

Early praise for Programming Ecto

Let’s face it, Ecto is not a small library. I think Darin and Eric did a fantastic job
of breaking it all down into understandable pieces, giving a ton of examples along
the way. You’ll learn how to use Ecto, and perhaps more importantly, how it was
meant to be used. And if you think you know it very well already, I’m sure you’ll
learn new things too!

➤ Wojtek Mach
Hex Core Team, Consultant at Plataformatec

It does a great job of not only explaining how to use Ecto, but also illuminating
the SQL underneath and the design decisions that the Ecto team made when
building it. For a new team, this would be a great book to teach with; likewise,
for an experienced team, this makes for a good reference book.

➤ Ben Marx
Software Architect, Bleacher Report

This is a useful guide for beginners, but also a great resource for developers that
have a medium level of knowledge of Ecto. I learned new tricks reading this book.

➤ Ulisses De Almeida
Elixir Developer, author of Learn Functional Programming with Elixir

For many Elixir projects, Ecto is your most important partner, so it’s important
to learn to use it effectively. Darin and Eric have created a wonderful roadmap to
help beginners and experienced developers explore its powerful feature set. It’s
full of clear examples that will help you quickly master Ecto—finish this book and
you’ll be well on your way to creating powerful, scalable, reliable, and maintainable
database applications.

➤ Bryan Stearns
Senior Software Engineer and Consultant

An eloquent discussion of the tools Ecto provides for database programming in
Elixir: testing with sandboxes, changesets, embedded schemas, polymorphic as-
sociations, and much more. This book will be a reference for most engineers
working in Elixir and Ecto.

➤ Matt Milton
Software Engineer, Enbala Power Networks

Programming Ecto
Build Database Apps in Elixir for Scalability and Performance

Darin Wilson
Eric Meadows-Jönsson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Kim Cofer
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-282-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix

Introduction xi

Part I — Ecto Fundamentals

1. Getting Started with Repo 3
Ecto and Elixir 3
Ecto Modules 4
How Ecto Is Organized 5
Setting Up the Sample App 5
The Repository Pattern 9
The Repo Module 10
Putting Our Repo to Work 12
Customizing Your Repo 15
Wrapping Up 16

2. Querying Your Database 19
Query Basics 20
Refining Our Results with where 23
Working with Joins 30
Composing Queries 32
Other Ways to Use Queries 39
Wrapping Up 40

3. Connecting Your Tables to Elixir Structs with Schemas . . 41
Creating Schemas 41
Writing Queries with Schemas 45
Inserting and Deleting with Schemas 47
Adding Associations to Schemas 49

Working with Associations in Queries 55
Optimizing Associations with Embedded Schemas 57
Deleting Records with Associations 58
Using Schemas to Seed a Database 59
Wrapping Up 61

4. Making Changes with Changesets 63
Introducing Changesets 63
Casting and Filtering 64
Validating Your Data 67
Capturing Errors 73
Using Changesets Without Schemas 75
Working with Associations 76
Wrapping Up 86

5. Making Multiple Changes with Transactions and Multi . . 87
Running Transactions with Functions 88
Running Transactions with Ecto.Multi 92
Wrapping Up 99

6. Making Changes to Your Database 101
Introducing Migrations 101
Your First Migration 102
Running Migrations 105
Rolling Back Migrations 107
Adding Indexes 108
Changing Data and Table Structure Together 111
Specifying Up and Down Operations 114
Changing Default Behaviors 115
Wrapping Up 119

Part II — Ecto Applied

7. Adding Ecto to an Elixir Application Without Phoenix . . 123
Creating a New Project 123
Adding Ecto’s Dependencies 125
Creating Your Repo Module 125
Adding Ecto to the Supervision Tree 127
Using Multiple Ecto Repos 128
Starting Your App 128
Wrapping Up 129

Contents • vi

8. Working with Changesets and Phoenix Forms 131
Generating a Form for a Single Schema 131
Displaying Changeset Errors 133
Creating a Form with an Association 134
Creating a Form with Multiple Associations 136
Wrapping Up 137

9. Testing with Sandboxes 139
Setting Up an Async Test 139
Changing the Ownership Mode 140
Safely Sharing Connections with Allowances 142
Wrapping Up 144

10. Creating and Using Custom Types 145
Building on Top of Ecto’s Types 145
Adding Custom Types Without the Built-In Types 149
Wrapping Up 153

11. Inserting and Updating with Upserts 155
Performing Upserts Without Schemas 156
Performing Upserts with Schemas 158
Wrapping Up 160

12. Optimizing Your Application Design 161
Separating the Pure from the Impure 161
Working with Contexts 163
Working with Umbrella Applications 166
Wrapping Up 170

13. Working with Embedded Schemas 171
Creating Embedded Schemas 171
Adding Embeds to Another Schema 172
Making Changes 174
Choosing Between Embedded Schemas and Associations 176
Wrapping Up 177

14. Creating Polymorphic Associations 179
Polymorphism in Other Frameworks 180
Approach #1: Multiple Foreign Keys 181
Approach #2: Using an Abstract Schema 183
Approach #3: Using many_to_many 186
Wrapping Up 188

Contents • vii

15. Optimizing IEx for Ecto 189
Adding Imports and Aliases 189
Adding Helper Functions 190
Wrapping Up 192

16. Using Schemas Without Tables 193
Downsides to Locking Schemas to Tables 193
Breaking Up the Artist Schema 194
Creating Table-less Schemas 195
Saving the Table-less Structs 197
Wrapping Up 199

17. Tuning for Performance 201
Preparing to Optimize 202
Optimizing Queries 202
Executing Bulk Operations 204
Fetching Large Datasets with Streams 206
Wrapping Up 207

Bibliography 209
Index 211

Contents • viii

Acknowledgments
As the book’s authors, we’re the lucky ones who get to have our names on
the front cover. But without the extra effort and support of many other folks,
this book would have been a fraction of what it currently is, if it existed at all.

We’re deeply grateful to Bruce Tate for originally suggesting the idea to us,
and for sharing the wisdom gathered from the many books he’s written over
the years. Our editor Jackie Carter did an extraordinary job guiding a pair of
nervous first-time authors with insight, editorial acumen, and a seemingly
endless supply of patience. José Valim made himself available at several
points in the process to clarify behavior we weren’t sure of, and help us stay
on top of features in upcoming releases.

We’d also like thank the reviewers who gave us much-needed feedback on
the book as it was evolving: Olufemi Adeojo, Ulisses De Almeida, Mike Foster,
Elias Karakoulakis, Justin Lane, Wojtek Mach, Ben Marx, Sean Miller, Matt
Milton, Kim Shrier, and Stefan Turalski. And big thanks to the many beta
readers who sent in errata to the Pragmatic Bookshelf website—this book
would have a lot more errors if not for the efforts of these folks.

Darin Wilson
I’d like to send thanks and shout-outs to my teammates at Infinite Red,
especially the leadership team (Jamon Holmgren, Ken Miller, and Todd Werth)
for steering us toward Elixir in the first place. And extra gratitude is to due
to my fellow Elixirists: Daniel Berkompas, Zach Berkompas, Ryan Linton,
Yulian Glukhenko, Morgan Laco, and Silas Matson. Their pull requests and
code reviews have taught me more about Elixir than they’ll ever know.

Finally, I’d like to thank the loves of my life, my wife Jessica and daughter
Ella. I’d need a book ten times this size to tell you how grateful I feel to have
you both in my life. Thank you for all the love, inspiration, support, and
laughter.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Eric Meadows-Jönsson
I’d like to thank José Valim, first of course for creating Elixir but primarily
for mentoring me through the initial development of Ecto. When Ecto was
created I was still new to Elixir as almost everyone was back then, before the
release of Elixir 1.0. José helped guide me through the process of creating
Ecto and taught me about Elixir and OSS development. José eventually
invited me to be a core part of the development of Elixir itself which I am very
grateful for.

I would also like to thank Bruce Tate, the series editor of this book. Bruce
hired me right out of school when Elixir was still in its infancy and made a
bet on Elixir and on me, which allowed me to continue to work with Elixir.

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Introduction
For as long as there have been databases, there have been programmers
writing libraries to access those databases in a more friendly way.

Which is a nice way of saying that they’ve been trying to avoid writing SQL.

SQL is powerful—there’s a reason it’s stuck around as long as it has—but
generating it manually is tedious and error-prone. Developers have addressed
this problem by creating libraries that wrap up the low-level vagaries of talking
to a database into an API that’s more harmonious with the language being used.
In Java, we had Hibernate. In Python, SQLAlchemy. In Ruby, ActiveRecord
and DataMapper. And now in Elixir, we have Ecto.

Ecto is a large library, and even with its excellent documentation, it can be
hard to know where to start. This book will help you with that. Just as it’s
helpful to have a tour guide when visiting a new city, this book will help you
find your way through Ecto. We’ll take you through what we believe is the
optimal path for learning the major components, and along the way you’ll get
expert advice and insight from one of Ecto’s creators. At the end, you’ll have
a solid working knowledge of Ecto and you’ll be ready to start integrating it
into your own projects.

Who This Book Is For
This book is for developers who want to access relational databases from their
Elixir applications. This includes applications that use the Phoenix web
development framework, but Ecto can work in any Elixir app, whether it uses
Phoenix or not.

We’re going to assume you have some basic knowledge of Elixir. You should
be comfortable with creating and running Elixir applications, as well as the
basic components of the language: modules, functions, pattern matching,
working with the pipe operator, and so on. If you’re brand new to the language,
you might want to get some experience under your belt before diving into
Ecto. Programming Elixir 1.6 [Tho18] is a great place to start.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

We’re also going to assume that you’re comfortable working with relational
databases and SQL. You don’t need to be an expert, but you should be
familiar with tables, columns, indexes, and how to write queries. Many online
tutorials are available that can teach you the basics.

What’s In This Book
The book is divided into two parts. The first part will walk you through the
main modules that form the core of Ecto’s functionality. The second part will
build on that knowledge and apply it to real-world use cases that often come
up with database programming.

Throughout both parts, you’ll be practicing what you learn by working on a
sample app that’s included with the book. We’ll talk more about that in
Chapter 1, Getting Started with Repo, on page 3.

Part I - Ecto Fundamentals
Part I is a tour of Ecto’s API. We’ll start at the ground level with the most
basic features that Ecto provides, then work our way up, module-by-module,
through all of the core features of the library. You’ll be writing code every step
of the way to help get Ecto into your fingers. At the end of Part I, you’ll have
a solid understanding of the API, and experience using it in working code.

Part II - Ecto Applied
Part II will take the knowledge you picked up in Part I and put it to work.
Each chapter covers a specific task or use case that you’re likely to run into
as you start integrating Ecto into your projects. You’ll learn things like inte-
grating Ecto with Phoenix, running tests asynchronously, working with custom
types, streaming large datasets, and the like.

How To Read This Book
You should start by reading Part I in order, from start to finish. Part I covers
the most important features of Ecto and each chapter builds on the one before.
Even if you’ve done some work with Ecto before, it’s best not to skip around
too much, as you might miss out on some key features you weren’t aware of.

Part II is much less strict. You can read the chapters in any order, and you
should feel free to focus your attention on the topics that are most interesting
to you, and leave the rest for another time.

Introduction • xii

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Online Resources
You can download all the example source code for the book from the Pragmatic
Bookshelf website for this book.1 You can also provide feedback by submitting
errata entries.

If you’re reading the book in PDF form, you can click the link above a code
listing to view or download the specific examples.

Ready to dive in? Open a terminal window and your favorite editor, and let’s
get started.

1. https://pragprog.com/book/wmecto/

report erratum • discuss

Online Resources • xiii

https://pragprog.com/book/wmecto/
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Part I

Ecto Fundamentals

We begin by gradually learning the core features
of Ecto’s API. Each chapter in this part covers a
different Ecto module, starting with the basics, then
working toward more complex use cases. It’s best
to read this part in order from start to finish. You’ll
then have the foundation you need to look at the
specific use cases covered in Part II.

CHAPTER 1

Getting Started with Repo
Welcome to Ecto!

If you’re one of the majority of users who needs to use Elixir with a database,
you’re in luck: Ecto is the most prominent persistence framework for Elixir.
Actively developed since its introduction in 2014, Ecto is mature, stable, and
well-supported by an enthusiastic community of developers that includes
members of the Elixir core team.

Ecto is the default database library that ships with the Phoenix web develop-
ment framework, so for many developers, working with Phoenix is their first
introduction to Ecto. Ecto works well with Phoenix, but it’s a completely
separate project and you can use it in any Elixir app. In fact, aside from a
couple of chapters in Part II, we won’t be discussing Phoenix at all in this
book. We’ll stay focused on Ecto itself.

In this chapter, we’ll start with the basics. We’ll get a brief overview of Ecto
as a whole, then set up a small sample app so that you can try out the code
you’re learning as we go. We’ll then take a close look at the Repo module, which
is the heart of Ecto and the springboard for the rest of this part of the book.

Ecto and Elixir
Ecto is not the only database library for Elixir, but it’s one of the most mature
and best-supported. Plataformatec, the company that launched Elixir, has
been involved in Ecto’s development since the beginning, and José Valim is
still a frequent committer.

But beyond Ecto’s pedigree, three main characteristics make it stand out.

First, Ecto is approachable. As database libraries go, Ecto is a newcomer, but
it has a sense of history and builds on work that has come before. The query
syntax was inspired by LINQ in the .NET framework. The migrations and

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

relation syntax feel a lot like ActiveRecord. Depending on the libraries you’ve
used, you’re likely to find parts of Ecto that will make you feel at home. The
Ecto developers have tried to bring the best of what has come before, while
avoiding some of the known pitfalls. Hopefully, your progress through learning
Ecto will be met with responses of “oh, this feels very familiar,” and “wow,
that solves a problem that’s been bugging me for years!”

Second, Ecto is explicit. Like the Elixir language itself, Ecto avoids the “magic”
that characterizes many other database libraries. Magic is a seductive char-
acteristic. It appears to make everything easy and efficient, but only at first.
Over time, those hundreds of decisions made on your behalf start to catch
up with you, and you lose track of what’s actually going on. When you work
with Ecto, you have clarity: you know exactly when your app is talking to the
database, and what it’s saying. This is welcome news if you’ve ever diagnosed
a sluggish application and discovered that your database library was making
dozens or hundreds of requests that you weren’t even aware of.

Finally, Ecto is flexible. Ecto doesn’t lock you into one particular way of working
with it. In fact, it’s more accurate to think of Ecto as a suite of tools for database
access, rather than a large-scale framework you need to adapt to. You can
use some parts of Ecto and not others. You can use them in various combi-
nations. And, perhaps most surprising, you can use parts of Ecto without a
relational database. We’ll see some examples of this later in the book.

Ecto Modules
Ecto’s core functionality is contained in six main modules, and in Part I, we’ll
look at each of them in detail.

Later in this chapter, we’ll start with Repo. Repo is the heart of Ecto and acts
as a kind of proxy for your database. All communication to and from the
database goes through Repo.

The Query module contains Ecto’s powerful but elegant API for writing queries.
Here you’ll find everything you need to pull the data you want out of your
database, and make precise changes.

A schema is a kind of map, from database tables to your code. The Schema
module contains tools to help you create these maps with ease. The best part
is Ecto schemas are very flexible—you’re not locked into a simple one-to-one
relationship between your tables and your structs. As you’ll see, this allows
for whole new levels of expressiveness when creating your data structures.

Chapter 1. Getting Started with Repo • 4

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Many database layers have one or two kinds of change. Ecto understands
that one size does not fit all, so it provides the changeset: a data structure
that captures all aspects of making a change to your data. The Changeset
module provides functions for creating and manipulating changesets, allowing
you to structure your changes in a way that is safe, flexible, and easy to test.

You often need to coordinate several database changes simultaneously, where
they must all succeed or fail together. The transaction function works great for
simple cases, but the Multi module can handle even very complex cases while
still keeping your code clean and testable.

Change happens. As your app grows and evolves, so too must the underlying
database. Changing the structure of a database can be tricky, particularly
when multiple developers are involved, but Migration helps you coordinate these
changes so that everyone stays in sync.

We’ll get started on our tour with the Repo module, but before we do that, we’ll
take a moment to set up a small sample application that uses Ecto. We’ll use
this app throughout the book as a playground to try out Ecto functions as
we learn them.

How Ecto Is Organized
Under the hood, Ecto is actually two separate packages: ecto and ecto_sql. The
ecto package contains some of the core data manipulation features that are
useful even if you’re not using a relational database. These include the Repo,
Query, Schema, and Changeset modules (among others).

ecto_sql, on the other hand, contains modules specifically needed to communi-
cate with relational databases. These include the various database-specific
adapters, migrations, and so forth.

The ecto_sql package includes ecto as a dependency, so if you’re using Ecto to
work with a relational database, you just need to include ecto_sql in your
dependencies, and you’ll get ecto in the process. But if you’re not working with
a relational database and want to take advantage of the some of the data
manipulation features that Ecto offers (validations, for example) you can
include ecto rather than ecto_sql and your dependency tree will be a little lighter.

Setting Up the Sample App
To get a real feel for Ecto, you’ll want to write and execute some code for
yourself, and not just read about it. In Chapter 7, Adding Ecto to an Elixir
Application Without Phoenix, on page 123 we walk through all the steps of

report erratum • discuss

How Ecto Is Organized • 5

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

how to add Ecto to an existing application, but for now, we want to make this
as easy as possible.

We’ve created a small Elixir application with Ecto already installed and set
up. This app is a very simple music database that you might use to keep
track of your music collection. It’s a standard Elixir mix project that comes
with Ecto and sample data already baked in. All you need to do is download
it, configure it to work with your local database, and you’re ready to go. In
this section, we’ll walk you through the process.

To start, you’ll need Elixir 1.5 or greater, and a database that can support
Ecto 3 (we recommend Postgres, but you can also use MySQL). If you don’t
have Elixir installed, you can get it here.1 Postgres can be downloaded here.2

Working with MySQL

Almost all of the code examples in this book work with both Postgres
and MySQL, but Ecto does take advantage of a few features that are
available only in Postgres, and we cover some of these features in
the book. Whenever there’s an example that behaves differently in
the two databases, we’ll make a note of it in the book text.

As of this writing, Ecto uses the mariaex package as its database
driver for MySQL, but a new driver called myxql is currently under
development. This will be the preferred driver as soon as Ecto 3.1
is released, so if you’re working with MySQL and you have Ecto
3.1 or later, you may wish to modify your mix.exs and replace
mariaex with myxql in your dependencies.

Once you are sure those two pieces are in place, download the code as
described in Online Resources, on page xiii and unzip the file somewhere on
your system. Then:

1) Run mix do deps.get, compile to download dependencies and compile the app.

2) In your favorite editor, open ‘config/config.exs‘ and look at the section
starting with:

config :music_db, MusicDB.Repo

These are the settings that the app will use to connect to your database, so
double-check them to make sure they’ll work. In particular, make sure the
username and password are correct.

1. http://elixir-lang.org/install.html
2. https://www.postgresql.org/download

Chapter 1. Getting Started with Repo • 6

report erratum • discuss

http://elixir-lang.org/install.html
https://www.postgresql.org/download
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

If you’re a little confused as to what we’re doing in here, don’t worry; we’ll be
covering how this configuration works in the next section.

3) If you’re using MySQL, you’ll need to change the MusicDB.Repo module to use
a different adapter. Open up lib/music_db/repo.ex and change the adapter: setting
from Ecto.Adapters.Postgres to Ecto.Adapters.MySQL.

Once you’ve made the necessary changes, save the files, hop back over to
your terminal window, and run

mix ecto.setup

This is an alias that we’ve created for our music_db app that wraps up three
mix tasks into one command:

• mix ecto.create
• mix ecto.migrate
• mix run priv/repo/seeds.exs

These commands create the database, run all the migrations (which create
the individual tables), and load the sample data, respectively. When this is
done, you’ll have a fully populated database, and you should see something
like this:

Sample data successfully loaded.

You should be good to go at this point. To confirm, open up a mix console by
typing iex -S mix. Once you’re in, type in this line of code (this tells Ecto to fetch
the number of records in the artists table):

MusicDB.Repo.aggregate("artists", :count, :id)

You should get a single integer in response (as of this writing, it should be 3,
but it’s possible we’ve added some data since the book was printed). If you
see that, you’re all set.

Running the Examples
To run the code snippets included in the book, you have two options.

You can open up an IEx session with iex -S mix as we did in the last section,
and type or copy/paste the code directly into the console. This works great
for one- or two-line examples.

For longer examples, the app has a built-in playground for you to try out code
that might be too ambitious to type into the console. Just open up your editor
and find the priv/repo/playground.exs file. Once you’re there, find the play func-
tion—it’s pretty well marked with a big PUT YOUR TEST CODEHERE in the comments.

report erratum • discuss

Setting Up the Sample App • 7

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Put whatever code you’d like into that function, then go back to your terminal.
Exit out of your IEx session (if you’re still in one), then type:

mix run priv/repo/playground.exs

This will execute the code in the play function and print the result.

If you find yourself typing something that feels too complicated for IEx, jump
back into this file and code to your heart’s content. You’ll definitely want to
do this for anything that uses the pipe operator (|>) across multiple lines, as
this doesn’t work correctly in IEx.

Resetting the Sample Data
As we work through the examples in the book, we’ll be making lots of changes
to the sample data that we installed earlier. Over time, our changes will
mangle the data to the point where it’s no longer usable. When that happens,
it’s time for a reset.

To get the data back to its pristine state, exit out of your IEx session (if you’re
in one) and run this command:

mix ecto.reset

This single command will drop the database, re-create it, and repopulate it
with the original sample data. This should only take a couple of seconds, so
it’s a good idea to run it between sections of the book, just to make sure you’re
starting with a clean slate.

Data Model of the Sample App
The data model for this app is much simpler than what you would use for a
real music database, but it should have enough to let us explore the major
features of Ecto without having to wrap our heads around too much data
modeling detail.

It contains four tables:

• artists
• albums
• tracks
• genres

You can probably guess the associations between the tables: an artist can
have many albums, an album can have many tracks. Albums have a many-
to-many relationship with genres as shown in the figure on page 9.

Chapter 1. Getting Started with Repo • 8

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Artists Albums

Tracks

Genres

If you’re curious about how Ecto created these tables, you can peek ahead
to Chapter 6, Making Changes to Your Database, on page 101 where we cover
migrations in detail, but you don’t need to know that to get started.

All the code examples in Part I will work with this data model. We encourage
you to keep your terminal open while you read so you can try out the examples
as we go—you’ll retain more if you actually get the Ecto code into your fingers.

The Repository Pattern
Now that we’ve got the sample app up and running, we’re ready to begin our
tour of Ecto. We’re going to start with the big picture and take a look at Ecto’s
approach to database access. Ecto adopts the Repository pattern for accessing
the underlying data store. Understanding this pattern will help make sense
of Ecto’s overall architecture, so let’s take a quick look.

Open a mix session in the music_db app we set up in the last section: iex -S mix.
Then type in the following lines of code (you don’t have to enter the com-
ments—that’s just to help clarify what’s going on):

priv/examples/getting_started_01.exs
alias MusicDB.{Repo, Artist}

insert a record into the artists table
Repo.insert(%Artist{name: "Dizzy Gillespie"})

retrieve the record
dizzy = Repo.get_by(Artist, name: "Dizzy Gillespie")

make a change
Repo.update(Ecto.Changeset.change(dizzy, name: "John Birks Gillespie"))

retrieve it again
dizzy = Repo.get_by(Artist, name: "John Birks Gillespie")

delete it
Repo.delete(dizzy)

report erratum • discuss

The Repository Pattern • 9

http://media.pragprog.com/titles/wmecto/code/priv/examples/getting_started_01.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Notice that every time we want to do something with the database, we call a
function in Repo. That’s the repository pattern at work. The main characteristic
of this pattern is the presence of a single module or class, called the Reposi-
tory, through which all communication with the database passes. Your app
code creates queries and submits them to the Repository, which in turn sends
them across the wire to the database. The Repository also handles the
response, and packages it up in a friendly way for your app to consume.

The Repository pattern is not unique to Ecto. Martin Fowler describes it in
Patterns of Enterprise Application Architecture, as does Eric Evans in Domain-
Driven Design. Implementations can differ slightly, and Ecto has its own
unique take on the approach. The key point to bear in mind is that the
Repository acts as a stand-in for your database, and it’s the single point of
contact—if you want to talk to the database, you talk to the Repository.

This is in sharp contrast to many other data access patterns, notably Active
Record. In that pattern, communication with the database is more opaque.
You simply perform operations on in-memory data structures, and the neces-
sary SQL commands are silently dispatched and sent to database completely
behind the scenes. With the Repository pattern, the database is front and
center. With Active Record, it almost disappears.

Both patterns are viable options, and many excellent libraries have been built
with both. But the Repository pattern is a great fit for a language like Elixir,
which decouples data and behavior, and favors explicit behavior over implicit.

If you’re new to the Repository pattern, Ecto may feel quite different at first,
but over time, it will start to become second nature. You may even begin to
wonder how you lived this long without it.

The Repo Module
Now that we’ve got a handle on what a Repository is, let’s look at how it’s
implemented in Ecto. The Repo module is the heart of Ecto, and just about
everything you do will touch Repo in some way. Repo is also quite powerful; as
you’re about to see, you can perform all of the classic CRUD operations (create,
read, update, delete) using just the Repo module alone. The other modules in
Ecto make these operations easier, but there’s a lot you can do with just Repo.

Given its relationship to the Repository pattern, Repo contains a lot of functions
you’d expect: get, insert, update, delete, and the like. What you might not expect
is that you never call these functions directly. Instead, you create your own
Repo module that lives in your app’s codebase, then integrate Ecto.Repo’s func-
tions with Elixir’s use macro. Let’s see this in action.

Chapter 1. Getting Started with Repo • 10

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

In our sample project, open up lib/music_db/repo.ex and you’ll see this:

lib/music_db/repo.ex
defmodule MusicDB.Repo do

use Ecto.Repo,
otp_app: :music_db,
adapter: Ecto.Adapters.Postgres

end

This sets up the Repo module we’ll use in our app. We can name it anything
we’d like, but the convention is to use “Repo,” so that’s what we will use
throughout this book. We then pull in the critical functions from Ecto.Repo with
the use macro. This gives our module access to all the good stuff Ecto provides.

What exactly does “use” do?

It’s one of the tools, along with import and require, that Elixir provides
to integrate code from other modules. use goes beyond simply
including functions, and actually executes a specified block of
code in the current context. You’ll work with use quite a bit in Ecto.
You don’t need to know all the gory details, but if you’re curious,
check out the official documentation.3

The otp_app option is required. It tells Ecto where to find the configuration
values it needs to connect to your database. You worked with these values
in the previous section when you modified config/dev.exs to match your local
database installation. Your version probably looks something like this:

config :music_db, MusicDB.Repo,
database: "music_db",
username: "postgres",
password: "postgres",
hostname: "localhost"

This is where the otp_app option comes into play. It tells Ecto to look here to
find the values it needs to communicate with the database. Different database
adapters may require different settings, so check the documentation to find
out exactly what Ecto expects to see here.

In our example, we used separate values for these settings but it’s possible
to combine all of these into a single url parameter. The format for the URL
should be ecto://USERNAME:PASSWORD@HOSTNAME/DATABASE_NAME. For our configura-
tion, we could use this:

config :music_db, MusicDB.Repo,
url: "ecto://postgres:postgres@localhost/music_db"

3. https://hexdocs.pm/elixir/Kernel.html#use/2

report erratum • discuss

The Repo Module • 11

http://media.pragprog.com/titles/wmecto/code/lib/music_db/repo.ex
https://hexdocs.pm/elixir/Kernel.html#use/2
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Using a URL can simplify creating a secure configuration, as you can put all
of the connection parameters into a single URL stored as an environment
variable. But if you want to load the URL dynamically (and you should), you’ll
need to set that up elsewhere. We’ll look at that in Customizing Your Repo
later in this chapter.

Putting Our Repo to Work
As we saw earlier, Repo is the gateway to our database, and most of the func-
tions in Repo map directly to standard CRUD operations. This makes Repo
fairly small compared to some other Ecto modules: its one job is sending
payloads back and forth to the database. But we can use this small handful
of functions to create, read, update, and delete records. Let’s try it.

Repo exposes a number of functions that allow us to interact with our database
at a low level, even before we start setting up schemas. These functions are
easy to spot because they end with “all”: insert_all, update_all, delete_all, and just
plain all for queries.

For example, our music app includes an artists table. Here’s how we can insert
a new record into that table:

priv/examples/getting_started_02.exs
alias MusicDB.Repo

Repo.insert_all("artists", [[name: "John Coltrane"]])
#=> {1, nil}

A Quick Note About alias

We’ve added alias MusicDB.Repo to this example so that we can refer
to Repo without its MusicDB namespace. This is a convention that
we’ll follow in the code throughout the book. To keep the examples
concise, we won’t be adding alias every time, but we’ve included
several alias statements in the .iex.exs file included with the source
code of this project, so you should be able to type (or copy) the
code as written while you’re working in IEx. If you’re curious, you
can peer into .iex.exs and see what it’s doing for you. We’ll also
examine this file in detail in Chapter 15, Optimizing IEx for Ecto,
on page 189.

In the last example, we were only setting the name field on our new record,
but we could set other fields by including more keyword pairs:

Repo.insert_all("artists",
[[name: "Sonny Rollins", inserted_at: DateTime.utc_now()]])

#=> {1, nil}

Chapter 1. Getting Started with Repo • 12

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/getting_started_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

If we want to insert more than one record, we can just add another set of
values inside the outer list:

Repo.insert_all("artists",
[[name: "Max Roach", inserted_at: DateTime.utc_now()],
[name: "Art Blakey", inserted_at: DateTime.utc_now()]])

#=> {2, nil}

In these examples, we specified the values using keyword lists, but you can
also use maps. This snippet will do the exact same thing as the previous one:

Repo.insert_all("artists",
[%{name: "Max Roach", inserted_at: DateTime.utc_now()},
%{name: "Art Blakey", inserted_at: DateTime.utc_now()}])

#=> {2, nil}

To update records, we can use the update_all function:

Repo.update_all("artists", set: [updated_at: DateTime.utc_now()])
#=> {9, nil}

Here we use the set option to tell Ecto which fields and values we want to
change, but update_all provides some other options for making changes:

• inc: This increments the given field by the given value; we can decrement
by supplying a negative number

• push: This works on columns containing an array, and pushes the given
value onto the end of the array

• pull: This also works on array columns—it removes the given value from
the array

See the official documentation for more details on these options.4

If we want to delete a bunch of records, we can do that with delete_all. This
example will remove all of the records from the tracks table:

Repo.delete_all("tracks")
#=> {33, nil}

If you just ran this command in IEx (and we hope you have), you just deleted
all the records in the tracks table. Oops. But remember that you can restore
all the app’s sample data by exiting out of IEx and running mix ecto.reset on
the command line.

4. https://hexdocs.pm/ecto/Ecto.Query.html#update/3-operators

report erratum • discuss

Putting Our Repo to Work • 13

https://hexdocs.pm/ecto/Ecto.Query.html#update/3-operators
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Getting Values Back
In each of the examples we’ve seen so far, Ecto returns a tuple. This is the
standard return value for the *_all functions. The first item in the tuple is the
number of records affected by the operation. The second contains the values
that we asked the database to return. We haven’t been using that option so
far, which is why we keep getting nil. Let’s try it now.

The returning option lets us specify any values we’d like returned to us after
the operation completes. This option takes a list of the field names we’re
interested in, and Ecto returns the values as a map. Note that this option
works in Postgres, but not in MySQL.

To try this out, let’s go back to inserting new records. When we first set up
our database, we made the id column the primary key, and we asked the
database to assign these IDs automatically. We can use returning to have Ecto
show us the IDs after inserting the records:

priv/examples/getting_started_03.exs
Repo.insert_all("artists", [%{name: "Max Roach"},

%{name: "Art Blakey"}], returning: [:id, :name])
#=> {2, [%{id: 12, name: "Max Roach"}, %{id: 13, name: "Art Blakey"}]}

As expected, we get a map for each record we inserted, and each map contains
values for the two fields we asked for, id and name. This option works with any
of the *all functions.

Executing Queries
At this point, you’re probably starting to wonder about how to run queries.
Inserting, updating, and deleting are all well and good, but queries are the
real meat and potatoes of most database-backed applications, so how do we
do that?

Ecto provides an elegant and powerful query interface in the Query module,
and we’ll be looking at that in detail in the next chapter. But it’s worth
pointing out that if you’re a fan of using raw SQL for your queries, you have
that option. The Ecto.Adapters.SQL module has a function called query that will
take good old-fashioned SQL:

Ecto.Adapters.SQL.query(Repo, "select * from artists where id=1")
#=> {:ok,
#=> %Postgrex.Result{
#=> columns: ["id", "name", "birth_date", "death_date", "inserted_at",
#=> "updated_at"],
#=> command: :select,
#=> connection_id: 3333,

Chapter 1. Getting Started with Repo • 14

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/getting_started_03.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

#=> messages: [],
#=> num_rows: 1,
#=> rows: [
#=> [1, "Miles Davis", nil, nil, ~N[2018-1-05 23:32:31.000000],
#=> ~N[2018-1-05 23:32:31.000000]]
#=>]
#=> }}

Ecto also makes this function available from Repo—this shortcut doesn’t appear
in the documentation for Repo but it’s simpler to call:

Repo.query("select * from artists where id=1")

As you can see, the return value is a little hard to parse, and working with
SQL in string form can get pretty clumsy and even unsafe, particularly as
you start adding dynamic values. However, this approach can be useful when
debugging, or if you want to run a quick SQL statement within an IEx session.

The Query module is much better suited for running queries, as you will soon
see. Stay tuned.

Customizing Your Repo
For many projects, you won’t need to do much to your Repo module. With that
one use Ecto.Repo call, you’ll have access to everything you need. But there may
be times when you find yourself calling some particular Repo functions over
and over with the same set of options, or maybe you’d like to add some
behavior that Repo doesn’t currently have. Fortunately, the Repo module you
created is a plain old Elixir module just like any other, so it’s possible to add
customized behavior just by adding more functions.

For example, we might decide that we’re going to be doing a lot of counting
in our music app: how many albums we have, how many artists, and so forth.
Getting the number of records in a table is fairly easy with Repo’s aggregate
function. Here’s how we can see how many albums we have:

priv/examples/getting_started_05.exs
Repo.aggregate("albums", :count, :id)
#=> 5

This function gives us access to a number of aggregate functions supplied by
the underlying database: count, avg, min, max, sum, and so on. To use this
function, we just provide the name of the table we’re interested in, the
aggregate function we want to run, and which column to use. For count the
column doesn’t matter too much, but we’ll use id because we know that each
record will have one.

report erratum • discuss

Customizing Your Repo • 15

http://media.pragprog.com/titles/wmecto/code/priv/examples/getting_started_05.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

This function is simple enough, but if we know we’ll be doing this often and
want to be truly lazy, we can add a custom count function to our Repo module
to save some typing. In the sample project, open lib/music_db/repo.ex and add
this function:

def count(table) do
aggregate(table, :count, :id)

end

If you’ve got an open IEx session, you can pick up this change by recompiling
Repo with the r command:

iex(1)> r Repo

Now when we want to count the records in a table, we can just do this:

Repo.count("albums")
#=> 5

Even easier!

Another useful customization is adding an implementation of the init callback.
This runs when Ecto first initializes and allows you to add or override config-
uration parameters. Earlier in the chapter we talked about loading a database
connection URL from an environment variable. The init callback is where you’d
want to do that:

def init(_, opts) do
{:ok, Keyword.put(opts, :url, System.get_env("DATABASE_URL"))}

end

See the Repo documentation for more details.5

You may not find that you need to customize your Repo very often, but it’s
good to know that you can if you need to.

Wrapping Up
We have completed the first stop of our tour of Ecto. We looked at Ecto from
a high level, we set up a sample app, and we learned about the Repository
pattern and how it’s implemented in Ecto. From there, we dove into the Repo
module and started running a few basic CRUD operations. We are well on
our way.

5. https://hexdocs.pm/ecto/Ecto.Repo.html#module-urls

Chapter 1. Getting Started with Repo • 16

report erratum • discuss

https://hexdocs.pm/ecto/Ecto.Repo.html#module-urls
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Repo is powerful, but it’s a blunt instrument, and Ecto has many other tools
available to help us with our work. In particular, we noticed that running
queries with raw SQL was rather clumsy. Ecto has a better option. Our next
stop is the Query module, where we’ll learn how to use Ecto’s clean, elegant
syntax to create queries ranging from the very simple to the very complex.
Let’s take a look.

report erratum • discuss

Wrapping Up • 17

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 2

Querying Your Database
For the next stop on our tour, we’ll look at writing queries. Queries are an
essential operation for writing database-backed applications, but, as we saw
in the last chapter, writing queries with raw SQL was a little cumbersome.
The Query module makes writing queries much easier, and it can handle just
about anything you’d want to throw at it, from the very simple to the very
complex.

In this chapter, we’ll look at the Query module in detail. We’ll start by examining
Ecto’s query syntax, and try our hand at writing some simple queries. From
there, we’ll look at writing more advanced queries using where and join. We’ll
then see how Ecto allows us to break up larger queries into smaller, reusable
pieces with its composability features. We’ll wrap up by applying what we’ve
learned about queries to some of the Repo functions we learned about in the
last chapter.

Before we begin, we want to take a moment to mention schemas. If you’ve
worked with Ecto before, or even just browsed the documentation, you’ve
probably seen queries written with Ecto schemas rather than with raw table
names. We’ll be covering schemas in depth in the next chapter, but for now,
we’ll write our queries without them. We have a couple reasons for this. First,
we want to demonstrate that schemas aren’t necessary for writing queries in
Ecto (in fact, they sometimes get in the way). And second, we want you to
focus your full attention on Ecto’s query API, without having to keep track of
how schemas work at the same time. After you’ve had some experience writing
queries, adding schemas will make much more sense, and you’ll have a better
idea of when they help and when they don’t.

With that in mind, make sure your terminal window is open, and let’s get
started.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Query Basics
Let’s start with the basics. We’ll take a quick look at Ecto’s query syntax, then
start writing some simple queries, including some that integrate user input.

The Query module uses Elixir macros to create a DSL (domain-specific language)
that sits right in your Elixir code. The DSL syntax feels a lot like Elixir, but
it’s a little more fluid and makes writing queries feel more natural.

For example, here’s a SQL query based on the data model in our sample app.
You can run this in a Postgres console to see what it does:

priv/examples/query_01.exs
SELECT t.id, t.title, a.title

FROM tracks t
JOIN albums a ON t.album_id = a.id
WHERE t.duration > 900;

And here’s that same query written in Ecto:

query = from t in "tracks",
join: a in "albums", on: t.album_id == a.id,
where: t.duration > 900,
select: [t.id, t.title, a.title]

Even if you don’t understand everything these queries do, you can see the
similarities. Most of the keywords are the same, and the expressions are
nearly identical.

Ecto provides two ways to compose queries. The preceding example uses the
keyword syntax, but you can also use the macro syntax, which leans heavily
on Elixir’s |> operator. Here’s the same query written using the macro syntax:

query = "tracks"
|> join(:inner, [t], a in "albums", on: t.album_id == a.id)
|> where([t,a], t.duration > 900)
|> select([t,a], [t.id, t.title, a.title])

Some developers prefer this approach, as the pipe operator makes the code
feel more Elixirish, but it’s also more verbose. We’ll be using the keyword
syntax throughout this book, but Ecto’s documentation for the Query API
usually includes examples for both. You can experiment and see what feels
better to you.

To get our feet wet, we’ll start by writing a very simple query. Let’s just grab
all of the values from the name column in the artists table:

query = from "artists", select: [:name]
#=> #Ecto.Query<from a in "artists", select: [:name]>

Chapter 2. Querying Your Database • 20

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_01.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

This snippet creates an Ecto.Query struct, which we then assign to the mun-
danely named variable query.

As the output of the statement shows, all we have at this point is a simple data
structure: the database itself hasn’t been touched. When it’s time to run the
query, Ecto will take this data structure and convert it into a SQL statement for
us. We can see the statement it’ll generate with the Ecto.Adapters.SQL.to_sql function:

query = from "artists", select: [:name]
Ecto.Adapters.SQL.to_sql(:all, Repo, query)
#=> {"SELECT a0.\"name\" FROM \"artists\" AS a0", []}

This function takes three parameters: an atom representing the Repo function
you plan on using (:all, :delete_all, or :update_all), your Repo module, and the query.

Although it’s not documented, you can also call this function directly from
Repo, which simplifies the code a bit:

query = from "artists", select: [:name]
Repo.to_sql(:all, query)

to_sql comes in handy when queries produce unexpected results, as it helps
you see exactly what’s going on under the hood.

Even after generating the SQL, we still haven’t sent anything to the database.
To run the query, we have to hand it off to our repo (recall that with the
Repository pattern, the repo handles all database communication). We’ll do
this with the Repo.all function we saw briefly in the last chapter:

query = from "artists", select: [:name]
Repo.all(query)
#=> [%{name: "Miles Davis"}, %{name: "Bill Evans"},
#=> %{name: "Bobby Hutcherson"}]

Now we’ve involved the database, and Ecto has returned a list of maps, one
for each record in our result set. We only specified one column in our select,
so each map just has one item: the name value we asked for.

Let’s look closely at what’s going on. As you might’ve guessed, from is part of the
Ecto.Query module, and the preceding example is a shorthand version of this:

query = Ecto.Query.from("artists", select: [:name])

With the full module name and the added parentheses, the query looks a little
less mysterious. It seems that we’re really just calling a function named from
that returns a Query struct. But the real story is that from is a macro, and, as
we’ll see, this allows Ecto to provide an extra level of expressiveness that you
don’t get with a standard function call.

report erratum • discuss

Query Basics • 21

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Most developers omit the parenthesis when writing queries, and import the
from function so that it can be called without the full module name. These two
shortcuts add an almost-like-SQL feel to queries—we’ll follow both of those
conventions throughout the book.

What exactly is a macro?

In a nutshell, a macro is code that writes code. Macros allow
developers to extend the Elixir language by writing specialized
functions that are evaluated before the rest of the code is compiled.
This means that there’s an extra level of pre-processing that can
happen with macros that doesn’t happen with regular functions.
Ecto uses macros to provide some syntactic sugar that bridges
the gap between Elixir and SQL. At compile time, Ecto’s query
syntax is transformed into plain Elixir code, which does the same
thing, but doesn’t look as nice. You can read more about macros
in the official Elixir guide.1

The Ecto.Query.from/1 macro is the starting point for all Ecto queries. It has one
required parameter: the table that we want to query, and a number of
optional parameters that refine the query. For now, we must provide the select
option to specify which columns we’d like Ecto to return. If we don’t, Ecto
will complain:

query = from "artists"
Repo.all(query)
#=> ** (Ecto.QueryError) ...

This error makes it seem like select should be a required parameter, not
optional. But this is because we haven’t started working with schemas yet.
When we get to the Schema module in the next chapter, we’ll see how to make
the select parameter go away.

If you’re using prefixes in your database, you can specify them in your query
with the prefix: keyword:

query = from "artists", prefix: "public", select: [:name]

The option behaves differently depending on the database you’re using. For
PostgreSQL, this value refers to the schema where the table is located, and
defaults to “public.” For MySQL, the value refers to the name of the database,
and defaults to the value you specified in your Repo configuration.

1. http://elixir-lang.org/getting-started/meta/macros.html

Chapter 2. Querying Your Database • 22

report erratum • discuss

http://elixir-lang.org/getting-started/meta/macros.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Not all apps will need to take advantage of this feature, but Ecto supports it
if you need it. The prefix can be set for the entire query, or just for specific
parts. See the documentation2 for more details and examples.

Refining Our Results with where
Now that we know some of the query basics, we’ll start filtering the results
with the where option. We’ll also see how to integrate dynamic input into
queries (user input, for example), and how Ecto protects you from SQL
injection attacks.

To start, we’re going to look up the id and name for the artist named “Bill Evans”:

priv/examples/query_02.exs
q = from "artists", where: [name: "Bill Evans"], select: [:id, :name]
Repo.all(q)
#=> [%{id: 2, name: "Bill Evans"}]

Great, that works. We added the where option and gave it a list of values to
look for (in this case, just the name column). But what if we wanted to query
for a dynamic value, say a value we got from the user? You might be tempted
to do something like this:

artist_name = "Bill Evans"
q = from "artists", where: [name: artist_name], select: [:id, :name]

It seems like that should work. We’re just passing a one-element keyword list
to the where parameter, and artist_name is just a plain old Elixir variable—but
we’ll get an error:

** (Ecto.Query.CompileError) variable `artist_name` is not a valid query
expression. Variables need to be explicitly interpolated in queries with ^
...

Let’s take a deeper look to see what’s going on.

Recall that much of Ecto’s query syntax is implemented using macros, so the
rules are a little different. In this case, the error message tells us what we
need to do. We need to alert the macro that we’re using an expression that
needs evaluating by adding ̂ (referred to as “the pin operator”). If we prepend
our variable with that operator, we’re back in business:

artist_name = "Bill Evans"
q = from "artists", where: [name: ^artist_name], select: [:id, :name]
#=> #Ecto.Query<from a in "artists", where: a.name == ^"Bill Evans",
#=> select: [:id, :name]>

2. https://hexdocs.pm/ecto/Ecto.Query.html#module-query-prefix

report erratum • discuss

Refining Our Results with where • 23

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_02.exs
https://hexdocs.pm/ecto/Ecto.Query.html#module-query-prefix
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

You can use any valid Elixir expression with the pin operator. If you just need
to evaluate a variable, putting the pin operator in front is all you need. But
if you’ve got a more complex expression, you need to wrap it in parentheses,
like this: ^("Bill" <> " Evans")

Protecting Against SQL Injection
The pin operator performs another critical job: it protects you from SQL
injection attacks. When Ecto converts the Query struct into a SQL statement,
any values added by the pin operator become parameterized values.

You can verify this by using to_sql to look at the query:

priv/examples/query_03.exs
artist_name = "Bill Evans"
q = from "artists", where: [name: ^artist_name], select: [:id, :name]
Ecto.Adapters.SQL.to_sql(:all, Repo, q)
#=> {"SELECT a0.\"id\", a0.\"name\" FROM \"artists\" AS a0
#=> WHERE (a0.\"name\" = $1)", ["Bill Evans"]}

Instead of dropping the value of artist_name directly into the generated SQL,
Ecto does the right thing and turns it into a query parameter. You will likely
write a lot a queries that involve user-supplied input, so it’s good to know
that Ecto is looking out for you.

Dynamic Values and Their Types
When working with dynamic values, you have to give some thought to data
types. Take a look at this example:

priv/examples/query_04.exs
artist_id = 1
q = from "artists", where: [id: ^artist_id], select: [:name]
Repo.all(q)
#=> [%{name: "Miles Davis"}]

That works fine. artist_id is an integer and the id column in our Postgres database
is an integer, so the value goes across the wire with no problem. If the value
came in as a string, however, we’d have trouble:

artist_id = "1"
q = from "artists", where: [id: ^artist_id], select: [:name]
Repo.all(q)
#=> ** (DBConnection.EncodeError) Postgrex expected an integer
#=> in -2147483648..2147483647 that can be encoded/cast to
#=> type "int4", got "1". Please make sure the value you
#=> are passing matches the definition in your table or
#=> in your query or convert the value accordingly.

Chapter 2. Querying Your Database • 24

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_03.exs
http://media.pragprog.com/titles/wmecto/code/priv/examples/query_04.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Not good. In this case, we need to instruct Ecto to make the type conversion
for us, using Ecto’s type function:

artist_id = "1"
q = from "artists", where: [id: type(^artist_id, :integer)], select: [:name]
Repo.all(q)
#=> [%{name: "Miles Davis"}]

If this mucking about with types seems overly tedious, fear not: the Schema
module will come to our rescue in the next chapter.

Query Bindings
At this point, we’ve gotten our feet wet with queries, and we can handle
dynamic values as well as hardcoded values. Now let’s start exploring some
of the query expressions that Ecto provides, so we can start writing more
complex queries.

The where expression we’ve been using so far has been very simple. As we’ve
seen, it just checks for equality:

priv/examples/query_05.exs
q = from "artists", where: [name: "Bill Evans"], select: [:id, :name]

You might well wonder if you could write the query like this:

q = from "artists", where: name == "Bill Evans", select: [:id, :name]

You can’t. The trouble is that Ecto can’t easily figure out what name is supposed
to be. A variable? A function or macro defined elsewhere? We need a way to
tell Ecto that name is a column in our artists table. We can do this with query
bindings.

You create a query binding by using in along with the usual from. It works a
lot like table aliases in SQL and effectively gives you a variable for referring
to your table throughout your query. Our problematic query can be rewritten
like this:

q = from a in "artists", where: a.name == "Bill Evans", select: [:id, :name]

In this example, a becomes the binding for the artists table, and we can use it
throughout the query to refer to the columns in that table. You can use any
valid Elixir variable name for the binding. We chose a just to keep it short
and sweet, but any name will work.

Query Expressions
With query bindings in our toolbox, our where clauses can get a lot more
sophisticated. Ecto provides a long list of functions that you can use with

report erratum • discuss

Refining Our Results with where • 25

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_05.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

where and other query keywords. These are documented in detail in the
Ecto.Query.API module, but here are a few examples to give you an idea of what’s
possible:

priv/examples/query_06.exs
like statements
q = from a in "artists", where: like(a.name, "Miles%"), select: [:id, :name]

checking for null
q = from a in "artists", where: is_nil(a.name), select: [:id, :name]

checking for not null
q = from a in "artists", where: not is_nil(a.name), select: [:id, :name]

date comparison - this finds artists added more than 1 year ago
q = from a in "artists", where: a.inserted_at < ago(1, "year"),

select: [:id, :name]

For a complete list of all the available expressions, see the documentation for
Ecto.Query.API.3

Inserting Raw SQL
Ecto’s query API gives you just about everything you need to write even very
complex queries, but you might have cases where your database exposes
some specialized function that Ecto doesn’t support. The fragment function
gives you an escape hatch for writing bits of raw SQL that get inserted verba-
tim into the query.

Here we use fragment so we can call the Postgres lower function:

priv/examples/query_07.exs
q = from a in "artists",

where: fragment("lower(?)", a.name) == "miles davis",
select: [:id, :name]

We can use to_sql again to see exactly how Ecto works this into the rest of the
query:

q = from a in "artists",
where: fragment("lower(?)", a.name) == "miles davis",
select: [:id, :name]

Ecto.Adapters.SQL.to_sql(:all, Repo, q)
#=> {"SELECT a0.\"id\", a0.\"name\" FROM \"artists\" AS a0
#=> WHERE (lower(a0.\"name\") = 'miles davis')", []}

If this is something you think you’ll be using a lot, you can extend Ecto’s
query API by adding your own macro and importing it into your module:

3. https://hexdocs.pm/ecto/Ecto.Query.API.html

Chapter 2. Querying Your Database • 26

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_06.exs
http://media.pragprog.com/titles/wmecto/code/priv/examples/query_07.exs
https://hexdocs.pm/ecto/Ecto.Query.API.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

defmacro lower(arg) do
quote do: fragment("lower(?)", unquote(arg))

end

Then the query could be rewritten like this:

q = from a in "artists",
where: lower(a.name) == "miles davis",
select: [:id, :name]

For more details on this approach, see the documentation for the fragment
function4.

Combining Results with union and union_all
To combine results of different queries, SQL provides the UNION operator. We
can perform union queries in Ecto by adding the union: option to our queries.
For this to work, the two queries need to have result sets with the same col-
umn names and data type.

Here’s how we can use union: to get the titles of all our albums and tracks:

priv/examples/query_08.exs
tracks_query = from t in "tracks", select: t.title
union_query = from a in "albums", select: a.title,

union: ^tracks_query
Repo.all(union_query)
#=> ["Without a Song", "Gary's Theme", "Miles", "Kind Of Blue", ...]

With union the database will filter the results so that they only contain unique
rows. Depending on your database, this can add quite a bit of overhead. If
you’re certain that your results won’t contain duplicates (or you don’t care if
they do), you can use union_all to generate a more efficient query:

tracks_query = from t in "tracks", select: t.title
union_query = from a in "albums", select: a.title,

union_all: ^tracks_query
Repo.all(union_query)
#=> ["Without a Song", "Gary's Theme", "Miles", "Kind Of Blue", ...]

If you’re familiar with the UNION operator, you’re probably wondering if Ecto
supports INTERSECT and EXCEPT, and the answer is yes. We can use intersect: to
get a list of album titles that are also track titles:

tracks_query = from t in "tracks", select: t.title
intersect_query = from a in "albums", select: a.title,

intersect: ^tracks_query

4. https://hexdocs.pm/ecto/Ecto.Query.API.html#fragment/1

report erratum • discuss

Refining Our Results with where • 27

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_08.exs
https://hexdocs.pm/ecto/Ecto.Query.API.html#fragment/1
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

And we can use except: to get a list of album titles that are not also track titles:

tracks_query = from t in "tracks", select: t.title
except_query = from a in "albums", select: a.title,

except: ^tracks_query

As with union: and union_all:, Ecto provides intersect_all: and except_all: when you’re
not concerned about potential duplicates.

Ordering and Grouping
SQL allows you to be specific about how your results are ordered. You can
also group result rows together, which comes in pretty handy when you’re
trying to get counts in your results. The order by and group by expressions in
SQL are available in Ecto via the order_by and group_by keywords. Let’s see how
those work.

If we wanted a list of all of artists in alphabetical order, we can use order_by
like this:

priv/examples/query_08.exs
q = from a in "artists", select: [a.name], order_by: a.name
Repo.all(q)
#=> [["Bill Evans"], ["Bobby Hutcherson"], ["Miles Davis"]]

order_by returns the results in ascending order by default, but you can change
this with the desc: keyword:

q = from a in "artists", select: [a.name], order_by: [desc: a.name]
Repo.all(q)
#=> [["Miles Davis"], ["Bobby Hutcherson"], ["Bill Evans"]]

You can also order by multiple columns by providing a list of column names
to order_by. As happens when working with raw SQL, the results will be sorted
by the first column provided to order_by, then by the second, and so on. In this
next query, we’ll get all tracks from our database, and we’ll sort first by album_id
and then by index. The result will show all of the tracks of each album, in per-
album order:

q = from t in "tracks", select: [t.album_id, t.title, t.index],
order_by: [t.album_id, t.index]

Repo.all(q)
#=> [[1, "So What", 1], [1, "Freddie Freloader", 2], [1, "Blue In Green", 3],
#=> [1, "All Blues", 4], [1, "Flamenco Sketches", 5],
#=> [2, "If I Were A Bell", 1], [2, "Stella By Starlight", 2],
#=> [2, "Walkin'", 3], [2, "Miles", 4], [2, "No Blues", 5], ...]

You can sort specific columns in ascending or descending order by adding
asc: and desc:

Chapter 2. Querying Your Database • 28

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_08.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

q = from t in "tracks", select: [t.album_id, t.title, t.index],
order_by: [desc: t.album_id, asc: t.index]

Repo.all(q)
#=> [[5, "Anton's Ball", 1], [5, "The Moontrane", 2], [5, "Farallone", 3],
#=> [5, "Song Of Songs", 4], [4, "Come Rain Or Come Shine", 1], ...]

By providing album_id as the first item to order_by, the tracks come back grouped
by album. Then, within each of those groups, the tracks are sorted by the
index value. If we reversed our order_by columns, we’d get all the tracks with
index 1 first, then index 2, and so on:

q = from t in "tracks", select: [t.album_id, t.title, t.index],
order_by: [t.index, t.album_id]

Repo.all(q)
#=> [[1, "So What", 1], [2, "If I Were A Bell", 1],
#=> [3, "B Minor Waltz (for Ellaine)", 1], [4, "Come Rain Or Come Shine", 1],
#=> [5, "Anton's Ball", 1], [1, "Freddie Freloader", 2],
#=> [2, "Stella By Starlight", 2], [3, "You Must Believe In Spring", 2],
#=> [4, "Autumn Leaves", 2], [5, "The Moontrane", 2], ...

When using order, you should give some thought to columns that might contain
NULL. The default behavior varies between different databases: some put the NULL
values first, others put them last. If you want to control where they appear,
you can specify the ordering using :asc_nulls_last, :asc_nulls_first, :desc_nulls_last, or
:desc_nulls_first (note that MySQL currently does not support these options):

q = from t in "tracks", select: [t.album_id, t.title, t.index],
order_by: [desc: t.album_id, asc_nulls_first: t.index]

Repo.all(q)
#=> [[5, "Anton's Ball", 1], [5, "The Moontrane", 2], [5, "Farallone", 3],
#=> [5, "Song Of Songs", 4], [4, "Come Rain Or Come Shine", 1], ...]

Let’s say we wanted to get the total length of each album. We’re going to need
to look at the duration column of each track, but we don’t actually want to see
each individual track: we just want to see a single result for each album.
When you want to collapse rows together like this, the group_by keyword is
your friend. Here’s how you can do it:

q = from t in "tracks", select: [t.album_id, sum(t.duration)],
group_by: t.album_id

The group_by value tells Ecto that even though we’re selecting across the tracks
table, we only want one row for each album. In our select, we’re grabbing the
album_id (which we have to have if we want to include it in our group_by), and
we use the sum function from Ecto.Query.API to add all the duration values together.
The result looks like this:

Repo.all(q)
#=> [[4, 2540], [1, 2619], [5, 3057], [3, 3456], [2, 4491]]

report erratum • discuss

Refining Our Results with where • 29

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Duration values are in seconds, so you’d need to do a little math to translate
that into minutes and seconds.

Let’s say we wanted to refine this further and only return the albums whose
total length is longer than one hour (3600 seconds). A where clause won’t help
us here: that would only limit the records that get included in the duration
counts. What we want is something like a where clause we can apply after we’ve
totaled up the track lengths. And that’s exactly what the having clause is for.

We’ll take the same query and add having to include only the results that have
a total duration longer than 3600 seconds:

q = from t in "tracks", select: [t.album_id, sum(t.duration)],
group_by: t.album_id,

having: sum(t.duration) > 3600
Repo.all(q)
#=> [[2, 4491]]

That worked. However, the results would be a little more useful if we could
see the album name, rather than the ID. The trouble is that the album name
is in the albums table and this query only touches the tracks table. Read on to
find out how to reach over to other tables and grab the values you need.

Working with Joins
Our queries have gotten more complex and expressive with the addition of
the where option and all of the functions that can be used within it. But so
far, we’ve only been working with one table at a time. When we need to query
across multiple tables at once, we’ll need joins. In this section, we’ll see how
to add joins to our queries, and also learn how to change our select option to
make results from multiple columns easier to read.

What’s a join?

The term “join” comes from SQL. It’s a feature of the language that
allows you to combine data from two or more tables within the
same query. Joins come in many different flavors, depending on
how you want to filter the data coming from the different tables.
If you need a primer on joins (or even a refresher), the SQL-Join
website provides some detailed examples.5

To play with joins, we’ll try a more ambitious query. We’ll look up all the
tracks in our database that are longer than 15 minutes, and the albums that
they belong to.

5. http://www.sql-join.com

Chapter 2. Querying Your Database • 30

report erratum • discuss

http://www.sql-join.com
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

This query is going to touch two different tables: tracks and albums. As you may
recall, the tracks table has the foreign key album_id, which corresponds to the
id column in the albums table, so we’ll use those columns as a basis for our
join. We’ll use the query bindings we learned about in the last section to help
us make sure we’re referring to the right column in the right table.

To create the join, we’ll use the join keyword to specify the table, and the on
keyword to specify the column. The query bindings we learned about in the
last chapter make it clear which table we’re working with in each part of the
expression:

priv/examples/query_09.exs
q = from t in "tracks", join: a in "albums", on: t.album_id == a.id

From there, we can add a where clause to find the very long tracks:

q = from t in "tracks",
join: a in "albums", on: t.album_id == a.id,
where: t.duration > 900,
select: [a.title, t.title]

Repo.all(q)
#=> [["Cookin' At The Plugged Nickel", "No Blues"],
#=> ["Cookin' At The Plugged Nickel", "If I Were A Bell"]]

This works, but the result is a little hard to read. We can clean things up by
changing our select statement. Instead of expressing the select as a list of columns,
we can provide a map. Ecto will then return the result as list of maps, each
using the structure we provide:

q = from t in "tracks",
join: a in "albums", on: t.album_id == a.id,
where: t.duration > 900,
select: %{album: a.title, track: t.title}

Repo.all(q)
#=> [%{album: "Cookin' At The Plugged Nickel", track: "No Blues"},
#=> %{album: "Cookin' At The Plugged Nickel", track: "If I Were A Bell"}]

That’s a little nicer.

You can apply the prefix: keyword to your join statements, if you need to query
across different database schemas. If our tracks table used one prefix, and
albums another, we could write the query like this:

q = from t in "tracks", prefix: "public",
join: a in "albums", prefix: "private",
on: t.album_id == a.id, where: t.duration > 900,
select: %{album: a.title, track: t.title}

report erratum • discuss

Working with Joins • 31

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_09.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

By default, the join macro performs an inner join, but other flavors of joins are
available as well: left_join, right_join, cross_join, and full_join.

What if we needed to include more than one join in our query? Fortunately,
Elixir’s keyword lists allow you to specify the same keyword more than once,
so adding more joins is simply a matter of adding more join and on options. If
we wanted to include the artist name in our query, we could just do this:

q = from t in "tracks",
join: a in "albums", on: t.album_id == a.id,
join: ar in "artists", on: a.artist_id == ar.id,
where: t.duration > 900,
select: %{album: a.title, track: t.title, artist: ar.name}

Repo.all(q)
#=> [%{album: "Cookin' At The Plugged Nickel", artist: "Miles Davis",
#=> track: "If I Were A Bell"},
#=> %{album: "Cookin' At The Plugged Nickel", artist: "Miles Davis",
#=> track: "No Blues"}]

Using this pattern, you could add as many joins as you needed.

Composing Queries
With the addition of join we can start doing some larger and more detailed
queries. This is a good time to look at one of the features of Query that simplifies
working with complicated queries: composability. Ecto allows us to break up
large queries into smaller pieces that can be reassembled at will. This makes
them easier to work with, and allows you to re-use parts of queries in more
than one place. This next section will show you exactly how to do that, and
along the way, you’ll learn a little bit more about how queries are constructed
under the hood.

Let’s say that we wanted to look up all of the albums by Miles Davis. Using
joins, this query is straightforward:

priv/examples/query_10.exs
q = from a in "albums",

join: ar in "artists", on: a.artist_id == ar.id,
where: ar.name == "Miles Davis",
select: [a.title]

Repo.all(q)
#=> [["Cookin' At The Plugged Nickel"], ["Kind Of Blue"]]

Now let’s say that somewhere else in our code, we wanted a list of the tracks
on those albums, and not just the album titles. We’d have to rewrite the query
to look like this:

Chapter 2. Querying Your Database • 32

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_10.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

q = from a in "albums",
join: ar in "artists", on: a.artist_id == ar.id,
join: t in "tracks", on: t.album_id == a.id,
where: ar.name == "Miles Davis",
select: [t.title]

This is almost identical to the first query. We just added a join and changed
the select. It would be nice if we could reuse the parts that are the same. It
turns out we can, but to help understand how to do that, let’s zoom in on
what’s going on with the from...in... clause we’ve been using.

So far, we’ve always been using strings on the right side of the in expression
(for example, from a in "albums"). That string has always represented the name
of a table in our database. But the in expression is actually looking for some-
thing broader than that: it’s looking for any data type that has implemented
the Ecto.Queryable protocol.

What’s a protocol?

Elixir uses protocols to define a behavior that can work with more
than one datatype. A good example is Enumerable. Enumerable defines
functions like count and member, and any data type that provides
definitions for those functions can be used in any function that
expects Enumerable. Protocols are the basis for using polymorphism
in Elixir. For more details, see the section on protocols in the offi-
cial Elixir guide.6

The Ecto.Queryable protocol specifies only one function that needs to be imple-
mented: to_query. So you can think of Queryable as “a thing that can be queried.”

As we’ve seen, Ecto provides an implementation for the String type, which is
what we’ve been using so far. But it also provides an implementation for the
Ecto.Query struct. This means that in can accept another query, not just a string.
You can create one query and pass it along to another query for further
refinement. And this is how we’ll solve the reuse problem we ran into earlier.

Extracting Parts of Queries
With this knowledge in hand, let’s return to our two similar queries, and see
how we can break them down.

First, let’s extract out the parts that are identical into a separate Query. Both
queries refer to albums by Miles Davis, so we can break that logic out into
its own query:

6. http://elixir-lang.org/getting-started/protocols.html

report erratum • discuss

Composing Queries • 33

http://elixir-lang.org/getting-started/protocols.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/query_11.exs
albums_by_miles = from a in "albums",

join: ar in "artists", on: a.artist_id == ar.id,
where: ar.name == "Miles Davis"

In its current form, this is not complete—it’s missing the select expression. If
we tried to pass this to Repo.all, Ecto would complain. But recall that building
a query is separate from actually running it. It’s safe to create this as an
incomplete query, then build on it later.

To make our first query that just fetches the album titles, we use our
albums_by_miles query, and add select:

album_query = from a in albums_by_miles, select: a.title
#=> #Ecto.Query<from a0 in "albums", join: a1 in "artists",
#=> on: a0.artist_id == a1.id, where: a1.name == "Miles Davis",
#=> select: a0.title>

This works just like the other queries we’ve written, but instead of passing a
table name to in we pass another query. Ecto takes that original query, then
adds the select we’ve provided here. When we run the new query, the result
is what we’d expect:

album_query = from a in albums_by_miles, select: a.title
Repo.all(album_query)
#=> ["Cookin' At The Plugged Nickel", "Kind Of Blue"]

You might be wondering what happens to the query bindings when a query
is built up like this. The query bindings are still available, but they must be
referred to in the same order that they first appeared. Let’s take another look
at our initial query:

albums_by_miles = from a in "albums",
join: ar in "artists", on: a.artist_id == ar.id,
where: ar.name == "Miles Davis"

We defined the a binding first, at the beginning of the from call, then later
defined the ar binding in the join. This will be the order that Ecto will expect
if the query is used again.

As it happens, we don’t need the artists binding in the second query, but if we
did, that binding would have to appear after the albums binding:

album_query = from [a,ar] in albums_by_miles, select: a.title

This wouldn’t work:

album_query = from [ar,a] in albums_by_miles, select: a.title

Chapter 2. Querying Your Database • 34

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_11.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The important thing to remember is that when composing queries, binding
order is preserved. The upside of this arrangement is that the binding names
can be changed, and you don’t have to refer to any bindings you don’t need.
This is valid:

album_query = from albums in albums_by_miles, select: albums.title

Here we renamed the a binding from the original query to albums and we ignored
the second binding (artists) because we don’t need it.

Now let’s look at how we can reuse the albums_by_miles query to get the tracks:

track_query = from a in albums_by_miles,
join: t in "tracks", on: a.id == t.album_id,
select: t.title

Here we take the same albums_by_miles query, but this time we add a join and
an entirely different select.

Putting it all together, it looks like this:

albums_by_miles = from a in "albums",
join: ar in "artists", on: a.artist_id == ar.id,
where: ar.name == "Miles Davis"

album_query = from a in albums_by_miles, select: a.title
miles_albums = Repo.all(album_query)

track_query = from a in albums_by_miles,
join: t in "tracks", on: a.id == t.album_id,
select: t.title

miles_tracks = Repo.all(track_query)

Breaking queries into smaller pieces has a number of advantages. Smaller
queries are easier to manage and easier to comprehend when reading unfa-
miliar code. They also make your queries more reusable.

Working with Named Bindings
With a small query like the one we just used, keeping track of the query
bindings wasn’t too difficult. The query composition spanned a small section
of code, and we only had two bindings. But with a more complex query that’s
spread over a wider area, it could be tough to remember which binding needs
to go where.

To help alleviate this problem, Ecto allows you to assign specific names to
bindings that it saves throughout the life of the query. Let’s look at how this
works.

report erratum • discuss

Composing Queries • 35

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

To create a named binding, you use the as: keyword. You can add this to the
from call, or to any of the join options. Here’s how we could rewrite our last
query with named bindings:

priv/examples/query_11.exs
albums_by_miles = from a in "albums", as: :albums,

join: ar in "artists", as: :artists,
on: a.artist_id == ar.id, where: ar.name == "Miles Davis"

The as: needs to come immediately after from and join: and you must use atoms
for binding names—strings are not allowed. This won’t work:

albums_by_miles = from a in "albums", as: "albums",
join: ar in "artists", as: "artists",
on: a.artist_id == ar.id, where: ar.name == "Miles Davis"

#=> ** (Ecto.Query.CompileError) `as` must be a compile time atom...

To use the named binding in another query, you add the name to the beginning
of the from call:

album_query = from [albums: a] in albums_by_miles, select: a.title

Here we’re assigning the albums binding to the shorter name a. The a will only
be available within this query statement, but we can reuse albums anywhere
we reuse the query.

If we wanted to use the artists binding as well, we could add it to the list at the
beginning of the from call. And in this case, we wouldn’t have to worry about
the binding order:

album_query = from [artists: ar, albums: a] in albums_by_miles,
select: [a.title, ar.name]

Here we listed the artists binding first, even though it appears second in our
original. With positional bindings, this would break our query. But with named
bindings, we can specify the bindings in any order, and even eliminate bind-
ings we don’t need.

If you need to find out if a given query has a named binding, you can use the
has_named_binding? function:

albums_by_miles = from a in "albums", as: :albums,
join: ar in "artists", as: :artists,
on: a.artist_id == ar.id, where: ar.name == "Miles Davis"

has_named_binding?(albums_by_miles, :albums)
#=> true

Chapter 2. Querying Your Database • 36

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_11.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Named bindings are a convenience and you don’t need to use them all the
time. If you only have a couple of bindings, they may not be worth the extra
typing required to use them. But if your query contains joins across several
tables, and you’re composing the query over a large section of code, named
bindings can help simplify your query writing.

Composing Queries with Functions
One of the critical superpowers of Ecto is the ability to make queries from
composable functions. This makes the query fragments reusable, and sub-
stantially improves readability.

For example, with just a slight tweak, we can take the albums_by_miles query
we’ve been working with and put it into a function that will create a query
for any artist’s name:

priv/examples/query_12.exs
def albums_by_artist(artist_name) do

from a in "albums",
join: ar in "artists", on: a.artist_id == ar.id,
where: ar.name == ^artist_name

end

albums_by_bobby = albums_by_artist("Bobby Hutcherson")

We could make that function even more flexible by allowing it to receive the
target of the from statement, rather than hard-coding it to "albums":

def by_artist(query, artist_name) do
from a in query,

join: ar in "artists", on: a.artist_id == ar.id,
where: ar.name == ^artist_name

end

albums_by_bobby = by_artist("albums", "Bobby Hutcherson")

With this change, we can now connect the output of this function to other
queries. Earlier, we wrote an album query that used join to find albums with
long tracks. Let’s extract out that logic:

def with_tracks_longer_than(query, duration) do
from a in query,

join: t in "tracks", on: t.album_id == a.id,
where: t.duration > ^duration,
distinct: true

end

report erratum • discuss

Composing Queries • 37

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_12.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Now we can combine those queries into one using the pipe operator. Here’s how
we could find the albums by Miles Davis with tracks longer than 12 minutes:

q =
"albums"
|> by_artist("Miles Davis")
|> with_tracks_longer_than(720)

Of course, this query is not complete without a select. We can put that into a
function as well:

def title_only(query) do
from a in query, select: a.title

end
q =

"albums"
|> by_artist("Miles Davis")
|> with_tracks_longer_than(720)
|> title_only

Repo.all(q)
#=> ["Cookin' At The Plugged Nickel"]

By breaking the query into separate components, and moving those compo-
nents into functions, we’ve improved the readability of our code, and started
to build up a collection of query fragments that we can reuse in any number
of combinations. This is a common practice among Ecto developers, and when
we look at schemas in the next chapter, we’ll see that schema modules are
an ideal place to put functions that generate queries. More on that soon.

Combining Queries with or_where
By default, Ecto combines where clauses with AND. Let’s take two different
query fragments, both of which use where on the name column of artists and see
what happens when they’re put together. First, we have a query that looks
for albums by Miles Davis:

priv/examples/query_13.exs
albums_by_miles = from a in "albums",

join: ar in "artists", on: a.artist_id == ar.id,
where: ar.name == "Miles Davis"

Next, we build on that query, and add another where statement on the artist
name. But this time, the name is “Bobby Hutcherson”:

q = from [a,ar] in albums_by_miles,
where: ar.name == "Bobby Hutcherson",
select: a.title

We can use to_sql to see how Ecto combines these two queries:

Chapter 2. Querying Your Database • 38

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_13.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Repo.to_sql(:all, q)
#=> {"SELECT a0.\"title\" FROM \"albums\" AS a0
#=> INNER JOIN \"artists\" AS a1
#=> ON a0.\"artist_id\" = a1.\"id\"
#=> WHERE (a1.\"name\" = 'Miles Davis')
#=> AND (a1.\"name\" = 'Bobby Hutcherson')", []}

As you might have guessed, the two where clauses are combined via AND,
resulting in a query that looks for albums associated with both Miles Davis
and Bobby Hutcherson. Given our current data model, that’s not going to
return any results.

But what if we wanted to do an “or” query, and get the albums that were
either by Miles Davis or Bobby Hutcherson? If we put this into one query, we
can use the or macro supplied by the query API:

q = from a in "albums",
join: ar in "artists", on: a.artist_id == ar.id,
where: ar.name == "Miles Davis" or ar.name == "Bobby Hutcherson",
select: %{artist: ar.name, album: a.title}

That’s good, but it doesn’t help us if we were starting with our albums_by_miles
query, and wanted to also select for Bobby Hutcherson. Ecto has a solution
for us—the or_where keyword:

q = from [a,ar] in albums_by_miles, or_where: ar.name == "Bobby Hutcherson",
select: %{artist: ar.name, album: a.title}

The or_where macro works exactly like where but it uses OR rather than AND when
combined with other where clauses. If we add that to our query, we get this:

q = from [a,ar] in albums_by_miles, or_where: ar.name == "Bobby Hutcherson",
select: %{artist: ar.name, album: a.title}

Repo.all(q)
#=> [%{album: "Kind Of Blue", artist: "Miles Davis"},
#=> %{album: "Cookin' At The Plugged Nickel", artist: "Miles Davis"},
#=> %{album: "Live At Montreaux", artist: "Bobby Hutcherson"}]

And when we run it, we get what we were looking for.

Other Ways to Use Queries
The Query module can be used for more than just reading data. We can use
queries in some of the other *all functions we looked at in the last chapter.
This allows us to perform update and delete operations on a specific collection
of records. Let’s take a look.

In the last chapter, we updated all the timestamps in the artists table with
this code:

report erratum • discuss

Other Ways to Use Queries • 39

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/query_14.exs
Repo.update_all("artists", set: [updated_at: DateTime.utc_now])

In that example, we passed the table name as a String in the first parameter.
But if you look at the documentation for update_all you’ll see that this function
does not expect a String but rather our new friend Ecto.Queryable. This means
that you can also pass in a query, and be much more precise about which
records are updated.

Let’s say that we suspect there might be a misspelling in our tracks table. We
can fix that by creating a query, then performing an update on the records
that match that query:

q = from t in "tracks", where: t.title == "Autum Leaves"
Repo.update_all(q, set: [title: "Autumn Leaves"])

And if we want to be more Elixir-y, we could do it like this:

from(t in "tracks", where: t.title == "Autum Leaves")
|> Repo.update_all(set: [title: "Autumn Leaves"])

If we want to delete those records, we can use the same query with delete_all:

from(t in "tracks", where: t.title == "Autum Leaves")
|> Repo.delete_all

With queries in hand, we can now be very precise about our delete and update
operations.

Wrapping Up
There’s a lot more that can be said about queries. The Query API is rich and
allows you to slice and dice your data in just about any way you can imagine.
We’ve provided an introduction here, and a sense of how things go together,
but we recommend you spend some time looking at the documentation to see
all the things that you can do. In particular, look at the docs for the Ecto.Query
module to see all the keywords available to you, and look at Ecto.Query.API to
see all the utility functions that you can use within queries.

The Query module is powerful, but we did notice a couple of things early on
that seemed tedious. First, it seems we always need to add a select clause. If
we’re using the same data types over and over, as most apps do, this could
get old in a hurry. Also, having to type cast dynamic values in our queries
seems like a lot of extra work. Fortunately for us, the Schema module can help
us with both of these problems, so that will be the next stop on our tour.
Read on to see how to make both these problems go away.

Chapter 2. Querying Your Database • 40

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/query_14.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 3

Connecting Your Tables to Elixir
Structs with Schemas

Functional programs have a set of data structures that form the backbone of
the codebase. In the music database we’ve been developing, we’ve got things
like artists, albums, tracks, etc. The Ecto.Schema module helps us map those data
structures to database tables, so we can seamlessly move data back and forth
between our Elixir code and the database. You create the mappings with an ele-
gant, concise DSL, then use associations to connect related structures together.

With schemas, you’ll be able to create more streamlined operations for
querying, inserting, and updating data. Schemas are quite flexible and can
be used to map data from any data source (not just database tables) into our
Elixir code. We’ll explore some of those use cases later in the book.

We’ll start by learning how to set up schemas, and look at the data types that
Ecto supports. We’ll then see how to integrate our schemas into queries, and
convert some schema-less queries from the last chapter into leaner schema-
based queries. We’ll also look at some instances when it’s best to avoid using
schemas altogether.

From there, we’ll look at how we can use associations to build relationships
between database tables, and how to integrate those associations into queries.
We’ll wrap up by showing how schemas simplify inserting new records, even
records with complicated associations.

Creating Schemas
Let’s get our feet wet by looking at the DSL Ecto provides to create schemas.
We’ll use the DSL to specify the fields we want to map, and their data types.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Mapping Schema Fields
Let’s start with our tracks table. We’ll have just five fields for now:

• id: A unique ID for our track
• title: A string representing the track’s title
• duration: The length of the track in seconds
• index: A number representing the track’s position in an album
• number_of_plays: A counter that we increment every time we play the track

If you were writing an Elixir app that didn’t use Ecto, you would most likely
create a %Track{} struct to hold this data. You’d open a new file named track.ex
and add something like this:

priv/examples/schema_01.exs
defmodule MusicDB.Track do

defstruct [:id, :title, :duration, :index, :number_of_plays]
end

With Ecto, the process is similar. But rather than defstruct, we’ll use the schema
macro. Rather than a list of atoms, we’ll provide fields. With these changes,
our code will look like this:

defmodule MusicDB.Track do
use Ecto.Schema

schema "tracks" do
field :title, :string
field :duration, :integer
field :index, :integer
field :number_of_plays, :integer
timestamps()

end

end

This defines a new %Track{} struct, just like our last example did, but it goes
further: it tells Ecto exactly how the fields in the struct connect to columns
in the database.

This tiny block of code does more than you think, so we’ll look at it bit by bit.

First, we’ve got a now-familiar use statement: use Ecto.Schema. We first saw this
when discussing the Repo module. Just as we added use Ecto.Repo to our Repo,
here we have use Ecto.Schema to make the functions from the Schema API available
to this module.

Next, we call the Ecto.Schema.schema macro (which we can shorten to just schema,
thanks to our use statement). This macro takes two arguments: the name of

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 42

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_01.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

the table we want to map our schema to, and a block containing definitions
for the fields we want to use.

Each field call specifies the name of the database column we want to use, and
its datatype. Note that we don’t have to specify every column—we only need
to specify the columns that we plan to use in our Elixir code. If, for example,
we decided that we don’t want to use the number_of_plays column, we could
simply remove that call to field. No harm, no foul.

Finally, we have timestamps. This macro adds two datetime fields to your
schema, inserted_at and updated_at, representing times that the record was
inserted into the database, and most recently changed, respectively. Ecto will
update these values for you automatically on every insert and update opera-
tion. For this to work, however, you need to have inserted_at and updated_at
columns in your database. When we start learning about database migrations
in Chapter 6, Making Changes to Your Database, on page 101, we’ll show you
how to do this.

You may have noticed that we didn’t include the id column. This is because
by default, Ecto will create this field for you. It will be typed as an integer and
assumed to be the primary key. This is typical for many databases but it’s
not universally consistent. If you are working with a database that has a dif-
ferent naming convention for primary keys, you need to be more explicit. For
example, if the primary key of our tracks table was called track_id, we could
specify that in our schema like this:

field :track_id, :id, primary_key: true

This uses the :id type to indicate that it is an integer-based primary key. We
could also add the :autogenerate option to tell Ecto that the database will be
generating this value for us.

The field function has a number of other options available that can alter the
field definitions, and we’ll look at a few of those later on. For a complete list,
check Ecto’s documentation.1

Working with Data Types
Ecto supports a number of different data types out of the box. The table on
page 44, taken from the Schema docs,2 shows the types you can use with the
field call, and how they map to Elixir types.

1. https://hexdocs.pm/ecto/Ecto.Schema.html#field/3
2. https://hexdocs.pm/ecto/Ecto.Schema.html#content

report erratum • discuss

Creating Schemas • 43

https://hexdocs.pm/ecto/Ecto.Schema.html#field/3
https://hexdocs.pm/ecto/Ecto.Schema.html#content
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Elixir TypeEcto Type

integer:id
binary:binary_id
integer:integer
float:float
boolean:boolean
UTF-8 encoded string:string
binary:binary
list{:array, inner_type}
map:map
map{:map, inner_type}
Decimal:decimal
Date:date
Time:time
NaiveDateTime:naive_datetime
DateTime:utc_datetime

The :naive_datetime type is a datetime value that has no associated time zone
information. If you use utc_datetime the value must be a DateTime struct with its
time zone set to UTC. Ecto will raise an error if you attempt to use a value
with a different time zone.

The time, naive_datetime, and utc_datetime types used to store microsecond infor-
mation in the columns that use them, but this is no longer the case. If you
do need microsecond precision, you should use one of the corresponding
types: time_usec, naive_datetime_usec, or utc_datetime_usec.

The :map type allows you to store Elixir maps into the database. The storage
strategy differs depending on the database. In MySQL, maps are stored as
text fields, but Postgres has first-class support for maps via its jsonb type and
these fields are actually queryable. As of this writing, the Ecto team strongly
recommends that your maps use string keys, rather than atoms. In some
cases, storing a map with atom keys will work correctly but when retrieving,
Ecto will always return maps with string keys.

If you need a type that is not currently supported, it’s possible to create your
own custom type using an API provided by Ecto. We’ll look at some examples
of this when we get to Chapter 10, Creating and Using Custom Types, on
page 145. You can also read the documentation for Ecto.Type.3

3. https://hexdocs.pm/ecto/Ecto.Type.html

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 44

report erratum • discuss

https://hexdocs.pm/ecto/Ecto.Type.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Writing Queries with Schemas
When we looked at queries in the last chapter, we deliberately chose to write
them without schemas. This is still a good choice in some circumstances, but
schemas provide some helpful shortcuts and we promised that we’d revisit
them later. Now’s the time. In this section, we’ll start writing queries that
work with schemas, and we’ll also consider when it’s best not to.

Converting a Schema-less Query
Let’s look at a query we ran in the last chapter:

priv/examples/schema_02.exs
artist_id = "1"
q = from "artists", where: [id: type(^artist_id, :integer)],

select: [:name]
Repo.all(q)
#=> [%{name: "Miles Davis"}]

As you may recall, artist_id is initialized as a string, but the id column in the
artists table is an integer, so we have to convert the value ourselves using the
type function.

In addition, we have to use the select option to specify what columns we want
returned to us. This is not so bad since we’re only fetching one value, but
consider what this would look like with the tracks table:

track_id = "1"
q = from "tracks", where: [id: type(^track_id, :integer)],

select: [:title, :duration, :index, :number_of_plays]

Specifying all those fields every time could get tedious quickly.

Schemas can help us with both of these issues. Using our new %Track{}
schema, we can rewrite the query like this:

alias MusicDB.Track

track_id = "1"
q = from Track, where: [id: ^track_id]

Notice that we’ve replaced the string “tracks” with the name of the schema
module we created earlier. This tells Ecto that our query is referencing a
schema, rather than the name of a database table. Adding the alias in the
first line lets us use the module name without its full namespace—most Ecto
developers follow this convention.

Integrating the schema into the query does several things for us. First, it
performs the type conversion of track_id automatically. Remember that Ecto

report erratum • discuss

Writing Queries with Schemas • 45

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

added the id field to our schema, and typed it as an integer. Having the type
specified in the schema allows Ecto to do any needed conversions on our
behalf (within reason, of course).

Second, we can remove the select: option—Ecto will fetch all of the fields defined
in our schema, unless told otherwise.

Finally, the return value is a schema struct. Instead of getting back a list or a
map, we get a %Track{} struct, populated with the values from the correspond-
ing database record:

track_id = "1"
q = from Track, where: [id: ^track_id]
Repo.all(q)
#=> [%MusicDB.Track{__meta__: #Ecto.Schema.Metadata<:loaded, "tracks">,
#=> album: #Ecto.Association.NotLoaded<association :album is not loaded>,
#=> album_id: 1, duration: 544, id: 1, index: 1,
#=> inserted_at: ~N[2017-03-13 13:25:38], number_of_plays: 0,
#=> title: "So What", updated_at: ~N[2017-03-13 13:25:38]}]

The select option is still available to us, if we want it. We’ll still get a %Track{}
struct back, but any fields we didn’t specify in the select will be set to nil:

q = from Track, where: [id: ^track_id], select: [:title]
Repo.all(q)
#=> [%MusicDB.Track{__meta__: #Ecto.Schema.Metadata<:loaded, "tracks">,
#=> album: #Ecto.Association.NotLoaded<association :album is not loaded>,
#=> album_id: nil, duration: nil, id: nil, index: nil, inserted_at: nil,
#=> number_of_plays: nil, title: "So What", updated_at: nil}]

Query bindings work exactly like they did when we were working without
schemas. We can add one to the current query to help clean up our where
clause:

q = from t in Track, where: t.id == ^track_id

Query bindings aren’t necessary for a small query like this, but developers
seem to use them most of the time, so this style of query is what you’ll most
likely see out in the wild.

When Not to Use Schemas
We introduced schemas late in the game to drive home an important point:
you don’t have to use them. As we saw in the last chapter, we were able to
query for just about anything we needed without them. But they come in
handy when working directly with the core data structures of your application.

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 46

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Our %Track{} struct is a great example. We know we’ll be using that set of
fields throughout our code. Defining it in one place and letting Ecto handle
the select statements and the data type conversion for us makes a lot of sense.

But for other types of queries, using schemas doesn’t buy you much. This is
especially true for queries used in reports, where we often need fields from
many different tables, combined with aggregate functions like count and avg.
These don’t return data in shapes we’re likely to re-use.

Let’s say we wanted to get a list of all of the artists in our database and the
number of albums associated with each one. We could use the Artist or Album
schemas to help us write the query, but they wouldn’t help much. The return
value we want doesn’t really look like the shape of either of those schemas,
and we’re not concerned about casting any inputs to specific types. All we
really want is a list of maps, where each map has the artist’s name and the
number of albums. In this case, writing a query without a schema is a good
choice:

priv/examples/schema_03.exs
q = from a in "artists",

join: al in "albums",
on: a.id == al.artist_id,
group_by: a.name,
select: %{artist: a.name, number_of_albums: count(al.id)}

Repo.all(q)
#=> [%{artist: "Miles Davis", number_of_albums: 2},
#=> %{artist: "Bobby Hutcherson", number_of_albums: 1},
#=> %{artist: "Bill Evans", number_of_albums: 2}]

By skipping schemas and crafting a custom select, we can have Ecto return
the data we need in exactly the shape that we want. Schemas should make
things easier, not harder; so if you’re writing a query and the schemas seem
to be getting in your way, consider rewriting the query without them.

Inserting and Deleting with Schemas
When we first looked at the Repo module in Chapter 1, Getting Started with
Repo, on page 3, we looked at the insert_all and delete_all functions for inserting
and deleting data. Ecto provides these functions so you can perform these
operations without schemas (which, as we saw in the last section, is sometimes
the best approach). When you are working with schemas, Repo has two parallel
functions, insert and delete. Let’s take a look at those now. But before we start,
let’s run mix ecto.reset once again to get our data back into a clean state.

report erratum • discuss

Inserting and Deleting with Schemas • 47

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_03.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Inserting with Schemas
Here’s a snippet we ran earlier to insert an artists record for John Coltrane
using insert_all:

priv/examples/schema_04.exs
Repo.insert_all("artists", [[name: "John Coltrane"]])
#=> {1, nil}

Here’s how we could do the same thing using Repo.insert and our Artist schema:

Repo.insert(%Artist{name: "John Coltrane"})
#=> {:ok, %MusicDB.Artist{__meta__: #Ecto.Schema.Metadata<:loaded, "artists">,
#=> id: 4, name: "John Coltrane", ...}

Notice the return value of the two functions is quite different. When we used
insert_all we got back the number of records affected by the operation (just one,
in this case) and any values we requested using the returning option—we didn’t
supply that option in this example, so we got nil.

When we instead used insert, we got :ok, indicating that the operation succeeded,
and a new Artist struct representing the record we just inserted. The returned
struct represents the record after the insertion completed, so we can see the
new id value assigned by the database.

It’s also possible to mix the two approaches by calling insert_all with a schema
rather than a table name:

Repo.insert_all(Artist, [[name: "John Coltrane"]])
#=> {1, nil}

Which function you choose can vary depending on your needs. One limitation
of insert is that you’re limited to inserting a single record at a time, whereas
insert_all can handle multiple records at once. But if you’re using schemas and
you just need to insert one record, insert might be more convenient. You should
also consider what return value you prefer: if it’s important to get a fully
populated struct back, you’ll want to use insert.

Deleting with Schemas
Now let’s look at deleting records. When we first looked at delete_all in Chapter
1, Getting Started with Repo, on page 3 we used it to remove all of the records
in the table:

priv/examples/schema_05.exs
Repo.delete_all("tracks")

When we learned about queries, we were able to delete records with more
precision—here we’re deleting all the records that have a misspelled title:

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 48

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_04.exs
http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_05.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

from(t in "tracks", where: t.title == "Autum Leaves")
|> Repo.delete_all

We use Repo.delete when we have a single schema struct and want to delete
its corresponding record from the database. Just like insert, it can only handle
one record at a time:

track = Repo.get_by(Track, title: "The Moontrane")
Repo.delete(track)
#=> {:ok, %MusicDB.Track{__meta__: #Ecto.Schema.Metadata<:deleted, "tracks">,
#=> id: 28, title: "The Moontrane", ...}

The operation succeeded so we got :ok along with a struct representing the
record we just deleted. At this point, however, the record no longer exists in
the database.

Having now learned about how to insert and delete with schemas, you might
be curious about updates. There is indeed an update function available in Repo,
but it uses changesets rather than schema structs to perform updates.

Changesets are a critical component in Ecto’s approach to making changes
to the database. In fact, the insert and delete functions we just looked at return
changesets if the operations fail. We’ll be looking at changesets in detail in
Chapter 4, Making Changes with Changesets, on page 63, and we’ll see some
examples of updates then.

Adding Associations to Schemas
Databases are about tables, and the relationships between them. Consider
the data model we’ve been working with throughout this book. Artists have
many albums, and albums have many tracks as well as many genres. Let’s
drill down to one specific relationship first, the one between artists and
albums.

These two data types reside in separate tables, but they’re closely related:
each of the albums belongs to a particular artist. At the database level, we
connect the two tables with a foreign key: in this case, the artist_id column in
albums refers to the primary key of the artists table. In Ecto, we use associations
to model these relationships. Associations help reflect the connections between
database tables in our Elixir code.

In this section, we’ll look at the different types of associations that Ecto sup-
ports, and how we can add them to our schemas. We’ll then look at how to
modify our queries to work with associations, and how they can help us insert
new records with ease.

report erratum • discuss

Adding Associations to Schemas • 49

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

One-to-Many and One-to-One Associations
To get our first taste of associations, let’s create a schema for our albums table.
Based on what we learned in the last section, we know that it will start with
something like this:

priv/examples/schema_06.exs
defmodule MusicDB.Album do

use Ecto.Schema

schema "albums" do
field :title, :string
field :release_date, :date

end

end

This is a good start: we have title as a string, and release_date as a date. But we
know that albums have tracks, and we want to create an association between
this schema and the %Track{} schema we created earlier.

Albums have a one-to-many relationship to tracks; that is, one album will have
many tracks, but a given track will belong to only one album (we will for now
ignore the complexity of modeling compilation albums). We can express this
relationship in our schema with the has_many function:

defmodule MusicDB.Album do
use Ecto.Schema

schema "albums" do
field :title, :string
field :release_date, :date

has_many :tracks, MusicDB.Track
end

end

This call states that our %Album{} schema will have a field called tracks, which
will consist of zero or more instances of the %Track{} struct. In this association,
the %Album{} record is called the parent record and the %Track{} records are
the child records.

For this to work, Ecto will be looking for a column named album_id in the tracks
table to connect the tracks to the albums. We built these tables following
Ecto’s conventions, but if you’re working with a legacy database that uses a
different naming scheme, you can still make the association work by specifying
the foreign key explicitly.

For example, if the tracks table used album_number rather than album_id for the
foreign key, we could create the association like this:

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 50

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_06.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

has_many :tracks, MusicDB.Track, foreign_key: :album_number

This tells Ecto that it should look for a column named album_number in the tracks
table to find the foreign key that points back to the albums table.

In addition to has_many, Ecto also provides the has_one association. This works
exactly like has_many but it limits the number of associated records to zero or
one. This association is used much less often than has_many, but it can be
useful in some cases.

Belongs-to Associations
Most of the time, you’ll want your associations to work in both directions.
Just as you want to refer to tracks from an album record, you’ll often want
to refer to an album from a track. We can use the belongs_to association as the
reverse of has_many and has_one. Let’s create the association from tracks back
to albums. We can do that by adding a belongs_to call in the %Track{} schema:

priv/examples/schema_07.exs
schema "tracks" do

field :title, :string
other fields here...

belongs_to :album, MusicDB.Album
end

This establishes the association from a track back to its album. As before,
Ecto will assume that the tracks table will have a field named album_id that
provides the foreign key, but if the field has a different name, we can use the
foreign_key: option to specify it.

Now we have a has_many association between albums and tracks, as well as its
inverse belongs_to association. But albums have another association as well. They
are the child in a one-to-many relationship with artists. We can set that up by
adding a belongs_to call to the %Album{} schema, and a has_many call to %Artist{}:

in album.ex
schema "albums" do

field definitions here...

has_many :tracks, MusicDB.Track
belongs_to :artist, MusicDB.Artist

end

in artist.ex
schema "artists" do

field definitions here...

has_many :albums, MusicDB.Album
end

report erratum • discuss

Adding Associations to Schemas • 51

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_07.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The %Album{} schema now has associations in two directions: it has_many tracks,
and it belongs_to artist.

Which schema gets has_many and which gets belongs_to?
When working with one-to-many or one-to-one relationships, belongs_to goes on the
schema with the foreign key. For example, tracks has the foreign key album_id which is
the basis of the association, so it gets the belongs_to call, and albums gets has_many. By
the same token, albums has the foreign key artist_id, so it gets a belongs_to call for %Artist{}
and %Artist{} gets a has_many for albums.

Nested Associations
In the last section, we added a has_many association from artist to albums, and
another has_many association from albums to tracks. The relationships between
the tables look something like this:

artists albums tracks

As we look at the model, it’s easy to imagine cases where you might want to
refer to tracks directly from an artist record, without having to go through the
albums. This is called a nested association, and we can create one using a
variation of has_many or has_one.

To create this association, we’ll add another has_many call to the %Artist{}
schema, but this time we’ll add the through: option to spell out the path between
%Artist{} and %Track{}:

priv/examples/schema_08.exs
schema "artists" do

field definitions here...

has_many :albums, MusicDB.Album
has_many :tracks, through: [:albums, :tracks]

end

The through: option takes a list representing the steps to get from the current
schema to the schema we want to associate with. The first item is albums,
which is the association we created on the previous line. Ecto will look in that
schema to find the next item, tracks. This nesting can go as deep as you need
it to, but be judicious: more than two or three levels is likely to get messy.

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 52

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_08.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

With this in place, we can refer to an artist’s %Track{} records directly from
the %Artist{} record without having to go through the albums.

Note that belongs_to is not supported for nested associations. You can’t, for
example, create an association from %Track{} back up to %Artist{}. You would
have to go explicitly through each step in your code: track.album.artist.

Many-to-Many Associations
We’re now going to look at a more complex association: many-to-many. These
relationships are not as straightforward as belongs-to relationships because
you need an extra table to implement them.

A good example of a many-to-many relationship is assigning genres to albums.
Genres describe the musical style of an album, for example jazz, classical,
rock, blues, death polka, and so on. We want to be able to assign more than
one genre for each album. But we also want to associate each genre with
more than one album. For example, we will have one record in the genres
table for “jazz,” and we want to associate that record with many different
albums.

The traditional way to model this relationship is to create an extra table that
maps the relationships between the two other tables. This is called a join
table, and usually looks something like this:

albums
albums_genres

album_id
genre_id

genres

Here, the albums_genres table exists solely to hold the associations between
albums and genres. It creates the link between the album record and the
genre record by holding two foreign keys, one for each table. This allows an
album to be associated with any number of genres, and a genre can be
associated with any number of albums. We can sever an association between
an album and a genre by deleting a record from this table.

Ecto has excellent support for many-to-many associations. Setting up the
association is similar to setting up a has_many through: association. The critical
component is the join_through option, which tells Ecto where to find the join
table. Assuming the table structure shown in the previous diagram, we would
use the following code to create the association:

report erratum • discuss

Adding Associations to Schemas • 53

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/schema_09.exs
in album.ex
schema "albums" do

field definitions here...

many_to_many :genres, MusicDB.Genre, join_through: MusicDB.AlbumGenre
end

in genre.ex
schema "genres" do

field definitions here...

many_to_many :albums, MusicDB.Album, join_through: MusicDB.AlbumGenre
end

in album_genre.ex
schema "albums_genres" do

field definitions here...

belongs_to :albums, MusicDB.Album
belongs_to :genres, MusicDB.Genre

end

Once this is set up, albums and genres can refer to each other without going
through the albums_genres schema.

This is fairly concise, but it’s possible to tighten it up even further. If we’re
only going have to have album_id and genre_id fields in the albums_genres table, we
don’t need to create a schema for that table to make the many-to-many
association work. We just need to create the table, then refer to the table
name in the join_through option, like so:

in album.ex
schema "albums" do

field definitions here...

many_to_many :genres, MusicDB.Genre, join_through: "albums_genres"
end

in genre.ex
schema "genres" do

field definitions here...

many_to_many :albums, MusicDB.Album, join_through: "albums_genres"
end

If you want to use any other fields besides the foreign keys in your join table
(timestamps, for example, or other metadata), this simplified version won’t
work: you’ll need to create a schema like we did in the previous example and
map the fields you’re interested in. But if all you need are the foreign keys,
you can skip the extra schema and let Ecto figure it out for you.

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 54

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_09.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Ecto’s support for many-to-many associations makes modeling this type of
relationship straightforward, and gets a lot of the tedious boilerplate out of
your way. many_to_many can also be used for polymorphic associations—we’ll
be taking a closer look at that technique in Chapter 14, Creating Polymorphic
Associations, on page 179.

Working with Associations in Queries
Now that we’ve got some associations defined, let’s put them to work. Go to
the music_db project and open up a mix session with iex -S mix.

First grab the record for the album Kind Of Blue:

priv/examples/schema_10.exs
album = Repo.get_by(Album, title: "Kind Of Blue")

Our gut tells us that if we want to see the tracks for this album, we would
just do this:

album.tracks

But our gut is wrong. Instead, we get this:

#Ecto.Association.NotLoaded<association :tracks is not loaded>

This is not an error. It’s a placeholder value indicating that the tracks records
associated with this album have not yet been retrieved from the database.

You might well wonder why Ecto doesn’t just load the records for you when
you ask for them, and in fact some database libraries do—it’s a feature called
lazy loading. With lazy loading, the library checks to see if the associated
records have been loaded when you try to refer to them. If not, it fetches them
from the database automatically and makes them available to you.

In some ways, that seems like the right thing to do. We have an album record
and we want the associated tracks, so it makes sense that the library would
make things easy for us and go fetch the tracks when we ask for them. The
trouble is that it can lead to performance problems as the database grows.
Consider the following pseudocode:

albums = get_album_records_from_database()
for album in albums do

print album.title
for tracks in album.tracks do # tracks are lazy loaded here

print " * #{track.title} "
end

end

report erratum • discuss

Working with Associations in Queries • 55

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_10.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Assume for a moment that this code actually worked. Because of lazy loading,
each time we pass through the loop over the albums, that innocent-looking
call to album.tracks would trigger a database query to fetch the tracks associated
with the album. That’s not a big deal if you only have a few album records in
your database. But imagine if you had 5000 albums. That block of code would
trigger 5001 SQL queries: one to fetch the albums, then 5000 more to get the
tracks for each of the albums.

This is the infamous N+1 Query problem, so called because you need one
query to fetch the parent records, then N more queries to fetch the child
records (where N is the number of parent records).

It’s caused no small amount of weeping and gnashing of teeth among devel-
opers trying to solve application performance problems. It’s especially perni-
cious because it sneaks up on you. The app runs fine at first, but over time,
it starts to slow down as the database gets larger and larger. There’s nothing
in the code that explicitly indicates database queries are being run. It’s hap-
pening behind the scenes, and unless you have a clear understanding of how
lazy loading works and know exactly what you’re looking for, this kind of
problem can be easy to miss.

Ecto’s solution to this problem is straightforward: it doesn’t support lazy
loading. You have to be specific about what you want and when you want it.
This involves a little more typing, but it prevents N+1 problems from popping
up in the far-flung future, and it makes the code very clear about when Ecto
is communicating with the database. Anyone looking at your code later on
will appreciate that clarity (especially if that person is you).

Ecto provides a few options for loading associated records. The first is to add
the preload option in your query for the parent records:

albums = Repo.all(from a in Album, preload: :tracks)

If you’ve already loaded the parent records and want to fetch the associations
after the fact, you can use the Repo.preload function:

albums =
Album
|> Repo.all
|> Repo.preload(:tracks)

In both of these cases, you end up with all of the album records, with each
album having its associated tracks. And in both cases, only two database
queries are executed: one to fetch all the albums, and another to fetch all the

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 56

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

tracks. Regardless of the size of the albums table, you can be sure that only
two queries will be run.

The preload statements can handle nested associations using keyword list
syntax ([]). If you were grabbing records from the artists table, and you wanted
to get the associated albums and their tracks, you could do this:

Repo.all(from a in Artist, preload: [albums: :tracks])

In this case, you would get a rather large dataset: Ecto would return all of
the artists, with all of their associated albums, and all of the tracks associated
with those albums.

If you want to grab parent records and child records together in one query,
you can use preload in combination with join. This query will get albums and
associated track records together, but it will limit the results to only the
albums with a track titled “Freddie Freeloader”:

q = from a in Album,
join: t in assoc(a, :tracks),
where: t.title == "Freddie Freeloader",
preload: [tracks: t]

Here we use the Ecto.assoc/2 function to specify that we want to join on the
:tracks association we defined in our Album schema. By adding the reference to
the query binding t in the preload option, we’re telling Ecto to load the album
and track records in the same query.

This approach reduces the number of queries sent to the database, but it can
increase the amount of data that’s sent back. We’ll talk some more about this
trade-off in Chapter 17, Tuning for Performance, on page 201.

Optimizing Associations with Embedded Schemas
Ecto’s protection against N+1 queries helps prevent runaway situations where
our code is making huge numbers of queries for what appears to be a simple
operation. But even then, fetching associated records always requires an extra
round-trip to the database, and there may be situations where you want to
avoid it. You might be working with associated records that always need to
be loaded along with the parents, or you may be in a performance-critical
situation where you need to eke out every last ounce of speed that you can.
In cases like these, Ecto provides embedded schemas.

With embedded schemas, associated records are stored in a single database
column along with the rest of the parent record’s values. When you load the

report erratum • discuss

Optimizing Associations with Embedded Schemas • 57

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

parent record, the child records come right along with it. The implementation
of this feature varies between databases. With PostgreSQL, Ecto uses the
jsonb column type to store the records as an array of key/value pairs. For
MySQL, Ecto converts the records into a JSON string and stores them as text.
The end result, however, is the same: the embedded records are loaded into
the appropriate Elixir structs and are available in a single query without
having to call preload.

Embedded schemas require a particular setup in the database, and some key
differences in behavior exist compared with the associations we’ve seen so
far. For these reasons, we’ve created a separate chapter to cover this topic,
Chapter 13, Working with Embedded Schemas, on page 171). This chapter will
go into the entire life cycle of working with embeds: database setup, inserting,
updating, and so on. For now, just bear in mind that you have more than
one option when modeling associations, and, depending on your needs,
embedded schemas might be a better approach.

Deleting Records with Associations
An important thing to consider with associations is what should happen to
child records when a parent record is deleted. For example, if we delete an
album, what should we do with the associated tracks? Ecto provides the
on_delete: option to specify the desired behavior, but the exact implementation
will vary depending on the database you’re using. Let’s take a closer look.

One approach is to define the behavior when creating the association. The
has_many, has_one, and many_to_many functions all support the on_delete: option,
which can have one of three values:

• :nothing—This is the default behavior: Ecto won’t try to do anything to the
child records if the parent is deleted.

• :nilify_all—Ecto updates all of the child records, setting the foreign key
referring to the parent record to null. At that point, the child records are
no longer associated with any parent record.

• :delete_all—Ecto deletes all of the child records along with the parent record.

There’s a catch to this, however. Many databases, including Postgres, allow
you to specify this behavior in the database itself when you first create the
table. In those databases, the work of deleting or nilifying the child records
is handled by the database, rather than by Ecto. If that’s how your database
works, setting a value for :on_delete in the schema definition will have no effect.

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 58

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

You’ll need to check the database you’re using and find if it supports this
feature; if so, you’ll need to use on_delete in the database migration rather than
when declaring the association (we’ll be looking at migrations in detail in
Chapter 6, Making Changes to Your Database, on page 101).

In either case, if you set the value to :nothing, deleting a parent record with
child records will most likely fail. This behavior also varies among databases,
but most have foreign key integrity constraints, meaning that the database
will prevent you from deleting any records that other records refer to.

If you want to delete the parent record, you must manually run the same
steps as nilify_all or delete_all: either update the child records so that they no
longer refer to the parent, or delete them. With this approach, you’ll want to
be sure that all of these steps succeed together. We’ll look at ways to do that
in Chapter 5, Making Multiple Changes with Transactions and Multi, on page
87, but in this case, you’re probably better off using delete_all and letting the
database handle it. The operation will be more performant and reliable if it
doesn’t require additional database calls.

Using Schemas to Seed a Database
Once you’ve set up schemas for your tables, inserting new records, even
records with nested associations, can be done very concisely.

Recall how we inserted a new artists record using Repo.insert_all:

priv/examples/schema_11.exs
Repo.insert_all("artists", [[name: "John Coltrane"]])
#=> {1, nil}

With insert_all, we had to provide the table name, and a list of fields containing
the new record’s values. And if we wanted the ID of the new record, we had
to ask for it with the returning option (which is only available with Postgres):

Repo.insert_all("artists", [[name: "John Coltrane"]], returning: [:id])
#=> {1, [%{id: 8}]}

As we saw earlier, with schemas, we can use the Repo.insert function and pass
it a struct representing the record we want to insert:

Repo.insert(%Artist{name: "John Coltrane"})

The return value is a two-element tuple. The first element will either be :ok or
:error, indicating whether or not the insertion was successful. If it’s :ok,the
second element will be the newly inserted record:

report erratum • discuss

Using Schemas to Seed a Database • 59

http://media.pragprog.com/titles/wmecto/code/priv/examples/schema_11.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

{:ok, artist} = Repo.insert(%Artist{name: "John Coltrane"})
#=> %MusicDB.Artist{__meta__: #Ecto.Schema.Metadata<:loaded, "artists">,
#=> albums: #Ecto.Association.NotLoaded<association :albums is not loaded>,
#=> id: 8, inserted_at: ~N[2017-07-14 06:35:05],
#=> name: "John Coltrane",
#=> tracks: #Ecto.Association.NotLoaded<association :tracks is not loaded>,
#=> updated_at: ~N[2017-07-14 06:35:05]}

Note that the id field has been correctly populated with the autogenerated
primary key value.

If the first element is :error, the second element will be a Changeset struct repre-
senting the values we tried to insert. We’ll be talking about changesets in
depth in the next chapter.

Now consider creating a new Album record for this artist. You might think that
you’d have to insert the artist record first, get the id of the new record, then
create the album record with artist_id set to the id of the new artist. But thanks
to the association between our Artist and Album schema, we can insert the two
records at the same time:

Repo.insert(
%Artist{

name: "John Coltrane",
albums: [
%Album{

title: "A Love Supreme"
}

]
}

)

Even deeply nested associations can be inserted in this way, and you can
insert multiple associations at once. Here we’ll create an artist record for John
Coltrane, an album, the tracks for the album, and the album’s genre, all in
one call to insert:

Repo.insert(
%Artist{

name: "John Coltrane",
albums: [
%Album{

title: "A Love Supreme",
tracks: [

%Track{title: "Part 1: Acknowledgement", index: 1},
%Track{title: "Part 2: Resolution", index: 2},
%Track{title: "Part 3: Pursuance", index: 3},
%Track{title: "Part 4: Psalm", index: 4},

],

Chapter 3. Connecting Your Tables to Elixir Structs with Schemas • 60

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

genres: [
%Genre{name: "spiritual jazz"},

]
}

]
}

)

This is extremely handy for database setup scripts or other situations where
you need to create a lot of database records at once. If you look at the
priv/repo/seeds.exs in the music_db project, you can see how we used this technique
to populate all of the sample data with just a few insert statements.

Wrapping Up
In this chapter, we learned how schemas allow us to create data structures that
we can map to our database tables. This is how you’ll be using schemas most
of the time, but schemas are actually very flexible and can be used in a number
of different ways. We’ll be looking at some examples later on in the book.

At the end of the chapter, we saw how schemas make it easy for us to insert
lots of records at once, even records with complex nested associations. There’s
one issue that we glossed over, however: making sure that the data we’re
inserting is valid, and catching any errors that might arise. This is a critical
part of maintaining the integrity of our data, and the Changeset module is here
to help, so we’ll look at that next.

report erratum • discuss

Wrapping Up • 61

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 4

Making Changes with Changesets
At the end of the last chapter, we saw how schemas provide a quick method
for inserting new records into the database, even with associated records.
But a database is only as good as the quality of the data that it contains, so
we need to be careful about the modifications we make to that data. The
Ecto.Changeset module provides a rich data structure and a wide array of func-
tions that helps us manage making changes safely and securely.

In this chapter, we will take a deep dive into the world of changesets. We will
start by taking a high-level look at the process of making a change, then look
at each step of the process in detail: casting and filtering user-provided
data, validating the data, and capturing errors. Finally, we will look at how
changesets help us with the often-tricky process of working with associations
and embeds.

Introducing Changesets
Changesets manage the update process by breaking it into three distinct
stages: casting and filtering user input, validating the input, then sending
the input to the database and capturing the result. If you think of it as a
pipeline, it would look something like this:

data
|> cast_and_filter_fields
|> validate_change
|> validate_another_change
|> send_to_database

We’ll look at each step in detail, but here’s what the process looks like in
code. The following example inserts a new Artist record, based on data supplied
by the user:

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/changeset_01.exs
import Ecto.Changeset

params = %{name: "Gene Harris"}
changeset =

%Artist{}
|> cast(params, [:name])
|> validate_required([:name])

case Repo.insert(changeset) do
{:ok, artist} -> IO.puts("Record for #{artist.name} was created.")
{:error, changeset} -> IO.inspect(changeset.errors)

end

As this example demonstrates, changesets help us with the entire life cycle
of making a change, starting with raw data, and ending with the operation
succeeding or failing at the database level. Let’s now zoom in on each step.

Casting and Filtering
The first step is to take the raw input data that you want to apply to the
database and generate an Ecto.Changeset struct. We call this “casting and filter-
ing” because we perform any needed type casting operations (for example,
turning a string into an integer), and we filter out any values we don’t want
to use. You can do this two different ways, depending on where your data is
coming from. We’ll look at both in the following sections.

Creating Changesets Using Internal Data
If the data is internal to the application (that is, you’re generating the data
yourself in your application code), you can create a changeset using the
Ecto.Changeset.change function. Here’s how you would create a changeset that
inserts a new Artist record:

priv/examples/changeset_02.exs
import Ecto.Changeset

changeset = change(%Artist{name: "Charlie Parker"})

The import statement makes all of the functions in Ecto.Changeset available to
our code. For brevity, we won’t include this in the rest of the examples.

To make changes to an existing record, the process is similar, but instead of
passing in a new struct, we use a record fetched from Repo:

artist = Repo.get_by(Artist, name: "Bobby Hutcherson")
changeset = change(artist)

We can add the data we’d like to change as optional arguments to the change
function. This is how we might change the name field to something more formal:

Chapter 4. Making Changes with Changesets • 64

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_01.exs
http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

artist = Repo.get_by(Artist, name: "Bobby Hutcherson")
changeset = change(artist, name: "Robert Hutcherson")

At this point, changeset is just a data structure in memory—no communication
with the database has happened yet. As we’ve seen with the Repository pattern,
nothing happens with the database until we get Repo involved. If we wanted
to commit the change, we’d need to call Repo.update(changeset) and check the
result to see if it succeeded.

Before we do that, we can take a peek at the changes that will be applied.
The changes field of our changeset tells us what’s going to be updated:

changeset.changes
#=> %{name: "Robert Hutcherson"}

We can also use the change function to add more changes to a changeset that’s
already been created—instead of passing in an Artist struct as the first argu-
ment, we can pass another changeset. Using the changeset value we created
in the last code example, we could add the artist’s birth date to the list of
items we’re going to update:

changeset = change(changeset, birth_date: ~D[1941-01-27])

And of course, it’s possible to add both changes into a single change call:

artist = Repo.get_by(Artist, name: "Bobby Hutcherson")
changeset = change(artist, name: "Robert Hutcherson",

birth_date: ~D[1941-01-27])

In either case, calling changes will now show both of the values that we are
updating:

changeset.changes
#=> %{birth_date: ~D[1941-01-27], name: "Robert Hutcherson"}

The data we’ve been using so far has been generated in our code. In most
cases however, the data you want to apply will be coming from outside of the
controlled environment of your own code: forms your application presents to
end users, API calls, command-line parameters, CSVs or other data files, and
so forth. To deal with this potentially unruly data, Ecto provides the cast
function for creating changesets.

Creating Changesets Using External Data

When working with data coming from external sources, it’s important to take
extra care. The cast function plays a similar role to change, as it’s used to take raw
data and return a Changeset struct, but it’s got a few extra features to help
make sure you’re getting only the data you want.

report erratum • discuss

Casting and Filtering • 65

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The cast function has three required arguments. The first is the same as change:
it should be a data structure representing the record you want to apply your
changes to. This could be a new schema struct (for example %Artist{}), a schema
struct representing a record fetched from the database, or another changeset.

The second argument is a map containing raw data that you want to apply.
The third is a list of the parameters that you’ll allow to be added to the
changeset. It acts like a filter: only parameters specified in the list will be
added to the changeset. The rest will be discarded.

Here is how we could create a changeset for a new Artist record using user-
supplied parameters. (In the following examples, we’ll use the params variable
to represent values supplied by the user.)

priv/examples/changeset_03.exs
values provided by the user
params = %{"name" => "Charlie Parker", "birth_date" => "1920-08-29",

"instrument" => "alto sax"}

changeset = cast(%Artist{}, params, [:name, :birth_date])
changeset.changes
#=> %{birth_date: ~D[1920-08-29], name: "Charlie Parker"}

Take a close look at the result of the changes call, and you’ll see what cast has
done for us. First, the instrument value provided in the params map does not
appear in the changeset. This is because we only specified :name and :birth_date
in the list of allowed values, so Ecto dropped the instrument field for us. This
can be useful when importing data from sources you don’t control. If you
were importing data from a CSV, for example, there could be extra columns
of data that you don’t need. This setting helps you get rid of them.

Second, the call to cast converted the birth_date value from the string "1920-08-29"
to an Elixir Date struct. As the name suggests, cast will perform type casting
when turning the raw input into a changeset, whenever it can. In this case,
our Artist schema defined birth_date as the :date type, so Ecto parsed the string
value into a Date when creating the changeset. This worked because we received
the date in a standard format. If we got an unknown date format, Ecto would
not be able to cast it and the changeset would be invalid. We’ll talk more
about validating changesets in the next section.

By default, the cast function will treat the empty string "" as nil when creating
the changeset. But there may be times when you want other values turned
into nil as well. For example, when working with spreadsheets, you’ll often
see data that looks like this:

params = %{"name" => "Charlie Parker", "birth_date" => "NULL"}

Chapter 4. Making Changes with Changesets • 66

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_03.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Instead of getting an empty cell, you get the string "NULL." We can tell Ecto that
we want to consider "NULL" an empty value, by adding the empty_values option
to cast:

params = %{"name" => "Charlie Parker", "birth_date" => "NULL"}
changeset = cast(%Artist{}, params, [:name, :birth_date],

empty_values: ["", "NULL"])
changeset.changes
#=> %{name: "Charlie Parker"}

By adding "NULL" to the empty_values option, we were able to treat the birth_date
value as empty, and Ecto dropped it from the list of changes. You can specify
as many different values as you need, but don’t forget to include "" if you want
to convert empty strings as well.

Validating Your Data
We’ve completed the first step of making a change to the database, and we
have a Changeset struct with the changes we want to apply. But before we send
it off to the database, we want to make sure that the data we’ve got is correct.
Ecto provides two tools to help us check the integrity of our data: validations
and constraints. They perform similar functions, but differ in the way that
they’re implemented. We’ll explore each of them in the rest of this section.

Working with Validations
Validations are utility functions provided by the Ecto.Changeset module to help
check the integrity of your data. If you look at the module documentation,
the validation functions are easy to spot because they all start with validate_:
validate_required, validate_format, validate_number, and the like. They all take a changeset
as the first parameter, and they all return a new changeset with the validation
applied. This arrangement lends itself very nicely to working with the pipe
operator:

priv/examples/changeset_04.exs
params = %{"name" => "Thelonius Monk", "birth_date" => "1917-10-10"}
changeset =

%Artist{}
|> cast(params, [:name, :birth_date])
|> validate_required([:name, :birth_date])
|> validate_length(:name, min: 3)

In this example, we have two validations. validate_required checks that we have
non-empty values for name and birth_date, and validate_length will make sure that
the name value is at least three characters.

report erratum • discuss

Validating Your Data • 67

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_04.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Validations are run immediately when called, and the returned changeset
will reflect the result of the validation. If the validation succeeds, the valid?
field on the changeset will be true; if not, valid? will be false, and we can look
at the errors field to see what the problem is.

Let’s try this out by removing the required birth_date field from the params:

params = %{"name" => "Thelonius Monk"}
changeset =

%Artist{}
|> cast(params, [:name, :birth_date])
|> validate_required([:name, :birth_date])
|> validate_length(:name, min: 3)

changeset.valid?
#=> false
changeset.errors
#=> [birth_date: {"can't be blank", [validation: :required]}]

If one validation fails, Ecto will still run the others, and the errors field will
show all of the errors grouped together:

params = %{"name" => "x"}
changeset =

%Artist{}
|> cast(params, [:name, :birth_date])
|> validate_required([:name, :birth_date])
|> validate_length(:name, min: 3)

changeset.errors
#=> [name: {"should be at least %{count} character(s)",
#=> [count: 3, validation: :length, min: 3]},
#=> birth_date: {"can't be blank", [validation: :required]}]

This output, while rich in details, is perhaps not the easiest to work with,
particularly if you have several errors. The Ecto.Changeset.traverse_errors function
can help: it lets you iterate through each of the errors and transform it into
any form you like.

The documentation provides the following example that turns the errors into
a map, where the keys are the fields that have errors, and the values are lists
of errors for each of those fields:

traverse_errors(changeset, fn {msg, opts} ->
Enum.reduce(opts, msg, fn {key, value}, acc ->

String.replace(acc, "%{#{key}}", to_string(value))
end)

end)
#=> %{birth_date: ["can't be blank"],
#=> name: ["should be at least 3 character(s)"]}

Chapter 4. Making Changes with Changesets • 68

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

With that map, you could attach error messages to form fields in your UI, or
just create a list of strings showing all the errors at once. Ecto doesn’t make
that decision for you. It provides the errors as a data structure containing all
the relevant details, and lets the application developer decide the best way to
present them.

Creating Custom Validations
The validations provided by the validate_ functions in Ecto.Changeset were designed
to handle most cases that developers need. But sometimes you’ll need a vali-
dation that’s not provided out of the box. Ecto provides two ways to create
custom validations.

Validating with validate_change

The first approach is to use the validate_change function within your validation
pipeline. This function lets you supply an anonymous function that performs
whatever checks you’d like to run. The anonymous function should accept
two arguments: an atom representing the name of the field you’re validating,
and the current value for that field. If the data is incorrect, the function should
return a keyword list containing the appropriate error messages; otherwise,
it should return an empty list.

In this example, we’ll verify that the birth_date value is in the past—we’ll also
allow it to be nil:

priv/examples/changeset_05.exs
params = %{"name" => "Thelonius Monk", "birth_date" => "2117-10-10"}
changeset =

%Artist{}
|> cast(params, [:name, :birth_date])
|> validate_change(:birth_date, fn :birth_date, birth_date ->

cond do
is_nil(birth_date) -> []
Date.compare(birth_date, Date.utc_today()) == :lt -> []
true -> [birth_date: "must be in the past"]

end
end)

changeset.errors
#=> [birth_date: {"must be in the past", []}]

validate_change is an all-purpose validator that allows you to perform any sort
of validation you might need. The downside is that you can end up with a lot
of nested code within your pipeline. This can be tough to read if you’re
stringing a few of these together. You can mitigate this by moving your vali-
dation logic into a separate function. Let’s walk through that now.

report erratum • discuss

Validating Your Data • 69

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_05.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Validating with a Separate Function

Creating a custom validation function improves readability and also allows
you to reuse your validation in multiple changesets. Custom functions work
best if they can be piped along with Ecto’s validation functions, so it’s best
to follow the same format: take a changeset as the first argument, and return
the same changeset if the validation succeeds, or a new changeset with added
errors if it fails.

For a first pass, we could take the validation code from the previous example,
and wrap it in a function:

def validate_birth_date_in_the_past(changeset) do
validate_change(changeset, :birth_date, fn :birth_date, birth_date ->

cond do
is_nil(birth_date) -> []
Date.compare(birth_date, Date.utc_today()) == :lt -> []
true -> [birth_date: "must be in the past"]

end
end)

end

This works, but it would be more useful if it could validate any date field, not
just one that happened to be named birth_date. Let’s rewrite it to be more
generic:

def validate_in_the_past(changeset, field) do
validate_change(changeset, field, fn _field, value ->

cond do
is_nil(value) -> []
Date.compare(value, Date.utc_today()) == :lt -> []
true -> [{field, "must be in the past"}]

end
end)

end

Now we’re ready to put this to work. We set up our function to work like the
validations that come with Ecto, so we can add it to our existing pipeline of
validations:

params = %{"name" => "Thelonius Monk", "birth_date" => "2117-10-10"}
changeset =

%Artist{}
|> cast(params, [:name, :birth_date])
|> validate_required(:name)
|> validate_in_the_past(:birth_date)

This is a lot cleaner than what we had before. And because the logic was
extracted out to its own named function, we can reuse it in other changesets.

Chapter 4. Making Changes with Changesets • 70

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Working with Constraints
Now that we’ve taken a look at validations, let’s look at the other tool Ecto
provides to ensure that data is correct: constraints.

On the surface, constraints work a lot like validations. They can be piped along
with validations when building a changeset, and they check specific aspects
of a changeset to make sure that the underlying data is correct. But unlike
validations, constraints are enforced by the database, not by Elixir code.

As an example, consider the genres table we worked with in the last chapter.
We want to be sure that each of the genre records has a unique name—we
wouldn’t want two records both called “jazz,” for example. One approach
would be to enforce this in our Elixir code: we could just check the database
for a duplicate record before we try to insert a new one. That would work most
of the time, but there’s always the possibility of a race condition: another
process could insert the duplicate record between the time that we looked for
it and the time that we inserted our new record.

The only way we can be absolutely sure that we won’t introduce duplicate
records is if we add a unique index in the database itself. In this case, we’d
want to add an index to the name column of the genre database table (we’ll look
at exactly how to do this in Chapter 6, Making Changes to Your Database,
on page 101).

With that index in place, we can be sure that the database will prevent the
creation of duplicate records. If we attempt to do so, the database will block
it, and Ecto will raise an error.

In this example, we’ll try to insert a Genre record for “speed polka” twice. The
first call will succeed, but the second will fail:

priv/examples/changeset_06.exs
Repo.insert(%Genre{name: "speed polka"})

Repo.insert(%Genre{name: "speed polka"})

#=>
#=> ** (Ecto.ConstraintError) constraint error when attempting to insert
#=> struct:
#=>
#=> * unique: genres_name_index
#=>
#=> If you would like to convert this constraint into an error, please
#=> call unique_constraint/3 in your changeset and define the proper
#=> constraint name. The changeset has not defined any constraint.

report erratum • discuss

Validating Your Data • 71

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_06.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Our index is working as it should, but raising an error for this condition is
unwieldy. This is really a data problem, and we’d like to treat it that way.
Fortunately, as the error message suggests, we can do just that. If we add a
constraint to our changeset, the error will be captured in the changeset.errors
field and won’t cause an exception.

Like validations, constraints are functions provided by the Ecto.Changeset
module, but they end with _constraint: unique_constraint, foreign_key_constraint, and
so on. Let’s see if we can put unique_constraint to work.

We’ll insert a new genre record, then create a changeset to insert a duplicate
record. We’ll add unique_constraint to our changeset to make sure the name value
is unique:

Repo.insert!(%Genre{ name: "bebop" })

params = %{"name" => "bebop"}
changeset =

%Genre{}
|> cast(params, [:name])
|> validate_required(:name)
|> validate_length(:name, min: 3)
|> unique_constraint(:name)

changeset.errors
#=> []

The result is surprising: we get no error messages and the changeset says
it’s valid. That seems counterintuitive—we were deliberately trying to insert
a duplicate record, so we should have gotten a validation error.

This illustrates the fact that constraints, unlike validations, are enforced by
the database, not by our Elixir code. We haven’t yet handed our changeset
off to Repo, so the database has no idea what we’re up to. It’s only when we
try to insert the record that the constraint will kick in:

params = %{"name" => "bebop"}
changeset =

%Genre{}
|> cast(params, [:name])
|> validate_required(:name)
|> validate_length(:name, min: 3)
|> unique_constraint(:name)

case Repo.insert(changeset) do
{:ok, _genre} -> IO.puts "Success!"
{:error, changeset} -> IO.inspect changeset.errors

end
#=> [name: {"has already been taken", []}]

Chapter 4. Making Changes with Changesets • 72

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Because constraints are enforced by the database, they behave differently
than validations. Ecto will always run all validations for a given change-
set—even if one fails, the rest are still checked. That’s usually what you want.
It’s more convenient to the user to show them all of the values that are
incorrect at once, rather than one at a time. But constraints act like circuit
breakers: if you have more than one, and one of them fails, the others won’t
be checked. Similarly, if any validations fail, the constraints are not checked
at all. Ecto won’t bother trying to send a changeset to the database if it fails
validation.

This behavior can be troublesome in some situations. Imagine that your
application has a lengthy user registration form, and your database has a
unique index on the username column, assuring that each user has a unique
username. You’d want to use unique_constraint in your changeset so that the
users would get an error message if they entered a username that was already
taken. But that won’t get checked until all of the validations pass. If users
made mistakes on other parts of the form, they’d see error messages from
the failing validations. They would correct all of their mistakes, and only then
would they find out that their username wasn’t available. That can make for
a frustrating experience.

Fortunately, Ecto provides a workaround for this situation. The unsafe_vali-
date_unique function is a hybrid between a validation and a constraint. Like a
constraint, it checks the database to see if the value already exists, but it’s
evaluated along with the rest of the validations, so the user will see all of the
validation errors together.

The unsafe part of the function name indicates that you don’t want to rely on
this completely. There’s still a chance that someone else could insert a
duplicate value between the time that the function runs and Ecto tries to
insert the record. But this allows you to give early feedback to the users that
they need to pick a new username. It’s rare that you’ll run into the race con-
dition that unique_constraint protects against, but you’ll want to have it there
anyway, just in case.

Capturing Errors
The last step of the process is sending our changeset to Repo and seeing what
happens. In this section, we’ll see how changesets help us track errors and
report them to the user.

report erratum • discuss

Capturing Errors • 73

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Looking back at our example from the beginning of the chapter, we can see
the entire changeset workflow:

priv/examples/changeset_07.exs
params = %{name: "Gene Harris"}
changeset =

%Artist{}
|> cast(params, [:name])
|> validate_required([:name])

case Repo.insert(changeset) do
{:ok, artist} -> IO.puts("Record for #{artist.name} was created.")
{:error, changeset} -> IO.inspect(changeset.errors)

end

This is how we handle inserting a new record (if we were updating an existing
record, we would pass the changeset into Repo.update). In either case, developers
typically follow the pattern shown here: pipe the changeset through a series
of validation functions then immediately hand the changeset off to the Repo
without checking the valid? field of the changeset. This is safe to do: if Repo
sees that the changeset has validation errors, it won’t send anything to the
database. It will return :error along with the changeset, as seen in the second
half of the preceding case statement.

You could check for validation errors yourself before calling insert or update,
but you’d still need to check for :error coming back from the call to Repo. It’s
possible that the database will catch a problem with your data that you forgot
to write a validation for, so it usually makes the most sense to concentrate
all of your error handling in one place.

If the operation succeeds, Ecto will return :ok along with a struct representing
the inserted record. In this case, the artist value would have the name we pro-
vided (“Gene Harris”) as well as any values that were added by the database
(the ID, the timestamps, and so forth).

If the operation fails, you’ll get :error with a new changeset that has all of the
data you added, plus any new error messages resulting from the insert oper-
ation. This will include validation errors, constraint violations, and the like.
As we saw earlier, errors take the form of a keyword list, where the keys rep-
resent the fields of your schema, and the values contain text representations
of the error messages:

params = %{name: nil}
changeset =

%Artist{}
|> cast(params, [:name])
|> validate_required([:name])

Chapter 4. Making Changes with Changesets • 74

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_07.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

case Repo.insert(changeset) do
{:ok, artist} -> IO.puts("Record for #{artist.name} was created.")
{:error, changeset} -> IO.inspect(changeset.errors)

end
#=> [name: {"can't be blank", [validation: :required]}]

At this point, the changeset has a lot of critical information: it knows the
changes the user tried to make, what kind of record it’s working with, and
what the error messages are. This makes it a handy data structure for the
front end of your application to report to the user what happened. For
example, the phoenix_ecto Hex package implements protocols defined in Phoenix
so that changesets can be used by the form-rendering functions. See Chapter
8, Working with Changesets and Phoenix Forms, on page 131 recipe for more
details.

Using Changesets Without Schemas
Up to this point, our changesets have been based on the schemas defined in
our music_db app: Artist, Genre, and so forth. But changesets don’t actually need
Ecto schemas—they can be created with plain maps that define field names
and types. This means that you can leverage the casting, filtering, and valida-
tion features of changesets, even if the data is not being persisted in a
database.

Let’s say that our application will have an “Advanced Search” feature. We’ll
allow users to specify a number of different fields to help them find what
they’re looking for: artist names, album titles, dates, and the like. We can
validate the form using the features of Ecto.Changeset, and then report any errors
back to the user. Recall that changesets are just data structures and have a
lot of utility before they are ever sent to the database.

The first step is to set up a map that defines the shape of the data that we
want to process. The keys should be the field names, and the values should
be the data types for each field. You can use any of the data types supported
by the Ecto.Schema module. Here’s what we might use for our “Advanced Search”
feature:

priv/examples/changeset_08.exs
form = %{artist_name: :string, album_title: :string,

artist_birth_date: :date, album_release_date: :date,
genre: :string}

We can use the map to create a new changeset, then cast and validate as
usual:

report erratum • discuss

Using Changesets Without Schemas • 75

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_08.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

form = %{artist_name: :string, album_title: :string,
artist_birth_date: :date, album_release_date: :date,
genre: :string}

user data - they only provided one value
params = %{"artist_name" => "Ella Fitzgerald", "album_title" => "",
"artist_birth_date" => "", "album_release_date" => "",
"genre" => ""}

changeset =
{%{}, form}
|> cast(params, Map.keys(form))
|> validate_in_the_past(:artist_birth_date)
|> validate_in_the_past(:album_release_date)

if changeset.valid? do
execute the advanced search

else
show changeset.errors to the user

end

This example has nothing to do with database tables, but there’s quite a lot
of utility in the Ecto.Changeset functions for casting and validating data. If you
need to process data in this way, you might think about using Ecto to help,
even if your app doesn’t use a database.

Working with Associations
So far, all of our changesets have been using a single schema. But you will
often need to update associated records as well as parent records at the same
time. Ecto provides a number of options for updating associated records, each
serving a particular purpose depending on where your data is coming from
and how you want it updated. In this section, we’ll look at the various ways
we can insert and update Artist records along with associated Album records.

Updating a Single Associated Record
When making changes to child records, the first question to ask yourself is
if you want to make changes to an individual child record, or if you want to
change the entire collection of associated records at once. If you want to work
with individual records, it’s usually best to make changes outside of a
changeset. As we’ll see shortly, the functions provided by Ecto.Changeset for
working with associations are geared toward the collection as a whole. For
individual records, Ecto has other options.

For example, to add a new record to an association, the Ecto.build_assoc function
is a great choice. You give it the parent record and the name of the association,
and it generates a new child record, with the foreign key set to the parent

Chapter 4. Making Changes with Changesets • 76

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

record. Here’s how we might add a new album to our collection of albums by
Miles Davis:

priv/examples/changeset_09.exs
artist = Repo.get_by(Artist, name: "Miles Davis")
new_album = Ecto.build_assoc(artist, :albums)
#=> %MusicDB.Album{artist_id: 1, ...}

We’ve truncated some of the output to make it more readable, but the
important part is visible. The new_album struct has its foreign key artist_id set
to the id of our artist record.

We can also add any fields that we’d like set in the new record as options to
build_assoc. Here we add the title of the new album:

artist = Repo.get_by(Artist, name: "Miles Davis")
album = Ecto.build_assoc(artist, :albums, title: "Miles Ahead")
#=> %MusicDB.Album{artist_id: 1, title: "Miles Ahead", ...}

Note that this does not insert the album into the database—we need to talk
to Repo to do that, so let’s do that now:

artist = Repo.get_by(Artist, name: "Miles Davis")
album = Ecto.build_assoc(artist, :albums, title: "Miles Ahead")
Repo.insert(album)
#=> {:ok, %MusicDB.Album{id: 6, title: "Miles Ahead", artist_id: 1, ...}

Everything worked and we got our now-familiar tuple of :ok along with the
newly inserted record. If we reload our Artist record and preload the albums
associations, we’ll see the new Album record, along with the other two records
that were part of our initial dataset:

artist = Repo.one(from a in Artist, where: a.name == "Miles Davis",
preload: :albums)

Enum.map(artist.albums, &(&1.title))
#=> ["Miles Ahead", "Cookin' At The Plugged Nickel", "Kind Of Blue"]

To update, we could create a changeset as we saw in the previous section, and
we could delete it using Repo.delete or Repo.delete_all, depending on our needs. For
changing associated records, you only need to use changesets if you want to
update the entire collection at once. We’ll explore exactly how to do that next.

Associations Using Internal Data
When we looked at casting and filtering at the beginning of this chapter, we
took different approaches depending on whether or not the data we were
using was generated in our application code, or if it came from an external
source. We make a similar distinction when working with associations. We’ll

report erratum • discuss

Working with Associations • 77

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_09.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

start with internal data using Ecto.Changeset.put_assoc then later use Ecto.Change-
set.cast_assoc to work with external data.

Before we continue, you should run mix ecto.reset in your music_db app to get
everything back to a pristine state. We’ll run this a few times throughout the
rest of the chapter so we can more easily track the changes we’re making.

We’re going to add the album “Miles Ahead” as we did in the previous section,
but this time we’ll use the put_assoc function from Ecto.Changeset rather than
build_assoc and observe the differences.

put_assoc takes a changeset, the name of the association, and the records we
want to put into the association. Like many of the functions in Ecto.Changeset,
put_assoc takes a changeset as its first parameter, allowing it to be piped into
the cast and validation stages. But we need to consider a few extra things.
Let’s see what happens if we try to add “Miles Ahead” using put_assoc:

priv/examples/changeset_10.exs
changeset = Repo.get_by(Artist, name: "Miles Davis")

|> change
|> put_assoc(:albums, [%Album{title: "Miles Ahead"}])

Repo.update(changeset)
#=> ** (RuntimeError) attempting to cast or change association `albums`
#=> from `MusicDB.Artist` that was not loaded. Please preload your
#=> associations before manipulating them through changesets

We’re off to a bad start. We created a new changeset by passing our artist
record to the change function (recall that this is the usual way to create a
changeset when working with internal data). We then tried to pass that
changeset to put_assoc, along with our new list of Album structs, and it blew up.

The problem is that we want to make changes to the albums association of our
artist record, but Ecto doesn’t know the current state of this association
because we haven’t preloaded it.

Let’s add a call to preload, then see what happens:

changeset = Repo.get_by(Artist, name: "Miles Davis")
|> Repo.preload(:albums)
|> change
|> put_assoc(:albums, [%Album{title: "Miles Ahead"}])

Repo.update(changeset)
#=> ** (RuntimeError) you are attempting to change relation :albums of
#=> MusicDB.Artist but the `:on_replace` option of
#=> this relation is set to `:raise`.
#=> ...

Chapter 4. Making Changes with Changesets • 78

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_10.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

We got a little further, but we still got an error message. And it’s a lengthy
one too: we’ve truncated the actual output here, but Ecto provides a detailed
explanation of what the problem is.

The trouble lies in the difference between build_assoc and put_assoc. With build_assoc
we’re creating a new Album struct that we (most likely) will be adding to the
list of albums already associated with the Artist record for Miles Davis. By
contrast, put_assoc works on the entire collection as whole. This line of code:

|> put_assoc(:albums, [%Album{title: "Miles Ahead"}])

is effectively saying “replace the current list of albums associated with Miles
Davis with this single album called ‘Miles Ahead’.” We need to let Ecto know
what to do with the old records when we replace them with new ones.

The functions used to add associations to schemas (has_many, belongs_to, and the
like) all take an optional argument called :on_replace. This is used to tell Ecto how
to handle any existing associated records when we’re doing a replacement, as
we’re doing now. This option can be set to one of five different values:

• :raise—This is the default behavior, and it’s what we just saw in the pre-
ceding example: Ecto raises an error. This will happen if you don’t provide
one of the other values defined here.

• :mark_as_invalid—This will tell Ecto to add a validation error to the changeset’s
errors field. The operation will still not succeed, but you’ll just get a
changeset error rather than a crash.

• :nilify—With this option, the foreign key of the associated record will be set
to nil. For example, the album record for “Kind Of Blue” currently has the
artist_id set to 1, the id for the Artist record for Miles Davis. If we use :nilify
and call put_assoc, the artist_id for “Kind Of Blue” would be set to nil—the
record would still exist, but it wouldn’t be connected to any Artist record.
That might be problematic depending on the nature of your database.

• :update—This option can only be used with has_one and belongs_to associa-
tions, and causes Ecto to update the associated record with the values
provided by the update.

• :delete—This tells Ecto to delete any child records currently associated
with the parent record that aren’t part of the new collection. Use this
option with care, as the deletions are permanent.

Which option you choose depends on your application, and how you want to
handle the new data. If you do indeed want to replace the whole collection

report erratum • discuss

Working with Associations • 79

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

with put_assoc you have to decide what to do with the records you’re not keeping.
:nilify will keep the records in the database, but they’ll no longer be associated
with any parent record. :delete will remove the records permanently, making
it a risky option.

In our case, we just wanted to add a new album to the existing group of
albums by Miles Davis, so put_assoc was not a good fit: build_assoc would have
been a better choice. If we really wanted to use put_assoc, we’d have to pass a
list of all the existing albums, plus our new one—this is a little convoluted,
but it would work:

artist =
Repo.get_by(Artist, name: "Miles Davis")
|> Repo.preload(:albums)

artist
|> change
|> put_assoc(:albums, [%Album{title: "Miles Ahead"} | artist.albums])
|> Repo.update

When inserting new parent records and child records together, working with
put_assoc is more straightforward:

%Artist{name: "Eliane Elias"}
|> change
|> put_assoc(:albums, [%Album{title: "Made In Brazil"}])
|> Repo.insert

Because we’re inserting a new Artist record, there are no preexisting child
records to worry about, and the on_replace behavior won’t be a factor.

So far, we’ve been using Album structs when adding associated records, but
put_assoc can also work with maps and keyword lists. The following two snippets
will have exactly the same effect as the previous one:

adding an album with a map
%Artist{name: "Eliane Elias"}
|> change
|> put_assoc(:albums, [%{title: "Made In Brazil"}])
|> Repo.insert

adding an album with a keyword list
%Artist{name: "Eliane Elias"}
|> change
|> put_assoc(:albums, [[title: "Made In Brazil"]])
|> Repo.insert

With put_assoc, you can present the records as structs, maps, or keyword lists,
whichever is most convenient.

Chapter 4. Making Changes with Changesets • 80

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Associations Using External Data
We’ll now look at creating a changeset with associations when the data comes
from an external source: forms presented to the user, an uploaded spread-
sheet, data posted to an API endpoint, and so on. Earlier we saw that we
create new changesets using change or cast, depending on where the data came
from. Similarly, we use put_assoc for internal data, as we saw in the last section,
or cast_assoc for external data. In this section, we’ll look at some examples
using cast_assoc.

Creating New Records with Associations

Let’s start with the case of adding a new parent record, with new child records.
As we did when learning about cast, we’ll assume that the raw data is coming
to us as a map of strings. And as before, let’s reset our data so our previous
experiments are wiped away: mix ecto.reset

To cast the association into a changeset, Ecto expects the map to have a key
matching the association name—the value should contains the values for the
child records. For a has_many association, which we’re using here, the value
should be a list of maps, one map per record. For has_one or belongs_to, the
value would just be a single map.

cast_assoc works similarly to put_assoc. It takes a changeset and the name of the
association to cast. Let’s create a map of values, set up a new changeset that
casts the association, then peek at the changes:

priv/examples/changeset_11.exs
params = %{"name" => "Esperanza Spalding",

"albums" => [%{"title" => "Junjo"}]}
changeset =

%Artist{}
|> cast(params, [:name])
|> cast_assoc(:albums)

changeset.changes

When we try to run this code, the output is surprising:

** (UndefinedFunctionError) function MusicDB.Album.changeset/2 is
undefined or private. Did you mean one of:

* __changeset__/0

The error message is telling us that Ecto was looking for a function called
changeset in our MusicDB.Album module. This gives us a clue about what’s going
on behind the scenes of cast_assoc. It is looking at our code to generate a new

report erratum • discuss

Working with Associations • 81

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_11.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

changeset for the child record we want to insert. A peek at the documentation
confirms this:

If the parameter does not contain an ID, the parameter data will be passed to
changeset/2 with a new struct and become an insert operation.

Ecto wants to use changesets that we provide to create the child records. This
is a good thing: it will allow us to add validations as well as any custom param
handling that might be needed. As the error message indicates, we haven’t
defined a changeset function in our Album module, so let’s do that now. For this
example, it can be a short one:

add this to lib/music_db/album.ex
def changeset(album, params) do

album
|> cast(params, [:title])
|> validate_required([:title])

end

We’ll also want to add import Ecto.Changeset to the top of the file, so we can call
cast and validate_required directly, without including the Changeset module name.

Now we can try our code again:

params = %{"name" => "Esperanza Spalding",
"albums" => [%{"title" => "Junjo"}]}

changeset =
%Artist{}
|> cast(params, [:name])
|> cast_assoc(:albums)

changeset.changes
#=> %{albums: [#Ecto.Changeset<action: :insert,
#=> changes: %{title: "Junjo"}, errors: [],
#=> data: #MusicDB.Album<>, valid?: true>],
#=> name: "Esperanza Spalding"}

That looks better. And as we look more closely at the output, we can see that
our changes include an embedded changeset for our album child record: a
changeset within a changeset!

As discussed earlier, it’s convention in Ecto to have one or more changeset
functions in our schema modules, so it makes sense that cast_assoc would look
there first. But you can override this behavior by adding the with: option to
cast_assoc. You can use this to tell Ecto which function to invoke when it needs
to generate a changeset for child records. Like the changeset function we just
defined, this function needs to take a schema struct representing the child
record and a map of params. And of course it should return a changeset:

|> cast_assoc(:albums, with: &SomeModule.some_function/2)

Chapter 4. Making Changes with Changesets • 82

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

In most cases, it will make sense to have your changeset function defined in
the schema module, but when you don’t, the with: option gives you an escape
hatch.

Updating Records with Associations

We just looked at how to work with cast_assoc when creating a new parent
record. Let’s now look at what happens when we’re updating an existing
record. Before we do, let’s reset our database one more time to clean the slate:
mix ecto.reset

Now let’s make some changes to the Artist and Album records for Bill Evans. If
you’ve just reset your database, you should have an Artist record and two Album
records. We can confirm that with this bit of code:

artist = Repo.get_by(Artist, name: "Bill Evans")
|> Repo.preload(:albums)

IO.inspect Enum.map(artist.albums, &({&1.id, &1.title}))
#=> [{4, "Portrait In Jazz"}, {3, "You Must Believe In Spring"}]

It’s OK if the ids in your output don’t match the ones shown here, but the
titles should be the same.

Now let’s make some changes to the collection of albums using cast_assoc.
Recall that, like put_assoc, cast_assoc works on the entire collection of associated
records, so we’ll need to add the on_replace option to our has_many call. We’ll use
nilify for now, as that will keep any discarded child records in the database so
we can see what happens to them. Open up lib/music_db/artist.ex and change the
has_many :albums line so it looks like this:

has_many :albums, Album, on_replace: :nilify

Now we will set up the params to modify the album collection. We are going
to make several different kinds of changes at once, so that we can see how
Ecto handles them:

portrait = Repo.get_by(Album, title: "Portrait In Jazz")
kind_of_blue = Repo.get_by(Album, title: "Kind Of Blue")
params = %{"albums" =>

[
%{"title" => "Explorations"},
%{"title" => "Portrait In Jazz (remastered)", "id" => portrait.id},
%{"title" => "Kind Of Blue", "id" => kind_of_blue.id}

]
}

The params we’ve created set up three different kinds of operations.

report erratum • discuss

Working with Associations • 83

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

First, we’ve got a new album “Explorations” that isn’t in the database yet.
Ecto will perform an insert operation for this record, and make it part of the
:albums association for our Artist record.

Next, we have an existing record “Portrait In Jazz” that is already associated
with the “Bill Evans” artist record. The id value indicates that this record is
already in the database, but we’re making a change to the title. Ecto will
update the existing record with the new title.

Finally, we have an odd case. There’s already an album record for “Kind Of
Blue,” as indicated by the id value, but this album is currently associated
with Miles Davis, not Bill Evans. In this case, Ecto will treat this as a new
record. It will ignore the given id and create a new record, using any other
values provided in the given map.

You may have noticed that there’s a fourth hidden operation created by these
params. If you recall when we looked at the albums we have for Bill Evans,
“You Must Believe In Spring” was in the list. We have not included that album
in the params shown previously. Ecto will look to the on_replace: setting of the
association to determine how to handle this. We’ve set it to :nilify so Ecto will
update the record for “You Must Believe In Spring,” setting its artist_id value
to nil. This will keep the record in the database, but it’ll no longer be associated
with Bill Evans. Had we set on_replace: to :delete, the record would’ve been deleted.

Now we can cast these params into a changeset, run an update, and see if
everything ended up as we predicted:

portrait = Repo.get_by(Album, title: "Portrait In Jazz")
kind_of_blue = Repo.get_by(Album, title: "Kind Of Blue")
params = %{"albums" =>

[
%{"title" => "Explorations"},
%{"title" => "Portrait In Jazz (remastered)", "id" => portrait.id},
%{"title" => "Kind Of Blue", "id" => kind_of_blue.id}

]
}

artist = Repo.get_by(Artist, name: "Bill Evans")
|> Repo.preload(:albums)

{:ok, artist} =
artist
|> cast(params, [])
|> cast_assoc(:albums)
|> Repo.update

Enum.map(artist.albums, &({&1.id, &1.title}))
#=> [{6, "Explorations"}, {4, "Portrait In Jazz (remastered)"},
#=> {7, "Kind Of Blue"}]

Chapter 4. Making Changes with Changesets • 84

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The end result was as expected:

• We created a new “Explorations” album, associated with Bill Evans

• The “Portrait In Jazz” record was updated in place with a new title (com-
pare the id to the one we got earlier—they should be the same)

• We created a new record with the title “Kind Of Blue”—even though we
passed the id of the record associated with Miles Davis, Ecto created a
new record

• “You Must Believe In Spring” is no longer a part of the albums collection
for Bill Evans

We can confirm the presence of two “Kind Of Blue” albums:

Repo.all(from a in Album, where: a.title == "Kind Of Blue")
|> Enum.map(&({&1.id, &1.title}))
#=> [{1, "Kind Of Blue"}, {7, "Kind Of Blue"}]

and that “You Must Believe In Spring” is still in the database:

Repo.all(from a in Album, where: a.title == "You Must Believe In Spring")
|> Enum.map(&({&1.id, &1.title, &1.artist_id}))
#=> [{3, "You Must Believe In Spring", nil}]

Our :nilify setting for on_replace did the trick, and the record is no longer associ-
ated with any Artist record.

Best Practices for Associations
We’ve covered a lot of ground in this section. Changesets have a lot of support
for associations and can be used in many ways. It’s sometimes confusing to
know what approach to use. Let’s sum up some rules and best practices for you
to keep in mind as you start integrating these techniques into your own apps.

The first thing to ask yourself is whether you want to work with individual
child records, or if you want to work with the collection as a whole. If you’re
working with individual records (for example, inserting or deleting a single
child record), it’s usually easiest to work with the child record separate from
the parent record. build_assoc can help you create new child records for a given
parent record, and you can perform updates and deletes by loading the child
record and using the update and delete functions provided by Repo.

If you want to work with the collection as a whole, you’ll need to think about
what you want to do with records that are removed or replaced when the
collection is updated. Review the documentation about your options, then
set the on_replace option for the association in your schema definition.

report erratum • discuss

Working with Associations • 85

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Then you need to consider where the data is coming from. If the data is
coming from an external source, then you’ll want to use cast_assoc. Behind the
scenes, cast_assoc uses changesets you supply to cast and validate the data,
giving you a lot of control over how the data is imported and checked for
errors.

If the data is being generated by you in your application code, you can use
put_assoc to add data structures directly. And don’t forget that if you’re inserting
new records of internally generated data, you can bypass changesets altogether
and use Repo.insert to add parent and child records all at once. See the end of
the last chapter for an example.

put_assoc is also a good choice when you’re managing parent and child records
separately, even when working with external data. You could, for example,
use changesets to create/update/delete the child records on their own, then
use put_assoc in a separate changeset to update the collection on the parent
record. This is often a great way to work with many-to-many associations.

Ecto gives you a lot of choices. Some will work better than others, depending
on the situation. If your code feels clumsy, or too complicated, try another
approach and see if it works better.

Wrapping Up
We did a deep dive into the Ecto.Changeset module, and saw the many functions
it provides to help us manage making changes to our data. With its support
for associations, changesets can modify related records across multiple tables,
allowing us to make complicated changes with just a few lines of code.

But sometimes, we need to make even more complex changes. We might need
to change several unrelated records and make sure that they all change
together. For these types of situations, Ecto gives us transactions and the
Multi module—we’ll take a look at those next.

Chapter 4. Making Changes with Changesets • 86

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 5

Making Multiple Changes
with Transactions and Multi

Throughout this book, we’ve been working with one database operation at a
time. But there are times when you have multiple operations that need to be
treated as a group: they all need to succeed together, or fail together.

A classic example is transferring money between two bank accounts. If we
want to transfer $10 from Bob’s account and put it in Alice’s account (it’s
always Bob and Alice for some reason), we have to perform two updates:
reducing Bob’s balance by 10 and increasing Alice’s balance by 10. But what
would happen if the update to Bob’s balance succeeded, but the update to
Alice’s balance failed? The accounts would be out of sync, and the $10 would
effectively be missing.

Databases need integrity, and that means transactions. Transactions allow
you to group operations together so you can be certain that they will all suc-
ceed, or all fail.

Databases differ in how they implement this feature, but the general rule is that
you send a command indicating that you’re starting a transaction, run your
operations, then send another command indicating that you’re ending the
transaction. If any of the operations within the transaction fail, the database
executes a rollback. A rollback is the database equivalent of the “undo” feature
in your text editor: the database restores any records changed within the
transaction back to the state they were in before the transaction began.

Ecto supports transactions through the Repo.transaction function. You can exe-
cute this function in two ways. The first way is to provide another function
that contains the operations you’d like to execute. The second way is to use

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Ecto.Multi, a data structure consisting of a queue of operations to be run within
a transaction.

In this chapter, we’ll look at both options separately. We’ll start with functions,
then take a look at the Ecto.Multi module, and discuss when you might want
to use one rather than the other.

Running Transactions with Functions
The first way to run Repo.transaction is by passing in a function containing the
operations you’d like to run within the transaction. This can be an anonymous
function or a named function defined elsewhere. This seems like a good
idea—we’re functional programmers, and this approach will let us keep using
functions. Let’s try it out.

To illustrate how this works, we’re going to introduce a new database table,
and a module to go with it. Imagine that we’ve decided that we want to keep
a log of the changes we make to our database. Every time we make a change,
we’ll insert a new record into a logs table. We’ll use functions in the MusicDB.Log
module to create changesets for logging the different operations that we want
to perform. It’s not too fancy, but it will suffice for our purposes here. Take
a peek at the lib/music_db/log.ex module if you’re curious to see the details.

Here’s what we would do if we wanted to insert a new Artist record, and log
the change:

priv/examples/transactions_01.exs
artist = %Artist{name: "Johnny Hodges"}
Repo.insert(artist)
Repo.insert(Log.changeset_for_insert(artist))

That would work most of the time, but we want to be absolutely certain that
both of these inserts succeed: we don’t want to add a new Log record if the
Artist insert didn’t go through, and if the Log insert fails, we want to back out
the Artist insert. We can do this by wrapping the two calls in an anonymous
function, and passing that function directly to the Repo.transaction function:

artist = %Artist{name: "Johnny Hodges"}
Repo.transaction(fn ->

Repo.insert!(artist)
Repo.insert!(Log.changeset_for_insert(artist))

end)
#=> {:ok, %MusicDB.Log{ ...}}

When a transaction succeeds (as this one did), the transaction function returns
a tuple consisting of :ok and the return value of the passed-in function. In

Chapter 5. Making Multiple Changes with Transactions and Multi • 88

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_01.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

this case, the last line of the function inserts the Log struct, so we get the
return value of that operation: %MusicDB.Log{...}.

If an error occurs anywhere in the transaction, the database rolls back all of
the changes that it performed up to that point, and the transaction function
itself raises the error. We can demonstrate this by trying to insert nil for the
second operation:

artist = %Artist{name: "Ben Webster"}
Repo.transaction(fn ->

Repo.insert!(artist)
Repo.insert!(nil) # <-- this will fail

end)
#=> ** (FunctionClauseError) no function clause matching in
#=> Ecto.Repo.Schema.insert/4

Elixir rightfully complained about our attempt to insert nil and raised the
error. We expect that any changes performed within transaction got rolled back,
and we can verify that by making sure no Artist record now exists for Ben
Webster:

Repo.get_by(Artist, name: "Ben Webster")
=> nil

Our transaction worked. The failure of the second insert forced a rollback of
the first insert. We’re back to where we were before we started.

Forcing a Rollback Within a Transaction
Notice that we’ve been using insert! with a bang, rather than insert. The two
functions are identical, except for one crucial difference: insert will return {:error,
value} if the insert fails, but insert! will raise an error. This is a convention that’s
used in many Elixir libraries, and it’s essential when executing transaction with
a function.

The documentation for Repo.transaction says this:

If an unhandled error occurs the transaction will be rolled back and the error will
bubble up from the transaction function.

This means that only unhandled errors will trigger the rollback behavior—a
return value of {:error, value} from one of the operations isn’t going to cut it.

We can demonstrate this by rewriting our transaction so we’re inserting
changesets rather than schema structs. If we pass an invalid changeset to
insert (without the bang) it will return an :error tuple without raising an error.
We’ll add some debug output so we can see exactly what’s going on:

report erratum • discuss

Running Transactions with Functions • 89

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/transactions_02.exs
cs =

%Artist{name: nil}
|> Ecto.Changeset.change()
|> Ecto.Changeset.validate_required([:name])

Repo.transaction(fn ->
case Repo.insert(cs) do

{:ok, _artist} -> IO.puts("Artist insert succeeded")
{:error, _value} -> IO.puts("Artist insert failed")

end
case Repo.insert(Log.changeset_for_insert(cs)) do

{:ok, _log} -> IO.puts("Log insert succeeded")
{:error, _value} -> IO.puts("Log insert failed")

end
end)

We start by creating an intentionally invalid changeset: we pass in nil for the
name field, then add a validation declaring that name is required. This should give
us :error when we try to insert it. Then we try to insert the changeset and a sep-
arate Log changeset within the transaction. The case statements help us to see
how each of those operations fare. Here’s what happens when we run this:

=> Artist insert failed
=> Log insert succeeded
=> {:ok :ok}

This is exactly what we don’t want when working with transactions. The first
insert failed, but because we used insert rather than insert! the function returned
the tuple {:error, _value} instead of raising an error. If we want to trigger a roll-
back, we have to raise an Elixir error, and passing an invalid changeset to
insert won’t do that. You have to use insert! (with a bang) instead. Because we
used insert, the transaction continued, and the second insert succeeded. Our
database is now in an incorrect state: we have a log record for an insert that
didn’t actually happen.

One workaround for this behavior is to use the Repo.rollback function. Calling this
function will abort the transaction and roll back any changes made so far, just
as if an error had occurred. When you call rollback, the transaction function returns
{:error, value} where value is the argument passed to the rollback function. With this
in mind, we can rewrite the previous example to get the behavior we want:

cs = Ecto.Changeset.change(%Artist{name: nil})
|> Ecto.Changeset.validate_required([:name])

Repo.transaction(fn ->
case Repo.insert(cs) do

{:ok, _artist} -> IO.puts("Artist insert succeeded")
{:error, _value} -> Repo.rollback("Artist insert failed")

end

Chapter 5. Making Multiple Changes with Transactions and Multi • 90

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

case Repo.insert(Log.changeset_for_insert(cs)) do
{:ok, _log} -> IO.puts("Log insert succeeded")
{:error, _value} -> Repo.rollback("Log insert failed")

end
end)
=> {:error, "Artist insert failed"}

That’s better. This time, the first insert failed as expected so the rest of the
transaction didn’t run. The transaction function returned an :error tuple with the
value we provided.

Executing Non-Database Operations Within a Transaction
With this knowledge in hand, we can see an opportunity to expand transac-
tions to include non-database operations. Imagine that our app uses an
external search engine, such as Elasticsearch. Whenever we change the
database, we want to update our search engine as well. But it’s important to
keep the database and the search engine in sync: if the database changes
fail, we don’t want to update the search engine, and if the search engine
update fails, we want to roll back the changes to the database.

To explore this scenario, our MusicDB app has a MusicDB.SearchEngine module
that handles search engine updates via its update function. This is just a
placeholder module—our sample app doesn’t include a real search engine,
so the module’s functions just simulate the behavior.

To update the search engine along with the changes to the database, we call
the appropriate functions from within the transaction:

priv/examples/transactions_03.exs
artist = %Artist{name: "Johnny Hodges"}
Repo.transaction(fn ->

artist_record = Repo.insert!(artist)
Repo.insert!(Log.changeset_for_insert(artist_record))
SearchEngine.update!(artist_record)

end)

Provided that our update! function raises an error if it fails, this will do what
we want: if either of the insert! calls fail, the search engine update won’t run.
And if the search engine update fails, Ecto will roll back the database changes
and the transaction function will bubble up the error.

Of course, Ecto has no knowledge of how our search engine works, so it would
be impossible for it to roll back changes to the search engine. This means
that you should run all of your database operations first, then run any non-
database operations: you don’t want those to run until you’re sure the database
operations succeeded.

report erratum • discuss

Running Transactions with Functions • 91

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_03.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Drawbacks of Using Functions
Running transactions with functions works reasonably well, but it has some
drawbacks.

The most serious problem, demonstrated in the last section, is that we have
to be careful that we call Repo functions in the correct way. Calling insert rather
than insert! broke the behavior we were trying to achieve. The compiler can’t
help us with something like this, so one missed character could put our
database into a bad state.

Another problem is that anonymous functions are not composable: this limits
their reusability. Our last example made changes to an Artist record, saved a log
of the change, and updated the search engine. It’s possible that in another part
of the app we might want to update the artist’s albums along with the artist
record. It would be nice to take the logic we already have and just add to it,
but our anonymous function doesn’t lend itself to being extended in that way.

There’s still another problem. We don’t have good visibility into exactly what
went wrong when a transaction fails. Recall how much code we had to add
when we wanted to see where a failure occurred:

priv/examples/transactions_04.exs
cs = Ecto.Changeset.change(%Artist{name: nil})

|> Ecto.Changeset.validate_required([:name])
Repo.transaction(fn ->

case Repo.insert(cs) do
{:ok, _artist} -> IO.puts("Artist insert succeeded")
{:error, _value} -> Repo.rollback("Artist insert failed")

end
case Repo.insert(Log.changeset_for_insert(cs)) do

{:ok, _log} -> IO.puts("Log insert succeeded")
{:error, _value} -> Repo.rollback("Log insert failed")

end
end)

That’s a lot of extra code for only two Repo calls.

Fortunately, there’s a better way. The Ecto.Multi module can help us out with
all of these issues. We’ll explore that option in the next section.

Running Transactions with Ecto.Multi
The other way to use Repo.transaction is pass in an Ecto.Multi struct, rather than
a function. Ecto.Multi allows you to group your database operations into a data
structure. When handed to the transaction function, the Multi’s operations run
in order, and if any of them fail, all of the others are rolled back.

Chapter 5. Making Multiple Changes with Transactions and Multi • 92

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_04.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Let’s take a look at an earlier example where we ran a transaction with an
anonymous function:

priv/examples/transactions_05.exs
artist = %Artist{name: "Johnny Hodges"}
Repo.transaction(fn ->

Repo.insert!(artist)
Repo.insert!(Log.changeset_for_insert(artist))

end)

Here’s how we can rewrite it using Multi:

alias Ecto.Multi

artist = %Artist{name: "Johnny Hodges"}
multi =

Multi.new
|> Multi.insert(:artist, artist)
|> Multi.insert(:log, Log.changeset_for_insert(artist))

Repo.transaction(multi)

There’s a lot here, so let’s walk through it.

We start by creating a new Multi with the new function. The Ecto team recom-
mends using this approach rather than trying to create the struct directly;
that is, don’t try to write something like multi = %Multi{}. The exact structure
of Ecto.Multi is subject to future change. Calling new ensures that the struct will
come back to you properly initialized. If you create the struct directly, you’re
on your own.

We then add the two insert operations by piping the Multi into the insert function.
The Ecto.Multi module has several functions that mirror the database operation
functions in Repo: insert, update, delete, and so on. Each of the operations that
we add to the Multi must have a unique name—that’s what the :artist and :log
atoms are for. After that, we pass exactly what we would pass to the Repo.insert
function: an Artist struct for the first call, and our Log changeset for the second.

For this example, we don’t have any other options we need to include in our
insert calls, but if we did, we could add them here. The functions in Multi can
accept the same options as their counterparts in Repo, so anything you might
send to Repo.insert can be sent to Multi.insert as well.

At this point, we still haven’t touched the database. We just have a list of
operations stored in the Multi struct. When we finally pass the struct to
Repo.transaction, the database begins executing the operations queued in the
Multi. The return value, however, is different than what we get when we pass
in a function:

report erratum • discuss

Running Transactions with Ecto.Multi • 93

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_05.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Repo.transaction(multi)
#=> {:ok,
#=> %{
#=> artist: %MusicDB.Artist{...}
#=> log: %MusicDB.Log{...}
#=> }}

The transaction succeeded, so we get a tuple with :ok and a map. The keys in
the map are the unique names we provided to each operation in the Multi (:artist
and :log in this case). The values are the return values for each of those
operations. This makes it easy for us to grab the return values of any or all
of the operations we ran. In this case, both of the operations were inserts, so
we get structs representing our newly inserted records.

Capturing Errors with Multi
Here’s where the two approaches really diverge. If an error occurs in a Multi,
we get detailed information on where the error occurred, and what happened
just before. Let’s take a look.

Examining the Return Value

To see this in action, let’s create a new Multi that performs an update on the
Artist record we just inserted, then tries to insert an invalid changeset:

priv/examples/transactions_06.exs
artist = Repo.get_by(Artist, name: "Johnny Hodges")
artist_changeset = Artist.changeset(artist,

%{name: "John Cornelius Hodges"})
invalid_changeset = Artist.changeset(%Artist{},

%{name: nil})
multi =

Multi.new
|> Multi.update(:artist, artist_changeset)
|> Multi.insert(:invalid, invalid_changeset)

Repo.transaction(multi)
#=> {:error, :invalid,
#=> #Ecto.Changeset<
#=> action: :insert,
#=> changes: %{},
#=> errors: [name: {"can't be blank", [validation: :required]}],
#=> data: #MusicDB.Artist<>,
#=> valid?: false
#=> >, %{}}

This time, the Multi failed, so we get a tuple with four items: the :error atom,
the name of the operation that failed (:invalid), the value that caused the failure
(in this case, the invalid changeset, with a populated errors field), and a map

Chapter 5. Making Multiple Changes with Transactions and Multi • 94

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_06.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

containing the changes so far. The database will have already rolled back
these changes, but Ecto provides them for you to inspect if needed.

The benefit of this arrangement is that this single return value tells if we
succeeded, or, if we failed, exactly where we failed. This means that we can
use pattern matching to respond to each of the success or failure scenarios
separately:

case Repo.transaction(multi) do
{:ok, _results} ->

IO.puts "Operations were successful."
{:error, :artist, changeset, _changes} ->

IO.puts "Artist update failed"
IO.inspect changeset.errors

{:error, :invalid, changeset, _changes} ->
IO.puts "Invalid operation failed"
IO.inspect changeset.errors

end

That’s a lot cleaner than what we had when we were using anonymous func-
tions with Repo.transaction. Here we used a single case statement as our responses
were fairly short. But you could also use pattern-matched functions if you
needed more complex responses.

Examining the List of Changes So Far

The last value of the returned tuple is supposed to be a list of changes that
occurred before the error happened. Let’s take another look at what we got
in the last example:

artist = Repo.get_by(Artist, name: "Johnny Hodges")
artist_changeset = Artist.changeset(artist,

%{name: "John Cornelius Hodges"})
invalid_changeset = Artist.changeset(%Artist{},

%{name: nil})
multi =

Multi.new
|> Multi.update(:artist, artist_changeset)
|> Multi.insert(:invalid, invalid_changeset)

Repo.transaction(multi)
#=> {:error, :invalid,
#=> #Ecto.Changeset<
#=> action: :insert,
#=> changes: %{},
#=> errors: [name: {"can't be blank", [validation: :required]}],
#=> data: #MusicDB.Artist<>,
#=> valid?: false
#=> >, %{}}

report erratum • discuss

Running Transactions with Ecto.Multi • 95

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

We got an empty map—that seems surprising. The return value told us that
the second operation in the Multi failed, so we would expect to see the result
of the first operation in the list of changes so far.

This is because Ecto doesn’t like to waste the database’s time. If the Multi contains
operations that use changesets, Ecto first checks to make sure all the changesets
are valid. If any are not, Ecto won’t bother running the transaction at all. It
just flags the invalid changeset and sends it back to us in the return value.
There’s no need to trouble the database with an invalid changeset.

Let’s try a different example so we can see something besides an empty map.
We’ll create a new Multi that starts with a successful update. We’ll then force
an error by trying to insert a new %Genre{} record with a name that already
exists in the database (as you might recall from Working with Constraints,
on page 71, the genres table has a unique index on the name column).

artist = Repo.get_by(Artist, name: "Johnny Hodges")
artist_changeset = Artist.changeset(artist,

%{name: "John Cornelius Hodges"})
genre_changeset =

%Genre{}
|> Ecto.Changeset.cast(%{name: "jazz"}, [:name])
|> Ecto.Changeset.unique_constraint(:name)

multi =
Multi.new
|> Multi.update(:artist, artist_changeset)
|> Multi.insert(:bad_genre, genre_changeset)

Repo.transaction(multi)
#=> {:error, :bad_genre, #Ecto.Changeset< ... >,
#=> %{
#=> artist: %MusicDB.Artist{
#=> __meta__: #Ecto.Schema.Metadata<:loaded, "artists">,
#=> albums: #Ecto.Association.NotLoaded<association
#=> :albums is not loaded>,
#=> birth_date: nil,
#=> death_date: nil,
#=> id: 4,
#=> inserted_at: ~N[2018-03-23 14:02:28],
#=> name: "John Cornelius Hodges",
#=> tracks: #Ecto.Association.NotLoaded<association
#=> :tracks is not loaded>,
#=> updated_at: ~N[2018-03-23 14:02:28]
#=> }
#=> }}

Now we can get a good look at that last value. The keys in the map correspond
to our named Multi functions that have already been run. In this example, we
just had the one :artist update so that’s all this map contains. The value of the

Chapter 5. Making Multiple Changes with Transactions and Multi • 96

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

item is the result of the operation. Here we can see that our “Johnny Hodges”
record was updated to “John Cornelius Hodges” as we expected. But because
the Multi failed (thanks to the addition of our bad_genre operation), the database
rolled back the change. We can confirm that by looking at the database again:

Repo.get_by(Artist, name: "John Cornelius Hodges")
#=> nil

We get no records back when we search for “John Cornelius Hodges,” which
confirms that our update was indeed rolled back.

Optimizing Multi with Changesets

One important consideration with Multi is that the transaction call works with
unhandled errors the same way as it does with functions: they’re bubbled up
to the function that called the transaction. Consider this example:

multi =
Multi.new
|> Multi.insert(:artist, %Artist{})

Repo.transaction(multi)
#=> ** (Postgrex.Error) ERROR 23502 (not_null_violation): null value
#=> in column "name" violates not-null constraint

Instead of passing a changeset to insert we passed in an empty Artist struct.
Our database requires that all records in artists have a non-null name field,
so the insert operation fails. This results in transaction raising an error, rather
than returning the nicely arranged tuple we saw in the last example.

Given this behavior, it’s best to use changesets with Multi whenever possible.
Creating changesets with validations will help Ecto catch errors within the
bounds of your Elixir code before they hit the database. Of course, you always
need to consider that unhandled errors can happen, and you’ll need to design
your code to respond to those errors in a way that minimizes impact to your
users. But you can reduce the occurrences of those kinds of errors by fortifying
your changesets as much as possible.

Executing Non-Database Operations with Multi
Based on what we’ve seen of Multi so far, it might appear that executing trans-
action with functions has one clear advantage: functions allow you to run any
Elixir code within the transaction. Recall our earlier example of updating a
search engine within a transaction call. Fortunately, Multi offers this functionality
as well. The run function allows you to add any named or anonymous function
to be run as part of the Multi. Here’s how we might add the search engine
update logic we talked about earlier in this chapter:

report erratum • discuss

Running Transactions with Ecto.Multi • 97

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/transactions_07.exs
artist = %Artist{name: "Toshiko Akiyoshi"}
multi =

Multi.new()
|> Multi.insert(:artist, artist)
|> Multi.insert(:log, Log.changeset_for_insert(artist))
|> Multi.run(:search, fn _repo, changes ->

SearchEngine.update(changes[:artist])
end)

Repo.transaction(multi)

In this example, we used an anonymous function for the run operation. The
function accepts two arguments, our current Repo and a map of the changes
made in the Multi so far. We need the Artist record that we inserted, so we grab
the :artist item from the changes map. Ecto expects our function to return {:ok,
value} if the function succeeded or {:error, value} if it failed. In that case, value
can be any value of our choosing.

For more flexibility, we can use Multi.run/5, which lets us specify the module,
the function, and a list of additional arguments separately:

multi =
Multi.new()
|> Multi.insert(:artist, artist)
|> Multi.insert(:log, Log.changeset_for_insert(artist))
|> Multi.run(:search, SearchEngine, :update, ["extra argument"])

With this form of run, Ecto will still pass in the Repo and the list of changes to
the specified function—these will be the first arguments passed to the func-
tion, with the arguments you specify immediately following. The last line in
the preceding code will result in SearchEngine.update being called like this:
SearchEngine.update(repo, changes, "extra argument").

The run function gives you the flexibility to execute any Elixir code as part of
your transaction. This is useful for non-database operations, but it’s also useful
for database operations that Multi does not directly support. For example, there
is no Multi.all function to mirror the Repo.all function. If you need to run a query
within an operation, you could call Repo.all within a function called by run.

Introspection with Multi
Given that Multi is a data structure, it can sometimes be useful to examine its
contents. The Ecto team discourages inspecting or manipulating the internals
of a Multi struct directly, as the exact structure is subject to change. But you
can use the to_list function to see the all of the operations currently queued
within a Multi:

Chapter 5. Making Multiple Changes with Transactions and Multi • 98

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_07.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

multi =
Multi.new()
|> Multi.insert(:artist, artist)
|> Multi.insert(:log, Log.changeset_for_insert(artist))
|> Multi.run(:search, SearchEngine, :update, ["extra argument"])

Multi.to_list(multi)
#=> [
#=> artist: {:insert,
#=> #Ecto.Changeset<action: :insert, changes: %{}, errors: [],
#=> data: #MusicDB.Artist<>, valid?: true>, []},
#=> log: {:insert,
#=> #Ecto.Changeset<action: :insert, changes: %{}, errors: [],
#=> data: #MusicDB.Log<>, valid?: true>, []},
#=> search: {:run, {SearchEngine, :update, ["extra argument"]}}
#=>]

This comes in handy for testing. It allows you to verify that any code that
generates a Multi is producing the right data structure, without actually having
to run it against the database. This can simplify your test considerably, as
you don’t have to worry about having the database in the correct state before
you run the test. Your test suite will also run considerably faster if you can
avoid unnecessary round-trips to the database.

Wrapping Up
Ecto has excellent support for database transactions via the Repo.transaction
function. The last section covered some of the ways that using Ecto.Multi is
preferable to using functions, but cases definitely exist where calling transaction
with a function works well.

If you’re only running a small number of operations and you don’t need to
take different action depending on which operation succeeds or fails, using
a function is a good option. For all other cases, you should consider Ecto.Multi.
It has a lot more flexibility, and the code needed to respond to different types
of errors will be much cleaner and easier to follow.

We’ve almost completed our tour of Ecto. We’ve looked at how to run queries,
make changes, map records to structs, and group operations together. Along
the way, we’ve worked through numerous examples based on the dataset
included with the MusicDB sample app. For our last stop, we’ll take a look
at how that dataset got created in the first place. The Ecto.Migration module
provides tools to set up your database tables from within your Elixir code,
and make changes to them over the life of your application. With this last
piece of the puzzle, you’ll be ready to create your own app and put your Ecto
knowledge to work.

report erratum • discuss

Wrapping Up • 99

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 6

Making Changes to Your Database
For this last stop on our tour of Ecto, we are going back to the beginning.

In previous chapters, we’ve queried, updated, deleted, and sometimes mangled
the dataset that came with our MusicDB app. Now we’re going to take a look
at how those tables got created in the first place.

Ecto uses migrations to create and alter tables in your database. A migration
is a set of commands, created in Elixir, that contains the instructions for the
changes you want to make. Ecto provides mix tasks to help you create, run
and even roll back your migrations.

In this chapter, we’ll look at the Ecto.Migration module and work with the tools
it provides to help you create and maintain the structure of your database
throughout the lifetime of your app.

Introducing Migrations
Migrations solve an age-old problem: keeping the structure of the database
in sync between production systems, staging systems, and the local systems
running on each developer’s computer. This used to be a manual process and
it was prone to error. A hot fix made on a production system might not
propagate back to the developer’s systems, leading to errors that were hard
to track down. Migrations help automate this process and provide a consistent
framework for making changes across all the systems in your organization.

When adding a new feature that requires changes to the database, you write
a migration: a single Elixir module that can execute the changes you want to
make. You store that migration in source control along with the rest of your
code. When you run the migration on a particular database instance, Ecto
makes the changes specified in your migration to that database, and keeps
track of which migrations have already been run.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

When it comes time to deploy your app to another system, you tell Ecto to
run migrations for this system. It checks to see which of the migrations in
your code have already been run, and executes any newly added migrations.
Because Ecto keeps track of which migrations have already been run, everyone
can stay in sync. A new developer coming on the project for the first time
would end up running all of the migrations at once the first time they set up
the project.

Your migrations use the Ecto.Migration API to create and modify database tables
using Elixir code. This allows your migrations to be database-independent:
the same migrations can be used with any database that Ecto supports.

We’ll work through a number of different examples in the following sections of
this chapter, but if you’re curious, you can take a sneak peek at the migrations
we used in the MusicDB app by looking at the files in the priv/repo/migrations
directory. It’s OK if they don’t make sense to you right away—hopefully by
the end of this chapter, they will.

Your First Migration
To get a feel for how to write migrations, we’re going to add a new table to our
MusicDB project.

We’ve been using the tracks table to keep track of recordings of songs that have
appeared on specific albums. But many artists record songs that they did
not write themselves, and certain songs appear on more than one album. For
example, in our current dataset, the song “Freddie Freeloader” appears on
two different albums. We’ll create a compositions table to track the metadata of
the songs that appear in our dataset, and later link them to specific tracks
records.

The easiest way to create a new migration is to use the mix task that Ecto
provides: mix ecto.gen.migration. This task has one required argument: the name
of the migration you want to create. Ecto will use this name in the migration
module it will create for you. It’s best to make this name as descriptive as
possible so that future developers (or future you) can understand what the
migrations do just by looking at the names. We’re going to create a new com-
positions table so we’ll call it add_compositions_table.

You can specify the name using snake case:

mix ecto.gen.migration add_compositions_table

Chapter 6. Making Changes to Your Database • 102

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

or Pascal case:

mix ecto.gen.migration AddCompositionsTable

Either way, you’ll get the same result. Pick either of these commands, and
run it in a terminal window. You should see something like this:

* creating priv/repo/migrations
* creating priv/repo/migrations/20180410132202_add_compositions_table.exs

By default, Ecto puts all the migrations it generates into priv/[YOUR_REPO]/migra-
tions. We named our repo Repo so Ecto uses priv/repo/migrations. Our project only
has one repo, so Ecto could infer where to put the migration. If we were using
multiple repos, we’d need to specify which one we want to apply the migration
to with the -r option:

mix ecto.gen.migration AddCompositionsTable -r MusicDB.Repo

You may have noticed Ecto added a timestamp to the filename it generated:

* creating priv/repo/migrations/20180410132202_add_compositions_table.exs

This timestamp serves two purposes. First, it acts as a unique ID that Ecto
uses to keep track of which migrations have been run. Second, it helps ensure
that migrations are run in the correct order. In many cases, you’ll write
migrations that make changes to existing tables. It’s important that the
migrations that generate those tables are run before the ones that alter them.

Let’s take a look at the generated file and see what Ecto created for us. Open
up the file in your text editor and you should see something like this:

defmodule MusicDB.Repo.Migrations.AddCompositionsTable do
use Ecto.Migration

def change do

end
end

We’ve got a standard Elixir module, with a use statement, as we’ve seen before.
There’s also an empty change function. This is the function that Ecto will call
when running the migration, so this is where we’ll put our code to create the
new table. Let’s do that now.

We’ll start with just three fields: a string to represent the title of the composi-
tion, an integer for year it was composed, and a foreign key to the artists table
to indicate the composer of the song:

report erratum • discuss

Your First Migration • 103

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/migrations_01.exs
defmodule MusicDB.Repo.Migrations.AddCompositionsTable do

use Ecto.Migration

def change do
create table("compositions") do
add :title, :string, null: false
add :year, :integer, null: false
add :artist_id, references("artists"), null: false
timestamps()

end
end

end

We create a new table by calling the create function. The table function creates
a new Ecto.Migration.Table struct with the name we provide (“compositions” in
this case).

We then create a do/end block that specifies the columns of our new table
using the add function. In each call to add we specify the name of the column
and the type.

You have two options when specifying the type. You can use the Ecto types
we learned about in Chapter 3, Connecting Your Tables to Elixir Structs with
Schemas, on page 41, and Ecto will translate those into the corresponding
database-specific types. Or, you can provide the actual database type yourself,
provided that it’s one that Ecto knows about.

For example, Ecto translates the :string type to character varying(255) in PostgreSQL.
If you were creating a column that needed to handle long strings of text, you
might define the column using :text. Ecto will still use Elixir’s String type for
these values in your Elixir code, but using :text ensures that the database
column will be able to hold as much text as you need.

For the artist_id column, we didn’t provide an atom for the type, and instead
called the references function. This tells Ecto that we’d like artist_id to be a foreign
key for the artists table. As we’ll see in a moment, this will cause Ecto to do a
little extra work for us when setting up the table in the database.

We’ve added the null: false option to our columns because we do not want any
of them to allow null as a value. We will most likely add validations to our
changesets to prevent this as well, but it’s important to have the rules enforced
at the database level, just to be absolutely sure you don’t end up with values
you don’t want.

Chapter 6. Making Changes to Your Database • 104

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/migrations_01.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The add function will also accept a default: option that allows you to provide a
fallback value if the user doesn’t provide one. There’s no sensible default we
could provide for these columns, so we’ve omitted that option here.

timestamps is a convenience function that adds two datetime columns: inserted_at
and updated_at. As we saw in Chapter 3, Connecting Your Tables to Elixir
Structs with Schemas, on page 41, Ecto will provide values for these columns
automatically when you insert or update records using schemas.

By default, Ecto uses Elixir’s NaiveDateTime and does not preserve microsecond
information (it will discard it when running Changeset.cast and raise an error if
you try to set the value in a schema struct). If you need time zones or
microseconds in your timestamps, you can change the default timestamp
type. We’ll show you how to do that in Changing Timestamps, on page 117.

Running Migrations
Now that we’ve got our first migration written, let’s try running it and see
what it does. Ecto provides a mix task to do this, so jump back out to the
command line, and run mix ecto.migrate. You should see something like this:

06:57:27.065 [info] == Running
MusicDB.Repo.Migrations.AddCompositionsTable.change/0 forward

06:57:27.065 [info] create table compositions

06:57:27.069 [info] == Migrated in 0.0s

This tells us that the migration was successful, and Ecto added our new table.

Let’s take a peek at our database and see what it did.

We’re going to open our database console so we can examine the tables directly.
The following examples will show the steps for working with PostgreSQL—if
you’re using MySQL, you’ll need to run the equivalent commands.

You can open up a PostgreSQL console with the psql command:

$ psql music_db
psql (10.3)
Type "help" for help.

music_db=#

From here we can use the \dt command to see a list of tables:

report erratum • discuss

Running Migrations • 105

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

music_db=# \dt
List of relations

Schema | Name | Type | Owner
--------+-------------------+-------+-------
public | albums | table | darin
public | albums_genres | table | darin
public | artists | table | darin
public | compositions | table | darin
public | genres | table | darin
public | logs | table | darin
public | schema_migrations | table | darin
public | tracks | table | darin

(8 rows)

And there in the middle we can see our new compositions table. Let’s look at the
details of that table using the \d command:

music_db=# \d compositions

Column | Type | Collation | Nullable
-------------+-----------------------------+-----------+----------
id | bigint | | not null
title | character varying(255) | |
year | integer | |
artist_id | bigint | |
inserted_at | timestamp without time zone | | not null
updated_at | timestamp without time zone | | not null

Indexes:
"compositions_pkey" PRIMARY KEY, btree (id)

Foreign-key constraints:
"compositions_artist_id_fkey" FOREIGN KEY (artist_id)
REFERENCES artists(id)

We’ve truncated some of the output so it will fit in the book, but this shows
most of what you need to see. The first row comes as a surprise: there’s an
id column, and the Indexes section tells us that id is the primary key. We didn’t
put this in our migration, so what’s it doing here?

Ecto added this column for us. It will always create a primary key column
called id unless you tell it not to. This is handy because most of the time you
will need a column like this, and having a primary key named id is a common
convention. However, it’s possible to disable this behavior if you need to—we’ll
see how to do that later in this chapter.

The rest of the columns are what we expect: we have the title, year, and artist_id
columns we created using the add function. For artist_id Ecto added a foreign
key constraint (thanks to our addition of the references call).

Chapter 6. Making Changes to Your Database • 106

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The timestamps function in our migration gave us the inserted_at and updated_at
columns we see here. Notice that these are set to the timestamp without time zone
type. Ecto will use this type by default (which maps to the NaiveDateTime type
in Elixir), but you can change this behavior as well.

While we’re in the console, let’s take a look at another table. You may have
noticed schema_migrations in the list of tables when we ran the \dt command
earlier—that’s not one that we’ve used in any of the previous chapters. This
table is created and maintained by Ecto—it’s where it keeps track of the
migrations that it has already run. It’s a regular table just like our other ones,
so we can look at it with a select statement:

music_db=# select * from schema_migrations;
version | inserted_at

----------------+----------------------------
20180308131742 | 2018-04-11 13:57:09.221876
20180308132308 | 2018-04-11 13:57:09.244394
20180308134145 | 2018-04-11 13:57:09.261668
20180308134445 | 2018-04-11 13:57:09.280168
20180308134653 | 2018-04-11 13:57:09.299608
20180313132703 | 2018-04-11 13:57:09.316839
20180410134047 | 2018-04-11 13:57:27.077176

(7 rows)

The version column contains the timestamps of the migrations that have been
successfully run (these are the timestamps that Ecto adds to migration file-
names). When we run mix ecto.migrate, Ecto compares the list of migrations in our
codebase to the list of versions in this table. It then runs, in order, any migrations
that aren’t in this table, and adds a new record if the migration completes.

Rolling Back Migrations
Sometimes you want to undo the changes you made in a migration. This happens
frequently in development—you’ll often change your mind about what your table
should look like so it’s common to create a migration, roll it back, make some
changes and run it again. But it can also happen when your app is in production
as well, when you have one of those dreaded “oops” moments.

Ecto provides the ecto.rollback mix task to roll back one or more migrations.
Let’s try that out now:

$ mix ecto.rollback
06:17:40.823 [info] == Running
MusicDB.Repo.Migrations.AddCompositionsTable.change/0 backward

06:17:40.824 [info] drop table compositions

06:17:40.831 [info] == Migrated in 0.0s

report erratum • discuss

Rolling Back Migrations • 107

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The output tells us that our most recent migration was rolled back: instead
of creating a new table, we dropped it. In this case, Ecto was able to infer the
rollback behavior of the change function in our migration. It saw that we were
creating a table, so to roll it back, it determined that it should drop the table.
This will work for many, if not most, of the changes you’ll make with migra-
tions. Ecto will complain loudly if it encounters anything it can’t figure out.
In those cases, you’ll have to be explicit about what the rollback behavior
should be. We’ll look at some examples of that later in the chapter.

When developing new migrations, it’s a good idea to make sure you can roll
them back. Part of testing a migration is making sure it runs and rolls back
successfully, always leaving the database in a stable state. You don’t want
to be trying this out for the first time while you’re dealing with a production
emergency.

By default, mix ecto.migrate will run all the migrations that haven’t been run
yet, and mix ecto.rollback will roll back only the most recent migration. But both
of these commands accept options that change this behavior. For example:

mix ecto.migrate -n 3

will run the first three pending migrations, and

mix ecto.rollback -n 3

will roll back the three most recent migrations. Similarly:

mix ecto.migrate -v 20080906120000

will run all of the pending migrations up to and including the given version
number, and

mix ecto.rollback -v 20080906120000

will roll back all of the most recent migrations down to and including the
version.

To see all of the options available in these commands, run mix help ecto.migrate
and mix help ecto.rollback.

Adding Indexes
Our table is looking good so far, but there’s a looming problem that will start
to bite us before too long. We didn’t add any indexes, which will slow down
our queries substantially. Let’s fix that now.

Chapter 6. Making Changes to Your Database • 108

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Edit a Migration or Create a New One?
This change brings up an interesting question: should we generate a new
migration to add these indexes, or should we just edit the migration that we
already made?

As a general rule, it’s OK to edit an existing migration provided that you haven’t
already committed your migration to source control. Once your migration is avail-
able to other developers on your team, you shouldn’t make any edits to it—you
should instead create a new migration with the changes you want to make.

The reason is a practical one. Once a migration is committed, you can’t be
certain that other developers haven’t already pulled it down and run it on
their machine. Ecto can’t detect changes to a migration that’s already been
run, so your teammates won’t be able to apply your new changes just by
running mix ecto.migrate. You would need to go to them directly and tell them
to roll back that migration, pull down your changes, and run the migration
again. (This is usually not a pleasant conversation—trust us on this one.) If
you instead create a new migration, they just need to sync their codebase,
run the new migration, and they’re back on track.

Changing an Existing Table
To get more practice generating migrations, let’s assume that we’ve already
committed our previous migration, so we’ll create a new one to add our
indexes. We imagine that we’ll often want to query this table by title and year
so we’re going to add indexes for those two columns.

First, go back out to the command line and run mix ecto.gen.migration as we did
before:

$ mix ecto.gen.migration add_indexes_to_compositions
* creating priv/repo/migrations
* creating

priv/repo/migrations/20180413123728_add_indexes_to_compositions.exs

Now open the new file in your text editor, and edit it so it looks like this:

priv/examples/migrations_02.exs
defmodule MusicDB.Repo.Migrations.AddIndexesToCompositions do

use Ecto.Migration

def change do
create index("compositions", :title)
create index("compositions", :year)

end
end

report erratum • discuss

Adding Indexes • 109

http://media.pragprog.com/titles/wmecto/code/priv/examples/migrations_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

We use create as we did in our last migration, but instead of calling table we
call index and provide the table and column names for the index. If you need
an index that combines multiple columns, you can provide a list of column
names.

create an index on the title and year columns together
create index("compositions", [:title, :year])

Now we can jump back out to the command line and try running and rolling
back our migration:

$ mix ecto.migrate

06:00:23.187 [info] ==
Running MusicDB.Repo.Migrations.AddIndexesToCompositions.change/0 forward

06:00:23.187 [info] create index compositions_title_index

06:00:23.190 [info] create index compositions_year_index

06:00:23.193 [info] == Migrated in 0.0s

$ mix ecto.rollback

06:00:30.298 [info] ==
Running MusicDB.Repo.Migrations.AddIndexesToCompositions.change/0 backward

06:00:30.298 [info] drop index compositions_year_index

06:00:30.299 [info] drop index compositions_title_index

06:00:30.300 [info] == Migrated in 0.0s

The drop index lines that appear in the output assure us that Ecto has once
again inferred how to roll back our migration for us.

Adding Options to an Index
The index function supports several options that control the behavior of the
index.

One important one is unique. When set to true, the database will prevent creating
two records with the same value for this column. We used this for the name
column of the genres table to make sure that we don’t end up with duplicate
genre names:

priv/examples/migrations_02.exs
create index("genres", :name, unique: true)

Chapter 6. Making Changes to Your Database • 110

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/migrations_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

This option is used often enough that Ecto provides the unique_index function
as a shortcut. You add the same index by writing this instead:

create unique_index("genres", :name)

Database indexes must have a name, and Ecto provides one for you by default
by combining the table and column names of the index (“compositions_year_
index,” for example). Most of the time this convention works fine, but if you’re
creating a multi-column index and some of the column names are long, it’s
possible that the name Ecto generates will be longer than your database
allows. If that happens, you can use the name option to provide a name the
database can use:

create index("compositions", :title, name: "title_index")

Other options support things like the index type, partial indexes, and so on.
For more details, see the Ecto docs.1

Changing Data and Table Structure Together
Our new compositions table is working better now that we’ve added some
indexes, but as we start adding data, we discover another problem. Our cur-
rent structure only allows us to associate one composer with each record,
and some songs have more than one composer. As we think about it further,
we realize that many songs have separate composers and lyricists, and we
might want to capture that info as well.

This sounds like a job for a many-to-many relationship between compositions
and artists: a composition can have many artists, and an artist can contribute
to many songs. As we discussed in Chapter 3, Connecting Your Tables to
Elixir Structs with Schemas, on page 41 we’ll need a new join table between
compositions and artists. In addition to the foreign keys for these two tables, we’ll
also include a role column so we can specify the relationship as “composer”
or “lyricist.” Let’s set that up now.

First, we’ll generate a new migration:

$ mix ecto.gen.migration add_composition_artists_table
* creating priv/repo/migrations
* creating

priv/repo/migrations/20180413134804_add_composition_artists_table.exs

1. https://hexdocs.pm/ecto_sql/Ecto.Migration.html#index/3

report erratum • discuss

Changing Data and Table Structure Together • 111

https://hexdocs.pm/ecto_sql/Ecto.Migration.html#index/3
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Next, we’ll add the code to create our new table. And we won’t forget the
indexes this time!

priv/examples/migrations_03.exs
defmodule MusicDB.Repo.Migrations.AddCompositionArtistsTable do

use Ecto.Migration

def change do
create table("compositions_artists") do
add :composition_id, references("compositions"), null: false
add :artist_id, references("artists"), null: false
add :role, :string, null: false

end

create index("compositions_artists", :composition_id)
create index("compositions_artists", :artist_id)

end
end

That handles setting up the new table. Now we need to think about how we’re
going to alter the data that’s already in the compositions table. We know that
we’re going to remove the artist_id column, as that data is now going to live in
our new table, but we don’t want to lose the values in that column. We want
to move them into the new table.

In a situation like this, you can use migrations not only to change database
structure, but also to move data around when you need to. In our case, we want
to take the id and artist_id values from each record in compositions and use them
to insert a new record into compositions_artists. We had only been keeping track
of composers so far, so we’ll set role to “composer” for each of the new records.

We haven’t changed our schemas to work with our new tables, so we can use
a schema-less query and insert_all to do the work we need:

def change do
#...

from(c in "compositions", select: [:id, :artist_id])
|> Repo.all()
|> Enum.each(fn row ->

Repo.insert_all("compositions_artists", [
[composition_id: row.id, artist_id: row.artist_id, role: "composer"]

])
end)

end

To keep this example simpler, we’re assuming that we don’t have a huge number
of records in compositions and running them all through Enum.each/2 won’t create
a problem. For large record sets, you’d want to take a different approach—we’ll
talk about that in Chapter 17, Tuning for Performance, on page 201.

Chapter 6. Making Changes to Your Database • 112

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/migrations_03.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Once we’ve moved the old data into the new table, we can safely remove the
artist_id column from the compositions table. We use the alter function to make
changes to table columns:

def change do
#...

alter table("compositions") do
remove :artist_id

end
end

Everything looks really good, but we’re not quite done. If we tried to run the
migration right now, we’d get an error like this:

** (Postgrex.Error) ERROR 42P01 (undefined_table):
relation "compositions_artists" does not exist

That’s a confusing error. Of course the table doesn’t exist—we’re trying to
create it now. This seems like an unfair complaint.

The problem has to do with the way Ecto runs migrations. Instead of running
each of the operations one at a time, it creates a queue of operations that it
sends to the database all at once. In that moment, our insert into compositions_artists
isn’t a viable statement because that table isn’t in the database yet.

Fortunately, there’s a workaround. The flush function tells Ecto to execute the
currently queued operations—any code that comes after the flush call can
assume that all the prior changes have been run. For our migration, we need
to add the flush right before we start trying to change the data:

def change do
#...

create(index("compositions_artists", :composition_id))
create(index("compositions_artists", :artist_id))

flush()

from(c in "compositions", select: [:id, :artist_id])
|> Repo.all()

#...

end

When you’re writing migrations that involve data changes as well as structural
changes, you’ll often need flush so that you can act on the results of previous
parts of the migration. If you get an error saying that the database can’t find
something you think should be there, double-check that you’re calling flush
in the right places.

report erratum • discuss

Changing Data and Table Structure Together • 113

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Here is our migration in full. Note the addition of import Ecto.Query and alias
MusicDB.Repo at the top:

defmodule MusicDB.Repo.Migrations.AddCompositionsArtistsTable do
use Ecto.Migration
import Ecto.Query
alias MusicDB.Repo

def change do
create table("compositions_artists") do
add(:composition_id, references("compositions"), null: false)
add(:artist_id, references("artists"), null: false)
add(:role, :string, null: false)

end

create(index("compositions_artists", :composition_id))
create(index("compositions_artists", :artist_id))

flush()

from(c in "compositions", select: [:id, :artist_id])
|> Repo.all()
|> Enum.each(fn row ->
Repo.insert_all("compositions_artists", [

[composition_id: row.id, artist_id: row.artist_id, role: "composer"]
])

end)

alter table("compositions") do
remove :artist_id

end
end

end

Now, it’s ready to run. It’ll create the new table, and move the data all at once.

Specifying Up and Down Operations
In the last section, we created a migration that altered data as well as struc-
ture, but we left out an important step. In its current form, this migration
can’t be rolled back.

Ecto can’t reverse the removal of a column, because it wouldn’t know what
type it should be restored back to. And we certainly can’t expect Ecto to figure
out how to reverse the data transformation we did between compositions and
compositions_artists. We need to specify the rollback instructions ourselves.

In cases like these, you write the migration differently. Instead of providing
a single change function, you write an up function and a down function, to
handle the migration going forward and rolling back, respectively. Let’s rewrite
the migration so it can be rolled back.

Chapter 6. Making Changes to Your Database • 114

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Right now, our change function has all the logic we need for going forward. We
just need to rename the function from change to up. But we still need to write
the down function.

Here’s how we might do it:

priv/examples/migrations_04.exs
def down do

alter table("compositions") do
add :artist_id, references("artists")

end

flush()

from(ca in "compositions_artists", where: ca.role == "composer",
select: [:composition_id, :artist_id])

|> Repo.all()
|> Enum.each(fn row ->

Repo.update_all(
from(c in "compositions", where: c.id == ^row.composition_id),
set: [artist_id: row.artist_id]

)
end)

drop table("compositions_artists")
end

First, we put artist_id back into the compositions table. Then we call flush so that
the new column is available for us to move data into it.

Now we need to move the artist_id from compositions_artists back into the compositions
table. If we’ve added any new records where there’s more than one artist
associated with a composition, we’re going to lose some of that data—unfor-
tunately, we have no choice there. We get all the compositions_artists records with
the role of composer, then update the associated compositions record with the
artist_id. If any composition had more than one composer associated with it,
the last one will win. We can’t do much about that, except hope that we never
have to roll this migration back.

Finally, we drop the compositions_artists table, and we’re back to where we were.

Changing Default Behaviors
Ecto’s migrations follow a number of conventions that have proven to work
well over time. In most cases, it’s easiest to follow those conventions. They
usually require less code and they can reduce ramp-up time for new developers
joining the project—it’s always helpful if a new project looks a lot like your
last one. But sometimes Ecto’s conventions won’t fit your project, and you
need to structure things differently. Fortunately, Ecto offers a number of

report erratum • discuss

Changing Default Behaviors • 115

http://media.pragprog.com/titles/wmecto/code/priv/examples/migrations_04.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

escape hatches that allow you to craft your migrations as needed. In this
section, we’ll look at a number of different ways you can customize migration
behavior.

Setting Primary and Foreign Key Names
Earlier in this chapter, we saw how Ecto automatically creates a primary key
called id with type :bigserial when you create a new table. If you’d like Ecto to
use a different name and/or type when creating primary keys, you can set
this as a global configuration option in your Repo config in config/config.exs (we
looked at some of these configuration settings in Chapter 1, Getting Started
with Repo, on page 3). Here’s how you could use code instead of id as the
column name, and :string as the type:

config :music_db, MusicDB.Repo,
migration_primary_key: [id: :code, type: :string]

Making this change affects the default behavior whenever you create a new table
with Ecto. But you can change the behavior on a per-table basis as well. Anytime
you don’t want Ecto to create a primary key for you, add the primary_key: false
option when creating the table:

priv/examples/migrations_05.exs
create table("compositions", primary_key: false) do

add :title, :string, null: false
#...

end

You could then add a primary key to the table manually when calling add:

create table("compositions", primary_key: false) do
add :code, :string, primary_key: true
#...

end

This is useful when you’re using Ecto to connect to legacy databases that
weren’t created with Ecto’s naming conventions in mind.

When creating foreign keys with the references function, Ecto again assumes
that the primary key of the referenced table is called id and is a :bigserial. But
you can pass options to references to specify something different:

create table("compositions_artists") do
add :composition_id, references("compositions",

column: "code", type: "string")
#...

end

Chapter 6. Making Changes to Your Database • 116

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/migrations_05.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

As a general rule, it’s good to follow Ecto’s conventions whenever you can.
But if you can’t, you can have several options for changing the way Ecto ref-
erences keys.

Changing Timestamps
Earlier we saw how the timestamps method automatically adds inserted_at and
updated_at columns to your tables. By default, these will always use Elixir’s
NaiveDateTime type, but you can change this globally in your Repo config. Here’s
how you could change it to use a UTC timestamp:

config :music_db, MusicDB.Repo, migration_timestamps: [type: :utc_datetime]

The :time, :naive_datetime, and :utc_datetime types don’t allow you to save microsecond
information in your timestamps. If you need microseconds, you can use the
more precise counterparts: :time_usec, :naive_datetime_usec, or :utc_datetime_usec.

Making this change in the Repo config will affect any timestamps call you make
in any of your migrations, but you can customize this behavior at the table
level as well. The timestamps function lets you specify the datetime type you’d
like to use, and even lets you change the column names.

This will add the two timestamps columns to compositions, but they’ll be named
created_at and changed_at instead of inserted_at and updated_at, and they’ll use UTC
timestamps:

priv/examples/migrations_05.exs
create table("compositions") do

timestamps(inserted_at: :created_at, updated_at: :changed_at,
type: :utc_datetime)

#...
end

Note if you’re using schemas, changing the timestamp type in the migration
or the Repo config isn’t enough to guarantee your timestamps will be stored
correctly. You’ll also need to set the type in the Ecto.Schema.timestamps/1 call
when you define the Schema. See the documentation2 for more details.

You can also set the inserted_at or updated_at options to false if you don’t want to
include that column. This will add inserted_at, but not updated_at:

create table("compositions") do
timestamps updated_at: false
#...

end

2. https://hexdocs.pm/ecto/Ecto.Schema.html#timestamps/1

report erratum • discuss

Changing Default Behaviors • 117

http://media.pragprog.com/titles/wmecto/code/priv/examples/migrations_05.exs
https://hexdocs.pm/ecto/Ecto.Schema.html#timestamps/1
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

You have quite a lot of options when setting up Ecto’s timestamps, but it’s
usually best to pick one approach and stick with it throughout your database,
if you can.

Running Migrations Outside of a Transaction
By default, migrations are run within a database transaction. This is a good
thing: if any part of your migration has an error, you can be assured that the
database will be restored back to the way it was. But there may be times
when you won’t want to do it this way. In those cases, you can disable the
transactional behavior by setting the module attribute @disable_ddl_transaction
to true:

priv/examples/migrations_05.exs
defmodule MusicDB.Repo.Migrations.AddCompositionsIndex do

use Ecto.Migration
@disable_ddl_transaction true

def change do
#...

end
end

One situation where you need to do this is when changing indexes concur-
rently. Databases usually prevent tables from accepting new writes while
adding or dropping indexes, but PostgreSQL has an option that removes this
limitation. This is useful if you need to alter an index on a large table, and
don’t want it unavailable for writes during the process.

You can take advantage of this feature by setting the concurrently option to true
while creating the index, but you must run the migration outside of a trans-
action by settings @disable_ddl_transaction to true.

For creating indexes concurrently, there’s one more change we need to make.
We need to set the migration_lock configuration option for our Repo to nil. By default,
Ecto will lock the schema_migrations table when running migrations. This lets
multiple nodes run migrations, but only allows one of them to succeed. Nor-
mally, that’s a good thing, but it interferes with our ability to create the index
concurrently. So we need to disable the lock in our Repo configuration:

config :music_db, MusicDB.Repo, migration_lock: nil

Once that’s done, our migration will look like this:

Chapter 6. Making Changes to Your Database • 118

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/migrations_05.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

defmodule MusicDB.Repo.Migrations.AddCompositionsIndex do
use Ecto.Migration
@disable_ddl_transaction true

def change do
create index("compositions", :title, concurrently: true)

end
end

If you omit setting @disable_ddl_transaction for this change, you will get an error
like this:

** (Postgrex.Error) ERROR 25001 (active_sql_transaction):
CREATE INDEX CONCURRENTLY cannot run inside a transaction block

Running migrations without a transaction is useful in a few situations, but
you’ll want to do this carefully. It could be difficult to restore your database
if something goes wrong. If you need to use this option, keep the migration
as small as possible. Try to restrict the migration to only those operations
that must be run outside a transaction. Everything else should be run in a
separate transactional migration. This will help reduce the damage if some-
thing goes awry.

Wrapping Up
Ecto’s migrations help you manage the structure of your database throughout
the lifetime of your application. We covered the main features of migrations
in this chapter, but as always, it’s good to review the official documentation
to see all of the supported features. You may also want to read through the
migrations that came with the MusicDB codebase to see more real-life examples.

This wraps up our tour of the main Ecto modules. You should now have a
solid understanding of the basics, and you’re ready to look at some more
advanced topics in Part II. Feel free to skip around and focus on the chapters
that are most interesting to you. Each chapter in Part II stands on its own
and can be read in any order.

report erratum • discuss

Wrapping Up • 119

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Part II

Ecto Applied

With the knowledge acquired in Part I, we’ll look
at some more advanced use cases that often come
up with Ecto and database programming in general.
We’ll cover such topics as performance tuning,
speeding up your tests with sandboxes, integrating
with Phoenix, and the like. Each chapter is distinct,
so feel free to jump directly into the topics you’re
most interested in, and look at the others later on.

CHAPTER 7

Adding Ecto to an Elixir
Application Without Phoenix

We hope that by now, you’re so enthralled with Ecto that you want to add it
to all your projects right away (we can dream, can’t we?). Adding Ecto to a
project isn’t too difficult, but it does require a few more steps beyond just
adding the hex package to your list of dependencies.

Most of the time, you won’t need to worry about this. Phoenix projects, for
example, have Ecto included in their initial setup, and the music app we were
playing with in Part I came with Ecto included as well. But there may be times
when you’ll need to add Ecto to a project yourself. This chapter will show you
how to do that, by walking you through the following steps:

• Creating a new project
• Adding Ecto and its dependencies
• Creating and configuring your Repo module
• Adding Ecto to the supervision tree
• Starting the app

Open up a new terminal window, and let’s get started!

Creating a New Project
The first step is to create a new Elixir application with the mix tool. A new app
needs a lot of boilerplate, but mix new does all the heavy lifting for us:

> mix new my_app --sup
* creating README.md
* creating .gitignore
* creating mix.exs
* creating config

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

* creating config/config.exs
* creating lib
* creating lib/my_app.ex
* creating lib/my_app/application.ex
* creating test
* creating test/test_helper.exs
* creating test/my_app_test.exs

Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

cd my_app
mix test

Run "mix help" for more commands.

Note that we added the --sup flag to mix new. This is because Ecto does all of
its work in separate OTP processes. It needs to be part of a supervision tree
to make sure that it starts up correctly, and is restarted if a process fails.

What is a supervision tree?

One of the many benefits of working with Elixir is having access
to OTP (Open Telecom Platform), provided by the underlying Erlang
runtime. OTP allows you to organize your programs into lightweight
independent execution units called processes. You can use
supervisors to observe processes and restart them if they fail. It’s
also possible to have supervisors observing other supervisors, and
as programs increase in complexity, there can many groups of
processes and supervisors all working together at the same time.
We refer to this structure as a supervision tree, because it has
a single starting point in your application, and fans out from
there.

Many third-party libraries, including Ecto, manage their own
supervision trees so it’s likely that you’ve had them in your appli-
cations, whether you’ve been aware of them or not. OTP is a big
topic, certainly more than we can cover here, but if you’d like to
read more, a good starting point is the Mix and OTP Guide on the
Elixir website.1

If you want to add Ecto to an application that was not generated with the --sup
flag, you’ll have a little extra configuration to do—we’ll come back to that in
a bit.

1. https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html

Chapter 7. Adding Ecto to an Elixir Application Without Phoenix • 124

report erratum • discuss

https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Adding Ecto’s Dependencies
The next step is to add the packages that Ecto needs to run. Open the mix.exs
file and look for the deps/0 function. It should look something like this:

defp deps do
[

{:dep_from_hexpm, "~> 0.3.0"},
{:dep_from_git, git: "https://github.com/elixir-lang/my_dep.git",
tag: "0.1.0"}

]
end

Replace the commented-out code with the following:

priv/examples/adding_ecto.exs
defp deps do

[
{:postgrex, ">= 0.0.0"},
{:ecto_sql, "~> 3.0"}

]
end

Postgrex is the driver Ecto uses to communicate with the PostgreSQL database.
Ecto also supports MySQL and MariaDB out of the box with the mariaex
adapter—you just need to replace {:postgrex, ">= 0.0.0"} with {:mariaex, ">= 0.0.0"}
(this adapter works for both MySQL and MariaDB). As of this writing, a new
driver called myxql is in development, and should be ready when Ecto 3.1 is
released. If you’re using Ecto 3.1 or later, you can use the new driver by
replacing mariaex with myxql in your list of dependencies.

For all these drivers, we use the >=0.0.0 version requirement to let Ecto decide
which versions it wants; in this case we don’t have a specific requirement.

Creating Your Repo Module
Next we need to create our app’s repository module. We went through this
process in detail in Chapter 1, Getting Started with Repo, on page 3 but
we’ll run through it again here.

Open a new file called lib/my_app/repo.ex and add the following:

defmodule MyApp.Repo do
use Ecto.Repo,

otp_app: :my_app,
adapter: Ecto.Adapters.Postgres

end

report erratum • discuss

Adding Ecto’s Dependencies • 125

http://media.pragprog.com/titles/wmecto/code/priv/examples/adding_ecto.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The use Ecto.Repo directive will make our module a bona fide Ecto repository—all
of Ecto’s repository functions will be defined and made available on this module.
For more details on how this works, see The Repo Module, on page 10.

The otp_app: :my_app option tells Ecto where to find the repository configuration.
So far, our project only has the my_app application, so we’re using that value
here. If we had multiple applications in this project, you could store the Repo
configuration in any one of them, and provide the name of that application
rather than :my_app.

We also need to set the adapter: option so Ecto knows which database we want
to use. In this case we are using PostgreSQL so we’ll use Ecto.Adapters.Postgres
as the adapter. It can be changed to Ecto.Adapters.MySQL or any other adapter
you need. Adapters take some specific configuration, such as timeout options
and pool settings, so we recommend you review the documentation for the
adapter you’re using.

To set up the repository configuration, open config/config.exs and add the following
lines. Make sure that the hostname, username, and password values will work for
the database you’re using.

config :my_app, MyApp.Repo,
database: "my_database",
username: "postgres",
password: "postgres",
hostname: "localhost"

The first argument of the call to config/3 should match the OTP application
name we set when defining the repository. The second argument is the name
of the repository module. The options :database, :username, :password and :hostname
define how to connect to the database. They can be replaced with a single :url
option that provides all of these values in a URL. The URL should follow this
format: ecto://USERNAME:PASSWORD@HOSTNAME/DATABASE. Using the preceding values,
the URL would look like this: ecto://postgres:postgres@localhost/my_database.

You may also want to the set pool_size. This specifies how many database
connections the repo will keep open. By default, Ecto sets this value to 10,
but you can increase this number if you’re getting timeout errors when
checking out connections—this can be an indication that you do not have
enough open connections to handle your application’s load.

For Ecto’s mix tasks to be able to find the repository, we also need to add the
following line to config/config.exs:

config :my_app, :ecto_repos, [MyApp.Repo]

Chapter 7. Adding Ecto to an Elixir Application Without Phoenix • 126

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

This will ensure that all the ecto.* mix tasks will work with our project.

Adding Ecto to the Supervision Tree
We’re almost there. We’ve added the dependencies, defined our repository,
and configured it. The last step is to ensure the repository is started when
the application starts. To do this, we need to add the repository to the appli-
cation supervision tree.

If your project was generated with mix new --sup you should have a file
lib/my_app/application.ex with the following function:

def start(_type, _args) do
List all child processes to be supervised
children = [

Starts a worker by calling: MyApp.Worker.start_link(arg)
{MyApp.Worker, arg},

]

See https://hexdocs.pm/elixir/Supervisor.html
for other strategies and supported options
opts = [strategy: :one_for_one, name: MyApp.Supervisor]
Supervisor.start_link(children, opts)

end

If you didn’t create your project with the --sup option, your start function will look
quite different, and you’ll need to add some of this boilerplate code yourself.

To ensure the repository is started with the application, we just need to add
it to the list of our project’s children:

List all child processes to be supervised
children = [

MyApp.Repo
]

Elixir 1.5 introduced child specifications, which simplified declaring the list
of child processes. If you’re using an older version of Elixir, you’ll need to
write this slightly differently:

for Elixir 1.4
import Supervisor.Spec, warn: false

children = [
supervisor(MyApp.Repo, [])

]

For more information on this change, see the Elixir 1.5 release notes.2

2. https://elixir-lang.org/blog/2017/07/25/elixir-v1-5-0-released/

report erratum • discuss

Adding Ecto to the Supervision Tree • 127

https://elixir-lang.org/blog/2017/07/25/elixir-v1-5-0-released/
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Using Multiple Ecto Repos
Most of the time, your apps will only have to work with one database, so you’ll
just need one repo. But sometimes you’ll need to connect to multiple
databases, and in those cases, you’ll need to set up a separate repo for each
database. Ecto has good support for this scenario. First, you need to create
the new repo:

defmodule MyApp.OtherRepo do
use Ecto.Repo, otp_app: :my_app, adapter: Ecto.Adapter.Postgres

end

Then you need to configure it, just like you did with the first repo:

config :my_app, MyApp.OtherRepo, ...

config :my_app, :ecto_repos, [MyApp.Repo, MyApp.OtherRepo]

Finally, add the new repo to your application’s supervision tree:

children = [
MyApp.Repo,
MyApp.OtherRepo

]

You can repeat this process as many times as needed for all the databases
your app needs to communicate with.

That wraps up all of the configuration—let’s take our app for a spin.

Starting Your App
To test our app, we need to fetch dependencies and compile the application:

> mix do deps.get, compile
Running dependency resolution...
...

If your database already exists, you can start working with Ecto right away.
Test it out by running a simple query, like getting the row count of one of
your tables:

MyApp.Repo.aggregate("some_table", :count, :some_column)

If don’t have a database yet, you can create it using the ecto.create mix task:

> mix ecto.create
The database for MyApp.Repo has been created

If that succeeds, then your configuration is working and Ecto is able to com-
municate with your database.

Chapter 7. Adding Ecto to an Elixir Application Without Phoenix • 128

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Wrapping Up
Congratulations! You now have a brand new Elixir app that’s ready to work
directly with a relational database. A good next step would be to start creating
migrations to fill out your database structure. If you need a refresher, see
Chapter 6, Making Changes to Your Database, on page 101 for more details.

report erratum • discuss

Wrapping Up • 129

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 8

Working with Changesets
and Phoenix Forms

If you’ve ever worked on a Phoenix project, you may have noticed that Ecto
integrates seamlessly, almost giving the impression that the two libraries
were written together. However, despite outward appearances, the two libraries
are decoupled and neither was built with the other specifically in mind. The
clean integration is the result of a series of protocols defined in Phoenix, and
the phoenix_ecto package, which provides implementations of those protocols
for Ecto.

This package provides a number of conveniences, but in this recipe, we’ll
focus specifically on how it allows you to use Ecto changesets with Phoenix
forms. We’re going to assume that you have some basic knowledge of Phoenix
and EEx (Embedded Elixir), but if you don’t, the code will likely be straight-
forward enough for you to follow along. If you feel like you need a refresher,
check out the docs for Phoenix.HTML.Form.1

Generating a Form for a Single Schema
Let’s set up a simple User schema to use as a starting point. We’ll define fields
for name and age and add a changeset function that will cast and validate
incoming parameters:

1. https://hexdocs.pm/phoenix_html/Phoenix.HTML.Form.html

report erratum • discuss

https://hexdocs.pm/phoenix_html/Phoenix.HTML.Form.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/phoenix_forms_01.exs
defmodule MyApp.User do

import Ecto.Changeset
use Ecto.Schema

schema "users" do
field :name, :string
field :age, :integer

end

def changeset(user, params) do
user
|> cast(params, [:name, :age])
|> validate_required(:name)
|> validate_number(:age, greater_than: 0,

message: "you are not yet born")
end

end

Next, we’ll need a controller. When we invoke the new action on the controller,
we want to return a new, empty changeset for a User:

def new(conn, _params) do
changeset = User.changeset(%User{}, %{})
render(conn, changeset: changeset)

end

Now we’re ready to set up the form. To build forms from changesets, we use
the form_for/4 function from Phoenix.HTML.Form:

<%= form_for @changeset, user_path(@conn, :create), fn f -> %>
Name: <%= text_input f, :name %>
Age: <%= number_input f, :age %>
<%= submit "Submit" %>

<% end %>

Notice how we can pass our changeset directly into form_for as the first argu-
ment. If you looked at the documentation, you’d see that form_for expects
Phoenix.HTML.FormData as its first argument. This is the power of Elixir protocols
at work. Phoenix defined a behavior that it expects in Phoenix.HTML.FormData,
and the phoenix_html package provides an implementation of that behavior that
makes changesets act like FormData.

The second argument of form_for/4 is the action URL. This is where the request
will be sent when the form is submitted. user_path(@conn, :create) points to the
:create action in the UserController so let’s implement that now:

Chapter 8. Working with Changesets and Phoenix Forms • 132

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/phoenix_forms_01.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

def create(conn, %{"user" => user_params}) do
case Accounts.create_user(user_params) do

{:ok, user} ->
conn
|> put_flash(:info, "User created successfully.")
|> redirect(to: user_path(conn, :show, user))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

First, we get the parameters for the user form with params["user"]. By default,
Phoenix creates HTML input names that are indexed by the schema name.
For example, the age field has the input name user[age], which we access as
params["user"]["age"] in Elixir. This namespacing keeps the params that are part
of our %User{} changeset separate from any other params that might appear
in the form.

Next, we want to take the "user" params and create a new User record. For this
example, we’ll assume that we’ve created an Accounts context that provides
functions for managing User records. We pass the params to the create_user
function and check the return value. If the operation succeeds, we redirect
users to their profile page. If it fails, we send users back to the form, along
with the failing changeset returned by create_user. This changeset has all of
the values submitted by the user, so the form fields will be pre-populated
with those values automatically.

Let’s drop down a level and see how we might implement the create_user
function:

def create_user(attrs \\ %{}) do
%User{}
|> User.changeset(attrs)
|> Repo.insert()

end

We create a new changeset with the params from our controller and pass it
into Repo.insert. Our controller function is already set up to receive the possible
return values from insert: {:ok, user} or {:error, changeset}.

Displaying Changeset Errors
Our form is working well, but something is missing. If the user submits invalid
data, the call to Repo.insert will fail, but we currently have no way of showing

report erratum • discuss

Displaying Changeset Errors • 133

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

the user how to fix the problem. The changeset contains the validation errors,
so we just need to add some elements to the page to display them. Let’s do
that now.

We’ll start by adding a new helper function error_tag/2. This function is not
provided by default so we need to define it ourselves. You can add it to any
module you’re using for storing helper functions.

priv/examples/phoenix_forms_02.exs
def error_tag(form, field) do

if error = form.errors[field] do
content_tag(:span, translate_error(error))

end
end

defp translate_error({msg, opts}) do
Enum.reduce(opts, msg, fn {key, value}, msg ->

String.replace(msg, "%{#{key}}", to_string(value))
end)

end

The function renders a tag with an error message, but only if the given
field actually has an error; if it doesn’t, the function returns nothing.

We also defined a translate_error/1 function. We need this because Ecto stores
validation errors in the format {String.t, [Keyword.t]}; for example, {"must be greater
than%{number}", [number: 0]}. This may seem unnecessarily complex, but it makes
it easier to translate error messages into other languages. But rather than
do a deep dive into internationalization, we’ll just display an English string
for now.

With our helper functions in hand, we are now ready to add the error tags
to the form:

<%= form_for @changeset, user_path(@conn, :create), fn f -> %>
Name: <%= text_input f, :name %> <%= error_tag f, :name %>
Age: <%= number_input f, :age %> <%= error_tag f, :age %>
<%= submit "Submit" %>

<% end %>

If any of the fields contain validation errors, the user will see an error message
next to the problematic input. Otherwise, error_tag will be blank.

Creating a Form with an Association
Now let’s tackle a more complex case: creating a form with associations. To
make it even more interesting, we’ll use an embedded schema representing

Chapter 8. Working with Changesets and Phoenix Forms • 134

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/phoenix_forms_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

the user’s address. If you need to refresh your memory on schemas, associa-
tions or embeds, you might want to flip back to Chapter 3, Connecting Your
Tables to Elixir Structs with Schemas, on page 41 before proceeding.

First, create an embedded schema for the user’s address, along with a
changeset function:

priv/examples/phoenix_forms_03.exs
defmodule MyApp.Address do

import Ecto.Changeset
use Ecto.Schema

embedded_schema do
field :street, :string
field :city, :string

end

def changeset(address, params) do
cast(address, params, [:street, :city])

end
end

Next, add the association to your %User{} schema. For now, we’re only going
to allow the user to have one address, so we’ll use embeds_one:

schema "users" do
field :name, :string
field :age, :integer

embeds_one :address, Address
end

We’ll also need to modify our User.changeset function to handle the address:

def changeset(user, params) do
user
|> cast(params, [:name, :age])
|> cast_embed(:address)
|> validate_number(:age, greater_than: 0,

message: "you are not yet born")
end

As we saw earlier, the cast function takes the user params and generates a
changeset for a %User{}. cast_embed is similar—it starts with the user changeset,
finds the params that belong to the :address schema, then creates a changeset
for %Address{} within the %User{} changeset.

Now we need to add the address inputs to our form. We’ll use the inputs_for/4
function to create a sub-form for the embedded address association:

report erratum • discuss

Creating a Form with an Association • 135

http://media.pragprog.com/titles/wmecto/code/priv/examples/phoenix_forms_03.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

<%= form_for @changeset, user_path(@conn, :create), fn f -> %>
Name: <%= text_input f, :name %> <%= error_tag f, :name %>
Age: <%= number_input f, :age %> <%= error_tag f, :age %>
<%= inputs_for f, :address, fn fa -> %>

Street: <%= text_input fa, :street %> <%= error_tag fa, :street %>
City: <%= text_input fa, :city %> <%= error_tag fa, :city %>

<% end %>
<%= submit "Submit" %>

<% end %>

inputs_for works a lot like form_for—it acts as a kind of wrapper around the
individual form inputs. But instead of passing in a changeset, we pass in the
parent form, plus the name of the association and an anonymous function
that contains the text_input function calls. There’s no visual indication to the
user that this sub-form is any different from the rest of the form, but code
makes it clear that we’re working with an associated schema.

Creating a Form with Multiple Associations
Let’s take this one step further. In the last example, we were working with a
single address via the embeds_one association. Let’s try adding support for
multiple addresses (embeds_many).

The process is similar to having just a single address. The inputs_for function
is smart enough to handle associations with one record or with many records;
it will always generate as many sub-forms as needed. So if, for example, we
had two addresses associated with the user record, inputs_for would create two
sub-forms, one for each address.

There’s just one problem: we don’t have a way for users to add a new address.

Think about how things work with just one address. When users first fill out
the form, the address fields are blank. When users complete the form success-
fully and come back to it later, the form fields contain the data they entered
before, and they can make edits if they wish. But with multiple addresses,
we have to consider two possibilities: editing an existing address and creating
a new one.

If we want to allow the user to add a new address, we have a few options. We
could send the user to a separate page with an empty address form, or we
could use JavaScript to add a form dynamically. But Phoenix has an even
simpler option for us: we can use the :prepend or :append options to add an
empty %Address{} to the list of associated addresses. Assuming we chose :append,
the code would look like this:

Chapter 8. Working with Changesets and Phoenix Forms • 136

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/phoenix_forms_03.exs
<%= inputs_for f, :address, append: [%Address{}], fn fa -> %>

Street: <%= text_input fa, :street %> <%= error_tag fa, :street %>
City: <%= text_input fa, :city %> <%= error_tag fa, :city %>

<% end %>

If we had two addresses already saved with our user record, this code would
display sub-forms for those two addresses; then, since we’re using the append:
option, it would add a sub-form for a new, empty address after the two other
addresses (if we used prepend: the new form would appear at the top). This
ensures that users will always have a blank form they can use to add a new
address.

Bear in mind that these options only take effect when the changeset has no
parameters—when rendering a form with validation errors, Phoenix will not
add the extra empty sub-form.

Wrapping Up
This covers the basics of working with Ecto and Phoenix forms. Forms are a
much bigger topic that we can really cover here, so if you’d like learn more,
we recommend checking out the documentation for the Phoenix.HTML.Form
package.2

For more information on working with embedded associations in Phoenix
forms, José Valim has an excellent blog post on the subject: “Working with
Ecto associations and embeds.”3

Finally, if you’d like to take deeper dive into Phoenix itself, we recommend
Programming Phoenix ≥ 1.4 [TV19] by Chris McCord, José Valim, and Bruce Tate.

2. https://hexdocs.pm/phoenix_html/Phoenix.HTML.Form.html
3. http://blog.plataformatec.com.br/2015/08/working-with-ecto-associations-and-embeds/

report erratum • discuss

Wrapping Up • 137

http://media.pragprog.com/titles/wmecto/code/priv/examples/phoenix_forms_03.exs
https://hexdocs.pm/phoenix_html/Phoenix.HTML.Form.html
http://blog.plataformatec.com.br/2015/08/working-with-ecto-associations-and-embeds/
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 9

Testing with Sandboxes
This chapter will show you how to turbo-charge your test suite with sandboxes.

Sandboxes allow you to run your database tests concurrently, while still
keeping the database state of each test isolated from the others. The secret
sauce underlying this feature is a special pool of database connections with
an ownership mechanism that allows you to control how connections are
used and shared between processes. Using the sandbox can significantly
reduce the time it takes to run your test suite, so you should take advantage
of this feature when you can.

We’ll walk through the basics of setting up sandboxes, and show you what
to do if your tests need connections shared across multiple processes. By the
end, your machine will be zipping through your test suite at top speed—you’ll
need to find another excuse to go get coffee.

Setting Up an Async Test
To use the sandbox, change your Repo configuration to use the sandbox pool.
We only want to do this when we’re in our test environment, so make the
following change in config/test.exs and only there:

priv/examples/sandboxes_01.exs
config :music_db, MusicDB.Repo,

pool: Ecto.Adapters.SQL.Sandbox
other settings here

By changing the pool: setting, we’re telling Ecto that we will not be using the
default connection pool and instead give the sandbox full control over how
connections are checked out and used by processes.

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/sandboxes_01.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Next, we need to set our sandbox to the correct ownership mode. We’ll cover
this setting in more detail later, but for now, add this line to test/test_helper.exs:

Ecto.Adapters.SQL.Sandbox.mode(MusicDB.Repo, :manual)

Now we’re ready to write our test case. Create a file called test/album_test.exs,
and add the following code:

defmodule MusicDB.AlbumTest do
use ExUnit.Case, async: true

setup do
:ok = Ecto.Adapters.SQL.Sandbox.checkout(MusicDB.Repo)

end

test "insert album" do
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
new_album = MusicDB.Repo.get!(MusicDB.Album, album.id)
assert new_album.title == "Giant Steps"

end
end

Notice that we set async: true on the first line of the test. This tells Elixir that
it’s safe to run this test concurrently with other tests.

We also added a setup block that calls the checkout function on the sandbox.
This is how we obtain the database connection that we’ll be using throughout
our test. We need to make this call because we set the ownership mode to
:manual in our test helper, but that’s not the case for all of the ownership
modes. Let’s take a look at the different ownership modes we can use.

Changing the Ownership Mode
The ownership mode affects the way the sandbox interacts with different
processes. You can use three different modes: :auto, :manual, and :shared.

With :auto the sandbox functions like a normal pool: each process gets its own
connection from the pool and has exclusive access to the connection while it
is checked out. And, like a normal pool, the connections are checked out
automatically when your code needs to run a database operation, and checked
back in when the operation completes. The connection is still in a sandboxed
transaction that is rolled back when the connection is checked in, but you
can’t be sure that you’ll get the same connection each time you access the
database. This means that there’s no guarantee that our calls to insert! and
get! in our test case will use the same connection; if they use different connec-
tions, the get! call will fail when it can’t find the album we inserted in the
other connection.

Chapter 9. Testing with Sandboxes • 140

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Use :auto when you don’t need to retain the state of your database throughout
your test case. For example, if you’re only making one database call in the
test, or the result of a database call isn’t dependent on the result of previous
database calls, :auto is a good choice. This will likely be rare, however.

In :manual mode, which we used in the previous example, the connection is
explicitly checked out in the setup block; and is not checked back in until the
test exits. In this mode we can be sure that we’re only using a single connec-
tion through our whole test. Any changes we make in one part of the test will
be available to all the other parts, and everything will get rolled back at the
end of the test.

Use :manual when you’re making multiple database calls in your test case, and
later calls are dependent on the result of earlier calls. It’s also important that
the database calls are run from the same Elixir process.

For tests that use multiple processes, Ecto has :shared mode. So far, our
examples have only used one process, but consider an example like this:

priv/examples/sandboxes_02.exs
test "insert album" do

task = Task.async(fn ->
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
album.id

end)

album_id = Task.await(task)
assert MusicDB.Repo.get(MusicDB.Album, album_id).title == "Giant Steps"

end

In this somewhat contrived example, we’re running a database operation in
a separate process using Task.async. If we tried to run this test in manual or
auto mode, it would crash with the error:

** (DBConnection.OwnershipError) cannot find ownership process
for #PID<0.165.0>.

This is because the process that’s trying to connect to the database (which
we initiated with Task.async) was not the process that checked out the connec-
tion. With manual or auto, only the process that checked out the connection
can use it.

We can work around this limitation with :shared mode. In this mode, the con-
nection is checked out explicitly like in manual mode but the connection is
available to all processes. So if you have a test that uses multiple processes,
shared mode allows a single checked-out connection to be used by all of them,
and you can be sure the database state is consistent throughout the test.

report erratum • discuss

Changing the Ownership Mode • 141

http://media.pragprog.com/titles/wmecto/code/priv/examples/sandboxes_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

When working with shared mode, the setup in test/album_test.exs is a little different:

setup do
:ok = Ecto.Adapters.SQL.Sandbox.checkout(MusicDB.Repo)
Ecto.Adapters.SQL.Sandbox.mode(MusicDB.Repo, {:shared, self()})

end

In addition to setting the mode as :shared, we need to provide the process that’s
checking out the connection, so we pass in self() along with :shared as a tuple.

This seems like a good solution, but it comes at a cost: tests that use shared
mode cannot be safely run concurrently. The connection is shared among all
processes, so any test running concurrently could pollute the database state
and cause other tests to fail. As a result, if you’re using shared mode, you need
to disable concurrency by removing async: true from use ExUnit.Case, async: true.

This is a reasonable trade-off if you don’t have a large test suite. It’s relatively
easy to set up shared mode and not running a few tests concurrently won’t
be a huge time hit. But if you have a large test suite and need to run much
of it in shared mode, this could be a significant setback. Fortunately, Ecto
provides us with a way out. In the next section, we’ll see how to get the best
of both worlds: connections shared between multiple processes, and fast,
concurrent tests.

Safely Sharing Connections with Allowances
To work around the limitations of shared mode, Ecto provides a mechanism
called allowances. This allows us to pick and choose which processes we
share our database connection with. We can keep a single database connection
for all processes needed for our test, and be sure that the database state is
isolated from any other tests running concurrently.

Let’s go back to the test we looked at in the last section:

priv/examples/sandboxes_03.exs
test "insert album" do

task = Task.async(fn ->
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
album.id

end)

album_id = Task.await(task)
assert MusicDB.Repo.get(MusicDB.Album, album_id).title == "Giant Steps"

end

As we mentioned earlier, running this test in manual or auto mode will cause
a crash, because the process in Task.async does not have access to the connection
checked out by the test process. We need to “allow” the task to use the test

Chapter 9. Testing with Sandboxes • 142

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/sandboxes_03.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

process as the ownership process. We can do that with Ecto.Adapters.SQL.Sand-
box.allow/4:

test "insert album" do
parent = self()
task = Task.async(fn ->

Ecto.Adapters.SQL.Sandbox.allow(MusicDB.Repo, parent, self())
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
album.id

end)

album_id = Task.await(task)
assert MusicDB.Repo.get(MusicDB.Album, album_id).title == "Giant Steps"

end

The call to allow ensures that the test and task processes share the same
connection.

It would also be possible to call allow/4 from the test process, rather than the
async process, but this would introduce a race condition: it’s possible that the
async process would call MusicDB.Repo.insert! before allow has finished executing.
To prevent this, we would have to synchronize the start of the async process
and the call to allow. The synchronization could look something like this:

test "insert album" do
task = Task.async(fn ->

receive do
:continue -> :ok

end
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
album.id

end)

Ecto.Adapters.SQL.Sandbox.allow(MusicDB.Repo, self(), task.pid)
send(task.pid, :continue)

album_id = Task.await(task)
assert MusicDB.Repo.get(MusicDB.Album, album_id).title == "Giant Steps"

end

That works, but it does introduce some complexity into the code, so you might
find it easier to call allow from within the collaborating process, as we did in
the first example.

As powerful as allowances are, it may not always be possible to use them:
your code may be structured such that it would be complicated to add them,
or you may be using third-party libraries that aren’t aware of the Ecto sand-
box. In those cases you can fall back to :shared mode, but remember to run
those tests synchronously by removing the :async option on use ExUnit.Case.

report erratum • discuss

Safely Sharing Connections with Allowances • 143

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Wrapping Up
Sandboxes are a powerful feature that can help keep your test suite running
at high speed. We covered the basics here, but it’s possible that you’ll run
into some concurrency hiccups, depending on the complexity of your app. If
you do run into issues, check out Ecto’s documentation for more details on
how to troubleshoot.1

1. https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.Sandbox.html

Chapter 9. Testing with Sandboxes • 144

report erratum • discuss

https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.Sandbox.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 10

Creating and Using Custom Types
In Chapter 3, Connecting Your Tables to Elixir Structs with Schemas, on page
41, we learned about the data types Ecto provides for creating schemas. Ecto
uses these data types to translate values expressed in Elixir code into values
that a database can store. A String value in Elixir, for example, becomes a
VARCHAR when stored in a MySQL table.

Most of the time, Ecto’s built-in data types will give you everything you need.
But there may be times when you want to use a data type that’s not directly
supported by Ecto. For these cases, Ecto provides a mechanism for defining
your own custom types. By implementing just a few functions, you can add
support for storing any data type in your database.

In this chapter, we’ll look at two different approaches for implementing custom
types. For the first approach, we’ll leverage one of the built-in types that Ecto
provides to create new types. For the second, we’ll go a little deeper and add
support for a data type that Ecto knows nothing about.

Building on Top of Ecto’s Types
When we talked about schemas, we had a table that showed how Ecto’s types
map to an Elixir type. If you use :string, for example, when defining a field,
Ecto treats the value as a String on the Elixir side, then uses whatever column
definition your database uses to store string values.

But if you think about it, a number of different kinds of data can be stored
as a string: a date, a UUID, a list of values, even a complex collection of data
in JSON. All of these can be stored as a string, but then parsed into a more
meaningful type when brought into Elixir. Our first look at creating custom
types handles this exact case: taking a value stored as a simple type in the
database, and turning it into a different type when it’s brought into Elixir.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Let’s say we’d like to add support for working with dates and times in the Unix
time format. We know that Ecto’s datetime type can store and retrieve timestamps
to and from the database, but, as of this writing, this type cannot handle the
Unix format. You can cast strings in ISO-8601 format (2017-11-05T20:49:41Z),
but if you tried to give it something like Date(1509914981) it wouldn’t work.

To make this work, we can create a custom type built on Ecto’s datetime type
and create a slightly smarter version. To add our custom type, we need to
create a module that implements the Ecto.Type behavior, which looks like this:

defmodule Ecto.Type do
@callback type() :: Ecto.Type.t()
@callback cast(term) :: {:ok, term} | {:error, keyword()} | :error
@callback load(term) :: {:ok, term} | :error
@callback dump(term) :: {:ok, term} | :error
@callback equal?(term, term) :: boolean

end

We’ll need to implement each of the first four functions to make our custom
date type work correctly (equal is optional). Let’s look at each one in detail.

First, let’s sketch out our new module, and add the type function:

defmodule MusicDB.DateTimeUnix do
@behaviour Ecto.Type

def type(), do: :datetime

end

The type function needs to return the data type we want to use to store our
custom value at the database level. This must be a type Ecto already supports.
In this case, we’re working with a timestamp, so we can use the :datetime type.

Next, we’ll look at dump and load. These two functions are responsible for convert-
ing values to and from the database and application layer. Specifically, dump
takes our Elixir value and converts it into a value that the database recognizes,
and load converts the raw value pulled from the database into our Elixir value.
Our DateTimeUnix type is just a friendly layer on top of Ecto’s existing datetime
type, so we can use some built-in Ecto functions to do this work for us:

defmodule MusicDB.DateTimeUnix do
@behaviour Ecto.Type

def type(), do: :datetime

def dump(term), do: Ecto.Type.dump(:datetime, term)

def load(term), do: Ecto.Type.load(:datetime, term)
end

Chapter 10. Creating and Using Custom Types • 146

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

If you look at the function signatures for dump and load, you can see that they
receive and return term(). This is a generic term used to indicate any valid
Elixir value.

Finally, we need to implement the cast function. Casting is when we take a
value from an external source (for example, user input) and convert it into a
format that Ecto can work with. You might remember the Ecto.Changeset.cast
function from Chapter 4, Making Changes with Changesets, on page 63—we
used this whenever we needed to create a new Changeset from a batch of raw
external data. This is where all that hard work is done: behind the scenes,
Ecto.Changeset.cast calls the cast function defined on each of Ecto’s data types to
perform the necessary type conversion. For our DateTimeUnix type, we’ll need
to implement cast so that it takes a string like Date(1509914981) and converts it
into a DateTime struct:

defmodule MusicDB.DateTimeUnix do
@behaviour Ecto.Type

def type(), do: :datetime

def dump(term), do: Ecto.Type.dump(:datetime, term)

def load(term), do: Ecto.Type.load(:datetime, term)

def cast("Date(" <> rest) do
with {unix, ")"} <- Integer.parse(rest),

{:ok, datetime} <- DateTime.from_unix(unix)
do
{:ok, datetime}

else
_ -> :error

end
end
def cast(%DateTime{} = datetime), do: {:ok, datetime}
def cast(_other), do: :error

end

We use pattern matching to look for a string that begins with “Date(” and
then try to extract out the integer value and parse it into a DateTime. If the
string doesn’t match that format, or we can’t pull out a valid integer, the
function returns :error.

Our implementation is now complete. We can start using it by adding it to
our schema definitions:

report erratum • discuss

Building on Top of Ecto’s Types • 147

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

defmodule MusicDB.Album do
use Ecto.Schema

schema "albums" do
field :last_viewed, MusicDB.DateTimeUnix
#...

end

end

In schemas we defined earlier, the second argument to field was always an
atom representing the Ecto type we wanted to use. When working with a
custom type, you instead provide the full name of the module that implements
your type.

Let’s look at another example. Say that we’re storing data related to releases
of software, and we’d like to track version numbers. Elixir has a built-in Version
module that works with strings that follow semantic versioning conventions.
You can give it a string like “2.1.2” and it can return things like the major
version, minor version, patch level, and so on.

If we implement a custom type, we can store our versions as strings in the
database, but have them appear as Version structs in our Elixir code.

We’ll follow the same process we used before: we’ll create a new module, then
start filling in the required functions one by one.

defmodule EctoVersion do
@behaviour Ecto.Type

end

The first step is to implement the type function, so we need to decide how we
want the version value to be stored (and remember that we need to use one
of Ecto’s built-in types). Versions can always be expressed as strings, so :string
seems to be sensible way to go:

defmodule EctoVersion do
@behaviour Ecto.Type

def type(), do: :string

end

Now we need to implement dump and load to make the conversion to and from
the Version struct. For dump we can use Elixir’s built-in to_string function to turn
the struct into a string. For load we can use a function provided by the Version
module itself to parse strings:

Chapter 10. Creating and Using Custom Types • 148

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

defmodule EctoVersion do
@behaviour Ecto.Type

def type(), do: :string

def dump(%Version{} = version), do: {:ok, to_string(version)}

def load(string), do: Version.parse(string)

end

And finally, we need to implement cast. We will only support casting versions
in string form, so we can use the same parse function we used in load, and
return an error if we’re given anything else:

defmodule EctoVersion do
@behaviour Ecto.Type

def type(), do: :string

def dump(%Version{} = version), do: {:ok, to_string(version)}
def dump(_), do: :error

def load(string) when is_binary(string), do: Version.parse(string)
def load(_), do: :error

def cast(string) when is_binary(string), do: Version.parse(string)
def cast(_other), do: :error

end

And with that, our new EctoVersion type is ready to use.

As you can see, this took very little code, but it helps make our application
code richer and more expressive than if we were just relying on the data types
provided by the database.

If you’re using a field like a string or a map that you’d like to have more
semantic meaning, consider implementing a few functions to have your own
custom type. It takes a small amount of work, but it can have a big impact
on the readability and usability of your code.

Adding Custom Types Without the Built-In Types
So far, the custom types we’ve created have been built on the types already
included in Ecto. By adding a layer on top of a built-in type, we can have
richer data types in our Elixir code than we’d have just using the standard
database types.

However, if you want to work with a data type that is not currently supported
in Ecto, you’ll need to go a little deeper and write your own driver extension.

report erratum • discuss

Adding Custom Types Without the Built-In Types • 149

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

To better understand how that might work, let’s take a closer look at how
data moves from your Elixir code to the database and back, as shown in this
figure:

Database

Driver

Adapter
Ecto

Your App

We start at the database, where the raw data is stored. Next, we have the
driver, which handles converting values from the database into Elixir. Drivers
are database-specific: there’s an Elixir driver for Postgres, another for MySQL,
and so on.

Then we get into Ecto itself. Ecto sits on top of the database drivers and
implements adapters for each of the database drivers. The adapters create a
uniform interface across the different databases. The API for postgrex (the
Postgres driver) is very different than the API for mariaex (the driver for MySQL
and MariaDB). Ecto’s adapters smooth over these differences, allowing your
application to use the same API, regardless of the database it’s using.

If we want to use a database type that’s not supported by Ecto, we’ll need to
drop down into the driver layer and add our customization there.

Extending database drivers is outside the scope of this book, as it would
require us to cover all the different drivers that Ecto can work with. But just
to give you a taste of what’s involved, we’ll create a small extension for Postgres
that handles time intervals. (Postgrex already supports this, but we’ll imple-
ment it anyway, as it’s relatively small in scope and demonstrates the basics
of creating an extension.)

Chapter 10. Creating and Using Custom Types • 150

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

When we implemented a custom type in the previous section, we created a
module that implemented a specific behavior (Ecto.Type). The process is similar
here. This time we need to implement the Postgrex.Extension behavior, and provide
implementations for five different functions. Our time interval extension looks
like this:

priv/examples/custom_types_02.exs
defmodule IntervalExtension do

@behaviour Postgrex.Extension

def init(_opts), do: nil

def matching(_state), do: [send: "interval_send"]

def format(_state), do: :binary

def encode(_state) do
quote do
{months, days, seconds} ->

microseconds = seconds * 1_000_000
<<16::32, microseconds::64, days::32, months::32>>

end
end

def decode(_state) do
quote do
<<16::32, microseconds::64, days :: int32, months :: int32>> ->

seconds = div(microseconds, 1_000_000)
{months, days, seconds}

end
end

end

The init function takes any options supplied by the user, and returns a state
value that will be passed to the other behavior functions when they’re called.
This value can be of any type—it’s only used within the extension module, so
the exact details are up to the implementer of the extension. Our IntervalExtension
doesn’t need any state data, so we can just return nil.

The matching function tells postgrex what type we want to use the extension
for. We can match directly on the type name by returning [type: "interval"] or we
can match on the function PostgreSQL uses for encoding a value for the wire
protocol with [send: "interval_send"]. It’s usually more convenient to match on the
function name, as PostgreSQL can have a generic encoder function for many
different types. As long as our extension is equivalent to PostgreSQL’s function
we can support multiple similar types with the same extension.

The format function specifies if we want to use binary or text format for our
extension. The binary format is usually more efficient and it can be used
inside super types, such as arrays and records. On the other hand, the text

report erratum • discuss

Adding Custom Types Without the Built-In Types • 151

http://media.pragprog.com/titles/wmecto/code/priv/examples/custom_types_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

format can be more flexible in the values it accepts, and is better documented
by PostgreSQL. Trade-offs exist with either approach, so you may have to
experiment to see which works better for you.

Finally we have the encode and decode functions. Unless you’re familiar with
Elixir meta-programming, our implementation may look a little odd. We’ve
wrapped the logic inside a quote block, which puts the code within the block
into a data structure, instead of executing the code immediately. This data
structure is called an Abstract Syntax Tree or AST for short. In effect, these
two functions do not actually encode and decode data directly, but rather
return an AST that can do the encoding or decoding when called.

The reason for this is so that the encoder and decoder logic for all of the
extensions in use can be injected into a single code block instead of being
spread out over multiple modules. When the code is in a single block it is
easier for the compiler to optimize it, since it can see all the code at once.
Fortunately you don’t have to know about meta-programming or compiler
optimization to implement an extension—you just need to return the logic as
an AST with the help of quote.

We’ll use the tuple {months, days, seconds} to represent PostgreSQL time intervals
in Elixir. For the encode/1 function we match on that exact tuple and then
create a binary in the same format that PostgreSQL does for its interval_send
function. The formats are not always well-documented, so you might need to
find the appropriate function in the PostgreSQL source code and see how it’s
implemented. For the decode/1 we do the reverse: we match on the binary format
and return our interval tuple.

To use the new extension, we need to define a new module with Postgrex.Types.define
and include the extension we want to use. You should put this code in its
own file, anywhere in your project:

Postgrex.Types.define(
MyApp.PostgrexTypes,
[IntervalExtension] ++ Ecto.Adapters.Postgres.extensions(),
json: Jason

)

Then add the types option to your Repo configuration, referencing the module
you created using define in the preceding snippet:

config :my_app, MyApp.Repo,
types: MyApp.PostgrexTypes,
#...

Now your IntervalExtension is set up and ready to use.

Chapter 10. Creating and Using Custom Types • 152

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

This was a very brief look at creating a driver extension, and it will only work
for PostgreSQL. For MySQL or any other database, you would have to create
separate implementations, which could look very different. But this will give
you an idea of what’s involved, so you can decide if it’s worth the effort.

Wrapping Up
Custom types can add an extra layer of expressiveness to your Ecto projects.
They allow you to use more complex types in your Elixir code than the simpler,
more universal types exposed by Ecto’s adapters. Building on an existing
Ecto type gives you many of these benefits with a small amount of code, so
it’s worth consideration as you’re planning out your projects.

To learn more, check out the documentation for the Ecto.Type module.1 You
might also want to explore the Hex repository2 to look at some custom types
that already exist.

1. https://hexdocs.pm/ecto/Ecto.Type.html
2. https://hex.pm/

report erratum • discuss

Wrapping Up • 153

https://hexdocs.pm/ecto/Ecto.Type.html
https://hex.pm/
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 11

Inserting and Updating with Upserts
Say that you wanted to front-load the genres table of your music database with
every musical genre you could think of. You might choose to create a CSV
file with all the data that you wanted to load, then write some code to parse
the file and insert the data into the database.

At first blush, this seems pretty straightforward. You’d just need load each
row of the CSV and call Repo.insert for each new record. But what if the script
crashed halfway through and you wanted to run it again? Or maybe it suc-
ceeded, but you later realize that your CSV has missing or incorrect data.

To handle those scenarios, you’d have to rewrite your code. Instead of calling
insert for every row in the CSV, you’d have to check the database first to see
if the data was already there. If it wasn’t, you’d do an insert like you did
before, but if it was, you’d want to update it with the possibly new data from
the CSV.

Thinking about it further, you realize that you’d have to wrap all that logic
in a transaction to avoid possible race conditions. Suddenly, this is not quite
as straightforward as it first seemed.

Fortunately, Ecto can do all of this heavy lifting for you through “upsert”
operations.

The term “upsert” is a mash-up of “update or insert” and refers to a single
operation that either updates an existing record with new data, or inserts a
new record if it doesn’t already exist. To do this, upserts rely on a column
with a unique index, either the primary key or some other value guaranteed
to be unique. When upserting a record, the system checks to see if a record
with a matching unique value exists. If it does, it updates the current record;
if not, it inserts a new one. This all happens atomically at the database level,
avoiding potential race conditions.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

In this chapter, we’ll learn how to use Ecto to perform upserts. We’ll work
without schemas at first, then later add schemas, and see how they change
the behavior.

Performing Upserts Without Schemas
To practice upserts, let’s return to the genres table. This table is fairly small
and has just two fields: name and wiki_tag. We can use the wiki_tag to create a
link to the Wikipedia article so the user can learn more about the genre.

When we set up the table in our music_db database, we added a unique index
on the name column. This ensures that we don’t accidentally set up two genres
with the same name—we wouldn’t want to create two records for “jazz,” for
example. We can use this unique index to help us with our upserts.

First, let’s use insert_all to create a new record for the “ska” genre:

priv/examples/upserts_01.exs
Repo.insert_all("genres", [[name: "ska", wiki_tag: "Ska_music"]])
=> {1, nil}

The 1 in the first part of the tuple tells us that one record was affected—that
means our insert worked. Now let’s see what happens if we try that same
operation again:

Repo.insert_all("genres", [[name: "ska", wiki_tag: "Ska_music"]])
=> ** (Postgrex.Error) ERROR 23505 (unique_violation): duplicate key
=> value violates unique constraint "genres_name_index"

It blows up. In this case, that’s good and it’s what we expect: our unique index
on name is preventing us from adding two different records with the name
“ska.” All good.

Now let’s try doing an upsert. We can trigger the upsert behavior by adding
the on_conflict option to insert_all. This option tells Ecto what it should do if it
finds a record with a conflicting unique value. The default value for this option
is :raise and we just saw that in action—Ecto raised an exception when we
tried to insert another “ska” record.

Another possible value is :nothing, which tells Ecto that it should just ignore
the conflict, and make no changes. Let’s try that out:

Repo.insert_all("genres", [[name: "ska", wiki_tag: "Ska_music"]],
on_conflict: :nothing)

=> {0, nil}

This time, we didn’t get an exception, and the 0 at the beginning of the tuple
tells us that no changes were made.

Chapter 11. Inserting and Updating with Upserts • 156

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/upserts_01.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Differences between PostgreSQL and MySQL

All of the examples in this section demonstrate the behavior of
PostgreSQL, but MySQL handles upserts differently, particularly
with regard to return values. You can find detailed descriptions
of the differences in Ecto’s documentation,1 so you might want to
review that if you’re using MySQL.

Now let’s see about making a change. It turns out that we got our wiki tag
wrong: it should be “Ska” rather than “Ska_music” so we want to edit our
existing record. We can use the :replace option to update the record with any
new values we provide. We set this option as a tuple, along with a list of the
columns we’d like to update. In this case, we just want to update the :wiki_tag
column:

Repo.insert_all("genres", [[name: "ska", wiki_tag: "Ska"]],
on_conflict: {:replace, [:wiki_tag]}, returning: [:wiki_tag])

#=> ** (ArgumentError) :conflict_target option is required
#=> when :on_conflict is replace

And we get an error—not what we were expecting. The problem is that when we
use the :replace option, Ecto wants us to be explicit and specify which column
we want to check for uniqueness. We can fix this by adding the :conflict_target
option:

Repo.insert_all("genres", [[name: "ska", wiki_tag: "Ska"]],
on_conflict: {:replace, [:wiki_tag]}, conflict_target: :name,
returning: [:wiki_tag])

=> {1, [%{wiki_tag: "Ska"}]}

That time, it worked, and we can see in our return value that our wiki_tag col-
umn was updated to the new value. Let’s try running this exact code again,
but with a new genre:

Repo.insert_all("genres", [[name: "ambient", wiki_tag: "Ambient_music"]],
on_conflict: {:replace, [:wiki_tag]}, conflict_target: :name,
returning: [:wiki_tag])

=> {1, [%{wiki_tag: "Ambient_music"}]}

We get the same behavior and a similar return value, but under the hood,
we’ve inserted a new record rather than updated an existing one.

This is the main benefit of upserts: they allow us to write code that’s indifferent
to whether we are inserting or updating. We leave it up to the database to
sort out.

1. https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert_all/3

report erratum • discuss

Performing Upserts Without Schemas • 157

https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert_all/3
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Another way to handle the update is to give on_conflict: a keyword list of update
instructions, using the same format that the update_all function uses. With
this approach, we could rewrite the previous example like this:

Repo.insert_all("genres", [[name: "ambient", wiki_tag: "Ambient_music"]],
on_conflict: [set: [wiki_tag: "Ambient_music"]],
conflict_target: :name, returning: [:wiki_tag])

on_conflict: will also accept an Ecto.Query struct. This is useful if you need some
extra logic to determine how you want records updated.

Performing Upserts with Schemas
Just like insert_all, the insert function supports the on_conflict option for performing
upserts. However, insert works with schema structs and the return value is
different, so we’ll have some extra considerations.

To illustrate this difference, let’s reset our database with mix ecto.reset then try
creating a new genre using the Genre struct:

priv/examples/upserts_02.exs
genre = %Genre{name: "funk", wiki_tag: "Funk"}
Repo.insert(genre)
#=> {:ok,
#=> %MusicDB.Genre{__meta__: #Ecto.Schema.Metadata<:loaded, "genres">,
#=> albums: #Ecto.Association.NotLoaded<association :albums is not loaded>,
#=> id: 3, inserted_at: ~N[2018-03-05 14:26:13], name: "funk",
#=> updated_at: ~N[2018-03-05 14:26:13], wiki_tag: "Funk"}}

Ecto successfully inserted the new record and returned :ok, along with our
new database record as a Genre struct. This is what we expect, but it’s quite
different than what insert_all gives us: a tuple containing the number of changed
records and any values we specified in the returning: option.

Now let’s use an upsert to change the wiki_tag. As before, we’ll use the on_conflict:
option to tell Ecto how to update the value. And because we are using
PostgreSQL, we’ll also use conflict_target: to specify which field contains the
unique index:

Repo.insert(genre, on_conflict: [set: [wiki_tag: "Funk_music"]],
conflict_target: :name)

#=> {:ok,
#=> %MusicDB.Genre{__meta__: #Ecto.Schema.Metadata<:loaded, "genres">,
#=> albums: #Ecto.Association.NotLoaded<association :albums is not loaded>,
#=> id: 3,inserted_at: ~N[2018-03-05 14:27:14], name: "funk",
#=> updated_at: ~N[2018-03-05 14:27:14], wiki_tag: "Funk"}}

Chapter 11. Inserting and Updating with Upserts • 158

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/upserts_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The result is surprising. Even though Ecto returned :ok it looks like our wiki_tag
value hasn’t changed. Moreover, the inserted_at and updated_at values have
changed, even though they weren’t included in our on_conflict: statement.

Let’s refetch the record from the database, so we can see exactly what happened:

Repo.get(Genre, 3)
#=> %MusicDB.Genre{__meta__: #Ecto.Schema.Metadata<:loaded, "genres">,
#=> albums: #Ecto.Association.NotLoaded<association :albums is not loaded>,
#=> id: 3,inserted_at: ~N[2018-03-05 14:26:13], name: "funk",
#=> updated_at: ~N[2018-03-05 14:26:13], wiki_tag: "Funk_music"}

This is more like what we were expecting: the wiki_tag value was in fact
updated, and the inserted_at and updated_at values were unchanged. The database
record was correct, but the return value of insert didn’t reflect that.

The reason for this seemingly odd behavior is that when we use the keyword
list form of on_conflict: Ecto does not reread the entire record after performing
an upsert. If there’s a mismatch between the values that we’re updating and
the values that we’ve asked Ecto to return, the returned struct may not accu-
rately reflect what’s in the database.

All is not lost, however. If you do want the struct to look exactly like the
database record, you have some options.

The simplest approach is to use :replace_all or :replace_all_except_primary_key for
on_conflict. These will cause all the values in the record to be replaced by the
values in the struct you provide, so you need to be certain your struct is set
up exactly the way you want (as the name suggests :replace_all_except_primary_key
replaces everything but the primary key). These options only work with
schemas, and, depending on your database, will most likely require conflict_target:

genre = %Genre{name: "funk", wiki_tag: "Funky_stuff"}
Repo.insert(genre, on_conflict: :replace_all_except_primary_key,

conflict_target: :name)
#=> {:ok,
#=> %MusicDB.Genre{
#=> __meta__: #Ecto.Schema.Metadata<:loaded, "genres">,
#=> albums: #Ecto.Association.NotLoaded<association :albums is not loaded>,
#=> id: 3, inserted_at: ~N[2018-03-05 23:01:28], name: "funk",
#=> updated_at: ~N[2018-03-05 23:01:28], wiki_tag: "Funky_stuff" }}

Here the return value shows our updated wiki_tag value without having to
refetch the record.

report erratum • discuss

Performing Upserts with Schemas • 159

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

If doing a replace_all on the values doesn’t work, you have a few other options
to ensure that the returned data matches what’s in the database:

1. Use the returning option to specify a list of the fields you would like to have
read back. You can also provide true rather than a list if you’d like all of
the fields read.

2. When defining your schema with the field function, you can add read_after_writes:
true for any fields you’d like read back. Note that this will affect every
operation, not just upserts.

3. You can fetch the record from the database using a separate query, as
we did in the preceding code.

If none of these options appeal, you might consider using insert_all rather than
insert to perform the upsert. As is always the case with Ecto, using schemas
may not be the most optimal approach for what you’re trying to do. If some-
thing feels overly complex, bear in mind there might be another way to do it.

Wrapping Up
Upserts are a great option when you have a data loading process, like
inserting the contents of CSV file, that you want to be safely repeatable.
However, your data source must have at least one column with a unique
index. Our genres table is ideal, as we have a unique index on the name column.
But if your only unique column is the primary key, upserts may not be the
right option—it would be unusual for the key to appear in a CSV file.

For more information on using upserts, see the docs for insert_all2 and insert.3

2. https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert_all/3
3. https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert/2

Chapter 11. Inserting and Updating with Upserts • 160

report erratum • discuss

https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert_all/3
https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert/2
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 12

Optimizing Your Application Design
Application design is a hotly debated topic. Spend a little time online and
you’ll find endless discussions on the subject, many ending in flame wars.
In this chapter, we’ll risk getting burned and offer some guidance based on
what we’ve learned building Elixir apps with Ecto over the last few years.

We’ll look at some the best practices that have emerged in the Elixir commu-
nity, and see how they apply directly to Ecto. We’ll cover separating pure code
from impure, organizing your applications into contexts, and navigating the
benefits and challenges of working with umbrella apps.

We’d like to stress that this is all subjective, and few, if any, universal rights
and wrongs apply to all projects. But we hope this will give you food for
thought, and guide you as you start to build out your own projects.

Separating the Pure from the Impure
A key functional programming principle is to write as much of your code as
possible as pure functions, and move the impure code with side effects to the
edges of your system. This is something that comes up often when working
with Ecto, as database operations are the very definition of impure.

Fortunately for us, Ecto’s implementation of the Repository Pattern supports
this goal. Changesets, queries, and multis are pure data structures that
describe impure actions against the database, but these actions don’t take
place until we run them through the functions provided by Repo. This creates
a clear distinction between code that has side effects and code that doesn’t.
If we’re just manipulating the data structures Ecto provides (for example,
building up a changeset), we can consider that code “pure.” But as soon as
the Repo is involved, the code is likely to have side effects and should be con-
sidered “impure.”

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

One benefit of this arrangement is that it helps us streamline our tests.
Consider the following test case, which verifies that our Album module generates
the correct changeset (we added a changeset function to the Album module back
in Creating New Records with Associations, on page 81—you’ll need to do
that for this test to work, if you haven’t already):

test/music_db/album_test.exs
test "valid changeset" do

params = %{"title" => "Dark Side of the Moon"}
changeset = Album.changeset(%Album{}, params)
album = Repo.insert!(changeset)
assert album.title == "Dark Side of the Moon"

end

This test expects that if we call the Album.changeset function with a map contain-
ing an album title, it will generate a changeset that inserts an album into the
database. We verify that by inserting the record and making sure it has the
title we expect.

There’s nothing particularly wrong with this test, but it’s doing more than it
needs to. The purpose of the test is to make sure that our code generates the
right changeset, but by calling Repo.insert! we’re not just testing our function:
we’re testing Ecto’s ability to convert our changeset into a database operation.
Ecto has pretty good test coverage on its own, so maybe we don’t need to
duplicate that layer of testing, particularly when database calls are as time-
consuming as they are.

We can eliminate the database call by rewriting the test to focus just on our
changeset:

test/music_db/album_test.exs
test "valid changeset without insert" do

params = %{"title" => "Dark Side of the Moon"}
changeset = Album.changeset(%Album{}, params)
album = Ecto.Changeset.apply_changes(changeset)
assert album.title == "Dark Side of the Moon"

end

The only difference here is that instead of calling Repo.insert! we call Ecto.Change-
set.apply_changes. This function takes the changes contained in the changeset
and applies them directly to the underlying schema struct. We can then
examine the returned struct to make sure that it contains the changes we
expect.

This a small adjustment but it’s a significant one. By eliminating the call to
Repo we’re keeping the test focused on our own code, and avoiding an expensive

Chapter 12. Optimizing Your Application Design • 162

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/test/music_db/album_test.exs
http://media.pragprog.com/titles/wmecto/code/test/music_db/album_test.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

round-trip to the database. This can significantly reduce the amount of time
it takes to run your test suite, particularly as your codebase starts to grow.

Another benefit of Ecto’s separation of pure and impure operations is that it
helps with code organization.

As a general rule, we recommend putting the pure functions that manipulate
queries, changesets, and multis into their associated schema modules. For
example, functions that generate changesets for Album structs would go into
the module where we define the Album schema. That seems straightforward
enough, but it leaves the question of where the impure code should go. For-
tunately, recent developments in the Elixir and Phoenix communities have
given us a path forward: context modules.

Working with Contexts
Phoenix 1.3 introduced the idea of contexts to the Elixir community. The
Phoenix team was inspired by the concept of “bounded contexts” as described
by Eric Evans in his book Domain-Driven Design. This pattern suggested a
new way of structuring applications, and the team updated Phoenix’s gener-
ators so that contexts became the default behavior.

With contexts, we can group related functionality. A context consists of a
single main module, usually referred to as the context module, and, optionally,
a directory with more modules that help implement the functionality of the
context. A context may have many modules or just one, but in either case,
the context module contains the external interface of the context.

This is not a new pattern, and it’s not unique to Phoenix applications. In fact,
the Ecto library itself uses contexts. For example, the Ecto.Query module is the
external interface for building and manipulating queries. Several other internal
modules are under the same namespace (Ecto.Query.Builder, Ecto.Query.Planner, and
others), but you generally don’t work with those modules directly. Ecto.Query
contains the API that you call, and the other modules provide support to
make that API work.

Organizing Your Code with Ecto and Contexts
For our own apps that use Ecto, contexts help us divide the pure code from
the impure. We recommend putting all impure code (that is, code that uses
Repo) into the context module, and putting the pure code (manipulations of
changesets, queries, and the like) into schema modules that live in the con-
text’s namespace.

report erratum • discuss

Working with Contexts • 163

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Let’s look at how we might start implementing a Music context for our MusicDb app:

priv/examples/appdesign_01.exs
lib/music_db/music.ex
defmodule MusicDB.Music do

alias MusicDB.Music.{Repo, Album, Artist}

def get_artist(name) do
MusicDB.Repo.get_by(Artist, name: name)

end

def all_albums_by_artist(artist) do
Ecto.assoc(artist, :albums)
|> MusicDB.Repo.all()

end

def search_albums(string) do
string
|> Album.search()
|> MusicDB.Repo.all()

end
end

We’ve created a top-level context module called MusicDb.Music and provided a
few functions we think we might need: get_artist, all_albums_by_artist, and so on.
We then move the schema modules (in this case, Album and Artist) into the
MusicDb.Music namespace, and add any supporting functions needed by the
context module:

priv/examples/appdesign_01.exs
lib/music_db/music/artist.ex
defmodule MusicDB.Music.Artist do

use Ecto.Schema

schema "artists" do
field :name, :string
has_many :albums, MusicDB.Music.Album

end
end

lib/music_db/music/album.ex
defmodule MusicDB.Music.Album do

use Ecto.Schema
import Ecto.Query
alias MusicDB.Music.{Album, Artist}

schema "albums" do
field :title, :string
belongs_to :artist, Artist

end

Chapter 12. Optimizing Your Application Design • 164

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/appdesign_01.exs
http://media.pragprog.com/titles/wmecto/code/priv/examples/appdesign_01.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

def search(string) do
from album in Album,

where: ilike(album.title, ^"%#{string}%")
end

end

This helps us in two ways. First, it gives us a clear and consistent method
for separating pure code from impure—we always know which parts of our
code hit the database and which don’t. Second, it allows clients of our context
(that is, other parts of our code) to be agnostic about how our data is stored.
We could swap out Ecto for some other data access library and the rest of
our code would still work. Provided our API delivers as advertised, the rest of
the codebase doesn’t need to know how we’re storing the data.

Best Practices for Contexts
Contexts can go a long way toward making your codebase easier to work with,
but a few general guidelines can help maximize their benefit.

As much as possible, treat the context module as the external API of the
context, and consider the supporting modules private. You have, of course,
no way to enforce this, and it’s likely that the context will return structs
defined in the supporting modules (especially if your context contains Ecto
schemas). But from outside of the context, we should try to call the functions
on the context module exclusively, and leave the other modules alone.

Contexts are a grouping mechanism so we should not put all our modules
into the same context unless our application is very small. Say we decided
to extend our MusicDb application to include a forum where users could
comment on albums they like (or don’t). In that case, we would add new
contexts to support these features. The forum logic with Post and Comment
schemas could go into a Forum context, and the user account logic with User
and authentication code could go into an Accounts context. Anytime you start
adding new modules to your codebase, you should consider whether it might
be time to add a new context.

We all know that naming things is hard, and it’s the same for contexts. If you
are unable to find a good name for your context, you can try taking the most
prominent module in the context and pluralizing it. As an example, the main
module in an Accounts context would probably be the User module, so we could
also name the context Users.

Contexts are supposed to group related concerns into distinct sections of
your application, but you will inevitably get dependencies between the contexts
you have defined, where modules reference each other. This is a particular

report erratum • discuss

Working with Contexts • 165

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

concern as we start adding associations between our schemas. Cross-context
dependencies indicate that the contexts are coupled, which we want to avoid
as much as possible. If you have a high number of dependencies across
contexts, it may suggest that your contexts have the wrong boundaries.

It can sometimes be hard to know which context a module belongs to. We try
to keep our contexts small, so if you are creating a new module and don’t
find a context where it fits, you should probably create a new context for it.
You may not get it exactly right the first time, and when your application
grows, the contexts may not fit as well as they used to. As with all software, it
is an ongoing effort to refactor your code as the app evolves, so you will likely
need to restructure your contexts to make sure they follow these principles.

Working with Umbrella Applications
Contexts can help you determine how to break your app into more manageable
parts. But as your app continues to grow, you may find that you want a
greater degree of separation between the components. This can happen if
individual contexts start to grow too large, or if you just want to be able to
deploy different parts of your app separately.

Umbrellas allow you to easily group multiple applications into the same mix
project and source code repository. Instead of bundling all of our code into a
single application, we can split it up into multiple applications. Elixir’s mix new
and Phoenix’s mix phx.new generators support creating umbrella projects by
passing the --umbrella flag.

Understanding Umbrellas
An umbrella project consists of a top-level mix project (usually called the
umbrella project) and several sub-projects inside the apps/ directory (usually
called child applications).

What’s in a Name?

When working with Elixir and OTP, terminology can get a little
confusing, particularly with the words “project” and “application.”
In this case, a “project” is something we use to configure and
organize the app we’re building, and “application” is an OTP
application. You can find out more about these terms in the Elixir
guides.1

1. https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html

Chapter 12. Optimizing Your Application Design • 166

report erratum • discuss

https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The umbrella project is what we use to configure and organize our application,
through the mix.exs and config/ files. All of the logic and code that makes the
app work reside in the child applications.

Usually a mix project is also an OTP application, but that’s not the case for
the top-level umbrella project—only projects inside the apps/ directory are
actual OTP applications. This means the umbrella project should only be
used for configuring the other applications, and no application code should
live inside it.

One way to use umbrellas is to split the front-end and back-end logic into
separate applications:

music_umbrella/ (Mix project)
- mix.exs
- ...
- apps/

- music/ (Mix project / OTP application)
- mix.exs
- ...

- music_web/ (Mix project / OTP application)
- mix.exs
- ...

Since the front-end application music_web depends on the back-end application
music, we declare it as a dependency inside apps/music_web/mix.exs:

priv/examples/appdesign_02.exs
def deps() do

[{:music, in_umbrella: true}]
end

This also has the nice effect that if we add more front ends to our application,
for example RPC over a non-web protocol, we can keep them completely sep-
arate in different applications.

Most tooling around Mix understands umbrellas, which makes them easy to
use when building releases and deploying code. You can tell your release
builder to include only specific applications in your umbrella, so you could
deploy your different front ends separately.

Considerations When Working with Ecto
Switching from a single OTP application to an umbrella can be a life-saver as
your app starts to grow and becomes harder to manage. But it does come at
the cost of some added complexity, and you’ll have to give some thought to
the dependencies between applications.

report erratum • discuss

Working with Umbrella Applications • 167

http://media.pragprog.com/titles/wmecto/code/priv/examples/appdesign_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

In the last section, we talked about adding Accounts and Forums contexts to our
app. Let’s imagine that those contexts got large enough that we decided to
split them out into their own applications.

One of the first things we’d run into is that they both need access to the Repo.
When they were contexts within the same application, the MusicDb.Repo module
was easy enough to share, but that won’t be the case when they’re in separate
applications.

We can fix this by moving the MusicDb.Repo module into its own music_repo
application that the other applications will access as a dependency. This
change will let us keep the repository configuration in a single place, making
it easier to update if we need to. It also means that we’ll have a single pool of
connections that the other applications will share, which will reduce our
resource usage.

With this change, our umbrella will have the following applications:

music_umbrella/
- apps/

- music_repo/
- music_accounts/
- music_forum/
- music/
- music_web/

Let’s think about the relationship between music_accounts and music_forum. The
forum application will have to depend on the accounts application because
you need an account to post on the forum. But accounts should not depend
on a forum because you don’t need the forum for account tasks such as
authentication. You can’t have cyclic dependencies between applications, so
you can strictly enforce the unidirectional relationship between forums and
accounts.

With that in mind, our dependency tree would look something like this
diagram:

music_web music

music_accounts

music_forum

music_repo

Chapter 12. Optimizing Your Application Design • 168

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

This will work, but it introduces a snag. Let’s consider the following schema
definitions:

priv/examples/appdesign_02.exs
defmodule Forum.Post do

use Ecto.Schema

schema "posts" do
belongs_to :user, Accounts.User

end
end

defmodule Accounts.User do
use Ecto.Schema

schema "user" do
This is not allowed due to the one-directional relationship
has_many :posts, Forum.Post

end
end

It seems natural to create a has-many/belongs-to relationship between users
and posts. And if we defined these two schemas within the same application,
that’s exactly what we’d do. But we’ve split them out, and in our new
arrangement, the User schema can’t access the Post schema.

This doesn’t have to be a dealbreaker, however. Remember that creating
associations in schemas merely provides us with some conveniences, but we
have other ways to accomplish similar tasks. For example, one thing we can’t
do without the has_many association is use assoc(user, :posts) to get all of the posts
for a particular user. But with a few more lines of code, we can create the same
functionality by implementing it on the Post side, rather than the User side:

priv/examples/appdesign_02.exs
defmodule Forum.Post do

use Ecto.Schema
import Ecto.Query

...

def from_user(user_or_users) do
assoc() can take a single schema or a list - we'll do the same
user_ids = user_or_users |> List.wrap() |> Enum.map(& &1.id)
from p in Post,

where: p.user_id in ^user_ids
end

end

report erratum • discuss

Working with Umbrella Applications • 169

http://media.pragprog.com/titles/wmecto/code/priv/examples/appdesign_02.exs
http://media.pragprog.com/titles/wmecto/code/priv/examples/appdesign_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

This is a workaround, and it’s perhaps not intuitive if you’re used to the
convenience of using assoc. As of this writing, Ecto does not have much support
for working with umbrellas, and the community is still working out what
some best practices might be. Future versions of Ecto may address some of
these challenges more directly. In the meantime, remember that Ecto is flex-
ible and there’s often more than one way to do things. You should feel free
to experiment, and share what you find with the community.

Wrapping Up
Application design is a big topic, and we’ve really just scratched the surface
here. But we hope we’ve given you some ideas that will help inform the
choices you make as your projects evolve over time.

We recommend following the functional programming principle of separating
pure code from impure; for Ecto, that means keeping code that touches Repo
separate from code that doesn’t. Working with contexts can help, as you can
put the code that uses Repo into the context module, and put the schema
definitions into separate modules in the same namespace. If you’re using
umbrellas, we recommend putting your Repo module into a separate child
application that can be shared by its siblings.

If you’d like to learn more about contexts, the official Phoenix guide has a lot
of good information.2

For more details about umbrellas, check out the documentation on the official
Elixir site.3

2. https://hexdocs.pm/phoenix/contexts.html
3. https://elixir-lang.org/getting-started/mix-otp/dependencies-and-umbrella-projects.html

Chapter 12. Optimizing Your Application Design • 170

report erratum • discuss

https://hexdocs.pm/phoenix/contexts.html
https://elixir-lang.org/getting-started/mix-otp/dependencies-and-umbrella-projects.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 13

Working with Embedded Schemas
Embedded schemas are an alternative to using associations. Unlike regular
associations, embedded schemas are stored on the same record as the parent
schema, rather than a separate table. They are “embedded” in the parent schema.

Choosing embedded schemas (or “embeds”) over associations has advantages
in some use cases, but working with them is a little different. In this chapter,
we’ll go over how to create and manage embeds, and we’ll discuss why you
might (or might not) want to use them.

Please note that the examples in this chapter will not work with MySQL. At
the database level, we’ll be using the array column type to store embedded
“has many” relationships, and as of this writing, MySQL does not support
arrays without jumping through a few extra hoops. To keep the examples
clearer, we’re taking an approach that only works with Postgres.

Creating Embedded Schemas
To try out embeds, we’re going to veer slightly from the data model we’ve been
working with so far. We’re going to create a new Album schema. This one will
use embeds, rather than associations, to handle the child records for Artist
and Track. The relationships will still be the same (that is, albums will have
have one artist, and have many tracks) but we’ll model these relationships
using embeds.

To keep this approach distinct in our codebase, we’ll create new schemas
with different names. Let’s start with tracks.

You define embeds similarly to normal schemas, but you don’t provide a name
for the source table, since they belong to no particular table:

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

lib/music_db/track_embed.ex
defmodule MusicDB.TrackEmbed do

import Ecto.Changeset
use Ecto.Schema

embedded_schema do
field(:title, :string)
field(:duration, :integer)

end
end

The other difference is that the default type for the primary key is binary_id
instead of id. binary_id’s are represented by an automatically generated UUID,
rather than auto-incrementing integers. This is because auto-incrementing
integers can only be declared on the column level, not for data inside a column.

Let’s also create an embed for artist records:

lib/music_db/artist_embed.ex
defmodule MusicDB.ArtistEmbed do

import Ecto.Changeset
use Ecto.Schema

embedded_schema do
field(:name)

end
end

In most respects, declaring an embed is not much different from a regular
schema. Calling embedded_schema instead of schema is the key difference.

Adding Embeds to Another Schema
Now let’s set up the album schema that will use these embeds. This will be
a regular schema, similar to what we’ve worked with earlier. We’ll need a new
database table to go with it, as we’re storing our child records with embeds
rather than associations.

Here’s what our new migration looks like:

priv/repo/migrations/20180516132926_add_albums_with_embeds.exs
def change do

create table("albums_with_embeds") do
add(:title, :string)
add(:artist, :jsonb)
add(:tracks, {:array, :jsonb}, default: [])

end
end

Chapter 13. Working with Embedded Schemas • 172

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/lib/music_db/track_embed.ex
http://media.pragprog.com/titles/wmecto/code/lib/music_db/artist_embed.ex
http://media.pragprog.com/titles/wmecto/code/priv/repo/migrations/20180516132926_add_albums_with_embeds.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The Ecto types for embeds are :map (for has-one relationships) and {:array, :map}
(for has-many). At the database level, we use json (or possibly jsonb for PostgreSQL)
when storing maps, so that’s the type we specified in our migration.

Since we’re using JSON for the backing storage, all values in an embedded
schema must be able to encode and decode to and from JSON. This works
out of the box for all of Ecto’s built-in types, but you’ll need to double-check
this if you’re using any custom Ecto types (we talk about custom types in
Chapter 10, Creating and Using Custom Types, on page 145).

You may have noticed that we set the default for tracks to "[]". This is so that
even if we have no tracks when creating the album, we will store an empty
list. Ecto will translate NULL values to an empty list to keep the behavior the
same as has_many, but we still recommend keeping the database and application
data as close as possible, so we use a default.

Now we can set up the schema for our new table:

lib/music_db/album_with_embeds.ex
defmodule MusicDB.AlbumWithEmbeds do

use Ecto.Schema
alias MusicDB.{ArtistEmbed, TrackEmbed}

schema "albums_with_embeds" do
field :title, :string
embeds_one :artist, ArtistEmbed, on_replace: :update
embeds_many :tracks, TrackEmbed, on_replace: :delete

end

end

To add embeds to another schema you use embeds_one/3 or embeds_many/3.
embeds_one is the counterpart to has_one for associations, as is embeds_many to
has_many. There is no equivalent function for belongs_to. Because embeds reside
in the same database records as their parent, we don’t use the foreign keys
that are a critical component of belongs_to.

Interestingly, you can put embeds inside other embeds; if we changed schema
"albums" to embedded_schema in the preceding example it would work just as well.

The seed data for the MusicDB app includes one AlbumWithEmbeds record. We
can fetch that record and see what we get back:

priv/examples/embedded_schemas_02.exs
Repo.get_by(AlbumWithEmbeds, title: "Moanin'")
#=> %MusicDB.AlbumWithEmbeds{
#=> __meta__: #Ecto.Schema.Metadata<:loaded, "albums_with_embeds">,

report erratum • discuss

Adding Embeds to Another Schema • 173

http://media.pragprog.com/titles/wmecto/code/lib/music_db/album_with_embeds.ex
http://media.pragprog.com/titles/wmecto/code/priv/examples/embedded_schemas_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

#=> artist: %MusicDB.ArtistEmbed{
#=> id: "cab33f94-ecfb-461e-83a8-5ace0e02b9ca",
#=> name: "Art Blakey"
#=> },
#=> id: 1,
#=> title: "Moanin'",
#=> tracks: [
#=> %MusicDB.TrackEmbed{
#=> duration: 575,
#=> id: "7a8ae464-68fc-4320-a1a1-f555b3be74ba",
#=> title: "Moanin'"
#=> },
#=> %MusicDB.TrackEmbed{
#=> duration: 290,
#=> id: "551a4623-a1eb-4bbc-9d30-024e3fce10e2",
#=> title: "Are You Real"
#=> },
#=> ...

We have truncated the output a bit, but also notice that we got the embedded
ArtistEmbed and TrackEmbed records without having to call preload. The database
stores the parent and child records in the same row, so fetching the parent
record pulls them all in at once.

Making Changes
Now let’s look at making some changes to our embedded records. Because
the data is embedded in the parent record, it’s tempting to think that you
can simply manipulate the records the same as the other fields in the schema.
But this is not the case. You must always use changesets when working with
embeds, and work with the specialized functions that Ecto provides: put_embed/4
and cast_embed/3. In the database, the child records are stored in a column,
but in our Elixir code, it’s more accurate to think of embeds like associations.

put_embed/4 and cast_embed/3 work just like their counterparts put_assoc/4 and
cast_assoc/3 so we need to give some thought to the :on_replace option when setting
up our embeds. The values available for :on_replace are :raise (the default),
:mark_as_invalid, :update, :delete. These work the same way as they do in associa-
tions, so you can flip back to Associations Using Internal Data, on page 77 if
you need a refresher.

Working with put_embed
Just like put_assoc, put_embed is the best choice when working with internal
data. put_embed accepts a struct for the embedded schema, a keyword list,
map, or changeset. Let’s look at an example of that:

Chapter 13. Working with Embedded Schemas • 174

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

priv/examples/embedded_schemas_03.exs
album = Repo.get_by(AlbumWithEmbeds, title: "Moanin'")
changeset = change(album)
changeset = put_embed(changeset, :artist, %{name: "Arthur Blakey"})
changeset = put_embed(changeset, :tracks,

[%TrackEmbed{title: "Moanin'"}])

We said earlier that only changesets can be used to update embeds. This is
still true even though we’re passing maps and structs. Let’s run part of the
last example again, and look carefully at the return value:

album = Repo.get_by(AlbumWithEmbeds, title: "Moanin'")
changeset = change(album)
changeset = put_embed(changeset, :artist, %{name: "Arthur Blakey"})
#=> #Ecto.Changeset<
#=> action: nil,
#=> changes: %{
#=> artist: #Ecto.Changeset<
#=> action: :insert,
#=> changes: %{name: "Arthur Blakey"},
#=> errors: [],
#=> data: #MusicDB.ArtistEmbed<>,
#=> valid?: true
#=> >
#=> },
#=> errors: [],
#=> data: #MusicDB.AlbumWithEmbeds<>,
#=> valid?: true
#=> >

If you look at the artist value under changes, you’ll see that Ecto has converted
our map into a changeset.

Working with cast_embed
cast_embed, similar to cast_assoc, works on the basis that the changes to the
embed are stored in the params of the parent record’s changeset. This is
useful when you don’t want to separately build a changeset and use put_embed
to put it on the parent changeset. The cast_embed function accepts the same
options as cast_assoc and they work the same way:

priv/examples/embedded_schemas_04.exs
album = Repo.get_by(AlbumWithEmbeds, title: "Moanin'")
params = %{

"artist" => %{"name" => "Arthur Blakey"},
"tracks" => [%{"title" => "Moanin'"}]

}

report erratum • discuss

Making Changes • 175

http://media.pragprog.com/titles/wmecto/code/priv/examples/embedded_schemas_03.exs
http://media.pragprog.com/titles/wmecto/code/priv/examples/embedded_schemas_04.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

changeset = cast(album, params, [])
changeset = cast_embed(changeset, :artist)
changeset = cast_embed(changeset, :tracks)

As you may recall from Creating New Records with Associations, on page 81,
we had to add a changeset/2 function to the schema modules we were casting
into associations. The same goes for embeds. If you look in artist_embed.ex and
track_embed.ex you’ll see that we added rudimentary changeset functions so that
this example would run. Just as with associations, Ecto looks to your code
to find out how to cast params from external sources into schema structs.

Considerations When Skipping Primary Keys
By default, embedded_schema will add a primary key to your embed. This is
useful when you want to update or remove individual items from an
embeds_many association, as you have a reliable id to distinguish the records
in the collection. Primary keys are optional, however, and you don’t have to
use them if you don’t want to, but a few caveats exist that you should bear
in mind.

When using embeds_many, :on_replace must be set to :delete if the embedded
schema has no primary key and you wish to update the list of embeds. This
is because Ecto uses the primary key to track which embeds in the list are
being updated in place, or if they are being replaced by new records.

Similarly for embeds_one, if there is no primary key you have to decide if the
record should be updated or replaced, by setting the value to :update or :delete,
respectively. Again, this is because Ecto needs the primary key to track if the
embed is being updated or replaced.

Because of these peculiarities, the Ecto teams recommends always using a
primary key—this is Ecto’s default behavior.

Choosing Between Embedded Schemas and Associations
Embedded schemas have some advantages over associations. Since the child
records are stored with the parent, you don’t have to use joins or Repo.preload
to fetch them. This can help with performance, because you can avoid extra
round-trips to the database. It also means the data is stored closely together
on disk and in memory, reducing expensive disk seeks and increasing caching
efficiency.

Another consideration is that with schemas, every time you make changes
you also have to create an accompanying migration. Embeds use unstructured

Chapter 13. Working with Embedded Schemas • 176

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

JSON, so you only need to change your schema definition and leave the
database alone. This is more flexible and can lead to more efficient iteration.

But embeds do not replace associations, and they can’t do some things.
Because they are stored in a single column, you can’t do partial updates on
a field-by-field by basis on the embedded schema. Ecto supports field-level
changes within changesets, but under the hood, the whole schema needs to
be sent to the database even if you are only updating a single field. Addition-
ally, embeds don’t use foreign keys, which means you lose the referential
integrity that databases provide with foreign keys.

You may be wondering when you should use embeds—that’s a good question
and there isn’t one definitive answer. In general, you should use embeds when
you have unstructured data, or a structure that changes often enough that
you don’t want to use migrations. Embeds are also a good option when you
have an association that is always or almost always fetched together with the
parent schema, or when the association is small enough that it’s not worth
storing it separately.

Another use case for embedded_schema is when you’re working with schemas
that aren’t backed by a database table. We’ll be exploring that option in detail
in Chapter 16, Using Schemas Without Tables, on page 193.

Wrapping Up
Ecto provides excellent support for working with embeds—the trick is knowing
when and when not to use them. This is something that will become clear as
you gain more experience working with Ecto and schemas in general. And
thankfully, the APIs for embeds and associations are similar enough that
changing your mind won’t require a substantial rewrite.

For more information on working with embeds, see the docs for Ecto.Schema.1

1. https://hexdocs.pm/ecto/Ecto.Schema.html#embeds_one/3

report erratum • discuss

Wrapping Up • 177

https://hexdocs.pm/ecto/Ecto.Schema.html#embeds_one/3
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 14

Creating Polymorphic Associations
Let’s say we wanted to add a new feature to our MusicDB app that would
allow us to add notes to our album records. These notes could be anything
like metadata about the album (producer, engineer, and so on), or maybe
even our own personal comments.

Our first instinct might be to add a “notes” column to the albums table. But after
some consideration, we realize that we’d like to allow each record to have multiple
notes, perhaps written by different users. So instead of just adding a column,
we decide to create a new notes table, and create a has_many/belongs_to relationship
between albums and notes. So far, so good.

But as we think a little further, we realize that we’d like to add notes not just
to albums but to artists and tracks as well. So we want to keep our notes table, but
we want to be able create associations with more than one table.

This is a case for polymorphic associations. This is a special type of association
that allows a single record type to have a “belongs to” relationship with more
than one type of record. Unlike some database frameworks, Ecto doesn’t have
a specific mechanism for managing polymorphic associations, but using some
of the tools we’ve already learned about, we can implement the notes feature
we’d like to add.

In this chapter we’ll look at traditional approaches to polymorphism, and
discuss why Ecto doesn’t follow them. We’ll then outline three different
approaches for implementing polymorphism in Ecto, exploring the advantages
and disadvantages of each.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Polymorphism in Other Frameworks
Some frameworks, notably ActiveRecord and Laravel, have a built-in conven-
tion to support polymorphic relationships. Here’s how we might follow that
convention with our notes feature.

Say that our notes table started with just these two columns:

TypeField

textnotes

stringauthor

To support polymorphism, we would add two more columns that would indi-
cate the table name and ID of the record we want to attach the note to. When
naming these columns, the convention is to use an adjective that’s descriptive
of the relationship, then add _type for the column that holds the table name,
and _id for the ID. In our case, it might look like this:

TypeField

textnotes

stringauthor

stringnotable_type

idnotable_id

With this in place, we could add a note to the album “Kind Of Blue” (which
has the ID 1), by adding this record to the notes table:

ValueField

“Love this album!”notes

“darin”author

“albums”notable_type

1notable_id

The frameworks that support this convention allow you to define the “has-
many” relationship as polymorphic, and they automatically combine the
notable_type and notable_id values to load the correct record when needed.

As convenient as this arrangement may appear, it’s not one that Ecto supports,
and for good reasons.

Chapter 14. Creating Polymorphic Associations • 180

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

First, this type of polymorphism breaks foreign key integrity constraints.
Storing the table name and ID as separate database columns is not compatible
with how databases manage foreign keys. In our case, our notable_id is not a
true foreign key—it’s just a value in a column. This means that we lose the
database’s built-in integrity checks, making it harder to keep our data correct.

Second, performance suffers. Looking up records with polymorphic associa-
tions is much less efficient than with regular associations. You may not notice
it at first, but as your database grows, you may well run into performance
problems that can be difficult to resolve without substantial rewriting.

The Ecto team members had been burned by these issues enough times that
they elected not to build this type of polymorphism into Ecto. However, it’s
still possible to create polymorphic associations in Ecto; and the good news
is you’ve already learned most of the tools to help you do it.

In the rest of this chapter, we’ll look at three different approaches for imple-
menting polymorphism, and consider the advantages and disadvantages of
each. With this information in hand, you’ll be able to evaluate which of these
approaches might work best for your needs.

Approach #1: Multiple Foreign Keys
Before we dive into this approach, let’s remind ourselves of the task at hand.
We want to able to add notes to any artist, album, or track. Each of those
records needs to be able to have any number of notes by any number of
authors, which is why we elected to store the notes in a separate table, rather
than add a notes column to each of the three tables.

One way to achieve this is to have a single notes table, then add separate foreign
key columns for each of the tables we want to attach notes to. Our migration
would look something like this:

priv/repo/migrations/20180620125250_add_notes_tables.exs
create table(:notes_with_fk_fields) do

add :note, :text, null: false
add :author, :string, null: false
add :artist_id, references(:artists)
add :album_id, references(:albums)
add :track_id, references(:tracks)
timestamps()

end

report erratum • discuss

Approach #1: Multiple Foreign Keys • 181

http://media.pragprog.com/titles/wmecto/code/priv/repo/migrations/20180620125250_add_notes_tables.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

And our schema definition might look like this:

lib/music_db/note.ex
schema "notes_with_fk_fields" do

field(:note, :string)
field(:author, :string)
timestamps()
belongs_to(:artist, MusicDB.Artist)
belongs_to(:album, MusicDB.Album)
belongs_to(:track, MusicDB.Track)

end

Finally, we create the has_many side of the association by adding the following
line to each of the Artist, Album, and Track schemas:

has_many :notes, MusicDB.Note

Once this is done, we’re all set. We can create notes for any artist, album, or
track record, and we can use all of the familiar functions for creating and
querying associated records (we covered these in Adding Associations to
Schemas, on page 49).

Here’s how we could add and retrieve a note for an Artist record:

artist = Repo.get_by(Artist, name: "Bobby Hutcherson")
note = Ecto.build_assoc(artist, :notes,

note: "My fave vibes player", author: "darin")
Repo.insert!(note)
artist = Repo.preload(artist, :notes)
artist.notes
=> [
%MusicDB.Note{
...
}
#]

To add a note for an Album record, we can do the exact same thing:

album = Repo.get_by(Album, title: "Kind Of Blue")
note = Ecto.build_assoc(album, :notes,

note: "Love this album!", author: "darin")
Repo.insert!(note)
album = Repo.preload(album, :notes)
album.notes
=> [
%MusicDB.Note{
...
}
#]

Chapter 14. Creating Polymorphic Associations • 182

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/lib/music_db/note.ex
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Advantages: This is probably the simplest approach, and the easiest for
someone reading your code to understand.

Disadvantages: First, you end up with unused foreign key columns. The notes
table needs to have a foreign key field for each of the different tables it can
attach to. But a single note record can only be attached to one other record,
so for any given notes record, only one foreign key column will have a value.
If you had a large number of tables that you were attaching notes to, this
could get unwieldy.

You would also need to give some thought to data integrity. The foreign key
fields in your notes table have to allow null values, as any note can be attached
to any type of record. But it would be incorrect if they were all null or if two or
more of the fields were non-null.

We can address this by adding a custom validation to our Note schema that
checks to make sure that one and only one of the fields is populated. And if
you’re using a database that supports check constraints, you can add a
constraint when you create the table to ensure that the database will enforce
this logic as well.

Using Postgres, we could add this to our migration:

priv/repo/migrations/20180620125250_add_notes_tables.exs
fk_check = """

(CASE WHEN artist_id IS NULL THEN 0 ELSE 1 END) +
(CASE WHEN album_id IS NULL THEN 0 ELSE 1 END) +
(CASE WHEN track_id IS NULL THEN 0 ELSE 1 END) = 1

"""
create constraint(:notes_with_fk_fields, :only_one_fk, check: fk_check)

This will ensure that one and only one of the foreign key fields is set to a non-
null value.

Despite the disadvantages listed here, we believe that this is usually the best
approach to take. The main reason you might not want to do it this way is if
you had dozens or more different tables you wanted to attach to. In that case,
it might make more sense to break the associations out into individual tables,
and the next two approaches will show you different ways of doing that.

Approach #2: Using an Abstract Schema
This approach might not be completely intuitive at first glance, but it’s worth
exploring as it reveals some interesting features about schemas that we haven’t
looked at before, and might be the right solution for your app.

report erratum • discuss

Approach #2: Using an Abstract Schema • 183

http://media.pragprog.com/titles/wmecto/code/priv/repo/migrations/20180620125250_add_notes_tables.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

With this approach, we’ll create separate notes tables for each of the other
tables we’re associating with. So we’ll have one notes table for artists,
another for albums, and so on. Here’s how we might write the migration:

priv/repo/migrations/20180620125250_add_notes_tables.exs
create table(:notes_for_artists) do

add :note, :text, null: false
add :author, :string, null: false
add :assoc_id, references(:artists)
timestamps()

end

create table(:notes_for_albums) do
add :note, :text, null: false
add :author, :string, null: false
add :assoc_id, references(:albums)
timestamps()

end

create table(:notes_for_tracks) do
add :note, :text, null: false
add :author, :string, null: false
add :assoc_id, references(:tracks)
timestamps()

end

Notice we used assoc_id for the foreign key. We deliberately chose a more abstract
name, and used it in each of the tables. We did this so all of the tables have the
same column names. This allows us to create a single schema struct we’ll share
across the three different notes tables. Our schema will look like this:

lib/music_db/note.ex
schema "abstract table: notes" do

field :note, :string
field :author, :string
field :assoc_id, :integer
timestamps()

end

We broke convention here, and did not provide a real table name with this
schema. Instead, we just added a string indicating that we’re using an “abstract”
schema. We could have written anything here—we just need to make it clear
that we’re not intending to specify a database table. Instead, we’ll create the
connection between the schema and the database table when we define each
association. For example, here’s what we’ll add to our Artist schema definition:

has_many :notes, {"notes_for_artists", MusicDB.Note},
foreign_key: :assoc_id

This is new behavior so let’s take a closer look.

Chapter 14. Creating Polymorphic Associations • 184

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/repo/migrations/20180620125250_add_notes_tables.exs
http://media.pragprog.com/titles/wmecto/code/lib/music_db/note.ex
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

In previous examples of has_many, we’ve always provided a schema module as
the second argument. But if you look at the documentation for has_many you’ll
see that Ecto is not necessarily looking for a schema, but rather our old friend
Queryable (which we met back in Composing Queries, on page 32). As you may
recall, Ecto provides Queryable implementations for several different types, one
of which is a tuple. We’re taking advantage of this implementation to make
this association work.

The tuple we’re passing in contains the table name, and a schema module.
This tells Ecto that we want to take our new Note schema and apply it to the
notes_for_artists table. It’s kind of like late binding for schemas and tables!

Our Album and Track schemas will follow the same pattern:

lib/music_db/album.ex
has_many :notes, {"notes_for_albums", MusicDB.Note}, foreign_key: :assoc_id

lib/music_db/track.ex
has_many :notes, {"notes_for_tracks", MusicDB.Note}, foreign_key: :assoc_id

Once we’ve done this, we can use the association just as we did with our
previous approach:

artist = Repo.get_by(Artist, name: "Bobby Hutcherson")
note = Ecto.build_assoc(artist, :notes,

note: "My fave vibes player", author: "darin")
Repo.insert!(note)
artist = Repo.preload(artist, :notes)
artist.notes
=> [
%MusicDB.Note{
...
}
#]

Advantages: Having separate tables prevents having lots of unused columns
like we did in the first approach. Here all the data is kept separate, so the
table design is much cleaner.

Disadvantages: The columns for Note have to be repeated in each of the
association tables. If we decide to add or remove a column, we have to make
sure we change all of the tables together. This could be painful if we had a
large number of tables to manage.

Something else to consider with this approach is that you can’t create Note
records directly. This, for example, won’t work:

Repo.insert!(%Note{})

report erratum • discuss

Approach #2: Using an Abstract Schema • 185

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

We can’t use a Queryable here—insert! expects a struct, so there’s no way for us
to do our “late binding” trick and associate our Note struct with the correct
database table. We have to start with the parent record and use build_assoc (as
we did in the preceding code), cast_assoc, or put_assoc to create the child record.

Approach #3: Using many_to_many
The final approach for creating polymorphic associations is to use many_to_many.
With this approach, we create a single notes table, then add separate join
tables for each of the different associations we want to use with notes. We
would set this up the same way we did back in Many-to-Many Associations,
on page 53.

First, we add a migration to create a single notes table:

priv/repo/migrations/20180620125250_add_notes_tables.exs
create table(:notes_with_joins) do

add :note, :text, null: false
add :author, :string, null: false
timestamps()

end

And also add migrations to create the join tables:

priv/repo/migrations/20180815192832_add_notes_join_tables.exs
create table(:artists_notes) do

add :artist_id, references(:artists)
add :note_id, references(:notes_with_joins)

end
create index(:artists_notes, :artist_id)
create index(:artists_notes, :note_id)

create table(:albums_notes) do
add :album_id, references(:albums)
add :note_id, references(:notes_with_joins)

end
create index(:albums_notes, :album_id)
create index(:albums_notes, :note_id)

create table(:tracks_notes) do
add :track_id, references(:tracks)
add :note_id, references(:notes_with_joins)

end
create index(:tracks_notes, :track_id)
create index(:tracks_notes, :note_id)

Chapter 14. Creating Polymorphic Associations • 186

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/repo/migrations/20180620125250_add_notes_tables.exs
http://media.pragprog.com/titles/wmecto/code/priv/repo/migrations/20180815192832_add_notes_join_tables.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Then we set up the Note schema:

lib/music_db/note.ex
schema "notes_with_joins" do

field :note, :string
field :author, :string
many_to_many :artists, MusicDB.Artist, join_through: "artists_notes"
many_to_many :albums, MusicDB.Album, join_through: "albums_notes"
many_to_many :tracks, MusicDB.Track, join_through: "tracks_notes"
timestamps()

end

Finally, we add the association to our Artist, Album, and Track schemas:

lib/music_db/artist.ex
many_to_many :notes, MusicDB.Note, join_through: "artists_notes"

lib/music_db/album.ex
many_to_many :notes, MusicDB.Note, join_through: "albums_notes"

lib/music_db/track.ex
many_to_many :notes, MusicDB.Note, join_through: "tracks_notes"

many_to_many works a little differently than has_many and specifically, we can’t
use build_assoc to create new associated records. To achieve the same results
we’ve seen in previous examples, we’d have to write the code differently:

priv/examples/polymorphism_02.exs
album = Repo.get_by(Album, title: "Kind Of Blue")
note = Repo.insert!(%Note{note: "Love this album!", author: "darin"})
album
|> Repo.preload(:notes)
|> Ecto.Changeset.change()
|> Ecto.Changeset.put_assoc(:notes, [note])
|> Repo.update!
album = Repo.preload(album, :notes)
album.notes

Advantages: This works around some of the disadvantages of the first two
approaches. We get the benefit of having the association defined in separate
tables, but we only need one notes table so we don’t have to worry about
duplicating our column definitions across several different tables.

Disadvantages: many_to_many is a misnomer in this context. A single note can’t
(or at least shouldn’t) be associated with more than record, but using
many_to_many means that would be possible. We’d have to take care to make
sure our code doesn’t accidentally associate a single note with more than one

report erratum • discuss

Approach #3: Using many_to_many • 187

http://media.pragprog.com/titles/wmecto/code/lib/music_db/note.ex
http://media.pragprog.com/titles/wmecto/code/priv/examples/polymorphism_02.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

record. We also can’t work with the association in the most intuitive way, due
to the differences between has_many and many_to_many.

Wrapping Up
While Ecto doesn’t provide direct support for polymorphic associations as
some other frameworks do, it’s still possible to create these associations,
thanks to the flexibility that Ecto’s tools provide.

In most cases, we recommend using approach #1 (multiple foreign keys) as
it’s the most straightforward approach in most respects. However, if the
number of foreign keys grows so large as to become cumbersome, you should
definitely consider one of the other two approaches. Which of those two you
use is largely a matter of personal preference. They will both work well—it’s
largely just a matter of which feels easier to you.

Ecto’s documentation for belongs_to1 has a section on polymorphic associations
and touches on the approaches discussed here. Be sure to check there if you
need a refresher on any of these techniques.

1. https://hexdocs.pm/ecto/Ecto.Schema.html#belongs_to/3

Chapter 14. Creating Polymorphic Associations • 188

report erratum • discuss

https://hexdocs.pm/ecto/Ecto.Schema.html#belongs_to/3
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 15

Optimizing IEx for Ecto
A perk of working with Elixir is IEx, Elixir’s interactive console. With IEx you
can peer into a running system to see what’s going, or dash out lines of code
you’d like to try. For projects using Ecto, IEx provides an alternative to your
database console when you want to look up or change parts of your data.
Instead of writing raw SQL, you can use Ecto, as done many times in this book.

An often-overlooked benefit of IEx is that it’s customizable. When it first
launches, it looks for a file called .iex.exs in the current working directory, and
then, if it didn’t find it, in the user’s home directory. If it finds the file, it
evaluates it within the same environment as your console session. This means
that you can use .iex.exs to set up any import, aliases, or even variables or
functions that you frequently use. By adding just a few items to this file, you
can streamline your IEx sessions, and save yourself a lot of keystrokes.

In this chapter, we’ll offer some suggestions to help you get the most out of
using IEx with your Ecto projects.

Adding Imports and Aliases
One of the most useful things you can do is add aliases for the modules you
work with often. You’ll most likely want to start with Repo and most (if not all)
of your schema modules. For the MusicDB app, you might do the following:

priv/examples/optimizing_iex.exs
alias MusicDB.{

Repo,
Artist,
Album,
Track,
Genre,
Log

}

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/optimizing_iex.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

This one addition means that instead of typing this:

album = MusicDB.Repo.get(MusicDB.Album, 1) |> MusicDB.Repo.preload(:tracks)

You can type this:

album = Repo.get(Album, 1) |> Repo.preload(:tracks)

Those saved keystrokes start to add up after a while.

Next, you should import the Ecto.Query module. IEx is a great place to try out
queries you’re working on, so you’ll want to have Query available:

import_if_available Ecto.Query

We’re using import_if_available rather than import so we won’t get an error if these
modules aren’t available. This is less important for an .iex.exs file that’s
included with a project, as you usually know which dependencies you’re
using, but if you’re using a global .iex.exs this will avoid some headaches.

If you favor the keyword syntax over the macro syntax for your queries (as
we have throughout this book), you can be more strategic and limit the import
to just the from function, as that’s likely to be the only one you’ll use:

import_if_available Ecto.Query, only: [from: 2]

But if you prefer the macro syntax, you’ll need to import the whole module.

Lastly, if you think you will want to make changes to your data in IEx, then
you will also want to import the Ecto.Changeset module. This will give you the
all-important change and cast functions, as well as validations and other
utilities:

import_if_available Ecto.Changeset

Even after including this import, you might find that making changes in IEx
is clumsy. You have to load the schema, create a changeset, then hand the
changeset to Repo.update. This isn’t so bad in the context of your application
code, but if you’re just trying to make a quick change in the console, it can
feel a little verbose. Fortunately, you can use .iex.exs to provide some shortcuts
for things like this. We’ll explore how to do that next.

Adding Helper Functions

Adding imports and aliases is a good start, but remember that .iex.exs is just
a regular Elixir file, so you can define modules and functions as well. Consider
the example we were just discussing: making a change to a record in the

Chapter 15. Optimizing IEx for Ecto • 190

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

database. Normally, this process requires a few steps, but you can create a
helper function that will handle most of the boilerplate for you.

We usually like to put our IEx helper functions into a single module. And, to
help promote the laziness we’re trying to achieve, we like to give the module
a very short name so it’s easy to type. We tend to use like names H or EH for
“helper” or “Ecto helper”, respectively. Normally, these would be poor choices
for module names, as they’re not descriptive enough for someone reading our
code to understand what they do. But we’re creating a module that will only
be used within IEx, so we can optimize for easy typing over readability.

Now let’s add our new helper function for making changes.

priv/examples/optimizing_iex.exs
defmodule H do

def update(schema, changes) do
schema
|> Ecto.Changeset.change(changes)
|> Repo.update

end

end

This takes any schema struct, then one or more keyword pairs with the values
that we want to change. Let’s try it out. Exit out of IEx and start it again (with
the usual iex -S mix) then try the following:

artist = Repo.get_by(Artist, name: "Miles Davis")
H.update(artist, name: "Miles Dewey Davis III",

birth_date: ~D[1926-05-26])
#=> {:ok,
#=> %MusicDB.Artist{
#=> __meta__: #Ecto.Schema.Metadata<:loaded, "artists">,
#=> albums: #Ecto.Association.NotLoaded<association :albums is not loaded>,
#=> birth_date: ~D[1926-05-26],
#=> ...
#=> name: "Miles Dewey Davis III",
#=> ...
#=> }}

That worked. We were able to automate most of the steps of updating a record,
and turn them into a one-line function call.

Note that while this approach is fine for our console sessions, this is not
something you’d want to have in your application code. We’re changing data
without any validations or constraint checks, so it would be easy to introduce
bad data. That’s fine for a development database on your local system that
you can easily reconstruct, but for production, you want to be more careful.

report erratum • discuss

Adding Helper Functions • 191

http://media.pragprog.com/titles/wmecto/code/priv/examples/optimizing_iex.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Let’s try another helper. We might find ourselves frequently looking up albums
and their tracks. Let’s add a function that will load an album and preload
the tracks in a single call:

defmodule H do

#...

def load_album(id) do
Repo.get(Album, id) |> Repo.preload(:tracks)

end

end

We might not always know what the album ID is, so let’s use pattern matching
to define another version of load_album that can accept the album title:

defmodule H do

#...

def load_album(title) when is_binary(title) do
Repo.get_by(Album, title: title) |> Repo.preload(:tracks)

end

def load_album(id) do
Repo.get(Album, id) |> Repo.preload(:tracks)

end

end

Normally we might consider adding another definition to catch cases where
we pass in something other than an id or a title, but we don’t really need to.
If we pass in a value that our functions can’t handle, we would just get a
crash in IEx, and we can live with that.

Wrapping Up
As useful as IEx is on its own, you can make it even more useful by customiz-
ing it for your app. If you find that working in IEx feels tedious because you’re
having to type out full module names, or if you find yourself typing tasks over
and over again, it’s worth taking a few moments to tweak your .iex.exs file and
add it to source control for your project. Your teammates (and future you)
will thank you.

IEx has a lot of other powerful features worth exploring. If you’d like to learn
more, check out the documentation.1

1. https://hexdocs.pm/iex/IEx.html

Chapter 15. Optimizing IEx for Ecto • 192

report erratum • discuss

https://hexdocs.pm/iex/IEx.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 16

Using Schemas Without Tables
Some database libraries automatically map database tables to the data
structures you use in your application code.

Ecto is not one of them.

Instead, we create our schema structs manually by specifying each of the
fields and their types.

At first blush, this can feel like unnecessary work that the framework could
be doing for us. But it’s actually doing us a service. It allows us to consider
the data structures we use in code separately from how that data is stored.
This means that we can design our code to be as flexible and expressive as
possible, without having to adhere to the rules imposed by relational
databases.

In this chapter, we’ll start breaking away from developing schemas that
exactly match database tables. We’ll look at why this can be advantage, and
then explore a use case where this separation helps improve the end user
experience.

Downsides to Locking Schemas to Tables
When setting up schemas for the first time, it’s natural to add fields that
exactly match your database tables. But this can have some unintended side
effects down the line.

As we’ve seen, schemas become the backbone of our changesets. And
changesets are what we to use parse user-submitted data and convey error
messages about that data to the user.

For example, the phoenix_ecto package implements behaviors for the Phoenix
web framework such that changesets can be used as the backing data

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

structure for Phoenix forms. To take advantage of the conveniences provided
by the Phoenix.Form module, your web forms need to match your changeset
structure (and therefore the underlying schema) as much as possible.

Thus, without really intending to, you’ve turned your database tables into
the blueprint for your user interface.

Sometimes this is fine, but tables in relational databases don’t always make
for user-friendly forms. Tables are bound by a strict set of rules to maximize
their efficiency, and that’s a completely different concern than how to present
a set of fields to an end user in the friendliest manner possible.

Ecto gives us the flexibility to break out of this pattern. Schemas allow us to
create data structures that work independently from the database, without
losing the conveniences that packages like phoenix_ecto provide.

With Ecto, we can make a distinction between how we collect data, and how
we store data.

Breaking Up the Artist Schema
To see how we can make our schemas more flexible, let’s consider our artists
table. In the most abstract sense, an artist is an entity that produces albums.
The simplest representation could be something like this:

• name
• birth_date
• death_date

This looks great for a database table but it would make for a poor UI. If we
consider real-world data, we realize that different types of artists exist: bands
(The Beatles, Imagine Dragons, King Crimson), and individuals (Imogen Heap,
Bob Dylan, Ariana Grande).

For individuals, we’d probably want at least three name fields (we need to
handle Sia as well as John Cougar Mellencamp), but bands need just one.
The date fields we have here make sense for individuals, but it doesn’t feel
right to prompt the user for a band’s “birth date” and “death date.”

That can be remedied by changing the label on the form (we could use
something like “start date” rather than “birth date”), but that just masks a
deeper problem: bands don’t usually have a precise starting date. We more
often think in terms of “years active” than start or end date.

From a user’s perspective, the two types of artists have different data models
that might look something like this:

Chapter 16. Using Schemas Without Tables • 194

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Solo Artist:

• name1
• name2
• name3
• date_born
• date_died

Band:

• name
• year_started
• year_ended

But even though these two models look different, it wouldn’t make sense to
have separate tables in the database. The conventions around naming and
date nomenclature are a user-facing concern, not a data modeling concern.
These two models both have the same relationship to albums and it would be
clumsy to try to manage those relationships separately.

So we have a conundrum: we want to be able to use schemas and changesets
because of the tools they provide for validation, error reporting, etc. But the data
structures we want to present to the user don’t map neatly to the database.

Fortunately, Ecto provides a solution: we can create schemas that aren’t
backed by database tables.

Creating Table-less Schemas
To solve our problem, we’ll create two new table-less schemas: one for SoloArtist
and another for Band. We’ll use these schemas to collect user input, and then
translate them into Artist records when it’s time to store them.

First, let’s set up our new schemas:

lib/music_db/solo_artist.ex
defmodule MusicDB.SoloArtist do

use Ecto.Schema
import Ecto.Changeset

embedded_schema do
field :name1, :string
field :name2, :string
field :name3, :string
field :birth_date, :date
field :death_date, :date

end
end

report erratum • discuss

Creating Table-less Schemas • 195

http://media.pragprog.com/titles/wmecto/code/lib/music_db/solo_artist.ex
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

lib/music_db/band.ex
defmodule MusicDB.Band do

import Ecto.Changeset
use Ecto.Schema

embedded_schema do
field :name, :string
field :year_started, :integer
field :year_ended, :integer

end
end

For the most part, these look quite a lot like the schemas we’ve been using
throughout the book, but we’ve used embedded_schema rather than schema to
declare them. We introduced embedded_schema in Chapter 13, Working with
Embedded Schemas, on page 171 as a way to create a schema for JSON data
that’s stored in a single column. But we can also use it anytime we want to
create a schema that isn’t directly associated with a database table.

Next, we’ll write a changeset function for each schema. We’ll use these functions
to validate the incoming data and make sure they’ll translate correctly into
an %Artist{} struct:

lib/music_db/solo_artist.ex
def changeset(solo_artist, params) do

solo_artist
|> cast(params, [:name1, :name2, :name3, :birth_date, :death_date])
|> validate_required([:name1, :birth_date])
custom validation
|> validate_date_order(:birth_date, :death_date)

end

lib/music_db/band.ex
def changeset(band, params) do

band
|> cast(params, [:name, :year_started, :year_ended])
|> validate_required([:name, :year_started])
custom validation
|> validate_year_order(:year_started, :year_ended)

end

Each of these functions includes a custom validation that we haven’t shown
here. validate_date_order will ensure that date_born is earlier than date_died. Similarly
in band.ex, validate_year_order will make sure that year_started is less than year_ended.

We’ll use these schemas and changesets to present forms to the user. We’ll
validate the submitted data, and present any errors to the user just as we
would with the database-backed schemas we’ve used before.

Chapter 16. Using Schemas Without Tables • 196

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/lib/music_db/band.ex
http://media.pragprog.com/titles/wmecto/code/lib/music_db/solo_artist.ex
http://media.pragprog.com/titles/wmecto/code/lib/music_db/band.ex
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Once we’ve verified that the data is correct, we’ll change gears and convert
the captured data into Artist records that we can store in the database.

Saving the Table-less Structs
To save the data from these schemas into the artists table, we have a couple
of options. One way would be to add extra changeset functions to our Artist
schema that take a Band or SoloArtist struct as input:

lib/music_db/artist.ex
def changeset(%MusicDB.Band{} = band) do

{:ok, birth_date} = Date.new(band.year_started, 1, 1)
{:ok, death_date} = Date.new(band.year_ended, 12, 31)

changeset(%Artist{
name: band.name,
birth_date: birth_date,
death_date: death_date

}, %{})
end

def changeset(%MusicDB.SoloArtist{} = solo_artist) do
name =

"#{solo_artist.name1} #{solo_artist.name2} #{solo_artist.name3}"
|> String.trim()

changeset(%Artist{
name: name,
birth_date: solo_artist.birth_date,
death_date: solo_artist.death_date

}, %{})
end

With this approach, we would validate our Band or SoloArtist changeset and use
apply_changes (which we talked about in Chapter 12, Optimizing Your Application
Design, on page 161) to get the underlying schema struct with the changes
added to it. We could then pass that directly to our new Artist.changeset function:

priv/examples/schemas_without_tables.exs
params = %{name: "580 West", year_started: 1991, year_ended: 1995}
band_changeset = Band.changeset(%Band{}, params)
if band_changeset.valid? do

band_changeset
|> apply_changes()
|> Artist.changeset()
|> Repo.insert!()

else
handle validation error

end

report erratum • discuss

Saving the Table-less Structs • 197

http://media.pragprog.com/titles/wmecto/code/lib/music_db/artist.ex
http://media.pragprog.com/titles/wmecto/code/priv/examples/schemas_without_tables.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

The Artist changeset would provide another round of validation, which, if we’ve
written our Band and SoloArtist validations correctly, should always complete
successfully.

Another approach would be to bypass the Artist struct and create maps or
keyword lists that we could pass directly to Repo.insert_all. We could add to_artist
functions to Band and SoloArtist to perform the conversion:

lib/music_db/band.ex
def to_artist(band) do

{:ok, birth_date} = Date.new(band.year_started, 1, 1)
{:ok, death_date} = Date.new(band.year_ended, 12, 31)
%{name: band.name, birth_date: birth_date, death_date: death_date}

end

lib/music_db/solo_artist.ex
def to_artist(solo_artist) do

name =
"#{solo_artist.name1} #{solo_artist.name2} #{solo_artist.name3}"
|> String.trim()

%{name: name, birth_date: solo_artist.birth_date,
death_date: solo_artist.death_date}

end

These two functions generate maps containing names and values of the fields
we want to insert into the artists table. We would then take the output of these
functions and pass them directly to Repo.insert_all:

priv/examples/schemas_without_tables.exs
params = %{name: "580 West", year_started: 1991, year_ended: 1995}
band =

%Band{}
|> Band.changeset(params)
|> apply_changes()

Repo.insert_all("artists", [Band.to_artist(band)])

params = %{name1: "John", name2: "Cougar", name3: "Mellencamp",
birth_date: ~D[1951-10-07]}

solo_artist =
%SoloArtist{}
|> SoloArtist.changeset(params)
|> apply_changes()

Repo.insert_all("artists", [SoloArtist.to_artist(solo_artist)])

Both approaches are valid, and have their pros and cons. With the schema
approach, you can continue working with changesets, which can be easier

Chapter 16. Using Schemas Without Tables • 198

report erratum • discuss

http://media.pragprog.com/titles/wmecto/code/lib/music_db/band.ex
http://media.pragprog.com/titles/wmecto/code/lib/music_db/solo_artist.ex
http://media.pragprog.com/titles/wmecto/code/priv/examples/schemas_without_tables.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

when you need to introspect errors. With insert_all, you have a simpler imple-
mentation that doesn’t involve layers of schemas. You might experiment and
see which option works better for your app.

Wrapping Up
Ecto’s schemas require a little manual setup when mapping them to database
tables. But in exchange for that effort, you get data structures that are flexible
and able to work with the specific needs of your app.

With Ecto, it’s possible to break out of the gravitational pull of having your
data structures locked to your database tables. You can design your structs
around the needs of your application code rather than your database, and
still not lose any of the conveniences that changesets provide.

In this chapter, we looked at one use case for table-less schemas, but others
exist. In Using Changesets Without Schemas, on page 75, we used the valida-
tions from the Changeset module to help validate a search form that we weren’t
persisting to a database. In that example, we used a map to define the data
structure we wanted to validate, but we could have used a table-less schema
as well. That might have been a better choice if we wanted to take advantage
of some of the other supporting functions that schemas provide. In either
case, the idea is the same: Ecto’s data manipulation tools are available to you
even when you’re not working with a relational database.

To see another example of using schemas without tables, see José Valim’s
blog post “Ecto’s insert_all and schemaless queries” on the Plataformatec
web site.1

1. http://blog.plataformatec.com.br/2016/05/ectos-insert_all-and-schemaless-queries

report erratum • discuss

Wrapping Up • 199

http://blog.plataformatec.com.br/2016/05/ectos-insert_all-and-schemaless-queries
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

CHAPTER 17

Tuning for Performance
Ecto gives good performance without the programmer having to think too
much about it. The developers of Ecto have put a lot of effort into making it
perform well by default, from the higher-level APIs all the way down to the
database drivers.

By using macros for its query API, Ecto can compile your queries when your
application is compiled. This reduces runtime processing, and allows Ecto to
catch query errors early on. Ecto also maintains a cache of prepared queries,
greatly reducing the number of times the query has to be prepared and
planned by Ecto and the database.

And of course, Ecto sits on top of the Erlang VM, and harnesses the many
features it provides to keep your code stable and performant.

It’s not uncommon to hear from developers moving to Elixir and Ecto that
they were able to remove their application-level caches because the perfor-
mance was already good enough out of the box. But sometimes, there is more
that needs to be done, and in this chapter, we are going to look at some of
the things you can tweak to squeeze out more performance.

Bear in mind that when it comes to performance tuning, every application is
different and there’s rarely a one-size-fits-all solution. As always, it’s important
to monitor what’s going with your app, and make sure that you’re clear on
exactly where your performance issues lie. With that information in hand,
we’ll go over a few of the different options you have to change the performance
characteristics of Ecto.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Preparing to Optimize
Before you make any changes to your Elixir code to speed things up,
remember that optimizing Ecto begins with optimizing your database. If your
tables are missing critical indexes, or you’re having to perform excessive
numbers of joins due to a suboptimal table setup, there’s not much that Ecto
can do to help. Database optimization is a much bigger topic than we can
cover here, but the documentation for your database is good place to start
learning about how to get your data into top shape.

You’ll also want to make sure that you know exactly where your application
is slow. You might think you have a good idea, but unless you’ve looked at
some metrics, you won’t know for certain. Ecto’s built-in adapters use the
Telemetry library to deliver metrics, and we recommend that you look at the
“Telemetry Events” section of the Ecto.Repo documentation1 to learn how to use
it to best advantage. Comparing metrics before and after you make changes
is the best way to determine that you’re moving in the right direction.

Optimizing Queries
One way to optimize your application is to change how it queries for data. As
a first step, we have two factors we can consider: bandwidth and latency.

If we optimize for bandwidth, we reduce the amount of data sent from the
database to the application. This clears up network congestion, and gives our
app less to decode from the database’s wire format to Elixir (which also eases
the load on the CPU).

If we optimize for latency, we try to reduce the number of queries needed to
get the data we want. This can be critical in cloud environments where the
round-trip time to the database can be several milliseconds longer than when
you have the application and database physically close together. A few mil-
liseconds might not sound like a lot but they can quickly add up. And it’s not
unusual for applications to do tens of queries for a single web request when
working with more complex database structures and many associations.

As mentioned earlier, Ecto already does some work to avoid extra database
round-trips, but app developers can apply some techniques to shift the balance
between bandwidth and latency. These can help you tune Ecto so that its
behavior is best suited for the needs of your application.

To illustrate to these techniques, let’s take a look at how we load associations.

1. https://hexdocs.pm/ecto/Ecto.Repo.html

Chapter 17. Tuning for Performance • 202

report erratum • discuss

https://hexdocs.pm/ecto/Ecto.Repo.html
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Query joins are a common way of loading associated records:

priv/examples/performance.exs
from a in Album,

join: t in assoc(a, :tracks),
join: ar in assoc(a, :artist),
preload: [tracks: t, artist: ar]

When we use join statements in conjunction with preload, Ecto will perform a
single query against the database to fetch all of the records at once. This
optimizes for latency, but requires more data to be sent from the database.

This is because artists, albums, and tracks have a has_many relationship connecting
them. On most SQL database wire formats, the join statements in the preceding
query would return album and artist records along with each track.

Let’s say that our database has five artists, each of whom have two albums
of ten tracks each. The query would return all one hundred tracks, and each
record in the result set would include the associated artist and album records
as well. This means that we’d have twenty copies of each artist record, and
ten copies of each album. We reduced latency by fetching the records with
one query, but in so doing, we strained our bandwidth with a lot of extra data.

If we want to optimize for bandwidth instead of latency, Ecto provides us a
few ways to fetch associations with multiple queries rather than a single query
with joins. Let’s look at a few examples:

Preload with atoms or keyword
from a in Album, preload: [:tracks]

Preload with anonymous functions
track_fun = fn album_ids ->

Repo.all(from(t in Track, where: t.album_id in ^album_ids))
end
Repo.all(from(a in Album, preload: [tracks: ^track_fun]))

Using Repo.preload
albums = Repo.all(Album)
Repo.preload(albums, [:tracks])

When using preload without joins, Ecto fetches the associated records with
separate queries. This eliminates the duplicate data problem we saw earlier,
but adds extra round-trips to the database.

Which approach you should take depends on where your bottleneck lies. It’s
easy to think that it would be better to have fewer queries, but if your slow
performance is due to bandwidth limitations, switching to preload in combina-
tion with join could actually make your problem worse.

report erratum • discuss

Optimizing Queries • 203

http://media.pragprog.com/titles/wmecto/code/priv/examples/performance.exs
http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Another possibility to consider when working with associations is to switch
to embedded schemas. You can read more about this option, along with a
discussion of the performance trade-offs, in Chapter 13, Working with
Embedded Schemas, on page 171.

Finally, keep in mind that with any of these options, you can reduce the
amount of data Ecto needs to process by only selecting the columns that you
need. If you’re using schemas, Ecto’s default behavior is to select all the fields
you defined. If you have a large schema, this could result in a lot of extra
data that you may not be using. But you can always use the select option in
your queries to fetch only the columns you want:

q = from t in Track, select: [:title, :duration]
Repo.all(q)

This will load all of the tracks records in the database, but it will only fetch the
title and duration columns of each record. The Track structs in the result set will
still have the other fields, but their values will be set to nil.

Executing Bulk Operations
The Repo.update_all and Repo.insert_all operations, first discussed in Chapter 1, Getting
Started with Repo, on page 3, allow you to update and insert large groups of
records with a single query. Although they’re less commonly used than their
counterparts update and insert, they can be very efficient for certain use cases.

When using Repo.update, you need to perform one query for each record you
want to update. Let’s look at how we might reset the number_of_plays counter
on our Track records back to 0:

tracks = Repo.all(Track)
Enum.each(tracks, fn track ->

track
|> Ecto.Changeset.change(%{number_of_plays: 0})
|> Repo.update!()

end)

If our database had 1000 tracks, we’d need to run 1000 queries to reset them
all. But by using Repo.update_all we can accomplish the same result with a single
query:

Repo.update_all(Track, set: [number_of_plays: 0])

Apart from :set we can also use :inc to increase a number (you can provide a
negative number to decrease the number), :push to add to the end of an array,
and :pull to remove from an array. These are atomic operations and they help
you avoid having to query for a value, change it, then put it back into the

Chapter 17. Tuning for Performance • 204

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

database. But you do give up some control in return. You cannot, for example,
guarantee that the arrays you’re manipulating contain only unique values. In
that case, you would want to use Changeset or Multi to coordinate the operation.

With Repo.insert_all we can perform bulk inserts. Let’s say that we’re inserting
a large number of Artist records. For the following example, we’ll assume that
artist_records contains a map of raw data that we loaded from a CSV file, or a
third-party API:

artists =
Enum.map(artist_records, fn artist ->

%{name: artist["name"],
birth_date: artist["birth_date"],
death_date: artist["death_date"]}

end)

Repo.insert_all(Artist, artists)

This inserts all of the new records into the database with a single query.

One thing to consider with insert_all is the amount of records you’re inserting
per query. Ecto uses parameterized queries, and most databases have a limit
on the number of parameters you can have in a single query. As of this writing,
PostgreSQL has a limit of 32,767 and MySQL 65,535. If you’re inserting
thousands of records, there’s a chance that you could run into this limitation.

A good solution is to use Enum.chunk_every/2 to split the records you’re inserting
into chunks:

chunks = Enum.chunk_every(artist_records, 1000)
Enum.each(chunks, fn chunk ->

artists_chunk =
Enum.map(chunk, fn artist ->
%{name: artist["name"],

birth_date: artist["birth_date"],
death_date: artist["death_date"]}

end)
Repo.insert_all(Artist, artists_chunk)

end)

As long as you are inserting less than thirty-three columns per row you can
safely chunk by 1000 when using PostgreSQL. Doing this may also reduce
the chance of query timeouts when sending a lot of data.

Repo.insert_all has one more trick up its sleeve. You can use the on_conflict option
to perform upserts, and let the database decide whether to insert new records
or update existing ones. We go over this option in detail in Chapter 11,
Inserting and Updating with Upserts, on page 155.

report erratum • discuss

Executing Bulk Operations • 205

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Fetching Large Datasets with Streams
Streams are a core part of Elixir. We use streams for lazy processing, to avoid
loading lots of data into memory at once, and even for processing infinite data
streams. Many of Elixir’s concurrency constructs build on top of streams,
such as the Task.async_stream function and the GenStage and Flow packages.
It’s important to try to utilize concurrency when working with databases
because much of the time spent during query execution is waiting for network
I/O, during which the CPU is free to do other work.

Throughout much of the book, we’ve used Repo.all to fetch data from the
database. Repo.stream is its stream-based counterpart. It returns a lazy stream
that can work with a database as its source.

Like other Elixir streams, it won’t start loading data until it is used and tra-
versed, and you can use it in combination with other functions in the Stream
module. Repo.stream only fetches rows from the database when they are needed
—by default, it fetches in chunks of 500 at a time.

Let’s look at an example of using Repo.stream to process a large number of records.
Say that we want to dump all of our artists records out to a file on our local
filesystem. Here’s how we might use streams to accomplish this (assume for
the moment that save_artist_record is a function that writes the record to a file):

stream =
Artist
|> Repo.stream()
|> Task.async_stream(fn artist ->

save_artist_record(artist)
end)

Repo.transaction(fn ->
Stream.run(stream)

end)

Note the use of Repo.transaction around the Stream.run call. We say that a stream
is “realized” when we start traversing it using any of the Enum functions or
Stream.run. Any stream we create with Repo.stream must be realized inside a
transaction. For long-running streams, you may need to increase the trans-
action timeout by passing the :timeout option to Repo.transaction. The default
timeout is 15 seconds, but you can use this option to set the timeout to any
value you like, including :infinity.

While a transaction is active, it’s holding a database connection from the pool, so
you need to be careful not to tie up all of your connections with long-running

Chapter 17. Tuning for Performance • 206

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

transactions. If this becomes a problem, you might consider building up your
own stream using Elixir’s Stream.resource function.

The following example uses this approach to run multiple queries over a
dataset using limit and offset:

query = from(Artist, order_by: [:id])
chunk_size = 500
offset = 0

stream =
Stream.resource(

fn -> 0 end,
fn

:stop -> {:halt, :stop}
offset ->

rows =
Repo.all(from(query, limit: ^chunk_size, offset: ^offset))

if Enum.count(rows) < chunk_size do
{rows, :stop}

else
{rows, offset + chunk_size}

end
end,
fn _ -> :ok end

)

This stream will perform a new query for each set of 500 rows by limiting
each result to 500 rows and increasing the offset by 500 for each query.

The benefit is that we can run this query outside of a transaction, so we are
not limited to transaction timeouts and we are not locking up a connection
while we are traversing the stream. The downside is that because we are
running outside of a transaction, the result may be inconsistent. If another
process adds or removes records while we’re traversing the stream, we may
miss some records, or see duplicates of others. This may be acceptable in
some cases; if not, you may be able to work around this by running the stream
more than once, and marking processed rows so that they can be skipped on
the next run.

Wrapping Up
As we mentioned at the beginning of this chapter, optimizing for performance
is an app-specific process. What works beautifully on one app could be
catastrophic on another. It all depends on what the requirements and con-
straints are.

report erratum • discuss

Wrapping Up • 207

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Ecto was designed with performance in mind, and this chapter outlined some
techniques you can use to make it go even faster. But before you try any or
all of these, it’s important to use metrics to determine exactly what is and
isn’t going slowly in your app. Once you’ve identified where the problem is,
you can decide if you need to change something at the database level, or
change the way you’re using Ecto to get the performance you need.

Chapter 17. Tuning for Performance • 208

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Bibliography

[Tho18] Dave Thomas. Programming Elixir 1.6. The Pragmatic Bookshelf, Raleigh,
NC, 2018.

[TV19] Chris McCord, Bruce Tate and José Valim. Programming Phoenix 1.4. The
Pragmatic Bookshelf, Raleigh, NC, 2019.

report erratum • discuss

http://pragprog.com/titles/wmecto/errata/add
http://forums.pragprog.com/forums/wmecto

Index

SYMBOLS
"" for empty strings, 66

() (parentheses), queries, 21,
24

[] (brackets), nested associa-
tions, 57

^ (pin operator), queries, 23

|> (pipe operator)
query syntax, 20
validations, 67
when to use playground,

8

A
abstract schemas, polymor-

phic associations, 183–186

Abstract Syntax Tree (AST),
152

Active Record
pattern, 10
polymorphism, 180

adapter: option, 126

adapters
configuring, 126
data flow diagram, 150

add, 104, 116

aggregate, 7, 15

aliases
modules, 189
music database setup, 7,

12
Repo, 12
schemas, 45

all, 12, 21, 98

allow, 143

allowances, 142

alter, 113

anonymous functions
adding functions to Multi,

97
custom validations, 69
running transactions

with, 88, 92

:append option, 136

apply_changes, 162, 197

apps
adding Ecto without

Phoenix, 123–129
application as term, 166
configuring projects

without Phoenix, 125–
128

creating, 123
data flow diagram, 150
design optimization, 161–

170
organizing code with con-

texts, 163–166
separation of code, 161–

166
starting without Phoenix,

128
umbrella apps, 166–170

:array type, 43, 173

arrays
data type, 43, 173
embedded schemas, 173
MySQL support, 171
pushing values during
update_all, 13, 204

removing values during
update_all, 13, 204

as:, 36

asc:, 28

:asc_nulls_first, 29

:asc_nulls_last, 29

assoc, 57

:assoc_id, 184

associations, see also be-
longs-to associations; has-
many associations; many-
to-many associations

adding new records, 76
adding to schemas, 49–

55, 169
best practices, 85
changesets, 76–86
changesets with cast_assoc,

81–86, 186
changesets with put_assoc,

77–80, 86, 186
changing data and table

structure together in
migrations, 111–114

contexts, 165
deleting with, 58, 77, 79,

84
embedded, 134–137
vs. embedded schemas,

57, 171, 176
forms, 134–137
loading, 203
nested, 52, 57, 59–60
one-to-many, 50–53
one-to-one, 50, 52, 58
performance, 59, 181,

202–204
polymorphic, 55, 179–

188
preloading, 56, 78, 203
querying, 55–57
replacement options, 79,

83–85

resources on, 137
seeding databases with

schemas, 59–60
umbrella apps, 169

AST (Abstract Syntax Tree),
152

:async option, 142–143

async testing, 139–142

atoms
named bindings, 36
storing Elixir maps, 44

:auto ownership mode, 140

:autogenerate option, 43

B
bandwith, queries, 202

belongs-to associations
changesets, 79, 81
polymorphic associations,

179, 182, 188
understanding, 51–53

belongs_to
changesets, 79, 81
foreign keys, 52
polymorphic associations,

179, 182, 188
using, 51–53

:bigserial type, 116

:binary type, 43

:binary_id type, 43, 172

bindings, see query bindings

:boolean type, 43

brackets ([]), nested associa-
tions, 57

build_assoc
polymorphic associations,

186–187
vs. put_assoc, 79
using, 76, 85

bulk operations, executing,
204

C
case, 90, 95

case for migration names,
102

cast, 65–67, 147, 190

cast_assoc, 81–86, 186

cast_embed, 135, 174–175

casting
changesets, 64–67, 75
changesets with associa-

tions, 81–86
converting types, 147

embedded associations,
135

embedded schemas, 174–
175

change
about, 64
associations with internal

data, 77–80, 86
importing into IEx, 190
migrations, 103
migrations, rolling back,

108

:changed_at, 117

changes, 66

changeset, 82, 176, 196

Changeset module, 63–86
about, 5
associations, working

with, 76–86
casting and filtering, 64–

67, 75, 81–85, 135,
147, 174–175, 186

constraints, 59, 67, 71–
73, 183

creating changesets with
external data, 65–67

creating changesets with
internal data, 64

deleting with, 79, 84
errors, 73, 79, 81, 133
forms, 131–137
seeding databases with

schemas, 60
testing and separation of

code, 162
using schemas without

tables, 193–199
using without schemas,

75
validating data, 67–75,

86

changesets, 63–86
about, 5, 49, 63
associations, working

with, 76–86
casting and filtering, 64–

67, 75, 81–86, 135,
147, 174–175, 186

constraints, 59, 67, 71–
73, 183

creating with external
data, 65–67

creating with internal da-
ta, 64

defined, 5
deleting, 77
deleting with, 58, 79, 84

embedded schemas, 174–
176

embedding within a
changeset, 82

errors, 73, 79, 81, 133
forms, 131–137
seeding databases with

schemas, 60
stages, 63
testing, 162
transactions with, 89–

91, 96
update and, 49
using schemas without

tables, 193–199
using without schemas,

75
validating data, 67–75,

86

checkout, 140

child records
adding with cast_assoc, 81–

85
association best prac-

tices, 85
changesets, 76
deleting, 58, 79, 84
embedded schemas, 57,

174, 176
inserting with Repo, 86
inserting with change-

sets, 80
preloading, 56, 78

child specifications (process-
es), 127

chunk_every, 205

code
for this book, xiii, 6, 102
organizing with contexts,

163–166
running music database

example snippets, 7
separation, 161–166
umbrella apps, 166–170

columns, see also timestamps
changing data and table

structure together in
migrations, 111–114

id column, default cre-
ation, 43, 106, 116

indexes, creating, 109–
111

migrations, 104–106, 117
names, 117
with null, 29
ordering queries, 28
specifying for schemas,

43

Index • 212

specifying in joins, 31
specifying in queries, 22,

31
version, 107

concurrency
disabling for testing, 142–

143
indexes, creating and

changing, 118
streams, 206
tests with sandboxes,

139–142

concurrently option, 118

config function, 126

config.exs file, 126

configuring
adapters, 126
database connections,

11, 126
music database example,

6, 11
overriding, 16
primary and foreign keys,

116
Repo module, 11
Repo module for projects

without Phoenix, 125–
128

Repo module, multiple,
128

tests with sandboxes,
139–142

timestamp settings, 117
umbrella apps, 167–168

conflict_target:, 157–160

connections
configuring, 11, 126
database option, 126
pool size, 126
sharing with allowances,

142
streams, 206
testing with sandboxes,

139–142

constraints
about, 67
deleting records with as-

sociations, 59
errors, 72–74
polymorphic associations,

183
using, 71–73

contexts, 163–166

count, 15

create
indexes, 109–111
music database setup, 7

starting apps without
Phoenix, 128

tables, 104

:created_at, 117

creating
apps without Phoenix,

128
data types, 44
Elixir apps, 123
indexes, 109–111
migrations vs. editing,

109
with Mix, 7
with Repo, 10, 12
tables, 104

cross_join, 32

CRUD operations, Repo mod-
ule, 10, 12

D
\d, 106

data
changing data and table

structure together in
migrations, 111–114

converting data to SQL,
21

creating changesets with
external data, 65–67

creating changesets with
internal data, 64

data flow diagram, 150
importing during change-

sets, 66
streams, 206
validating with change-

sets, 67–75, 86

data types
building custom types

without existing, 149–
153

building on existing, 145–
149

converting, 25, 45, 66,
146

creating, 44
custom, 145–153, 173
dynamic values, 24
Ecto, 43
Elixir, 43
embedded schemas, 173
resources on, 44, 153
setting primary and for-

eign keys, 116
specifying for migrations,

104
timestamps, configuring,

117

:database option, 126

databases, see also change-
sets; connections; migra-
tions; music database exam-
ple; queries; schemas;
transactions

data flow diagram, 150
legacy databases and

setting primary keys,
116

optimizing for perfor-
mance, 202

resetting, 8
seeding with schemas,

59–61

:date type, 43

datetimes
migration timestamps,

105
timestamp settings, 117
types, 43, 105, 117
Unix example of building

custom types, 146–149

:decimal type, 43

decode, 152

decrementing values, 13, 204

default: option for add, 105

delete
associations with

changesets, 77, 85
with Multi, 93
with Query, 39
with Repo, 77, 85

:delete value for :on_replace op-
tion, 79, 84, 174, 176

delete_all
changesets, 77
with Query, 40
using, 12–14

:delete_all value for on_delete:
option, 58

deleting
associated records, 58,

77, 79, 84
with changesets, 58, 79,

84
child records when replac-

ing associated records,
79, 84

deleting changesets, 77
with embedded schemas,

174, 176
with Multi, 93
with Query, 39
with Repo, 10, 12–14, 77,

85

Index • 213

with schemas, 41, 47
values from arrays during
update_all, 13, 204

dependencies
adding when using Ecto

without Phoenix, 125
contexts, 165
umbrella apps, 167–169

deps, 125

desc:, 28

:desc_nulls_first, 29

:desc_nulls_last, 29

design
optimization, 161–170
organizing code with con-

texts, 163–166
separation of code, 161–

166
umbrella apps, 166–170

@disable_ddl_transaction, 118

Domain-Driven Design, 163

down, 114

drivers
adapters, 125, 150
adding dependencies

when using Ecto with-
out Phoenix, 125

data flow diagram, 150
extending for custom

types, 149–153

drop index, 110

DSL syntax, 20

\dt, 105

dump, 146

E
Ecto, see also changesets;

migrations; queries;
schemas; transactions

about, xi, 3
adding dependencies,

125
adding without Phoenix,

xi, 123–129
advantages, 3
data flow diagram, 150
development of, 3
packages, 5
version, 6

ecto package, 5

ecto_sql package, 5

Elixir, see also IEx; music
database example

adding Ecto without
Phoenix, 123–129

creating applications, 123
data types, 43
macros, 22
protocols, 33
resources on, xi, 22,

127, 166
streams, 206
version, 6

embedded associations, 134–
137

embedded schemas, 171–177
adding to a schema, 172–

174
vs. associations, 57, 171,

176
changesets, 174–176
creating, 171
forms with associations,

134–137
performance, 176, 204
resources on, 177
using schemas without

tables, 177, 196
within embedded

schemas, 173

embedded_schema, 172

embeds, see embedded
schemas

embeds_many, 136, 173, 176

embeds_one, 135, 173, 176

encode, 152

error messages
changesets, 74, 81
forms, 134
transactions, 92
translating, 134
user info, 75
validations, 68

:error return value
changesets, 74
seeding databases with

schemas, 59
transactions with Multi, 94

error_tag, 134

errors
associations, 79
changesets, 73, 79, 81,

133
constraints, 72–74
embedded schemas, 174
forms, 75, 133
migrations, 113
seeding databases with

schemas, 59
timeout, 126
transactions, 89–91, 94–

97

traversing, 68
validations, 68, 73–74,

79, 133

errors field, 68, 94

Evans, Eric, 10, 163

except:, 28

except_all:, 28

except_query, 28

Extension, 151–153

F
field, 43, 160

fields
dropping in changesets,

66
mapping for schemas,

42–43
upserts, 160
using in join tables, 54

filtering, changesets, 64, 66,
75

:float type, 43

flush, 113, 115

foreign keys
about, 49
belongs_to, 52
changing data and table

structure together in
migrations, 111–114

configuring, 116
constraints, 59, 72
creating, 116
creating tables for migra-

tions, 104
deleting records with as-

sociations, 59
join tables, 53
lack of in embedded

schemas, 177
many_to_many, 53
nilifying when replacing

associated records, 79,
83, 85

polymorphic associations,
181–184

specifying, 50

foreign_key: option, 50

foreign_key_constraint, 72

form_for, 132

format, 151

forms
error forms, 75
errors, 133
Phoenix, 75, 131–137

Fowler, Martin, 10

Index • 214

fragment, 26

from
combining queries with
or_where, 38

composing queries with
functions, 37

grouping queries, 28–29
importing into IEx, 190
inserting raw SQL, 26
joins, 30–32
named bindings, 36
ordering queries, 28
query bindings, 25
using, 21–23
with where, 23–27

full_join, 32

functions
adding helper to IEx,

190–192
adding to Multi, 97
composing queries with,

37
custom validations, 69
separation of code, 161–

163
transactions with, 87–92

G
group_by, 28–29

grouping, queries, 28–29

H
has-many associations

adding records with
changesets, 81, 83

delete options, 58
polymorphic associations,

179, 182, 185
using, 50–53
workaround for umbrella

apps, 169

has_many
adding records with

changesets, 81, 83
deleting options, 58
foreign keys, 52
nested associations, 52
polymorphic associations,

179, 182, 185
using, 50–53
workaround for umbrella

apps, 169

has_named_binding?, 36

has_one
about, 51
adding records with

changesets, 81

delete options, 58
nested associations, 52
replacing associated

records options, 79

having, 30

Hex, 153

:hostname option, 126

hostnames, configuring, 126

I
id column, autogenerating,

43, 106, 116

:id type, 43

IEx
adding helper functions,

190–192
exiting, 8
Mix console, opening, 7
optimizing, 189–192
recompiling Repo, 16
resources on, 192
when to use, 8

.iex.exs file
aliases, 12
optimizing, 189–192

import, 64, 190

import_if_available, 190

importing
data during changesets,

66
into IEx, 189
macros, 26
modules, 64, 190

inc: option, update_all, 13, 204

incrementing values, 13, 204

index function, 109–111

indexes
changing concurrently,

118
creating, 109–111
creating concurrently,

118
migrations, 108–111, 118
names, 111
options, adding, 110
resources on, 111
unique indexes for con-

straints, 71, 73
upserts, 155, 157–160

:infinity option, 206

init, 16, 151

in, for query bindings, 25

inner joins, 32

inputs_for, 135

insert
bypassing changesets

with, 86
vs. insert_all, 47
with Multi, 93
resources on, 160
seeding databases with

schemas, 59
upserts with schemas,

158–160

insert!, 89–91, 185

insert_all
changing data and table

structure together in
migrations, 112

vs. insert, 47
performance, 204
resources on, 160
saving table-less data,

198
upserts, 156–158, 160
using, 12–14

inserted_at
migration timestamps,

105–106, 117
queries, 26
schema, creating, 43
upserts, 159

inserting, see also changesets
changing data and table

structure together in
migrations, 112

with chunks, 205
with embedded schemas,

174
forcing rollbacks within

a transaction, 89–91
with Multi, 93
performance, 204
polymorphic associations,

185
with Repo, 12–14, 86
resources on, 160
with schemas, 41, 43,

47, 59–61
with upserts, 155–160

:integer type, 43

intersect:, 27

intersect_all:, 28

intersect_query, 27

interval extension, 151–153

introspection with Multi, 98

is_nil, 26

J
join

about, 31

Index • 215

combining queries with
or_where, 38

composing queries with
functions, 37

named bindings, 36
preloading associations,

57, 203

join tables
changing data and table

structure together in
migrations, 111–114

many-to-many associa-
tions, 53

polymorphic associations,
186

join_through: option, 53

joins
combining queries with
or_where, 38

composing queries with
functions, 37

defined, 30
multiple, 32
named bindings, 36
preloading associations,

203
resources on, 30
types, 32
using, 30–32

JSON
embedded schemas, 57,

173
Postgres support, 44

K
keyword lists

errors format, 74
inserting with Repo, 12
put_assoc with, 80
saving table-less data,

198

keyword syntax, 20, 57, 190

L
Laravel, 180

latency, queries, 202

lazy loading, 55

lazy processing, 206

left_join, 32

like, 26

limit, 207

load, 146

loading
lazy, 55
preloading associated

records, 56, 78

locking migrations, 118

M
macro syntax, 20, 23, 190

macros
advantages, 22
defined, 22
importing, 26
resources on, 22
syntax, 20, 23, 190

:manual ownership mode, 140

many-to-many associations
changing data and table

structure together in
migrations, 111–114

delete options, 58
polymorphic associations,

186
put_assoc, 86
understanding, 53–55

many_to_many, 53, 58, 186

:map type, 43, 173

maps, see also schemas
adding records with
cast_assoc, 81

data type, 43, 173
embedded schemas, 173
errors, 68
inserting with Repo, 13
joins, 31
put_assoc with, 80
return values as, 14
saving table-less data,

198
storing Elixir, 44

MariaDB, 125, 150

mariaex, 150

:mark_as_invalid value for :on_re-
place option, 79

matching, 151

metrics, performance, 202

microseconds, datetime types,
44, 105

migrate, 7, 105–108

migration, 102

Migration module, 101–119
about, 5
changing data and table

structure together,
111–114

customizing migrations,
115–119

directory, 103
editing vs. creating new

migrations, 109
errors, 113
flushing migrations, 113,

115
indexes, 108–111
locking migrations, 118
naming migrations, 102
order of migrations, 103,

107
rollbacks, 107, 110, 114
running migrations, 105–

107
running migrations out-

side of transactions,
118

specifying Repo, 103
specifying up and down

operations, 114
table of migrations, 107,

118
testing migrations, 108
timestamps, 103, 105–

106, 117
writing migrations, 102–

105

migration_lock, 118

migrations, 101–119
about, 5, 101
changing data and table

structure together,
111–114

customizing, 115–119
defined, 101
deleting records with as-

sociations, 58
directory, 103
editing vs. creating new,

109
errors, 113
flushing, 113, 115
indexes, 108–111
locking, 118
music database setup, 7
names, 102
order, 103, 107
rollbacks, 107, 110, 114
running, 105–107
running outside of trans-

actions, 118
specifying Repo, 103
specifying up and down

operations, 114
table of, 107, 118
testing, 108

Index • 216

timestamps, 103, 105–
106, 117

writing, 102–105

migrations directory, 103

Migrations module, about, 101

Mix
configuring projects

without Phoenix, 126
console, opening, 7
creating Elixir apps, 123
migrations, rolling back,

107
migrations, running, 105
migrations, writing, 102
music database setup, 7
starting apps without

Phoenix, 128
umbrella projects, 166

modules, see also specific
modules

about, 4
aliases, 189
contexts, 163, 165
extending macros into,

26
helper functions, 191
importing, 64, 190
names, 191
Repository pattern, 10

Multi module
about, 5, 88
creating, 93
errors, 94–97
introspection, 98
non-database operations,

97
optimizing, 97
transactions with, 88,

92–99

music database example
adding associations, 49–

55
changesets, 63–86
changing data and table

structure together,
111–114

configuring, 6, 11
constraints, 71–73
contexts, 164
custom data types, 146–

149
data model, 8
design optimization, 161–

170
forum, 165, 168
helper functions, 190–

192
imports and aliases, 189

migrations, 101–119
notes function, 179–188
performance, optimizing

for, 201–208
playground, 7
polymorphic associations,

179–188
querying, 20–40
querying with associa-

tions, 55–57
querying with schemas,

45–46
Repo, customizing, 15–16
Repo, using, 10–15
resetting, 8
running code snippets, 7
schemas, 41–61
schemas, embedded,

171–176
schemas, without tables,

194–199
search engine, updating

with Multi, 97
search engine, updating

with transactions, 91
search, advanced, 75
setup, 5–9
testing, 139–143, 162
transactions, 87–99
umbrella apps, 168
upserts, 155–160
validating data, 67–75

MySQL
about, 6
adapter, 126, 150
arrays, 171
driver, 125, 150
embedded schemas, 57
prefixes in queries, 22
resources on, 6
storing Elixir maps, 44
upserts, 157

N
-n option for migrate, 108

N+1 Query problem, 56

:naive_datetime type, 43, 105,
117

:naive_datetime_usec type, 44,
117

name: option for indexes, 111

named bindings, 35

names
columns, 117
contexts, 165
forms, 133
helper functions, 191

indexes, 111
migrations, 102
modules, 191
query bindings, 36
schemas, 45
transactions with Multi, 93

nested associations
preloading, 57
seeding databases with

schemas, 59–60
using, 52

new
Elixir projects, 123
Multi, 93
umbrella projects, 166

:nilify value for :on_replace op-
tion, 79, 83, 85

:nilify_all value for on_delete: op-
tion, 58

not is_nil, 26

:nothing
on_conflict option (upserts),

156
on_delete: option, 58

null
deleting records with as-

sociations, 58
embedded schemas, 173
empty strings in change-

sets, 66
migration options, 104
nilifying foreign key when

replacing associated
records, 79, 83, 85

polymorphic associations,
183

queries, ordering, 29
queries, using in, 26

O
offset, 207

:ok return value, 59, 74

on_conflict: option, 156–160,
205

on_delete: option, 58

:on_replace option
embedded schemas, 174,

176
using, 83–85
values for, 79

one-to-many associations,
50–53

one-to-one associations, 50,
52, 58

on, joins, 31

Index • 217

Open Telecom Platform,
see OTP (Open Telecom
Platform)

or macro, 39

or_where, 38

order
migrations, 103, 107
named bindings, 36
queries, 28
query bindings, 34, 36

order_by, 28

OTP (Open Telecom Platform)
application term, 166
otp_app: option, 11, 126
supervision tree, 124
umbrella apps, 167

otp_app: option, 11, 126

ownership mode, sandboxes,
140–143

P
parameterized queries, limits

on, 205

parameterized values, 24

parent forms, 136

parent records
adding with cast_assoc, 81–

85
association best prac-

tices, 85
changesets, 76
deleting with associa-

tions, 58
embedded schemas, 57,

174, 176
inserting with Repo, 86
inserting with change-

sets, 80
preloading, 56, 78

parentheses (()), queries, 21,
24

Pascal case, 103

password, configuring, 126

:password option, 126

pattern matching
converting types, 147
transaction errors, 95

performance
associations, 59, 181,

202–204
bulk operations, 204
embedded schemas, 176,

204
indexes, 108
inserting, 204

lazy loading, 55
metrics, 202
optimizing, 201–208
polymorphic associations,

181
queries, 55, 108, 201–

204
streams, 206
testing, 162
update_all, 204
upserts, 205

Phoenix
about, xi, 3
adding Ecto without,

123–129
contexts, 163
forms, 75, 131–137
packages, 75, 131
resources on, 131, 137

phoenix_ecto package, 75, 131

pin operator (^), queries, 23

pipe operator (|>)
query syntax, 20
validations, 67
when to use playground,

8

Plataformatec, 3

playground, music database
example, 7

polymorphic associations,
179–188

about, 55
with abstract schemas,

183–186
with foreign keys, 181–

183
with many_to_many, 186
performance, 181
resources on, 188

pool: setting, 139

pool_size, setting, 126

Postgres
about, 6
adapter, 126, 150
adding custom types,

150–153
changing concurrently,

118
console, opening, 105
driver, 125, 150
embedded schemas, 57
interval extension, 151–

153
prefixes in queries, 22
resources on, 6
storing Elixir maps, 44

tables, listing, 105
tables, viewing details,

106

Postgrex driver, 125

prefix:, 22, 31

prefixes
joins, 31
specifying in queries, 22,

31

preload function, 56, 203

preload: option, 56, 78

:prepend option, 136

primary keys
configuring, 116
default, 43, 106, 116
default, stopping, 116
embedded schemas, 172,

176
skipping, 176
specifying, 43
upserts, 155

processes
allowances, 142
child specifications, 127
supervision tree, 124,

127
testing with sandboxes,

141–142

Programming Elixir ≥ 1.6, xi

Programming Phoenix ≥ 1.4,
137

projects, as term, 166

protocols, 33

psql, 105

pull: option, update_all, 13, 204

push: option, update_all, 13, 204

put_assoc, 77–80, 86, 186

put_embed, 174

Q
queries, 19–40

associations, 55–57
bandwith, 202
calling from Multi, 98
combining results, 27
combining with or_where,

38
composing, 32–33, 37
composing with func-

tions, 37
converting data to SQL,

21
converting schema-less,

45–46
deleting with, 39

Index • 218

expressions, 25
extracting parts, 33–35
grouping, 28–29
inserting raw SQL, 26
joins, 30–32, 203
latency, 202
limits on, 205
N+1 Query problem, 56
ordering, 28
passing to other queries,

33
performance, 55, 108,

201–204
preloading associations,

57
query bindings, 25, 30,

34–37, 46, 57
refining with where, 23–27
with Repo, 12, 14, 21, 98
Repository pattern, 10,

21
resources on, 20, 23, 25,

40
reusing, 32–35, 38
with schemas, 41, 45–46
without schemas, 19–40
syntax, 20–23, 25, 190
updating with, 39
upserts, 158, 160

query bindings
checking for named

bindings, 36
converting schema-less

queries, 46
creating, 25
extracting parts of

queries, 34
joins, 30
named, 35
order, 34, 36
preloading associated

records, 57

query function, 14

Query module, 19–40
about, 4, 14
combining queries with
or_where, 38

combining results, 27
composing queries, 32–

33, 37
composing queries with

functions, 37
as context example, 163
deleting with, 39
extending macros into,

26
extracting parts of

queries, 33–35

grouping queries, 28–29
inserting raw SQL, 26
joins, 30–32, 203
limits on parameterized

queries, 205
ordering queries, 28
performance, 201–204
preloading associations,

57
query bindings, 25, 30,

34–37, 46, 57
query expressions, 25
refining withwhere, 23–27
resources on, 20, 23, 25,

40
reusing queries, 32–35,

38
syntax, 20–23, 25, 190
updating with, 39
upserts, 158, 160

Queryable protocol, 33, 185

quotes ("") for empty strings,
66

R
r command for recompiling,

16

-r option for migrations, 103

race conditions, 73, 143

:raise value
on_conflict option (upserts),

156
:on_replace option (change-

sets), 79
:on_replace option (embed-

ded schemas), 174

read_after_writes:, 160

reading, with Repo, 10, 12

references, 116

releases, umbrella apps, 167

:replace option, 157

:replace_all option, 159

:replace_all_except_primary_key op-
tion, 159

Repo module
about, 4, 10
aliasing, 12
configuring, 11
configuring for multiple,

128
configuring for projects

without Phoenix, 125–
128

converting data to SQL,
21

CRUD operations, 10, 12

customizing, 15–16
locking migrations, 118
preloading with, 56
queries, 12, 14, 21
recompiling, 16
Repository pattern, 10
resources on, 16, 202
specifying in migrations,

103
transactions with Multi,

92–99
transactions with transac-
tion, 87–92

using, 10–15

reports and schemas, 47

Repository pattern
about, 9
changesets, 65
queries, 21
separation of code, 161

reset, 8
resource function, streams, 207

resources for this book
associations, 137
belongs_to, 188
code files, xiii, 6
contexts, 170
data types, 44, 153
Elixir, xi, 22, 127, 166
embedded schemas, 177
field, 43
forms, 131, 137
IEx, 192
indexes, 111
inserting, 160
joins, 30
macros, 22
metrics, 202
MySQL, 6
OTP, 124
Phoenix, 131, 137
polymorphic associations,

188
Postgres, 6
protocols, 33
queries, 20, 23, 25, 40
Repo module, 16, 202
sandboxes, 144
schemas, 43, 117, 199
timestamps, 117
umbrellas, 170
update_all, 13
upserts, 157, 160
use, 11

returning: option, 14, 160

right_join, 32

rollback function, 90

Index • 219

rollbacks
defined, 87
forcing within a transac-

tion, 89–91
migrations, 107, 110, 114
with Repo, 90

run
adding functions in Multi,

97
music database setup, 7
streams, 206

S
-S mix, 7
sandboxes, 139–144

saving table-less structs, 197

schema macro, 42

Schema module, 41–61
about, 4, 41
associations, adding, 49–

55, 169
associations, querying

with, 55–57
creating schemas, 41–

44, 195–199
creating table-less

schemas, 195–199
data types, 43
deleting with, 41, 47
embedded schemas, 57,

134–137, 171–177, 196
forms for single schema,

131–137
inserting with, 47
mapping fields, 42–43
polymorphic associations

with abstract schemas,
183–186

queries with, 41, 45–46
resources on, 43, 117
seeding database, 59–61
specifying changeset

functions, 82
timestamp settings,

changing, 117
umbrella apps, 169
updating with, 41
upserts with schemas,

158–160
using schemas without

tables, 177, 193–199
when not to use, 46, 160

schema_migrations table, 107,
118

schemas, 41–61
about, 4, 19, 41
aliases, 45

associations, adding, 49–
55, 169

associations, querying
with, 55–57

creating, 41–44, 195–199
creating table-less, 195–

199
data types, 43
deleting with, 41, 47
disadvantages of locking

to tables, 193
embedded, 57, 134–137,

171–177, 196
forms for single schema,

131–137
inserting with, 41, 47
mapping fields, 42–43
names, 45
polymorphic associations

with abstract schemas,
183–186

queries with, 41, 45–46
queries without, 19–40,

46
resources on, 43, 117,

199
seeding database with,

59–61
specifying changeset

functions, 82
timestamp settings,

changing, 117
umbrella apps, 169
updating with, 41
upserts with, 158–160
using without tables,

177, 193–199
when not to use, 46, 160

security
configuring database

connections, 12
SQL injection, 24

seeding databases with
schemas, 59–61

select:
composing queries with

functions, 38
converting schema-less

queries, 45
joins, 31
queries, 22, 31, 40
viewing schema_migrations

table, 107

self(), 142

separation of code, 161–166

set: option, update_all, 13, 204

setup block for tests, 140

:shared ownership mode, 140–
143

side effects and separation of
code, 161

snake case, 102

source control and editing
migrations, 109

SQL, see also MySQL
about, xi
converting data to, 21
injection, 24
inserting raw SQL into

queries, 26

stream, 206

streams, 206

:string type, 43

strings
data type, 43
empty strings in change-

sets, 66
storing Elixir maps, 44

subforms, 134–137

--sup flag, 124, 127

supervision, 124, 127–128

supervision tree, 124, 127–
128

T
tables, see also join tables;

joins; schemas
adding indexes, 108–111
changing data and table

structure together in
migrations, 111–114

creating, 104
datetime settings, chang-

ing, 117
disadvantages of locking,

193
editing, 109
listing, 105
migrations, 104
table of migrations, 107,

118
using schemas without,

177, 193–199
viewing details, 106

Telemetry library, 202

term(), 147

test.exs file, 139

test_helper.exs file, 140

testing
allowances, 142
changesets, 162
concurrently, 139–142

Index • 220

configuration, 139–142
disabling concurrency,

142–143
listing operations in Multi,

99
migrations, 108
performance, 162
with sandboxes, 139–144
separation of code, 162

text_input, 136

through: option, 52

:time type, 43, 117

time zones, 105–106

:time_usec type, 44, 117

timeouts
errors, 126
transactions, 206

timestamps
changing default, 105
configuring, 117
migrations, 103, 105–

106, 117
resources on, 117
schemas, creating, 43

timestamps function, 43, 105–
106, 117

to_list, 98

to_query, 33

to_sql, 21

transaction function
about, 5
with Multi, 92–99
streams, 206
using with functions, 87–

92

transactions, 87–99
about, 5, 87
errors, 89–91, 94–97
with functions, 87–92
with Multi, 88, 92–99
non-database operations,

91, 97
rollbacks, 87, 89–91
running migrations out-

side of, 118
streams, 206
timeouts, 206

translate_error, 134

traverse_errors, 68

tuples, return values as, 14

type, 25, 45, 146

Type module, 44, 153

types, see data types

U
umbrella apps, 166–170

--umbrella flag, 166

union:, 27

union_all:, 27

union_query, 27

unique:, 110

unique_constraint, 72

unique_index, 111

Unix example of building
custom types, 146–149

unsafe_validate_unique, 73

up, 114

update
associations with

changesets, 85
with Multi, 93–94
with Query, 39
with Repo, 49, 85

:update value for :on_replace op-
tion, 79, 174, 176

update!, 91

update_all
performance, 204
with Query, 40
resources on, 13
using, 12–14, 47

updated_at
migration timestamps,

105–106, 117
schemas, creating, 43
upserts, 159

updating, see also changesets
with changesets, 83–85
with embedded schemas,

174
with Multi, 93–94
performance, 204
with Query, 39
with Repo, 10, 12–14, 49,

85
with schemas, 41, 43
with transactions, 91
with upserts, 155–160,

205

upserts, 155–160, 205

:url option, 126

URLs
configuring database

connections, 12, 16,
126

loading dynamically, 12,
16

Phoenix forms, 132

use
about, 11
integrating with Repo, 10
migrations, 103
projects without Phoenix,

125–128
resources on, 11
schemas, 42

user form examples, 131–137

:username option, 126

usernames, configuring, 126

:utc_datetime type, 43, 117

:utc_datetime_usec type, 44, 117

V
-v option for migrate, 108

valid? field, 68

validate_change, 69

validate_format, 67

validate_length, 67

validate_number, 67

validate_required, 67

validations
constraints checking for,

73
custom, 69, 183, 196,

198
data with changesets, 67–

75, 86
errors, 68, 73–74, 79,

133
forms, 133
polymorphic associations,

183
reusing, 70
schemas without tables,

196, 198

Valim, José, 3, 137, 199

values
converting in changesets,

66
converting schema-less

queries, 45
dynamic values, convert-

ing types, 24
dynamic values, query-

ing, 23–27
incrementing/decrement-

ing, 13, 204
parameterized, 24
return values in Repo

queries, 15
return values in transac-

tions with Multi, 94

Index • 221

return values when seed-
ing databases with
schemas, 59

return values, specifying,
14

version column, 107

versions
drivers, 125
Ecto, 6

Elixir, 6
migrations, rolling back,

108
migrations, timestamps,

107

W
where

combining queries with
or_where, 38

converting schema-less
queries, 46

inserting raw SQL, 26
query bindings, 25
query expressions, 25
using, 23–27

with: option for cast_assoc, 82

Index • 222

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2019 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2019

https://pragprog.com

Craft GraphQL APIs in Elixir with Absinthe
Your domain is rich and interconnected, and your API
should be too. Upgrade your web API to GraphQL,
leveraging its flexible queries to empower your users,
and its declarative structure to simplify your code.
Absinthe is the GraphQL toolkit for Elixir, a functional
programming language designed to enable massive
concurrency atop robust application architectures.
Written by the creators of Absinthe, this book will help
you take full advantage of these two groundbreaking
technologies. Build your own flexible, high-performance
APIs using step-by-step guidance and expert advice
you won’t find anywhere else.

Bruce Williams and Ben Wilson
(302 pages) ISBN: 9781680502558. $47.95
https://pragprog.com/book/wwgraphql

Property-Based Testing with PropEr, Erlang, and Elixir
Property-based testing helps you create better, more
solid tests with little code. By using the PropEr frame-
work in both Erlang and Elixir, this book teaches you
how to automatically generate test cases, test stateful
programs, and change how you design your software
for more principled and reliable approaches. You will
be able to better explore the problem space, validate
the assumptions you make when coming up with pro-
gram behavior, and expose unexpected weaknesses in
your design. PropEr will even show you how to repro-
duce the bugs it found. With this book, you will be
writing efficient property-based tests in no time.

Fred Hebert
(374 pages) ISBN: 9781680506211. $45.95
https://pragprog.com/book/fhproper

https://pragprog.com/book/wwgraphql
https://pragprog.com/book/fhproper

Programming Elixir 1.6
This book is the introduction to Elixir for experienced
programmers, completely updated for Elixir 1.6 and
beyond. Explore functional programming without the
academic overtones (tell me about monads just one
more time). Create concurrent applications, but get
them right without all the locking and consistency
headaches. Meet Elixir, a modern, functional, concur-
rent language built on the rock-solid Erlang VM. Elixir’s
pragmatic syntax and built-in support for metaprogram-
ming will make you productive and keep you interested
for the long haul. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(410 pages) ISBN: 9781680502992. $47.95
https://pragprog.com/book/elixir16

Programming Phoenix 1.4
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.4, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert as you build the next generation of web appli-
cations.

Chris McCord, Bruce Tate and José Valim
(356 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix14

https://pragprog.com/book/elixir16
https://pragprog.com/book/phoenix14

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

Adopting Elixir
Adoption is more than programming. Elixir is an excit-
ing new language, but to successfully get your applica-
tion from start to finish, you’re going to need to know
more than just the language. You need the case studies
and strategies in this book. Learn the best practices
for the whole life of your application, from design and
team-building, to managing stakeholders, to deploy-
ment and monitoring. Go beyond the syntax and the
tools to learn the techniques you need to develop your
Elixir application from concept to production.

Ben Marx, José Valim, Bruce Tate
(242 pages) ISBN: 9781680502527. $42.95
https://pragprog.com/book/tvmelixir

https://pragprog.com/book/lhelph
https://pragprog.com/book/tvmelixir

Software Design X-Rays
Are you working on a codebase where cost overruns,
death marches, and heroic fights with legacy code
monsters are the norm? Battle these adversaries with
novel ways to identify and prioritize technical debt,
based on behavioral data from how developers work
with code. And that’s just for starters. Because good
code involves social design, as well as technical design,
you can find surprising dependencies between people
and code to resolve coordination bottlenecks among
teams. Best of all, the techniques build on behavioral
data that you already have: your version-control sys-
tem. Join the fight for better code!

Adam Tornhill
(274 pages) ISBN: 9781680502725. $45.95
https://pragprog.com/book/atevol

Release It! Second Edition
A single dramatic software failure can cost a company
millions of dollars—but can be avoided with simple
changes to design and architecture. This new edition
of the best-selling industry standard shows you how
to create systems that run longer, with fewer failures,
and recover better when bad things happen. New cov-
erage includes DevOps, microservices, and cloud-native
architecture. Stability antipatterns have grown to in-
clude systemic problems in large-scale systems. This
is a must-have pragmatic guide to engineering for
production systems.

Michael Nygard
(376 pages) ISBN: 9781680502398. $47.95
https://pragprog.com/book/mnee2

https://pragprog.com/book/atevol
https://pragprog.com/book/mnee2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/wmecto
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up-to-Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on Twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest Pragmatic developments, new titles, and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/wmecto
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Darin Wilson
	Eric Meadows-Jönsson

	Introduction
	Who This Book Is For
	What’s In This Book
	How To Read This Book
	Online Resources

	Part I—Ecto Fundamentals
	1. Getting Started with Repo
	Ecto and Elixir
	Ecto Modules
	How Ecto Is Organized
	Setting Up the Sample App
	The Repository Pattern
	The Repo Module
	Putting Our Repo to Work
	Customizing Your Repo
	Wrapping Up

	2. Querying Your Database
	Query Basics
	Refining Our Results with where
	Working with Joins
	Composing Queries
	Other Ways to Use Queries
	Wrapping Up

	3. Connecting Your Tables to Elixir Structs with Schemas
	Creating Schemas
	Writing Queries with Schemas
	Inserting and Deleting with Schemas
	Adding Associations to Schemas
	Working with Associations in Queries
	Optimizing Associations with Embedded Schemas
	Deleting Records with Associations
	Using Schemas to Seed a Database
	Wrapping Up

	4. Making Changes with Changesets
	Introducing Changesets
	Casting and Filtering
	Validating Your Data
	Capturing Errors
	Using Changesets Without Schemas
	Working with Associations
	Wrapping Up

	5. Making Multiple Changes with Transactions and Multi
	Running Transactions with Functions
	Running Transactions with Ecto.Multi
	Wrapping Up

	6. Making Changes to Your Database
	Introducing Migrations
	Your First Migration
	Running Migrations
	Rolling Back Migrations
	Adding Indexes
	Changing Data and Table Structure Together
	Specifying Up and Down Operations
	Changing Default Behaviors
	Wrapping Up

	Part II—Ecto Applied
	7. Adding Ecto to an Elixir Application Without Phoenix
	Creating a New Project
	Adding Ecto’s Dependencies
	Creating Your Repo Module
	Adding Ecto to the Supervision Tree
	Using Multiple Ecto Repos
	Starting Your App
	Wrapping Up

	8. Working with Changesets and Phoenix Forms
	Generating a Form for a Single Schema
	Displaying Changeset Errors
	Creating a Form with an Association
	Creating a Form with Multiple Associations
	Wrapping Up

	9. Testing with Sandboxes
	Setting Up an Async Test
	Changing the Ownership Mode
	Safely Sharing Connections with Allowances
	Wrapping Up

	10. Creating and Using Custom Types
	Building on Top of Ecto’s Types
	Adding Custom Types Without the Built-In Types
	Wrapping Up

	11. Inserting and Updating with Upserts
	Performing Upserts Without Schemas
	Performing Upserts with Schemas
	Wrapping Up

	12. Optimizing Your Application Design
	Separating the Pure from the Impure
	Working with Contexts
	Working with Umbrella Applications
	Wrapping Up

	13. Working with Embedded Schemas
	Creating Embedded Schemas
	Adding Embeds to Another Schema
	Making Changes
	Choosing Between Embedded Schemas and Associations
	Wrapping Up

	14. Creating Polymorphic Associations
	Polymorphism in Other Frameworks
	Approach #1: Multiple Foreign Keys
	Approach #2: Using an Abstract Schema
	Approach #3: Using many_to_many
	Wrapping Up

	15. Optimizing IEx for Ecto
	Adding Imports and Aliases
	Adding Helper Functions
	Wrapping Up

	16. Using Schemas Without Tables
	Downsides to Locking Schemas to Tables
	Breaking Up the Artist Schema
	Creating Table-less Schemas
	Saving the Table-less Structs
	Wrapping Up

	17. Tuning for Performance
	Preparing to Optimize
	Optimizing Queries
	Executing Bulk Operations
	Fetching Large Datasets with Streams
	Wrapping Up

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

