parse(input) do
:error -> IO.puts "Invalid salary: #{input}"
{salary, _} ->

tax = IncomeTax.total(salary)
IO.puts "Net wage: #{salary - tax} - Income tax: #{tax}"

end

Answers for Chapter 4, Diving into Recursion
• Here’s the code of how you can find the smallest and biggest numbers in

a list:

recursion/answers/exercise_1.ex
defmodule MyList do

def max([]), do: nil
def max([a]), do: a
def max([a, b | rest]) when a >= b, do: find_max(rest, a)
def max([a, b | rest]) when a < b, do: find_max(rest, b)

defp find_max([], max), do: max
defp find_max([head | rest], max) when head >= max, do: find_max(rest, head)
defp find_max([head | rest], max) when head < max, do: find_max(rest, max)

def min([]), do: nil
def min([a]), do: a
def min([a, b | rest]) when a <= b, do: find_min(rest, a)
def min([a, b | rest]) when a > b, do: find_min(rest, b)

Appendix 2. Answers to Exercises • 168

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/answers/exercise_3.ex
http://media.pragprog.com/titles/cdc-elixir/code/pattern_matching/answers/exercise_4.exs
http://media.pragprog.com/titles/cdc-elixir/code/recursion/answers/exercise_1.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

defp find_min([], min), do: min
defp find_min([head | rest], min) when head <= min, do: find_min(rest, head)
defp find_min([head | rest], min) when head > min, do: find_min(rest, min)

end

• You can filter magical items in the store using a function like this:

recursion/answers/exercise_2.ex
defmodule GeneralStore do

def test_data do
[
%{title: "Longsword", price: 50, magic: false},
%{title: "Healing Potion", price: 60, magic: true},
%{title: "Rope", price: 10, magic: false},
%{title: "Dragon's Spear", price: 100, magic: true},

]
end

def filter_items([], magic: magic), do: []
def filter_items([item = %{magic: item_magic} | rest], magic: filter_magic)

when item_magic == filter_magic do
[item | filter_items(rest, magic: filter_magic)]

end
def filter_items([item | rest], magic: filter_magic) do

filter_items(rest, magic: filter_magic)
end

end

• Sort.descending/1 should look like this:

recursion/answers/exercise_3.ex
defmodule Sort do

def descending([]), do: []
def descending([a]), do: [a]
def descending(list) do

half_size = div(Enum.count(list), 2)
{list_a, list_b} = Enum.split(list, half_size)
merge(
descending(list_a),
descending(list_b)

)
end

defp merge([], list_b), do: list_b
defp merge(list_a, []), do: list_a
defp merge([head_a | tail_a], list_b = [head_b | _]) when head_a >= head_b do

[head_a | merge(tail_a, list_b)]
end
defp merge(list_a = [head_a | _], [head_b | tail_b]) when head_a < head_b do

[head_b | merge(list_a, tail_b)]
end

end

report erratum • discuss

Answers for Chapter 4, Diving into Recursion • 169

http://media.pragprog.com/titles/cdc-elixir/code/recursion/answers/exercise_2.ex
http://media.pragprog.com/titles/cdc-elixir/code/recursion/answers/exercise_3.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

• Here’s the tail-recursive version of the functions:

recursion/answers/exercise_4.ex
defmodule Sum do

def up_to(n), do: sum_up_to(n, 0)
defp sum_up_to(0, sum), do: sum
defp sum_up_to(n, sum), do: sum_up_to(n - 1, n + sum)

end

defmodule Math do
def sum(list), do: sum_list(list, 0)
defp sum_list([], sum), do: sum
defp sum_list([head | tail], sum), do: sum_list(tail, head + sum)

end

defmodule Sort do
def asc([]), do: []
def asc([a]), do: [a]
def asc(list) do

half_size = div(Enum.count(list), 2)
{list_a, list_b} = Enum.split(list, half_size)
merge(
asc(list_a),
asc(list_b),
[]

)
end

defp merge([], list_b, merged), do: merged ++ list_b
defp merge(list_a, [], merged), do: merged ++ list_a
defp merge([head_a | tail_a], list_b = [head_b | _], merged)

when head_a <= head_b do
merge(tail_a, list_b, merged ++ [head_a])

end
defp merge(list_a = [head_a | _], [head_b | tail_b], merged)

when head_a > head_b do
merge(list_a, tail_b, merged ++ [head_b])

end
end

• The following code shows how the BreadthNavigator module should look:

recursion/answers/exercise_5.ex
defmodule Navigator do

@max_breadth 2

def navigate(dir) do
expanded_dir = Path.expand(dir)
go_through([expanded_dir], 0)

end

defp go_through([], current_breadth), do: nil
defp go_through(list, current_breadth) when current_breadth > @max_breadth,

do: nil

Appendix 2. Answers to Exercises • 170

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/recursion/answers/exercise_4.ex
http://media.pragprog.com/titles/cdc-elixir/code/recursion/answers/exercise_5.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

defp go_through([content | rest], current_breadth) do
print_and_navigate(content, File.dir?(content))
go_through(rest, current_breadth + 1)

end

defp print_and_navigate(_dir, false), do: nil
defp print_and_navigate(dir, true) do

IO.puts dir
{:ok, children_dirs} = File.ls(dir)
go_through(expand_dirs(children_dirs, dir), 0)

end

defp expand_dirs([], _relative_to), do: []
defp expand_dirs([dir | dirs], relative_to) do

expanded_dir = Path.expand(dir, relative_to)
[expanded_dir | expand_dirs(dirs, relative_to)]

end
end

Answers for Chapter 5, Using Higher-Order Functions
• The EnchanterShop module should look like this:

higher_order_functions/answers/exercise_1.ex
defmodule EnchanterShop do

def test_data do
[
%{title: "Longsword", price: 50, magic: false},
%{title: "Healing Potion", price: 60, magic: true},
%{title: "Rope", price: 10, magic: false},
%{title: "Dragon's Spear", price: 100, magic: true},

]
end
@enchanter_name "Edwin"

def enchant_for_sale(items) do
Enum.map(items, &transform/1)

end

defp transform(item = %{magic: true}), do: item
defp transform(item) do

%{
title: "#{@enchanter_name}'s #{item.title}",
price: item.price * 3,
magic: true

}
end

end

report erratum • discuss

Answers for Chapter 5, Using Higher-Order Functions • 171

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/answers/exercise_1.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

• Here’s the Fibonacci sequence using streams:

higher_order_functions/answers/exercise_2.ex
defmodule Fibonacci do

def sequence(n) do
Stream.unfold({0, 1}, fn {n1, n2} -> {n1, {n2, n1 + n2}} end)
|> Enum.take(n)

end
end

• Here’s how you add the step of packing the screws:

higher_order_functions/answers/exercise_3.ex
defmodule ScrewsFactory do

def run(pieces) do
pieces
|> Stream.chunk(50)
|> Stream.flat_map(&add_thread/1)
|> Stream.chunk(100)
|> Stream.flat_map(&add_head/1)
|> Stream.chunk(30)
|> Stream.flat_map(&pack/1)
|> Enum.each(&output/1)

end

defp add_thread(pieces) do
Process.sleep(50)
Enum.map(pieces, &(&1 <> "--"))

end

defp add_head(pieces) do
Process.sleep(100)
Enum.map(pieces, &("o" <> &1))

end

defp pack(screws) do
Process.sleep(70)
Enum.map(screws, &("|" <> &1 <> "|"))

end

defp output(package) do
IO.inspect(package)

end
end

Appendix 2. Answers to Exercises • 172

report erratum • discuss

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/answers/exercise_2.ex
http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/answers/exercise_3.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

• The Quicksort should look like this:

higher_order_functions/answers/exercise_4.ex
defmodule Quicksort do

def sort([]), do: []
def sort([pivot | tail]) do

{lesser, greater} = Enum.split_with(tail, &(&1 <= pivot))
sort(lesser) ++ [pivot] ++ sort(greater)

end
end

report erratum • discuss

Answers for Chapter 5, Using Higher-Order Functions • 173

http://media.pragprog.com/titles/cdc-elixir/code/higher_order_functions/answers/exercise_4.ex
http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Bibliography

[Arm13] Joe Armstrong. Programming Erlang (2nd edition). The Pragmatic Bookshelf,
Raleigh, NC, 2nd, 2013.

[Hal18] Lance Halvorsen. Functional Web Development with Elixir, OTP, and Phoenix.
The Pragmatic Bookshelf, Raleigh, NC, 2018.

[McC15] Chris McCord. Metaprogramming Elixir. The Pragmatic Bookshelf, Raleigh,
NC, 2015.

[Tho18] Dave Thomas. Programming Elixir ≥ 1.6. The Pragmatic Bookshelf, Raleigh,
NC, 2018.

[TV18] Chris McCord, Bruce Tate and José Valim. Programming Phoenix 1.3. The
Pragmatic Bookshelf, Raleigh, NC, 2018.

report erratum • discuss

http://pragprog.com/titles/cdc-elixir/errata/add
http://forums.pragprog.com/forums/cdc-elixir

Index

SYMBOLS
+ addition operator, 13

&& (AND operator), 15

=> arrow, following map key,
42

-> arrow, preceding function
body, 18, 50

@ at sign, preceding module
attributes, 28

~>> bind operator, 152

&&& bitwise AND operator, 52

: colon
following map key, 41
preceding atoms, 12

:: colons, double, preceding
expected or defined types,
125

++ concatenation operator for
lists, 13

<> concatenation operator for
strings, 13, 18, 35

\\ default value operator, 47

/ division operator, 13

$ (dollar sign) prompt, xi

. dot operator
accessing structs and

maps, 63
invoking functions, 18
in module name, 27

= equals operator, for binding
and matching, 16, 33, 39

== equals operator, for testing
equality of values, 13, 39

=== equals operator, for test-
ing equality of values and
types, 39

& function-capturing opera-
tor, 29–30, 79, 81, 90

> greater-than operator, 13

!= inequality operator, 13

[] keyword list syntax, 43

< less-than operator, 13

| list separator, 40, 62

[] list syntax, 39

%{} map syntax, 41

* multiplication operator, 13

! (NOT operator), 15

|| (OR operator), 15

() parentheses, in expres-
sions, 13

^ pin operator, 35, 43

|> pipe operator, 6, 89–93,
100

; semicolon, separating multi-
ple commands, 21

#{} string interpolation, 19

%{} struct syntax, 44

- subtraction operator, 13

~ tilde, preceding sigils, 44

{} tuples syntax, 36

_ wildcard character, 40

<- with clause operator, 156

A
actions, 83, see also higher-

order functions

addition operator (+), 13

aliases, naming modules us-
ing, 24

AND operator (&&), 15

AND operator (and), 14

anonymous functions, 17–23
with arguments, 18
calling, 18
closures with, 20–23, 94–

95
creating, 18
multiline, 19
with multiple arguments,

19
passing as arguments, 20
recursion with, 78–79
without arguments, 19

applications, see also dun-
geon crawl example

creating project for, 107–
109

documentation for, 108
entities for, 110–117
lib directory, 107, 110
Mix tool for, 105–110
start task for, 109
test directory, 107
testing, 107–109

arity of functions, 28

arrow (=>) following map key,
42

arrow -> preceding function
body, 18, 50

at sign (@) preceding module
attributes, 28

atom type, 12

B
behaviours, 124–136

binaries, see strings

bind function, 151

bind operator (~>>), 152

binding, 16, 151

bitwise AND operator (&&&),
52

bitwise operators, 52

body-recursive functions, 71–
72

boolean type, 12

Boolean values, operators for,
14–15

bound variables, 22–23

boundary clause, see stop
condition

bounded recursion, 59–65

C
c function, 26

@callback directive, 125

CamelCase format, 26

capture syntax, see function-
capturing operator

case directive, 53–54, 143–146

catch statement, 149–150

closures, 20–23, 94–95

code examples, see examples

collections, see lazy collec-
tions; lists; maps; tuples

colon (:)
following map key, 41
preceding atoms, 12

colons, double (::), preceding
expected or defined types,
125

commands
Mix tool, 105–110
terminal, xi

compilation
of applications, 107
extension for compiled

scripts, xii, 25
of modules, 26

compile-time guarantee, 44

concatenation operator for
lists (++), 13

concatenation operator for
strings (<>), 13, 18, 35

cond directive, 54

constants, 12

contracts, see behaviours

control flow
case directive, 53–54,

143–146
cond directive, 54
functions, 45–48
guard clauses, 48–53

handling impure func-
tions using, 143–146

if directive, 55–56
pattern matching, 33–45
unless directive, 55

CPU, using efficiently, 1, 3

D
data streams, see streams

data transformation, 6, 62–
65, 83–86

data types, see types

date sigil (~D), 44

declarative code, 7–9

decrease and conquer tech-
nique, 65–66

def directive, 26

default value operator (\\), 47

defexception directive, 147

defimpl directive, 122

defmodule directive, 26

defp directive, 45, 47

defprotocol directive, 121

destructuring
keyword lists, 43–44
lists, 39–41
maps, 41–43
strings, 35–36
structs, 44–45
tuples, 36–39

directory traversal example,
see file system navigation
example

divide and conquer technique,
67–70

division operator (/), 13

division, integer, 68

do keyword, 26

doctest directive, 108

documentation for applica-
tion, 108

dollar sign ($) prompt, xi

domain entities, see entities

dot operator (.)
accessing structs and

maps, 63
invoking functions, 18
in module name, 27

dungeon crawl example
adding rooms and trig-

gers, 161–163
creating project for, 107–

109
designing, 106

entities for, 110–117
exit, 124–127, 130–136
hero and action module,

118–123, 127–130
monad strategy, 151–155
raising exceptions, 147–

149
room module, 117–118
start task for, 109
with statement, 155–158
throwing a value, 149–

150
user input, 144–146

dynamic typing, 50

E
Elixir, xi, 2

elixir command, xii, 38

end keyword, 18, 26

entities, 110–117

Enum module, 87–89

Enum.count function, 87

Enum.each function, 87, 96,
100

Enum.filter function, 87

Enum.group_by function, 88

Enum.join function, 87

Enum.map function, 87

Enum.member? function, 87

Enum.reduce function, 87

Enum.sort function, 87

Enum.sum function, 87

Enum.uniq function, 87

Enum.with_index function, 114

Enumerable protocol, 88

equals operator (=) for binding
and matching, 16, 33, 39

equals operator (==) for test-
ing equality of values, 13,
39

equals operator (===) for
testing equality of values
and types, 39

Erlang, xi

Error monad, 150–155

errors and unexpected events,
see also impure functions

control flow handling,
143–146

Error monad handling,
150–155

with handling, 155–158
try statement handling,

146–150

Index • 178

events, unexpected, see er-
rors and unexpected events

.ex extension, xii, 25

examples
dungeon crawl, 106–136,

144–158, 161–163
factorial, 65–66, 71–72,

78, 96–97
fantasy world, 62–65, 82–

87
file system navigation,

73–77
running, xi
screw factory, 99–102
sorting, 67–70
web crawler, 73, 76

explicitly passing values, 5–6

expressions, 12–14

.exs extension, xii, 38

F
factorial example, 65–66, 71–

72, 78, 96–97

:false value, 12

falsy values, 15

fantasy world example, 62–
65, 82–87

file system navigation exam-
ple, 73–77

filtering
with Enum.filter function,

87
with expressions, 89
lists, 64, 86–87

first-class citizens, 2, 20

Float module, 24

float type, 12

Float.ceil function, 25

Float.floor function, 25

Float.round function, 25

fn keyword, 18

for generator, 89

free variables, 22–23

function clauses, 46

function-capturing operator
(&), 29–30, 79, 81, 90

functional programming, ix,
1–9

functions, 4–7
anonymous functions,

17–23
in arguments, 6, 20, 29–

30, 81
arguments of, 18–19

arity of, 28
composition of, 90
control flow with, 45–48
default values for, 47
delaying execution of, 93–

95
as first-class citizens, 20
in guard clauses, 50
higher-order functions,

81–102
impure functions, 4, 21,

139–142
macro functions, 51
multiple with same name,

45
named functions, 24–30
passing values explicitly,

5–6
pipelining, 89–93
polymorphic, 117, 121–

123
private functions, 47
pure functions, 4
recursive functions, 8
return value of, 18
returned by functions, 6,

81
reusing, 118–121
rules for, 125
tuples returned by, 37
type specifications for,

127–130
without arguments, 19

G
game example, see dungeon

crawl example

generator expressions, 89

greater-than operator (>), 13

guard clauses, 48–54

H
head | tail syntax, 40, 62

higher-order functions, 81–
102

actions with, 83
filtering lists, 86–87
navigating lists, 82–83
reducing lists to one val-

ue, 85
transforming lists, 83–86

I
IEx shell, xii

if directive, 55–56

immutable data, 3–4, 62

imperative languages
control flow with, 33
limitations of, 1–2
problem-solving ap-

proach, 7–9
repetition with, 59

import directive, 27–29

impure functions, 4, 21, 139–
142

control flow handling,
143–146

Error monad handling,
150–155

with handling, 155–158
try statement handling,

146–150

inequality operator (!=), 13

infinite flow of data,
see streams

infinite loop, 60, 76–77

installing Elixir and Erlang,
xi

integer division, 68

Integer module, 24

integer type, 12

Integer.digits function, 25

Integer.is_even function, 51

Integer.is_odd function, 51

Integer.parse function, 25, 38,
143

Integer.to_string function, 25

interfaces, see protocols

invalid expressions, 13

IO module, 24

IO.gets function, 25, 38, 141,
143

IO.inspect function, 3, 25

IO.puts function, 21, 25, 37,
54, 81, 142

IO.write function, 81

iteration, see also recursion
of lists, 89
of maps, 88
of streams, 96

K
Kernel module, 24

Kernel.div function, 25, 68

Kernel.is_integer function, 50

Kernel.is_number function, 25

Kernel.rem function, 25

Kernel.update_in function, 84

key-based accessors, 63

Index • 179

keyword list syntax ([]), 43

keyword lists
compared to maps, 43
key-based accessors for,

63
matching parts of, 43–44

killing processes, 60

L
lambda calculus computation

model, 2

lambdas, see anonymous
functions

lazy collections, 95–98

lazy evaluation, 93–102
delaying function execu-

tion, 93–95
pipelining streams, 98–

102
streams, 95–102

less-than operator (<), 13

lexical scope, 21–23

lib directory, 107, 110

linked lists, 39, see also lists

list comprehensions, 89

list separator (|), 40, 62

list syntax ([]), 39

list type, 12

lists
creating, 39
filtering, 64, 86–87
head | tail syntax, 40, 62
improper, 39
iterating, 89
matching parts of, 39–41
navigating, 82–83
navigating with recur-

sion, 61
reducing to one value, 85
sorting, 67–70
transforming, 62–65, 83–

86

literals, 11, see also values

logical expressions, 14–15

M
macro functions, 51

map syntax (%{}), 41

map type, 12

maps
compared to keyword

lists, 43
compared to structs, 44
creating, 41

key-based accessors for,
63

matching parts of, 41–43
transforming with recur-

sion, 62–65

matching, see pattern match-
ing

merge sort, 67, 70, see al-
so sorting example

metaprogramming, macros
as, 52

mix new task, 107

mix start task, 109, 113

mix test task, 107

Mix tool, 105–110

Mix.Shell.IO utilities, 113–114

Mix.Shell.IO.cmd function, 114

Mix.Shell.IO.info function, 113

Mix.Shell.IO.yes function, 113

Mix.Task module, 109

modules, 24
attributes for, 28
behaviours of, 124–136
compiling, 26
creating, 25–27
directory for, 27
importing, 27–29
namespace for, 27
naming, 24, 26
provided by Elixir, 24
refactoring, 118–121
requiring for compilation,

51

MonadEx library, 152

monads, 151, see also Error
monad

multiplication operator (*), 13

mutating values, disadvan-
tages of, 1–2, 4

N
named functions, 24–30

arity of, 28
creating, 26–27
importing, 27–29
naming, 26
using as arguments, 29–

30

namespace, for modules, 27,
109–110

naming conventions, 16, 26

navigating data structures,
61

nil type, 12

:nil value, 12

NOT operator (!), 15

NOT operator (not), 14

O
object-oriented languages, 5

online resources, for this
book, xii

only option, import directive, 28

operators, 13–15, see al-
so Symbols at the begin-
ning of this index

OR operator (or), 14

OR operator (||), 15

P
paradigm changes in program-

ming, 1–3

parentheses (), in expres-
sions, 13

passing values explicitly, 5–6

pattern matching, 8, 33–45
case directive using, 53–

54
destructuring keyword

lists, 43–44
destructuring lists, 39–41
destructuring maps, 41–

43
destructuring strings,

35–36
destructuring structs,

44–45
destructuring tuples, 36–

39

pin operator (^), 35, 43

pipe operator (|>), 6, 89–93,
100

pipelining
functions, 89–93
streams, 98–102

polymorphism, 117, 121–123

precedence of operators, 13

private functions, 47

processes, killing, 60

program flow, see control flow

programming, see also func-
tional programming

imperative languages, 1–
2, 7–9, 33, 59

new languages, reasons
for, 1

Index • 180

object-oriented lan-
guages, 5

paradigm changes in, 1–
3

project, see applications

protocols, 117, 121–123, 135

pure functions, 4

R
raise statement, 147

range literal, 95

rebinding variables, 35

recursion, 59–79
with anonymous func-

tions, 78–79
bounded recursion, 59–

65
decrease and conquer

technique, 65–66
divide and conquer tech-

nique, 67–70
infinite loop with, 60, 76–

77
navigating lists, 61
stop condition for, 60,

68, 75–76
tail-call optimization for,

70–72
transforming lists and

maps, 62–65
unbounded recursion,

73–77

recursive functions, 8

refactoring modules, 118–121

repetition, see recursion

require keyword, 51

rescue statement, 146–147

S
scope, 21–23

screw factory example, 99–
102

scripts, running, xii, 38

semicolon (;) separating multi-
ple commands, 21

shadowing variables, 23

side-effects, 21, see also im-
pure functions

sigils, 44, 98

snake_case format, 16, 26

sorting example, 67–70

special forms, 18

stop condition, 60, 68, 75–76

Stream.chunk function, 101

Stream.cycle function, 97

Stream.flat_map function, 101

Stream.iterate function, 96

Stream.map function, 100

streams, 95–102

string interpolation #{}, 19

String module, 24

string type, 12

String.at function, 94

String.capitalize function, 25,
83, 85, 87, 92

String.contains function, 87

String.downcase function, 25

String.first function, 90

String.length function, 83

String.reverse function, 36

String.split function, 7, 92

String.starts_with function, 87

String.upcase function, 6, 24,
29, 71, 83, 85, 87–90

strings
concatenating, 13, 18, 35
interpolating, 19
matching parts of, 35–36

struct syntax (%{}), 44

structs
compared to maps, 44
creating, 44
entities created with,

110–117
key-based accessors for,

63
matching parts of, 44–45
referencing other structs,

117–118

subtraction operator (-), 13

T
tail-call optimization, 70–72

test directory, 107

testing, 107–109

throw statement, 149–150

tilde (~) preceding sigils, 44

transformation of data, 6, 62–
65, 83–86

:true value, 12

truthy values, 15

try statement, 146–150

tuple type, 12

tuples, 36–39

tuples syntax ({}), 36

type specifications, 50, 127–
130

types, 12
dynamic typing, 50
extracting values from,

35–45
in function rules, 125
operators compatible

with, 13
type checking, 50

U
unbounded recursion, 73–77

uncompiled scripts, extension
for, xii, 38

unexpected events, see errors
and unexpected events

unless directive, 55

unpacking values, see de-
structuring

upward scope, 21

use directive, 108–109

V
values, 11–12

binding to variables, 16
preventing rebinding to

variables, 35
rebinding to variables, 35
types of, 12

variables, 15–17
binding values to, 16
bound variables, 22–23
free variables, 22–23
naming, 17
preventing rebinding val-

ues to, 35
rebinding values to, 35
shadowing, 23

W
web crawler example, 73, 76

when keyword, 49

wildcard character (_), 40

with clause operator (<-), 156

with statement, 155–158

word list sigil (~w), 98

wrapping functions,
see function-capturing oper-
ator

Index • 181

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2018 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2018

https://pragprog.com

Learn Why, Then Learn How
Get started on your Elixir journey today.

Adopting Elixir
Adoption is more than programming. Elixir is an excit-
ing new language, but to successfully get your applica-
tion from start to finish, you’re going to need to know
more than just the language. You need the case studies
and strategies in this book. Learn the best practices
for the whole life of your application, from design and
team-building, to managing stakeholders, to deploy-
ment and monitoring. Go beyond the syntax and the
tools to learn the techniques you need to develop your
Elixir application from concept to production.

Ben Marx, José Valim, Bruce Tate
(225 pages) ISBN: 9781680502527. $42.95
https://pragprog.com/book/tvmelixir

Programming Elixir ≥ 1.6
This book is the introduction to Elixir for experienced
programmers, completely updated for Elixir 1.6 and
beyond. Explore functional programming without the
academic overtones (tell me about monads just one
more time). Create concurrent applications, but get
them right without all the locking and consistency
headaches. Meet Elixir, a modern, functional, concur-
rent language built on the rock-solid Erlang VM. Elixir’s
pragmatic syntax and built-in support for metaprogram-
ming will make you productive and keep you interested
for the long haul. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(398 pages) ISBN: 9781680502992. $47.95
https://pragprog.com/book/elixir16

https://pragprog.com/book/tvmelixir
https://pragprog.com/book/elixir16

A Better Web with Phoenix and Elm
Elixir and Phoenix on the server side with Elm on the front end gets you the best of both
worlds in both worlds!

Programming Phoenix 1.3
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.3, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert, as you build the next generation of web ap-
plications.

Chris McCord, Bruce Tate and José Valim
(325 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix13

Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that run-time errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(250 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

https://pragprog.com/book/phoenix13
https://pragprog.com/book/jfelm

Dive Deep into OTP and Absinthe
Put it all together with Elixir, OTP, and Phoenix. Dive into GraphQL for better APIs in Elixir.
It’s all here.

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

Craft GraphQL APIs in Elixir with Absinthe
Your domain is rich and interconnected, and your API
should be too. Upgrade your web API to GraphQL,
leveraging its flexible queries to empower your users,
and its declarative structure to simplify your code.
Absinthe is the GraphQL toolkit for Elixir, a functional
programming language designed to enable massive
concurrency atop robust application architectures.
Written by the creators of Absinthe, this book will help
you take full advantage of these two groundbreaking
technologies. Build your own flexible, high-performance
APIs using step-by-step guidance and expert advice
you won’t find anywhere else.

Bruce Williams and Ben Wilson
(250 pages) ISBN: 9781680502558. $47.95
https://pragprog.com/book/wwgraphql

https://pragprog.com/book/lhelph
https://pragprog.com/book/wwgraphql

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/cdc-elixir
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/cdc-elixir

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/cdc-elixir
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/cdc-elixir
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Is This Book for You?
	What’s in This Book?
	Using Elixir
	Online Resources

	1. Thinking Functionally
	Why Functional?
	Working with Immutable Data
	Building Programs with Functions
	Declaring Code
	Wrapping Up

	2. Working with Variables and Functions
	Representing Values
	Executing Code and Generating a Result
	Binding Values in Variables
	Creating Anonymous Functions
	Naming Functions
	Wrapping Up

	3. Using Pattern Matching to Control the Program Flow
	Making Two Things Match
	Unpacking Values from Various Data Types
	Control Flow with Functions
	Expanding Control with Guard Clauses
	Elixir Control-Flow Structures
	Wrapping Up

	4. Diving into Recursion
	Surrounded by Boundaries
	Conquering Recursion
	Tail-Call Optimization
	Functions Without Borders
	Using Recursion with Anonymous Functions
	Wrapping Up

	5. Using Higher-Order Functions
	Creating Higher-Order Functions for Lists
	Using the Enum Module
	Using Comprehensions
	Pipelining Your Functions
	Be Lazy
	Wrapping Up

	6. Designing Your Elixir Applications
	Starting Your Project with Mix
	Designing Entities with Structs
	Using Protocols to Create Polymorphic Functions
	Creating Module Behaviours
	Wrapping Up

	7. Handling Impure Functions
	Pure vs. Impure Functions
	Controlling the Flow of Impure Functions
	Trying, Rescuing, and Catching
	Handling Impure Functions with the Error Monad
	Using with
	Wrapping Up

	A1. Adding Rooms to the Game
	A2. Answers to Exercises
	Answers for Chapter 2, Working with Variables and Functions
	Answers for Chapter 3, Using Pattern Matching to Control the Program Flow
	Answers for Chapter 4, Diving into Recursion
	Answers for Chapter 5, Using Higher-Order Functions

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

