

Early praise for Real-Time Phoenix

Real-Time Phoenix is hands down the best book to showcase the power of Phoenix
and Elixir. The example application is exciting to build and explore. Steve is the
perfect guide while sharing his hard won knowledge to help you make informed
decisions about your next project.

➤ Amos King
Founder, Binary Noggin and Elixir Outlaws

In Real-Time Phoenix, Steve covers what you need to know to build a real-time
web application. What sets it apart however is a truly practical approach that
goes beyond simply covering Phoenix Channels, and explains building systems
with the BEAM virtual machine, testing, deployments, and figuring out all kinds
of performance issues or other problems you’ll inevitably encounter. This isn’t
just a getting started book, but a way to get compressed experience without having
to make all the mistakes on your own.

➤ Fred Hebert
Senior Platform Developer, Postmates

Real-Time Phoenix tackles one of the killer features of Phoenix head on. Starting
with a WebSocket, Steve clearly and convincingly explains why Phoenix Channels
is the right technology for real-time applications. At the conclusion of the book,
you’ll have the tools you need to build your own real-time applications using
Phoenix Channels. If you need real-time interactions in your app—and who
doesn’t?—do yourself a favor and get Real-Time Phoenix.

➤ Ben Marx
Principal Software Engineer, Co-Author of "Adopting Elixir"

You’re not going to find a more comprehensive guide on the real-time features of
Phoenix and how to use them. This book doesn’t shy away from the practical as-
pects of a real web application, from managing clients and setting up data
pipelines, to various strategies for updating the UI and handling your service in
production.

➤ Johanna Larsson
Software Engineer, Castle

Real-Time Phoenix is my new go-to guide for bringing real-time features to
customers.

➤ Grant Powell
Senior Software Engineer, SalesLoft

As someone who is new to Phoenix, Real-Time Phoenix does a superb job of ex-
plaining the tools the framework provides that can supercharge your web applica-
tion. Topics of Channels, PubSub, and Tracker will show new and experienced
developers how to leverage WebSockets to power soft real-time features in easy
ways. I cannot recommend this book enough for anyone who is interested in
Phoenix.

➤ John Oxford
Senior Software Engineer, PowerSecure

Real-Time Phoenix
Build Highly Scalable Systems with Channels

Stephen Bussey

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Sean Dennis
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-719-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix
Introduction xi

1. Real-Time is Now 1
The Case for Real-Time Systems 1
The Layers of a Real-Time System 3
Types of Scalability 6
Achieving Real-Time in Elixir 9
Building Real-Time Systems 10
Wrapping Up 10

Part I — Powering Real-Time Applications with Phoenix

2. Connect a Simple WebSocket 15
Why WebSockets? 16
Connecting our First WebSocket 17
WebSocket Protocol 18
Long Polling, a Real-Time Alternative 23
WebSockets and Phoenix Channels 25
Wrapping Up 26

3. First Steps with Phoenix Channels 27
What are Phoenix Channels? 28
Understanding Channel Structure 29
PubSub 37
Send and Receive Messages 38
Channel Clients 45
Wrapping Up 51

4. Restrict Socket and Channel Access 53
Why Restrict Access? 53
Add Authentication to Sockets 54
Add Authorization to Channels 59
Use Authentication from JavaScript 62
When to Write a New Socket 63
Wrapping Up 65

5. Dive Deep into Phoenix Channels 67
Design for Unreliable Connections 67
Use Channels in a Cluster 71
Customize Channel Behavior 74
Write Tests 79
Wrapping Up 89

6. Avoid Performance Pitfalls 91
Measure Everything 92
Keep Your Channels Asynchronous 98
Build a Scalable Data Pipeline 101
Wrapping Up 117

Part II — Building a Real-Time Application

7. Build a Real-Time Sneaker Store 121
From Product Requirements to a Plan 122
Set Up the Project 124
Render Real-Time HTML with Channels 125
Update a Client with Real-Time Data 131
Run Multiple Servers 135
Wrapping Up 140

8. Break Your Application with Acceptance Tests 141
The Power of Acceptance Testing 142
Break Your App Like a User 143
Break Your App Like a Server 148
Automate Acceptance Tests With Hound 153
Wrapping Up 160

9. Build a Real-Time Shopping Cart 161
Plan Your Shopping Cart 162
Scaffold Your Shopping Cart Channel 165

Contents • vi

Build Your Shopping Cart Channel 171
Add Real-Time Out-Of-Stock Alerts 181
Acceptance Test the Shopping Cart 186
Wrapping Up 190

10. Track Connected Carts with Presence 191
Plan Your Admin Dashboard 192
On Track with Phoenix Tracker 194
Use Tracker in an Application 196
Phoenix Tracker Versus Presence 201
Scaffold the Admin Dashboard 202
Track Shopping Carts in Real-Time 207
Assemble the Admin Dashboard 211
Load Test the Admin Dashboard 214
Wrapping Up 216

Part III — Bringing Real-Time Applications to Production

11. Deploy Your Application to Production 221
The Lay of the Land 222
Achieve Scalability with Load Balancing 225
Push New Code Safely 228
Cluster Your BEAM Nodes Together 231
Advanced Phoenix Channel Configuration 233
Wrapping Up 235

12. Manage Real-Time Resources 237
Getting Comfortable with Elixir’s Scheduler 237
Manage Your Application’s Memory Effectively 242
Inspect a Running Application 249
Wrapping Up 253

Part IV — Exploring Front-End Technologies

13. Hands-On with Phoenix LiveView 257
Getting Started with LiveView 258
Build a LiveView Product Page 264
Write Tests for a LiveView 270
Wrapping Up 273

Contents • vii

14. Single-Page Apps with React 275
Manage Channel State in React 276
Write Channels as Components 277
Hands-On with React 280
React Native Channels 287
Wrapping Up 288
The End of Our Journey 289

Bibliography 291
Index 293

Contents • viii

Acknowledgments
Authors have said it before, and I’ll repeat it here: writing a book is a long
effort that requires the input of many people. Because of the people on this
page, the final version of this book is far beyond what I could have produced
when I first started.

The staff at The Pragmatic Bookshelf have been amazing to work with. Thanks
to Jackie Carter, my editor, for your guidance, wisdom, and teachings
throughout this process. Learning how to be a good author was one of my
goals, and you helped teach me the ways. Thanks to Bruce Tate, the Elixir
series editor, for helping me out of several ruts that I fell into along the way,
and for seeing the original vision of this book.

There were many technical reviewers on this book. These people provided
guidance at several points throughout this book. This book certainly benefited
from their suggestions and reviews. A large thanks to each of you: Amos King,
Ben Olive, Chris Keathley, Dan Dresselhaus, Grant Powell, Gábor László
Hajba, Johanna Larsson, John Oxford, Ray Gesualdo, Stefan Turalski, and
Ulisses H. F. de Almeida. Others have also provided suggestions along the
way. If you submitted errata or alerted me to other issues regarding this book,
thank you.

I would not have written a book about Phoenix or Elixir without these projects’
authors. Thanks to the maintainers of these libraries for your tireless work
and quality code. I give a special call-out to Chris McCord, who went above
and beyond to patiently explain the solution to various problems I ran into
when I was learning about Channels.

Thanks to the people in my life who have fueled my curiosity. I would not be
in the position to write this book without the help of my peers and managers
at SalesLoft. Thanks to Brian Culler, Rob Forman, and Scott Mitchell for
supporting me along the way. Thanks to Dr. Carol Wellington of Shippensburg

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

University. You have always pushed me to achieve more than I think I can,
which I appreciate immensely.

Finally, and most importantly, I give special thanks to my fiancée Jess. It
takes a lot of emotional capital to write a book, and you have supported and
assisted me throughout this entire journey more than anyone else.

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Introduction
I remember working on the first production-facing Elixir application I wrote—it
was a real-time application to drive an innovative new feature for our platform.
Excitement, curiosity, and a good bit of nervousness led me through that
project. It was a trial by fire as the application would receive more requests
per minute than any other part of our platform. It still stands today without
much involvement needed over the past years.

I have gotten to work on many other real-time applications since that first
project. The lessons I learned were sometimes hard to come by—a critical
piece of the application would fail, applications would overuse resources like
CPU and RAM, or I would code something in a nonoptimal way. However, I
was able to leverage the strong foundations of Elixir and Phoenix to solve any
problem that appeared. This book aims to collect the experience that I have
gained working with Elixir and Phoenix Channels over the last several years
and distill it into the parts that matter most.

Elixir has changed the way that I think about, design, and code applications.
The creators, community, and libraries empower me to think about code with
a fresh perspective. My time with Elixir has been filled with enthusiasm, to say
the least. Throughout this book, I hope to share that enthusiasm with you.

Who Should Read This Book?
Do you work on modern web applications? Do you want to build applications
that are different than the traditional web model of request-in response-out?
Have you started working on Elixir or Phoenix projects and want to dive
deeper into the ecosystem?

If any of these questions ring a bell for you, then you will probably have a
good experience with this book. If not, you will still find an interesting
approach to modern applications in these pages.

This book is targeted at intermediate to advanced developers. There will be
Elixir code snippets throughout each chapter, but you will be guided through

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

each of them in order to have working examples locally. This book will not
teach you Elixir—there are other books out there that are suited for that task.
However, you will quickly catch on if you have a small amount of existing
Elixir or Phoenix knowledge. You will walk away with a deep understanding
of the real-time Phoenix stack.

About This Book
The three parts of this book build on each other to teach you about WebSock-
ets, Phoenix Channels, and real-time application design. Part I focuses on
the most important part of the real-time stack in Elixir—Phoenix Channels,
WebSockets, and GenStage. We’ll cover a lot of ground in these chapters, and
you will gain the foundations necessary to build real-time applications.

You will leverage the foundations from Part I when we work on a real-time
application in Part II. You will add real-time features to an e-commerce
application that serves many users simultaneously. You will also get to work
with some of the more advanced features of Phoenix, such as Phoenix
Tracker.

Part III finishes the book with guidance on running real-time applications in
production. The battle is only beginning when you write an application. You
have to then keep it healthy and happy in production.

About the Code
Elixir is required for this book, although setup is a bit outside of this book’s
focus. I recommend using a version manager like asdf1 in order to configure
both Erlang and Elixir. Make sure to use a recent version of both—I used
OTP 22 and Elixir 1.9 for all examples. You will also need to have Phoenix
installed for the samples in this book. You can follow the HexDocs Installation
guide2 in order to get Phoenix set up.

Elixir snippets in this book are not formatted according to the Mix formatter,
due to book formatting needs. You can use mix format to make sure all snippets
that you copy or hand-type are formatted properly.

Part II uses an application that comes already started for you. This helps
keep the focus of the book on real-time features rather than the other parts
of the application. You will need to download the base for the project in Part

1. https://github.com/asdf-vm/asdf
2. https://hexdocs.pm/phoenix/installation.html

Introduction • xii

report erratum • discuss

https://github.com/asdf-vm/asdf
https://hexdocs.pm/phoenix/installation.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

II before you can start it. There will be instructions on how to get the project
set up when it’s time to do so.

Online Resources
The examples and source code shown in this book can be found under the
source code link on the Pragmatic Bookshelf website.3 You will also find the
sample application for Part II there.

Please report any errors or suggestions using the errata link that is available
on the Pragmatic Bookshelf website.4

If you like this book and it serves you well, I hope that you will let others
know about it—your reviews really do help. Tweets and posts are a great way
to help spread the word. You can find me on Twitter at @yoooodaaaa, or you
can tweet @pragprog directly.

Stephen Bussey

August 2019

3. https://pragprog.com/book/sbsockets/real-time-phoenix
4. https://pragprog.com/book/sbsockets/real-time-phoenix

report erratum • discuss

Online Resources • xiii

https://pragprog.com/book/sbsockets/real-time-phoenix
https://pragprog.com/book/sbsockets/real-time-phoenix
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 1

Real-Time is Now
Users have higher demands than ever before. It’s no longer good enough to
have fast requests that complete in 100 ms or less. Today’s software users
expect the data on their screen to reflect now, even before they ask for it. You
will win your users’ trust by giving them a seamless application experience
powered by real-time features.

Building a system that provides this real-time data flow and feedback was
previously a challenging endeavor that involved trade-offs in either application
development, maintenance, or run time. These trade-offs can now be reduced
due to modern advances in real-time application development. This means
that developing a real-time application is now in the hands of everyday
developers—you and me.

Elixir has emerged as a language that can more easily solve the challenges
of building and running a real-time application. Advancements in web stan-
dards have enabled new communication layers for interacting with a system
in real-time. This contributes to now being the perfect time for you to learn
how to write real-time applications.

In this chapter, we’ll look at what a real-time system means to us throughout
this book. We’ll see several aspects of how an application can be scalable and
understand the tension that exists between the different types of scalability.
We’ll see how Elixir can help enable the creation of real-time systems in a
way that maximizes all aspects of scalability.

The Case for Real-Time Systems
Today’s software users have high demands, and for good reason. There are
often many different applications that do the same thing; the application that
works the most like the user expects and that minimizes the amount of

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

frustration experienced will be able to win the user’s attention. Real-time
features are a way to ensure that what users know to be true is reflected in
their view of an application, improving the usability and minimizing frustra-
tion. Historically, real-time systems have been difficult to achieve, reserved
only for development teams with large budgets and experience. Now, due to
modern advancements, real-time systems are accessible to every programmer.

Users expect applications to reflect the correct state of the world. Imagine an
online shopping cart for a fashion store. You browsed around and finally
found the perfect item, but there’s only a few left in your size. You were able
to successfully navigate through the checkout process and have entered your
payment information. Just as you checkout, you get a message that your
item is sold out! Your expectations of a simple checkout experience are dashed,
and you are understandably frustrated that you entered your billing informa-
tion, only to not actually buy the item you want.

In the second part of this book, we’re going to build a real-time solution to
this particular problem that will delight our customers in the checkout process
by letting them know that their item is sold out—before they complete the
entire checkout flow.

It’s often not enough to reflect what was true when a page was loaded. In the
case of the above e-commerce application, the item could have been in-stock
when the checkout page loaded and then became out-of-stock while you
entered your billing information. Applications need to be able to reflect the
most up-to-date information without requiring a user to take action. A chat
application, for example, will insert new chats in your window without you
needing to press a “fetch new chats” button. The real-time aspect of a chat
system allows it to be more useful and enjoyable for the people that use it.

Real-time systems have always been important, but it has been costly and
difficult to build them, meaning that real-time features either didn’t work
properly or that they were never added. The hacks used to achieve real-time
communication in older applications, such as using an infinitely loading
IFrame, were brittle and would often break across browsers. This meant that
an application would need to support several different real-time solutions in
order to work properly, which added to the cost of development. Advancements
in technology such as WebSockets and Elixir make it easy for everyone to
add scalable real-time features to their applications. No longer is this critical
user-experience tool reserved for large corporations.

Chapter 1. Real-Time is Now • 2

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We’ll next go into a more technical evaluation of what real-time is. We’ll look
at the layers present in order to understand the various components that
make up our real-time system.

The Layers of a Real-Time System
Real-time applications consist of clients, a real-time communication layer, and
back-end servers working together to achieve business objectives. The coopera-
tion and proper function of each layer is important in developing a successful
application. For example, a bug in the client could prevent proper connection
to the server, which reduces the ability to operate instantly. A defect on the
server could delay or prevent messages being sent to a connected client. Before
we look at the layers of a real-time system, let’s define “real-time.”

There are different levels of guarantee in a real-time system. Hardware systems
that have strict time guarantees are considered to be “hard” real-time. For
example, an airplane’s control system needs to always respond within strict
time limits. This book will look at “soft” real-time applications, also known
as near real-time. Soft real-time applications can have several seconds of
delay when updating the user’s view, with a goal of minimizing the amount
of time the update takes. A soft real-time application should update to the
correct state without user intervention.

The applications in this book are web-based—they utilize a network to receive
requests from and respond to a client. It is possible for real-time applications
to be run in a browser or to leverage a mobile client for user interaction. In
fact, any device capable of networking, such as a stand-alone piece of hard-
ware, could be used as a client for these applications.

Now that our terminology is defined, let’s look at the layers of a real-time
system. You can see the layers in the following figure.

report erratum • discuss

The Layers of a Real-Time System • 3

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Clients connect to a server via a two-way communication layer. Each server
utilizes a server-to-server communication layer to ensure that real-time
messages are delivered across a cluster to the appropriate user. Let’s take a
closer look at each layer.

On the Client
Clients are the entry point to our application from the perspective of users. They
are the frontline of an application and exist to display data and controls to the
user, send user requests to the server, and process incoming messages from
the server in order to update the interface. Clients can exist in any language
that supports networking. It’s most common in the web ecosystem to use
JavaScript to power clients. However, applications written in other languages,
such as Java and Swift, can be used to connect to the same real-time server.

One of the most important functions of a client, in the context of real-time
applications, is to maintain a connection to the server at all times. Without the
proper real-time communication layer, the application won’t function as ex-
pected. This can prove challenging because many users may be accessing the
application from less-than-ideal networks such as a mobile phone or weak Wi-Fi
connection. We’ll see examples of testing how our application behaves in these
conditions in Chapter 8, Break Your Application with Acceptance Tests, on
page 141.

Communication Layer
The communication layer facilitates data exchange between a server and a client.
The communication layer affects how the user experiences the application—if
data is not sent instantly, then the application will feel slow. The communication
layer needs to be reliable—any disconnection could prevent data from being
exchanged. In order to reduce latency, the connection between a client and
the server is often persistent. A persistent connection is one that lasts for
many requests or even for as long as the client wants to stay connected.

Significant improvements in web communication have occurred over the last
few years. The HTTP/1 protocol has been improved upon with HTTP/2. New
techniques and technologies such as server-sent events and WebSockets have
offered new ways to implement real-time communication layers. Improvements
in the communication layer have enabled a wave of modern applications that
satisfy real-time needs of users. This book will focus on WebSockets as a
general solution for the communication layer. We’ll see what a WebSocket is
and why it’s excellent for this task in the next chapter.

Chapter 1. Real-Time is Now • 4

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

It’s important that server and client application code is not tied to a particular
communication technology. Of course, there will always be code that uses
the communication layer, but it can be separated from application behavior
so that improvements over time can be added to an existing application. If
clients and servers are tightly coupled to a communication layer, it may be
very difficult to implement a new communication layer in the future. This
reduces the maintainability of an application.

On the Server
In a real-time application, a client connects to a single server using the
application’s communication layer. The server will keep the connection open
for an extended period of time, often as long as the client wants. This is dif-
ferent than a traditional web request, which uses a short-lived connection.
Real-time applications are similar to traditional web applications in funda-
mental ways—ultimately the server receives a request from a client and pro-
cesses it. One major difference between traditional web requests and real-
time requests is statefulness.

HTTP web requests are stateless, meaning that the server doesn’t maintain
state between requests. A client making HTTP requests must send state, such
as cookies, with each request. A real-time server can associate state, such as
user or application data, with a specific connection. This allows real-time
systems to avoid setting up the world with each request, which means that
your application will do less work and respond to requests faster.

A client connects to a single server, but an application has many clients
issuing requests. It is important for resilience and performance to have mul-
tiple servers capable of serving requests. In a stateless web-request world, it
is possible for each server to exist in near-isolation so that one request doesn’t
affect another directly. In a real-time application, it is often desirable and
even required to have servers that can talk to each other. For example, real-
time chat servers would communicate with each other about who is connected
and who needs to receive a particular message.

Applications that maintain state and behavior across multiple instances are
called distributed systems. Distributed systems can bring many benefits,
especially in performance, but they also come with many challenges. Today,
most systems are distributed. You get to decide whether to build them yourself
or let the infrastructure do the work, but the best developers will need to
understand the trade-offs either way.

report erratum • discuss

The Layers of a Real-Time System • 5

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We’ll spend the most time in this book focusing on the server side of our real-
time application. Every layer is important in the proper functioning of our
application, but the server has the highest potential for encountering scala-
bility problems due to the complexity of dealing with many independent
clients.

Types of Scalability
Applications may be small or large depending on the needs of the project.
Throughout this book, we’ll be looking at how to develop systems that can
scale to a large number of users while still maintaining the properties of
scalability. Scalable does not just mean performance, although it’s an
understandable definition to use. We have to consider multiple types of scal-
ability such as performance, maintenance, and cost in order to be successful
with our applications over long periods of time. Let’s take a look at the different
types of scalability.

Scalability of Performance
Performance is the most common consideration of scalability. As our applica-
tion gains more users, more data, and more features, we want it to be fast
and responsive. An application that has successfully scaled performance-wise
will have similar, or at least acceptably slower, response times with 1000
client connections as it does with 50,000 client connections. Later in this
chapter, we’ll cover why Elixir’s virtual machine, the BEAM, is well-suited to
scale to many users.

There are many aspects of performance that will affect our real-time applica-
tion. As with standard web applications, the data store will be a very likely
culprit of performance problems as an application grows. There are perfor-
mance considerations that affect real-time applications but may not affect
non-real-time applications. For example, you will need to share information
about a large number of real-time connections between the servers of your
application, which is something you wouldn’t need to do in a non-real-time
application.

We’ll see common performance pitfalls and solutions in Chapter 6, Avoid
Performance Pitfalls, on page 91.

Scalability of Maintenance
Maintenance scalability is a deeply important concern to the developers of
an application. Maintenance occurs when we add new features, debug issues,
or ensure uptime of an application over time. Poor maintainability means

Chapter 1. Real-Time is Now • 6

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

that developers have to spend more time—often in frustration—when adding
features or diagnosing existing problems in an application.

Maintenance is a hard concern to optimize because we can often be blind to
things that will be problematic in the future. We may leverage a new technique
or tool that we anticipate will make changes easier in the future, but the exact
opposite could happen! Our perception of what is maintainable could also
change over time; new developers on a project may not have as much experi-
ence with a technology, which makes maintenance more challenging for them.
This begs the question of how we can stay ahead of maintenance and ensure
that development on our application is easy in the future.

Leveraging programming best practices and clear boundaries in our application
is a time-tested way to ensure future maintenance. Luckily for us, Elixir gives
us the ability to write our systems with very clear layers and boundaries.
Layers can nominally increase the amount of computation in our application,
but well-designed layers give us many maintenance benefits by making it
easier for us to make changes.

Throughout this book, we’ll see examples of how to design real-time applica-
tions that are easy to understand and change in the future. We’ll build a
larger project that satisfies real-world business needs in Part II, Building a
Real-Time Application, on page 119. We’ll also be leveraging the power of a
framework that doesn’t tie itself to a particular communication layer. This
clear boundary between application and communication layers will start us
off on a good footing for writing maintainable applications.

Scalability of Cost
Cost is something that is easy to take for granted. As developers, we are often
separated from the financial cost of our applications. However, we are able
to control several different components that contribute to the cost of our
application. We are able to conserve, or spend, server resources such as CPU,
memory, and bandwidth. We will also experience costs associated with future
development time that we want to minimize.

Elixir, and more specifically Erlang/OTP applications, can have relatively low
costs compared to other languages. There are examples of large Erlang
applications, such as WhatsApp, running with millions of users, but with a
small number of servers and a small team of engineers. These types of success
stories are rare, of course, and depend on the type of application being
developed, but the technology has been vetted and proven to be successful
at keeping costs low in large applications.

report erratum • discuss

Types of Scalability • 7

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Tension of Scalability

The different types of scalability exist in tension with each other. This can
end up causing our applications to reduce one type of scalability when we
increase another. It would be ideal if we could maximize every type of scala-
bility perfectly, although the reality is that this is very difficult to do. You
might know the old rule of thumb: “fast, reliable, cheap—pick two.” This is
certainly true for many systems that we develop, although we’re often able
to keep this in control by caring about it when we start developing an appli-
cation. Let’s look at how the different types of scalability can hold each other
in tension.

Performance vs. Cost

You can often increase application performance by paying for additional
server resources—throwing hardware at the problem. This technique is used
to improve performance without addressing the root cause that is causing
the performance problem. Spending money on a performance problem may
indeed be the right choice if a problem has been heavily evaluated by the
development team and determined to be costly in development hours to fix.
It may also be early in an application’s existence and new feature development
is prioritized over performance.

An example of acceptably reducing cost while also reducing potential perfor-
mance is to scale the number of servers down during periods of application
inactivity. You can be successful in reducing cost this way, as long as the
application is able to properly serve requests.

Performance vs. Maintenance

Writing high-performance code can also mean writing complex and harder-
to-maintain code. One way to increase application performance is to reduce
or remove boundaries in code. For example, tightly coupling a communication
layer to the server implementation could allow for a more-optimized solution
that directly processes incoming requests. However, boundaries exist for the
purpose of creating more understandable and maintainable code. By removing
the layers, we could potentially reduce the ability to maintain the code in the
future.

Most applications should focus on maximizing maintenance ability as this
allows new features to be easily added over time. However, there may come
a point when performance needs become greater than the need to add new
features.

Chapter 1. Real-Time is Now • 8

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Maintenance vs. Cost

Maintenance involves people, and people are expensive. By reducing the difficulty
of maintenance, you can save development hours in the future and reduce
cost. You can also minimize cost by not fixing technical debt over time, which
could reduce immediate costs but potentially increase maintenance costs.

Maintenance and cost are often very important to technical managers or non-
technical stakeholders in an organization. As developers, we must consider
their perspective to help ensure the long-term success of our projects.

All of the various components of scalability affect each other. The real world
is full of trade-offs and decisions that may be outside of your control.
Understand the concerns of scalability with key stakeholders in order to
inform decisions you make on a project.

Achieving Real-Time in Elixir
Elixir is a functional programming language that enables scalable application
development. Elixir is a low-ceremony language—it places an emphasis on
expressive syntax that conveys the meaning of code quickly. These properties
help to reduce the complexity of code and, by proxy, help to improve mainte-
nance scalability over time.

Elixir builds on top of Erlang/OTP to provide an excellent foundation for soft
real-time applications. Elixir leverages lightweight virtual machine processes,
often implemented as GenServers, that allow for encapsulation and modeling
of the various components of a real-time system. It’s possible to scale Elixir
applications to multiple cores without any special constructs, just as it is
simple to connect servers together to form a cluster. This means that Elixir
applications can scale up vertically on a single large machine or horizontally
to many machines in order to meet the needs of different usage profiles.

Any system that we write, especially a real-time system where time matters,
should have reliable isolation of data and isolated error handling. A classic
example to consider, very relevant to the Erlang ecosystem due to its history
in telecom, is a phone system. When two people are talking on the phone, we
expect that their conversation is private (data isolation) and also that their
call will not end before they hang up. Two people talking on the phone should
not be able to cause a crash of any other users, even if their call encounters
a bug (error isolation). Data isolation and error isolation are handled for us,
nearly freely, by using separate OTP processes for different elements of our
real-time system.

report erratum • discuss

Achieving Real-Time in Elixir • 9

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Elixir is a fantastic choice for development of real-time systems due to its
usage of Erlang/OTP and functional design, but it is possible to experience
issues in an Elixir application when using a software design that doesn’t take
advantage of Elixir’s strengths. We’ll focus on clean OTP design throughout
this book in order to promote best practices and, ultimately, success with
our application.

Building Real-Time Systems
In this book, you’re going to learn how to build real-time systems, but first
we’re going to walk through the foundations of real-time communication.
When you understand the foundations that real-time systems in Elixir are
built on, you will be able to build and debug applications more easily.

Elixir is a great choice for developing real-time systems, but it is just a lan-
guage. We will leverage several different Elixir libraries for building our real-
time systems—the most important one is Phoenix. Phoenix1 is a web framework
written in Elixir that drives productive web application development. One
component of Phoenix that we will use for building real-time systems is
Phoenix Channels. You’ll start learning about Channels in Chapter 3, First
Steps with Phoenix Channels, on page 27.

Elixir and Phoenix have different libraries that will help you build real-time
systems. You’ll learn about GenStage in Chapter 6, Avoid Performance Pitfalls,
on page 91 and Phoenix Tracker in Chapter 10, Track Connected Carts with
Presence, on page 191. By the end of this book, all of the different libraries will
have come together and you will have built a real-time e-commerce application.

Wrapping Up
Real-time applications help you to win your users’ trust by creating an expe-
rience that always reflects the current state of their data. This seamless
experience has become table stakes in modern applications. Real-time appli-
cations consist of clients, a real-time communication layer, and back-end
servers working together to achieve business objectives. Any client capable
of an internet connection can connect to a real-time server, which allows you
to write a single application that can be utilized by many different types of
clients.

You must plan for scalability when building a real-time application. There
are multiple types of scalability that are important to consider: performance,

1. https://phoenixframework.org/

Chapter 1. Real-Time is Now • 10

report erratum • discuss

https://phoenixframework.org/
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

maintenance, and cost. These different aspects of scalability are always in
tension with each other. They influence the different decisions you make in
how you write and run applications.

Elixir is a not-so-secret weapon for developing real-time applications, and
using it creates a setting for success. It allows us to maximize the different
aspects of scalability for an application while reducing trade-offs. This isn’t
necessarily unique to Elixir, but it has allowed it to become positioned as a
forerunner in the real-time application space.

In the next chapter, we’re going to look at the real-time communication layer.
We’ll see how WebSockets are an excellent general purpose communication
layer that can efficiently satisfy a variety of real-time needs. We will dissect
a WebSocket connection using developer tools in order to understand the
protocol more deeply. This will prepare us to move into building real-time
applications.

report erratum • discuss

Wrapping Up • 11

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Part I

Powering Real-Time Applications
with Phoenix

In this first part, we will learn the fundamentals of
real-time applications powered by Phoenix Chan-
nels. We’ll be diving deep in order to fully under-
stand the different challenges we may face in real
applications and how to solve those challenges
before they become large issues.

CHAPTER 2

Connect a Simple WebSocket
Real-time systems are all about getting data from the server to the user, or
vice versa, as quickly and efficiently as possible. A critical piece of a real-time
system is the communication layer that sits between the server and the user.
The user may be on a browser, a mobile app, or even another server. This
means that we want to pick a communication layer that can work well in a
variety of different circumstances, from high-latency mobile connections to
very fast connections.

In this book, we’ll use WebSockets as our communication layer; they form
the backbone of real-time web applications today. This may change as tech-
nology evolves over time, but it’s the best solution in the current technology
landscape. We’ll start building real-time applications in the next chapter, but
first we’re going to break down how WebSockets work. Understanding Web-
Sockets is crucial in order to build and deliver real-time applications to users.
We’ll use a “Hello, World!”-style Phoenix application to see the communication
of a WebSocket. Once this application is running, we’ll look at the different
components of a WebSocket to understand how they work.

You can build a real-time system without understanding all the different
layers, such as WebSockets, but lacking this knowledge may hurt you in the
long run. I remember shipping my first real-time Phoenix application where
I didn’t fully understand all the layers involved. My WebSockets weren’t able
to connect! I researched and realized that I needed to understand more about
WebSockets in order to get them working with my production load balancer
and to reduce my application’s memory usage. Learning more about the dif-
ferent layers allowed me to ensure each was working properly.

Let’s look at what a WebSocket is and then move into our “Hello WebSocket”
application.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Why WebSockets?
It used to be difficult to write real-time systems due to technology limitations
at the communication layer. Developers of real-time systems had to make
trade-offs between performance, cost, and maintenance; the complicated
techniques used often pushed browsers to the limit of their capabilities. Those
techniques were highly dependent on the particular web browser used. This
meant that a client would be working correctly in one browser but not work
in another.

The RFC for the WebSocket protocol emerged with the HTML5 spec in 2011
to solve the challenges of real-time web communication. It took a bit of time
for WebSockets to gain support, but they are now supported natively by all
major browsers and can be considered mature for application development.
We’ll be using WebSockets as the primary communication layer in this book
because of these strengths:

• WebSockets allow for efficient two-way data communication over a single
TCP connection. This helps to minimize message bandwidth and avoids
the overhead of creating frequent connections.

• WebSockets have strong support in Elixir with the cowboy web server.1

They map very well to the Erlang process model which helps to create
robust performance-focused applications.

• WebSockets originate with an HTTP request, which means that many
standard web technologies such as load balancers and proxies can be
used with them.

• WebSockets are able to stay at the edge of our Elixir application. We can
change out our communication layer in the future if a better technology
becomes available.

WebSockets are powerful. This is evident by the popular and successful appli-
cations built using them. Facebook Messenger2 uses WebSockets to send and
receive real-time chats from user clients, allowing Messenger chats to feel
snappy. Yahoo Finance3 uses WebSockets to power their real-time stock ticker
across global financial markets. Multiplayer games such as Slither4 are very
popular (not to mention fun!) and are powered completely via WebSockets.

1. https://github.com/ninenines/cowboy
2. https://messenger.com
3. https://finance.yahoo.com
4. https://slither.io

Chapter 2. Connect a Simple WebSocket • 16

report erratum • discuss

https://github.com/ninenines/cowboy
https://messenger.com
https://finance.yahoo.com
https://slither.io
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

I first dug into the nuts and bolts of WebSockets while developing systems
at SalesLoft,5 an enterprise software as a service (SaaS) company. We use
WebSockets to power many important features for our business users, such
as real-time notifications and live website information. We send hundreds of
millions of events over WebSockets each day.

Enough talk, though, it’s time for some action! We’ll use a small local Elixir
application that exposes a WebSocket in order to see how to connect a Web-
Socket and how data can be sent over it. You will use this technique to inspect
and debug our applications later in the book.

Connecting our First WebSocket
To get up and running quickly, we’re going to leverage Phoenix’s6 initial project
scaffold. This is a good time to go back to Introduction, on page xi in order
to make sure that Elixir and Phoenix are set up properly on your system.

We will use mix phx.new to create our first example. You will be prompted to
“fetch and install dependencies” during this process. Enter Y in order for the
project to be started without manual steps.

$ mix phx.new hello_sockets --no-ecto
* creating hello_sockets/config/config.exs
...
Fetch and install dependencies? [Yn] Y
...

We’ll need to perform one more step to get the sample WebSocket to load.
Let’s remove the comment on the socket line:

hello_sockets/assets/js/app.js
// Import local files
//
// Local files can be imported directly using relative paths, for example:
import socket from "./socket"

Run mix phx.server in the hello_sockets folder to start the server. If you get an
error when starting the server, double check that you are in the right folder
and that you do not already have a program running on port 4000.

Once started, you will see the program running on port 4000:

5. https://salesloft.com
6. https://phoenixframework.org/

report erratum • discuss

Connecting our First WebSocket • 17

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/app.js
https://salesloft.com
https://phoenixframework.org/
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

$ mix phx.server
Compiling 12 files (.ex)
Generated hello_sockets app
[info] Running HelloSocketsWeb.Endpoint with cowboy 2.6.3 at 0.0.0.0:4000
[info] Access HelloSocketsWeb.Endpoint at http://localhost:4000

Webpack is watching the files…
...

We’ll use this basic WebSocket application in this chapter to observe how a
WebSocket connects and transmits data. It is important to poke around and
understand WebSockets so you can debug them more effectively in the future.
As you’re developing an application, you will spend a fair amount of time
looking at what data is being sent to and from the WebSocket.

WebSocket Protocol
WebSockets follow a formal protocol that is implemented by browsers and
servers. We will make use of several parts of the WebSocket protocol, but we
will not use the entire protocol. In this section, we’ll focus on the most basic
parts of the protocol. You’ll learn how to establish a connection, keep the
connection alive, send and receive data, and keep the WebSocket secure.

Using the WebSocket RFC

The RFC for the WebSocket Protocola doesn’t make for the most entertaining, or
lightest, reading. However, the RFC is highly valuable if you find yourself doing deep
debugging into a WebSocket implementation. In this chapter, we’ll use Chrome Dev-
Tools to inspect how a WebSocket works, but you may benefit from advanced features
listed in the RFC.

The RFC can be especially useful if you have extremely tight technical requirements
that are not met by the standard WebSocket implementation. However, the standard
implementation provided by Phoenix will work for nearly everyone.

a. https://tools.ietf.org/html/rfc6455

We’ll use Google Chrome’s7 DevTools to walk through the next example. Any
browser with the ability to inspect a WebSocket could be used, although each
browser’s DevTools vary in look and functionality. WebSockets are supported
by all major browsers,8 which means that you and your users will be able to
use WebSockets from any modern device.

7. https://www.google.com/chrome/
8. https://caniuse.com/#feat=websockets

Chapter 2. Connect a Simple WebSocket • 18

report erratum • discuss

https://tools.ietf.org/html/rfc6455
https://www.google.com/chrome/
https://caniuse.com/#feat=websockets
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Establishing the Connection
Load the HelloSockets webpage by visiting http://localhost:4000. You will see the
default generated Phoenix start screen. What we want to see is hiding from
us, and we’ll use the DevTools to view it. You can open the DevTools via right-
click > Inspect on the webpage. You’ll see a variety of tabs, but we want to select
the “Network” tab. Once there, reload the webpage in order to capture the
connected WebSocket.

Chrome Network Tab Missing Connections

Chrome only shows requests since DevTools was opened. This can
lead to a lot of hair-pulling when you’re troubleshooting a problem.
Reload the webpage if you can’t locate your WebSocket connection.
Turning it off and on again always works, right?

Select the “WS” tab in order to only show WebSocket connections. Look for
the connection labeled websocket?token=undefined&vsn=2.0.0. You may see another
connected WebSocket because Phoenix comes with a developer code reloader
that operates over a WebSocket, but you can ignore that one. Once you click
into the connection, you will see something like this:

In this image, you can see a few things that reveal how a WebSocket connects.
The first is that there are request headers, response headers, and an HTTP
method (GET).

A WebSocket starts its life as a normal web request that becomes “upgraded”
to a WebSocket. We can see this if we use cURL on the WebSocket endpoint.
You’ll need several required headers to make this work. The easiest way to
generate the cURL request is to right-click the request labeled websock-
et?token=undefined&vsn=2.0.0 under the “name” column and then select the “copy
as cURL” option. This will copy a cURL request to a ws protocol URL. Next,

report erratum • discuss

WebSocket Protocol • 19

http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

paste the cURL request into your favorite editor and replace ws:// with http://.
Run this request in your terminal with the -i flag added. You’ll end up with a
request that looks like this:

cURL command abbreviated, paste your copied command
Include all of the headers that came with the copied command
$ curl -i 'http://localhost:4000/socket/websocket?vsn=2.0.0' -H...
HTTP/1.1 101 Switching Protocols
connection: Upgrade
date: Fri, 12 Apr 2019 01:29:18 GMT
sec-websocket-accept: afAAVeJV/iyu1ZxFEE6HMzL0ha0=
server: Cowboy
upgrade: websocket

Our web request has received a 101 HTTP response from the server, which
indicates that the connection protocol changes from HTTP to a WebSocket.
WebSockets operate over a TCP socket using a special data protocol, with the
initial HTTP request ensuring that the connection is compatible with browsers
and server proxies. The same TCP socket that the HTTP connection request
went over becomes the data TCP socket after the upgrade—this allows Web-
Sockets to only use a single socket per connection. WebSockets were designed
for allowing browsers to connect to a TCP socket through HTTP, but it is
completely acceptable to use them in non-browser environments such as a
server or mobile client.

The following figure is a flow diagram of the WebSocket connection process.

To summarize, a WebSocket connection follows this request flow:

1. Initiate a GET HTTP(S) connection request to the WebSocket endpoint.
2. Receive a 101 or error from the server.
3. Upgrade the protocol to WebSocket if 101 is received.
4. Send/receive frames over the WebSocket connection.

Chapter 2. Connect a Simple WebSocket • 20

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

A connection cannot be upgraded with cURL, so we’ll move back to DevTools
for seeing the data exchange.

Sending and Receiving Data
When you opened the DevTools, you may have noticed a “Messages” tab. This
tab shows all messages that are sent to or received from the server. The
DevTools for our app looks like this:

You can ignore the error message for now; the important thing to note is that
a WebSocket is capable of sending messages (green background) and receiving
messages (white background). This two-way data transmission can happen
in both directions simultaneously. A connection which is capable of two-way
data transmission is called a full-duplex connection.

WebSockets transmit data through a data framing protocol.9 We can’t see it
with the DevTools, but it’s worth knowing this provides security benefits and
allows WebSocket connections to work properly through different networking
layers. These traits allow us to more confidently ship WebSocket-powered
applications into production.

The WebSocket protocol contains extensions that provide additional function-
ality. Extensions are requested by the client using the Sec-WebSocket-Extensions
request header. The server can optionally use any of the proposed extensions
and return the list of active extensions to the client in a response header
named Sec-WebSocket-Extensions. WebSocket data frames are not compressed by
default, but can be compressed by using the permessage-deflate extension. This
feature allows bandwidth to be reduced at the cost of processing power, which
is a benefit for some applications.

Staying Alive, Keep-alive
We have a WebSocket connection that is sending and receiving data, now we
have to ensure that the connection stays alive. A disconnected WebSocket is
unable to send or receive data. There are things we could do to provide some

9. https://tools.ietf.org/html/rfc6455#section-5

report erratum • discuss

WebSocket Protocol • 21

https://tools.ietf.org/html/rfc6455#section-5
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

guarantees if a WebSocket disconnects, but we want to base our application
on a solid foundation.

The WebSocket protocol specifies Ping and Pong frames10 which can be used
to verify that a connection is still alive. These are optional, though, and you’ll
soon see that Phoenix doesn’t use them. Instead, clients send heartbeat-data
messages to the Phoenix Server they’re connected to every 30 seconds. The
Phoenix WebSocket process will close a connection if it doesn’t receive a ping
within a timeout period, with 60 seconds the default. With Phoenix, it is
possible to use a WebSocket ping control frame to keep the WebSocket con-
nection alive, but the official Phoenix client doesn’t use it.

A predictable heartbeat for the connection turns out to be very useful. A
connection can be dead but not closed properly; this causes the connection
to stay active on the server. A connection that is active but without a client
on the other side wouldn’t be sending a heartbeat, so it closes gracefully after
a short period of time.

It is useful that the client manages the heartbeat rather than the server. If the
server is in charge of sending pings to a client, then the server is aware of the
connectivity problem but cannot establish a new connection to the client. If a
connectivity problem is detected by the client via its ping request, the client can
quickly attempt to reconnect and establish the connection again.

Security
Security is very important in the WebSocket protocol. Connections need to
be secure from malicious actors looking to intercept data. They also need to
be kept secure from proxies that may cache data incorrectly. One of the
benefits of picking a well-established technology like WebSockets is that a lot
of these security concerns are handled for us. However, there are a few things
that we must do in order to have secure WebSocket applications.

Our HelloSocket example violates one of the most important rules of WebSock-
et connections: always use wss:// URIs to ensure a secure connection. We use
ws:// in our example because it doesn’t involve signing a local certificate for
SSL, but you should always use wss protocol in production to ensure security.
If you are using https to access your webpage, then you are required to use
the wss protocol by the browser.

WebSocket connections can come from any webpage or other types of clients.
The connection request sends a variety of headers to the server when it

10. https://tools.ietf.org/html/rfc6455#section-5.5.2

Chapter 2. Connect a Simple WebSocket • 22

report erratum • discuss

https://tools.ietf.org/html/rfc6455#section-5.5.2
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

initiates (you can see these in the WebSocket “Network” tab). The Origin
header of every connection request should be checked to ensure that it is
coming from a known location. It is possible that this header was spoofed by
a non-browser client, but browser security increases when we check the Origin
header. Phoenix provides out-of-the-box support for checking the Origin
header. We’ll use it when we configure our real-time project later in this book.

WebSockets do not follow the same rules as standard web requests when it
comes to cross-origin resource sharing (CORS)—the WebSocket connection
request doesn’t use CORS protections at all. Cookies are sent to the server,
even if the page initiating the request is on a different domain than what the
cookies specify. These cookies aren’t readable by the initiating page, but they
would allow access to the server when access should be denied. There are
strategies that can help solve this problem, such as origin checking or cross-
site request forgery (CSRF) tokens.

As a way to prevent CSRF attacks, Phoenix has historically disallowed cookie
access when establishing a WebSocket connection. Phoenix now supports
access to the session when a CSRF token is provided to the WebSocket con-
nection. We’ll cover different authentication solutions in Chapter 4, Restrict
Socket and Channel Access, on page 53.

Long Polling, a Real-Time Alternative
WebSocket is not the only real-time communication technology that can be
used in your applications. You may have restrictions in your application’s
environment that prevent using a WebSocket, such as having very inconsistent
client connectivity due to your application’s user profile. There may even be
a newly emerged technology since this book was published that provides even
better two-way web communication. It is important for the maintenance of
our application that we do not design it solely around WebSocket usage.
Remember, we have a WebSocket-powered application, not a WebSocket
application.

A less efficient but still viable real-time communication layer is HTTP long
polling. Phoenix ships with long polling support out-of-the-box, which means
that we can add it very easily to our server when necessary. We can even run
WebSockets in tandem with HTTP long polling. Let’s look at how long polling
works, where it is useful, and where it can fall short.

report erratum • discuss

Long Polling, a Real-Time Alternative • 23

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

What is Long Polling?
HTTP long polling11 is a technique that uses standard HTTP in order to
asynchronously send data to a client. This fits the requirement of a real-time
communication layer that can send (long poll response) and receive (client
request) data from a client. Long polling is the most frequently used predeces-
sor to WebSockets, predating it by several years. This means that the tech-
nique is very stable, despite its disadvantages.

Long polling uses a request flow as follows:

1. The client initiates an HTTP request to the server.

2. The server doesn’t respond to the request, instead leaving it open. The
server will respond when it has new data or too much time elapses.

3. The server sends a complete response to the client. At this point the client
is aware of the real-time data from the server.

4. The client loops this flow as long as the real-time communication is
desired.

The key component of the long polling flow is that the client’s connection to
the server remains open until new data is received. This allows data to be
immediately pushed to the connected client when it’s available. Long polling
is a viable technique for real-time communication, but there are challenges
with it that make WebSockets a clearly better choice for our applications.

Should You Use Long Polling?
Long polling is an interesting technique because it is based solely on top of
HTTP, compared to WebSockets which uses HTTP only for a small part of its
flow. But, long polling does have some limitations. Here are some, but not
all, of the challenges that you may face when using long polling. There is a
more exhaustive list of issues maintained by the IETF,12 which is a must read
if you’re going to use long polling in production.

1. Request headers are processed on every long poll request. This can,
potentially, dramatically increase the number of transmitted bytes which
need to be processed by the server. This isn’t optimal for performance.

2. Message latency can be high when a poor network is being used. Dropped
packets and slower data transit times can make latency much higher

11. https://tools.ietf.org/html/rfc6202#section-2
12. https://tools.ietf.org/html/rfc6202#section-2.2

Chapter 2. Connect a Simple WebSocket • 24

report erratum • discuss

https://tools.ietf.org/html/rfc6202#section-2
https://tools.ietf.org/html/rfc6202#section-2.2
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

because multiple connections have to complete in order to reestablish
the long polling connection. This can affect how real-time the application
feels.

Both of these problems can affect performance and scalability of our applica-
tion, which would be bad if the system becomes heavily used. WebSockets
are not prone to these performance issues because the data transmission
protocol is much lighter than full HTTP requests, requiring less data overhead
and network round trips.

There are times that long polling can be useful, however. Long polling connec-
tions can be load-balanced across multiple servers easily, because the con-
nections are being established often. WebSockets can be tricky to load balance
if the connections have a long life; longer connections provide fewer opportu-
nities to change which server a client is connected to. Another benefit of long
polling is that it can transparently take advantage of protocol advancements,
such as future versions of HTTP. Google, a well-known innovator of internet
protocols, leverages a custom form of long polling to power certain real-time
applications.

Phoenix ships with both a WebSocket and a long polling communication layer
out-of-the-box. A client can change from WebSocket to long polling if some-
thing goes wrong, such as poor network connectivity. There are other real-
time communication techniques that Phoenix does not ship with natively.
Server-sent events,13 for example, provides one-way data flow from the server
to a client. The benefit and flexibility of the WebSocket protocol, especially
when combined with Phoenix, enables you to write dependable and performant
real-time software.

WebSockets and Phoenix Channels
WebSockets map very well to the Erlang/OTP actor model and are leveraged
by one of the stars of Phoenix: Channels. WebSockets are the primary com-
munication layer for Channels. This provides Channels with a solid foundation
on which to build real-time applications. We’ll be using Phoenix Channels
with WebSockets throughout this book.

Maybe you’re worried that WebSockets will cause high resource usage in your
application. Don’t worry! Phoenix and Elixir make it easy to have tens of
thousands of connections on a single server. Each connected Channel and
WebSocket in your application has independent memory management and

13. https://hex.pm/packages/sse

report erratum • discuss

WebSockets and Phoenix Channels • 25

https://hex.pm/packages/sse
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

garbage collection because of OTP processes. An advantage of this process-
based architecture is that WebSocket connections which are not being used
often can be stored in a hibernated state, which consumes very little memory.
This is great for scalability.

As we’ll see in the next chapter, Channels use several levels of processes
which provide fault tolerance and reduced memory usage across our applica-
tion. This is very important for scaling our real-time application because it
prevents application bottlenecks (points in code that slow down our system)
from forming. You’ll see tips throughout this book on how to avoid performance
problems by following proper programming and deployment practices.

We will dive much deeper into Phoenix Channels in the next chapter. We’ll
look at how Channels are modeled into distinct layers using OTP processes,
and how that provides us with a fault-tolerant and high-performance system.

Wrapping Up
The WebSocket protocol provides a strong real-time communication layer for
our real-time applications. WebSockets start as normal HTTP requests before
being upgraded to TCP sockets for data exchange. This allows WebSockets
to work well with current web technologies and also lets them leverage faster
data transport by using a single connection with minimal protocol overhead
for each message. There are many successful and large products in production
using WebSockets. This gives us more confidence in the stability and state
of this technology.

WebSockets are a solid foundation for real-time systems and are what we’ll
predominately work with throughout the examples in this book. Many of the
concepts presented in this chapter will reappear in future chapters in different
ways. In particular, the concepts of data exchange and security will be appearing
often as they are critical for the development of real-world applications.

In the next chapter we’ll take our first steps with Phoenix Channels. We will
learn the foundations of Channels in order to develop our real-time application
toolkit, which we’ll use to create a real-world application in later chapters.

Chapter 2. Connect a Simple WebSocket • 26

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 3

First Steps with Phoenix Channels
Real-time applications exist at the intersection of a communication layer and
business logic that satisfies the needs of users. We covered the communication
layer in the previous chapter, but we haven’t yet walked through how to build
real applications with business logic.

In this chapter, we’ll look at a popular and well-designed framework that
allows development of real-time applications: Phoenix. Phoenix Channels are
the most powerful real-time abstraction that currently exists in the Elixir
community, and we will be exploring their basics in order to develop a real-
time foundational toolkit. After an introduction to the different components
of Channels, we will see specific examples of how they can be used and how
we can structure our application around them.

Channels will be at the core of our real-time application. We’ll see them in
every chapter throughout the rest of this book, due to how greatly they enable
simple and flexible real-time application design. When you understand all
the details of Channels, you can make applications that deliver exceptional
real-time user experiences.

It will take some time to fully understand all of the ins and outs of how to
use Channels. We’ll start our journey by looking at what a Channel allows
us to do and going over the different components that comprise Channels.
We’ll send and receive real-time messages powered by an Elixir server, before
moving on to the client side with JavaScript examples. We’ll see more
advanced concepts in the next chapter before writing a real-world application
in part II.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

What are Phoenix Channels?
Phoenix1 is a web framework written in Elixir that drives productive web
application development. One of the components of Phoenix is Channels, a
way to effectively write bidirectional real-time web applications. They allow
us to write our application code without worrying about details such as “how
is the connection set up and maintained?” or “how can I scale the number of
connections easily?” We don’t have to use Channels in order to write our real-
time applications, but Channels prevent us from needing to reinvent the wheel
for each application we write. Plus, Channels are fairly generic, which makes
them applicable to any type of real-time application.

Channels work, at a high level, by allowing clients to connect to the web
server and subscribe to various topics. The client then sends and receives
messages over its subscribed topics. A client subscribes to as many topics
as desired on a single connection, which reduces the number of expensive
connections. Later in this book, you’ll see a way to break up Channel connec-
tions so you can take advantage of reduced connections while still having a
properly working application. Once a client is connected to a Channel, it
sends data to the server or receives data from the server through the Channel.
The flow, from a client’s perspective, works in this simple way:

In addition to the client perspective, we must also think about Channels from
the perspective of the server. Channels are built using strong OTP application
design. Every layer that makes up Channels is represented by separated OTP
processes that allow for fault tolerance and simpler application design. You
will benefit from this foundation without needing to worry too heavily about
it. Even though OTP concepts are seen in nearly every Elixir application we
write, the details of Channels’ OTP design are largely hidden from our imme-
diate view. This allows even Elixir beginners to use Channels to write perfor-
mant and maintainable applications.

One of the benefits of Channels is that they are transport agnostic. In the
last chapter we covered the real-time communication layer, with a focus on
WebSockets, where you learned that our application is powered by a real-time
layer but isn’t defined by it. This means that, in an ideal world, we should

1. https://phoenixframework.org/

Chapter 3. First Steps with Phoenix Channels • 28

report erratum • discuss

https://phoenixframework.org/
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

have a way to easily switch out the real-time layer without changing applica-
tion logic. A transport-agnostic tool, like Channels, makes this a possibility
because Channels draw clear seams across different parts of the system.

The power of Channels will become unlocked when we understand a bit more
about their structure and how they fit into an application’s design. But we have
to start somewhere a bit simpler first by looking at the different layers of Channels
and how they fit together to provide us with a stable real-time foundation.

Understanding Channel Structure
Frameworks often add several layers between the user and the business logic.
Don’t worry if you feel a bit intimidated when you first look at Channels and
see the different layers being used. You’ll understand each layer and its pur-
pose as you progress through this chapter and book. This will help you to
leverage Phoenix with a great amount of confidence.

Let’s look at a high-level diagram to understand the different processes and
connections that exist in Channels:

A client connects to the server via transport mechanism such as a WebSocket,
by connecting directly to an OTP process that manages the connection. This
process delegates certain operations, such as whether to accept or reject the
connection request, to our application code that implements the Phoenix.Socket
behaviour.

The module that uses Phoenix.Socket has the ability to route topics that the
client requests to a provided Phoenix.Channel implementation module. The
Channel module starts up a separate process for each different topic that the
user connects to. Channels, like transport processes, are never shared between
different connections.

report erratum • discuss

Understanding Channel Structure • 29

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Phoenix.PubSub is used to route messages to and from Channels. You can see
in the diagram that a distinction is made between local and remote PubSub
processes. Messages are broadcast through the PubSub process and are sent
to both the local node and remote nodes. For now, just know that PubSub
allows a cluster of nodes to work with Channels. We’ll explore each of these
components in more detail and see how they are used in our application.

Sockets
Sockets form the backbone of real-time communication in Phoenix. A Socket
is a module that implements the Phoenix.Socket.Transport behaviour, but we’ll be
using a specific implementation called Phoenix.Socket. You’ll most likely be using
Phoenix.Socket in your application because it implements both WebSockets and
long polling in a way that follows best practices. (If you ever need a custom
transport layer, which is rare, then you do have the ability to implement your
own Socket.Transport.)

We only have to implement a few functions in order to create a functional
Socket implementation. The callbacks connect/3 and id/1 provide the template
for our application’s Socket. Let’s add to our HelloSockets example from Connect-
ing our First WebSocket, on page 17.

hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
use Phoenix.Socket

Channels
channel "ping", HelloSocketsWeb.PingChannel

The channel macro will allow us to define a topic that routes to a given Channel
implementation. In this case we’ll route to a PingChannel which we’ll create in
the next section. Remove any other channel routes listed in this file.

You will notice that the connect/3 and id/1 functions are left to their default
generated values.

hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
def connect(_params, socket, _connect_info) do

{:ok, socket}
end

def id(_socket), do: nil

The defaults allow us to have a functioning Socket implementation. We’ll see
how to use connect/3 to implement authentication in Chapter 4, Restrict
Socket and Channel Access, on page 53. id/1 is a function for identifying the
currently connected client; this might be via their user identifier or some

Chapter 3. First Steps with Phoenix Channels • 30

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

other piece of information that is specific to them. This is useful when we
want to track the socket or if we want to disconnect a particular user.

Channels
Channels are the real-time entry points to our application’s logic and where
most of an application’s request handling code lives. A Channel has several
different responsibilities to enable real-time applications:

• Accept or reject a request to join.
• Handle messages from the client.
• Handle messages from the PubSub.
• Push messages to the client.

The distinction between Channels and Sockets may not be obvious at a glance.
A Socket’s responsibilities involve connection handling and routing of requests
to the correct Channel. A Channel’s responsibilities involve handling requests
from a client and sending data to a client. In this way, a Channel is similar
to a Controller in the MVC (Model-View-Controller) design pattern.

It has become popular in recent years to use the mantra “skinny controllers”
to indicate that we don’t want business logic in our controllers. This same
mantra can be applied to Channels; we should strive to keep application
logic in our application’s core and not have it implemented in our Channels.
The exception to this is that logic needed for real-time communication cus-
tomization is best implemented at the Channel level, as we’ll see in Customize
Channel Behavior, on page 74.

Implement Our First Channel

Let’s implement our PingChannel. This implementation won’t have any application
logic and is fully self-contained.

hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
defmodule HelloSocketsWeb.PingChannel do

use Phoenix.Channel

def join(_topic, _payload, socket) do
{:ok, socket}

end
end

use is a special keyword in Elixir that invokes the __using__ macro. In the case of
Phoenix.Channel, it includes the bulk of the code to make the Channel functional.

We allow any connection to this Channel to succeed by not implementing any
join logic. This is acceptable for topics that we want to be fully public. It is not

report erratum • discuss

Understanding Channel Structure • 31

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

acceptable to have an empty join function if we want our Channel to be private
and only accessible to certain types of clients. In this case, we need to use
authentication—we’ll see an example of this in the next chapter.

hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
def handle_in("ping", _payload, socket) do

{:reply, {:ok, %{ping: "pong"}}, socket}
end

handle_in/3 receives an event, payload, and the state of the current Socket. We
only allow the ping event to be processed; any other event will be an error. We
are able to do several things when we receive a message:

• Reply to the message by returning {:reply, {:ok, map()}, Phoenix.Socket}. The
payload must be a map.

• Do not reply to the message by returning {:noreply, Phoenix.Socket}.

• Disconnect the Channel by returning {:stop, reason, Phoenix.Socket}.

We’ll be using all the available return types later in this chapter.

We implemented PingChannel and configured our Socket route to send the ping
topic to our Channel. We’re going to use a CLI application to test that our
Channel works. wscat is an npm package that permits connecting to, sending
data to, and receiving data from a WebSocket. It can be a little cumbersome
to use but has the advantage of being easy to setup. Use npm install -g wscat in
order to get started. Copy the input that is on the > lines below.

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]

> ["1","2","ping","ping",{}]
< ["1","2","ping","phx_reply",{"response":{"ping":"pong"},"status":"ok"}]

If you encounter any errors like “unmatched topic” when you run this example,
make sure that your UserSocket module has only the ping Channel route listed.

We will cover the message structure later in this chapter. The important thing
to note for now is that we first use the special message "phx_join" to connect to
the ping Channel using our WebSocket connection. We receive an ok response
after the join. We then send the ping Channel a "ping" message with an empty
payload. It successfully responds with a pong message. You can press CTRL
+ C to disconnect the wscat session.

Chapter 3. First Steps with Phoenix Channels • 32

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Handle Channel Errors

A major difference between a traditional web Controller and a Channel is that
the Channel is long-lived. In a perfect world, a Channel will live for the entire
life of the connection without being interrupted. But we don’t live in a perfect
world, and disconnections are going to occur in our application. They may
occur because of a bug in our application causing a crash or because the
client’s internet connection is not stable. Let’s cause a crash in our PingChannel
to observe what happens.

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]

> ["1","2","ping","ping",{}]
< ["1","2","ping","phx_reply",{"response":{"ping":"pong"},"status":"ok"}]

> ["1","2","ping","ping2",{}]
< ["1","1","ping","phx_error",{}]

Our previously working message will not work until we rejoin the topic
> ["1","2","ping","ping",{}]
< [null,"2","ping","phx_reply",{"response":{"reason":"unmatched topic"},

"status":"error"}]

> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]

> ["1","2","ping","ping",{}]
< ["1","2","ping","phx_reply",{"response":{"ping":"pong"},"status":"ok"}]

We start our session by using a normal ping message and we receive a suc-
cessful response. We send a "ping2" event, which we did not write a match for
in our handle_in function, so the Channel fails to match the event and crashes.
If you look at the Elixir server, you will see a “no function clause” error.

We get a different error once we send the correct ping message again. This
time the topic is unmatched, which means that we did not have a connected
Channel for the topic "ping". The message then begins to work again once we
reconnect using "phx_join".

Our connection to the server stayed alive throughout this entire process. If
we had multiple Channels, all of the other Channels would also stay alive.
This reinforces the important part of the Channel structure that OTP enables:
fault tolerance. An error that happens in a single Channel should not affect
any other Channels and should not affect the Socket. An error that happens

report erratum • discuss

Understanding Channel Structure • 33

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

in the Socket, however, will affect all Channels that exist under the Socket
because they are dependent on the Socket working correctly. We can simulate
a failure in the Socket by sending a message it does not expect:

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> crash
disconnected (code: 1011)

It is up to the client to respond to the "phx_error" response by ensuring that it
rejoins the Channel and responds to the connection drop by reconnecting.
The official JavaScript client handles all of this for you so you don’t need to
worry about the orchestration of the connection. Any non-official clients will
need to handle this properly, however, or they could end up being connected
to the Socket but not connected to a Channel.

Topics
Topics are string identifiers used for connecting to the correct Channel when
the "phx_join" message is received by the Socket. They are defined in the Socket
module as we saw with our UserSocket example previously.

hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
channel "ping", HelloSocketsWeb.PingChannel

A topic can be any string, but it is best practice to use a "topic:subtopic" format
for the topic name. This convention allows us to have a single Socket module
with different types of Channels associated to it. This is because channel/3 can
accept a wildcard splat operator as the final part of the string.

Let’s change our topic definitions to use a wildcard operator and then observe
the effects of it:

hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
channel "ping", HelloSocketsWeb.PingChannel
channel "ping:*", HelloSocketsWeb.PingChannel

We can then connect to a "ping:wild" Channels and send messages to it.

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> ["1","1","ping:wild","phx_join",{}]
< ["1","1","ping:wild","phx_reply",{"response":{},"status":"ok"}]

> ["1","1","ping:wild","ping",{}]
< ["1","1","ping:wild","phx_reply",

{"response":{"ping":"pong"},"status":"ok"}]

Chapter 3. First Steps with Phoenix Channels • 34

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

It’s possible to use the topic of "*" to allow any topic to route to the Channel.
Any routing is allowed as long as the * character is at the end of the topic
string. Try adding a character after "*" in our example above to see what
happens by changing "ping:*" to "ping:*a". Luckily for us, Phoenix has protections
in place that cause an error at compile time:

$ mix phx.server
Erlang/OTP 20 [erts-9.3.3.3]

Compiling 1 file (.ex)

== Compilation error in file lib/hello_sockets_web/channels/user_socket.ex ==
** (ArgumentError) channels using splat patterns must end with *

It is useful to note that topic routes must end with a wildcard, but they could
contain multiple pieces of dynamic data. This is due to limitations in pattern
matching when the wildcard isn’t at the end.

Let’s walk through an example of using a wildcard route with multiple pieces
of data. Our goal is to have a topic that allows "wild:a:b" where b is an integer
that is double the value of a. Add the following Channel definition below the
existing definitions in the UserSocket.

hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
channel "wild:*", HelloSocketsWeb.WildcardChannel

We first define a new topic definition that routes any topic starting with "wild:"
to a new Channel.

hello_sockets/lib/hello_sockets_web/channels/wildcard_channel.ex
defmodule HelloSocketsWeb.WildcardChannel do

use Phoenix.Channel

def join("wild:" <> numbers, _payload, socket) do
if numbers_correct?(numbers) do
{:ok, socket}

else
{:error, %{}}

end
end

def handle_in("ping", _payload, socket) do
{:reply, {:ok, %{ping: "pong"}}, socket}

end
end

We have defined a Channel that looks very similar to our PingChannel but with
a conditional in the join/3 function that checks if the provided numbers are
correct.

report erratum • discuss

Understanding Channel Structure • 35

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/wildcard_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

hello_sockets/lib/hello_sockets_web/channels/wildcard_channel.ex
defp numbers_correct?(numbers) do

numbers
|> String.split(":")
|> Enum.map(&String.to_integer/1)
|> case do

[a, b] when b == a * 2 -> true
_ -> false

end
end

In order to check that the topic is correct, we take the provided numbers string
and separate it into sections separated by a colon. Pattern matching allows
us to have a very strict definition of what is allowed; we require that there
are exactly two numbers and that the second number is twice the value of
the first. Let’s try it out.

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> ["1","1","wild:1:2","phx_join",{}]
< ["1","1","wild:1:2","phx_reply",{"response":{},"status":"ok"}]

> ["1","2","wild:1:2","ping",{}]
< ["1","2","wild:1:2","phx_reply",{"response":{"ping":"pong"},"status":"ok"}]

> ["1","3","wild:1:3","phx_join",{}]
< ["3","3","wild:1:3","phx_reply",{"response":{},"status":"error"}]

> ["1","4","wild:20:40","phx_join",{}]
< ["4","4","wild:20:40","phx_reply",{"response":{},"status":"ok"}]

> ["1","5","wild:2:4:6","phx_join",{}]
< ["5","5","wild:2:4:6","phx_reply",{"response":{},"status":"error"}]

We can see that any numbers matching our allowed format will join the topic,
but other numbers will not be able to. It’s possible to crash this code by passing
in non-integer characters, but this still will not allow a connection to occur.

Dynamic topic names are very useful. I have implemented them to give stable
identifiers to private Channels based on multiple pieces of data. For example,
the format "notifications:t-1:u-2" could be used to identify a notifications topic for
user 2 on team 1. This allows notifications to be pushed from any part of the
system that is capable of providing a user and team ID. It also prevents dif-
ferent users from receiving each other’s private notifications.

Selecting a Topic Name
A carefully selected topic name is important for the scalability and behavior
of an application. For instance, a public Channel providing inventory updates
to an e-commerce storefront could be implemented in a variety of ways:

Chapter 3. First Steps with Phoenix Channels • 36

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/wildcard_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

• "inventory" - This topic does not delineate between different SKUs
• "inventory:*" - This topic delineates between different item SKUs with a

wildcard

If an overly broad topic is selected, such as "inventory", then an inventory change
to a SKU is broadcast to every connected client, even if they are not viewing
the item. A narrower topic such as "inventory:*" would lead to more connected
topics (1 per viewed item), but means that outgoing data could be held back
from clients that aren’t viewing a particular SKU.

In this example, you would select a solution based on your business needs and
tolerances. The single inventory topic would involve simpler code to implement,
but it would use more bandwidth. It would also expose every inventory update
in a way that allows adversaries to quickly index the store. The wildcard
topic provides more performance optimization possibilities at the cost of more
connected topics and additional client code. It would still be possible to watch
for all inventory updates, but this would be significantly more work.

The battle between scalability of performance and maintenance is a constant
one; the best solution is often dependent on decisions specific to a business.
Now that you understand the structure of Channels, we’ll move into how data
is delivered to and from the client.

PubSub
Phoenix.PubSub (publisher/subscriber) powers topic subscription and message
broadcasting in our real-time application. Channels use PubSub internally,
so we will rarely interact with it directly. However, it’s useful to understand
PubSub because we’ll need to configure it properly for our application to
ensure performance and communication availability.

PubSub is linked between a local node and all connected remote nodes. This
allows PubSub to broadcast messages across the entire cluster. Remote message
broadcasting is important when we have a situation where a client is connected
to node A of our cluster, but a message originates on node B of our cluster.
PubSub handles this for us out-of-the-box, but we do need to make sure that
the nodes have a way to talk to each other. PubSub ships with a pg22 adapter
out-of-the-box. There is also a Redis PubSub adapter3 that allows for using
PubSub without having nodes clustered together. We’ll see an example of this
in Chapter 11, Deploy Your Application to Production, on page 221.

2. https://erlang.org/doc/man/pg2.html
3. https://github.com/phoenixframework/phoenix_pubsub_redis

report erratum • discuss

PubSub • 37

https://erlang.org/doc/man/pg2.html
https://github.com/phoenixframework/phoenix_pubsub_redis
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

PubSub is used when we call the HelloSocketsWeb.Endpoint.broadcast/3 function.
Let’s see an example of this and how it can be used to push messages from
our application to our Channel. We can do this without changing our appli-
cation by issuing commands directly in iex. We’ll start our server using iex for
many examples throughout the book, because it allows us to test our appli-
cation and see results quickly.

$ iex -S mix phx.server
Erlang/OTP 20 [erts-9.3.3.3]

[info] Running HelloSocketsWeb.Endpoint with cowboy 2.6.3 at 0.0.0.0:4000
[info] Access HelloSocketsWeb.Endpoint at http://localhost:4000
Interactive Elixir (1.6.6) - press Ctrl+C to exit
Webpack is watching the files...

We start our Phoenix server inside of iex by using the -S switch.

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]

We connect to the "ping" Channel so that our message has a destination.

iex(1)> HelloSocketsWeb.Endpoint.broadcast("ping", "test", %{data: "test"})
:ok
iex(2)> HelloSocketsWeb.Endpoint.broadcast("other", "x", %{})
:ok

We use the broadcast/3 function on our HelloSocketsWeb.Endpoint module. It’s
important to use the Endpoint that the Socket is configured in, as the PubSub
is set up for that specific Endpoint. We dispatch a message to our connected
Channel and also to a Channel that we’re not connected to.

< [null,null,"ping","test",{"data":"test"}]

We see our message pushed from the server to our client, and we do not see
the message that was sent to the other topic. We’ll see in Use Channels in a
Cluster, on page 71 how to connect our nodes together locally in order to see
that PubSub broadcasts across a cluster. Next, we’ll look at how to implement
a very important part of our real-time system: sending and receiving messages
from a client.

Send and Receive Messages
A real-time system that can’t send and receive messages is probably not going
to be very useful. We utilize Channel request handlers in order to process

Chapter 3. First Steps with Phoenix Channels • 38

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Read Phoenix Source Code

Reading library source code is one of the best ways to understand how a feature
works. Phoenix has taken care to be approachable by writing code that follows best
practices, such as clear function names, consistent module naming, consistent folder
structure, and inline function documentation.

You can get started by visiting the Phoenix repository on Github. Take a look at how
Phoenix.Socket routes topics by finding the channel and __before_compile__ macros in
lib/phoenix/socket.ex.a It relies on Elixir’s pattern-matching capabilities, which means
that the limitations of pattern matching apply when the topic is converted from a
string to pattern-match functions. This causes the inability to have multiple wildcard
characters in a pattern match. It is for this reason that the wildcard topic routes have
to end with an asterisk.

The topic routing code is both powerful and simple. There are other excellent tech-
niques like this all throughout the Phoenix codebase. Reading them is a great way
to learn and grow your Elixir skills.

a. https://github.com/phoenixframework/phoenix/blob/master/lib/phoenix/socket.ex

messages from a client or to send data to the client. This allows us to write
handlers which are very similar to an action in a traditional MVC controller.

Before jumping right into sending messages, let’s look at the message protocol
used to represent every client and server message, to get an idea of what is
actually being sent to a client.

Phoenix Message Structure
Phoenix Channels use a simple message protocol to represent all messages
to and from a client. The contents of the Message allow clients to keep track
of the request and reply flow, which is important because multiple asyn-
chronous requests can be issued to a single Channel. In the following figure
you can see the different fields in Phoenix.Message:

[
"1" ,
"1" ,
"ping",
"phx_join" ,
{ }

]

[
Join ref,
Message ref,
topic,
event ,
payload

]

report erratum • discuss

Send and Receive Messages • 39

https://github.com/phoenixframework/phoenix/blob/master/lib/phoenix/socket.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s break down each of these fields and their use in the Channel flow:

• Join Ref—A unique string that matches what the client provided when it
connected to the Channel. This helps prevent duplicate Channel subscrip-
tions from the client. In practice, this is a number that is incremented
each time a Channel is joined.

• Message Ref—A unique string provided by the client on every message.
This allows a reply to be sent in response to a client message. In practice,
this is a number which is incremented each time a client sends a message.

• Topic—The topic of the Channel.

• Event—A string identifying the message. The Channel implementation
can use pattern matching to handle different events easily.

• Payload—A JSON encoded map (string) that contains the data contents
of the message. The Channel implementation can use pattern matching
on the decoded map to handle different cases for an event.

Some pieces of the message format are optional and can be null depending
on the situation. For example, we saw that the ref strings were both null when
we used broadcast to send a message to our client. This happens because the
information is owned by the client, so the server cannot provide it when
pushing data that isn’t in reply to an original message.

The official Phoenix Channel clients send a join ref and message ref with every
message. The Channel sends the same topic, join ref, and message ref to a
client when a successful reply is generated. This allows the client to associate
the incoming message to a message that had been sent to the server, causing
it to be recognized as a reply. Let’s look at how a client issues requests and
responses using the Phoenix.Message format.

Receiving Messages from a Client
Receiving requests from a client and being able to send a response is critical
to all applications. This lets our users interact with our real-time application
without us needing to write additional entry points, such as controller actions.
For example, when a client sends a message over the WebSocket connection
that powers their Channels, we can avoid also creating traditional HTTP
controller code. We’ll see how to handle a client’s request and then send var-
ious response types.

When a client sends a message to a Channel, the transport process receives
the message and delegates it to the Socket’s handle_in/2 callback. The Socket
sends the decoded Message struct to the correct Channel process and handles

Chapter 3. First Steps with Phoenix Channels • 40

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

any errors such as a mismatched topic. The Phoenix.Channel.Server process han-
dles the sent message by delegating to the associated Channel implementation’s
handle_in/3 callback. This happens transparently to us, meaning that we only
need to be concerned with the client sending a message and our Channel’s
handle_in/3 callback processing the message.

A benefit to this flow being heavily process-based is that the Socket will not
block while waiting for the Channel to process the message. This allows us
to have many Channels on a single Socket while still maintaining the high
performance of our system.

Using Pattern Matching to Craft Powerful Functions

Let’s look at a few examples of how we can write our handle_in/3 function to use
pattern matching and different return values. We’ll modify our PingChannel to
respond differently to a ping message if the payload contains certain values.
Place this code above the existing handle_in/3 function.

hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
def handle_in("ping", %{"ack_phrase" => ack_phrase}, socket) do

{:reply, {:ok, %{ping: ack_phrase}}, socket}
end

We are leveraging pattern matching on the payload to handle the situation
of an "ack_phrase" being provided as a parameter. We will use that phrase if it
is present, rather than pong. In order for this to work, the code must be
inserted above our previous handle_in/3 function, because we pattern matched
on any value of the payload previously. Our new function will never execute
if it is defined below the old one.

You’ll notice that the payload uses strings and not atoms. Atoms are not
garbage collected by the BEAM, so Phoenix does not provide user-submitted
data as atoms. You can use either atoms or string when creating a response
payload.

Let’s test our function using wscat.

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]

> ["1","2","ping","ping",{"ack_phrase":"hooray!"}]
< ["1","2","ping","phx_reply",{"response":{"ping":"hooray!"},"status":"ok"}]

> ["1","2","ping","ping",{}]
< ["1","2","ping","phx_reply",{"response":{"ping":"pong"},"status":"ok"}]

report erratum • discuss

Send and Receive Messages • 41

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We can see that providing an ack_phrase parameter works properly for us! Let’s
use pattern matching on the event name this time.

hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
def handle_in("ping:" <> phrase, _payload, socket) do

{:reply, {:ok, %{ping: phrase}}, socket}
end

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]

> ["1","2","ping","ping:hooray!",{}]
< ["1","2","ping","phx_reply",{"response":{"ping":"hooray!"},"status":"ok"}]

This time we are sending an event named "ping:hooray!" and using pattern
matching to separate "hooray!" from the rest of the event name. We are then
using that value for our acknowledgment phrase rather than pong.

The payload of the message is more flexible than the event name when
designing the message handling of a system. It can be used to provide complex
payloads (any JSON is valid) with values of types other than string. The event
name, on the other hand, must always be a string and cannot represent
complex data structures.

Other Response Types

There are other ways that we can handle an incoming event rather than
replying to the client. Let’s look at two different ways to respond: doing
nothing or stopping the Channel.

hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
def handle_in("pong", _payload, socket) do

We only handle ping
{:noreply, socket}

end

def handle_in("ding", _payload, socket) do
{:stop, :shutdown, {:ok, %{msg: "shutting down"}}, socket}

end

Our :noreply response is the simplest here, as we simply do nothing and don’t
inform the client of a response. The :shutdown message is slightly more complex
because we must provide an exit reason and an optional response. We are pro-
viding an :ok and map tuple as our response, but we can omit this argument for
an equally correct response. The exit reason uses standard GenServer.terminate/2

Chapter 3. First Steps with Phoenix Channels • 42

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

reasons.4 You most likely want to use :normal or :shutdown with this feature as it
properly closes the Channel with a phx_close event.

Let’s test our handle_in function now. Type the following code into your terminal.
Remember to enter the lines that start with > in order to send a message to
the server.

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]

> ["1","2","ping","pong",{}]

> ["1","2","ping","ding",{}]
< ["1","2","ping","phx_reply",{"response":

{"msg":"shutting down"},"status":"ok"}]
< ["1","1","ping","phx_close",{}]

You’ve seen how to handle messages sent from the client to the Channel.
Next, we’re going to switch gears and look at how to send messages from the
server to a client.

Pushing Messages to a Client
We have seen an example of how PubSub is used to broadcast from our Endpoint
module. We were able to push a message to our connected topic without
writing any Channel handler code. This is the default behavior of Channels:
any message sent to their topic is broadcast directly to the connected client.
We can customize this behavior, however, by intercepting any outgoing mes-
sages and deciding how to handle them.

Let’s intercept an outgoing ping request and add some additional metadata
to the request. We’re going to start with a broken implementation to highlight
a very common problem when adding a handle_out/3 function.

hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
def handle_out("request_ping", payload, socket) do

push(socket, "send_ping", Map.put(payload, "from_node", Node.self()))
{:noreply, socket}

end

We are going to handle the "request_ping" event by appending the current Node
information and then pushing the augmented data to the client. We’re also going
to change the event name to show that it doesn’t matter if we push the same
data that came into our function. When we run this, however, we see a warning.

4. https://hexdocs.pm/elixir/GenServer.html#c:terminate/2

report erratum • discuss

Send and Receive Messages • 43

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
https://hexdocs.pm/elixir/GenServer.html#c:terminate/2
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

$ iex -S mix phx.server
Erlang/OTP 20 [erts-9.3.3.3]

Compiling 2 files (.ex)
lib/hello_sockets_web/channels/ping_channel.ex:44: [warning] An intercept
for event "request_ping" has not yet been defined in Elixir.HelloSockets
Web.PingChannel.handle_out/3. Add "request_ping" to your list of intercepted
events with intercept/1[info] Running HelloSocketsWeb.Endpoint with
cowboy 2.6.3 at 0.0.0.0:4000 (http)
[info] Access HelloSocketsWeb.Endpoint at http://localhost:4000

Our server is able to start but our broadcast event will not be augmented as
we want it to be. This is because we have not told our Channel that it needs
to intercept and handle this particular event. We encounter a helpful warning,
but it would be easy to miss it. Make sure to check for warnings each time
you start your server! Let’s fix this by adding our intercept. You can add the
following line of code anywhere in the module’s body, but it usually goes below
the use Phoenix.Channel line.

hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
intercept ["request_ping"]

This code must go above our handle_out/3 function, preferably at the top of our
source file, or you will still see the warning. We can now see that our event
is intercepted and augmented when we broadcast it using iex.

In the next example, run the broadcast function after you’ve joined the Channel
with wscat.

$ iex -S mix phx.server
iex(1)> HelloSocketsWeb.Endpoint.broadcast("ping", "request_ping", %{})
:ok

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
connected (press CTRL+C to quit)
> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]
< [null,null,"ping","send_ping",{"from_node":"nonode@nohost"}]

It is best practice to not write an intercepted event if you do not need to cus-
tomize the payload, because each pushed message will be encoded by itself,
up to once per subscribed Channel, instead of a single push to all subscribed
Channels. This will decrease performance in a system with a lot of subscribers.

So far we’ve been using wscat to interact with our Channels. This is great for
our testing but is not useful for our users. We’ll improve this by connecting
a JavaScript client to our server in the next section.

Chapter 3. First Steps with Phoenix Channels • 44

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Intercepting Events for Metrics

While it is best practice to not intercept events that are not changed, because of the
decreased performance, it can be useful for tasks such as collecting metrics about
every push. You would still incur the interception penalty discussed in this section,
but the benefit of metrics outweighs that.

In PushEx,a an implementation of Channels for pushing data to clients, I use inter-
ception to capture a delivery metric for every message to every client. Capturing
messages at this level allows me to keep track of the number of milliseconds that a
message stays in the system for each connected client. The system must keep this
metric low to ensure that users are getting their data as quickly as possible.

a. https://hex.pm/packages/push_ex

Channel Clients
Any networked device can be used to connect to Channels. Languages that
have a WebSocket or HTTP client (for long polling) are easiest to get started
with. There are official and unofficial clients that work out-of-the-box with
Channels, and these clients can certainly make the task easier for us. A list
of client libraries5 is maintained in the Phoenix Channel documentation. It’s
a good idea to look at this list if you are getting started with a project in a
language other than JavaScript, since writing a client from scratch is a
decently large endeavor.

In this section, we’ll be looking at the official Phoenix Channel client. We’ll
use JavaScript in our browsers to interact with our Channels. We’ll be able
to send and receive messages from the server while handling different errors
that may occur. We’ll see how the JavaScript client reacts when it disconnects
so we can ensure our applications are always available to users.

Official JavaScript Client
The official client, worked on by the Phoenix core team, is written in Java-
Script. This can be used for web applications, web extensions, React Native
applications, or in any JavaScript interpreter that supports WebSocket or
long polling. We’ll be using this client for the major project later in the book.

Any Channel client has a few key responsibilities that should be followed, in
order for all behavior to work as expected:

5. https://hexdocs.pm/phoenix/channels.html#client-libraries

report erratum • discuss

Channel Clients • 45

https://hex.pm/packages/push_ex
https://hexdocs.pm/phoenix/channels.html#client-libraries
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

• Connect to the server and maintain the connection by using a heartbeat.
• Join the requested topics.
• Push messages to a topic and optionally handle responses.
• Receive messages from a topic.
• Handle disconnection and other errors gracefully; try to maintain a con-

nection whenever possible.

We’ll cover how the JavaScript client satisfies each of these responsibilities.
The JavaScript client has a clean API which will feel very familiar if you have
used promise-based libraries. We will cover a small, but critical, part of the
client API in this chapter—covering the whole library would not be beneficial
at this point. You can read the official documentation6 to see all available
functions and options.

Sending Messages with the JavaScript Client
Let’s connect to the PingChannel that we built earlier in the chapter. We’ll push
a "ping" event and receive a reply from the server, which we will process in the
web page.

hello_sockets/assets/js/app.js
// Import local files
//
// Local files can be imported directly using relative paths, for example:
import socket from "./socket"

You may have already done this step if you worked the examples in the previ-
ous chapters. We must add an import line to use our JavaScript socket file.
Ensure that your socket.js file looks like the following code snippet—you may
have to delete some of the boilerplate JavaScript that Phoenix initializes in a
new project.

hello_sockets/assets/js/socket.js
import { Socket } from "phoenix"

const socket = new Socket("/socket", {})

socket.connect()

export default socket

We initialize our Socket with the URL that is present in our Endpoint module. It
is "/socket" in this case, but it could be different based on how the Socket is
configured on the server. We then connect the Socket and export it for use in
other JavaScript files. The export is optional, as we will be working exclusively
in socket.js for these examples.

6. https://hexdocs.pm/phoenix/js/index.html

Chapter 3. First Steps with Phoenix Channels • 46

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/app.js
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
https://hexdocs.pm/phoenix/js/index.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

hello_sockets/assets/js/socket.js
const channel = socket.channel("ping")

channel.join()
.receive("ok", (resp) => { console.log("Joined ping", resp) })
.receive("error", (resp) => { console.log("Unable to join ping", resp) })

Connecting to our Channel requires specifying the topic that we want to
connect to. We invoke socket.channel once per topic we want to connect to. The
JavaScript client will prevent us from connecting to the same topic multiple
times on one Socket connection, which prevents us from being in a situation
where we receive duplicate messages.

Start the application server using iex -S mix phx.server and then open the web
page at http://localhost:4000. You will see a message in your developer console
that indicates we joined the ping topic. Let’s send a message and receive a
reply back. We’re using iex to start the server, so that we can broadcast mes-
sages. Add the following code to the bottom of socket.js:

hello_sockets/assets/js/socket.js
console.log("send ping")
channel.push("ping")

.receive("ok", (resp) => console.log("receive", resp.ping))

We are sending a "ping" event with an empty payload (we have omitted a second
argument). This is sent to the server with a unique message reference that
allows for a reply to be received. We receive and process the reply by receiving
"ok" from the client.

You can now refresh the page (it may have auto-refreshed due to development
live reload) and see in the developer console that we are sending a ping and
receiving a pong reply from the server. You may notice something odd though:

> send ping
> Joined ping {}
> receive pong

We are logging that the ping is sent before our joined reply comes in. This
highlights an important aspect of the JavaScript client: if the client hasn’t
connected to the Channel yet, the message will be buffered in memory and
sent as soon as the Channel is connected. It is stored in a short-lived (5-sec-
ond) buffer so that it doesn’t immediately fail. This behavior is useful if our
Channel ever becomes disconnected due to a client network problem, because
several seconds of reconnection are available before the message is handled
as an error.

report erratum • discuss

Channel Clients • 47

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://localhost:4000
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

If you only want to send a message when the topic is connected, it is possible
to do so. In that case you would move the push function inside of the join "ok"
handler callback.

Sometimes messages are not handled correctly by the server. For instance,
it could be under heavy load or we could have a coding bug in our Channel
handlers. For this reason, it’s a best practice to have error and timeout han-
dlers whenever a message is sent to our Channel.

hello_sockets/assets/js/socket.js
console.log("send pong")
channel.push("pong")

.receive("ok", (resp) => console.log("won't happen"))

.receive("error", (resp) => console.error("won't happen yet"))

.receive("timeout", (resp) => console.error("pong message timeout", resp))

Our PingChannel handles "pong" messages with a :noreply return value, which
means that there is no reply to receive from the Channel and our "ok" handler
will never run. After 10 seconds (this is configurable), we receive a "timeout"
event from the client. You will see this when you refresh the page.

Let’s add a new PingChannel handle_in/3 callback for when a payload is sent to the
Channel. We’ll use this to have the server respond with an error or a response
containing the payload.

hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
def handle_in("param_ping", %{"error" => true}, socket) do

{:reply, {:error, %{reason: "You asked for this!"}}, socket}
end

def handle_in("param_ping", payload, socket) do
{:reply, {:ok, payload}, socket}

end

If our received payload contains an error: true pair, then we will respond with
an error message back to the client. Otherwise the sent payload will be
returned to the client.

hello_sockets/assets/js/socket.js
channel.push("param_ping", { error: true })

.receive("error", (resp) => console.error("param_ping error:", resp))

channel.push("param_ping", { error: false, arr: [1, 2] })
.receive("ok", (resp) => console.log("param_ping ok:", resp))

A payload is sent as the second parameter to push. This payload can be any
JSON compatible object. Errors are handled via the "error" event similarly to
the "ok" event.

Chapter 3. First Steps with Phoenix Channels • 48

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/ping_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Start your server with mix phx.server and load http://localhost:4000. You will see our
caught error in the developer console as well as a successful response log
which contains our sent payload.

These functions and handlers form the foundation of sending messages and
handling replies with the JavaScript client. Next we’ll see how to receive
messages sent from the server that are not in reply to a client message.

Receiving Messages with the JavaScript Client
A Channel can send messages to a connected client at any time, not just in
response to an incoming message. We coded this earlier in our PingChannel with
handle_out/3. We’ll leverage this message to request that the connected client
sends us a ping.

hello_sockets/assets/js/socket.js
channel.on("send_ping", (payload) => {

console.log("ping requested", payload)
channel.push("ping")

.receive("ok", (resp) => console.log("ping:", resp.ping))
})

The on callback of our client channel is used to register incoming message
subscriptions. The first argument is the string name of the event that we want
to handle; this requires us to know the exact event name for incoming mes-
sages. For this reason, it is a good idea to not use dynamic event names. You
can instead place dynamic information in the message payload.

$ iex -S mix phx.server
iex(1)> HelloSocketsWeb.Endpoint.broadcast("ping", "request_ping", %{})
:ok

As we did earlier, we are using the broadcast/3 function to request a ping from
our Channel. This will cause a message to be pushed to all connected clients
on the "ping" topic. Our handle_out function changes the original request_ping
payload into a different message. You can see the final result in the developer
console.

> ping requested {from_node: "nonode@nohost"}
> ping: pong

Try loading multiple instances of the web page and broadcasting again. You
will see that every connected client receives the broadcast. This makes
broadcasting a very powerful way to send data to all connected clients. Replies,
on the other hand, will only be sent to the client that sent the message.

report erratum • discuss

Channel Clients • 49

http://localhost:4000
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

JavaScript Client Fault Tolerance and Error Handling
It’s a fact of software that errors and disconnections will occur. We can best
prepare our application for these inevitable problems by handling caught
errors ourselves and by ensuring that our client handles unexpected errors.

One of the great features of the Phoenix JavaScript client is that it tries very
hard to stay connected. When the underlying connection becomes disconnect-
ed, the client will automatically attempt reconnection until it’s successful.
Reconnection is fairly aggressive, which is often exactly what we want,
although we can customize it to be more or less aggressive based on our
application’s needs.

Let’s see an example of Socket reconnection by forcing a connection error.
Open the “Network” tab on our web page and view the “WebSocket” tab to
see our WebSocket connection; you may need to refresh in order to see the
old connection. We’re going to stop our web server to force a connection
problem. You can stop the server by using ctrl + c -> a in the iex session. You
will immediately see connection attempts in the “Network” tab of our web
page. The developer console will also begin logging errors stating the connec-
tion could not be established.

You will see that the connection becomes established within 10 seconds once
you start the server again.

> // The server is stopped
> WS connection to 'ws://localhost:4000/socket/websocket?vsn=2.0.0' failed
> WS connection to 'ws://localhost:4000/socket/websocket?vsn=2.0.0' failed
> WS connection to 'ws://localhost:4000/socket/websocket?vsn=2.0.0' failed
> // The server is started
> Joined ping {}

In addition to Socket reconnection, the underlying Channel subscriptions try
to maximize time spent connected. We saw in the previous example that the
ping Channel became reconnected when the Socket did. The Channel may
become disconnected for other reasons as well, such as when an application
error occurs.

We’re going to trigger an application error by sending a message to our
PingChannel that it doesn’t know how to handle. This is not considered a caught
exception and our Channel crashes due to it.

hello_sockets/assets/js/socket.js
channel.push("invalid")

.receive("ok", (resp) => console.log("won't happen"))

.receive("error", (resp) => console.error("won't happen"))

.receive("timeout", (resp) => console.error("invalid event timeout"))

Chapter 3. First Steps with Phoenix Channels • 50

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

When you refresh the page, you will not see an error message in the developer
console. You will, however, see an error in the Elixir server shell. Our PingChannel
crashed when it encountered the unknown event, causing the Process to die.
The JavaScript client knows the Channel crashed, because it’s sent a "phx_error"
event, and immediately attempts to reconnect. It’s able to establish the Channel
again because our problem only occurs when we sent an incorrect message.

Our "error" callback does not execute despite the error occurring. This is
because the error callback only runs for caught application errors and not
for this unexpected error. We will instead see a timeout occur because our
message is considered to not have received a reply.

We are now equipped to write JavaScript clients to connect to our real-time
application. The real-time capabilities of Channels combined with the stabil-
ity and simple interface of the JavaScript client gives us a solid foundation
for our real-world project in part II.

Wrapping Up
Phoenix Channels are a very powerful abstraction that allows development
of real-time applications in Elixir. Channels allow us to write applications
that succeed across several scalability considerations: performance, mainte-
nance, and cost. Elixir and OTP are perfectly suited for modeling real-time
systems, and the Transport-Channel-PubSub layering of Phoenix Channels
allows us to take advantage of a strongly designed OTP foundation.

Channels allow our applications to receive and send messages to users with
soft real-time constraints. Our Channel code leverages handle_in and handle_out
callback functions to process our user’s messages and interact with our appli-
cation core. The Phoenix Message structure allows our applications to handle
message replies and prevent duplicate Channel subscriptions. This simple but
powerful design means we can build our applications with more confidence.

The official Phoenix JavaScript client makes connecting to Channels with
both WebSockets and long polling simple. The hard work of staying connected
to the server is handled for us in a way that allows us to focus on application
development rather than real-time communication layer development.

We’ll be moving into more advanced Channel concepts next. These concepts
will help elevate our knowledge from the basics of Channels into something
that will allow us to start building complex application flows with ease. We’ll
be learning how to secure our Channels so that users do not receive messages
intended for other users, all while maintaining the simplicity of Channels and
seeing several patterns for how to customize the behavior of Channels.

report erratum • discuss

Wrapping Up • 51

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 4

Restrict Socket and Channel Access
In the last chapter, we explored the basics of real-time applications powered by
Channels, which let you build simple real-time applications. However, there’s
still more you need to know to build full-featured applications. In this chapter,
we’re going to cover adding access restriction to Sockets and Channels.

We’ll start this chapter by examining how to restrict access to Channels and
Sockets, to ensure that data is provided only to the right users. We’ll use a
Phoenix.Token to pass authentication information from the server to the view,
and then will use that to add Channel access restriction to the JavaScript
client. You’ll learn when to use a single Socket or multiple Sockets in your
applications, based on the restriction needs of your system.

Let’s jump into what access restriction is and why it’s crucial to add to your
applications.

Why Restrict Access?
It has been a common occurrence to hear about data leaks from improperly
secured data or endpoints. This type of security issue can hit any application,
including ones based on Phoenix Channels. Luckily, there is a built-in
mechanism to close these security vulnerabilities.

There are two different types of access restriction that we’ll focus on. The first
type of restriction, authentication, prevents non-users from accessing your
application. If someone malicious is able to discover your Socket connection
URL and then successfully connect, they may be able to access more of your
system. The second type of restriction, authorization, prevents users from
accessing each other’s data. If your application exposed information about a
particular user, even non-sensitive information, you would want only that
specific user to see it.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We can use authentication and authorization to solve the problem of access
restriction. When you want to prevent non-users from connecting to your
application, you add authentication to the Socket. When you want to restrict
access to user data, you add authorization to the Channel and topic. We’ll
use Socket authentication in part II when we add an administrator portal,
and we’ll use Channel authorization when allowing a shopper to join a
"cart:{userId}" Channel. The combination of restricting access to both Sockets
and Channels gives you the most restrictive and secure application.

Phoenix provides two different entry points where you can add access
restriction. Socket authentication is handled in the Socket.connect/3 function
and Channel authorization is handled in the Channel.join/3 function. Let’s look
at each and consider when we might want to use one over the other. You’ll
use both types of restriction to fully secure your real-time application.

Add Authentication to Sockets
You can use Socket authentication when you want to restrict a client’s access
to a real-time connection. This is useful in situations where you don’t want
certain clients to access your application. For example, you would add
authentication code to a Socket when user login is required to access the
application, because the default Socket does not know that your application
requires login. When you add authentication checks at the very edge of your
application, in the Socket, you’re able to avoid writing code that checks if
there is a logged in user lower in the system. This improves your system’s
maintainability because your user session check exists in a single location.

Phoenix calls a Socket module’s connect/3 callback when a new client connects.
We add our authentication code at this point and either accept or reject
access to the connection. A Socket’s connect/3 callback function returns the
tuple {:ok, socket} when the connection is allowed, or :error when the connection
is rejected.

The connect/3 callback is also used to store data for the life of the connection.
You can store any data you want in the Socket.assigns state. In our example of
user login, we would store the authenticated user’s ID. This allows us to know
which user the connection is for in our Channel code without reauthenticating
the user. The Channel authorization examples in the next section will use
Socket state.

You can add Socket authentication to your application by using a securely
signed token.

Chapter 4. Restrict Socket and Channel Access • 54

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Securing a Socket with Signed Tokens
WebSockets lack CORS (cross-origin resource sharing) restrictions that are
used by other types of web requests. The biggest vulnerability that this
exposes is a cross-site request forgery (CSRF) attack. In a CSRF attack, a
different website controlled by the attacker initiates a request to your
application. The attacker may be able to use this connection as if they were
the user, receiving private data about the user or making changes to the
user’s data.

There are strategies for avoiding this type of attack vector. One is to check
the origin of all connection requests—your application should only allow
connections from domains that it knows about. A different strategy is to
include a CSRF token that proves that the user visited the application in the
proper way.

The strategy that we’ll use in this book is to not use cookies when authenti-
cating our WebSocket. Instead, we’ll use a signed token to provide a user
session to our Socket. Our front-end client will pass a securely signed token
in the connection parameters upon connection to a Socket. Our application
will then verify that the token originated from one of its servers and that the
token was generated within a given period of time.

We will code a Socket authentication example by laying out the skeleton of
our Socket and then implementing the authentication logic. First, let’s add
our new Socket to our Endpoint. Enter this code after the existing socket/3
function call:

hello_sockets/lib/hello_sockets_web/endpoint.ex
socket "/auth_socket", HelloSocketsWeb.AuthSocket,

websocket: true,
longpoll: false

The Endpoint module contains the definition of our application’s web interface.
We added our socket definition here, so the necessary WebSocket endpoints
will be defined.

Next, create the AuthSocket module. You do not need to change the existing
UserSocket when you add this module.

hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
defmodule HelloSocketsWeb.AuthSocket do

use Phoenix.Socket
require Logger

channel "ping", HelloSocketsWeb.PingChannel
channel "tracked", HelloSocketsWeb.TrackedChannel

report erratum • discuss

Add Authentication to Sockets • 55

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/endpoint.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

def connect(%{"token" => token}, socket) do
case verify(socket, token) do
{:ok, user_id} ->

socket = assign(socket, :user_id, user_id)
{:ok, socket}

{:error, err} ->
Logger.error("#{__MODULE__} connect error #{inspect(err)}")
:error

end
end

def connect(_, _socket) do
Logger.error("#{__MODULE__} connect error missing params")
:error

end
end

Our AuthSocket is a pretty typical skeleton of a Socket. We are using our existing
PingChannel to demonstrate that for the associated Channel to work, it doesn’t
need to know about the Socket’s validation. (We’ve changed nothing about
PingChannel and it will work for our example.) We haven’t defined our verify/2
function yet, but you can see by the case statement that it will turn our token
string into a tuple indicating that the user’s session is valid or that there was
an error with the token.

It’s a good practice to always log when a Socket or Channel connection error
happens. There may be a bug somewhere in the system, and knowing if a
client cannot connect is great for debugging.

hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
@one_day 86400

defp verify(socket, token),
do:

Phoenix.Token.verify(
socket,
"salt identifier",
token,
max_age: @one_day

)

We use Phoenix.Token.verify/4 to verify our secret token. The "salt identifier" string
provides additional cryptographic protection for the token. This value can be
anything as long as it remains the same between the token being signed and
verified. You can generate a random string and either write it directly into
your code or through a Mix.Config value. You can use the same salt for all
users—it acts like a namespace for the token and is not a per-user salt.

Chapter 4. Restrict Socket and Channel Access • 56

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Phoenix.Token uses a separate secret key to sign all data. This key, called
secret_key_base, is automatically extracted from our socket, but it could be pro-
vided through other means as well. This secret key should always be unique
for your application and should be securely stored in production environments,
possibly in an environment variable. You should not store your production
secret_key_base value in source control. Anyone that has this secret can generate
a valid token that could be used to access your system. Protect it! You can
provide this value in a system environment variable that is stored in a secure
location, separate from an application’s source code.

hello_sockets/config/config.exs
secret_key_base: "generate this with mix phx.gen.secret",

The secret is present in the Endpoint configuration and can be generated with
a helpful CLI generator.

$ mix phx.gen.secret
dwP08dxRJnVuGM1oxi7Sbo2+v7drAyxJ/+7vnsuIUbOsc4k2Ea15zd7s6mHlayZl

Phoenix.Token signs messages to prevent tampering but it does not encrypt data.
It’s important to prevent tampering so a malicious client cannot grant itself
access to the system that it would not normally have. You can keep informa-
tion that a user can see, such as an ID, in the signed message. However, you
should not keep anything sensitive in the signed message, such as a password
or personally identifying information, because this data can be read by anyone
who has access to the user’s client.

The final step for AuthSocket is to define an identifier for the Socket. This is
completely optional; we could return nil, but it is a best practice to identify a
Socket when it’s for a particular user. We can do things like disconnecting a
specific user or use the Socket identifier in other parts of the system. Let’s
add an id/1 function to AuthSocket now.

hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
def id(%{assigns: %{user_id: user_id}}),

do: "auth_socket:#{user_id}"

We now have an AuthSocket that requires a signed token to connect to it. Let’s
try connecting to it without a token, with an invalid token, and with a valid
token. Start the server with iex -S mix phx.server to get started.

Let’s first connect to the socket without a token.

$ wscat -c 'ws://localhost:4000/auth_socket/websocket?vsn=2.0.0'
error: Unexpected server response: 403

report erratum • discuss

Add Authentication to Sockets • 57

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/config/config.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

You will see in your server logs a connect error with the message "connect error
missing params". This lines up with our connect/2 function clause for when there
is no "token" parameter present. Now, let’s add in a fake token value.

$ wscat -c 'ws://localhost:4000/auth_socket/websocket?vsn=2.0.0&token=x'
error: Unexpected server response: 403

Our client still receives an invalid connection, but our error log now says
"connect error :invalid". Phoenix.Token.verify/4 is being called and is now returning that
our token is not valid. Let’s fix that by generating a real token and connecting.

iex(3)> Phoenix.Token.sign(HelloSocketsWeb.Endpoint, "salt identifier", 1)
"SFMyNTY.g3QAAAACZA...vlHU0EM0FZFo3O_QiM"

Our first step is to generate a valid token for ID 1. We use Phoenix.Token.sign/3
to do so. The function signature is very similar to verify/4 in our AuthSocket except
that we are providing the data and Endpoint. We can take this token and copy
it into our connection URL to see a successful connection.

$ wscat -c 'ws://localhost:4000/auth_socket/websocket?vsn=2.0.0&token=SF..iM'
connected (press CTRL+C to quit)
> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]

> ["1","2","ping","ping",{}]
< ["1","2","ping","phx_reply",{"response":{"ping":"pong"},"status":"ok"}]

Use the generated token to connect to the Socket and you’ll now see a suc-
cessful connection! You have connected to the PingChannel and can send mes-
sages to it like we can with our non-authenticated Socket. The Socket
authentication we added hasn’t affected our Channel in any way.

We used Phoenix.Token in this example, but you can use any secure format you
want. Next, we’ll discuss an alternative to Phoenix.Token and when you may
want to use it.

Different Types of Tokens
Phoenix.Token provides a great way to integrate authentication into an Elixir
application, but it is an Elixir-specific solution. Sometimes we need a cross-
language solution to tokens. For example, we may need a solution where the
message contents can be used from JavaScript, to view the contents and
expiration independent of the server, or we could need to generate a token in
a microservice that uses Ruby (or any other language) in order to allow access
to our real-time application.

Chapter 4. Restrict Socket and Channel Access • 58

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Alternatives to Phoenix.Token can help us in these situations. A very common
web standard for authentication is the JSON Web Token (JWT).1 JWTs are
cryptographically secure but not encrypted (an encrypted variant called JWE
does exist), so they meet the same security standard as Phoenix.Token. One large
difference, however, is that JWT is a standardized format that can be con-
sumed easily in nearly any language, including the front-end client. You can
use this in your client code to detect if a JWT has expired before the credential
is sent to the server. You’ll have to do a bit more work to use JWTs as com-
pared to Phoenix.Token because JWT support is not included out-of-the-box with
Phoenix. JWTs are not a proper replacement for cookie-based authentication.
They should only be used to pass a user session between different parts of
an application.

Joken2 is my go-to library for handling JWTs in Elixir. I use it in all my Elixir
projects and highly recommend it. We’ll use Phoenix.Token in this book as it is
already included and set up for our project. However, consider looking into
JWT if you need a cross-language solution or if you need strongly secured
tokens through standards such as RSA encryption.

Whether you’re using Phoenix Tokens, JWT, or another technology, it’s
important to set the token’s expiration to a low-enough value. A token is the
user’s way to get into your system, and a user has access for the duration of
the token. Pick a token duration that is long enough to be convenient, but
short enough to provide security for your users—I usually default to 10 min-
utes. There are techniques that can invalidate tokens before they’re expired,
such as token blocklists, but we won’t cover them in this book.

Socket authentication provides a nice layer of security, but it doesn’t cover
everything. It is also important to secure private topics at the Channel level.

Add Authorization to Channels
Socket authentication is not always enough to fully secure our applications.
For example, we could have a Socket that stores the authenticated user ID
in Socket state and allows a connection to occur. When a client attempts to
join "user:1" Channel, but they are user ID 2, we should reject the Channel
join request. The client should only have access to topics that are relevant to
them. We can do that with Channel authorization.

1. https://jwt.io/introduction
2. https://github.com/joken-elixir/joken

report erratum • discuss

Add Authorization to Channels • 59

https://jwt.io/introduction
https://github.com/joken-elixir/joken
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

When a client joins a Channel, the Channel’s join/3 function is invoked. You
can add authorization to your Channel by making this function check for a
valid token. There are two options for how to add Channel authorization:

• Parameter based—Parameters can optionally be sent when a Channel
topic is joined. The client’s authentication token is sent via these param-
eters and the Channel can authorize the topic using the data encoded
into the token.

• Socket state based—You can store information about the current connec-
tion, such as the connected user’s ID or token, when a Socket connection
occurs. This state becomes available in Socket.assigns and can be used in
your Channel’s join/3 function. You fully control the state at this point, so
it is trusted.

There are advantages to the Socket state-based approach that make it the
best choice most of the time. You can secure your application by passing a
single token to the Server on Socket connection, rather than passing the
token on every Channel join. This makes it much easier to write the code
powering your authorization.

We’ll use Socket state-based authorization in the next examples. Let’s start
by looking at how to secure a topic based on the topic’s name matching the
provided user ID.

hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
channel "user:*", HelloSocketsWeb.AuthChannel

We use our previously written AuthSocket, but extend it by adding a new
Channel route for "user:*" topics. You can use any topic name in a Socket—we’re
using "user:*" here to make it clear that the authorization is for users.

Now we can build our AuthChannel to correspond with this. Let’s start with an
example where the user ID information is stored in Socket state and is not
provided by the client’s join parameters.

hello_sockets/lib/hello_sockets_web/channels/auth_channel.ex
defmodule HelloSocketsWeb.AuthChannel do

use Phoenix.Channel

require Logger

def join(
"user:" <> req_user_id,
_payload,
socket = %{assigns: %{user_id: user_id}}

) do

Chapter 4. Restrict Socket and Channel Access • 60

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/auth_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

if req_user_id == to_string(user_id) do
{:ok, socket}

else
Logger.error("#{__MODULE__} failed #{req_user_id} != #{user_id}")
{:error, %{reason: "unauthorized"}}

end
end

end

Our join/3 function is set up to match on topics that look like "user:*". Everything
after the : is extracted into a string variable, the requested user ID. We use
the assigns property of the Socket to retrieve the user_id that was provided by the
token that we connected with. We make the decision of whether the join is
allowed or not by comparing the requested user ID with our authenticated
user ID. The req_user_id variable is a string, so we convert the numeric user_id
variable to a string when we do our comparison.

Let’s manually test our Channel code by trying an incorrect and then a correct
join. Use the same command we used previously to generate a Phoenix.Token.
Make sure that the provided data is 1 in order to line up with the example.

iex(3)> Phoenix.Token.sign(HelloSocketsWeb.Endpoint, "salt identifier", 1)
"SFMyNTY.g3QAAAACZA...vlHU0EM0FZFo3O_QiM"

Provide this token to the connection and then connect to the private user
topics.

$ wscat -c 'ws://localhost:4000/auth_socket/websocket?vsn=2.0.0&token=SF..iM'
connected (press CTRL+C to quit)
> ["1","1","user:2","phx_join",{}]
< ["1","1","user:2","phx_reply",{"response":

{"reason":"unauthorized"},"status":"error"}]

> ["1","1","user:1","phx_join",{}]
< ["1","1","user:1","phx_reply",{"response":{},"status":"ok"}]

Once connected, you will receive a reason of unauthorized when you try to
join the "user:2" topic. You are able, however, to join the "user:1" topic that cor-
responds to your signed token ID. Try generating your signed request with
user ID 2 to see the "user:2" topic work.

The client subscription message to the Channel did not involve using the
token in any way. The token’s information was previously exchanged and
kept in the Socket’s state, which is then passed into the Channel. This allows
our client code to be much simpler, as the token is only used for connection
and then discarded. This is completely safe because the Socket’s state is set
by our application in a trusted way; it can’t be tampered with by a client.

report erratum • discuss

Add Authorization to Channels • 61

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We used Socket state authorization in this example. You are able to use
parameter-based authorization by passing the token parameter when the
Channel is joined, then using that token in the Channel join function. In
practice, it is more cumbersome to send an authorization token with each
topic join. Check to see if your problem fits a Socket authorization model
before doing token verification in your join/3 function.

Next, let’s connect our JavaScript client to our authenticated Socket and
Channel.

Use Authentication from JavaScript
Clients that connect to our secured Socket must be able to pass the authen-
tication parameters on connection. Phoenix’s JavaScript client provides a
simple way to add the right authentication parameters.

We wrote an AuthSocket that accepts a "token" parameter and verifies it using a
known secret. We’ll complete the client side of this flow by including the token
with the socket connection. This task boils down to a few key parts:

• Controller—generate a token when our page loads and write it into the
page’s JavaScript

• JavaScript—send the token parameter with the Socket connection

• Socket—use the token in our Socket

We’ll generate an authentication token in the Controller that renders our page
view. We’ve worked entirely in the default generated files so far, meaning we
haven’t even looked at the Controller yet, but our change will not be very
complex. Replace the existing index/2 function with the following code:

hello_sockets/lib/hello_sockets_web/controllers/page_controller.ex
def index(conn, _params) do

fake_user_id = 1

conn
|> assign(:auth_token, generate_auth_token(conn, fake_user_id))
|> assign(:user_id, fake_user_id)
|> render("index.html")

end

defp generate_auth_token(conn, user_id) do
Phoenix.Token.sign(conn, "salt identifier", user_id)

end

A token is generated in every request and assigned to the conn before rendering.
The token is generated with Phoenix.Token.sign/3. Let’s use this assigned variable
in the template. Place this next script at the top of the template file.

Chapter 4. Restrict Socket and Channel Access • 62

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/controllers/page_controller.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

hello_sockets/lib/hello_sockets_web/templates/page/index.html.eex
<script>

window.authToken = "<%= assigns[:auth_token] %>";
window.userId = "<%= assigns[:user_id] %>";

</script>

We placed the assigned variable auth_token in a JavaScript window variable in
our specific page view. But it could be placed in a layout so every loaded page
had access to it. It would be good practice, if every page required it, to place
the token generation in a Plug that is placed in the pipeline for every request.

hello_sockets/assets/js/socket.js
const authSocket = new Socket("/auth_socket", {

params: { token: window.authToken }
})

authSocket.onOpen(() => console.log('authSocket connected'))
authSocket.connect()

We complete our example by passing authentication params into our new
authSocket. We leverage the onOpen callback of the client Socket in order to know
that we successfully established the Socket connection. You will see the
successful connection when you refresh the web page.

Great! You have a secured Socket connection through your web page! Adding
authentication and authorization is a very simple way to ensure that the
wrong party doesn’t get access to your application. If you do find yourself
wanting to add topic-level authentication (where the token is provided with
the topic join request), it’s possible to add a params argument that contains
the token to socket.channel(channel, params).

Let’s look at when to write a new Socket versus using a new Channel.

When to Write a New Socket
We’ve written two Sockets so far, UserSocket and AuthSocket, and we wrote
Channels for each of them. This raises the question of when we should create
a new Socket versus using the same topic and adding a new Channel. You’ll
make this decision based primarily on the authentication needs of your
application. There are also performance costs to adding new Sockets; let’s
look at these costs first.

Each connected Socket adds one connection to the server, but each connected
Channel adds zero new connections to the server. Channels do take up a
slight amount of memory and CPU because there is a process associated with
each, but you can consider Channels nearly free because processes are cheap

report erratum • discuss

When to Write a New Socket • 63

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/templates/page/index.html.eex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

in Elixir. Sockets are a bit more expensive due to network connections and
the heartbeat process.

Each Socket must maintain a heartbeat to the server. If four Channels are
open on a single Socket connection, that means that there is one heartbeat
process occurring:

Client Socket

Channel

Channel

Channel

Channel

1 heartbeat ,
less processes

If four Channels are open on four socket connections, then there are four
heartbeat processes occurring over the four connections:

Client

Socket

Socket

Socket

Socket

Channel

Channel

Channel

Channel

4 heartbeats, m ore
processes

The heartbeat and additional connections mean that the cost of many idle
Channels is less than the cost of many idle Sockets.

While there are some performance differences, you should primarily consider
the authentication needs of your application when deciding whether to add
a new Socket or use an existing one when adding a new Channel topic. When
you are writing a system that has separate real-time features or pages for
users and admins, you would add a new Socket. This is because users would
not have the ability to connect to admin-specific features and so should be
rejected from connecting to the Socket. Separating the Socket authentication

Chapter 4. Restrict Socket and Channel Access • 64

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

like this leads to simpler code further down in the system. You would add to
an existing Socket when the authentication needs are the same.

As a general rule of thumb, use multiple Channels with a single Socket. Use
multiple Sockets if your application has different authentication needs between
different parts of the application. This approach leads to a system architecture
with the lowest resource usage.

Wrapping Up
It is necessary to restrict access to Sockets and Channels in order to keep
your application safe. There are two different ways to secure the Channels of
your application—either by authenticating when a client connects to a Socket
or when a client joins a Channel. Socket authentication is useful when the
client should have no access at all to the part of the application served by the
Socket. Use Channel authorization to keep user-specific data safe from the
incorrect user.

Phoenix provides ways to add access restriction out-of-the-box by using a
signed Phoenix.Token. A signed token gives the Socket and Channel a way to
know which user is connecting and whether they are properly authenticated.
There are other options for adding authentication, such as JWTs, that can
be used to implement different types of authentication requirements.

Access restriction significantly informs the creation of a new Socket or
Channel. If you’re adding a new real-time feature and it has different access
requirements, such as the user needing to be an admin, then reach for a new
Socket. If you’re adding a new feature that is tied to an existing access
requirement, then a new Channel is probably best.

We’ve been progressing into more advanced Channels concepts throughout
the last few chapters. We’ll dive a bit deeper in the next chapter and cover
Channel concepts that are important when building production applications.
You’ll implement custom Channel behavior, design for unreliable client con-
nections, configure Channels to run in a cluster of servers, and write tests
for Sockets and Channels.

report erratum • discuss

Wrapping Up • 65

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 5

Dive Deep into Phoenix Channels
In the last chapter, you learned how to restrict access to a Channel-based
application using authentication. We’ve covered enough to build basic
Channel applications, but there’s still more you need to know to build full-
featured Channel applications. In this chapter, we’re going to look at concepts
such as Channels in a cluster of servers, how to customize Channel behavior,
and how to write tests for Channels.

We’ll first cover the unreliable nature of internet connections and consider
how we can build applications that survive the strange things that can happen
with real users. Flaky internet connections, bugs in an application, and
server restarts can all lead to connection trouble for users.

You’ll then learn about different challenges that come up when using Channels
with multiple servers. You’ll see different patterns that can be used to cus-
tomize the behavior of Channels. These patterns enable us to build more
complex flows when we have complex application requirements. We’ll finish
off this chapter by writing tests for our Socket and Channel code. Let’s jump
into the challenges of unreliable connections now.

Design for Unreliable Connections
Clients connect to our real-time application using a long-lived connection.
The client’s connection can close or fail at any point; we need to consider this
and write code to recover from this when it happens.

There are certainly expected reasons for a connection to disconnect, such as
a user leaving the application, changing pages, or closing their laptop while
the application is loaded. There are also more unpredictable reasons that
cause a connection to (erroneously) disconnect. A few examples of this are:

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

• A client’s internet connection becomes unstable and drops their connection
without any other changes.

• A bug in the client code causes it to close the connection.

• The server restarts due to a routine deploy or operational issue.

These are just some of the things that can go wrong in our application. Some
of these disconnection reasons are preventable, but some are the result of
the unreliable nature of internet connections. Users expect that an application
will continue to work in an intuitive way, even when an interruption of some
sort occurs. An example of this is that an application could remain in a usable
state even if the connected user’s network connection is poor. There is a
limit to this, however, as you can’t make an internet application work when
there is no internet connection available.

We’ll cover different aspects of reliability in this section. First, we’ll look at
how Channels manage their subscriptions throughout disconnection events.
We’ll then look at different techniques to avoid losing critical data when a
client disconnects. Finally, we’ll cover Phoenix’s message-delivery guarantees.
Let’s jump into Channel subscription management now.

Channel Subscriptions
In Channels, on page 31, we covered how clients subscribe to topics that
create associated Channel processes. The record of these Channel subscrip-
tions is kept in memory. In the event of a client disconnecting, the Channel
subscriptions are no longer present on the server because the memory is
collected. For example, a client could be connected to one Socket and three
Channels. If the client became disconnected from the server, then the server
has zero Sockets and zero Channels. When the client reconnects to the server,
the server has one Socket and zero Channels. In this scenario all of the
Channel information has been lost from the server, which means that our
application would not be working properly.

Throughout this scenario, the client knows that it’s supposed to be connected
to the server and which Channel topics it should be connected to. This means
that the client can reconnect to the server (creating one Socket) and then
resubscribe to all of the topics (creating three Channels). This puts the client
back in a correct state, with an amount of downtime based on how long it
took to establish the connection and subscriptions.

The official Phoenix JavaScript client handles this reconnection scenario for
us automatically. If you’re using a non-standard client implementation, then

Chapter 5. Dive Deep into Phoenix Channels • 68

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

you need to specifically consider this event to prevent your clients from ending
up in an incorrect state after reconnection.

Let’s look at another aspect of protecting unreliable clients: keeping our crit-
ical data alive in any circumstance.

Keeping Critical Data Alive
The processes that power our real-time application can shut down or be killed
at any point. When a client disconnects, for example, all of the processes that
power that client’s real-time communication layer (Socket and Channels) are
shut down. The data that is stored in a process is lost when the process shuts
down. We do not have any important information in the real-time communi-
cation processes by default, but we often will enrich our Channel processes
with custom state that powers our application.

When we store custom state in a process in our application, we must consider
what happens when the process shuts down. There is a useful rule of thumb
that we can use when designing our systems: all business-related data should
be stored in persistent stores that can withstand system restarts.

Let’s use an example to understand this further. In a typical e-commerce
shop, we store the contents of the user’s shopping cart on the server. In Elixir,
we may choose to store this information in a process. If that process is shut
down, then we must store the data somewhere else, or it is lost forever. If the
server reboots, then we must have that data stored somewhere off the server,
or it is lost forever. We can avoid the loss of this important data by storing
our user’s shopping cart data in a persistent store, such as a database.

You can follow these best practices to set yourself up for the most success:

• Utilize a persistent source of truth that the Channel interacts with, such
as a database, for business data.

• Create a functional core that maintains boundaries between the commu-
nication layer and the business logic, like in Designing Elixir Systems with
OTP [IT19].

• Consider the life cycle of any processes linked to or otherwise associated
with your Channel process.

These practices will help you focus on the true responsibility of a Channel—
real-time communication—and avoid custom business logic being implemented
in your Channels. In Chapter 8, Break Your Application with Acceptance Tests,
on page 141, you will see how our application reacts when we randomly kill
processes.

report erratum • discuss

Design for Unreliable Connections • 69

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

These rules do not mean that you are unable to store critical business data
in process memory. Doing so can have significant speed and scalability ben-
efits. You should, however, be able to recover the current state of the data if
the process is killed at any point.

One final aspect of protecting unreliable clients is to understand how our
application’s messages are delivered.

Message Delivery
Channels deliver messages from the server to a client with some limited
guarantees about how these messages are delivered. These guarantees will
often be okay for your applications, but you should understand the limitations
to know if they will not work for you.

Phoenix Channels use an at-most-once strategy to deliver messages to clients.
This means that a given message will either appear zero or one time for a
client. A different approach is at-least-once message delivery, where a message
will be delivered one or more times. It is not possible to have exactly-once
message delivery, due to uncertainty in distributed systems.

Phoenix’s at-most-once message delivery is a bit of a problem on the surface:
how can we work with a system that may not deliver a message? This is a
trade-off that Phoenix makes in how it implements real-time messaging. By
having an at-most-once guarantee with message delivery, Phoenix prevents
us from needing to ensure that every message can be processed multiple
times, which is potentially a much more complex system requirement.

Phoenix’s at-most-once delivery is good in many use cases, such as:

• Application flows where the loss of a message won’t break the flow

• Applications that are willing to trade off an occasional failure for writing
less code (You can exert a significant amount of effort to do guaranteed
message delivery correctly.)

• Applications with clients that can recover from a missed message manually

The at-most-once strategy can be seen in action when we observe how PubSub
is used in broadcasting messages across our cluster. PubSub has a local com-
ponent that is very likely to always succeed in broadcasting the message to the
local node. PubSub also has a remote component that sends a message when
a broadcast occurs. PubSub will try only once to deliver the message and does
not have the concept of acknowledgment or retries. If the message is not delivered
for some reason, then that message would not make it to remotely connected
clients.

Chapter 5. Dive Deep into Phoenix Channels • 70

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We also see this strategy at work when we observe how Phoenix delivers
messages to the client. Phoenix sends messages to connected clients but
doesn’t look for any type of acknowledgment message. If you want guaranteed
at-least-once delivery, then you will need to write code to add acknowledgment,
something we aren’t going to cover due to its complexity. The important thing
to know is that you are able to fully customize this behavior if you need to.
In practice, however, you usually want the at-most-once strategy that comes
standard with Phoenix.

Unreliable connections and servers is a topic that you must constantly con-
sider when building your real-time application. Next, let’s look at a component
of a production system that can sometimes contribute to this problem, but
also helps make applications much more scalable: multi-server distribution.

Use Channels in a Cluster
It is critical to run multiple servers when you are deploying a production
application. Doing so provides benefits for scalability and error tolerance. For
example, the ability to double the number of servers in the event of higher
load is much more powerful than doubling the number of cores on the single
server. It can take a few minutes (or less!) to add more machines but could
take much longer to move the application to a different machine with more
cores. There may also be a time when a single machine is fully utilized, and
you cannot add more CPU cores or memory.

Elixir makes connecting a cluster of BEAM nodes very easy. However, we
have to ensure that we’re building our application to run across multiple
nodes without error. Phoenix Channels handles a lot of this for us due to
PubSub being used for all message broadcasts, which we’ll look at next.

Connecting a Local Cluster
Let’s jump right in by starting a local Elixir node (instance of our application)
with a name:

$ iex --name server@127.0.0.1 -S mix phx.server
[info] Access HelloSocketsWeb.Endpoint at http://localhost:4000
iex(server@127.0.0.1)1>

We use the --name switch to specify a name for our node. You can see the name
on the input entry line; ours is located at server@127.0.0.1. Let’s start a second node:

$ iex --name remote@127.0.0.1 -S mix
Interactive Elixir (1.6.6) - press Ctrl+C to exit (type h() ENTER for help)
iex(remote@127.0.0.1)1> Node.list()
[]

report erratum • discuss

Use Channels in a Cluster • 71

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We started a second node that doesn’t run a web server by starting mix instead
of mix phx.server. We used a different name, remote@127.0.0.1, which gives us two
nodes running on the same host domain. You can use Node.list/0 to view all
currently connected nodes and see that there are none. Let’s correct that:

iex(remote@127.0.0.1)1> Node.list()
[]
iex(remote@127.0.0.1)2> Node.connect(:"server@127.0.0.1")
true
iex(remote@127.0.0.1)3> Node.list()
[:"server@127.0.0.1"]

We run Node.connect/1 from our remote node to connect to the server node. This
creates a connected cluster of nodes that can be verified by running Node.list/0
again. Try running Node.list/0 on the server node; you will see it contains the
remote node name.

This is all that we have to do to take advantage of Phoenix PubSub’s standard
distribution strategy powered by pg2. We can broadcast a message from our
remote node, which is incapable of serving Sockets, and see it on a client that
is connected to a Socket on our main server. Let’s try this out:

First, connect to the ping topic to establish the connection.

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0'
> ["1","1","ping","phx_join",{}]
< ["1","1","ping","phx_reply",{"response":{},"status":"ok"}]

Next, broadcast a message from the remote node.

iex(r@127)> HelloSocketsWeb.Endpoint.broadcast("ping", "request_ping", %{})
:ok

Finally, you can see that the ping request made it to the client:

< [null,null,"ping","send_ping",{"from_node":"server@127.0.0.1"}]

The node that sent the message to the client is server@127.0.0.1, but we sent
our broadcast from remote@127.0.0.1. This means that the message was distribut-
ed across the cluster and intercepted by the PingChannel on our server node.

This demo shows that we can have a message originate anywhere in our
cluster, and the message will make it to the client. This is critical for a cor-
rectly working application that runs on multiple servers, and we get it for
very low cost by using Phoenix PubSub.

In practice, our remote node would be serving Socket connections, and the entire
system would be placed behind a tool that balances connections between the

Chapter 5. Dive Deep into Phoenix Channels • 72

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

different servers. You could emulate this locally by changing the HTTP port in
the application configuration, then connecting to the new port with wscat.

hello_sockets/config/dev.exs
config :hello_sockets, HelloSocketsWeb.Endpoint,

http: [port: String.to_integer(System.get_env("PORT") || "4000")],

You can now start the remote server in HTTP serving mode by prepending
PORT=4001 to the command. You will need to restart the original server@127.0.0.1
server as well.

$ PORT=4001 iex --name remote@127.0.0.1 -S mix phx.server
[info] Running Web.Endpoint with cowboy 2.6.3 at 0.0.0.0:4001 (http)
[info] Access Web.Endpoint at http://localhost:4001
iex(remote@127.0.0.1)1>

You can experiment with sending messages between the different nodes to
confirm that they are delivered in either direction. You’ll learn about cluster
deployments in greater detail in Chapter 11, Deploy Your Application to Pro-
duction, on page 221.

Channel distribution is very powerful and easy to get started with out-of-the-
box. However, there are some challenges with it, which we’ll explore next.

Challenges with Distributed Channels
Distribution provides immense benefits to the scalability of our application,
but it comes with costs as well. A distributed application has potential prob-
lems that a single-node application won’t experience. A single-node application
may be the right call in some circumstances, such as a small internal appli-
cation, but we often must deliver our applications to many users that require
the performance and stability that are provided by distribution.

Here are a few of the challenges that we’ll face when distributing our applica-
tion. These problems are not specific to Elixir—you would experience the
same problems when building a distributed system in any language.

• We cannot be sure that we have fully accurate knowledge of the state of
remote nodes at any given time. We can use techniques and algorithms
to reduce uncertainty, but not completely remove it.

• Messages may not be transmitted to a remote node as fast as we’d expect,
or at all. It may be fairly rare for messages to be dropped completely, but
message delays are much more common.

• Writing high-quality tests becomes more complicated as we have to spin
up more complex scenarios to fully test our code. It is possible to write

report erratum • discuss

Use Channels in a Cluster • 73

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/config/dev.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

tests in Elixir that spin up a local cluster to simulate different environ-
ments.

• Our clients may disconnect from a node and end up on a different node
with different internal state. We must accommodate this by having a
central source of truth that any node can reference; this is most commonly
a shared database.

The easiest principle to get started with is having a central source of truth
that all nodes can read from when a process, such as a Channel, starts. We
will use this technique throughout the book. The other challenges involve
using proven data structures and algorithms for key tasks of our distributed
application. In part II, you’ll learn about Phoenix Tracker for distributed
process tracking, and you have already learned about PubSub’s mesh
approach to message broadcasting.

Let’s look at different ways to customize Channel behavior. These exercises
get into a bit more code than we’ve seen so far, which makes them quite fun!

Customize Channel Behavior
A Phoenix Channel is backed by a GenServer that lets it receive messages and
store state. We can take advantage of this property of Channels to customize
the behavior of our Channel on a per-connection level. This allows us to build
flows that are not possible (or would be much more complex) with standard
message broadcasting, which can’t easily send messages to a single client.

We can’t customize the behavior of Sockets as much due to their process
structure. We’ll focus our attention strictly on Channel-level customization
for these examples by walking through several different patterns that use
Phoenix.Socket.assign/3 and message sending.

Send a Recurring Message
We sometimes need to send data to a client in a periodic way. One use case
of this is to refresh an authentication token every few minutes to ensure that
a client always has a valid token. This is useful because it is possible to
overwhelm a server if all clients ask for a token at the same time.

Our Channel will send itself a message every five seconds by using Pro-
cess.send_after/3. This flow will be started when the Channel process initializes,
but it would be possible to start the flow in our handle_in callback as well, in
response to a client-initiated message.

Chapter 5. Dive Deep into Phoenix Channels • 74

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

First, add a new "recurring" Channel route to the AuthSocket module.

hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
channel "recurring", HelloSocketsWeb.RecurringChannel

This Channel route makes our new Channel available. Let’s create the Recur-
ringChannel.

hello_sockets/lib/hello_sockets_web/channels/recurring_channel.ex
defmodule HelloSocketsWeb.RecurringChannel do

use Phoenix.Channel

@send_after 5_000

def join(_topic, _payload, socket) do
schedule_send_token()
{:ok, socket}

end

defp schedule_send_token do
Process.send_after(self(), :send_token, @send_after)

end
end

We leverage our join callback in order to schedule a message to self() for five
seconds in the future. This starts a timer that will cause the message :send_token
to be delivered. Now, let’s define the :send_token message handler.

hello_sockets/lib/hello_sockets_web/channels/recurring_channel.ex
def handle_info(:send_token, socket) do

schedule_send_token()
push(socket, "new_token", %{token: new_token(socket)})
{:noreply, socket}

end

defp new_token(socket = %{assigns: %{user_id: user_id}}) do
Phoenix.Token.sign(socket, "salt identifier", user_id)

end

We use handle_info/2, as we would in a standard GenServer, to handle the :send_token
message. The first thing we do is schedule another message so the flow will
run forever. We then use push/3 to send a newly signed Phoenix.Token to the
client.

The Socket.assigns.user_id property set in AuthSocket.connect/2 provides the user
information needed when we sign our token. Socket.assigns is a great way to
bridge the gap between the initial connection and ongoing business logic, as
it allows us to pass information that was initially provided in the connection
request to the Channel.

report erratum • discuss

Customize Channel Behavior • 75

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/recurring_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/recurring_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Now let’s add a subscription to RecurringChannel in our JavaScript:

hello_sockets/assets/js/socket.js
const recurringChannel = authSocket.channel("recurring")

recurringChannel.on("new_token", (payload) => {
console.log("received new auth token", payload)

})

recurringChannel.join()

We are using our JavaScript client to observe this example, as we previously
configured it to connect to the AuthSocket. Refresh your web page to see that
the client is receiving a new unique token every five seconds. You will see log
statements in your console, like this:

This will continue forever because our Channel does not have any logic to
stop it. We are sending a message every five seconds for observation purposes,
but we would normally set this duration closer to the expiration time of our
token.

Let’s look at a more advanced Channel customization that intercepts outgoing
messages.

Deduplicate Outgoing Messages
Preventing duplicate outgoing messages is a great exercise in Channel cus-
tomization. The solution to this problem must be implemented as close to the
client as possible, because that way we can be certain of what messages have
been sent to a particular client. Channels are the lowest-level process we
control between a single client and our server; this makes them the perfect
location for us to achieve this task.

In the last example, we used Socket.assigns to store state that is relevant to our
Socket. In this example, we’ll be using Socket.assigns to store state that is relevant
to our Channel.

We can put anything we want in Socket.assigns. Any data that we add to Sock-
et.assigns is for our Channel process only and won’t be seen by other Channel
processes, even Channels that use the same Socket. This is something that
can be confusing at first but makes sense when you consider that Elixir is

Chapter 5. Dive Deep into Phoenix Channels • 76

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

functional and generally side-effect free. If we modify the state of a Channel
process, other processes in the system are not affected.

Let’s start by adding a new Channel route.

hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
channel "dupe", HelloSocketsWeb.DedupeChannel

We make a new Channel by adding a route in our Socket. We are using the
UserSocket because we don’t need authentication for this example.

hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
defmodule HelloSocketsWeb.DedupeChannel do

use Phoenix.Channel

def join(_topic, _payload, socket) do
{:ok, socket}

end
end

Our join function doesn’t have any logic in it. All of this Channel’s logic will
be in handle_out.

hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
intercept ["number"]

def handle_out("number", %{number: number}, socket) do
buffer = Map.get(socket.assigns, :buffer, [])
next_buffer = [number | buffer]

next_socket =
socket
|> assign(:buffer, next_buffer)
|> enqueue_send_buffer()

{:noreply, next_socket}
end

We intercepted the event "number" and defined a handle_out callback for when
we receive this event. Our handle_out function is different than normal because
we’re not invoking push in it. We can do this because there’s nothing that
requires us to push a message to the client when we intercept a message.

We use a buffer to store a list of numbers that have been given to the Channel.
This buffer is put into the Channel’s Socket.assigns state and is persisted between
messages. The buffer will place the newest messages at the front, which means
our messages would normally arrive in reverse order to the client. Adding to
the buffer this way, to the beginning of a list, is a constant-time operation.
Adding to the end of a list takes increasingly more time based on the size of
the list; this means that adding to the beginning of a list is faster.

report erratum • discuss

Customize Channel Behavior • 77

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/user_socket.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s enqueue a message that allows our buffer to be “flushed” to the client.

hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
defp enqueue_send_buffer(socket = %{assigns: %{awaiting_buffer?: true}}),

do: socket

defp enqueue_send_buffer(socket) do
Process.send_after(self(), :send_buffer, 1_000)
assign(socket, :awaiting_buffer?, true)

end

We schedule a message to the Channel when it receives a new number for
the first time. The handling of this message is where our buffer will be de-
duplicated and sent to the client. The state awaiting_buffer? is used to prevent
multiple send_buffer messages from being enqueued during a single time period.

hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
def handle_info(:send_buffer, socket = %{assigns: %{buffer: buffer}}) do

buffer
|> Enum.reverse()
|> Enum.uniq()
|> Enum.each(&push(socket, "number", %{value: &1}))

next_socket =
socket
|> assign(:buffer, [])
|> assign(:awaiting_buffer?, false)

{:noreply, next_socket}
end

The buffer, a list of numbers, is made unique by passing the list to Enum.uniq/1.
Each unique number is then individually pushed to the client. We could
optionally roll all of the numbers into a single message to reduce the number
of messages sent. We reverse the buffer before it’s made unique to preserve
number ordering, due to our buffer being stored in reverse order.

The state is reset to an initial value so the process can continue. We’ll write
a helper function so we can quickly enqueue a large number of messages to
the topic.

hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
def broadcast(numbers, times) do

Enum.each(1..times, fn _ ->
Enum.each(numbers, fn number ->
HelloSocketsWeb.Endpoint.broadcast!("dupe", "number", %{

number: number
})

end)
end)

end

Chapter 5. Dive Deep into Phoenix Channels • 78

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/dedupe_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We broadcast a single message for each number. This means that every
broadcast causes handle_out to be called a single time. If we enqueue [1, 2] 20
times, then there would be 40 broadcasts handled by the Channel.

A simple JavaScript client change can be made to demo our example.

hello_sockets/assets/js/socket.js
const dupeChannel = socket.channel("dupe")

dupeChannel.on("number", (payload) => {
console.log("new number received", payload)

})

dupeChannel.join()

Your server should be started with iex -S mix phx.server so we can run our
broadcast command easily. You can load the web page and then send numbers
using HelloSocketsWeb.DedupeChannel.broadcast/2.

iex> HelloSocketsWeb.DedupeChannel.broadcast([1, 2, 3], 100)
iex> :ok

You can then check your JavaScript console to see the messages arriving.

js> new number received {value: 1}
js> new number received {value: 2}
js> new number received {value: 3}

The messages will always arrive in this order, one second after they are
broadcast. Try enqueuing a larger number of messages to see what happens.
If you enqueue 1_000_000 iterations, you will see that multiple rounds of mes-
sages will be delivered to the client. This is because our buffer flushing runs
after one second, even if new messages are occurring, and it takes over one
second to process that many messages.

We’ve built strong foundations for customizing Channel behavior. You’re able
to leverage these building blocks in order to tailor your Channels to what is
needed for your application. Next, let’s write tests for our different Channels,
including our DedupeChannel.

Write Tests
If there is one thing that every developer probably has an opinion about, it’s
testing. You may believe in test-driven development, where you write tests
before writing any of your implementation code. Or maybe you follow the
practice of “code first, test second.” We won’t open up any testing philosophy
questions in this book. Instead, we’ll look at the available mechanisms for

report erratum • discuss

Write Tests • 79

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

testing our real-time code—and you can apply them using your preferred
methodology.

Tests provide us with a higher sense of confidence in the code we’re writing.
We are able to trap complex bugs in robust tests that withstand the test of
time. In the ideal world, we can capture any bug in a test and prevent it from
happening again in the future.

Phoenix provides a simple and powerful way to write Channel tests. A few
basic primitives allow us to easily write tests of our entire real-time commu-
nication stack. We don’t have to worry about the challenges of WebSockets
or long polling when we write our tests. Instead, we only have to write tests
for the Socket and Channel implementations, which we’ll cover in this section.

Testing Sockets
Every Phoenix application generated with mix phx.new includes a few different
test helpers found in test/support. One of these helpers is called ChannelCase; ours
takes the name HelloSocketsWeb.ChannelCase. We do not have to worry about
customizing this file at this point as we will not be doing anything out of the
ordinary.

Our UserSocket and AuthSocket are able to connect and identify a Socket. We’ll
first write a test for UserSocket because it has no logic in it. Our tests will assert
that we can connect to this Socket. The tests for AuthSocket will be similar but
also slightly more complex because of the connection logic in it.

You can run these tests using mix test. You should run that now to verify that
your test environment is properly set up. After you see that working, let’s
move into writing our UserSocket tests.

hello_sockets/test/hello_sockets_web/channels/user_socket_test.exs
defmodule HelloSocketsWeb.UserSocketTest do

use HelloSocketsWeb.ChannelCase
alias HelloSocketsWeb.UserSocket

end

We use a test module that imports our HelloSocketsWeb.ChannelCase to provide all
of its testing ability.

Note that the file name must end in _test.exs and the test module name should
end in Test. The module name isn’t a requirement, but I have spent many
hours debugging broken tests when the problem turned out to be defining a
test module as HelloSocketsWeb.UserSocket instead of HelloSocketsWeb.UserSocketTest,
causing the original module being tested to be overwritten by the test module.

Chapter 5. Dive Deep into Phoenix Channels • 80

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/user_socket_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s connect to our UserSocket now.

hello_sockets/test/hello_sockets_web/channels/user_socket_test.exs
describe "connect/3" do

test "can be connected to without parameters" do
assert {:ok, %Phoenix.Socket{}} = connect(UserSocket, %{})

end
end

Phoenix.ChannelTest also provides a connect/3 function that accepts the Socket
handler (UserSocket) as well as any connection parameters. We are not using
the optional third argument, but it would be useful if you include specific
HTTP information as part of your Socket connection.

Our Socket can never have an error in connection, because we don’t have
any logic. This means we don’t need to write many test cases. Our id test looks
similar, but with an additional assertion.

hello_sockets/test/hello_sockets_web/channels/user_socket_test.exs
describe "id/1" do

test "an identifier is not provided" do
assert {:ok, socket} = connect(UserSocket, %{})
assert UserSocket.id(socket) == nil

end
end

The Phoenix.Socket structure that is returned by the connect/2 function makes it
very easy to write tests that require a valid Socket, such as the id/1 function.

Run these tests with mix test and you’ll see green! Let’s write some more
interesting tests for our AuthSocket now.

hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
defmodule HelloSocketsWeb.AuthSocketTest do

use HelloSocketsWeb.ChannelCase
import ExUnit.CaptureLog
alias HelloSocketsWeb.AuthSocket

end

This is exactly like UserSocketTest. The import of CaptureLog provides the capture_log/1
function, which will test that our code is properly logging output.

Let’s write an authentication helper function that makes the rest of our test
simpler.

hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
defp generate_token(id, opts \\ []) do

salt = Keyword.get(opts, :salt, "salt identifier")
Phoenix.Token.sign(HelloSocketsWeb.Endpoint, salt, id)

end

report erratum • discuss

Write Tests • 81

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/user_socket_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/user_socket_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The generate_token/2 function will help our tests by creating a valid or invalid
token in a very simple and concise way.

hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
describe "connect/3 success" do

test "can be connected to with a valid token" do
assert {:ok, %Phoenix.Socket{}} =

connect(AuthSocket, %{"token" => generate_token(1)})

assert {:ok, %Phoenix.Socket{}} =
connect(AuthSocket, %{"token" => generate_token(2)})

end
end

We have written a test that looks very similar to UserSocket but now uses the
params map to provide a token to the Socket. The user ID doesn’t matter in
this case because any valid user is allowed to connect.

Both of these tests pass after connecting to our Socket, because each has
been given a valid authentication token. It’s a good practice to see a test “go
red” if you’re writing it after the code. Try breaking these tests by changing
the implementation of AuthSocket in some way. You should then restore the
tests back to green.

This next test looks long but it’s really just one type of test repeated a few
times.

hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
describe "connect/3 error" do

test "cannot be connected to with an invalid salt" do
params = %{"token" => generate_token(1, salt: "invalid")}

assert capture_log(fn ->
assert :error = connect(AuthSocket, params)

end) =~ "[error] #{AuthSocket} connect error :invalid"
end

test "cannot be connected to without a token" do
params = %{}

assert capture_log(fn ->
assert :error = connect(AuthSocket, params)

end) =~ "[error] #{AuthSocket} connect error missing params"
end

test "cannot be connected to with a nonsense token" do
params = %{"token" => "nonsense"}

assert capture_log(fn ->
assert :error = connect(AuthSocket, params)

end) =~ "[error] #{AuthSocket} connect error :invalid"
end

end

Chapter 5. Dive Deep into Phoenix Channels • 82

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Here, we are testing a variety of different scenarios that could occur during
connection. These tests are similar to each other, with most of the code being
identical setup functions. We now know that our Socket can withstand invalid
or missing parameters gracefully.

We use capture_log/1 to verify that our log statements worked properly. You
should write tests for any code that uses log statements, even though it seems
unimportant, because these logs may end up being critical to tracking down
production issues.

Let’s test our Socket id now.

hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
describe "id/1" do

test "an identifier is based on the connected ID" do
assert {:ok, socket} =

connect(AuthSocket, %{"token" => generate_token(1)})

assert AuthSocket.id(socket) == "auth_socket:1"

assert {:ok, socket} =
connect(AuthSocket, %{"token" => generate_token(2)})

assert AuthSocket.id(socket) == "auth_socket:2"
end

end

Our id/1 test uses a successful Socket connection to verify that the Socket is
identified with the user ID authentication information.

Try adding IO.inspect(socket) at the end of this test. You will see assigns: %{user_id: 2}.
The IO.inspect/1 function can be very helpful for debugging complex state flows
because it shows you the current state.

The simple techniques in this section let us test any standard Socket imple-
mentation. Next, we’ll see a few more techniques to deal with the increased
business logic in Channels.

Testing Channels
Channels contain much more application logic than Sockets do. This means
they will be a bit more involved to test than Sockets. We’ll write tests for our
WildcardChannel and DedupeChannel to capture a wide range of testing needs. The
amount of testing primitives is fairly low but can still be confusing at first.
Keep in mind during our tests that message passing is at the heart of Chan-
nels, and that the test module uses messages to verify data is sent and
received properly between the test process and a Channel process.

report erratum • discuss

Write Tests • 83

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/auth_socket_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s add tests for our WildcardChannel’s custom join implementation. Then we’ll
test that a message can be received and replied to.

hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
defmodule HelloSocketsWeb.WildcardChannelTest do

use HelloSocketsWeb.ChannelCase
import ExUnit.CaptureLog
alias HelloSocketsWeb.UserSocket

end

Our initial skeleton will look very similar for a majority of tests that we write.
This sets up all the dependencies for our test.

hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
describe "join/3 success" do

test "ok when numbers in the format a:b where b = 2a" do
assert {:ok, _, %Phoenix.Socket{}} =

socket(UserSocket, nil, %{})
|> subscribe_and_join("wild:2:4", %{})

assert {:ok, _, %Phoenix.Socket{}} =
socket(UserSocket, nil, %{})
|> subscribe_and_join("wild:100:200", %{})

end
end

The socket/3 function returns a Phoenix.Socket struct that would be created if the
given handler, id, and assigned state were provided to our Socket implemen-
tation. This is a useful convenience function allowing us to set up initial state
without going through the process of connecting our real Socket.

We use subscribe_and_join/3 to join the given topic with certain params. The correct
Channel to use is inferred by matching the topic with the provided Socket
implementation. This ensures that our Socket has the appropriate Channel
routes defined, which adds to our test coverage.

hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
describe "join/3 error" do

test "error when b is not exactly twice a" do
assert socket(UserSocket, nil, %{})

|> subscribe_and_join("wild:1:3", %{}) == {:error, %{}}
end

test "error when 3 numbers are provided" do
assert socket(UserSocket, nil, %{})

|> subscribe_and_join("wild:1:2:3", %{}) == {:error, %{}}
end

end

Chapter 5. Dive Deep into Phoenix Channels • 84

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Our topic only subscribes properly in a particular format. These tests try out
other formats that don’t match in order to ensure that the Channel is not
started.

We are using == in these tests, rather than pattern matching, because we
care that the reply of the join function is exactly {:error, %{}}. If we used pattern
matching, then a return value like {:error, %{reason: "invalid"}} would incorrectly
pass the test.

hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
describe "join/3 error causing crash" do

test "error with an invalid format topic" do
assert capture_log(fn ->

socket(UserSocket, nil, %{})
|> subscribe_and_join("wild:invalid", %{})

end) =~ "[error] an exception was raised"
end

end

It’s possible to crash the WildcardChannel by sending an incorrectly formatted
string. This is okay for our example, but it’s a good idea to test this behavior
to show that we understand and accept it.

We cause the crash to occur by passing in a topic that doesn’t have numbers
separated by a colon. This highlights one of the challenges of writing tests in
Elixir: if we use the built-in assert_raise/2 function, our test would fail because
the ArgumentError happens in a process other than our test process. We get
around this challenge by using the Logger to verify our assertions.

In production, we would want to write code that doesn’t crash. Try making
this test pass by asserting a {:error, %{}} return value rather than capturing
the crash log. To do so, you will make the test red first and then modify the
Channel implementation so that the test becomes green.

Our next test will ensure that our Channels respond to "ping" events with a
"pong" response.

hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
describe "handle_in ping" do

test "a pong response is provided" do
assert {:ok, _, socket} =

socket(UserSocket, nil, %{})
|> subscribe_and_join("wild:2:4", %{})

ref = push(socket, "ping", %{})
reply = %{ping: "pong"}
assert_reply ref, :ok, ^reply

end
end

report erratum • discuss

Write Tests • 85

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/wildcard_channel_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We start by joining our Socket like we did in our previous tests. This could
be extracted into a helper function if we were repeating it many times.

The push/3 function is used to invoke handle_in on the Channel. The function
arguments correspond to the connected Channel state, event name, and
payload. We receive a reference back from this function. The reference is
simply a unique value that ensures the reply is sent correctly.

We use assert_reply/3 to ensure we received the expected response back from
our Channel. This function is both deceptively powerful and sometimes con-
fusing due to pattern matching. We are using ^reply to pin a map value to the
reply we receive. If we didn’t use ^reply and just left the response inline in the
arguments, then values such as %{ping: "pong", extra: true} would still cause our
tests to pass. Pattern matching would allow us to ignore the full or partial
payload by using underscore variables, but it can also cause false positives
in our test suite.

Our WildcardChannel is now fully tested. Our final and most exciting test will be
for DedupeChannel.

Testing DedupeChannel
Our DedupeChannel module contains more complex logic in it than WildcardChannel
does. We will leverage both Channel and Elixir testing patterns to develop
complete tests for our Channel’s logic. Our tests will use message broadcasting
to and from the DedupeChannel. This is the last technique we’ll cover for writing
Channel tests.

Our join/3 function is very simple in DedupeChannel, so we won’t add tests for it.
We’ll start with tests to check that our Channel state changes when we
broadcast a new number to our Channel. Let’s write a few helper functions
that will make our tests much easier to write and read.

hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
defmodule HelloSocketsWeb.DedupeChannelTest do

use HelloSocketsWeb.ChannelCase
alias HelloSocketsWeb.UserSocket

defp broadcast_number(socket, number) do
assert broadcast_from!(socket, "number", %{number: number}) == :ok
socket

end
end

We use broadcast_from!/3 to trigger handle_out of our Channel. The broadcast
function invokes the PubSub callbacks present in the Phoenix.Channel.Server
module.

Chapter 5. Dive Deep into Phoenix Channels • 86

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Our helper function accepts socket as the first parameter and returns it as the
lone return value. This will allow us to use a pipeline operator to chain
together our helper functions, as you’ll see soon.

hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
defp validate_buffer_contents(socket, expected_contents) do

assert :sys.get_state(socket.channel_pid).assigns == %{
awaiting_buffer?: true,
buffer: expected_contents

}

socket
end

We use :sys.get_state/1 to retrieve the contents of our Channel.Server process that
is created by the test helper. This creates a tight coupling between the process
being spied on and the calling process, so you should limit its usage. It can
be valuable when used sparingly in tests because it gives all the information
about a process.

Next, add a helper function to create the Socket.

hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
defp connect() do

assert {:ok, _, socket} =
socket(UserSocket, nil, %{})
|> subscribe_and_join("dupe", %{})

socket
end

I mentioned previously that you could extract the Channel connection into a
helper if it became cumbersome. We do that here to make our tests easier
to read.

All our helper functions are returning the socket reference. This pattern allows
us to use pipeline function invocation. It turns complex testing code into
elegant code like this:

hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
test "a buffer is maintained as numbers are broadcasted" do

connect()
|> broadcast_number(1)
|> validate_buffer_contents([1])
|> broadcast_number(1)
|> validate_buffer_contents([1, 1])
|> broadcast_number(2)
|> validate_buffer_contents([2, 1, 1])

refute_push _, _
end

report erratum • discuss

Write Tests • 87

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We use our helper functions to repeatedly broadcast messages to our Channel
and then check its internal state. We ensure that no message has been sent
to the client by using refute_push/2 with very loose pattern matching.

Next, let’s test that our buffer drains correctly.

hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
test "the buffer is drained 1 second after a number is first added" do

connect()
|> broadcast_number(1)
|> broadcast_number(1)
|> broadcast_number(2)

Process.sleep(1050)

assert_push "number", %{value: 1}, 0
refute_push "number", %{value: 1}, 0
assert_push "number", %{value: 2}, 0

end

We are using Process.sleep/1 in order to wait long enough for our Channel to
have drained the buffer. This can cause the test suite to be slower, although
there are slightly more complex alternatives. If you placed a configurable
timeout for draining the buffer in the test suite, you would be able to sleep
for much less time. Alternatively, you could develop a way to ask the Channel
process how many times it has drained and then wait until it increases. The
sleep function is great for this test because it keeps the code simple.

assert_push/3 and refute_push/3 delegate to ExUnit’s assert_receive and refute_receive
functions with a pattern that matches the expected Phoenix.Socket.Message. This
means the Channel messages are located in our test process’s mailbox and
can be inspected manually when necessary. We are providing a timeout of 0
for these functions, as we have already waited enough time for the processing
to have finished.

The push assertion functions are very useful when writing most tests, but
they remove the ability to test that the messages are in a certain order. This
matters for our Channel, so we will inspect the process mailbox manually.

hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
test "the buffer drains with unique values in the correct order" do

connect()
|> broadcast_number(1)
|> broadcast_number(2)
|> broadcast_number(3)
|> broadcast_number(2)

Process.sleep(1050)

Chapter 5. Dive Deep into Phoenix Channels • 88

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/hello_sockets_web/channels/dedupe_channel_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

assert {:messages,
[
%Phoenix.Socket.Message{

event: "number",
payload: %{value: 1}

},
%Phoenix.Socket.Message{

event: "number",
payload: %{value: 2}

},
%Phoenix.Socket.Message{

event: "number",
payload: %{value: 3}

}
]} = Process.info(self(), :messages)

end

We are able to leverage pattern matching to ensure the messages are in the
correct order while still maintaining tests that care about the minimum pos-
sible state structure. With that, we have fully covered our DedupeChannel’s logic
with tests.

Your testing toolbox is now complete. It is important to have quality tests in
a scalable application—you’ll use these tools throughout the rest of the book.

The Importance of Tests

Tests that are easy to read and modify are an important part of having an application
that can be maintained by any teammate in the future. These tests also help identify
errors in code. When I originally created the DedupeChannel, I discovered a bug
where the pushes would happen in the wrong order. The tests that I wrote revealed
the bug to me. The value of well-written tests never decreases, even for experienced
programmers.

Wrapping Up
Writing real-time applications requires you to consider the unreliable nature
of long-lived connections. Users can disconnect at any time, so your applica-
tions must be developed with this in mind. A source of truth that lives outside
of the connection life cycle is one of the best ways to combat the challenges
of unreliable connections.

Applications in production should always have multiple servers to ensure
uptime, even when something goes wrong. Channels are usable across mul-
tiple servers with only a small amount of work necessary to make sure

report erratum • discuss

Wrapping Up • 89

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

everything works as expected. Distributing your application over multiple
servers adds new challenges, but it can significantly improve scalability and
reliability.

It’s possible to both write and test complex business logic in Channels. Phoenix
gives you the right foundations so you can develop robust Channel tests while
only needing to learn a handful of functions. These tests are able to ensure
that complex logic such as asynchronous message processing and state is
correctly implemented in a Channel.

One of the most important aspects of a scalable real-time application is
ensuring that performance is good, even with a large number of simultaneous
users. In the next chapter, you will see a variety of performance pitfalls and
how to avoid them.

Chapter 5. Dive Deep into Phoenix Channels • 90

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 6

Avoid Performance Pitfalls
You now have the tools and knowledge to build a real-time application using
Phoenix Channels. However, you will need to run this application for real
users in order for it to be useful. Your application needs to be able to operate
efficiently so that requests do not time out, encounter errors, or otherwise
not work correctly.

This chapter looks at several common scaling challenges and best practices
to help avoid performance issues as you develop and ship your application.
We’re covering these topics before we build a real application (in part II)
because it’s important to consider them at the design stage of the development
process, and not after the application is already written.

The following performance pitfalls are a collection of common problems that
can affect applications. You’ll experience many other challenges when building
and shipping an application, but we’ll focus on these three, because they are
applicable to all real-time applications.

Unknown application health
We need to know if our deployed application is healthy. When our appli-
cation experiences a problem, we’re able to identify root cause by looking
at all of our metrics. You’ll see how to add measurements to our Elixir
applications using StatsD.

Limited Channel throughput
Channels use a single process on the server to process incoming and
outgoing requests. If we’re not careful, we can constrain our application
so that long running requests prevent the Channel from processing. We’ll
solve this problem with built-in Phoenix functions.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Unintentional data pipeline
We can build a pipeline that efficiently moves data from server to user.
We should be intentional in our data pipeline design so that we know the
capabilities and limitations of our solution. We’ll use GenStage to build
a production-ready data pipeline.

We’ll walk through each pitfall in detail throughout this chapter—you’ll see
solutions to each as we go. Let’s start by looking at how to measure our Elixir
applications.

Measure Everything
A software application is made up of many interactions and events that
power features. The successful combination of all the different events in a
feature’s flow cause it to work properly and quickly. If even a single step of
our application encounters an issue or slowdown, the rest of that flow is
affected. We need to be aware of everything that happens in our application
to prevent and identify problems.

It is impossible to effectively run a decently sized piece of software without
some form of measurement. Software becomes a black box once deployed,
and having different view ports into the application lets us to know how well
things are working. This is so useful that a class of tools has emerged called
Application Performance Monitoring (APM). While they usually cost money,
these tools are a good way to start measuring your applications. Even if you
use an APM tool, the content in this chapter will apply because not everything
can be automatically handled.

We will cover a few different types of measurements that we can use in our
application. These measurements can be collected by many different open-
source tools. We’ll work with one of these tools and see how to use it in our
code, but first we’ll cover a few types of measurements that are useful for
most applications.

Types of Measurements
The best way to know if our application is behaving correctly is to place
instrumentation on as many different events and system operations as possi-
ble. There are a large number of things you can measure and ways that you
could measure them. Here are a few of the simple but effective ways that you
can measure things:

Chapter 6. Avoid Performance Pitfalls • 92

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

• Count occurrences—The number of times that an operation happens. We
could count every time a message is pushed to our Channel, or we could
count every time a Socket fails to connect.

• Count at a point in time—The value of a component of our system at a
moment of time. The number of connected Sockets and Channels could
be counted every few seconds. This is commonly called a gauge in many
measurement tools.

• Timing of operation—The amount of time that it takes for an operation
to complete. We could measure the time taken to push an event to a client
after the event is generated.

Each measurement type is useful in different situations, and there isn’t a
single type that’s superior to the others. A combination of different measure-
ments combined into a single view (in your choice of visualization tool) can
help to pinpoint an issue. For example, you may have a spike in new connec-
tion occurrences that lines up with an increase in memory consumption. All
of this could contribute to an increase in message delivery timing. Each of
these measurements on its own would tell you something, but not the full
picture. The combination of all of them contribute to understanding how the
system is stressed.

Measurements are usually collected with some identifying information. At a
minimum, each measurement has a name and value, but some tools allow
for more structured ways of specifying additional data, such as with tags. We
are able to attach additional metadata to our measurements to help tell our
application’s story. For example, shared online applications often use the
concept of “tenant” to isolate a customer’s data. We could add a tenant_id=XX
tag to all metrics to understand the current system health from the perspective
of a single tenant.

Now, let’s see how to collect these measurements in using StatsD.

Collect Measurements using StatsD
We can use a number of different tools to take measurements in our code. A
commonly used tool is StatsD, and that’s what we’ll use throughout this book.
StatsD is a daemon that aggregates statistics; it takes measurements sent
by our application and aggregates them into other back ends that collect the
stats. Many APMs provide a StatsD back-end integration; this makes StatsD
a great choice for collecting measurements.

report erratum • discuss

Measure Everything • 93

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

There are other tools you can use to collect measurements. StatsD is common-
ly used and easy to understand. If you prefer a different tool, then you should
use that. The important thing is that you are collecting measurements.

It is easy to get started with StatsD in Elixir by using the Statix1 library. This
library has a simple interface with functions that correspond to StatsD mea-
surement types. We’ll use Statix in this book to capture measurements in
our application.

Let’s capture various measurements in our HelloSockets application by using
Statix and a local StatsD server. We’ll use a fake StatsD server for development
that simply logs any packets to the Elixir application console.

Let’s start by adding Statix and a fake StatsD logger to our application.

hello_sockets/mix.exs
{:statix, "~> 1.2"},
{:statsd_logger, "~> 1.1", only: [:dev, :test]},

Run mix deps.get to fetch these dependencies. We must configure Statix to work
in our application.

hello_sockets/config/dev.exs
config :statsd_logger, port: 8126

config :statix, HelloSockets.Statix, port: 8126

We’re using the non-standard StatsD port of 8126 for our development. This
will help ensure that our StatsD example works even if you have another
StatsD server on your computer already.

We can use Statix after configuring a simple module for our application.

hello_sockets/lib/hello_sockets/statix.ex
defmodule HelloSockets.Statix do

use Statix
end

We will use the HelloSockets.Statix module in our application any time we want
to capture a StatsD measurement.

Finally, we must connect Statix to our StatsD server. Add the following code
to the top of the start function.

hello_sockets/lib/hello_sockets/application.ex
def start(_type, _args) do

:ok = HelloSockets.Statix.connect()

1. https://github.com/lexmag/statix

Chapter 6. Avoid Performance Pitfalls • 94

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/mix.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/config/dev.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/statix.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/application.ex
https://github.com/lexmag/statix
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We can now try out Statix to make sure it’s working. Let’s try out Statix in
an iex session:

$ iex -S mix
iex(1)> alias HelloSockets.Statix
iex(1)> Statix.increment("test")
StatsD metric: test 1|c
:ok
iex(2)> Statix.increment("test", 1, tags: ["name:1", "success:true"])
:ok
StatsD metric: test 1|c|#name:1,success:true

The StatsD metric lines indicate that the metric was successfully sent over
UDP to the StatsD server. Tags are not native to the StatsD protocol, but they
have become popular with a variety of StatsD tools. We’ll use them throughout
this book because of their usefulness.

We now have a working way to collect metrics in our application! Let’s capture
valuable metrics in our application’s Sockets and Channels. We will start by
counting the number of Socket connections that occur in a Socket.

hello_sockets/lib/hello_sockets_web/channels/stats_socket.ex
defmodule HelloSocketsWeb.StatsSocket do

use Phoenix.Socket

channel "*", HelloSocketsWeb.StatsChannel

def connect(_params, socket, _connect_info) do
HelloSockets.Statix.increment("socket_connect", 1,

tags: ["status:success", "socket:StatsSocket"]
)

{:ok, socket}
end

def id(_socket), do: nil
end

This Socket is mostly boilerplate, which you’ve already seen. We’ve added an
increment/3 call to emit a StatsD event each time a Socket is connected. This
event will tell us the number of attempts to connect to our Socket. You can
use this information to know when an abnormal number of new connections
occur in a customer-facing application.

It is useful to compare Channels joined versus Sockets connected in order to
know if clients are properly configured. Add the following code to the
StatsChannel module to capture join metrics on the Channel level:

report erratum • discuss

Measure Everything • 95

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/stats_socket.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

hello_sockets/lib/hello_sockets_web/channels/stats_channel.ex
defmodule HelloSocketsWeb.StatsChannel do

use Phoenix.Channel

def join("valid", _payload, socket) do
channel_join_increment("success")
{:ok, socket}

end

def join("invalid", _payload, _socket) do
channel_join_increment("fail")
{:error, %{reason: "always fails"}}

end

defp channel_join_increment(status) do
HelloSockets.Statix.increment("channel_join", 1,

tags: ["status:#{status}", "channel:StatsChannel"]
)

end
end

We have defined two different topics: "valid" and "invalid". This allows us to
simulate valid and invalid Channel joins.

You benefit from recording metadata such as status or Channel name in your
metric tags because you can drill deeper into the data. For example, you may
see an increase in Channel join events in your application. Is this due to
legitimate user traffic, or is there a bug that’s preventing proper joins? Cap-
turing the join status in your tags means you have the correct data for
answering this question.

Let’s write another example that measures the performance of a request in
our StatsChannel.

hello_sockets/lib/hello_sockets_web/channels/stats_channel.ex
def handle_in("ping", _payload, socket) do

HelloSockets.Statix.measure("stats_channel.ping", fn ->
Process.sleep(:rand.uniform(1000))
{:reply, {:ok, %{ping: "pong"}}, socket}

end)
end

The measure/2 function accepts a function that it will both execute and time.
The time taken by the function will be reported to StatsD as a metric and the
return value of the function is returned. This means we can measure different
parts of our code very quickly by wrapping our code in the measure function.

Taking measurements of key code paths will allow you to better understand
if the code path is slow or becomes slow in the future. One final step before
we can use our new Socket is to add it to our Endpoint.

Chapter 6. Avoid Performance Pitfalls • 96

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/stats_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/stats_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

hello_sockets/lib/hello_sockets_web/endpoint.ex
socket "/stats_socket", HelloSocketsWeb.StatsSocket,

websocket: true,
longpoll: false

Now that our Socket is configured, let’s try out StatsSocket and StatsChannel to
see our metrics being sent to StatsD. Start by configuring our JavaScript to
connect to and use our Socket.

hello_sockets/assets/js/socket.js
const statsSocket = new Socket("/stats_socket", {})
statsSocket.connect()

const statsChannelInvalid = statsSocket.channel("invalid")
statsChannelInvalid.join()

.receive("error", () => statsChannelInvalid.leave())

const statsChannelValid = statsSocket.channel("valid")
statsChannelValid.join()

for (let i = 0; i < 5; i++) {
statsChannelValid.push("ping")

}

We connect to the Socket one time and connect to each topic. We then send
five "ping" messages. This allows us to see multiple timing events.

Run our application with mix phx.server and then visit http://localhost:4000. You will
see the following in your terminal output each time you refresh the web page.
This may be mixed together with our other logs:

StatsD Metric: socket_connect 1|c|#status:success,socket:StatsSocket
StatsD Metric: channel_join 1|c|#status:fail,channel:StatsChannel
StatsD Metric: channel_join 1|c|#status:success,channel:StatsChannel
StatsD Metric: stats_channel.ping 712|ms
StatsD Metric: channel_join 1|c|#status:fail,channel:StatsChannel
StatsD Metric: stats_channel.ping 837|ms
StatsD Metric: stats_channel.ping 503|ms
StatsD Metric: stats_channel.ping 8|ms
StatsD Metric: stats_channel.ping 429|ms
StatsD Metric: channel_join 1|c|#status:fail,channel:StatsChannel

We now have a working Socket and Channel instrumentation. You can add
measurements to critical paths of your application in order to know how these
paths are being used, and whether they are healthy or not.

You need to view and interact with your measurements, no matter the tool
you use to capture them. Next, we’ll cover what you can do with measurements
and how having them can help you avoid performance problems.

report erratum • discuss

Measure Everything • 97

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/endpoint.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Visualizing Measurements
We are emitting our StatsD measurements, but we are not yet able to make
use of them. We need a tool for that. There are many commercial and open-
source tools that operate on StatsD metrics. It is outside of the scope of this
book to learn how to use these tools, but here’s what you can ultimately do
with these metrics.

Visualize metrics with graphs
You can create graphs of your different measurements. You can even
combine and compare graphs to correlate potential problems.

Produce dashboards for your team
You can combine graphs and other visualizations into a “single pane of
glass.” This allows you to quickly see the health of your system, maybe
from a shared monitor in your office.

Get alerted to problems
Many metrics systems allow you to set up alerts on values of your mea-
surements. For example, you may want to get an alert when your Channel
begins taking a certain amount of time to respond to a particular request.

Detect anomalies
Some metrics systems are capable of detecting anomalies in your metrics
without you configuring known thresholds. This can be useful in identify-
ing unexpected problems. For example, a metric system could automati-
cally detect that your metric values are outside of several standard devia-
tions and then alert you to a potential problem.

All of these features allow you to understand more about the state of your
system, closing one of the performance pitfalls. You can respond to any issues
or plan capacity for your system when you have this knowledge. You should
add measurements early in your application’s development so you can iden-
tify potential problems early—before a problem affects users.

Measurement and instrumentation are crucial for knowing about our appli-
cation’s performance, but knowledge doesn’t improve our application’s perfor-
mance. We need to take action on this knowledge with techniques that can
improve the performance of our Channels.

Keep Your Channels Asynchronous
Elixir is a parallel execution machine. Each Channel can leverage the princi-
ples of OTP design to execute work in parallel with other Channels, since the
BEAM executes multiple processes at once. Every message processed by a

Chapter 6. Avoid Performance Pitfalls • 98

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Channel, whether incoming or outgoing, must go through the Channel process
in order to execute. It’s possible for this to stop working well if we’re not
careful about how our Channel is designed. This is easiest to see when we
have an example of the problem in front of us.

We’ll leverage our existing StatsChannel to see the effect of process slowness.
Let’s add a new message handler that responds very slowly.

hello_sockets/lib/hello_sockets_web/channels/stats_channel.ex
def handle_in("slow_ping", _payload, socket) do

Process.sleep(3_000)
{:reply, {:ok, %{ping: "pong"}}, socket}

end

We have copied our existing ping handler but have made every request to it
take a full three seconds to complete. We can add this into our JavaScript to
see how slow it is.

hello_sockets/assets/js/socket.js
const slowStatsSocket = new Socket("/stats_socket", {})
slowStatsSocket.connect()

const slowStatsChannel = slowStatsSocket.channel("valid")
slowStatsChannel.join()

for (let i = 0; i < 5; i++) {
slowStatsChannel.push("slow_ping")

.receive("ok", () => console.log("Slow ping response received", i))
}
console.log("5 slow pings requested")

When you load http://localhost:4000, you will start seeing messages each time
that the "slow_ping" message receives a response. Notice that all five responses
occur over 15 seconds. This means there is no parallelism present, even
though we’re using one of the most parallel languages available!

The root cause of this problem is that our Channel is a single process that
can handle only one message at a time. When a message is slow to process,
other messages in the queue have to wait for it to complete. We artificially
added slowness into our handler, but something like a database query or API
call could cause this problem naturally.

Phoenix provides a solution for this problem. We can respond in a separate
process that executes in parallel with our Channel, meaning we can process
all messages concurrently. We’ll use Phoenix’s socket_ref/1 function to turn our
Socket into a minimally represented format that can be passed around. Let’s
make this change in our StatsChannel.

report erratum • discuss

Keep Your Channels Asynchronous • 99

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/stats_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

hello_sockets/lib/hello_sockets_web/channels/stats_channel.ex
def handle_in("parallel_slow_ping", _payload, socket) do

ref = socket_ref(socket)

Task.start_link(fn ->
Process.sleep(3_000)
Phoenix.Channel.reply(ref, {:ok, %{ping: "pong"}})

end)

{:noreply, socket}
end

We spawn a linked Task that starts a new process and executes the given
function. The ref variable used by this function is a stripped-down version of
the socket. We pass a reference to the Socket around, rather than the full thing,
to avoid copying potentially large amounts of memory around the application.

Task is used to get a Process up and running very quickly. In practice, however,
you’ll probably be calling into a GenServer. You should always pass the socket_ref
to any function you call.

Finally, we use Phoenix.Channel.reply/2 to send a response to the Socket. This
serializes the message into a reply and sends it to the Socket transport pro-
cess. Once this occurs, our client receives the response as if it came directly
from the Channel. The outside client has no idea that any of this occurred.

Let’s update our client to try out our asynchronous Channel.

hello_sockets/assets/js/socket.js
const fastStatsSocket = new Socket("/stats_socket", {})
fastStatsSocket.connect()

const fastStatsChannel = fastStatsSocket.channel("valid")
fastStatsChannel.join()

for (let i = 0; i < 5; i++) {
fastStatsChannel.push("parallel_slow_ping")

.receive("ok", () => console.log("Parallel slow ping response", i))
}
console.log("5 parallel slow pings requested")

If you load the page at http://localhost:4000, you will see all five messages load
after a three-second wait. This means that all messages were processed in
parallel and our client does not experience a slowdown.

You shouldn’t reach for reply/2 for all of your Channels right away. If you have
a use case where a potentially slow database query is being called, or if you
are leveraging an external API, then it’s a good fit. As with most things, there
are benefits and trade-offs to using reply/2. We have seen the benefit of increased
parallelism already. A trade-off, though, is that we lose the ability to slow down

Chapter 6. Avoid Performance Pitfalls • 100

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/stats_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

a client (back-pressure) if it is asking too much of our system. We could write
code to support a maximum amount of concurrency per Channel if needed.
This would give us increased performance and ability to back-pressure, at a
cost of increased complexity.

Asynchronous Channel responses help to close a pitfall of accidentally limiting
our Channel throughput. There is no silver bullet for writing code that is
fully immune to these slowdowns. Keep an eye out for times when your code
is going through a single process, whether it be a Channel or another process.

We’ll next look at how to build a scalable data pipeline. This will help us
deliver real-time messages as quickly as possible.

Build a Scalable Data Pipeline
Our real-time application keeps our users up to date with the latest information
possible. This means we have to get data from our server to our clients,
potentially a lot of data, as quickly and efficiently as possible. Delays or missed
messages will cause users to not have the most current information in their
display, affecting their experience. We must be intentional in designing how
the data of our application flows due to the importance of this part of our sys-
tem. The mechanism that handles outgoing real-time data is a data pipeline.

A data pipeline should have certain traits in order to work quickly and reliably
for our users. We’ll cover these traits before writing any code. You’ll then see
how to use the Elixir library GenStage to build a completely in-memory data
pipeline. You’ll learn about GenStage’s features that are important for a data
pipeline but would be difficult to build traditionally.

We’ll measure our pipeline in order to know that it’s working properly.
Finally, you’ll see what makes GenStage such a powerful base for a data
pipeline. Let’s start by going over the traits of a production-grade data pipeline.

Traits of a Data Pipeline
Our data pipeline should have a few traits no matter what technology we
choose. Our pipeline can scale from both a performance and maintainability
perspective when it exhibits these traits.

Deliver messages to all relevant clients
This means that a real-time event will be broadcast to all our connected
Nodes in our data pipeline so they can handle the event for connected
Channels. Phoenix PubSub handles this for us, but we must consider
that our data pipeline spans multiple servers. We should never send
incorrect data to a client.

report erratum • discuss

Build a Scalable Data Pipeline • 101

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Fast data delivery
Our data pipeline should be as fast as possible. This allows a client to get
the latest information immediately. Producers of data should also be able
to trigger a push without worrying about performance.

As durable as needed
Your use case might require that push events have strong guarantees of
delivery, but your use case can also be more relaxed and allow for in-
memory storage until the push occurs. In either case, you should be able
to adjust the data pipeline for your needs, or even completely change it,
in a way that doesn’t involve completely rewriting it.

As concurrent as needed
Our data pipeline should have limited concurrency so we don’t overwhelm
our application. This is use-case dependent, as some applications are
more likely to overwhelm different components of the system.

Measurable
It’s important that we know how long it takes to send data to clients. If
it takes one minute to send real-time data, that reduces the application’s
usability.

These traits allow us to have more control over how our data pipeline operates,
both for the happy path and failure scenarios. There has always been debate
over the best technical solution for a data pipeline. A good solution for many
use cases is a queue-based, GenStage-powered data pipeline. This pipeline
exhibits the above traits while also being easy to configure.

Next, we’ll walk through writing a data pipeline powered by GenStage.

GenStage Powered Pipeline
GenStage2 helps us write a data pipeline that can exchange data from produc-
ers to consumers. GenStage is not an out-of-the-box data pipeline. Instead,
it provides a specification on how to pass data, which we can then implement
in our application’s data pipeline.

GenStage provides two main stage types that are used to model our pipeline:

• Producer—Coordinates the fetching of data items and then passes to the
next consumer stage. Producers can fetch data from a database, or they
can keep it in memory. In this chapter, our data pipeline will be completely
in memory.

2. https://github.com/elixir-lang/gen_stage

Chapter 6. Avoid Performance Pitfalls • 102

report erratum • discuss

https://github.com/elixir-lang/gen_stage
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

• Consumer—Asks for and receives data items from the previous producer
stage. These items are then processed by our code before more items are
received.

We model our pipeline in a very sequential way. We start with a producer
stage that is connected to a consumer stage. We could continue to link
together as many stages as needed to model our particular data pipeline—a
consumer can also be a producer to other consumers. We’ll use the simplest
pipeline possible with only one producer and one consumer stage.

Let’s jump right into building a data pipeline. The pipeline that we’ll end up
with at the end of this chapter is generic and can be used for many use cases.
I often start with the same base configuration and add to it as necessary.
Here’s what we’ll be building:

We will start by writing a GenStage producer that provides data to a GenStage
consumer. Any process in our application will be able to write new items to
the GenStage producer.

hello_sockets/mix.exs
{:gen_stage, "~> 0.14.1"}

We first add the gen_stage package to our application. As always, run mix deps.get
after adding this package definition.

We can now create a basic Producer module.

hello_sockets/lib/hello_sockets/pipeline/producer.ex
defmodule HelloSockets.Pipeline.Producer do

use GenStage

def start_link(opts) do
{[name: name], opts} = Keyword.split(opts, [:name])
GenStage.start_link(__MODULE__, opts, name: name)

end

def init(_opts) do
{:producer, :unused, buffer_size: 10_000}

end

def handle_demand(_demand, state) do
{:noreply, [], state}

end
end

report erratum • discuss

Build a Scalable Data Pipeline • 103

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/mix.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/producer.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We are using GenStage almost as if it were a GenServer. This allows it to feel very
familiar to us when compared to other Elixir code we write. The init/1 function
returns {:producer, state} tuple to tell GenStage that we are writing a producer.

Our handle_demand/2 callback isn’t doing anything, because in this case, Gen-
Stage’s internal buffer manages our entire data flow for us.

Next, we will write the function that adds items to our producer.

hello_sockets/lib/hello_sockets/pipeline/producer.ex
def push(item = %{}) do

GenStage.cast(__MODULE__, {:notify, item})
end

def handle_cast({:notify, item}, state) do
{:noreply, [%{item: item}], state}

end

We use GenStage.cast/2 in order to cast a message to our producer process. The
handle_cast callback returns a tuple that includes the item in a list.

GenStage will take the items we provide it (there could be several at once)
and either sends them to waiting consumer stages or buffers them in memory.
We are using GenStage’s internal buffer in our pipeline to hold and send data.

This is a non-traditional use of GenStage, but allows us to have an item buffer
while writing no buffering code of our own. This, combined with other features
of GenStage that we’ll cover, gives us a lot of power for very little code.

Let’s write a consumer to use our producer’s data.

hello_sockets/lib/hello_sockets/pipeline/consumer.ex
defmodule HelloSockets.Pipeline.Consumer do

use GenStage

def start_link(opts) do
GenStage.start_link(__MODULE__, opts)

end

def init(opts) do
subscribe_to =
Keyword.get(opts, :subscribe_to, HelloSockets.Pipeline.Producer)

{:consumer, :unused, subscribe_to: subscribe_to}
end

end

Our consumer is very similar to the producer, except we are telling GenStage
that this is a different stage type and that this process will need to subscribe
to a particular producer. Leaving this option configurable gives us the ability
to configure the consumer at the supervisor level, which we’ll do shortly.

Chapter 6. Avoid Performance Pitfalls • 104

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/producer.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/consumer.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Every consumer must have a callback function to handle items. We won’t do any
real work in it yet, but will use log statements in order to see what is happening.

hello_sockets/lib/hello_sockets/pipeline/consumer.ex
def handle_events(items, _from, state) do

IO.inspect(
{__MODULE__, length(items), List.first(items), List.last(items)}

)

{:noreply, [], state}
end

Our handle_events callback receives multiple items at once; we must always
treat the items as a list and not a single item. All that we’re doing is logging
so we can see how GenStage dispatches items.

The last stage is to configure our producer and consumer in our application tree.

hello_sockets/lib/hello_sockets/application.ex
alias HelloSockets.Pipeline.{Consumer, Producer}

hello_sockets/lib/hello_sockets/application.ex
children = [

{Producer, name: Producer},
{Consumer,
subscribe_to: [{Producer, max_demand: 10, min_demand: 5}]},

HelloSocketsWeb.Endpoint,
]

We add each stage to our application before our Endpoint boots. This is very
important because we want our data pipeline to be available before our web
endpoints are available. If we didn’t do this, we would sometimes see “no
process” errors.

The min/max demand option helps us configure our pipeline to only process
a few items at a time. This should be configured to a low value for in-memory
workloads. It is better to have higher values if using an external data store
as this reduces the number of times we go to the external data store.

Let’s see what happens when we push items into our producer.

$ iex -S mix
iex(1)> alias HelloSockets.Pipeline.Producer
iex(2)> Producer.push(%{})
:ok
{HelloSockets.Pipeline.Consumer, 1, %{item: %{}}, %{item: %{}}}

iex(3)> Enum.each((1..53), & Producer.push(%{n: &1}))
{HelloSockets.Pipeline.Consumer, 1, %{item: %{n: 1}}, %{item: %{n: 1}}}
{HelloSockets.Pipeline.Consumer, 1, %{item: %{n: 2}}, %{item: %{n: 2}}}
...

report erratum • discuss

Build a Scalable Data Pipeline • 105

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/consumer.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/application.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/application.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

{HelloSockets.Pipeline.Consumer, 1, %{item: %{n: 9}}, %{item: %{n: 9}}}
{HelloSockets.Pipeline.Consumer, 5, %{item: %{n: 10}}, %{item: %{n: 14}}}
...
{HelloSockets.Pipeline.Consumer, 5, %{item: %{n: 40}}, %{item: %{n: 44}}}
{HelloSockets.Pipeline.Consumer, 5, %{item: %{n: 45}}, %{item: %{n: 49}}}
{HelloSockets.Pipeline.Consumer, 1, %{item: %{n: 50}}, %{item: %{n: 50}}}
{HelloSockets.Pipeline.Consumer, 3, %{item: %{n: 51}}, %{item: %{n: 53}}}

Your output may look slightly different than this—the important thing to see
is the grouping of messages.

You will immediately see a consumer message after the first push/1 call. Things
get more interesting when we send many events to the producer in a short
time period. The consumer starts by processing one item at a time. After ten
are processed, the items are processed five at a time until the items are all
processed.

This pattern appears a bit unusual because we never see ten items processed
at once, and we also see many single items processed. A GenStage consumer
splits events into batches based on the max and min demand. Our values
are ten and five, so the events are split into a max batch size of five. The single
items are an implementation detail of how the batching works—this isn’t a
big deal for a real application.

For most use cases, you won’t need to worry about that internals of the
buffering process. GenStage takes care of the entire process of managing the
buffer and demand of consumers. You only need to think about writing data
to the producer and the rest will be managed for you.

This introductory example shows that it’s easy to get set up with GenStage.
Let’s look at how to easily add concurrency and Channel broadcasts into our
pipeline. This will give us a useful pipeline that pushes data to our Channels.

Adding Concurrency and Channels
A scalable data pipeline must handle multiple items at the same time; it must
be concurrent. GenStage has a solution for adding concurrency to our pipeline
with the ConsumerSupervisor module. This module allows us to focus on defining
the pipeline and letting the library take care of how the concurrency will be
managed.

ConsumerSupervisor is a type of GenStage consumer that spawns a child process
for each item received. The amount of concurrency is controlled via setup
options, and it otherwise behaves exactly like a consumer. Every item spawns
a new process; they’re not re-used, but this is cheap to do in Elixir.

Chapter 6. Avoid Performance Pitfalls • 106

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

A quick note on concurrency versus parallelism. You make your system
concurrent by creating processes that run work. The BEAM then makes that
system parallel by taking the concurrent work and running it over multiple
cores at the same time. All of the concern around how parallel execution
happens is completely handled by the BEAM.

Our final result in this chapter will look like this:

Our Consumer has been replaced by a ConsumerSupervisor, which has the ability
to dynamically spawn worker processes. Let’s walk through adding Consumer-
Supervisor to our pipeline.

hello_sockets/lib/hello_sockets/pipeline/consumer_supervisor.ex
defmodule HelloSockets.Pipeline.ConsumerSupervisor do

use ConsumerSupervisor

alias HelloSockets.Pipeline.{Producer, Worker}

def start_link(opts) do
ConsumerSupervisor.start_link(__MODULE__, opts)

end

def init(opts) do
subscribe_to = Keyword.get(opts, :subscribe_to, Producer)
supervisor_opts = [strategy: :one_for_one, subscribe_to: subscribe_to]

children = [
%{id: Worker, start: {Worker, :start_link, []}, restart: :transient}

]

ConsumerSupervisor.init(children, supervisor_opts)
end

end

This ConsumerSupervisor module is, fittingly, a mix of common Supervisor and Con-
sumer process setup. We configure our module to subscribe to the correct
producer stage like we did for the regular Consumer. The biggest difference here
is that we define what the children of our ConsumerSupervisor are.

report erratum • discuss

Build a Scalable Data Pipeline • 107

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/consumer_supervisor.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We have to set up our new ConsumerSupervisor stage before we can try it out.
The setup is exactly like our Consumer from earlier. Replace the previous Producer
and Consumer alias with our new module.

hello_sockets/lib/hello_sockets/application.ex
alias HelloSockets.Pipeline.Producer
alias HelloSockets.Pipeline.ConsumerSupervisor, as: Consumer

This alias change swaps out our existing Consumer for our new ConsumerSupervisor.
If you run the code at this point, you will encounter an error that our Worker
doesn’t exist.

$ iex -S mix
iex(1)> HelloSockets.Pipeline.Producer.push(%{})
:ok
iex(2)> [error] ConsumerSupervisor failed to start child

Let’s define our Worker module now.

hello_sockets/lib/hello_sockets/pipeline/worker.ex
defmodule HelloSockets.Pipeline.Worker do

def start_link(item) do
Task.start_link(fn ->
process(item)

end)
end

end

We are using Task.start_link/1 to start a new Process that runs our item-handler
code. This simplifies our Worker because we don’t have to worry about setting
up a new GenServer.

hello_sockets/lib/hello_sockets/pipeline/worker.ex
defp process(item) do

IO.inspect(item)
Process.sleep(1000)

end

For now, we’re simply printing out the item and sleeping for a bit. This will
demonstrate how the ConsumerSupervisor processes our items. Don’t worry, we’ll
fill this function with real work shortly.

Let’s observe what happens when we push work through our pipeline:

$ iex -S mix
iex(1)> Enum.each((1..50), & HelloSockets.Pipeline.Producer.push(%{n: &1}))
:ok
[group of 1-10]
[group of 11-20]
[group of 21-30]

Chapter 6. Avoid Performance Pitfalls • 108

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/application.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/worker.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/worker.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

[group of 31-40]
[group of 41-50]

You’ll see that the jobs run ten at a time with a delay in between. The items
always group together the same way, but the group itself can come in any
order. This is because our tasks are running fully parallel with each other
and order is no longer guaranteed.

In our earlier example, with a regular Consumer, the items were processed in
batches of five. In this example, the items were processed ten at a time. The
GenStage batch size hasn’t changed, but the ConsumerSupervisor is able to start
up max_demand (ten) workers at a time. Each worker handles a single item, so
the end result is that ten items are processed in parallel. You should tune
the max_demand to the maximum amount of processes that you want to run in
parallel, based on your use case.

ConsumerSupervisor is very powerful. We added concurrent execution to our data
pipeline in only a small amount of code, and most of it was boilerplate. This
scales to a very large number of jobs with very little issue, thanks to the
power of Elixir and the BEAM. One of the biggest advantages of how we added
our concurrency is that the BEAM manages parallel execution of our work.
If we doubled our CPU cores, we’d double the execution parallelism of our
pipeline.

Let’s change our Worker module to do some real work. We’ll push items for a
particular user from our server to our AuthChannel. Replace the process/1 function
with the following code:

hello_sockets/lib/hello_sockets/pipeline/worker.ex
defp process(%{item: %{data: data, user_id: user_id}}) do

Process.sleep(1000)
HelloSocketsWeb.Endpoint.broadcast!("user:#{user_id}", "push", data)

end

We are using our Endpoint’s broadcast! function to deliver a message to a partic-
ular user. The pushed data and user ID are passed via the data pipeline item.

The final step is to connect to our private user topic and listen for the push
event.

hello_sockets/assets/js/socket.js
const authUserChannel = authSocket.channel(`user:${window.userId}`)

authUserChannel.on("push", (payload) => {
console.log("received auth user push", payload)

})

authUserChannel.join()

report erratum • discuss

Build a Scalable Data Pipeline • 109

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/worker.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

With this, we’re able to do an end-to-end test of our data pipeline. Start the
server with iex -S mix phx.server and load http://localhost:4000. Run the following code
to see the items come through to the front end; you may need to copy/paste
this code in because our iex terminal is very noisy.

$ iex -S mix phx.server
iex(1)> alias HelloSockets.Pipeline.Producer
iex(2)> push = &(Producer.push(%{data: %{n: &1}, user_id: 1}))
iex(3)> Enum.each((1..50), push)

You will see all 50 messages arrive in your JavaScript console, roughly in
groups of ten. Try changing the max_demand option in order to change the
amount of concurrency. You will see the grouping change when you do this.
You can even change it to 1 to see it process a single item at a time. If you
change the user_id property, you will no longer see the events because they are
not delivered to this topic.

We now have a working end-to-end data pipeline capable of pushing data to
our Channels. We’ll use this pipeline in part II to deliver e-commerce updates
to our clients.

We may have a working pipeline, but we’re lacking measurements and tests
for it. Let’s cover that next.

Measuring our Pipeline
The ultimate question of running software is “how do I know it’s working?”
Our data pipeline is no different. We need to be able to answer questions
about the health of our pipeline so that we can fix any problems that occur.
We’ll achieve this by adding measurement for how long our Worker takes to
process and how long it takes to broadcast our message.

We can use our stats knowledge to capture a timing event for our Worker pro-
cess. We’ll trigger a manual timing event in order to measure the time that it
takes between item generation and push delivery. Let’s jump right into our
Worker process.

Replace our current Worker.start_link function with this new timed one:

hello_sockets/lib/hello_sockets/pipeline/worker.ex
def start_link(item) do

Task.start_link(fn ->
HelloSockets.Statix.measure("pipeline.worker.process_time", fn ->
process(item)

end)
end)

end

Chapter 6. Avoid Performance Pitfalls • 110

report erratum • discuss

http://localhost:4000
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/worker.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

That wasn’t very exciting; all we did was add a measure around our existing
code! This is the beauty of taking measurements: it doesn’t have to be hard.
This simple two-line addition allows us keep track of a critical part of our
pipeline health. It does feel a bit low-value to capture this single-function
timing. However, it quickly becomes important as we add more logic or servers.

Adding a measurement of our total delivery time is a bit more complex. We
aren’t able to wrap that in a function because it occurs over our entire pipeline.
However, we’re able to capture the current time when we enqueue an item to
our pipeline. We’ll then intercept the outgoing event in our Channel and make
a measurement of the current time minus the event’s time. This difference
tells us how long the pipeline and Channel took to process the item. Let’s
start by writing the current time when an item is added to our pipeline.

hello_sockets/lib/hello_sockets/pipeline/timing.ex
defmodule HelloSockets.Pipeline.Timing do

def unix_ms_now() do
:erlang.system_time(:millisecond)

end
end

This helper allows us to get the current unix time in milliseconds. We’ll use
this at the entry and exit points of our data pipeline. There are different ways3

to measure time in the BEAM, but we are using the system time because a
real-time app often runs across multiple servers. If we used :erlang.monoton-
ic_time/0, we would have drastically inaccurate timing information. However,
there is some inaccuracy with system time as well because two servers will
often have slightly different times.

We must add the current time to the item as it gets enqueued through the
producer:

hello_sockets/lib/hello_sockets/pipeline/producer.ex
alias HelloSockets.Pipeline.Timing

def push_timed(item = %{}) do
GenStage.cast(__MODULE__, {:notify_timed, item, Timing.unix_ms_now()})

end

def handle_cast({:notify_timed, item, unix_ms}, state) do
{:noreply, [%{item: item, enqueued_at: unix_ms}], state}

end

Our push_timed function provides the current time with the items when it casts
to the GenStage producer process. This is important because it’s possible for

3. https://adoptingerlang.org/docs/development/hard_to_get_right/#handling-time

report erratum • discuss

Build a Scalable Data Pipeline • 111

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/timing.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/producer.ex
https://adoptingerlang.org/docs/development/hard_to_get_right/#handling-time
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

the notify message to be delayed if there are many items in the producer’s
message queue. If we captured the current time in the handle_cast function,
then our measurement won’t represent the entire pipeline.

We will change our Worker to pass enqueued_at in the broadcasted message.

hello_sockets/lib/hello_sockets/pipeline/worker.ex
defp process(%{

item: %{data: data, user_id: user_id},
enqueued_at: unix_ms

}) do
HelloSocketsWeb.Endpoint.broadcast!("user:#{user_id}", "push_timed", %{

data: data,
at: unix_ms

})
end

This function must be defined above (or in place of) the existing process function
or else it won’t be used due to pattern matching. This is a pretty simple unit
of code that writes to unix_ms in the broadcast.

Our previous Worker broadcast relied on Phoenix to directly send the data to
the client. This won’t work anymore because we need to run custom logic
after the data is pushed. We’ll make a change to intercept the outgoing mes-
sage "push_timed" in order to add measurements.

hello_sockets/lib/hello_sockets_web/channels/auth_channel.ex
intercept ["push_timed"]

alias HelloSockets.Pipeline.Timing

def handle_out("push_timed", %{data: data, at: enqueued_at}, socket) do
push(socket, "push_timed", data)

HelloSockets.Statix.histogram(
"pipeline.push_delivered",
Timing.unix_ms_now() - enqueued_at

)

{:noreply, socket}
end

AuthChannel will intercept outgoing "push_timed" events now. Our handle_out callback
will run, and it immediately pushes the data to the client. We capture the
elapsed milliseconds by taking the difference between now and enqueued_at.
We are using a histogram metric type to capture statistical information with
our metric. Histograms aggregate several attributes of a given metric, such
as percentiles, count, and sum. You will often use a histogram type when
capturing a timing metric.

Chapter 6. Avoid Performance Pitfalls • 112

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/pipeline/worker.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/auth_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

One last change is needed to run this example end-to-end. Let’s add this new
event type to our JavaScript client.

hello_sockets/assets/js/socket.js
authUserChannel.on("push_timed", (payload) => {

console.log("received timed auth user push", payload)
})

You should start your server with iex -S mix phx.server and load http://localhost:4000.
You’ll see a histogram metric appear if you use the new Producer.push_timed
function.

$ iex -S mix phx.server
iex(1)> alias HelloSockets.Pipeline.Producer
iex(1)> Producer.push_timed(%{data: %{n: 1}, user_id: 1})
:ok
StatsD metric: pipeline.worker.process_time 0|ms
StatsD metric: pipeline.push_delivered 0|h

Try enqueueing a lot of messages to see the difference in time.

$ iex -S mix phx.server
iex(1)> alias HelloSockets.Pipeline.Producer
iex(2)> push = &(Producer.push_timed(%{data: %{n: &1}, user_id: 1}))
iex(3)> Enum.each((1..500), push)
:ok
StatsD metric: pipeline.push_delivered 0|h
...
StatsD metric: pipeline.push_delivered 25|h

In this example, you will see a total pipeline time of several milliseconds for
the very last item. This demonstrates that our data pipeline has to work
through all 499 messages before getting to the last one. This is going to take
a small amount of time; we wouldn’t expect to see 0ms for both the first and
last item.

You can play around with the max_demand in Application to see how it affects the
timing. When I go from 10 to 1 max_demand, the timing doubled from 25ms to
50ms. When I go from 10 to 100 max_demand, the timing only decreased to
23ms. Your machine is capable of a maximum amount of parallel execution,
based on the number of cores, which could change these numbers and how
the amount of concurrency impacts performance.

There is one disclaimer for this measurement technique that is worth
repeating: our data pipeline spans multiple servers, so the data could originate
on a different server than where it finishes. Two servers usually have a slight
amount of clock difference that would either add or remove milliseconds to

report erratum • discuss

Build a Scalable Data Pipeline • 113

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

the difference. In practice, we can accept this because the difference will
usually be small, and we aren’t basing application logic on the times.

There is one final piece of developing a strong data pipeline that we haven’t
covered yet: tests. Let’s write an integration-level test to ensure our application
can move data the whole way through our pipeline.

Test our Data Pipeline
Good production code includes tests for verification. We are able to test our
data pipeline to ensure that everything is wired up correctly. Data should
move from beginning to end without any error.

There are a few different ways to approach the testing methodology for our
pipeline. We could write unit tests for every part of the pipeline or integration
tests for the entire pipeline. We’ll look at how to integration test our pipeline
to see all pieces work together. This serves us well because we don’t have
complex logic in our data pipeline. If we had more complex functions in our
Worker, then we would most likely also want unit tests.

We will write our integration test in a new test file. Phoenix’s ChannelCase helper
will simulate a connected socket.

hello_sockets/test/integration/pipeline_test.exs
defmodule Integration.PipelineTest do

use HelloSocketsWeb.ChannelCase, async: false

alias HelloSocketsWeb.AuthSocket
alias HelloSockets.Pipeline.Producer

defp connect_auth_socket(user_id) do
{:ok, _, %Phoenix.Socket{}} =
socket(AuthSocket, nil, %{user_id: user_id})
|> subscribe_and_join("user:#{user_id}", %{})

end

test "event are pushed from begining to end correctly" do
connect_auth_socket(1)

Enum.each(1..10, fn n ->
Producer.push_timed(%{data: %{n: n}, user_id: 1})
assert_push "push_timed", %{n: ^n}

end)
end

end

We use our Producer module to enqueue an event that will eventually make its
way to the Channel as an outgoing message. Everything behaves exactly the
same as it did in our Channel tests that didn’t use the pipeline. We have to
use a synchronous test, denoted by async: false, because our data pipeline is

Chapter 6. Avoid Performance Pitfalls • 114

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/integration/pipeline_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

globally available to the test suite. Using a synchronous test prevents random
test failures.

We should always include a negative test to go with our positive test. Let’s
add a test for ensuring that users don’t receive each other’s data.

hello_sockets/test/integration/pipeline_test.exs
test "an event is not delivered to the wrong user" do

connect_auth_socket(2)

Producer.push_timed(%{data: %{test: true}, user_id: 1})
refute_push "push_timed", %{test: true}

end

Finally, we should test that our pipeline emits a StatsD metric at the end of
processing. We will use StatsDLogger in a special test mode to write this test–it
will forward any stats to the test process rather than the StatsD server. Let’s
configure our test environment for StatsD and then write our test.

hello_sockets/config/test.exs
config :statix, HelloSockets.Statix, port: 8127

hello_sockets/test/integration/pipeline_test.exs
test "events are timed on delivery" do

assert {:ok, _} = StatsDLogger.start_link(port: 8127, formatter: :send)
connect_auth_socket(1)

Producer.push_timed(%{data: %{test: true}, user_id: 1})

assert_push "push_timed", %{test: true}
assert_receive {:statsd_recv, "pipeline.push_delivered", _value}

end

When you run mix test, you will see all the tests passing. We now have a
working integration test!

Testing doesn’t have to be complex to be powerful. This integration test doesn’t
flex every nook and cranny of our data pipeline, but it covers close to all of
it. Now that we have these tests, we would learn immediately if our pipeline
became misconfigured.

Before we wrap up this data pipeline section, let’s cover how GenStage can
serve us through changing or complex requirements.

The Power of GenStage
Our applications must grow and adapt to changing requirements or lessons
learned over time. We find ourselves in the best position when we can imple-
ment new requirements by changing very little code. The power of GenStage

report erratum • discuss

Build a Scalable Data Pipeline • 115

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/integration/pipeline_test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/config/test.exs
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/test/integration/pipeline_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

is that it can grow with our application. We start simple and add as needed
over time.

Let’s look at a few examples of how our application may change over time.
We’ll think about how GenStage can help us achieve these goals.

Enforce stricter delivery guarantees for messages
One of the biggest trade-offs with a fully in-memory approach is that a
server crash or restart will lose all current in-memory work. We can use
a data store such as a SQL database, Redis, or Kafka to store every out-
going message. This would reduce data loss potential when a server
restarts. GenStage helps us here because its core purpose is to handle
data requesting and buffering from external data stores. We could adapt
our pipeline’s Producer module in order to read from the data store.

You may get pretty far with an in-memory, no-persistence solution. There
is a great saying in software architecture: “Our software architecture is
judged by the decisions we are able to defer.” This means that you’re able
to tackle the important things up-front and leave yourself open to tackle
currently less important things in the future—such as pipeline persistence.

Augment an outgoing message with data from a database
Our GenStage-powered pipeline exposes a Worker module that can do
anything you want it to do. For example, it’s possible to augment messages
with data from an external API or database. These external resources
often have a maximum throughput, so the maximum concurrency option
helps us to avoid overwhelming these external data providers. We could
also leverage the concept of a GenStage ProducerConsumer to achieve the goal
of data augmentation.

Equitable dispatching between users
Our GenStage-based pipeline will currently send items on a first-come-
first-served basis. This is great for most applications, but it could be
problematic in an environment where a single user (or team of users) has
significantly more messages than other users. In this scenario, all users
would become slower due to the effect of a single user.

GenStage allows us to write a custom Dispatcher module capable of routing
messages in any way we want. We could leverage this to isolate users that
are taking over the system’s capacity onto a single worker. We wouldn’t need
to change any existing part of our application other than our Producer and
Consumer modules.

Chapter 6. Avoid Performance Pitfalls • 116

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

This is an advanced use case, but it shows that GenStage can achieve fairly
complex requirements with little code change.

We don’t have to do any of these things until it’s the right time. We’re able to
defer those decisions and focus on the behavior that is most important for now.

GenStage is a great choice for writing a data pipeline. It’s efficient, well-designed
with OTP principles, and easy to adapt to new requirements over time.

We’ve covered all of The Performance Pitfalls! We’ll think about these things
as we develop our application in part II.

Wrapping Up
The Performance Pitfalls are common problems that affect our application
development. We’re able to get a head start on our application’s performance
by considering them early in the development process. The key aspect of
overcoming these pitfalls is to be intentional. We must think about how to
overcome performance problems throughout the development life cycle; it’s
not good enough to consider performance at the beginning or end only.

We need to know if our application is running and healthy. We can use a
metrics protocol like StatsD, combined with a data visualization service, to
provide measurements of our running application. It is easy to add metrics
to your applications, so always do it!

Elixir is designed around concurrency, but we must still consider how our
code runs. Channels are not concurrent because they are a single process.
This affects a Channel’s throughput, but this can be counteracted with
development techniques. We’re able to spawn processes to handle requests.
This gives our Channel the ability to process multiple requests at the same
time for a connected client.

Moving data from server to client is one of the key tasks of our real-time
application. Genstage is used to develop a real-time data pipeline that provides
us with a scalable and well-featured way to process data. We will often use
the same basic GenStage setup to configure our application’s data pipeline,
so we don’t reinvent the wheel for every real-time application we develop.

Next, we build a real-world application from the ground up. All of our Channel
and real-time application knowledge will be used as we develop simple to
more advanced features throughout part II.

report erratum • discuss

Wrapping Up • 117

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Part II

Building a Real-Time Application

We have the fundamentals of Phoenix Channels
down and have seen some of the challenges that
real-time applications can bring. We will build a
larger, real-world application that spans many large
requirements in order to solidify our knowledge in
a practical way.

CHAPTER 7

Build a Real-Time Sneaker Store
In part I, we covered the topics necessary for building real-time applications
powered by Phoenix Channels. Your toolbox has been assembled and is now
ready for action. In part II, we’ll use all the tools we have to build a real-world
application. Throughout these next chapters, you’ll build an e-commerce
store with a twist. We’ll implement new features in each chapter until we have
a fairly complete product.

There is a fine line when writing a book between wanting to show everything
and keeping the book concise. And there is a lot of value in building a Phoenix
application from the ground up, from mix phx.new to a working product, but it
takes up time that would be better spent on the book’s main topic. Rather
than starting from a completely empty project, you’ll be using an application
base that already has a functional core and data models for our e-commerce
application.

Our project will use a few concepts that you might not be familiar with. We’ll
use Ecto to interact with a database, create a distributed system for scalabil-
ity, and we’ll write a GenServer to give us fast access to local data. All of these
tools are regularly used in real projects, but don’t worry if you’re not familiar
with them yet. We’ll walk through each step and cover what is happening.
The project base will also make it easy to breeze through these unfamiliar
concepts.

We’ll start by covering the requirements and goals of our online shoe store.
The project looks simple enough on the surface, but the need to serve thou-
sands of simultaneous users shopping for a limited selection of items adds
complexity. We’ll leverage the power of Phoenix and OTP to build a fast, real-
time e-commerce store. You’ll write a simple Phoenix controller, add real-time
features to the application, and then run the application across multiple
servers. Let’s jump into the product requirements!

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

From Product Requirements to a Plan
We’ve been contacted by a local sneaker store, Sneakers23, that is looking
to better manage how they release new shoes online. Some of their shoe
launches have sold out in 30 seconds and are hotly contested by thousands
of shoppers wanting to buy a pair. Shoppers have given feedback that the
current system doesn’t let them know what’s still available until it’s too late
to adjust. We’re going to solve these problems by creating an online shoe
release site for Sneakers23.

Sneakers23 would like the ability to launch different shoes at specific times,
with each launch getting thousands of visitors and finishing within a minute.
Each size will indicate the current stock levels (low, medium, high, out) in
real-time to each visitor. Shoppers will be able to add up to two items into
their cart and will be alerted if any of their items sell out.

We’ll use a simple visual design throughout this project in order to focus on the
behavior of the system, so don’t worry if you aren’t familiar with web design.

The result at the end of this chapter will look like this:

Let’s cover the specific goals for the first phase of this project.

Phase 1 Goals
Our first phase focuses on establishing the basic pages of the system. We’ll
add two different real-time features to complete a working demo. We’ll be able
to extend the application with additional features in future chapters. To start,
you’ll build an application that fulfills these requirements:

• Display a single page containing all current products to the shopper.

Chapter 7. Build a Real-Time Sneaker Store • 122

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

• Show the shopper all shoe sizes available as well as the current stock levels.
• Update the products and availability during the launch.
• Run multiple servers at the same time without issue.

In the next few chapters, we’ll add features like a checkout process and an
admin section.

Let’s start with the data model and system architecture.

Modeling the Data
Sneaker23 has a fairly simple e-commerce data model. We’ll build specifically
to the needs of this store, rather than trying to build a generic e-commerce
platform, which would be much more complex. The e-commerce structure
breaks down as follows:

Products are the highest-level data model and consist of the attributes of a
particular type of shoe. A product is not directly sellable on its own. Instead,
each product is sold through individual SKU-size pairings called items. An
item has availability and cannot be sold when the available count is 0. The
item availability is stored in a separate table, which is just an implementation
detail of this project.

These database schemas have been implemented for you using Ecto. You’ll
download this application base in the next section.

Developing a System Architecture
We must pick a system architecture that can handle thousands of simultane-
ous data requests while also still being easy to write and maintain. A useful
technique, which we’ll leverage in this project, is to use an Elixir process that
holds the current application state. The local state must be kept in sync with
other servers, it must be recoverable in case of crashes, and it should not be
used in operations that must be exactly correct, such as checking out. The
figure on page 124 is what our system will look like at the end of this chapter.

A shopper’s web page connects to a Phoenix controller that reads the current
data from the inventory process. The shopper then connects to a Channel for

report erratum • discuss

From Product Requirements to a Plan • 123

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

each product they’re viewing. This Channel doesn’t receive any data from the
shopper, but it keeps track of all inventory updates. The inventory process
is powered by a functional core and handles replication to other servers.
Finally, the database is the source of truth for our data and is used when
loading the inventory and in operations like checking out. Our servers will
use a replication process to send data about inventory changes to each other,
allowing them to always reflect the correct state.

It’s not always necessary to add a data process to your application. In the
case of our store, the number of simultaneous requests for data will be very
high and the database could prove to be a bottleneck. The inventory process
acts like a cache that contains correct (or close to correct) data about the
inventory. Also, the inventory and replication processes will give you the
experience of implementing a GenServer in Elixir, which is one of the most
useful programming constructs in Elixir.

Now that you’ve seen the project requirements and architecture, it’s time to
jump into coding. You’ll need to set up the project first, in order to get the
database schemas and functional core.

Set Up the Project
If you have not yet downloaded the book’s code, following the instructions
found in Introduction, on page xi, then do so now—you’ll need the project
base in order to start this chapter. You should copy the base project into a
working folder, like so. You’ll need to substitute code/location with the folder of
the extracted code:

$ cp -R code/location/sneakers_23_base ~/sneakers_23
$ cd ~/sneakers_23
$ git init && git add . && git commit -m "initial commit (from base)"

The project base is now set up in a folder that you can work from. You can
verify that everything is working by running the test suite.

Chapter 7. Build a Real-Time Sneaker Store • 124

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

$ mix deps.get && mix ecto.setup && mix test
Compiling 2 files (.ex)
Generated sneakers_23 app
...............
$ npm --prefix assets install

Finished in 0.1 seconds
15 tests, 0 failures

Finally, let’s test that the web view is working properly. Use the following
commands to seed the database and then start the server.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server

When you visit http://localhost:4000, you will see a “coming soon…” page. This
changes when you release one of the products using a helper function.

$ iex -S mix phx.server
iex(1)> Sneakers23.Inventory.mark_product_released!(1)
:ok

When you refresh the page, you will see that the size selector is available. It
has randomized data that makes each seed slightly different. Finally, you can
ensure that the front end updates as shoes are sold. This application is not
yet real-time, so you’ll need to refresh to see the size selector display when
sizes are sold out. It will become a bit noisy when you run this command due
to SQL logging, but keep refreshing the page until it’s done.

$ iex -S mix phx.server
iex(2)> Sneakers23Mock.InventoryReducer.sell_random_until_gone!(500)
...
[info] Elixir.Sneakers23Mock.InventoryReducer sold out!

As you refresh, the size selector on the front end will change colors and then
become disabled once the InventoryReducer finishes.

You’re all set to continue with this chapter! We’ll jump right into making the
application real-time.

Render Real-Time HTML with Channels
There are two major real-time features of our store. The first is to mark a shoe
as released and to update all connected shoppers with the released shoe.
We’ll use HTML replacement for this feature by swapping out “coming soon”
with our size selector. This approach makes it easy to ensure that a user
interface looks the same before and after a real-time update occurs.

report erratum • discuss

Render Real-Time HTML with Channels • 125

http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Adding the application’s real-time features is usually less work than the
other parts of writing the application due to Channel’s abstractions. In this
chapter, we’ll write a small amount of code compared to the size of the project
base that exists already. Real-time features are often added on top of other
features, so it does make sense that you’ll spend more time building the fea-
tures and less time enhancing them to be real-time.

Our front end currently isn’t connected to a Channel that could provide it
with real-time updates. To start, we’ll add a very simple Socket and Channel,
and then connect our storefront to it. We’ll leverage a Channel to send data
from the server to a client. We don’t need to add authentication because this
is a public feature that anyone can see. There is no user-sensitive data in
any of the Channels that we’ll build in this chapter. Let’s start by updating
our Endpoint with a new Socket.

sneakers_23/lib/sneakers_23_web/endpoint.ex
socket "/product_socket", Sneakers23Web.ProductSocket,

websocket: true,
longpoll: false

You can replace the existing UserSocket definition with this one. UserSocket is
one of the generated files that comes with Phoenix. You can optionally delete
the channels/user_socket.ex file now. Let’s define ProductSocket now.

sneakers_23/lib/sneakers_23_web/channels/product_socket.ex
defmodule Sneakers23Web.ProductSocket do

use Phoenix.Socket

Channels
channel "product:*", Sneakers23Web.ProductChannel

def connect(_params, socket, _connect_info) do
{:ok, socket}

end

def id(_socket), do: nil
end

This is a very standard Socket defined without any authentication, because the
feature is publicly accessible. Our ProductChannel will be equally simple for now.

sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
defmodule Sneakers23Web.ProductChannel do

use Phoenix.Channel

alias Sneakers23Web.{Endpoint, ProductView}

def join("product:" <> _sku, %{}, socket) do
{:ok, socket}

end
end

Chapter 7. Build a Real-Time Sneaker Store • 126

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/endpoint.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/channels/product_socket.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We’re not doing anything exciting in this Channel yet. Let’s change that by
defining a broadcast function. This is a fairly interesting function because
we’re going to render our size selector HTML for a given product.

sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
def notify_product_released(product = %{id: id}) do

size_html = Phoenix.View.render_to_string(
ProductView,
"_sizes.html",
product: product

)

Endpoint.broadcast!("product:#{id}", "released", %{
size_html: size_html

})
end

This technique allows us to render full pages or templates from anywhere in
our Elixir application. This is a big advantage because all the template logic
lives in Elixir, rather than being duplicated in JavaScript. We should write a
test for this function.

sneakers_23/test/sneakers_23_web/channels/product_channel_test.exs
defmodule Sneakers23Web.ProductChannelTest doLine 1

use Sneakers23Web.ChannelCase, async: true-

alias Sneakers23Web.{Endpoint, ProductChannel}-

alias Sneakers23.Inventory.CompleteProduct-

5

describe "notify_product_released/1" do-

test "the size selector for the product is broadcast" do-

{inventory, _data} = Test.Factory.InventoryFactory.complete_products()-

[_, product] = CompleteProduct.get_complete_products(inventory)-

10

topic = "product:#{product.id}"-

Endpoint.subscribe(topic)-

ProductChannel.notify_product_released(product)-

-

assert_broadcast "released", %{size_html: html}15

assert html =~ "size-container__entry"-

Enum.each(product.items, fn item ->-

assert html =~ ~s(value="#{item.id}")-

end)-

end20

end-

end-

Our test subscribes to the notified topic, on line 12, so that any broadcasted
messages will be received by the test process. This lets assert_broadcast check
that the right message was broadcast. On line 18, our test ensures that each
item of the product is accounted for in the HTML.

report erratum • discuss

Render Real-Time HTML with Channels • 127

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/sneakers_23_web/channels/product_channel_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

This function will be called whenever our item is released, which happens in
the Inventory context. We’ll use our Sneakers23Web module as our web context
and will define a function that delegates to the ProductChannel. Elixir gives us a
built-in way to do this.

sneakers_23/lib/sneakers_23_web.ex
defdelegate notify_product_released(product),

to: Sneakers23Web.ProductChannel

The defdelegate macro1 is incredibly useful for building a context module because
it lets you separate implementation from exposure in a very quick and easy
way. We now have to use this delegate function in our Inventory context.
Without it, a product release event will not be broadcast to connected clients.
Add the following test at the end of the existing describe block.

sneakers_23/test/sneakers_23/inventory_test.exs
test "the update is sent to the client", %{test: test_name} do

{_, %{p1: p1}} = Test.Factory.InventoryFactory.complete_products()
{:ok, pid} = Server.start_link(name: test_name, loader_mod: DatabaseLoader)
Sneakers23Web.Endpoint.subscribe("product:#{p1.id}")

Inventory.mark_product_released!(p1.id, pid: pid)
assert_received %Phoenix.Socket.Broadcast{event: "released"}

end

You’ll see this test fails when you run mix test. This is because the Inventory.mark_
product_released!/2 function doesn’t call notify_product_released/1. Let’s fix that now.

sneakers_23/lib/sneakers_23/inventory.ex
def mark_product_released!(id), do: mark_product_released!(id, [])
def mark_product_released!(product_id, opts) do

pid = Keyword.get(opts, :pid, __MODULE__)

%{id: id} = Store.mark_product_released!(product_id)
{:ok, inventory} = Server.mark_product_released!(pid, id)
{:ok, product} = CompleteProduct.get_product_by_id(inventory, id)
Sneakers23Web.notify_product_released(product)

:ok
end

You can use default options in the function definition, like mark_product_released!(prod-
uct_id, opts \\ []), instead of writing two separate function definitions. However,
this book will often omit that type of definition.

All of the tests will now pass. This means that the back end is fully working.
The Inventory context provides a function that marks the product as released

1. https://hexdocs.pm/elixir/Kernel.html#defdelegate/2

Chapter 7. Build a Real-Time Sneaker Store • 128

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/sneakers_23/inventory_test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23/inventory.ex
https://hexdocs.pm/elixir/Kernel.html#defdelegate/2
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

in the database, changes it locally in the Inventory.Server process, then pushes
the new state to any connected clients.

Now that our back end is configured, let’s connect our front end by using the
Phoenix Channel JavaScript client. Our strategy will be to grab the data-product-
id attributes off of our HTML DOM elements and then connect to a Channel
per matching product ID.

sneakers_23/assets/js/app.js
import css from "../css/app.css"
import { productSocket } from "./socket"
import dom from './dom'

const productIds = dom.getProductIds()

if (productIds.length > 0) {
productSocket.connect()
productIds.forEach((id) => setupProductChannel(productSocket, id))

}

function setupProductChannel(socket, productId) {
const productChannel = socket.channel(`product:${productId}`)
productChannel.join()

.receive("error", () => {
console.error("Channel join failed")

})
}

This isn’t a runnable example yet because we need to define our dom.js and
socket.js files. However, the flow that we’ll follow is complete. We’ll soon add
additional setup operations into setupProductChannel/1, which is why that function
ends without closing.

sneakers_23/assets/js/socket.js
import { Socket } from "phoenix"

export const productSocket = new Socket("/product_socket")

This file simply makes the productSocket available for import. It’s a good idea to
keep the code separated with exported modules to help increase the focus of
a particular file, even if there’s no logic in the file now. It also gives us a place
to add more Socket-specific logic in the future, if needed. We still need to
define our DOM operations.

sneakers_23/assets/js/dom.js
const dom = {}

function getProductIds() {
const products = document.querySelectorAll('.product-listing')
return Array.from(products).map((el) => el.dataset.productId)

}

report erratum • discuss

Render Real-Time HTML with Channels • 129

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/app.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/socket.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/dom.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

dom.getProductIds = getProductIds

export default dom

This function will grab the matching .product-listing elements and return each pro-
ductId attribute. At this point, everything is complete for our Socket to connect.
Try it out by starting mix phx.server and visiting http://localhost:4000. You should see
a Socket request in the “Network” tab as well as Channel join messages for
product:1 and product:2. We’re ready to wire up our product release message.

Start your server with iex -Smix phx.server so you can trigger the release message.
Do so like this:

$ iex -S mix phx.server
iex(1)> {:ok, products} = Sneakers23.Inventory.get_complete_products()
iex(2)> List.last(products) |> Sneakers23Web.notify_product_released()
:ok

You can run this as many times as you want because it doesn’t modify data.
Try to watch the network message tab while you execute it. You should see
the "released" message come through with an HTML payload. If you don’t see
it, make sure that you’re inspecting the product_socket connection and not the
live_reload connection.

Our front end needs to listen for this event in order to display the HTML.

sneakers_23/assets/js/app.js
function setupProductChannel(socket, productId) {

const productChannel = socket.channel(`product:${productId}`)
productChannel.join()

.receive("error", () => {
console.error("Channel join failed")

})

productChannel.on('released', ({ size_html }) => {
dom.replaceProductComingSoon(productId, size_html)

})
}

Our setup function is now adding a handler for the "released" event from the
Channel. When the event is received, the DOM elements will be replaced with the
new HTML. We’ll add that function into our dom module, above the bottom export.

sneakers_23/assets/js/dom.js
function replaceProductComingSoon(productId, sizeHtml) {

const name = `.product-soon-${productId}`
const productSoonEls = document.querySelectorAll(name)

productSoonEls.forEach((el) => {
const fragment = document.createRange()

.createContextualFragment(sizeHtml)

Chapter 7. Build a Real-Time Sneaker Store • 130

report erratum • discuss

http://localhost:4000
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/app.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/dom.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

el.replaceWith(fragment)
})

}

dom.replaceProductComingSoon = replaceProductComingSoon

We’re not using jQuery or a similar library in this project. If we were, we could
replace this HTML with something a bit simpler. This function lets the DOM
turn HTML into the appropriate node types, and then swaps out the original
element for the new node.

This is one of the more exciting parts of the demo! Our first real-time message
is working end-to-end. Trigger notify_product_released/1 in the console when you
have the page loaded. You will see the “coming soon” text instantly replaced
by the shoe size selector, complete with the right colors. Type the following
commands into your terminal.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server
iex(1)> Sneakers23.Inventory.mark_product_released!(1)
iex(2)> Sneakers23.Inventory.mark_product_released!(2)

Take a moment to commit all of your current changes. The feature to release
our product is fully implemented. This is a great time to make sure that you
fully understand the code powering Sneakers23.Inventory.mark_product_released!/1
before moving on.

Next, you will implement another real-time feature in JavaScript, without
HTML. This provides some variety in the way that you implement real-time
features.

Update a Client with Real-Time Data
In the last section, we used a Channel broadcast to replace content by
swapping out the HTML. We could use this same technique for item stock
level updates, but we will take a different approach. Instead of sending the
client server-rendered HTML, our real-time message will include details about
the new stock level. The JavaScript client will use this data to change the
relevant parts of the DOM in order to affect the view. Our message "stock_change"
will include the product ID, item ID, and the new stock level.

Our ProductChannel will be modified to define the new broadcast function. This
function will broadcast if the stock level has changed, or it will skip the
broadcast if it’s identical. This prevents unnecessary data being sent to con-
nected clients.

Let’s add the stock level change function to the ProductChannel module.

report erratum • discuss

Update a Client with Real-Time Data • 131

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
def notify_item_stock_change(Line 1

previous_item: %{available_count: old},-

current_item: %{available_count: new, id: id, product_id: p_id}-

) do-

case {5

ProductView.availability_to_level(old),-

ProductView.availability_to_level(new)-

} do-

{same, same} when same != "out" ->-

{:ok, :no_change}10

-

{_, new_level} ->-

Endpoint.broadcast!("product:#{p_id}", "stock_change", %{-

product_id: p_id,-

item_id: id,15

level: new_level-

})-

-

{:ok, :broadcast}-

end20

end-

A case statement is used on line 5 to prevent duplicate updates from being
sent to a client. There is one exception to this—we want to ensure that "out"
is never missed by a client, so we aren’t stopping duplicate broadcasts for it.
If the availability level has changed between the old and new items, then the
stock_change event is broadcast on line 13. Let’s see this in action by writing a
test for it.

sneakers_23/test/sneakers_23_web/channels/product_channel_test.exs
describe "notify_item_stock_change/1" do

setup _ do
{inventory, _data} =
Test.Factory.InventoryFactory.complete_products()

[product = %{items: [item]}, _] =
CompleteProduct.get_complete_products(inventory)

topic = "product:#{product.id}"
Endpoint.subscribe(topic)

{:ok, %{product: product, item: item}}
end

test "the same stock level doesn't broadcast an event", %{item: item} do
opts = [previous_item: item, current_item: item]
assert ProductChannel.notify_item_stock_change(opts)
== {:ok, :no_change}

refute_broadcast "stock_change", _
end

end

Chapter 7. Build a Real-Time Sneaker Store • 132

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/sneakers_23_web/channels/product_channel_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

This test uses a setup block to reduce the amount of code copied between our
tests. We’re ensuring that the same stock level doesn’t broadcast duplicate
events.

We also need to write a test for the change scenario. Add the following test
inside of the notify_item_stock_change/1 describe block.

sneakers_23/test/sneakers_23_web/channels/product_channel_test.exs
test "a stock level change broadcasts an event",

%{item: item, product: product} do
new_item = Map.put(item, :available_count, 0)
opts = [previous_item: item, current_item: new_item]
assert ProductChannel.notify_item_stock_change(opts)

== {:ok, :broadcast}

payload = %{item_id: item.id, product_id: product.id, level: "out"}
assert_broadcast "stock_change", ^payload

end

These tests show that our broadcast function is working as expected. We
could add tests for all the different scenarios, and most likely would in a
professional project, but we’ll leave those unwritten to save time.

Let’s add this function to our web context so that it can be used in other parts
of our application.

sneakers_23/lib/sneakers_23_web.ex
defdelegate notify_item_stock_change(opts),

to: Sneakers23Web.ProductChannel

We’re now ready to connect our front end so we can try out this message.
We’ll write code similar to our "released" message handler. This next code
snippet should be placed at the bottom of setupProductChannel/1.

sneakers_23/assets/js/app.js
productChannel.on('stock_change', ({ product_id, item_id, level }) => {

dom.updateItemLevel(item_id, level)
})

All of our work is performed by dom. We will remove any "size-container__entry--
level-*" CSS class and add our new class of "size-container__entry--level-NEW_LEVEL".
In addition, we need to disable the size button if the item is now out-of-stock.

sneakers_23/assets/js/dom.js
function updateItemLevel(itemId, level) {

Array.from(document.querySelectorAll('.size-container__entry')).
filter((el) => el.value == itemId).
forEach((el) => {
removeStockLevelClasses(el)
el.classList.add(`size-container__entry--level-${level}`)

report erratum • discuss

Update a Client with Real-Time Data • 133

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/sneakers_23_web/channels/product_channel_test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/app.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/dom.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

el.disabled = level === "out"
})

}

dom.updateItemLevel = updateItemLevel

function removeStockLevelClasses(el) {
Array.from(el.classList).

filter((s) => s.startsWith("size-container__entry--level-")).
forEach((name) => el.classList.remove(name))

}

It’s amazing how far we can get with plain JavaScript these days. You can,
of course, use a library that makes DOM manipulation easier if you want to.

Once this is written, you can test it end-to-end. Start your server with iex -S
mix phx.server and then run the following script.

$ iex -S mix phx.server
iex(1)> {:ok, products} = Sneakers23.Inventory.get_complete_products()
iex(2)> %{items: items} = List.first(products)
iex(3)> items |> Enum.take(6) |> Enum.each(fn item ->

out_item = Map.put(item, :available_count, 0)
opts = [previous_item: item, current_item: out_item]
Sneakers23Web.notify_item_stock_change(opts)

end)

This script will mark the first six items as out-of-stock. However, you will
notice that the front end reverts back to the previous state when refreshed.
This is because we haven’t used the Inventory.item_sold!/2 function that marks
the item as sold in the database.

Let’s update the item_sold! function to use the notify_item_stock_change function.

sneakers_23/lib/sneakers_23/inventory.ex
def item_sold!(id), do: item_sold!(id, [])Line 1

def item_sold!(item_id, opts) do-

pid = Keyword.get(opts, :pid, __MODULE__)-

-

avail = Store.fetch_availability_for_item(item_id)5

{:ok, old_inv, inv} = Server.set_item_availability(pid, avail)-

{:ok, old_item} = CompleteProduct.get_item_by_id(old_inv, item_id)-

{:ok, item} = CompleteProduct.get_item_by_id(inv, item_id)-

Sneakers23Web.notify_item_stock_change(-

previous_item: old_item, current_item: item10

)-

-

:ok-

end-

Chapter 7. Build a Real-Time Sneaker Store • 134

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23/inventory.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Lines 7–11 are new to this function and are used to provide the old and new
item to the notify_item_stock_change! function. The Store function, on line 5, retrieves
the item availability from the database. On the next line, the item’s availabil-
ity is updated in the GenServer that keeps a copy of the inventory. Finally,
the old_item is then retrieved. This is necessary for the notify_item_stock_change
function.

You can now test that the application updates item stock levels and saves
them in the database.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server
iex(1)> Sneakers23.Inventory.mark_product_released!(1)
iex(2)> Sneakers23.Inventory.mark_product_released!(2)
iex(3)> Sneakers23Mock.InventoryReducer.sell_random_until_gone!()

You will see the items on the page at http://localhost:4000 start to disappear after
you run this. When you refresh, the items stay the way they are. You can
even shut down the server with ctrl-c then a, and the items will remain the
same after you start the server again.

We have developed two different approaches to real-time features. These fea-
tures are relatively simple in their business objective, but they significantly
improve the user experience for customers. Next, we’ll look at how to change
our code so that the application can run across multiple server instances.

Run Multiple Servers
To deal with the large scale of Sneakers23’s online operation, we’ll need to
run multiple servers at once. Running multiple servers can be difficult when
in-memory data structures are used because updates are not automatically
sent across the cluster. However, the scalability is certainly worth it. We have
already discussed how Phoenix deals with this by broadcasting messages to
all connected nodes, and we’ll use a similar solution to broadcast our Inventory
changes across the cluster. Let’s start by demonstrating the particular problem
we’re facing.

The Challenge of Distribution
Running multiple servers exposes a problem. The current Inventory.Server process
only knows about its own transactions. This means that if an item is released
or sold on another node, it won’t update until the server reboots. We can
discover this ourselves by running a local test with two nodes.

report erratum • discuss

Run Multiple Servers • 135

http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex --name app@127.0.0.1 -S mix phx.server

Open http://localhost:4000 in order to get the connection started. In another shell,
run the following iex session and commands.

$ iex --name back@127.0.0.1 -S mix
iex(1)> Node.connect(:"app@127.0.0.1")
true
iex(2)> Sneakers23.Inventory.mark_product_released!(1)
:ok

When you view the web page, everything looks good! The products are there
and all is well…until you refresh. Once you refresh, you are right back to a
“coming soon” state. This is because there are two different Inventory.Server
processes running, and only the “back” node received the update. The real-
time message was broadcast because of Phoenix, but the underlying data
was not updated in the Inventory.Server process. As you can imagine, this would
also occur for item sales. We can solve this problem by adding replication.

Add Replication of Inventory Events
Phoenix PubSub can be used for more than Channel messages. At its core,
it lets any process subscribe to a particular event type. We will use PubSub
to power the replication events for our Inventory. You’ll need to spin up a new
GenServer to handle the events, as well as a context to dispatch the events.

Replication is not without its own challenges—it’s possible for nodes to become
out of sync from this replicated approach. For non-critical data, the benefits
of scalability are often worth the trade-off of potential data incorrectness. In
Sneakers23, we never use the replicated data as a source of truth for important
operations, such as the purchase process. Instead, we use the database to
ensure that these operations are consistent.

We’ll first write the GenServer and then work our way up through the various
layers.

sneakers_23/lib/sneakers_23/replication/server.ex
defmodule Sneakers23.Replication.Server doLine 1

use GenServer-

-

alias Sneakers23.Inventory-

5

def start_link(opts) do-

GenServer.start_link(__MODULE__, opts, name: __MODULE__)-

end-

-

def init(_opts) do10

Chapter 7. Build a Real-Time Sneaker Store • 136

report erratum • discuss

http://localhost:4000
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23/replication/server.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Phoenix.PubSub.subscribe(Sneakers23.PubSub, "inventory_replication")-

{:ok, nil}-

end-

-

def handle_info({:mark_product_released!, product_id}, state) do15

Inventory.mark_product_released!(product_id, being_replicated?: true)-

{:noreply, state}-

end-

-

def handle_info({:item_sold!, id}, state) do20

Inventory.item_sold!(id, being_replicated?: true)-

{:noreply, state}-

end-

end-

Phoenix.PubSub makes this code very clean and simple. Our process subscribes
to the "inventory_replication" event on line 11. Any message that is sent to this
topic will be received by the process as messages. Each message type will
need to be handled by using a handle_info callback.

On lines 16 and 21, we are calling the appropriate Inventory context functions,
but we also indicate that this is due to a replication event with the being_repli-
cated?: true option. This allows us to modify our context functions so they do
not broadcast messages when handling a replication message. Our nodes
would end up in an infinite loop in this case, which is never good!

We’ll next define the Replication context so that other parts of our code can
cleanly emit replication events.

sneakers_23/lib/sneakers_23/replication.ex
defmodule Sneakers23.Replication doLine 1

alias __MODULE__.{Server}-

-

defdelegate child_spec(opts), to: Server-

5

def mark_product_released!(product_id) do-

broadcast!({:mark_product_released!, product_id})-

end-

-

def item_sold!(item_id) do10

broadcast!({:item_sold!, item_id})-

end-

-

defp broadcast!(data) do-

Phoenix.PubSub.broadcast_from!(15

Sneakers23.PubSub,-

server_pid(),-

"inventory_replication",-

data-

)20

report erratum • discuss

Run Multiple Servers • 137

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23/replication.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

end-

-

defp server_pid(),-

do: Process.whereis(Server)-

end25

We use PubSub.broadcast_from! on line 15 to send a message to all processes
except the local process. In our case, only remote nodes will receive replication
events. This makes sense because we’ve already handled the message locally
if we’re broadcasting the message to other nodes. Let’s add this new GenServer
to our Application module.

sneakers_23/lib/sneakers_23/application.ex
children = [

Sneakers23.Repo,
Sneakers23Web.Endpoint,
Sneakers23.Inventory,
Sneakers23.Replication,

]

Now that our Replication functions are defined and the process is added, we’ll
need to put them to use in the Inventory context functions.

sneakers_23/lib/sneakers_23/inventory.ex
alias Sneakers23.ReplicationLine 1

-

def mark_product_released!(id), do: mark_product_released!(id, [])-

def mark_product_released!(product_id, opts) do-

pid = Keyword.get(opts, :pid, __MODULE__)5

being_replicated? = Keyword.get(opts, :being_replicated?, false)-

-

%{id: id} = Store.mark_product_released!(product_id)-

{:ok, inventory} = Server.mark_product_released!(pid, id)-

10

unless being_replicated? do-

Replication.mark_product_released!(product_id)-

{:ok, product} = CompleteProduct.get_product_by_id(inventory, id)-

Sneakers23Web.notify_product_released(product)-

end15

-

:ok-

end-

We have essentially the same function as before, except with a replication
check on line 11 that will only run when the function isn’t being called from
the replication context. We invoke the Replication.mark_product_released!/1 function
in order to trigger the replication. We’ll follow an identical pattern for item_sold!/2.

sneakers_23/lib/sneakers_23/inventory.ex
def item_sold!(id), do: item_sold!(id, [])
def item_sold!(item_id, opts) do

Chapter 7. Build a Real-Time Sneaker Store • 138

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23/application.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23/inventory.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23/inventory.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

pid = Keyword.get(opts, :pid, __MODULE__)
being_replicated? = Keyword.get(opts, :being_replicated?, false)

avail = Store.fetch_availability_for_item(item_id)
{:ok, old_inv, inv} = Server.set_item_availability(pid, avail)

unless being_replicated? do
Replication.item_sold!(item_id)
{:ok, old_item} = CompleteProduct.get_item_by_id(old_inv, item_id)
{:ok, item} = CompleteProduct.get_item_by_id(inv, item_id)
Sneakers23Web.notify_item_stock_change(

previous_item: old_item, current_item: item
)

end

:ok
end

The changes we’ve made are close to identical as with the previous function.
Now, we actually have a completely connected replicated system. Take a
moment to make the final git commit for this chapter.

Verify Multiple Server Behavior
We already performed an experiment to show that distribution was not
working. We can do this same demo again to show that replication is working.
Re-seed your database and then execute the following demo—make sure to
close any running instances of the server before doing this.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex --name app@127.0.0.1 -S mix phx.server

In another shell, run the following commands. Keep http://localhost:4000 loaded
and view it after each command. To ensure that the replication occurred, you
can refresh the page. If you ever see a different result before and after the
refresh, something may have gone wrong with your replication code.

$ iex --name back@127.0.0.1 -S mix
iex(1)> Node.connect(:"app@127.0.0.1")
iex(2)> Sneakers23.Inventory.mark_product_released!(1)
iex(2)> Sneakers23.Inventory.mark_product_released!(2)
iex(3)> Sneakers23Mock.InventoryReducer.sell_random_until_gone!()

You can even run sell_random_until_gone!/0 on the server node at the same time,
since it runs on the back node. You’ll end up with all items at exactly 0
availability and the front end will display all items as sold out, without the
need to refresh. Try running this example again with multiple pages open
side-by-side to ensure that they receive updates at the same time.

report erratum • discuss

Run Multiple Servers • 139

http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Wrapping Up
Phoenix Channels provide the backbone for our application’s real-time mes-
saging. Our application is only sending messages from server to client right
now, but we still benefit from the simplicity and reliability of the Channel
library. We sent HTML directly from server to client as well as JSON payloads
that were processed by a JavaScript front end. The flexibility of using either
HTML replacement or JavaScript event handling gives you several different
ways to approach the same problem.

Phoenix also provides the PubSub feature that powers our real-time replica-
tion. We were able to enhance the existing GenServer implementation with
replication across a cluster. This was necessary to ensure that our application
could run across multiple servers without having data consistency issues.

We’re going to step back from building an application in our next chapter.
We’ll explore how to break an application that we’ve built. The quality assur-
ance process is very important for becoming confident that our application
won’t break in production.

Chapter 7. Build a Real-Time Sneaker Store • 140

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 8

Break Your Application
with Acceptance Tests

In the last chapter, we used Phoenix Channels to add real-time features to an
application. You tested the application locally to ensure that everything worked
as expected. However, we didn’t really test the application to the extent that
would be expected of a business application—we only tested the happy-path.
In this chapter, we’ll try to break the application through a variety of front-end
and back-end techniques. By the end of this chapter, we’ll have gained confidence
that the system works as expected. We will use the techniques covered in this
chapter when we add more complex features in the rest of part II.

Real-time systems can be difficult to write correctly due to challenges caused
by persistent connections and long-running applications. Many software
engineers take pride in their work, and they may be optimistic about bugs
not existing in their code—I have been guilty of this. However, it’s an ever-
present possibility that code we write has bugs. Always test your application
in order to ensure that it works in normal and out-of-the-ordinary situations.
It is also important to test that library code works in many situations, even
if there are tests covering the library’s code.

In this chapter, we’ll first cover why acceptance tests—tests that use the entire
application stack—are useful for real-time applications. We’ll try to break last
chapter’s application through manual acceptance tests. We’ll use a different
set of techniques to crash parts of the app that are hidden from the user,
such as Elixir processes or the database. Finally, we’ll look at using Hound
to automate acceptance tests.

Let’s explore some challenges of real-time application development, and why
it’s important to thoroughly test them.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The Power of Acceptance Testing
It is a challenge to write and run real-time systems, although Phoenix handles
many of the hard parts. Real-time systems use persistent connections to
optimize the speed and efficiency of sending data to clients. As we covered in
Design for Unreliable Connections, on page 67, persistent connections are
less forgiving than traditional web requests and require additional code to
cover scenarios that can happen to users.

Let’s look at some of the reasons why this is the case and how acceptance
tests can help us gain confidence in our application. Acceptance tests are
tests that use the entire application stack, from browser to server. They can
be manual or automated, which we’ll cover later in this chapter. We can
recreate the following challenging scenarios with acceptance tests.

Applications may be open for long periods of time
Users can leave web pages open for hours, days, or even weeks. Browsers
vary in how they handle this, but many will actually leave the page resident
in memory and restore without fetching a new copy of the page from the
server. If your application uses Channels to provide new data to users as
it is available, users are even less likely to refresh the page because their
view updates in real-time. You want to ensure that an application you
build works just as well after being open for five hours as it does after
being open for five seconds.

Problems that can occur to long-lived applications are a bit inobvious at
first and may be unrelated to the real-time connection itself. For example,
signed tokens, which are usually only signed for a short amount of time,
need to be re-obtained in order to stay fresh. Memory leaks, a completely
different problem, are more likely because the application is not resetting
all of its memory like it would on a page load.

Persistent connections must be maintained across failures
Failures will occur when an application is open for a long period of time.
A failure can be from a bad internet connection, computer hibernation,
or any other event that interrupts the connection while the page is still
loaded. It is critical that the client establishes the connection again after
it becomes disconnected.

When the real-time communication layer is disconnected, events are not
being sent nor received from the application. It could take many reconnec-
tion attempts in order to successfully connect back to the server. You

Chapter 8. Break Your Application with Acceptance Tests • 142

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

should test the different ways that a connection could be severed in order
to be confident that your code handles disconnection correctly.

A good goal to keep: if the user has an internet connection and the server
is up, they’re connected to the server via a WebSocket. We may need to
add small delays, in practice, but any disconnection duration should be
minimized.

Servers must maintain open connections
Servers may be restarted when an application is deployed, causing the
open connections to disconnect. The back-end servers would then receive
an influx of new connections in a short period of time after the servers
restart. This could become expensive depending on whether the server is
doing work when a Socket connection opens or Channel join occurs.

This is not an exhaustive list of what can go wrong with a real-time application.
As you gain experience with building and running real-time applications, you
will discover which situations are most relevant to your users. The bugs you
encounter can be caused by bugs in your code or in a software library’s code.
However, it’s more likely that you will encounter a bug in an application’s
usage of a library, rather than in the library itself.

Acceptance tests allow us to verify that our application works as expected in
many different scenarios, both common and uncommon. When we perform
an acceptance test, we check that the system works as our users and our
business expects. The biggest difference between this style of testing and unit
or integration testing is that the system is not simulated or mocked when we
do these tests—you execute acceptance tests against a real instance of an
application. You can also automate acceptance tests using a tool that controls
a web browser. We’ll see examples of manual and automated acceptance tests
in this chapter.

First, we’ll try to break last chapter’s application with manual acceptance
tests. We will throw some of the above scenarios at it, such as different con-
nection failures, in order to make sure it works in any situation.

Break Your App Like a User
Users put themselves into all kinds of strange scenarios, often without even
trying. We need to put ourselves in the shoes of a user as we test real-time
applications to ensure we cover as many scenarios as possible. We should try to
keep as much of our system identical to what our users use—browsers, operating
systems, and network stability can all affect how an application works.

report erratum • discuss

Break Your App Like a User • 143

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We’re going to try different manual acceptance testing scenarios to ensure
that our application works properly in each. We become more confident that
users will not encounter problems when we try to break our application, but
cannot. One scenario that we will execute in this section will actually reveal
a very subtle problem in our existing application. We’ll try out different tech-
niques that are common for users to do, such as using forward/backward
page navigation or experiencing a network disconnection.

The Phoenix JavaScript client handles many of the cases we’ll see in this
section, so we often don’t need to implement code to handle them. However,
you should still test the scenarios that Phoenix handles for you. This ensures
the provided solutions work for your application’s use case. Ultimately, you
and your team are responsible for your application working as expected, and
acceptance tests are a great way to find problems before an application is
deployed to production.

Let’s look at how to design a test scenario.

Define the Correct Behavior
You should write your expectations of a manual acceptance test before you
start the test. This helps you stay honest with yourself, but it also makes it
easier to spot anything that goes against what you expect to happen. A simple,
but effective technique is to write down the test you’re performing, how to
run the test, and what you expect to happen. You can then confirm that the
test did what you expected. You or a teammate will also be able to easily
repeat the test in the future.

Our store application has a very simple feature set right now. We’re not
sending data from the client up to the server, and the amount of data being
sent down to the client is fairly low. The chance of something going wrong is
slim because of the small amount of code powering our application. Problems
will occur more frequently as a codebase becomes larger and changes over
time. Changes to old code, new features, or library upgrades can all introduce
new defects in an application.

In this section, we’ll walk through tests that ensure our application works
for a variety of user situations. We’ll follow a standard template for each test.
For each scenario, we’ll write a high-level definition of the test. Then, we’ll
write detailed steps for how to execute the test. Finally, we’ll record what we
expect to happen. This simple pattern will make sure each test feels simple
and straightforward to execute.

Chapter 8. Break Your Application with Acceptance Tests • 144

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

It’s a good idea to get another teammate to provide a second set of eyes on
any test plans you write. This helps ensure that edge cases are not missed
and also ensures that other team members are able to execute the manual
acceptance tests.

Let’s perform our first test.

Page Related Actions
Users click buttons, navigate to different pages, and submit forms in order
to get things done. The most obvious type of testing is to follow what a user
will do. We’re going to focus on a seemingly safe user action: moving forward
and backward in an application.

Web pages follow a well-established life cycle flow.1 This flow drives page
loads, cache usage, and much more. It can vary across browsers, as we’ll
discuss below. One optimization that we have to be aware of is that forward
and backward events use cached versions of pages that are placed in different
caches by the browser.

Here’s a test plan for testing user navigation in our application. We are going
to run into a bug when we run this test. In the real-world, you wouldn’t know
whether a bug exists or not, so you would be testing different scenarios to
see what happens.

Define the test
A shopper should be able to start on the “coming soon” screen, receive an
event that shows the product release, go to a new web page, then use the
back button in the browser to get back to Sneakers23 home page. The
shopper should see the released product and not the “coming soon” text.

Write steps for the test
1. Start the server in a freshly seeded state.
2. Load http://localhost:4000 in Google Chrome.
3. Release sneaker with ID 1 while viewing the page.
4. Navigate to https://www.pragprog.com in the same tab.
5. Go “back” to the previous page.

Write expectations for the test
• The shopper should see all “coming soon” shoes after step 2.
• The shopper should see the size selector for product with ID 1 after step 3.
• The shopper should see the size selector for product with ID 1 after step 5.

1. https://developers.google.com/web/updates/2018/07/page-lifecycle-api

report erratum • discuss

Break Your App Like a User • 145

http://localhost:4000
https://www.pragprog.com
https://developers.google.com/web/updates/2018/07/page-lifecycle-api
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s run this test now to see what happens. Perform the following steps:

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()" # (step 1)
$ iex -S mix phx.server
Load the page now (step 2)
iex(1)> Sneakers23.Inventory.mark_product_released!(1) # (step 3)
:ok

We have followed steps 1, 2, and 3 so far. At this point, you will have verified
that the first two expectations are correct. Next, follow step 4 and 5 in your
browser.

If everything worked correctly, you will see that the web page says “coming
soon” instead of showing the size selector—a clear bug. The reason for this
is that the original web page content was placed in a local cache on the first
load. Our product release process sent new HTML over the Channel, but it
didn’t invalidate the cached page. This process is managed completely by the
browser—we did not implement caching in our example in any way. You will
see the correct page data when you refresh the page.

This bug doesn’t affect all browsers, such as Safari, due to Safari having a
back-forward cache. Depending on when you run this test, you may not be
able to reproduce the bug in Chrome either, because back-forward cache is
being implemented there as well. This caching technique places the JavaScript
and page in memory until it’s deemed out of scope—a technique that intro-
duces challenges of its own when the cache entry is old. We would need to
run our test in major browsers to fully test all possibilities, but we must
always consider that browsers can change the implementation of the page
life cycle over time.

There are a few ways to fix this particular bug, although the most important
takeaway is that such bugs exist and can affect real-time applications that
update content. One way to fix this bug is to tell the browser to not cache the
page. You can do this by setting the "Cache-Control" header to a value of "no-store,
must-revalidate" in the ProductController, like so:

sneakers_23/lib/sneakers_23_web/controllers/product_controller_fixed.ex
def index(conn, _params) do

{:ok, products} = Sneakers23.Inventory.get_complete_products()

conn
|> assign(:products, products)
|> put_resp_header("Cache-Control", "no-store, must-revalidate")➤

|> render("index.html")
end

Chapter 8. Break Your Application with Acceptance Tests • 146

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/controllers/product_controller_fixed.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

This has the trade-off of increasing the number of hits to the page. As an alter-
native, you can use JavaScript to fetch the current state of the dynamic content
pieces when the page loads. The trade-off here is increased complexity and a
request via the ProductChannel. The best solution for a bug depends on how com-
fortable you are with the impact of the bug and the trade-offs of the solution.

Next, let’s look at how losing your internet connection could break an appli-
cation.

Internet Related Actions
Internet connections are flaky. Connections can randomly fail when you’re
on a laptop or desktop, and it’s more common than it should be to have a
low-quality data connection on cell phones. We need to ensure that our
application is able to properly reconnect a user’s connection, even if the page
has been open for a long time.

The official Channels JavaScript client handles reconnection attempts for us.
It uses a back-off algorithm that starts with frequent retries and ends up
waiting a few seconds between attempts. You can change the reconnection
algorithm to be more or less aggressive if needed, but the default one will
work well for most applications. We’ll execute a test case to ensure that users
can reconnect to the store when they become disconnected.

Define the test
A shopper should initially connect to the Channel when they load the
application. The shopper should quickly reconnect to the Channel if they
become disconnected. Once reconnected, the store should work as if the
shopper was never disconnected. The shopper will miss any messages for
the time that they are disconnected.

Write steps for the test
1. Start the server in a freshly seeded state.
2. Load http://localhost:4000.
3. Kill the server to simulate a disconnection.
4. Bring the server back online after one second.
5. Release sneaker with ID 1 while viewing the page.
6. Repeat all instructions with a wait time of five seconds and 30 seconds.

Write expectations for the test
• The shopper sees “coming soon” shoes after step 2.
• The shopper’s WebSocket connection is disconnected after step 3.
• The shopper’s WebSocket connection is connected after step 4.
• The shopper sees the released shoe’s size selector after step 5.

report erratum • discuss

Break Your App Like a User • 147

http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We have a local server, so disconnecting our internet connection won’t have
an impact on our WebSocket connection. If this application was deployed,
you would run these tests by disconnecting the internet rather than shutting
down the server. Let’s run through these tests now. Follow these instructions
and observe what happens.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()" # (step 1)
$ iex -S mix phx.server
Load the page here (step 2)
iex(1)> # Type ctrl-c
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded

(v)ersion (k)ill (D)b-tables (d)istribution
Type a and then enter (step 3)
Wait 1 second (step 4)
$ iex -S mix phx.server
iex(1)> Sneakers23.Inventory.mark_product_released!(1) # (step 5)
:ok

At this point, you should see that the product selector is visible on the front
end. This shows that the JavaScript client will attempt to reconnect to the
server. Another possibility is that you don’t see the front end change. This
could happen if you executed mark_product_released/1 during the few seconds of
delay of the reconnection process.

One strategy to solve the issue of missing messages during a disconnection
is to send the most up-to-date data when a Channel loads. This would solve
both the caching issue and missing message issue that we’ve seen in this
chapter, at the cost of additional processing by the server. We won’t implement
that strategy in this book, but it is a useful technique to know about.

One other scenario to test in your production application is putting your
computer in hibernation when it’s connected to a server. If you tested this,
you would want to ensure that the server is not running on the computer
that is being put into hibernation.

We’re going to move onto a different class of potential errors now—server-side
errors.

Break Your App Like a Server
Errors do not always happen from user initiated actions—different processes
and tools can fail on the server. Your application may experience network
disconnections between servers, database slowness or downtime, and crashed
processes due to bugs or a large amount of work. It’s nearly impossible to
consider everything that can go wrong in an application, so you often won’t
realize that there is a problem with failure handling until it’s too late. You

Chapter 8. Break Your Application with Acceptance Tests • 148

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

can simulate many types of problems locally and in staging environments
before experiencing them in production.

In this section, we’ll test what happens to our application during database
downtime and when different processes crash on the server. We’ll utilize the
observer tool that ships with Erlang/OTP to view our application’s supervision
tree. We will kill various processes to ensure that our application doesn’t
reach an incorrect state. A good rule of thumb is to make sure that any custom
GenServers, custom Supervisors, and your Ecto Repo can be killed without
your application crashing. We’ll be performing manual acceptance tests
throughout this section. However, our tests will be doing things outside of
what a normal user could do.

Simulate Database Downtime
A database outage is a serious issue. The database of an application is often
the source of truth, so any operation that requires strong consistency should
fail. Operations that don’t perform updates or don’t require strong consistency
may still work in the event of a database outage.

This type of test is pretty advanced for a normal QA process, but is useful
when you are testing flows that involve money or other important resources.
It’s good to know how your application will respond when a database discon-
nects, although hopefully you won’t see that happen very frequently.

Define the test
A shopper is initially connected to the store, waiting for a shoe to release.
The application database restarts during this time. The shopper should
be able to reload the page without error but should not see a shoe release
during this time. From an application admin perspective, the application
will disallow the release of a sneaker.

The server should serve pages during this time, but the server will not
work if restarted.

Write steps for the test
1. Start the server in a freshly seeded state.
2. Load http://localhost:4000.
3. Stop your database to simulate a downtime event.
4. Refresh http://localhost:4000 several times.
5. Attempt to release sneaker with ID 1.
6. Start your database.
7. Release sneaker with ID 1 while viewing the page.

report erratum • discuss

Break Your App Like a Server • 149

http://localhost:4000
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Write expectations for the test
• The shopper sees “coming soon” after step 2.
• The shopper can refresh the page without issue at step 4.
• The release process should fail at step 5.
• The release process should succeed at step 7.
• The shopper sees the released shoe’s selector after step 7.

You will need to discover how to stop your database locally in order to perform
this test. I am using brew to power my Postgres installation, so I can run brew
services stop postgresql. You may need to use a different command depending on
your operating system and the way that you installed Postgres. Let’s run
through our test now.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()" # (step 1)
$ iex -S mix phx.server
Load the page now (step 2)
Stop your database now (step 3)
Refresh the page several times (step 4)
iex(1)> Sneakers23.Inventory.mark_product_released!(1) # (step 5)
** (Postgrex.Error) FATAL 57P01 (admin_shutdown)...

(ecto_sql) lib/ecto/adapters/sql.ex:621: Ecto.Adapters...
(ecto_sql) lib/ecto/adapters/sql.ex:554: Ecto.Adapters...

Start your database now (step 6)
iex(2)> Sneakers23.Inventory.mark_product_released!(1) # (step 7)
:ok

You might have had a hard time interpreting your console during this test
because of all of the red text. Ecto is not happy with the lack of a database
connection, and it will work very hard to try to reconnect—each failure pro-
duces a red error in your console. This is a good sign because it means that
Ecto will keep attempting to reconnect. Eventually the database will come
back online and Ecto will regain connectivity.

All the expectations pass for our test scenario. The server is able to serve the
main page during this time because all the data for rendering the product
page comes from processes in our application. This is one of the benefits of
the replicated data approach in our application, although it’s certainly not
without trade-offs. One of those trade-offs is the inability for the Inventory
process to start while the database is offline.

For a final test, try to restart the iex -S mix phx.server process while the database
is down. In this case, the product page will receive errors because the process-
es are not able to start properly. If you start the database while this is going
on, you will see everything become correctly initialized and the product page
is able to be served again.

Chapter 8. Break Your Application with Acceptance Tests • 150

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

A database outage is among the worst errors that can happen to your appli-
cations—it really is an all-hands-on-deck scenario. Let’s look at a different
type of error next: process crashes.

Kill BEAM Processes with Observer
The BEAM is a resilient virtual machine. Supervisor processes are used to
monitor child processes and can be configured to handle failure differently
based on the needs of the application. The most common configuration is to
simply restart any failed child process, using the one_for_one supervisor option.
The child process then initializes itself back to a healthy state. You can see
this in the handle_continue callback of our Sneakers23.Inventory.Server process. If it
were to crash, it would pull the current inventory from the database and
continue in a healthy state. There are other restart strategies2 that are not
covered in this book. The restart strategy you should use depends on the
supervision structure of your application.

It can be tricky to design a process tree that is guaranteed to come back
online correctly. You should test the initialization of processes with automated
tests, but the QA process can also help us guarantee the correctness of our
processes in practice. In the next scenario, we will kill various processes in
our system with the observer tool. Any process that we kill should re-initialize
in a healthy state, with very little interruption to connected shoppers.

Define the test
A shopper is initially connected to the store, waiting for a shoe to release.
Many processes in the application then crash. The system restores itself
to a healthy state and the shopper will see the shoe release.

Write steps for the test
1. Start the server in a freshly seeded state.
2. Load http://localhost:4000.
3. Kill the Sneakers23.Inventory, Sneakers23.Replication.Server, Sneakers23.Repo

processes.
4. Release sneaker with ID 1 while viewing the web page.

Write expectations for the test
• The shopper sees “coming soon” after step 2.
• The shopper is not affected after step 3.
• The shopper sees the sneaker selector for shoe 1 after step 4.

2. https://hexdocs.pm/elixir/Supervisor.html#module-strategies

report erratum • discuss

Break Your App Like a Server • 151

http://localhost:4000
https://hexdocs.pm/elixir/Supervisor.html#module-strategies
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The processes that we’ll kill were selected because they’re custom processes
built for this application. It’s more likely that these processes could have bugs
that would prevent graceful restarts. I’ve added in the database as well,
because databases are known to go down in production.

We will use observer to actually kill the processes listed above. You could do
this on the command line, but it’s useful to visualize the process tree during
the test. After you start the observer in the instructions below, find the
“Applications” tab at the top—you will see a large sideways tree. The processes
to kill are all named, so you should be able to find them without issue. They’re
all in the same column, close to the left-hand side of the tree. You will see
the following view when you right-click a process and select “Kill process”:

When you click “ok”, the selected process will be killed. You can verify that
a process is killed by looking at the pid in the bottom left corner of the
observer window. When you click a different process and then back onto the
one that you killed, you will see the pid change. Let’s jump into the scenario.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()" # (step 1)
$ iex -S mix phx.server
Load the page now (step 2)
iex(1)> :observer.start
:ok
Find and kill the first processes in step 3
iex(2)> Sneakers23.Inventory.mark_product_released!(1) # (step 4)
:ok

You could kill the processes from the iex session, instead of the observer.
However, you’ll benefit from knowing how to use observer.

You will see that each expectation passes during the test. This demonstrates
the power of the BEAM and Supervisors when it comes to fault tolerance.
Processes do not crash unless something goes wrong, but it is comforting to

Chapter 8. Break Your Application with Acceptance Tests • 152

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

know that a process crash will not cause our application to run in an incorrect
state.

We’ve executed several manual QA tests so far. We’ll switch things up by
writing automated acceptance tests next.

Automate Acceptance Tests With Hound
Manual acceptance tests are powerful, but they are also cumbersome to run.
You performed tests in this chapter that took several minutes to execute, at
a minimum, and were prone to error if you missed any of the steps. We can
improve on manual acceptance tests by automating them.

Automated acceptance tests are extremely powerful because they let you run
hundreds or thousands of acceptance tests without a person being involved. If
each acceptance test takes one minute to execute (a very conservative estimate),
then one thousand tests would take over 16 hours of non-stop testing! It would
be extremely costly to fully cover a large application with manual acceptance
tests. Automated acceptance tests improve on this by both being able to run on
a dedicated server, without a person involved, and by allowing fast setup of a
test scenario. A thousand automated acceptance tests may be able to run in an
hour or less, which is a reasonable amount of time.

We’ll leverage WebDriver and Hound in this section to write automated
acceptance tests. You’ll write tests that feel like standard ExUnit tests, but
are actually full-stack acceptance tests. We will not port the manual tests we
ran earlier to automated tests. It is possible to port those tests over, but we’re
going to stick with simpler tests for this section.

The Power of WebDriver and Hound
WebDriver3 is an interface to automate browsers. You can use a WebDriver
implementation to build an automated test suite against a real browser. There
are many different types of WebDrivers that can be used to control a variety
of major browsers. We’ll be using ChromeDriver to write automation tests
against Chrome.

Most likely, you will not use WebDriver directly. Instead, you’ll use libraries
that integrate with WebDriver to control a page and perform assertions against
that page’s content and behavior. This gives you the ability to write full-fea-
tured browser tests in your favorite language. We’ll be writing our tests in
Elixir, of course, but a QA engineer could just as easily write these tests in a

3. https://www.w3.org/TR/webdriver/

report erratum • discuss

Automate Acceptance Tests With Hound • 153

https://www.w3.org/TR/webdriver/
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

different, more familiar language. It’s important to write tests that both a core
engineering team and QA engineering team can maintain, because acceptance
tests will often be updated by members of each team.

Hound4 is an Elixir library to write WebDriver-powered tests. Writing Hound
tests is very similar to writing a normal ExUnit test—you are just controlling
a real browser rather than an Elixir application. An advantage to writing
automation tests in the same place that we have written other tests is that
we will use the same factories and helpers we built previously.

Hound is a bit trickier to setup than other libraries we’ve used, so we’ll walk
through all of the setup steps next.

Configure Hound
The first step to get Hound set up is to download and set up ChromeDriver.
Hound will be configured to use ChromeDriver, so it’s important that it’s
running properly. You can obtain the latest stable release of ChromeDriver
on the project’s homepage.5 Download the appropriate version for your system
and unzip it onto your computer somewhere. It’s easy to get ChromeDriver
running once it’s downloaded, just start it like a normal executable:

$ cd location/of/chromedriver
$./chromedriver
Starting ChromeDriver 76.0.3809.126 on port 9515...

You may have to start ChromeDriver differently depending on your operating
system. Once ChromeDriver is configured, you can download and set up
Hound. We’ll start by adding the package to our mix.exs file.

sneakers_23/mix.exs
{:plug_cowboy, "~> 2.0"},
{:hound, "~> 1.0"}

Type mix deps.get after adding Hound to your mix.exs file. Next, we’re going to
change our Endpoint so that it can make use of our testing database connection.
This step comes from the documentation of Phoenix.Ecto.SQL.Sandbox.6 Place the
following code as the final plug definition in the Endpoint module.

sneakers_23/lib/sneakers_23_web/endpoint.ex
if Application.get_env(:sneakers_23, :sql_sandbox) do

plug Phoenix.Ecto.SQL.Sandbox
end

4. https://hex.pm/packages/hound
5. https://chromedriver.chromium.org/
6. https://hexdocs.pm/phoenix_ecto/Phoenix.Ecto.SQL.Sandbox.html

Chapter 8. Break Your Application with Acceptance Tests • 154

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/mix.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/endpoint.ex
https://hex.pm/packages/hound
https://chromedriver.chromium.org/
https://hexdocs.pm/phoenix_ecto/Phoenix.Ecto.SQL.Sandbox.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Next, we’ll set up our test config for Hound and SQL sandbox. We’ll start by
allowing our application’s HTTP server to run in test mode. You wouldn’t do
this for normal tests, but it’s necessary because our acceptance tests will be
executing against the running server. It is also possible to create a separate
Mix environment for your acceptance tests, but we won’t do that in this book.

sneakers_23/config/test.exs
config :sneakers_23, Sneakers23Web.Endpoint,

http: [port: 4002],
server: true

We must instruct Hound to use ChromeDriver with a headless version of
Chrome. Headless Chrome is a version of the Chrome browser that runs
without a visual interface—our tests will execute without a browser continu-
ously opening and closing.

sneakers_23/config/test.exs
config :hound, driver: "chrome_driver", browser: "chrome_headless"

Finally, we can tell our application to use the SQL sandbox during tests.

sneakers_23/config/test.exs
config :sneakers_23, sql_sandbox: true

We’re almost ready to write our first test, but we need to start Hound in our
test_helper.exs:

sneakers_23/test/test_helper.exs
Application.ensure_all_started(:hound)
ExUnit.start()

Let’s write a simple test to see everything working together. Create a new
HomePageTest module in the test/acceptance folder. Type in the following code:

sneakers_23/test/acceptance/home_page_test.exs
defmodule Acceptance.HomePageTest doLine 1

use ExUnit.Case, async: false-

use Hound.Helpers-

-

setup do5

Hound.start_session()-

:ok-

end-

-

test "the page loads" do10

navigate_to("http://localhost:4002")-

assert page_title() == "Sneakers23"-

end-

end-

report erratum • discuss

Automate Acceptance Tests With Hound • 155

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/config/test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/config/test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/config/test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/test_helper.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/acceptance/home_page_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

This test looks like most of the other tests you’ve written so far in this book.
We do have to bring in the Hound.Helpers on line 3—this provides the functions
to control the browser. We are also starting a Hound session on line 6. This
step will become important in the next section.

Our actual test is straightforward. We instruct ChromeDriver to navigate to
our test application URL and then assert that the page title matches what we
expect. You can use all of the standard ExUnit assertions in Hound tests.

Run mix test to verify that everything is working. If you see an error about not
connecting to ChromeDriver, make sure that the ChromeDriver executable
is still running by following the example at the top of this section.

Next, we’re going to write tests for all of our Channel and JavaScript powered
features.

Write Automated Acceptance Tests
The Sneakers23 store has two main real-time components: live sneaker drops
and stock-level updates. We will write acceptance tests for each of these fea-
tures to ensure our application works end-to-end.

We need to make a small change to our Inventory.Server module before we can
write our tests. The application uses a single Inventory.Server process that holds
the current inventory and stock levels. Our Hound tests will execute in the
same environment as our tests and will pull the inventory from the global
inventory process. Currently, this process loads its state at startup, and we
do not have a way to change the loaded inventory. We will need to add a
function—so add the following function to the bottom of the Inventory.Server
module.

sneakers_23/lib/sneakers_23/inventory/server.ex
if Mix.env() == :test do

def handle_call({:test_set_inventory, inventory}, _from, _old) do
{:reply, {:ok, inventory}, inventory}

end
end

This code is using a compile time check to guarantee that the message will
only be handled in the test environment. This type of check lets us add con-
venience functions without worrying that they’ll be used in the final applica-
tion. We won’t add a module function definition for this message, further
indicating that it shouldn’t be used outside of our tests.

Chapter 8. Break Your Application with Acceptance Tests • 156

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23/inventory/server.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s set up our ProductPageTest now.

sneakers_23/test/acceptance/product_page_test.exs
defmodule Acceptance.ProductPageTest doLine 1

use Sneakers23.DataCase, async: false-

use Hound.Helpers-

-

alias Sneakers23.{Inventory, Repo}5

-

setup do-

metadata = Phoenix.Ecto.SQL.Sandbox.metadata_for(Repo, self())-

Hound.start_session(metadata: metadata)-

10

{inventory, _data} = Test.Factory.InventoryFactory.complete_products()-

{:ok, _} = GenServer.call(Inventory, {:test_set_inventory, inventory})-

-

:ok-

end15

end-

Line 8 in our setup function is very important. This allows the requests that
are executed by the browser to use the test database without errors appearing.
The test’s inventory is created on line 11. We are using the :test_set_inventory
message to set this in our Inventory.Server process.

It’s possible to not use a global process in our tests by creating a Plug similar
to the SQL Sandbox that we set up previously. This is very powerful for
writing parallel tests, but it is not necessary for our small test suite. All of
our integration tests are marked async: false due to the global process. Tests
with async: false will run one at a time, which is useful when there is shared
global state.

Now that our database and inventory are set up, let’s write an integration
test. We’ll start by testing that a shoe’s “coming soon” content is changed
when that shoe is released. This test will only work if our application’s
Channels are properly working.

sneakers_23/test/acceptance/product_page_test.exs
test "the page updates when a product is released" doLine 1

navigate_to("http://localhost:4002")-

-

[coming_soon, available] = find_all_elements(:css, ".product-listing")-

5

assert inner_text(coming_soon) =~ "coming soon..."-

assert inner_text(available) =~ "coming soon..."-

-

Release the shoe-

{:ok, [_, product]} = Inventory.get_complete_products()10

Inventory.mark_product_released!(product.id)-

-

report erratum • discuss

Automate Acceptance Tests With Hound • 157

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/acceptance/product_page_test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/acceptance/product_page_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The second shoe will have a size-container and no coming soon text-

assert inner_text(coming_soon) =~ "coming soon..."-

refute inner_text(available) =~ "coming soon..."15

-

refute inner_html(coming_soon) =~ "size-container"-

assert inner_html(available) =~ "size-container"-

end-

We start by navigating to the main page. This is the only time that we use
navigation in this test, so any content changes are from live updates and not
from a page load. We grab the product-listing elements on line 4. There are
many different ways that we can find elements on the page, but the CSS
selector approach will be familiar to many people. Our first set of assertions
ensures that each of the products on the page starts in a “coming soon…”
state.

We release the second sneaker on line 11, exactly like we would in a normal
test. After this, our UI will update due to the real-time message. You can see
that the first product remains in a “coming soon” state, but the second
product changes to displaying a size container.

Make sure to run mix test before moving on—everything should go green. Next,
we’ll ensure that an item going through a stock-level change updates the UI
correctly. Type in the following test:

sneakers_23/test/acceptance/product_page_test.exs
test "the page updates when a product reduces inventory" doLine 1

{:ok, [_, product]} = Inventory.get_complete_products()-

Inventory.mark_product_released!(product.id)-

-

navigate_to("http://localhost:4002")5

-

[item_1, _item_2] = product.items-

-

assert [item_1_button] =-

find_all_elements(:css, ".size-container__entry[value='#{item_1.id}']")10

-

assert outer_html(item_1_button) =~ "size-container__entry--level-low"-

refute outer_html(item_1_button) =~ "size-container__entry--level-out"-

-

Make the item be out of stock15

new_item_1 = Map.put(item_1, :available_count, 0)-

opts = [previous_item: item_1, current_item: new_item_1]-

Sneakers23Web.notify_item_stock_change(opts)-

-

refute outer_html(item_1_button) =~ "size-container__entry--level-low"20

assert outer_html(item_1_button) =~ "size-container__entry--level-out"-

end-

Chapter 8. Break Your Application with Acceptance Tests • 158

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/acceptance/product_page_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The CSS selector on line 10 is incredibly powerful when combined with
attribute selectors. We are pinpointing the specific element we care about
with high precision. The assertion changes between lines 12 and 20, proving
that our item has had its stock level change in the UI.

The two tests we’ve written are extremely powerful because they are flexing
the entire application stack. The server is starting, the web page connects to
it, the application’s JavaScript runs, the front end connects to our Channel
over WebSockets, and the front end updates in real time as changes occur.
Automated acceptance tests are not perfect, however. They have a few chal-
lenges that can make their adoption difficult.

Acceptance Test Limitations
Acceptance tests are very powerful when used properly, but they can also
lead to a variety of problems. These problems are manageable, but they could
end up taking more of your time than desired in a large test suite. The end
result is worth it, however, because you can be more confident that your
application works properly end-to-end. The two major problems that affect
acceptance tests are related to speed and maintainability.

Acceptance tests flex the entire application stack—a browser starts up, exe-
cutes tasks, navigates to one or more pages, and then shuts down. This pro-
cess is more expensive than a traditional test that doesn’t leverage a browser.
A large acceptance test suite could take many times longer to run than a large
unit/integration test suite, so you may want to run your acceptance tests
nightly or on-demand rather than with every single build of your application. It
might appear that this problem would only affect large applications, but the
performance cost of tests can quickly add up in smaller applications as well.

Maintainability of an acceptance test suite can be difficult to achieve due to
the brittleness of front end interfaces. It’s common for a design to evolve, for
CSS classes to change, and for the order of elements to shift. Any of these
occurrences will most likely cause tests to break in the suite. If the suite takes
a while to run and is not run on every change, the breakages can add up. A
large front end redesign might involve changing all the existing acceptance
tests. There are strategies to deal with the inherent maintenance issues of
an acceptance suite, but the problems will always exist in some form. It’s
outside of the scope of this book to cover maintainable acceptance test
strategies, but you can find resources online that can help you with this.

Despite the challenge of a building and maintaining a robust acceptance test
suite, the end result can be worth it. It’s often the goal of QA teams to have

report erratum • discuss

Automate Acceptance Tests With Hound • 159

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

a full acceptance test suite, but it can be difficult if the application didn’t
start out with acceptance tests. You’ll need to weigh the costs and benefits
to decide if it’s the right choice and right time to build an acceptance suite
for your application.

Wrapping Up
Software systems are difficult to write correctly, and real-time systems are
even more difficult to write correctly. The challenge of persistent connections
that must run for a long time without failure adds to the difficulty of developing
a real-time application. Acceptance tests help ensure that applications you
develop are deployed with minimal bugs.

There are multiple approaches you can take in the quality assurance process.
The most accessible approach is to behave like a user would while checking
that the application works as expected. Simple things like going forward/back-
ward in the browser history, putting a computer to sleep, or experiencing an
internet disconnection could cause problems in an application. A different
approach to QA testing is to force issues to occur that might be very rare,
such as a database going down or random Elixir processes crashing. When
testing an application, follow a simple framework to keep yourself honest and
focused in the test: define the test, write steps for the test, write expectations
for the test, then execute the test.

Manual acceptance testing is extremely valuable, but it can also be tedious
and time-consuming. You can use WebDriver based automation tests via the
Hound library to write automated and repeatable end-to-end tests. These
tests can be difficult to write and maintain, but they are the strongest way
to repeatedly guarantee that your application works as expected in different
scenarios. In practice, you are likely to use a mixture of both testing strategies
to fully cover an application.

Now that you’re thinking like a user, and trying to break your applications
before your users do, we’re going to build a more advanced real-time feature
into our application. In the next chapter, we’ll be adding a shopping cart so
that a single user can purchase shoes. We’ll consider the different techniques
learned in this chapter as we implement this more advanced feature.

Chapter 8. Break Your Application with Acceptance Tests • 160

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 9

Build a Real-Time Shopping Cart
In the last chapter, we performed acceptance tests on our application to ver-
ify that our store works in a variety of scenarios. This type of testing forces
us to consider both the behavior of our users and different failure scenarios,
as we build our application. In this chapter, we’ll build a shopping cart for
our store. This will be one of the most advanced features we’ve built in this
book, but we’re well-equipped to deal with the challenges that will come up.

Shopping carts are an e-commerce feature that pretty much everyone uses.
However, there are many different ways that a shopping cart can be built.
We’ll start this chapter by laying out exactly what our cart needs to do, along
with details on how we’ll go about building it. We’ll go step-by-step throughout
the development process and end up with a working shopping cart powered
by Channels.

You’ll see almost every concept that we’ve discussed in the book so far
throughout this chapter—we’ll be using Channels, PubSub, Channel state,
JavaScript, and session state. We’ll consider many different types of failure
in our design, such as server crashes, user internet disconnections, and
multi-tab support. At the end of this chapter, we’ll perform manual acceptance
tests against our shopping cart.

It’s important to write unit tests for code you write, but it takes many pages
to include and explain unit tests in a book. Instead, unit tests are provided
in the source code that ships with this book. Tests are included for all of the
major modules that you’ll build in this chapter. Key modules that we build
will have an information section telling you where to find the relevant tests.

Let’s jump in and plan our shopping cart.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Plan Your Shopping Cart
Our store currently lacks any form of checkout process, so we’ll be starting
from scratch as we build our shopping cart. Shopping carts are conceptually
very simple—put items in, take items out, and purchase the cart. However,
Sneaker23’s sneaker launch process means that we’ll need our shopping cart
to go beyond the basics. We need a shopping cart that tells a shopper when
an item becomes out-of-stock, so they have a chance to select a different size
very quickly.

First, we’ll walk through the requirements of our shopping cart. This will help
us stay focused on building the minimal working feature set, and these
requirements will drive our acceptance tests. After that, you’ll see our approach
for the implementation of our shopping cart. Finally, you’ll set up your local
environment so you can build the feature.

Shopping Cart Needs
Due to the limited nature of a Sneakers23 release, our shopping cart will be
fairly simple. The real-time nature of the sneaker launch process will throw
a few curveballs into the requirements, though. Here is a list of the features
that our final cart will need:

• Add and remove multiple items to the shopping cart.
• Only one of each shoe size can be added.
• Shoppers know when an item in their cart is out-of-stock.
• The cart persists between page reloads.
• A shopper has a single cart across multiple tabs.
• A shopper cannot checkout without using the cart.
• Admins can see what items are in different shopping carts (next chapter).

We could build our shopping cart many different ways, but we’ll keep it fairly
simple—we won’t try to build the perfect shopping cart with a bunch of features.

Next, we’ll cover our cart’s architecture, and you’ll see how Channels fit into
our design.

Design an Application Architecture
We must turn our list of requirements into a concrete plan. We’ll do this by
thinking about how to implement each feature using the tools at our disposal.
We’ll need to consider different user behaviors and clean application design
throughout our planning.

Chapter 9. Build a Real-Time Shopping Cart • 162

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The most advanced requirement in our shopping cart is out-of-stock notifica-
tions. We want shoppers to see that their selected shoe isn’t available, so they
can remove the shoe from their cart and add a different size or model. We will
leverage Phoenix PubSub to notify the Channel listeners from our Inventory
context. Each Channel will send updated data to its connected client when
it receives an out-of-stock message. The following figure captures this flow:

We’ll make use of a PubSub feature that we haven’t talked about yet—dynamic
subscriptions. A process can subscribe or unsubscribe to a given topic using
PubSub. A Channel process can listen to any PubSub topic, even ones that
are different than that Channel’s connected topic. We will dynamically add
and remove PubSub subscriptions as items are added to the cart. This keeps
our PubSub messages small—a Channel will not receive messages for items
not in its cart.

We will build a CartChannel to power our shopping cart. A Channel can handle
events from shoppers, such as adding or removing items, and it gives us a
way to send data to our connected clients. A Channel can also store the cur-
rent cart in the process state. When we’re done, our CartChannel flow will look
like the following figure:

Our shopping cart needs to persist between page reloads and between multiple
tabs, so that a shopper’s cart doesn’t disappear. There are a variety of ways
to approach this problem, such as using a database or Elixir process to store
a shopper’s cart. Our requirements don’t list the need to have persistence of
a cart over a long period of time, so we will take a simpler approach.

A shopper’s cart will be stored in the user’s browser’s localStorage. This makes
the cart persist between page reloads, without needing a storage mechanism
on the server. The biggest benefit of this approach is that it will lead to a good
user experience without much code. As the figure on page 164 implies, our
storage solution will be straightforward.

report erratum • discuss

Plan Your Shopping Cart • 163

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

If we ever needed to move to a centralized storage mechanism, such as a
database, then we’d be able to easily change how carts are stored and inter-
acted with. We won’t need to worry about that in our application, though.

A high-level architecture for our application has mostly come together. The
one feature we haven’t yet covered is multi-tab support. In order to handle a
shopper with multiple tabs open, a Channel will broadcast a message anytime
its cart changes. Other Channels that are open for that same shopper will
receive the message and update themselves accordingly.

In order to support this flow with Channels, we need to have a static ID that
we can broadcast to. We’ll give each shopper a unique ID that is provided in
the cart’s topic, like cart:123abc. This will allow us to broadcast synchronization
messages between multiple instances of a shopper’s cart. We will leverage
the HTTP session to store the ID between visits.

We now have a path forward for a shopping cart that meets all of our
requirements. Our high-level application architecture looks like this:

Chapter 9. Build a Real-Time Shopping Cart • 164

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Set Up Your Project
If you’ve been following along in part II, you have a working Sneakers23
application. For this chapter, you can either start with a completely fresh
application base, or you can use your existing project with a few files copied
in. Let’s go over the instructions for each option.

Set Up a Clean Project

If you want to start with a completely fresh application base, follow these
steps. Make sure that you have a copy of the code, using the instructions
found in Online Resources, on page xiii.

$ cp -R code/location/sneakers_23_cart_base ~/sneakers_23_cart
$ cd ~/sneakers_23_cart
$ git init && git add . && git commit -m "initial commit (from base)"
$ mix deps.get && mix ecto.setup && npm --prefix assets install

At this point, you have a clean codebase ready for this chapter’s shopping cart.
You can skip to the next major heading to start building our shopping cart.

Set Up Your Existing Project

If you want to use your existing repo, you simply need to copy a few files
in—these files would be tedious to type otherwise.

$ cp code/location/sneakers_23_cart_base/assets/css/app.css \
your/project/sneakers_23/assets/css/app.css

$ cp code/location/sneakers_23_cart_base/assets/js/cartRenderer.js \
your/project/sneakers_23/assets/js/cartRenderer.js

You’re now ready to build this chapter’s shopping cart. We’ll start with the
development of our ShoppingCartChannel.

Scaffold Your Shopping Cart Channel
We’ll start developing our shopping cart by writing some code that the
Channel will use—our functional core. After we build our functional core,
we’ll use it to develop a ShoppingCartChannel. We’ll start small and work our way
up to a complete cart by the end of this chapter.

It’s important to build a functional core that contains logic, data structures,
or other parts of a program that are independent of the user interface. This
helps increase the maintainability of your code, because the separation
between interface and logic means that either can be changed without a
complete rewrite of the application. You’ll have an easier time adapting to

report erratum • discuss

Scaffold Your Shopping Cart Channel • 165

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

change and adding new features when your application is split into separate
parts this way.

Earlier in part II, our ProductChannel accessed inventory data through an Inventory
context—this was our functional core. We’re going to build something very
similar in this chapter—we’ll write a ShoppingCart data structure that holds cart
data. We’ll add this code to a Checkout context, so that our ShoppingCartChannel
can use it without reaching into the context.

Let’s jump into the Checkout context, followed by our ProductController. We’ll build
the ShoppingCartChannel in the next section.

Build a Functional Core
When I start coding a new feature, I find it helpful to start with the most
central part. For us, our entire feature revolves around the concept of a
shopping cart, so this is a great place to start writing code. According to our
requirements, a shopping cart is a collection of items that can be added to
and removed from. Let’s represent this as an Elixir struct.

Create the Checkout.ShoppingCart module and add the following code:

sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
defmodule Sneakers23.Checkout.ShoppingCart do

defstruct items: []

def new(), do: %__MODULE__{}
end

This struct provides a name and very simple shape for our shopping cart. We
could represent our cart items in many ways, but we’ll go with the simplest
approach possible—our cart will store the id of an item only. This makes
adding an item to a cart very simple. Let’s write a function that adds an
integer to our list.

sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
def add_item(cart = %{items: items}, id) when is_integer(id) do

if id in items do
{:error, :duplicate_item}

else
{:ok, %{cart | items: [id | items]}}

end
end

One of our requirements is that a single shoe/size combination can be added
to the cart, so we’re preventing duplicate items from being inserted into a cart.

It’s just as easy to remove an item—add the remove_item function next.

Chapter 9. Build a Real-Time Shopping Cart • 166

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
def remove_item(cart = %{items: items}, id) when is_integer(id) do

if id in items do
{:ok, %{cart | items: List.delete(items, id)}}

else
{:error, :not_found}

end
end

We need to add one more helper function for our cart—a function to extract
the cart item IDs. This isn’t apparent yet, but we’ll use this function in our
Channel. Add this function to the end of the ShoppingCart module:

sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
def item_ids(%{items: items}), do: items

Our code is straightforward so far. There is one final feature that our Shopping-
Cart needs to support. We must be able to serialize and deserialize a cart, so
it can be stored in a browser’s localStorage as a string. Phoenix.Token, which we
previously used for authentication, is perfect for this task. When we sign our
ShoppingCart into a token, the cart data can’t be tampered with and can be
passed to clients.

Add the following code to the end of the ShoppingCart module:

sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
@base Sneakers23Web.Endpoint
@salt "shopping cart serialization"
@max_age 86400 * 7

def serialize(cart = %__MODULE__{}) do
{:ok, Phoenix.Token.sign(@base, @salt, cart, max_age: @max_age)}

end

def deserialize(serialized) do
case Phoenix.Token.verify(@base, @salt, serialized, max_age: @max_age) do

{:ok, data} ->
items = Map.get(data, :items, [])
{:ok, %__MODULE__{items: items}}

e = {:error, _reason} ->
e

end
end

This code should feel very similar to our usage of Phoenix.Token back in Chapter
4, Restrict Socket and Channel Access, on page 53. Upon deserialization, we
extract items out of the verified map, rather than putting the data directly into
a ShoppingCart struct. This technique gives us more flexibility in the deserializa-
tion process, although our use case is very simple right now.

report erratum • discuss

Scaffold Your Shopping Cart Channel • 167

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/checkout/shopping_cart.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Before we can move onto our Channel, we need to expose our ShoppingCart as context
functions. Create a Checkout module and add the following function delegates.

sneakers_23_cart/lib/sneakers_23/checkout.ex
defmodule Sneakers23.Checkout do

alias __MODULE__.{ShoppingCart}

defdelegate add_item_to_cart(cart, item),
to: ShoppingCart, as: :add_item

defdelegate cart_item_ids(cart),
to: ShoppingCart, as: :item_ids

defdelegate export_cart(cart),
to: ShoppingCart, as: :serialize

defdelegate remove_item_from_cart(cart, item),
to: ShoppingCart, as: :remove_item

end

All of our logic lives in the underlying ShoppingCart module, so our context is
very simple. We need to add a function to restore a cart from a serialized
value, while also handling errors gracefully. A shopper who somehow gets
into an invalid state shouldn’t be unable to shop—they should just get a new
cart. Our restore_cart/1 function reflects this:

sneakers_23_cart/lib/sneakers_23/checkout.ex
def restore_cart(nil), do: ShoppingCart.new()
def restore_cart(serialized) do

case ShoppingCart.deserialize(serialized) do
{:ok, cart} -> cart
{:error, _} -> restore_cart(nil)

end
end

We now have a working functional core that can represent a shopping cart.
We’ll leverage this when we build our Channel. Before we can do that, we
need to prepare our HTML to work with our new Channel.

Unit Tests for the Functional Core

You’ll find unit tests for the functional core in the sneakers_23_cart/test/sneak-
ers_23 folder. There are tests for the Checkout context and the ShoppingCart.
These tests aren’t present in the sneakers_23_cart_base project.

Prepare the HTML
One important aspect of our application design is that a user’s tabs all stay
in sync. Because each tab is a different Channel instance, we need some way
to link the Channels to each other. The simplest way to do this is via the

Chapter 9. Build a Real-Time Shopping Cart • 168

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/checkout.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/checkout.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Channel topic. Two Channels with the topic "cart:123" should be linked
together. They should be separate from a Channel with the topic "cart:345".

Browser cookies are a great place to store semi-permanent data. We will
generate and store a random identifier in the cookie session, so that multiple
tabs share the same identifier. First, we need a way to generate a random
cart ID. It is best to use :crypto.strong_rand_bytes/1 for this purpose. Add the fol-
lowing function to the Checkout module:

sneakers_23_cart/lib/sneakers_23/checkout.ex
@cart_id_length 64
def generate_cart_id() do

:crypto.strong_rand_bytes(@cart_id_length)
|> Base.encode64()
|> binary_part(0, @cart_id_length)

end

This function generates a random 64-length string when called. We need to
use this, along with the cookie-based session, in order to persist a cart ID.

We want our shopping cart to be on every page, including new pages that don’t
yet exist. We could copy and paste the same snippet in all our controllers, but
there’s an easier way. The Plug1 library allows us to easily create modules that’ll
execute on all page loads. First, we need to create our Sneakers23Web.CartIdPlug module.

sneakers_23_cart/lib/sneakers_23_web/plugs/cart_id_plug.ex
defmodule Sneakers23Web.CartIdPlug doLine 1

import Plug.Conn-

-

def init(_), do: []-

5

def call(conn, _) do-

{:ok, conn, cart_id} = get_cart_id(conn)-

assign(conn, :cart_id, cart_id)-

end-

10

defp get_cart_id(conn) do-

case get_session(conn, :cart_id) do-

nil ->-

cart_id = Sneakers23.Checkout.generate_cart_id()-

{:ok, put_session(conn, :cart_id, cart_id), cart_id}15

-

cart_id ->-

{:ok, conn, cart_id}-

end-

end20

end-

1. https://hexdocs.pm/plug/readme.html

report erratum • discuss

Scaffold Your Shopping Cart Channel • 169

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/checkout.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/plugs/cart_id_plug.ex
https://hexdocs.pm/plug/readme.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The get_session/2 function returns whatever data was previously stored in
Phoenix’s session management. On line 14, we generate a new cart ID if one
doesn’t already exist. It’s important to use put_session, like we do on line 15, in
order to save the cart ID in the shopper’s session. Without this, every refresh
would give a new cart ID. We assign the cart ID, on line 8, so that we can
access it in our HTML template.

Add the following JavaScript snippet in the middle of the layout/app template
to scaffold the shopping cart. We are adding this to the layout file so every
page can inject a shopping cart.

sneakers_23_cart/lib/sneakers_23_web/templates/layout/app.html.eex
<%= render @view_module, @view_template, assigns %>

<%= if assigns[:cart_id] do %>
<div id="cart-container"></div>

<script type="text/javascript">
window.cartId = "<%= @cart_id %>"

</script>
<% end %>

Finally, we need to add our new Plug to our application Router module. Add a
plug/1 function call in the Sneakers23Web.Router module, like so:

sneakers_23_cart/lib/sneakers_23_web/router.ex
pipeline :browser do

plug :accepts, ["html"]
plug :fetch_session
plug :fetch_flash
plug :protect_from_forgery
plug :put_secure_browser_headers
plug Sneakers23Web.CartIdPlug➤

end

Let’s confirm that this is working as expected. Start your server with mix
phx.server and visit http://localhost:4000. When you open your JavaScript console,
you can retrieve your cart ID.

> window.cartId
"or513rppnugfnHJHBSl564hvd/ke7yrz0BrD+NzPXF07bTOgwxvazV3WptL1Xjlz"

If you refresh or open multiple tabs, you will always see the same ID. If you
open your browser incognito, you’ll see a different ID. Take a moment to git
commit your work, since we’ve completed a working chunk of code.

Now that our Controller is configured with a cart ID, we’re ready to build our
ShoppingCartChannel.

Chapter 9. Build a Real-Time Shopping Cart • 170

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/templates/layout/app.html.eex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/router.ex
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Build Your Shopping Cart Channel
A Channel is the perfect place to store our shopping cart state and to handle
user input on the cart. We’ll write a ShoppingCartChannel module that handles
adding items, removing items, and synchronizing clients. We’ll also add real-
time stock updates in the next section.

Remember that Channels are just processes—we’ll use this to our advantage
here. Each ShoppingCartChannel represents one open instance of Sneakers23,
and the state of the Channel at any time will match what the shopper sees
on their page. The Channel is in charge of sending its client the different item
details, such as name and availability, for each shoe in the cart.

Let’s start by writing the basic ShoppingCartChannel—we’ll incrementally add more
complex features to it throughout this section.

Create the Channel
We’ll use the topic "cart:*" to connect to our Channel. This topic allows us to
identify each connected cart by its ID, which will be useful when we need to
synchronize the carts. Let’s start our Channel implementation by adding this
definition to the ProductSocket module.

sneakers_23_cart/lib/sneakers_23_web/channels/product_socket.ex
channel "product:*", Sneakers23Web.ProductChannel
channel "cart:*", Sneakers23Web.ShoppingCartChannel➤

We will now start writing the ShoppingCartChannel module. Create the Shopping-
CartChannel module and add the following code to it.

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
defmodule Sneakers23Web.ShoppingCartChannel do

use Phoenix.Channel

alias Sneakers23.Checkout

def join("cart:" <> _id, _params, socket) do
{:ok, socket}

end
end

The first feature we will implement is the restoration of a cart from a serialized
string. The client will provide a serialized cart string in the parameters of its
join, and that will be stored in the Channel state. Modify the join function to
include the cart restoration.

report erratum • discuss

Build Your Shopping Cart Channel • 171

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/product_socket.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
def join("cart:" <> id, params, socket) when byte_size(id) == 64 do

cart = get_cart(params)
socket = assign(socket, :cart, cart)

{:ok, socket}
end

defp get_cart(params) do
params
|> Map.get("serialized", nil)
|> Checkout.restore_cart()

end

Next, we need to render the cart to a map that can be sent to the client. We
must return a detailed list of items in the cart as well as the serialized string
that represents that cart.

Rendering a cart is not directly related to the Channel operation, so we’ll add
it to a new module. Create the CartView module with this code:

sneakers_23_cart/lib/sneakers_23_web/views/cart_view.ex
defmodule Sneakers23Web.CartView doLine 1

def cart_to_map(cart) do-

{:ok, serialized} = Sneakers23.Checkout.export_cart(cart)-

-

{:ok, products} = Sneakers23.Inventory.get_complete_products()5

item_ids = Sneakers23.Checkout.cart_item_ids(cart)-

items = render_items(products, item_ids)-

-

%{items: items, serialized: serialized}-

end10

-

defp render_items(_, []), do: []-

-

defp render_items(products, item_ids) do-

for product <- products,15

item <- product.items,-

item.id in item_ids do-

render_item(product, item)-

end-

|> Enum.sort_by(& &1.id)20

end-

-

@product_attrs [-

:brand, :color, :name, :price_usd, :main_image_url, :released-

]25

-

@item_attrs [:id, :size, :sku]-

-

defp render_item(product, item) do-

product_attributes = Map.take(product, @product_attrs)30

Chapter 9. Build a Real-Time Shopping Cart • 172

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/views/cart_view.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

item_attributes = Map.take(item, @item_attrs)-

product_attributes-

|> Map.merge(item_attributes)-

|> Map.put(:out_of_stock, item.available_count == 0)-

end35

end-

This is a long code snippet, so we’ll break down each function. cart_to_map/1
will be called by our Channel and, on line 9, returns a map containing the
items in the cart as well as the serialized cart string. The render_items/2 function
iterates over each product and looks for items that are in the cart—these
items are then rendered. The render_item/2 function extracts all of the important
attributes and produces a final map of the item.

The products are fetched from the Inventory.Server state, which keeps the item
availability up to date. On line 34, we use this to send the client the most up-
to-date version of that item’s availability. Anytime that we render the shopping
cart, it will have the most up-to-date availability information.

Next, let’s change the ShoppingCartChannel to use the cart_to_map/1 function. We’ll
push the cart to the client when a client joins.

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
import Sneakers23Web.CartView, only: [cart_to_map: 1]

def join("cart:" <> id, params, socket) when byte_size(id) == 64 do
cart = get_cart(params)
socket = assign(socket, :cart, cart)
send(self(), :send_cart)➤

{:ok, socket}
end

def handle_info(:send_cart, socket = %{assigns: %{cart: cart}}) do
push(socket, "cart", cart_to_map(cart))
{:noreply, socket}

end

The Channel sends itself a message when join/3 executes. This message is
processed and triggers a rendered cart to be pushed to the client. It is good
to have the server send the data to the client, rather than having the client
request it, because it ensures that the client is up-to-date. If a client discon-
nects and reconnects, it will have the most up-to-date version of its items.

Next, we’ll connect the front end to the Channel. We’ll start by editing app.js
to connect a cart. At this point, you should have imported cartRenderer.js from
the setup section earlier in this chapter. The code above setupProductChannel
should be replaced with the following snippet.

report erratum • discuss

Build Your Shopping Cart Channel • 173

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Unit Tests for the Channel

You will find unit tests for the functional core in the sneak-
ers_23_cart/test/sneakers_23_web/channels folder. The ShoppingCartChannel
tests cover the code added in this section. These tests are not
present in the sneakers_23_cart_base project.

sneakers_23_cart/assets/js/app.js
import css from "../css/app.css"Line 1

import { productSocket } from "./socket"-

import dom from './dom'-

import Cart from './cart'-

5

productSocket.connect()-

-

const productIds = dom.getProductIds()-

-

productIds.forEach((id) => setupProductChannel(productSocket, id))10

-

const cartChannel = Cart.setupCartChannel(productSocket, window.cartId, {-

onCartChange: (newCart) => {-

dom.renderCartHtml(newCart)-

}15

})-

We start by adding a soon-to-be-created Cart to our existing import statements.
On line 6, we have set up our productSocket to always connect—the cart could
be on pages that don’t have product listings, so we want to make sure that
the Socket is always connected. We could have created a new ProductSocket to
connect to, but it wouldn’t serve much purpose because our authentication
requirements haven’t changed.

The cart Channel setup happens on line 12. The cartId is passed from window,
which we previously set up in our layout. We re-render the cart template
when the cart changes, so the user sees the most up-to-date cart.

We still need to write cart.js and update dom.js. We’ll start with dom.js.

sneakers_23_cart/assets/js/dom.js
import { getCartHtml } from './cartRenderer'

dom.renderCartHtml = (cart) => {
const cartContainer = document.getElementById("cart-container")
cartContainer.innerHTML = getCartHtml(cart)

}

Chapter 9. Build a Real-Time Shopping Cart • 174

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/assets/js/app.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/assets/js/dom.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

This function turns the cart into HTML and replaces the content of #cart-con-
tainer with the new HTML. The cartRenderer we provided for you contains the
HTML for the cart.

We’re almost able to test that everything is working. We’ll write cart.js and then
test that it all works.

sneakers_23_cart/assets/js/cart.js
const Cart = {}Line 1

export default Cart-

-

Cart.setupCartChannel = (socket, cartId, { onCartChange }) => {-

const cartChannel = socket.channel(`cart:${cartId}`, channelParams)5

const onCartChangeFn = (cart) => {-

console.debug("Cart received", cart)-

localStorage.storedCart = cart.serialized-

onCartChange(cart)-

}-

-

cartChannel.on("cart", onCartChangeFn)-

cartChannel.join().receive("error", () => {15

console.error("Cart join failed")-

})-

-

return {-

cartChannel,20

onCartChange: onCartChangeFn-

}-

}-

-

function channelParams() {25

return {-

serialized: localStorage.storedCart-

}-

}-

We first create our Channel instance on line 5. It’s important to note that
we’re providing a function for channelParams—we’ll come back to it shortly. When
the ShoppingCartChannel pushes a rendered cart to our JavaScript, we store that
cart in localStorage and trigger the DOM update. The onCartChangeFn is set up to
do both of these things when the cart changes. A console.debug statement has
also been added so you can see the changes to the cart.

The channelParams function, on line 25, passes the current stored cart from local-
Storage. It’s crucial that these parameters are calculated each time the Channel
tries to reconnect. If we used a static channelParams value, then we’d find ourselves
in a situation where a cart resets each time the Channel reconnects.

report erratum • discuss

Build Your Shopping Cart Channel • 175

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/assets/js/cart.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s check our progress. Start the server with mix phx.server and then visit
http://localhost:4000. Open the JavaScript console and refresh to see the cart in
your console. You will see an empty cart, like this:

> Cart received {items: Array(0), serialized: "SFMyNTY.g3Q...0"}

Each time you refresh, you will see a different serialized value. This is due to
how a Phoenix.Token is generated and is completely okay for our store.

Take a moment to git commit your work. Next, we’ll handle adding and removing
items.

Add and Remove Items to Your Cart
We have a front end that connects to our ShoppingCartChannel with an empty
shopping cart—this is not very exciting. In order for you to see the cart on-
screen, you have to place an item in it. Let’s set up the front end to add an
item to our cart when we click on it. We’ll start with what we want our app.js
to look like, then we’ll implement the functions we need.

Add this function after the call to Cart.setupCartChannel.

sneakers_23_cart/assets/js/app.js
dom.onItemClick((itemId) => {

Cart.addCartItem(cartChannel, itemId)
})

These functions don’t exist yet, but our code’s intent is clear. Next, we will
implement onItemClick in dom.js.

sneakers_23_cart/assets/js/dom.js
dom.onItemClick = (fn) => {

document.addEventListener('click', (event) => {
if (!event.target.matches('.size-container__entry')) { return }
event.preventDefault()

fn(event.target.value)
})

}

We bind an event handler on the document. This allows our click handler to
trigger, even if the element wasn’t on the page when the page first loaded.
The button to add an item is a button element with a value set to the item ID.
We’ll pass the item ID through our system and into the ShoppingCartChannel.

Next, let’s configure cart.js to add the item. While we’re here, we’ll also add the
function to remove an item—it’s almost exactly the same. Add this code to
the end of cart.js.

Chapter 9. Build a Real-Time Shopping Cart • 176

report erratum • discuss

http://localhost:4000
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/assets/js/app.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/assets/js/dom.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_cart/assets/js/cart.js
Cart.addCartItem = ({ cartChannel, onCartChange }, itemId) => {

cartRequest(cartChannel, "add_item", { item_id: itemId }, (resp) => {
onCartChange(resp)

})
}

Cart.removeCartItem = ({ cartChannel, onCartChange }, itemId) => {
cartRequest(cartChannel, "remove_item", { item_id: itemId }, (resp) => {

onCartChange(resp)
})

}

function cartRequest(cartChannel, event, payload, onSuccess) {
cartChannel.push(event, payload)

.receive("ok", onSuccess)

.receive("error", (resp) => console.error("Cart error", event, resp))

.receive("timeout", () => console.error("Cart timeout", event))
}

Our "add_item" message is very simple; it just contains the item ID. We have
some simple error handlers for timeouts and errors, although a more advanced
implementation might have a different handler that alerts the shopper to the
issue.

If you were to refresh your local application and click a size button, you’ll see
an error that "add_item" could not be handled. We need to add a handle_in callback
function to the ShoppingCartChannel. Let’s do that now.

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
def handle_in(

"add_item", %{"item_id" => id}, socket = %{assigns: %{cart: cart}}) do
case Checkout.add_item_to_cart(cart, String.to_integer(id)) do

{:ok, new_cart} ->
socket = assign(socket, :cart, new_cart)
{:reply, {:ok, cart_to_map(new_cart)}, socket}

{:error, :duplicate_item} ->
{:reply, {:error, %{error: "duplicate_item"}}, socket}

end
end

The core of this function is fairly short, before we add error handling. We use
add_item_to_cart/2 to modify our cart, which came from our Channel state, and
then we assign the new cart into the Channel’s state.

Let’s try out our add to cart feature. Follow these steps to start your store
with a freshly seeded set of shoes:

report erratum • discuss

Build Your Shopping Cart Channel • 177

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/assets/js/cart.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server
iex(1)> Enum.each([1, 2], &Sneakers23.Inventory.mark_product_released!/1)
:ok

Open http://localhost:4000 and open your JavaScript console. Click on one of the
available shoe sizes. You will see a new “Cart received” message with an item
count of 1. You will also see the shopping cart UI appear—it looks like the
following image.

Neat! Open a second tab and navigate to http://localhost:4000. You will see the
same exact cart with one item in it. If you add another item, however, you’ll
see that the two tabs are out of sync. They’ll become in sync again if you
refresh, but this isn’t what we want. We need to synchronize clients across
multiple instances of the cart. Take a moment to git commit before moving on.

Synchronize Multiple Channel Clients
Each shopper that joins our ShoppingCartChannel does so on a private topic, like
"cart:123abc". This cart ID is random and long, so we can use it as a way to
uniquely identify a cart. In order to synchronize our cart across multiple tabs,
we will use this topic. We’ll send the serialized version of our cart using
Phoenix.PubSub and intercept it in the ShoppingCartChannel. It will only be received
by Channel processes that are running with that same cart ID.

Add the following code to the ShoppingCartChannel module—we’ll walk through
the key parts of it.

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
intercept ["cart_updated"]

def handle_in(
"add_item", %{"item_id" => id}, socket = %{assigns: %{cart: cart}}) do
case Checkout.add_item_to_cart(cart, String.to_integer(id)) do

Chapter 9. Build a Real-Time Shopping Cart • 178

report erratum • discuss

http://localhost:4000
http://localhost:4000
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

{:ok, new_cart} ->
broadcast_cart(new_cart, socket, added: [id])➤

socket = assign(socket, :cart, new_cart)
{:reply, {:ok, cart_to_map(new_cart)}, socket}

{:error, :duplicate_item} ->
{:reply, {:error, %{error: "duplicate_item"}}, socket}

end
end

def handle_out("cart_updated", params, socket) do
cart = get_cart(params)
socket = assign(socket, :cart, cart)
push(socket, "cart", cart_to_map(cart))

{:noreply, socket}
end

defp broadcast_cart(cart, socket, opts) do
{:ok, serialized} = Checkout.export_cart(cart)

broadcast_from(socket, "cart_updated", %{
"serialized" => serialized,
"added" => Keyword.get(opts, :added, []),
"removed" => Keyword.get(opts, :removed, [])

})
end

The only change to the handle_in function is the addition of a call to broad-
cast_cart/2. This function leverages broadcast_from/3, a function provided by
Phoenix.Channel. This type of broadcast differs from a standard broadcast/3 function
because the calling process will not receive the message. Only other process-
es—other ShoppingCartChannels with the same cart ID—will receive the message.
We aren’t using the added and removed keys yet, but we will be shortly.

Other Channels need to both push a message to their client and update their
internal state. If we only needed to push a message, we would be able to
directly broadcast the "cart" message. However, we need to intercept the mes-
sage and update each Channel’s state. We intercept "cart_updated", so handle_out
will be called with this event type. The handle_out function turns the serialized
cart into a real cart, sends it to the connected client, and updates the Chan-
nel’s assigned state.

Try out the demo from the previous section. When you add a shoe in a tab,
all other tabs will immediately reflect the shoe in the cart.

Before we can finish the basics of our cart, we need to implement removing
an item. This code will very closely resemble the code for adding an item. Let’s
start with the ShoppingCartChannel and work out to the front end. Add this code
after the existing handle_in function:

report erratum • discuss

Build Your Shopping Cart Channel • 179

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
def handle_in(

"remove_item", %{"item_id" => id}, socket = %{assigns: %{cart: cart}}) do
case Checkout.remove_item_from_cart(cart, String.to_integer(id)) do

{:ok, new_cart} ->
broadcast_cart(new_cart, socket, removed: [id])
socket = assign(socket, :cart, new_cart)
{:reply, {:ok, cart_to_map(new_cart)}, socket}

{:error, :not_found} ->
{:reply, {:error, %{error: "not_found"}}, socket}

end
end

This function mirrors our add item code almost perfectly, so there’s nothing
new here.

Let’s add item removal code to app.js that mirrors how items are added.

sneakers_23_cart/assets/js/app.js
dom.onItemRemoveClick((itemId) => {

Cart.removeCartItem(cartChannel, itemId)
})

We’ve already written the Cart.removeCartItem/2 function, but we need to imple-
ment dom.onItemRemoveClick. Let’s do that now.

sneakers_23_cart/assets/js/dom.js
dom.onItemRemoveClick = (fn) => {

document.addEventListener('click', (event) => {
if (!event.target.matches('.cart-item__remove')) { return }
event.preventDefault()
fn(event.target.dataset.itemId)

})
}

Let’s try out item removal now. Start your server with mix phx.server and load
http://localhost:4000. You can add an item, as you could previously, but now the
“×” symbol next to each shopping cart item removes the item from the cart.
Try this feature with multiple tabs to make sure that everything works cor-
rectly. Take a moment to git commit your changes.

We have a shopping cart that works for many of our requirements. We can
add a single size of a shoe, remove shoes, display the cart on the front end,
use the same cart across multiple tabs, and persist the cart between page
loads. The feature that we’ll implement next is real-time updates when an
item goes out-of-stock.

Chapter 9. Build a Real-Time Shopping Cart • 180

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/assets/js/app.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/assets/js/dom.js
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Add Real-Time Out-Of-Stock Alerts
The last feature that we will add to our shopping cart is out-of-stock alerts.
A shopping cart consists of a set of items that have been added by a shopper.
The shopping cart will notify the shopper when any of these items goes out-
of-stock. If you remember from the CartView module, an item will be determined
to be available (or not) each time that the cart is rendered—all that we need
to do is trigger the cart to be rendered and sent to the connected client.

We’ll leverage PubSub to know when the ShoppingCartChannel needs to send a
message to the client. Our PubSub usage so far in this book has been tied to
Channels—we’ve always pushed directly to a Channel topic. We can take a
different approach, though. We’ll walk through how to subscribe to a PubSub
topic that is not the same as a Channel topic.

Using Dynamic PubSub Subscriptions
Processes can subscribe and unsubscribe to messages for any PubSub topic.
A process can subscribe to as many topics as it wants to. We will use this to
build out-of-stock notifications. Each item will have a topic in the format
"item_out:{id}" and will broadcast messages in the format {:item_out, id}.

The ShoppingCartChannel needs to subscribe to the correct items so it gets alerted
regarding only the items it cares about, which helps improve the performance
of live updates. It also needs to unsubscribe to items that are removed from
the cart, so that it stops getting notified about them. The following figure
shows the steps that our Channel will follow:

Channel Process PubSub

item added subscribe to added item

Stock updates
item rem oved

unsubscribe

Client

Next, we’ll modify the ShoppingCartChannel module to use this approach.

PubSub in the Shopping Cart Channel
A client sends its cart in the join parameters of ShoppingCartChannel. Once the
Channel has the cart, it needs to subscribe to any existing items. Without
this, the cart would not receive updates for previously added items.

report erratum • discuss

Add Real-Time Out-Of-Stock Alerts • 181

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s modify the ShoppingCartChannel to add PubSub subscriptions when the
Channel joins.

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
def join("cart:" <> id, params, socket) when byte_size(id) == 64 do

cart = get_cart(params)
socket = assign(socket, :cart, cart)
send(self(), :send_cart)
enqueue_cart_subscriptions(cart)➤

{:ok, socket}
end

def handle_info({:subscribe, item_id}, socket) do
Phoenix.PubSub.subscribe(Sneakers23.PubSub, "item_out:#{item_id}")
{:noreply, socket}

end

defp enqueue_cart_subscriptions(cart) do
cart
|> Checkout.cart_item_ids()
|> Enum.each(fn id ->

send(self(), {:subscribe, id})
end)

end

The enqueue_cart_subscriptions/1 function iterates over each item in the cart and
sends a message to correspond to the PubSub topic. We could subscribe to
the PubSub directly, without sending a message, but the current approach
will ensure that add_item and remove_item handlers don’t get slowed down by
the PubSub subscription.

Next, let’s change the add item handle_in function to subscribe to the topic.

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
{:ok, new_cart} ->

send(self(), {:subscribe, id})➤

broadcast_cart(new_cart, socket, added: [id])

We need to follow this same exact process for item removal, but we’ll unsub-
scribe to the topic. Make the following changes to the ShoppingCartChannel.

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
def handle_info({:unsubscribe, item_id}, socket) do

Phoenix.PubSub.unsubscribe(Sneakers23.PubSub, "item_out:#{item_id}")
{:noreply, socket}

end

def handle_in(
"remove_item", %{"item_id" => id}, socket = %{assigns: %{cart: cart}}) do
case Checkout.remove_item_from_cart(cart, String.to_integer(id)) do

{:ok, new_cart} ->

Chapter 9. Build a Real-Time Shopping Cart • 182

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

send(self(), {:unsubscribe, id})➤

broadcast_cart(new_cart, socket, removed: [id])
socket = assign(socket, :cart, new_cart)
{:reply, {:ok, cart_to_map(new_cart)}, socket}

{:error, :not_found} ->
{:reply, {:error, %{error: "not_found"}}, socket}

end
end

The remove_item handler mirrors the add_item handler but uses the unsubscribe
function to remove all of the active subscriptions for the current process and
topic pair.

When the PubSub dispatches a message over the "item_out:{id}" topic, all sub-
scribed processes will receive the message.

Let’s write a handler for what we want our message to look like. Add the fol-
lowing handle_info handler after the other handle_info functions.

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
def handle_info({:item_out, _id}, socket = %{assigns: %{cart: cart}}) do

push(socket, "cart", cart_to_map(cart))
{:noreply, socket}

end

Our CartView fetches the current state of an item’s availability, so all that we
need to do is send the rendered cart to the connected client. If we needed to
know what items are out-of-stock in the Channel, we could save those items
at this point.

We also need to subscribe and unsubscribe from PubSub messages when a
cart is updated—that is why we included the removed and added values in our
"cart_updated" message. Let’s add that now.

sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
def handle_out("cart_updated", params, socket) do

modify_subscriptions(params)➤

cart = get_cart(params)
socket = assign(socket, :cart, cart)
push(socket, "cart", cart_to_map(cart))

{:noreply, socket}
end

defp modify_subscriptions(%{"added" => add, "removed" => remove}) do
Enum.each(add, & send(self(), {:subscribe, &1}))
Enum.each(remove, & send(self(), {:unsubscribe, &1}))

end

report erratum • discuss

Add Real-Time Out-Of-Stock Alerts • 183

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Before we can test this feature out, we need to broadcast the "item_out:id"
message. We’ll hook into the code that runs when an Inventory item is sold—if
the item is out-of-stock we’ll broadcast the message.

Let’s start by adding a broadcast function to the Sneakers23Web context module.
This will look like a strange use of PubSub, but we’ll walk through what it’s
doing.

Add the following function underneath the existing defdelegate calls:

sneakers_23_cart/lib/sneakers_23_web.ex
def notify_local_item_stock_change(%{available_count: 0, id: id}) do

Sneakers23.PubSub
|> Phoenix.PubSub.node_name()
|> Phoenix.PubSub.direct_broadcast(

Sneakers23.PubSub, "item_out:#{id}", {:item_out, id}
)

end

def notify_local_item_stock_change(_), do: false

When PubSub version 2.0 is released, it will come with a local_broadcast function
that works almost this same way, but is more performant.

This function will only perform a broadcast when the available count of an
item is 0. We use direct_broadcast/4 to send out a broadcast. The broadcast will
only be run on the specified node, which is the same one that called the initial
function. Doing this ensures that the Inventory.Server process is up-to-date when
the CartView renders the cart. If we broadcast the message to all nodes, then
we would have a race condition and the CartView could potentially render an
out-of-stock item as available.

Due to the use of direct_broadcast, the notify_local_item_stock_change/1 function must
run on every node in the cluster. Luckily, we already have a place to hook
this in—the Inventory.item_sold!/2 function.

item_sold!/2 is called on all servers, due to the replication code that we added
previously.

Let’s add the notification to this function.

sneakers_23_cart/lib/sneakers_23/inventory.ex
def item_sold!(id), do: item_sold!(id, [])
def item_sold!(item_id, opts) do

pid = Keyword.get(opts, :pid, __MODULE__)
being_replicated? = Keyword.get(opts, :being_replicated?, false)

avail = Store.fetch_availability_for_item(item_id)
{:ok, old_inv, inv} = Server.set_item_availability(pid, avail)
{:ok, item} = CompleteProduct.get_item_by_id(inv, item_id)➤

Chapter 9. Build a Real-Time Shopping Cart • 184

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/inventory.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

unless being_replicated? do
Replication.item_sold!(item_id)
{:ok, old_item} = CompleteProduct.get_item_by_id(old_inv, item_id)➤

Sneakers23Web.notify_item_stock_change(
previous_item: old_item, current_item: item

)
end

Sneakers23Web.notify_local_item_stock_change(item)➤

:ok
end

This function has not changed much—we now call Sneakers23Web.notify_local_
item_stock_change/1 and we extract the get_item_by_id/2 function up to a higher
scope. It’s important that this code is run outside of the being_replaced? condi-
tional statement, because we want it to run on each node and not just on the
original node.

Our shopping experience is almost complete. There’s one final bit of code to
include to finish it off—the checkout process.

Complete the Checkout Process
We’re not going to walk through the checkout process for our store due to
limited time. However, I think it’s important for you to see the complete
shopping experience. You will find a simple checkout process included in the
code that ships with this book. You can copy the following files and snippets
into your project to finish the checkout process.

$ cp sneakers_23_cart/lib/sneakers_23_web/controllers/checkout_controller.ex \
your_project/lib/sneakers_23_web/controllers/checkout_controller.ex

$ cp -R sneakers_23_cart/lib/sneakers_23_web/templates/checkout \
your_project/lib/sneakers_23_web/templates/checkout

$ cp sneakers_23_cart/lib/sneakers_23_web/views/checkout_view.ex \
your_project/lib/sneakers_23_web/views/checkout_view.ex

Next, add the router entries to your Router module.

sneakers_23_cart/lib/sneakers_23_web/router.ex
get "/", ProductController, :index
get "/checkout", CheckoutController, :show➤

post "/checkout", CheckoutController, :purchase➤

get "/checkout/complete", CheckoutController, :success➤

Finally, you’ll need an additional function added to the Checkout context, inside
of the existing scope.

report erratum • discuss

Add Real-Time Out-Of-Stock Alerts • 185

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23_web/router.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_cart/lib/sneakers_23/checkout.ex
def purchase_cart(cart, opts \\ []) do

Sneakers23.Repo.transaction(fn ->
Enum.each(cart_item_ids(cart), fn id ->

case Sneakers23.Checkout.SingleItem.sell_item(id, opts) do
:ok ->

:ok

_ ->
Sneakers23.Repo.rollback(:purchase_failed)

end
end)

:purchase_complete
end)

end

This code sells all of the items in the shopping cart. The entire order is can-
celled if any item is unavailable, so the system remains in the right state. All
of this code runs inside of a transaction thanks to the Repo.transaction/1 function.
You could also use Ecto.Multi2 to write database transactions.

We’re ready to test that our cart works as expected. Next, we’ll walk through
each feature built in this chapter to make sure that it works as expected. This
will also give you a demo of the complete cart. Take a moment to git commit
your changes before moving on.

Acceptance Test the Shopping Cart
All the code for our shopping cart is in place. We’re going to walk through a
few different scenarios and ensure the cart works as expected in each. You
would be performing these types of tests incrementally as you build the sys-
tem, but it’s important to run through all of the scenarios again when the
code is complete.

Our test scenarios revolve around the requirements—we’ll combine multiple
requirements into a single scenario, so that we can quickly work through our
acceptance tests. To keep things concise, we won’t test what happens after
clicking the purchase button.

Our first scenario will be a test of the add and remove item features.

First Scenario
We’ll follow the same pattern as outlined in Chapter 8, Break Your Application
with Acceptance Tests, on page 141: define the test, write steps for the test,

2. https://hexdocs.pm/ecto/Ecto.Multi.html

Chapter 9. Build a Real-Time Shopping Cart • 186

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_cart/lib/sneakers_23/checkout.ex
https://hexdocs.pm/ecto/Ecto.Multi.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

write expectations for the test, and execute the test. Our first test will hit on
most requirements except for out-of-stock notifications.

Define the test
A shopper is connected to the store, waiting for the shoes to be released.
The shoes are released and the shopper adds one of each shoe to their
cart. The shopper removes one of the shoes from their cart. The shopper
closes the page and re-opens it. The shopper opens a second tab. The
shopper removes all items from their cart and then adds two sizes of each
shoe. The shopper clicks the “checkout” button.

Write steps for the test
1. Start the server in a freshly seeded state.

2. Load http://localhost:4000.

3. Release both shoes.

4. Add size 6 of the top shoe and size 10 of the bottom shoe.

5. Remove the size 10 shoe.

6. Navigate away from current page, to any other website.

7. Navigate back to http://localhost:4000.

8. Open a second tab of http://localhost:4000.

9. Remove all items in the cart by clicking on the “×” symbol, from the
second tab.

10. Switch to the first tab.

11. Add any two sizes from each shoe—four total.

12. Click the checkout button.

Write expectations for the test
• The shopper sees “coming soon” and no cart after step 2.

• The shopper sees the size selectors after step 3.

• The shopper sees two items in their cart after step 4.

• The shopper sees one item in their cart, size 6, after step 5.

• The shopper sees each cart matches the other after step 8.

• The shopper sees that each tab has an empty cart (it disappears) after
step 10.

report erratum • discuss

Acceptance Test the Shopping Cart • 187

http://localhost:4000
http://localhost:4000
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

• The shopper sees four shoes in their cart after step 11.

• The shopper sees the shoes they selected on the checkout page after
step 12.

Acceptance tests can get lengthy, like this one. It’s important to ensure that
all behavior works as expected, even if an area of the application wasn’t
affected by the current changes.

Use the following instructions to execute the test. If one of the shoes you’re
supposed to add is sold out, which can happen due to the random seed, then
simply select a different available size.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()" # (step 1)
$ iex -S mix phx.server
(step 3)
iex(1)> Enum.each([1, 2], &Sneakers23.Inventory.mark_product_released!/1)
:ok
Follow steps 4 through 12 using the above instructions

If you’ve followed each step, you will see that all of our expectations pass!
Next, we’ll execute a scenario for out-of-stock updates.

Second Scenario
This scenario will ensure that some of the more complex features of our
shopping cart work as expected. We haven’t yet tested how our cart works in
a multi-server setup, so we’ll perform this scenario across two servers to
ensure that it does work.

Define the test
A shopper is connected to the store and sees that the shoes have already
been released. The shopper adds a shoe to their cart, removes it, and
adds it again. The shopper opens a second tab and adds another shoe to
their cart from the second tab. The shoes sell out, from a second server.
The shopper sees that their items are sold out, and they remove the items
from their cart.

Write steps for the test
1. Start two servers (app and backend) in a freshly seeded state.
2. Release both shoes (from the backend server).
3. Load http://localhost:4000.
4. Add size 6 of the top shoe, remove it, and add it again.
5. Open a second tab of http://localhost:4000.
6. Add a second shoe to the cart from the second tab.
7. Run the inventory reducer script (from the backend server).

Chapter 9. Build a Real-Time Shopping Cart • 188

report erratum • discuss

http://localhost:4000
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

8. Check both tabs’ cart displays once the items are sold out.
9. Remove all shoes from your cart.
10. Try to add a sold-out shoe to your cart.

Write expectations for the test
• The shopper sees the size selectors after step 3.
• The shopper sees one item in their cart after step 4.
• The shopper sees that both tabs show one shoe in the cart after step 5.
• The shopper sees that both tabs show two shoes in the cart after step 6.
• The inventory reducer script runs without error.
• The shopper sees that all items in their cart are grayed out.
• The shopper can remove all items from their cart.
• The shopper cannot add sold-out shoes to their cart.

Use the following instructions to execute the test. We’ll start multiple servers
and you will run Elixir functions only on the “backend” server.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()" # (step 1)
$ iex --name app@127.0.0.1 -S mix phx.server
Do not run commands from the "app" server

$ iex --name backend@127.0.0.1 -S mix
iex(1)> Node.connect(:"app@127.0.0.1")
:ok
(step 2)
iex(2)> Enum.each([1, 2], &Sneakers23.Inventory.mark_product_released!/1)
:ok
Follow steps 4-6
iex(3)> Sneakers23Mock.InventoryReducer.sell_random_until_gone!() # (step 7)
:ok
Follow steps 8+

Walk through the steps and ensure that each expectation passes—everything
should work for you. Our test shows that our shopping cart works when the
store runs on multiple servers, and that the out-of-stock update works as
expected. This test saved me, as I initially put the notify_local_item_stock_change/1
before the replication conditional. This resulted in a final state where one cart
showed as fully out-of-stock but another appeared as still having a shoe in-
stock, until I refreshed the page.

There are, of course, many more acceptance tests we could perform against
our shopping cart. A professional QA tester will flex the edge cases of the
system even further to find out if it breaks in different circumstances. You
could add additional features if you are looking to challenge yourself. Try to
make it so that only a single size of each shoe can be added to the cart. Think
about what acceptance tests you would run against this new requirement,

report erratum • discuss

Acceptance Test the Shopping Cart • 189

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

and then automate the tests with Hound. We won’t cover those tasks in this
book, but they would be excellent practice.

Our shopping cart is now finished, at least from a shopper perspective. We’ll
be coming back to our cart in the next chapter, by adding admin-specific
features to it.

Wrapping Up
We’ve built a fully functioning shopping cart, using the tools we’ve covered
throughout this book. We had to flex all of our Channel and real-time system
skills to build this relatively complex feature. We used the basic handle_in and
handle_out features in Phoenix Channels to take client commands and send
data to the clients. We leveraged PubSub with dynamic subscriptions to keep
track of when an item goes out-of-stock. We made our system work across
distributed servers by using an order of operations in our inventory updates
that provides our shoppers with a consistent view of their cart.

Acceptance tests, whether manual or automated, are extremely useful in
finding bugs in the code that we write. We performed two complex acceptance
tests that showed our cart works in a variety of situations. We did all of this
while writing clean code that respects the contextual boundaries of our
application.

We’re going to take the momentum from this chapter and run with it in the
next one. We’ll be looking at how to use Phoenix Tracker and Presence to
build an admin portal that shows how many carts are connected and shows
the breakdown of connected shoppers carts at the present moment.

Chapter 9. Build a Real-Time Shopping Cart • 190

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 10

Track Connected Carts with Presence
In the last chapter, we built a shopping cart with real-time out-of-stock alerts.
That feature completed the shopper-facing section of our Sneakers23 applica-
tion. In this chapter, we’ll build an admin-facing dashboard that will show
real-time information about all the current shoppers on the website. You’ll
learn about and use Phoenix Tracker and Presence along the way.

Distributed state is a hard problem. Variations in time and network partitions
are just some of the challenges you’ll face when writing a distributed system.
Phoenix Tracker makes distributing a list of processes and metadata about
each process an easy endeavor. Tracker uses an advanced data structure to
distribute state across a cluster in an efficient and accurate way, which allows
us to know how many Channels are connected currently. This is a hard
problem to tackle properly, but Tracker handles it for us!

We’ll start this chapter by going over the plan for our admin dashboard. The
most important feature that we’ll implement in this chapter is the active shopper
list. This will show a store admin the number of connected shopping carts
and which shoes are most popular. We’ll also restrict access to the dashboard
so that only admins can access it. Of course, we’ll use Phoenix Channels and
Tracker to power our dashboard. We’ll compare the base Phoenix.Tracker module
to a version with additional features—Phoenix.Presence—before we start building
our dashboard.

After we cover what Tracker is, we’ll scaffold the admin dashboard, build a
Presence that can track carts, and then wire all of these pieces together in
an interface build for admins. We’ll do this all in a modest amount of code,
due to the powerful abstractions provided by Tracker and Presence. You’ll
then load test the dashboard using an Elixir application that simulates many
shoppers connected to Sneakers23.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s get started by looking at what we’re going to build.

Plan Your Admin Dashboard
Shoppers are able to use our store right now, but we don’t know how many
shoppers are online, what they have in their cart, or where they are in the
checkout process. With this information, we will be able to know how well a
launch is performing—maybe the demand is more or less than expected and
the launch needs to be adjusted.

In this chapter, we’ll build a dashboard for Sneaker23 admins that provides
live store analytics. Our dashboard will have the following features:

• Show the count of unique shoppers.
• Show the count of shoppers based on the page they’re on.
• Show the count of shoes that are in an active cart, by size.
• Restrict access to admins only.

We’ll start, in this section, with a plan for how we’ll go about building our
admin dashboard. Let’s jump in.

Turn Requirements into a Plan
We’ll use the access restriction techniques covered in Chapter 4, Restrict
Socket and Channel Access, on page 53 to restrict access to our dashboard.
Our admin dashboard needs a higher level of restriction than the previous
chapters’ features, so we will create a dedicated Socket for it. The following
figure shows our Socket and Channel structure:

Adm in.SocketAdm in Client Adm in.DashboardChannel
2. Connect with Token

Adm in.DashboardCont roller

- Authent icate with BasicAuth
- Sign Token

1. Load Dashboard View

The Admin.DashboardController is in charge of authentication and Phoenix.Token
creation. We will use HTTP basic authentication for our project, but a real-
world application could easily use a different type of authentication. The client
will use its provided token to connect to the Admin.Socket. The Admin.Socket only
allows admins to connect, so we do not need to add topic authorization to the
Admin.DashboardChannel.

Chapter 10. Track Connected Carts with Presence • 192

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The other requirements will prove more complex to build. We’ll leverage a
Tracker to know how many shopping carts are connected. Each ShoppingCartChan-
nel will track itself in the CartTracker when the Channel connects, and this data
will be read by the Admin.DashboardChannel to build the user interface. The
tracker setup will look like the following figure:

Shopper Client ShoppingCartChannel CartTracker

CartTracker
per server

m ult iple servers

Adm in Client

updates

We’ll cover what Phoenix Tracker is and how it keeps data in sync across a
cluster. Before we can do that, you will need to set up your project so that
you can easily add this chapter’s features to it.

Set Up Your Project
If you’ve been following along in part II, you have a shopping cart in your
Sneakers23 application that satisfies the acceptance tests from the last
chapter. For this chapter, you can either start with a completely fresh appli-
cation base, or you can use your existing project. Choose the next section
based on what you’d like to do.

Set Up a Clean Project

Make sure that you have a copy of this book’s code, using the instructions
found in Online Resources, on page xiii. Next, copy the base application into
a development location.

$ cp -R code/location/sneakers_23_admin_base ~/sneakers_23_admin
$ cd ~/sneakers_23_admin
$ git init && git add . && git commit -m "initial commit (from base)"
$ mix deps.get && mix ecto.setup && npm --prefix assets install

If you don’t have the hello_sockets project, copy the following folder for the
Tracker example that we will write shortly.

report erratum • discuss

Plan Your Admin Dashboard • 193

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

$ cp -R code/location/hello_sockets_without_tracker ~/hello_sockets
$ cd ~/hello_sockets
$ mix deps.get && npm --prefix assets install

At this point, you have a clean codebase ready for this chapter’s admin
dashboard. You can skip to the next major heading now—we’ll go over what
Phoenix Tracker is.

Set Up Your Existing Project

If you want to use your existing repo, you simply need to copy a few files
in—these files would be tedious to type otherwise.

$ cp code/location/sneakers_23_admin_base/assets/css/admin.css \
your_project/assets/css/admin.css

$ cp code/location/sneakers_23_admin_base/assets/js/admin/dom.js \
your_project/assets/js/admin/dom.js

$ cp code/location/sneakers_23_admin_base/index.html.eex \
your_project/index.html.eex

You’re now ready to build this chapter’s admin dashboard. Before we do that,
let’s go over what Phoenix Tracker is.

On Track with Phoenix Tracker
Phoenix Tracker solves the problem of tracking processes and metadata about
those processes across a cluster of servers. This sounds like an easy problem,
but it’s challenging due to the types of conflicts that occur when replicating
information between servers. We’ll use Tracker in our application to track
each connected ShoppingCartChannel process, along with metadata for each cart.
Before we add Tracker to our application, let’s go over what it is and how to
use it.

Tracker uses a special type of data structure to replicate its information across
a cluster. We’ll go over this data structure and look at what guarantees it
provides. We’ll then cover different use cases for Tracker. Finally, we’ll set up
a basic Tracker to demo how it works.

Let’s get started by looking at how Tracker works.

Phoenix Tracker’s Design
Phoenix Tracker maintains accurate and timely presence lists across a cluster
of servers. It does so without having a single authoritative source (like a
database)—each server contributes to the known state. Time is not our friend
when it comes to distributed state, and it makes this problem challenging. A

Chapter 10. Track Connected Carts with Presence • 194

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

first pass at this problem—dispatching changes to a set—would quickly run
into many edge cases. There would be conflicts in data, lost updates, and
inefficient performance. Phoenix Tracker uses a data structure called a con-
flict-free replicated data type (CRDT) to implement its state tracking.

A CRDT provides replicated state across multiple servers with independent
and concurrent updates to the underlying data—each data structure can be
updated without asking other copies for permission. There are many different
types, but Phoenix Tracker uses an ORSWOT (Observe-Remove-Set-Without-
Tombstones) to manage its state. It’s outside of this book to go over exactly
how the ORSWOT works, as it’s a fairly advanced data structure. The impor-
tant thing to know is that it’s designed to efficiently use memory and it handles
conflicts by preferring adds over removes. You don’t have to worry about the
implementation of the ORSWOT to use Tracker—it just works.

The OTP process structure of Tracker is more relevant to us. The following
figure shows the multi-shard process structure that Tracker uses:

Phoenix.Tracker

Tracker.Shard

Tracker.Shard

Tracker.Shard

Server Boundary

Tracker.Shard

Tracker.Shard

Tracker.Shard
deltas

deltas

deltas

Phoenix.Tracker

The Phoenix.Tracker module is a facade over a number of Tracker.Shard processes.
You invoke functions from the Phoenix.Tracker module, but the actual data is
provided by the underlying shard processes. This design removes a single
process bottleneck that can make Elixir systems sometimes perform poorly.
Tracker performs sharding based on the tracked topic string, so a single
topic with many tracked processes will still go through a single process
bottleneck.

Each Tracker.Shard process collects changes in its state and broadcasts the
changes over Phoenix PubSub to all other nodes in the cluster. The state
distribution broadcast has a configurable delay in it, less than two seconds,

report erratum • discuss

On Track with Phoenix Tracker • 195

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

that batches messages together. This makes Tracker eventually consis-
tent—writes will not immediately be reflected across the entire cluster.

Tracker is an advanced tool that gives us a small but powerful set of features.
Let’s look at a few ways that it can be used.

Phoenix Tracker in Our Dashboard
Tracker was built for a particular use case, but it can be of value for many
problems. Originally, Tracker was built to answer “who’s online?” in a chat
app. In this use case, each user’s Channel is tracked when they connect,
along with metadata such as their name and user ID. Each client that is lis-
tening to the chat room topic receives updates to the online status list in real-
time. Later in this chapter we’ll see how Presence, a special type of Tracker,
makes this particular problem easy to solve.

We’ll be using Tracker for a similar but slightly different use case. Each
ShoppingCartChannel will become tracked when it connects, and admins will be
able to access the data showing who is online. We’ll attach metadata to the
tracker to know what is in each of the shopping carts. The admin dashboard
will read and aggregate this information in real-time.

Tracker in a Pipeline

Not all use cases for Tracker are user facing—a great place to use Tracker is in a data
pipeline. A data pipeline that has a costly enrichment process, such as accessing a
database or third-party API, will end up doing work for users that aren’t online. We
can use Tracker to answer the question “is this user online?” before performing the
expensive enrichment operation. This is recommended only if your enrichment process
has a high cost, as there is a slight performance cost when you use Tracker.

Before we continue with the Sneakers23 application that we’ve been building
in Part II, we’re going to take a little detour to see how to use Tracker by
adding it to our sample application from Part I.

Use Tracker in an Application
The HelloSocket application from Part I serves as a reference project that provides
contained examples of how to use different Phoenix features. We’ll add our
Phoenix.Tracker code to this application, so that you have an example to revisit
if needed. We’ll continue with our Sneakers23 application shortly.

Chapter 10. Track Connected Carts with Presence • 196

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

If you have completed Part I of this book, then your hello_sockets project will
serve as the starting code for this Tracker project. If you do not have this
project, then you can find the hello_sockets_without_tracker folder in the code that
ships with this book. Follow the instructions in the “Set Up Your Project”
section from earlier in this chapter.

It’s easy to get started with Tracker in an application. We will first define a
module that implements the Phoenix.Tracker behaviour. This module hides the
Tracker function calls and provide a simple interface for our Channels to use.
We’ll then track our desired Channel processes when they join. Finally, we’ll
use the Phoenix.Tracker.list/2 function to get all of the tracked data.

We’ll revisit the HelloSockets application from Part I for this example. First,
create a new module at the path lib/hello_sockets_web/channels/user_tracker.ex.

hello_sockets/lib/hello_sockets_web/channels/user_tracker.ex
defmodule HelloSocketsWeb.UserTracker do

@behaviour Phoenix.Tracker

def child_spec(opts) do
%{

id: __MODULE__,
start: {__MODULE__, :start_link, [opts]},
type: :supervisor

}
end

def start_link(opts) do
opts =
opts
|> Keyword.put(:name, __MODULE__)
|> Keyword.put(:pubsub_server, HelloSockets.PubSub)

Phoenix.Tracker.start_link(__MODULE__, opts, opts)
end

def init(opts) do
server = Keyword.fetch!(opts, :pubsub_server)

{:ok, %{pubsub_server: server}}
end

end

This module is mostly boilerplate that can be reused in other projects. The
start_link/1 function sets up default options that are then passed into
Phoenix.Tracker.start_link/3. The Tracker process is then started—it supervises a
collection of Phoenix.Tracker.Shard processes. The init/1 function is called for each
Shard that is created. We must provide the pubsub_server key in the init/1 function,
or the Tracker will crash.

report erratum • discuss

Use Tracker in an Application • 197

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/user_tracker.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Tracker requires that a handle_diff/2 function is implemented. This is where you
perform logic based on the changes in state. Let’s implement a handle_diff/2
function that prints out the changes.

hello_sockets/lib/hello_sockets_web/channels/user_tracker.ex
require Logger

def handle_diff(changes, state) do
Logger.info inspect({"tracked changes", changes})
{:ok, state}

end

This will allow us to inspect the changes as Channels are joined and closed.
Next, we’ll define the public interface for our module. We’ll provide a way to
track a Channel, as well as a function to get the current Tracker state.

hello_sockets/lib/hello_sockets_web/channels/user_tracker.ex
def track(%{channel_pid: pid, topic: topic, assigns: %{user_id: user_id}}) do

metadata = %{
online_at: DateTime.utc_now(),
user_id: user_id

}

Phoenix.Tracker.track(__MODULE__, pid, topic, user_id, metadata)
end

def list(topic \\ "tracked") do
Phoenix.Tracker.list(__MODULE__, topic)

end

Phoenix.Tracker.track/5 is the most important call for our Tracker. This will take
a pid and track it for a given topic. Any metadata can be provided here, which
is useful for knowing who is connected and when they joined.

We need to add our UserTracker module to our application’s supervision tree.
Add it after the Endpoint.

hello_sockets/lib/hello_sockets/application.ex
HelloSocketsWeb.Endpoint,
{HelloSocketsWeb.UserTracker,

[pool_size: :erlang.system_info(:schedulers_online)]}

We pass in the pool_size option to our Tracker. Generally, you should set this
to the number of schedulers that you have available. This maximizes the
parallel throughput of your application. There are other configuration options1

available as well. It’s worth saying again: Tracker shards based on the topic,
so all changes for a single large topic will end up going through the same
Shard GenServer.

1. https://hexdocs.pm/phoenix_pubsub/Phoenix.Tracker.html#module-optional-pool_opts

Chapter 10. Track Connected Carts with Presence • 198

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/user_tracker.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/user_tracker.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets/application.ex
https://hexdocs.pm/phoenix_pubsub/Phoenix.Tracker.html#module-optional-pool_opts
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Next, we’ll create a new Channel for our demo. Let’s first add it to our existing
AuthSocket module.

hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
channel "ping", HelloSocketsWeb.PingChannel
channel "tracked", HelloSocketsWeb.TrackedChannel

Next, create the TrackedChannel module.

hello_sockets/lib/hello_sockets_web/channels/tracked_channel.ex
defmodule HelloSocketsWeb.TrackedChannel do

use Phoenix.Channel

alias HelloSocketsWeb.UserTracker

def join("tracked", _payload, socket) do
send(self(), :after_join)
{:ok, socket}

end

def handle_info(:after_join, socket) do
{:ok, _} = UserTracker.track(socket)
{:noreply, socket}

end
end

We invoke UserTracker.track/1 in a message after the Channel has connected.
This allows our Channel to quickly respond back to the client before tracking
itself.

In order to illustrate different user_id combinations, we’ll make our user ID
dynamic in the PageController. Create a function to handle the /tracked endpoint.

hello_sockets/lib/hello_sockets_web/controllers/page_controller.ex
def tracked(conn, params) do

fake_user_id = Map.get(params, "user_id", "1")

conn
|> assign(:auth_token, generate_auth_token(conn, fake_user_id))
|> assign(:user_id, fake_user_id)
|> render("index.html")

end

You also need to add the new route to your Router file.

hello_sockets/lib/hello_sockets_web/router.ex
get "/", PageController, :index
get "/tracked", PageController, :tracked➤

Our last step is to update our socket.js file with our new Channel. I recommend
temporarily commenting out all the existing content after export default socket,
so that your console remains clean for our demo.

report erratum • discuss

Use Tracker in an Application • 199

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/tracked_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/controllers/page_controller.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/router.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

hello_sockets/assets/js/socket.js
const trackedSocket = new Socket("/auth_socket", {

params: { token: window.authToken }
})

trackedSocket.connect()

const trackerChannel = trackedSocket.channel("tracked")
trackerChannel.join()

We’re ready to see our Tracker in action. Start two servers as follows.

$ iex --name app@127.0.0.1 -S mix phx.server
Do not run commands from the "app" server

$ iex --name backend@127.0.0.1 -S mix
iex(1)> Node.connect(:"app@127.0.0.1")
:ok

Next, load http://localhost:4000/tracked?user_id=1 and http://localhost:4000/tracked?user_id=other
in two different tabs. Run UserTracker.list/0 on both the app and back-end nodes
to see Tracker in action.

iex(1)> HelloSocketsWeb.UserTracker.list()
[

{"1",
%{

online_at: ~U[2019-10-14 01:26:54.061366Z],
phx_ref: "h/NBlMJyHw0=",
user_id: "1"

}},
{"other",
%{

online_at: ~U[2019-10-14 01:27:41.230174Z],
phx_ref: "eLJJLlfJvmQ=",
user_id: "other"

}}
]

The Tracker has distributed its state across the cluster. Try to create more tabs,
close the tabs, and turn servers on and off to observe what happens in each
of these scenarios. The end result is that Tracker will right itself in whatever
scenario that you throw at it, but it might take some time (up to 30 seconds)
depending on what you do. However, most changes will feel immediate.

You will also notice that the handle_diff/2 function was called on both the app
and back-end servers with a list of the changes—a map of topics with added
and removed lists. You can do whatever you want with the changes, but it is
important to remember that the handle_diff function is called on each node.

Chapter 10. Track Connected Carts with Presence • 200

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://localhost:4000/tracked?user_id=1
http://localhost:4000/tracked?user_id=other
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Presence is a type of Tracker that provides some additional useful features
for Channel-based applications. We’ll go over Presence and how it differs from
Tracker next.

Phoenix Tracker Versus Presence
Phoenix Presence is an implementation of Tracker that provides helper func-
tions for working with Channels. Its implementation of handle_diff/2 broadcasts
changes locally using PubSub when a process joins or leaves the Tracker.
Clients listen for change messages and process them to keep a client-side
version of the Tracker state. The official Phoenix JavaScript library includes
a Presence class that handles the messages automatically for us. The following
figure shows the flow of Presence updates:

Phoenix.Tracker

Tracker.Shard

Tracker.Shard

Tracker.Shard

Phoenix.Presence

Tracked
ChannelClient

changes

Tracked by

Broadcasts changes direct ly to local Channels
with sam e topic

Due to the similarity between the two libraries, it can be confusing to decide
which one to use. If you want to have every change broadcast to clients on a
given topic, then use Presence. If you want to be in control of how diffs are
handled, or if you don’t want to broadcast changes to clients, use Tracker.

For example, you would use Presence to maintain a user list that updates on
a client in real-time, but you would use Tracker if you are optimizing your
data pipeline based on whether clients are connected. If you find yourself
intercepting and discarding handle_out("presence_diff") in your Channel, then
Tracker is better for you.

Even if your clients are not processing Presence messages, you may be
sending data to them with Presence. You should always confirm that your
Presence implementation is working as expected to avoid sending data to an
incorrect client. You can do this by inspecting the WebSocket messages in

report erratum • discuss

Phoenix Tracker Versus Presence • 201

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

your browser’s developer tools and verifying that Presence updates are not
incorrectly sent to clients.

We’ll be using Presence in our admin dashboard because we want to update
the admins in real-time. We do not want shoppers to receive updates, though,
so we’ll be careful with the topic that our Presence tracks. Let’s start building
the foundation for the Sneakers23 admin dashboard.

Scaffold the Admin Dashboard
There are a lot of moving parts in setting up a brand new section of an
application. We’ll tackle this together so you can see how you’d go about it
in other projects. Our scaffolding will consist of these steps:

1. Define our new Router entries.
2. Setup an admin layout.
3. Create the Admin.DashboardController.
4. Create the Admin.Socket and Admin.DashboardChannel.
5. Create admin JS and CSS.

We’ll move quickly through these steps. Once this is done, we’ll have the right
foundation to build our admin dashboard.

Unit Tests for the Dashboard

You will find unit tests for most of the modules we create in the
sneakers_23_admin/test/ folder. For brevity, these tests are not included
in the book text.

We’ll start with our route definition. Our admin dashboard will be behind an
HTTP Basic Auth screen, and luckily there is a library to help with this. Add
the basic_auth library to your mix file.

sneakers_23_admin/mix.exs
{:hound, "~> 1.0"},
{:basic_auth, "~> 2.2.2"}

Run mix deps.get after you add it. Next, we’ll configure our local login to be
admin/password. Add this snippet to the end of your dev config file:

sneakers_23_admin/config/dev.exs
config :sneakers_23, admin_auth: [

username: "admin",
password: "password"

]

Chapter 10. Track Connected Carts with Presence • 202

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/mix.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/config/dev.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

You will enter these credentials when the HTTP Basic Auth screen appears.

Now we are ready to add our routes. We’ll create a new pipeline and scope
for our admin dashboard. Add these at the end of the Router module:

sneakers_23_admin/lib/sneakers_23_web/router.ex
pipeline :admin do

plug BasicAuth, use_config: {:sneakers_23, :admin_auth}
plug :put_layout, {Sneakers23Web.LayoutView, :admin}

end

scope "/admin", Sneakers23Web.Admin do
pipe_through [:browser, :admin]

get "/", DashboardController, :index
end

We could change our Router to not perform the CartIdPlug in the :browser pipeline,
but it won’t affect our final product to leave it as it is.

We just completed step 1 of our scaffold. Next, we’ll complete step 2 by adding
an admin layout. Rather than typing this file in, we’ll simply copy from the
existing app.html.eex file. You can type this on a single line.

$ cp lib/sneakers_23_web/templates/layout/app.html.eex \
lib/sneakers_23_web/templates/layout/admin.html.eex

Delete the block of code that checks if the cart_id is present. We don’t need
this in our admin dashboard because we won’t show admins a shopping cart.

Next, change "app.css" to "admin.css". Also, change "app.js" to "admin.js".

sneakers_23_admin/lib/sneakers_23_web/templates/layout/admin.html.eex
<link

rel="stylesheet"
href="<%= Routes.static_path(@conn, "/css/admin.css") %>" />

sneakers_23_admin/lib/sneakers_23_web/templates/layout/admin.html.eex
<script

type="text/javascript"
src="<%= Routes.static_path(@conn, "/js/admin.js") %>"></script>

This layout file will show a different shell for the admin dashboard, with dif-
ferent assets loaded. This will allow us to separate our user-facing code from
our admin-facing code, which helps reduce the risk of errors.

We’re ready to move onto the Admin.DashboardController. This will feel very familiar
to our past controllers because it’s a combination of the ProductController and
the HelloSocket PageController.

report erratum • discuss

Scaffold the Admin Dashboard • 203

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/router.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/templates/layout/admin.html.eex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/templates/layout/admin.html.eex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_admin/lib/sneakers_23_web/controllers/admin/dashboard_controller.ex
defmodule Sneakers23Web.Admin.DashboardController do

use Sneakers23Web, :controller

def index(conn, _params) do
{:ok, products} = Sneakers23.Inventory.get_complete_products()

conn
|> assign(:products, products)
|> assign(:admin_token, sign_admin_token(conn))
|> render("index.html")

end

defp sign_admin_token(conn) do
Phoenix.Token.sign(conn, "admin socket", "admin")

end
end

We’ve included the products so we can use them in our interface later. We
need to define the template for this controller. Add the following shell of a
template—we’ll fill it out soon.

sneakers_23_admin/lib/sneakers_23_web/templates/admin/dashboard/index.html.eex
<div class="admin-container">

<h1>Admin Dashboard</h1>
</div>

<script type="text/javascript">
window.adminToken = "<%= @admin_token %>"

</script>

Each template needs a View to be rendered with. We’ll create an empty view
for this.

sneakers_23_admin/lib/sneakers_23_web/views/admin/dashboard_view.ex
defmodule Sneakers23Web.Admin.DashboardView do

use Sneakers23Web, :view
end

Start your server with mix phx.server and visit http://localhost:4000/admin to verify
that the endpoint loads. You’ll need to enter admin/password when prompted.

We can now set up our Socket, so that we can use Presence. We’ll start by
adding a socket definition in our Endpoint module. Add this after the existing
/product_socket definition.

sneakers_23_admin/lib/sneakers_23_web/endpoint.ex
socket "/admin_socket", Sneakers23Web.Admin.Socket,

websocket: true,
longpoll: false

Chapter 10. Track Connected Carts with Presence • 204

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/controllers/admin/dashboard_controller.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/templates/admin/dashboard/index.html.eex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/views/admin/dashboard_view.ex
http://localhost:4000/admin
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/endpoint.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Our Admin.Socket is going to mirror the AuthSocket that we wrote in Part I. Nothing
is new here—we’re defining a Socket that validates a token upon connection.

sneakers_23_admin/lib/sneakers_23_web/channels/admin/socket.ex
defmodule Sneakers23Web.Admin.Socket do

use Phoenix.Socket
require Logger

Channels
channel "admin:cart_tracker", Sneakers23Web.Admin.DashboardChannel

def connect(%{"token" => token}, socket) do
case verify(socket, token) do
{:ok, _} ->

{:ok, socket}

{:error, err} ->
Logger.error("#{__MODULE__} connect error #{inspect(err)}")
:error

end
end

def connect(_, _) do
Logger.error("#{__MODULE__} connect error missing params")
:error

end

def id(_socket), do: nil

@one_day 86400

defp verify(socket, token),
do:
Phoenix.Token.verify(

socket,
"admin socket",
token,
max_age: @one_day

)
end

The "admin:cart_tracker" topic is very important. We’ll use this topic in the next
section when we configure our Phoenix Presence module.

We’ll use a basic Admin.DashboardChannel for now. Let’s set that up next.

sneakers_23_admin/lib/sneakers_23_web/channels/admin/dashboard_channel.ex
defmodule Sneakers23Web.Admin.DashboardChannel do

use Phoenix.Channel

def join("admin:cart_tracker", _payload, socket) do
{:ok, socket}

end
end

report erratum • discuss

Scaffold the Admin Dashboard • 205

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/channels/admin/socket.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/channels/admin/dashboard_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Our final step is to configure our admin JavaScript and CSS files. We could
tie this into the existing app.js file, but it’s better to keep these files separated.
In order to get multiple files, we’ll need to modify our webpack.config.js file, which
is something we haven’t yet covered. Make the following changes to the file
but keep everything else in the file as it is.

sneakers_23_admin/assets/webpack.config.js
entry: {

'./app': glob.sync('./vendor/**/*.js').concat(['./js/app.js']),
'./admin': glob.sync('./vendor/**/*.js').concat(['./js/admin.js'])

},
output: {

filename: '[name].js',
path: path.resolve(__dirname, '../priv/static/js')

},
plugins: [

new MiniCssExtractPlugin({ filename: '../css/[name].css' }),
new CopyWebpackPlugin([{ from: 'static/', to: '../' }])

]

These changes create multiple entry points—admin and app—that output
JavaScript and CSS files. This provides us with the separation between the
two scripts. Let’s create the admin.js file now.

sneakers_23_admin/assets/js/admin.js
import { Presence } from 'phoenix'
import adminCss from '../css/admin.css'
import css from "../css/app.css"
import { adminSocket } from "./admin/socket"
import dom from './admin/dom'

adminSocket.connect()

const cartTracker = adminSocket.channel("admin:cart_tracker")
const presence = new Presence(cartTracker)
window.presence = presence // This is a helper for us

cartTracker.join().receive("error", () => {
console.error("Channel join failed")

})

This loads in the adminSocket and connects to it. The Presence wrapper isn’t doing
anything yet, but we’ll be using it in the next section. Our final step is to
define the admin/socket.js file.

sneakers_23_admin/assets/js/admin/socket.js
import { Socket } from "phoenix"

export const adminSocket = new Socket("/admin_socket", {
params: { token: window.adminToken }

})

Chapter 10. Track Connected Carts with Presence • 206

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/assets/webpack.config.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/assets/js/admin.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/assets/js/admin/socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

That completes the final step of our scaffolding. You can test that everything
works by starting your server with mix phx.server and loading http://localhost:4000/
admin. If you previously entered a password, you won’t need to again. Use your
browser’s Dev Tools to verify that /admin_socket/websocket is running and that
the "admin:cart_tracker" topic has been joined.

We’re finally ready to use Phoenix Presence to implement our CartTracker. Let’s
jump in.

Track Shopping Carts in Real-Time
We’ll use Presence to track each ShoppingCartChannel and the shopper’s cart item
IDs. Each change to a cart will dispatch an update to the CartTracker, and the
admin client will automatically receive the changes. Our process for this task
will break down into these steps:

1. Create a CartTracker module using Phoenix.Presence.
2. Connect ShoppingCartChannel to the CartTracker.
3. Send cart updates to the CartTracker.
4. Configure admin.js to receive Presence updates.
5. Aggregate and display the information in the dashboard.

First, create the CartTracker module under the sneakers_23_web/channels directory.

sneakers_23_admin/lib/sneakers_23_web/channels/cart_tracker.ex
defmodule Sneakers23Web.CartTracker do

use Phoenix.Presence, otp_app: :sneakers_23,
pubsub_server: Sneakers23.PubSub

end

We get all the functions that Presence provides when we use Phoenix.Presence.
This gives us a fairly wide-open public interface. We’ll create a smaller interface
that is specifically for our application. Let’s start with the most important
function of our Tracker, the ability to track a cart. Add each of the following
functions to the end of the CartTracker module.

sneakers_23_admin/lib/sneakers_23_web/channels/cart_tracker.ex
@topic "admin:cart_tracker"

def track_cart(socket, %{cart: cart, id: id, page: page}) do
track(socket.channel_pid, @topic, id, %{

page_loaded_at: System.system_time(:millisecond),
page: page,
items: Sneakers23.Checkout.cart_item_ids(cart)

})
end

report erratum • discuss

Track Shopping Carts in Real-Time • 207

http://localhost:4000/admin
http://localhost:4000/admin
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/channels/cart_tracker.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/channels/cart_tracker.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We use track/4, which allows us to specify the topic that we’re going to track
on. It’s important that this topic is different than the ShoppingCartChannel topics,
because we don’t want our shoppers to get Presence updates. The metadata
that is passed into track/4 gives our admin dashboard the information that it
needs.

If we track a cart’s items, we need to make sure that the metadata stays up
to date as the cart changes. Presence provides an update/4 function for this
purpose. Add the update_cart/2 function now.

sneakers_23_admin/lib/sneakers_23_web/channels/cart_tracker.ex
def update_cart(socket, %{cart: cart, id: id}) do

update(socket.channel_pid, @topic, id, fn existing_meta ->
Map.put(existing_meta, :items, Sneakers23.Checkout.cart_item_ids(cart))

end)
end

The final argument of update/4 can take either a map of metadata, or a function
that returns the new metadata. The function form is useful to us, because
we only want to change the items in the cart.

The next function we’ll add returns all data currently tracked.

sneakers_23_admin/lib/sneakers_23_web/channels/cart_tracker.ex
def all_carts(), do: list(@topic)

This is a basic proxy function, but it gives us the ability to change how the
cart is stored if needed. The list/1 function is provided to CartTracker by
Phoenix.Presence.

That wraps up our CartTracker—I still get surprised at how little code is needed.
In order to use CartTracker, we need to start the Presence process when our
application boots. Put the definition for CartTracker after the existing Endpoint
definition in the Application.

sneakers_23_admin/lib/sneakers_23/application.ex
Sneakers23Web.Endpoint,
{Sneakers23Web.CartTracker,

[pool_size: :erlang.system_info(:schedulers_online)]},

In most applications, it’s important to pass the pool_size argument. If you don’t,
then a single Tracker shard will be used for all Tracker changes. Sharding won’t
impact our application, because we’re using a single large topic.

We’re ready to use our CartTracker in the ShoppingCartChannel. We will need to track
the Channel when it joins, and then update using update_cart/2 when the cart
changes. We’ll track the Channel in an :after_join message.

Chapter 10. Track Connected Carts with Presence • 208

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/channels/cart_tracker.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/channels/cart_tracker.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23/application.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_admin/lib/sneakers_23_web/channels/shopping_cart_channel.ex
def join("cart:" <> id, params, socket) when byte_size(id) == 64 do

cart = get_cart(params)
socket = assign(socket, :cart, cart)
send(self(), :send_cart)
enqueue_cart_subscriptions(cart)

socket = socket➤

|> assign(:cart_id, id)➤

|> assign(:page, Map.get(params, "page", nil))➤
➤

send(self(), :after_join)➤

{:ok, socket}
end

def handle_info(:after_join, socket = %{
assigns: %{cart: cart, cart_id: id, page: page}

}) do
{:ok, _} = Sneakers23Web.CartTracker.track_cart(

socket, %{cart: cart, id: id, page: page}
)
{:noreply, socket}

end

We’ll hook into two different functions to update the tracked cart: when the
Channel broadcasts its cart, and when it receives a broadcast that the cart
contents have changed. Add the highlighted send/2 function calls in the existing
ShoppingCartChannel functions.

sneakers_23_admin/lib/sneakers_23_web/channels/shopping_cart_channel.ex
def handle_info(:update_tracked_cart, socket = %{

assigns: %{cart: cart, cart_id: id}
}) do

{:ok, _} = Sneakers23Web.CartTracker.update_cart(
socket, %{cart: cart, id: id}

)
{:noreply, socket}

end

def handle_out("cart_updated", params, socket) do
modify_subscriptions(params)
cart = get_cart(params)
socket = assign(socket, :cart, cart)
push(socket, "cart", cart_to_map(cart))
send(self(), :update_tracked_cart)➤

{:noreply, socket}
end

defp broadcast_cart(cart, socket, opts) do
send(self(), :update_tracked_cart)➤

{:ok, serialized} = Checkout.export_cart(cart)

report erratum • discuss

Track Shopping Carts in Real-Time • 209

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/channels/shopping_cart_channel.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

broadcast_from(socket, "cart_updated", %{
"serialized" => serialized,
"added" => Keyword.get(opts, :added, []),
"removed" => Keyword.get(opts, :removed, [])

})
end

Presence works by sending an initial state to a client and keeping that state
up to date by pushing changes. We need to send the initial state ourselves
in the Admin.DashboardChannel. Add the following after_join message to the existing
join function.

sneakers_23_admin/lib/sneakers_23_web/channels/admin/dashboard_channel.ex
def join("admin:cart_tracker", _payload, socket) do

send(self(), :after_join)
{:ok, socket}

end

def handle_info(:after_join, socket) do
push(socket, "presence_state", Sneakers23Web.CartTracker.all_carts())
{:noreply, socket}

end

The "presence_state" message is automatically picked up by the Presence class on
the front end, which causes the initial state to be set.

One of our requirements is to know how many users are on each page of the
site. We can get this by tracking the pathname when the productChannel is joined.
Our cart.js file has the params extracted in a helper function, so this is a quick
change.

sneakers_23_admin/assets/js/cart.js
function channelParams() {

return {
serialized: localStorage.storedCart,
page: window.location.pathname➤

}
}

Let’s do a quick test of our Presence integration before we assemble all of the
pieces for our admin dashboard.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server
iex(1)> Enum.each([1, 2], &Sneakers23.Inventory.mark_product_released!/1)
:ok

Open two browser tabs to http://localhost:4000 and another tab to http://localhost:4000/
admin, which requires admin/password to login. If your browser has an
“incognito” mode, open a tab using it to http://localhost:4000—this will simulate

Chapter 10. Track Connected Carts with Presence • 210

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/lib/sneakers_23_web/channels/admin/dashboard_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/assets/js/cart.js
http://localhost:4000
http://localhost:4000/admin
http://localhost:4000/admin
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

multiple shopping carts with different cookies. Add and remove several items
to each cart. Visit the checkout page from one of these tabs as well.

Without closing the tabs, go to the admin dashboard and open your JavaScript
console. Enter window.presence.state and look at the output. You will see the up-
to-date Presence data, complete with all our important metadata. The Presence
state looks like this:

Close the tabs to see the Presence state update immediately. We’ll leverage
the real-time updating of the Presence and Tracker when we assemble our
dashboard.

Assemble the Admin Dashboard
At this point in the project, our CartTracker is working from end-to-end. The
Presence updates are flowing through our application and making their way
to the admin dashboard. The final step in this chapter is to piece together
the Presence state into a format that completes our requirements.

report erratum • discuss

Assemble the Admin Dashboard • 211

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

In order to make a visually appealing dashboard, we need to do some work
with our CSS and HTML. You grabbed the admin.css file earlier in the setup
instructions, but there’s a few more files you will need to copy from the book’s
source code. If you don’t have the source code, instructions can be found in
Online Resources, on page xiii. Copy the completed index template, like so:

$ cp ./index.html.eex \
lib/sneakers_23_web/templates/admin/dashboard/index.html.eex

To check that everything is set up correctly, start your server with mix
phx.server and visit http://localhost:4000/admin. You will see a page that looks like
the following image.

The first feature that we’ll tackle is the shopper count. In our Presence state,
we have a list of cart ID to metadata mappings. A cart ID represents a unique
shopper, so we only need to count the size of the presence.state. The dom.js file
that you imported previously has a function that will update the DOM correctly
based on the count. Add the following snippet to the end of admin.js.

sneakers_23_admin/assets/js/admin.js
presence.onSync(() => {

dom.setShopperCount(getShopperCount(presence))
})

function getShopperCount(presence) {
return Object.keys(presence.state).length

}

The next feature we’ll tackle is the list of page counts. This is more advanced
because we’ll need to parse through the Presence metadata. Each tab that a

Chapter 10. Track Connected Carts with Presence • 212

report erratum • discuss

http://localhost:4000/admin
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/assets/js/admin.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

shopper has loaded increases the page count, so a single shopper could be
shown on two pages at the same time.

sneakers_23_admin/assets/js/admin.js
presence.onSync(() => {

dom.setShopperCount(getShopperCount(presence))
dom.assemblePageCounts(getPageCounts(presence))

})

function getPageCounts(presence) {
const pageCounts = {}
Object.values(presence.state).forEach(({ metas }) => {

metas.forEach(({ page }) => {
pageCounts[page] = pageCounts[page] || 0
pageCounts[page] += 1

})
})
return pageCounts

}

In this snippet, we iterate over the presence.state values to get all of the metadata
for our carts. We extract the page out of each and increment a counter. The
dom.js file has a function that will turn this into a list for the user interface.

The final feature of our dashboard is to update the count of each shoe in a
cart. The "items" property of the Presence metadata has this information. We
only need to worry about the first metadata for each shopper, because a
shopper’s cart synchronizes across tabs.

sneakers_23_admin/assets/js/admin.js
presence.onSync(() => {

dom.setShopperCount(getShopperCount(presence))
dom.assemblePageCounts(getPageCounts(presence))

const itemCounts = getItemCounts(presence)
dom.resetItemCounts()
Object.keys(itemCounts).forEach((itemId) => {

dom.setItemCount(itemId, itemCounts[itemId])
})

})

function getItemCounts(presence) {
const itemCounts = {}
Object.values(presence.state).forEach(({ metas }) => {

metas[0].items.forEach((itemId) => {
itemCounts[itemId] = itemCounts[itemId] || 0
itemCounts[itemId] += 1

})
})
return itemCounts

}

report erratum • discuss

Assemble the Admin Dashboard • 213

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/assets/js/admin.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_admin/assets/js/admin.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Our interface will now properly display all three sections and will update in
real-time. The only thing left to do is test to make sure it works. We won’t
walk through a full acceptance test for our dashboard, but we’ll still throw a
scenario at it. Follow the same steps, repeated below, as you did at the end
of the previous section.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server
iex(1)> Enum.each([1, 2], &Sneakers23.Inventory.mark_product_released!/1)
:ok

Open two browser tabs to http://localhost:4000 and another tab to http://localhost:4000/
admin. If your browser has an “incognito” mode, open a tab there to http://local-
host:4000—this will simulate multiple shopping carts with different cookies.
Add and remove several items to each cart. Visit the checkout page from one
of these tabs as well.

Watch the admin dashboard as you navigate between pages, add shoes,
remove shoes, or close tabs. The interface will update in real-time for all of
the different actions you take. You can even try tests with multiple servers
running like we performed in previous chapters.

Our final task is a small load test against the admin dashboard.

Load Test the Admin Dashboard
Our admin dashboard seems like it will work well for us, but we’ve only tested
it with two shoppers connected. We need to test it with many more connected
clients in order to know if it will work properly when a launch happens. This
would be an impossible task to do ourselves. However, we can use Elixir to
help us out.

A load test is a type of test where you send many connections, messages, or
whatever else you want to test to your back-end server. You can write these
tests in any language, but we’ll use Elixir for our tests. The basic flow of our
load test will be to open many ProductSocket connections and then join a unique
CartChannel. We’ll leverage Elixir’s process model to spawn many instances of
a Shopper process that performs these steps.

We won’t walk through the entire load test application, although you should
feel free to read and modify it. Make sure that you have the code that distributes
with this book and then copy the project using the following commands.

$ cp -R code/location/sneaker_admin_bench ~/sneaker_admin_bench
$ cd ~/sneaker_admin_bench
$ mix deps.get

Chapter 10. Track Connected Carts with Presence • 214

report erratum • discuss

http://localhost:4000
http://localhost:4000/admin
http://localhost:4000/admin
http://localhost:4000
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The load testing application uses the open-source PhoenixClient2 library to con-
nect to our Socket and Channel. This library mimics the Phoenix.Socket and
Phoenix.Channel APIs to provide a simple way to connect to Channels and then
exchange data with them.

Take a look at the following code, extracted from the SneakerAdminBench.Shopper
module. You don’t need to enter it anywhere, since this code was provided
when you copied the sneaker_admin_bench source code. The purpose of this code
is to demonstrate how easy PhoenixClient is to use. You can use it to build load-
testing applications completely in Elixir, or to consume your Phoenix Channel
applications from other Elixir applications.

sneaker_admin_bench/lib/sneaker_admin_bench/shopper.ex
def handle_continue([], state) do

{:ok, socket} = PhoenixClient.Socket.start_link(@socket_opts)
send(self(), :connect_channel)
{:noreply, Map.put(state, :socket, socket)}

end

PhoenixClient.Socket.start_link/1 opens a WebSocket to the Sneakers23 ProductSocket.
Once the WebSocket connects, we can join the Channel.

sneaker_admin_bench/lib/sneaker_admin_bench/shopper.ex
{:ok, _response, channel} = PhoenixClient.Channel.join(

socket,
"cart:#{generate_cart_id()}",
%{page: "/bench/#{:rand.uniform(4)}"}

)

state = Map.put(state, :channel, channel)

{:ok, _message} = PhoenixClient.Channel.push(
channel, "add_item", %{item_id: random_item_id()}

)

PhoenixClient.Channel.join/3 joins the ShoppingCartChannel and returns when the join
is successful. We then add a random item to the connected cart with Phoenix-
Client.Channel.push/3. This load test is a happy-path test—we’re not performing
any error handling or recovery in it.

Let’s use the load-testing application now. Start the Sneakers23 admin applica-
tion from the main project folder.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server
iex(1)> Enum.each([1, 2], &Sneakers23.Inventory.mark_product_released!/1)
:ok

2. https://github.com/mobileoverlord/phoenix_client

report erratum • discuss

Load Test the Admin Dashboard • 215

http://media.pragprog.com/titles/sbsockets/code/sneaker_admin_bench/lib/sneaker_admin_bench/shopper.ex
http://media.pragprog.com/titles/sbsockets/code/sneaker_admin_bench/lib/sneaker_admin_bench/shopper.ex
https://github.com/mobileoverlord/phoenix_client
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Open the admin dashboard at http://localhost:4000/admin. Next, open an iex session
in the sneaker_admin_bench folder and run the start_connections/0 function.

$ cd ~/sneaker_admin_bench
$ iex -S mix
iex(1)> SneakerAdminBench.start_connections()

You will see the dashboard update immediately. You will end up with 1000
active connections that are equally distributed on all of the different shoes.
Your dashboard will look something like the following.

Feel free to play around with more or fewer connections to see what happens.
My computer does act flaky at a certain point, around 6000 connections, but
that is due to the operating system’s connection handling and is not related
to the application itself.

Wrapping Up
Phoenix Tracker takes a hard problem—distributed process state—and makes
it easy for you. Tracker uses a conflict-free replicated data type to provide
correct distributed state that is eventually consistent. Tracker is commonly
used to maintain real-time user presence lists, or to optimize a data pipeline
that pushes data to users.

Phoenix Presence is a special type of Tracker that is optimized for Channel
use cases. It provides a convenient set of functions on top of Tracker, but
more importantly it dispatches Presence changes to a particular topic. Pres-
ence, combined with its JavaScript client, allows us to quickly build real-time
lists in our user interface.

Chapter 10. Track Connected Carts with Presence • 216

report erratum • discuss

http://localhost:4000/admin
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We used Presence to build an admin dashboard for Sneakers23. You set up
a new section of an application from start to end, and then used Presence to
create a shopping cart tracker. The CartTracker we built allows us to answer
questions like “how many shoppers are online?” and “how many of each shoe
are in a cart?” You used a load-testing tool to verify that the admin dashboard
works with many shoppers connected, which provides confidence for a launch.

This wraps up Part II of this book. Next up, in Part III, we’ll be looking at how
to deploy Channel-based applications and what type of challenges can occur
in production.

report erratum • discuss

Wrapping Up • 217

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Part III

Bringing Real-Time Applications
to Production

We’ve written an application, but the fun is only
beginning. We’ll go over different tools for deploying
Elixir applications and the specific challenges that
real-time applications face.

CHAPTER 11

Deploy Your Application to Production
In part II, we built a complete real-time application using Phoenix Channels.
Throughout the development process, we used many of the tools that we
covered in part I. In part III, we’ll discuss the deployment and observability
of real-time apps in production. We’ll first cover the current landscape of
Elixir application deployment and the specific challenges that real-time
applications will encounter.

Your (or your company’s) specific needs will dictate how you deploy and run
your application—there isn’t a silver bullet for all situations. Deployment
techniques also change over time as new libraries, tools, and platforms emerge.
This chapter is not a guide to deploying Elixir applications, and we won’t code
a deployment in it. Instead, you’ll receive an overview of current deployment
options before we cover more specific real-time problems: load balancing
WebSockets, deployment strategies, and BEAM Node clustering options.

Deployment can be daunting—there’s a lot of things to consider when you
first set up an application. However, you’ll gain a reusable set of deployment
strategies after you complete your first real-world deployment. It may be
frustrating at first, but the reward of a running application is worth it.

We’ll start this chapter with today’s lay of the land for deploying Elixir appli-
cations. We’ll cover topics such as Mix releases versus Distillery and what
services can run your application. After that, we’ll discuss load balancing
WebSockets and the challenges that happen with persistent connections
during deployment. Finally, you’ll see what tools can help you cluster your
production BEAM nodes together.

Let’s start with the current landscape for deploying Elixir applications.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The Lay of the Land
Deploying an app for the first time is a great feeling—it’s one of the final steps
to bringing your application to users. However, it’s also daunting. There are
many different techniques, platforms, and technologies to deploy with, so
you’ll need to find what works for you and then implement it. Much of this
may already be decided for you based on your company’s decisions, but you
may be in a position of greenfield development, with many available options.

The two common ways to run an Elixir application are directly with Mix or
with releases. We’ll cover each of these options so you can decide what is best
for you. Releases are produced with one of two tools—Mix or Distillery. We’ll
go over each before covering some of the available platform options you can
use to deploy your app.

We’ll start with different ways to run and package your application.

Mix, Releases, Distillery, Oh My!
You have already used one of the ways to run an application many times
throughout this book. You used mix phx.server to start a local web server for
the examples in this book, and you can use this command when running
your application in production. This is the simplest way to get an application
running in production, but you will be missing out on a few features that
releases provide. If you want to go this route, Adopting Elixir [Tat18] has
detailed steps on how to use mix to run your application.

An alternative to using the mix command is to package your application into
a release. There are two tools to do this in Elixir: Mix Release1 and Distillery.2

If you’re starting with a new project, then you will likely get all the features
you need from Mix Release. It was designed with a similar approach to Dis-
tillery, and the setup is close enough to be swapped out if needed. Distillery
has been around longer and has some additional features that Mix does not
have, but you may not need them.

The Elixir community has rallied around releases for deployment, so you
should use releases to deploy your applications unless you have a reason not
to. There are several benefits that releases provide that you do not get for free
with mix phx.server or mix run. A few of the benefits are:

1. https://hexdocs.pm/mix/Mix.Tasks.Release.html
2. https://github.com/bitwalker/distillery

Chapter 11. Deploy Your Application to Production • 222

report erratum • discuss

https://hexdocs.pm/mix/Mix.Tasks.Release.html
https://github.com/bitwalker/distillery
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Self-contained packages
Your application can be bundled with the BEAM and Erlang Run-Time
System, so you do not need any special software installed on your
deployment machine. You also ship compiled files as your application,
instead of raw source code.

Management scripts
You get a set of scripts, for free, that allow you to do things such as con-
nect an interactive session to the running server, execute remote calls,
and run your application as a daemon.

Start-up customization
You can easily customize how the BEAM starts up. This allows you to set
flags that control how the BEAM behaves. We’ll cover a flag in the next
chapter that changes how garbage collection works.

Code preloading
It’s very important that a server can quickly serve its traffic. Releases load
all code at the time of start up to decrease initial latency—this is called
embedded mode. If you don’t use a release, modules will be loaded the
first time that they’re used.

You get all of these benefits with both Mix Release and Distillery, so you can
use either one. Some of these features, such as management scripts, are
critical for operating production applications. You’ll see an example of
inspecting an application via the shell in the next chapter, which is extremely
useful when you debug a running application in production. We won’t cover
how to set up a release in this chapter, because both tools have thorough
documentation available online.

No matter how you decide to package your application, you’ll need a place to
run it. We’ll cover popular options next.

Platforms and Tools for Deployment
There are many different options for where you can run your application, and
what tools you use to run it. There are dedicated Platform as a service (PaaS)
products that will manage everything for you. You can also use virtual private
servers if you want to manage the operating system and application yourself.
Either approach will work great for Elixir applications and is largely a matter
of preference and system administration experience.

Many cloud providers support Elixir applications—most of them will work
without much trouble. However, there are a few things to look out for when

report erratum • discuss

The Lay of the Land • 223

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

How I Deploy Applications at Work

At SalesLoft, we’ve been running Elixir applications roughly the same way for the
past couple of years—so you could say that we’re happy with our approach. We use
Kubernetesa to run all of our various applications. We use Docker to build and run
each application. Our Dockerfile uses Distillery to create a release of our application,
then uses Docker’s multi-stage build pipeline to create a clean Docker image contain-
ing just an operating system and the compiled release.

Our applications are able to start up quickly because they are already compiled and
ready to go. We also get the benefit of being able to start a remote interactive shell to
any running pod—an instance of an application in Kubernetes—so we can easily
troubleshoot problems that occur.

Tools like Docker and Kubernetes are not replacements for the BEAM, or vice ver-
sa—they exist in a way that compliments one another. You don’t have to use these
tools to deploy your applications, but you can build a solid foundation with them.

a. https://kubernetes.io

deploying real-time Elixir apps. It is important that the provider supports
many concurrent connections to your application. WebSockets are long-lived
connections, and some providers do not support a large number at the same
time. The second thing to look out for is whether the provider supports BEAM
clustering, which we’ll cover later in this chapter.

There are two prominent PaaS used in the Elixir community that support
these needs: Gigalixir3 and Render.4 I don’t hold a preference of one over the
other and have seen good reviews from users of each. Both platforms have
thorough documentation on how to deploy an Elixir application, as well as
how to do tasks like configure BEAM clustering. The availability of documen-
tation is important when you set up your first deployment.

Elixir applications can also be deployed to virtual private servers or bare-
metal servers. These options are great if you’re looking to keep monetary costs
low, and if you have the experience to set up and manage this type of server.
The time that you or your teammates will spend on system administration
should be considered when going down this route.

Your deployment choices are important for your application, but deployment
isn’t the most important topic in this chapter. We’ll cover load balancing your
WebSocket connections next.

3. https://gigalixir.com/
4. https://render.com/

Chapter 11. Deploy Your Application to Production • 224

report erratum • discuss

https://kubernetes.io
https://gigalixir.com/
https://render.com/
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Achieve Scalability with Load Balancing
You should always load balance your production application with at least two
servers available to serve requests, so your application can stay online when
a server restarts. At its simplest, load balancing is the act of making sure
that all servers receive roughly the same number of requests over a given
time period. A well-balanced application will be less likely to develop hot nodes
that have stressed resource usage compared to other nodes. You can also
add new servers to a well-balanced application to help reduce the load on all
other servers in the cluster.

We’ll discuss the basics of load balancing before looking at how WebSockets
can make achieving a well-balanced system more difficult than a traditional
HTTP-powered application.

The Basics of Load Balancing
A load balancer is specialized software that acts as a proxy between a client
and servers that respond to requests. Requests are sent fairly to back-end
servers in round-robin, least connections, or based on the criteria that you
define. Load balancers provide many benefits such as the ability to quickly
add or remove back-end servers, create fair distribution of work, and increase
redundancy.

Here’s an example of a load that is not properly balanced. The top application
server has received many more requests than the other servers in the application.

Applicat ion Instance

Applicat ion Instance

Applicat ion Instance

50

15

1

Incom ing Requests

Request
Count

In a well-balanced application, each server in this figure would have roughly
22 requests. A better balance allows for a more predictable usage of system
resources.

report erratum • discuss

Achieve Scalability with Load Balancing • 225

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

As with all software, there are free open-source and commercial closed-source
load balancers you can use with your application. Most cloud service providers,
such as Amazon Web Services, Google Cloud, and Digital Ocean, provide their
own load balancers that work out-of-the-box. You may also opt for an open-
source load balancer such as HAProxy5 or nginx.6

You will need to pick a load balancer that supports WebSockets—most now
support it in some way, so that’s less of a problem than in previous years.
Still, some load balancers will require running in a mode such as “TCP only”
to route WebSocket requests, which causes the load balancer to not try to
interpret a request or change the headers in any way. The specific WebSocket-
safe setup will depend on the particular load balancer that you use.

Load balancers rely on the fact that web requests are stateless and short-
lived to provide an even distribution. A user can make a request to a URL
and be sent to server A, and then immediately make another request and be
sent to server B. The process is seamless and the user has no idea that this
occurred. Load balancers get a bit trickier when persistent connections, such
as WebSockets, are involved.

WebSockets and Load Balancers
In order to illustrate the challenge with persistent connections and load bal-
ancers, let’s run through a practical scenario. Imagine that your application
has two servers. Each server has been running for some time and has 1000
active WebSocket connections each, because they’re evenly balanced.

Your site reliability alarms are going off because your servers are stressed
out, so you add a third server. This server comes online, but it has no Web-
Socket connections.

5. https://www.haproxy.org/
6. https://nginx.org/en/docs/http/load_balancing.html

Chapter 11. Deploy Your Application to Production • 226

report erratum • discuss

https://www.haproxy.org/
https://nginx.org/en/docs/http/load_balancing.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

In this case, the added capacity has no effect on the existing servers. They
have persistent connections that do not reconnect unless a network failure
or application restart occurs. A load balancer could add all new connections
to the new server, using a least connections approach, but the existing servers
would remain at high utilization until connections are closed.

Unfortunately, there’s not an elegant solution to this problem. The added
server would need to cause the other server’s clients to disconnect their
WebSocket connection and connect directly to the new server. A load balancer
could handle this scenario, but it would involve custom configuration and
knowledge of your application.

There are application-level solutions to this problem. One simple solution is to
disconnect certain clients on the old servers so that the new server picks up the
connection. This gets more difficult with many servers, because the chance of
a new server being selected in the load balancing process is usually random.
Here’s a figure of the three servers undergoing this type of load balance.

The problem here is that 1000 connections were shed from the two servers, but
only about 334 would make it to the new server. This means that the process
would need to be repeated until it becomes balanced. In addition, there are 1000
disconnected clients at point B in the process. Ideally the clients reconnect very
quickly, but this is a place where bugs are likely to appear.

Another option is to shed connections from an application server only when
a critical resource (like CPU or memory) has been out of an acceptable range
for a period of time. In this case, the two servers may shed load based on the
alarm criteria but would quickly reach a healthy state.

One last, very simple, approach to load balancing is to disconnect WebSocket
connections after a period of time. This would cause your system to be
unbalanced only for brief durations. There are trade-offs to everything, though.

report erratum • discuss

Achieve Scalability with Load Balancing • 227

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

This approach would not balance the system very quickly, and clients would
be reconnected throughout their time on the application.

You may not see load-balance issues as a problem until a certain scale or
threshold is reached. Always load balance your production applications with
at least two servers, but solve the problem of unbalanced servers only when
you start dynamically changing the number of servers that back your appli-
cation. You can use the techniques discussed in this section to perform load
balancing, or you may think of creative ways based on your specific use case.

Next, we’ll look at a few different ways to perform a deployment.

Push New Code Safely
The initial deployment of your application is only the first hurdle to overcome.
Your code will evolve and needs to be redeployed over time. This presents its
own set of challenges, because you want your application updates to be
invisible to users. Some teams may solve this by only deploying off-hours,
but we’ll look at strategies that allow you to deploy your code at any time.

We’ll discuss two different strategies for doing deployments. The first type
that we’ll cover is rolling deployment. We’ll then look at an alternative called
blue-green deployment. You’ll see how the deploy method you choose can
influence your load balance and uptime. Before we get into the types of
deploys, let’s look at the impact that deployment will have on your application.

The Reality of Deployment
We need to start with an important disclaimer about deployments—your
servers will restart and any active connections will disconnect. Clients may
remain disconnected for a few seconds, unable to receive new messages from
your application.

Connections will quickly reconnect, but any data that was in-memory, such
as in processes or ETS tables, will be gone. You can design applications that
are resilient to restarting by ensuring that all data is kept in a less ephemeral
place, such as on the front end or in a database.

Elixir supports hot code reloading—this allows you to change the code while
the system is still running. However, it’s something that you should use very
sparingly, if at all. There is a lot of complexity involved in making sure that
your data structures and GenServers are able to migrate while remaining
online. This complexity puts you in a situation where an erroneous deployment
forces you to restart all servers, which may be a problem if it’s not something
you do often.

Chapter 11. Deploy Your Application to Production • 228

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

With that out of the way, let’s look at a basic deployment tactic—rolling
deployments.

Rolling Deployments
Rolling deployments work very well for many applications. A server comes
offline and then one comes online (or vice versa) so the application remains
stable throughout. This works for short-lived requests, but a problem occurs
when we do rolling deployments with WebSockets. The first server that restarts
will receive a majority of the traffic after the deployment is finished. Here’s a
figure demonstrating how this happens.

When a server goes offline, all of its connected clients immediately try to
reconnect. The server is still restarting, so it is not yet available to handle
requests. This causes all of the new connections to be balanced to the existing
servers. This continues for each server in the cluster until the end state is
reached. Throughout the process, some servers will receive a spike in connec-
tions before being restarted.

This problem is less severe in applications where clients reconnect often,
because the connections will balance over a short period of time. Your appli-
cations may work great even with the spread in WebSocket connections that
rolling deployments can cause. Also, your load balancer may support the
least connections balance mode, which would help alleviate the issue during
rolling deployments. Alternatively, you could implement an application-level
load balancing scheme—like you saw in the previous section—or you could
change to a different model of deployment.

We’ll cover an alternative to rolling deployments, blue-green deployments, next.

Blue-Green Deployments
A rolling deployment is one of the simplest ways to deploy an application.
This type of deployment will probably work well for you, but there are other

report erratum • discuss

Push New Code Safely • 229

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

options as well. A more advanced type of deployment is called blue-green. In
this strategy, your application cluster remains online while a second cluster
is deployed. Once the second cluster is healthy and ready to serve traffic, the
load balancer cuts over to it. This can happen either immediately or slowly
over time. The following figure shows how this works:

Instance

Instance

Load Balancer

1. Old cluster receiving
requests

Instance

Instance

2. New cluster
becom es available

Once the new cluster is available, the load balancer switches which cluster
it connects to:

Instance

Instance

Load Balancer 3. New cluster receiving
requests

Instance

Instance

4. Old cluster
rem oved when

stable

This approach causes all existing connections to disconnect and reconnect.
They will connect in a balanced fashion, but they could all connect at
roughly the same time, depending on how the existing connections are closed.

Chapter 11. Deploy Your Application to Production • 230

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

This is the opposite of rolling deployments, where the connections will
establish throughout the time that it takes to deploy but will end in an
unbalanced state.

The approach you take largely depends on your application’s and users’ needs.
Both deployment strategies are established ways of deploying code and are
used successfully by companies in the Elixir community. There is a lot of
nuance in how these deployments can be set up—you may be able to avoid
certain problems by crafting your deployments carefully.

An important aspect of Elixir application deployment is node clustering. Next,
we’ll discuss clustering your BEAM nodes in production, and why this is
critical for real-time applications.

Cluster Your BEAM Nodes Together
You must connect your BEAM nodes together when deploying a real-time
application to production. We covered in previous chapters that a WebSocket-
based application broadcasts outbound messages to all nodes in the cluster,
using PubSub, so that connections on other nodes receive the message for
connections that they own. If your nodes can not talk to each other, some
messages will be missed and not sent to clients.

There are two ways to implement clustering in your application. The first way,
that comes out-of-the-box with OTP, is to connect nodes together with dis-
tributed Erlang. This creates a direct peer-to-peer connection between all
nodes in the cluster. However, some deployment environments may not be
able to network nodes this way due to connectivity restrictions. In these cases,
it’s possible to use Redis as an alternative to clustering.

We’ll cover libraries that help you with clustering, and we’ll cover what to do
if native clustering isn’t available to you.

Ready Your Application for Clustering
One of my favorite things about Elixir/Erlang is that it comes with support
for node-to-node connectivity out-of-the-box. In addition to being provided
as a standard in the language, it works really well.

The :net_kernel.connect_node/1 function connects the node that invoked it to a
specified remote node. Once the TCP connection is established, the connection
is kept fresh with a heartbeat and will automatically become disconnected if
the nodes can no longer talk to each other. This comes out-of-the-box, but
there are a few things that you must set up in order to use it.

report erratum • discuss

Cluster Your BEAM Nodes Together • 231

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The first requirement of connecting nodes together is to have a way for your
BEAM nodes to talk over a given port and IP. You can hard-code the port that
BEAM uses for distribution, or you can have the Erlang Port Mapper Daemon7

running and available between the remote nodes. epmd maps symbolic node
names to machine addresses, so your application can use an atom like
:my_app@my_host and be mapped to the right port and IP address. epmd should
never be exposed to the public internet, only between the nodes in the cluster.
This isolation is possible to set up using a virtual private cloud.

The second requirement is a shared cookie between all nodes in the cluster.
The cookie is an atom that is compared between two nodes when they try to
connect to each other. If the cookie doesn’t match, the connection is not
allowed. Tools like Mix Release and Distillery will automatically set this up
for you, although you can change it to be longer or a different value.

Adopting Elixir [Tat18] goes into more detail on how to configure distributed
Erlang, epmd, SSL, and cookies. Many of these things are handled for you
automatically if you deploy your application using a release.

Let’s look at what libraries are used for clustering next.

Libraries for Clustering
Elixir makes it very easy to cluster two nodes together. Earlier in the book, you
ran the code Node.connect(:"server@127.0.0.1") to connect two local nodes to each
other. A bigger challenge is identifying which nodes need to be connected to
each other and where they’re located. Discovery is an easy task locally, because
you know exactly where the node is running and you know the node’s name.
In production, however, your nodes will be separated across physical servers
and IP addresses. They may even be in completely different data centers.

There are two libraries that solve the problem of node discovery very well.
Peerage8 and libcluster9 both provide a few different ways to perform node dis-
covery. The simplest approach you can take is to hard-code your node names
in a configuration. You can utilize more powerful features like DNS-based dis-
covery, Kubernetes API discovery, or even write your own strategy for discovery.

libcluster is a powerful tool to have at your disposal, but you may not be able
to set up distributed Erlang due to networking restrictions. Next, we’ll cover
an alternative way of communicating using Redis-based PubSub.

7. https://erlang.org/doc/man/epmd.html
8. https://github.com/mrluc/peerage
9. https://github.com/bitwalker/libcluster

Chapter 11. Deploy Your Application to Production • 232

report erratum • discuss

https://erlang.org/doc/man/epmd.html
https://github.com/mrluc/peerage
https://github.com/bitwalker/libcluster
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Redis-based PubSub—A Clustering Alternative
You may be in a situation where distributed Erlang is simply not possible. Some
cloud providers lock down their networking, or maybe a corporate policy prevents
it. Phoenix Channels are built on top of Phoenix PubSub, which abstracts
away the actual communication in a way that can be swapped out. One of the
libraries that is available to use with Phoenix PubSub is phoenix_pubsub_redis.10

With phoenix_pubsub_redis, all messages are sent through Redis’s native PubSub
commands. Your application subscribes to specific topics that allow the
application to listen to events from other servers. This is a powerful library
to have in your back pocket, just in case you find yourself in this situation.
It’s straightforward to set up by following the Phoenix.PubSub.Redis documenta-
tion,11 so we won’t set it up in this chapter.

One caveat of using the Redis PubSub adapter is that all messages will be
sent through a single Redis server. This can cause spikes in utilized network
bandwidth if your application sends many messages at once—each server
receives a copy of the message, just like in distributed Erlang. This is not
going to be an issue for most applications, but you should monitor your Redis
server’s statistics if you go down this path.

Redis-based PubSub is not a complete alternative to distributed Erlang. An
application that uses it will not be able to use native distribution functions,
and you will not have a direct connection to any other node. However, Phoenix
Channels will work out-of-the-box with Redis-based PubSub, and many other
features that you may need can be implemented with it.

Next, we’ll look at different configuration options that you’ll need to set when
you deploy a Phoenix application.

Advanced Phoenix Channel Configuration
You will need to make a few small changes to your Phoenix application con-
figuration when you deploy to production, although most things will work
out-of-the-box. Phoenix provides a guide12 on how to deploy with releases.
This guide helps you configure your application secrets, runtime configuration,
and asset bundling.

There is one configuration that is specific for Channel-based applications—ori-
gin checking. Let’s look at that now.

10. https://hex.pm/packages/phoenix_pubsub_redis
11. https://hexdocs.pm/phoenix_pubsub_redis/Phoenix.PubSub.Redis.html
12. https://hexdocs.pm/phoenix/releases.html

report erratum • discuss

Advanced Phoenix Channel Configuration • 233

https://hex.pm/packages/phoenix_pubsub_redis
https://hexdocs.pm/phoenix_pubsub_redis/Phoenix.PubSub.Redis.html
https://hexdocs.pm/phoenix/releases.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Origin Checking
Origin checking is a security measure to restrict which websites can connect
to your application. By default, incoming connections to a Channel transport
inspect the Origin HTTP header and ensure that it matches an allowed list.
The only allowed origin, by default, is the host config that is set in your appli-
cation config. For example, the following config only allows connections that
originate from the origin "app.sneakers23.com".

config :sneakers_23, Sneakers23Web.Endpoint,
url: [host: "app.sneakers23.com", port: 80]

You should set the host field for your application, so that connections will
work when you deploy your application to production. If you are deploying
an application that serves connections from multiple hosts, or from clients
like browser extensions, you can change which origins are allowed. You can
configure your Socket to use a list of origins, a custom origin-checking func-
tion, or disable it completely by setting the check_origin option to false.

It’s easy to change the check_origin configuration for all Sockets in your applica-
tion, like so:

config :sneakers_23, Sneakers23Web.Endpoint,
check_origin: [

"//app.sneakers23.com",
"chrome://extension-id",
"https://sneakers23.com"

]

Alternatively, you can set the check_origin configuration on a per-socket basis
in the Endpoint definition. This is done by passing check_origin as an argument
to socket/3.

socket "/socket", MyStoreWeb.ProductSocket,
websocket: [

check_origin: {MyStoreWeb.Origin, :allowed?, []}
]

This configuration will invoke MyStoreWeb.Origin.allowed?(uri) to check the URI’s
origin. The specified function should return true or false depending on whether
the origin is allowed. Any of the available formats can be used in either con-
figuration.

Other configuration options are available for Phoenix Sockets. Let’s look at
these other options.

Chapter 11. Deploy Your Application to Production • 234

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Other Configuration Options
There is documentation13 available that lists all the options you can use to
configure Phoenix Sockets and Channels. We won’t cover all the available
options in detail, because many applications will not need to use them.
However, it’s important you know that additional options exist and know
where to find more information about them.

We’ve already covered the check_origin option, which is one of the more common
options to change. The connect_info option is also useful for some applications.
This allows your Phoenix.Socket.connect/3 callback to receive additional information
that you can use to decide if a connection should be allowed. Of note, you
can configure your Socket to receive additional headers or even the user’s
session information. (You must include a CSRF token in the connection
request to get session information, due to WebSocket security.)

Other options are available to change how a WebSocket behaves. You can
compress WebSocket frames by setting the compress: true option when you call
socket/3 in your Endpoint. This option decreases the size of data payloads but
comes at the cost of additional CPU on the server and client. You can also
configure the maximum size of each WebSocket frame, which is useful if you
have dynamic payloads coming from clients. You may not need to use these
options for your application, but it’s good to know they’re available if needed.

Wrapping Up
There are many different ways to deploy an Elixir application. You can customize
the deployment process to you or your company’s specific needs and still be
successful. One constant in the deployment process is that code needs to be
packaged and executed. You can start simple with mix commands to run your
application, but you get more features by using releases. Releases now come
out-of-the-box with Elixir 1.9 and are widely accepted in the community.

Production applications should use multiple servers to handle requests. This
increases redundancy and allows for additional scalability when needed. A
load balancer is used to ensure that multiple back-end servers receive a fair
number of requests. WebSockets cause problems with load balancers because
WebSocket connections stay open for long periods of time, so they do not
readily become balanced. You can solve this problem both at the application
level by reconnecting active WebSockets, or at the load-balancer level.

13. https://hexdocs.pm/phoenix/Phoenix.Endpoint.html#socket/2

report erratum • discuss

Wrapping Up • 235

https://hexdocs.pm/phoenix/Phoenix.Endpoint.html#socket/2
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

There are two primary ways to restart servers with new code. The first, and
most simple, approach is to do a rolling deploy. This causes nodes to go offline
and come back online before continuing with more nodes—the maximum
number of disconnected nodes is capped out. Rolling deploys can cause an
imbalance of WebSocket connections during the deployment process. An
alternative that can help reduce this problem is blue-green deployment. Hot
code deployment is also possible on the BEAM, but it is not recommended
for most applications.

Nodes in a production cluster must be able to communicate with each other.
Erlang/OTP ships with distribution mechanisms out-of-the-box, and it’s
usually as simple as configuring a library to enable node-to-node communi-
cation. Sometimes this isn’t available though, for reasons outside of your
control. In these situations, Redis PubSub can be used to communicate
between nodes.

We covered the aspects of deploying a real-time Elixir application, but the
actual runtime execution of an application is just as important. In the next
chapter, we’ll look at how to manage different system resources like CPU and
memory. We’ll also look at tools that can help diagnose performance problems
in deployed real-time applications.

Chapter 11. Deploy Your Application to Production • 236

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 12

Manage Real-Time Resources
In the last chapter, we covered different things for you to consider when
deploying your applications to production. In this chapter, we’ll look at how
different system resources are managed by the BEAM, and we’ll discuss the
needs of real-time applications versus more traditional applications.

There are two main resources that are required to run applications: CPU and
memory. You’ll see how the BEAM uses these resources and how you can
build your application to best utilize your system’s available resources. The
BEAM is a solid virtual machine to run applications on top of, but you do
need to be mindful of how it schedules work and uses memory when you
deploy high-volume applications.

We’ll start by looking at how the BEAM performs work. You’ll see how the
scheduler works and we’ll look at how applications can effectively utilize a
system’s CPU. After that, we’ll go over how the BEAM allocates and garbage
collects memory. Finally, you’ll see a tool that allows you to inspect how a
production system is using its resources.

Let’s jump in—we’ll start with how an Elixir process performs work.

Getting Comfortable with Elixir’s Scheduler
The most important role of any software is getting work done. It’s easy to take
this for granted—we just write code and it runs on a CPU. However, the way
that work gets done can make or break your experience with a language.
Some languages require you to be very explicit about everything—you get full
control, but you can easily encounter problems. Other languages take away
some control in order to provide you with ease of use and stability. Elixir falls
into the camp of ease and stability, but its virtual machine has a scheduler
with properties that are well-suited for soft real-time applications.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Scheduling is the method that assigns work to be performed by some resource,
like the CPU. We’ll first look at Elixir’s scheduler design and what properties
this design provides for your applications. After this, we’ll consider how real-
time applications are affected by the scheduler and what you can do to make
sure that your applications remain performant.

Elixir’s Scheduler Design
It may seem daunting to understand how a virtual machine’s scheduler works,
but you only need to know a few key concepts. The first concept we’ll cover
is how work is sliced up and executed on a CPU. The second concept is how
work is executed so your system does not completely freeze when running
CPU-bound code.

Let’s define a few terms that are important to know for this section.

Scheduler
A scheduler picks a process and executes the code for that process.

Run Queue
A list of processes that have work to be performed. A single process only
exists in a single run queue.

Let’s jump into how work is sliced up and executed on a CPU.

How Work is Scheduled

There are a variety of ways to schedule work to run on the CPU. Let’s look at
the simplest case first: a single scheduler with a single run queue of work to
execute.

This is a simple model to understand. The virtual machine has a single queue
of work so that the oldest scheduled work is up next, and work executes on
a single CPU core. We don’t need to worry about software locks or hard distri-
bution problems in this design, but there are problems with this approach.
The biggest problem is that your application can not take advantage of a
multi-core CPU. The design on page 239—multiple schedulers with a single
run queue—allows an application to perform work on multiple CPU cores.

This design is able to take advantage of all available cores, but it comes with
a cost of needing lockable data structures for the run queue. The necessary
locking becomes a large bottleneck as more schedulers are introduced.

Chapter 12. Manage Real-Time Resources • 238

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The following figure shows what the BEAM uses today: multiple schedulers,
each with their own run queue.

The BEAM also has migration logic to allow for better load balancing of work
across available cores—this is known as work stealing. The end result of this
design is that each core can be efficiently used, and locking is decreased.
Elixir is often touted as magically scaling across a CPU—this design is how
that happens.

Let’s look at how CPU-heavy work is executed without freezing your entire
application.

How Work is Executed

It’s easy in some languages to get stuck in an infinite loop—no matter how
long you wait, the system will not exit the loop and must be killed via some
external signal. The BEAM can max out a CPU, but it will still be able to
execute new work when this happens—it doesn’t get stuck in an infinite loop.
Let’s look at how that’s possible.

The BEAM has a preemptive scheduler that can stop work that is being exe-
cuted and swap it out for another unit of work that needs to be executed.
This is different than a cooperative scheduler, where the code must explicitly
release control flow back to the scheduler.

Preemptive scheduling isn’t magic; there has to be a clean break where work
can be stopped. In the case of the BEAM, the clean break is after a function
runs. This works well in practice because functions generally do not execute
a large amount of CPU-bound work without invoking other functions.

report erratum • discuss

Getting Comfortable with Elixir’s Scheduler • 239

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The BEAM keeps track of how much work a process has performed by incre-
menting a reduction counter each time (roughly) a function is invoked for
that process. After a certain number of reductions, that process is preempted
and placed at the end of the run queue and other processes are executed. It
is this preemption process that prevents a single process from taking over an
entire CPU core, which would starve other processes from executing. If you
want to know how much work a process has done, it’s important to track the
number of reductions.

Let’s see how this works in practice by running a small example in an iex
session. We’ll define a recursive function that acts as an infinite loop. We’ll
spin up a number of processes that execute the recursive function, so that
each scheduler is busy. We’ll then see that new work can still be executed by
the BEAM. Start an iex session and enter the following code.

$ iex
iex(1)> defmodule Test do def recurse(), do: recurse() end
iex(2)> :observer.start
iex(3)> schedulers = :erlang.system_info(:schedulers_online)
iex(4)> Enum.each((1..schedulers), fn _ -> Task.async(&Test.recurse/0) end)
iex(5)> Enum.map((1..10000), & &1 + &1) |> Enum.sum()

If you watch the scheduler load chart and process list provided by :observer,
you will see that all of your schedulers are completely maxed out. The process
list shows that the number of reductions is very high for these recursive
processes—this is an indication that they are doing a lot of work. Your
:observer window will look like the image on page 241.

Despite being completely maxed out, the BEAM is still able to execute our
Enum.map and Enum.sum functions very quickly. This is due to the BEAM’s pre-
emptive scheduling.

There are exceptions and edge cases here, because it’s possible to run native
code via a NIF—Native Implemented Function. A NIF cannot be preemptively
scheduled due to it running outside of Erlang’s functional paradigm. This
means that a scheduler can be occupied for the duration of the NIF call, which
leads to VM instability. It’s outside of this book to go deeper into this topic,
but NIFs can be made to work well on the BEAM, and there is a new scheduler
type (dirty scheduler) that slower NIFs can run on.

Let’s look at how your applications are affected by the BEAM’s scheduler design.

CPU in Real-Time Applications
Real-time applications are very similar to non-real-time Elixir applications
when it comes to CPU usage. The most common performance problem that

Chapter 12. Manage Real-Time Resources • 240

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

you’ll run into is single-process bottlenecks. We’ll look at how to avoid these
in your applications.

You just saw that Elixir’s scheduler distributes work across CPU cores on a
per-process basis. You want to ensure that applications you write do not have
single-process bottlenecks, so that work can be processed as quickly as pos-
sible. These bottlenecks occur when you have many processes, such as
Channels, simultaneously making requests to a process. Processes handle a
single message at a time, so all messages end up waiting for other messages
to be processed—this leads to slower response times.

One way to avoid a single-process bottleneck is to shard your processes based
on a key or some other criteria. For example, you could split up a process
that stores data for different teams into a process per team. This produces
one process per key, which looks like the figure on page 242.

With this approach, you end up with many more processes than schedulers.
Elixir balances the processes across all schedulers to provide a consistent
CPU throughput across all cores. If you had a single process instead, a single
core would receive all of the work.

You can tweak this approach to not have as many processes. For example,
Phoenix Tracker splits its CRDT processes into the number of shards you

report erratum • discuss

Getting Comfortable with Elixir’s Scheduler • 241

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

configure it for. Each topic is hashed and then turned into an integer that
maps to a shard process. This is how Tracker distributes itself across multiple
cores. You can’t always use this sharding technique, but you should think
about ways to avoid single-process bottlenecks as you build an application.

There’s no way to completely avoid hot processes in applications that do a
lot of work. We’ll look at ways to inspect your running application to identify
hot processes and bottlenecks later in this chapter.

While CPU is not that different between real-time and standard applications,
memory is a different story. Next, we’ll look at how Elixir manages memory
and what you need to look out for when you write real-time applications.

Manage Your Application’s Memory Effectively
Software depends on memory to run properly. You won’t necessarily get big
performance boosts by using less memory, but you’ll be able to scale your
application to more users while using fewer servers if you think about how
memory is used by your application. You can use a few simple techniques to
dramatically reduce your exposure to memory problems in Elixir applications.

The main principle that we’ll cover in this section is memory allocation and
garbage collection. Elixir doesn’t have a radical garbage collector, but it has
key differences when compared to other languages. We’ll cover how garbage
collection works before looking at how short-life and long-life processes differ
in memory usage. You’ll see two techniques for managing memory: manual
garbage collection and process hibernation. Let’s dive in.

Elixir’s Garbage Collector Design
Garbage collection is the process of automated memory management in a
program’s runtime. This helps prevent your application from taking up a lot
of memory by making unused memory available again or by returning it to
the operating system. The BEAM will keep a bit of extra memory, rather than
returning it all right away, which helps speed up future allocations. It’s easy

Chapter 12. Manage Real-Time Resources • 242

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

to think about garbage collection only as the freeing of memory, but a garbage
collector will also allocate memory for your program. There are many different
types of garbage collectors, and the BEAM has a fairly unique one.

You don’t need to know all of the details of how memory allocation and garbage
collection works to write effective Elixir applications, but you will get better
memory utilization in your applications by knowing the basics. Let’s look at
a high-level overview of the BEAM garbage collector as of OTP 20,1 which has
been around for a few years. The topic of memory management is very detailed,
but this overview won’t go extremely deep.

Each BEAM process has its own stack and heap for small data binaries (less
than 64 bytes.) Larger binaries are stored in a shared memory space with a
reference-counted pointer (called ProcBin) that lives in a Process’s heap. This
means that there are many data stacks and heaps in our application, one
per process, unlike many other languages that have a single stack and heap.
A process can be visualized, like so:

Process
Inform at ion

Stack

Free Space

Private Heap

Shared Heap

ProcBin

The private heap grows in size and would eventually fill up with old data.
Garbage collection is performed to clean up a process’s memory. The BEAM
is different than many other virtual machines because garbage collection
happens on a single process, not globally. Many processes can undergo
garbage collection at the same time, but only if they need it.

There are two different types of garbage collection that occur in BEAM pro-
cesses. The first type, which occurs frequently, is called generational garbage
collection. You’ll also see it called minor garbage collection. This method
reclaims heap memory that is no longer referenced by the process, and that
was allocated since the last generational garbage collection occurred. This
relies on the idea that most memory is only used for a short period of time.

1. https://www.erlang.org/downloads/20.0

report erratum • discuss

Manage Your Application’s Memory Effectively • 243

https://www.erlang.org/downloads/20.0
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

This method is highly performant, but it only looks at recently allocated
memory.

The second type of garbage collection is called full-sweep, also known as major
garbage collection. This looks at the entire heap of a process, not just the
young section, and reclaims as much memory as possible. It comes at the
cost of being a bit slower to run, because it looks at all memory owned by a
process. Full-sweep garbage collection happens much less frequently than
generational garbage collection—it happens when the heap is close to being
full, when a certain number of generational collections happens, or when
manually called. Full-sweep garbage collection is fast in practice, but it can
be slow if executing on a process that is actively holding a lot of data.

There is a lot of nuance in how garbage collection works. The most important
thing to know is that there are two distinct forms of garbage collection that
occur in a BEAM process. This works well for most processes and applications,
but sometimes we have to tweak how often garbage collection is performed.

Next, we will see why real-time processes can be problematic for garbage
collection.

Short-Life Versus Long-Life Processes
Real-time applications rely on long-lived processes in order to have a direct
connection to clients—this allows them to send data immediately when the
data is available. There is a downside to this, though. It’s possible that pro-
cesses get stuck in a state where garbage collection doesn’t occur, but mem-
ory isn’t being used. This can cause large memory bloat when amplified across
thousands of processes.

If a piece of memory makes it past generational garbage collection, it lives
until a full-sweep garbage collection occurs. This happens, by default, every
65535 generational passes or when the process is close to using its available
memory. It’s possible for a Channel, Socket, or other long-lived process to get
stuck in a state where there is plenty of free memory, but not enough work
to trigger a generational pass. A process in this state will live without memory
being collected, and it will potentially take up more memory than necessary.

Processes that are created and terminated quickly (short-lived processes) do
not get into this state because their memory is reclaimed when the process
is terminated. While all applications use long-life processes to some degree,
real-time apps use them in the thousands. This amplifies the impact of
memory bloat.

Chapter 12. Manage Real-Time Resources • 244

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

You can fix this problem by forcing a full-sweep garbage collection to occur
by using a manual garbage collection call, or with process hibernation. We’ll
look at process hibernation first.

Process Hibernation Helps Prevent Bloat
One of the easiest ways to trigger garbage collection is to put a long-running
process into a hibernated state. Hibernation releases the call stack and
immediately garbage collects the process. This is useful if you don’t expect
the process to receive a new message in the near future—within 10–30 sec-
onds. If you hibernate a process after every message, but then it immediately
receives another message, your application will do extra work for hibernation
only to revive the process right away. However, this is often an acceptable
trade-off, unless you are in an extremely high throughput environment.

In order to see how hibernation works, let’s create a simple process that allocates
memory and gets stuck in a spot where garbage collection is not automatically
triggered. Start by creating a new mix project with mix new memory.

$ mix new memory
$ cd memory

Next, replace the lib/memory.ex file with the following code:

memory/lib/memory.ex
defmodule Memory do

use GenServer

def init([]) do
{:ok, []}

end

def handle_call({:allocate, chars}, _from, state) do
data = Enum.map((1..chars), fn _ -> "a" end)
{:reply, :ok, [data | state]}

end

def handle_call(:clear, _from, _state) do
{:reply, :ok, []}

end

def handle_call(:noop, _from, state) do
{:reply, :ok, state}

end
end

This GenServer responds to messages that will allocate string data or clear the
allocated data. We can use this to demonstrate how memory bloat can happen
in a GenServer. We could alternatively allocate binary data, which would be

report erratum • discuss

Manage Your Application’s Memory Effectively • 245

http://media.pragprog.com/titles/sbsockets/code/memory/lib/memory.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

inspected differently, but we won’t get into that. The :noop message handler allows
the process to execute functions that won’t increase memory usage.

Start the project using iex -S mix in the project folder.

iex(1)> {:ok, pid} = GenServer.start_link(Memory, [])
{:ok, #PID<0.147.0>}
iex(2)> :erlang.process_info(pid, :memory)
{:memory, 2820}

iex(3)> GenServer.call(pid, {:allocate, 4_000})
:ok
iex(4)> :erlang.process_info(pid, :memory)
{:memory, 142804}

iex(5)> GenServer.call(pid, :clear)
:ok
iex(6)> :erlang.process_info(pid, :memory)
{:memory, 142804}

iex(7)> Enum.each((1..100), fn _ -> GenServer.call(pid, :noop) end)
:ok
iex(8)> :erlang.process_info(pid, :memory)
{:memory, 142804}

iex(9)> :erlang.garbage_collect(pid)
true
iex(10)> :erlang.process_info(pid, :memory)
{:memory, 2820}

We first create a new process for the Memory GenServer, and we see that it
starts out with 2820 bytes. We then allocate 4000 string characters, and the
memory jumps to 142804 bytes. We issue the :clear call, which empties out
the state, and then send it messages to handle. Throughout, the memory
stays at 142804 bytes—our process’s garbage is not collected. Finally, we
manually issue an :erlang.garbage_collect/1 function on the pid, and the memory
drops to the initial 2820 bytes.

It’s okay for processes to manually issue garbage collection—often you would
do this from the process itself when you know that a certain function generates
a lot of memory. However, you can also put a process into hibernation by
returning :hibernate at the end of the GenServer callbacks. Let’s add a
:clear_hibernate function to the bottom of memory.ex.

memory/lib/memory.ex
def handle_call(:clear_hibernate, _from, _state) do

{:reply, :ok, [], :hibernate}
end

Chapter 12. Manage Real-Time Resources • 246

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/memory/lib/memory.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Run the following example with iex -S mix.

iex(1)> {:ok, pid} = GenServer.start_link(Memory, [])
{:ok, #PID<0.147.0>}
iex(2)> :erlang.process_info(pid, :memory)
{:memory, 2820}

iex(3)> GenServer.call(pid, {:allocate, 4_000})
:ok
iex(4)> :erlang.process_info(pid, :memory)
{:memory, 142804}

iex(5)> GenServer.call(pid, :clear_hibernate)
:ok
iex(6)> :erlang.process_info(pid, :memory)
{:memory, 1212}

This message caused our Memory GenServer to hibernate, and a major garbage
collection was triggered. We can also cause hibernation to automatically occur
when a process is idle for a number of milliseconds. This is done by passing
the hibernate_after option to the GenServer.start/3 function.

iex(1)> {:ok, pid} = GenServer.start_link(Memory, [], hibernate_after: 1_000)
iex(2)> GenServer.call(pid, {:allocate, 4_000})
iex(3)> GenServer.call(pid, :clear)
iex(4)> Process.sleep(1_000)
iex(4)> :erlang.process_info(pid, :memory)
{:memory, 1212}

This example shows that hibernation is easy to use and is very effective at
reclaiming garbage.

Phoenix Channels use the hibernate_after option to enter hibernation 15 seconds
after processing their last message. This timing of Channel hibernation can
be changed or hibernation can be disabled altogether. The default will work
for most applications, but you may need to lower this value or manually
garbage collect your Channel process if you receive messages frequently. You
can force a Channel to immediately hibernate by returning the :hibernate atom
in a Channel callback, like we did for the Memory GenServer.

Channels use hibernation out-of-the-box, but processes that you write need
to set it up themselves. Another option for garbage collection is to manually
trigger it, which we’ll do next.

Manually Collect Garbage as Needed
For cases where hibernation doesn’t make as much sense, like for processes
that receive messages frequently, you can use manual garbage collection to
clean up memory as needed. We did this in the previous example by using

report erratum • discuss

Manage Your Application’s Memory Effectively • 247

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

the function :erlang.garbage_collect/1. You can pass any process’s pid into this
function, or you can use :erlang.garbage_collect/0 to trigger garbage collection for
the process that invoked the function.

If you are debugging a high-memory system and want to know if more strict
garbage collection would help, you can easily trigger garbage collection for
every process. Try the following command in an iex session.

$ iex
iex(1)> Process.list() |> Enum.each(&:erlang.garbage_collect/1)
:ok

The BEAM’s utilized memory will most likely drop significantly if this is run
on a long-running application. However, it may quickly stabilize to the previous
value. This pattern indicates that additional hibernation or manual garbage
collection may help your application memory usage.

Another option for garbage collection is also available. Next, we’ll adjust the
number of minor garbage collections that a process has to perform before a
major garbage collection occurs.

Adjust How Often Garbage Collection Happens
You can customize the BEAM with a variety of flags that change how it oper-
ates. There are a number of flags related to memory allocation and garbage
collection. One of these flags, ERL_FULLSWEEP_AFTER, changes the value of minor
garbage collections necessary to do a major garbage collection from 65535 to
whatever value you’d like.

The easiest way to change this value is to modify the vm.args file that comes
with Distillery and Mix Release. You can set this value by using the following
syntax:

-env ERL_FULLSWEEP_AFTER 20

You can replace 20 with any value that you want. I’ve found that 20 works
well for my applications, but this can vary.

This approach can lead to a much lower memory utilization by performing
major garbage collections more often, but as with anything, trade-offs exist.
Garbage collection prevents a process from responding to messages, so you
could end up blocking processes more often. In practice, I have not experienced
process blocking or high CPU from this approach, so I continue to use it for
applications that have long-running processes.

Chapter 12. Manage Real-Time Resources • 248

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

We’ve covered how the BEAM manages resources, but you also need to know
how to know if there’s a problem in a running application. Next, we’ll look at
how the :observer_cli tool can help you diagnose problems on a running server.

Inspect a Running Application
Consider the following scenario: you see a performance problem with your
production application, but you can’t quite figure out what is causing it. Your
server may be having periods of slow requests, high memory usage, or failed
requests. You collect metrics using StatsD or another tool, but it just doesn’t
seem to pinpoint the exact problem. Luckily, you can run commands against
a live server to find the problem.

In this section, we’re going to look at tools for inspecting running applications
and how to use them. You’ll need to have a way to log into a running server
to use the tools listed in this section. If you are using Mix Release or Distillery
to package your production application, then you can use the remote_console
command to connect to your running server. If you do not have access to a
running server, then you’ll need to use collected metrics to debug performance
problems.

First, we’ll look at tools that can help you collect and inspect metrics from run-
ning processes. We’ll focus heavily on a CLI-based observer tool that provides
much of the same information that the GUI-based observer tool provides.

Tools for System Inspection
One of the most important tools to have available in your production environ-
ment is a way to inspect running processes to identify performance problems.
We covered how to use StatsD to send metrics from your running servers to
a metrics collector in Part I. A metrics collector is important, but sometimes
it is necessary to see a performance problem happen live, on a running server.

Elixir ships with several functions that provide information about processes.
You can use Process.info/1 to collection information about a process. Let’s open
an iex session to try it out.

$ iex
iex(1)> Process.info(self())
[

current_function: {Process, :info, 1},
initial_call: {:proc_lib, :init_p, 5},
status: :running,
message_queue_len: 0,
...

]

report erratum • discuss

Inspect a Running Application • 249

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The Process.info/1 function provides useful information such as:

• message_queue_len—The number of messages waiting to be handled by this
process

• total_heap_size—The amount of heap memory that this process is using

• reductions—Represents the amount of work this process has performed

• current_function—The function currently being executed by this process

This information can also be retrieved by passing the specific data that you’re
looking for to Process.info/2. This function is considered safer, because it won’t
return expensive data unless you ask for it by name. Due to this, only use
Process.info/1 when you’re actively debugging.

It is useful to have this information for a single process, but it becomes much
more powerful when you have it for all processes in your application. You
could write helper functions that iterate over each process, or you could use
a visual interface. The observer_cli2 library provides a visual interface to access
live information about your application. We’ll look at this library next.

Basics of observer_cli
observer_cli is a terminal-based library that provides important and relevant
information about a running system. It is based on the recon3 library. We won’t
cover how to use recon in this book, but you can learn more about it in the
excellent (and free) e-book Erlang in Anger.4 We’ll look at the different views
that observer_cli provides before trying it out locally.

observer_cli opens to a home screen of a paginated list of all processes. You
navigate the interface with character keys that are listed at the bottom of
the screen. The image on page 251 is a view of observer_cli in a stock Elixir
application.

All key BEAM metrics are listed at the top. You can see memory stats, process
counts, garbage collection information, and scheduler utilization—this infor-
mation is all available at a quick glance.

The top right shows allocated memory and used memory stats. The BEAM
holds onto some memory, even after garbage collection happens. This allows
it to allocate memory faster in the future, because it doesn’t need to go to the
underlying operating system. You may see a discrepancy between internal

2. https://github.com/zhongwencool/observer_cli
3. https://ferd.github.io/recon/
4. https://www.erlang-in-anger.com/

Chapter 12. Manage Real-Time Resources • 250

report erratum • discuss

https://github.com/zhongwencool/observer_cli
https://ferd.github.io/recon/
https://www.erlang-in-anger.com/
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

tools like observer_cli and external tools like top due to this. Metrics taken from
inside of the BEAM VM will provide you with the most accurate information.

The power of the observer_cli list view comes in the sortable options that are
provided. You can sort by memory usage, reduction amount, and message
queue length. This allows you to quickly identify heavily utilized processes
in your running system.

There are additional views available as well. You can see network utilization
for your application, detailed system utilization, and an ETS table listing. You
can also view detailed information about a single process. These views help
you piece together the full picture of your application, which allows you to
hunt down problems faster.

Next, we’ll walk through how to use observer_cli.

Local Demo of observer_cli
We’ll install the observer_cli library into a new Elixir application, then we’ll
explore some of the different options that are available. It might feel overwhelm-
ing at first, but the interface is labeled to help you more easily navigate it.
First, create a new project and add the observer_cli dependency to it.

$ mix new observer
$ cd observer

report erratum • discuss

Inspect a Running Application • 251

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Now add the observer_cli dependency to the mix.exs file.

observer/mix.exs
defp deps do

[
{:observer_cli, "~> 1.5"}

]
end

Run mix deps.get and then start a session with iex -S mix. For this example, we’ll
start two looping processes, then we’ll locate these processes using the
observer_cli library.

$ iex -S mix
iex(1)> defmodule Test do def recurse(), do: recurse() end
iex(2)> Enum.each((1..2), fn _ -> Task.async(&Test.recurse/0) end)
iex(3)> :observer_cli.start

You’ll see the observer_cli home screen once you run the observer_cli.start/0 function.
You will see that schedulers 1 and 2 are close to full utilization all of the time,
because we started two looping processes.

If you don’t see a view like this, make sure that your terminal is large enough
to display the information. The interface is automatically adjusted based on
terminal size, and information is truncated when the terminal is too small.

Chapter 12. Manage Real-Time Resources • 252

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/observer/mix.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Press r + enter to sort the process list by reduction count. When you do this,
the top two heavily utilized processes appear.

|No | Pid |Reductions |Name or Initial Call ...
|1 |<0.205.0> |60362032000 |Elixir.Test:recurse/0 ...
|2 |<0.206.0> |60323980000 |Elixir.Test:recurse/0 ...

Press 1 + enter to view process details for the first process listed on the screen.
You can view any process by entering its number, which is visible on the list
view. The process detail view collects the amount of memory and reductions
on each tick. This lets you know how CPU and memory usage change during
a small window of time.

You can access a lot of information about the process from this view. You will
see the message queue, process dictionary, stack, and state for the selected
process.

Press h + enter to navigate back to the home view. Play around with observer_cli
to get more comfortable with it.

observer_cli is a useful tool to include in any Elixir application. It works great
with Mix and Distillery Releases, because of the remote_console feature that
releases provide. You should include a tool like observer_cli or recon early on in
your project. You don’t want to be in a situation where you need to use it to
identify the root cause of a problem, but it’s not available.

Wrapping Up
When you understand how a language’s virtual machine handles memory
and performs work, you will write better applications in that language. It’s
not a necessity when you first get started, but knowing about Elixir’s scheduler
and garbage collector will help your applications be more performant.

Each BEAM process is assigned to a scheduler, which is the part of the VM
that gets work done. Elixir uses a multi-scheduler design with work stealing.
This is what allows Elixir applications to easily scale across all cores without

report erratum • discuss

Wrapping Up • 253

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

much effort. Elixir’s scheduler is preemptive—this allows your applications
to still handle requests when CPU-heavy work is performed. You can use
techniques such as process sharding to avoid single-process bottlenecks from
forming in your application.

Memory management is just as important as work scheduling. The BEAM runs
garbage collection in each process, so stop-the-world garbage collection does
not happen. Long-life processes are susceptible to memory bloat when they get
stuck in a state where memory is allocated, not used, and not being garbage
collected. This is amplified in real-time applications where you might have
tens of thousands of long-running processes alive. You can use hibernation
or manual garbage collection to trigger garbage collection for these processes.

Your application will inevitably run into problems, and viewing process
information on a running server can help quickly pinpoint a culprit. The
observer_cli tool provides a visual observer interface to let you safely and effec-
tively inspect your running applications. Features such as sorted process
lists, system utilization, and process details let you piece together the full
picture when you’re investigating a problem.

That wraps up our deployment chapters. We’re going to mix things up in the
next chapter by looking at Phoenix LiveView. LiveView is an exciting way to
build real-time applications without writing JavaScript.

Chapter 12. Manage Real-Time Resources • 254

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Part IV

Exploring Front-End Technologies

Front-end technologies continue to evolve, often at
a breakneck pace. You can level up your skills by
staying at the edge of this evolution. We’ll go over
two different ways of writing real-time application
front ends—Phoenix LiveView and React single-
page apps.

CHAPTER 13

Hands-On with Phoenix LiveView
So far in this book, you’ve seen that Phoenix Channels make the server side
of real-time application development a breeze, but we still ended up writing
a lot of front-end client code. This is acceptable for many applications, but
wouldn’t it be nice if we could write real-time applications without spinning
up a JavaScript front-end as well? Enter Phoenix LiveView.

LiveView1 is an exciting library that shakes up the traditional real-time
application development life cycle. In a typical web application, you integrate
real-time features into an interface based on standard HTML and JavaScript.
In Chapter 7, Build a Real-Time Sneaker Store, on page 121, we did this by
passing HTML fragments from the server to the client, and also by passing
JSON data to the client. In both solutions, the front end received the Channel’s
message and modified the interface based on its content.

LiveView changes this paradigm by defining your application’s user interface
in Elixir code. The interface is automatically kept up to date by sending content
differences from server to client. A very small amount (a few lines) of JavaScript
is used to initialize LiveView, but otherwise LiveView handles all updates to
the DOM. With LiveView, you can build a rich real-time web application
without writing any custom JavaScript.

We’ll start this chapter by covering the basics of LiveView. You’ll see more of
what it is, the programming model it uses, and how it compares to Channels.
We’ll then implement the Sneakers23 product page in LiveView, instead of
the Channel-based approach that we used previously. This will be a fun
one—let’s jump in!

1. https://hex.pm/packages/phoenix_live_view

report erratum • discuss

https://hex.pm/packages/phoenix_live_view
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Getting Started with LiveView
LiveView has scratched an itch for real-time applications that seems obvious
in hindsight. Libraries like it have existed in different languages over the
years, but Elixir and Phoenix are perfectly aligned to satisfy the goals that
LiveView has. Developers have expressed boosts in productivity and satisfac-
tion when coding with LiveView, which is a good indicator that it’s a solid
library to have in your development toolbox.

LiveView is new and innovative, but you’ll be able to get started quickly
because it’s built on a foundation that you already know. We’ll go over this
strong foundation and the benefits that LiveView draws from it. We’ll then
look at how data flows in a LiveView application, from front end to back end
and then back to the front end again. Lastly, you’ll see situations where
LiveView thrives, and what trade-offs you should consider when you use it.

Let’s jump into an overview of LiveView before we look at a basic LiveView demo.

LiveView Overview
LiveView is based on existing technologies you’re familiar with: Channels and
Sockets. It takes these tools a step further by providing a rich front-end client
and server-side rendering engine that work together to provide a full-stack
development experience. The following figure captures the flow of LiveView:

Stat ic HTML Page

LiveView Socket LiveView Channel Live EEx (.leex)
Tem plate

LiveView Client
(JavaScript) Events / Data

LiveView
Cont roller

Mounts LiveView

This flow is very similar to how Channels work, because LiveView is based
on Channels, although there are a few extra additions.

The flow starts with a web request to a LiveView-powered route, which renders
a static version of the LiveView and provides it to the front end. The front-end

Chapter 13. Hands-On with Phoenix LiveView • 258

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

page has a LiveView JavaScript client running on it. This client is what connects
to the back-end server and turns the static page into a real-time LiveView.

Once the front-end client connects to the back-end LiveView Socket, the back
end spins up a new LiveView process and the front-end connection is estab-
lished. The LiveView renders a Live EEx template based on the current state
of the LiveView process. When the state of the LiveView process changes, the
LiveView sends a minimal payload to the front end that contains the changes.
The front end then displays the correct HTML in real-time. The front-end
interface stays up to date for as long as the LiveView is connected. The front
end also sends events (such as clicks, key presses, etc.) to the back-end
LiveView.

The best part about LiveView is that it uses the same technologies you’re
already familiar with. Live EEx templates are just normal EEx templates2 that
have a special engine to efficiently track changes. The Socket that the front-
end client connects to is based on the standard Phoenix.Socket module. Finally,
the LiveView itself implements the Phoenix.Channel behaviour. The LiveView
Channel is one of the most complex parts of the flow, but it’s still familiar
due to its foundation in familiar technologies.

You will see how LiveView works and accomplishes this flow throughout this
chapter. Let’s go over a quick LiveView example before we dive deeper into
the how.

A Quick LiveView Example
We’ll look at a very basic example before we dive into how LiveView works.
You don’t need to code this example, because we’re going to build a more
complete project later in this chapter. We’ll look at most of the code that
powers the following LiveView.

The count starts as a random number up to 100,000. The plus and minus
buttons increment and decrement this counter using the LiveView.

Here is the main LiveView file that powers this interface.

2. https://hexdocs.pm/phoenix/templates.html

report erratum • discuss

Getting Started with LiveView • 259

https://hexdocs.pm/phoenix/templates.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

live_view_demo/lib/live_view_demo_web/live/counter_live.ex
defmodule LiveViewDemoWeb.CounterLive do

use Phoenix.LiveView

def render(assigns) do
~L"""
Current count: <%= @count %>
<button phx-click="dec">-</button>
<button phx-click="inc">+</button>
"""

end

def mount(%{count: initial}, socket) do
{:ok, assign(socket, :count, initial)}

end

def handle_event("dec", _value, socket) do
{:noreply, update(socket, :count, &(&1 - 1))}

end

def handle_event("inc", _value, socket) do
{:noreply, update(socket, :count, &(&1 + 1))}

end
end

We define our template, the initial state of the interface, and handlers for
button clicks. This code feels very much like a GenServer, because that’s
what it is. The ~L in the render/1 function defines a Live EEx template string.
There are other ways to include these templates, but this is the simplest way.

The update/3 function is a helper that LiveView provides to easily update state.
Alternatively, we could read and increment the socket.assigns property, just like
in a Channel.

The next file to look at is the controller.

live_view_demo/lib/live_view_demo_web/controllers/page_controller.ex
defmodule LiveViewDemoWeb.PageController do

use LiveViewDemoWeb, :controller
import Phoenix.LiveView.Controller

def index(conn, _params) do
live_render(conn, LiveViewDemoWeb.CounterLive, session: %{

count: :rand.uniform(100_000)
})

end
end

The live_render/3 function provides a static HTML page, which then becomes
real-time when the front-end client connects to it. We’re even able to pass
state from the controller all the way through to the final rendered LiveView.

Chapter 13. Hands-On with Phoenix LiveView • 260

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/live_view_demo/lib/live_view_demo_web/live/counter_live.ex
http://media.pragprog.com/titles/sbsockets/code/live_view_demo/lib/live_view_demo_web/controllers/page_controller.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

LiveView provides a signed session mechanism that allows for user authenti-
cation and state passing out-of-the-box.

There is only a very small amount of front-end JavaScript code that was added
for this example.

live_view_demo/assets/js/app.js
import css from "../css/app.css"
import "phoenix_html"
import { Socket } from "phoenix"
import LiveSocket from "phoenix_live_view"

let liveSocket = new LiveSocket("/live", Socket)
liveSocket.connect()

This JavaScript is generic, so it’s fair to say that there’s no custom JavaScript
in this example.

There are a few additional files that have code in them, such as the Endpoint
module, but this is the bulk of the code. This example shows how simple it
is to get started with LiveView, and how we can build dynamic interfaces
without any custom JavaScript. You can run this code by starting the
live_view_demo project that is distributed with this book, but you’ll code a differ-
ent example shortly.

We’ll break down how LiveView works in the rest of this section.

A Rock Solid Foundation
One of the strengths of LiveView is that it’s based on technologies that you
already know: Elixir, Channels, and socket transports such as WebSockets.
LiveView’s foundation in established technologies helps to increase its stabil-
ity and scalability. You’ll also feel a bit familiar with LiveView, right from the
beginning, because of your understanding of Channels.

LiveView’s vertical scalability is primarily due to Elixir. One of the challenges
that LiveView has to face is to store state on the server, then quickly and
efficiently send diffs to the front end. This is one of Elixir’s sweet spots. Pro-
cesses allow for in-memory state and operations on that state, and processes
are seamlessly scaled vertically, across CPU cores.

Phoenix Channels and PubSub provide horizontal scalability across multiple
machines already, and LiveView leverages this as well. In addition to benefit-
ting from Phoenix Channels and PubSub, LiveView also leverages Phoenix
Controllers to provide statically mounted pages out-of-the-box. Server-side
rendering is a complex problem to solve, but LiveView’s foundation and
implementation in a single language makes it seamless for you.

report erratum • discuss

Getting Started with LiveView • 261

http://media.pragprog.com/titles/sbsockets/code/live_view_demo/assets/js/app.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The flow of data in LiveView is based on established design patterns. We’ll
look at this next.

LiveView’s Programming Model
The way that data moves around your application can greatly impact scala-
bility and maintenance. While programming ecosystems can be a bit divided
sometimes, it is clear that two front-end patterns have emerged as popular:
declarative user interfaces and unidirectional data flow.

In declarative programming, you describe what the world should look like
when the state is a certain way. For example, you can write a template that
declares what to do when the weather says it will rain:

<div>
<%= if will_rain?(state) do %>

It's going to rain
<% else %>

It's a clear day!
<% end %>

</div>

This template would get rendered and used automatically when the weather
is loaded into the state. An imperative programming model would involve
modifying the content of the DOM when the weather is fetched, which might
look like this:

function setWeather(weather) {
if (weather.willRain) {

weatherElement.setText("It's going to rain")
} else {

weatherElement.setText("It's a clear day!")
}

}

It seems like a small difference, but this imperative programming model works
against you in a large codebase. Declarative programming makes it easier to
reason about, maintain, and grow a codebase. LiveView uses a declarative
programming model, so your code gains these benefits.

Another important aspect of LiveView is its unidirectional data flow. LiveView’s
interface is based on the current state of its Channel. The interface emits
events when actions happen, such as button clicks or any HTML-based event,
which are then processed by the Channel and may change the state. Any
update to the state causes the template to be efficiently re-rendered and the
difference sent back to the user interface. This sounds like a lot, but is easy
to visualize as shown in the figure on page 263.

Chapter 13. Hands-On with Phoenix LiveView • 262

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

User Interface

EventState

Data in this model flows in a single direction. Again, it seems like a small
thing, but this adds up as a project gets larger. Unidirectional data flow is
easier to understand than bidirectional flow, and is one of the reasons that
LiveView is able to keep state in the Channel, away from the front end.

The data model and programming paradigm help improve performance and
readability of applications, but LiveView would be difficult to use without an
efficient way to change content. We’ll look at how content is swapped out and
modified next.

How LiveView Changes Content
LiveView has two major elements for managing content. The first is its template
engine, which allows it to be efficient in how data is sent from server to client.
The second is the JavaScript that runs and interprets the changes. LiveView
does use JavaScript, but it’s mostly hidden away from you, with only small
portions exposed.

When you write a template for LiveView, it’s compiled using the Live EEx3

template engine. This engine separates the static parts of your template from
the dynamic parts. When a dynamic template part changes, the engine knows
how to only send the changes to the client. This allows for efficient data
exchange between server and client. The content of the template is then sent
to the front end for processing.

LiveView’s front end uses morphdom4 to efficiently change the DOM based
on what LiveView knows the DOM should be. LiveView’s JavaScript client is
in charge of other things as well, such as unpacking the template data and
creating a clean interface between a developer and the mechanisms that
LiveView uses.

3. https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.Engine.html
4. https://github.com/patrick-steele-idem/morphdom

report erratum • discuss

Getting Started with LiveView • 263

https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.Engine.html
https://github.com/patrick-steele-idem/morphdom
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Enough waiting, it’s time to build something real with LiveView. We’re going
to revisit Sneakers23’s product page. We’ll rebuild it to use LiveView.

Build a LiveView Product Page
You’re going to see just how easy it is to get set up with LiveView in this
example. We will revisit the product page that we built back in Chapter 7,
Build a Real-Time Sneaker Store, on page 121. This product page lists out all
of the different shoes, shows whether they’re released or not, and shows the
availability of each size. This page updates in real time when a shoe is released
or when a size’s availability changes. It looks like this:

We already have a working version of this page powered by Channels and
JavaScript code. We’re going to leave much of the Elixir code unchanged,
because it’s already present and working, but our LiveView implementation
will have only a few lines of JavaScript in it!

This example is intentionally kept simple, for the sake of brevity. There are
mechanisms that LiveView provides that allow us to implement a slightly
more efficient version of this example. These are mentioned at the end of this
section but won’t be used in this example.

Let’s start by setting up the project. You will first download the base code,
and then we’ll install the LiveView library.

Set Up Your Project
Make sure you have a copy of this book’s code, using the instructions found
in Online Resources, on page xiii. Next, copy the base application into a

Chapter 13. Hands-On with Phoenix LiveView • 264

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

development location. If you already have the sneakers_23 folder from building
the project in previous chapters, then there’s no need to run the following
block of commands.

$ cp -R code/location/sneakers_23_admin_base ~/sneakers_23_live_view
$ cd ~/sneakers_23_live_view
$ mix deps.get && mix ecto.setup && npm --prefix assets install

To set up LiveView, we’ll need to include the Mix dependency and also update
our front-end package file. Let’s start with the mix.exs file. Add the
phoenix_live_view library into the deps function. I grouped it with the other Phoenix
packages.

sneakers_23_live_view/mix.exs
{:phoenix_ecto, "~> 4.0"},
{:phoenix_live_view, "~> 0.4.1"},

It will probably be okay for you to use a newer version of LiveView because
we’re going to use basic features only. LiveView is still a rapidly changing
library, so the latest version may be different for you.

Run mix deps.get to fetch the LiveView code. Next, we need to adjust our
assets/package.json file. Point the phoenix_live_view dependency to the local depen-
dency version, like so:

sneakers_23_live_view/assets/package.json
"dependencies": {

"phoenix": "file:../deps/phoenix",
"phoenix_html": "file:../deps/phoenix_html",
"phoenix_live_view": "file:../deps/phoenix_live_view"

},

There are two code items we’ll add before we start building. We need to define
the LiveView signing salt in our application config. You can use the salt
included below, but you should always generate a distinct salt for each
application you put into production. You can do this by defining the salt in
your prod environment config.

sneakers_23_live_view/config/config.exs
config :sneakers_23, Sneakers23Web.Endpoint,

url: [host: "localhost"],
render_errors: [view: Sneakers23Web.ErrorView, accepts: ~w(html json)],
pubsub: [name: Sneakers23.PubSub, adapter: Phoenix.PubSub.PG2],
run `mix phx.gen.secret 32` to generate a salt
live_view: [signing_salt: "4HQtYoFXxy289OQFbZTEWLTm8NATIkay"]➤

Lastly, we need to set up our Endpoint module to know about LiveView.

report erratum • discuss

Build a LiveView Product Page • 265

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/mix.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/assets/package.json
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/config/config.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_live_view/lib/sneakers_23_web/endpoint.ex
socket "/live", Phoenix.LiveView.Socket,

websocket: true,
longpoll: false

LiveView uses a Phoenix.Socket, so we use the standard socket/3 function to define
our LiveView. The Phoenix.LiveView.Socket module is provided by LiveView, so you
don’t need to code it yourself. The Phoenix.Socket foundation helps LiveView feel
familiar in our application.

We’re ready to code our LiveView now.

Using LiveView
A LiveView revolves around a central module that calls use Phoenix.LiveView. This
basic module provides the LiveView code, just like Channels call use
Phoenix.Channel. Each LiveView must define the render/1 function, but most will
also define a mount/2 function and event handlers.

We’re replacing features of our ProductChannel, so we’ll call our LiveView module
ProductPageLive.

sneakers_23_live_view/lib/sneakers_23_web/live/product_page_live.ex
defmodule Sneakers23Web.ProductPageLive do

use Phoenix.LiveView

alias Sneakers23Web.ProductView

def render(assigns) do
Phoenix.View.render(ProductView, "live_index.html", assigns)

end

def mount(_params, socket) do
{:ok, products} = Sneakers23.Inventory.get_complete_products()
socket = assign(socket, :products, products)

{:ok, socket}
end

end

This LiveView fetches the complete listing of products, exactly like Sneakers23Web.
ProductController does. It assigns the data into the socket state, making it usable by
the render/1 function. This feels very familiar to a Channel or GenServer.

Our render function won’t work because live_index.html.leex does not yet exist.
Let’s create that next. We actually already have a fully working product page
template, but it’s not a Live EEx file. Create a copy of the existing index file,
but give it the .leex extension.

$ cp lib/sneakers_23_web/templates/product/index.html.eex \
lib/sneakers_23_web/templates/product/live_index.html.leex

Chapter 13. Hands-On with Phoenix LiveView • 266

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/lib/sneakers_23_web/endpoint.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/lib/sneakers_23_web/live/product_page_live.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The index template expects to receive an assignment for products. We’ve already
done that, so our template will just work!

We’ll add our real-time features next. We already have messages being sent
over PubSub when the events that we care about happen. These messages
are sent over the topic matching "product:*", so we need to subscribe to the
topic for each product that we care about. We do this when the LiveView
mounts.

sneakers_23_live_view/lib/sneakers_23_web/live/product_page_live.ex
def mount(_params, socket) do

{:ok, products} = Sneakers23.Inventory.get_complete_products()
socket = assign(socket, :products, products)

if connected?(socket) do
subscribe_to_products(products)

end

{:ok, socket}
end

defp subscribe_to_products(products) do
Enum.each(products, fn %{id: id} ->

Phoenix.PubSub.subscribe(Sneakers23.PubSub, "product:#{id}")
end)

end

LiveView first renders the template server-side. In this case, the web process
is going to quickly complete, so we don’t want to subscribe to the PubSub
topics. We use connected?/1 for code that we want to run only when connected
in Socket mode.

We need to change the products when our LiveView gets updates about the
products. We could do this by changing only the affected product or item,
but we’ll take the easier route of fetching the complete product set from
memory. Add the following callbacks to ProductPageLive.

sneakers_23_live_view/lib/sneakers_23_web/live/product_page_live.ex
def handle_info(%{event: "released"}, socket) do

{:noreply, load_products_from_memory(socket)}
end

def handle_info(%{event: "stock_change"}, socket) do
{:noreply, load_products_from_memory(socket)}

end

defp load_products_from_memory(socket) do
{:ok, products} = Sneakers23.Inventory.get_complete_products()
assign(socket, :products, products)

end

report erratum • discuss

Build a LiveView Product Page • 267

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/lib/sneakers_23_web/live/product_page_live.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/lib/sneakers_23_web/live/product_page_live.ex
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

A LiveView is just a process, so we use handle_info/2 to process the incoming
messages. We change the state by assigning the products to the socket state.

At this point, our LiveView module is finished, but we need to expose a route
for our LiveView before we can use it. There are several different ways that
we could mount a LiveView. We’ll use the Router based approach. Add the fol-
lowing code to the Router module.

sneakers_23_live_view/lib/sneakers_23_web/router.ex
import Phoenix.LiveView.Router

scope "/", Sneakers23Web do
pipe_through :browser

live "/drops", ProductPageLive
end

There are other options for mounting the LiveView. You could render it from
a controller, in a regular Phoenix template, or even in other LiveViews.

We have an application that will mount the LiveView and render our page now.
It shouldn’t update in real-time because we haven’t set up the JavaScript yet,
but our existing code is going to pick up the page content and enrich it to update
in real-time. This is simply a by-product of our existing Channel-based applica-
tion, so let’s modify our app.js file to not join the existing ProductChannel Channels.

Modify the code above the definition of cartChannel in app.js to look like the
following:

sneakers_23_live_view/assets/js/app.js
productSocket.connect()

if (document.querySelectorAll("[data-phx-main]").length) {
// connectToLiveView()

} else {
const productIds = dom.getProductIds()
productIds.forEach((id) => setupProductChannel(productSocket, id))

}

This code will not set up the ProductChannel if there is an HTML element with a
data-phx-main attribute. LiveView includes this attribute on the root <div>, so
this change will give us the desired effect. You would not need to do this
normally, but we had existing code that was interacting with our LiveView-
rendered interface.

It’s important to understand that LiveView separates server rendering from
real-time updates. Let’s demo this by seeing that our LiveView does not update
in real-time yet, because we haven’t connected the JavaScript LiveView client.
Follow these steps to start your server:

Chapter 13. Hands-On with Phoenix LiveView • 268

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/lib/sneakers_23_web/router.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/assets/js/app.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server

Next, load http://localhost:4000/drops to load the LiveView-powered page. You will
see two shoes on the page, and each will be unreleased. Run the following
command in the iex session to release the shoes.

iex(1)> Enum.each([1, 2], &Sneakers23.Inventory.mark_product_released!/1)
:ok

When you look at the web page, you’ll see that nothing has changed—it’s not
real-time. Let’s make it real-time by setting up the LiveView client. We’ll create
a function that connects the LiveView Socket. Add the following code to socket.js.

sneakers_23_live_view/assets/js/socket.js
import { Socket } from "phoenix"
import LiveSocket from "phoenix_live_view"

export const productSocket = new Socket("/product_socket")

export function connectToLiveView() {
const liveSocket = new LiveSocket("/live", Socket)
liveSocket.connect()

}

The path in the LiveSocket maps to the path that we added to the Endpoint module.
We need to call the connectToLiveView function in app.js. Uncomment the connect-
ToLiveView function that you added earlier, and add the function import.

sneakers_23_live_view/assets/js/app.js
import { productSocket, connectToLiveView } from "./socket"

if (document.querySelectorAll("[data-phx-main]").length) {
connectToLiveView()

} else {

This is all the code we need to power our LiveView. Let’s test out the features
of our product page. We’ll release the shoes and sell them out, and we should
see everything update in real-time. Follow these steps to start your server:

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server

Next, load http://localhost:4000/drops to load the LiveView-powered page. You will
see two shoes on the page, and each will be unreleased. Run the following
command in the iex session to release the shoes and start selling them out.

iex(1)> Enum.each([1, 2], &Sneakers23.Inventory.mark_product_released!/1)
:ok
iex(2)> Sneakers23Mock.InventoryReducer.sell_random_until_gone!

report erratum • discuss

Build a LiveView Product Page • 269

http://localhost:4000/drops
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/assets/js/socket.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/assets/js/app.js
http://localhost:4000/drops
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Your interface will update in real-time, just like the Channel approach does.
You can also add the shoes to your cart, because the existing CartChannel code
is hooked into the interface with the JavaScript handlers that we wrote in
previous chapters.

Try out the message inspection techniques covered all the way back in
Chapter 2, Connect a Simple WebSocket, on page 15 to inspect the messages
that the LiveView Channel sends to the front end. You’ll see how the template
is split into chunks based on static and dynamic content.

We are using if statements inside of list comprehensions in our LiveView, so
most of our content is marked as dynamic. LiveView provides mechanisms
such as live_component to help optimize the payload sizes in this case, although
this example has purposefully been kept simple. I implemented this example
using a combination of live_component and send_update, which dramatically reduced
the byte size. The trade-off is that the code becomes slightly more complex
to manage. You can read the engine documentation5 to understand the opti-
mizations that LiveView uses to get small payload sizes in most situations.

Now that we have a working ProductLiveView, let’s write tests for it.

Write Tests for a LiveView
LiveView, like Channels, provides test helpers that allow you to quickly write
meaningful tests for your LiveView module. The Phoenix.LiveViewTest6 module
provides all the helpers you need to get started writing tests.

Our LiveView is fairly simple because it doesn’t respond to front-end events.
Our tests will be basic because of this. We’ll ensure that ProductLiveView mounts,
renders the correct HTML, updates when shoes release, and updates when
shoes sell out.

To get started, we’ll need to add a test dependency to our mix.exs file. Live-
ViewTest uses Floki to parse HTML, so let’s add that.

sneakers_23_live_view/mix.exs
{:hound, "~> 1.0"},
{:floki, ">= 0.0.0", only: :test}

As always, run mix deps.get to fetch the dependency. Next, create ProductLive-
ViewTest using the following skeleton code.

5. https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.Engine.html#content
6. https://hexdocs.pm/phoenix_live_view/Phoenix.LiveViewTest.html

Chapter 13. Hands-On with Phoenix LiveView • 270

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/mix.exs
https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.Engine.html#content
https://hexdocs.pm/phoenix_live_view/Phoenix.LiveViewTest.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
defmodule Sneakers23Web.ProductPageLiveTest do

use Sneakers23Web.ConnCase, async: false➤

import Phoenix.LiveViewTest➤

alias Sneakers23.Inventory

setup _ do
{inventory, _data} = Test.Factory.InventoryFactory.complete_products()
{:ok, _} = GenServer.call(Inventory, {:test_set_inventory, inventory})

{:ok, %{inventory: inventory}}
end

defp release_all(%{products: products}) do
products
|> Map.keys()
|> Enum.each(& Inventory.mark_product_released!(&1))

end

defp sell_all(%{availability: availability}) do
availability
|> Map.values()
|> Enum.each(fn %{item_id: id, available_count: count} ->
Enum.each((1..count), fn _ ->

Sneakers23.Checkout.SingleItem.sell_item(id)
end)

end)
end

end

Most of this code is setup functions that are specific to Sneakers23. However,
all LiveView tests should use Web.ConnCase and also import Phoenix.LiveViewTest.

The first test we’ll write is to ensure that the right HTML is rendered when
LiveView does server rendering.

sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
test "the disconnected view renders the product HTML", %{conn: conn} do

html = get(conn, "/drops") |> html_response(200)
assert html =~ ~s(<main class="product-list">)
assert html =~ ~s(coming soon...)

end

This test is exactly like you would write for a normal Plug-based route, so it
might feel familiar already. It gets more interesting when we use the live/2
function to mount a connected LiveView instance.

report erratum • discuss

Write Tests for a LiveView • 271

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
test "the live view connects", %{conn: conn} do

{:ok, _view, html} = live(conn, "/drops")
assert html =~ ~s(<main class="product-list">)
assert html =~ ~s(coming soon...)

end

The tuple that is returned from live/2 will be used in future tests that we
write—it is the magic that drives the LiveView tests. In this test, we’re simply
making sure that our view works when Socket mounted, just like it does when
server-mounted.

When you test that a LiveView processes PubSub messages, you can simply
send those messages to PubSub like you normally would. However, you must
then call render/1 to get the updated view. The next test that we’ll write uses
this to ensure that released products update the interface from “coming
soon…” to a size selector.

sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
test "product releases are picked up", %{conn: conn, inventory: inventory} do

{:ok, view, html} = live(conn, "/drops")
assert html =~ ~s(coming soon...)

release_all(inventory)
html = render(view)

refute html =~ ~s(coming soon...)
Enum.each(inventory.items, fn {id, _} ->

assert html =~ ~s(name="item_id" value="#{id}")
end)

end

The release_all/1 function releases the items, which emits a PubSub message.
ProductLiveView picks up these messages and updates the state, which updates
the interface. Our final test is very similar to this, only we sell the items after
we release them.

sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
test "sold out items are picked up", %{conn: conn, inventory: inventory} do

{:ok, view, _html} = live(conn, "/drops")

release_all(inventory)
sell_all(inventory)
html = render(view)

Enum.each(inventory.items, fn {id, _} ->
assert html =~

~s(size-container__entry--level-out" name="item_id" value="#{id}")
end)

end

Chapter 13. Hands-On with Phoenix LiveView • 272

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23_live_view/test/sneakers_23_web/live/product_page_live_test.exs
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

You should see your tests turn green when you run mix test test/sneakers_23_web/live
/product_page_live_test.exs. We are now confident that ProductLiveView works as
expected!

In addition to testing LiveView with ExUnit, you can also write automated
acceptance tests. I created the Acceptance.LiveProductPageTest test for you already—I
just added /drops to the URL. Our existing automated acceptance tests work
on our new LiveView-powered interface because we didn’t change the user
interface at all—we simply changed the technology that powers it. The HTML
is exactly the same and behaves the same way to the user. You can run these
tests yourself with mix test, but make sure that ChromeDriver is started.

Wrapping Up
LiveView allows you to write real-time interfaces with little to no JavaScript.
LiveView builds on the power of Elixir, Phoenix Channels, and Phoenix PubSub
to provide a stable and efficient base. With LiveView, you express your user
interface and behavior in a declarative format. This would normally be difficult
for real-time interactive applications that span multiple languages, but LiveView
makes it feel intuitive. LiveView’s unidirectional data flow, combined with its
declarative model, makes your applications clearer to read, extend, and maintain.

We rewrote the real-time product page from earlier chapters using LiveView.
Amazingly, we didn’t change our application’s business logic at all. We wrote a
LiveView that renders the same template as our controller did previously and
handles the same messages that we were already emitting in our application.

Our existing automated acceptance tests worked out-of-the-box with LiveView.
We only had to point them at the new interface instead of the old one. We
wrote new tests for our LiveView using the provided test helpers. These tests
were a breeze to write and read, due to the simplicity of the LiveViewTest helpers.

As of the time of writing this book, LiveView is still rapidly evolving and
becoming more polished. Features may be slightly different than what is
presented in this book, but the essence is the same. There will be even more
features and optimizations available in the future. Also, as Phoenix Channels
and Elixir evolve, so will LiveView. Its strong technical foundations in these
existing technologies provides a feedback loop where improvements in one
can potentially provide improvements to the others.

We’re going to look at a completely different way of writing application front
ends next. You’ll see how Phoenix Channels can easily be integrated into
React single-page apps, or even React Native mobile apps.

report erratum • discuss

Wrapping Up • 273

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

CHAPTER 14

Single-Page Apps with React
Front-end frameworks have taken over the application development space.
There’s a good chance you are using a library such as React,1 Vue.js,2 or
Angular3 to develop the front end of your application. These powerful libraries
can all be used to build single-page applications. If you’re using one of these
libraries with a real-time Phoenix back end, then you need to have a solution
in place to use Phoenix Channels. Luckily, it’s easy to integrate Channels
into any of these libraries. In this chapter, we’ll use Phoenix Channels in a
React single-page app.

In a single-page app, a user navigates forward and backward without a full-
page reload. This allows the app to maintain state throughout the user’s flow,
as well as provide quicker page transitions in the app. The project is basic in
this chapter, with much of the code already written for you. This chapter
assumes some React knowledge, but not knowing React won’t block you from
progressing.

We’ll start by covering the different ways that state can be stored in React.
State is the foundation of any application. This is especially true for real-time
applications, because we need a place to store and access the Phoenix
Channel client and the data that is exchanged over it. This will lead us into
a component-driven architecture that separates the Phoenix Socket and
Channel connections from the rest of the front end. We’ll then put everything
into practice by finishing the code for a provided React application. Finally,
we’ll briefly touch on React Native and the power of real-time on mobile.

Let’s jump into React state management.

1. https://reactjs.org/
2. https://vuejs.org/
3. https://angular.io/

report erratum • discuss

https://reactjs.org/
https://vuejs.org/
https://angular.io/
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Manage Channel State in React
State management is a fairly complex topic in the front-end development
world. At first glance it’s very easy, but state management code can quickly
morph to become complex and error-prone. Despite the complexity, applica-
tions would not be very useful without state and a way to manage that state.
We’ll look at some of the different state-management options, then continue
the chapter with the techniques the community has largely adopted.

State management is important to us because we need a place to store and
work with the Phoenix Channel. We need to fully control the Channel
throughout the application life cycle to reduce the risk of bugs.

React, and essentially every front-end library, has undergone an evolution in
state-management technique since it was first created. You can implement
the same application a dozen different ways, and all are correct. The trade-
offs of different techniques may not appear until an application gets large, or
a large team works on the application. Let’s look at the different options
available, starting with the oldest and ending with most recent.

Component State with Props
The first and most basic way of managing state is to keep the state in a
component and then expose that state to child components via props.
This approach is very easy to conceptualize and is easy to get started
with, but it becomes difficult to manage in large applications. For example,
if you have a global application state, such as a Socket, you will pass the
socket throughout your entire application tree as a prop.

This approach serves as the basis for React’s more recent state-manage-
ment approaches. However, it’s generally not recommended outside of
small use cases. You can find posts online about prop drilling—the act
of deeply passing props around an application—and why it’s bad.

Redux-based State
Redux4 was built to solve complex application state management. With
Redux, state is kept in an isolated store, completely separate from the
React application. No part of the user interface ever modifies the state
directly. Instead, events are dispatched to the Redux store, and then the
state is modified by dedicated functions. This is a unidirectional data
flow, just like you saw with LiveView in the last chapter.

4. https://redux.js.org/

Chapter 14. Single-Page Apps with React • 276

report erratum • discuss

https://redux.js.org/
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Redux is a library that I’m a big fan of, and it works well for Phoenix
Socket state management. We won’t use it in this chapter, though. Instead,
we’ll stick to options that React comes with out-of-the-box.

React Contexts
React introduced contexts5 to allow applications to easily pass state to
deeply nested child components, without explicitly passing the prop to
every component. This approach significantly increases the ease of man-
aging state in a component and removes the prop-drilling problem.

We’ll use contexts in our sample React application to manage the Socket
and Channel state.

React Hooks
React Hooks6 are a relatively new addition to the React library. Hooks
allow you to use state, contexts, and life cycle management without writing
class-based components. Hooks were introduced primarily to allow for
easier code re-use than class-based components allow. You’ll work with
hooks later in this chapter.

These are only a few of the options available for state management with React.
There are many more external libraries available, although the out-of-the-box
mechanisms are covered above. You may be wondering what you should use
for your applications. The community has rallied heavily around state man-
agement with hooks and contexts, or alternatively with Redux. We’ll be using
React Hooks and Contexts for our example.

The mechanism you get started with doesn’t actually matter that much,
because you can build a working application with any of them. The structure
of your application does matter, though. A well-structured application lets
you move parts around without much hassle and is easier to maintain in the
long run. In the next section, we’ll look at isolating Phoenix Socket and
Channel logic into components, so the logic remains separate from the rest
of an application.

Write Channels as Components
Components are the heart of React. The type of component that we’re most
familiar with is a presentation component—this type of component renders
the user interface and accepts input events from the user. Components do

5. https://reactjs.org/docs/context.html
6. https://reactjs.org/docs/hooks-overview.html

report erratum • discuss

Write Channels as Components • 277

https://reactjs.org/docs/context.html
https://reactjs.org/docs/hooks-overview.html
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

not need to have an interface though. A container component can wire up
logic, configure other components, pull data from other sources, or set up a
context.

You use container components to separate Phoenix code from the rest of the
application. You could get by without this separation, by adding Channels
directly into a presentation component, but the lack of separation becomes
hard to maintain and grow over time. Use components to create an application
that is easy to change and understand.

There’s an easy way to tell if your application’s components are doing too
much. If a component defines the Socket or Channel in the same component
that renders the interface, then you may benefit by splitting the Socket or
Channel into separate components. In general, it’s a best practice to have
single purpose components that each perform a single task.

For example, let’s imagine an ActivityFeedPage component that renders timeline
data in real time. We might implement the component with the following code.

class ActivityFeedPage extends React.Component {
componentDidMount() {

this.socket = this.setupSocket()
this.channel = this.setupChannel(this.socket)
this.channel.on('new_activity', (activity) => {

const oldActivities = this.state.activities || []
this.setState({ activities: [activity, ...oldActivities] })

})
}

componentWillUnmount() {
this.socket.disconnect()

}

render() {
return this.state.activities.map(this.renderActivity)

}

renderActivity(activity) {
// render the activity

}
}

This example is artificial, but illustrates that the Channel is defined in the
same component that renders an activity. We could easily include the <Activi-
tyFeedPage /> component in a page somewhere, and it would work as expected.
In a single-page app Router, the component might be used like so:

Chapter 14. Single-Page Apps with React • 278

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

<App>
<Router>

<Route route="/activities">
<ActivityFeedPage />

</Route>
</Router>

</App>

This example seems to work well at a first glance, and it is easy to understand,
but it violates our definition of a single-purpose component. Problems would
begin to appear once we wanted to use the Socket or Channel in other com-
ponents, or if we needed to coordinate access to the real-time data across the
entire application.

Let’s consider an example that separates the Socket and Channel into con-
tainer components. The Router might look like this if we wanted to use the
Socket across multiple routes.

<App>
<AppSocket>

<ActivityChannel>
<Header>

<ActivityAlerts />
</Header>

<Router>
<Route route="/activities">

<ActivityFeedPage />
</Route>

</Router>
</ActivityChannel>

</AppSocket>
</App>

In this example, the AppSocket and ActivityChannel are defined for the entire
application. This allows us to share the logic of new activities across multiple
components—ActivityAlerts and ActivityFeedPage. The code is slightly more verbose,
but an application built with single-purpose components will be more flexible
and easier to work with in the long run.

There’s no code for the AppSocket and ActivityChannel components in the previous
example, because we’re about to implement a very similar example with real
code. In the next section, we’ll complete an application that implements a
component-based approach for Sockets and Channels.

report erratum • discuss

Write Channels as Components • 279

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Hands-On with React
Well-factored components can be difficult to grasp without a concrete example
to show the way. We’ll be working on a Phoenix application with a single-page
React front end. You’ll see examples of container components, presentation
components, and how to wire them together with contexts and React Router.
There will be a bit of React-specific patterns that you may not be used to, but
don’t worry too much if you’re not familiar with React.

The application has several different single-purpose components. We’ll build
a container component that holds a basic Phoenix Socket, and also a presen-
tation component that sends and receives data from a Channel. This example
will be based on a mostly complete codebase so you can jump right into the
code without worrying about setting up React.

This example has four pages and looks like the following image.

This is a single-page app; the browser will not perform a full-page reload as
you navigate around it. Here’s an overview of the four pages in the app:

• Home—This page serves only static content, so it doesn’t use a Socket or
Channel. The Phoenix Socket is disconnected when this page loads.

• Pings—This page receives data from the "ping" topic and displays it in a
textarea element. This page has a button that will send data to the
Channel when pressed—the response from the Channel is displayed in
the textarea element.

Chapter 14. Single-Page Apps with React • 280

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

• Other Pings—This page is a clone of the Pings page, but is for the "other"
topic. When this page is visited, the "ping" Channel is closed and the "other"
Channel is joined.

• Counter—This page receives data from the "ping" topic and shows the
number of received messages.

The application is basic but will demonstrate how different pages can use
different real-time Channels. When you run the application locally, later in
the chapter, you’ll see that the Socket and Channel are efficiently cleaned up
based on the currently loaded page.

Let’s code. First, you’ll need to download and set up the base project.

Set Up the Project
Make sure that you have a copy of this book’s code, using the instructions
found in Online Resources, on page xiii. Next, copy the base application into
a development location.

$ cp -R code/location/react_example_base ~/react_example
$ cd ~/react_example
$ mix deps.get && npm --prefix assets install

This application is mostly complete already. There is an Elixir back end that
looks very familiar to what you’ve coded so far in this book. You don’t have to
worry about the Elixir this time—we’ll be working completely in the React code.

The Routes component defines all of the pages in the application. We’ll start
by looking at how the Router organizes the Socket and PingChannel components.

Inspecting the Router
Our application’s Router defines the page hierarchy of the application. React
Router7 is used to implement the routing mechanism. React Router uses a
component-based design—all of our routes are implemented using compo-
nents, just like anything else in React. This allows us to nest routes inside
of other components. We’ll use this to clean up our Socket and Channel on
pages that don’t use them.

Let’s look at how the Routes component is put together. The first thing that
we’ll look at is how the Home component is separated from the rest of the
application. You don’t need to type any of this code, because it was provided
in the base that you downloaded.

7. https://github.com/ReactTraining/react-router

report erratum • discuss

Hands-On with React • 281

https://github.com/ReactTraining/react-router
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

react_example/assets/js/Routes.js
export default function Routes() {

return (
<Switch>
<Route path={['/pings', '/count', '/other']}>

<WebSocketRoutes />
</Route>
<Route path='/'>

<Home />
</Route>

</Switch>
)

}

This separation allows the Home page to clean up the real-time resources
we’re about to set up. Let’s look at the slightly more complex WebSocketRoutes
component.

react_example/assets/js/Routes.js
function WebSocketRoutes() {

return (
<Socket>
<Route path={['/pings', '/count']}>

<PingChannel topic='ping'>
<Route path='/pings'>
<Pings />

</Route>
<Route path='/count'>
<Count />

</Route>
</PingChannel>

</Route>

<Route path={['/other']}>
<PingChannel topic='other'>

<Route path='/other'>
<Pings topic='other' />

</Route>
</PingChannel>

</Route>
</Socket>

)
}

Every route inside of this component uses the same Socket, so the Socket
component is mounted higher in the hierarchy than every Route. We’ll imple-
ment this Socket component shortly. There are two different PingChannel compo-
nents. The first, for topic 'ping' is mounted only for the /pings and /count pages.
The other, for topic 'other', is mounted only for the /other page.

Chapter 14. Single-Page Apps with React • 282

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/react_example/assets/js/Routes.js
http://media.pragprog.com/titles/sbsockets/code/react_example/assets/js/Routes.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The content of a Route is only mounted when the current URL matches the
provided pattern. When the home page / route is visited, for example, the
entire WebSocketRoutes component is unmounted. When the /other page becomes
active, the <PingChannel topic='ping'> component is unmounted.

Let’s see how the Socket component can be built to clean up after itself when
it’s unmounted.

Build the Socket Component
The Socket component is arguably the heart of our real-time application, along
with the associated Channel. However, not much code will go into building
this component, because React provides an elegant way to build the compo-
nent. We’ll hook into the component life cycle to define what happens when
the Socket component is mounted and unmounted. This is where we’ll initialize
and disconnect the Socket connection.

Open the context/Socket.js file and add the following code:

react_example/assets/js/contexts/Socket.js
import React, { createContext, useEffect, useState } from 'react'Line 1

import { Socket as PhxSocket } from 'phoenix'-

-

export const SocketContext = createContext(null)-

5

export default function Socket({ children }) {-

const [socket, setSocket] = useState(null)-

-

useEffect(() => {-

setupSocket(socket, setSocket)10

-

return () => teardownSocket(socket, setSocket)-

}, [socket])-

-

return (15

<SocketContext.Provider value={socket}>-

{children}-

</SocketContext.Provider>-

)-

}20

First, on line 4, we create the React Context. A Context allows us to pass data
to child components without directly passing the data via props. We use this
Context on line 15 by returning SocketContext.Provider component. Components
are the most important concept in React, so it makes sense that we mount
the Context with one.

The useEffect function is a React Hook. This function is called when the
selected variables change, in this case the socket variable. This is guaranteed

report erratum • discuss

Hands-On with React • 283

http://media.pragprog.com/titles/sbsockets/code/react_example/assets/js/contexts/Socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

to be called when the component mounts and unmounts, but it might be
called at other times as well. On line 10, we call a function that sets up the
Phoenix Socket. We’ll implement that shortly. We also return a function, on
line 12, that cleans up the Socket. This will be called when the component
unmounts.

We’ll write the setupSocket and teardownSocket functions next. Add these functions
to the end of the file.

react_example/assets/js/contexts/Socket.js
function setupSocket(socket, setSocket) {

if (!socket) {
console.debug('WebSocket routes mounted, connect Socket')
const newSocket = new PhxSocket('/socket')
newSocket.connect()
setSocket(newSocket)

}
}

This function could be called even if a Phoenix Socket already exists, due to
how hooks work, so we create the Phoenix Socket only if we don’t already
have one.

The teardownSocket function looks very similar, but it disconnects the Socket.

react_example/assets/js/contexts/Socket.js
function teardownSocket(socket, setSocket) {

if (socket) {
console.debug('WebSocket routes unmounted disconnect Socket', socket)
socket.disconnect()
setSocket(null)

}
}

The combination of these two functions completes the life cycle for the Socket
component. The end result is not that much code, and we have a Phoenix
Socket that is completely integrated into the React component life cycle.

Let’s build a presentational component next. This component displays infor-
mation from the Channel and sends a message to the Channel when a button
is clicked.

Build the Pings Component
The Pings component is a presentational component that reads data from and
sends data to the Channel. It does so with the PingChannel, which you can find
in contexts/PingChannel.js. The Channel code is very similar to the Socket code,
although it exposes a different type of interface with its Context.

Chapter 14. Single-Page Apps with React • 284

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/react_example/assets/js/contexts/Socket.js
http://media.pragprog.com/titles/sbsockets/code/react_example/assets/js/contexts/Socket.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Let’s look at how the PingChannelContext is mounted. You don’t need to type this
code, as it was provided in the project base.

react_example/assets/js/contexts/PingChannel.js
return (

<PingChannelContext.Provider value={{
onPing: onPingSubscription(pingSubscriptions),
sendPing: sendPing(pingChannel)

}}>
{children}

</PingChannelContext.Provider>
)

The Context does not expose the Phoenix Channel itself. Instead, it provides
functions that interact with the Channel. This allows downstream components
to not worry about what a Channel is—they simply need to use some functions
that are in the domain of the application. We’ll use this context when we build
the Pings component.

Add the following code to the components/Pings.js file. There is a little bit of code
already there, but you can clear everything up until the return statement.

react_example/assets/js/components/Pings.js
import React, { useContext, useEffect, useState } from 'react'Line 1

import { PingChannelContext } from '../contexts/PingChannel'-

-

export default function Pings(props) {-

const topic = props.topic || 'ping'5

const [messages, setMessages] = useState([])-

const { onPing, sendPing } = useContext(PingChannelContext)-

-

const appendDataToMessages = (data) =>-

setMessages((messages) => [10

JSON.stringify(data),-

...messages-

])-

-

useEffect(() => {15

const teardown = onPing((data) => {-

console.debug('Pings pingReceived', data)-

appendDataToMessages(data)-

})-

20

return teardown-

}, [])-

This component is doing a bit more than the previous Socket component. The
Pings component uses the useState React hook to give itself a place to store the
messages from the PingChannel. The useContext hook, on line 7, gets the functions

report erratum • discuss

Hands-On with React • 285

http://media.pragprog.com/titles/sbsockets/code/react_example/assets/js/contexts/PingChannel.js
http://media.pragprog.com/titles/sbsockets/code/react_example/assets/js/components/Pings.js
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

from the PingChannelContext, so that the component can communicate with the
Channel.

The onPing function is used, on line 16, to register the component with the
PingChannel subscriber list. The onPing function returns a cleanup function,
which is returned as the teardown function on line 21.

The last function to note is the appendDataToMessages function. This uses
setMessages, on line 10, to update the state of the component when new data
is received.

The final part of this component is the interface’s JSX. Change the <button>
line to match the following code.

react_example/assets/js/components/Pings.js
return (

<div>
<h2>Pings: {topic}</h2>

<p>
This page displays the PING messages received from the
server, since this page was mounted. The topic
for this Channel is {topic}.

</p>

<button onClick={
() => sendPing(appendDataToMessages)

}>Press to send a ping</button>

<textarea value={messages.join('\n')} readOnly />
</div>

)

The button uses sendPing to send data to the Phoenix Channel. The response
is then appended to the message list.

This completes the Pings component. We are going to try out the application
to see how the Socket and Channel behave as we navigate through the
application.

Try Out the Application
Now that you have these two components implemented, we’re going to try out
the different features. We’ll be keeping a close eye on the Network tab
throughout this process so we can see when the Socket connects, disconnects,
joins a topic, or leaves a topic.

Start the server with mix phx.server and then open http://localhost:4000. Next, open
the “WS” section in Chrome’s Network Developer Tools. This section may be

Chapter 14. Single-Page Apps with React • 286

report erratum • discuss

http://media.pragprog.com/titles/sbsockets/code/react_example/assets/js/components/Pings.js
http://localhost:4000
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

labeled differently if you use a different browser. Refresh the page so you get
a completely clean set of requests.

Initially, you’ll notice that the only WebSocket connection is for the
phoenix/live_reload URL, which is provided by Phoenix and is not our application’s
Socket. Next, click on the “Pings” tab. You will see that a new Phoenix Socket
connection is opened in the browser, because we visited a page that requires
a Socket connection. Next, click back and forth between “Pings” and “Home”.
You’ll see that the Socket connection is closed when you visit the “Home”
page and opens again when you visit the “Pings” page.

Visit the “Pings” page again and open the Socket connection in the Network
Developer Tools. You will see the data being sent over the connection. Keep
an eye on "phx_join" and "phx_leave" messages. When you navigate to the “Other
Pings” page, the 'ping' topic is left and the 'other' topic is joined. If you navigate
from the “Pings” page to the “Counter” page, then no change is made to the
Channel, because they use the same topic.

This demo shows how you can use React’s life cycle management to ensure
that Sockets and Channels are joined at the right time. You may, however,
want to have a Socket or Channel connected at all times in the application.
This is where the component-based approach to our application design shines.
You can simply move the <Socket> and <PingChannel> components to a higher
position in the application, such as under the main <App>. Nothing else would
need to be changed to make the Socket and Channel always on.

Before wrapping up, we’re going to talk about React in mobile apps.

React Native Channels
React is a great library for building web applications. However, it has moved
into other technologies besides the web. React Native8 makes it easy to build
native mobile applications on iOS and Android. React Native executes Java-
Script in a native context, which makes it easy to include web libraries, such
as Phoenix Channels, in a mobile app. There may be slight inconsistencies
over time, due to the difference between the mobile JavaScript engine and a
web JavaScript engine, but issues have been small and easy to work around.

Mobile apps have push notifications available to them, so you may not see
the need for Channels on them. However, using the native push service for
real-time messages means putting a lot of trust in a system that cannot be
easily monitored, and that has certain limitations. You can use Channels to

8. https://facebook.github.io/react-native/

report erratum • discuss

React Native Channels • 287

https://facebook.github.io/react-native/
http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

provide real-time messages and to keep control of the flow from end-to-end.
Native push services should still be used for push notifications when your
app is not in the foreground.

When you use Channels in React Native, the advice in this chapter still applies.
Focus on creating a clean component-based architecture that puts a layer
between the Phoenix Channel library and your application. You can use the
latest React features like Hooks and Contexts to help create this clean
architecture.

Another benefit of Phoenix Channels in React Native is that you can enable
long-polling support if you experience challenges with WebSockets in a mobile
environment. Things have largely settled in a way that allows WebSocket-
based Channels to be used on mobile, but the location of your users may
cause problems. It’s nice to have a quick fix, if necessary. No one can tell the
future, but it looks like Phoenix Channels will continue to be supported on
React Native.

Wrapping Up
Front-end frameworks have become quite popular for web and native applica-
tions. All major libraries out there, such as React, Vue.js, or Angular easily
support Phoenix Channels, but you’ll need to write code to integrate the front
end with your back-end Channels. You should strive to create a clean compo-
nent-based architecture that allows your application to grow and change
easily over time.

React comes with many features that make it a breeze to integrate Phoenix
Channels. There are several different ways that you can store state in a React
app. You can use local component state, Contexts, and Hooks to create a
clean interface between your Channels and the components that use them.
You can even use third-party libraries like Redux to manage your state. No
matter what mechanism you use for state management, you can use Channels.

We built an example of component architecture, with well-factored Socket and
PingChannel components. These components were used by a presentational
component to send and receive data from the Phoenix Socket. The components
we built respected the life cycle of React components, which allowed the
Socket and Channel to be cleaned up when they were no longer used. The
ease of React came out in this example, and we didn’t have to write too much
code to tie everything together.

Chapter 14. Single-Page Apps with React • 288

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

The End of Our Journey
Thanks for allowing me to lead you in your real-time journey. Real-time
applications are important, and the toolbox that you’re equipped with is going
to provide an amazing boost to your development productivity. I am constantly
amazed at the libraries provided in the Elixir ecosystem for working with real-
time applications, and I sincerely hope you’re able to leverage these tools to
achieve your goals.

Go forth and build great real-time applications.

report erratum • discuss

The End of Our Journey • 289

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Bibliography

[IT19] James Edward Gray, II and Bruce A. Tate. Designing Elixir Systems with
OTP. The Pragmatic Bookshelf, Raleigh, NC, 2019.

[Tat18] Ben Marx, José Valim, Bruce Tate. Adopting Elixir. The Pragmatic Bookshelf,
Raleigh, NC, 2018.

report erratum • discuss

http://pragprog.com/titles/sbsockets/errata/add
http://forums.pragprog.com/forums/sbsockets

Index

SYMBOLS
* wildcard, Channel topics,

34–37, 39, 83

==, 85

DIGITS
101 HTTP response, 20

A
acceptance testing, 141–160

advantages, 142
asynchronous, 157
automated, 141, 143,

153–159, 189, 273
dashboard for sneaker

store app, 214
databases, 149–151
defined, 141–142
designing scenarios,

144, 186
with Hound, 141, 153–

159, 189
importance of, 141–143
internet related actions,

147
library code, 141
limitations, 159
LiveView, 273
maintenance and, 153,

159
manual, 144–153
page related actions,

145–147
performance and, 159
server errors, 148–153
sneaker store app, 141,

143–159, 186–190

stopping BEAM process-
es, 151–153

user breaks, 143–148

access restriction, importance
of, 53, see also authentica-
tion; authorization

Adopting Elixir, 222, 232

:after_join, 208

alerts
metrics and, 98
sneaker store app shop-

ping cart, 181–185,
188–190

Angular, 275

anomalies, metrics and, 98

APM (Application Performance
Monitoring), 92

appendDataToMessages, 286

Application Performance
Monitoring (APM), 92

applications, see also real-
time applications; sneaker
sales app

inspecting running, 249–
253

instrumentation, 92–98
mobile apps, 287
single-page apps, 275–

288

architecture
component-driven, 275,

288
sneaker store app, 123
sneaker store app, shop-

ping cart, 162–164

asdf, xii

assert_broadcast, 127

assert_push, 88

assert_raise, 85

assert_receive, 88

assert_reply, 86

assign, customizing Channels,
74

assigns
authorization, 60
recurring messages, 75
storing data, 54, 266

at-least-once strategy, 70

at-most-once strategy, 70

atoms
node clustering, 232
vs. strings in Channel

messages, 41

auth_token, 63

authentication
with connect, 30, 54
dashboard for sneaker

store app, 192, 202
defined, 53
empty join and, 31
refreshing, 74
Sockets, 54–59, 62–65,

81–83, 192, 204
Sockets, multiple, 63–65
Sockets, testing, 81–83
topics, 63

authorization
Channels, 54, 59–62, 192
dashboard for sneaker

store app, 192, 202
defined, 53

parameter-based, 60, 62
Socket state based, 60–

62

awaiting_buffer?, 78

B
back-forward cache, 146

back-off algorithm for recon-
nections, 147

back-pressure, 100

basic_auth library, 202

batching, GenStage, 106, 109

BEAM
clustering, 224, 229,

231–233
customizing start up, 223
flags, 223, 248
garbage collection, 41,

223, 242–249
memory management,

242–249
metrics with observer_cli,

250–253
parallelism and, 98, 107,

109
scaling advantages, 6
scheduler, 237–242
stopping BEAM process-

es, 151–153
time and, 111

__before_compile__, 39

being_replaced?, 185

being_replicated?, 137

blocklists, tokens, 59

blue-green rolling deploy-
ment, 228–229

bottlenecks, 240

brew, 150

broadcast
with JavaScript client, 49
preventing duplicate

messages, 79
using, 38

broadcast!
data pipeline with Gen-

Stage, 109
rendering HTML in

sneaker store app, 127

broadcast_from, 179

broadcast_from!, 86, 138

broadcasting
alerts with dynamic sub-

scriptions, 181–185
at-least-once strategy, 70
at-most-once strategy, 70

clustering Channels, 72
data pipeline with Gen-

Stage, 109
defaults, 43
intercepting, 43–45
with JavaScript client,

47, 49
multiple servers, 138
null and, 40
with Presence, 201, 209
preventing duplicate

messages, 79, 86–89
rendering HTML in

sneaker store app, 127
shopping cart for sneaker

store app, 164, 179,
181–185

state changes with
Tracker, 195

understanding, 37–38
updating client in sneak-

er store app, 131–135

browsers
back-forward caches, 146
localStorage for shopping

carts, 163, 167, 175
multi-tab support for

shopping carts, 164,
168–170, 178–180,
186–190

WebSocket support, 16,
18

buffer, 77

buffers
GenStage, 104, 106
JavaScript client, 47
preventing duplicate

Channel messages, 77
testing Channels, 88
unique, 78

C
Cache-Control header, 146

caching, 146

capture_log, 81, 85

CaptureLog, 81

cast, 104

certificates, 22

channel, 30, 34–37, 39

channelParams, 175

ChannelCase, 80–83, 114

Channels, see also messages,
Channel; topics

about, 10, 26–28
advantages, 27–28

asynchronous Channels
for performance, 91,
98–101

authorization, 54, 59–62,
192

back-pressure, 100
clustering, 71–74
components of, 29–37
components, writing as,

277–279
configuration options,

233–235
connecting with Java-

Script client, 47
creating, 31–32
customizing, 74–79
data pipelines, 106–110,

114
designing for unreliable

connections, 67–71
error handling, 33, 40,

48, 50, 71
extracting, 87
Hello Sockets example

setup, 30–37
joining to WebSockets, 32
LiveView and, 258, 261
memory and, 25
metrics, collecting, 95–97
multiple Channels per

Socket, 41, 65
multiple Sockets vs. new

Channels, 63–65
origin checking, 234
performance, 26, 91, 98–

101
process hibernation, 247
React Native, 287
reconnections, 33
resources on, 235
responsibilities, 31
separation in, 31
single-page apps, 275–

279, 281–287
sneaker store app, adding

to, 126, 129
sneaker store app, archi-

tecture, 123
sneaker store app, dash-

board, 192, 215–216
sneaker store app, inte-

gration testing, 157
sneaker store app, render-

ing real-time HTML in,
125–131

sneaker store app, shop-
ping cart, 163–168,
171–180

vs. Sockets, 31

Index • 294

state and, 171
stopping, 42
structure diagram, 29
testing, 74, 80–81, 83–

89, 174
with Tracker, 191, 198–

200, 208–210
WebSockets advantages,

25

ChannelTest, 81

chat systems
communication layer, 5
real-time app advantages,

2

check_origin, 234

Chrome
automating acceptance

testing, 153–159
back-forward caches, 146
DevTools, 18–19, 21
headless, 155
Network Developer Tools,

286
reloading when debug-

ging, 19

ChromeDriver, 153–159, 273

:clear, 246

:clear_hibernate, 246

clients, see also JavaScript
client

Channels and, 28–37,
45–51

designing for unreliable
connections, 67–71

disconnecting for load
balancing, 227

heartbeat-data messages,
22, 64

languages for, 4
LiveView, 269
long polling, 24
PubSub and, 37–38
sending/receiving mes-

sages with Channels,
38–51

understanding real-time
app layers, 3–5

updating data in sneaker
store app, 131–135

cloud providers
deployment to, 223
load balancing, 226

clustering
BEAM, 224, 229, 231–

233
Channels, 71–74

Redis alternative to, 231,
233

with Tracker, 198–200

code
hot code reloading, 228
Phoenix source code, 39
preloading, 223
separation of user-facing

from admin-facing
code, 203

testing library code, 141

code for this book
Hello Sockets example,

197
LiveView demo, 261
LiveView testing, 273
shopping cart, checkout

process, 185
single-page app example,

281
sneaker store app, base,

xii
sneaker store app, dash-

board, 202, 211
sneaker store app, load

tests for dashboard,
214

sneaker store app, unit
tests for dashboard,
202

sneaker store app, unit
tests for shopping cart,
168, 174

source code, xiii
Tracker, 197

code paths, metrics, 96

communication, see also Web-
Sockets

long polling, 23–25, 30,
288

separation of communica-
tion layer and app be-
havior, 5, 7, 16, 69

server-sent events, 25
understanding real-time

app layers, 3–6

compile time checks, 156

components
component-driven archi-

tecture, 275, 288
container, 278
nesting routes in, 281
presentation, 277, 284
React, 277–279

compressing frames, 21, 235

concurrency
data pipelines with, 102,

106–110
GenStage advantages,

116
vs. parallelism, 107

conflict-free replicated data
type (CRDT), 195, 241

ConnCase, 271

connect
authentication, 30, 54
clustering Channels, 72
configuration options,

235
nodes, 232
testing Channels with, 81

connect_info, 235

connect_node, 231

connected?, 267

connections
acceptance testing, 142–

148
always connected setting,

174
clustering Channels, 72
customizing Channels,

74–79
deployment updates, 228
designing for unreliable ,

67–71
errors, 33, 48, 50, 56, 58
errors, logging, 56, 58
full-duplex, 21
heartbeat-data messages,

22, 64
with JavaScript client, 46
joining Channels to Web-

Sockets, 32
keeping alive, 21
load balancing, 225–229
long polling, 23–25, 30
metrics, collecting, 95–97
persistent, 4
reconnections, 33, 50,

68, 142, 147
server-sent events, 25
testing, 80
WebSockets basics, 17–

23

consumers, GenStage, 103–
110, 114

container components, 278

context modules, 128, 168

contexts, React, 277, 280–288

Index • 295

controllers
dashboard for sneaker

store app, 203
LiveView and, 258, 260–

261
sneaker store app archi-

tecture, 123

cookies, 23, 55, 169, 232

cooperative scheduler, 239

CORS (cross-origin resource
sharing), 23, 55

costs
Elixir, 7
real-time applications, 2
scaling, 7

counter example of LiveView,
259–261

CPU, see also performance
Elixir scheduler, 238–242
multi-core, 238
multiple Sockets vs. new

Channels, 63

crashes, process, 151–153

CRDT (conflict-free replicated
data type), 195, 241

cross-origin resource sharing
(CORS), 23, 55

cross-site request forgery
(CSRF), 23, 55, 235

cryptography
authentication tokens,

56, 59
RSA encryption, 59

CSRF (cross-site request
forgery), 23, 55, 235

CSS
dashboard for sneaker

store app, 206, 211
selector approach to inte-

gration testing in
sneaker store app, 158

cURL, 19–21

current_function, 250

D
dashboards

about, 191
acceptance testing, 214
access restrictions, 192
assembling, 211–214
authorization, 202
building, 202–214
designing, 192–194
integration testing, 210
load testing, 214–216
setup, 193

tracking users in sneaker
store app, 191, 196–
216

uses, 98
using, 207–211

data, see also databases
data frames, 21, 235
isolation, 9
multiple servers in

sneaker store app,
135–139

replication events, 136–
139, 150

restoring in sneaker store
app shopping cart, 170

saving in disconnects, 69
sending/receiving with

Channels, 28, 38–51
sending/receiving with

WebSockets, 21
single-page apps with

React, 286
storing in assigns, 54
updating client in sneak-

er store app, 131–135

data frames, 21, 235

data models, e-commerce,
123

data pipelines
with concurrency, 102,

106–110, 114
diagrams, 103
metrics, 102, 110–115
performance, 92, 101–

115
testing, 110, 114–115
Tracker in, 196
traits, 101

data stores
GenStage advantages,

116
scaling performance, 6

data-phx-main attribute, 268

databases, see also data
acceptance testing, 149–

151, 154
as central source of

truth, 74
clustering channels and,

74
saving data in discon-

nects, 69
simulating downtime,

149–151
sneaker store app, data

model, 123

sneaker store app, seed-
ing, 125

stopping, 149–150
transactions, 186

debugging
in Chrome, 19
with inspect, 83
inspecting with observer_cli,

249–253
logging and, 56
maintenance scaling, 6
remote shells and, 223
triggering garbage collec-

tion for, 248
WebSockets, 18

declarative programming, 262

defdelegate macro, 128, 168

deployment
advanced Channel config-

uration, 233–235
blue-green, 228–229
clustering BEAM nodes,

224, 231–233
with Distillery, 222, 224,

232
hot code reloading, 228
load balancing, 225–229
with Mix, 222, 232
options for, 221–224
origin checking, 234
platforms and tools, 223
with releases, 222, 232
resources on, 233
rolling, 228–229
updates, 228–231

deserialization, 167, 171

deserialize, 167

design
acceptance testing scenar-

ios, 144, 186
dashboards, 192–194
redesign and acceptance

testing, 159
scaling and performance,

92, 101–115
sneaker store app, 123
sneaker store app, shop-

ping cart, 162–165
unreliable connections

and, 67–71

Designing Elixir Systems with
OTP, 69

direct_broadcast, 184

dirty scheduler, 240

disconnections
acceptance testing, 142,

147

Index • 296

buffering and, 47
Channel message deliv-

ery, 70
clustering channels and,

74
deployment updates, 228
designing for, 67–71
handling, 33, 48, 50
reasons for, 67
saving data, 69
Sockets in single-page

apps, 283

Dispatcher module, GenStage,
116

Distillery
deployment with, 222,

224, 232
garbage collection op-

tions, 248
inspecting running appli-

cations, 249, 253
observer_cli with, 253

distributed systems, see al-
so clustering; Tracker

advantages, 5
challenges of, 135, 191
defined, 5
using multiple servers in

sneaker store app,
135–139

Docker, 224

DOM
dashboard for sneaker

store app, 212
manipulation libraries,

134
sneaker store app, setup,

129–130
sneaker store app, shop-

ping cart, 174–175
sneaker store app, updat-

ing client, 131–135
uploads with LiveView,

257, 263

E
e-commerce, see also shop-

ping carts; sneaker sales
app

data model, 123
real-time app advantages,

2
saving data in discon-

nects, 69

Ecto
database transactions,

186

SQL sandbox, 154
stopping, 149

EEx templates, 258–264,
266, 270–273

Elixir, see also BEAM
about, xi, 9
advantages, 1, 6, 9
configuring, xii
costs, 7
resources on, 222, 232
scheduler, 237–242
testing and, 85
version, xii
WebSocket support, 16

embedded mode, 223

encryption
authentication tokens,

56, 59
RSA, 59

Endpoints
adding GenStage con-

sumer and producer
stages, 105

broadcasting and, 38
Hound setup, 154
initializing Sockets, 46
LiveView connections,

269
LiveView setup, 265
secret_key_base, 57

environment variables, se-
cret_key_base storage, 57

epmd, 232

ERL_FULLSWEEP_AFTER, 248

Erlang
clustering BEAM nodes,

231–232
configuring, xii
costs, 7
monotonic_time, 111
version, xii
WebSocket support, 16

Erlang in Anger, 250

Erlang Port Mapper Daemon,
232

errors
acceptance testing, 148–

153, 156
authentication, 58
Channel, 33, 40, 48, 50,

71
clustering Channels, 71
data pipeline with Gen-

Stage, 105
isolation, 9
JavaScript client, 48

logging connection error,
56, 58

no process, 105
Sockets, 34, 50, 58
topics, 40
wildcard, 35

event handlers
adding/removing items,

176
LiveView, 260, 262, 266

events
acceptance testing, 145–

147, 149–151
in Channel message

structure, 40
data pipeline with Gen-

Stage, 105, 110–115
intercepting, 43–45
names, 42–43, 49
pattern matching, 40, 42
replication, 136–139, 150
server-sent events, 25

exit reasons, 42

exiting Channels, 42, see al-
so stopping

export, 46

extensions, WebSocket, 21

ExUnit, Hound and, 153–
154, 156

F
Facebook Messenger, 16

fault tolerance, 34, 50, 71

find_all_element, 158

flags, BEAM, 223, 248

Floki, 270

frames, compressing, 21, 235

full-duplex connections, 21

full-sweep garbage collection,
244

functional core
sneaker store app, archi-

tecture, 123
sneaker store app, shop-

ping cart, 165–168
sneaker store app, unit

tests for shopping cart,
168, 174

G
garbage collection

atoms and, 41
BEAM, 41, 223, 248, 250
Channels, 25
flags, 223, 248
full-sweep, 244

Index • 297

generational, 243
major, 244
managing, 242–249
manual, 246–247
memory and, 242–250
minor, 243
WebSockets, 25

garbage_collect, 246–247

gauges, 93

gen_stage package, 103

generate_token, 82

generational garbage collec-
tion, 243

GenServer
about, 124
Channels and, 74
process hibernation, 245
replication events in

sneaker store app,
136–139

stopping, 149
updating client in sneak-

er store app, 135

GenStage
about, 10, 102
advantages of, 115
basics, 102–106
data pipelines, 92, 101–

115
loading, 103

get_session, 170

Google, load balancing at, 25

Google Chrome, see Chrome

graphs, 98

guarantees, 3

H
handle_cast, 104

handle_continue, 151

handle_demand, 104

handle_diff, 198–201

handle_events, 105

handle_in
adding/removing items

in sneaker store app
shopping cart, 177,
179

defined, 32
with JavaScript client, 48
receiving Channel mes-

sages, 40–43
recurring messages, 74
testing Channels, 86

handle_info
dynamic subscriptions,

183
LiveView, 268
recurring messages, 75
replication events, 136

handle_out
adding/removing items

in sneaker store app
shopping cart, 179

data pipeline metrics,
112

deduplicating outgoing
messages, 77–79

with JavaScript client,
49–51

pushing messages to a
client, 43–45

testing Channels, 86

HAProxy, 226

hard real-time applications,
3

headers, long polling and, 25

heap memory
garbage collection, 243
inspecting applications

with observer_cli, 250

heartbeat-data messages, 22,
64, 231

Hello Sockets example, see
also ping task

asynchronous Channels
for performance, 99–
101

authentication, 55–59, 62
Channels setup, 30–37
clustering Channels, 71–

73
creating, 17
creating Channels, 31–32
data pipeline, 103–115
data pipeline, testing,

110, 114–115
deduplicating outgoing

messages, 76–79, 83,
86–89

metrics, collecting, 94–97
pattern matching, 41–43
PubSub, adding, 38
sending messages, 43–

45, 75
sending messages with

JavaScript client, 46–
51

sending recurring mes-
sages, 75

testing, 80–89

with Tracker, 193, 196–
201

WebSockets, connection
basics, 17–23

Helpers, 156

:hibernate, 246–247

hibernate_after, 247

hibernated state, 25

hibernation, process, 245–
247

histograms, 112

hooks, React, 277, 283, 285,
288

hot code reloading, 228

Hound, 141, 153–159, 189

HTML, see also LiveView
parsing with Floki, 270
rendering real-time in

sneaker store app,
125–131

replacement, 125, 175

HTTP
101 response, 20
establishing WebSocket

connections, 19–21
HTTP/1 protocol, 4
HTTP/2 protocol, 4
https, 22
long polling, 23–25
state in real-time apps, 5
storing IDs, 164

I
id, 30, 57, 83

IDs
extracting, 167
generating random, 169
multi-tab support, 164,

168–170
Sockets, 30, 57, 83
static, 164
topic pid, 198
user IDs, 54, 61, 75

IETF, 24

iex
starting servers in, 38
stopping servers, 50

if statements, 270

imperative programming, 262

import, 46

increment, 95

infinite loops, 137, 239

info, 249

init, 104, 197

Index • 298

initialization
GenStage producers, 104
testing, 151–153
Tracker, 197

inspect, 83

inspection
debugging with, 83
LiveView, 270
real-time applications

with observer_cli, 249–
253

testing Sockets, 83, 88

instrumentation, 92–98, see
also metrics

integration testing
vs. acceptance testing,

143
performance and, 159
Presence, 210
sneaker store app, 157–

159
sneaker store app, dash-

board, 210

isolation, see also separation
Elixir advantages, 9
errors, 9
writing Channels as com-

ponents in single-page
apps, 277–279

J
JavaScript, see also Java-

Script client
client layer, 4
dashboard for sneaker

store app, 206, 211
integration testing

sneaker store app, 159
LiveView and, 257, 261,

263–264
React Native and, 287
socket file, 46

JavaScript client
acceptance testing, 144,

147
adding Channels to

sneaker store app, 129
authentication, 62
fault tolerance, 50
reconnections, 68, 147
recurring messages, 76
using, 45–51

join
authentication, 31
authorization, 54, 60–62
checking topics in, 35

dashboard with Presence,
210

deduplicating outgoing
messages, 77

empty, 31
load testing dashboard,

215
metrics, 95
preventing duplicate

messages, 86
recurring messages, 75
shopping cart, 171, 173
testing Channels, 84

join refs, 40

Joken, 59

JSON
in Channel message

structure, 40, 42
JSON Web Token (JWT),

59

JSON Web Token (JWT), 59

JWB, 59

JWT (JSON Web Token), 59

K
Kubernetes, 224

L
latency

communication layer
and, 4

long polling, 25

layout/app file, 170

least connections balance
mode, 229

.leex extension, 266

libcluster, 232

list, 197, 200, 208

live, 272

live_component, 270

live_render, 260

LiveView, 257–273
adding to projects, 265
diagram, 258
mounting, 266, 268, 270–

273
programming model, 262
resources on, 270
simple counter example,

259–261
sneaker store app, 264–

273
templates, 258–264,

266, 270–273
testing, 270–273
understanding, 258–264

unidirectional data flow,
262

updates with, 263, 268
versions, 265

LiveViewTest, 270

load balancing
blue-green rolling deploy-

ment, 229
long polling, 25
rolling deployments, 229
scaling deployment, 225–

228
scheduler and, 239
WebSockets, 25, 226–229

load testing, dashboard for
sneaker store app, 214–216

localStorage, sneaker store app,
shopping cart, 163, 167,
175

local_broadcast, 184

logging
capturing log in testing,

81, 85
connection errors, 56, 58
data pipeline with Gen-

Stage, 105, 115
StatsD, 94, 115

long polling, 23–25, 30, 288

loops, infinite, 137, 239

M
maintenance

acceptance testing and,
153, 159

authentication and, 54
data pipelines and, 101
functional core and, 165
perception of maintain-

ability, 7
vs. performance, 37
scaling, 6, 8, 37
separation and functional

core, 165
separation of communica-

tion layer and app be-
havior, 5, 8

separation of components
and, 278

topic names and, 37

major garbage collection, 244

max_demand, 105, 109, 113

measure, 96

memory
apps left open, 142
bloat, 244–247

Index • 299

buffering in JavaScript
client, 47

Channels and, 25
data pipelines and, 102,

105
garbage collection and,

242–250
GenStage advantages,

116
leaks, 142
managing, 242–249
multiple Sockets vs. new

Channels, 63
performance and, 242
storing business data in

process memory, 70
subscriptions, 68
Task and, 100
Tracker and, 195
WebSockets, 25

message refs, 40

message_queue_len, 250

messages, see also broadcast-
ing; data pipelines; mes-
sages, Channel; messages,
process

at-least-once strategy, 70
at-most-once strategy, 70
authentication, 57
batching in Tracker, 196
customizing Channels,

74–79
DevTools, 21
enqueuing, 78, 111
heartbeat-data messages,

22, 64, 231
intercepting, 43–45
metrics, 45
missing user messages in

disconnections, 147
notifications, 111
Presence, 201
PubSub, 30–31
queue length, 250
signed, 57
single-page apps with

React, 286
sneaker store app alerts,

181–185
WebSocket, viewing in

DevTools, 21

messages, Channel
about, 30–31
asynchronous for perfor-

mance, 98–101
deduplicating outgoing,

76–79, 83, 86–89
diagram, 40

disconnects, 70
messages, 74
no reply, 42, 48
protocol, 39
receiving/sending, 32,

38–51
serialization, 100
stopping, 42
testing, 83–89

messages, process
augmenting, 116
casting with GenStage

producers, 104
Dispatcher module, 116
GenStage advantages,

116
replication events in

sneaker store app,
137–139

Messenger, 16

metadata
acceptance testing, auto-

mated, 157
Channel messages, 43
in metrics, 96
of metadata, 93
nodes, 43
with Presence, 208, 210–

214
with Tracker, 194, 198,

208

metadata_for, 157

metric, StatsD, 110–114

metrics
Application Performance

Monitoring (APM), 92
BEAM metrics with observ-
er_cli, 250–253

collecting for inspecting
running applications,
249

data pipelines, 102, 110–
114

data pipelines, testing,
115

histograms, 112
intercepting events for,

45
metadata in, 96
metadata of, 93
multiple servers and, 113
occurrences, 93
performance, 91–98
with StatsD, 91, 93–97
with tags, 95–96
time, 93, 96, 110, 112
visualizing, 98, 112

migration logic, 239

min_demand, 105

minor garbage collection, 243

Mix
about, 222
deployment with, 222,

232
formatter, xii
garbage collection op-

tions, 248
observer_cli with, 253
testing with, 80

Mix Release
deployment with, 222,

232
garbage collection op-

tions, 248
inspecting running appli-

cations, 249, 253

mobile apps, React Native
and, 287

__MODULE__, 166

monotonic_time, 111

morphdom, 263

mount, 266

mounting
components in React,

283, 285
LiveView, 266, 268, 270–

273

Multi, 186

multi-tab support, sneaker
store app, 164, 168–170,
178–180, 186–190

N
--name switch, 71

names
events, 42–43, 49
metrics, 93
nodes, 71, 232
test module, 80
topics, 34, 36

Native Implemented Function
(NIF), 240

nesting routes, 281

new, 17

nginx, 226

NIF (Native Implemented
Function), 240

no process errors, 105

nodes
Channels structure and,

29–30, 37
clustering, 224, 231–233

Index • 300

clustering Channels, 71–
74

connecting to, 231–232
discovering, 232
handle_diff and, 200
load balancing, 225
metadata, 43
names, 71, 232
remote, 30, 37, 73
replication events, 136–

139
starting local, 71
using multiple, 71
using multiple servers,

135–139

:noop, 245

:noreply, 42, 48

notifications, enqueuing mes-
sages and, 111

null, Channel messages and,
40

O
Observe-Remove-Set-Without-

Tombstones (ORSWOT),
195

:observer
scheduler and, 240
stopping processes, 151–

153

observer_cli library, 249–253

onOpen, 63

on, 49

one_for_one supervisor, 151

order
GenStage batching and,

109
inspection, 88
messages, 77, 88

origin checking, 22, 55, 234

ORSWOT (Observe-Remove-
Set-Without-Tombstones),
195

OTP, see Channels; processes

P
PaaS (Platform as a service),

223

packages, deployment with
releases and, 223

page actions, acceptance
testing, 145–147

parallelism
asynchronous Channels

for performance, 98–
101

BEAM and, 98, 107, 109
vs. concurrency, 107
data pipelines with, 102,

106–110
data pipelines with Gen-

Stage, 106–110
GenStage batching and,

109
max_demand, 109, 113
pool_size, 198, 208

parameter-based authoriza-
tion, 60, 62

pattern matching
Channel authorization,

60–62
events, 40, 42
limitations, 39
receiving Channel mes-

sages, 41
testing Channels, 86, 88

payload
in Channel message

structure, 40
compressing frames, 235
empty, 47
format, 42, 48
in JavaScript client, 47–

49
pattern matching, 41
strings vs. atoms, 41
testing Channels, 86

Peerage, 232

performance
acceptance testing and,

159
Application Performance

Monitoring (APM), 92
asynchronous Channels,

91, 98–101
Channels, 26, 91, 98–101
data pipelines, 92, 101–

115
inspecting with observer_cli,

249–253
integration testing and,

159
intercepting events, 44
long polling, 25
vs. maintenance, 37
memory and, 242
metrics, 91–98
multiple Channels per

Socket, 41

multiple Sockets vs. new
Channels, 63–65

multiple servers, 5
scaling, 6, 8, 37, 92, 101–

115
scheduler and, 240
single-process bottle-

necks, 240
storing business data in

process memory, 70
unit testing and, 159

permessage-deflate, 21

pg2, 37

Phoenix, see also Channels;
JavaScript client; LiveView;
PubSub; Sockets, Phoenix;
Presence; tokens; Tracker

about, 10, 28
creating projects, 17
installation and setup, xii
long polling support, 23,

25
source code, 39
starting server in iex, 38

phoenix_live_view, 265

phoenix_pubsub_redis, 233

PhoenixClient library, 215

phx_close, 42

phx_error, 34, 51

phx_join, 32, 34–37, 287

phx_leave, 287

Ping frame, 22

ping task
asynchronous Channels

for performance, 99–
101

authentication, 56–59
clustering Channels, 71–

73
creating, 31–32
deduplicating outgoing

messages, 76–79, 83,
86–89

pattern matching, 41–43
PubSub, adding, 38
sending messages, 43–45
sending messages with

JavaScript client, 46–
51

sending messages, recur-
ring, 75

single-page apps exam-
ple, 280–287

testing Channels, 85

Platform as a service (PaaS),
223

Index • 301

plug, 170

Plugs
acceptance testing, auto-

mated, 157
scaffolding sneaker store

app, 169–170
token generation, 63

Pong frame, 22

pool_size, 198, 208

ports
clustering nodes, 232
port 4000, 17

Postgres, stopping, 150

preemptive scheduler, 239

preloading code, 223

Presence
about, 191, 196
confirming, 201
dashboard for sneaker

store app, 202–214
diagram, 201
vs. Tracker, 201

presentation components,
277, 284

private heap and garbage col-
lection, 243

ProcBin, 243

process, 109

processes, see also garbage
collection; Presence; Track-
er

Channel structure and,
28–29

data pipeline metrics,
110–114

data pipeline with Gen-
Stage, 106–110

hibernation, 245–247
information functions,

249
initialization, testing,

151–153
inspecting with observer_cli,

249–253
isolation, 9
life cycle, 69
LiveView and, 261
looping, 252
replication events, 137–

139
run queue, 238
saving data in discon-

nects, 69
scheduler, 237–242
short-life vs. long-life,

244

single-process bottle-
necks, 240

sneaker store app archi-
tecture, 123

starting new, 108
stopping, 151–153
test helpers, 87

producers, GenStage, 102–
110, 114

programming models, 262

projects, creating, 17

props, 276

PubSub, see also broadcast-
ing; nodes

adapters, 37
at-most-once strategy, 70
Channels responsibilities,

31
Channels structure and,

29–30, 37–38
Channels, clustering, 71
Channels, testing, 86
clustering alternative

with Redis, 233
dynamic subscriptions,

163, 181–185
LiveView and, 261, 267,

272
with Presence, 201
sneaker store app, replica-

tion events, 136–139
sneaker store app, shop-

ping cart, 163, 178,
181–185

with Tracker, 197
using multiple, 71

pubsub_server key, 197

push
data pipeline with Gen-

Stage, 106, 111
load testing dashboard,

215
recurring messages, 75
testing Channels, 86

push notifications, 287

PushEx, 45

put_session, 170

Q
quality assurance (QA),

see acceptance testing

queue
enqueuing messages, 78,

111
enqueuing subscriptions,

182
run queue, 238

R
race conditions, 184

React
components, 277–279
contexts, 277, 280–288
hooks, 277, 283, 285,

288
long polling support, 288
Native, 287
single-page apps, 275–

288
storing state in, 275–277

real-time applications, see al-
so sneaker sales app

advantages, 1–3
costs, 2
development of, xi
guarantees, 3
hard, 3
historical challenges of,

1–2, 16
inspecting with observer_cli,

249–253
layer diagram, 4
layers, 3–6
single-page apps, 275–

288
soft, 3

receiving
Channel messages, 32,

38–43, 45, 49–51
Channel messages with

JavaScript client, 45,
49–51

data with Channels, 28
data with WebSockets, 21

recon library, 250, 253

reconnections
about, 33
acceptance testing, 142,

147
Ecto and, 150
JavaScript client, 50
subscriptions, 68

Redis
alternative to clustering,

231, 233
PubSub adapter, 37
resources on, 233

reduction count, 240, 250,
253

reductions, 250

Redux, 276

refute_push, 88

refute_receive, 88

release_all, 272

Index • 302

releases, deployment with,
222, 232

remote_console, 249, 253

render, 260, 266, 272

render_items, 173

render_to_string, 127

replication
dynamic subscriptions

and, 184
events, 136–139, 150

reply, 100

req_user_id, 61

request headers, long polling
and, 25

resources for this book
Channels, 235
Channels client libraries,

45
deployment, 233
Elixir, 222, 232
JavaScript client, 46
LiveView, 270
long polling, 24
recon, 250
Redis, 233
Sockets, 235
source code, xiii, 39
topics, 39
WebSockets, 18

restart strategies, 151

rolling deployment, 228–229

routers
single-page apps, 278,

281
sneaker store app,

checkout process, 185
sneaker store app, dash-

board, 203
sneaker store app, with

LiveView, 268

RSA encryption, 59

run queue, 238

S
SalesLoft, 17, 224

salt
authentication tokens, 56
LiveView and, 265

sandbox, 154

scaling
clustering Channels, 71,

73
cost, 7
Elixir advantages, 6, 9
hibernated state and, 25

LiveView and, 261
load balancing, 225–228
long polling, 25
maintenance, 6, 8, 37
multiple servers, 6, 135–

139
performance, 6, 8, 37,

92, 101–115
storing business data in

process memory, 70
tensions, 8
topic names and, 36
types of, 6–9

scheduler
cooperative, 239
defined, 238
dirty, 240
preemptive, 239
understanding, 237–242

scripts, deployment with re-
leases and, 223

Sec-WebSocket-Extensions, 21

secret_key_base, 57

security, see also access re-
striction; authentication;
authorization

certificates, 22
cross-origin resource

sharing (CORS), 23, 55
cross-site request forgery

(CSRF), 23, 55, 235
data framing protocol, 21
importance of, 53
origin checking, 22, 55,

234
WebSockets, 21–22

send, 209

send_after, 74

send_update, 270

sending
Channel messages, 38,

43–45
Channel messages, cus-

tomized, 74–79
Channel messages,

deduplicating, 76–79,
83, 86–89

Channel messages, recur-
ring, 74

data with Channels, 28
data with WebSockets, 21

separation
Channels, 31
communication layer and

app behavior, 5, 7–8,
16

components, 278

with context modules,
128

with exported modules,
129

functional core, 165
maintenance and, 5, 7–

8, 165, 278
separation of communica-

tion layer and app be-
havior, 69

single-page apps, 278,
282

user-facing code from ad-
min-facing code, 203

serialization
messages, 100
sneaker store app, shop-

ping cart, 167, 171,
176

serialize, 167

server, 17

server-sent events, 25

servers
acceptance testing recon-

nections, 147
acceptance testing server

errors, 148–153
Channels and, 28–37
Channels, clustering, 71–

74
clustering for blue-green

rolling deployment, 229
clustering with Tracker,

194, 198–200
costs, 7
designing for unreliable

connections, 67–71
load balancing, 25, 225–

229
long polling, 24
multiple servers and

metrics, 113
multiple servers and per-

formance, 5
multiple servers in

sneaker store app,
123, 135–139, 188–190

PubSub and, 37–38
running in Phoenix, 17
scaling problems, 6
sending/receiving mes-

sages with Channels,
38–51

server-sent events, 25
starting in iex, 38
stopping, 50, 135
Tracker design and, 194

Index • 303

understanding real-time
app layers, 3, 5

virtual private servers,
223

setMessages, 286

setup block, 133

sharding, 195, 197–198, 201,
208, 241

shared heap and garbage col-
lection, 243

shells, remote, 223–224

shopping carts
about, 161
acceptance testing, 186–

190
adding/removing items,

166, 176–180, 182,
186–190

alerts, 181–185, 188–190
architecture, 162–164
building, 171–180
checkout process, 185
diagrams, 163–164
with LiveView, 270
multi-tab support, 164,

178–180, 186–190
planning, 162–165
rendering, 172–176
requirements, 162, 186
restoring, 170–171
scaffolding, 165–168
setup, 165
tracking users, 191, 196–

216

:shutdown, 42

sign, 58, 62

single-page apps, 275–288

single-process bottlenecks,
240

sleep, 88

Slither, 16

sneaker store app, see al-
so dashboards; shopping
carts

about, xii, 121
acceptance testing, 141,

143–159, 186–190, 214
architecture, 123
data model, 123
design, 123
integration testing, 157–

159, 210
with LiveView, 264–273
load testing, 214–216
with multiple servers,

123, 135–139

phase goals, 122
product requirements,

122–124
rendering real-time

HTML, 125–131
restoring, 168
server errors, 148–153
setup, 124
testing LiveView, 270–273
tracking users, 191, 196,

202–216
updating client with real-

time data, 131–135
user breaks, 143–148

socket, 84, 266

socket.js, 46

socket_ref, 99

Sockets, see also TCP sock-
ets; WebSockets

adding to sneaker store
app, 126, 130

always connected setting,
174

asynchronous Channels
for performance, 99–
101

authentication, 54–59,
62–65, 192, 204

authentication, testing,
81–83

vs. Channels, 31
Channels structure and,

29
configuration options,

233–235
connecting with Java-

Script client, 46
dashboard for sneaker

store app, 192, 204
errors, 34, 50, 58
ID, 30, 57, 83
initializing with Java-

Script client, 46
LiveView and, 258, 261,

266, 269
load testing dashboard

for sneaker store app,
215–216

metrics, collecting, 95–97
multiple Channels on,

41, 65
multiple Sockets vs. new

Channels, 63–65
origin checking, 234
with Presence, 204
props and, 276
receiving Channel mes-

sages, 40

recurring messages, 75
resources on, 235
responsibilities, 31
single-page apps, 275,

281–287
testing, 80–83
testing Channels, 84

sockets, TCP, 20

soft real-time applications, 3

source control, secret_key_base
and, 57

splat operator *, Channel
topics, 34–37, 39, 83

spoofing, 22

SQL sandbox, 154

SSL, 22

start, 252

start_connections, 216

start_link, 108, 110, 197, 215

starting
processes, 108
restart strategies, 151
servers, 38

state
Channels and, 171
debugging and, 83
deduplicating outgoing

messages, 76–79, 86–
89

hibernated, 25
nodes, remote, 73
replicated state and

CRDT, 195
saving data in discon-

nects, 69
server layer in real-time

apps, 5
sneaker store app archi-

tecture, 123
Socket state authoriza-

tion, 60–62
storing with React, 275–

277
storing with Redux, 276

Statix library, 94

StatsD
about, 91
collecting metrics, 93–97
data pipeline metrics,

110–114
data pipeline metrics,

testing, 115
setup, 94
visualizing metrics, 98

StatsDLogger, 115

Index • 304

stopping
Channels, 42
databases, 149–150
GenServer, 149
processes, 151–153
servers, 50, 135
supervisors, 149

storage
with cookies, 169
GenStage advantages,

116
Redux and, 276
saving data in discon-

nects, 69
of secret_key_base, 57
session IDs, 164
sneaker store app, shop-

ping cart, 163, 167,
171, 175

storing Channel state in
React, 275–277

strings
vs. atoms in Channel

messages, 41
converting variables to,

61
event names, 42
generating random, 169
random strings for salt,

56

strong_rand_bytes, 169

subscribe, 182

subscribe_and_join, 84

subscriptions
adding, 76
dynamic, 163, 181–185
enqueuing, 182
recurring messages, 76
registering, 49
testing Channels, 84
topic, 68, 84
unreliable connections

and, 68

supervisors
data pipelines with Gen-

Stage, 106–110
one_for_one, 151
stopping, 149–150
stopping processes, 151–

153

:sys.get_state, 87

T
tags, 95–96

Task, 100, 108

TCP sockets, 20

technical debt, 9

templates
dashboard for sneaker

store app, 204, 211
LiveView, 258–264, 266,

270–273
rendering real-time in

sneaker store app,
127–129

shopping cart for sneaker
store app, 170

tenants, 93

:terminate, 42

test, 80

test environment, 80, 115,
156

_test.exs file, 80

testing, see also acceptance
testing; integration testing;
unit testing

Channels, 74, 80–81, 83–
89

connections, 80
data pipeline with Gen-

Stage, 110, 114–115
deduplicating outgoing

messages, 86–89
importance of, 79, 89,

141–143
LiveView, 270–273
load testing, 214–216
preventing duplicate

messages, 86
rendering templates in

sneaker store app,
127–129

Sockets, 80–83
test environment, 80,

115, 156
test module names, 80
updating client in sneak-

er store app, 132–135
wildcard * operator in

Channels, 83

time
BEAM and, 111
capturing, 111
data pipelines, 102, 110
metrics, 93, 96, 110, 112
ways of measuring, 111

timers and timeouts
Channel errors, 48, 51
JavaScript client, 48
recurring messages, 75
sleep, 88
sneaker store app shop-

ping cart, 177
testing Channels, 88

tokens
alternatives to Phoenix

tokens, 58
authentication with, 55–

59, 62, 74, 82
authentication with

JavaScript client, 62
authorization, 60–62
blocklists, 59
CSRF, 23, 55, 235
dashboard for sneaker

store app, 192, 205
expiration, 59, 76
generating, 58, 62, 82
refreshing, 74
serialization and, 176
signed, 57, 61, 142, 192
testing, 82

top, 250

topics
authentication, 63
authorization, 59–62
in Channel message

structure, 40
Channel structure and,

29, 34–37
Channels, testing, 84
checking, 35
connecting with Java-

Script client, 47
dashboard for sneaker

store app, 198–200,
208

defined, 34
defining, 30
dynamic subscriptions,

163, 181–185
errors, 40
multi-tab support for

shopping carts, 164,
168–170, 178–180

names, 34, 36
pid, 198
with Presence, 205, 208
resources on, 39
subscribing, 68, 84
with Tracker, 198–200
wildcard *, 34–37, 39, 83

total_heap_size, 250

track, 198, 208

Tracker
about, 10, 191, 196
dashboard for sneaker

store app, 191, 193,
196, 202–214

in data pipelines, 196
memory and, 195
vs. Presence, 201

Index • 305

sharding, 195, 197–198,
201, 208, 241

structure diagram, 195
understanding, 194–196
using in an application,

196–201

transaction, 186

transactions, 186

U
uniq, 78

unit testing
vs. acceptance testing,

143
dashboard for sneaker

store app, 202
functional core for

sneaker store app,
168, 174

performance and, 159
shopping cart for sneaker

store app, 161, 168,
174

unsubscribing, 181–185

update, 208, 260

updates
data in sneaker store

app, 131–135
deploying, 228–231
hot code reloading, 228
with LiveView, 260, 263,

268
with Presence, 208

URIs, security, 22, 55, 234

use, 31

useContext, 285

useEffect, 283

useState, 285

user_id, 61, 75

users, acceptance testing,
143–148

UserSocket, 126

__using__, 31

V
verify, 56

version manager, xii

versions
ChromeDriver, 154
Elixir, xii
Erlang, xii
LiveView, 265

virtual private servers, 223

visualizations, metrics, 98,
112

vm.args, 248

Vue.js, 275

W
WebDriver, 153–159

webpack.config.js file, 206

WebSockets, see also Sockets
about, 4
advantages, 4, 16, 25
browser support for, 16,

18
in Channels structure di-

agram, 29
compressing frames, 235
configuration options,

235
connecting basics, 17–23
connections, keeping

alive, 21
data framing protocol, 21
debugging, 18
deployment and, 224,

229, 235

errors, 50
inspecting, 18
inspecting to confirm

Presence, 201
integration testing

sneaker store app, 159
joining to Channels, 32
LiveView and, 261
load balancing, 25, 226–

229
load testing dashboard

for sneaker store app,
215

loading, 17
memory, 25
Phoenix Sockets and, 30
resources on, 18
RFC, 16, 18
rolling deployment and,

229
security, 21–22
sending/receiving data

with, 21
separation and, 16
single-page apps, 282
understanding, need for,

15–18
viewing in Chrome Net-

work Developer Tools,
286

wscat CLI, 32

WhatsApp, 7

wildcard *, 34–37, 39, 83

work stealing, 239

wscat, 32

wss:// for URIs, 22

Y
Yahoo Finance, 16

Index • 306

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2020 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2020

https://pragprog.com

Designing Elixir Systems with OTP
You know how to code in Elixir; now learn to think in
it. Learn to design libraries with intelligent layers that
shape the right data structures, flow from one function
into the next, and present the right APIs. Embrace the
same OTP that’s kept our telephone systems reliable
and fast for over 30 years. Move beyond understanding
the OTP functions to knowing what’s happening under
the hood, and why that matters. Using that knowledge,
instinctively know how to design systems that deliver
fast and resilient services to your users, all with an
Elixir focus.

James Edward Gray, II and Bruce A. Tate
(246 pages) ISBN: 9781680506617. $41.95
https://pragprog.com/book/jgotp

Programming Phoenix 1.4
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.4, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert as you build the next generation of web appli-
cations.

Chris McCord, Bruce Tate and José Valim
(356 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix14

https://pragprog.com/book/jgotp
https://pragprog.com/book/phoenix14

Programming Elixir 1.6
This book is the introduction to Elixir for experienced
programmers, completely updated for Elixir 1.6 and
beyond. Explore functional programming without the
academic overtones (tell me about monads just one
more time). Create concurrent applications, but get
them right without all the locking and consistency
headaches. Meet Elixir, a modern, functional, concur-
rent language built on the rock-solid Erlang VM. Elixir’s
pragmatic syntax and built-in support for metaprogram-
ming will make you productive and keep you interested
for the long haul. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(410 pages) ISBN: 9781680502992. $47.95
https://pragprog.com/book/elixir16

Learn Functional Programming with Elixir
Elixir’s straightforward syntax and this guided tour
give you a clean, simple path to learn modern function-
al programming techniques. No previous functional
programming experience required! This book walks
you through the right concepts at the right pace, as
you explore immutable values and explicit data trans-
formation, functions, modules, recursive functions,
pattern matching, high-order functions, polymorphism,
and failure handling, all while avoiding side effects.
Don’t board the Elixir train with an imperative mindset!
To get the most out of functional languages, you need
to think functionally. This book will get you there.

Ulisses Almeida
(198 pages) ISBN: 9781680502459. $42.95
https://pragprog.com/book/cdc-elixir

https://pragprog.com/book/elixir16
https://pragprog.com/book/cdc-elixir

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

Competing with Unicorns
Today’s tech unicorns develop software differently.
They’ve developed a way of working that lets them scale
like an enterprise while working like a startup. These
techniques can be learned. This book takes you behind
the scenes and shows you how companies like Google,
Facebook, and Spotify do it. Leverage their insights,
so your teams can work better together, ship higher-
quality product faster, innovate more quickly, and
compete with the unicorns.

Jonathan Rasmusson
(138 pages) ISBN: 9781680507232. $26.95
https://pragprog.com/book/jragile

https://pragprog.com/book/lhelph
https://pragprog.com/book/jragile

Programming Flutter
Develop your next app with Flutter and deliver native
look, feel, and performance on both iOS and Android
from a single code base. Bring along your favorite li-
braries and existing code from Java, Kotlin, Objective-
C, and Swift, so you don’t have to start over from
scratch. Write your next app in one language, and
build it for both Android and iOS. Deliver the native
look, feel, and performance you and your users expect
from an app written with each platform’s own tools
and languages. Deliver apps fast, doing half the work
you were doing before and exploiting powerful new
features to speed up development. Write once, run
anywhere.

Carmine Zaccagnino
(368 pages) ISBN: 9781680506952. $47.95
https://pragprog.com/book/czflutr

Agile Web Development with Rails 6
Learn Rails the way the Rails core team recommends
it, along with the tens of thousands of developers who
have used this broad, far-reaching tutorial and refer-
ence. If you’re new to Rails, you’ll get step-by-step
guidance. If you’re an experienced developer, get the
comprehensive, insider information you need for the
latest version of Ruby on Rails. The new edition of this
award-winning classic is completely updated for Rails
6 and Ruby 2.6, with information on processing email
with Action Mailbox and managing rich text with Action
Text.

Sam Ruby and David Bryant Copeland
(494 pages) ISBN: 9781680506709. $57.95
https://pragprog.com/book/rails6

https://pragprog.com/book/czflutr
https://pragprog.com/book/rails6

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/sbsockets
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/sbsockets
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Who Should Read This Book?
	About This Book
	About the Code
	Online Resources

	1. Real-Time is Now
	The Case for Real-Time Systems
	The Layers of a Real-Time System
	Types of Scalability
	Achieving Real-Time in Elixir
	Building Real-Time Systems
	Wrapping Up

	Part I—Powering Real-Time Applications with Phoenix
	2. Connect a Simple WebSocket
	Why WebSockets?
	Connecting our First WebSocket
	WebSocket Protocol
	Long Polling, a Real-Time Alternative
	WebSockets and Phoenix Channels
	Wrapping Up

	3. First Steps with Phoenix Channels
	What are Phoenix Channels?
	Understanding Channel Structure
	PubSub
	Send and Receive Messages
	Channel Clients
	Wrapping Up

	4. Restrict Socket and Channel Access
	Why Restrict Access?
	Add Authentication to Sockets
	Add Authorization to Channels
	Use Authentication from JavaScript
	When to Write a New Socket
	Wrapping Up

	5. Dive Deep into Phoenix Channels
	Design for Unreliable Connections
	Use Channels in a Cluster
	Customize Channel Behavior
	Write Tests
	Wrapping Up

	6. Avoid Performance Pitfalls
	Measure Everything
	Keep Your Channels Asynchronous
	Build a Scalable Data Pipeline
	Wrapping Up

	Part II—Building a Real-Time Application
	7. Build a Real-Time Sneaker Store
	From Product Requirements to a Plan
	Set Up the Project
	Render Real-Time HTML with Channels
	Update a Client with Real-Time Data
	Run Multiple Servers
	Wrapping Up

	8. Break Your Application with Acceptance Tests
	The Power of Acceptance Testing
	Break Your App Like a User
	Break Your App Like a Server
	Automate Acceptance Tests With Hound
	Wrapping Up

	9. Build a Real-Time Shopping Cart
	Plan Your Shopping Cart
	Scaffold Your Shopping Cart Channel
	Build Your Shopping Cart Channel
	Add Real-Time Out-Of-Stock Alerts
	Acceptance Test the Shopping Cart
	Wrapping Up

	10. Track Connected Carts with Presence
	Plan Your Admin Dashboard
	On Track with Phoenix Tracker
	Use Tracker in an Application
	Phoenix Tracker Versus Presence
	Scaffold the Admin Dashboard
	Track Shopping Carts in Real-Time
	Assemble the Admin Dashboard
	Load Test the Admin Dashboard
	Wrapping Up

	Part III—Bringing Real-Time Applications to Production
	11. Deploy Your Application to Production
	The Lay of the Land
	Achieve Scalability with Load Balancing
	Push New Code Safely
	Cluster Your BEAM Nodes Together
	Advanced Phoenix Channel Configuration
	Wrapping Up

	12. Manage Real-Time Resources
	Getting Comfortable with Elixir’s Scheduler
	Manage Your Application’s Memory Effectively
	Inspect a Running Application
	Wrapping Up

	Part IV—Exploring Front-End Technologies
	13. Hands-On with Phoenix LiveView
	Getting Started with LiveView
	Build a LiveView Product Page
	Write Tests for a LiveView
	Wrapping Up

	14. Single-Page Apps with React
	Manage Channel State in React
	Write Channels as Components
	Hands-On with React
	React Native Channels
	Wrapping Up
	The End of Our Journey

	Bibliography
	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –

