

Early praise for Metaprogramming Elixir

This book is exactly what the young Elixir community needs! Chris McCord does
an elegant job of laying out Elixir metaprogramming step by step, with practical
and wonderfully instructive examples throughout.

➤ Bruce Tate
President, RapidRed, LLC

Whether you’re new to Elixir or a seasoned pro, this compact book will give you
the foundation you need to harness the full power of Elixir. A joy to read as it
gently walks the reader toward metaprogramming mastery, it’s a thoughtful and
practical guide to metaprogramming you’ll want to visit again and again.

➤ Matt Sears
CEO Littlelines

Chris is the person to be writing this book; reading his work in open source is
how I learned how to use macros. This book filled in the gaps of my understanding
and improved my intuition for how Elixir the language works.

➤ Jason Stiebs
Partner, RokkinCat

Metaprogramming Elixir made me want to run out and write code that writes code
for me! Great voice and compelling examples!

➤ Zander Hill
Polyglot

Chris has a habit of seeing past the surface of a technology. In Metaprogramming
Elixir, Chris demystifies the foundation of Elixir itself, opening the door for every
Elixir programmer to build applications in fun, powerful ways.

➤ Ryan Cromwell
Technical director, Sparkbox

A treasure trove of metaprogramming patterns, this book is just what the commu-
nity needs to communicate the power, extensibility, and practicality of metapro-
gramming in Elixir. After reading it, you’ll know how and why to use metaprogram-
ming both responsibly and irresponsibly. Definitely a must-have for anyone
wanting to go beyond the basics of a beautiful language.

➤ Gabriel Jaldon
Web developer, open source enthusiast

Metaprogramming Elixir
Write Less Code,

Get More Done
(and Have Fun!)

Chris McCord

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-041-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2015

https://pragprog.com
rights@pragprog.com

To my lovely wife, Jaclyn.

Contents

Acknowledgements ix

Introduction xi

1. The Language of Macros 1
The World Is Your Playground 1
Macro Rules 7
The Abstract Syntax Tree—Demystified 8
Macros: The Building Blocks of Elixir 11
Code Injection and the Caller’s Context 16
Further Exploration 20

2. Extending Elixir with Metaprogramming 21
Custom Language Constructs 21
Smarter Testing with Macros 27
Extending Modules 33
Using Module Attributes for Code Generation 36
Compile-Time Hooks 39
Further Exploration 42

3. Advanced Compile-Time Code Generation 43
Generating Functions from External Data 43
MIME-Type Conversion in Ten Lines of Code 45
Building an Internationalization Library 49
Code Generation from Remote APIs 58
Further Exploration 63

4. How to Test Macros 65
Setting Up Your Test Suite 65
Deciding What to Test 66
Integration Testing 68
Unit Tests 72

Test Simple and Test Fast 73
Further Exploration 74

5. Creating an HTML Domain-Specific Language 75
Getting Domain Specific 75
Start by Defining the Minimum Viable API 76
Support the Entire HTML Spec with Macros 82
Enhance Your API with HTML Attribute Support 84
Generate Less Code by Walking the AST 87
To DSL or Not to DSL? 91
Further Exploration 93

6. With Great Power Comes Great Responsibility (and Fun!) . . 95
When and Where to Use Macros 95
Avoiding Common Pitfalls 98
Bending the Rules 103
Build the Future 106

Contents • viii

Acknowledgements
This book wouldn’t have been possible without the help of a number of people
whose hard work and support can’t go without mention. These names deserve
recognition for making the book what it is today.

José Valim—Creator of Elixir:
Metaprogramming Elixir clearly wouldn’t have been possible without all
the hard work that José dedicated to crafting this wonderful language.
Beyond that, though, he has been a true community leader and a helpful
friend. His welcoming and kind nature has shaped Elixir’s community
and set a precedent for how an OSS project should be run. He has been
constant source of help and inspiration along the way.

Matt Sears—Founder, Littlelines:
As my boss at my full-time job, Matt gave me the flexibility to make this
book possible. From a work atmosphere that fosters personal growth, to
his support for community outreach, he helped make this book a reality.
For that, I’m truly thankful.

Jacquelyn Carter—Editor:
Working closely with Jackie on this book has been a great pleasure.
Jackie’s guiding feedback and encouragement led to a work that I’m
extremely proud of. This book would not have been the same without her.

The Publishers:
It has been an honor to work with the Pragmatic Programmers. Dave
Thomas and Andy Hunt welcomed me into the Prag family, and their
close-knit operation made me feel right at home. Susannah Pfalzer offered
wisdom and encouragement while pushing me to do my best. I’m
extremely grateful for the entire Prag team and the level of care I received
throughout this journey.

The Reviewers:
The reviewers have my gratitude for dedicating their time and knowledge
to help make this book the best it could be. José Valim, Bruce Tate, Jason

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Stiebs, Matt Sears, Zander Hill, Ryan Cromwell, and Gabriel Jaldon all
took time out of their busy lives to offer guidance and support. Jason
Stiebs deserves particular credit for being available at all hours of the day
and night to offer feedback throughout the process.

Acknowledgements • x

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Introduction
In 2012, José Valim announced that he was working on his own programming
language. At the time, I thought he was crazy. Little did I know the impact
his creation would have on the way I view programming. Since discovering
it, I can’t bear to put down the keyboard. The amount of care that went into
the language’s design and the level of power it gives you is truly freeing. It’s
the only language I’ve found that makes it a joy to build scalable, fault-tolerant
systems. Combined with all the innovations from the Erlang ecosystem, it’s
a language you can easily fall in love with. Throughout this book, you’ll find
out why.

We’re going to explore metaprogramming in Elixir from the ground up. Along
the way, you’ll level up your programming skills and discover the full potential
of Elixir’s macro system. After you’re finished, you’ll know the ins and outs
of Elixir at a fundamental level, and you’ll be able to write incredible libraries
that let you do more with less code.

Metaprogramming—An Essential Feature
Metaprogramming is a must on my list of language requirements. It puts you
in control to extend the language to suit your project’s needs and lets you
write powerful libraries that would be otherwise impossible. I have a strong
web development background, and when I started with Elixir, I immediately
realized how well suited it would be for a web framework. Phoenix1 was born
out of the realization that I could have the best of both words in a web
framework: a language that makes it a joy to write applications, with a runtime
that is fast and scalable. With Elixir, Phoenix doesn’t have to choose between
productivity and scalability. Metaprogramming gives us both.

This book distills the lessons and insights I gained while creating Phoenix.
You’ll learn not only all the metaprogramming tricks, but also the common
pitfalls that I experienced firsthand and how you can avoid them. Metapro-

1. http://www.phoenixframework.org

report erratum • discuss

http://www.phoenixframework.org
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

gramming requires special care, but with the right set of tools, you can produce
amazing libraries. We’ll exploit this fact throughout the book to build real-
world solutions to interesting problems. I can’t wait to see what you create.

How to Read This Book
This book takes you from the very basics of metaprogramming all the way to
writing your own language features and custom libraries. Along the way, we’ll
open up Elixir’s internals to see how it was built from a small set of funda-
mental pieces and how extensible it really is.

Who This Book Is For
This book is for any Elixir programmer who has passed the basics and is
ready to take his or her skills to the next level. You’ve used Elixir, you love
the language, and you’ve probably wondered how some libraries you use
achieve their neat features. It’s time to find out!

Who This Book Isn’t For
If you’re just getting started with Elixir, welcome aboard! But this book
probably isn’t for you—just yet. After you get up to speed, perhaps by reading
Programming Elixir,2 this book should be your very next step. Go jump in,
and we’ll carry on when you’re ready.

Covered Topics
Metaprogramming is an advanced topic, but we’ll break it down and have
some fun writing code along the way. This book is broken into natural sections
to quickly cover the basics and get you writing code as soon as possible. The
chapters are laid out in the following topics:

• Understanding the basics of Elixir’s metaprogramming system with macros
and the abstract syntax tree

• Extending Elixir with your own first-class features
• Writing a test framework with macros
• Using advanced code generation to create a MIME-type matching and

internationalization library
• Generating functions from external datasets and remote APIs
• Properly testing your metaprogramming-based code
• Creating an HTML domain-specific language
• Using metaprogramming responsibly and avoiding pitfalls

2. https://pragprog.com/book/elixir/programming-elixir

Introduction • xii

report erratum • discuss

https://pragprog.com/book/elixir/programming-elixir
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

With this express guide to Elixir metaprogramming, you’ll quickly master the
ins and outs and be ready to start writing your own robust libraries.

Running the Code Exercises
Running the code is a requirement to master your new skills. There are just
a couple things to keep in mind before you start writing code.

Getting the Most out of the Exercises
This book is designed to be interactive. Almost all code blocks and iex shell
examples are built for you to follow along as we experiment together. You’ll
get the most out of the book by running the exercises on your own computer
and tinkering with the programs we write. This will also give you a starting
point for the Further Exploration section of each chapter.

System Requirements
The exercises in the book are designed to be entered in your own editor and
run on your system as we progress through each topic. The only thing you
need installed on your system is Elixir 1.0+ and any text editor. Instructions
for getting your system set up can be found in the following section.

Online Resources
All coding examples in this book can be found online at the Pragmatic Pro-
grammers web page for this book.3 You’ll also find a discussion forum where
you can ask questions and receive feedback, as well as an errata submission
form where issues with the text can be reported.

You are encouraged to get involved with the budding Elixir community and
jump aboard to share your knowledge with interested newcomers. Elixir’s
website4 has instructions for getting your system set up as well as helpful
links to get involved. The elixir-lang-talk mailing list5 and the #elixir-lang
freenode IRC channel6 are fantastic resources for fast access to help.

3. https://pragprog.com/book/cmelixir/metaprogramming-elixir
4. http://elixir-lang.org
5. https://groups.google.com/forum/#!forum/elixir-lang-talk
6. irc://irc.freenode.net/elixir-lang

report erratum • discuss

Running the Code Exercises • xiii

https://pragprog.com/book/cmelixir/metaprogramming-elixir
http://elixir-lang.org
https://groups.google.com/forum/#!forum/elixir-lang-talk
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

CHAPTER 1

The Language of Macros
It’s time to begin our journey to metaprogramming mastery. Ahead lies new
Elixir insights and new programming abilities. Perhaps you want to write
more productive libraries, build domain-specific languages, or optimize run-
time performance. Maybe you simply want to have fun exploring all that Elixir
has to offer. If this sounds like you, let’s get started!

By now, you’re familiar with Elixir; you’ve experimented with the language
and perhaps contributed to a library or two. We’re going to take it to the next
level by writing code that writes code with macros. Elixir macros are the game-
changer. They enable metaprogramming and make it a breeze to write powerful
programs.

Code that writes code might sound like a neat trick, but you’ll soon see how
it forms the basis of Elixir’s own construction. Macros open up unique possi-
bilities that simply aren’t possible in most languages. We can extend the
language with powerful first-class features, save time, and share functionality
in fun and productive ways. Used properly, metaprogramming lets us create
clear, concise programs that treat source code as building blocks instead of
as rote lines of instructions.

We’re going to start by covering everything you need to know about Elixir’s
metaprogramming system before we dive into our advanced exercises.

Let’s play.

The World Is Your Playground
Metaprogramming in Elixir is all about extensibility. Have you ever wished
your favorite language would adopt that one neat feature? If you’re lucky, it
might take years to happen. Often it never happens at all. In Elixir, you can
introduce new first-class features at will. Take the familiar while loop that you

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

find in most languages. It’s missing from Elixir, but you can imagine writing
one like this:

while Process.alive?(pid) do
send pid, {self, :ping}
receive do

{^pid, :pong} -> IO.puts "Got pong"
after 2000 -> break
end

end

In the next chapter, we make this while loop a reality. It doesn’t stop there,
though. With Elixir, we can define languages with the language, to express
all kinds of problems in a natural syntax. This is a valid Elixir program:

div do
h1 class: "title" do

text "Hello"
end
p do

text "Metaprogramming Elixir"
end

end
"<div><h1 class=\"title\">Hello</h1><p>Metaprogramming Elixir</p></div>"

Elixir makes things like this HTML domain-specific language possible. In fact,
we’ll create this in just a few chapters. You don’t have to understand how
these things work just yet—we’ll get to that. For now, just remember that
macros make all this possible. Code that writes code. Elixir pushes this idea
further than you’ve ever seen.

As with any playground, you need to start small and work your way up to
the advanced areas. Metaprogramming can be a difficult concept to grasp,
and its use requires a high level of care. Throughout this book, we’ll unveil
the mystery by going from simple exercises all the way through advanced
code-generation tutorials. Before we start writing code, we need to review the
two essential concepts of Elixir’s metaprogramming system and how they fit
together.

The Abstract Syntax Tree
To master metaprogramming, you first have to understand how Elixir code
is represented internally by the abstract syntax tree (AST). Most languages
you’ve worked with have an AST, but you’re typically not aware of it. When
your programs are compiled or interpreted, their source is transformed into
a tree structure before being turned into bytecode or machine code. This
process is usually masked away, and you never need to think about it.

Chapter 1. The Language of Macros • 2

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

José Valim, the creator of Elixir, chose to do something very different. He
exposed the AST in a form that can be represented by Elixir’s own data
structures and gave us a natural syntax to interact with it. Having the AST
accessible by normal Elixir code lets you do very powerful things because you
can operate at the level typically reserved only for compilers and language
designers. You interact with Elixir’s AST at every step of the metaprogramming
process, so let’s jump in and find out what it’s all about.

Metaprogramming in Elixir revolves around manipulating and inspecting
ASTs. You can access the AST representation of any Elixir expression by using
the quote macro. Code generation relies heavily on quote, and we’ll be using
it throughout the book to carry out our exercises. Let’s use it to return the
AST representation of a couple of basic expressions.

Type the following into iex and let’s look at the results:

iex> quote do: 1 + 2
{:+, [context: Elixir, import: Kernel], [1, 2]}

iex> quote do: div(10, 2)
{:div, [context: Elixir, import: Kernel], [10, 2]}

We can see that the AST representation of 1 + 2 and div produced simple data
structures in Elixir’s own terms. Let that sink in for a moment. You can access
the representation of any code you write as an Elixir data structure. Quoting
expressions gives you something you’ve probably never seen from a language
before: the ability to peer into the internal representation of your code, within
a data structure you already know and understand. This lets you infer
meaning, optimize performance, or extend functionality while staying within
Elixir’s high-level syntax.

With full AST access, we can perform neat tricks during compilation. For
example, the Logger module in Elixir’s standard library can optimize logging
by completely removing the expressions from the AST. Let’s say we’re writing
to a file and would like to print the file path in development but ignore the
expression in production. We might write something like the following:

def write(path, contents) do
Logger.debug "Writing contents to file #{path}"
File.write!(path, contents)

end

In production, the Logger.debug expression would be completely removed from
the program. This is because we can interact with the AST during compilation
to skip this development-related call. Most languages would have to invoke

report erratum • discuss

The World Is Your Playground • 3

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

the debug function and waste CPU cycles checking for ignored log levels at
runtime, because their source code cannot interact with the underlying AST.

Finding out how Logger.debug is able to perform this feat brings us to the next
essential ingredient of the metaprogramming process: macros.

Macros
Macros are code that writes code. Their purpose in life is to interact with the
AST using Elixir’s high-level syntax. This is how Logger.debug can perform its
optimization tricks while appearing like normal Elixir code.

Macros are used for everything from building Elixir’s standard library to
serving as core infrastructure of a web framework. In either case, the same
metaprogramming rules apply. You don’t have to make a decision between
complex, performant code or slower, elegant APIs. Elixir macros let you write
simple code with high performance. They turn you, the programmer, from
language consumer to language creator. No longer are you merely a user of
the language. You have access to all the tools and power that José used to
write the standard library. He opened the language up for your own extension.
Once you experience that level of power, it’s hard to go back.

You might think you’ve largely avoided macros until now, but they’ve been
hiding in plain sight all along. Consider this simple block of code:

defmodule Notifier do
def ping(pid) do

if Process.alive?(pid) do
Logger.debug "Sending ping!"
send pid, :ping

end
end

end

It might look unremarkable, but we’re looking right at four macros. Internally,
defmodule, def, if, and even Logger.debug are implemented as macros, like most
of Elixir’s top-level constructs. You can see for yourself by looking up the
documentation in iex:

iex> h if

defmacro if(condition, clauses)

Provides an if macro. This macro expects the first argument to be a condition
and the rest are keyword arguments.
...

Chapter 1. The Language of Macros • 4

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

You might be wondering what the advantage is of Elixir using macros for its
own constructs, since you get by fine in most languages without this structure.
The most powerful advantage is that macros allow you to extend the language
with your own keywords while using existing macros as building blocks.

The best way to think about metaprogramming in Elixir is to throw away the
notion of rigid keywords and opaque language internals. Elixir was designed
with extension in mind. The language is open to your exploration and custom
features. This is what makes metaprogramming in Elixir so pleasantly natural.

Tying It All Together
We’ve seen how Elixir itself is built with macros and how to use quote to return
the AST representation of any expression. Now let’s fit the pieces together.
The most important takeaway is that macros receive ASTs as arguments and
provide ASTs as return values. By writing macros, you are building ASTs
using Elixir’s high-level syntax.

To see this in action, let’s write a macro that can print the spoken form of an
Elixir mathematical expression, such as 5 + 2, when calculating a result. In
most languages, we would have to parse a string expression into something
digestible by our program. With Elixir, we can access the representation of
expressions directly with macros.

Our first step is to examine the AST structure of some example expressions
that our macro will accept. Let’s head back over to iex and quote a few
expressions. Go ahead and try out a few of your own to get a better sense of
the AST’s structure.

iex> quote do: 5 + 2
{:+, [context: Elixir, import: Kernel], [5, 2]}

iex)> quote do: 1 * 2 + 3
{:+, [context: Elixir, import: Kernel],
[{:*, [context: Elixir, import: Kernel], [1, 2]}, 3]}

The AST for 5 + 2 and 1 * 2 + 3 produced a straightforward tuple structure. We
received the atoms :+ and :* representing operators, and the left-hand side
and right-hand side values in the last element. These tuple structures are
the direct representation of their high-level Elixir counterparts.

Now that we know how our expressions are represented, let’s define our first
macro to see how the AST ties in. We’ll define a Math module with a say macro
that can print any mathematical expression in natural language when calcu-
lating the result.

report erratum • discuss

The World Is Your Playground • 5

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Create a math.exs file in your favorite editor and add the following code to it:

macros/math.exs
defmodule Math doLine 1

-

{:+, [context: Elixir, import: Kernel], [5, 2]}-

defmacro say({:+, _, [lhs, rhs]}) do-

quote do5

lhs = unquote(lhs)-

rhs = unquote(rhs)-

result = lhs + rhs-

IO.puts "#{lhs} plus #{rhs} is #{result}"-

result10

end-

end-

-

{:*, [context: Elixir, import: Kernel], [8, 3]}-

defmacro say({:*, _, [lhs, rhs]}) do15

quote do-

lhs = unquote(lhs)-

rhs = unquote(rhs)-

result = lhs * rhs-

IO.puts "#{lhs} times #{rhs} is #{result}"20

result-

end-

end-

end-

Now let’s load the module up in iex and try it out:

iex> c "math.exs"
[Math]

iex> require Math
nil

iex> Math.say 5 + 2
5 plus 2 is 7
7

iex> Math.say 18 * 4
18 times 4 is 72
72

Let’s break down the code. Since we know macros receive the AST represen-
tation of the arguments we pass to them, we pattern matched directly on the
AST to determine which say definition to invoke. On lines 4 and 15, we can
see that macros, like functions, can have multiple signatures. Having the
example representation from our quoted results allowed us to easily bind the
left- and right-hand side values to variables and print a message accordingly.

Chapter 1. The Language of Macros • 6

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/math.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

To complete the macro, we used quote to return an AST for the caller to replace
our Math.say invocations. Here we also used unquote for the first time. We’ll
expand on quote and unquote in detail in a moment. For now, all you need to
know is these two macros work together to help you build ASTs while keeping
track of where your code executes.

With the essential concepts out of the way, we can now move into the deeper
details of Elixir’s metaprogramming system. You’ve seen that macros and
ASTs work together, now let’s find out how. But first, there’s something we
need to discuss.

Macro Rules
Before we write more complex macros, we need to review a couple of rules to
temper our expectations. Macros give us awesome power, but with great
power comes great responsibility.

Rule 1: Don’t Write Macros
You may hear this rule touted loudly when talking with others about
metaprogramming. Often it’s unfounded, but before we get too carried away,
we have to remember that writing code to produce code requires special care.
It’s easy to get caught in our own web of code generation, and many have
been bitten by reckless complexity. When taken too far, macros can make
programs difficult to debug and reason about. There should always be a clear
advantage when we attack problems with metaprogramming. In many cases,
standard function definitions are a superior choice if code generation is not
required.

Rule 2: Use Macros Gratuitously
Metaprogramming is sometimes framed as complex and fragile. Together,
we’ll dispel these myths by producing robust, clear programs that offer pro-
ductive advantages in a fraction of the required code. It’s important to avoid
letting the potential for abuse scare you away from fully exploring Elixir’s
macro system. The best way to learn metaprogramming is to throw away your
preconceived notions and explore with a curious and open mind. You can’t
be afraid to be a little irresponsible while you’re learning.

It’s important to keep this duality in mind when writing macros. Along our
metaprogramming journey, you’ll see how to apply your sharp skills respon-
sibly and look at common pitfalls to avoid. Great code speaks for itself, and
we’ll be writing plenty of it.

report erratum • discuss

Macro Rules • 7

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

The Abstract Syntax Tree—Demystified
It’s time to explore the AST in depth to learn the different ways your source
code is represented. You might be tempted to jump in and start writing macros
at this point, but truly understanding the AST is essential as you get into
advanced metaprogramming. Once we uncover the nuances, you’ll find your
Elixir code is much closer to the AST than you might have imagined. This
revelation will change the way you think about solving problems and drive
your macro design decisions going forward. After reviewing the finer details
of the AST, you’ll be ready to begin the metaprogramming exercises. So hang
in there. You’ll be creating new language features before you know it.

The Structure of the AST
Every expression you write in Elixir breaks down to a three-element tuple in
the AST. You often rely on this uniform breakdown when pattern matching
arguments in macros. We already used this technique in our Math.say definitions
in Tying It All Together, on page 5.

defmacro say({:+, _, [lhs, rhs]}) do

Since we know that an expression like 5 + 2 turns into the tuple {:+, [...], [5, 2]},
we pattern matched directly against the AST to determine the meaning of
each calculation. Let’s quote a couple more complex expressions to see how
entire Elixir programs are structured in the AST.

Type the following into iex:

iex> quote do: (5 * 2) - 1 + 7
{:+, [context: Elixir, import: Kernel],
[{:-, [context: Elixir, import: Kernel],

[{:*, [context: Elixir, import: Kernel], [5, 2]}, 1]}, 7]}

iex> quote do
...> defmodule MyModule do
...> def hello, do: "World"
...> end
...> end
{:defmodule, [context: Elixir, import: Kernel],
[{:__aliases__, [alias: false], [:MyModule]},
[do: {:def, [context: Elixir, import: Kernel],

[{:hello, [context: Elixir], Elixir}, [do: "World"]]}]]}

You can see that a stacking tuple was produced from each quoted expression.
Our first example shows the familiar structures used by our Math.say macro,
but multiple tuples are stacked into an embedded tree to represent the entire

Chapter 1. The Language of Macros • 8

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

expression. The result of the second example shows how an entire Elixir
module is represented by a simple AST.

All along, the code you’ve written in Elixir has been represented by this simple
uniform structure. Understanding this structure requires just a few simple
rules. All Elixir code is represented as a series of three-element tuples with
the following format:

• The first element is an atom denoting the function call, or another tuple,
representing a nested node in the AST.

• The second element represents metadata about the expression.
• The third element is a list of arguments for the function call.

Let’s apply this insight to break down the AST of (5 * 2) - 1 + 7 in our previous
example:

iex(1)> quote do: (5 * 2) - 1 + 7
{:+, [context: Elixir, import: Kernel],
[{:-, [context: Elixir, import: Kernel],

[{:*, [context: Elixir, import: Kernel], [5, 2]}, 1]}, 7]}

We can see that the AST forms a tree of functions and arguments. Let’s format
this output to better see the tree structure it represents.

Let’s start from the end of the AST and work our way up. The root AST node
is the + operator, and its arguments are the number 7 combined with another
nested node in the tree. We can see that the nested nodes contain our (5 * 2)
expression, whose results are applied to the - 1 branch. You also might recall
that 5 * 2 in Elixir is just syntactic sugar for Kernel.*(5, 2). This makes our
quoted results even easier to decode. The atom :* is the function call to per-
form, and the metadata tells us that it has been imported from Kernel. The last
element [5, 2] is the list of arguments for the Kernel.*/2 function. Entire programs
are represented in this way as a simple tree of Elixir tuples.

report erratum • discuss

The Abstract Syntax Tree—Demystified • 9

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

High-Level Syntax vs. Low-level AST
To understand the design decisions behind Elixir’s syntax and the AST, it’s
helpful to compare it to other languages where the AST takes center stage.
In some languages, such as flavors of Lisp (see http://common-lisp.net), source is
written directly as an AST, using parentheses to form expressions. If you look
closely, you can see how Elixir operates at a layer just above this format.

Elixir (metadata truncated):Lisp:

quote do: 2 * 3 + 1(+ (* 2 3) 1)
{:+, _, [{:*, _, [2, 3]}, 1]}

If you compare the Elixir AST with Lisp source code, you can see that the
structure is nearly identical if we replaced brackets with parentheses. The
beauty of Elixir is that the transformation from high-level source to low-level
AST requires only a simple quote invocation. With Lisp, you have all the power
of a programmable AST at the cost of a less natural and flexible syntax. José’s
revolutionary insight was to separate the syntax from the AST. In Elixir, you
get the best of both worlds: a programmable AST with a high-level syntax to
perform all the work.

AST Literals
When you begin exploring how Elixir source is represented by the AST,
sometimes the results of quoted expressions can be confusing and can appear
irregular. You can avoid confusion by realizing that several literals in Elixir
have the same representation within the AST and high-level source. This
includes atoms, integers, floats, lists, strings, and any two-element tuples
containing the former types. For example, all of the following literals return
themselves when quoted:

iex> quote do: :atom
:atom
iex> quote do: 123
123
iex> quote do: 3.14
3.14
iex> quote do: [1, 2, 3]
[1, 2, 3]
iex> quote do: "string"
"string"
iex> quote do: {:ok, 1}
{:ok, 1}
iex> quote do: {:ok, [1, 2, 3]}
{:ok, [1, 2, 3]}

Chapter 1. The Language of Macros • 10

report erratum • discuss

http://common-lisp.net
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

If we pass any of the previous examples to a macro, the macro receives the
literal arguments instead of an abstract representation. If we quote other
types, you can see that an abstract form is returned.

iex> quote do: %{a: 1, b: 2}
{:%{}, [], [a: 1, b: 2]}
iex> quote do: Enum
{:__aliases__, [alias: false], [:Enum]}

Our quoted results show the two different ways Elixir types are represented
in the AST. Some values are passed through as is, while more complex types
are returned as a quoted expression. It’s helpful to keep AST literals in mind
when writing macros to avoid confusion about whether our arguments are
received in abstract form.

Now that we’ve laid a foundation by uncovering the structure of the AST, it’s
time to move on to code-generation exercises and apply our new insight. Next,
we’ll explore how to transform the AST using Elixir’s macro system.

Macros: The Building Blocks of Elixir
It’s time to get our hands dirty and see what macros are all about. You’ve
been promised custom language features, so let’s start small by re-creating
an essential Elixir feature. From there, we’ll expose a few fundamental macro
features and see how the AST ties in.

Re-Creating Elixir’s unless Macro
Let’s pretend for a moment that Elixir lacks a built-in unless construct. In most
languages, we would have to settle for if ! expressions and learn to accept this
syntactic shortcoming.

Fortunately for us, Elixir isn’t like most languages. Let’s define our own unless
macro, using if as a building block of our implementation. Macros must be
defined within modules, so let’s define a ControlFlow module. Head back to your
editor and create the following unless.exs file:

macros/unless.exs
defmodule ControlFlow doLine 1

defmacro unless(expression, do: block) do2

quote do3

if !unquote(expression), do: unquote(block)4

end5

end6

end7

Now open up iex in the same directory and let’s try it out:

report erratum • discuss

Macros: The Building Blocks of Elixir • 11

http://media.pragprog.com/titles/cmelixir/code/macros/unless.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> c "unless.exs"
[ControlFlow]

iex> require ControlFlow
nil

iex> ControlFlow.unless 2 == 5, do: "block entered"
"block entered"

iex> ControlFlow.unless 5 == 5 do
...> "block entered"
...> end
nil

We must first require ControlFlow before invoking its macros in cases where the
module hasn’t already been imported. Since macros receive the AST represen-
tation of arguments, we can accept any valid Elixir expression as the first
argument to unless on line 2. In our second argument, we can pattern match
directly on the provided do/end block and bind its AST value to a variable.
Remember, a macro’s purpose in life is to take in an AST representation and
return an AST representation, so we immediately begin a quote to return an
AST. Within the quote, we perform a single line of code generation, transforming
the unless keyword into an if ! expression:

quote do
if !unquote(expression), do: unquote(block)

end

This transformation is referred to as macro expansion. The final AST returned
from unless is expanded within the caller’s context at compile time. The pro-
duced code will contain if ! expressions anywhere unless was used. Here we
also used the unquote macro that we first saw in our Math.say definition.

unquote
The unquote macro allows values to be injected into an AST that is being defined.
You can think of quote/unquote as string interpolation for code. If you were
building up a string and needed to inject the value of a variable into that
string, you would interpolate it. The same goes when constructing an AST.
We use quote to begin generating an AST and unquote to inject values from an
outside context. This allows the outside bound variables, expression and block,
to be injected directly into our if ! transformation.

Let’s try this out. We’ll use Code.eval_quoted to directly evaluate an AST and
return the result. Enter the following series of expressions into iex and
examine the differences as we evaluate each variable:

Chapter 1. The Language of Macros • 12

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> number = 5Line 1

5-

-

iex> ast = quote do-

...> number * 105

...> end-

{:*, [context: Elixir, import: Kernel], [{:number, [], Elixir}, 10]}-

-

iex> Code.eval_quoted ast-

** (CompileError) nofile:1: undefined function number/010

-

iex> ast = quote do-

...> unquote(number) * 10-

...> end-

{:*, [context: Elixir, import: Kernel], [5, 10]}15

-

iex> Code.eval_quoted ast-

{50, []}-

In our first quoted result on line 7, notice how the value of number was not
injected into the returned AST. Instead, the AST for a local number reference
was provided, which threw an undefined error when evaluated. To fix this,
we properly injected number into the quoted context by using unquote on line
13. Evaluating the final AST returns the correct result.

With unquote, we have another essential metaprogramming tool under our belt.
The quote and unquote macros pair together to let you build ASTs without
fumbling with the AST by hand.

Macro Expansion
Let’s dive deeper into Elixir’s internals by finding out what exactly happens
to macros at compile time. When the compiler encounters a macro, it recur-
sively expands it until the code no longer contains any macro calls. Use Figure
1, How Elixir Expands Macros, on page 14 to take a high-level walk through
this process for a simple ControlFlow.unless expression.

The diagram shows the compiler’s decision process as it encounters macros
in the AST. If it finds a macro, it expands it. If the expanded code also contains
macros, those get expanded as well. This expansion recursively executes until
all macros have been fully expanded into their final generated code. Now
imagine the following block of code being encountered by the compiler:

ControlFlow.unless 2 == 5 do
"block entered"

end

report erratum • discuss

Macros: The Building Blocks of Elixir • 13

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Figure 1—How Elixir Expands Macros

We know that our ControlFlow.unless macro generates an if ! expression, so the
compiler would expand the block into the following code:

if !(2 == 5) do
"block entered"

end

Now the compiler sees an if macro and continues expanding the code. You
may not know it yet, but Elixir’s if macro is implemented internally as a case
expression. So the final expansion becomes the basic case block.

case !(2 == 5) do
x when x in [false, nil] ->

nil
_ ->

"block entered"
end

Chapter 1. The Language of Macros • 14

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Now that the code no longer contains expandable macros, the compiler is
finished and would continue compiling the rest of our program. The case macro
is a member of a small set of special macros, located in the aptly named Ker-
nel.SpecialForms. These macros are fundamental building blocks in Elixir that
cannot be overridden. They also represent the end of the road for macro
expansion.

Let’s head back over to iex and see how the AST is expanded during our pre-
vious walkthrough. We’ll use Macro.expand_once to expand an AST a single time
while capturing the result of each step. Be sure to launch iex in the same
directory that you created your unless.exs file and enter the following series of
expressions:

iex> c "macros/unless.exs"Line 1

[ControlFlow]-

-

iex> require ControlFlow-

nil5

-

iex> ast = quote do-

...> ControlFlow.unless 2 == 5, do: "block entered"-

...> end-

{{:., [], [{:__aliases__, [alias: false], [:ControlFlow]}, :unless]}, [],10

[{:==, [context: Elixir, import: Kernel], [2, 5]}, [do: "block entered"]]}-

-

iex> expanded_once = Macro.expand_once(ast, __ENV__)-

{:if, [context: ControlFlow, import: Kernel],-

[{:!, [context: ControlFlow, import: Kernel],15

[{:==, [context: Elixir, import: Kernel], [2, 5]}]}, [do: "block entered"]]}-

-

iex> expanded_fully = Macro.expand_once(expanded_once, __ENV__)-

{:case, [optimize_boolean: true],-

[{:!, [context: ControlFlow, import: Kernel],20

[{:==, [context: Elixir, import: Kernel], [2, 5]}]},-

[do: [{:->, [],-

[[{:when, [],-

[{:x, [counter: 4], Kernel},-

{:in, [context: Kernel, import: Kernel],25

[{:x, [counter: 4], Kernel}, [false, nil]]}]}], nil]},-

{:->, [], [[{:_, [], Kernel}], "block entered"]}]]]}-

On line 7, we quoted a simple invocation of our unless macro. Next, we used
Macro.expand_once on line 13 to expand the macro a single time. We can see that
expanded_once AST was transformed into an if ! expression, as we implemented
in our unless definition. Finally, we fully expanded the macro on line 18. The
expanded_fully AST verifies that if in Elixir boils down to a case expression as the
fundamental control flow structure.

report erratum • discuss

Macros: The Building Blocks of Elixir • 15

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

These exercises showed off the building-block nature of Elixir’s macro system.
We went three levels deep into code construction and relied on simple AST
transformations to produce the final result. Elixir code is macros all the way
down. This is what allows the language itself to be mostly built from the same
macros you can write in your own libraries.

If multiple levels of code expansion sound unsafe, you don’t need to worry.
Elixir keeps us safe during macro execution. Let’s see how.

Code Injection and the Caller’s Context
Macros don’t just generate code for the caller, they inject it. We call the place
where code is injected a context. A context is the scope of the caller’s bindings,
imports, and aliases. To the caller of a macro, the context is precious. It holds
your view of the world, and by virtue of immutability, you don’t expect your
variables, imports, and aliases to change out from underneath you.

Elixir macros strike an excellent balance for safeguarding your context while
allowing explicit access where neccesary. Let’s see how to inject code safely
and the available tools to reach into the caller’s context when necessary.

Injecting Code
Because macros are all about injecting code, you have to understand the two
contexts in which a macro executes, or you risk generating code in the wrong
place. One is the context of the macro definition, and the other is the caller’s
invocation of the macro. Let’s see this in action by defining a definfo macro
that prints a module’s information in a friendly format while showing what
context the code is executing in. Create a callers_context.exs file and type this in:

macros/callers_context.exs
defmodule Mod doLine 1

defmacro definfo do-

IO.puts "In macro's context (#{__MODULE__})."-

-

quote do5

IO.puts "In caller's context (#{__MODULE__})."-

-

def friendly_info do-

IO.puts """-

My name is #{__MODULE__}10

My functions are #{inspect __info__(:functions)}-

"""-

end-

end-

end15

end-

Chapter 1. The Language of Macros • 16

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/callers_context.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

-

defmodule MyModule do-

require Mod-

Mod.definfo20

end-

Now let’s jump back to iex and load it:

iex> c "callers_context.exs"
In macro's context (Elixir.Mod).
In caller's context (Elixir.MyModule).
[MyModule, Mod]

iex> MyModule.friendly_info
My name is Elixir.MyModule
My functions are [friendly_info: 0]

:ok

We can see from the standard output that we entered both the macro and
the caller’s context when the module was compiled. Before the macro was
expanded, we entered the definfo context on line 3. Next, our generated AST
was expanded within the MyModule caller on line 6, where IO.puts was directly
injected into the module body, along with the friendly_info function definition.

If you find yourself losing track of what context your code is executing in, it’s
often a sign that your code generation is too complex. You can avoid confusion
by keeping macro definitions as short and straightforward as possible.

Hygiene Protects the Caller’s Context
Elixir has the concept of macro hygiene. Hygiene means that variables,
imports, and aliases that you define in a macro do not leak into the caller’s
own definitions. We must take special consideration with macro hygiene when
expanding code, because sometimes it is a necessary evil to implicitly access
the caller’s scope in an unhygienic way.

When I first learned of hygiene, the name itself sounded very awkward and
confusing—it wasn’t a term I had heard before to describe code. But after an
introduction, the idea of cleanliness and pollution-free execution really clicked.
This safeguard not only prevents accidental namespace clashes, but also
requires us to be explicit about reaching into the caller’s context.

We’ve already seen how code injection works, but we haven’t tried defining
or accessing variables between different contexts. Let’s explore a few examples
to see how hygiene works. We’ll use Code.eval_quoted again to evaluate an AST.
Key in the following code block in iex:

report erratum • discuss

Code Injection and the Caller’s Context • 17

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> ast = quote do
...> if meaning_to_life == 42 do
...> "it's true"
...> else
...> "it remains to be seen"
...> end
...> end
{:if, [context: Elixir, import: Kernel],
[{:==, [context: Elixir, import: Kernel],

[{:meaning_to_life, [], Elixir}, 42]},
[do: "it's true", else: "it remains to be seen"]]}

iex> Code.eval_quoted ast, meaning_to_life: 42
** (CompileError) nofile:1: undefined function meaning_to_life/0

meaning_to_life wasn’t available in the scope of our expression, even though it
was passed as a binding to Code.eval_quoted. Elixir takes the safe approach of
requiring you to explicitly allow a macro to define bindings in the caller’s
context. This design forces you to think about whether violating hygiene is
necessary.

Overriding Hygiene
We can use the var! macro to explicitly override hygiene within a quoted
expression. Let’s re-create our previous iex session and use var! to reach into
the caller’s context:

iex> ast = quote do
...> if var!(meaning_to_life) == 42 do
...> "it's true"
...> else
...> "it remains to be seen"
...> end
...> end
{:if, [context: Elixir, import: Kernel],
[{:==, [context: Elixir, import: Kernel],

[{:var!, [context: Elixir, import: Kernel],
[{:meaning_to_life, [], Elixir}]}, 42]},

[do: "it's true", else: "it remains to be seen"]]}

iex> Code.eval_quoted ast, meaning_to_life: 42
{"it's true", [meaning_to_life: 42]}

iex> Code.eval_quoted ast, meaning_to_life: 100
{"it remains to be seen", [meaning_to_life: 100]}

Let’s try this out with macros by creating a module that can override a variable
that has been previously defined by the caller. Key this into iex and follow
along:

Chapter 1. The Language of Macros • 18

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

macros/setter1.exs
iex> defmodule Setter do
...> defmacro bind_name(string) do
...> quote do
...> name = unquote(string)
...> end
...> end
...> end
{:module, Setter, ...

iex> require Setter
nil
iex> name = "Chris"
"Chris"
iex> Setter.bind_name("Max")
"Max"
iex> name
"Chris"

The name variable was not clobbered by the macro because hygiene protected
the caller’s scope. Again, we can use var! to allow our macro to produce an
AST that has access to the caller’s bindings when expanded:

macros/setter2.exs
iex> defmodule Setter do
...> defmacro bind_name(string) do
...> quote do
...> var!(name) = unquote(string)
...> end
...> end
...> end
{:module, Setter, ...

iex> require Setter
nil
iex> name = "Chris"
"Chris"
iex> Setter.bind_name("Max")
"Max"
iex> name
"Max"

By using var!, we were able to override hygiene to rebind name to a new value.
Overriding hygiene is useful on a case-by-case basis. Certain advanced use
cases require overriding hygiene, but it should be avoided where possible
because it can mask implementation details and add implicit behavior that
is unknown to the caller. We’ll selectively override hygiene in future exercises,
but only where absolutely necessary.

report erratum • discuss

Code Injection and the Caller’s Context • 19

http://media.pragprog.com/titles/cmelixir/code/macros/setter1.exs
http://media.pragprog.com/titles/cmelixir/code/macros/setter2.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

When working with macros, it’s important to be aware of what context a macro
is executing in and to respect hygiene. We experimented with explicitly over-
riding hygiene and explored the different contexts a macro enters throughout
its lifecycle. We’ll use these virtues to drive our implementations throughout
the rest of this book.

Further Exploration
We’ve unlocked the secrets of the abstract syntax tree that underlies all the
Elixir code you write. Through quoting expressions, manipulating ASTs, and
defining macros, you’re well on your way to advanced metaprogramming. In
the coming chapter, we’ll be building more advanced macros to create custom
language constructs, and we’ll write a mini testing framework that can infer
meaning about Elixir expressions.

On your own, try expanding on the topics we covered. Here are a couple of
ideas to get you started:

• Define an unless macro without depending on Kernel.if, by using other con-
structs in Elixir for control flow.

• Define a macro that returns a raw AST that you’ve written by hand, instead
of using quote for code generation.

Chapter 1. The Language of Macros • 20

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

CHAPTER 2

Extending Elixir with Metaprogramming
Macros aren’t just limited to the simple transformations you’ve done so far.
They can be used to perform powerful code generation, save time, eliminate
boilerplate, and produce elegant APIs. Once you realize that most of the Elixir
standard library is implemented as macros, the possibilities really click about
just how much freedom you have to extend the language. This can turn your
language wish lists into immediate realities. Throughout this chapter, you’ll
find out how.

To continue our journey, we’ll add brand-new control flow features to Elixir,
extend the module system, and create a testing framework. Elixir puts all the
building blocks of the language at our fingertips. It’s time to start building.

Custom Language Constructs
You’ve seen that macros allow you to effectively create your own keywords in
the language, but they also allow Elixir to be flexible against future require-
ments. For example, instead of waiting for the language to add a parallel for
comprehension, you could extend the built-in for macro with a new para macro
that spawns processes to run the comprehensions in parallel. It could look
something like this:

para(for i <- 1..10 do: i * 10)

If implemented, para would transform the for AST into code that runs the
comprehension in parallel. The original code would gain just one natural para
invocation while executing the built-in comprehension in an entirely new way.
José gave us a solid language foundation that we can craft to meet our needs.

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Re-Creating the if Macro
Let’s try out this idea. Consider the if macro from our unless example in the
code on page 11. The if macro might appear special, but we know it’s a macro
like any other. Let’s re-create Elixir’s if macro to get a taste of how easy it is
to implement features using the building blocks of the language.

Create an if_recreated.exs file and key this in:

macros/if_recreated.exs
defmodule ControlFlow do

defmacro my_if(expr, do: if_block), do: if(expr, do: if_block, else: nil)
defmacro my_if(expr, do: if_block, else: else_block) do

quote do
case unquote(expr) do

result when result in [false, nil] -> unquote(else_block)
_ -> unquote(if_block)

end
end

end
end

Now, load it up in iex and test a couple of expressions:

iex> c "if_recreated.exs"
[MyIf]

iex> require ControlFlow
nil
iex> ControlFlow.my_if 1 == 1 do
...> "correct"
...> else
...> "incorrect"
...> end
"correct"

In fewer than ten lines of code, we re-created an essential construct in Elixir
using case to handle control flow.

Now that you’ve had a taste of first-class macros, let’s make things more
interesting by creating an entirely new language feature. We’ll use this same
technique where existing macros will serve as building blocks of our imple-
mentation.

Adding a while Loop to Elixir
You may have noticed that Elixir lacks the familiar while loop that is found in
most languages. It’s not an essential feature, but sometimes it would be

Chapter 2. Extending Elixir with Metaprogramming • 22

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/if_recreated.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

convenient to have around. If you find yourself longing for missing features,
remember that Elixir was designed to be extensible. The language is small
because it doesn’t have to include all common features. If we need a while loop,
we have all the power to create it. Let’s make it happen.

We’ll extend Elixir with a new while macro that loops repeatedly with the abil-
ity to break out of its own execution. Here’s an example of the feature we’re
going to create:

while Process.alive?(pid) do
send pid, {self, :ping}
receive do

{^pid, :pong} -> IO.puts "Got pong"
after 2000 -> break
end

end

When creating a feature like this, it’s best to start by choosing which Elixir
building blocks will be required to accomplish your high-level goals. Our main
issue is that Elixir has no built-in way to loop infinitely. So how are we to
handle a repetitive loop without such a feature? We cheat. We can get creative
by consuming an infinite stream with for to achieve the same effect as an
infinite loop.

Head back to your editor and create a while.exs file. We’ll start by defining a
while macro within a Loop module:

macros/while_step1.exs
defmodule Loop do

defmacro while(expression, do: block) do
quote do

for _ <- Stream.cycle([:ok]) do
if unquote(expression) do

unquote(block)
else

break out of loop
end

end
end

end
end

We began by pattern matching directly on the provided expression and block
of code. Like all macros, we need to produce an AST for the caller, so we
started a quoted expression. Next, we effectively created an infinite loop by
consuming the infinite stream, Stream.cycle([:ok]). Within our for block, we
injected the expression into an if/else clause to conditionally execute the provided

report erratum • discuss

Custom Language Constructs • 23

http://media.pragprog.com/titles/cmelixir/code/macros/while_step1.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

block of code. We haven’t yet provided a way to break out of execution, but
let’s experiment with our infinite loop in iex to make sure we’re on the right
track.

Go ahead and execute your file in iex, but be ready to trigger Control-C to break
out of the infinite loop we’ve created:

iex(1)> c "while.exs"
[Loop]
iex(2)> import Loop
nil
iex(3)> while true do
...(3)> IO.puts "looping!"
...(3)> end
looping!
looping!
looping!
looping!
looping!
looping!
...
^C^C

Our first step is complete. We were able to repeatedly execute a block of code
given an expression. Now we need the ability to break out of execution once
the expression is no longer true. Elixir’s for comprehension has no built-in
way to terminate early, but with a careful try/catch block, we can throw a value
to stop execution. Let’s throw and catch a :break value to halt the infinite loop.

Update your Loop module with the following code:

macros/while_step2.exs
defmodule Loop doLine 1

-

defmacro while(expression, do: block) do-

quote do-

try do5

for _ <- Stream.cycle([:ok]) do-

if unquote(expression) do-

unquote(block)-

else-

throw :break10

end-

end-

catch-

:break -> :ok-

end15

end-

end-

end-

Chapter 2. Extending Elixir with Metaprogramming • 24

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/while_step2.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

On line 5, we wrapped our entire for comprehension within a try/catch block.
Next, we simply threw a :break value on line 10 and caught the value on line
14 to break out of the infinite loop. Let’s see it in action in iex:

iex> c "while.exs"
[Loop]
iex> import Loop

iex> run_loop = fn ->
...> pid = spawn(fn -> :timer.sleep(4000) end)
...> while Process.alive?(pid) do
...> IO.puts "#{inspect :erlang.time} Stayin' alive!"
...> :timer.sleep 1000
...> end
...> end
#Function<20.90072148/0 in :erl_eval.expr/5>

iex> run_loop.()
{8, 11, 15} Stayin' alive!
{8, 11, 16} Stayin' alive!
{8, 11, 17} Stayin' alive!
{8, 11, 18} Stayin' alive!
:ok
iex>

We now have a functioning while loop. Careful use of throw allows us to break
out of execution whenever the while expression is no longer true. Let’s provide
a break function to allow the caller to explicitly terminate execution:

macros/while.exs
defmodule Loop doLine 1

-

defmacro while(expression, do: block) do-

quote do-

try do5

for _ <- Stream.cycle([:ok]) do-

if unquote(expression) do-

unquote(block)-

else-

Loop.break10

end-

end-

catch-

:break -> :ok-

end15

end-

end-

-

def break, do: throw :break-

end20

report erratum • discuss

Custom Language Constructs • 25

http://media.pragprog.com/titles/cmelixir/code/macros/while.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

On line 19, we defined a break function for the caller that throws the :break
value. The caller could throw the value, but providing a high-level break function
abstracts the internal implementation and unifies the termination with the
while macro. Let’s head over to iex to experiment with our final implementation:

iex> c "while.exs"
[Loop]

iex> import Loop
nil

iex>
pid = spawn fn ->

while true do
receive do
:stop ->

IO.puts "Stopping..."
break

message ->
IO.puts "Got #{inspect message}"

end
end

end
#PID<0.93.0>

iex> send pid, :hello
Got :hello
:hello

iex> send pid, :ping
Got :ping
:ping

iex> send pid, :stop
Stopping...
:stop

iex> Process.alive? pid
false

We’ve created an entirely new addition to the language! We used the same
technique that Elixir uses internally by leveraging existing macros as building
blocks. Step by step, we transformed the expression and code block into an
infinite loop with conditional termination.

This kind of extension is what Elixir is all about. Next, we’ll use AST introspec-
tion for smarter assertions and create a mini testing framework.

Chapter 2. Extending Elixir with Metaprogramming • 26

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Smarter Testing with Macros
If you’re familiar with writing tests in most mainstream languages, you know
it can take a while to learn the different assertion functions of testing frame-
works. For example, let’s see how a few basic assertions for popular test
frameworks in Ruby and JavaScript compare to Elixir. You don’t need to be
familiar with these languages; just be mindful of the different assertion APIs.

JavaScript:

expect(value).toBe(true);
expect(value).toEqual(12);
expect(value).toBeGreaterThan(100);

Ruby:

assert value
assert_equal value, 12
assert_operator value, :<=, 100

Elixir:

assert value
assert value == 12
assert value <= 100

Notice how such simple assertions took on arbitrary method and function
names in Ruby and JavaScript? They might read nicely, but they subtly mask
the expression being tested. They also require a new mental model for each
test framework on how assertions should be made for the given expression.

The reason these languages require methods and functions like this is to
ensure relevant failure messages. If an assertion like assert value <= 100 failed
in Ruby, you would only receive a less than helpful “expected true, got false”
test output. By providing unique functions per assertion, the correct failure
messages can be generated, but it comes at a cost of a larger testing API. You
also take on the mental overhead of which function is required each time you
need to write an assertion. There’s a better way.

Macros power Elixir’s ExUnit test framework. As you’ve seen, they give you
access to the internal representation of any Elixir expression. This allows a
single assert macro to peer into the code representation to provide contextual
failure messages. With macros, we can sidestep the arbitrary functions and
assertion rules from other languages because we have access to the meaning
of each expression. We’ll be taking full advantage of Elixir to write a smart
assert macro and create a mini testing framework.

report erratum • discuss

Smarter Testing with Macros • 27

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Supercharged Assertions
The goal for our assert macro is to accept a left-hand side and right-hand side
expression, separated by an Elixir operator, such as assert 1 > 0. If an assertion
fails, we’ll print a helpful failure message based on the expression being
tested. Our macro will peek inside the representation of the assertions in
order to print the correct test output.

Here’s a high-level example of what we want to accomplish:

defmodule Test do
import Assertion
def run

assert 5 == 5
assert 2 > 0
assert 10 < 1

end
end

iex> Test.run
..
FAILURE:

Expected: 10
to be less than: 1

As always, we’ll start small by experimenting in iex with a few example
expressions that our macro will accept:

iex> quote do: 5 == 5
{:==, [context: Elixir, import: Kernel], [5, 5]}

iex> quote do: 2 < 10
{:<, [context: Elixir, import: Kernel], [2, 10]}

A simple numerical comparison yields a straightforward AST. We received
the operator as an atom, representing the Kernel function call to perform, and
the left-hand side and right-hand side values are contained in the list of
arguments. Using this representation, we have everything we need to begin
our assert implementation.

Create an assertion.exs file and add the following code to it:

macros/assert_step1.exs
defmodule Assertion do

{:==, [context: Elixir, import: Kernel], [5, 5]}
defmacro assert({operator, _, [lhs, rhs]}) do

quote bind_quoted: [operator: operator, lhs: lhs, rhs: rhs] do
Assertion.Test.assert(operator, lhs, rhs)

end

Chapter 2. Extending Elixir with Metaprogramming • 28

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/assert_step1.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

end
end

We began by pattern matching directly on the provided AST expression, using
our iex examples to drive our argument match. Next, we generated a single
line of code using our pattern-matched bindings that simply proxies to an
Assertion.Test.assert function that we’ll write in a moment. Here, we also used
bind_quoted for the first time. Before we continue our assert macro, let’s take a
detour to see what bind_quoted is all about.

bind_quoted
The quote macro’s bind_quoted option passes a binding to the block, ensuring
that the outside bound variables are unquoted only a single time. We could
have written our quote block without bind_quoted, but it’s good practice to use
it whenever possible to prevent accidental reevaluation of bindings. For
example, the following blocks of code are equivalent:

quote bind_quoted: [operator: operator, lhs: lhs, rhs: rhs] do
Assertion.Test.assert(operator, lhs, rhs)

end

quote do
Assertion.Test.assert(unquote(operator), unquote(lhs), unquote(rhs))

end

Using bind_quoted here doesn’t gain us much, but let’s imagine a different
example to see why using it is good practice. Imagine if we built our own
Debugger.log macro that executes an expression but calls IO.inspect on the results
only when in debug mode.

Key in this code and save it as debugger.exs:

macros/debugger.exs
defmodule Debugger doLine 1

defmacro log(expression) do-

if Application.get_env(:debugger, :log_level) == :debug do-

quote do-

IO.puts "================="5

IO.inspect unquote(expression)-

IO.puts "================="-

unquote(expression)-

end-

else10

expression-

end-

end-

end-

report erratum • discuss

Smarter Testing with Macros • 29

http://media.pragprog.com/titles/cmelixir/code/macros/debugger.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

We defined a simple Debugger.log macro that accepts an expression. If the
configured :log_level at compile time is :debug, we print a debug output of the
expression on line 6. After printing, we execute the expression as normal on
line 8. Let’s see the issue with this setup by running the code in iex:

iex> c "debugger.exs"
[Debugger]

iex> require Debugger
nil

iex> Application.put_env(:debugger, :log_level, :debug)
:ok

iex> remote_api_call = fn -> IO.puts("calling remote API...") end
#Function<20.90072148/0 in :erl_eval.expr/5>

iex> Debugger.log(remote_api_call.())
=================
calling remote API...
:ok
=================
calling remote API...
:ok
iex>

The remote_api_call.() expression was invoked twice! This is because we acciden-
tally unquoted the expression twice in our log macro. Let’s fix this by using
bind_quoted.

Update your debugger.exs with the following code:

macros/debugger_fixed.exs
defmodule Debugger do

defmacro log(expression) do
if Application.get_env(:debugger, :log_level) == :debug do

quote bind_quoted: [expression: expression] do
IO.puts "================="
IO.inspect expression
IO.puts "================="
expression

end
else
expression

end
end

end

We updated our quote block to use bind_quoted so that expression is unquoted
and bound to a variable a single time. Now let’s try it again in iex:

Chapter 2. Extending Elixir with Metaprogramming • 30

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/debugger_fixed.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> c "debugger_fixed.exs"
[Debugger]

iex> Debugger.log(remote_api_call.())
calling remote API...
=================
:ok
=================
:ok
iex>

Our function call is now executed only a single time. Using bind_quoted will
keep you safe from accidental reevaluations. It also cleans up your quote
blocks since you don’t have to use unquote for every injected binding. One thing
to keep in mind when using bind_quoted is that unquote is disabled. You won’t
be able to use the unquote macro unless you explicitly pass the unquote: true
option to quote. Now that we know how bind_quoted works, let’s continue our
Assertion framework.

Leveraging the VM’s Pattern Matching Engine
Now that our assert macro is in place, we can implement the proxy assert
functions in a new Assertion.Test module. The Assertion.Test module will carry out
the work of performing the assertions and running our tests. When you find
yourself at a stage in code where you’ve proxied out to a function that you
are about to implement, try to think about how pattern matching can help
guide your implementation. Let’s see how to make the Virtual Machine do as
much work for us as possible while helping to keep our code clear and concise.

Update your assertion.exs file with the following code:

macros/assert_step2.exs
defmodule Assertion doLine 1

-

defmacro assert({operator, _, [lhs, rhs]}) do-

quote bind_quoted: [operator: operator, lhs: lhs, rhs: rhs] do-

Assertion.Test.assert(operator, lhs, rhs)5

end-

end-

end-

-

defmodule Assertion.Test do10

def assert(:==, lhs, rhs) when lhs == rhs do-

IO.write "."-

end-

def assert(:==, lhs, rhs) do-

IO.puts """15

FAILURE:-

report erratum • discuss

Smarter Testing with Macros • 31

http://media.pragprog.com/titles/cmelixir/code/macros/assert_step2.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Expected: #{lhs}-

to be equal to: #{rhs}-

"""-

end20

-

def assert(:>, lhs, rhs) when lhs > rhs do-

IO.write "."-

end-

def assert(:>, lhs, rhs) do25

IO.puts """-

FAILURE:-

Expected: #{lhs}-

to be greater than: #{rhs}-

"""30

end-

end-

By generating a single line of code on line 5 to proxy to Assertion.Test.assert, we
let the Virtual Machine’s pattern matching take over to report the result of
each assertion. We also placed the functions under a new Test module so our
Assertion imports won’t leak into the caller’s module. We only want the caller
to import the Assertion macros, so we delegate out to another module to avoid
importing unnecessary functions.

This also highlights an effective approach to macros, where the goal is to
generate as little code as possible within the caller’s context. By proxying to
an outside function, we keep the code generation as straightforward as possi-
ble. As you’ll see later, this approach is pivotal to writing maintainable macros.

To make some assertions, we simply need to write an Assertion.Test.assert defini-
tion for each operator in Elixir and display the relevant failure messages.
First, let’s explore our current implementation in iex. Go ahead and try out a
few assertions of your own:

iex> c "assertion.exs"
[Assertion.Test, Assertion]

iex> import Assertion
nil

iex> assert 1 > 2
FAILURE:

Expected: 1
to be greater than: 2

:ok

iex> assert 5 == 5
.:ok

Chapter 2. Extending Elixir with Metaprogramming • 32

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> assert 10 * 10 == 100
.:ok

To make running our tests more convenient, let’s add a quick MathTest module
to run some assertions and simulate a module being tested:

macros/math_test_import.exs
defmodule MathTest do

import Assertion

def run do
assert 5 == 5
assert 10 > 0
assert 1 > 2
assert 10 * 10 == 100

end
end

iex> MathTest.run
..FAILURE:

Expected: 1
to be greater than: 2

.:ok

The beginnings of a test framework are steadily taking shape, but there’s a
problem with our implementation. Forcing users to implement their own run/0
function isn’t terribly convenient. It would also be nice to provide a way to
group test cases by name or description.

Next, we will expand on our simple assert macro, creating the beginnings of a
testing DSL. Domain-specific languages are covered extensively in Chapter
5, Creating an HTML Domain-Specific Language, on page 75, and this is just
our first taste.

Extending Modules
A core purpose of macros is to inject code into modules to extend their
behavior, define functions, and perform any other code generation that’s
required. For our Assertion framework, our goal is to extend other modules with
a test macro. The macro will accept a test-case description as a string, followed
by a block of code where assertions can be made. Failure messages will be
prefixed by the description to help debug the failing test cases. We’ll also
define the run/0 function automatically for the caller so that all test cases can
be executed by a single function call.

report erratum • discuss

Extending Modules • 33

http://media.pragprog.com/titles/cmelixir/code/macros/math_test_import.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Our goal throughout this section is to produce the following testing DSL,
which extends any module with our mini testing framework. Take a look at
this code, but don’t worry about keying it in just yet:

defmodule MathTest doLine 1

use Assertion-

-

test "integers can be added and subtracted" do-

assert 1 + 1 == 25

assert 2 + 3 == 5-

assert 5 - 5 == 10-

end-

-

test "integers can be multiplied and divided" do10

assert 5 * 5 == 25-

assert 10 / 2 == 5-

end-

end-

15

iex> MathTest.run-

..-

===-

FAILURE: integers can be added and subtracted-

===20

Expected: 0-

to be equal to: 10-

..:ok-

On line 2, we see use for the first time. We’ll talk more about that in a moment.
To achieve our testing goals, we need to provide a way for our Assertion module
to generate a bit of code within the caller’s context. In our case, we need to
define a run/0 function automatically for users, within their module’s context,
that performs the test-case evaluation. Let’s get to work.

Module Extension Is Simply Code Injection
Most metaprogramming in Elixir is done within module definitions to extend
other modules with extra functionality. We briefly experimented with module
extension in Code Injection and the Caller’s Context, on page 16; now let’s see
what it’s all about.

Let’s explore how we can extend modules by using only the tools you’ve learned
so far. In the process, you’ll get a better understanding of how Elixir module
extension works internally.

Let’s write an extend macro that can inject our stubbed run/0 definition in the
context of another module. Create a module_extension_custom.exs file and follow
along in your editor:

Chapter 2. Extending Elixir with Metaprogramming • 34

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

macros/module_extension_custom.exs
defmodule Assertion doLine 1

...-

defmacro extend(options \\ []) do-

quote do-

import unquote(__MODULE__)5

-

def run do-

IO.puts "Running the tests..."-

end-

end10

end-

...-

end-

-

defmodule MathTest do15

require Assertion-

Assertion.extend-

end-

Now run the code in iex:

iex> c "module_extension_custom.exs"
[MathTest]

iex> MathTest.run
Running the tests...
:ok

On line 3, we were able to inject a stubbed run/0 function directly into the
MathTest module via our Assertion.extend macro. Assertion.extend is just a regular
macro that returned an AST containing the run/0 definition. This example
underlines the building-block nature of Elixir’s code construction. With no
other mechanism than defmacro and quote, we defined a function within
another module!

use: A Common API for Module Extension
One reoccurring theme that you may have noticed in many Elixir libraries is
the prevalence of the use SomeModule syntax. You have probably typed it many
times in your own projects without fully understanding what it does. The use
macro serves the simple but powerful purpose of providing a common API for
module extension. use SomeModule simply invokes the SomeModule.__using__/1 macro.
By providing a common API for extension, this little macro will be the center
of the metaprogramming we’ll perform throughout the rest of this book.

report erratum • discuss

Extending Modules • 35

http://media.pragprog.com/titles/cmelixir/code/macros/module_extension_custom.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Let’s rewrite the previous example with use to take advantage of Elixir’s com-
mon extension API. Update your module_extension_custom.exs file with the following
code:

macros/module_extension_use.exs
defmodule Assertion doLine 1

...-

defmacro __using__(_options) do-

quote do-

import unquote(__MODULE__)5

-

def run do-

IO.puts "Running the tests..."-

end-

end10

end-

...-

end-

-

defmodule MathTest do15

use Assertion-

end-

Now let’s try it out:

iex> MathTest.run
Running the tests...
:ok

On lines 3 and 16, we leveraged use and __using__ to extend the MathTest module
with Elixir’s common API. The result is identical to our original Assertion.extend
example, but staying within Elixir’s common API is idiomatic and flexible to
future changes.

The neat thing about the use macro is that it feels like an untouchable keyword,
but in reality it’s just a macro that does a bit of code injection like our own
extend definition. The fact that use is just a regular macro really shows off how
true Elixir stays to being a small language built by macros. With our run/0
stub in place, we’re ready to move on to the test macro.

Using Module Attributes for Code Generation
Before we can implement the test macro, we need to address a missing piece
to our implementation. A user can define multiple test cases, but we have no
way of tracking each test-case definition for inclusion within MathTest.run/0.
Fortunately, Elixir solves this use case via module attributes.

Chapter 2. Extending Elixir with Metaprogramming • 36

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/module_extension_use.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Module attributes allow data to be stored in the module at compile time. They
are often used in places where constants would be applied in other languages,
but Elixir provides other tricks for us to exploit during compilation. By taking
advantage of the accumulate: true option when registering an attribute, we can
keep an appended list of registrations during the compile phase. After the
module is compiled, the attribute contains a list of all registrations that
occurred during compilation. Let’s see how this can be used for our test macro.

Our test macro will accept two arguments: a string description followed by a
keyword list for the do/end code block. Add this latest code to the top of your
original Assertion module within assertion.exs:

macros/accumulated_module_attributes.exs
defmodule Assertion doLine 1

-

defmacro __using__(_options) do-

quote do-

import unquote(__MODULE__)5

Module.register_attribute __MODULE__, :tests, accumulate: true-

def run do-

IO.puts "Running the tests (#{inspect @tests})"-

end-

end10

end-

-

defmacro test(description, do: test_block) do-

test_func = String.to_atom(description)-

quote do15

@tests {unquote(test_func), unquote(description)}-

def unquote(test_func)(), do: unquote(test_block)-

end-

end-

...20

end-

On line 6, we registered a tests attribute with the accumulate option set to true.
On line 8, we inspected the @tests attribute in our stubbed run/0 function. Next,
we defined a test macro, which first converts the test-case description to an
atom so that it can serve as a valid function name. On lines 15 through 18,
we closed the macro by generating a couple of lines of code within the caller’s
context. First, we accumulated the test_func reference and description in the @tests
module attribute.

We finished by defining a function whose name was the description converted
to an atom, and whose function body was everything contained in the do/end
block of the test case. The result of our new macro leaves the caller with an

report erratum • discuss

Using Module Attributes for Code Generation • 37

http://media.pragprog.com/titles/cmelixir/code/macros/accumulated_module_attributes.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

accumulated list of test metadata, as well as defined functions to perform the
test-case evaluation.

Let’s try our new implementation. Create a math_test_step1.exs module with the
following code:

macros/math_test_step1.exs
defmodule MathTest do

use Assertion

test "integers can be added and subtracted" do
assert 1 + 1 == 2
assert 2 + 3 == 5
assert 5 - 5 == 10

end
end

Now let’s run it in iex:

iex> c "assertion.exs"
[Assertion.Test, Assertion]

iex> c "math_test_step1.exs"
[MathTest]

iex> MathTest.__info__(:functions)
["integers can be added and subtracted": 0, run: 0]

iex> MathTest.run
Running the tests ([])
:ok

What happened? It appears our @tests module attribute is empty, even though
it was properly accumulated in the test macro. If we re-examine the __using__
block of our Assertion module, we can see the issue:

defmacro __using__(_options) do
quote do

import unquote(__MODULE__)
Module.register_attribute __MODULE__, :tests, accumulate: true
def run do
IO.puts "Running the tests (#{inspect @tests})"

end
end

end

The location of run/0 reveals the problem. We defined it just after registering
the tests attribute. The run function definition was expanded within the MathTest
module at our use Assertion declaration. The result is that run/0 was expanded
in MathTest before any of the test macro accumulations were registered. We

Chapter 2. Extending Elixir with Metaprogramming • 38

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/math_test_step1.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

need a way to delay macro expansion until after we’ve done some code-gener-
ation work. Elixir provides a before_compile hook for this purpose.

Compile-Time Hooks
Elixir allows us to set a special module attribute, @before_compile, to notify the
compiler that an extra step is required just before compilation is finished.
The @before_compile attribute accepts a module argument where a __before_com-
pile__/1 macro must be defined. This macro is invoked just before compilation
in order to perform a final bit of code generation. Let’s apply this hook to fix
our test macro. Update your Assertion module with these @before_compile hooks:

macros/before_compile.exs
defmodule Assertion doLine 1

-

defmacro __using__(_options) do-

quote do-

import unquote(__MODULE__)5

Module.register_attribute __MODULE__, :tests, accumulate: true-

@before_compile unquote(__MODULE__)-

end-

end-

10

defmacro __before_compile__(_env) do-

quote do-

def run do-

IO.puts "Running the tests (#{inspect @tests})"-

end15

end-

end-

-

defmacro test(description, do: test_block) do-

test_func = String.to_atom(description)20

quote do-

@tests {unquote(test_func), unquote(description)}-

def unquote(test_func)(), do: unquote(test_block)-

end-

end25

...-

end-

Now let’s test in iex:

iex> c "assertion.exs"
[Assertion.Test, Assertion]

iex> c "math_test_step1.exs"
[MathTest]

report erratum • discuss

Compile-Time Hooks • 39

http://media.pragprog.com/titles/cmelixir/code/macros/before_compile.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> MathTest.run
Running the tests (["integers can be added and subtracted":
"integers can be added and subtracted"])
:ok

It works! On line 7, we registered a before_compile attribute hook to have
Assert.__before_compile__/1 invoked just before MathTest is finished being compiled.
This allows our accumulated @tests attribute on line 14 to expand properly
because it was defined after the test-case registrations.

To complete our framework, we now need to implement the run/0 definition to
enumerate all test cases accumulated in @tests and invoke each test function.
Here’s the final code listing with the new run/0 definition. Let’s look at how all
of the parts fit together:

macros/assertion.exs
defmodule Assertion doLine 1

-

defmacro __using__(_options) do-

quote do-

import unquote(__MODULE__)5

Module.register_attribute __MODULE__, :tests, accumulate: true-

@before_compile unquote(__MODULE__)-

end-

end-

10

defmacro __before_compile__(_env) do-

quote do-

def run, do: Assertion.Test.run(@tests, __MODULE__)-

end-

end15

-

defmacro test(description, do: test_block) do-

test_func = String.to_atom(description)-

quote do-

@tests {unquote(test_func), unquote(description)}20

def unquote(test_func)(), do: unquote(test_block)-

end-

end-

-

defmacro assert({operator, _, [lhs, rhs]}) do25

quote bind_quoted: [operator: operator, lhs: lhs, rhs: rhs] do-

Assertion.Test.assert(operator, lhs, rhs)-

end-

end-

end30

-

defmodule Assertion.Test do-

def run(tests, module) do-

Enum.each tests, fn {test_func, description} ->-

Chapter 2. Extending Elixir with Metaprogramming • 40

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/assertion.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

case apply(module, test_func, []) do35

:ok -> IO.write "."-

{:fail, reason} -> IO.puts """-

-

===-

FAILURE: #{description}40

===-

#{reason}-

"""-

end-

end45

end-

-

def assert(:==, lhs, rhs) when lhs == rhs do-

:ok-

end50

def assert(:==, lhs, rhs) do-

{:fail, """-

Expected: #{lhs}-

to be equal to: #{rhs}-

"""55

}-

end-

-

def assert(:>, lhs, rhs) when lhs > rhs do-

:ok60

end-

def assert(:>, lhs, rhs) do-

{:fail, """-

Expected: #{lhs}-

to be greater than: #{rhs}65

"""-

}-

end-

end-

On line 13, we generated run/0 within the using module’s context, waiting until
just before compilation is complete so that our @tests module attribute contains
all the accumulated test metadata. It simply proxies to our Assertion.Test.run/2
function defined on lines 33–46. We refactored our Assertion.Test.assert definitions
to return either :ok or {:fail, reason} instead of printing the assertion results
directly. This allows our run function to report the test results accordingly and
opens up more flexible reporting for future extension. Continuing a trend we
first saw with the original assert macro, our run/0 definition proxies to an outside
function to generate as little code as possible within the caller’s context. Let’s
see it in action:

report erratum • discuss

Compile-Time Hooks • 41

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

macros/math_test_final.exs
defmodule MathTest do

use Assertion
test "integers can be added and subtracted" do

assert 2 + 3 == 5
assert 5 - 5 == 10

end
test "integers can be multiplied and divided" do

assert 5 * 5 == 25
assert 10 / 2 == 5

end
end

iex> MathTest.run
.
===
FAILURE: integers can be added and subtracted
===
Expected: 0
to be equal to: 10

We’ve created a mini testing framework, complete with its own pattern-
matching definitions, testing DSL, and compile-time hooks for advanced code
generation. Most importantly, we generated code responsibly: our macro
expansions are concise and we delegated to outside functions where possible
to keep our code easy to reason about. If you’re wondering how to test macros
themselves, we’ll cover testing in Chapter 4, How to Test Macros, on page 65.

Further Exploration
We journeyed from simple control flow transformations all the way through
a mini testing framework. Along the way, you learned all the tools necessary
to define your own macros and perform AST transformations in a responsible
way. Next, we’ll discover a few advanced compile-time code-generation tech-
niques to create highly performant and maintainable programs.

On your own, explore ways you can enhance your Assertion test framework and
define new macro constructs. Here are a few basic experiments to get you
started:

• Implement assert for every operator in Elixir.
• Add Boolean assertions, such as assert true.
• Implement a refute macro for refutations.

And some that are more advanced:

• Run test cases in parallel within Assertion.Test.run/2 via spawned processes.
• Add reports for the module. Include pass/fail counts and execution time.

Chapter 2. Extending Elixir with Metaprogramming • 42

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/math_test_final.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

CHAPTER 3

Advanced Compile-Time Code Generation
So far we’ve performed compile-time code generation through careful use of
macros. Now let’s shift gears and exploit Elixir’s module system. With advanced
metaprogramming, we can embed data and behavior within modules directly
from outside sources of information. This technique can remove countless
lines of boilerplate, while producing highly optimized programs. We’ll start
by exploring how Elixir embeds an entire unicode database at compile time
for its robust Unicode support. Next, we’ll build MIME-type validation and
internationalization libraries, while applying compile-time optimizations that
aren’t possible in many languages. Knowing when and where to use this
technique will allow us to construct fast, maintainable programs in strikingly
few lines of code.

Generating Functions from External Data
Turning raw data into code might sound impractical, but it’s an extremely
nice solution to a number of problems. Ever wonder how Elixir manages its
fantastic String Unicode support? The way it goes about it is my favorite
metaprogramming example to date. The String.Unicode module of the standard
library dynamically generates thousands of function definitions from external
data when compiled. These generated functions pattern match on all known
Unicode characters to achieve the best Unicode support in languages today.
Let’s look inside the String.Unicode module to understand how Elixir makes this
happen.

Instead of manually mapping tens of thousands of Unicode code points into
an Elixir data structure, a UnicodeData.txt file is checked into the Elixir source
repository, which contains every known Unicode code-point mapping. This
dataset is read in at compile time to produce function definitions that handle
Unicode conversions. Here’s an overview of how it works:

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

UnicodeData.txt snippet:

...
00C7;LATIN CAPITAL LETTER C WITH CEDILLA;Lu;0;L;0043 0327;...
00C8;LATIN CAPITAL LETTER E WITH GRAVE;Lu;0;L;0045 0300;...
00C9;LATIN CAPITAL LETTER E WITH ACUTE;Lu;0;L;0045 0301;...
00CA;LATIN CAPITAL LETTER E WITH CIRCUMFLEX;Lu;0;L;0045 0302;...
00CB;LATIN CAPITAL LETTER E WITH DIAERESIS;Lu;0;L;0045 0308;...
...

The UnicodeData.txt file contains 27,000 lines of these semicolon-delimited code-
point mappings. The String.Unicode module opens the file at compile time and
parses the code points into function definitions. The final expansion contains
a function definition per code point for case conversions and other string
transformations. Let’s take a look at what the cross-section of String.Unicode
would look like after its functions have been generated. It should give you a
sense of how generating functions from data files opens up unique pattern-
matching possibilities.

defmodule String.Unicode do
...
def upcase(string), do: do_upcase(string) |> IO.iodata_to_binary
...
defp do_upcase("é" <> rest) do

:binary.bin_to_list("É") ++ do_upcase(rest)
end
defp do_upcase("ć" <> rest) do

:binary.bin_to_list("Ć") ++ do_upcase(rest)
end
defp do_upcase("ü" <> rest) do

:binary.bin_to_list("Ü") ++ do_upcase(rest)
end
...
defp do_upcase(char <> rest) do

:binary.bin_to_list(char) ++ do_upcase(rest)
end
...

end

The compiled module contains thousands of these definitions! When converting
a string like "Thanks José!" to uppercase, String.Unicode simply calls do_upcase/1
recursively for each code point in the string. When "é" is encountered, the
generated function for that code point is matched and returns the uppercase
version. It’s an extremely elegant solution to an otherwise difficult problem.
Let’s break it down to see how the algorithm works.

Chapter 3. Advanced Compile-Time Code Generation • 44

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

By using the Erlang Virtual Machine’s pattern-matching engine, Elixir gains
performant string manipulation in a fraction of the code that would need to
be written by hand. The beauty of this technique is that new unicode charac-
ters can be supported in the future by updating UnicodeData.txt and running
mix compile.

Now that you’ve had a glimpse of the way Elixir takes advantage of code
generation from external data, let’s apply this technique to our own MIME-
type and internationalization libraries.

MIME-Type Conversion in Ten Lines of Code
If you’ve ever written a web service, you’ve probably needed to validate and
convert MIME types to their file extension. For example, when a request comes
into the server with an Accept header of application/javascript, we must know how
to handle this MIME type and render a .js template. To tackle this problem in
most languages, we would store the MIME data in a map and consult the
keyspace for MIME-type conversions. This can become tedious with large
datasets where we would need to convert the data by hand into a format

report erratum • discuss

MIME-Type Conversion in Ten Lines of Code • 45

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

representable within our programs. Fortunately, Elixir makes this easy for
us with just a touch of metaprogramming. Head back over to your editor and
let’s get to work.

Making Use of Existing Datasets
We’ll accomplish our MIME library goals by working smarter, not harder.
Instead of writing a bunch of code by hand, we’ll take a publicly available
MIME-type dataset and generate function heads to perform conversions. Our
solution will require only ten lines of code, while remaining fast and maintain-
able.

We first need to find a MIME-type dataset to serve as the basis of our imple-
mentation. Luckily, a quick Internet search turns up a nicely formatted,
extensive MIME-type text file.1 Let’s take a look at the first five lines of the
file to get an idea of how we can parse it into function definitions. Go ahead
and copy the full mimes.txt file to your own computer:

advanced_code_gen/mimes.txt
application/javascript .js
application/json .json
image/jpeg .jpeg, .jpg
video/jpeg .jpgv

The full mimes.txt contains 685 lines that map standard MIME types to their
file extensions. To parse this file, we can split each line by tab and comma to
obtain the MIME type and file extensions. Let’s define a Mime module to perform
the conversions using the mimes.txt file we just created.

Create a mime.exs file and add this code to it. Be sure your mimes.txt file is
located in the same directory.

advanced_code_gen/mime.exs
defmodule Mime doLine 1

for line <- File.stream!(Path.join([__DIR__, "mimes.txt"]), [], :line) do-

[type, rest] = line |> String.split("\t") |> Enum.map(&String.strip(&1))-

extensions = String.split(rest, ~r/,\s?/)-

5

def exts_from_type(unquote(type)), do: unquote(extensions)-

def type_from_ext(ext) when ext in unquote(extensions), do: unquote(type)-

end-

-

def exts_from_type(_type), do: []10

def type_from_ext(_ext), do: nil-

def valid_type?(type), do: exts_from_type(type) |> Enum.any?-

end-

1. http://www.iana.org/assignments/media-types/media-types.xhtml

Chapter 3. Advanced Compile-Time Code Generation • 46

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/mimes.txt
http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/mime.exs
http://www.iana.org/assignments/media-types/media-types.xhtml
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

In ten lines of code, we created an entire MIME-type conversion and validation
module! On line 2, we read the mimes.txt file line by line and split the MIME
type and file extensions from each. For each line, we defined two func-
tions—one for mapping MIME type to file extension, and the other for mapping
file extension to MIME type. We used the standard def macro to define each
function and unquote to inject our MIME and file extension values. To complete
the module, we defined catch-all clauses for exts_from_type and type_from_ext.
These provide a guaranteed fallback if the generated definitions fail to match.
We finished by defining a valid_type? function that simply delegates to prior
definitions. Let’s test our generated functions in iex:

iex> c "mime.exs"Line 1

[Mime]-

-

iex> Mime.exts_from_type("image/jpeg")-

[".jpeg", ".jpg"]5

-

iex> Mime.type_from_ext(".jpg")-

"image/jpeg"-

-

iex> Mime.valid_type?("text/html")10

true-

-

iex> Mime.valid_type?("text/emoji")-

false-

On lines 4 and 7, we confirmed that our generated functions properly convert
MIME type to file extensions and vice versa. We can also see that our valid_type?
functions correctly validate known MIME types. You might be wondering how
we were able to call unquote outside of a quote block when defining our generated
functions. Elixir supports the idea of unquote fragments. Unquote fragments
allow you to create functions dynamically, like we did in our for comprehension
above.

def exts_from_type(unquote(type)), do: unquote(extensions)
def type_from_ext(ext) when ext in unquote(extensions), do: unquote(type)

We used unquote fragments to define multiple heads of the exts_from_type and
type_from_ext functions, but we can also use them to define function names on
the fly. Consider this block of code:

iex> defmodule Fragments do
...> for {name, val} <- [one: 1, two: 2, three: 3] do
...> def unquote(name)(), do: unquote(val)
...> end
...> end
{:module, Fragments, ...

report erratum • discuss

MIME-Type Conversion in Ten Lines of Code • 47

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> Fragments.one
1

iex> Fragments.two
2

With unquote fragments, we can pass any valid atom to def and dynamically
define a function with that name. We’ll use unquote fragments heavily
throughout the rest of this chapter.

Some of the most enjoyable solutions are the ones that are almost unbelievable
the first time you see them. Using a tiny amount of code, we built for any web
service an essential tool that is fast and maintainable. Future MIME-type
support requires only a small edit to mimes.txt. Fewer lines of code mean fewer
bugs, code paths, and failure scenarios. Defining multiple function heads
leverages the VM’s pattern-matching prowess to do the heavy lifting for us.

Next, we’ll expand on this technique by defining an internationalization library.
But first, there’s one more issue.

Recompiling Modules when External Resources Change
Our Mime module works great, but if we modify the mimes.txt file, our module
won’t be automatically recompiled by mix, Elixir’s build tool.2 This is because
the source file did not change. Elixir provides the @external_resource module
attribute to handle cases where we want to specify compile-time resources
that our module depends on—when the resources change, mix will recompile
our module. Let’s register an @external_resource attribute in our Mime module to
fix this issue.

advanced_code_gen/external_resource.exs
defmodule Mime do

@external_resource mimes_path = Path.join([__DIR__, "mimes.txt"])➤

for line <- File.stream!(mimes_path, [], :line) do
...

end

Now when mimes.txt changes, mix will automatically recompile our Mime module.
The @external_resource is an accumulated attribute, so any number of resources
can be registered on a single module. Use @external_resource any time your
module depends on a non-source file for its body definition. It will save you
time and frustration by properly recompiling dynamically generated modules.

2. http://elixir-lang.org/getting_started/mix_otp/1.html

Chapter 3. Advanced Compile-Time Code Generation • 48

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/external_resource.exs
http://elixir-lang.org/getting_started/mix_otp/1.html
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Building an Internationalization Library
Almost all user-facing applications are best served by an internationalization
layer where language snippets can be stored and referenced programmatically.
Let’s use code generation to produce an internationalization library in fewer
lines of code than you thought possible. This is the most advanced exercise
you’ve done so far, so let’s start by breaking down our implementation into
a rubric that you can use to attack complex metaprogramming problems.

Step 1: Plan Your Macro API
The first step of our Translator implementation is to plan the surface area of
our macro API. This is often called README Driven Development. It helps
tease out our library goals and figure out what macros we need to make them
happen. Our goal is to produce the following API. Save this file as i18n.exs.

advanced_code_gen/i18n.exs
defmodule I18n do

use Translator

locale "en",
flash: [
hello: "Hello %{first} %{last}!",
bye: "Bye, %{name}!"

],
users: [
title: "Users",

]

locale "fr",
flash: [
hello: "Salut %{first} %{last}!",
bye: "Au revoir, %{name}!"

],
users: [
title: "Utilisateurs",

]
end

Eventually we want to be able to call our module like this:

iex> I18n.t("en", "flash.hello", first: "Chris", last: "McCord")
"Hello Chris Mccord!"

iex> I18n.t("fr", "flash.hello", first: "Chris", last: "McCord")
"Salut Chris McCord!"

iex> I18n.t("en", "users.title")
"Users"

report erratum • discuss

Building an Internationalization Library • 49

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/i18n.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

We’ll support use Translator to allow any module to have a dictionary of transla-
tions compiled directly as t/3 function definitions. At minimum, we need to
define a __using__ macro to wire up some imports and attributes, and a locale
macro to handle locale registrations. Head back over to your editor, and let’s
write some code.

Step 2: Implement a Skeleton Module with Metaprogramming Hooks
Our next step is to implement the skeleton of our Translator module by defining
the __using__, __before_compile__, and locale macros that we planned when fleshing
out the surface area of our API. The skeleton will simply set up the compile-
time hooks and module attribute registrations, but delegate the code genera-
tion bits to functions to be implemented later. Defining the metaprogramming
skeleton first will allow us to structure our module in a way that isolates the
advanced code generation to a function. This will keep our implementation
clear and reusable.

Create a translator.exs file with the following skeleton API:

advanced_code_gen/translator_step2.exs
defmodule Translator doLine 1

-

defmacro __using__(_options) do-

quote do-

Module.register_attribute __MODULE__, :locales, accumulate: true,5

persist: false-

import unquote(__MODULE__), only: [locale: 2]-

@before_compile unquote(__MODULE__)-

end-

end10

-

defmacro __before_compile__(env) do-

compile(Module.get_attribute(env.module, :locales))-

end-

15

defmacro locale(name, mappings) do-

quote bind_quoted: [name: name, mappings: mappings] do-

@locales {name, mappings}-

end-

end20

-

def compile(translations) do-

TBD: Return AST for all translation function definitions-

end-

end25

Just like our accumulated @tests attribute in our Assertion module from the
code on page 37, we registered an accumulated @locales attribute on line 5.

Chapter 3. Advanced Compile-Time Code Generation • 50

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_step2.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Next, we wired up the __before_compile__ hook in our Translator.__using__ macro. On
line 13, we added a placeholder to delegate to a compile function to carry out
the code generation from our locale registrations, but we left the compile
implementation for a later step. Finally, we defined our locale macro that will
register a locale name and list of translations to be used by compile in our
__before_compile__ hook.

With the accumulated attribute registrations wired up, we have all the neces-
sary information to produce an AST of t/3 function definitions. If you like
recursion, you’re in for a treat. If not, pay attention and we’ll break it down.

Step 3: Generate Code from Your Accumulated Module Attributes
Let’s begin the bulk of our implementation by transforming the locale regis-
trations into function definitions within our compile placeholder from Step 2.
Our goal is to map our translations into a large AST of t/3 functions. We also
need to add catch-all clauses that return {:error, :no_translation}. This will handle
cases where no translation has been defined for the provided arguments.

Update your compile/1 function with the following code:

advanced_code_gen/translator_step3.exs
def compile(translations) doLine 1

translations_ast = for {locale, mappings} <- translations do-

deftranslations(locale, "", mappings)-

end-

5

quote do-

def t(locale, path, bindings \\ [])-

unquote(translations_ast)-

def t(_locale, _path, _bindings), do: {:error, :no_translation}-

end10

end-

-

defp deftranslations(locales, current_path, mappings) do-

TBD: Return an AST of the t/3 function defs for the given locale-

end15

On line 1, we defined our compile function to carry out the locale code genera-
tion. We used a for comprehension to map the locales into an AST of function
definitions and stored the result in translations_ast for later injection. Next, we
stubbed a deftranslations call that we’ll implement later to define the t/3 functions.
Finally, we produced an AST for the caller on lines 6–10 by combining our
translations_ast with our catch-all functions.

Before we implement deftranslations, load your implementation in iex and let’s
check our progress:

report erratum • discuss

Building an Internationalization Library • 51

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_step3.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> c "translator.exs"
[Translator]

iex> c "i18n.exs"
[I18n]

iex> I18n.t("en", "flash.hello", first: "Chris", last: "McCord")
{:error, :no_translation}

iex> I18n.t("en", "flash.hello")
{:error, :no_translation}

We’re on the right track. Any call to I18n.t returns {:error, :no_translation} because
we haven’t yet generated the functions for each locale. We’ve confirmed that
our catch-all t/3 definitions on line 9 were properly generated. Let’s continue
by implementing deftranslations to recursively walk our locales and define
translation functions.

Fill in your deftranslations function with this code:

advanced_code_gen/translator_step4.exs
defp deftranslations(locale, current_path, mappings) doLine 1

for {key, val} <- mappings do-

path = append_path(current_path, key)-

if Keyword.keyword?(val) do-

deftranslations(locale, path, val)5

else-

quote do-

def t(unquote(locale), unquote(path), bindings) do-

unquote(interpolate(val))-

end10

end-

end-

end-

end-

15

defp interpolate(string) do-

string # TBD interpolate bindings within string-

end-

-

defp append_path("", next), do: to_string(next)20

defp append_path(current, next), do: "#{current}.#{next}"-

We started by mapping over our translation key value pairs. Within our
comprehension on line 4, we first checked whether the value is a keyword
list. This would indicate a nested list of translation mappings, just like we
saw in our original high-level API.

Chapter 3. Advanced Compile-Time Code Generation • 52

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_step4.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

flash: [
hello: "Hello %{first} %{last}!",
bye: "Bye, %{name}!"

],

The :flash key above points to a nested keyword list of translations. To handle
this, we would append "flash" to our accumulated current_path variable, which
we handled by an append_path helper function on lines 20–21. Then we continue
by recursively calling deftranslations until we encounter a string translation. We
used quote on line 7 to generate the t/3 function definitions for each string and
unquote to inject the proper current_path, such as "flash.hello", into the function
clause. Our t/3 body called a stubbed interpolate function that we’ll implement
in a moment to take care of placeholder interpolations.

This required only a handful of lines of code, but the recursion can be a little
mind-bending. Let’s take a break and see where we’re at in iex.

iex> c "translator.exs"
[Translator]

iex> c "i18n.exs"
[I18n]

iex> I18n.t("en", "flash.hello", first: "Chris", last: "McCord")
"Hello %{first} %{last}!"

We’re nearly there. Our t/3 functions were correctly generated, and we just
need to handle variable interpolation to complete our library. You might be
wondering how we can keep track of all this code that we just generated. Like
always, Elixir has us covered. When you start generating large amounts of
code, it’s often necessary to see the final source that is being produced. For
this, you use Macro.to_string.

Macro.to_string: Make Sense of Your Generated Code
Macro.to_string takes an AST and produces a string of the high-level Elixir source.
It’s incredibly helpful when debugging your generated ASTs, especially for
cases where many function heads are generated, such as in our Translator
module. Let’s inspect the generated code that compile has produced so far.

Add the following changes to your Translator module:

advanced_code_gen/macro_to_string.exs
def compile(translations) doLine 1

translations_ast = for {locale, mappings} <- translations do-

deftranslations(locale, "", mappings)-

end-

5

report erratum • discuss

Building an Internationalization Library • 53

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/macro_to_string.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

final_ast = quote do-

def t(locale, path, binding \\ [])-

unquote(translations_ast)-

def t(_locale, _path, _bindings), do: {:error, :no_translation}-

end10

-

IO.puts Macro.to_string(final_ast)-

final_ast-

end-

On line 6, we stored the result of the generated AST in a final_ast binding. Then
on line 12, we printed the entire AST expanded as Elixir source using
Macro.to_string. To finish, we returned the final_ast as the last result to maintain
the compile return signature. Load your file back up in iex, and let’s see the
results of our code generation so far:

iex> c "translator.exs"
[Translator]

iex> c "i18n.exs"
(

def(t(locale, path, bindings \\ []))
[[[def(t("fr", "flash.hello", bindings)) do

"Salut %{first} %{last}!"
end, def(t("fr", "flash.bye", bindings)) do

"Au revoir, %{name}!"
end], [def(t("fr", "users.title", bindings)) do

"Utilisateurs"
end]], [[def(t("en", "flash.hello", bindings)) do

"Hello %{first} %{last}!"
end, def(t("en", "flash.bye", bindings)) do

"Bye, %{name}!"
end], [def(t("en", "users.title", bindings)) do

"Users"
end]]]
def(t(_locale, _path, _bindings)) do

{:error, :no_translation}
end

)
[I18n]
iex>

The results might look a little unusual at first, since our t/3 definitions are
wrapped in a nested list. We see our def clauses within a list because our for
comprehension returns a list of deftranslations ASTs. We could flatten and splice
the list into the final AST, but Elixir doesn’t mind definitions within lists, so
we’ll keep things simple by unquoting the list of definitions.

Chapter 3. Advanced Compile-Time Code Generation • 54

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

It’s a good idea to use Macro.to_string any time you’re generating an AST with
many function definitions. You can see the final expanded code that will be
injected into the caller and ensure that your generated arguments will be
properly pattern matched. Of course, thorough testing is also helpful and
shouldn’t be skipped.

Final Step: Identify Areas for Compile-Time Optimizations
The final step of our Translator module is to interpolate values within the
translation placeholders, such as Bye, %{name}!. While we could generate a
regular expression to be evaluated at runtime, let’s apply a compile-time
optimization. We can generate a function definition that needs to perform
string concatenation only when interpolating values. This will provide a huge
performance boost at runtime. Let’s complete our implementation by defining
interpolate, whose job is to return the AST for our t/3 function bodies with
interpolation where necessary.

advanced_code_gen/translator_final.exs
defp deftranslations(locale, current_path, mappings) doLine 1

for {key, val} <- mappings do-

path = append_path(current_path, key)-

if Keyword.keyword?(val) do-

deftranslations(locale, path, val)5

else-

quote do-

def t(unquote(locale), unquote(path), bindings) do-

unquote(interpolate(val))-

end10

end-

end-

end-

end-

15

defp interpolate(string) do-

~r/(?<head>)%{[^}]+}(?<tail>)/-

|> Regex.split(string, on: [:head, :tail])-

|> Enum.reduce "", fn-

<<"%{" <> rest>>, acc ->20

key = String.to_atom(String.rstrip(rest, ?}))-

quote do-

unquote(acc) <> to_string(Dict.fetch!(bindings, unquote(key)))-

end-

segment, acc -> quote do: (unquote(acc) <> unquote(segment))25

end-

end-

Starting on line 16, we split the translation string by the %{varname} pattern.
Next, we reduce over each string segment and match on any segment starting

report erratum • discuss

Building an Internationalization Library • 55

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_final.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

with %{, which denotes a translation variable. When interpolated variables
occur, we transform the Regex.split into a simple string concatenation AST. We
use Dict.fetch! on the provided bindings variable to ensure the caller supplied all
interpolated values. For regular string segments, we simply concatenate the
accumulated AST. Let’s check our solution using the Macro.to_string trick we
saw earlier:

iex> c "translator.exs"
[Translator]

iex> c "i18n.exs"
(

def(t(locale, path, binding \\ []))
[[[def(t("fr", "flash.hello", bindings)) do

(((("" <> "Salut ") <> to_string(Dict.fetch!(bindings, :first))) <> " ") <>
to_string(Dict.fetch!(bindings, :last))) <> "!"

end, def(t("fr", "flash.bye", bindings)) do
(("" <> "Au revoir, ") <> to_string(Dict.fetch!(bindings, :name))) <> "!"

end], [def(t("fr", "users.title", bindings)) do
"" <> "Utilisateurs"

end]], [[def(t("en", "flash.hello", bindings)) do
(((("" <> "Hello ") <> to_string(Dict.fetch!(bindings, :first))) <> " ") <>

to_string(Dict.fetch!(bindings, :last))) <> "!"
end, def(t("en", "flash.bye", bindings)) do

(("" <> "Bye, ") <> to_string(Dict.fetch!(bindings, :name))) <> "!"
end], [def(t("en", "users.title", bindings)) do

"" <> "Users"
end]]]
def(t(_locale, _path, _bindings)) do

{:error, :no_translation}
end

)
[I18n]

iex> I18n.t("en", "flash.hello", first: "Chris", last: "McCord")
"Hello Chris Mccord!"

iex> I18n.t("fr", "flash.hello", first: "Chris", last: "McCord")
"Salut Chris McCord!"

iex> I18n.t("en", "users.title")
"Users"

The ever-helpful Macro.to_string reveals the compile-time optimized function
bodies for each t/3 definition. We can see that our interpolated ASTs properly
expanded to simple string concatenation operations. This kind of performance
optimization isn’t possible in most languages and provides a substantial
performance increase over relying on regular expressions at runtime.

Chapter 3. Advanced Compile-Time Code Generation • 56

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

You may be wondering how we were able to directly reference the bindings
variable within interpolate without using the var! macro. We didn’t have to worry
about hygiene here because the quote blocks are all in the same module, so
they share the same context. With the tricky parts out of the way, let’s admire
our work.

The Complete Translator Module
Let’s take a look our completed library to see how all the pieces fit together.
While you’re reviewing the code, think about how each step of our metapro-
gramming rubric drove the design decisions of our final implementation.

advanced_code_gen/translator.exs
defmodule Translator do

defmacro __using__(_options) do
quote do
Module.register_attribute __MODULE__, :locales, accumulate: true,

persist: false
import unquote(__MODULE__), only: [locale: 2]
@before_compile unquote(__MODULE__)

end
end

defmacro __before_compile__(env) do
compile(Module.get_attribute(env.module, :locales))

end

defmacro locale(name, mappings) do
quote bind_quoted: [name: name, mappings: mappings] do

@locales {name, mappings}
end

end

def compile(translations) do
translations_ast = for {locale, source} <- translations do
deftranslations(locale, "", source)

end

quote do
def t(locale, path, binding \\ [])
unquote(translations_ast)
def t(_locale, _path, _bindings), do: {:error, :no_translation}

end
end

defp deftranslations(locale, current_path, translations) do
for {key, val} <- translations do
path = append_path(current_path, key)

report erratum • discuss

Building an Internationalization Library • 57

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

if Keyword.keyword?(val) do
deftranslations(locale, path, val)

else
quote do

def t(unquote(locale), unquote(path), bindings) do
unquote(interpolate(val))

end
end

end
end

end

defp interpolate(string) do
~r/(?<head>)%{[^}]+}(?<tail>)/
|> Regex.split(string, on: [:head, :tail])
|> Enum.reduce "", fn
<<"%{" <> rest>>, acc ->

key = String.to_atom(String.rstrip(rest, ?}))
quote do

unquote(acc) <> to_string(Dict.fetch!(bindings, unquote(key)))
end

segment, acc -> quote do: (unquote(acc) <> unquote(segment))
end

end

defp append_path("", next), do: to_string(next)
defp append_path(current, next), do: "#{current}.#{next}"

end

In 65 lines of code, we produced a robust internationalization library with
compile-time optimized performance. By generating function heads for each
translation mapping, we again let the Virtual Machine take over for fast
lookup. Additional translations can simply be added by updating the locales.

Code Generation from Remote APIs
You took your metaprogramming skills to the next level with our last exercise
and created a couple of essential tools to add to your Elixir arsenal. Now let’s
take a break from serious work and explore just how extensible Elixir really
is. We aren’t limited to generating code just from flat text files or Elixir data
structures. Let’s create a Hub mix project to define a module’s functions
directly from GitHub’s public API. We’ll produce a module that contains
embedded information about our public repositories with the ability to launch
a web browser directly to the project from a function call.

Chapter 3. Advanced Compile-Time Code Generation • 58

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Mix Project Setup
Let’s create a new mix project to house our implementation and application
dependencies. After a couple of setup tasks, we should be on our way:

$ mix new hub --bare
$ cd hub

Next, we need to add Poison and HTTPotion to our mix dependencies for JSON
encoding and performing HTTP requests.

hub/mix.exs
defmodule Hub.Mixfile do

use Mix.Project

def project do
[app: :hub,
version: "0.0.1",
elixir: "~> 1.0.0",
deps: deps]

end

def application do
[applications: [:logger]]

end

defp deps do
[{:ibrowse, github: "cmullaparthi/ibrowse", tag: "v4.1.0"},
{:poison, "~> 1.3.0"},
{:httpotion, "~> 1.0.0"}]

end
end

Let’s fetch our dependencies, and we should be ready to go:

$ mix deps.get

Remote Code Generation
Now let’s open up our main hub.ex module and generate some code from a
remote API. We’ll hit GitHub’s public API to fetch all the repositories under
our GitHub usernames, and we’ll decode the JSON body into an Elixir map.
Next, we’ll define a function from each result whose function name is the
name of the repository and whose function body is all the data about each of
our GitHub projects. Finally, we’ll define a go function that accepts the name
of a repository and launches a web browser to the URL. Here’s a high-level
overview:

report erratum • discuss

Code Generation from Remote APIs • 59

http://media.pragprog.com/titles/cmelixir/code/hub/mix.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Now, key in the following code in your lib/hub.ex file. If you have a GitHub
account, swap "chrismccord" with your own GitHub username.

hub/lib/hub.ex
defmodule Hub doLine 1

HTTPotion.start-

@username "chrismccord"-

-

"https://api.github.com/users/#{@username}/repos"5

|> HTTPotion.get(["User-Agent": "Elixir"])-

|> Map.get(:body)-

|> Poison.decode!-

|> Enum.each fn repo ->-

def unquote(String.to_atom(repo["name"]))() do10

unquote(Macro.escape(repo))-

end-

end-

-

def go(repo) do15

url = apply(__MODULE__, repo, [])["html_url"]-

IO.puts "Launching browser to #{url}..."-

System.cmd("open", [url])-

end-

end20

Chapter 3. Advanced Compile-Time Code Generation • 60

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/hub/lib/hub.ex
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

On line 5, we began a pipeline to transform the JSON URL of our GitHub
profile into a series of function definitions. We fetched the raw response body,
decoded it as JSON, then mapped each JSON repository into function defini-
tions. A function for each repository was defined by repo name; the function
body simply contained the repo information. For convenience, we defined a
go function on line 15 to quickly launch a browser window to a given reposi-
tory’s URL. Let’s try it out in iex:

$ iex -S mix

iex> Hub.
atlas/0 bclose.vim/0
calliope/0 chrismccord.com/0
dot_vim/0 elixir/0
elixir_express/0 ex_copter/0
genserver_stack_example/0 gitit/0
go/1 haml-coffee/0
historian/0 jazz/0
jellybeans.vim/0 labrador/0
linguist/0 phoenix_chat_example/0
plug/0 phoenix_haml/0
phoenix_render_example/0 phoenix_vs_rails_showdown/0

iex> Hub.linguist
%{"description" => "Elixir Internationalization library",

"full_name" => "chrismccord/linguist",
"git_url" => "git://github.com/chrismccord/linguist.git",
"open_issues" => 4, "open_issues_count" => 4,
"pushed_at" => "2014-08-04T13:28:30Z",
"watchers" => 33,
...

}

iex> Hub.linguist["description"]
"Elixir Internationalization library"

iex> Hub.linguist["watchers"]
33

iex> Hub.go :linguist
Launching browser to https://github.com/chrismccord/linguist...

Let sink in for a moment what we just accomplished in 20 lines of code. We
hit a remote JSON API over the Internet and embedded the data directly into
a module as functions. The API call only happens a single time when the
module is compiled. At runtime, we have the GitHub data cached directly
within function definitions. While just a fun example, it really shows how
Elixir lends itself to extension. Here we also saw Macro.escape for the first time.

report erratum • discuss

Code Generation from Remote APIs • 61

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Macro.escape
Macro.escape is used to take an Elixir literal and recursively escape it for injection
into an AST. Its use is required when you need to inject an Elixir value into
an already-quoted expression where the value is not an AST literal. For our
Hub module, we need to inject the JSON map into the function body, but the
def macro already quotes the received block of code. We escape repo when
using unquote to convert the map into a valid AST for inclusion in the quoted
block.

Open up iex, and let’s try a couple of examples to see how it works:

iex> Macro.escape(123)
123

iex> Macro.escape([1, 2, 3])
[1, 2, 3]

iex> Macro.escape(%{watchers: 33, name: "linguist"})
{:%{}, [], [name: "linguist", watchers: 33]}

iex> defmodule MyModule do
...> map = %{name: "Elixir"}
...> def value do
...> unquote(map)
...> end
...> end
** (CompileError) iex: invalid quoted expression: %{name: "Elixir"}

iex> defmodule MyModule do
...> map = Macro.escape %{name: "Elixir"}
...> def value do
...> unquote(map)
...> end
...> end
{:module, MyModule, ...}

iex> MyModule.value
%{name: "Elixir"}

In our first MyModule example, we received a CompileError because the provided
map was not a valid quoted expression. We fixed the expression by using
Macro.escape to return an injectable AST. Any time you run into an invalid
quoted expression error, take a step back and think about the quoted
expressions you’re trying to inject values into. If the expression is already
quoted as an AST, Macro.escape will be required.

Chapter 3. Advanced Compile-Time Code Generation • 62

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Further Exploration
We took our code generation experience to the next level by producing highly
maintainable, performant programs that we can take and use in the services
we build today. We saw the advantages of advanced code generation and had
some fun generating code from remote APIs. If you’re inspired by the possibil-
ities of these techniques, try pushing further. Here are a few ideas to spark
your imagination.

• Add a __using__ definition to the Mime module to allow arbitrary modules to
use Mime and append their own custom MIME mappings, such as:

defmodule MimeMapper do
use Mime, "text/emoji": [".emj"],

"text/elixir": [".exs"]
end

iex> MimeMapper.exts_for_type("text/elixir")
[".exs"]

iex> MimeMapper.exts_for_type("text/html")
[".html"]

• Add pluralization support to your Translator module, such as:

iex> I18n.t("en", "title.users", count: 1)
"user"

iex> I18n.t("en", "title.users", count: 2)
"users"

• Generate code against your favorite web service with a public API.

report erratum • discuss

Further Exploration • 63

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

CHAPTER 4

How to Test Macros
Any good library is only as reliable as the test suite behind it. You’ve written
your own language features and a couple of essential application libraries.
You even saw how macros let you create an expressive test framework. What
you haven’t seen yet is how to test macros themselves and the code generation
they perform. We’re going explore how to test macros so you can confidently
maintain your libraries. You’ll see few techniques for testing code generation
and different test-case strategies for the types of metaprogramming involved.

Setting Up Your Test Suite
Running Elixir tests is usually just a matter of running mix test in your project’s
directory. If you need to test only a single file, Elixir makes it just as easy.
Most of the exercises we’ve done so far have been single Elixir files, outside
of a mix project. Let’s see how easy it is to test them by setting up a test suite
for the while macro we built in Adding a while Loop to Elixir, on page 22.

First things first: we need to create a test file. Launch your editor and create
a while_test.exs file with the following code. Be sure to save it in the same
directory as your while.exs file from the previous exercise.

macros/while_test_step1.exs
ExUnit.start
Code.require_file("while.exs", __DIR__)

defmodule WhileTest do
use ExUnit.Case
import Loop

test "Is it really that easy?" do
assert Code.ensure_loaded?(Loop)

end
end

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/macros/while_test_step1.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Now you can run your test suite with a simple call to elixir from the command
line:

$ elixir while_test.exs
.

Finished in 0.04 seconds (0.04s on load, 0.00s on tests)
1 tests, 0 failures

That’s all there is to it! Elixir’s ExUnit test framework makes testing a first-class
experience. This should leave you no excuse for not keeping your code well
tested. With just a call to ExUnit.start and use ExUnit.Case, we were able to set up
a test case for our Loop module, and we can see it’s loaded and ready for some
real assertions. Now that our test suite is set up, let’s figure out what exactly
needs to be tested in our Loop module.

Deciding What to Test
Your next step is deciding what needs to be tested. Entire books are written
on this subject, and the answers vary. We’ll review how to effectively test your
while macro and ways to make assertions around stateful execution. It’s
important to avoid agonizing over what should be tested, how much, and
whether you’re abiding by a particular testing acronym. There’s a handful of
prominent testing methodologies and opinionated camps. Whether you’re
practicing test-driven development or red-green-refactor, or simply writing
regression tests, the end result is the same. Choose a testing style that fits
your mental workflow and keeps you happy. For some, that’s TDD; for others,
like me, it’s prototype-driven development followed by regression tests and
iteration. The important thing is that your library is tested. The methodology
you choose is up to you. Try a few approaches and use what feels natural.

In most cases, you should test just enough to prove the correctness of your
program. The goal shouldn’t be to match lines upon lines of test code with
library code. In fact, testing solely for code coverage ratios can lead to brittle
tests.

To figure out how to test the accuracy of our while macro, let’s list out its
requirements:

• Execute a block of code repeatedly while a given expression is truthy.
• Use break to explicitly terminate execution.

That’s it. Our test cases should go about proving these points. Let’s write our
first test case to verify that the while macro loops as long as its expression is
truthy. Add the following code to your while_test.exs file:

Chapter 4. How to Test Macros • 66

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

macros/while_test.exs
test "while/2 loops as long as the expression is truthy" doLine 1

pid = spawn(fn -> :timer.sleep(:infinity) end)-

-

send self, :one-

while Process.alive?(pid) do5

receive do-

:one -> send self, :two-

:two -> send self, :three-

:three ->-

Process.exit(pid, :kill)10

send self, :done-

end-

end-

assert_received :done-

end15

We started the test case by exploiting processes and messages to mutate the
result of our Process.alive?(pid) expression. On line 2, we spawned a process that
sleeps forever so that it stays up and running. Next, we started a while loop
on line 5, with our expression. To test that while loops as long as its expression
is truthy, we sent ourselves a message before entering the loop to start a
series of messages to handle within the loop.

Next, for each message we received, we sent another to ourselves to test the
re-execution of the while block. After a couple loops of messages, we matched
on the :three message and terminated our spawned pid. This will cause the
next Process.alive?(pid) evaluation to return false and halt execution. We made
sure to send ourselves a final message of :done that we later made an assertion
about on line 14. If we receive the final message :done, we’ve proven that the
while loop executed three times and then exited as expected.

Now let’s run the tests:

$ elixir while_test.exs
.

Finished in 0.1 seconds (0.1s on load, 0.00s on tests)
1 tests, 0 failures

All green. We’ve proved the correctness of our first requirement. Now let’s
tackle the other half of our test suite by testing the break functionality. Update
your file with this new test case:

macros/while_test.exs
test "break/0 terminates execution" doLine 1

send self, :one-

while true do-

receive do-

report erratum • discuss

Deciding What to Test • 67

http://media.pragprog.com/titles/cmelixir/code/macros/while_test.exs
http://media.pragprog.com/titles/cmelixir/code/macros/while_test.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

:one -> send self, :two5

:two -> send self, :three-

:three ->-

send self, :done-

break-

end10

end-

assert_received :done-

end-

Our second test case is very similar to our first, but here we’re testing that
the break function halts execution of the loop. We start an infinite loop with
while true, and much like before, we send and receive a series of messages to
our own process to execute the loop a few times. On our third loop, we send
ourselves a final message :done before calling break on line 9. We send this
message so we can later assert the :done message was received, to ensure that
the loop executed as we expected.

Again, let’s see whether our tests pass:

$ elixir while_test.exs
..

Finished in 0.1 seconds (0.1s on load, 0.00s on tests)
2 tests, 0 failures

All tests pass again. That’s all that is required to test our while macro. We used
processes and messages to self for cheap and easy testing. Message-sending
provided a way to assert that certain events happen in our loop, and the
process trick allowed us to easily change the truthiness of the while expression
on demand. Now that we’ve proven the correctness of our library, we can
confidently iterate on new features and ensure that our macro still abides by
the original requirements.

This macro was very simple to test because it performed only a small amount
of code generation. More complex metaprogramming requires a different
testing strategy.

Integration Testing
We did some advanced metaprogramming with our Mime and Translator libraries
in Chapter 3, Advanced Compile-Time Code Generation, on page 43. Macro-
driven libraries that generate large amounts of code are best tested at the
integration level. Next, you’ll find out what integration testing is all about and
how we can apply it to the libraries we’ve written.

Chapter 4. How to Test Macros • 68

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Test Your Generated Code, Not Your Code Generation
Integration testing means we test our library behavior at the top level. Given
an input, we expect an output. We aren’t so much concerned with testing the
individual subcomponents. Testing macro-generated code in this way is
effective because it’s very difficult to isolate the AST transformation steps
along the way. Instead, we use macros to generate code; then we test the
expected behavior of the code, not the code-generation process itself.

Let’s get a feel for this style of testing by writing a test suite for our Translator
library we wrote in Building an Internationalization Library, on page 49. If you
recall from our prior exercise, we used metaprogramming to inject many
function clauses on a caller’s I18n module. We recursed over a keyword list of
translations and defined functions along the way.

To properly test this library, let’s again break down the requirements. The
Translator module has a handful of corner cases, so we’ll outline them here as
well.

• Generate t/3 functions while recursively walking all translations
• Allow multiple locales to be registered
• Handle nested translations
• Handle translations at the root level of the tree
• Support binding interpolation
• Raise an error unless all bindings have been provided for interpolation
• Return {:error, :no_translation} when no translation exists for the given input
• Convert any interpolation binding to string for proper concatenation

Not too bad, right? With our expected behavior outlined, let’s go about inte-
gration-testing all the work Translator performs at compile time.

Easy Integration Testing with Nested Modules
We know what needs to be tested, but how do we go about testing Translator,
since a caller’s module is required to use Translator? Like most things in Elixir,
it’s easy. We can embed a module directly in our test module that uses Trans-
lator. When Elixir loads the test, our nested module will be compiled with all
of the generated function definitions, and then we can make integration-level
assertions around its behavior. Let’s get to work.

Create a translator_test.exs file and add this initial code to it:

report erratum • discuss

Integration Testing • 69

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

advanced_code_gen/translator_test_step1.exs
ExUnit.start
Code.require_file("translator.exs", __DIR__)

defmodule TranslatorTest do
use ExUnit.Case

defmodule I18n do
use Translator

locale "en", [
foo: "bar",
flash: [

notice: [
alert: "Alert!",
hello: "hello %{first} %{last}!",

]
],
users: [

title: "Users",
profile: [

title: "Profiles",
]

]]

locale "fr", [
flash: [

notice: [
hello: "salut %{first} %{last}!"

]
]]

end

test "it recursively walks translations tree" do
assert I18n.t("en", "users.title") == "Users"
assert I18n.t("en", "users.profile.title") == "Profiles"

end

test "it handles translations at root level" do
assert I18n.t("en", "foo") == "bar"

end
end

Like our previous while_test.exs file, we made sure to start ExUnit and use ExUnit.Case
to drive our test suite. Next, we defined a TranslatorTest module to house our
tests. Then we defined a nested I18n module that calls use Translator. We regis-
tered an "en" and "fr" locale and added some filler translations that we can test
against. The I18n module can then serve as the basis for the assertions of the
test suite.

Chapter 4. How to Test Macros • 70

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_test_step1.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

We built our assertions around the expected behavior of the functions that
use Translator generated. We added the first two test cases and made assertions
around the handling of nested and root-level translations.

Let’s see how we’re doing so far:

$ elixir translator_test.exs
..

Finished in 0.1 seconds (0.1s on load, 0.00s on tests)
2 tests, 0 failures

So far, so good. With a little prep work of creating a nested I18n module to
integration-test against, we can continue testing the remaining requirements
of our library.

Head back over to your editor, and let’s complete the integration tests:

advanced_code_gen/translator_test.exs
test "it allows multiple locales to be registered" do

assert I18n.t("fr", "flash.notice.hello", first: "Jaclyn", last: "M") ==
"salut Jaclyn M!"

end

test "it iterpolates bindings" do
assert I18n.t("en", "flash.notice.hello", first: "Jason", last: "S") ==

"hello Jason S!"
end

test "t/3 raises KeyError when bindings not provided" do
assert_raise KeyError, fn -> I18n.t("en", "flash.notice.hello") end

end

test "t/3 returns {:error, :no_translation} when translation is missing" do
assert I18n.t("en", "flash.not_exists") == {:error, :no_translation}

end

test "converts interpolation values to string" do
assert I18n.t("fr", "flash.notice.hello", first: 123, last: 456) ==

"salut 123 456!"
end

We added test cases for the remaining items on our requirements list. We
checked multiple locale registration, binding interpolation, error handling,
and a couple of corner cases. The test cases were simple and succinct, which
should be your goal. Your test descriptions should accurately describe what
you’re testing. If you find yourself writing really long test blocks, don’t hesitate
to split the assertions out into more refined test descriptions.

All that’s left is to run our new tests:

report erratum • discuss

Integration Testing • 71

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_test.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

$ elixir translator_test.exs
........

Finished in 0.1 seconds (0.1s on load, 0.00s on tests)
7 tests, 0 failures

All green. We have full integration coverage of our Translator library. Most of
the time this is a perfect place to stop. Occasionally, though, complex macros
should be tested at the unit level. Let’s see how by adding unit tests to our
Translator suite.

Unit Tests
Unit-testing macros should be used only for cases where you need to test a
bit of tricky code generation in isolation. Over-testing macros at the unit level
can lead to brittle tests because we can only test the AST generated from the
macro or the string of source produced. These values can be hard to match
against and are subject to change, which can lead to error-prone tests that
are difficult to maintain.

Let’s add unit tests to our Translator suite by testing the compile function. Our
compile function was the main code-generation entry point that we delegated
to from our __using__ macro. The easiest way to test that the t/3 functions were
generated properly is to convert the AST to a string and test that the Elixir
source matches what we expect.

Open up your translator_test.exs file and add these unit tests:

advanced_code_gen/translator_test.exs
test "compile/1 generates catch-all t/3 functions" do

assert Translator.compile([]) |> Macro.to_string == String.strip ~S"""
(

def(t(locale, path, binding \\ []))
[]
def(t(_locale, _path, _bindings)) do

{:error, :no_translation}
end

)
"""

end

test "compile/1 generates t/3 functions from each locale" do
locales = [{"en", [foo: "bar", bar: "%{baz}"]}]
assert Translator.compile(locales) |> Macro.to_string == String.strip ~S"""
(

def(t(locale, path, binding \\ []))
[[def(t("en", "foo", bindings)) do

"" <> "bar"

Chapter 4. How to Test Macros • 72

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/advanced_code_gen/translator_test.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

end, def(t("en", "bar", bindings)) do
("" <> to_string(Dict.fetch!(bindings, :baz))) <> ""

end]]
def(t(_locale, _path, _bindings)) do

{:error, :no_translation}
end

)
"""

end

We tested the compile/1 function by using the Macro.to_string trick we learned
when writing the Translator library. By piping the AST output of Translator.compile
to Macro.to_string, we convert the AST into a string of Elixir source. This is easier
to match against a large tuple of AST values. The only unit test cases we need
are testing that the catch-all clauses are generated, followed by testing how
nested translations are generated for each locale.

Let’s run the tests:

$ elixir translator_test.exs
........

Finished in 0.1 seconds (0.1s on load, 0.00s on tests)
9 tests, 0 failures

Everything passes. As you can see, testing your macros directly against the
string of code they produce isn’t simple or pretty. It should be used only for
isolated, complex cases like our recursive compile function. The vast majority
of your code generation should be tested at the integration level.

With proper tests, our Translator library is now ready for production. We can
be confident that our code generation is correct, and we can easily test for
regressions as we extend the library with new features. This is what testing
is all about. Not only does it prove the correctness of our code; it allows us
to confidently make changes in the future. This is especially important for
metaprogramming, where we must balance complexity and convenience.

Next, we’ll review some testing tips to get the most out of your test suite.

Test Simple and Test Fast
If you’ve had experience with testing on large projects, there’s a good chance
you’ve experienced a frustratingly slow test suite. If running your tests is a
slow and painful process, you’re likely to stop writing tests altogether. Worse
than slow tests are overly complex tests that take more work to change than
the code itself. Let’s see how you can avoid these pitfalls by following a couple
of common conventions.

report erratum • discuss

Test Simple and Test Fast • 73

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Limit the Number of Created Modules
When you integration-test your __using__ macros, like we did in our Translator
tests, you have to create a module in the test to make assertions against.
This is a perfect solution, but be aware that too many modules can cause
unnecessarily slow load times when running your tests. You will often need
to define multiple nested modules, but try to keep the number of modules
you define to a minimum. Most times, multiple test cases can share the same
module. Fast tests mean faster feedback cycles and a happy developer expe-
rience. Your goal should be to remove all possible friction between your code
and your test suite.

Keep It Simple
The same rules that apply to metaprogramming and programming in general
apply when writing tests. Keep it simple. If you have ever had the displeasure
of working with a complex, brittle test suite on a large project, you know that
you might spend more time getting the test suite to work than bringing your
code up to new requirements. By keeping tests simple, you can allow the test
cases to serve as specifications for the program. Properly written tests are
often the first thing I look at when exploring how a new library works. Keeping
them simple helps maintainability and provides a clear specification of your
programs.

Further Exploration
You can now keep your macros well tested and well specified. Your testing
skills will help you balance the complexity macros introduce with the payoff
they provide in productivity and power. Apply the skills you’ve seen here, and
don’t worry too much about the testing methodologies you should use. Well-
tested code is the goal; just make sure you make it happen.

Next, we’ll create a full-featured domain-specific language. But first, try
expanding your testing skills and have a little fun. Here are a couple of ideas
to get you started.

• Let’s get meta. Use your Assertion.assert macro to test your Translator and Loop
macros. Instead of ExUnit, rewrite all the tests in this chapter to use our
mini Assertion test framework. Our Assertion module didn’t support
assert_receive, so you’ll have to get creative. Hint: Process.info(pid)[:messages]
returns a list of messages in a process’ mailbox.

• Add a test suite for our Mime library.

Chapter 4. How to Test Macros • 74

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

CHAPTER 5

Creating an HTML
Domain-Specific Language

One of the most powerful ways to use macros is to build domain-specific
languages (DSLs). They let you create a custom layer in the language to attack
problems closer to your application domain. This can make your code easier
to write and make it more clearly represent the problem being solved. With
DSLs, you can codify your business requirements and operate at a shared
level of abstraction with the callers of your library.

Let’s extend the tools you’ve learned so far to create an HTML DSL. We’ll start
by seeing what domain-specific languages are all about. Next, we’ll build a
complete HTML DSL that generates templates from pure Elixir code. While
building our library, we’ll uncover a few advanced macro features and see
how to apply them. We’ll finish by reviewing when and when not to use DSLs
and ways to decide if they are a good fit for your library.

Getting Domain Specific
Before jumping into code, let’s look at what DSLs are all about and how
metaprogramming makes them so easy. In Elixir, DSLs are languages defined
by custom macros. They are a way to build a language within a language for
solving a specific domain problem. In our case, our domain is HTML genera-
tion.

You’ve probably had experience with HTML generation in other languages
where the string of HTML was produced by mixing source code within markup,
parsing the file, and evaluating the result. These solutions work, but you
often have to leave pure source code behind for a different template syntax.

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

This requires yet another syntax to learn and context-switching between
languages as your write your program.

Imagine if instead of parsing an external file, you could write regular Elixir
code that expresses the HTML specification. The result of running the code
would produce a complete HTML string. Let’s see what such an HTML DSL
might look like with macros:

markup do
div class: "row" do

h1 do
text title

end
article do
p do: text "Welcome!"

end
end
if logged_in? do

a href: "edit.html" do
text "Edit"

end
end

end
"<div class\"row\"><h1>Domain Specific Languages</h1><article><p>Welcome!</p>
</article>Edit</div>"

Since macros are first class features, we can imagine a macro per HTML tag
that generates the necessary HTML string for a tree of tags. This example
program is a complete domain-specific language. Any person who glances at
the code would immediately understand the HTML specification being
expressed by the source. Such a library would allow writing HTML and Elixir
in the same context, leading to interesting solutions. This is the library that
we’ll be building. Let’s get started.

Start by Defining the Minimum Viable API
Now that we know the kind of DSL that we would like to build, we need to
decide how to design our API. The HTML spec includes some 117 valid tags,
but we need a smaller surface area to begin our DSL. At this point you might
be tempted to fire up your editor and start defining all 117 tags as individual
macros. There’s a better way. Since we define a mini language with macros
when creating DSLs, the best way to begin is to define the smallest set of
macros possible to serve as a basis for the broader macro DSL. Instead of
immediately planning to support the entire HTML spec as macros, let’s start
with a refined set of macros that can still speak the HTML language.

Chapter 5. Creating an HTML Domain-Specific Language • 76

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

The smallest API of our HTML library would contain a tag macro for tag con-
struction, a text macro for injecting plain text, and a markup macro to wrap the
entire generation block. These three macros will serve as a small, focused
base of our implementation. They’ll let us quickly get together a working
version that we can enhance as we go.

Let’s rewrite our previous example as if these were the only available macros:

markup do
tag :div, class: "row" do

tag :h1 do
text title

end
tag :article do
tag :p, do: text "Welcome!"

end
end
if logged_in? do

tag :a, href: "edit.html" do
text "Edit"

end
end

end
"<div class\"row\"><h1>Domain Specific Languages</h1><article><p>Welcome!</p>
</article>Edit</div>"

Supporting this reduced API will be the first step in building our HTML library.
The reduced API isn’t quite as nice as a full DSL, but we can still express the
intent of our HTML generation. Once the initial macros are in place, we can
go about supporting all 117 HTML tags using tag as the basis of each macro.
Now that we know where to start, let’s get to work.

Let’s list the requirements of our minimum HTML API. First, it needs to sup-
port markup, tag, and text macros. The second and less obvious requirement is
that our library must maintain an output buffer state while the markup is
being generated. Because we can mix arbitrarily Elixir expressions within our
DSL, we must store the state of the generated HTML as the program runs.

To understand why our library requires mutable state, let’s imagine we tried
to keep state by rebinding a buffer variable every time the tag macro was
called. The comments below simulate the code we could generate to keep
track of the buffer state in a buff variable as the program runs:

markup do # buff = ""
div do # buff = buff <> "<div>"

h1 do # buff = buff <> "<h1>"
text "hello" # buff = buff <> "hello"

end # buff = buff <> "</h1>"

report erratum • discuss

Start by Defining the Minimum Viable API • 77

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

end # buff = buff <> "</div>"
end # buff

iex> buff
"<div><h1>hello</h1></div>"

By rebinding buff each time tag or text is called, this approach would work for
basic cases. Before we rejoice about such a simple solution, consider what
would happen if we added a for comprehension while using this approach:

markup do # buff = ""
tag :table do # buff = buff <> "<table>

tag :tr do # buff = buff <> "<tr>"

for i <- 0..3 do # >------>------->----------->
tag :td do # | buff = buff <> "<td>" |

text "#{i}" # ^ buff = buff <> "#{i}" v
end # | buff = buff <> "</td>" |

end # <------<-------<-----------<

end # buff = buff <> "</tr>"
end # buff = buff <> "</table>"

end # buff

iex> buff
"<table><tr></tr></table>"

Everything looks good until we hit the for comprehension. Without a buffer
process carrying the generated state, all of the td tags would be missing from
the output because variable scoping prevents the nested bindings from leaking
to the outside context. Even if we could get around scoping rules, the way
rebinding works in Elixir would not support dynamically rebinding a variable
this way within a for comprehension. You can see this for yourself by trying
to rebind a variable in iex within a for block:

iex> buff = ""
""

iex> for i <- 1..3 do
...> buff = buff <> "#{i}"
...> IO.inspect buff
...> end
"1"
"2"
"3"
["1", "2", "3"]

iex> buff
""

Chapter 5. Creating an HTML Domain-Specific Language • 78

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

As you can see, we cannot rely on variable rebinding to handle the output
buffer. We must come up with a way to update the current buffer state each
time tag or text is called. Fortunately, Elixir’s Agent module provides a perfect
way for us to keep track of the output buffer as each tag is generated.

Keeping State with Agents
Elixir Agents provide a simple way to store and retrieve state in your applica-
tion. Let’s see how easy it is to manage state with an Agent process. Go ahead
and follow along in your own iex shell:

iex> {:ok, buffer} = Agent.start_link fn -> [] end
{:ok, #PID<0.130.0>}

iex> Agent.get(buffer, fn state -> state end)
[]

iex> Agent.update(buffer, &["<h1>Hello</h1>" | &1])
:ok

iex> Agent.get(buffer, &(&1))
["<h1>Hello</h1>"]

iex> for i <- 1..3, do: Agent.update(buffer, &["<td><#{i}</td>" | &1])
[:ok, :ok, :ok]

iex> Agent.get(buffer, &(&1))
["<td><3</td>", "<td><2</td>", "<td><1</td>", "<h1>Hello</h1>"]

The Agent module has a very small API that focuses on quick access to state.
In the above example, we started an Agent with an initial state of []. Next, we
prepended a few strings to its buffer list and closed by retrieving the updated
state. We’ll use a similar setup to store the output buffer of our HTML DSL.

Now that we refreshed our Agent skills, head back over to your editor and
define an Html module within an html_step1.exs file and key in our minimal API:

html/lib/html_step1.exs
defmodule Html doLine 1

-

defmacro markup(do: block) do-

quote do-

{:ok, var!(buffer, Html)} = start_buffer([])5

unquote(block)-

result = render(var!(buffer, Html))-

:ok = stop_buffer(var!(buffer, Html))-

result-

end10

end-

report erratum • discuss

Start by Defining the Minimum Viable API • 79

http://media.pragprog.com/titles/cmelixir/code/html/lib/html_step1.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

-

def start_buffer(state), do: Agent.start_link(fn -> state end)-

-

def stop_buffer(buff), do: Agent.stop(buff)15

-

def put_buffer(buff, content), do: Agent.update(buff, &[content | &1])-

-

def render(buff), do: Agent.get(buff, &(&1)) |> Enum.reverse |> Enum.join("")-

20

defmacro tag(name, do: inner) do-

quote do-

put_buffer var!(buffer, Html), "<#{unquote(name)}>"-

unquote(inner)-

put_buffer var!(buffer, Html), "</#{unquote(name)}>"25

end-

end-

-

defmacro text(string) do-

quote do: put_buffer(var!(buffer, Html), to_string(unquote(string)))30

end-

end-

On line 3, we defined the markup macro, which wraps the entire HTML gener-
ation block. Within markup, we perform three actions. First, we start an Agent
with start_buffer that we defined on line 13. The Agent will hold a list of all tag
or text outputs. Next, we injected the block of code passed from the caller,
which contains all their tag and text macro calls. We finished the markup block
by calling render, which we defined on line 19. The render function gets the
Agent’s state and combines all buffer segments to form the final output string.
Next, we make sure to stop the Agent process before returning the result now
that its work is complete.

Apart from our markup block and Agent functions, we also defined the tag and
text macros on lines 21 and 29 to complete our essential macro set. The tag
definition wraps the caller’s inner code block with put_buffer calls. This surrounds
the inner contents in an opening and closing HTML tag. For example, let’s
see how this would work with a nested series of tags:

tag :div do
tag: span do

Logger.info "We can mix regular Elixir code here"
text "Nested tags are no trouble for our buffer"

end
end

At compile time, this block of code would turn into:

put_buffer(var!(buffer, Html), "<div>")
put_buffer(var!(buffer, Html), "")

Chapter 5. Creating an HTML Domain-Specific Language • 80

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Logger.info "We can mix regular Elixir code here"
put_buffer(var!(buffer, Html), "Nested tags are no trouble for our buffer")
put_buffer(var!(buffer, Html), "")
put_buffer(var!(buffer, Html), "</div>")

Not much to it, right? With the Agent keeping state, the tag macro just needs
to generate the correct put_buffer calls and ensure that any nested block is
wrapped with opening and closing tags. Similarly, the text macro only needs
to generate a single put_buffer call while converting its argument to a string.

Overriding Hygiene Is a Necessary Evil. Use with Care.

One important note about our implementation is the fact that we are overriding
hygiene when accessing the buffer variable throughout the module. Overriding hygiene
allows us to reference the spawned Agent’s process throughout each independent
quote block because we explicitly use var! to reach outside the given context. Most
importantly, we pass Html as the second argument so that the buffer variable’s context
stays in our module. If we did not include the Html argument, our buffer variable
would leak into the caller’s context and become accessible in their code. This is one
example where overriding hygiene is a worthy tradeoff. We can implicitly store state
behind the scenes from the caller and avoid clashes by generating the buffer variable
in our Html context.

Try It Out
Let’s define a quick Template module to see our minimally viable API in action.
Add the following code to a new html_step1_render.exs file:

html/lib/html_step1_render.exs
defmodule Template doLine 1

import Html-

-

def render do-

markup do5

tag :table do-

tag :tr do-

for i <- 0..5 do-

tag :td, do: text("Cell #{i}")-

end10

end-

end-

tag :div do-

text "Some Nested Content"-

end15

end-

end-

end-

report erratum • discuss

Start by Defining the Minimum Viable API • 81

http://media.pragprog.com/titles/cmelixir/code/html/lib/html_step1_render.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

On line 4, we defined an arbitrary render function to house our markup gener-
ation. Now, let’s load it up in iex and try it out:

iex> c "html_step1.exs"
[Html]

iex> c "html_step1_render.exs"
[Template]

iex> Template.render
"<table><tr><td>Cell 0</td><td>Cell 1</td><td>Cell 2</td><td>Cell 3</td>
<td>Cell 4</td><td>Cell 5</td></tr></table><div>Some Nested Content</div>"

Using only the markup, tag, and text macros, we generated a string of HTML
while transparently storing state behind the scenes in our buffer Agent. Our
DSL is starting to speak its first few words. Next, we’ll make it fluent by
supporting the full HTML spec.

Support the Entire HTML Spec with Macros
We’re off to a great start, but our goal is to create a first-class DSL. A single
tag macro simply won’t cut it. Let’s up our sophistication by supporting all
117 valid HTML tags. We could write a hundred macros by hand, but let’s
use the techniques you learned in Chapter 3, Advanced Compile-Time Code
Generation, on page 43, to save time and effort.

As before, a quick Internet search turned up a complete list of HTML tags.1

After a copy and paste into a flat text file, we end with a file of line-delimited
tags. Here’s a handful of lines from the file:

html/lib/tags.txt
form
frame
frameset
h1
head
header

We’ll use this file to generate the entire HTML spec. Copy the file over to your
own project and save it as tags.txt within the same folder as your Html module.
Now, head back over to your Html source file and let’s parse tags.txt into macro
definitions. We’ll save the new file as html_step2.exs.

1. http://www.html-5-tutorial.com/all-html-tags.htm

Chapter 5. Creating an HTML Domain-Specific Language • 82

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/html/lib/tags.txt
http://www.html-5-tutorial.com/all-html-tags.htm
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

html/lib/html_step2.exs
defmodule Html doLine 1

-

@external_resource tags_path = Path.join([__DIR__, "tags.txt"])-

@tags (for line <- File.stream!(tags_path, [], :line) do-

line |> String.strip |> String.to_atom5

end)-

-

for tag <- @tags do-

defmacro unquote(tag)(do: inner) do-

tag = unquote(tag)10

quote do: tag(unquote(tag), do: unquote(inner))-

end-

end-

-

defmacro markup(do: block) do15

quote do-

import Kernel, except: [div: 2]-

{:ok, var!(buffer, Html)} = start_buffer([])-

unquote(block)-

result = render(var!(buffer, Html))20

:ok = stop_buffer(var!(buffer, Html))-

result-

end-

end-

...25

On line 4, we mapped over our tags.txt file, line by line, and stored the tag
names as a list of atoms on the @tags attribute. Next, we used another for
comprehension on line 8 to define one macro for every tag whose name is the
tag name converted to an atom. Each macro simply proxies to the tag definition
that we defined in our first step.

Another important task was to exclude Kernel.div from being imported into our
markup block on line 17 and clashing with the common <div> tag. Having Ker-
nel.div unavailable is an okay tradeoff because it can still be explicitly invoked
from the Kernel module as needed. We also used @external_resource again to
ensure that our Html module is recompiled by mix any time the tags.txt file
changes.

Let’s render some HTML with our new macros. Create a new Template module
with the following code and save it as html_step2_render.exs:

report erratum • discuss

Support the Entire HTML Spec with Macros • 83

http://media.pragprog.com/titles/cmelixir/code/html/lib/html_step2.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

html/lib/html_step2_render.exs
defmodule Template do

import Html

def render do
markup do
table do

tr do
for i <- 0..5 do
td do: text("Cell #{i}")

end
end

end
div do

text "Some Nested Content"
end

end
end

end

We replaced all tag calls with the new macros that we just generated. Let’s try
it out in iex:

iex> c "html_step2.exs"
[Html]

iex> c "html_step2_render.exs"
[Template]

iex> Template.render
"<table><tr><td>Cell 0</td><td>Cell 1</td><td>Cell 2</td><td>Cell 3</td>
<td>Cell 4</td><td>Cell 5</td></tr></table><div>Some Nested Content</div>"

It works! We took advantage of compile-time code generation to support the
entire HTML specification as a DSL. Going from a DSL made of three macros
to one made of more than a hundred required only a small amount of clean,
maintainable code. As future HTML tags are introduced, we need to edit only
the tags.txt file to support the latest specification.

We’ve come a long way with our DSL, but we’re not finished yet. Let’s continue
by supporting other common HTML features.

Enhance Your API with HTML Attribute Support
If we want our HTML library to be truly useful to the world, we need to add
support for tag attributes such as class and id. Let’s extend our DSL to support
an optional keyword list that gets translated into tag attributes for each macro.
For example, our goal is to support the following API:

Chapter 5. Creating an HTML Domain-Specific Language • 84

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/html/lib/html_step2_render.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

div id: "main" do
h1 class: "title", do: text("Welcome!")
div class: "row" do

div class: "column" do
p "Hello!"

end
end
button onclick: "javascript: history.go(-1);" do

text "Back"
end

end

Let’s revisit our Html module and add support for tag attributes. Replace your
tag/2 macro and for tag <- @tags comprehension with the following code. Save
the updated listing as html_step3.exs.

html/lib/html_step3.exs
for tag <- @tags doLine 1

defmacro unquote(tag)(attrs, do: inner) do-

tag = unquote(tag)-

quote do: tag(unquote(tag), unquote(attrs), do: unquote(inner))-

end5

defmacro unquote(tag)(attrs \\ []) do-

tag = unquote(tag)-

quote do: tag(unquote(tag), unquote(attrs))-

end-

end10

-

defmacro tag(name, attrs \\ []) do-

{inner, attrs} = Dict.pop(attrs, :do)-

quote do: tag(unquote(name), unquote(attrs), do: unquote(inner))-

end15

defmacro tag(name, attrs, do: inner) do-

quote do-

put_buffer var!(buffer, Html), open_tag(unquote_splicing([name, attrs]))-

unquote(inner)-

put_buffer var!(buffer, Html), "</#{unquote(name)}>"20

end-

end-

-

def open_tag(name, []), do: "<#{name}>"-

def open_tag(name, attrs) do25

attr_html = for {key, val} <- attrs, into: "", do: " #{key}=\"#{val}\""-

"<#{name}#{attr_html}>"-

end-

On line 1 we modified our for comprehension to generate multiple macro heads
for each tag. This allows an optional attrs list to be passed to the macros. Along
the same lines, we added an extra tag macro to handle optional attributes.
On line 24, we defined open_tag functions to handle building an HTML tag with

report erratum • discuss

Enhance Your API with HTML Attribute Support • 85

http://media.pragprog.com/titles/cmelixir/code/html/lib/html_step3.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

a list of attributes. We then delegated to this function within our modified tag
definition. Here we also used unquote_splicing for the first time.

The unquote_splicing macro behaves much like unquote, except it injects a list of
arguments to an AST instead of a single value. For example, the following
blocks of code are equivalent:

quote do
put_buffer var!(buffer), open_tag(unquote_splicing([name, attrs]))

end
quote do

put_buffer var!(buffer), open_tag(unquote(name), unquote(attrs))
end

unquote_splicing is convenient when you want to inject a list of arguments,
especially if those arguments are of variable length at compile time.

With our new attribute support in place, let’s head back to iex and see how
it works. Update your Template module with the following code and save it as
html_step3_render.exs. Feel free to generate your own HTML tags and attributes
as you try it out.

html/lib/html_step3_render.exs
defmodule Template do

import Html

def render do
markup do
div id: "main" do

h1 class: "title" do
text "Welcome!"

end
end
div class: "row" do

div do
p do: text "Hello!"

end
end

end
end

end

Now load both files into iex and render the template you just created.

iex> c "html_step3.exs"
[Html]

iex> c "html_step3_render.exs"
[Template]

Chapter 5. Creating an HTML Domain-Specific Language • 86

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/html/lib/html_step3_render.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> Template.render
"<div id=\"main\"><h1 class=\"title\">Welcome!</h1>
</div><div class=\"row\"><div><p>Hello!</p></div></div>"

Great work! We now have a robust HTML DSL that is easy to read and write.
You can define entire templates for a web application with pure Elixir code
and easily extend the library as the HTML specification grows to support new
tags. At 60 lines of code, our DSL has a tiny footprint, even with support for
more than a hundred macros.

But, we’re not stopping there. Next, you’ll find out ways Elixir lets us trim
this footprint down even further.

Generate Less Code by Walking the AST
Our Html module is clear and concise, but we did have to generate well over
a hundred macros to make it work. Wouldn’t it be nice to generate less code
but still maintain our expressive DSL where all tags can be used as macro
calls? Let’s make it happen.

You might think that maintaining our DSL without generating all HTML
macros sounds impossible, but step back and remember that Elixir gives you
full AST access. For example, open up an iex prompt and quote a few arbitrary
HTML DSL expressions, and let’s look at the results. Do not load your Html
module since we are just quoting raw expressions outside the context of our
library for this example.

iex> ast = quote do
...> div do
...> h1 do
...> text "Hello"
...> end
...> end
...> end
{:div, [], [[do: {:h1, [], [[do: {:text, [], ["Hello"]}]]}]]}

Looks pretty simple, right? We received the AST representation of the macro
DSL in the form we first saw in The Structure of the AST, on page 8. We can
see our macro calls are neatly nested in a series of three-element tuples. Now
imagine instead of generating all HTML tags as macros, we could instead walk
the AST, piece by piece, and convert the AST nodes like {:div, [] [[do: ...]]} into
tag :div do ... macro calls. In fact, Elixir comes built in with functions to help us
do this.

Elixir contains the Macro.prewalk/2 and Macro.postwalk/2 functions that allow you
to walk an AST depth-first or breadth-first. Let’s use IO.inspect to see what

report erratum • discuss

Generate Less Code by Walking the AST • 87

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

happens if we walk the AST for our quoted expression that we bound to the
ast variable above:

iex> Macro.postwalk ast, fn segment -> IO.inspect(segment) end
:do
:do
"Hello"
{:text, [], ["Hello"]}
{:do, {:text, [], ["Hello"]}}
[do: {:text, [], ["Hello"]}]
{:h1, [], [[do: {:text, [], ["Hello"]}]]}
{:do, {:h1, [], [[do: {:text, [], ["Hello"]}]]}}
[do: {:h1, [], [[do: {:text, [], ["Hello"]}]]}]
{:div, [], [[do: {:h1, [], [[do: {:text, [], ["Hello"]}]]}]]}
{:div, [], [[do: {:h1, [], [[do: {:text, [], ["Hello"]}]]}]]}

iex> Macro.prewalk ast, fn segment -> IO.inspect(segment) end
{:div, [], [[do: {:h1, [], [[do: {:text, [], ["Hello"]}]]}]]}
[do: {:h1, [], [[do: {:text, [], ["Hello"]}]]}]
{:do, {:h1, [], [[do: {:text, [], ["Hello"]}]]}}
:do
{:h1, [], [[do: {:text, [], ["Hello"]}]]}
[do: {:text, [], ["Hello"]}]
{:do, {:text, [], ["Hello"]}}
:do
{:text, [], ["Hello"]}
"Hello"
{:div, [], [[do: {:h1, [], [[do: {:text, [], ["Hello"]}]]}]]}

If we look closely, we can see that Macro.postwalk and Macro.prewalk walked the
AST and passed each segment to our function. We can also clearly see our
macro calls within segments like {:text, [], ["Hello"]}. These functions can be used
to augment the AST, but we only printed the value and returned the result
untouched.

Let’s remove all 117 generated macros in our Html module. We’ll replace them
by generating code as we walk the AST. Update your Html module with the
following listing and save it as html_macro_walk.exs:

html/lib/html_macro_walk.exs
defmodule Html doLine 1

-

@external_resource tags_path = Path.join([__DIR__, "tags.txt"])-

@tags (for line <- File.stream!(tags_path, [], :line) do-

line |> String.strip |> String.to_atom5

end)-

-

defmacro markup(do: block) do-

quote do-

{:ok, var!(buffer, Html)} = start_buffer([])10

Chapter 5. Creating an HTML Domain-Specific Language • 88

report erratum • discuss

http://media.pragprog.com/titles/cmelixir/code/html/lib/html_macro_walk.exs
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

unquote(Macro.postwalk(block, &postwalk/1))-

result = render(var!(buffer, Html))-

:ok = stop_buffer(var!(buffer, Html))-

result-

end15

end-

-

def postwalk({:text, _meta, [string]}) do-

quote do: put_buffer(var!(buffer, Html), to_string(unquote(string)))-

end20

def postwalk({tag_name, _meta, [[do: inner]]}) when tag_name in @tags do-

quote do: tag(unquote(tag_name), [], do: unquote(inner))-

end-

def postwalk({tag_name, _meta, [attrs, [do: inner]]}) when tag_name in @tags do-

quote do: tag(unquote(tag_name), unquote(attrs), do: unquote(inner))25

end-

def postwalk(ast), do: ast-

-

def start_buffer(state), do: Agent.start_link(fn -> state end)-

30

def stop_buffer(buff), do: Agent.stop(buff)-

-

def put_buffer(buff, content), do: Agent.update(buff, &[content | &1])-

-

def render(buff), do: Agent.get(buff, &(&1)) |> Enum.reverse |> Enum.join("")35

-

defmacro tag(name, attrs \\ [], do: inner) do-

quote do-

put_buffer var!(buffer, Html), open_tag(unquote_splicing([name, attrs]))-

unquote(postwalk(inner))40

put_buffer var!(buffer, Html), unquote("</#{name}>")-

end-

end-

-

def open_tag(name, []), do: "<#{name}>"45

def open_tag(name, attrs) do-

attr_html = for {key, val} <- attrs, into: "", do: " #{key}=\"#{val}\""-

"<#{name}#{attr_html}>"-

end-

end50

We started by updating our markup definition on line 11 to call Macro.postwalk
against the block of code passed from the caller. On lines 18 through 27, we
replaced our for comprehension, which generated all 117 tag macros, with just
four postwalk functions. These four functions use basic pattern matching to
pluck out AST segments and transform them into the correct HTML tag. Let’s
break down how these little functions are able to perform so much work.

report erratum • discuss

Generate Less Code by Walking the AST • 89

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

The postwalk function on line 18 pattern matches on the AST segment of a text
macro call and returns a quoted put_buffer call. The argument is converted to
a string, just like the text macro definition in our previous step. Next, we pat-
tern match on the AST segment of all 117 HTML tags on line 21. Here we use
a guard of when tag_name in @tags to match on the first element of the AST tuple.
If we find a segment matching an HTML tag, we convert it into a tag macro
call. Lastly, on line 27, we add a catch-all postwalk function that returns any
segment untouched that we don’t identify as part of our DSL. Let’s use the
trick that we learned in Macro.to_string: Make Sense of Your Generated Code
, on page 53, to see the code that our postwalk functions produce.

Head back to iex, load up your html_macro_walk.exs file, and follow along:

iex> c "html_macro_walk.exs"
[Html]

iex> import Html
nil

iex> ast = quote do
...> markup do
...> div do
...> h1 do
...> text "Some text"
...> end
...> end
...> end
...> end

iex> ast |> Macro.expand(__ENV__) |> Macro.to_string |> IO.puts
(

{:ok, var!(buffer, Html)} = start_buffer([])
tag(:div, []) do

tag(:h1, []) do
put_buffer(var!(buffer, Html), to_string("Some text"))

end
end
result = render(var!(buffer, Html))
:ok = stop_buffer(var!(buffer, Html))
result

)
:ok

We quoted an example markup block and used Macro.expand and Macro.to_string to
peek at the code produced by our postwalk transformations. We can see that
the postwalk functions properly transformed the HTML tags into tag macro calls.

Chapter 5. Creating an HTML Domain-Specific Language • 90

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

This was an advanced exercise full of specialized pattern matching against
the raw AST. Don’t fret if it takes you a moment to understand how it works.
Macro.postwalk walks the AST and lets you transform each segment, so you can
see how we matched against the segments we cared about to do all the work
of the 117 macros that we replaced. You won’t need to reach for Macro.postwalk
or Macro.prewalk often, but having them in the back of your metaprogramming
arsenal is convenient for cases where you want to transform an entire AST
without defining each and every macro contained within the quoted expression.

Now that you’ve leveled up on your domain-specific language experience, we
need to review when and where DSLs are appropriate.

To DSL or Not to DSL?
So DSLs are pretty cool, huh? It’s tempting to solve all kinds of problems this
way, but be careful. Many problems that seem like a good fit for a DSL are
often better served by standard functions. Whenever I’m trying to decide
whether a DSL is a good fit, I ask myself the following questions:

1. Can the domain be expressed naturally by macros in Elixir’s syntax, such
as HTML tags?

2. Would a DSL cause the caller to think more or less about how to solve
their problem?

3. Should I require users of my library to have all kinds of code injected into
their context?

The answers to these questions vary, and many times it’s a gray area. To help
illustrate these points, let’s imagine a fictitious Emailer library that we would
like to build. At first glance, the email domain can be expressed very simply
by words like from, to, subject, send. So it seems an email library would meet the
requirements of #1, where the problem can be naturally expressed by macros.
With that thought, let’s imagine what our library could look like as a DSL:

defmodule UserWelcomeEmail do
use Emailer

from "info@example.com"
reply_to "info@example.com"
subject "Welcome!"

def deliver(to, body) do
send_email to: to, body: body

end
end

UserWelcomeEmail.deliver("user@example.com", "Hello there!")

report erratum • discuss

To DSL or Not to DSL? • 91

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Not too bad, right? Callers could use Emailer and have a DSL defined for wiring
up email headers, such as from, reply_to, etc. This reads nicely, but now ask
yourself #2 above. Would this DSL cause the caller to think more or less about
how to solve their problem? For example, what if the caller needs to add
custom extension headers, such as "X-SERVICE-ID"? The email spec supports
arbitrary headers, so this suddenly puts our DSL into a snag. One quick
solution would be to support an optional headers function that the caller can
implement to add custom headers:

defmodule UserWelcomeEmail do
use Emailer

from "info@example.com"
reply_to "info@example.com"
subject "Welcome!"

def headers do
%{"X-SERVICE-ID" => "myservice"}

end

def deliver(to, body) do
send_email to: to, body: body

end
end

This works, but now the caller must know or look up which headers are
supported by the DSL and which times they need to define a headers map. Now
let’s consider an API without a DSL. It would simply require the caller to
define a headers function that returns a map of all email headers they require.

defmodule UserWelcomeEmail do
use Emailer

def headers do
%{"from" => "info@example.com",

"reply-to" => "info@example.com",
"subject" => "Welcome!",
"X-SERVICE-ID" => "myservice"}

end

def deliver(to, body) do
send_email to: to, body: body

end
end

In this case, the non-DSL approach wins out. The usage is clear and still
reads nicely without the need for a DSL.

Chapter 5. Creating an HTML Domain-Specific Language • 92

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

The last point to consider when weighing the options for a DSL is to think
about whether a caller really needs a bunch of code injected into its module.
Sometimes the clear answer is yes, but other times having all kinds of macros
and code injected into your module, just for simple actions like sending an
email, is less desirable. It can clash with user code and add complexity where
functions would have otherwise been a more appropriate solution.

Based on this, the Emailer library would not make a good DSL. Explicit functions
provide an easier-to-use API without the need to learn a special DSL just to
send an email message. DSLs are a powerful tool, but you should think
carefully about whether they accurately solve your domain problem. They
allow a simplified API for problem solving, but sometimes this can become
restrictive. Their use should be determined on a case-by-case basis, and it
helps to ask yourself those three questions every time you think DSLs might
be a good choice.

Further Exploration
You leveled up on your metaprogramming skills by defining a language
within a language using DSLs. This style of problem solving will let you create
expressive libraries that can distill a problem into a natural set of macros.
You saw how some domains, like HTML generation, fall naturally into a DSL,
while others require careful consideration of tradeoffs. Think about other
ways you can extend the HTML DSL to make it production ready. Here are
some ideas to get you started:

• Extend the Html library with nicely formatted output:

iex> Template.render
"<div id=\"main\">

<h1 class=\"title\">Welcome!</h1>
</div>
<div class=\"row\">

<div>
<p>Hello!</p>

</div>
</div>"

• Sanitize all text input against cross-site-scripting attacks:

defmodule Template do
import Html

def render do
markup do
div id: "main" do

report erratum • discuss

Further Exploration • 93

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

text "XSS Protection <script>alert('vulnerable?');</script>"
end

end
end

end

iex> Template.render
"<div id=\"main\">

XSS Protection <script>alert('vulnerable?');</script>
</div>"

Chapter 5. Creating an HTML Domain-Specific Language • 94

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

CHAPTER 6

With Great Power Comes Great
Responsibility (and Fun!)

We’ve unlocked Elixir’s metaprogramming secrets. We went from the basics
all the way to writing our own languages features. Along the way, you gained
insight into Elixir’s internals, and if you’re like me, you found a new found
appreciation for the language’s syntax and idioms. Without curbing your
excitement, we’re going to review some tips and tricks for getting the most
out of Elixir’s macro system and how you can avoid common pitfalls. Staying
on the happy path of metaprogramming will let you write extensible code that
is easy to write and maintain.

When and Where to Use Macros
Because Elixir is a language built on top of macros, it’s easy to think that
every library you write needs macros. This isn’t the case. Macros should be
reserved for specialized cases where the solution can’t be implemented easily
as normal function definitions. Whenever you’re writing code and reach for
defmacro, stop and ask yourself whether your solution requires code generation.
Sometimes code generation is absolutely required, but other times it’s easy
to get carried away with macros where you could’ve just written functions
instead.

In some cases, the choice for macros is easy. For things like control flow,
where access to the AST expression is required, macros are the obvious choice.
For example, let’s imagine trying to implement if as a function instead of a
macro, like our implementation in Re-Creating the if Macro, on page 22:

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> defmodule ControlFlow do
...> def if(expr, do: block, else: else_block) do
...> case expr do
...> result when result in [nil, false] -> else_block
...> result -> block
...> end
...> end
...> end
{:module, ControlFlow,
<<70, 79, 82, 49, 0, 0, 5, 120, 66, 69, 65, 77, 69, 120, 68, ...

iex> ControlFlow.if true do
...> IO.puts "It's true!"
...> else
...> IO.puts "It's false!"
...> end
It's true!
It's false!

What happened? Both of the IO.puts expressions were evaluated because they
were passed to the if function at runtime. Macros are an obvious requirement
here because we must convert the expression at compile time into a case
expression to avoid runtime evaluation of both clauses. Other times the choice
is not as obvious.

In creating Phoenix,1 an Elixir web framework, I used macros for its router
layer. The case for macros in the Phoenix router is twofold. First, it allows for
an expressive and easy-to-use routing DSL. Second, it can generate many
clauses internally that a user would’ve had to write by hand. Let’s look at a
high-level overview of the kind of code the router generates. Then we can talk
about the macro tradeoffs.

Here’s a minimal Phoenix router that routes HTTP requests to controller
modules:

defmodule MyRouter do
use Phoenix.Router

pipeline :browser do
plug :accepts, ~w(html)
plug :fetch_session

end

scope "/" do
pipe_through :browser

get "/pages", PageController, :index

1. http://www.phoenixframework.org

Chapter 6. With Great Power Comes Great Responsibility (and Fun!) • 96

report erratum • discuss

http://www.phoenixframework.org
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

get "/pages/:page", PageController, :show
resources "/users", UserController do
resources "/comments", CommentController

end
end

end

After MyRouter is compiled, Phoenix generates function heads on the module
that look something like this:

defmodule MyRouter do
...
def match(conn, "GET", ["pages"])
def match(conn, "GET", ["pages", page])
def match(conn, "GET", ["users", "new"])
def match(conn, "POST", ["users"])
def match(conn, "PUT", ["users", id])
def match(conn, "PATCH", ["users", id])
def match(conn, "DELETE",["users", id])
def match(conn, "GET", ["users", user_id, "comments"])
def match(conn, "GET", ["users", user_id, "comments", id, "edit"])
def match(conn, "GET", ["users", user_id, "comments", id])
def match(conn, "GET", ["users", user_id, "comments", "new"])
def match(conn, "POST", ["users", user_id, "comments"])
def match(conn, "PUT", ["users", user_id, "comments", id])
def match(conn, "PATCH", ["users", user_id, "comments", id])
def match(conn, "DELETE",["users", user_id, "comments", id])

end

The Phoenix router uses macros such as get, post, and resources to convert an
HTTP DSL into a series of match/3 definitions. I chose to use macros for
Phoenix’s router because after weighing the tradeoffs, I decided that the
routing DSL not only provides a high-level API for routing HTTP requests, but
it also removes dozens of lines of boilerplate that would need to be written by
hand. This does come at a cost of code-generation complexity, but the payoffs
make macros a clear win.

Macros require careful consideration on the balance of convenience over
complexity. When using macros in Phoenix, I strive for the simplest solution
possible. The caller trusts that the generated code is simple and fast. This
should be your implicit contract with the caller for any code you generate.

The most important metaprogramming strategy is to keep it simple. Striking
a balance between library power, ease of use, and internal complexity is a
careful game you must play. Next, you’ll see how to keep it simple and which
hazards to avoid.

report erratum • discuss

When and Where to Use Macros • 97

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Avoiding Common Pitfalls
As with any powerful tool, it’s easy to cut yourself. Throughout my Elixir
experience, a few common mistakes have appeared that are easy to avoid in
retrospect but can wreak havoc on your code base over time if ignored. Let’s
find out ways to avoid getting caught in your own web of code generation.

Don’t use When You Can import
One of the most common mistakes newly minted metaprogrammers make is
treating use as a way to mix in functions from other modules. This tempting
idea conflates the concept of a mix-in from other languages, where you can
include methods and functions from one module into another. In Elixir, this
pitfall looks something like this.

Consider a StringTransforms module that defines a number of string transforma-
tion functions to use around your code base. You might write something like
this for easy sharing across different modules:

defmodule StringTransforms doLine 1

defmacro __using__(_opts) do-

quote do-

def title_case(str) do-

str5

|> String.split(" ")-

|> Enum.map(fn <<first::utf8, rest::binary>> ->-

String.upcase(List.to_string([first])) <> rest-

end)-

|> Enum.join(" ")10

end-

-

def dash_case(str) do-

str-

|> String.downcase15

|> String.replace(~r/[^\w]/, "-")-

end-

... hundreds of more lines of string transform functions-

end-

end20

end-

-

defmodule User do-

use StringTransforms-

25

def friendly_id(user) do-

dash_case(user.name)-

end-

end-

Chapter 6. With Great Power Comes Great Responsibility (and Fun!) • 98

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

30

iex> User.friendly_id(%{name: "Elixir Lang"})-

"elixir-lang"-

On line 2, a __using__ macro is defined to house a quoted expression of some
string transformation functions, such as title_case and dash_case. On line 24,
the User module uses StringTransforms so that the functions are injected into its
context. This allows dash_case to be called on line 27 within the friendly_id func-
tion. It works, but it’s very wrong.

Here, we’ve abused use to inject functions such as title_case and dash_case into
another module. It works, but we don’t need to inject code at all. Elixir’s import
gives us all we need. Let’s refactor the StringTransforms module to remove all
code generation:

defmodule StringTransforms do
def title_case(str) do

str
|> String.split(" ")
|> Enum.map(fn <<first::utf8, rest::binary>> ->
String.upcase(List.to_string([first])) <> rest

end)
|> Enum.join(" ")

end

def dash_case(str) do
str
|> String.downcase
|> String.replace(~r/[^\w]/, "-")

end
...

end

defmodule User do
import StringTransforms

def friendly_id(user) do
dash_case(user.name)

end
end

iex> User.friendly_id(%{name: "Elixir Lang"})
"elixir-lang"

We removed the __using__ block and relied on import to share our functions in
the User module. Import gives us everything we had in our previous solution
while allowing all string functions to be defined as regular definitions in the
StringTransforms module. The use macro should never be used solely for mix-in

report erratum • discuss

Avoiding Common Pitfalls • 99

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

style functionality. Importing functions serves the same purpose without
generating code. Even for cases where you need use for code generation, you
should only inject code that requires it, and you should import the rest as
normal functions.

Avoid Injecting Large Amounts of Code
One common mistake that many people make with code generation is doing
too much of it. Let’s say you’ve weighed the pros and cons, and you know
macros are required to solve your problem. The mistake you might make at
this point is to go all out with quote blocks and inject hundreds of lines of
code. This can make your code fragile and impossible to debug. Whenever
you’re injecting code, it should be your goal to delegate out of the caller’s
context as soon as possible. This way, your library code stays in your library,
and the injected code is just the bare minimum to call out from the caller’s
context into your library functions.

To give you an idea of this design process, consider the email library that we
envisioned in To DSL or Not to DSL?, on page 91. Even though it wouldn’t
make a good DSL, let’s imagine how we would implement it as a macro-
enhanced library. The library will need to inject a send_email function into a
caller’s module where functions can be defined to send different types of
messages. The send_email function will apply email provider configuration for
connecting to a mail service. Your first pass at this would probably use code
generation all the way:

defmodule Emailer do
defmacro __using__(config) do

quote do
def send_email(to, from, subject, body) do

host = Dict.fetch!(unquote(config), :host)
user = Dict.fetch!(unquote(config), :username)
pass = Dict.fetch!(unquote(config), :password)

:gen_smtp_client.send({to, [from], subject}, [
relay: host,
username: user,
password: pass

])
end

end
end

end

Your library could then be used by a client’s MyMailer module:

Chapter 6. With Great Power Comes Great Responsibility (and Fun!) • 100

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

defmodule MyMailer do
use Emailer, username: "myusername",

password: "mypassword",
host: "smtp.example.com"

def send_welcome_email(user) do
send_email user.email, "support@example.com", "Welcome!", """
Welcome aboard! Thanks for signing up...
"""

end
end

At first glance, it might not look too bad. You’re injecting send_email into the
caller’s module, and it’s only a handful of lines of code. But don’t fall into this
trap. The issue is that the current implementation houses the validation of
the configuration options as well as the details of sending an email directly
in the injected code. This causes your implementation details to leak outside
to every using module. It also makes your code harder to test.

Let’s rewrite the library to delegate out of the caller’s context to perform the
email-sending work:

defmodule Emailer do
defmacro __using__(config) do

quote do
def send_email(to, from, subject, body) do

Emailer.send_email(unquote(config), to, from, subect, body)
end

end
end

def send_email(config, to, from, subject, body) do
host = Dict.fetch!(config, :host)
user = Dict.fetch!(config, :username)
pass = Dict.fetch!(config, :password)

:gen_smtp_client.send({to, [from], subject}, [
relay: host,
username: user,
password: pass

])
end

end

Notice how we pushed all the business logic and work of sending an email
back into the Emailer module? The injected send_email/4 function delegates out
immediately and passes along the caller’s configuration. This subtle shift
places all of the implementation concerns as a normal function definition on
your library module. Your API remains exactly the same, but now you have

report erratum • discuss

Avoiding Common Pitfalls • 101

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

the benefits of testing your Emailer.send_email/5 function directly. Another benefit
is that stack traces now come from your Emailer module, not from a confusing
generated code block within the caller’s module.

This change also lets the library be called directly, without having to be used
from another module. This is nice for testing, as well as for callers that only
need to fire off quick emails. Sending email is now as simple as a call to your
Emailer.send_email function:

[username: "myusername", password: "mypassword", host: "smtp.example.com"]
|> Emailer.send_email("you@example.com", "me@example.com", "Hi!", "")

If you use this delegation mindset when generating code, you’ll end up with
cleaner, testable, and debug-friendly libraries.

Kernel.SpecialForms: Know Your Environment and Limitations
Elixir is an incredibly extensible language, but even it has areas that are
special and not overridable. Knowing where these are and why they exist will
help keep you grounded in what is and isn’t possible when extending the
language. It will also help you keep track of where your code is executing.

The Kernel.SpecialForms module defines a set of constructs that you can’t override.
They make up the basic building blocks of the language and contain macros
such as alias, case, {}, and <<>>. The SpecialForms module also includes a number
of pseudo variables that contain information about the environment at compile
time. You might already be familiar with a couple of these variables, such as
__MODULE__ and __DIR__. The following pseudo variables are defined by SpecialForms
and cannot be assigned to or overridden:

• __ENV__: Returns a Macro.ENV struct containing current environment infor-
mation

• __MODULE__: Returns the current module name as an atom, equivalent to
__ENV__.module

• __DIR__: Returns the current directory
• __CALLER__: Returns the caller’s environment information as a Macro.ENV

struct

The __ENV__ variable can be accessed at any time, but __CALLER__ can only be
called within macros to return information about the caller’s environment.
These variables are used commonly with metaprogramming. The __before_com-
pile__ hook that you first learned about in Compile-Time Hooks, on page 39,
receives the __ENV__ struct as its only argument. This provides access to
essential information about the environment that registered the hook.

Chapter 6. With Great Power Comes Great Responsibility (and Fun!) • 102

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Let’s experiment with the __ENV__ struct in iex to see the kinds of information
Elixir makes available to us:

iex(1)> __ENV__.file
"iex"

iex(2)> __ENV__.line
2

iex(3)> __ENV__.vars
[]

iex(4)> name = "Elixir"
"Elixir"

iex(5)> version = "~> 1.0"
"~> 1.0"

iex(6)> __ENV__.vars
[name: nil, version: nil]

iex(7)> binding
[name: "Elixir", version: "~> 1.0"]

You can see that even in iex, Elixir is tracking a file and a line number of the
environment. In library code, this would be the actual file and line of the code
you’re working with. This can be useful for stack traces and special error
handling, because you can have access to the caller’s environment from
elsewhere in your program. You can also see that Elixir tracks the bound
variables of the current environment, which can be accessed from __ENV__.vars.
Note that unlike the binding macro, which returns all bound variables with
their values, the vars field tracks variable contexts instead. This is because a
variable’s value is dynamic at runtime, so the environment can track only
which variables have been bound and from where.

There’s little you can’t override in Elixir—just a few special forms and the
environment context. With such an extensible landscape, you’ve seen several
ways it’s easy to fall into trouble. But as a responsible metaprogrammer, you
should also know that sometimes it’s okay to push the limits.

Bending the Rules
That’s the offical warning over with. So let’s take a moment to remember that
Elixir makes the world our playground. Rules are made to be broken. So here
are some gray areas where abusing macros in Elixir is a worthy tradeoff, and
some interesting ways we can bend Elixir’s syntax.

report erratum • discuss

Bending the Rules • 103

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Abusing Valid Elixir Syntax
Rewriting the AST to change the meaning of valid Elixir expressions probably
sounds evil to most people. In some cases, it’s actually a powerful tool. Con-
sider Elixir’s Ecto2 library, which is a database wrapper and Language Inte-
grated Query system. Let’s take a look at what an Ecto query looks like to
see how it abuses Elixir’s syntax. You don’t have to be familiar with Ecto; just
be mindful of the query syntax in the following example:

query = from user in User,
where: user.age > 21 and user.enrolled == true,

select: user

Internally, Ecto converts this completely valid Elixir expression into a string
of SQL. It abuses operators such as in, and, ==, and > to form SQL expressions
out of valid Elixir code. This is an extremely neat use of macros. Ecto lets you
build queries in Elixir’s natural syntax, using bound variables that are type-
casted appropriately in SQL. Other languages with a Language Integrated
Query feature require an entirely new syntax on top of the language. With
Elixir, we can use macros to change regular Elixir code into a SQL represen-
tation.

Ecto is a large project worthy of its own book, but let’s imagine how we could
implement a similar library. Let’s see what the quoted form of our query above
looks like. Try a few variations out in iex and think about ways you could use
your AST tricks, such as Macro.postwalk from Generate Less Code by Walking
the AST, on page 87.

iex> quote do
...> from user in User,
...> where: user.age > 21 and user.enrolled == true,
...> select: user
...> end
{:from, [],
[{:in, [context: Elixir, import: Kernel],

[{:user, [], Elixir}, {:__aliases__, [alias: false], [:User]}]},
[where: {:and, [context: Elixir, import: Kernel],

[{:>, [context: Elixir, import: Kernel],
[{{:., [], [{:user, [], Elixir}, :age]}, [], []}, 21]},

{:==, [context: Elixir, import: Kernel],
[{{:., [], [{:user, [], Elixir}, :enrolled]}, [], []}, true]}]},

select: {:user, [], Elixir}]]}

Looking at the AST of an Ecto query, we can begin to see how macros would
let us abuse Elixir syntax for fun and profit. By matching on the AST for dif-

2. https://github.com/elixir-lang/ecto

Chapter 6. With Great Power Comes Great Responsibility (and Fun!) • 104

report erratum • discuss

https://github.com/elixir-lang/ecto
http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

ferent operators, such as :in, :==, and so on, we could parse the segments into
the SQL representation at compile time. Macros allow any valid Elixir
expression to be transformed into the requirements of your library. You must
be careful with this technique, because giving language syntax new meaning
in different contexts can become confusing. For libraries like Ecto, though,
it’s an extremely powerful way to build a new layer on top of Elixir without
requiring any outside language additions.

Performance Optimization
Another area where you can bend the metaprogramming rules is performance
optimizations. Macros let you optimize code at compile time, and sometimes
this requires injecting larger amounts of code than usual. We bent this rule
in our Translator library in Building an Internationalization Library, on page 49.
Our implementation generated many function heads within the caller’s module
and also optimized string interpolation by replacing a regular expression at
runtime with compile-time string concatenation. Fortunately, Elixir lends
itself to fast execution without writing a bunch of dense code, but performance
optimization comes at the cost of complexity. If you structure your metapro-
gramming using the tools you’ve learned, you should be able to produce fast
code that’s clear and maintainable.

Learn by Tinkering
Some of the greatest insights I’ve had with macros have been with irresponsible
code that I would never ship to production. There’s no substitute for learning
by experimentation. Don’t let the rules you’ve learned throughout this book
and the hazards of this chapter scare you from fully exploring Elixir’s macro
system. Write irresponsible code, experiment, and have fun. Use the insight
you gain to drive design decisions of things you would ship to a production
system.

The possibilities for experimentation are endless, but here’s a crazy idea to
spike your imagination. Remember that any quoted expression is valid Elixir
code? What if you exploited this fact to write a natural language test frame-
work?

This is valid Elixir code:

the answer should be between 3 and 5
the list should contain 10
the user name should resemble "Max"

Don’t believe me? Try quoting these expressions in iex:

report erratum • discuss

Bending the Rules • 105

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

iex> quote do
...> the answer should be between 3 and 5
...> the list should contain 10
...> the user name should resemble "Max"
...> end |> Macro.to_string |> IO.puts
(

the(answer(should(be(between(3 and 5)))))
the(list(should(contain(10))))
the(user(name(should(resemble("Max")))))

)
:ok

You could parse the AST forms of these natural language declarations into
assertions behind the scenes. Should you do this? Probably not. Would you
gain new insight into Elixir’s macro system and probably have some fun along
the way? Absolutely.

Build the Future
What’s next? It’s time to head out there and build the future of Elixir software
development! You now have the skills to shape the language and write powerful
tools to share with the world. The programming landscape is ripe for disruption
by the power that Elixir and the Erlang ecosystem bring to the table. Go out
there and tackle interesting problems—and always remember to have fun.

Let’s build the future!

Chapter 6. With Great Power Comes Great Responsibility (and Fun!) • 106

report erratum • discuss

http://pragprog.com/titles/cmelixir/errata/add
http://forums.pragprog.com/forums/cmelixir

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir
You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Maybe you need something that’s closer to Ruby, but
with a battle-proven environment that’s unrivaled for
massive scalability, concurrency, distribution, and
fault tolerance. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(340 pages) ISBN: 9781937785581. $36
https://pragprog.com/book/elixir

Programming Erlang (2nd edition)
A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(548 pages) ISBN: 9781937785536. $42
https://pragprog.com/book/jaerlang2

https://pragprog.com/book/elixir
https://pragprog.com/book/jaerlang2

Seven in Seven
From Web Frameworks to Concurrency Models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will
help you create better apps. You’ll see frameworks that
leverage modern programming languages, employ
unique architectures, live client-side instead of server-
side, or embrace type systems. You’ll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38
https://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle
thousands of users and terabytes of data, and continue
working in the face of both hardware and software
failure. Concurrency and parallelism are the keys, and
Seven Concurrency Models in Seven Weeks equips you
for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con

https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

Past and Present
To see where we’re going, remember how we got here, and learn how to take a healthier
approach to programming.

Fire in the Valley
In the 1970s, while their contemporaries were
protesting the computer as a tool of dehumanization
and oppression, a motley collection of college dropouts,
hippies, and electronics fanatics were engaged in
something much more subversive. Obsessed with the
idea of getting computer power into their own hands,
they launched from their garages a hobbyist movement
that grew into an industry, and ultimately a social and
technological revolution. What they did was invent the
personal computer: not just a new device, but a water-
shed in the relationship between man and machine.
This is their story.

Michael Swaine and Paul Freiberger
(424 pages) ISBN: 9781937785765. $34
https://pragprog.com/book/fsfire

The Healthy Programmer
To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
https://pragprog.com/book/jkthp

https://pragprog.com/book/fsfire
https://pragprog.com/book/jkthp

Be Agile
Don’t just “do” agile; you want to be agile. We’ll show you how, for new code and old.

Your Code As a Crime Scene
Jack the Ripper and legacy codebases have more in
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring
direction, and understand how your team influences
the design. With its unique blend of forensic psychology
and code analysis, this book arms you with the
strategies you need, no matter what programming
language you use.

Adam Tornhill
(190 pages) ISBN: 9781680500387. $36
https://pragprog.com/book/atcrime

The Nature of Software Development
You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(150 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjnsd

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd

Get Kids into Programming
Get your kids writing Minecraft plugins in Java, or 3D games in JavaScript. No experience
required!

Learn to Program with Minecraft Plugins (2nd edition)
The bestselling, kid-tested book for Minecraft is now
updated for CanaryMod! Write your own Minecraft
plugins and watch your code come to life with flaming
cows, flying creepers, teleportation, and interactivity.
Add your own features to the Minecraft game by devel-
oping Java code that “plugs in” to the server. You’ll
manipulate and control elements in the 3D graphical
game environment without having to write tons of code
or learn huge frameworks. No previous programming
experience necessary.

Andy Hunt
(300 pages) ISBN: 9781941222942. $29
https://pragprog.com/book/ahmine2

3D Game Programming for Kids
You know what’s even better than playing games?
Creating your own. Even if you’re an absolute beginner,
this book will teach you how to make your own online
games with interactive examples. You’ll learn program-
ming using nothing more than a browser, and see cool,
3D results as you type. You’ll learn real-world program-
ming skills in a real programming language: Java-
Script, the language of the web. You’ll be amazed at
what you can do as you build interactive worlds and
fun games. Appropriate for ages 10-99!

Printed in full color.

Chris Strom
(250 pages) ISBN: 9781937785444. $36
https://pragprog.com/book/csjava

https://pragprog.com/book/ahmine2
https://pragprog.com/book/csjava

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/cmelixir
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/cmelixir

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/cmelixir
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/cmelixir
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgements
	Introduction
	Metaprogramming—An Essential Feature
	How to Read This Book
	Running the Code Exercises
	Online Resources

	1. The Language of Macros
	The World Is Your Playground
	Macro Rules
	The Abstract Syntax Tree—Demystified
	Macros: The Building Blocks of Elixir
	Code Injection and the Caller’s Context
	Further Exploration

	2. Extending Elixir with Metaprogramming
	Custom Language Constructs
	Smarter Testing with Macros
	Extending Modules
	Using Module Attributes for Code Generation
	Compile-Time Hooks
	Further Exploration

	3. Advanced Compile-Time Code Generation
	Generating Functions from External Data
	MIME-Type Conversion in Ten Lines of Code
	Building an Internationalization Library
	Code Generation from Remote APIs
	Further Exploration

	4. How to Test Macros
	Setting Up Your Test Suite
	Deciding What to Test
	Integration Testing
	Unit Tests
	Test Simple and Test Fast
	Further Exploration

	5. Creating an HTML Domain-Specific Language
	Getting Domain Specific
	Start by Defining the Minimum Viable API
	Support the Entire HTML Spec with Macros
	Enhance Your API with HTML Attribute Support
	Generate Less Code by Walking the AST
	To DSL or Not to DSL?
	Further Exploration

	6. With Great Power Comes Great Responsibility (and Fun!)
	When and Where to Use Macros
	Avoiding Common Pitfalls
	Bending the Rules
	Build the Future

