

Early praise for Property-Based Testing with PropEr, Erlang, and Elixir

Property-based testing through PropEr and QuickCheck is one of the most pow-
erful, yet underutilized, testing approaches of the Erlang Ecosystem. Fred, through
his book, has reduced the barrier to entry, making property-based testing acces-
sible to everyone. This book is unarguably a must-have if you are serious about
Erlang and Elixir. A long time coming!

➤ Francesco Cesarini
Director, Erlang Solutions Ltd.

In his inimitable and engaging way, Fred lays out a strong case for why property
testing is a revolutionary idea in software testing and, throughout the book,
masterfully teaches readers how to become proficient in property testing. As we
move toward property testing at Bleacher Report, Property-Based Testing with
PropEr, Erlang, and Elixir is our indispensable guide. For anyone considering
property testing, it should be yours, too.

➤ Ben Marx
Software Architect, Bleacher Report

Fred Hebert has crafted a text with breadth and depth in his inimitable approach-
able style. Property-Based Testing with PropEr, Erlang, and Elixir thoroughly de-
mystifies property testing with detailed examples and practical tips in a way that
is useful to beginners and experts alike.

➤ Sean Cribbs
Staff Software Engineer, Postmates Inc.

Fred breaks these topics down in understandable ways and provides a lot of insight
into how to think about property-based testing. There’s a real emphasis on ensur-
ing that your tests are working to find the hidden bugs and not just generating
random data.

➤ Chris Keathley
Senior Engineer, Bleacher Report

This book is an excellent resource if you want to introduce property-based testing
to your Erlang or Elixir project. It will guide you from the basics to the challenges
of applying property-based testing in practice, giving invaluable advice on how to
get your tests correct and efficient.

If you want to get started with property testing—you need look no further!

➤ Dr. Annette Bieniusa
Senior Researcher and Lecturer, University of Kaiserslautern

Property-Based Testing with
PropEr, Erlang, and Elixir

Find Bugs Before Your Users Do

Fred Hebert

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-621-1
Book version: P1.0—January 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix
Introduction xi

Part I — The Basics

1. Foundations of Property-Based Testing 3
Promises of Property-Based Testing 5
Properties First 7
Property-Based Testing in Your Project 10
Running a Property 14
Wrapping Up 16

2. Writing Properties 17
Structure of Properties 18
Default Generators 22
Putting It All Together 24
Wrapping Up 31

3. Thinking in Properties 33
Modeling 33
Generalizing Example Tests 37
Invariants 38
Symmetric Properties 42
Putting It All Together 44
Wrapping Up 47

4. Custom Generators 51
The Limitations of Default Generators 52
Gathering Statistics 53
Basic Custom Generators 61

Fancy Custom Generators 72
Wrapping Up 83

Part II — Stateless Properties in Practice

5. Responsible Testing 91
The Specification 92
Thinking About Program Structure 92
CSV Parsing 95
Filtering Records 106
Employee Module 116
Templating 128
Plumbing It All Together 131
Wrapping Up 132

6. Properties-Driven Development 133
The Specification 134
Writing the First Test 135
Testing Specials 140
Implementing Specials 148
Negative Testing 152
Wrapping Up 166

7. Shrinking 167
Re-centering with ?SHRINK 168
Dividing with ?LETSHRINK 172
Wrapping Up 175

8. Targeted Properties 179
Understanding Targeted Properties 179
Targeted Properties in Practice 186
Thinking Outside the Box 193
Wrapping Up 197

Part III — Stateful Properties

9. Stateful Properties 201
Laying Out Stateful Properties 202
How Stateful Properties Run 204
Writing Properties 205
Testing a Basic Concurrent Cache 210

Contents • vi

Testing Parallel Executions 224
Wrapping Up 230

10. Case Study: Bookstore 233
Introducing the Application 233
Writing Generators 245
Broad Stateful Testing 247
Precise Stateful Modeling 253
Refining the Tests 265
Debugging Stateful Properties 273
Parallel Tests 278
Wrapping Up 280

11. State Machine Properties 281
Laying Out State Machine Properties 282
How State Machine Properties Run 284
Writing Properties 285
Testing a Circuit Breaker 289
Modeling the Circuit Breaker 292
Adjusting the Model 305
Wrapping Up 310

A1. Solutions 311
Writing Properties 311
Thinking in Properties 311
Custom Generators 316
Shrinking 320
Stateful Properties 323

A2. Elixir Translations 325
Thinking in Properties 325
Responsible Testing 326
Stateful Properties 329
Case Study: Bookstore 331
State Machine Properties 339

A3. Installing PostgreSQL 343
A4. Generators Reference 345

Index 349

Contents • vii

Acknowledgments
I want to thank everyone who offered their time to review this book: Sean
Cribbs, Chris Keathley (who also has been a huge cheerleader of this work
on the Elixir Outlaws podcast), Gabrielle Denhez, Jamu Kakar, Maurice Kelly,
Xavier Shay, Ben Wilson, Evan Vigil-McClanahan, Ben Marx, Bruce Williams,
Kim Shrier, and folks who got the beta versions of this book and then sent
feedback or filed errata, or both.

There’s also an obvious list of people to thank at PragProg, including Andy,
Bruce Tate, and more particularly Jackie Carter, who edited this book and
without whom it wouldn’t be nearly as readable as it is.

I need to thank Jenn, who tolerated me writing this on weeknights on and
off for over a year. I should finally thank Drew Fradette, who suggested I pitch
my early draft to PragProg, which started the whole process of turning it into
this book.

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Introduction
When I finished my first book, Learn You Some Erlang, I told myself “never
again.” There’s something distressing about spending months and years of
work writing a book, spending all bits of free time you can find on it, putting
aside other projects and hobbies, and rewriting your own texts close to a
dozen times. You reach the point where before you’re even done, you’re tired
of writing about the topic you chose to write about.

I knew all of that was waiting for me if I ever wanted to write another book.
I decided to do it anyway because I truly believe property-based testing is
something amazing, worth learning and using. In fact, part of the reason why
I wanted to write a book was that I wanted to use property-based testing in
projects at work and online, and it’s generally a bad idea to introduce a
technology when only one person in the team knows how it works.

It’s a better compromise to spend all that time and effort writing a book than
never using property-based testing in a team when I know what it can do and
bring to a project. Hopefully, you’ll feel that learning about it here is worth
your time as well.

Who Is This Book For
If you know enough of Erlang or Elixir to feel comfortable writing a small
project, you’re fit for this book. There’re a few things that might be a bit con-
fusing, but you should be able to pull through.

If you have experience with unit testing and TDD, you’ll feel comfortable with
most of this book’s testing concepts. While the text does not advocate using
TDD or not (we avoid this whole debate), techniques that use properties to
help design your programs are still shown and constitute a valuable option
to explore a new problem space.

If you are, like me, one of these grumpy people who are annoyed with the
quality of software and feel that you can’t trust yourself to deliver high-quality

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

code every time—you know your code will come back to haunt you sooner or
later—then you will probably consider property-based testing a godsend.

Why Both Elixir and Erlang
The Erlang and Elixir communities possibly suffer from a kind of narcissism
of minor differences; a kind of hostility exists based on small differences
between the two languages and how developers do things, despite Elixir and
Erlang being so much closer to each other than any other language or platform
out there.

This book represents a conscious effort to bridge the gap between the two
communities and see both groups join strengths rather than compete with
each other; it is one small part, attempting to use one property-based testing
tool, with one resource, to improve the code and tests of one community.

What’s in This Book
This book covers pretty much everything you need to get started, up to the
point where you feel confident enough to use the most advanced features of
PropEr. We’ll start smoothly, with the basic and foundational principles of
property-based testing, see what the framework offers us to get started, make
our way through thinking in properties, write our own custom data generators,
and then really start going wild. You’ll see how property-based testing can be
used in a realistic project (and where it should not be used) and learn various
techniques to make the best use of it possible to get the most value out of it.
We’ll also cover properties to test more complex stateful systems, a practice
that is useful for integration and system tests.

Those are the topics covered, but more than anything, you may get a set of
strategies to think about new approaches to test your software. Rather than
just writing repetitive examples for tests, or just generating random data to
throw at the code, you’ll learn new techniques to find new bugs you never
thought could be hiding in your code. You’ll also gain tools to reason about
how to build software, how to explore the problem space, and how to evaluate
the fitness of the solutions you choose.

How to Read This Book
You should feel comfortable just reading all chapters in order. The first part
of the book contains truly essential material to get your fundamentals right
and get started properly. The second part applies properties in more realistic
scenarios to gain comfort, and the last part covers stateful tests.

Introduction • xii

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

But really, it’s easiest to read things in order. Some chapters have questions
and exercises at the end. You can skip these if you want, but going through
them will be a good way to reinforce your understanding of the material covered.

The exercises are added particularly when a lot of theory is introduced in the
chapter and when the material will come back again and again in following
chapters. Going through them may sometimes be tricky, but they will make
the following chapters easier to go through. And because exercises left for the
reader with no guidance are annoying as hell, all solutions are provided.

About the Code
Code is provided in both languages in most places where it makes sense to
do so. Code samples may look like the following:

Erlang code/path/to/file.erl

%% This is some random code for demonstration purposes
path(_Current, Acc, _Seen, [_,_,_,_]) ->

Acc;
path(Current, Acc, Seen, Ignore) ->

frequency([❶
{1, Acc}, % probabilistic stop
{15, increase_path(Current, Acc, Seen, Ignore)}

]).

Elixir code/path/to/file.ex

This is some random code for demonstration purposes
def path(_current, acc, _seen, [_,_,_,_]) do

acc
end
def path(current, acc, seen, ignore) do

frequency([❶
{1, acc}, # probabilistic stop
{15, increase_path(current, acc, seen, ignore)}

])
end

Code references such as ❶ will be used to point to locations in both languages
at once.

Exceptions to this norm will include code that should be treated as pseudo-
code, shell session output (which will be in Erlang only), and longer code
samples that would take a lot of space, which will instead be located within
an appendix to ease the reading flow. Otherwise, things should be quite
readable for both languages at once.

report erratum • discuss

About the Code • xiii

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

When mentioned, file names for a code snippet point to where you should
put the code if you’re following along. Frequent reminders about this will be
added, just in case. Downloadable code for this book contains the final code
for each module and may not contain intermediary steps shown in the text.

Online Resources
The apps and examples shown in this book can be found at the Pragmatic
Programmers website for this book.1 You’ll also find a link there where you
can provide feedback by submitting errata entries.

The book relies on the PropEr2 library. Its online documentation3 will invariably
prove useful.

Elixir users will use the PropCheck4 wrapper library, which also has its own
online documentation.5

Fred Hebert

January 2019

1. https://pragprog.com/book/fhproper/property-based-testing-with-proper-erlang-and-elixir
2. https://github.com/proper-testing/proper
3. https://proper-testing.github.io/
4. https://github.com/alfert/propcheck
5. https://hexdocs.pm/propcheck

Introduction • xiv

report erratum • discuss

https://pragprog.com/book/fhproper/property-based-testing-with-proper-erlang-and-elixir
https://github.com/proper-testing/proper
https://proper-testing.github.io/
https://github.com/alfert/propcheck
https://hexdocs.pm/propcheck
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Part I

The Basics

First things first. This part contains all you need to
give you a solid foundation on which to build and
includes important material explaining what prop-
erty-based testing is, how to get set up, and infor-
mation to let you get familiar with thinking in
properties and the tools the framework provides
for you.

CHAPTER 1

Foundations of Property-Based Testing
Testing can be a pretty boring affair. It’s a necessity you can’t avoid: the one
thing more annoying than having to write tests is not having tests for your
code. Tests are critical to safe programs, especially those that change over
time. They can also prove useful to help properly design programs, helping
us write them as users as well as implementers. But mostly, tests are repetitive
burdensome work.

Take a look at this example test that will check that an Erlang function can take
a list of presorted lists and always return them merged as one single sorted list:

merge_test() ->
[] = merge([]),
[] = merge([[]]),
[] = merge([[],[]]),
[] = merge([[],[],[]]),
[1] = merge([[1]]),
[1,1,2,2] = merge([[1,2],[1,2]]),
[1] = merge([[1],[],[]]),
[1] = merge([[],[1],[]]),
[1] = merge([[],[],[1]]),
[1,2] = merge([[1],[2],[]]),
[1,2] = merge([[1],[],[2]]),
[1,2] = merge([[],[1],[2]]),
[1,2,3,4,5,6] = merge([[1,2],[],[5,6],[],[3,4],[]]),
[1,2,3,4] = merge([[4],[3],[2],[1]]),
[1,2,3,4,5] = merge([[1],[2],[3],[4],[5]]),
[1,2,3,4,5,6] = merge([[1],[2],[3],[4],[5],[6]]),
[1,2,3,4,5,6,7,8,9] = merge([[1],[2],[3],[4],[5],[6],[7],[8],[9]]),
Seq = seq(1,100),
true = Seq == merge(map(fun(E) -> [E] end, Seq)),
ok.

This is slightly modified code taken from the Erlang/OTP test suites for the
lists module, one of the most central libraries in the entire language. It is

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

boring, repetitive. It’s the developer trying to think of all the possible ways
the code can be used, and making sure that the result is predictable. You
could probably think of another ten or thirty lines that could be added, and
it could still be significant and explore the same code in somewhat different
ways. Nevertheless, it’s perfectly reasonable, usable, readable, and effective
test code. The problem is that it’s just so repetitive that a machine could do
it. In fact, that’s exactly the reason why traditional tests are boring. They’re
carefully laid out instructions where we tell the machine which test to run
every time, with no variation, as a safety check.

It’s not just that a machine could do it, it’s that a machine should do it. We’re
spending our efforts the wrong way, and we could do better than this with
the little time we have.

This is why property-based testing is one of the software development practices
that generated the most excitement in the last few years. It promises better,
more solid tests than nearly any other tool out there, with very little code.
This means, similarly, that the software we develop with it should also get
better—which is good, since overall software quality is fairly dreadful
(including my own code). Property-based testing offers a lot of automation to
keep the boring stuff away, but at the cost of a steeper learning curve and a
lot of thinking to get it right, particularly when getting started. Here’s what
an equivalent property-based test could look like:

sorted_list(N) -> ?LET(L, list(N), sort(L)).

prop_merge() ->
?FORALL(List, list(sorted_list(pos_integer())),

merge(List) == sort(append(List))).

Not only is this test shorter with just four lines of code, it covers more cases.
In fact, it can cover hundreds of thousands of them. Right now the property-
based test probably looks like a bunch of gibberish that can’t be executed (at
least not without the PropEr framework), but in due time, this will be pretty
easy for you to read, and will possibly take less time to understand than even
the long-form traditional test would.

Of course, not all test scenarios will be looking so favorable to property-based
testing, but that is why you have this book. Let’s get started right away: in
this chapter, we’ll see the results we should expect from property-based
testing, and we’ll cover the principles behind the practice and how they
influence the way to write tests. We’ll also pick the tools we need to get going,
since, as you’ll see, property-based testing does require a framework to be
useful.

Chapter 1. Foundations of Property-Based Testing • 4

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Promises of Property-Based Testing
Property-based tests are different from traditional ones and require more
thinking. A lot more. Good property-based testing is a learned and practiced
skill, much like playing a musical instrument or getting good at drawing: you
can get started and benefit from it in plenty of friendly ways, but the skill
ceiling is very high. You could write property tests for years and still find ways
to improve and get more out of them. Experts at property-based testing can
do some pretty amazing stuff.

The good news is that even as a beginner, you can get good results out of
property-based testing. You’ll be able to write simple, short, and concise tests
that automatically comb through your code the way only the most obsessive
tester could. Your code coverage will go high and stay there even as you
modify the program without changing the tests. You’ll even be able to use
these tests to find new edge cases without even needing to modify anything.

With a bit more experience, you’ll be able to write straightforward integration
tests of stateful systems that find complex and convoluted bugs nobody even
thought could be hiding in there. In fact, if you currently feel like a code base
without unit tests is not trustworthy, you’ll probably discover the same phe-
nomenon with property testing real soon. You’ll have seen enough of what
properties can do to see the shadows of bugs that haven’t been discovered
yet, and just feel something is missing, until you’ve given them a proper
shakedown.

Overall, you’ll see that property-based testing is not just using a bunch of
tools to automate boring tasks, but a whole different way to approach testing,
and to some extent, software design itself. Now that’s a bold claim, but we
only have to look at what experts can do to see why that might be so. An
example can be found in Thomas Arts’ slide set1 and presentation2 from the
Erlang Factory 2016. In that talk, he mentioned using QuickCheck (the
canonical property-based testing tool) to run tests on Project FIFO,3 an open
source cloud project. With a mere 460 lines of property tests, they covered
60,000 lines of production code and uncovered twenty-five important bugs,
including:

• Timing errors
• Race conditions

1. http://www.erlang-factory.com/static/upload/media/1461230674757746pbterlangfactorypptx.pdf
2. https://youtu.be/iW2J7Of8jsE
3. https://project-fifo.net

report erratum • discuss

Promises of Property-Based Testing • 5

http://www.erlang-factory.com/static/upload/media/1461230674757746pbterlangfactorypptx.pdf
https://youtu.be/iW2J7Of8jsE
https://project-fifo.net
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

• Type errors
• Incorrect use of library APIs
• Errors in documentation
• Errors in the program logic
• System limits errors
• Errors in fault handling
• One hardware error

Considering that some studies estimate that developers average six software
faults per 1,000 lines of code, then finding twenty-five important bugs with
460 lines of tests is quite a feat. That’s finding over fifty bugs per 1,000 lines
of test, with each of these lines covering 140 lines of production code. If that
doesn’t make you want to become a pro, I don’t know what will.

Let’s take a look at some more expert work. Joseph Wayne Norton ran a
QuickCheck suite4 of under 600 lines over Google’s levelDB to find sequences
of seventeen and thirty-one specific calls that could corrupt databases with
ghost keys. No matter how dedicated to the task someone is, nobody would
have found it easy to come up with the proper sequence of thirty-one calls
required to corrupt a database.

Again, those are amazing results; that’s a surprisingly low amount of code
to find a high number of nontrivial errors on software that was otherwise
already tested and running in production. Property-based testing is so
impressive that it has wedged itself in multiple industries, including mission-
critical telecommunication components,5 databases,6 components of cloud
providers’ routing and certificate-management layers, IoT platforms, and even
in cars.7

We won’t start at that level, but if you follow along (and do the exercises and
practice enough), we might get pretty close. Hopefully, the early lessons will
be enough for you to start applying property-based testing in your own
projects. As we go, you’ll probably feel like writing fewer and fewer traditional
tests and will replace them with property tests instead. This is a really good
thing, since you’ll be able to delete code that you won’t have to ever maintain
again, at no loss in the quality of your software.

4. http://htmlpreview.github.io/?https://raw.github.com/strangeloop/lambdajam2013/master/slides/Norton-
QuickCheck.html

5. http://www.erlang-factory.com/conference/ErlangUserConference2010/speakers/TorbenHoffman
6. http://www.erlang-factory.com/upload/presentations/255/RiakInside.pdf
7. http://www2015.taicpart.org/slides/Arts-TAICPART2015-Presentation.pdf

Chapter 1. Foundations of Property-Based Testing • 6

report erratum • discuss

http://htmlpreview.github.io/?https://raw.github.com/strangeloop/lambdajam2013/master/slides/Norton-QuickCheck.html
http://htmlpreview.github.io/?https://raw.github.com/strangeloop/lambdajam2013/master/slides/Norton-QuickCheck.html
http://www.erlang-factory.com/conference/ErlangUserConference2010/speakers/TorbenHoffman
http://www.erlang-factory.com/upload/presentations/255/RiakInside.pdf
http://www2015.taicpart.org/slides/Arts-TAICPART2015-Presentation.pdf
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

But as in playing music or drawing, things will sometimes be hard. When we
hit a wall, it can be tempting (and easy) to tell ourselves that we just don’t
have that innate ability that experts must have. It’s important to remember
property-based testing is not a thing reserved for wizard programmers. The
effort required to improve is continuous, and the progress is gradual and
stepwise. Each wall you hit reveals an opportunity for improvement. We’ll get
there, one step at a time.

Properties First
Before jumping to our tools and spitting out lines of code, the first thing to
do is to get our fundamentals right and stop thinking property-based testing
is about tests. It’s about properties. Let’s take a look at what the difference
is, and what thinking in properties looks like.

Conceptually, properties are not that complex. Traditional tests are often
example-based: you make a list of a bunch of inputs to a given program and
then list the expected output. You may put in a couple of comments about
what the code should do, but that’s about it. Your test will be good if you can
have examples that can exercise all the possible program states you have.

By comparison, property-based tests have nothing to do with listing examples
by hand. Instead, you’ll want to write some kind of meta test: you find a rule
that dictates the behavior that should always be the same no matter what
sample input you give to your program and encode that into some executable
code—a property. A special test framework will then generate examples for
you and run them against your property to check that the rule you came up
with is respected by your program.

In short, traditional tests have you come up with examples that indirectly
imply rules dictating the behavior of your code (if at all), and property-based
testing asks you to come up with the rules first and then tests them for you.
It’s a similar distinction as the one you’d get between imperative and declar-
ative programming styles, but pushed to the next level.

The Example-Based Way
Here’s an example. Let’s say we have a function to represent a cash register.
The function should take in a series of bills and coins representing what’s
already in the register, an amount of money due to be paid by the customer,
and then the money handed by the customer to the cashier. It should return
the bills and coins to cover the change due to the customer.

An approach based on unit tests may look like the following:

report erratum • discuss

Properties First • 7

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%% Money in the cash register
Register = [{20.00, 1}, {10.00, 2}, {5.00, 4},

{1.00, 10}, {0.25, 10}, {0.01, 100}],
%% Change = cash(Register, PriceToPay, MoneyPaid),
[{10.00, 1}] = cash(Register, 10.00, 20.00),❶
[{10.00, 1}, {0.25, 1}] = cash(Register, 9.75, 20.00),❷
[{0.01, 18}] = cash(Register, 0.82, 1.00),
[{10.00, 1}, {5.00, 1}, {1.00, 3}, {0.25, 2}, {0.01, 13}]❸

= cash(Register, 1.37, 20.00).

At ❶, the test says that a customer paying a $10 item with $20 should expect
a single $10 bill back. The case at ❷ says that for a $9.75 purchase paid with
$20, a $10 bill with a quarter should be returned, for a total of $10.25.
Finally, the test at ❸ shows a $1.37 item paid with a $20 bill yields $18.63
in change, with the specific cuts shown.

That’s a fairly familiar approach. Come up with a bunch of arguments with
which to call the function, do some thinking, and then write down the
expected result. By listing many examples, we try to cover the full set of rules
and edge cases that describe what the code should do. In property-based
testing, we have to flip that around and come up with the rules first.

The Properties-Based Way
The difficult part is figuring out how to go from our abstract ideas about the
program behavior to specific rules expressed as code. Continuing with our
cash register example, two rules to encode as properties could be:

• The amount of change is always going to add up to the amount paid minus
the price charged.

• The bills and coins handed back for change are going to start from the
biggest bill possible first, down to the smallest coin possible. This could
alternatively be defined as trying to hand the customer as few individual
pieces of money as possible.

Let’s assume we magically encode them into functioning Erlang code (doing
this for real is what this book is about—we can’t show it all in the first
chapter). Our test, as a property, could look something like this:

for_all(RegisterMoney, PriceToPay, MoneyPaid) ->
Change = cash(RegisterMoney, PriceToPay, MoneyPaid),
sum(Change) == MoneyPaid - PriceToPay
and
fewest_pieces_possible(RegisterMoney, Change).

Given some amount of money in the register, a price to pay, and an amount
of money given by the customer, call the cash/3 function, and then check the

Chapter 1. Foundations of Property-Based Testing • 8

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

change given. You can see the two rules encoded there: the first one checking
that the change balances, and the second one checking that the smallest
amount of bills and coins possible is returned (the implementation of which
is not shown).

This property alone is useless. What is needed to make it functional is a
property-based testing framework. The framework should figure out how to
generate all the inputs required (RegisterMoney, PriceToPay, and MoneyPaid), and
then it should run the property against all the inputs it has generated. If the
property always remains true, the test is considered successful. If one of the
test cases fails, a good property-based testing framework will modify the
generated input until it can come up with one that can still provoke the failure,
but that is as small as possible—a process called shrinking. Maybe it would
find a mistake with a cash register that has a billion coins and bills in it, and
an order price in the hundreds of thousands of dollars, but could then replicate
the same failure with only $5 and a cheap item. If so, our debugging job is
made a lot easier by the framework because a simple input means it’s way
easier to walk the code to figure out what happened.

For example, such a framework could generate inputs giving a call like
cash([{1.00, 2}], 1.00, 2.00). Whatever the denomination, we might expect the cash/3
function would return a $1 bill and pass. Sooner or later, it would generate
an input such as cash([{5.00, 1}], 20.00, 30.00), and then the program would crash
and fail the property because there’s not enough change in the register. Paying
a $20 purchase with $30, even if the register holds only $5 is entirely possible:
take $10 from the $30 and give it back to the customer. Is that specific amount
possible to give back though? In real life, yes. We do it all the time. But in
our program, since the money taken from the customer does not come in as
bills, coins, or any specific denomination, there is no way to use part of the
input money to form the output. The interface chosen for this function is
wrong, and so are our tests.

Comparing Approaches
Let’s take a step back and compare example-based tests with property tests
for this specific problem. With the former, even if all the examples we had
come up with looked reasonable, we easily found ourselves working within
the confines of the code and interface we had established. We were not really
testing the code, we were describing its design, making sure it conformed to
expectations and demands while making sure we don’t slip in the future. This
is valuable for sure, but properties gave us something more: they highlighted
a failure of imagination.

report erratum • discuss

Properties First • 9

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Example-based unit tests made it easy to lock down bugs we could see coming,
but those we couldn’t see coming at all were left in place and would probably
have made it to production. With properties (and a framework to execute
them), we can instead explore the problem space more in depth, and find
bugs and design issues much earlier. The math is simple: bugs that make it
to production are by definition bugs that we couldn’t see coming. If a tool lets
us find them earlier, then production will see fewer bugs.

To put it another way, if example-based testing helps ensure that code does
what we expect, property-based testing forces the exploration of the program’s
behavior to see what it can or cannot do, helping find whether our expectations
were even right to begin with. In fact, when we test with properties, the design
and growth of tests requires an equal part of growth and design of the program
itself. A common pattern when a property fails will be to figure out if it’s the
system that is wrong or if it’s our idea of what it should do that needs to
change. We’ll fix bugs, but we’ll also fix our understanding of the problem
space. We’ll be surprised by how things we thought we knew are far more
complex and tricky than we thought, and how often it happens.

That’s thinking in properties.

Property-Based Testing in Your Project
What we need now is a framework. As opposed to many testing practices that
require a tiny bit of scaffolding and a lot of care, property-based testing is a
practice that requires heavy tool assistance. Without a framework we have
no way to generate data, and all we’re left with are encoded rules that don’t
get validated. If you use a framework that doesn’t generate great data or
doesn’t let you express the ideas you need, you’ll find it very hard to get as
high a quality in your tests as you would with a good one.

As the book title implies, we will use PropEr. It can be used by both Erlang
and Elixir projects, and integrate with the usual build tools used in both
languages. There are other frameworks available, namely QuickCheck
framework by Quviq,8 and Triq. These two frameworks and PropEr are similar
enough to each other that if your team is using any of them, you’ll be able to
follow along with the text without a problem. This remains true if you’re using
Elixir. You might have heard about StreamData,9 which is a property-based
testing framework exclusive to Elixir (although PropEr has fancier features

8. http://quviq.com/
9. https://github.com/whatyouhide/stream_data

Chapter 1. Foundations of Property-Based Testing • 10

report erratum • discuss

http://quviq.com/
https://github.com/whatyouhide/stream_data
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

than StreamData, particularly in relation to stateful testing). The concepts
should not be hard to carry over from framework to framework in any case.

PropEr is usable on its own through either manual calls or command line utils.
This is fine for some isolated tests and quick demos, but it’s usually nicer to be
able to get the framework to fit your everyday development workflow instead.

Erlang Workflow
We’ll first get things going in Erlang. You should have the language installed
along with the rebar310 build tool. If you’ve used the Common Test or EUnit
frameworks before, you may know that you can use rebar3 ct or rebar3 eunit to
run the tests for your project. To keep things simple, we’ll use a PropEr plugin
that will let us call rebar3 proper and get similar results. That way, everyone
feels at home even with brand-new tools.

If you’re one of the folks who enjoy putting unit tests along with the source
code, you need to know that PropEr requires a different approach, more in
line with Common Test’s vision: tests are in a separate directory and don’t
become part of the artifacts that could ever end up in production.

Fear Not the GPLv3 License

PropEr is licensed under the GPLv3. People are often worried about having to attach
and ship GPL-licensed code with their projects. Placing the tests and dependencies
that are related to PropEr in their own directory means that they are only used as
development tools in a testing context, and never in production. This is true with
rebar3 and for mix as well in Elixir.

As such, whenever you build a release with code to ship and deploy, none of the test
code nor PropEr itself will be bundled or linked to your program. This tends to put
most corporate lawyers at ease, without preventing the authors from getting contri-
butions back in case the tool is modified or used at the center of a commercial product.

Let’s make a fake project out of a template:

$ rebar3 new lib pbt
===> Writing pbt/src/pbt.erl
===> Writing pbt/src/pbt.app.src
===> Writing pbt/rebar.config
===> Writing pbt/.gitignore
===> Writing pbt/LICENSE
===> Writing pbt/README.md
$ cd pbt

10. http://www.rebar3.org/

report erratum • discuss

Property-Based Testing in Your Project • 11

http://www.rebar3.org/
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

That’s a regular library project named pbt. The PropEr plugin and dependency
must be added to the configuration of each individual project you want to use
them with. You do this by editing the rebar.config file so it contains the following:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/Foundations/erlang/pbt/rebar.config

%% the plugin itself
{project_plugins, [rebar3_proper]}.

%% The PropEr dependency is still required to compile the test cases,
%% but only as a test dependency
{profiles,

[{test, [
{erl_opts, [nowarn_export_all]},
{deps, [proper]}

]}
]}.

This sets up the PropEr plugin for rebar3 so that we can invoke it from the
command line, and sets up the framework as a dependency for our test builds
only, and only, within that project. Let’s first check that the plugin works by
invoking any command:

$ rebar3 help proper
«automatically fetching and building plugin»
Run PropEr test suites
Usage: rebar3 proper [-d <dir>] [-m <module>] [-p <properties>]

[-n <numtests>] [-v <verbose>] [-c [<cover>]]
[--retry [<retry>]] [--regressions [<regressions>]]

«a lot more help output»
The build tool fetches the things it needs, and everything is now available
within that directory. We’re now ready to write a property, which we can do
in the next section, after going over the equivalent setup for Elixir.

Elixir
If you’re more familiar with Elixir, you can still use PropEr with mix,11 Elixir’s
build tool. By adding the propcheck12 package to your project configuration, mix
will be able to find and execute PropEr properties within the same files as

11. http://elixir-lang.github.io/getting-started/mix-otp/introduction-to-mix.html
12. https://hex.pm/packages/propcheck

Chapter 1. Foundations of Property-Based Testing • 12

report erratum • discuss

http://elixir-lang.github.io/getting-started/mix-otp/introduction-to-mix.html
https://hex.pm/packages/propcheck
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

those that contain standard Elixir test cases written in ExUnit, the language’s
default test framework.

Once again we’ll start by setting up a standard project, this time in Elixir.

$ mix new pbt
* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/pbt.ex
* creating test
* creating test/test_helper.exs
* creating test/pbt_test.exs

Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

cd pbt
mix test

Run "mix help" for more commands.
$ cd pbt

Within that project, modify the mix.exs file to include propcheck dependency for
tests:

Elixir code/Foundations/elixir/pbt/mix.exs

Run "mix help deps" to learn about dependencies.
defp deps do

[
{:propcheck, "~> 1.1", only: [:test, :dev]}

]
end

This makes PropEr available to the tool, and also lets properties be perceived
like regular ExUnit unit tests. As such, there’s no need to use special com-
mands, just the regular ones you may be used to. To get going we just have
to remember to fetch the dependencies:

$ mix deps.get
«fetching package»
$ mix test
==> proper
«build information»
==> propcheck
«build information»
==> pbt
«build information»

report erratum • discuss

Property-Based Testing in Your Project • 13

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Alright, things seem to be in place there as well. We can now run a property.

Running a Property
The properties we’ve seen so far were pseudocode-like and left a lot to imagi-
nation. Now that we have a stand-in directory structure with a structure
similar to what we’d have in a real project, we’re going to tie everything
together. We’ll add a property to the project and execute it. The property will
be basic and test nothing of significance, but it’ll give you a brief idea of what
things look like and how they should all fit together.

Erlang
As mentioned earlier, PropEr’s properties are not located within the same
module as your production source code. Instead, we’ll enforce a strict separa-
tion of production code and test code by forcing all properties to be placed in
standalone modules under the test/ directory, right next to your Common Test
and EUnit test suites, if you have any.

Properties must be added to modules that have a name starting with prop_ (so
that the rebar3 plugin picks them up), and are otherwise regular Erlang code.
You can add a module named prop_foundations under test/prop_foundations.erl, or
you can also use templates to do the same thing for you by calling the following
within the pbt/ directory:

$ rebar3 new proper foundations
===> Writing test/prop_foundations.erl

The file should contain Erlang code similar to the following:

Erlang code/Foundations/erlang/pbt/test/prop_foundations.erl

-module(prop_foundations).
-include_lib("proper/include/proper.hrl").

prop_test() ->
?FORALL(Type, term(),

begin
boolean(Type)

end).

boolean(_) -> true.

That’s what a property looks like. It’s regular Erlang code—although a bit
macro heavy. Calling the prop_test() function from the shell or any other bit of
Erlang code wouldn’t do anything useful, but when PropEr gets its hands on
it, we have a test. That property always returns true and will always pass.

Chapter 1. Foundations of Property-Based Testing • 14

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

We’ll go through how they work in Chapter 2, Writing Properties, on page 17,
but for now, let’s just ask our build tool to run it:

$ rebar3 proper
«build information»
===> Testing prop_foundations:prop_test()
..
........................
OK: Passed 100 test(s).
===>
1/1 properties passed
$ rebar3 proper -n 10000
«build information»
===> Testing prop_foundations:prop_test()
..
......«a lot more dots»
OK: Passed 10000 test(s).
===>
1/1 properties passed

And alright, that’s a test. Well, many of them. Each period is a specific test
sample, and there are a hundred of them. As you can see in the second
command, we can run as many as we want by using the -n argument. We’ve
got 10,000 test cases in ten lines of code! Everything is definitely in its right
place.

Elixir
For Elixir, a similar mechanism is required. Properties go in the test/ directory
under regular test modules. Open up the file at test/pbt_test.exs that mix created
for us, and replace its code with the following:

Elixir code/Foundations/elixir/pbt/test/pbt_test.exs

defmodule PbtTest do
use ExUnit.Case
use PropCheck

property "always works" do
forall type <- term() do
boolean(type)

end
end

def boolean(_) do
true

end
end

report erratum • discuss

Running a Property • 15

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The use instructions load the macro definitions that are required, and instead
of the test "description" do ... end format required by ExUnit, we use property
"description" do ... end to write properties. Within that property, you can probably
see the parts that are in common with Erlang.

You can ask mix to run the property for you through the mix test command:

$ mix test
1 defmodule PbtTest do

.

Finished in 0.05 seconds
1 property, 0 failures

Randomized with seed 189382

While Erlang’s build tool happily writes out one period per property sample,
mix will group all of them under a single one if they pass. Aside from that,
things are roughly the same. A hundred executions have all been bundled
together.

Wrapping Up
We’ve now gone through a little bit of an overview of what property-based
testing asks of us and offers in return, and have things working in a typical
project structure for both Erlang and Elixir. You have your toolbox in order,
and even though we’ve successfully run a property (and over 10,000 tests),
chances are you’re not quite at a point where you feel like you really under-
stand what goes on in the framework and how we could write arbitrary
properties.

That’s fine, though, because the next chapter will get us there. We’ll look into
the specific format of properties, how we can tell the framework what data to
generate for them, how to interpret test results, and so on.

Chapter 1. Foundations of Property-Based Testing • 16

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

CHAPTER 2

Writing Properties
Property-based testing requires us to approach testing differently from what
we’re used to. As we’ve seen earlier, the core of properties is coming up with
rules about a program that should always remain true. That’s the hard part.
But just having that will not be enough: we’ll need to find a way to turn these
rules into executable code, so that a specific framework (PropEr in our case)
can exercise them. We will also need to tell the framework about what kind
of inputs it should generate so that it can truly challenge the rules, something
we call a generator. Once we take the rules encoded as code, the generators,
and then put them together through the framework, we have a property.

Properties come in multiple flavors, but the two main categories are stateless
properties and stateful properties. In traditional example-based testing, it’s
usually a good idea to start with simple unit tests. In property-based testing,
stateless properties are their equivalent. Stateless properties are a great fit
to validate components that are isolated, stateless, and without major side
effects. They are still usable for more complex stateful integration and system
tests, but for those use cases, stateful properties (seen in Chapter 9, Stateful
Properties, on page 201) are more appropriate.

The properties we’ve seen and discussed in the previous chapter were all
stateless, albeit a bit abstract. In this chapter, we’ll make everything concrete
and see how stateless properties are structured so that we can read and
understand them. We’ll also see what data generators are offered out of the
box by PropEr, with some ways of composing them together. Finally, we’ll run
some more properties. This will give us the opportunity to figure out how to
read the results of failing test cases and to see how to fix them.

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Structure of Properties
Even though this chapter will focus on stateless properties, do know that all
properties will share a common basic structure. Fancier stateful properties
will only add content and special calls, but the core will remain the same. All
properties go into files that contain an Erlang (or Elixir) test module, and
must respect a specific format. What we’ll be looking for here is the structure
we’ll use within these modules to let PropEr know what the rules to test are,
and to let it know how to generate the data it should use to test them.

File Structure
Let’s start by taking another look at the code generated within an existing
project when using the templates provided by rebar3’s PropEr plugin, so that
you get a feel for the general way properties should be laid out. In the root of
any standard Erlang project, call the following command:

$ rebar3 new proper base
===> Writing test/prop_base.erl

The generated file contains the prop_base module, a test suite that is divided
in three sections: one section for the many properties we will want to test,
one for helper functions, and one for custom data generators:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/WritingProperties/erlang/pbt/test/prop_base.erl

-module(prop_base).
-include_lib("proper/include/proper.hrl").❶

%%%%%%%%%%%%%%%%%%
%%% Properties %%% %❷
%%%%%%%%%%%%%%%%%%
prop_test() ->

?FORALL(Type, mytype(),
begin

boolean(Type)
end).

%%%%%%%%%%%%%%%
%%% Helpers %%%
%%%%%%%%%%%%%%%
boolean(_) -> true.

Chapter 2. Writing Properties • 18

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%%%%%%%%%%%%%%%%%%
%%% Generators %%%
%%%%%%%%%%%%%%%%%%
mytype() -> term().

The section starting at ❷ is for properties. You can have many properties per
module, each within a dedicated function starting with the prop_ prefix. It’s
usually a good idea to put all the properties at the top of the file, so that
whoever maintains your code will have an easy time seeing what’s being
tested exactly. Here we only have the prop_test() property, but before digging
into that one, let’s see the other sections of the file.

The two other sections are mostly there to help us organize our code whenever
we have multiple properties, and jamming everything into each of them would
be too repetitive or unreadable. Here the second section contains helper
functions. We’ll typically use this part of the file to extract functions that are
common to multiple properties, or code that is simply long enough that it
hurts readability of the properties themselves. When you have few properties
or they’re all short, you may want to omit this section.

The last part of the module contains generators. Each generator is a function
that returns metadata representing a given type. This is a high-level recipe
for data generation, which PropEr knows how to interpret. By default, PropEr
provides a bunch of them, but eventually we’ll write custom generators. This
section’s purpose is therefore similar to the helpers sections, but it’s dedicated
to custom data generators. Whenever the data we need the framework to
generate for us becomes fairly complex or shared across properties, moving
these generators there will be helpful. We won’t need this section for now,
but in Chapter 4, Custom Generators, on page 51 we’ll make use of it.

When a module’s main purpose is to expose a bunch of tests or properties,
we tend to call it a test suite. Not all property test suites have exactly the same
structure as the one here, and while some people will prefer a different code
organization, this one is the default recommended by the rebar3 templates.

For Elixir users, files can have a similar structure:

Elixir code/WritingProperties/elixir/pbt/test/pbt_test.exs

defmodule PbtTest do
use ExUnit.Case
use PropCheck❶

report erratum • discuss

Structure of Properties • 19

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Properties
property "description of what the property does" do

forall type <- my_type() do
boolean(type)

end
end

Helpers
defp boolean(_) do

true
end

Generators
def my_type() do

term()
end

end

But since Elixir properties get to run within the existing ExUnit files your
project might have, you will probably want to make the properties work with
your existing test module structure instead.

Property Structure
Let’s take a look at the prop_test() property. Standing out is the ?FORALL Erlang
macro, which has been imported through the module attribute at ❶. The
macro has this form:

Erlang

?FORALL(InstanceOfType, TypeGenerator,
PropertyExpression).

Elixir

property "some description" do
forall instance_of_type <- type_generator do

property_expression
end

end

The data for the test case is generated by the functions we will enter in the
TypeGenerator position, called the generators. The framework will take these
generators, execute them, and turn them into actual data, which will then
be bound to the InstanceOfType variable. This variable is then made available
within PropertyExpression, a piece of arbitrary code that must return true if the
test is to pass, or false if it is to fail. Since PropertyExpression is a single expression,
you’ll frequently see begin ... end blocks used in that area to wrap more complex
sequences of expressions into a single one.

Chapter 2. Writing Properties • 20

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

We can translate the ?FORALL macro:

proper:forall(TypeGenerator, fun(InstanceOfType) -> PropertyExpression end).

This may feel less magical, and it removes the need for the begin ... end expression.
But since all property-based testing frameworks in Erlang implement the ?FORALL
macro interface, we’ll use that format to make sure everyone feels at home.

Execution Model
To figure out what the macro ends up doing at run time, let’s see the prop_test()
property being tested by the framework:

$ rebar3 proper
«build output»
===> Testing prop_base:prop_test()
...

In this output, PropEr finds our test suite (the prop_base module), finds all the
properties it contains—only prop_test() for now—and executes them. Every
period represents an instance of PropEr taking our property and testing it
against some input. So we have one property run a hundred times, succeeding
at every attempt. For each run, PropEr did the following:

1. It expanded the generator (which was defined with the term() function
provided by PropEr) to a given piece of data.

2. It passed the expanded data to the property, binding it to the InstanceofType
variable.

3. It validated that the actual PropertyExpression returned true.

That term() generator isn’t a standard in Erlang. That’s where property-based
testing frameworks do a bit of magic. The include file directive at the top of
the file is causing all of it:

-include_lib("proper/include/proper.hrl").

The included proper.hrl file contains macro code and inlines and imports mul-
tiple functions provided by PropEr. The term() function is actually shorthand
for the proper_types:term() function call. Try playing with it in the shell:

$ rebar3 as test shell
«build output and shell prelude»
1> proper_types:term().
{'$type',[{env,[{'$type',[{env,{inf,inf}},

{generator,{typed,#Fun<proper_types.7.91186128>}},
{is_instance,{typed,#Fun<proper_types.8.911818>}},
{shrinkers,[#Fun<proper_types.9.91186128>]},
[...]

report erratum • discuss

Structure of Properties • 21

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

This is a high-level recipe for data generation, which PropEr knows how to
interpret. To debug generators in the terminal, you can ask PropEr to materi-
alize an instance of the data type through the proper_gen:pick(Generator) function
call. Play with it a bit in the shell to get a feel for how things work:

2> proper_gen:pick(proper_types:number()).
{ok,-6}
3> proper_gen:pick(proper_types:term()).
{ok,{30,'iPMÒR\237M\203',[],0,-2.3689578345518227,{},

[[],4,{}],
-0.04598152960751201}}

4> proper_gen:pick(proper_types:term()).
{ok,['^ l&\212iå×\210\n',1.5133511315056003,

-8.964623044991622,-49.99970474088979,
{<<1:1>>,1,5.666317902012531,{}},
3.799206557402714,-0.5871676980812601,3]}

To experiment with Elixir, you should instead call mix deps.get, then MIX_ENV="test"
iex -S mix to get a shell, and then call :proper_types.term() and :proper_gen.pick().

Here, each sample is returned in a tuple of the form {ok, Data}. In the first
case, number() returns -6. For the two other cases, since term() represents almost
any Erlang data type (PIDs, for example, are not generated), what we get as
a result is utter garbage, which can nevertheless be useful in some cases.
The ability to get some sampling of the data generated will prove useful when
debugging generators, especially when they grow in complexity later on.

We’ve just seen number() and term(), but those are only two from a large gener-
ator zoo. We should get familiar with more of them, since they end up being
pretty critical in properly exercising properties.

Default Generators
Generators are a huge part of where a property-based testing framework’s
magic comes from. While we do the hard work of coming up with properties,
the efficiency with which they will be exercised entirely depends on what kind
of inputs will be passed to them. A framework with bad generators is not an
interesting framework, and great generators will directly impact how much
trust you can put in your tests.

Generators are functions that contain a bunch of internal parameters that
direct their randomness, how the data they create gets more or less complex,
and information about other generators that can be used as parameters. We
really don’t need to know how their internals work to use them; from our
point of view, they’re just functions that can be combined. Being familiar with
what data they can generate is, however, important, since it lets us create all

Chapter 2. Writing Properties • 22

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

the kinds of Erlang data we might need. You’ll likely even want to use gener-
ators outside of a testing context because they are just that nifty.

PropEr comes with quite a few basic data generators out of the box. They
tend to represent all the relevant basic data types of the language (aside from
opaque data like PIDs, references, or sockets), with some special ones that
allow you to do things such as making sure integers are in a given range, or
making one generator that actually represents multiple other generators.

Here are a few of the important ones. A full list is available in Appendix 4, Gen-
erators Reference, on page 345—it would be a good idea to get familiar with them.

SampleData GeneratedGenerator

any of the samples
below

Any Erlang term PropEr can pro-
duce. Same as term()

any()

'ós43Úrcá\200'Erlang atomsatom()
<<2,203,162,42,84,141>>Binary data aligned on bytesbinary()
true, falseAtoms true or false. Also bool()boolean()
choose(1, 1000) => 596Any integer between Min and Max

inclusively. Same as range(Min, Max)
choose(Min, Max)

4.982972307245969Floating point number. Also real()float()
89234An integerinteger()
list(boolean()) => [true, true,
false]

A list of terms of type Typelist(Type)

non_empty(list()) => [abc]Constrains a binary or a list genera-
tor into not being empty

non_empty(Gen)

123A float or integernumber()
range(1, 1000) => 596Any integer between Min and Max

inclusively
range(Min, Max)

"^DQ^W^R/D" (may gen-
erate weird escape
sequences!)

Equivalent to list(char()), where ‘char()‘
returns character codepoints
between 0 and 1114111 inclusively

string()

{boolean(), char()} =>
{true, 1}

A literal tuple with types in it{T1, T2, ...}

You don’t need to know all of these by heart. Just put a bookmark in the
appendix so you have a handy reference, or look at the online documentation
for PropEr1 or Quickcheck2 when you need to find generators. However, it

1. https://proper-testing.github.io/
2. http://quviq.com/documentation/eqc/index.html

report erratum • discuss

Default Generators • 23

https://proper-testing.github.io/
http://quviq.com/documentation/eqc/index.html
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

may be useful to play with the generators in the Erlang shell to get familiar
with them. Try to see the results of typing the previous generators in the shell,
and try some of those in the appendix as well:

$ rebar3 as test shell
1> proper_gen:pick(proper_types:range(-500,500)).
{ok,-64}
2> proper_gen:pick({proper_types:bool(), proper_types:float()}).
{ok,{true,0.8565227550368821}}
3> {ok,F} = proper_gen:pick(proper_types:function(3, proper_types:list())).
{ok,#Fun<proper_gen.31.64457461>}
4> F(1,2,three).
[[-7,'(\226\212_J',-3,[<<0:3>>,{},[[]],53,'',{[]},-5],á,-1]]
5> proper_gen:pick(proper_types:non_empty(
5> proper_types:list(proper_types:number())).
{ok,[-38.585674396308065,17,9,-0.17548322369895938,3.7420633140371597]}

Even though the proper_types: prefix is required in the shell, it won’t be needed
in our actual test modules, since the framework will autoimport default gen-
erators there.

Ignore the Warnings

When experimenting with generators, you may find yourself faced
with a warning like this:

WARNING: Some garbage has been left in the process dictionary and the code
server to allow for the returned function(s) to run normally. Please run
proper:global_state_erase() when done.

Don’t worry, PropEr displays this message in the shell when
experimenting. Nothing will stay past the current session in your
terminal, and you can usually safely ignore these.

We have the basic syntax of properties with the ?FORALL macro, a bit of an idea
about what rules should be like from the previous chapter, and now we’re
completing the trio with a lexicon of generators that can create arbitrary data.
What we need to do now is tie it all together.

Putting It All Together
To get started with writing our own properties, it may be useful to compare
them with the type of tests we’d already have in place in an existing project.
We’ll start with a simple function, one that finds the largest element in a list.
Coming up with properties isn’t all easy, so beginning with regular tests can
sometimes be a good idea since it can at least help us flesh out what we think
the code should be doing.

Chapter 2. Writing Properties • 24

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Standard unit tests would probably look a bit like this, using the EUnit syntax:

biggest_test() ->
?assert(5 =:= biggest([1, 2, 3, 4, 5])),
?assert(8 =:= biggest([3, 8, 7, -1])),
?assert(-5 =:= biggest([-10, -5, -901])),
?assert(0 =:= biggest([0])).

With regular unit tests, we put together a list of assertions and hope that it
will cover all cases. Here we check for lists that are presorted, lists without
any specific order, single-element lists, and lists containing any positive or
negative numbers. Are there any other edge cases that could exist? That’s
hard to say if we don’t already know what they could be from experience.

With properties, we should be able to get a far better coverage of edge cases,
including those we wouldn’t think of by ourselves. For a property, we need
to find a rule to describe the behavior of the biggest/1 function according to
these examples. The obvious rule is that the function should return the biggest
number of the list passed in. The problem is figuring out how to encode that
rule into a property. The function is so simple and such a direct implementa-
tion of the rule that it’s hard to make an encoding of the rule that is not the
function itself!

Instead we’ll use a second implementation of the function, and use it as a
sanity check with the existing one. If both versions agree, they’re both possibly
right (or equally wrong, so make sure one implementation is obviously correct).
Here we’ll use lists:last(lists:sort(L)) as a simple way to validate the function. It’s
not obvious why we’re using that call specifically, but we’ll get to the rationale
behind that in the next chapter. For now, let’s focus on getting the thing
working:

Erlang code/WritingProperties/erlang/pbt/test/prop_base.erl

prop_biggest() ->
?FORALL(List, list(integer()),

begin
biggest(List) =:= lists:last(lists:sort(List))

end).

Elixir code/WritingProperties/elixir/pbt/test/pbt_test.exs

property "finds biggest element" do
forall x <- list(integer()) do

biggest(x) == List.last(Enum.sort(x))
end

end

report erratum • discuss

Putting It All Together • 25

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

All properties must have a name of the form prop_Name() since the harness for
PropEr in rebar3 looks at the prop_ prefix, both in the file name and the func-
tion, to know which pieces of code to run. For Elixir, propcheck just looks for
the property keyword introducing the test in a regular ExUnit file.

The type generator list(integer()) is a composition of types, generating a list of
integers for each iteration. We can parameterize type generators whenever it
makes sense: a list can take a type as an argument, and so can a tuple, but
an integer would not make sense to parameterize. The generated data is then
bound to the List variable, which will be used in the property’s body. The
expression biggest(List) =:= lists:last(lists:sort(List)) will validate the biggest/1 function
by comparing that the biggest element of the list is equivalent to the last ele-
ment of a sorted list. Any expression that may evaluate to true or false can be
used in the property body.

The implementation for biggest/1 is left entirely to us, but we should avoid
making it use lists:sort/1 and lists:last/1 since that would nullify our test by
making the code the same as the test, so if we make a mistake in one place,
it’s going to be in the other place as well. Here’s a possible implementation:

Erlang code/WritingProperties/erlang/pbt/test/prop_base.erl

%%%%%%%%%%%%%%%
%%% Helpers %%%
%%%%%%%%%%%%%%%
biggest([Head | _Tail]) ->

Head.

Elixir code/WritingProperties/elixir/pbt/test/pbt_test.exs

def biggest([head | _tail]) do
head

end

This is obviously wrong, since the biggest element is not always going to be
the first of the list. Running the tests will only confirm that:

$ rebar3 proper
===> Verifying dependencies...
===> Compiling pbt
===> Testing prop_base:prop_biggest()
!
Failed: After 1 test(s).
An exception was raised: error:function_clause.

Chapter 2. Writing Properties • 26

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Stacktrace: [{prop_base,biggest,❶
[[]],❷
[{file,"/.../pbt/test/prop_base.erl"},
{line,16}]},

{prop_base,'-prop_biggest/0-fun-0-',1,
[{file,"/.../pbt/test/prop_base.erl"},
{line,10}]}].

[]❸

Shrinking (0 time(s))
[]❹

We get an unsurprising failure, after a single run. The PropEr output tells us
about which function failed at ❶, with its arguments (as a list) at ❷. We can
see the initially failing data set as generated by the framework (❸), and one
simplified by the framework—a mechanism called shrinking—at ❹. In both
cases, the empty list ([]) is displayed since it cannot be simpified any further.
In short, our biggest/1 function failed when called with an empty list.

Getting the biggest entry out of an empty list is nonsensical and should rea-
sonably fail. The use case can be ignored by forcing the property to run on
nonempty lists:

Erlang code/WritingProperties/erlang/pbt/test/prop_base.erl

-module(prop_base).
-include_lib("proper/include/proper.hrl").

%%%%%%%%%%%%%%%%%%
%%% Properties %%%
%%%%%%%%%%%%%%%%%%
prop_biggest() ->

?FORALL(List, non_empty(list(integer())),❶
begin

biggest(List) =:= lists:last(lists:sort(List))
end).

Elixir code/WritingProperties/elixir/pbt/test/pbt_test.exs

use ExUnit.Case
use PropCheck

property "finds biggest element" do
forall x <- non_empty(list(integer())) do❶

biggest(x) == List.last(Enum.sort(x))
end

end

report erratum • discuss

Putting It All Together • 27

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The non_empty/1 generator on line ❶ wraps the generator for lists of integers
so that no empty list comes out. Running the test again, we get these results:

$ rebar3 proper
===> Verifying dependencies...
===> Compiling pbt
===> Testing prop_base:prop_biggest()
.........!
Failed: After 10 test(s).
[-1,6,3,1]

Shrinking ...(3 time(s))
[0,1]
===>
0/1 properties passed, 1 failed
===> Failed test cases:
prop_base:prop_biggest() -> false

Elixir and Test Repeats

Elixir users may have to remove the _build/propcheck.ctex file before
rerunning tests to ensure fresh runs every time.

Nine tests passed. The tenth one failed. Initially, it did so with the list of
numbers [-1,6,3,1]. PropEr then shrunk the list to a simpler expression that
triggers the failing case: a list with two numbers, where the second one is
bigger than the first one. This is legitimate input causing a legitimate failure.
The code needs to be patched:

Erlang code/WritingProperties/erlang/pbt/test/prop_base.erl

%%%%%%%%%%%%%%%
%%% Helpers %%%
%%%%%%%%%%%%%%%
biggest([Head | Tail]) ->

biggest(Tail, Head).

biggest([], Biggest) ->
Biggest;

biggest([Head|Tail], Biggest) when Head > Biggest ->
biggest(Tail, Head);

biggest([Head|Tail], Biggest) when Head < Biggest ->
biggest(Tail, Biggest).

Elixir code/WritingProperties/elixir/pbt/test/pbt_test.exs

def biggest([head | tail]) do
biggest(tail, head)

end

Chapter 2. Writing Properties • 28

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

defp biggest([], max) do
max

end

defp biggest([head | tail], max) when head > max do
biggest(tail, head)

end

defp biggest([head | tail], max) when head < max do
biggest(tail, max)

end

This code iterates over the entire list while keeping note of the biggest element
seen at any given point. Whenever an element is bigger than the noted element,
it replaces it. At the end of the iteration, the biggest element seen is returned.
With the new implementation, the previous case should be resolved:

$ rebar3 proper
===> Verifying dependencies...
===> Compiling pbt
===> Testing prop_base:prop_biggest()
.................!
Failed: After 18 test(s).
An exception was raised: error:function_clause.
Stacktrace: [{prop_base,biggest,

[[0,6,2,17],0],
[{file,"/.../pbt/test/prop_base.erl"},
{line,19}]},

{prop_base,'-prop_biggest/0-fun-0-',1,
[{file,"/.../pbt/test/prop_base.erl"},
{line,10}]}].

[0,-4,0,6,2,17]

Shrinking ..(2 time(s))
[0,0]
===>
0/1 properties passed, 1 failed
===> Failed test cases:

prop_base:prop_biggest() -> false

After eighteen runs, PropEr found a bug. The initial failing case was [0,-4,0,6,2,17].
The actual problem with that result is not necessarily obvious. Shrinking
however reduces the counterexample (the failing case) to [0,0], and the inter-
pretation is simpler: if a list is being analyzed and the currently largest item
is equal to the one being looked at (double-check the list of arguments in the
stacktrace if this is not clear!), the comparison fails.

report erratum • discuss

Putting It All Together • 29

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

A quick patch can address this:

Erlang code/WritingProperties/erlang/pbt/test/prop_base.erl

biggest([Head | Tail]) ->
biggest(Tail, Head).

biggest([], Biggest) ->
Biggest;

biggest([Head|Tail], Biggest) when Head >= Biggest ->❶
biggest(Tail, Head);

biggest([Head|Tail], Biggest) when Head < Biggest ->
biggest(Tail, Biggest).

Elixir code/WritingProperties/elixir/pbt/test/pbt_test.exs

def biggest([head | tail]) do
biggest(tail, head)

end

defp biggest([], max) do
max

end

defp biggest([head | tail], max) when head >= max do❶
biggest(tail, head)

end

defp biggest([head | tail], max) when head < max do
biggest(tail, max)

end

The > operator is changed for >= at ❶ in order to handle equality. The prop-
erty finally holds:

$ rebar3 proper
===> Verifying dependencies...
===> Compiling pbt
===> Testing prop_base:prop_biggest()
..
........................
OK: Passed 100 test(s).
===>
1/1 properties passed

We’re all good! We can trust our function to be alright.

Most of the development that takes place for stateless properties follows that
iterative pattern: write a property you feel makes sense, then throw it against
your code. Whenever there’s a failure, figure out if the property itself is wrong

Chapter 2. Writing Properties • 30

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

(as when we added the non_empty() generator), or if the program itself is wrong.
Modify either according to your needs.

Wrapping Up
You should now be good with knowing the basic syntax and operation of
stateless properties. We’ve seen how the modules that contain properties tend
to be structured, the syntax of a basic property, a bunch of generators to
describe the data our properties will need and how to run them, and then
how to debug our tests when they fail.

Writing more properties on your own should not technically be a problem,
although it may prove challenging to figure out exactly what it is that makes
a good property and how to come up with one. The next chapter will help by
showing multiple strategies that are useful when trying to translate a rule
into a property.

Exercises

Question 1

What function can you call to get a sample of a generator’s data?

Solution on page 311.

Question 2

Explain what the following property could be testing or demonstrating:

Erlang code/WritingProperties/erlang/pbt/test/prop_exercises.erl

prop_a_sample() ->
?FORALL({Start,Count}, {integer(), non_neg_integer()},

begin
List = lists:seq(Start, Start+Count),
Count+1 =:= length(List)
andalso
increments(List)

end).

increments([Head | Tail]) -> increments(Head, Tail).

increments(_, []) -> true;
increments(N, [Head|Tail]) when Head == N+1 -> increments(Head, Tail);
increments(_, _) -> false.

report erratum • discuss

Wrapping Up • 31

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/WritingProperties/elixir/pbt/test/exercises_test.exs

property "exercise 2: a sample" do
forall {start, count} <- {integer(), non_neg_integer()} do

list = Enum.to_list(start..(start + count))
count + 1 == length(list) and increments(list)

end
end

def increments([head | tail]), do: increments(head, tail)

defp increments(_, []), do: true

defp increments(n, [head | tail]) when head == n + 1,
do: increments(head, tail)

defp increments(_, _), do: false

Feel free to add output and then run it to see it execute. Do note that adding
output may generate a lot of noise, so you may want to limit the number of
tests for each call to make it easier to check things one bit at a time.

Solution on page 311.

Chapter 2. Writing Properties • 32

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

CHAPTER 3

Thinking in Properties
In the last chapter, we went over basic properties, including their syntax and
generators that are available out of the box. We played with the biggest(List)
function, ensuring it behaved properly. You may now have a good idea of
what a property looks like and how to read it, but chances are you don’t feel
comfortable writing your own; it can take a long time to feel like you know
how to write effective properties. All things considered, a big part of being
good at coming up with properties is a question of experience: do it over and
over again and keep trying your hand at it until it feels natural. That would
usually take a long time, but we’re going to try to speed things up.

Writing good properties is challenging and requires more effort than standard
tests, but this chapter should provide some help. We’re going to go through
techniques that make the transition from using standard tests to thinking in
properties feel natural. You’ll become more efficient at progressing from having
vague ideas of what your program should do to knowing how it should behave
through well-defined properties.

We’ll go over a few tips and tricks to help us figure out how to write decent
enough properties in tricky situations. First, we’ll try modeling our code, so we
can skip over a lot of the challenging thinking that would otherwise be required.
When that doesn’t work, we’ll try generalizing properties out of traditional
example-based cases, which will help us determine the rules underpinning our
expectations. Another approach we’ll use is finding invariants so that we can
ratchet up from trivial properties into a solid test suite. Finally, we’ll implement
symmetric properties as a kind of easy cheat code for some specific problems.

Modeling
Modeling essentially requires you to write an indirect and very simple imple-
mentation of your code—often an algorithmically inefficient one—and pit it

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

against the real implementation. The model should be so simple that it is
obviously correct. You can then optimize the real system as much as you
want: as long as both implementations behave the same way, there’s a good
chance that the complex one is as good as the obviously correct one, but
faster. So for code that does a conceptually simple thing, modeling is useful.

Let’s revisit the biggest/1 function from last chapter and put it in its own module:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/ThinkingInProperties/erlang/pbt/src/thinking.erl

-module(thinking).
-export([biggest/1]).

biggest([Head | Tail]) ->
biggest(Tail, Head).

biggest([], Biggest) ->
Biggest;

biggest([Head|Tail], Biggest) when Head >= Biggest ->
biggest(Tail, Head);

biggest([Head|Tail], Biggest) when Head < Biggest ->
biggest(Tail, Biggest).

Elixir code/ThinkingInProperties/elixir/pbt/lib/pbt.ex

defmodule Pbt do
def biggest([head | tail]) do

biggest(tail, head)
end

defp biggest([], max) do
max

end

defp biggest([head | tail], max) when head >= max do
biggest(tail, head)

end

defp biggest([head | tail], max) when head < max do
biggest(tail, max)

end

end

The function iterates over the list in a single pass: the largest value seen is
held in memory and replaced any time a larger one is spotted. Once the list

Chapter 3. Thinking in Properties • 34

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

has been fully scanned, the largest value seen so far is also the largest value
of the list. That value is returned, and everything is fine.

The challenge is coming up with a good property for it. The obvious rule to
encode is that the function should return the biggest number of the list passed
in. The problem with this obvious rule is that it’s hard to encode: the biggest/1
function is so simple and such a direct implementation of the rule that it’s
hard to make a property that is not going to be a copy of the function itself.
Doing so would not be valuable, because we’re likely to repeat the same mis-
takes in both places, so we might as well not test it.

In these cases, modeling is a good idea. So for this function, we need to come
up with an alternative implementation that we can trust to be correct to make
the property work. Here’s the property for this case:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

-module(prop_thinking).
-include_lib("proper/include/proper.hrl").

%%%%%%%%%%%%%%%%%%
%%% Properties %%%
%%%%%%%%%%%%%%%%%%

prop_biggest() ->
?FORALL(List, non_empty(list(integer())),

begin
thinking:biggest(List) =:= model_biggest(List)

end).

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "finds biggest element" do
forall x <- non_empty(list(integer())) do

Pbt.biggest(x) == model_biggest(x)
end

end

Most modeling approaches will look like that one. The crucial part is the
model, represented by model_biggest/1. To implement the model, we can pick
standard library functions to give us our alternative, slower, but so-simple-
it-must-be-correct implementation:

Erlang

model_biggest(List) ->
lists:last(lists:sort(List)).

report erratum • discuss

Modeling • 35

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir

def model_biggest(list) do
List.last(Enum.sort(list))

end

Since sorting a list orders all its elements from the smallest one to the largest
one possible, picking the last element of the list should logically give us the
biggest list entry. Running the property shows that it is good enough:

$ rebar3 proper -p prop_biggest
===> Verifying dependencies...
===> Compiling pbt
===> Testing prop_thinking:prop_biggest()
...
.................................
OK: Passed 100 test(s).
===>
1/1 properties passed

Chances are pretty much null that all the functions involved are buggy enough
that we can’t trust our test to be useful and it only passes by accident. In
fact, as a general rule when modeling, we can assume that our code imple-
mentation is going to be as reliable as the model to which we compare it.
That’s why you should always aim to have models so simple they are obviously
correct. In the case of biggest/1, it’s now as trustworthy as lists:sort/1 and lists:last/1.

Modeling is also useful for integration tests of stateful systems with lots of
side effects or dependencies, where “how the system does something” is
complex, but “what the user perceives” is simple. Real-world libraries or sys-
tems often hide such complexities from the user to appear useful at all.
Databases, for example, can do a lot of fancy operations to maintain transac-
tional semantics, avoid loss of data, and keep good performance, but a lot of
these operations can be modeled with simple in-memory data structures
accessed sequentially.

Finally, there’s a rare but great type of modeling that may be available, called
the oracle. An oracle is a reference implementation, possibly coming from a
different language or software package, that can therefore act as a prewritten
model. The only thing required to test the system is to compare your imple-
mentation with the oracle and ensure they behave the same way.

If you can find a way to model your program, you can get pretty reliable tests
that are easy to understand. You have to be careful about performance—if
your so-simple-it-is-correct implementation is dead slow, so will your tests
be—but models are often a good way to get started.

Chapter 3. Thinking in Properties • 36

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Generalizing Example Tests
Modeling tends to work well, as long as it is possible to write the same program
multiple times, and as long as one of the implementations is so simple it is
obviously correct. This is not always practical, and sometimes not possible.
We need to find better properties. That’s significantly harder than finding any
property, which can already prove difficult and requires a solid understanding
of the problem space. A good trick to find a property is to just start by writing
a regular unit test and then abstract it away. We can take the steps that are
common to coming up with all individual examples and replace them with
generators.

In the previous section, we said that biggest/1 is as reliable as lists:sort/1 and
lists:last/1, the two functions we used to model it in its property. Our model’s
correctness entirely depends on these two functions doing the right thing. To
make sure they’re well-behaved, we’ll write some tests demonstrating they
work as expected. Let’s see how we can write a property for lists:last/1. This
function is so simple that we can consider it to be axiomatic—just assume
it’s correct—and a fundamental block of the system. For this kind of function,
traditional unit tests are usually a good fit since it’s easy to come up with
examples that should be significant. We can also transform examples into a
property. After all, if we can get a property to do the work for us, we’ll have
thousands of examples instead of the few we’d come up with, and that’s
objectively better coverage.

Let’s take a look at what example tests could look like for lists:last/1, so that
we can generalize them into a property:

last_test() ->
?assert(-23 =:= lists:last([-23])),
?assert(5 =:= lists:last([1,2,3,4,5])),
?assert(3 =:= lists:last([5,4,3])).

We can write this test by hand:

1. Construct a list by picking a bunch of numbers.

• Pick a first number.
• Pick a second number.
• …
• Pick a last number.

2. Take note of the last number in the list as the expected one.

3. Check that the value expected is the one obtained.

report erratum • discuss

Generalizing Example Tests • 37

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Since the last substep of 1. (“Pick a last number.”) is the one we really want
to focus on, we can break it from the other substeps by using some clever
generator usage. If we group all of the initial substeps in a list and isolate the
last one, we get something like {list(number()), number()}. Here it is used in a
property:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

prop_last() ->
%% pick a list and a last number
?FORALL({List, KnownLast}, {list(number()), number()},

begin
KnownList = List ++ [KnownLast], % known number appended to list
KnownLast =:= lists:last(KnownList) % known last number is found

end).

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "picks the last number" do
forall {list, known_last} <- {list(number()), number()} do

known_list = list ++ [known_last]
known_last == List.last(known_list)

end
end

And just like that, we’ll get hundreds or even millions of example cases instead
of a few unit tests all done by hand. Of course, we now have to believe the ++
operator will correctly append items to a list if we want to trust this new
property. We’re getting pulled in deeper: is it possible to make a model out of
it? Can it be turned into a simpler property, or just tested with traditional
unit tests? This is ultimately a question about which parts of the system you
just trust to be correct, and that is left for you to decide. It’s challenging to
write a lot of significant tests for very simple cases, but the next technique
can help.

Invariants
Some programs and functions are complex to describe and reason about.
They could be needing a ton of small parts to all work right for the whole to
be correct, or we may not be able to assert their quality because it is just
hard to define. For example, it’s hard to say why a meal is good, but it might
include criteria like: the ingredients are cooked adequately, the food is hot
enough, it’s not too salty, not too sweet, not too bitter, it’s well-presented, the
portion size is reasonable, and so on. Those factors are all easier to measure
objectively and can be a good proxy for “the customer will enjoy the food.” In

Chapter 3. Thinking in Properties • 38

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

a software system, we can identify similar conditions or facts that should
always remain true. We call them invariants, and testing for them is a great
way to get around the fact that things may just be ambiguous otherwise.

If an invariant were to be false at any time, you would know something is
messed up. Seriously messed up. Here are some examples:

• A store cannot sell more items than it has in stock.

• In a binary search tree, the left child is smaller and the right child is
greater than their parent’s value.

• Once you insert a record in a database, you should be able to read it back
and not see it as missing.

A single invariant on its own is usually not enough to show a piece of code
is working as expected. But if we can come up with many invariants and
small things to validate, and if they all always remain true, we can gain a lot
more confidence in the ability of our code base to work well. Strong ropes are
built from smaller threads put together. In papers or proofs about why a given
data structure works, you’ll find that almost all aspects of its success comes
from ensuring a few invariants are respected.

For property-based testing, we can write a lot of simple properties, each rep-
resenting one invariant. As we add more and more of them, we can build a
strong test suite that overall demonstrates that our code is rock solid.

The lists:sort/1 function is a good example of a piece of code that could be
checked with invariants. How can we identify the invariants though? We could
pick the first one by saying “a sorted list has all the numbers in it ordered
from smallest to largest.” The problem is that this is such a complete and
accurate description of the whole function that if we used it as an invariant,
we’d need a complete sorting function to test it. This is circular as it boils
down to saying “a proper sort function is a function that sorts properly.” A
test that is written the same way as the code it tests is not useful.

Instead we should try to break it down into smaller parts. Something like
“each number in a sorted list is smaller than (or equal to) the one that follows.”
The difference is small, but important. In the first case, we declare the final
state of the entire list, the intended outcome. In the latter case, we mention
an invariant that should be true of any pair of elements, and not the whole
output. We can do an entirely local verification without having the whole
picture. Then, when we apply the property to every pair, we indirectly test for
a fully ordered output:

report erratum • discuss

Invariants • 39

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

prop_sort() ->
?FORALL(List, list(term()),

is_ordered(lists:sort(List))).

is_ordered([A,B|T]) ->
A =< B andalso is_ordered([B|T]);

is_ordered(_) -> % lists with fewer than 2 elements
true.

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "a sorted list has ordered pairs" do
forall list <- list(term()) do

is_ordered(Enum.sort(list))
end

end

def is_ordered([a, b | t]) do
a <= b and is_ordered([b | t])

end

lists with fewer than 2 elements
def is_ordered(_) do

true
end

Not bad. A good side effect of this approach is that the implementation is
almost guaranteed to be different from the test: we only validated that some
property held, and didn’t transform the input at all. No modeling is involved
here. As mentioned earlier though, a single invariant isn’t very solid. If we’d
written a sort function as follows, it would always pass:

sort(_) -> [].

We need more invariants to ensure the implementation is right. We can look
for other properties that should always be true and easy to check. Here are
some examples:

• The sorted and unsorted lists should both have the same size.

• Any element in the sorted list has to have its equivalent in the unsorted
list (no element added).

• Any element in the unsorted list has to have its equivalent in the sorted
list (no element dropped).

Chapter 3. Thinking in Properties • 40

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Let’s see how these could be implemented:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

%% @doc the sorted and unsorted list should both remain the same size
prop_same_size() ->

?FORALL(L, list(number()),
length(L) =:= length(lists:sort(L))).

%% @doc any element in the sorted list has to have its equivalent in
%% the unsorted list
prop_no_added() ->

?FORALL(L, list(number()),
begin

Sorted = lists:sort(L),
lists:all(fun(Element) -> lists:member(Element, L) end, Sorted)

end).

%% @doc any element in the unsorted list has to have its equivalent in
%% the sorted list
prop_no_removed() ->

?FORALL(L, list(number()),
begin

Sorted = lists:sort(L),
lists:all(fun(Element) -> lists:member(Element, Sorted) end, L)

end).

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "a sorted list keeps its size" do
forall l <- list(number()) do

length(l) == length(Enum.sort(l))
end

end

property "no element added" do
forall l <- list(number()) do

sorted = Enum.sort(l)
Enum.all?(sorted, fn element -> element in l end)

end
end

property "no element deleted" do
forall l <- list(number()) do

sorted = Enum.sort(l)
Enum.all?(l, fn element -> element in sorted end)

end
end

report erratum • discuss

Invariants • 41

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

That’s better. Now it’s harder to cheat your way through the properties, and
we can trust our tests:

$ rebar3 proper
«build output»
===> Testing prop_sort:prop_sort()
..
............................
OK: Passed 100 test(s).
===> Testing prop_sort:prop_same_size()
..
............................
OK: Passed 100 test(s).
===> Testing prop_sort:prop_no_added()
..
............................
OK: Passed 100 test(s).
===> Testing prop_sort:prop_no_removed()
..
............................
OK: Passed 100 test(s).
===>
4/4 properties passed

Each of these properties is pretty simple on its own, but they make a solid
suite against almost any sorting function. Another great aspect is that some
invariants are easy to think about, are usually fast to validate, and are almost
always going to be useful as a sanity check, no matter what. They will combine
well with every other testing approach you can think of.

A small gotcha here is that our tests now depend on other functions from the
lists module. This brings us back to the discussion on when to stop, since we
need to trust these other functions if we want our own tests to be trustworthy.
We could just call the shots and say we trust them, especially since they are
given to us by the language designers. It’s a calculated risk. But there’s
another interesting approach we could use by testing them all at once.

Symmetric Properties
From time to time, you may find it difficult to figure out which component
depends on which other one to succeed. Two bits of code may perform opposite
actions, such as an encoder and a decoder. You need the encoder to test the
decoder, and the decoder to test the encoder. In other cases, you may have
a chain of operations that could be made reversible: editing text and undoing

Chapter 3. Thinking in Properties • 42

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

changes, translating text from French to English to Spanish and back to
French, passing a message across multiple servers until it’s back to its original
one, or having a character in a game walking in all directions until it makes
its way back to its origin.

Whenever you have a reversible sequence of actions that you can assemble
together, you can write one of the most concise types of properties: symmetric
properties. Symmetric properties’ trick is that you test all of these moving
parts at once; if one action is the opposite of the other, then applying both
operations should yield the initial input as its final output. You pass in some
data, apply the reversible sequence of operations, and check that you get the
initial data back. If it’s the same, then all the parts must fit well together.

Let’s say we have a piece of code that does encoding and decoding. We could
write the following property for it:

prop_symmetric() ->
?FORALL(Data, list({atom(), any()}),

Data =:= decode(encode(Data))).

This property demonstrates that a list of key and value pairs can go a round
of encoding and decoding without changing, showing that our encoding and
decoding mechanisms are stable and lossless. If you’re a proponent of test-
driven development’s approach of “make the test pass really simply, and then
refactor,” then you know you’ll be able to defeat this test by writing an
implementation like this one:

encode(T) -> T.
decode(T) -> T.

The property will pass all the time. The problem is that while the chosen property
is useful, it isn’t sufficient on its own to be a good test of encoding and decoding.
It checks that the encoding and decoding together don’t lose any information,
but we don’t have anything to check that data actually gets encoded at all.
An additional property of encoding could be added to the same test:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

prop_symmetric() ->
?FORALL(Data, list({atom(), any()}),

begin
Encoded = encode(Data), is_binary(Encoded) andalso
Data =:= decode(Encoded)

end).

report erratum • discuss

Symmetric Properties • 43

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "symmetric encoding/decoding" do
forall data <- list({atom(), any()}) do

encoded = encode(data)
is_binary(encoded) and data == decode(encoded)

end
end

The is_binary(Encoded) call forces the encoder to at least transform something.
The encoder decoder may now need to look like this:

Erlang

%% Take a shortcut by using Erlang primitives
encode(T) -> term_to_binary(T).
decode(T) -> binary_to_term(T).

Elixir

def encode(t), do: :erlang.term_to_binary(t)
def decode(t), do: :erlang.binary_to_term(t)

Other properties could include ideas like “only ASCII characters are used,”
or “the returned binary value has proper byte alignment.” Those would be
invariants, which anchor broad generic properties with the specifics of a given
implementation. Traditional tests are also a good way to anchor broad tests,
and they may be simpler to come up with as well.

The invariants will show that each individual part of the chain does some
things right, and none are flat-out broken. The symmetric properties will
show that all the distinct parts must compose and play well together, and
that overall, a large part of our implementation has to be reasonable. With
both types of properties, we have some very minimalistic tests that show that
a lot of stuff must be going right in our system; we get large coverage with
almost no effort.

Putting It All Together
We’ve written a good lot of properties in this chapter covering multiple tech-
niques, and they’ve been a bit all over the place. Let’s put them back into the
context of the full test suite so we can give them a once-over:

Chapter 3. Thinking in Properties • 44

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

-module(prop_thinking).
-include_lib("proper/include/proper.hrl").

%%%%%%%%%%%%%%%%%%
%%% Properties %%%
%%%%%%%%%%%%%%%%%%

prop_biggest() ->
?FORALL(List, non_empty(list(integer())),

begin
thinking:biggest(List) =:= model_biggest(List)

end).

prop_last() ->
%% pick a list and a last number
?FORALL({List, KnownLast}, {list(number()), number()},

begin
KnownList = List ++ [KnownLast], % known number appended to list
KnownLast =:= lists:last(KnownList) % known last number is found

end).

prop_sort() ->
?FORALL(List, list(term()),

is_ordered(lists:sort(List))).

%% @doc the sorted and unsorted list should both remain the same size
prop_same_size() ->

?FORALL(L, list(number()),
length(L) =:= length(lists:sort(L))).

%% @doc any element in the sorted list has to have its equivalent in
%% the unsorted list
prop_no_added() ->

?FORALL(L, list(number()),
begin

Sorted = lists:sort(L),
lists:all(fun(Element) -> lists:member(Element, L) end, Sorted)

end).

%% @doc any element in the unsorted list has to have its equivalent in
%% the sorted list
prop_no_removed() ->

?FORALL(L, list(number()),
begin

Sorted = lists:sort(L),
lists:all(fun(Element) -> lists:member(Element, Sorted) end, L)

end).

report erratum • discuss

Putting It All Together • 45

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

prop_symmetric() ->
?FORALL(Data, list({atom(), any()}),

begin
Encoded = encode(Data), is_binary(Encoded) andalso
Data =:= decode(Encoded)

end).

%%%%%%%%%%%%%%%
%%% Helpers %%%
%%%%%%%%%%%%%%%
model_biggest(List) ->

lists:last(lists:sort(List)).

is_ordered([A,B|T]) ->
A =< B andalso is_ordered([B|T]);

is_ordered(_) -> % lists with fewer than 2 elements
true.

%% Take a shortcut by using Erlang primitives
encode(T) -> term_to_binary(T).
decode(T) -> binary_to_term(T).

%%%%%%%%%%%%%%%%%%
%%% Generators %%%
%%%%%%%%%%%%%%%%%%

%% nothing!

Elixir translation on page 325.

As you can see, the structure shown here is similar to what was introduced
in Structure of Properties, on page 18. Because there are many properties, it’s
simpler to scan them all if they’re all in one section. Helpers are put together,
even if there’s no reuse across properties for now; with most editors or IDEs,
it’ll be easy to jump from a property to its helpers anyway, and a familiar
structure for most suites will help readability.

Interesting in the suite is prop_biggest(), which was our initial model-based prop-
erty. We then added almost half a dozen other related properties, extending the
model we used, to gain more confidence that it is reliable. The examples here
are simple enough, and in a larger system the same approach is entirely desir-
able. It’s hard to make one good solid property that covers everything, the same
way it’s hard to write one big function that does everything.

This last tip could prove helpful. Testing is like writing regular code: when
the problem appears to be complex, don’t try to have one big property that
validates everything at once. It is often simpler to break things up and attack
one chunk at a time. Have multiple property tests for each of the properties

Chapter 3. Thinking in Properties • 46

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

you can identify in your code. Use two or three shorter and concise properties
to make the overall test suite much clearer (and faster) than a large convoluted
one, especially for debugging. Also use this strategy to build a suite progres-
sively, rather than all at once and hoping it’s good enough.

Wrapping Up
In this chapter, you’ve seen multiple ways to come up with properties. We’ve
been over modeling our system with a simpler or alternative implementation
and checking that they both work the same, and you’ve seen how example
tests could be generalized to the point where their creation is automated.
We’ve also looked at how multiple small invariants can be put together to
make a test more solid, and finished up with some symmetric properties. For
most properties, any of these four approaches will represent a decent starting
point if you’re unsure how to get going.

We’ll have plenty of chances to put these ideas into practice. But you’ll soon
see that some properties are hard to test with just the default generators: if
you want to focus on a behavior for a specific class of input, then very broad
generators are not the best method. In the next chapter, we’ll see how to
efficiently drill down into the data generation phase of properties, improving
our tests with custom generators.

Exercises

Question 1

What are three types of strategies that can be used to help design properties?

Solution on page 311.

Question 2

Using prop_sort() as a source of inspiration, write some properties to show that
lists:keysort/2 works properly.

Solution on page 312.

Question 3

The following property uses a model to validate that it works fine. However,
the property is failing. Can you figure out if the model or the system under
test is to blame? Can you fix it?

report erratum • discuss

Wrapping Up • 47

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_exercises.erl

prop_set_union() ->
?FORALL({ListA, ListB}, {list(number()), list(number())},

begin
SetA = sets:from_list(ListA),
SetB = sets:from_list(ListB),
ModelUnion = lists:sort(ListA ++ ListB),
lists:sort(sets:to_list(sets:union(SetA, SetB))) =:= ModelUnion

end).

Elixir code/ThinkingInProperties/elixir/pbt/test/exercise_test.exs

property "set union" do
forall {list_a, list_b} <- {list(number()), list(number())} do

set_a = MapSet.new(list_a)
set_b = MapSet.new(list_b)
model_union = Enum.sort(list_a ++ list_b)

res =
MapSet.union(set_a, set_b)
|> MapSet.to_list()
|> Enum.sort()

res == model_union
end

end

Solution on page 314.

Question 4

The following property verifies that two dictionaries being merged results in
each of the entries being in there only once, without conflict, by comparing
each of the keys is present:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_exercises.erl

prop_dict_merge() ->
?FORALL({ListA, ListB}, {list({term(), term()}), list({term(), term()})},

begin
Merged = dict:merge(fun(_Key, V1, _V2) -> V1 end,

dict:from_list(ListA),
dict:from_list(ListB)),

extract_keys(lists:sort(dict:to_list(Merged)))
==
lists:usort(extract_keys(ListA ++ ListB))

end).

extract_keys(List) -> [K || {K,_} <- List].

Chapter 3. Thinking in Properties • 48

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "merge dictionaries" do
forall {list_a, list_b} <-

{list({term(), term()}), list({term(), term()})} do
merged =
Map.merge(Map.new(list_a), Map.new(list_b), fn _k,v1,_v2 -> v1 end)

extract_keys(Enum.sort(Map.to_list(merged))) ==
Enum.sort(Enum.uniq(extract_keys(list_a ++ list_b)))

end
end

def extract_keys(list), do: for({k, _} <- list, do: k)

Our code reviewers, however, assert that the test is not solid enough because
it only superficially tests the result of merging both dictionaries. What parts
of its inputs and outputs are not being validated properly, and how would
you improve it?

Solution on page 314.

Question 5

Write a function that counts the number of words in a given string of text,
and write a property that validates its implementation. Only consider spaces
(‘ ’) to be word separators.

Solution on page 314.

report erratum • discuss

Wrapping Up • 49

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

CHAPTER 4

Custom Generators
You’ve now seen how to write properties, use default generators, and, by using
the tips we’ve covered, come up with new properties. If you were to use only
these tools, chances are you’d already be able to improve things quite a bit
in the tests you have in your existing projects, but properties can get much
more useful.

For our properties to be even more useful, we may need to get fancier. In the
previous chapter, we saw how to test an encoder and a decoder with symmetric
properties, but say we suspected there was a bug whenever there are more
than 255 elements in a map (255 being a number that could hit the upper
limits of what a byte can store). Would you know how to validate that your
property generates any of these elements? Would you know how to generate
that data at all if it weren’t there already?

Put another way, the properties we’ve written so far have relied on fairly ran-
dom generated data to act as inputs. The theory is that with enough random
walks, we can eventually get into every nook and cranny of the code and find
all the edge cases. But there’s no guarantee that this will ever happen. In fact
the opposite could be true: since the runs are limited, and given that edge
cases are rare, random data could effectively be just average at finding bugs.
For example, let’s imagine we have a system that has a subtle bug that only
gets triggered when a key gets overwritten too many times in a database. If
PropEr generates sequences of random keys for our properties, chances are
that few of them will be duplicates. If the keys generated are almost never
duplicates, our property is unlikely to exercise overwrites at all, and therefore
unlikely to ever uncover the bug. We have to differentiate between variety of
data inputs and variety of operations.

In this chapter, we’ll see what makes a generator tick. We’ll get to play with
all kinds of ways to generate the best data available for our tests: managing

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

their size, applying arbitrary transformations on the data, preventing some
values from being possible, controlling their distribution, handling recursive
generators, and representing generators as symbolic calls. But first, let’s take
a look at evaluating the quality and fitness of our generators, to know which
of these techniques we should apply.

The Limitations of Default Generators
Default generators as we have used them are critical building blocks for our
properties. They cover a large potential data space, which is absolutely useful
in some types of tests. The properties that could be interesting to us may
however require a very narrow focus on some limited edge cases. Generators
covering a large data space can be useful to discover unexpected issues and
problems, but possibly not great at exploring tricky areas known to likely
contain bugs in our programs.

Let’s say that we’re writing a list of key and value pairs to insert in a map,
and we want to make sure that as long as we enter keys and values in there,
all the keys will be found in the map. We may get a property that looks a bit
like this:

Erlang

prop_dupes() ->
?FORALL(KV, list({key(), val()}),

begin
M = maps:from_list(KV),
[maps:get(K, M) || {K, _V} <- KV], % crash if K's not in map
true

end).

key() -> integer().
val() -> term().

Elixir

property "find all keys in a map even when dupes are used" do
forall kv <- list({key(), val()}) do

m = Map.new(kv)
for {k,_v} <- kv, do: Map.fetch!(m, k)
true

end
end

def key(), do: integer()
def val(), do: term()

Chapter 4. Custom Generators • 52

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

First of all, you may have noticed that this property uses custom functions
for generators; that’s entirely legal. Any function can be used to wrap gener-
ators up into a higher-level, more descriptive construct, and I encourage you
to do so when you can. This property works fine, but if you were to implement
maps:from_list/1, you might ask yourself questions about what happens when the
list is large or when keys are duplicated. How would you go about measuring
that? And if the numbers are wrong, how would you go about fixing it?

To know if there’s a problem, you could jump into the shell and do some
sampling:

$ rebar3 as test shell
«build info»
1> proper_gen:sample(proper_types:list(
1> {prop_generators:key(), prop_generators:val()}
1>)).
[{-5,-7}]
[{2,<<40,97,2,213,1:1>>},
{5,[{{},11,0,-12,{},'\034\202g\204jÿ?»4·à'},<<104:7>>]},
{70,<<1:1>>},
{1,[{'h\231U',{}},{},[]]},
{7,
{-4.2121702104995915,
<<225,143,31,32,72:7>>,
-2.9483965331393125,'\216´_\205£4¢mwr\210',-1.0863023018036206,
'ÉÏ»<\235½'}}]

«a lot more output»
The problem here is that it’s not obvious whether things are repeated or not,
or how this approach would compare to running the property 10,000 times,
and it requires some programmer discipline to keep checking and analyzing
these things over time as people modify and refactor code and tests. Instead,
the gathering of statistics is something that should be built directly into
our tests.

Gathering Statistics
While there’s nothing wrong with using in-shell samples to get a quick feel
for how things work, a more pragmatic approach is to display values every
time we run the tests, so that we can know at a glance whether anything
looks odd or out of place. There are two functions that can be used for this:
collect/2 and aggregate/2.

We’ll focus on collect/2 first, since it’s a bit more specific and straightforward,
and then expand to aggregate/2.

report erratum • discuss

Gathering Statistics • 53

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Collecting
The collect(Value, PropertyResult) function allows you to gather the values of one
specific metric per test and build stats out of all the runs that happened for
a property. It’s special in that you need to use it to wrap the actual property
result and add context to it:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_collect1() ->
?FORALL(Bin, binary(), collect(byte_size(Bin), is_binary(Bin))).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

make verbose for metrics
property "collect 1", [:verbose] do

forall bin <- binary() do
test metric
collect(is_binary(bin), byte_size(bin))

end
end

The first argument is the metric from which you want to build statistics—here
it’s the binary’s length—and the second argument is the result of the property.
Under the hood, collect/2 takes both values and wraps them up in a way that
lets PropEr both gather the metrics and validate the properties.

If we run the property, we see:

$ rebar3 proper
«build output»
===> Testing prop_generators:prop_collect1()
«build output»
OK: Passed 100 test(s).

10% 2
7% 0
7% 3
6% 1
6% 6
6% 9
6% 11
5% 7
«more statistics»

Chapter 4. Custom Generators • 54

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

It works! Except that in this case, the statistics are not really convincing since
we just get individual numbers with limited repetitions. If we instead group
the values by a given range (by groups of 10), we get better results:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_collect2() ->
?FORALL(Bin, binary(),

collect(to_range(10, byte_size(Bin)), is_binary(Bin))).

to_range(M, N) ->
Base = N div M,
{Base*M, (Base+1)*M}.

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

make verbose for metrics
property "collect 2", [:verbose] do

forall bin <- binary() do
test metric
collect(is_binary(bin), to_range(10, byte_size(bin)))

end
end

def to_range(m, n) do
base = div(n, m)
{base * m, (base + 1) * m}

end

The to_range/2 function places a value M into a given bucket of size N. If you
run that property, you’ll get a much clearer result:

===> Testing prop_generators:prop_collect2()
«bunch of output»
OK: Passed 100 test(s).

56% {0,10}
27% {10,20}
13% {20,30}
3% {30,40}
1% {40,50}
===>
1/1 properties passed

In this case, more than 80% of generated binaries had a length between 0
and 20 bytes. If we know that our code has special handling only happening
when binaries hit 1 megabyte in size, we know the current generator is not
good enough.

report erratum • discuss

Gathering Statistics • 55

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

To try it with our map encoding property to find how often duplicate keys are
used, we might want to do this:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_dupes() ->
?FORALL(KV, list({key(), val()}),

begin
M = maps:from_list(KV),
[maps:get(K, M) || {K, _V} <- KV], % crash if K's not in map
collect(

{dupes, to_range(5, length(KV) - length(lists:ukeysort(1,KV)))},
true

)
end).

key() -> integer().
val() -> term().

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

property "find all keys in a map even when dupes are used", [:verbose] do
forall kv <- list({key(), val()}) do

m = Map.new(kv)
for {k,_v} <- kv, do: Map.fetch!(m, k)
uniques =
kv

|> List.keysort(0)
|> Enum.dedup_by(fn {x, _} -> x end)

collect(true, {:dupes, to_range(5, length(kv) - length(uniques))})
end

end

def key(), do: integer()
def val(), do: term()

Here, we collect the number of times keys were duplicated by taking the full
list length (length(KV)) and subtracting the number of unique keys from it
(lists:ukeysort(1, K)); the difference is going to be the number of duplicated keys.

Run this one and you’ll get:

$ rebar3 proper -p prop_dupes
«build info»
===> Testing prop_generators:prop_dupes()
..
............................
OK: Passed 100 test(s).

95% {dupes,{0,5}}
5% {dupes,{5,10}}

Chapter 4. Custom Generators • 56

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Those are not very good results. Almost no keys are duplicated. To remedy
this, we can look at our default generators and see if we can do anything to
help improve things.

For example, let’s change the definition of key() so that we can probabilistically
get better results. We’ll use the oneof/1 generator for this. oneof([ListOfGenerators])
will randomly pick one of the generators within the list passed to it. It has
two aliases in PropEr, named union(Types) and elements(Types), and they can all
be used interchangeably.

QuickCheck Differences

In QuickCheck, oneof() will try to shrink a failing case by finding a
failing element whereas elements() will try to shrink counterexamples
by focusing toward the first elements of the list; PropEr does not
make that distinction.

Using that one, we might rewrite key():

Erlang

key() -> oneof([range(1,10), integer()]).
val() -> term().

Elixir

def key(), do: oneof([range(1,10), integer()])
def val(), do: term()

With this generator, we still get the ability to generate the full range of all
integers, but drastically increase the chance that some of them will be between
1 and 10. Over multiple runs, we’re almost guaranteed to get repeated keys.
But don’t just believe it, go try it:

$ rebar3 proper -p prop_dupes
«build info»
===> Testing prop_generators:prop_dupes()
..
............................
OK: Passed 100 test(s).

80% {dupes,{0,5}}
12% {dupes,{5,10}}
5% {dupes,{10,15}}
3% {dupes,{15,20}}

The amount of repetition is now much higher. From the same property, you
get different scenarios and more interesting use cases. And any time someone

report erratum • discuss

Gathering Statistics • 57

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

runs the property or modifies it, they’ll get to see the statistics to know if
something looks odd.

The downside though is that collect/2 can focus on only a single value per
property, not more. Instead, for cases where you need something a bit fancier,
aggregate/2 is there for you.

Aggregating
Another function to gather statistics is aggregate(). aggregate() is similar to collect(),
with the exception it can take a list of categories to store. To see it in action,
here’s some code that gathers the distribution of cards being handed to a player:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_aggregate() ->
Suits = [club, diamond, heart, spade],
?FORALL(Hand, vector(5, {oneof(Suits), choose(1,13)}),

aggregate(Hand, true)). % `true' makes it always pass

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

property "aggregate", [:verbose] do
suits = [:club, :diamond, :heart, :spade]

forall hand <- vector(5, {oneof(suits), choose(1, 13)}) do
always pass
aggregate(true, hand)

end
end

This property’s generator creates a hand of five cards in a list. There may be
duplicate cards, since nothing keeps the generator from returning something
like {spade, 1} five times. The list of cards is passed directly to aggregate/2, with
no transformations. The function can use these multiple values and generate
statistics for the overall set of possible cards:

$ rebar3 proper
«bunch of output»
OK: Passed 100 test(s).

3% {spade,11}
2% {club,1}
2% {club,8}
2% {heart,4}
2% {heart,8}
2% {heart,9}
2% {diamond,3}
«bunch of output»

Chapter 4. Custom Generators • 58

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

In terms of distribution, this tells us all cards can be obtained rather uniform-
ly. This can be done even though multiple cards are drawn at every round.

Adding Code Coverage

Running the command as rebar3 do proper -c, cover -v will give coverage
analysis to your code. For Elixir users, mix test --cover will generate
a static report in the cover/ directory.

Another interesting case for aggregation is one where we might want to
gather metrics on various data categories. Let’s say we’re analyzing generated
text to see if it contains tricky characters. We may want to take the original
string, and see each class of characters we get, according to some categories
we define:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_escape() ->
?FORALL(Str, string(),

aggregate(classes(Str), escape(Str))).

escape(_) -> true. % we don't care about this for this example

classes(Str) ->
L = letters(Str),
N = numbers(Str),
P = punctuation(Str),
O = length(Str) - (L+N+P),
[{letters, to_range(5,L)}, {numbers, to_range(5,N)},
{punctuation, to_range(5,P)}, {others, to_range(5,O)}].

letters(Str) ->
length([1 || Char <- Str,

(Char >= $A andalso Char =< $Z) orelse
(Char >= $a andalso Char =< $z)]).

numbers(Str) ->
length([1 || Char <- Str, Char >= $0, Char =< $9]).

punctuation(Str) ->
length([1 || Char <- Str, lists:member(Char, ".,;:'\"-")]).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

property "fake escaping test showcasing aggregation", [:verbose] do
forall str <- utf8() do

aggregate(escape(str), classes(str))
end

end

report erratum • discuss

Gathering Statistics • 59

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

this is a check we don't care about
defp escape(_), do: true

def classes(str) do
l = letters(str)
n = numbers(str)
p = punctuation(str)
o = String.length(str) - (l+n+p)
[{:letters, to_range(5, l)},
{:numbers, to_range(5, n)},
{:punctuation, to_range(5, p)},
{:others, to_range(5, o)}]

end

def letters(str) do
is_letter = fn c -> (c >= ?a && c <= ?z) || (c >= ?A && c <= ?Z) end
length(for <<c::utf8 <- str>>, is_letter.(c), do: 1)

end

def numbers(str) do
is_num = fn c -> c >= ?0 && c <= ?9 end
length(for <<c::utf8 <- str>>, is_num.(c), do: 1)

end

def punctuation(str) do
is_punctuation = fn c -> c in '.,;:\'"-' end
length(for <<c::utf8 <- str>>, is_punctuation.(c), do: 1)

end

Run this code, and you’ll see something like this:

$ rebar3 proper -p prop_escape
«build info»
===> Testing prop_generators:prop_escape()
..
............................
OK: Passed 100 test(s).

25% {numbers,{0,5}}
25% {punctuation,{0,5}}
24% {letters,{0,5}}
10% {others,{0,5}}
5% {others,{5,10}}
4% {others,{10,15}}
2% {others,{15,20}}
2% {others,{20,25}}
1% {others,{25,30}}
0% {letters,{5,10}}

If our code testing for escaping was dealing with SQL, then the amount of
punctuation we’re throwing at it is worryingly low: most characters fit the
other category and are things we may not be interested in. That’s a clear sign
that we need to use something fancier for string generation.

Chapter 4. Custom Generators • 60

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The aggregate/2 function, along with collect/2, will be critical to most of the vali-
dation for our generators, along with possibly code coverage metrics. Now
that you know how to identify properties needing better generators, we can
fully dive into the mechanisms that are available to help us improve them.

Basic Custom Generators
Once you discover that your data generation needs to be retargeted to better
explore a problem space, plenty of constructs are available. We’ve seen how
to use oneof(Generators) to impact our ability to get a more specific result set,
but other more flexible tools exist to get even more control. In this section,
we’ll see the basic building blocks of writing custom generators.

Those building blocks are controlling the size and amount of generated data,
applying transformation to the generators themselves, restricting and filtering
out some data from your generators, and finally, playing with probabilities
when none of the previous approaches work.

Resizing Generators
The first and simplest thing to do with generators is to make them grow bigger:
make an integer larger, a list longer, or a string have larger codepoints. In
fact, PropEr makes that happen for us on its own as the tests run. The way
generator growth works is that PropEr internally uses a size parameter. Its
value is usually small at first, but as tests run, the value is increased, and
the data generated gains in complexity along with it. This allows the framework
to start testing our systems with initially small data, and to then progressively
make it more complex.

This is part of a strategy to find easy edge conditions such as 0, empty containers
or strings, handling negative or positive numbers (which turn out to cover a large
set of bugs) early on. Then, as each early test passes against these expected edge
conditions, the framework grows the data it generates to find trickier bugs. The
more tests pass in a run, the larger the data generated becomes.

It’s possible that your code base is pretty solid, or that you suspect it may
just fail on edge cases that only can be detected through very complex cases.
It may not be worth your time to wait hundreds or thousands of tests before
the data generated gets intricate enough to be interesting, so it would be good
to be able to speed this up.

You can use the resize(Size, Generator) function to force a given size (a positive
integer) onto a generator. In prop_collect2(), introduced in Collecting, on page
54, we counted the size of binaries, with the following results:

report erratum • discuss

Basic Custom Generators • 61

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

56% {0,10}
27% {10,20}
13% {20,30}
3% {30,40}
1% {40,50}

By resizing the generator to some arbitrary value, the data size can be increased:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_resize() ->
?FORALL(Bin, resize(150, binary()), % <= resized here

collect(to_range(10, byte_size(Bin)), is_binary(Bin))).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

property "resize", [:verbose] do
forall bin <- resize(150, binary()) do

collect(is_binary(bin), to_range(10, byte_size(bin)))
end

end

The value 150 was chosen arbitrarily, through trial and error. Running the test
again reports new statistics:

15% {90,100}
10% {110,120}
9% {80,90}
8% {130,140}
7% {40,50}
7% {50,60}
7% {120,130}
«more statistics»
The data sizes are still varied; they aren’t fixed to exactly 150, but where 80%
of the results were 20 bytes or smaller before, the vast majority of them now
sit well above 40 bytes in size.

One caveat of using the resize function with static factors is that some of the
variability of result sets may be lost. It’s possible that both smaller and larger
sizes would prompt interesting results, and having all of them in a single
property would be useful. Another caveat is that relative sizing of various
elements becomes cumbersome.

For example, the following property test’s generator, to be realistic, should
create shorter names than biographies, but still biographies larger than what
would usually be one sentence:

Chapter 4. Custom Generators • 62

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_profile1() ->
?FORALL(Profile, [{name, resize(10, string())},

{age, pos_integer()},
{bio, resize(350, string())}],

begin
NameLen = to_range(10,length(proplists:get_value(name, Profile))),
BioLen = to_range(300,length(proplists:get_value(bio, Profile))),
aggregate([{name, NameLen}, {bio, BioLen}], true)

end).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

property "profile 1", [:verbose] do
forall profile <- [

name: resize(10, utf8()),
age: pos_integer(),
bio: resize(350, utf8())

] do
name_len = to_range(10, String.length(profile[:name]))
bio_len = to_range(300, String.length(profile[:bio]))
aggregate(true, name: name_len, bio: bio_len)

end
end

Because size requirements vary between elements of the generator—part of
it should be smaller than another one—multiple resize/2 function calls must
be made and kept synchronized so that the data ratio is respected. But
because we used static sizes, we’ve lost PropEr’s helpful tendency to try very
large or very small values. The only way we could get it back would be by
manually modifying all those resize calls to increase or decrease their values
in unison. That’s annoying.

To avoid having to micromanage all these calls to make sure everything is
preserved, you can instead use the ?SIZED(VarName, Expression) macro, which
introduces the variable VarName into the scope of Expression, bound to the
internal size value for the current execution. This size value changes with
every test, so what we do with the macro is change its scale, rather than
replacing it wholesale. Here’s the same property using it:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_profile2() ->
?FORALL(Profile, [{name, string()},

{age, pos_integer()},
{bio, ?SIZED(Size, resize(Size*35, string()))}],

report erratum • discuss

Basic Custom Generators • 63

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

begin
NameLen = to_range(10,length(proplists:get_value(name, Profile))),
BioLen = to_range(300,length(proplists:get_value(bio, Profile))),
aggregate([{name, NameLen}, {bio, BioLen}], true)

end).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

property "profile 2", [:verbose] do
forall profile <- [

name: utf8(),
age: pos_integer(),
bio: sized(s, resize(s * 35, utf8()))

] do
name_len = to_range(10, String.length(profile[:name]))
bio_len = to_range(300, String.length(profile[:bio]))
aggregate(true, name: name_len, bio: bio_len)

end
end

In this property, the bio string is specified to be thirty-five times larger than
the current size, which is implicitly the size value for name and age values.
Doing this allows us to scale both the name and the biography relative to
each other without imposing an anchor in terms of absolute size to the
framework. This, in turn, provides some additional flexibility for the framework
to do what it wants:

$ rebar3 proper -m prop_generators -p prop_profile1,prop_profile2
===> Testing prop_generators:prop_profile1()
«test output»
45% {name,{0,10}}
40% {bio,{0,300}}
10% {bio,{300,600}}
5% {name,{10,20}}

===> Testing prop_generators:prop_profile2()
«test output»
32% {name,{0,10}}
28% {bio,{0,300}}
12% {bio,{300,600}}
10% {name,{10,20}}
7% {name,{20,30}}
4% {bio,{600,900}}
3% {bio,{900,1200}}
1% {bio,{1200,1500}}
1% {name,{30,40}}

As you can see, with the value obtained through the ?SIZED/2 macro applied
relatively to a single generator with resize/2, PropEr is able to generate a much

Chapter 4. Custom Generators • 64

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

wider range of sizes, while we get to preserve the difference in ratio between
names and biographies’ lengths.

We could even combine approaches to get more variability, but over larger
basic sizes if we wanted to. We could for example use an expression like
?SIZED(Size, resize(min(100,Size)*35, string())) to ensure a minimal size without
imposing a ceiling on the value. We can see the beginning of our ability to
tune each generator individually to our needs.

Transforming Generators
In the course of writing generators, one of the patterns you’ll encounter is the
need to generate data types that can’t be described with the basic Erlang data
structures that default generators support. For example, you may want to gen-
erate a first-in-first-out queue of key/value pairs, using the queue1 module. Just
using tuples and lists won’t be enough to enforce the internal constraints of the
data structure. In some cases, the data structure may be opaque (meaning you
can’t or shouldn’t peek at how it’s built, just stick to the interface the module
exposes), and then you’re plain out of luck. To solve this problem, PropEr exposes
macros that let you apply arbitrary transformations to data while generating it.

To illustrate the issue, let’s take a look at the queue module. If we wanted to
have a queue of keys and values stored as tuples, we couldn’t safely create
it out of default generators without digging inside the implementation and
understanding how all the data is handled internally. Instead what we’d need
to do is write a property similar to this:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_queue_naive() ->
?FORALL(List, list({term(), term()}),

begin
Queue = queue:from_list(List),
queue:is_queue(Queue)

end).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

property "naive queue generation" do
forall list <- list({term(), term()}) do

q = :queue.from_list(list)
:queue.is_queue(q)

end
end

1. http://erlang.org/doc/man/queue.html

report erratum • discuss

Basic Custom Generators • 65

http://erlang.org/doc/man/queue.html
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Because we can only use queue:from_list/1 on an actual list—and therefore not
from within the generator—we call it within the property. The problem with
this approach is that even though we want a queue, we generate a list of
tuples. Once in the property, we must then convert the list to an actual queue
data structure. This splits up the generation of the data type and the conver-
sion between the generator and the property. Any property requiring a queue
is stuck using the generator, and then manually adding bits that should
belong in it to the property. Even worse, if you wanted to generate a list of
queues, the majority of the generators would have to live inside the property
rather than within the generators themselves. That’s bad abstraction.

A better approach would be to use the ?LET(InstanceOfType, TypeGenerator, Transform)
macro to apply a transformation to the generated data itself. The macro takes
the TypeGenerator and binds it to the InstanceOfType variable. That variable can
then be used in the Transform expression as if it were fully evaluated. The
evaluation of the final generator is still deferred until later though, which is
important because it lets us transform it without preventing it from being
composable with others generators. In other words, ?LET lets you accumulate
function calls to run on the generator whenever it will be evaluated.

Here’s the same queue generator, but with the ?LET/3 macro:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_queue_nicer() ->
?FORALL(Q, queue(),

queue:is_queue(Q)).

queue() ->
?LET(List, list({term(), term()}),

queue:from_list(List)).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

property "queue with let macro" do
forall q <- queue() do

:queue.is_queue(q)
end

end

def queue() do
let list <- list({term(), term()}) do

:queue.from_list(list)
end

end

Chapter 4. Custom Generators • 66

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

With this form, there is no more bleeding of parts of generators into properties
themselves. The composable aspect also means that a list of generators would
be as simple as calling list(queue()). A custom generator of this kind has all the
same capabilities as any built-in one.

This covers the need to transform a piece of data into another one. Another
related piece of functionality you may find yourself needing is preventing some
data from being generated altogether, rather than a transformation. How can
we prevent a generator from generating data?

Imposing Restrictions
A common trait to all default generators is that they’re pretty broad in the
data they generate, and from time to time, we’ll want to exclude specific
counterexamples (the technical word for “input causing a property to fail”).
In fact, we already needed to do that when we used the non_empty() generator
to remove empty lists or binaries from the generated data set. Such a filter
generator can be implemented with the ?SUCHTHAT(InstanceOfType, TypeGenerator,
BooleanExp) macro.

The macro works in a similar manner as ?LET/3: the TypeGenerator is bound to
InstanceOfType, which can then be used in BooleanExp. One distinction is that
BooleanExp needs to be a boolean expression, returning true or false. If the value
is true, the data generated is kept and allowed to go through. If the value is
false, the data is prevented from being passed to the test; instead, PropEr will
try to generate a new piece of data that hopefully satisfies the filter. The
non_empty() filter can in fact be implemented as:

Erlang

non_empty(ListOrBinGenerator) ->
?SUCHTHAT(L, ListOrBinGenerator, L =/= [] andalso L =/= <<>>).

Elixir

def non_empty(list_type) do
such_that l <- list_type, when: l != [] and l != <<>>

end

Quite simply, if the data generated is an empty list or an empty binary, the
generator must try again. Maps or queues are not impacted by this filter, but
you could write your own constraints as well:

report erratum • discuss

Basic Custom Generators • 67

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang

non_empty_map(Gen) ->
?SUCHTHAT(G, Gen, G =/= #{}).

Elixir

def non_empty_map(gen) do
such_that g <- gen, when: g != %{}

end

Filtering Too Hard

There is a limit to the number of times PropEr will retry building
a generator; after too many failed attempts, it will give up with an
error message such as Error: Couldn’t produce an instance that satisfies all
strict constraints after 50 tries.

Similarly, generating a list of even or uneven numbers could be done by using
?SUCHTHAT() macros:

Erlang

even() -> ?SUCHTHAT(N, integer(), N rem 2 =:= 0).
uneven() -> ?SUCHTHAT(N, integer(), N rem 2 =/= 0).

Elixir

def even(), do: such_that n <- integer(), when: rem(n, 2) == 0
def uneven(), do: such_that n <- integer(), when: rem(n, 2) != 0

But in this specific case it may be faster to use a transform to get there by
using the ?LET() macro instead of filtering with ?SUCHTHAT():

Erlang

even() -> ?LET(N, integer(), N*2).
uneven() -> ?LET(N, integer(), N*2 + 1).

Elixir

def even(), do: let n <- integer(), do: n * 2
def uneven(), do: let n <- integer(), do: n * 2 + 1

Since these transforms can generate correct data on the first try every time,
they will be more efficient than using ?SUCHTHAT. Whenever you use a filter,
try to see if you could be reworking a restriction into a transformation. Think
probabilistically: will you need to filter out a tiny portion of the generator’s

Chapter 4. Custom Generators • 68

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

possible space? A filter’s perfect. If you’re going to filter out a significant chunk
of the potential data, then a transformation may pay for itself in speed.

Another thing to note is that not just guard expressions are accepted in
?SUCHTHAT macros. For example, the following generator looks for ISO Latin12

strings by using the io_lib:printable_latin1_list/1 function,3 which will let us restrict
down the range of string():

latin1_string() ->
?SUCHTHAT(S, string(), io_lib:printable_latin1_list(S)).

A similar one for unicode—ensuring nothing goes out of range—would be:

unicode_string() ->
?SUCHTHAT(S, string(), io_lib:printable_unicode_list(S)).

With transforms, filters, and resizes, we can get pretty far in terms of retar-
geting our generators to do what we want. The latin1 generator shows some-
thing interesting though. The default string() generator has a large search
space, and therefore filtering out the unwanted data can be expensive. On
the other hand, most unicode characters can’t be represented within latin1,
and transforming the generated strings themselves would also be expensive:
how would you map emojis to latin1 characters?

Unicode Generation

If you need valid Unicode strings, it is simpler to use utf8() as a
base generator. It will return a properly encoded UTF-8 binary. If
you need strings, you can then use a ?LET macro to turn it back
with unicode:characters_to_list/1. By default, Elixir’s PropCheck only
has utf8() exported.

We can’t get what we want (and have it done efficiently) with transforms and
filters alone, and for this specific issue, resizing wouldn’t be of much help
either. Instead, we’ll have to build our own generators while controlling
probabilities to make them do what we want.

Changing Probabilities
The last fundamental building block that really gives us control over data
generation is having the ability to tweak the probabilities of how data is gen-
erated. By default, the generators introduced in Default Generators, on page
22 are either going to generate data in a large potential space, like string(),
number(), or binary(), or in a rather narrow scope, such as boolean() or range(X,Y).

2. https://en.wikipedia.org/wiki/ISO/IEC_8859-1
3. http://erlang.org/doc/man/io_lib.html#printable_latin1_list-1

report erratum • discuss

Basic Custom Generators • 69

https://en.wikipedia.org/wiki/ISO/IEC_8859-1
http://erlang.org/doc/man/io_lib.html#printable_latin1_list-1
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Using ?LET() lets us transform all of that data, and ?SUCHTHAT() lets us remove
some of it, but it’s hard to get something in between. When you truly need a
custom solution, probabilistic generators can help.

We’ve seen oneof(ListOfGenerators) already, which helped us gain more repeatable
keys in the following generator:

key() -> oneof([range(1,10), integer()]).

This shows how two distinct generators can be used together to help build
and steer things in the direction we want. The oneof(Types) generator is simple
and useful, but the most interesting one is frequency(), which allows you to
control and choose the probability of each generator it contains.

Let’s take strings as an example, since they were already causing us problems.
Just using string() tended to yield a lot of control characters, codepoints that
were pretty much anything, and very little in terms of the latin1 or ASCII
characters we English readers are used to. And let’s not even think about
words or sentences. This can be remediated with frequency/1:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

text_like() ->
list(frequency([{80, range($a, $z)}, % letters

{10, $\s}, % whitespace
{1, $\n}, % linebreak
{1, oneof([$., $-, $!, $?, $,])}, % punctuation
{1, range($0, $9)} % numbers

])).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

def text_like() do
let l <-

list(
frequency([
{80, range(?a, ?z)},
{10, ?\s},
{1, ?\n},
{1, oneof([?., ?-, ?!, ??, ?,])},
{1, range(?0, ?9)}

])
) do

to_string(l)
end

end

Using it gives us this:

Chapter 4. Custom Generators • 70

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

1> proper_gen:pick(proper_types:string()).
{ok,[35,15,0,12,2,3,3,1,10,25]}
2> proper_gen:pick(prop_generators:text_like()).
{ok,"rdnpw hxwd"}
3> proper_gen:pick(proper_types:resize(79, prop_generators:text_like())).
{ok,"vyb hhceqai m f ejibfiracplkcn gqfvmmbspbt\nn.qbbzwmd"}

This generator produces something a lot closer to realistic text than what is
obtained through string(). It’s no Shakespeare yet, and may look more like a
Scrabble rack, but with more monkeys hitting the keys randomly, we may get
there. In any case, by tweaking the frequency values, specific characters can
see their probability raised or lowered as required to properly exercise a property.

This will ensure that a parser for comma-separated values (CSV)4 could get
a higher frequency of quotation marks, commas, and line breaks to find more
parsing-related corner cases, whereas a generator for XML would want to
focus on < and > characters, for example.

Using frequency() or oneof() with other custom generators therefore lets you choose
and mix and match all kinds of techniques to get as flexible as you need. If you
need a list of “mostly sorted data,” then you could make a generator like this one:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

mostly_sorted() ->
?LET(Lists,

list(frequency([
{5, sorted_list()},
{1, list()}

])),
lists:append(Lists)).

sorted_list() ->
?LET(L, list(), lists:sort(L)).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

def mostly_sorted() do
gen = list(

frequency([
{5, sorted_list()},
{1, list()}

])
)
let lists <- gen, do: Enum.concat(lists)

end

4. https://en.wikipedia.org/wiki/Comma-separated_values

report erratum • discuss

Basic Custom Generators • 71

https://en.wikipedia.org/wiki/Comma-separated_values
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def sorted_list() do
let l <- list(), do: Enum.sort(l)

end

This would give you a bunch of sublists that may or may not be sorted, all
concatenated into a big list and would have been much harder to do with just
?LET(), ?SUCHTHAT(), and ?SIZED().

But even though probabilistic generators are nicer than just default ones, for
cases like CSV or XML, more structure would make sense; just random tokens
thrown around won’t necessarily lead to much, so we’ll need more advanced
techniques.

Fancy Custom Generators
You can get pretty far with just the basic techniques, but whenever they can’t
bring you up to where you want your generators to be, you’ll have to look into
more advanced techniques. But even then, the advanced techniques will still
make use of the basic ones, so don’t worry, they’ll remain useful.

In this section, we’ll focus on how we can make use of the basic techniques
and put them in a fancier context through writing our own recursive genera-
tors, with some need for laziness. We’ll then finish it up by introducing sym-
bolic calls, which help make complex generators more understandable once
properties fail.

Recursive Generators
Whenever a piece of data can be represented by a repetitive or well-ordered
structure, or when a step-by-step approach can be used to create the data,
recursion is our friend. We’ll see how generator recursion works, and even
how it can compose with probabilistic generation, although we’ll find some
pitfalls there.

Let’s say we have a robot, and want to give it directions. We might want to
test things such as whether it can go through a room without hitting obstacles,
whether it can cover all areas, and so on, but first we need to be able to create
and plan an itinerary for it. Let’s say our robot works on a grid with coordi-
nates, and can go left, right, up, or down. A simple generator might look like:

Erlang

path() -> list(oneof([left, right, up, down])).

Chapter 4. Custom Generators • 72

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir

def path(), do: list(oneof([:left, :right, :up, :down]))

And it would be fine. If we wanted to eliminate things like “going left then
right” or “going up then down” where moves cancel each other, a ?LET() would
probably be fine as well: just scan the list, and every time two opposite
directions are taken, drop them from the list. But what if we wanted to gener-
ate a path such that the robot never crosses a part of its path it has already
covered? Doing so with a ?SUCHTHAT might not be superefficient, and it might
also be hard to do with a ?LET(). But it’s kind of easy to do with recursion.

Tracking if we’ve been somewhere before would require us to internally track
coordinates with {X,Y} values:

• Our robot always starts at {0,0}
• Going left means subtracting 1 from the X value: {-1,0}
• Going right means adding 1 to the X value: {+1,0}
• Going up means adding 1 to the Y value: {0,+1}
• Going down means subtracting 1 from the Y value: {0,-1}

All we need to do then is track coordinates in a map; if a value exists in the
map, we finish. Also, to put an upper bound on the path length, we’ll use a
low-probability event of terminating right away.

Our generator for this might look like this one:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

path() ->
% Current, Acc, VisitedMap ToIgnore
path({0,0}, [], #{{0,0} => seen}, []).

path(_Current, Acc, _Seen, [_,_,_,_]) -> %% all directions tried
Acc; % we give up

path(Current, Acc, Seen, Ignore) ->
frequency([

{1, Acc}, % probabilistic stop
{15, increase_path(Current, Acc, Seen, Ignore)}

]).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

def path() do
path({0,0}, [], %{{0,0} => :seen}, [])

end

report erratum • discuss

Fancy Custom Generators • 73

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def path(_current, acc, _seen, [_,_,_,_]) do
acc

end
def path(current, acc, seen, ignore) do

frequency([
{1, acc},
{15, increase_path(current, acc, seen, ignore)}

])
end

So this is an interesting bit of code. The first function is a wrapper, where
path() calls out to a recursive path/4 function. That function takes the current
coordinate ({X,Y}), the current path it has built (a list of the form [up, down, left,
...]), the map of visited coordinates, and a list of directions to ignore. These
directions are those that have been attempted recently and that resulted in
a conflict. If the list contains all four of them, then we know there’s no way
to go that won’t result in a repeated run, and so we give up.

The second function clause uses frequency/1 to ensure that once in a while, we
stop. This will prevent a case where we’d just go forward forever and never finish
generating data. In the vast majority of cases (with a 15-to-1 probability), we’ll
try and lengthen the path. The function that does this is defined as follows:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

increase_path(Current, Acc, Seen, Ignore) ->
DirectionGen = oneof([left, right, up, down] -- Ignore),
?LET(Direction, DirectionGen,

begin
NewPos = move(Direction, Current),
case Seen of

#{NewPos := _} -> % exists
path(Current, Acc, Seen, [Direction|Ignore]); % retry

_ ->
path(NewPos, [Direction|Acc], Seen#{NewPos => seen}, [])

end
end).

move(left, {X,Y}) -> {X-1,Y};
move(right, {X,Y}) -> {X+1,Y};
move(up, {X,Y}) -> {X,Y+1};
move(down, {X,Y}) -> {X,Y-1}.

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

def increase_path(current, acc, seen, ignore) do
let direction <- oneof([:left, :right, :up, :down] -- ignore) do

new_pos = move(direction, current)

Chapter 4. Custom Generators • 74

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

case seen do
%{^new_pos => _} ->

path(current, acc, seen, [direction|ignore])
_ ->

path(new_pos, [direction|acc], Map.put(seen, new_pos, :seen), [])
end

end
end

def move(:left, {x, y}), do: {x-1, y}
def move(:right, {x, y}), do: {x+1, y}
def move(:up, {x, y}), do: {x, y+1}
def move(:down, {x, y}), do: {x, y-1}

Let’s decompose this one. First, we have a call to oneof([left, right, up, down] -- Ignore).
This generator tries to pick a random direction that has not been chosen yet.
By default, this Ignore list is [], which means all directions are attempted. The
tricky bit is that this call to oneof() returns a generator, not an actual value;
PropEr will take care of changing the generator into a value.

If we want to use the value of that generator within the current generator,
the ?LET() macro lets us do that. Remember that ?LET() chains up operations
to be run once PropEr actualizes generators into data, so writing the function
as above lets us use the result (Direction) from the generator (DirectionGen) within
the macro’s transfomed expression (begin ... end).

Within that expression, we apply the position by calling move/2 on the current
one, and look it up in the Seen map. If it is found there, it means this direction
crosses a path we’ve taken before, so we retry while ignoring it. If the position
has not been visited before, we call path/4 again with the new data.

If you try to run this generator in the shell, it might take a very long time to
return, and with some other generators that only probabilistically stop, it
may never return. The more branches, the costlier. That’s because of the
order of evaluation in Erlang. To evaluate frequency(), which is a regular func-
tion, its arguments need to be expanded. Since the arguments to frequency()
include the generator itself, the generator must be called first, and the process
loops deeper and deeper, until memory runs out.

For those specific cases, PropEr provides a ?LAZY() macro, which allows you
to defer the evaluation of an expression until it is required by the generator.
This fixes things:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

path(_Current, Acc, _Seen, [_,_,_,_]) -> %% all directions tried
Acc; % we give up

report erratum • discuss

Fancy Custom Generators • 75

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

path(Current, Acc, Seen, Ignore) ->
frequency([

{1, Acc}, % probabilistic stop
{15, ?LAZY(increase_path(Current, Acc, Seen, Ignore))}

]).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

def path(_current, acc, _seen, [_,_,_,_]) do
acc

end
def path(current, acc, seen, ignore) do

frequency([
{1, acc},
{15, lazy(increase_path(current, acc, seen, ignore))}

])
end

This macro lets us defer the evaluation of its contents until they are needed,
which means that we can now safely use it within alternative clauses. Now
the generator should run:

$ rebar3 as test shell
«build info»
1> proper_gen:pick(prop_generators:path()).
{ok,[down,right,down,left,left]}
2> proper_gen:sample(prop_generators:path()).
[right,down,right,up,up,right,up,left]
[]
[down,right,down,left,left,left,left,down,down,left,up,up,left,
up,left,up,left,up,left,left,up,right,right,right,down,right,
right,up,up,right,down,down,right,down,down,right,up,up,right,
right,right,right,down,right,up,right]

[right,right,right,up,right,right,down,left,down]
[left,up,right,up,left,up,up,up]
[down,right,down,left,left,down,down,down,right,down,left,left,
down,left,up,up,up,right,up,left,left,up,right,up,left,left,up,
right,up,right,right,down,down,right,up,up,right]

[down,left,down,down,right]
[left,left,down]
[up,left,up,right,right,down,right,right,up,right,right,up,left,
up,up,right,down,right,down]

[]
[left,left,up,left,down,down,right,down]
ok

That’s good, but there’s a small problem. The caveat with this approach is
that probabilities for recursion can mean one of two things:

Chapter 4. Custom Generators • 76

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

1. Because the probabilities are fixed, the size of the created data structure
will generally be unchanging and always average to a ratio in line with
the defined probabilities. (Here, 15-to-1 probabilities means we may have
paths roughly 15 steps long on average.)

2. Because there are probabilities at all, there is a lingering chance some
data structures will be enormous, possibly large enough to crash our
program.

Each of these is undesirable on its own, but we may end up with tests that
get both. In some cases, the potential variation for very large or very small
structures will be desirable, but not always. We can improve the generator
by forcing it to be more deterministic in its size by writing recursive functions
that are much more similar to what we usually write in regular Erlang or
Elixir code:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

path(0, _Current, Acc, _Seen, _Ignore) -> % directions limit
Acc; % max depth reached

path(_Max, _Current, Acc, _Seen, [_,_,_,_]) -> % all directions tried
Acc; % we give up

path(Max, Current, Acc, Seen, Ignore) ->
increase_path(Max, Current, Acc, Seen, Ignore).

increase_path(Max, Current, Acc, Seen, Ignore) ->
DirectionGen = oneof([left, right, up, down] -- Ignore),
?LET(Direction, DirectionGen,

begin
NewPos = move(Direction, Current),
case Seen of

#{NewPos := _} -> % exists
path(Max, Current, Acc, Seen, [Direction|Ignore]); % retry

_ ->
path(Max-1, NewPos, [Direction|Acc],

Seen#{NewPos => seen}, [])
end

end).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

def path(0, _current, acc, _seen, _ignore) do
acc

end
def path(_max, _current, acc, _seen, [_,_,_,_]) do

acc
end

report erratum • discuss

Fancy Custom Generators • 77

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def path(max, current, acc, seen, ignore) do
increase_path(max, current, acc, seen, ignore)

end

def increase_path(max, current, acc, seen, ignore) do
let direction <- oneof([:left, :right, :up, :down] -- ignore) do

new_pos = move(direction, current)
case seen do
%{^new_pos => _} ->

path(max, current, acc, seen, [direction|ignore])
_ ->

path(
max-1,
new_pos,
[direction|acc],
Map.put(seen, new_pos, :seen),
[]

)
end

end
end

All we’ve done here is add a counter (Max) to each function clause, which halts
the execution when it reaches 0. You’ll see that this is pretty much how you’d
write any recursive function to generate a list of a known length in Erlang or
Elixir. In fact, because we have only distinct function clauses with no frequency()
usage anymore, the ?LAZY() macro is no longer necessary.

All we need to add is a wrapper to seed the size parameter. That’s where the
?SIZED macro can be of use:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

path() ->
?SIZED(Size,

% Max, Current, Acc, VisitedMap ToIgnore
path(Size, {0,0}, [], #{{0,0} => seen}, [])).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

def path() do
sized(

size,
path(size, {0,0}, [], %{{0,0} => :seen}, [])

)
end

And just like that, we have pretty good recursion with a great way to dynam-
ically resize recursive data structures. The Size parameter will grow along with

Chapter 4. Custom Generators • 78

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

test execution, and if you want it to grow faster than what PropEr gives, just
multiply it. This will give us much more interesting path variations than
probabilistic generators.

$ rebar3 as test shell
«build info»
1> proper_gen:sample(prop_generators:path()).
[down,down,down,down,down,left,left,down,down,down]
[down,left,left,down,left,down,left,down,left,up,left]
[down,down,down,right,right,up,left,up,up,up,right,down]
[down,left,down,left,down,down,left,down,left,up,up,right,up]
[down,right,right,right,down,left,left,down,left,up,left,up,left,up]
[down,right,up,right,up,up,left,left,left,up,left,left,up,left,down]
[right,right,up,up,left,left,left,up,up,right,up,up,up,up,right,down]
[down,left,down,right,right,up,right,right,down,right,right,right,down,
down,left,left,left]

[left,left,down,left,left,up,left,up,left,down,left,left,down,right,down,
right,up,right]

[down,left,left,up,right,up,up,up,up,up,left,left,left,up,right,right,up,
right,right]

[down,right,right,up,left,up,right,up,up,right,up,left,up,left,down,down,
down,left,left,left]

ok

For Elixir users, the commands are a bit trickier:

$ MIX_ENV=test iex -S mix
iex(1)> ExUnit.start()
iex(2)> c "test/generators_test.exs" # compiles the test script
iex(3)> :proper_check.sample(PbtGenerators.path()) # generates samples
«output»
In comparison to the previous version’s samples, this one has a path length
capped and guided by size, meaning the framework can do a better job at
scaling the list size up and down and the generator will never end up in an
infinite loop. This also prevents us from getting a fixed ratio of empty lists.
(If there’s a 5% chance to stop at any iteration, you should expect around 5%
of empty lists as well.) If you’re interested in testing the diversity of paths,
the latest approach is probably both faster and likelier to play well with
PropEr.

The same approach can be used to generate any recursive structure: trees of
a depth proportional to the size (or with as many elements as the size),
grammar rules encoding more complex variations, or even sequences of
transitions in a state machine, which would require many nested and mutu-
ally recursive generators.

report erratum • discuss

Fancy Custom Generators • 79

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

You may also be interested to use this technique to build side-effectful gener-
ators, such as those populating ETS tables or even writing files to disk, but
those would be a bit more problematic to debug since we can’t easily see how
they reached their end state.

Symbolic Calls
Some of the data structures or state that we need to generate for tests can
be opaque and difficult to decipher. Think of debugging a binary protocol by
looking at the individual bytes once the whole thing is encoded, or creating
a process and sending it a bunch of messages to prime its state. The output
of a failing property will be a lot of hard-to-read bits and bytes, or a term like
<0.213.0>, which frankly don’t help a whole lot no matter how much shrinking
you may apply to them. The solution to this problem is a special category of
generators built from symbolic calls.

A symbolic call is just a special notation for function calls so that they can
be represented as data in generators. Rather than executing the operation
straight away, the calls are built up as a data structure. Once the generator
materializes, they get executed at once. The notation for them is {call, Module,
Function, ArgumentList}—a format supported by QuickCheck and Triq as well as
PropEr. Another format, {$call, Module, Function, ArgumentList} (named automated
symbolic call), is similar, but a bit friendlier in practice:

Automated Symbolic Call (PropEr only)Symbolic CallFunction Call

{'$call', sets, new, []}{call, sets, new, []}sets:new()
{'$call', queue, join, [Q1, Q2]}{call, queue, join, [Q1, Q2]}queue:join(Q1, Q2)
{'$call', lists, sort, [[1,2,3]]}{call, lists, sort, [[1,2,3]]}lists:sort([1,2,3])
{'$call', ?MODULE, local, [Arg]}{call, ?MODULE, local, [Arg]}local(Arg) (if exported)

Using either format of symbolic calls can make things simpler when looking
at shrunken results. Let’s try with the Erlang dict data structure, which can
be opaque if you don’t know how it’s implemented. This example will also
show the difference between symbolic calls and automated symbolic calls.

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

dict_gen() ->
?LET(X, list({integer(),integer()}), dict:from_list(X)).

dict_symb() ->
?SIZED(Size, dict_symb(Size, {call, dict, new, []})).

dict_symb(0, Dict) ->
Dict;

Chapter 4. Custom Generators • 80

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

dict_symb(N, Dict) ->
dict_symb(N-1, {call, dict, store, [integer(), integer(), Dict]}).

dict_autosymb() ->
?SIZED(Size, dict_autosymb(Size, {'$call', dict, new, []})).

dict_autosymb(0, Dict) ->
Dict;

dict_autosymb(N, Dict) ->
dict_autosymb(N-1, {'$call', dict, store, [integer(), integer(), Dict]}).

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

def dict_gen() do
let(x <- list({integer(), integer()}), do: :dict.from_list(x))

end

def dict_symb(),
do: sized(size, dict_symb(size, {:call, :dict, :new, []}))

def dict_symb(0, dict), do: dict

def dict_symb(n, dict) do
dict_symb(n - 1, {:call, :dict, :store, [integer(), integer(), dict]})

end

def dict_autosymb() do
sized(size, dict_autosymb(size, {:"$call", :dict, :new, []}))

end

def dict_autosymb(0, dict), do: dict

def dict_autosymb(n, dict) do
dict_autosymb(

n - 1,
{:"$call", :dict, :store, [integer(), integer(), dict]}

)
end

This specifies three generators: one with the normal function calls, one with
symbolic calls, and one with automated symbolic calls. Here are three matching
properties that will pretty much always fail:

Erlang code/CustomGenerators/erlang/pbt/test/prop_generators.erl

prop_dict_gen() ->
?FORALL(D, dict_gen(), dict:size(D) < 5).

prop_dict_symb() ->
?FORALL(DSymb, dict_symb(), dict:size(eval(DSymb)) < 5).

prop_dict_autosymb() ->
?FORALL(D, dict_autosymb(), dict:size(D) < 5).

report erratum • discuss

Fancy Custom Generators • 81

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/CustomGenerators/elixir/pbt/test/generators_test.exs

property "dict generator" do
forall d <- dict_gen() do

:dict.size(d) < 5
end

end

property "symbolic generator" do
forall d <- dict_symb() do

propcheck does not automatically handle eval() calls
:proper_gen.eval(:dict.size(d)) < 5

end
end

property "automated symbolic generator" do
forall d <- dict_autosymb() do

:dict.size(d) < 5
end

end

See how the symbolic call form has to call eval(SymbolicGenerator) to use the code
within the property. This is a downside where the implementation details of
the generator leak into the property. The automated symbolic call by compar-
ison is automatically evaluated by PropEr before being passed to the property.
Let’s see how they fail:

===> Testing prop_generators:prop_dict_gen()
...............!
Failed: After 16 test(s).
{dict,5,16,16,8,80,48,{[],[],[],[],[],[],[],[],[],[],[],
[],[],[],[],[]},{{[],[[3|-6]],[],[],[],[[-1|-5]],

[[-14|10],[2|3]],[[5|1]],[],[],[],[],[],[],[],[]}}}
«more output»
===> Testing prop_generators:prop_dict_symb()
..............!
Failed: After 15 test(s).
{call,dict,store,[-6,8,

{call,dict,store,[46,-13,
{call,dict,store,[2,-2,
{call,dict,store,[22,-2,

{call,dict,store,[-12,-2,
{call,dict,new,[]}]}]}]}]}]}

«more output»
===> Testing prop_generators:prop_dict_autosymb()
............!
Failed: After 13 test(s).
{'$call',dict,store,[7,2,

{'$call',dict,store,[-1,2,
{'$call',dict,store,[1,18,

Chapter 4. Custom Generators • 82

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

{'$call',dict,store,[-9,0,
{'$call',dict,store,[-10,3,

{'$call',dict,new,[]}]}]}]}]}]}
«more output»
As you can see, the first property (prop_dict_gen()) returns a weird data structure.
That one is a bit hard to debug since it’s hard to see what inputs we can give
a dictionary to yield that result. Both forms of symbolic calls let us see the
keys and values inserted to yield a failing dictionary.

With the help of symbolic calls, generated terms that are too obscure (whether
through their complex size or because side effects hide the way the state was
obtained) can be made simpler to debug. Even if we were to use a generator
to configure a remote server into a given state, symbolic calls would let us
know which sequence of calls may have led to a failure.

Wrapping Up
You now have all the tools you need to make the fanciest of all generators.
You’re ready to make some that have a wide-spectrum approach to fuzz your
systems, down to accurate ones to exercise specific invariants your code
should respect. All of these methods can be mixed together. Nothing keeps
you from using symbolic calls created through complex recursive generators
that filter with ?SUCHTHAT and transform with ?LET, with some terms created
probabilistically with a dynamic size.

Going overboard is not the best idea though. It’s not because you have a
fancy set of hammers that you have to crush all the nails with them. We have
strategies to come up with properties and to build generators, but you still
need to find strategies to make proper use of properties within a project. The
next chapter will cover responsible testing, how to know when enough is
enough, or where a little property-testing magic can go a long way.

Exercises

Question 1

Which functions can be used to check the distribution of generated entries
in a test run?

Solution on page 316.

Question 2

Which macro can be used to apply regular Erlang or Elixir functions to a
generator to modify it?

report erratum • discuss

Wrapping Up • 83

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Solution on page 316.

Question 3

When and why would you use the ?LAZY macro?

Solution on page 316.

Question 4

The following probabilistic generator creates trees that are not necessarily
balanced:

Erlang code/CustomGenerators/erlang/pbt/test/prop_exercises.erl

%% The tree generates a data type that represents the following types:
-type tree() :: tree(term()).
-type tree(T) :: {node,

Value :: T,
Left :: tree(T) | undefined,
Right :: tree(T) | undefined}.

tree() ->
tree(term()).

tree(Type) ->
frequency([

{1, {node, Type, tree(Type), undefined}},
{1, {node, Type, undefined, tree(Type)}},
{5, {node, Type, tree(Type), tree(Type)}}

]).

Elixir code/CustomGenerators/elixir/pbt/test/exercises_test.exs

def tree(), do: tree(term())

def tree(type) do
frequency([

{1, {:node, type, tree(type), nil}},
{1, {:node, type, nil, tree(Type)}},
{5, {:node, type, tree(type), tree(type)}}

])
end

Make sure it can consistently terminate and generate trees of an interesting
size. Using the ?SIZED macro may be an advantage for better complexity scaling.

Solution on page 316.

Chapter 4. Custom Generators • 84

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Question 5

The following generators allow you to generate stamps of the format {Hour,
Minute, Second}:

Erlang code/CustomGenerators/erlang/pbt/test/prop_exercises.erl

stamp() -> {hour(), min(), sec()}.
hour() -> choose(0,23).
min() -> choose(0,59).
sec() -> choose(0,59).

Elixir code/CustomGenerators/elixir/pbt/test/exercises_test.exs

def stamp(), do: {hour(), min(), sec()}
def hour(), do: choose(0, 23)
def min(), do: choose(0, 59)
def sec(), do: choose(0, 59)

The following are pairs of modified or restricted timestamps. Compare their
implementations, and explain which of each pair is the most appropriate.

Erlang code/CustomGenerators/erlang/pbt/test/prop_exercises.erl

%% Return hours in the morning
am_stamp1() ->

?SUCHTHAT({H,_,_}, stamp(), H < 12).
am_stamp2() ->

?LET({H,M,S}, stamp(), {H rem 12, M, S}).

%% Return two ordered timestamps
stamps1() ->

?SUCHTHAT({S1, S2}, {stamp(), stamp()}, S1 =< S2).
stamps2() ->

?LET({S1, S2}, {stamp(), stamp()}, {min(S1,S2), max(S1,S2)}).

%% Return any time that does not overlap standup meetings
no_standup1() ->

?SUCHTHAT({H,M,_}, stamp(), H =/= 9 orelse M > 10).
no_standup2() ->

?LET({H,M,S}, stamp(),
case H of

9 when M =< 10 -> {8, M, S};
_ -> {H,M,S}

end).

report erratum • discuss

Wrapping Up • 85

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/CustomGenerators/elixir/pbt/test/exercises_test.exs

returning hours in the morning
def am_stamp1() do

such_that({h, _, _} <- stamp(), when: h < 12)
end

def am_stamp2() do
let({h, m, s} <- stamp(), do: {rem(h, 12), m, s})

end

Return two ordered timestamps
def stamps1() do

such_that({s1, s2} <- {stamp(), stamp()}, when: s1 <= s2)
end

def stamps2() do
let({s1, s2} <- {stamp(), stamp()}, do: {min(s1, s2), max(s1, s2)})

end

Return any time that does not overlap standup meetings
def no_standup1() do

such_that({h, m, _} <- stamp(), when: h != 9 or m > 10)
end

def no_standup2() do
let {h, m, s} <- stamp() do

case h do
9 when m <= 10 -> {8, m, s}
_ -> {h, m, s}

end
end

end

Solution on page 318.

Question 6

Write a symbolic generator that creates a file containing various bytes. When
a property fails, the user should be able to see the failing output without
having to peek inside files.

You may need wrappers for file:open/2 and file:write/2 to ensure easier compos-
ability of these functions. Here’s an example of those:

Erlang code/CustomGenerators/erlang/pbt/test/prop_exercises.erl

file_open(Name, Opts) ->
{ok, Fd} = file:open(Name, Opts),
%% ensure the file is refreshed on each test run
file:truncate(Fd),
Fd.

Chapter 4. Custom Generators • 86

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

file_write(Fd, Data) ->
ok = file:write(Fd, Data),
Fd.

Elixir code/CustomGenerators/elixir/pbt/test/exercises_test.exs

def file_open(name, opts) do
{:ok, fd} = File.open(name, opts)
ensure the file is refreshed on each run
:file.truncate(fd)
fd

end

def file_write(fd, data) do
IO.write(fd, data)
fd

end

Solution on page 319.

report erratum • discuss

Wrapping Up • 87

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Part II

Stateless Properties in Practice

Let’s get practical. We’ll see how properties can be
used in actual projects, and we’ll also cover some
more advanced topics in here.

CHAPTER 5

Responsible Testing
A common sight in a team that just started learning property-based testing
is that almost all the new tests written are properties, even when it doesn’t
really make sense to do so. The pendulum swings too far and too fast, and
the project suffers for it. In this chapter, we’ll see multiple example situations
where property tests may or may not be appropriate, how they can be enhanced
through careful addition of traditional tests in a regular project or other
external tool like Dialyzer, or where they may be just plain inappropriate.
We’ll move from knowing how properties work—you can write generators,
measure their efficiency, and come up with properties through various
strategies—to having a good feel of when properties work best.

We’ll take a practical project based on the birthday greeting kata.1 This exercise
asks us to organize unit tests for a little application in a manner such that
as few tests as possible will need to be modified or trashed when implemen-
tation details or requirements change. It’s an exercise usually meant for
object-oriented languages, but since we’re using Elixir and Erlang here, we’ll
also see how to approach the design in a functional manner.

The exercise will contain parts having to do with data storage, text parsing,
data manipulation, and templating. We will only focus on unit tests, and we’ll
leave more side-effectful integration and system tests to later chapters such
as Chapter 9, Stateful Properties, on page 201 and Chapter 10, Case Study:
Bookstore, on page 233. For now, we’ll see how to choose between traditional
example-based unit tests and property tests, how they can be used together
to complement each other, and we’ll get a feel for figuring out how to add
properties to our workflow in a project started from scratch.

1. http://matteo.vaccari.name/blog/archives/154

report erratum • discuss

http://matteo.vaccari.name/blog/archives/154
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The Specification
We’re going to write a program that will first load a set of employee records
from a flat file and then send a greeting email to each employee whose birthday
is today. In our example, the flat file we receive contains employee records
and looks a bit like a comma-separated values (CSV)2 file. We’re given this
sample:

last_name, first_name, date_of_birth, email
Doe, John, 1982/10/08, john.doe@foobar.com
Ann, Mary, 1975/09/11, mary.ann@foobar.com

The email sent on an employee’s birthday should contain text like

Subject: Happy birthday!

Happy birthday, dear John!

On its own, this is straightforward. The challenge comes from the additional
constraints given:

• The tests written should be unit tests, meaning none of the tests should
talk to a database, touch the filesystem, interact with the network, or toy
with the environment (config). Tests that do any of these are qualified as
integration tests and are out of scope. This actually takes restraint to do!

• The CSV format won’t be kept forever. Eventually, a database or web
service should be used to fetch the employee records, and similarly for
the email sending. The tests should be written to require as few modifica-
tions as possible whenever these implementation details change.

Let’s see how we can approach the design of this system, one step at a time.

Thinking About Program Structure
The single most helpful thing we can do to make our testing experience easier
is to design a system that is inherently testable. To do this well, thinking in
terms of what are the observable effects we want to test against is crucial. In
object-oriented code, the traditional approach asks us to limit ourselves to
specific objects and to observe their behavior and side effects carefully. To
prevent the test scope from being too large, mocking3 and dependency injec-
tion4 represent a good way to wall things off.

2. https://en.wikipedia.org/wiki/Comma-separated_values
3. https://en.wikipedia.org/wiki/Mock_object
4. https://en.wikipedia.org/wiki/Dependency_injection

Chapter 5. Responsible Testing • 92

report erratum • discuss

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Mock_object
https://en.wikipedia.org/wiki/Dependency_injection
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

In the case of Erlang and Elixir, these practices can and will make sense when
testing specific actors, although this may bring us closer to integration testing.
For most cases though, since we’re doing functional programming, the lesson
taught by pure languages like Haskell is that side effects can be grouped
together at one end of the system, and we can keep the rest of the code as
pure as possible. Haskell enforces that mechanism, but nothing prevents us
from doing it by hand here. Let’s see how we could classify the different actions
in our program:

FunctionalSide-Effectful

Converting CSV data to employee recordsReading a flat file

Searching for employees based on a dateFinding today’s date

Formatting an email as a stringSending an email

Things are a bit clearer now. Everything on the left column will go in integra-
tion tests (not covered in this chapter), and everything on the right column
can go in unit tests and is in scope. In fact, if we use this classification to
design the entire system, we can have something fairly easy to test, as shown
in the following figure:

Everything in the box should be pure and functional, everything outside of it
will provide side effects. Some main() function will have the responsibility of tying
both universes together. With this approach, the program becomes a sequence
of transformations carried over known (but configurable) bits of data. This
structure isn’t cast in stone, but should be a fairly good guideline that ensures
strict decoupling of components, easy testing, and simple refactoring.

With this top-level view in place, we can start working on specific components
that can then be integrated after the fact. Here are the building blocks to be
written:

report erratum • discuss

Thinking About Program Structure • 93

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

1. CSV parsing of terms into maps

2. Filtering of objects based on date or time (If the program used a SQL
database or a service to handle search, we wouldn’t have to write this.)

3. Putting the filtering and CSV parsing together into an employee module
providing a well-isolated interface

4. Templating of the email and subject to be sent, based on the employee
data

Although sending emails and reading from disk are side-effectful items that
are out of scope, we’ll add a fifth step where we tie up all the parts together
with a top-level module (exposing the main() function mentioned earlier). For
this, we can use a simple escript project format, which lets us run simple pro-
grams easily:

$ rebar3 new escript bday
===> Writing bday/src/bday.erl
===> Writing bday/src/bday.app.src
===> Writing bday/rebar.config
===> Writing bday/.gitignore
===> Writing bday/LICENSE
===> Writing bday/README.md

And then edit the configuration to add PropEr to the project:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/ResponsibleTesting/erlang/bday/rebar.config

%% the plugin itself
{project_plugins, [rebar3_proper]}.

{escript_incl_apps, [bday]}.
{escript_main_app, bday}.
{escript_name, bday}.

%% The PropEr dependency is still required to compile the test cases,
%% but only as a test dependency
{profiles,

[{test, [
{erl_opts, [nowarn_export_all]},
{deps, [proper]}

]}
]}.

Chapter 5. Responsible Testing • 94

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Given Elixir has mix run -e Mod.function as a command that can run an arbitrary
function, a regular project can be used there instead. Just make sure to re-
configure the mix file in it the same way we’ve done in Elixir, on page 12:

$ mix new bday
* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
«more build output»
Include the proper mix file modifications:

Elixir code/ResponsibleTesting/elixir/bday/mix.exs

Run "mix help deps" to learn about dependencies.
defp deps do

[
{:propcheck, "~> 1.1", only: [:test, :dev]}

]
end

With this in place, we can start working on individual functional parts.

CSV Parsing
The first part of the program we’ll work on is handling CSV conversion. No
specific order is better than another in this case, and starting with CSV instead
of filtering or email rendering is entirely arbitrary. In this section, we’ll explore
how to come up with the right type of properties for encoding and decoding
CSV, and how to get decent generators for that task. We’ll also see how regular
example-based unit tests can be used to strengthen our properties, and see
how each fares compared to the other.

CSV is a loose format that nobody really implements the same way. It’s really
a big mess, even though RFC 41805 tries to provide a simple specification:

• Each record is on a separate line, separated by CRLF (a \r followed by a \n).

• The last record of the file may or may not have a CRLF after it. (It is
optional.)

• The first line of the file may be a header line, ended with a CRLF. In this
case, the problem description includes a header, which will be assumed
to always be there.

5. https://tools.ietf.org/html/rfc4180

report erratum • discuss

CSV Parsing • 95

https://tools.ietf.org/html/rfc4180
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

• Commas go between fields of a record.

• Any spaces are considered to be part of the record. (The example in the
problem description doesn’t respect that, as it adds a space after each
comma even though it’s clearly not part of the record.)

• Double quotes (") can be used to wrap a given field.

• Fields that contain line breaks (CRLF), double quotes, or commas must
be wrapped in double quotes.

• All records in a document contain the same number of fields.

• A double quote within a double-quoted field can be escaped by preceding
it with another double quote ("a""b" means a"b).

• Field values or header names can be empty.

• Valid characters for records include only

! #$%&'()*+-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

Which means the official CSV specs won’t let us have employees whose names
don’t fit that pattern, but if you want, you can always extend the tests later
and improve things. For now though, we’ll implement this specification, and
as far as our program is concerned, whatever we find in the CSV file will be
treated as correct.

For example, if a row contains a, b, c, we’ll consider the three values to be "a",
" b", and " c" with the leading spaces, and patch them up in our program,
rather than modifying the CSV parser we’ll write. We’ll do this because, in
the long run, it’ll be simpler to reason about our system if all independent
components are well-defined reusable units, and we instead only need to
reason about adapters to glue them together. Having business-specific code
and workarounds injected through all layers of the code base is usually a
good way to write unmaintainable systems.

Out of the approaches we’ve seen in Chapter 3, Thinking in Properties, on
page 33, we could try the following:

• Modeling—make a simpler less efficient version of CSV parsing and com-
pare it to the real one.

• Generalizing example tests—a standard unit test would be dumping data,
then reading it, and making sure it matches expectations; we need to
generalize this so one property can be equivalent to all examples.

Chapter 5. Responsible Testing • 96

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

• Invariants—find a set of rules that put together represent CSV operations
well enough.

• Symmetric properties—serialize and unserialize the data, ensuring results
are the same.

The latter technique is the most interesting one for parsers and serializers,
since we need encoded data to validate decoding, and that decoding is required
to make sure encoding works well. Both sides will need to agree and be tested
together no matter what. Plugging both into a single property tends to be
ideal. All we need after that is to anchor the property with either a few tradi-
tional unit tests or simpler properties to make sure expectations are met.

Let’s start by writing tests first, so we can think of properties before writing
the code. Since we’ll do an encoding/decoding sequence, generating Erlang
terms that are encodable in CSV should be the first step. CSV contains rows
of text records separated by commas. We’ll start by writing generators for the
text records themselves, and assemble them later. We’ll currently stay with
the simplest CSV encoding possible: everything is a string. How to handle
integers, dates, and so on, tends to be application-specific.

Because CSV is a text-based format, it contains some escapable sequences,
which turn out to always be problematic no matter what format you’re han-
dling. In CSV, as we’ve seen in the specification, escape sequences are done
through wrapping strings in double quotes ("), with some special cases for
escaping double quotes themselves. For now, let’s not worry about it, besides
making sure the case is well-represented in our data generators:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

field() -> oneof([unquoted_text(), quotable_text()]).

unquoted_text() -> list(elements(textdata())).

quotable_text() -> list(elements([$\r, $\n, $", $,] ++ textdata())).

textdata() ->
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
":;<=>?@ !#$%&'()*+-./[\\]^_`{|}~".

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

def field() do
oneof([unquoted_text(), quotable_text()])

end

report erratum • discuss

CSV Parsing • 97

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

using charlists for the easy generation
def unquoted_text() do

let chars <- list(elements(textdata())) do
to_string(chars)

end
end

def quotable_text() do
let chars <- list(elements('\r\n",' ++ textdata())) do

to_string(chars)
end

end

def textdata() do
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789' ++

':;<=>?@ !#$%&\'()*+-./[\\]^_`{|}~'
end

The field() generator depends on two other generators: unquoted_text() and
quotable_text(). The former will be used to generate Erlang data that will require
no known escape sequence in it once converted, whereas the latter will be
used to generate sequences that may possibly require escaping (the four
escapable characters are only present in this one). Both generators rely on
textdata(), which contains all the valid characters allowed by the specification.

You’ll note that we’ve put an Erlang string for textdata() with alphanumeric
characters coming first, and that we pass it to list(elements()). This approach
will randomly pick characters from textdata() to build a string, but what’s
interesting is what will happen when one of our tests fail. Because elements()
shrinks toward the first elements of the list we pass to it, PropEr will try to
generate counterexamples that are more easily human-readable when possible
by limiting the number of special characters they contain. Rather than gener-
ating {#$%a~, it might try to generate ABFe#c once a test fails.

We can now put these records together. A CSV file will have two types of
rows: a header on the first line, and then data entries in the following lines.
In any CSV document, we expect the number of columns to be the same on
all of the rows:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

header(Size) -> vector(Size, name()).

record(Size) -> vector(Size, field()).

name() -> field().

Chapter 5. Responsible Testing • 98

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

def header(size) do
vector(size, name())

end

def record(size) do
vector(size, field())

end

def name() do
field()

end

Those generators basically generate the same types of strings for both headers
and rows, with a known fixed length as an argument. name() is defined as field()
because they have the same requirements specification-wise, but it’s useful
to give each generator a name according to its purpose: if we end up modifying
or changing requirements on one of them, we can do so with minimal changes.
We can then assemble all of that jolly stuff together into one list of maps that
contain all the data we need:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

csv_source() ->
?LET(Size, pos_integer(),

?LET(Keys, header(Size),
list(entry(Size, Keys)))).

entry(Size, Keys) ->
?LET(Vals, record(Size),

maps:from_list(lists:zip(Keys, Vals))).

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

def csv_source() do
let size <- pos_integer() do

let keys <- header(size) do
list(entry(size, keys))

end
end

end

def entry(size, keys) do
let vals <- record(size) do

Map.new(Enum.zip(keys, vals))
end

end

report erratum • discuss

CSV Parsing • 99

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The csv_source() generator picks up a Size value that represents how many entries
will be in each row. By putting it in a ?LET macro, we make sure that whatever
the expression that uses Size is, it uses a discrete value, and not the generator
itself. This will allow us to use Size multiple times safely with always the same
value in the second ?LET macro. That second macro generates one set of headers
(the keys of every map), and then uses them to create a list of entries.

The entries themselves are specified by the entry/2 generator, which creates a
list of record values, and pairs them up with the keys from csv_source() into a
map. This generates values such as these:

$ rebar3 as test shell
«build output»
1> proper_gen:pick(prop_csv:csv_source()).
{ok,[#{[] => "z","&_f" => "t,:S","cH^*M" => "{6Z#"},

#{[] => "kS3>","&_f" => "/","cH^*M" => "eK"},
#{[] => "~","&_f" => [],"cH^*M" => "Bk#?X7h"}]}

2> proper_gen:pick(prop_csv:csv_source()).
{ok,[#{"D" => "\nQNUO","D4D" => "!E$0;)KL",

"R\r~P{qC-" => "4L(Q4-N9","T6FAGuhf" => "wSP4jONE3Q"},
#{"D" => "!Y7H\rQ?I7\r","D4D" => [],

"R\r~P{qC-" => "}66W2I9+?R","T6FAGuhf" => "pF8/C"},
#{"D" => [],"D4D" => "?'_6","R\r~P{qC-" => "j|Q",

"T6FAGuhf" => "f$s7=sFx2>"},
#{"D" => "e;ho1\njn!2","D4D" => ".8B{k|+|}",

"R\r~P{qC-" => "V","T6FAGuhf" => "a\"/J\rfE#$"},
«more maps»
As you can see, all the maps for a given batch share the same keys, but have
varying values. Those are ready to be encoded and passed to our property:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

prop_roundtrip() ->
?FORALL(Maps, csv_source(),

Maps =:= bday_csv:decode(bday_csv:encode(Maps))).

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

property "roundtrip encoding/decoding" do
forall maps <- csv_source() do

maps == Csv.decode(Csv.encode(maps))
end

end

Running it at this point would be an instant failure since we haven’t written
the code to go with it. Since this chapter is about tests far more than how to

Chapter 5. Responsible Testing • 100

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

implement a CSV parser, we’ll go over the latter rather quickly. Here’s an
implementation that takes about a hundred lines:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_csv.erl

-module(bday_csv).
-export([encode/1, decode/1]).

%% @doc Take a list of maps with the same keys and transform them
%% into a string that is valid CSV, with a header.
-spec encode([map()]) -> string().
encode([]) -> "";
encode(Maps) ->

Keys = lists:join(",", [escape(Name) || Name <- maps:keys(hd(Maps))]),
Vals = [lists:join(",", [escape(Field) || Field <- maps:values(Map)])

|| Map <- Maps],
lists:flatten([Keys, "\r\n", lists:join("\r\n", Vals)]).

%% @doc Take a string that represents a valid CSV data dump
%% and turn it into a list of maps with the header entries as keys
-spec decode(string()) -> list(map()).
decode("") -> [];
decode(CSV) ->

{Headers, Rest} = decode_header(CSV, []),
Rows = decode_rows(Rest),
[maps:from_list(lists:zip(Headers, Row)) || Row <- Rows].

First, there’s the public interface with two functions: encode/1 and decode/1. The
functions are fairly straightforward, delegating the more complex operations
to private helper functions. Let’s start by looking at those helping with
encoding:

%%%%%%%%%%%%%%%
%%% PRIVATE %%%
%%%%%%%%%%%%%%%

%% @private return a possibly escaped (if necessary) field or name
-spec escape(string()) -> string().
escape(Field) ->

case escapable(Field) of
true -> "\"" ++ do_escape(Field) ++ "\"";
false -> Field

end.

%% @private checks whether a string for a field or name needs escaping
-spec escapable(string()) -> boolean().
escapable(String) ->

lists:any(fun(Char) -> lists:member(Char, [$",$,,$\r,$\n]) end, String).

report erratum • discuss

CSV Parsing • 101

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%% @private replace escapable characters (only `"') in CSV.
%% The surrounding double-quotes are not added; caller must add them.
-spec do_escape(string()) -> string().
do_escape([]) -> [];
do_escape([$"|Str]) -> [$", $" | do_escape(Str)];
do_escape([Char|Rest]) -> [Char | do_escape(Rest)].

If a string is judged to need escaping (according to escapable/1), then the string
is wrapped in double quotes (") and all double quotes inside of it are escaped
with another double quote. With this, encoding is covered. Next there’s
decoding’s private functions:

%% @private Decode the entire header line, returning all names in order
-spec decode_header(string(), [string()]) -> {[string()], string()}.
decode_header(String, Acc) ->

case decode_name(String) of
{ok, Name, Rest} -> decode_header(Rest, [Name | Acc]);
{done, Name, Rest} -> {[Name | Acc], Rest}

end.

%% @private Decode all rows into a list.
-spec decode_rows(string()) -> [[string()]].
decode_rows(String) ->

case decode_row(String, []) of
{Row, ""} -> [Row];
{Row, Rest} -> [Row | decode_rows(Rest)]

end.

%% @private Decode an entire row, with all values in order
-spec decode_row(string(), [string()]) -> {[string()], string()}.
decode_row(String, Acc) ->

case decode_field(String) of
{ok, Field, Rest} -> decode_row(Rest, [Field | Acc]);
{done, Field, Rest} -> {[Field | Acc], Rest}

end.

%% @private Decode a name; redirects to decoding quoted or unquoted text
-spec decode_name(string()) -> {ok|done, string(), string()}.
decode_name([$" | Rest]) -> decode_quoted(Rest);
decode_name(String) -> decode_unquoted(String).

%% @private Decode a field; redirects to decoding quoted or unquoted text
-spec decode_field(string()) -> {ok|done, string(), string()}.
decode_field([$" | Rest]) -> decode_quoted(Rest);
decode_field(String) -> decode_unquoted(String).

Decoding is done by fetching headers, then fetching all rows. A header line
is parsed by reading each column name one at a time, and a row is parsed
by reading each field one at a time. At the end you can see that both fields
and names are actually implemented as quoted or unquoted strings:

Chapter 5. Responsible Testing • 102

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%% @private Decode a quoted string
-spec decode_quoted(string()) -> {ok|done, string(), string()}.
decode_quoted(String) -> decode_quoted(String, []).

%% @private Decode a quoted string
-spec decode_quoted(string(), [char()]) -> {ok|done, string(), string()}.
decode_quoted([$"], Acc) -> {done, lists:reverse(Acc), ""};
decode_quoted([$",$\r,$\n | Rest], Acc) -> {done, lists:reverse(Acc), Rest};
decode_quoted([$",$, | Rest], Acc) -> {ok, lists:reverse(Acc), Rest};
decode_quoted([$",$" | Rest], Acc) -> decode_quoted(Rest, [$" | Acc]);
decode_quoted([Char | Rest], Acc) -> decode_quoted(Rest, [Char | Acc]).

%% @private Decode an unquoted string
-spec decode_unquoted(string()) -> {ok|done, string(), string()}.
decode_unquoted(String) -> decode_unquoted(String, []).

%% @private Decode an unquoted string
-spec decode_unquoted(string(), [char()]) -> {ok|done, string(), string()}.
decode_unquoted([], Acc) -> {done, lists:reverse(Acc), ""};
decode_unquoted([$\r,$\n | Rest], Acc) -> {done, lists:reverse(Acc), Rest};
decode_unquoted([$, | Rest], Acc) -> {ok, lists:reverse(Acc), Rest};
decode_unquoted([Char | Rest], Acc) -> decode_unquoted(Rest, [Char | Acc]).

Elixir translation on page 326.

Both functions to read quoted or unquoted strings mostly work the same,
except quoted ones have specific rules about unescaping content baked in.
And with this, our CSV handling is complete.

The code was developed against the properties by running the tests multiple
times and refining the implementation iteratively. For brevity, we’ll skip all
the failed attempts that did some dirty odd parsing, except for one failing
implementation that’s particularly interesting since it had a failure against
the following input:

\r\na

This is technically a valid CSV file with a single column, for which the empty
name "" is chosen (commas only split values, so a single \r\n means a 0-length
string as a value on that line), and with a single value "a". The expected output
from decoding this is [#{"" ⇒ "a"}]. The first version of the parser had no way
to cope with such cases, since I couldn’t imagine them either. The parser
shown previously is handling such cases, but the digging and rewriting has
been skipped for brevity.

If you run the property over the previous (correct) implementation, you’ll find
it still fails on this tricky test:

bday_csv:encode([#{""=>""},#{""=>""}]) => "\r\n\r\n"
bday_csv:decode("\r\n\r\n") => [#{"" => ""}]

report erratum • discuss

CSV Parsing • 103

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

This is an ambiguity embedded directly in the CSV specification. Because a
trailing \r\n is acceptable, it is impossible to know whether there is an empty
trailing line or not in the case of one-column data sets. Above one column,
at least one comma (,) is going to be on the line. At one column, there is no
way to know.

Under fifty lines of tests were enough to discover inconsistencies in RFC 4180
itself, inconsistencies that can’t be reconciled or fixed in our program. Instead,
we’ll have to relax the property, making sure we don’t cover that case by
changing csv_source() and adding +1 to every Size value we generate. That way,
we shift the range for columns from 1..N to 2..(N+1), ensuring we always have
two or more columns in generated data.

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

csv_source() ->
?LET(Size, pos_integer(),

?LET(Keys, header(Size+1),
list(entry(Size+1, Keys)))).

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

def csv_source() do
let size <- pos_integer() do

let keys <- header(size + 1) do
list(entry(size + 1, keys))

end
end

end

After this change, the property works fine. For good measure, we should add
a unit test representing the known unavoidable bug to the same test suite,
documenting known behavior:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

-module(prop_csv).
-include_lib("proper/include/proper.hrl").
-include_lib("eunit/include/eunit.hrl").
-compile(export_all).

«existing code»
%%%%%%%%%%%%%
%%% EUnit %%%
%%%%%%%%%%%%%

%% @doc One-column CSV files are inherently ambiguous due to
%% trailing CRLF in RFC 4180. This bug is expected

Chapter 5. Responsible Testing • 104

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

one_column_bug_test() ->
?assertEqual("\r\n\r\n", bday_csv:encode([#{""=>""},#{""=>""}])),
?assertEqual([#{"" => ""}], bday_csv:decode("\r\n\r\n")).

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

Unit Tests
test "one column CSV files are inherently ambiguous" do

assert "\r\n\r\n" == Csv.encode([%{"" => ""}, %{"" => ""}])
assert [%{"" => ""}] == Csv.decode("\r\n\r\n")

end

The Erlang suite can be run with rebar3 eunit as well as rebar3 proper. Using prop_
as a prefix to both the module and properties lets the proper plugin detect what
it needs. For EUnit, the _test suffix for functions lets it do the proper detection.
If you also wanted to use the common test framework in Erlang, the _SUITE
suffix should be added to the module.

There is a last gotcha implicit to the implementation of our CSV parser: since
it uses maps, duplicate column names are not tolerated. Since our CSV files
have to be used to represent a database, it is probably a fine assumption to
make about the data set that column names are all unique. All in all, we’re
probably good ignoring duplicate columns and single-column CSV files since
it’s unlikely database tables would be that way either, but it’s not fully CSV-
compliant. This gotcha was discovered by adding good old samples from the
RFC into the EUnit test suite:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

rfc_record_per_line_test() ->
?assertEqual([#{"aaa" => "zzz", "bbb" => "yyy", "ccc" => "xxx"}],

bday_csv:decode("aaa,bbb,ccc\r\nzzz,yyy,xxx\r\n")).

rfc_optional_trailing_crlf_test() ->
?assertEqual([#{"aaa" => "zzz", "bbb" => "yyy", "ccc" => "xxx"}],

bday_csv:decode("aaa,bbb,ccc\r\nzzz,yyy,xxx")).

rfc_double_quote_test() ->
?assertEqual([#{"aaa" => "zzz", "bbb" => "yyy", "ccc" => "xxx"}],

bday_csv:decode("\"aaa\",\"bbb\",\"ccc\"\r\nzzz,yyy,xxx")).

rfc_crlf_escape_test() ->
?assertEqual([#{"aaa" => "zzz", "b\r\nbb" => "yyy", "ccc" => "xxx"}],

bday_csv:decode("\"aaa\",\"b\r\nbb\",\"ccc\"\r\nzzz,yyy,xxx")).

rfc_double_quote_escape_test() ->
%% Since we decided headers are mandatory, this test adds a line
%% with empty values (CLRF,,) to the example from the RFC.
?assertEqual([#{"aaa" => "", "b\"bb" => "", "ccc" => ""}],

bday_csv:decode("\"aaa\",\"b\"\"bb\",\"ccc\"\r\n,,")).

report erratum • discuss

CSV Parsing • 105

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%% @doc this counterexample is taken literally from the RFC and cannot
%% work with the current implementation because maps have no dupe keys
dupe_keys_unsupported_test() ->

CSV = "field_name,field_name,field_name\r\n"
"aaa,bbb,ccc\r\n"
"zzz,yyy,xxx\r\n",

[Map1,Map2] = bday_csv:decode(CSV),
?assertEqual(1, length(maps:keys(Map1))),
?assertEqual(1, length(maps:keys(Map2))),
?assertMatch(#{"field_name" := _}, Map1),
?assertMatch(#{"field_name" := _}, Map2).

Elixir translation on page 328.

The last test was impossible to cover with the current property implementation,
so doing it by hand in an example case still proved worthwhile. In the end,
ignoring comments and blank lines, twenty-seven lines of example tests let
us find one gotcha about our code and validate specific cases against the
RFC, and nineteen lines of property-based tests that let us exercise our code
to the point we found inconsistencies in the RFC itself (which is not too rep-
resentative of the real world).6 That’s impressive.

All in all, this combination of example-based unit tests and properties is a
good match. The properties can find very obtuse problems that require complex
searches into the problem space, both in breadth and in depth. On the other
hand, they can be written in a way that they’re general enough that some
basic details could be overlooked. In this case, the property exercised encoding
and decoding exceedingly well, but didn’t do it infallibly—we programmers
are good at making mistakes no matter the situation, and example tests could
also catch some things. They’re great when acting as anchors, an additional
safety net making sure our properties are not drifting away on their own.

Another similar good use of unit tests are to store regressions, specific tricky
bugs that need to be explicitly called out or validated frequently. PropEr with
Erlang and Elixir both contain options to store and track regressions auto-
matically if you want them to. Otherwise, example tests are as good of a place
as any to store that information.

With the CSV handling in place, we can now focus on filtering employee records.

Filtering Records
We have a module to convert CSV to maps, and we know that we’ll need
employee records and a way to filter them to move the project forward. We

6. http://tburette.github.io/blog/2014/05/25/so-you-want-to-write-your-own-CSV-code/

Chapter 5. Responsible Testing • 106

report erratum • discuss

http://tburette.github.io/blog/2014/05/25/so-you-want-to-write-your-own-CSV-code/
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

could start by defining the records’ specific fields, but since we know they’ll
be implemented using maps, and that maps are a fairly dynamic data struc-
ture, then nothing prevents us from jumping directly to the filtering step.

In this section, we’ll see a case where even though the problem space is large,
we can explore it better with example tests than with properties. The reason
for this is that the type of data we can get is very regular and easy to enumer-
ate, such that a brute force strategy pretty much guarantees a more
exhaustive and reliable testing approach than a probabilistic one with prop-
erties. Properties are not always the best way to go about tests, and this is
true in the next case. By filtering employee maps based on dates, we’ll see
that even when they’re not the best tool, properties can still be a useful source
of inspiration to come up with examples as well.

In most implementations that rely on an external component to filter and sort
records, the functionality would be provided at the interface level: in a SQL
query or as arguments to an API for example. So it wouldn’t require tests at
the unit level at all, and maybe just integration tests, if any. Filtering itself
is straightforward: just use a standard library function like lists:filter/2 and pass
in the date with which we want to filter. What’s trickier is ensuring that the
predicate passed to the function is correct.

Since the birthday search is based on 366 possible dates to verify, it could
be reasonable to just run all of them through an exhaustive search. But in
practice, we need to consider leap years, multiple matching employees, and
so on. For example, to run an exhaustive search, we would need a list of 366
employees (or 732, or even 1,098 to ensure more than one employee per day),
each with their own birthday. We would then need to run the program for
every day of every year starting in 2018 (year of this writing) until 2118,
making sure that each employee is greeted once per year on the same day as
that employee’s birthday.

That gives slightly more than one million runs to cover the whole foreseeable
future. We can try a sample run to estimate how long that would take, to see if
it’s worth doing. Let’s get an approximation by running a filter function as many
times as we’d need to cover around a hundred years with 1,098 employees:

1> L = lists:duplicate(366*3, #{name => "a", bday => {1,2,3}}),
1> timer:tc(fun() ->
1> [lists:filter(fun(X) -> false end, L) || _ <- lists:seq(1,100*366)], ok
1> end).
{17801551,ok}

Around eighteen seconds. Not super fast, but not insufferable. The run could
be faster by checking only twenty years, which takes under three seconds.

report erratum • discuss

Filtering Records • 107

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

That may be good enough to warrant bypassing unit tests and property-based
testing altogether. Brute force it is! We’ll inspire ourselves from the principles
we use when coming up with properties, but do so outside of any property-
based testing framework. The general approach to write our tests will be
similar, except that we’ll replace generators with fully deterministic data sets
that cover all cases.

Oh yes, and then there are leap years to handle. There’s a well-known formula
for which year will be a leap year, with Erlang implementing it in the calen-
dar:is_leap_year/1 function (working on years greater than 0):

-spec is_leap_year(non_neg_integer()) -> boolean().
is_leap_year(Year) when Year rem 4 =:= 0, Year rem 100 > 0 -> true;
is_leap_year(Year) when Year rem 400 =:= 0 -> true;
is_leap_year(_) -> false.

By using such a function, we can hand roll a full exhaustive property test.
Rather than using a ?FORALL macro, we will write some code to generate
exhaustive data (as opposed to PropEr generators, which are unpredictable)
and then manually validate every call in a lists:foreach/2 call:

Erlang code/ResponsibleTesting/erlang/bday/test/bday_filter_tests.erl

-module(bday_filter_tests).
-include_lib("eunit/include/eunit.hrl").

%% Property
bday_filter_test() ->

Years = generate_years_data(2018,2038),
People = generate_people_for_year(3),
lists:foreach(fun(YearData) ->

Birthdays = find_birthdays_for_year(People, YearData),
every_birthday_once(People, Birthdays),
on_right_date(People, Birthdays)

end, Years).

find_birthdays_for_year(_, []) -> [];
find_birthdays_for_year(People, [Day|Year]) ->

Found = bday_filter:birthday(People, Day), % <= function being tested
[{Day, Found} | find_birthdays_for_year(People, Year)].

Elixir code/ResponsibleTesting/elixir/bday/test/filter_test.exs

defmodule FilterTest do
use ExUnit.Case
alias Bday.Filter, as: Filter

Chapter 5. Responsible Testing • 108

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

test "property-style filtering test" do
years = generate_years_data(2018, 2038)
people = generate_people_for_year(3)

for yeardata <- years do
birthdays = find_birthdays_for_year(people, yeardata)
every_birthday_once(people, birthdays)
on_right_date(people, birthdays)

end
end

defp find_birthdays_for_year(_, []), do: []

defp find_birthdays_for_year(people, [day | year]) do
found = Filter.birthday(people, day) # <- function being tested
[{day, found} | find_birthdays_for_year(people, year)]

end

The data being generated is stored in Years, for the ability to generate all dates
in a year, and People, which contains all the employees in a company. The
search itself is run for each date of a year by the function find_birthdays_for_year/2,
which just calls our actual implementation under test, bday_filter:birthday(People,
Day). The result is then passed to two assertions, every_birthday_once/2 and
on_right_date/2. Let’s start by digging into the generators, so that we can see
what data the rest of the tests will use.

The first generator is for years, which really just iterates through all possible
days and assembles a list of all dates:

Erlang code/ResponsibleTesting/erlang/bday/test/bday_filter_tests.erl

%% Generators
generate_years_data(End, End) ->

[];
generate_years_data(Start, End) ->

[generate_year_data(Start) | generate_years_data(Start+1, End)].

generate_year_data(Year) ->
DaysInFeb = case calendar:is_leap_year(Year) of

true -> 29;
false -> 28

end,
month(Year,1,31) ++ month(Year,2,DaysInFeb) ++ month(Year,3,31) ++
month(Year,4,30) ++ month(Year,5,31) ++ month(Year,6,30) ++
month(Year,7,31) ++ month(Year,8,31) ++ month(Year,9,30) ++
month(Year,10,31) ++ month(Year,11,30) ++ month(Year,12,31).

month(Y,M,1) -> [{Y,M,1}];
month(Y,M,N) -> [{Y,M,N} | month(Y,M,N-1)].

report erratum • discuss

Filtering Records • 109

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/ResponsibleTesting/elixir/bday/test/filter_test.exs

Generators
defp generate_years_data(stop, stop), do: []

defp generate_years_data(start, stop) do
[generate_year_data(start) | generate_years_data(start + 1, stop)]

end

defp generate_year_data(year) do
{:ok, date} = Date.new(year, 1, 1)

days_in_feb =
case Date.leap_year?(date) do
true -> 29
false -> 28

end

month(year, 1, 31) ++
month(year, 2, days_in_feb) ++
month(year, 3, 31) ++
month(year, 4, 30) ++
month(year, 5, 31) ++
month(year, 6, 30) ++
month(year, 7, 31) ++
month(year, 8, 31) ++
month(year, 9, 30) ++
month(year, 10, 31) ++ month(year, 11, 30) ++ month(year, 12, 31)

end

defp month(y, m, 1) do
{:ok, date} = Date.new(y, m, 1)
[date]

end

defp month(y, m, n) do
{:ok, date} = Date.new(y, m, n)
[date | month(y, m, n - 1)]

end

There’s the little special case for leap years adding a twenty-ninth day to
February, but that’s about it.

Now, for generating people, things are a bit trickier. The first thing we’ll use
is a seed year, which just contains all possible days and months—a leap year,
such as 2016, is required—and then use it to create employee records. By
using the dates as a seed for employee creation, we simply ensure that we’ll
get one employee per date. If we need more than one employee per date, we
just need to run the function more than once. This is precisely what the gen-
erate_people_for_year(N) function does:

Chapter 5. Responsible Testing • 110

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/ResponsibleTesting/erlang/bday/test/bday_filter_tests.erl

generate_people_for_year(N) ->
YearSeed = generate_year_data(2016), % leap year so all days are covered
lists:append([people_for_year(YearSeed) || _ <- lists:seq(1,N)]).

people_for_year(Year) ->
[person_for_date(Date) || Date <- Year].

person_for_date({_, M, D}) ->
#{"name" => make_ref(),

"date_of_birth" => {rand:uniform(100)+1900,M,D}}.

Elixir code/ResponsibleTesting/elixir/bday/test/filter_test.exs

defp generate_people_for_year(n) do
leap year so all days are covered
year_seed = generate_year_data(2016)
Enum.flat_map(1..n, fn _ -> people_for_year(year_seed) end)

end

defp people_for_year(year) do
for date <- year do

person_for_date(date)
end

end

defp person_for_date(%Date{month: m, day: d} = date) do
case Date.new(:rand.uniform(100) + 1900, m, d) do

{:error, :invalid_date} ->
person_for_date(date)

{:ok, date} ->
%{"name" => make_ref(), "date_of_birth" => date}

end
end

You can see that people_for_year is just an iterator that will create one person
for each date, and person_for_date/1 will generate a unique name (an Erlang ref-
erence), and pick a random birth year from 1901 to 2000. It doesn’t really
matter if the fake data we generate tells us someone is born on February 29
of a non–leap year since we’re searching by the month and day of the current
year, and the birth year is ignored. In Elixir, this case is handled explicitly
since the date struct requires correct dates.

So that’s for the generation. Let’s get back to our assertions, our manual
replacement for rules for properties. We are testing two rules:

report erratum • discuss

Filtering Records • 111

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

1. Every birthday is found exactly once. (Nobody is left behind nor found
too often.)

2. Every birthday is found on the right date. (Don’t write a system that cheats
by telling everyone “happy birthday” on January 1st.)

These can be implemented using regular EUnit assertion macros, which cause
a failure if the condition is false and will succeed by not crashing otherwise.
The function every_birthday_once(People, Birthdays) takes in a list of all employees
(People) and all birthdays found through filtering (Birthdays), builds a list of how
many birthdays were not found or found more than once, and asserts that
both lists are empty—because they’ve been found exactly once:

Erlang code/ResponsibleTesting/erlang/bday/test/bday_filter_tests.erl

%% Assertions
every_birthday_once(People, Birthdays) ->

Found = lists:sort(lists:append([Found || {_, Found} <- Birthdays])),
NotFound = People -- Found,
FoundManyTimes = Found -- lists:usort(Found), % usort drops dupes
?assertEqual([], NotFound),
?assertEqual([], FoundManyTimes).

on_right_date(_People, Birthdays) ->
[?assertEqual({M,D}, {PM,PD})
|| {{Y,M,D}, Found} <- Birthdays,

#{"date_of_birth" := {_,PM,PD}} <- Found].

Elixir code/ResponsibleTesting/elixir/bday/test/filter_test.exs

defp every_birthday_once(people, birthdays) do
found =

birthdays
|> Enum.flat_map(fn {_, found} -> found end)
|> Enum.sort()

not_found = people -- found
found_many_times = found -- Enum.uniq(found)
assert [] == not_found
assert [] == found_many_times

end

defp on_right_date(_people, birthdays) do
for {date, found} <- birthdays do

for %{"date_of_birth" => dob} <- found do
assert {date.month, date.day} == {dob.month, dob.day}

end
end

end

Chapter 5. Responsible Testing • 112

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The assertion in on_right_date/2 checks that an employee’s birthday (PM and PD
for the month and day respectively) lands on the right month and day used
for the search.

If you run the test, it will unsurprisingly fail since bday_filter:birthday/2 is currently
undefined. Let’s write a first implementation:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_filter.erl

-module(bday_filter).
-export([birthday/2]).

birthday(People, {_Year, Month, Day}) ->
lists:filter(

fun(#{"date_of_birth" := {_,M,D}}) -> {Month,Day} == {M,D} end,
People

).

Elixir code/ResponsibleTesting/elixir/bday/lib/filter.ex

def birthday(people, %Date{month: month, day: day}) do
Enum.filter(

people,
fn %{"date_of_birth" => %Date{month: m, day: d}} ->
{month, day} == {m, d}

end
)

end

The implementation is straightforward, using lists:filter/2 to check for the right
month and date. Running it fails in a fun way:

$ rebar3 eunit
«build and test output»
Failures:

1) bday_filter_tests:bday_filter_test/0: module 'bday_filter_tests'
Failure/Error: ?assertEqual([], NotFound)

expected: []
got: [#{"date_of_birth" => {1940,2,29},

"name" => #Ref<0.1413896841.873201667.109143>},
#{"date_of_birth" => {1917,2,29},

"name" => #Ref<0.1413896841.873201667.109509>},
#{"date_of_birth" => {1972,2,29},

"name" => #Ref<0.1413896841.873201667.109875>}]
%% lists.erl:1338:in `lists:foreach/2`

«more output»
So the ?assertEqual([], NotFound) assertion fails, which tells us that we have
birthdays that haven’t been found while they should have been. We don’t

report erratum • discuss

Filtering Records • 113

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

have shrinking since we’re writing our own properties without a framework,
but by looking at the dates, we can figure out that something failed when
looking up birthdays related to February 29. It’s pretty certain that the
problem with our filter function is that folks with their birthdays on leap days
will be ignored on non–leap years.

We can patch this up by making sure that if we hit February 28 on a non–leap
year, we should also look for people whose birthday would be on the 29th:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_filter.erl

-module(bday_filter).
-export([birthday/2]).

birthday(People, {Year, 2, 28}) ->
case calendar:is_leap_year(Year) of

true -> filter_dob(People, 2, 28);
false -> filter_dob(People, 2, 28) ++ filter_dob(People, 2, 29)

end;
birthday(People, {_Year, Month, Day}) ->

filter_dob(People, Month, Day).

filter_dob(People, Month, Day) ->
lists:filter(

fun(#{"date_of_birth" := {_,M,D}}) -> {Month,Day} == {M,D} end,
People

).

Elixir code/ResponsibleTesting/elixir/bday/lib/filter.ex

defmodule Bday.Filter do
def birthday(people, date = %Date{month: 2, day: 28}) do

case Date.leap_year?(date) do
true -> filter_dob(people, 2, 28)
false -> filter_dob(people, 2, 28) ++ filter_dob(people, 2, 29)

end
end

def birthday(people, %Date{month: m, day: d}) do
filter_dob(people, m, d)

end

defp filter_dob(people, month, day) do
Enum.filter(
people,
fn %{"date_of_birth" => %Date{month: m, day: d}} ->

{month, day} == {m, d}
end

)
end

end

Chapter 5. Responsible Testing • 114

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Run the EUnit tests again and you should see another failing case:

$ rebar3 eunit
«build and test output»
Failures:

1) bday_filter_tests:bday_filter_test/0: module 'bday_filter_tests'
Failure/Error: ?assertEqual({2,28}, { PM , PD })

expected: {2,28}
got: {2,29}

%% lists.erl:1338:in `lists:foreach/2`
«more output»
The test is now off. Since people whose birthday is on February 29 are greeted
on the 28th in non–leap years, the on_right_date/2 assertion gets tripped: the
29th is clearly not the 28th. The test is wrong here, and it needs patching—the
same kind of deal we get with regular property testing—by relaxing the
assertion. We’ll adjust it so the test accepts people being greeted on the wrong
day when their birthday falls on an invalid date for the given search year:

Erlang code/ResponsibleTesting/erlang/bday/test/bday_filter_tests.erl

on_right_date(_People, Birthdays) ->
[calendar:valid_date({Y,PM,PD}) andalso ?assertEqual({M,D}, {PM,PD})
|| {{Y,M,D}, Found} <- Birthdays,

#{"date_of_birth" := {_,PM,PD}} <- Found].

Elixir code/ResponsibleTesting/elixir/bday/test/filter_test.exs

defp on_right_date(_people, birthdays) do
for {date, found} <- birthdays do

for %{"date_of_birth" => dob} <- found do
case Date.new(date.year, dob.month, dob.day) do

{:error, :invalid_date} -> :skip
_ -> assert {date.month, date.day} == {dob.month, dob.day}

end
end

end
end

The reason for picking calendar:valid_date/1 over checking leap years explicitly is
that it lets us avoid reusing the same implementation between the function
being tested and the test itself. It has a better chance of catching us making
mistakes than duplicating the logic around would.

Now running the EUnit suite yields:

$ rebar3 eunit
===> Verifying dependencies...
===> Compiling bday

report erratum • discuss

Filtering Records • 115

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

===> Performing EUnit tests...
........

Top 8 slowest tests (1.403 seconds, 88.3% of total time):
bday_filter_tests:bday_filter_test/0: module 'bday_filter_tests'

1.403 seconds
prop_csv:rfc_double_quote_test/0

0.000 seconds
prop_csv:rfc_record_per_line_test/0

0.000 seconds
«more output»
Finished in 1.589 seconds
8 tests, 0 failures

Not too bad! Under one and a half seconds for an exhaustive property-like
test of the next twenty years of operation. While it’s technically not property-
based testing, the results are more trustworthy in this case since we’re going
over all possibilities rather than some random selected ones. We just get to
debug things ourselves since there’s no shrinking.

The lesson here is that even though property tests can be very exciting, it’s
always good to look for alternative ways to test things that might be more
effective. In this case, when the various states or possible inputs are limited,
exhaustive testing is an interesting way to do better than a property would.

Now that we have CSV handling and employee filtering, what we’re missing
is the actual employee module to tie both parts together.

Employee Module
The employee module is where we’ll bridge the parsing of records with filtering
and searching through employees. Proper isolation of concerns should make
it possible for both types of users, those who create and those who consume
employee data, to do everything they need without knowing about the
requirements of the other.

In this section we’ll tackle the requirements, then work on the CSV adapter,
and finally tie up the internal usage of employee records. This will let us go
through a critial-but-annoying part of the system—the plumbing, full of pesky
business rules—and see how we can use properties to validate them.

Setting Requirements
Our challenge here is to come up with an internal data representation that
can easily be converted to CSV, while also allowing us to use employee entries
the way we would handle any other Erlang data structure. Of course, we’ll

Chapter 5. Responsible Testing • 116

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

want to test this with properties. Let’s start with the transformations from
what the CSV parser hands to us:

last_name, first_name, date_of_birth, email
Doe, John, 1982/10/08, john.doe@foobar.com
Ann, Mary, 1975/09/11, mary.ann@foobar.com

We can notice a couple of issues in the document format:

• The fields are messy and have extra leading spaces.
• The dates are in "YYYY/MM/DD" format, whereas Erlang works on
{Year,Month,Day} tuples and Elixir uses a Date struct.

The transformation requires additional processing after the conversion from
CSV, which could usually be done or handled by a framework or adapter. For
example, most PostgreSQL connection libraries will convert the internal data
type for dates and time to Erlang’s {{Year,Month,Day}, {H,Min,Sec}} tuple format
without much of a problem. In the case of CSV, the specification is really lax
and as such it’s our responsibility to convert from a string to the appropriate
type, along with some additional validation.

We’ll define the following functionality:

• An accessor for each field (last_name/1, first_name/1, date_of_birth/1, email/1)
• A function to search employees by birthday
• A from_csv/1 function that takes a CSV string and returns a cleaned-up set

of maps representing individual employees. Erlang’s opaque types7 will
let us use Dialyzer to ensure that nobody looks at the internal employee
data set other than as a thoroughly abstract piece of data. This will allow
us to change data representations later, moving from CSV to a SQL-based
iterator transparently, for example. Remember that we’re aiming for long
term flexibility, not the simplest thing that can work.

This should encapsulate all of our requirements without a problem.

Adapting CSV Data
Since we have already tested CSV conversion itself, what we need to do is
take the output from the parser and hammer it into shape. For our tests, this
means that we won’t have to work with generating CSV data, but with gener-
ating the data that needs cleaning up. Let’s start with the leading spaces. We
know all the fields required, and we know that all of them but the first will
be messy, so a property about that only needs to ensure that once handled,
no fields start with whitespace:

7. http://erlang.org/doc/reference_manual/typespec.html#id80458

report erratum • discuss

Employee Module • 117

http://erlang.org/doc/reference_manual/typespec.html#id80458
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/ResponsibleTesting/erlang/bday/test/prop_bday_employee.erl

-module(prop_bday_employee).
-include_lib("proper/include/proper.hrl").

%%%%%%%%%%%%%%%%%%
%%% Properties %%%
%%%%%%%%%%%%%%%%%%
prop_fix_csv_leading_space() ->

?FORALL(Map, raw_employee_map(),
begin

Emp = bday_employee:adapt_csv_result(Map),
Strs = [X || X <- maps:keys(Emp) ++ maps:values(Emp), is_list(X)],
lists:all(fun(String) -> hd(String) =/= $\s end, Strs)

end).

Elixir code/ResponsibleTesting/elixir/bday/test/employee_test.exs

property "check that leading space is fixed" do
forall map <- raw_employee_map() do

emp = Employee.adapt_csv_result_shim(map)
strs = Enum.filter(Map.keys(emp) ++ Map.values(emp), &is_binary/1)
Enum.all?(strs, fn s -> String.first(s) != " " end)

end
end

As you can see, we rely on the yet undefined raw_employee_map() generator, call
the adapting function (which will be private), and then check that the first
character is not a space in any key or value. Let’s see how to implement the
generator. The first trick there is that instead of generating a map with the
map() generator provided by PropEr, we’ll build one from a proplist. The issue
with the default generator as supported at the time of this writing is that it
takes types for keys and values, and doesn’t let us set specific values easily.
A proplist and a ?LET macro will do just fine:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_bday_employee.erl

%%%%%%%%%%%%%%%%%%
%%% Generators %%%
%%%%%%%%%%%%%%%%%%
raw_employee_map() ->

%% PropEr's native map type does not allow pre-defined static
%% keys (just `map(T1, T2)') so we convert from a proplist
?LET(PropList,

[{"last_name", prop_csv:field()}, % 1st col has no leading space
{" first_name", whitespaced_text()},
{" date_of_birth", text_date()},
{" email", whitespaced_text()}],

maps:from_list(PropList)).

Chapter 5. Responsible Testing • 118

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

whitespaced_text() ->
?LET(Txt, prop_csv:field(), " " ++ Txt).

text_date() ->
%% leading space and leading 0s for months and days; since we're
%% checking string formats, it doesn't matter if dates are invalid
?LET({Y,M,D}, {choose(1900,2020), choose(1,12), choose(1,31)},

lists:flatten(io_lib:format(" ~w/~2..0w/~2..0w", [Y,M,D]))).

Elixir code/ResponsibleTesting/elixir/bday/test/employee_test.exs

defp raw_employee_map() do
let proplist <- [

{"last_name", CsvTest.field()},
{" first_name", whitespaced_text()},
{" date_of_birth", text_date()},
{" email", whitespaced_text()}

] do
Map.new(proplist)

end
end

defp whitespaced_text() do
let(txt <- CsvTest.field(), do: " " <> txt)

end

defp text_date() do
rawdate = {choose(1900, 2020), choose(1, 12), choose(1, 31)}
only generate valid dates
date =

such_that(
{y, m, d} <- rawdate,
when: {:error, :invalid_date} != Date.new(y, m, d)

)

let {y, m, d} <- date do
IO.chardata_to_string(:io_lib.format(" ~w/~2..0w/~2..0w", [y, m, d]))

end
end

You can also see that we reuse the previously defined prop_csv:field() generator
we defined when writing the CSV parser; no reason to reinvent that one. All
we do is add an unconditional leading whitespace in front of it. We also write
a generator for the arbitrary date format provided for us in the file sample,
which will need to be properly cleaned up as well.

Running this property will fail because the bday_employee:adapt_csv_result/1 function
doesn’t exist. Since it’s not going to be in our interface, though, we shouldn’t
export it in usual circumstances. With traditional example tests, people would
colocate their EUnit test within the bday_employee module. A nicer trick to keep

report erratum • discuss

Employee Module • 119

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

our tests separate from the production code is to use a conditional macro
based on the TEST profile to only export the function while writing tests:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_employee.erl

-module(bday_employee).

%% CSV exports
-export([from_csv/1]).

-ifdef(TEST).
-export([adapt_csv_result/1]).
-endif.

Elixir code/ResponsibleTesting/elixir/bday/lib/employee.ex

if Mix.env() == :test do
def adapt_csv_result_shim(map), do: adapt_csv_result(map)

end

Then we can start focusing on implementing the CSV conversion itself. We’ll
use a special approach by wrapping all our conversions into a {raw, ...} tuple,
hidden behind an opaque type. We’ll see why soon, but for now, just trust that
this will buy us a lot of flexibility for future changes.

Erlang code/ResponsibleTesting/erlang/bday/src/bday_employee.erl

-opaque employee() :: #{string() := term()}.
-opaque handle() :: {raw, [employee()]}.
-export_type([handle/0, employee/0]).

-spec from_csv(string()) -> handle().
from_csv(String) ->

{raw, [adapt_csv_result(Map) || Map <- bday_csv:decode(String)]}.

Elixir code/ResponsibleTesting/elixir/bday/lib/employee.ex

@opaque employee() :: %{required(String.t()) => term()}
@opaque handle() :: {:raw, [employee()]}

def from_csv(string) do
{:raw,
for map <- Bday.Csv.decode(string) do

adapt_csv_result(map)
end}

end

Chapter 5. Responsible Testing • 120

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Then skip it for brevity we’re actually testing:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_employee.erl

-spec adapt_csv_result(map()) -> employee().
adapt_csv_result(Map) ->

maps:fold(fun(K,V,NewMap) -> NewMap#{trim(K) => trim(V)} end,
#{}, Map).

trim(Str) -> string:trim(Str, leading, " ").

Elixir code/ResponsibleTesting/elixir/bday/lib/employee.ex

defp adapt_csv_result(map) do
for {k, v} <- map, into: %{} do

{trim(k), trim(v)}
end

end

defp trim(str), do: String.trim_leading(str, " ")

Let’s run the tests to see how this goes:

$ rebar3 proper -m prop_bday_employee
===> Verifying dependencies...
===> Compiling bday
===> Testing prop_bday_employee:prop_fix_csv_leading_space()
!
Failed: After 1 test(s).
An exception was raised: error:badarg.
Stacktrace: [{erlang,hd,[[]],[]},

{prop_bday_employee,'-prop_fix_csv_leading_space/0-fun-1-',1,
[{file,

"«absolute path»/bday/test/prop_bday_employee.erl"},
{line,13}]},

{lists,all,2,[{file,"lists.erl"},{line,1213}]}].
«more output»
So the error here is when the function hd([]) is called; of course we can’t check
what the first character of a string is if it’s empty. In fact, we could argue that
empty strings should be replaced by the atom undefined, or :nil in Elixir.

Making that change will implicitly fix the test at the same time, since it already
filters out nonstring results with is_list(X) in the property. (We could add a test
to check for undefined values, but we’ll skip it for brevity.)

report erratum • discuss

Employee Module • 121

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/ResponsibleTesting/erlang/bday/src/bday_employee.erl

-spec adapt_csv_result(map()) -> employee().
adapt_csv_result(Map) ->

maps:fold(fun(K,V,NewMap) -> NewMap#{trim(K) => maybe_null(trim(V))} end,
#{}, Map).

trim(Str) -> string:trim(Str, leading, " ").

maybe_null("") -> undefined;
maybe_null(Str) -> Str.

Elixir code/ResponsibleTesting/elixir/bday/lib/employee.ex

defp adapt_csv_result(map) do
for {k, v} <- map, into: %{} do

{trim(k), maybe_null(trim(v))}
end

end

defp trim(str), do: String.trim_leading(str, " ")

defp maybe_null(""), do: nil
defp maybe_null(str), do: str

Run the property again and you’ll see that it passes. The next requirement
is to convert known date columns (such as "date_of_birth") into the internal
Erlang date format. We’ll check this one with a new property, rather than
adding complexity to the previous one:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_bday_employee.erl

prop_fix_csv_date_of_birth() ->
?FORALL(Map, raw_employee_map(),

case bday_employee:adapt_csv_result(Map) of
#{"date_of_birth" := {Y,M,D}} ->

is_integer(Y) and is_integer(M) and is_integer(D);
_ ->

false
end).

Elixir code/ResponsibleTesting/elixir/bday/test/employee_test.exs

property "check that the date is formatted right" do
forall map <- raw_employee_map() do

Chapter 5. Responsible Testing • 122

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

case Employee.adapt_csv_result_shim(map) do
%{"date_of_birth" => %Date{}} ->

true
_ ->

false
end

end
end

The generator sequence is identical to prop_fix_csv_leading_whitespace(), but rather
than looking at strings, we make sure that the date format is valid. To make
it pass, we must implement the matching code in the bday_employee module by
patching the adapt_csv_result/1 function:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_employee.erl

-spec adapt_csv_result(map()) -> employee().
adapt_csv_result(Map) ->

NewMap = maps:fold(
fun(K,V,NewMap) -> NewMap#{trim(K) => maybe_null(trim(V))} end,
#{},
Map

),
DoB = maps:get("date_of_birth", NewMap), % crash if key missing
NewMap#{"date_of_birth" => parse_date(DoB)}.

trim(Str) -> string:trim(Str, leading, " ").

maybe_null("") -> undefined;
maybe_null(Str) -> Str.

parse_date(Str) ->
[Y,M,D] = [list_to_integer(X) || X <- string:lexemes(Str, "/")],
{Y,M,D}.

Elixir code/ResponsibleTesting/elixir/bday/lib/employee.ex

defp adapt_csv_result(map) do
map =

for {k, v} <- map, into: %{} do
{trim(k), maybe_null(trim(v))}

end

dob = Map.fetch!(map, "date_of_birth")
%{map | "date_of_birth" => parse_date(dob)}

end

report erratum • discuss

Employee Module • 123

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

defp trim(str), do: String.trim_leading(str, " ")

defp maybe_null(""), do: nil
defp maybe_null(str), do: str

defp parse_date(str) do
[y, m, d] = Enum.map(String.split(str, "/"), &String.to_integer(&1))
{:ok, date} = Date.new(y, m, d)
date

end

Run the properties and everything should pass:

$ rebar3 proper -m prop_bday_employee
===> Verifying dependencies...
===> Compiling bday
===> Testing prop_bday_employee:prop_fix_csv_leading_space()
..
........................
OK: Passed 100 test(s).
===> Testing prop_bday_employee:prop_fix_csv_date_of_birth()
..
........................
OK: Passed 100 test(s).
===>
2/2 properties passed

Good! We’ve covered the entire CSV correction and integration. We now just
have to put the accessor functions in place.

Using Employees
Because the employee module ties together the data conversion functionality
with the search itself, it turns out to be the perfect place for us to hide
implementation details about the data storage layer. If we do things right,
the bits that rely on the data to do something useful get isolated from how
the data is obtained. This is not necessarily that big of a deal for tests, but
it’s a critical part of future-proofing our system design.

Start with data accessors, which should be trivial and simple enough they
don’t require testing. We just have to add them to bday_employee and export:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_employee.erl

-export([from_csv/1, last_name/1, first_name/1, date_of_birth/1, email/1]).

«existing code»
-spec last_name(employee()) -> string() | undefined.
last_name(#{"last_name" := Name}) -> Name.

Chapter 5. Responsible Testing • 124

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

-spec first_name(employee()) -> string() | undefined.
first_name(#{"first_name" := Name}) -> Name.

-spec date_of_birth(employee()) -> calendar:date().
date_of_birth(#{"date_of_birth" := DoB}) -> DoB.

-spec email(employee()) -> string().
email(#{"email" := Email}) -> Email.

Elixir code/ResponsibleTesting/elixir/bday/lib/employee.ex

@spec last_name(employee()) :: String.t() | nil
def last_name(%{"last_name" => name}), do: name

@spec first_name(employee()) :: String.t() | nil
def first_name(%{"first_name" => name}), do: name

@spec date_of_birth(employee()) :: Date.t()
def date_of_birth(%{"date_of_birth" => dob}), do: dob

@spec email(employee()) :: String.t()
def email(%{"email" => email}), do: email

Now our users can truly ignore the underlying map implementation.

You may have noticed that all these accessors just take a direct employee() type
value as an argument (a map), but from_csv(String) returned a value of type
handle() ({raw, [employee()]}). The question is, How are we going to transition from
one to the other? The answer is that this opaque handle() type is a way to rep-
resent an abstract resource that can be substituted at a later point.

For example, if at a later date we were to replace the CSV-backed employee
storage with a database, we may change the definition of handle() from {raw,
[employee()]} to {db, Config, Connection, SQLQuery}. This data structure could then
be built and modified lazily, and only be materialized with real data by exe-
cuting a final query. A similar functionality backed by a microservice could
be using a handle of the form {service, URI, ExtraData}, and so on. All that’s
needed is a function to actualize the result set into a discrete list of maps
users are free to poke into:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_employee.erl

-spec fetch(handle()) -> [employee()].
fetch({raw, Maps}) -> Maps.

Elixir code/ResponsibleTesting/elixir/bday/lib/employee.ex

@spec fetch(handle()) :: [employee()]
def fetch({:raw, maps}), do: maps

report erratum • discuss

Employee Module • 125

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Export this function by adding -export([fetch/1]). with other export attributes. In
the current implementation, the {raw, ...} format just lets us do everything
locally with the same interface. With this in mind, we can now represent every
call that could be a remote query or action through this format. For example,
we can implement the filter_birthday/3 call as:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_employee.erl

-spec filter_birthday(handle(), calendar:date()) -> handle().
filter_birthday({raw, Employees}, Date) ->

{raw, bday_filter:birthday(Employees, Date)}.

Elixir code/ResponsibleTesting/elixir/bday/lib/employee.ex

@spec filter_birthday(handle(), Date.t()) :: handle()
def filter_birthday({:raw, employees}, date) do

{:raw, Bday.Filter.birthday(employees, date)}
end

That whole mechanism is a bit complex, so let’s write a property that shows
how this should all be used together:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_bday_employee.erl

prop_handle_access() ->
?FORALL(Maps, non_empty(list(raw_employee_map())),

begin
CSV = bday_csv:encode(Maps),
Handle = bday_employee:from_csv(CSV),
Partial = bday_employee:filter_birthday(Handle, date()),
ListFull = bday_employee:fetch(Handle),
true = is_list(bday_employee:fetch(Partial)),
%% Check for no crash
_ = [{bday_employee:first_name(X),

bday_employee:last_name(X),
bday_employee:email(X),
bday_employee:date_of_birth(X)} || X <- ListFull],

true
end).

Elixir code/ResponsibleTesting/elixir/bday/test/employee_test.exs

property "check access through the handle" do
forall maps <- non_empty(list(raw_employee_map())) do

handle =
maps
|> Csv.encode()
|> Employee.from_csv()

Chapter 5. Responsible Testing • 126

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

partial = Employee.filter_birthday(handle, ~D[1900-01-01])
list = Employee.fetch(partial)
check for absence of crash
for x <- list do
Employee.first_name(x)
Employee.last_name(x)
Employee.email(x)
Employee.date_of_birth(x)

end

true
end

end

You can see that we first generate all the employee maps, encode them with
our CSV encoder, and then extract them with bday_employee:from_csv/1, which
creates an opaque handle. This opaque handle is then passed to bday_employ-
ee:filter_birthday/2 along with the result of date() (an Erlang built-in function
returning today’s date). If you’re a purist for unit testing, feel free to replace
date() with any hardcoded date, possibly one from the existing employee set.
That filter returns a new handle, and we can only get a list of employees once
bday_employee:fetch/1 is called. Then we just look to make sure everything works
without crashing, and that’s the whole property.

What’s interesting with this program structure is that if you were to use, say,
Ecto from Elixir, raw SQL queries, or any other ORM, the only thing you’d
need to change as a caller is how the initial fetch for data is done. Use
something like bday_employee:from_sql(...) or bday_employee:from_cache(...) instead of
bday_employee:from_csv(...) and then the rest of the changes can be hidden within
the module itself. This is generally a good sign that we’ve prevented leaky
abstractions: swapping the implementation of the backing structure altogether
doesn’t really break the interface we’ve chosen for consumers.

We can run the full suite and have a look at the coverage statistics:

$ rebar3 do eunit -c, proper -c, cover -v
«build information»
===> Performing EUnit tests...
........
«timing output»
8 tests, 0 failures
«PropEr output»
===>
4/4 properties passed
«build information»
===> Performing cover analysis...

report erratum • discuss

Employee Module • 127

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

|------------------------|------------|
module	coverage
bday_csv	100%
bday_employee	100%
bday_filter	100%
------------------------	------------
total	100%
------------------------	------------

That kind of vanity metrics feels good! Perfect is not a sign that there are no
bugs, but it’s probably still looking better than if we’d found out all our
properties only exercised 20% of the code.

We have most of the functional components of our system in place now. All
we need is to take the employees we are looking for and create the emails
we’ll want to send.

Templating
Our last task before tying it all up is templating. This will be a simple section
with limited tests, but we’ll still manage with properties. The requirement is
straightforward. Send an email whose content is just Happy birthday, dear
$first_name!. The function should take one employee term and that’s it. Since
the focus is on unit tests and we won’t send actual emails, only templating
needs coverage for now. Let’s start by writing a property in a standalone suite:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_bday_mail_tpl.erl

-module(prop_bday_mail_tpl).
-include_lib("proper/include/proper.hrl").

prop_template_email() ->
?FORALL(Employee, employee_map(),

nomatch =/= string:find(bday_mail_tpl:body(Employee),
maps:get("first_name", Employee))

).

employee_map() ->
%% Convert from a proplist to have specific keys in a map
?LET(PropList,

[{"last_name", non_empty(prop_csv:field())},
{"first_name", non_empty(prop_csv:field())},
{"date_of_birth", {choose(1900,2020),choose(1,12),choose(1,31)}},
{"email", non_empty(prop_csv:field())}],

maps:from_list(PropList)).

Chapter 5. Responsible Testing • 128

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/ResponsibleTesting/elixir/bday/test/mail_tpl_test.exs

defmodule MailTplTest do
use ExUnit.Case
use PropCheck
alias Bday.MailTpl, as: MailTpl

property "email template has first name" do
forall employee <- employee_map() do
String.contains?(

MailTpl.body(employee),
Map.fetch!(employee, "first_name")

)
end

end

defp employee_map() do
let proplist <- [

{"last_name", non_empty(CsvTest.field())},
{"first_name", non_empty(CsvTest.field())},
{"date_of_birth", date()},
{"email", non_empty(CsvTest.field())}

] do
Enum.reduce(proplist, %{}, fn {k, v}, m -> Map.put(m, k, v) end)

end
end

defp date() do
rawdate = {choose(1900, 2020), choose(1, 12), choose(1, 31)}
only generate valid dates
date =
such_that(

{y, m, d} <- rawdate,
when: {:error, :invalid_date} != Date.new(y, m, d)

)

let {y, m, d} <- date do
{:ok, val} = Date.new(y, m, d)
val

end
end

end

The string:find/2 function looks for a given string within another one and returns
it if found, or nomatch if missing. One gotcha is that some fields are defined as
nullable in the employee module (they may return undefined). The initial speci-
fication did not mention if it were possible or not for them to be missing, but

report erratum • discuss

Templating • 129

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

since the sample of two entries all had fields, we’ll assume that so will our
production data, and our generators reflect that fact.

With the following implementation, the test should pass every time:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_mail_tpl.erl

-module(bday_mail_tpl).
-export([body/1]).

-spec body(bday_employee:employee()) -> string().
body(Employee) ->

lists:flatten(io_lib:format("Happy birthday, dear ~s!",
[bday_employee:first_name(Employee)])).

Elixir code/ResponsibleTesting/elixir/bday/lib/mail_tpl.ex

defmodule Bday.MailTpl do
def body(employee) do

name = Bday.Employee.first_name(employee)
"Happy birthday, dear #{name}!"

end

A trivially correct convenience function that extracts all that is needed for an
email to be sent (address, subject, body) can be added to provide further
decoupling:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_mail_tpl.erl

-export([full/1]). % add this export near the top of the file

-spec full(bday_employee:employee()) -> {[string()], string(), string()}.
full(Employee) ->

{[bday_employee:email(Employee)],
"Happy birthday!",
body(Employee)}.

Elixir code/ResponsibleTesting/elixir/bday/lib/mail_tpl.ex

def full(employee) do
{[Bday.Employee.email(employee)], "Happy birthday!", body(employee)}

end

The email address is put in a list since email clients typically allow more than
one entry in the To: field.

And with this in place, the last individual component of the system is done.
All we have to do is assemble everything.

Chapter 5. Responsible Testing • 130

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Plumbing It All Together
It’s now time to take these well-tested bits, and integrate them. Fortunately
for us, integration is not a concern for this chapter (we care about unit tests),
so we can just throw everything together quickly and consider our job done:

Erlang code/ResponsibleTesting/erlang/bday/src/bday.erl

-module(bday).
-export([main/1]).

main([Path]) ->
{ok, Data} = file:read_file(Path),
Handle = bday_employee:from_csv(binary_to_list(Data)),
Query = bday_employee:filter_birthday(Handle, date()), % date = local time
BdaySet = bday_employee:fetch(Query),
Mails = [bday_mail_tpl:full(Employee) || Employee <- BdaySet],
[send_email(To, Topic, Body) || {To, Topic, Body} <- Mails].

send_email(To, _, _) ->
io:format("sent birthday email to ~p~n", [To]).

Elixir code/ResponsibleTesting/elixir/bday/lib/bday.ex

defmodule Bday do
def run(path) do

set =
path
|> File.read!()
|> Bday.Employee.from_csv()
|> Bday.Employee.filter_birthday(DateTime.to_date(DateTime.utc_now()))
|> Bday.Employee.fetch()

for employee <- set do
employee
|> Bday.MailTpl.full()
|> send_email()

end

:ok
end

defp send_email({to, _topic, _body}) do
IO.puts("sent birthday email to #{to}")

end
end

The email client is not implemented since it is also out of scope for now (and
is left as an exercise to the reader, to steal a frustrating quote from academia).
For now we’ll stick with a simple io:format/2 call to stand in for the actual email

report erratum • discuss

Plumbing It All Together • 131

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

client handling and call it a day. We just need to package the program to be
run. Erlang lets you do this by calling rebar3 escriptize, generating a stand-alone
script. If you’re using Elixir, call mix run -e 'Bday.run("db.csv")' instead:

$ rebar3 escriptize
===> Verifying dependencies...
===> Compiling bday
===> Building escript...

The script is generated in the _build/default/bin directory. The program can now
be run, as long as the sample CSV file has full CRLF line terminations:

ResponsibleTesting/erlang/bday/priv/db.csv
last_name, first_name, date_of_birth, email
Doe, John, 1982/10/08, john.doe@foobar.com
Ann, Mary, 1975/09/11, mary.ann@foobar.com
Robert, Joe, 2002/03/18, born.today@example.com

Don’t forget to ensure one of the employees in the sample database has their
birthday today for the program to output anything:

$ _build/default/bin/bday priv/db.csv
sent birthday email to ["born.today@example.com"]

And it works! All in all, we can now say that coverage is good, critical units
are tested, and changing implementations for our data layer will have limited
effects in the testing code base.

We can pat ourselves on the back for a job well done.

Wrapping Up
When it comes to writing properties, you’re now in a pretty good place. You
should feel better about balancing properties with regular example-based
unit tests, as we’ve seen for regression cases. Using example tests as an
anchoring mechanism to backstop your properties can help make them a lot
more trustworthy. In some cases, just exhaustively enumerating the whole
data set is a possibility, letting you cover more than what properties would
in the first place.

Your experience gained writing properties against a well-specified program
is sure to prove useful, but property-based testing has another face entirely.
We can use properties to explore the design of our program itself, rather than
just testing a well-specified one. In the next chapter, we’ll do just that, by
using them in properties-driven development.

Chapter 5. Responsible Testing • 132

report erratum • discuss

http://media.pragprog.com/titles/fhproper/code/ResponsibleTesting/erlang/bday/priv/db.csv
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

CHAPTER 6

Properties-Driven Development
If you’re reading this book, it’s because programming is kind of difficult. Dif-
ficult enough that we need fancy tools to make sure our programs are doing
the right thing. But while programming is hard, even harder is figuring out
what our programs should be doing in the first place, especially when we find
all kinds of fun corner cases. There are plenty of tools available to help here,
and for software developers, test-driven development (TDD) is one of the most
frequently used approaches. TDD forces you to position yourself first as a
user of the program rather than an implementer. Before writing any new
feature, we first need to write a failing test exercising the feature, and then
write the code to make it pass. All program improvements are a series of small
iterations built on well-understood foundations.

This kind of approach can be interesting in the context of property-based
testing: before writing a program, we’ll want to think about what it should
do. Unsurprisingly, we’ll want to encode these assumptions as rules for
properties. Then, we’ll run our program against them as we go. What happens
next is a series of increasing failures, where we have to figure out if it’s the
program that is wrong, or our understanding of what it should do in the first
place that needs to change.

In this chapter, we’ll go through a properties-driven approach and explore
techniques related to positive tests (validate what the program does) and
negative ones (test what the program can’t handle). We’ll also push generators
further than we’ve done before, which will be a good exercise on its own. We’ll
do all of that by developing a short program inspired by the Back to the
Checkout code kata,1 where we implement a pricing system for a supermarket.

1. http://codekata.com/kata/kata09-back-to-the-checkout/

report erratum • discuss

http://codekata.com/kata/kata09-back-to-the-checkout/
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The Specification
Although it’d be great to have a well-defined specification, we’ll work from a
more realistic starting point by keeping things vague. We’ll write a system
that’s given a bunch of items that have been scanned. We have to look up
the price of these items and calculate the total amount to charge. A fun bit
to add is that some items in groups give an instant rebate: you may get two
articles for the price of one, or specific amounts like five bags of chips for $7.

In fact, the code kata gives the following table:

Special PriceUnit PriceItem

3 for 13050A

2 for 4530B

20C

15D

The checkout function should accept items in any order, so ["B","A","B"] would
give the 2-for-45 rebate for the Bs being bought. The only call that needs to
be exposed is checkout:total(ListOfItemsBought, UnitPrices, SpecialPrices) → Price.

That’s it. The requirements are vague, but we can extract the following list of
things to tackle:

• Items are identified by unique names (nonempty strings).

• The list of items has no set length (though it appears nonempty), and the
items it contains are in no specific order.

• The unit prices appear to be integers. (Not a bad idea, since floating point
numbers lose precision; we can assume values are written in cents, for
example.)

• The special prices are triggered only once the right number of items of
the proper type can match a given special.

• All items have a unit price.

• It is not mandatory for a given item to have a special price.

The rest is seemingly undefined or underspecified, so the assumptions we
bake into the program about the rest could be tricky and bug prone.

Aside from these requirements, see if you can come up with a few properties.
Here are two possibilities:

Chapter 6. Properties-Driven Development • 134

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

• Without any special prices defined, the total is just the sum of all of the
items’ prices.

• With a known count for each item, the total comes from two parts added
together.

1. The special price multipled by the number of times it can be applied
to a given set of items

2. The remainder (not evenly divisible by the special’s required number
of items), which is added on top of the special prices

Since we’re interested in discovering and improving the design of the program
through properties, we can start by implementing the first two properties
we’ve come up with, and then writing the code to make them pass. This will
bring us to a point where the basic program does what we want. Then, we’ll
see how properties can be used in negative tests, checking that the program
does what we want, but also deals with things we don’t want to happen.

Before we get going, though, don’t forget to set up a new project as we did in
prior chapters such as Foundations on page 10—call rebar3 new lib checkout for
Erlang, mix new checkout for Elixir, and then add PropEr to dependencies.

Writing the First Test
The first property doesn’t have to be fancy. In fact, it’s better if it’s simple.
Start with something trivial-looking that represents how we want to use the
program. Then, our job as developers is to make sure we can write code that
matches our expectations, or to change them. Of our two properties, the
simplest one concerns counting sums without caring about specials.

You’ll want to avoid a property definition such as sum(ItemList, PriceList) =:=
checkout:total(ItemList, PriceList, []) since that would risk making the test similar to
the implementation. A good approach to try here is generalizing regular
example-based tests. Let’s imagine a few cases:

20 = checkout:total(["A","B","A"], [{"A",5},{"B",10}], []),
20 = checkout:total(["A","B","A"], [{"A",5},{"B",10},{"C",100}], []),
115 = checkout:total(["F","B","C"], [{"F",5},{"B",10},{"C",100}], []),
«and so on»
That’s actually tricky to generalize. It’s possible that to come up with examples
you just make a list of items, assign them prices, pick items from the list,
and then sum them up yourself. Even if it’s not really straightforward, you
can build on that. The base step to respect here looks something like this:

ExpectedPrice = checkout:total(ChosenItems, PriceList, [])

report erratum • discuss

Writing the First Test • 135

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

If we write a generator that gives us all known values for these variables, we
can use the steps the same way we’d do it with examples. The generator will
literally generate test cases so we don’t have to. So let’s get a property that
looks like this:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/test/prop_checkout.erl

-module(prop_checkout).
-include_lib("proper/include/proper.hrl").
-compile(export_all).

%%%%%%%%%%%%%%%%%%
%%% Properties %%%
%%%%%%%%%%%%%%%%%%
prop_no_special1() ->

?FORALL({ItemList, ExpectedPrice, PriceList}, item_price_list(),
ExpectedPrice =:= checkout:total(ItemList, PriceList, [])).

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/test/checkout_test.exs

defmodule CheckoutTest do
use ExUnit.Case
use PropCheck

Properties
property "sums without specials" do

forall {item_list, expected_price, price_list} <- item_price_list() do
expected_price == Checkout.total(item_list, price_list, [])

end
end

The generator for the property will need to generate the three expected argu-
ments: a list of items bought by the customer (ItemList), the expected price of
those items (ExpectedPrice), and then the list of items with their prices as
expected by the register itself (PriceList).

Since the price list is required to generate the item list and expected prices,
the generator will need to come in layers with ?LET macros:

Chapter 6. Properties-Driven Development • 136

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang

%%%%%%%%%%%%%%%%%%
%%% Generators %%%
%%%%%%%%%%%%%%%%%%
item_price_list() ->

?LET(PriceList, price_list(),
?LET({ItemList, ExpectedPrice}, item_list(PriceList),

{ItemList, ExpectedPrice, PriceList})).

Elixir

Generators
defp item_price_list() do

let price_list <- price_list() do
let {item_list, expected_price} <- item_list(price_list) do
{item_list, expected_price, price_list}

end
end

end

The price list itself is a list of tuples of the form [{ItemName, Price}]. The ?LET
macro actualizes the list into one value that won’t change for the rest of the
generator. This means that the item_list/1 generator can then use PriceList as the
actual Erlang data structure rather than the abstract intermediary format
PropEr uses. But first, let’s implement the price_list/0 generator:

Erlang

%% generate a list of {ItemName, Price} to configure the checkout
price_list() ->

?LET(PriceList, non_empty(list({non_empty(string()), integer()})),
lists:ukeysort(1, PriceList)). % remove duplicates

Elixir

defp price_list() do
let price_list <- non_empty(list({non_empty(utf8()), integer()})) do

sorted = Enum.sort(price_list)
Enum.dedup_by(sorted, fn {x, _} -> x end)

end
end

Here, price_list/0 generates all the tuples as mentioned earlier, each with an integer
for the price. To avoid duplicate item options, such has having the same hotdogs

report erratum • discuss

Writing the First Test • 137

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

at two distinct prices within the same list, we use lists:ukeysort(KeyPos, List). That
function will remove all list items that share the same key as any item that has
already been seen, ensuring we have only unique entries.

Now, with a sleight of hand, we’ll use the PriceList as a seed for item_list/1, which
should return a complete selection of items along with their expected price:

Erlang

%% set up recursive generator for the purchased item list along with
%% its expected price, based off the price list.
item_list(PriceList) ->

?SIZED(Size, item_list(Size, PriceList, {[], 0})).

item_list(0, _, Acc) -> Acc;
item_list(N, PriceList, {ItemAcc, PriceAcc}) ->

?LET({Item, Price}, elements(PriceList),
item_list(N-1, PriceList, {[Item|ItemAcc], Price+PriceAcc})).

Elixir

defp item_list(price_list) do
sized(size, item_list(size, price_list, {[], 0}))

end

defp item_list(0, _, acc), do: acc

defp item_list(n, price_list, {item_acc, price_acc}) do
let {item, price} <- elements(price_list) do

item_list(n - 1, price_list, {[item | item_acc], price + price_acc})
end

end

For the tests to pass, we’ll have to write the implementation code itself. Let’s
start with a minimal case that should easily work:

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/src/checkout.erl

-module(checkout).

-export([total/3]).

-type item() :: string().
-type price() :: integer().

-spec total([item()], [{item(), price()}], any()) -> price().
total(ItemList, PriceList, _Specials) ->

lists:sum([proplists:get_value(Item, PriceList) || Item <- ItemList]).

Chapter 6. Properties-Driven Development • 138

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/lib/checkout.ex

def total(item_list, price_list, _specials) do
Enum.sum(

for item <- item_list do
elem(List.keyfind(price_list, item, 0), 1)

end
)

end

Run the property and you’ll see that it does work.

Now that we have a working property, the next step we should take is to val-
idate how effective it is. This is a bit tedious, but it ensures that the hundred
or so tests we run for the property are actually different. We can do this in a
straightforward manner using the collect/2 function:

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/test/prop_checkout.erl

prop_no_special2() ->
?FORALL({ItemList, ExpectedPrice, PriceList}, item_price_list(),

collect(
bucket(length(ItemList), 10),
ExpectedPrice =:= checkout:total(ItemList, PriceList, [])

)).

%%%%%%%%%%%%%%%
%%% Helpers %%%
%%%%%%%%%%%%%%%
bucket(N, Unit) ->

(N div Unit) * Unit.

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/test/checkout_test.exs

property "sums without specials (but with metrics)", [:verbose] do
forall {item_list, expected_price, price_list} <- item_price_list() do

(expected_price == Checkout.total(item_list, price_list, []))
|> collect(bucket(length(item_list), 10))

end
end

Helpers
defp bucket(n, unit) do

div(n, unit) * unit
end

report erratum • discuss

Writing the First Test • 139

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Running this property will then reveal metrics:

27% 0
27% 10
20% 20
20% 30
6% 40

This appears reasonable. Lists of zero to forty items being bought probably
covers most cases. Alternatively running the call with collect(lists:usort(ItemList),
<Property>) shows good results as well, meaning that the variety of items being
bought also seems reasonable.

With the regular case (without specials) being taken care of, we’re good to
start implementing specials. That one will be a bit trickier though.

Testing Specials
Alright, before moving further, let’s reevaluate our TODO list:

• Items are identified by unique names (nonempty strings).

• The list of items has no set length (though it appears nonempty), and the
items it contains are in no specific order.

• The unit prices appear to be integers. (Not a bad idea, since floating point
numbers lose precision; we can assume values are written in cents, for
example.)

• The special prices are triggered only once the right number of items of
the proper type can match a given special.

• All items have a unit price.

• It is not mandatory for a given item to have a special price.

That’s decent coverage in terms of features and requirements we extracted,
with few lines of tests! It may not feel like we’ve accomplished much for now,
but most features are okay as per our spec. The specials are the one thing
left to handle.

Rather than modifying the existing property—a property that does a fine job
of checking nonspecial prices—we’ll add a new one to check specials. The
separation will help narrow down problems when they happen. If the property
for basic prices always works, then we know that failures in the more complex
one handling specials as well will likely relate to bugs in specials-handling.
Here’s the new property:

Chapter 6. Properties-Driven Development • 140

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/test/prop_checkout.erl

prop_special() ->
?FORALL({ItemList, ExpectedPrice, PriceList, SpecialList},

item_price_special(),
ExpectedPrice =:= checkout:total(ItemList, PriceList, SpecialList)).

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/test/checkout_test.exs

property "sums including specials" do
forall {items, expected_price, prices, specials}

<- item_price_special() do
expected_price == Checkout.total(items, prices, specials)

end
end

This property is similar to the one we wrote earlier, except that we now expect
a fourth term out of the generator, which is a list of special prices (SpecialList).
The easiest way to go about this would be to just come up with a static list
of specials and then couple it with the previous property’s generator, but that
wouldn’t necessarily exercise the code as well as fully dynamic lists, so let’s
try to do that instead.

Planning the Generator
So first things first; we’ll need the basic list of items and prices. For that, we
can reuse the price_list() generator, which gives us a fully dynamic list. Then,
if we want the specials list to be effective, we should probably build it off the
items in the price list. That can be done by wrapping the call to price_list() in a
?LET macro so that other generators can see it as a static value:

?LET(PriceList, price_list(),
«rest of the generator»).

The challenge, really, will be to generate the list of items to buy, while main-
taining a proper expected price (ExpectedPrice). Let’s say we were to reuse the
item_list/1 generator from earlier here. If the checkout counter sells three donuts
for the price of two, but the generator creates a list of four donuts without
expecting a special, then our test will be wrong. If you were to patch things
up by still using the generator and figuring out the specials from the generated
list, then chances are the generator code would be as complex as the actual
program’s code. That’s a bad testing approach, since it makes it hard to trust
our tests.

report erratum • discuss

Testing Specials • 141

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The way to go about it is to shift your perspective. Look at the problem from
a different direction and you’ll see the trick—it’s probably the sneakiest and
cleverest one in the entire book; it’s a decent example of the creative thinking
sometimes required to write good generators.

Here it goes. Instead of building the list one item at a time and figuring out
if or when specials apply, we can try to break it up by separately generating
both types of sequences: items that never amount to a special, and items that
always amount to a special. If these types of sequences are well-generated
and distinct, then they can be used independently or as one big list, and
always remain consistent!

So we can have two generators. On the one hand, we have a list where all the
items of each type are in a quantity smaller than required for the special
price. We can sum up their prices to give us one part of the expected price.
Then on the other side, we have a generator where all the items in a list are
in a quantity that is an even multiple of the quantity required for a special.
For that list, the expected price is the sum of all specials we triggered. We
can then merge both lists, add both expected prices, and end up with a list
that covers all kinds of cases possible in a totally predictable manner.

Let’s step through this with our example where three donuts are being sold
at the price of two. If we have a list with eight donuts in it, we’d expect the
the special to be applied twice, with two remaining donuts being sold at full
price. So let’s see how this would work with our two planned generators. First
we generate a list of two donuts—below the special number—and track their
expected price with the nonspecial value. Then we generate a list of six donuts
(twice the special quantity) with their expected price based off the special
value. Then, we merge both lists together and sum up their expected prices,
and end up with the same eight donuts and the correct expected price.

This should work fine. So the generator should have this kind of flow:

Chapter 6. Properties-Driven Development • 142

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The symbol ++ stands for list concatenation, and + is regular addition. Let’s
build it step by step.

Writing the Generator
First, we’ll want to isolate the PriceList value to be standing alone and reusable
by all generators:

item_price_special() ->
%% first LET: freeze the PriceList
?LET(PriceList, price_list(),

«rest of the generator»).
We can then fill it in by generating a SpecialList that will contain the specials
definition:

item_price_special() ->
%% first LET: freeze the PriceList
?LET(PriceList, price_list(),

%% second LET: freeze the SpecialList
?LET(SpecialList, special_list(PriceList),

«rest of the generator»)).
Okay, that part was still straightforward. The special_list/1 generator is not
written yet, but we can do that later. Let’s finish the current generator first.
For the next level, we have to generate the two sets of prices, the regular ones
and the special ones, which can each have their own dedicated generator:

item_price_special() ->
%% first LET: freeze the PriceList
?LET(PriceList, price_list(),

%% second LET: freeze the SpecialList
?LET(SpecialList, special_list(PriceList),

%% third LET: Regular + Special items and prices
?LET({{RegularItems, RegularExpected},

{SpecialItems, SpecialExpected}},
{regular_gen(PriceList, SpecialList),
special_gen(PriceList, SpecialList)},
«rest of the generator»))).

You’ll notice that both of the two new (and yet undefined) generators have
the PriceList and SpecialList passed in. From within the generators, those will
look like regular Erlang terms.

All we have left to do is merge the lists and sum up the prices:

report erratum • discuss

Testing Specials • 143

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/test/prop_checkout.erl

item_price_special() ->
%% first LET: freeze the PriceList
?LET(PriceList, price_list(),

%% second LET: freeze the SpecialList
?LET(SpecialList, special_list(PriceList),

%% third LET: Regular + Special items and prices
?LET({{RegularItems, RegularExpected},

{SpecialItems, SpecialExpected}},
{regular_gen(PriceList, SpecialList),
special_gen(PriceList, SpecialList)},

%% And merge + return initial lists:
{shuffle(RegularItems ++ SpecialItems),
RegularExpected + SpecialExpected,
PriceList, SpecialList}))).

shuffle(L) ->
%% Shuffle the list by adding a random number first,
%% then sorting on it, and then removing it
Shuffled = lists:sort([{rand:uniform(), X} || X <- L]),
[X || {_, X} <- Shuffled].

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/test/checkout_test.exs

defp item_price_special() do
first let: freeze the price list
let price_list <- price_list() do

second let: freeze the list of specials
let special_list <- special_list(price_list) do

third let: regular + special items and prices
let {{regular_items, regular_expected},

{special_items, special_expected}} <-
{regular_gen(price_list, special_list),
special_gen(price_list, special_list)} do

and merge + return initial lists:
{Enum.shuffle(regular_items ++ special_items),
regular_expected + special_expected, price_list, special_list}

end
end

end
end

Whew! That’s the whole thing. The list shuffling is added to make sure the
final result is truly unpredictable. You’ll rarely see generators this complex,
but it’s good to try your hand at it and see what can be done. Sadly, we can’t

Chapter 6. Properties-Driven Development • 144

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

use this yet, because we still need to define the special list generators, and
then both the regular and special list generators.

Generating the List of Specials
We’ll start with the list of specials, since it’s conceptually simpler and a pre-
requisite of other generators. The method here is to first extract the list of all
item names from the price list, and then create a matching table of specials:

Erlang

%% Generates specials in a list of the form
%% [{Name, Count, SpecialPrice}]
special_list(PriceList) ->

Items = [Name || {Name, _} <- PriceList],
?LET(Specials, list({elements(Items), choose(2,5), integer()}),

lists:ukeysort(1, Specials)). % no dupes

Elixir

defp special_list(price_list) do
items = for {name, _} <- price_list, do: name

let specials <- list({elements(items), choose(2, 5), integer()}) do
sorted = Enum.sort(specials)
Enum.dedup_by(sorted, fn {x, _, _} -> x end)

end
end

The generated list of specials contains the name of the item, how many of
them are required for the special to apply, and then the price for the whole
group. The specials are generated from randomly selected entries from the
item list—with the duplicates removed—so that there is always a matching
nonspecial item to any special one. Note that it is possible for the special price
to be higher than the nonspecial price with this generator.

Generating the List of Regular Items
The list of items never being on special is a bit tricky to generate. We have to
make it so we generate zero or more items, as long as the maximal value is
below any specials for it:

Erlang

%% Generates lists of regular items, at a price below the special value.
regular_gen(PriceList, SpecialList) ->❶

regular_gen(PriceList, SpecialList, [], 0).

report erratum • discuss

Testing Specials • 145

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

regular_gen([], _, Items, Price) ->❷
{Items, Price};

regular_gen([{Item, Cost}|PriceList], SpecialList, Items, Price) ->
CountGen = case lists:keyfind(Item, 1, SpecialList) of❸

{_, Limit, _} -> choose(0, Limit-1); % has special; set max amount
_ -> non_neg_integer() % no special; generate at will

end,
%% Use the conditional generator to generate items
?LET(Count, CountGen,❹

regular_gen(PriceList, SpecialList,
?LET(V, vector(Count, Item), V ++ Items),❺
Cost*Count + Price)).❻

Elixir

defp regular_gen(price_list, special_list) do
regular_gen(price_list, special_list, [], 0)❶

end

defp regular_gen([], _, list, price), do: {list, price}❷

defp regular_gen([{item, cost} | prices], specials, items, price) do
count_gen =❸

case List.keyfind(specials, item, 0) do
{_, limit, _} -> choose(0, limit - 1)
_ -> non_neg_integer()

end

let count <- count_gen do❹
regular_gen(
prices,
specials,
let(v <- vector(count, item), do: v ++ items),❺
cost * count + price❻

)
end

end

First, at ❶, we just wrap the generator to start with a null expected price. The
clause at ❷ contains the recursive function’s base case; whenever all items
in the list have been iterated over, the full list and expected price are returned.

Now for the fun part, the last clause. The first thing to do is look up whether
the item from PriceList can be found in SpecialList, then the count required to trigger
the special is used as an upper bound to generation. Otherwise, any nonnegative
integer is fine. Using a lower bound of 0—explicitly with choose/2 and implicitly
with non_neg_integer/0—we make it possible that not all items will be included.

You’ll note that in both branches of the case ... of expression, a generator is
directly returned, and bound to the variable CountGen at ❸. This generator has

Chapter 6. Properties-Driven Development • 146

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

no value yet, and is still just an abstract piece of data waiting to be processed
by PropEr. This is why we actualize it in a ?LET macro at ❹, after which we
can use it multiple times with a single fixed value.

Then at ❺, the count is used to generate a list of fixed size (using vector/2), being
added to the accumulated items, with the expected price calculated at ❻. The
generator is then called recursively until the full list of items has been used.

This gives us a full generator of items that won’t be in sufficient amounts to
trigger a single special offer. We are free to implement the specials next.

Generating the List of Items on Special
The specials generator is a bit simpler by comparison, although it uses a
similar recursive approach:

Erlang

special_gen(_, SpecialList) ->
%% actually do not need the item list
special_gen(SpecialList, [], 0).

special_gen([], Items, Price) ->
{Items, Price};

special_gen([{Item, Count, Cost} | SpecialList], Items, Price) ->
%% Generate sequences of items equal to the special, based on a
%% multiplier. If we have a need for 3 items for a special, we can
%% generate 0, 3, 6, 9, ... of such items at once
?LET(Multiplier, non_neg_integer(),❶

special_gen(SpecialList,
?LET(V, vector(Count * Multiplier, Item), V ++ Items),
Cost * Multiplier + Price)).

Elixir

defp special_gen(_, special_list) do
special_gen(special_list, [], 0)

end

defp special_gen([], items, price), do: {items, price}

defp special_gen([{item, count, cost} | specials], items, price) do
let multiplier <- non_neg_integer() do❶

special_gen(
specials,
let(v <- vector(count * multiplier, item), do: v ++ items),
cost * multiplier + price

)
end

end

report erratum • discuss

Testing Specials • 147

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The only conceptual difference takes place after ❶. Because a special being
applied requires a specific number of items (Count), any multiple of that
number is going to be fair. If we need three bagels to get a rebate, then lists
of zero, three, six, or nine bagels are all equally good here.

With this, we finally have everything we need to run the property and make
it work!

Implementing Specials
So we have a more complex generator for specials, and a basic checkout
implementation that doesn’t consider specials at all. We have everything we
need to get started on implementing specials. Our first step should be making
sure our test actually fails eventually, as a sanity check to know it’s good at
detecting bad cases:

$ rebar3 proper
«build information and other properties»
===> Testing prop_checkout:prop_special()
......!
Failed: After 7 test(s).
{[[0],[6,1],[0],[0],[6,1],[6,1],[6,1],[0],[6,1],[6,1],[0],[6,1],[6,1],[6,1],
[6,1],[6,1],[6,1],[6,1],[6,1],[0],[6,1],[6,1],[6,1],[0],[6,1],[0],[0],[6,1],
[6,1],[6,1],[6,1],[0],[0],[0],[6,1],[6,1],[0]],20,[{[0],-2},{[6,1],1}],
[{[0],2,3},{[6,1],5,0}]}

Shrinking(10 time(s))
{[[0],[0]],1,[{[0],0}],[{[0],2,1}]}
===>
2/3 properties passed, 1 failed
===> Failed test cases:

prop_checkout:prop_special() -> false

The original counterexample is pretty much incomprehensible, but the
shrunken one is simpler. The term {[[0],[0]],1,[{[0],0}],[{[0],2,1}]}, can be imagined
to stand for {[A, A], 1, [{A,0}], [{A,2,1}]} if [0] is substituted with A—basically any
list with a special being triggered causes a test failure. This is good, since
that’s exactly what we want to see tested.

With our test shown to catch failures, we can start implementing the feature.

A simple method is to count how many of each item is in the list. Account for
the specials first, reducing the count every time the specials apply, and then
run over the list of items that are not on sale. At a high level, it should look
like this:

Chapter 6. Properties-Driven Development • 148

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/src/checkout.erl

-module(checkout).

-export([total/3]).

-type item() :: string().
-type price() :: integer().
-type special() :: {item(), pos_integer(), price()}.

-spec total([item()], [{item(), price()}], [special()]) -> price().
total(ItemList, PriceList, Specials) ->

Counts = count_seen(ItemList),
{CountsLeft, Prices} = apply_specials(Counts, Specials),
Prices + apply_regular(CountsLeft, PriceList).

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/lib/checkout.ex

def total(item_list, price_list, specials) do
counts = count_seen(item_list)
{counts_left, prices} = apply_specials(counts, specials)
prices + apply_regular(counts_left, price_list)

end

Here, count_seen/1 should create a list of each item and how many times it is
seen. We then pass that data to apply_specials/2, which returns a tuple with two
elements: the number of items not processed as part of a special on the left,
and the summed-up prices of all specials on the right. Finally, we take that
sum, and add it to the cost of the rest of the items, as defined by apply_regular/2.

This method is kind of the opposite approach from the test; instead of gener-
ating both lists and mashing them together, this splits them up to get the
final count.

Let’s look at the helper functions, first with count_seen/2:

Erlang

-spec count_seen([item()]) -> [{item(), pos_integer()}].
count_seen(ItemList) ->

Count = fun(X) -> X+1 end,
maps:to_list(

lists:foldl(fun(Item, M) -> maps:update_with(Item, Count, 1, M) end,
maps:new(), ItemList)

).

report erratum • discuss

Implementing Specials • 149

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir

defp count_seen(item_list) do
count = fn x -> x + 1 end

Map.to_list(
Enum.reduce(item_list, Map.new(), fn item, m ->
Map.update(m, item, 1, count)

end)
)

end

A Count function is defined and passed to maps:update_with/4, which allows us to
increment a counter associated with each item’s name as we iterate over
ItemList. The map is then turned to a list for convenience.

The next function to write is apply_specials/2, which is a little bit trickier:

Erlang

-spec apply_specials([{item(), pos_integer()}], [special()]) ->
{[{item(), pos_integer()}], price()}.

apply_specials(Items, Specials) ->
lists:mapfoldl(fun({Name, Count}, Price) ->

case lists:keyfind(Name, 1, Specials) of
false -> % not found

{{Name, Count}, Price};❶
{_, Needed, Value} ->

{{Name, Count rem Needed},❷
Value * (Count div Needed) + Price}❸

end
end, 0, Items).

Elixir

defp apply_specials(items, specials) do
Enum.map_reduce(items, 0, fn {name, count}, price ->

case List.keyfind(specials, name, 0) do
nil ->

{{name, count}, price}❶

{_, needed, value} ->
{{name, rem(count, needed)},❷

value * div(count, needed) + price}❸
end

end)
end

The core component here is the lists:mapfoldl/3 function, which both applies a
map operation and a fold operation over a list in a single pass. The map

Chapter 6. Properties-Driven Development • 150

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

operation consists of applying a function to every value of the list and building
a new list from them, and has its result stored on the left-hand side of every
returned tuple. It is used to build a list of the form [{Name, Count},...], consisting
of the items left to be processed once the specials’ prices have been processed.
The fold operation consists of looking at every element of the list and combin-
ing them into one accumulator, with its result stored on the right-hand side
of every returned tuple. It’s used here to sum up all of the specials prices that
apply into a single total value.

The line at ❶ shows an item for which there are no specials: both the item
count and the seen price remain unchanged. By comparison, the code at ❷
shows a matching item with its count reduced by how many times a special
matches, and the code at ❸ increments the total price as expected.

The only function left is the one to apply the nonspecial prices, and it is for-
tunately straightforward:

Erlang

-spec apply_regular([{item(), integer()}], [{item(), price()}]) -> price().
apply_regular(Items, PriceList) ->

lists:sum([Count * proplists:get_value(Name, PriceList)
|| {Name, Count} <- Items]).

Elixir

defp apply_regular(items, price_list) do
Enum.sum(

for {name, count} <- items do
{_, price} = List.keyfind(price_list, name, 0)
count * price

end
)

end

With this in place, we can give our test suite a spin, and even get some cover-
age metrics:

$ rebar3 do proper -c, cover -v
«build information and other properties»
===> Testing prop_checkout:prop_special()
..
........................
OK: Passed 100 test(s).
===>
3/3 properties passed

report erratum • discuss

Implementing Specials • 151

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

===> Performing cover analysis...
|------------------------|------------|
module	coverage
checkout	100%
------------------------	------------
total	100%
------------------------	------------

That’s good!

Order of Failures

Property tests are probabilistic. If you are following along, you may
find different issues (or the same issues in a different order) than
those in this text. This is normal, and rerunning the property a
few times may yield different errors each time, or sometimes none
at all.

If you get an unexpected failure, you can skip ahead and see if
we’ll cover it later; chances are that we will.

If we look at our list, we are now feature-complete.

• Items are identified by unique names (nonempty strings).

• Yhe list of items has no set length (though it appears nonempty), and the
items it contains are in no specific order.

• The unit prices appear to be integers. (Not a bad idea, since floating point
numbers lose precision; we can assume values are written in cents, for
example.)

• The special prices are triggered only once the right number of items of
the proper type can match a given special.

• All items have a unit price.

• It is not mandatory for a given item to have a special price.

And the 100% code coverage sure makes it sound like we can trust everything
here. But can we really? Negative testing is an additional safety check we can use.

Negative Testing
An interesting aspect of the code and tests we have written so far is that the
list of items being bought is generated through the list of supported items.
By designing the test case from the price list, there is a lack of tests looking

Chapter 6. Properties-Driven Development • 152

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

for unexpected use cases. Our tests are positive, happy-path tests, validating
that everything is right and good things happen. Negative tests, by comparison,
try to specifically exercise underspecified scenarios to find what happens in
less happy paths.

Our current properties are good; we don’t want to modify them or make them
more complex. Instead, we’ll write a few broad properties that test more general
properties of the code and see if the requirements we had in the first place are
actually consistent. On their own, broad (and often vague) properties are not
too useful, but as a supplement or anchor to specific ones, they start to shine.
And the broader the properties, the lower chances are that we’ll be searching
only for expected problems, as is usually done with traditional tests.

Broad Properties
Let’s start with a very, very broad property: the checkout:total/3 function should
return an integer and not crash:

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/test/prop_checkout.erl

prop_expected_result() ->
?FORALL({ItemList, PriceList, SpecialList}, lax_lists(),

try checkout:total(ItemList, PriceList, SpecialList) of
N when is_integer(N) -> true

catch
: -> false

end).

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/test/checkout_test.exs

property "negative testing for expected results" do
forall {items, prices, specials} <- lax_lists() do

try do
is_integer(Checkout.total(items, prices, specials))

rescue
_ ->

false
end

end
end

This introduces a new generator, lax_lists(), defined as broadly as possible at
first:

report erratum • discuss

Negative Testing • 153

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang

lax_lists() ->
{list(string()), % item list
list({string(), integer()}), % price list
list({string(), integer(), integer()})}. % specials list

Elixir

defp lax_lists() do
{list(utf8()),
list({utf8(), integer()}),
list({utf8(), integer(), integer()})}

end

That kind of property, based on the types of inputs and outputs, is usually
the kind of stuff where a type system could catch most errors. If you have
any type analysis available (as we do in Erlang and Elixir with Dialyzer), it’s
best to leave those kinds of issues to it. In fact, we do this here by using integer()
as a generator rather than number()—it’s no use sending it wrongly typed data
when another tool will catch the error. But even if type analysis can find
plenty of issues, not all interesting errors will be found there. Case in point,
running the property finds this:

«commands to run the property»
===> Testing prop_checkout:prop_expected_result()
.!
Failed: After 2 test(s).
{[[]],[],[]}

Shrinking (0 time(s))
{[[]],[],[]}

The PropEr representation of strings is lacking, but if a single item (with name
"" shown as []) is used, then the lookups fail. The price of an unknown item
can’t be used in the calculation, and the function bails out. All items being
bought must also be within the price list, something rather hard to encode
in a type system if the set of items is not known at compile-time.

This type of error is fine, but maybe we could give a clearer exception. We
could raise a descriptive error instead, alerting the caller to the true nature
of the problem. Let’s first make the new exception acceptable to our property:

Erlang

prop_expected_result() ->
?FORALL({ItemList, PriceList, SpecialList}, lax_lists(),

Chapter 6. Properties-Driven Development • 154

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

try checkout:total(ItemList, PriceList, SpecialList) of
N when is_integer(N) -> true

catch
error:{unknown_item, _} -> true;
: -> false

end).

Elixir

property "negative testing for expected results" do
forall {items, prices, specials} <- lax_lists() do

try do
is_integer(Checkout.total(items, prices, specials))

rescue
e in [RuntimeError] ->

String.starts_with?(e.message, "unknown item:")
_ ->

false
end

end
end

And attach a similar patch that adds validation:

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/src/checkout.erl

-spec apply_regular([{item(), integer()}], [{item(), price()}]) -> price().
apply_regular(Items, PriceList) ->

lists:sum([Count * cost_of_item(Name, PriceList)
|| {Name, Count} <- Items]).

cost_of_item(Name, PriceList) ->
case proplists:get_value(Name, PriceList) of

undefined -> error({unknown_item, Name});
Price -> Price

end.

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/lib/checkout.ex

defp apply_regular(items, price_list) do
Enum.sum(

for {name, count} <- items do
count * cost_of_item(price_list, name)

end
)

end

report erratum • discuss

Negative Testing • 155

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

defp cost_of_item(price_list, name) do
case List.keyfind(price_list, name, 0) do

nil -> raise RuntimeError, message: "unknown item: #{name}"
{_, price} -> price

end
end

Go and run the properties, and you’ll find the bug fixed. In fact, nothing else
is revealed by the property. Before calling victory and considering our code
bug-free, though, we want to make sure we actually did our negative property
testing right.

Calibrating Negative Properties
The easiest and best tools you have to check whether a property is good is
always going to be gathering statistics. Let’s take a look again at prop_expect-
ed_result(). This time, we’ll look into the type of end result we get. Right now,
the poperty has two valid cases: one where the list of items is all valid, and
one where at least some item is missing from the price list and would fail.
Let’s see what kind of split we get by using collect/2:

prop_expected_result() ->
?FORALL({ItemList, PriceList, SpecialList}, lax_lists(),

collect(
item_list_type(ItemList, PriceList),
try checkout:total(ItemList, PriceList, SpecialList) of

N when is_integer(N) -> true
catch

error:{unknown_item, _} -> true;
: -> false

end)).

item_list_type(Items, Prices) ->
case lists:all(fun(X) -> has_price(X, Prices) end, Items) of

true -> valid;
false -> prices_missing

end.

has_price(Item, ItemList) ->
proplists:get_value(Item, ItemList) =/= undefined.

Run this and check the stats:

«other properties»
===> Testing prop_checkout:prop_expected_result()
..
........................
OK: Passed 100 test(s).

91% prices_missing
9% valid

Chapter 6. Properties-Driven Development • 156

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Chances are you’ll get something equally lopsided when trying it. The vast
majority of all failing test cases only exercise the one failing case we have
identified, the one where an item isn’t in the price list.

Our negative property is depressing. If we represent the test space to explore
with a spectrum—where one end contains tests about the happiest of all
paths where everything goes according to plan, and the other end contains
tests about the terrible cases where all input is garbage and nothing works—we
get something that looks a bit like this:

[Perfect happy case] <-a---------------b------c-> [nothing works]

Our current positive properties are probably sitting around point a right
now—pretty much everything we pass them is ideal—and our negative prop-
erty is around c, choking on predictable garbage over 90% of the time. We’ve
got very little coverage on the gradient in between, where things are neither
perfect nor wrong. To fix this, we will have to drag our negative properties
somewhere closer to b.

One common trick to do this is to take our very lax generator and make it a
bit stricter. We can do that with a kind of hybrid approach where we not only
generate entirely random items, but also purposefully put in repeating pre-
dictible items:

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/test/prop_checkout.erl

lax_lists() ->
KnownItems = ["A", "B", "C"],
MaybeKnownItemGen = elements(KnownItems ++ [string()]),
{list(MaybeKnownItemGen), % item list
list({MaybeKnownItemGen, integer()}), % price list
list({MaybeKnownItemGen, integer(), integer()})}. % specials list

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/test/checkout_test.exs

defp lax_lists() do
known_items = ["A", "B", "C"]
maybe_known_item_gen = elements(known_items ++ [utf8()])

{list(maybe_known_item_gen), list({maybe_known_item_gen, integer()}),
list({maybe_known_item_gen, integer(), integer()})}

end

Try the prop_expected_result() property once again and check the results:

report erratum • discuss

Negative Testing • 157

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

$ rebar3 proper
«build info and other properties»
===> Testing prop_checkout:prop_expected_result()
.........!
Failed: After 10 test(s).
{[[44,0,2,0],[66],[65],[1,3,6,5]],[{[6,6,0],-7}],[{[65],0,-1},
{[66],3,8},{[2],-3,0},{[67],12,0}]}

Shrinking(6 time(s))
{[[65]],[],[{[65],0,0}]}

A new interesting bug is triggered whenever a list of specials requires exactly
zero items to work. This is, in fact, due to a division by zero when calculating
totals. It’s a bit surprising that none of our other properties ever encountered
that case through all their random walks, but at least it’s caught in one of
them. Fixing it will require validating the specials—first the property, and
then the code:

Erlang

prop_expected_result() ->
?FORALL({ItemList, PriceList, SpecialList}, lax_lists(),

try checkout:total(ItemList, PriceList, SpecialList) of
N when is_integer(N) -> true

catch
error:{unknown_item, _} -> true;
error:invalid_special_list -> true;
: -> false

end).

Elixir

property "negative testing for expected results" do
forall {items, prices, specials} <- lax_lists() do

try do
is_integer(Checkout.total(items, prices, specials))

rescue
e in [RuntimeError] ->

e.message == "invalid list of specials" ||
String.starts_with?(e.message, "unknown item:")

_ ->
false

end
end

end

This handles the invalid specials list. Now for the actual code:

Chapter 6. Properties-Driven Development • 158

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/src/checkout.erl

-module(checkout).

-export([valid_special_list/1, total/3]).

-type item() :: string().
-type price() :: integer().
-type special() :: {item(), pos_integer(), price()}.

-spec valid_special_list([special()]) -> boolean().
valid_special_list(List) ->

lists:all(fun({_,X,_}) -> X =/= 0 end, List).

-spec total([item()], [{item(), price()}], [special()]) -> price().
total(ItemList, PriceList, Specials) ->

valid_special_list(Specials) orelse error(invalid_special_list),❶
Counts = count_seen(ItemList),
{CountsLeft, Prices} = apply_specials(Counts, Specials),
Prices + apply_regular(CountsLeft, PriceList).

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/lib/checkout.ex

def valid_special_list(list) do
Enum.all?(list, fn {_, x, _} -> x != 0 end)

end

def total(item_list, price_list, specials) do
if not valid_special_list(specials) do❶

raise RuntimeError, message: "invalid list of specials"
end

counts = count_seen(item_list)
{counts_left, prices} = apply_specials(counts, specials)
prices + apply_regular(counts_left, price_list)

end

The new function is valid_special_list/1, which checks that all list terms have
3-tuples and that the middle value is not a 0. This is something Dialyzer could
already handle in your code, but it wouldn’t necessarily detect if the data
were coming from a database. Then at ❶, we integrate the function into the
regular workflow.

This patches the test up. How do we know we’ve covered everything with our
negative tests now? We don’t. We could try to play with metrics again to see
what we could improve, but there’s another approach that can work well:
relaxing constraints further.

report erratum • discuss

Negative Testing • 159

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Relaxing Constraints
While metrics are always a good thing to keep an eye on, another very inter-
esting way to improve our negative tests and explore the program’s problem
space is to play with constraints, and relax them with existing generators.
Let’s revisit our TODO list. The items in italics are properties or assumptions
we made about the system that we may want to play with:

• Items are identified by unique names (nonempty strings).

• The list of items has no set length (though it appears nonempty), and the
items it contains are in no specific order.

• The unit prices appear to be integers. (Not a bad idea, since floating point
numbers lose precision; we can assume values are written in cents, for
example.)

• The special prices are triggered only once the right number of items of
the proper type can match a given special.

• All items have a unit price.

• It is not mandatory for a given item to have a special price.

The way we relax constraints is usually through simple code modifications.
Check your working code into source control, and do most of the changes
right in place. Modify a bunch of generators, making them less strict so they
trigger some unexpected case. Find out why that happened, revert the change,
and then either add a unit test or a property test to validate the bug before
fixing it.

Then we can rinse and repeat, gradually weeding out more and more bugs
from our code.

Let’s start with the first one, checking what happens when item names are
not unique in the price list, which we can do by changing the last line of the
price_list() generator:

%% generate a list of {ItemName, Price} to configure the checkout
price_list() ->

?LET(PriceList, non_empty(list({non_empty(string()), integer()})),
lists:keysort(1, PriceList)). % allow duplicates

Here we replaced lists:ukeysort/2 with lists:keysort/2, keeping similar semantics but
without removing duplicates. Run the properties again and you should see
a failure:

Chapter 6. Properties-Driven Development • 160

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

«build information»
===> Testing prop_checkout:prop_no_special1()
........................!
Failed: After 25 test(s).
{[[4],[4],[7,9,9,4,1,3,5,12,9],[4],[4],[4],[4],[4],[5,3,3]],-13,
[{[2,2,53,3,1,0,29,3,0],4},{[4],-4},{[4],1},{[5,3,3],-3},{[5,5,3,8,40],0},
{[6,0],-7},{[7,9,9,4,1,3,5,12,9],-2},{[12,3,5,14,16,2,4],-5}]}

Shrinking(10 time(s))
{[[4],[4],[4],[4],[4],[4],[4],[4],[4]],1,[{[4],0},{[4],1}]}
«other properties»
3/4 properties passed, 1 failed
===> Failed test cases:

prop_checkout:prop_no_special1() -> false

Unsurprisingly, it appears that whenever a list of prices contains two identical
items ([4] with both a price of 0 and 1), our system gets confused and dies.
We don’t support duplicates in the price list, and our generator implementation
aligned itself with that fact. We baked the uniqueness assumption into our
model but didn’t necessarily expose that to our users, nor did we test for it
explicitly. This could lead to problems. For example, someone might send
malformed price lists, only to then open a support ticket once they discover
the prices are wrong at checkout, and they’d be right to do so. It would in
fact be nicer to let users know if the item list they submitted is valid without
needing to buy anything through the checkout.

Let’s revert the generator change, and add a property to copy that behavior:

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/test/prop_checkout.erl

prop_dupe_list_invalid() ->
?FORALL(PriceList, dupe_list(),

false =:= checkout:valid_price_list(PriceList)).

dupe_list() ->
?LET(Items, non_empty(list(string())),

vector(length(Items)+1, {elements(Items), integer()})).

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/test/checkout_test.exs

property "list of items with duplicates" do
forall price_list <- dupe_list() do

false == Checkout.valid_price_list(price_list)
end

end

report erratum • discuss

Negative Testing • 161

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

defp dupe_list() do
let items <- non_empty(list(utf8())) do

vector(length(items) + 1, {elements(items), integer()})
end

end

The dupe_list() generator works by generating a random list of item names, and
then using it to generate the price list. By asking for more price list entries
than there are item names—that’s what using vector(length(Items)+1, ...) accom-
plishes—we’re guaranteeing duplicate entries.

You’ll note that the property does not check against the checkout:total/3 function,
but against a valid_special call that we’ll add to the implementation module,
matching what we did earlier for the specials list validation:

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/src/checkout.erl

-export([valid_price_list/1, valid_special_list/1, total/3]).

-spec valid_price_list([{item(), price()}]) -> boolean().
valid_price_list(List) ->

length(List) =:= length(lists:ukeysort(1, List)).

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/lib/checkout.ex

def valid_price_list(list) do
sorted = Enum.sort(list)
length(list) == length(Enum.dedup_by(sorted, fn {x, _} -> x end))

end

And as with the earlier case, we should also wire it into the total/3 call, just to
be thorough, at ❶ in the following code:

Erlang

-spec total([item()], [{item(), price()}], [special()]) -> price().
total(ItemList, PriceList, Specials) ->

valid_price_list(PriceList) orelse error(invalid_price_list),❶
valid_special_list(Specials) orelse error(invalid_special_list),
Counts = count_seen(ItemList),
{CountsLeft, Prices} = apply_specials(Counts, Specials),
Prices + apply_regular(CountsLeft, PriceList).

Chapter 6. Properties-Driven Development • 162

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir

def total(item_list, price_list, specials) do
if not valid_price_list(price_list) do❶

raise RuntimeError, message: "invalid list of prices"
end

if not valid_special_list(specials) do
raise RuntimeError, message: "invalid list of specials"

end

counts = count_seen(item_list)
{counts_left, prices} = apply_specials(counts, specials)
prices + apply_regular(counts_left, price_list)

end

Run the tests again and see what happens:

«build information»
===> Testing prop_checkout:prop_expected_result()
........!
Failed: After 9 test(s).
{[[67],[8],[2,3,1]],[{[67],-2},{[67],-1}],[{[67],-3,3}]}

Shrinking(7 time(s))
{[],[{[67],0},{[67],0}],[]}
«other properties»
4/5 properties passed, 1 failed
===> Failed test cases:

prop_checkout:prop_expected_result() -> false

Our prop_expected_result() property fails again, this time because of the new ex-
ception we added. It turns out that this property would sometimes generate
the right kind of inputs to trigger that case, but it didn’t know the business
rules well enough to recognize it as invalid.

Fuzzing vs. Properties

This perfectly highlights the distinction between fuzzing—generat-
ing garbage input to see if the program fails—compared to property-
based testing, where we check that the program behaves the right
way given all kinds of inputs. Both scanning largely with negative
tests and relaxing constraints find interesting but distinct results.

We can fix the failing test by adding a specific exception handler for the one
failing case:

report erratum • discuss

Negative Testing • 163

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/test/prop_checkout.erl

prop_expected_result() ->
?FORALL({ItemList, PriceList, SpecialList}, lax_lists(),

try checkout:total(ItemList, PriceList, SpecialList) of
N when is_integer(N) -> true

catch
error:{unknown_item, _} -> true;
error:invalid_price_list -> true;
error:invalid_special_list -> true;
: -> false

end).

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/test/checkout_test.exs

property "negative testing for expected results" do
forall {items, prices, specials} <- lax_lists() do

try do
is_integer(Checkout.total(items, prices, specials))

rescue
e in [RuntimeError] ->

e.message == "invalid list of prices" ||
e.message == "invalid list of specials" ||
String.starts_with?(e.message, "unknown item:")

_ ->
false

end
end

end

And while we’re at it, add a property to deal with duplicates in the specials
list:

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/test/prop_checkout.erl

prop_dupe_specials_invalid() ->
?FORALL(SpecialList, dupe_special_list(),

false =:= checkout:valid_special_list(SpecialList)).

dupe_special_list() ->
?LET(Items, non_empty(list(string())),

vector(length(Items)+1, {elements(Items), integer(), integer()})).

Chapter 6. Properties-Driven Development • 164

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/test/checkout_test.exs

property "list of items with specials" do
forall special_list <- dupe_special_list() do

false == Checkout.valid_special_list(special_list)
end

end

defp dupe_special_list() do
let items <- non_empty(list(utf8())) do

vector(length(items) + 1, {elements(items), integer(), integer()})
end

end

Include the matching code to fix things:

Erlang
code/PropertiesDrivenDevelopment/erlang/checkout/src/checkout.erl

-spec valid_special_list([special()]) -> boolean().
valid_special_list(List) ->

lists:all(fun({_,X,_}) -> X =/= 0 end, List) andalso
length(List) =:= length(lists:ukeysort(1, List)).

Elixir
code/PropertiesDrivenDevelopment/elixir/checkout/lib/checkout.ex

def valid_special_list(list) do
sorted = Enum.sort(list)

Enum.all?(list, fn {_, x, _} -> x != 0 end) &&
length(list) == length(Enum.dedup_by(sorted, fn {x, _, _} -> x end))

end

Run the properties and you’ll see that they all pass. You could still dig for
more bugs; here, we found three bugs by relaxing only one of the properties,
and relaxing more them would likely find more interesting bugs:

• Not handling unit prices for some items (or specials) creates unexpected
crashes; more interestingly, replacing integers with numbers (specifically
floats) yields multiple failures because the current implementation uses
rem and div, two integer-specific operators.

• Using negative numbers for prices would technically mean we credit
people rather than charging them to walk away with items, and currently
we don’t validate for that.

report erratum • discuss

Negative Testing • 165

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

• Passing in nonnumeric values in the price list or specials list is considered
valid by the code but can’t logically work.

Given how vague the specification was, we probably would have to discuss
these discoveries with stakeholders to figure out what is acceptable or not
before the code hits production. A strict interpretation of the specification
will mean our current implementation is sufficient. A lax one will cause
explosions for multiple cases that may or may not be preposterous.

Of course, in a statically typed language (or in the case of Erlang and Elixir,
with Dialyzer’s type analysis), a strict interpretation of the spec is the only
one accepted. The potential bugs we could discover through relaxing the
properties above do not even register as a possibility with type analysis, and
the current state of affairs is very likely acceptable.

In general, when strict assumptions are made and are enforced by manual
checks, the compiler, and/or static code analysis, then the program shouldn’t
get into unexpected states. It may be inflexible and frustrating for the user,
but it’ll be less likely to go wrong—at least not on the bugs that may be pre-
ventable through type analysis.

Wrapping Up
Through properties-driven development, we’ve extrapolated properties from
a vague spec, testing our happy paths in a test-first approach. Code coverage,
while a useful metric to show code is tested, isn’t great to assess test quality.
Instead, you’ve seen how negative testing in a fuzzing-inspired approach can
help, as well as how playing with properties by relaxing constraints can uncover
all kinds of bugs and underspecifications that could prove problematic.

We’ve done all this while going through the most complex generators this
book contains. You should now have a pretty good idea of what can and can’t
be done well with stateless properties. Most of your unit testing needs should
now be covered, in fact. Go ahead and try a bunch of that stuff in your own
projects. As you get trickier and trickier generators, you may find them hard
to debug. If so, the next chapter should have you covered, as it discusses
Shrinking.

Chapter 6. Properties-Driven Development • 166

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

CHAPTER 7

Shrinking
A critical component of property-based testing is shrinking—the mechanism
by which a property-based testing framework can be told how to simplify
failure cases enough to let us figure out exactly what the minimal reproducible
case is. While finding complex obtuse cases is worthwhile, being able to reduce
failing inputs (data generated) to a simple counterexample truly is the killer
feature here. But there are some cases where what PropEr does isn’t what we
need. Either it can’t shrink large data structures well enough to be understand-
able, or it’s not shrinking them the way we want it to. In this chapter we’ll
see two ways to handle things: the ?SHRINK and the LETSHRINK macros, which
let us give the framework hints about what to do.

But first, we have to see how shrinking works at a high level. In general you
can think of shrinking as the framework attempting to bring the data gener-
ator closer to its own zero point, and successfully doing so as long as the
property fails. A zero for a generator is somewhat arbitrary, but if you play
with the default generators a bit by calling proper_gen:sampleshrink/1 on them in
the shell, you may notice the following:

• A number tends to shrink from floating point values toward integers, and
integers tend to shrink toward the number 0 (floating point numbers
themselves shrink toward 0.0).

• Binaries tend to shrink from things full of bytes toward the empty binary
(<<>>).

• Lists tend to shrink toward the empty list.

• elements([A,B,C]) will shrink toward the value A.

In short, data structures that contain other data tend to empty themselves,
and other values try to find a neutral point. The nice aspect of this is that as
custom generators are built from other generators, the shrinking is inherited,

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

and a custom generator may get its own shrinking for free: a map full of
people records made of strings and numbers will see the strings get shorter
and simpler, the numbers will get closer to zero, and the map will get fewer
and fewer elements, until only the components essential to trigger a failure
are left.

But for some data types, there is no good zero point: a vector of length 15 will
always have length 15, and same with a tuple. Similarly, larger recursive data
structures that have been defined by the user may not have obvious ways to
shrink (such as probabilistic ones), or may require shrinking toward values
other than the default for a generator. Examples of special shrinking points
are things such as a chessboard, which is at its neutral point not when it’s
empty but when it’s full, with all its pieces in their initial positions. Similarly,
in chemistry, pH1 has a neutral value of 7. In a database, an interesting
boundary position is usually triggered when records reach 4 kilobytes—a
common minimal page size2 for computer memory.

For such cases, even if they are relatively rare, the ?SHRINK macro might be
what you need.

Re-centering with ?SHRINK
?SHRINK is conceptually the simplest of the two macros that can be used to
impact shrinking. It is best used to pick a custom zero point toward which
PropEr will try to shrink data. You can do this mainly by giving the framework
a normal generator for normal cases, and then suggesting it uses other simpler
generators whenever an error is discovered.

The macro takes the form ?SHRINK(DefaultGenerator, [AlternativeGenerators]) in Erlang,
and shrink(default_generator, [alternative_generators]) in Elixir. The DefaultGenerator will
be used for all passing tests. Once a property fails, however, ?SHRINK lets us
tell PropEr that any of the alternative generators in the list are interesting
ways to get simpler relevant data. We can give hints about how the framework
should search for failures, basically. And if the alternative generators are not
fruitful, so be it, the shrinking will continue in other ways until no progress
can be made.

To make things practical, if we’re generating timestamps or dates, we may be
interested in including years from 0 to 9999 to make sure we cover all kinds
of weird cases. But if you know that the underlying implementation of your

1. https://en.wikipedia.org/wiki/PH
2. https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes

Chapter 7. Shrinking • 168

report erratum • discuss

https://en.wikipedia.org/wiki/PH
https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

system uses Unix timestamps, then you should consider that its epoch
(starting time) is on January 1, 1970. Since January 1, 1970, is the underlying
system’s zero value, picking 1970 as a shrinking target makes more sense
than the literal year 0 (particularly since year zero is not necessarily a valid
concept3 in the first place).

Let’s take a look at the following set of generators used to create strings of
the form "1997-08-04T12:02:18-05:00", in accordance with the ISO 86014 standard.
This set of generators will center its shrinking efforts toward January 1, 1970.
Let’s start with the overall structure, and see what we can do with years:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/Shrinking/erlang/pbt/test/prop_shrink.erl

-module(prop_shrink).
-include_lib("proper/include/proper.hrl").
-compile([export_all, {no_auto_import,[date/0]}, {no_auto_import,[time/0]}]).

strdatetime() ->
?LET(DateTime, datetime(), to_str(DateTime)).

datetime() ->
{date(), time(), timezone()}.

date() ->
?SUCHTHAT({Y,M,D}, {year(), month(), day()},

calendar:valid_date(Y,M,D)).

year() ->
?SHRINK(range(0, 9999), [range(1970, 2000), range(1900, 2100)]).❶

Elixir code/Shrinking/elixir/pbt/test/pbt_test.exs

def strdatetime() do
let(date_time <- datetime(), do: to_str(date_time))

end

def datetime() do
{date(), time(), timezone()}

end

3. https://en.wikipedia.org/wiki/Year_zero
4. https://en.wikipedia.org/wiki/ISO_8601

report erratum • discuss

Re-centering with ?SHRINK • 169

https://en.wikipedia.org/wiki/Year_zero
https://en.wikipedia.org/wiki/ISO_8601
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def strdatetime() do
let(date_time <- datetime(), do: to_str(date_time))

end

def datetime() do
{date(), time(), timezone()}

end

As you can see, we have our first generator functions to call the ?SHRINK macro.
The year() generator at ❶ uses range(0,9999) as its default generator. This covers
all thousand or so years we are interested in. The alternative generators for
the macro are range(1970,2000) and range(1900,2100), which means that if some
generated year causes a property to fail, rather than trying years such as 73
or 8763, PropEr will try years closer to the epoch, like 1988 or 2040. ?SHRINK
lets us narrow PropEr’s search space down significantly to get relevant results
faster.

Let’s look at the rest of the generators:

Erlang code/Shrinking/erlang/pbt/test/prop_shrink.erl

month() ->
range(1, 12).

day() ->
range(1, 31).

time() ->
{range(0, 24), range(0, 59), range(0, 60)}.

timezone() ->
{elements(['+', '-']),
?SHRINK(range(0, 99), [range(0, 14), 0]),
?SHRINK(range(0, 99), [0, 15, 30, 45])}.

%% Helper to convert the internal format to a string
to_str({{Y,M,D}, {H,Mi,S}, {Sign,Ho,Mo}}) ->

FormatStr = "~4..0b-~2..0b-~2..0bT~2..0b:~2..0b:~2..0b~s~2..0b:~2..0b",
lists:flatten(io_lib:format(FormatStr, [Y,M,D,H,Mi,S,Sign,Ho,Mo])).

Elixir code/Shrinking/elixir/pbt/test/pbt_test.exs

def month(), do: range(1, 12)

def day(), do: range(1, 31)

def time(), do: {range(0, 24), range(0, 59), range(0, 60)}

def timezone() do
{elements([:+, :-]), shrink(range(0, 99), [range(0, 14), 0]),
shrink(range(0, 99), [0, 15, 30, 45])}

end

Chapter 7. Shrinking • 170

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def to_str({{y, m, d}, {h, mi, s}, {sign, ho, mo}}) do
format_str = "~4..0b-~2..0b-~2..0bT~2..0b:~2..0b:~2..0b~s~2..0b:~2..0b"

:io_lib.format(format_str, [y, m, d, h, mi, s, sign, ho, mo])
|> to_string()

end

One thing you should note is that the standard is somewhat lax and allows
(or rather, doesn’t forbid) the notation of a timezone that is +99:76, lagging
about four days behind standard time, even if that is nonsensical from a
human perspective.

Similarly, our timezone() generator will look for values between 0 and 99, but
in any failure case, will try to settle between 0 and 14 when possible, which
are ranges that we humans find more reasonable. Similarly, the minutes off-
sets will try to match currently standard offsets of 0, 15, 30, or 45 minutes.

And as you can see, generators that use ?SHRINK can be used like any other;
the macro adds some metadata to the underlying structure representing a
generator, so they remain entirely composable. From anybody else’s point of
view, it’s a generator like any other.

Oh, and do note that seconds go up to 60, due to leap seconds.5

You can see shrinking in action by calling proper_gen:sampleshrink/1 in the shell,
and PropEr will generate sequences of more and more aggressive shrinks:

1> proper_gen:sampleshrink(prop_shrink:strdatetime()).
"1757-06-26T02:36:60-64:38"
"1995-06-26T02:36:60-64:38"
"1970-06-26T02:36:60-64:38"
"1970-01-26T02:36:60-64:38"
"1970-01-01T02:36:60-64:38"
"1970-01-01T00:36:60-64:38"
"1970-01-01T00:00:60-64:38"
"1970-01-01T00:00:00-64:38"
"1970-01-01T00:00:00+64:38"
"1970-01-01T00:00:00+09:38"
"1970-01-01T00:00:00+00:38"
"1970-01-01T00:00:00+00:00"
ok

Elixir’s equivalent to proper_gen:sample_shrink/1 is PropCheck.sample_shrink(PbtTest.str-
datetime()), which provides the same functionality but with a more idiomatic
format.

5. https://en.wikipedia.org/wiki/Leap_second

report erratum • discuss

Re-centering with ?SHRINK • 171

https://en.wikipedia.org/wiki/Leap_second
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

In practice, shrinking will be done less linearly than this. A given attempt at
shrinking that fails to create another failing case won’t be used. That means
that if a test failed on every month of July, the shrinking would end up looking
like "1970-07-01T00:00:00+00:00".

That is as complex as ?SHRINK gets. For a lot of cases, you may find yourself
using other generators like element([A,B,C,...,Z]), which will do something kind
of equivalent by shrinking toward A rather than Z. When element/1 no longer
suffices, then ?SHRINK becomes interesting. The one thing that it won’t neces-
sarily help with is huge chunks of data that are hard to reduce to smaller
counterexamples. That is where ?LETSHRINK shines.

Dividing with ?LETSHRINK
As you use PropEr, you may find yourself stuck with generators creating huge
data structures that take a long time to shrink and often don’t give very
interesting results back. This often happens when some very low-probability
failure is triggered, meaning that the framework had to generate a lot of data
to find it, and has limited chances of shrinking things in a significant manner.

Whenever that happens, the ?LETSHRINK([Pattern, ...], [Generator, ...], Expression) is what
you need. In practice, we use the generator like this:

Erlang

?LETSHRINK([A,B,C], [list(number()), list(number()), list(number())],
A ++ B ++ C)

Elixir

let_shrink([
a <- list(number()),
b <- list(number()),
c <- list(number())

]) do
a ++ b ++ c

end

The macro looks a lot like a regular ?LET macro, but with a few constraints:
the first two arguments must always be lists, and the third argument is an
operation where all list elements get combined into one. Here, A, B, and C are
three lists filled with integers, and A ++ B ++ C is just a bigger list of integers.
The important part is that any of A, B or C can be used by the program instead
of A ++ B ++ C.

Chapter 7. Shrinking • 172

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The reason for that is that once a property fails and PropEr tries to shrink
the data set, it will instead pick just one of A, B, or C without applying the
transformation and return that directly. ?LETSHRINK is particularly appropriate
for recursive structures, data made through branching, and all kinds of pieces
of data that are generated by smashing others together and applying transfor-
mations, since taking a part of it is a legitimate way to get a simpler version.

Basically, we’re giving PropEr a way to divide the data up to isolate a failing
subset more efficiently.

The most common form of ?LETSHRINK is the one you’d use on tree data struc-
tures. For a binary tree generator of size N, we’d write something like this:

Erlang code/Shrinking/erlang/pbt/test/prop_shrink.erl

tree(N) when N =< 1 ->
{leaf, number()};

tree(N) ->
PerBranch = N div 2,
{branch, tree(PerBranch), tree(PerBranch)}.

Elixir code/Shrinking/elixir/pbt/test/pbt_test.exs

def tree(n) when n <= 1 do
{:leaf, number()}

end

def tree(n) do
per_branch = div(n, 2)
{:branch, tree(per_branch), tree(per_branch)}

end

If you run sampleshrink/1 on it, you’ll find out that the elements within the tree
shrink, but the tree itself stays the same size:

1> proper_gen:sampleshrink(prop_shrink:tree(4)).
{branch,{branch,{leaf,13},{leaf,0.6154862580810709}},

{branch,{leaf,8},{leaf,-3}}}
{branch,{branch,{leaf,0},{leaf,0.6154862580810709}},

{branch,{leaf,8},{leaf,-3}}}
{branch,{branch,{leaf,0},{leaf,-6}},{branch,{leaf,8},{leaf,-3}}}
{branch,{branch,{leaf,0},{leaf,0}},{branch,{leaf,8},{leaf,-3}}}
{branch,{branch,{leaf,0},{leaf,0}},{branch,{leaf,0},{leaf,-3}}}
{branch,{branch,{leaf,0},{leaf,0}},{branch,{leaf,0},{leaf,0}}}

Each of the trees in the sample contains exactly four entries: all the integers
tend toward zero, but the structure itself has a fixed size. The obvious way

report erratum • discuss

Dividing with ?LETSHRINK • 173

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

to get the tree to shrink is through parameterizing it with the Size variable
obtained from the ?SIZED(Var, Exp) macro. But if the failure requires internal
tree elements to remain large while the tree structure itself is small, then the
chances are fewer that shrinking by size only would work well.

Instead, if we use ?LETSHRINK, we can get a more shrink-friendly version:

Erlang code/Shrinking/erlang/pbt/test/prop_shrink.erl

tree_shrink(N) when N =< 1 ->
{leaf, number()};

tree_shrink(N) ->
PerBranch = N div 2,
?LETSHRINK([L, R], [tree_shrink(PerBranch), tree_shrink(PerBranch)],

{branch, L, R}).

Elixir code/Shrinking/elixir/pbt/test/pbt_test.exs

def tree_shrink(n) when n <= 1 do
{:leaf, number()}

end

def tree_shrink(n) do
per_branch = div(n, 2)

let_shrink([
left <- tree_shrink(per_branch),
right <- tree_shrink(per_branch)

]) do
{:branch, left, right}

end
end

The leaf clause is left unchanged, but the inner-node (branch) clause is modified.
Instead of generating {branch, Left, Right} right away, we generate both the left
and right side in a list within ?LETSHRINK. In the third argument, we assemble
both parts within the branch tuple. Effectively, we take exactly the same
approach, but with the macro as a layer of indirection.

This is a small change, but it has a large impact. We can now start from
larger trees to initially find bugs, without losing clarity when getting good
counterexamples:

2> proper_gen:sampleshrink(prop_shrink:tree_shrink(16)).
{branch,{branch,{branch,{branch,{leaf,28},{leaf,-0.039220389013186946}},

{branch,{leaf,3.9013940456284684},{leaf,-3}}},
{branch,{branch,{leaf,14.576812882147989},{leaf,-16}},

{branch,{leaf,-2.0345272435474966},
{leaf,-8.151564195158691}}}},

Chapter 7. Shrinking • 174

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

{branch,{branch,{branch,{leaf,-12},{leaf,-85}},
{branch,{leaf,16.829645166380576},{leaf,-1}}},

{branch,{branch,{leaf,1},{leaf,5.058669843388856}},
{branch,{leaf,7},{leaf,2}}}}}

{branch,{branch,{branch,{leaf,28},{leaf,-0.039220389013186946}},
{branch,{leaf,3.9013940456284684},{leaf,-3}}},

{branch,{branch,{leaf,14.576812882147989},{leaf,-16}},
{branch,{leaf,-2.0345272435474966},

{leaf,-8.151564195158691}}}}
{branch,{branch,{leaf,28},{leaf,-0.039220389013186946}},

{branch,{leaf,3.9013940456284684},{leaf,-3}}}
{branch,{leaf,28},{leaf,-0.039220389013186946}}
{leaf,28}
{leaf,0}

Rather than a constant tree size, each shrink subsequently makes the tree
smaller (if the property still fails). If you pay close attention, you’ll also notice
that the values within the tree are initially not modified. So if the tree size is
at play, the tree will remain large by failing to shrink that way, telling PropEr
to instead try with its contents. If the bug is due to contents before structure
and the size doesn’t matter, we’ll know rapidly as well. We’re giving a good
search stategy to the framework here by telling it how the recursive aspects
of our generators work.

In general, for a framework like PropEr or Quickcheck, adding shrinking
instructions isn’t something that needs to be done as part of writing the
generator the first time around. Instead, it’s something that will be worth
doing once a confusing counterexample is found and the minimal counterex-
ample given by the framework is not understandable on its own.

As with other property-based testing debugging practices, improving generators
will likely be iterative and a bit explorative. We can improve the generator,
its shrinking, the test cases, and our understanding of the program itself as
we discover the hidden properties embedded in the code that was written.

Wrapping Up
We’ve covered what is pretty much an optimization when we have large
counterexamples that PropEr doesn’t necessarily know how to handle. By
using the ?SHRINK macro, you can let it know how to retarget shrinking toward
more meaningful neutral values for a given generator. You’ve also seen that
with ?LETSHRINK, we can give PropEr tips on how to divide up a data structure
to find problems with more ease.

With shrinking under your belt, you now have pretty much all of the tools
you’ll need to handle stateless property tests. In fact, we’re almost done with

report erratum • discuss

Wrapping Up • 175

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

stateless properties. Right now, the only thing left to see is a brand new
PropEr feature called Targeted Property-Based Testing, which at this point
will just be a bonus for some amazing flexibility in property testing.

Exercises

Question 1

What are the two macros used for shrinking and what do their arguments
stand for?

Solution on page 320.

Question 2

What are the differences between the ?LETSHRINK macro and the ?LET macro?

Solution on page 320.

Question 3

In the following property, a list of servings for a meal is generated. If any
serving contains dairy, the property fails:

Erlang code/Shrinking/erlang/pbt/test/prop_shrink.erl

prop_too_much_dairy() ->
?FORALL(Food, meal(), dairy_count(Food) =:= 0).

dairy_count(L) ->
length([X || X <- L, is_dairy(X)]).

is_dairy(cheesesticks) -> true;
is_dairy(lasagna) -> true;
is_dairy(icecream) -> true;
is_dairy(milk) -> true;
is_dairy(_) -> false.

Elixir code/Shrinking/elixir/pbt/test/pbt_test.exs

defmodule PbtTest do
use ExUnit.Case
use PropCheck

property "dairy" do
forall food <- meal() do
dairy_count(food) == 0

end
end

Chapter 7. Shrinking • 176

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

defmodule PbtTest do
use ExUnit.Case
use PropCheck

property "dairy" do
forall food <- meal() do
dairy_count(food) == 0

end
end

The generator looks like this:

Erlang code/Shrinking/erlang/pbt/test/prop_shrink.erl

meal() ->
?LETSHRINK([Appetizer, Drink, Entree, Dessert],

[elements([soup, salad, cheesesticks]),
elements([coffee, tea, milk, water, juice]),
elements([lasagna, tofu, steak]),
elements([cake, chocolate, icecream])],

[Appetizer, Drink, Entree, Dessert]).

Elixir code/Shrinking/elixir/pbt/test/pbt_test.exs

def meal() do
let_shrink([

appetizer <- elements([:soup, :salad, :cheesesticks]),
drink <- elements([:coffee, :tea, :milk, :water, :juice]),
entree <- elements([:lasagna, :tofu, :steak]),
dessert <- elements([:cake, :chocolate, :icecream])

]) do
[appetizer, drink, entree, dessert]

end
end

But whenever the test case fails, we instead get a result set that always con-
tains the four courses. Fix the ?LETSHRINK usage in the generator so that data
can be appropriately shrunk.

Solution on page 320.

Question 4

In Writing the Generator, on page 143, the following generator was introduced
to create lists of items with expected prices and specials:

report erratum • discuss

Wrapping Up • 177

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang

item_price_special() ->
%% first LET: freeze the PriceList
?LET(PriceList, price_list(),

%% second LET: freeze the SpecialList
?LET(SpecialList, special_list(PriceList),

%% third LET: Regular + Special items and prices
?LET({{RegularItems, RegularExpected},

{SpecialItems, SpecialExpected}},
{regular_gen(PriceList, SpecialList),
special_gen(PriceList, SpecialList)},

%% And merge + return initial lists:
{shuffle(RegularItems ++ SpecialItems),
RegularExpected + SpecialExpected,
PriceList, SpecialList}))).

shuffle(L) ->
%% Shuffle the list by adding a random number first,
%% then sorting on it, and then removing it
Shuffled = lists:sort([{rand:uniform(), X} || X <- L]),
[X || {_, X} <- Shuffled].

Elixir

defp item_price_special() do
first let: freeze the price list
let price_list <- price_list() do

second let: freeze the list of specials
let special_list <- special_list(price_list) do

third let: regular + special items and prices
let {{regular_items, regular_expected},

{special_items, special_expected}} <-
{regular_gen(price_list, special_list),
special_gen(price_list, special_list)} do

and merge + return initial lists:
{Enum.shuffle(regular_items ++ special_items),
regular_expected + special_expected, price_list, special_list}

end
end

end
end

This generator merges two types of data: those without a special, and those
with a special. The two types are joined together into one larger item list with
prices, which can then be passed to the property.

Modify the generator so that both types of pricing can shrink independently.

Solution on page 321.

Chapter 7. Shrinking • 178

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

CHAPTER 8

Targeted Properties
So far, the properties we have written have been rather tightly coupled with
generators, since by needing to write specific properties, we tend to need
specific generators. More general generators tend to be more useful when we
do broader scanning rather than intricate validation, and so we rarely can
have just one generator that can do it all.

This is necessary because we need to control randomness to some extent. In
this chapter, you’ll learn about targeted properties, which are straight up
witchcraft. They let you use generic generators and from within the property
specialize them so they generate data more relevant to the property. You can
use them for simple stuff like “make the numbers in the list bigger,” but also
for weirder ideas such as “ensure the generated data results in more processes
running in the VM” or “a compressed file should be as large as possible.”

In this chapter, we’ll cover what targeted properties look like, how they work
(and where they break down), and how to customize them, and then you can
try some examples to put it all in practice.

Targeted Properties and Elixir

Targeted Properties are so new in PropEr that the Elixir wrapper
for it (PropCheck) has not yet had the time to replicate the func-
tionality at the time of writing.

This chapter’s code will be provided only in Erlang

Understanding Targeted Properties
Regular properties work by using generators to create random data for each
iteration of a test, running some checks, and then seeing if it works for all
inputs. Inputs for each iteration are mostly independent—the framework
scales the size element of generation between each one—and if you want the

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

data generated to be diverse and relevant, you have to use metrics to tweak
the generator by hand.

By comparison, targeted properties operate with a different principle: each
iteration of a property can be used to influence later iterations’ data generation.
Even better, the property itself can give feedback to PropEr telling it whether
things are headed in the right direction.

This is a bit abstract, so let’s make things practical.

What They Look Like
In appearances, targeted properties are fairly similar to regular properties.
Instead of using the ?FORALL(Pattern, Generator, Property) macro, you just have to use
the ?FORALL_TARGETED(Pattern, Generator, Property) macro in PropEr v1.3.0 or later.

Let’s try them. First we’ll write a simple path generator that we can use to
create sequences of directions:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang) and the file where you should put the code if you’re follow-
ing along.

Erlang code/TargetedProperties/erlang/target/test/prop_target.erl

-module(prop_target).
-include_lib("proper/include/proper.hrl").
-compile(export_all).

path() -> list(oneof([left, right, up, down])).

It’s going to be pretty random, going in any direction. Let’s write a property
with the new macro, one that should always pass:

prop_path() ->
?FORALL_TARGETED(P, path(),

begin
{X,Y} = lists:foldl(fun move/2, {0,0}, P),
io:format("~p",[{X,Y}]),
true

end).

move(left, {X,Y}) -> {X-1,Y};
move(right, {X,Y}) -> {X+1,Y};
move(up, {X,Y}) -> {X,Y+1};
move(down, {X,Y}) -> {X,Y-1}.

Chapter 8. Targeted Properties • 180

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The move/2 function just enacts each movement on a {X,Y} coordinate system,
where -X goes to the left, +X to the right. Similarly, -Y is to the bottom, and +Y
is to the top. By applying it over every direction, we can get a general feeling
for all the travel done by a path. The path [left, top, left, top] should return {-2,2},
and a path such as [top,down,left,right] would come back to {0,0}.

If you run this property, you’ll see that most of the paths tend to average to
the {0,0} coordinates:

$ rebar3 proper -p prop_path
[{0,-1}.{0,0}.{0,-1}.{1,-2}.{0,1}.{0,-1}.{0,-2}.{0,-1}.{1,-1}.{-1,-1}.
{0,0}.{1,1}.{-2,1}.{0,-1}.{0,-2}.{0,-1}.{1,-2}.{-1,-1}.{-1,-1}.
{0,-1}.{0,-1}.{0,-1}.{1,-1}.{1,0}.{0,-1}.{1,0}.{0,-1}.{0,0}.
«more output»
{1,-2}.{0,-1}.{1,-1}.{0,-1}.].

OK: Passed 1 test(s).
===>
1/1 properties passed

This means that we mostly have an equal distribution between all runs. You’ll
notice two things about this output. Instead of just being for each test, we
have [..........] (if we remove the {X,Y} output). You’ll also notice that instead of
saying it ran one hundred tests as the usual default, it ran way more than
that—one thousand tests to be exact—but only reported one.

Targeted properties have a slightly different interface. You can control the
number of iterations in a test either with the -s or --search_steps argument.

To show what targeted properties can do, we’ll give some feedback to PropEr
about what we’d like the data to look like. You can do this by calling either the
?MAXIMIZE(Num) or ?MINIMIZE(Num) macros from within the property. The argument
must be a numeric value that can gradually be increased or decreased—not
just a thing that goes “0 or 1”—to let PropEr know it’s doing the right thing.

With our paths, we can try to head toward the bottom left by maximizing X-Y: the
higher the value X and the lower the value Y, the higher the maximized value:

prop_path(opts) -> [{search_steps, 100}]. % otherwise this runs 1000 times!
prop_path() ->

?FORALL_TARGETED(P, path(),
begin

{X,Y} = lists:foldl(fun move/2, {0,0}, P),
io:format("~p",[{X,Y}]),
?MAXIMIZE(X-Y),
true

end).

report erratum • discuss

Understanding Targeted Properties • 181

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Rebar3 PropEr Meta-Functions

The rebar3 plugin for PropEr lets you specify optional callbacks to define a documen-
tation line to be output in case of failure and to override the general options being
set in rebar.config or from the command line:

-module(prop_demo).
-include_lib("proper/include/proper.hrl").
%% NOT auto-exported by PropEr, we must do it ourselves.
%% Alternatively use -compile(export_all).
-export([prop_demo/1]).

prop_demo(doc) ->
%% Docs are shown when the test property fails
"only properties that return `true' are seen as passing";

prop_demo(opts) ->
%% Override CLI and rebar.config option for `numtests' only
[{numtests, 500}].

prop_demo() -> % auto-exported by Proper
?FORALL(_N, integer(), false). % always fail

When run, the prop_demo/0 property will always run 500 times (if it doesn’t fail), and
on failure, properties’ doc values are displayed:

===> Failed test cases:
prop_demo:prop_demo() -> false (only properties that return `true' are
seen as passing)

Run it to see the new results you get instead:

$ rebar3 proper -p prop_path
===> Testing prop_target:prop_path()
[{0,0}.{0,-1}.{0,-1}.{-1,0}.{1,-1}.{1,-2}.{2,-2}.{2,-2}.{2,1}.{-3,-1}.
«more output»
{11,-11}.{10,-13}.{14,-13}.{11,-12}.{13,-7}.{9,-19}.{12,-13}.{10,-14}.].

OK: Passed 1 test(s).

And just like that, we can use what is essentially a set of default generators
and get tailor-made results for our properties.

Before pushing things any further, let’s take a look at how this works under
the hood.

How They Work
Understanding the mechanism under which targeted properties operate will
help you make the right choice about how to use them, and will also help
with customizing strategies to help PropEr maximize or minimize values. It’s
good to know how things work rather than just feeling they are magic.

Chapter 8. Targeted Properties • 182

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Historically, researchers tried a few mechanisms when first developing targeted
properties,1 but the most flexible one turned out to be simulated annealing.2

Simulated annealing is a kind of complex method to probabilistically find
good approximations of the possible maximal value of a function.

Let’s say you’re looking for the best way to optimize data throughput for some
packet-based communication. You have to juggle factors such as packet size,
path cost, latency, bandwidth, and so on. There are multiple things that can
impact the end result, but you worry about one principal metric: how many
bytes per second can make it through.

All the solutions and parameters can be represented something like this:

There’s one optimal solution, but trying all possibilities has a prohibitive cost.
You could point at random and hope to get something good, or try something
like hill climbing,3 which greedily tries to just pick the best obvious improve-
ment repeatedly. The problem with an approach like that is that it’s impossible
to know if you’re stuck in a local maxima, meaning a point that right now
looks best but there’s no guarantee it actually is the best. This results in
searches looking like the top figure on page 184.

Initial experiments for targeted properties exposed this hill climbing mecha-
nism. Experiments however showed that targeted properties using simulated
annealing had great results. Rather than always picking the best option for
the next improved solution (called next neighbor), simulated annealing uses

1. http://proper.softlab.ntua.gr/papers/issta2017.pdf
2. https://en.wikipedia.org/wiki/Simulated_annealing
3. https://en.wikipedia.org/wiki/Hill_climbing

report erratum • discuss

Understanding Targeted Properties • 183

http://proper.softlab.ntua.gr/papers/issta2017.pdf
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Hill_climbing
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

a statistical method where, from time to time, it will decide to switch to a
worse next neighbor.

The acceptance criteria is done through statistical analysis and a parameter
called temperature. At the beginning of the search, temperature is high and
the algorithm is ready to accept a lot of worse neighbors. But as time goes,
temperature is decreased and the search starts being more conservative. This
will lead to a search ready to scan a lot more of the global solution space,
looking a bit like this:

Chapter 8. Targeted Properties • 184

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Each potential solution (or neighbor) chosen by the algorithm is a dot on the
diagram. While there’s no guarantee that an optimal solution will be found,
chances are that simulated annealing will find very good and close to optimal
solutions. But this may rely on two things: a good ability to measure and
impact the value to maximize or minimize, and a good neighbor selection.

Out of the box, PropEr’s targeted properties provide rather decent neighbor
selection mechanisms, which you might not need to tweak at all. But as we’ll
see later in this chapter, providing a simple custom neighbor selection can
do wonders to guide the algorithm.

Limitations
Important to note is that targeted properties do not allow all the same facilities
as you’d get with regular properties. They don’t work well with recursive
generators, whether you use ?LAZY or not. Using that combination may yield
infinite loops. You’ll want to stick with rather straightforward combinations
of default generators in those cases.

They also don’t allow gathering of statistics and metrics using collect/2 and
aggregate/2, so any validation and accounting you want to do about your tar-
geted properties, you’ll need to do by hand, through regular output and other
side effects.

At the time of writing, these limitations are due to an implementation detail
of targeted properties. Targeted properties are in fact a special variation of a
feature called search macros. There are two of them:

• ?EXISTS(Var, Generator, Expression)—the arguments are similar to those in ?FORALL.
However this macro will succeed as soon as Expression returns true once,
and will otherwise fail if it is allowed to run all of its executions while only
returning false.

• ?NOT_EXISTS(Var, Generator, Expression)—the opposite of ?EXISTS; it only succeeds
if all executions run to completion while returning false.

Search macros allow you to add further search and validation to an existing
property by embedding them inside the property. For example, if you’re a
company doing video streaming or IoT data reporting, you may want to test
a client that has multiple possible endpoints to contact based on arbitrary
failures. In such a case, you may not just want a property that always passes,
but one that just eventually works. It doesn’t matter if it fails fifty times, as
long as at some point it does pass once.

report erratum • discuss

Understanding Targeted Properties • 185

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

So we could, for example, illustrate the retry logic we just described with the
following pseudocode:

prop_retry() ->
?FORALL({Data, Config}, {term(), environment_generator()},

begin
cause_some_server_failures(Config),
?EXISTS(IP, pick_server(Config),

is_successful(request(IP, Data)))
end).

In this pseudocode, it doesn’t matter if all but one of the servers fail, as long
as eventually the right server is picked and things pass.

Targeted properties were initially added to these search macros before being
generalized with the ?FORALL_TARGETED mechanism. In fact, FORALL_TARGETED(Pattern,
Generator, Property) is implemented roughly as ?NOT_EXISTS(Pattern, Generator, not(Property)).

Regardless of their limitations, targeted properties can prove to be very
interesting and useful. Let’s see how exactly they can help you out.

Targeted Properties in Practice
The targeted properties you’ve seen so far are pretty representative of the
whole thing. Aside from respecting their limitations (no recursive generators
nor stats), not much changes. The path example from early in the chapter
was easy for simulated annealing to handle, so in this section, we’ll explore
a slightly trickier case: forcing trees to be more or less balanced or skewed,
and how to best optimize that.

A binary tree4 is generally simple to keep balanced when using random data;
if the data’s randomness is uniform (or follows a standard distribution),
chances are that you’ll get numbers that will naturally distribute themselves
on both sides of the tree. But let’s validate that.

We’ll start by writing a simple set of tree functions: one to build a binary
search tree, and one to check its balance or skew (how many more nodes are
on the left side than the right side). We’ll build the tree through insertion,
and add a convenience function to turn a list into a tree:

Erlang code/TargetedProperties/erlang/target/test/prop_target.erl

to_tree(L) ->
lists:foldl(fun insert/2, undefined, L).

4. https://en.wikipedia.org/wiki/Binary_tree

Chapter 8. Targeted Properties • 186

report erratum • discuss

https://en.wikipedia.org/wiki/Binary_tree
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

insert(N, {node, N, L, R}) -> {node, N, L, R};
insert(N, {node, M, L, R}) when N < M -> {node, M, insert(N, L), R};
insert(N, {node, M, L, R}) when N > M -> {node, M, L, insert(N, R)};
insert(N, {leaf, N}) -> {leaf, N};
insert(N, {leaf, M}) when N < M -> {node, N, undefined, {leaf, M}};
insert(N, {leaf, M}) when N > M -> {node, N, {leaf, M}, undefined};
insert(N, undefined) -> {leaf, N}.

This is a fairly standard tree. A single lone element is denoted with the {leaf,
Element} tuple. An inner node (one that contains branches) has the structure
{node, Element, LeftChild, RightChild}. An inner node with a child missing has this
child replaced with the value undefined:

1> Tree = prop_target:to_tree([1,4,2,3,7,5]).
{node,4,

{node,2,{leaf,1},{leaf,3}},
{node,5,undefined,{leaf,7}}}

We’ll use the following functions to check the balance of the binary tree by
counting how many inner nodes are on the left and the right of the current
one, and then apply this recursively:

sides({node, _, Left, Right}) ->
{LL, LR} = sides(Left),
{RL, RR} = sides(Right),
{count_inner(Left)+LL+LR, count_inner(Right)+RL+RR};

sides(_) ->
{0,0}.

count_inner({node, _, _, _}) -> 1;
count_inner(_) -> 0.

You can then use this as follows:

2> prop_target:sides(Tree).
{1,1}
3> Tree2 = prop_target:to_tree([1,2,3,4,5,6,7,8]).
{node,2,

{leaf,1},
{node,4,

{leaf,3},
{node,6,{leaf,5},{node,8,{leaf,7},undefined}}}}

4> prop_target:sides(Tree2).
{0,3}

So the sides function can be used to verify how balanced an arbitrary tree is.

Let’s see it at work with a regular property, first by writing its generator, and
then just outputting the balance results directly:

report erratum • discuss

Targeted Properties in Practice • 187

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

tree() ->
?LET(L, non_empty(list(integer())), to_tree(L)).

prop_tree_regular(opts) -> [{numtests, 1000}].
prop_tree_regular() ->

?FORALL(T, tree(),
begin

Weight = sides(T),
io:format(" ~p", [Weight]),
true

end).

This should be familiar as a property. We’re asking for 1,000 iterations,
because targeted properties default to that value, and it will be easier to
compare end results if as many iterations are given to all of our experiments.
Run this one to see the overall balance:

$ rebar3 proper -p prop_tree_regular
«monstrous amounts of output»
{3,18}. {0,4}. {5,3}. {8,14}. {2,11}. {2,8}. {17,2}. {0,12}. {0,0}. {0,2}.
{4,0}. {0,0}. {14,6}. {4,6}. {7,16}. {4,11}. {17,6}. {13,1}. {11,5}.
{3,0}. {0,16}. {0,6}. {4,6}.
OK: Passed 1000 test(s).

So on average this shows a reasonable amount of balance. There’s one very
slanted tree with sixteen nodes on the right side and zero on the left, but it’s
possible that the heavy left-side subtree is balanced on its own; our sides/1
function is not perfect, but it’s a decent enough proxy of balancedness.

Let’s say that we have a suspicion bugs may hide in how extremely slanted
trees are handled. We’d want to generate very left-heavy trees. Doing so with
a generator would be fairly tricky: the position of an element within a tree is
not only dependent on its value but also its order of insertion with regard to
all other elements. Fortunately, targeted properties make this easy. All we
have to do is find a numeric value to maximize or minimize.

Since we have the balancedness proxy given by sides/1 returning {NumNodesLeft,
NumNodesRight}, we can optimize for a left-heavy tree by picking NumNodesLeft -
NumNodesRight—the larger the value on the left and the smaller the value on
the right, the better:

prop_tree() ->
?FORALL_TARGETED(T, tree(),

begin
{Left, Right} = Weight = sides(T),
io:format(" ~p", [Weight]),
?MAXIMIZE(Left-Right),
true

end).

Chapter 8. Targeted Properties • 188

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Compare that tree with the previous one and, aside from the substitution of
?FORALL with ?FORALL_TARGETED along with the ?MAXIMIZE macro, nothing has
changed. Run the property though, and you’ll notice a few things:

$ rebar3 proper -p prop_tree
[«monstrous amounts of output»
{58,0}. {37,21}. {32,28}. {58,0}. {62,0}. {61,0}. {60,0}. {31,25}.
{58,0}. {27,35}. {32,29}. {61,0}. {55,0}. {55,1}. {34,27}. {57,0}.
{58,0}. {33,27}. {56,0}. {54,0}. {35,25}. {32,24}. {31,30}. {58,1}.
{55,0}. {34,27}. {55,2}.].

You’ll see first that it’s noticeably slower. This is because simulated annealing
has a cost, which is higher than the cost of regular generators. You’ll also
notice that the search will do multiple runs where the tree appears balanced,
and then successively unbalances itself (as we asked for).

Those results are pretty good, and we got them almost for free. This makes
targeted properties a fantastic tool for exploratory properties and also for
when you want to keep generators simple while still being able to tailor your
data to your properties.

But you’ll inevitably find cases where, on its own, targeted properties don’t
give you as good of a result as you’d like. Simulated annealing can’t do
everything on its own, so we’ll need a mechanism to help it.

Writing Neighbor Functions
A core part of simulated annealing is effective neighbor selection. The neighbor
is basically the next arbitrary modification to apply to the data to advance
the search. In a graph trying to find the shortest path between all nodes, it
might be to pick paths to swap. In a tree, it might be to remove or add a node.
In a pathfinding exercise it may be to add one or five steps.

To submit your own neighbor function, you must use the ?USERNF(Generator,
Next) macro. The Generator value is the same generator pattern you’d usually
give to ?FORALL_TARGETED. The Next argument is where you pass in the function
used to create the next value. The overall patterns looks like this:

prop_example() ->
?FORALL_TARGETED(Var, ?USERNF(list(integer()), next_list()),

some_check(Var).

next_list() ->
fun(PreviousValue, {Depth, CurrentTemperature}) ->

?LET(Val, some_generator(),
modify(Val, PreviousValue))

end.

report erratum • discuss

Targeted Properties in Practice • 189

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The tricky stuff is all within the next_list() function. This is a function with no
arguments that must return an anonymous function. That anonymous
function itself takes two arguments: the previously generated term on which
we are searching (PreviousValue), and then temperature parameters. Depth is a
positive integer representing how deep the generator is nested (to scale the
temperature accordingly if desired), and CurrentTemperature is any number,
representing the current temperature.

Let’s try it with our tree property:

prop_tree_neighbor() ->
?FORALL_TARGETED(T, ?USERNF(tree(), next_tree()),

begin
{Left, Right} = Weight = sides(T),
io:format(" ~p", [Weight]),
?MAXIMIZE(Left-Right),
true

end).

The macro specifies the neighbor function, and the neighbor function takes
the previous tree and just inserts one additional element in it. At runtime,
PropEr will first call the generator (tree()) to get the initial piece of data, to
later pass it on to next_tree()’s inner function, which looks like this:

next_tree() ->
fun(OldTree, {_,T}) ->

?LET(N, integer(), insert(trunc(N*T*100), OldTree))
end.

That could be enough on its own. Do note that the number inserted in the
tree is first scaled according to the temperature. The temperature is usually
a floating point value from 0.0 to 1.0 and so it’s used as a multiplicative per-
centage (T*100). The final result is retransformed into an integer with trunc/1
and then inserted.

Run the property and you’ll suddenly see it go much deeper than before:

$ rebar3 proper -p prop_tree_neighbor
[«monstrous amounts of output»
{192,0}. {192,0}. {192,0}. {193,0}. {193,0}. {193,0}. {193,0}. {193,0}.
{193,0}. {193,0}. {193,0}. {193,0}. {194,0}. {194,0}. {194,0}. {195,0}.
{195,0}. {195,0}. {195,0}. {195,0}. {195,0}. {195,0}. {195,0}. {195,0}.
{196,0}. {196,0}. {196,0}. {196,0}. {196,0}. {196,0}. {196,0}.].

This is giving us extremely skewed trees, and improves drastically on what
other properties gave.

Chapter 8. Targeted Properties • 190

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Considering Temperature

When it comes to simulated annealing, some people will advise
against using temperature as part of your neighbor selection:
temperature guides the selection of acceptable solutions first and
foremost, and using it may interfere with that selection.

However, you’ll come across problem spaces where you know that
as you go forward, you’ll need a lot more variability early on than
later on. Knowing that a higher temperature correlates with a
higher variation of acceptable solutions means that you can scale
the neighborhood search space accordingly. Play with the param-
eters and see what you get. For the tree examples here, using the
temperature made the search almost fifty times more effective
than not using it.

You may wonder when you should use a neighbor function or not, and what
it entails to have custom ones. At this point, it’s not obvious what would be
better or worse; you have to rely on trial and error. Let’s at least get some tips
and tricks to help make decisions.

Variations and Search
You’ll notice, if you look at all the output generated by a single property of
this kind with a simple neighbor function, that they are all a variation of the
initially generated data. This is no surprise, considering we used the same
initial seed data for all runs and just kept refining it. So while each test iter-
ation is more likely than the previous one to have the desired shape you want,
overall they’re also more likely to show very little variation from one test
instance to the next. That last point is one of the big attractions to property-
based testing, so it definitely hurts not to have a good neighbor function.

At the same time, a custom neighbor function can help the search a lot. In
fact, it is able to more effectively search because there are fewer random
variations past a certain point in time. So how can we balance both?

Should you make more chaotic neighbor functions? First of all, a good rule
of thumb is to stick with the default neighbor functions when you can—they
are reasonably implemented and give decent results. If you’re not getting the
results you want, check if you can pick a better metric to maximize or minimize.

If you can’t work around it and you end up writing a neighbor search function,
then sit down and look at the quality of the results. See if they have enough
variations to be able to uncover tricky bugs. If you’re not excited by the

report erratum • discuss

Targeted Properties in Practice • 191

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

prospect of doing that analysis by hand, an easy workaround is to use search
macros to do your work for you.

Using the tree properties as an example, you could instead change the previous
search approach to the following:

%% This one takes long because it does 100 rounds for ?FORALL
%% and 1000 rounds for ?NOT_EXISTS; this gives 100,000 executions!
prop_tree_search() ->

?FORALL(L, list(integer()),
?NOT_EXISTS(T,

?USERNF(
?LET(X, L, to_tree(X)), % trick to wrap the generator
next_tree() % same neighbor function

),
begin

{Left, Right} = sides(T),
?MAXIMIZE(Left-Right),
false % using `false' for NOT_EXISTS to pass

end)).

We use the ?LET(X, L, to_tree(X)) trick here because ?USERNF must accept a gener-
ator as a first argument, and the list L is not a generator by the time we reach
the internal nested search. By wrapping L in ?LET, we take the initial list as
is, but return the necessary generator structure for the framework to work.

Since the search function will reuse and improve on a previous iteration every
time, it’s not a big deal that the first list passed to the search is immutable;
each successive iteration of ?NOT_EXISTS will improve the search, and each
iteration of ?FORALL will bring in modifications to improve the test case’s
diversity of inputs. So instead of making a very high-quality neighbor function
that generates better and diverse trees on each run, our search function will
only care about providing a good search.

Because the search will run once per property iteration, this does mean that
the test will run for much longer (100,000 iterations instead of 1,000), but
you’ll be trading off the time and complexity of writing a neighbor function
with the time it takes to wait for the result. It’ll take longer, but you’ll have
both a good search and diverse test cases overall. Of course, if you can stick
to default search functions, you’ll get both speed and quality.

Run the nested property to see what we get:

$ rebar3 proper -p prop_tree_search
[...............«a few hundred more runs».].[.............
«monstrous amounts of output»
........].

Chapter 8. Targeted Properties • 192

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

OK: Passed 100 test(s).
===>
1/1 properties passed

And just like that, you can cheat a bit to get variation while still getting easy
neighborhood functions. It’s a clever trick if you don’t need your tests to be
particularly fast and do need a custom search mechanism.

Thinking Outside the Box
The examples we’ve seen so far can be impressive, but they mostly aimed to
directly impact the way data was generated. Targeted properties can help in
much more creative ways, but it tends to require approaching problems dif-
ferently from most other types of testing. For this section, we’ll use targeted
properties to weed out a bug we suspect might lie in a quicksort function.

If you’re familiar with quicksort, you know it’s a fast sorting algorithm—espe-
cially in imperative languages where in-place sorting can be done to save on
memory. It’s also one of the most often used algorithms when demonstrating
list comprehensions. The official Erlang documentation gives an example
looking like this:

Erlang code/TargetedProperties/erlang/target/test/prop_target.erl

sort([]) -> [];
sort([Pivot|T]) ->

sort([X || X <- T, X < Pivot])
++ [Pivot] ++
sort([X || X <- T, X >= Pivot]).

It’s a very simple implementation that works rather well, but there’s a reason
why the Erlang standard library instead uses a mergesort5 implementation.
Quicksort has notoriously bad behavior when bad pivots or repeated elements
are present6: it starts to use quadratically more time on every sorted element.
Mergesort, by comparison, doesn’t suffer from that behavior.

We’ll devise an experiment to see whether the quicksort implementation pro-
posed by Erlang is safe or not, to see how applying targeted properties can
find really interesting stuff in our programs.

5. https://en.wikipedia.org/wiki/Mergesort
6. https://en.wikipedia.org/wiki/Quicksort#Implementation_issues

report erratum • discuss

Thinking Outside the Box • 193

https://en.wikipedia.org/wiki/Mergesort
https://en.wikipedia.org/wiki/Quicksort#Implementation_issues
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Establishing a Baseline
To find a case that is exponential in time, we’ll need to set up properties that
measure how long sorting a list takes. We’ll maximize for running time; the
longer the function takes to run, the better. It’s hard to imagine this would
be easy to tweak in a manually written custom generator, especially if you
don’t really know what to look for. Targeted properties can do a good job there,
but we’ll first want to establish a baseline for the experiment, to show whether
they can really help us.

Let’s start with a regular property:

prop_quicksort_time_regular(opts) -> [{numtests, 1000}].
prop_quicksort_time_regular() ->

?FORALL(L, ?SUCHTHAT(L, list(integer()), length(L) < 100000),
begin

T0 = erlang:monotonic_time(millisecond),
sort(L),
T1 = erlang:monotonic_time(millisecond),
T1-T0 < 5000

end).

The property checks that no single iteration takes more than five seconds. If
you try to run it, you’ll see that the sum of all runs for the property takes
under five seconds:

$ rebar3 proper -p prop_quicksort_time_regular
«large amounts of output»
OK: Passed 1000 test(s).
===>
1/1 properties passed

So clearly basic properties won’t cut it. Let’s establish another comparison
point: will mergesort survive our experiment? Here’s a similar targeted prop-
erty using lists:sort/1, which implements mergesort:

prop_mergesort_time() ->
?FORALL_TARGETED(L, ?SUCHTHAT(L, list(integer()), length(L) < 100000),

begin
T0 = erlang:monotonic_time(millisecond),
lists:sort(L),
T1 = erlang:monotonic_time(millisecond),
?MAXIMIZE(T1-T0),
T1-T0 < 5000

end).

We’ve added a max length to the list of 100,000 elements, because it would
probably be very easy to find nasty cases that take more than five seconds

Chapter 8. Targeted Properties • 194

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

when they contain a billion elements. Since we’re looking for some exponential
time, it should not, in theory, take that many elements to trigger it.

Running it takes quite a bit longer, mostly because of simulated annealing’s
overhead and maximizing for time taken, which will naturally seek much
larger lists:

$ rebar3 proper -p prop_mergesort_time
[«large amounts of output»]
OK: Passed 1000 test(s).
===>
1/1 properties passed

Now if you run that code on an old computer from the 90s, chances are the
test would fail, but on any laptop from the 2010s or later, it should pass.

We’re now ready to see if the default quicksort can do a good job.

Targeting the Quicksort
The targeted property we’ll use to find exponential cases is pretty much the
same as the mergesort one:

prop_quicksort_time(opts) -> [noshrink].
prop_quicksort_time() ->

?FORALL_TARGETED(L, ?SUCHTHAT(L, list(integer()), length(L) < 100000),
begin

T0 = erlang:monotonic_time(millisecond),
sort(L),
T1 = erlang:monotonic_time(millisecond),
?MAXIMIZE(T1-T0),
T1-T0 < 5000

end).

You will notice a meta-function that disables shrinking. If the execution takes
over five seconds, we have our answer and don’t necessarily want PropEr to
spend hours trying to make a simpler case. If it accidentally finds worse ones,
it’ll take forever.

Run the test, and you’ll see how incredible targeted properties can be:

$ rebar3 proper -p prop_quicksort_time
«build output»
==> Testing prop_target:prop_quicksort_time()
[...
..
..!]!
Failed: After 1 test(s).
[1,-1,-12,0,-1,0,1,3,0,1,1,1,-1,-8«horrifying amounts of output»]

report erratum • discuss

Thinking Outside the Box • 195

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

===>
0/1 properties passed, 1 failed
===> Failed test cases:
prop_target:prop_quicksort_time() -> false

In fewer than 250 iterations, PropEr has managed to find inputs that on their
own were sufficient to make the time taken by the sort function explode.
That’s amazing.

We can try fixing the sort function by simply picking a random pivot and
preventing ourselves from resorting all entries equal to the pivot:

sort_fixed([]) -> [];
sort_fixed(L) ->

N = rand:uniform(length(L)),
Pivot = lists:nth(N, L),
sort_fixed([X || X <- L, X < Pivot])
++ [X || X <- L, X == Pivot] ++
sort_fixed([X || X <- L, X > Pivot]).

At a glance, this function is going to be slower. It calls a pseudorandom
number generator, which is work the previous function didn’t have to do, but
it also iterates over each dataset five times instead of two:

1. To get the length of the list

2. To pick a random element (will average to half the list)

3. To find the elements smaller than the pivot

4. To find elements equal to the pivot

5. To find elements greater than the pivot

So without knowing about the edge cases that take very long that we found
earlier, it would look like a pretty bad way to implement the function. But
let’s change the property to use this function and let our experiment do the
talking instead:

prop_quicksort_time_fixed(opts) -> [noshrink].
prop_quicksort_time_fixed() ->

?FORALL_TARGETED(L, ?SUCHTHAT(L, list(integer()), length(L) < 100000),
begin

T0 = erlang:monotonic_time(millisecond),
sort_fixed(L),
T1 = erlang:monotonic_time(millisecond),
?MAXIMIZE(T1-T0),
T1-T0 < 5000

end).

Chapter 8. Targeted Properties • 196

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

This just subsitutes sort/1 for sort_fixed/1. Yet, when running the test, the result
is entirely different:

$ rebar3 proper -p prop_quicksort_time_fixed
[«large amounts of output»]
OK: Passed 1 test(s).
===>
1/1 properties passed

And just like that, our sorting function falls into the same ballpark as our
mergesort did.

In terms of thinking outside the box, people have attempted other interesting
approaches, with interesting results: what if you maximized code coverage,
memory usage, lock contention, or erroneous log lines? There might just be
some amazing stuff to find.

Wrapping Up
Targeted properties are still very new, and few people have had the opportu-
nity to put them in practice in real world projects at the time of this writing.
In this chapter, we’ve covered what targeted properties look like and explored
how they work, including simulated annealing.

You’ve seen how to write a neighbor selection function, although how to write
a good one is still not extremely obvious. But to help with that, we have seen
how targeted properties used with search macros (EXISTS and NOT_EXISTS) within
regular properties can make up for some less-than-ideal neighbor functions.
The ability to nest searches this way also explained some of the more annoying
weaknesses of targeted properties—the inability to gather metrics and use
complex generators.

Still, as we’ve seen in this chapter, it’s a very promising improvement to PropEr.
It promises to allow some impressive searches that would usually be very difficult
if not downright impossible to do with regular tests, and even with regular
properties. We’re not yet done with the impressive material though, as the next
part of the book introduces mechanisms for stateful properties.

report erratum • discuss

Wrapping Up • 197

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Part III

Stateful Properties

Now we’re cooking. Property-based testing becomes
really amazing once you deal with testing complex
interactions with stateful systems, and this part of
the book will show you everything you need to be
comfortable with these advanced features.

CHAPTER 9

Stateful Properties
Most of the amazing stories of property-based testing—those that make you
go holy crap I need to get in on this—involve large and complex stateful systems
where tricky bugs are found with a relatively tiny test. Those usually turn
out to be stateful properties.

Stateful property tests are particularly useful when “what the code should
do”—what the user perceives—is simple, but “how the code does it”—how it
is implemented—is complex. A large number of integration and system tests
fit this description, and stateful property-based testing will become one of
the most interesting tools to have in your toolbox since it can exercise major
parts of your systems with little code.

Stateful property tests are a nonformal variation on model checking,1 some-
thing a bit fancier than the modeling approach we used in stateless properties.
The core concept is that you must define a (mostly) predictable model of the
system, and then use PropEr to generate a series of commands that represent
operations that can be applied to the system. PropEr then runs these opera-
tions on both the model and the actual system, and compares the two. If they
agree, the test passes; if they disagree, it fails.

This chapter will cover the basic structure of properties, and expand on how
exactly PropEr executes them. This will be critical to understanding how to
write your own stateful properties, which we’ll explore by testing a cache
implementation. As a bonus, we’ll see how stateful properties can be used to
find concurrency bugs. We’ll have to start with a bit of theory first, to prevent
some major confusion.

1. https://en.wikipedia.org/wiki/Model_checking

report erratum • discuss

https://en.wikipedia.org/wiki/Model_checking
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Laying Out Stateful Properties
Stateful properties all have a few parts in common, with a bit more scaffolding
than we had in stateless ones. It’s important to keep these parts in mind,
because they’ll be interacting with each other for all test executions. These
are the three major components:

• A model, which represents what the system should do at a high level.

• A generator for commands, which represent the execution flow of the
program.

• An actual system, which is validated against our model.

The Model
A core part of a stateful property is the model. It represents a simple and
straightforward version of what our actual system should be doing. By
ensuring that the real system behaves like the model does, we show that our
programs are most likely correct. The model itself is made of two important
parts:

1. A data structure that represents the expected state of the system—the
data it should contain and that you’d expect to be able to get from it.

2. A function that transforms the model’s state based on commands that
could be applied to the system (named next_state).

This sounds a bit tricky, but an example should help. Let’s say we have a
web service where we can upload files, which get to be replicated in multiple
datacenters. A lot of complex operations are taking place, and a command
like upload_file(Name, Contents) involves the network, various computers, and a
bunch of protocols with multiple data representations. Things can go wrong
in lots of places.

Our model, by comparison, could have its data structure (the first important
part) be a map of the form #{Name => Contents} that represents what files the
service should know about. The next_state function that transforms the model
state (the second important bit) would just be a function that adds a (Name,
Contents) pair to the map based on the command, something like next_state(Map,
[Name, Contents]) -> Map#{Name => Contents}.

That’s it. We have a very simple abstract representation of what the system
should do, and that’s a model!

Chapter 9. Stateful Properties • 202

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The Commands
The next core part is a bunch of commands that can be generated by the
framework. These represent operations that can be run against the actual
system. Their generation has two components:

1. A list of potential symbolic calls, with generators defining their arguments

2. A series of functions that defines whether a given symbolic call would
make sense to apply according to the current model state

The first point is rather simple. We’ve seen symbolic calls in Custom Genera-
tors on page 80. They are tuples that represent function calls of the form {call,
Module, Function, [Arg1, Arg2, ..., ArgN]}. All the arguments can use regular PropEr
generators, and the function calls map to actual system calls. So in our
example file upload, we may have something like {call, actual_system, upload_file,
[Name, Contents]}.

The second point is interesting. The functions that validate if a call is
acceptable in a sequence are called preconditions, and they define invariants
that should hold true in the system for the current test. For example, it’s
possible that an ATM only exposes functionality to deposit money if a debit
card is inserted; a precondition of depositing money would therefore be that
a valid debit card is currently in the ATM. You can think of preconditions as
the stateful properties’ equivalent to ?SUCHTHAT macros in stateless properties.

The Validation
Finally, we have the validation of the system against the model. This is done
through postconditions, which are invariants that should hold true after a
given operation has been applied. They’re how we check that things are right.

For example, if our model’s state for an ATM says a user with the PIN 1984 has
inserted their card, and that the last operation against the real system was the
user typing in the password 2421, then the postcondition would validate that
the actual system properly returns a failure to log in. Such postcondition vali-
dation can be done by checking global invariants that are expected to always
be true, but also frequently takes place by comparing the system’s output with
the expected result based on the model state. In this example, we did the latter:
it doesn’t matter what the actual system stores as a PIN or how it stores it. We
just want it to return what our model says it should.

We’ll get to put that into practice soon, but for now, in a nutshell, remember
these points:

report erratum • discuss

Laying Out Stateful Properties • 203

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

• We need a model, which is comprised of some data (the state) that gets
modified by a next_state function.

• We need a lot of symbolic calls that represent operations that can be applied
to the real system, and which can be constrained with preconditions.

• We need to ensure that the results from the actual system match those
we would expect from our model, which is done through postconditions.

With this in mind, we can go figure out how PropEr is going to line all of those
things up.

How Stateful Properties Run
PropEr divides the execution of a stateful test in two phases, one abstract
and one real. The abstract phase is used to create a test scenario, and is
executed without any code from your actual system running. Its whole
objective is to take the model and command generation callbacks, and call
these to build out the sequence of calls that will later be applied to the system.

Put visually, it looks like this:

Note the lack of postcondition or calls to the actual system. In the abstract
mode, a command generator creates a symbolic call with its arguments based
on an initial model state. PropEr then applies the preconditions to that com-
mand to know if it would be valid. If the validation fails, PropEr tries again
with a new generated command. Once a suitable command is found, we can
move forward. The next_state function takes the command and the current
state, and has to return a new state data structure. Then the whole process
is repeated over and over, until PropEr decides it has enough commands.

Once this is done, we’re left with a valid and legitimate sequence of commands,
with all its expected state transitions. Our model is ready.

With our model in hand, PropEr can start applying the commands to the real
system, and our postconditions can check that things all remain valid as
shown in figure on page 205.

The execution is repeated, except that now, at every step of the way, PropEr
also runs the commands against the real system. The preconditions are still

Chapter 9. Stateful Properties • 204

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

reevaluated to ensure consistency so that if a generated precondition that
used to work suddenly fails, the entire test also fails. The next symbolic call
in the list is executed, with its result stored. The postcondition is then evalu-
ated, and if it succeeds, the state transition for the command is applied to
the state and the next command can be processed.

In case of a failure, shrinking is done by modifying the command sequence
as required, mostly by removing operations and seeing if things still work.
Preconditions will be used by the framework to make sure that the various
attempts are valid.

So with all of this theory, we can start putting it all in practice, and seeing
what the implementation looks like.

Writing Properties
In earlier chapters, you’ve seen that stateless properties all follow a pretty
similar structure. The layout of code around files may vary from project to
project, but overall, most test suites do share a separation between properties,
generators, and helper functions. When it comes to stateful properties, there
is far less of a standard: some people put properties in one file, models in
another one, with helper functions and wrappers around the actual system
in a third module. Other developers prefer to have everything in one spot.

In this book, we’ll stick to having the properties and the model in one file. As
with basic properties, we can make use of the rebar3 plugin’s templating
facilities to get the file we need within any standard Erlang project. Call the
following within an existing project:

$ rebar3 new proper_statem base
===> Writing test/prop_base.erl

The generated file contains the prop_base module, a test suite that is divided
in two sections: one section for the stateful property we’ll want to execute,
and one for the model, which is a mix of callbacks and generators. Let’s start
by looking at the property:

report erratum • discuss

Writing Properties • 205

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang

-module(prop_base).
-include_lib("proper/include/proper.hrl").

%% Model Callbacks
-export([command/1, initial_state/0, next_state/3,

precondition/2, postcondition/3]).

%%%%%%%%%%%%%%%%%%
%%% PROPERTIES %%%
%%%%%%%%%%%%%%%%%%
prop_test() ->

?FORALL(Cmds, commands(?MODULE),❶
begin

actual_system:start_link(),❷
{History, State, Result} = run_commands(?MODULE, Cmds),❸
actual_system:stop(),❹
?WHENFAIL(io:format("History: ~p\nState: ~p\nResult: ~p\n",

[History,State,Result]),
aggregate(command_names(Cmds), Result =:= ok))

end).

Elixir

defmodule PbtTest do
use ExUnit.Case
use PropCheck
use PropCheck.StateM # <-- this is a new one to use

property "stateful property" do
forall cmds <- commands(__MODULE__) do❶
ActualSystem.start_link()❷
{history, state, result} = run_commands(__MODULE__, cmds)❸
ActualSystem.stop()❹

(result == :ok)
|> aggregate(command_names(cmds))
|> when_fail(

IO.puts("""
History: #{inspect(history)}
State: #{inspect(state)}
Result: #{inspect(result)}
""")

)
end

end

This looks similar to standard properties, but with a few differences. We do
have a bunch of model callbacks to export, but that’s expected. The change
starts in the property itself. First, the generator is the commands/1 function at

Chapter 9. Stateful Properties • 206

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

❶. This is a generator automatically imported by PropEr, which calls the
model functions to create the command sequence that will be used. This
includes the symbolic execution only.

The commands will then be run against the real system (❸), which is where
the real execution (with validation of postconditions) takes place.

At points ❷ and ❹, we have functions having to do with the setup and tear-
down of tests. PropEr provides no specific place or construct to do this for
each iteration, so it has to be done inline within the property.

Setting Up and Tearing Down Tests

While PropEr offers no special mechanism to let you set up and tear down some state
before specific iterations of a test, it does allow you to set things up before all iterations
of a given property.

This can be done with the ?SETUP macro, of the form:

prop_example() ->
?SETUP(fun() ->

%% setup phase as any code running within the macro
OptionalData = do_setup(),
%% teardown phase as a no-argument function returned
%% by the setup function
fun() -> do_teardown(OptionalData) end

end,
?FORALL(«property»)

).

Multiple macros of this kind can be nested together. But do remember: the setup will
be run only once for all iterations for any given property. If you want to run something
equivalent for each individual iteration, it has to be done inline.

The rest works as usual. Let’s take a look at the callbacks now:

Erlang

%%%%%%%%%%%%%
%%% MODEL %%%
%%%%%%%%%%%%%
%% @doc Initial model value at system start. Should be deterministic.
initial_state() ->❶

#{}.

%% @doc List of possible commands to run against the system
command(_State) ->❷

oneof([
{call, actual_system, some_call, [term(), term()]}

]).

report erratum • discuss

Writing Properties • 207

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%% @doc Determines whether a command should be valid under the
%% current state.
precondition(_State, {call, _Mod, _Fun, _Args}) ->❸

true.

%% @doc Given the state `State' *prior* to the call
%% `{call, Mod, Fun, Args}', determine whether the result
%% `Res' (coming from the actual system) makes sense.
postcondition(_State, {call, _Mod, _Fun, _Args}, _Res) ->❹

true.

%% @doc Assuming the postcondition for a call was true, update the model
%% accordingly for the test to proceed.
next_state(State, _Res, {call, _Mod, _Fun, _Args}) ->❺

NewState = State,
NewState.

Elixir

Initial model value at system start. Should be deterministic.
def initial_state() do❶

%{}
end

List of possible commands to run against the system
def command(_state) do❷

oneof([
{:call, ActualSystem, :some_call, [term(), term()]}}

])
end

Determines whether a command should be valid under the current state
def precondition(_state, {:call, _mod, _fun, _args}) do❸

true
end

Given that state prior to the call `{:call, mod, fun, args}`,
determine whether the result (res) coming from the actual system
makes sense according to the model
def postcondition(_state, {:call, _mod, _fun, _args}, _res) do❹

true
end

Assuming the postcondition for a call was true, update the model
accordingly for the test to proceed
def next_state(state, _res, {:call, _mod, _fun, _args}) do❺

newstate = state
newstate

end
end

Chapter 9. Stateful Properties • 208

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Every model must have an initial state. The initial_state() callback (❶) lets you
pick it. The state has to be deterministic, always the same. If the initial state
is unpredictable, then there’ll be no way to know whether shrinking can be
effective or not. The program exploration comes from various commands being
applied, not the initial state.

The commands themselves are generated through the command/1 callback at
❷. Do note that the model’s State is available and can be used to generate
commands and their arguments—such as trying to read an entry that is
already existing within the model. In fact, the State variable can even be used
to generate context-specific commands. For example, you could decide that
when the state is empty, only commands about initializing it can run and no
other. This can help with generating valid command chains faster and boost
the speed of your model quite a bit.

Preconditions (defined at ❸) can be used to constrain whenever a command
is acceptable or not: you could decide to limit their frequency, or that
“inserting a new entry” doesn’t work if the entry is already in the State variable.
Much like the ?SUCHTHAT macro, too much filtering in preconditions can tend
to slow down the model generation as the framework has to try building more
commands to find something that works.

You might be asking why use preconditions when matching within command/1
should be faster and has access to the same data. The reason is that precon-
ditions are used when shrinking as well as generating, and basically help
ensure that whatever the framework tries to do with the command sequence
remains valid. Whatever matching rule or constraint you put in command/1
must be duplicated in precondition/2 (or live only in the latter) for shrinking to
work best.

Postconditions are where the validation takes place. The _Res variable declared
at ❹ contains the result of a command being applied to the actual system,
with the model’s State variable containing the state before the call was made
to the system and the _Args passed to the system. This gives us all the ingre-
dients to check everything: given the model state and the function called,
does the actual return value match what we think it should be?

The last callback is next_state/3 (❺). This one is a bit tricky because it accepts
a _Res value even during symbolic execution, where no result exists to put in
_Res. As such you can’t easily use the return value for any transformations
or comparisons (a workaround exists with symbolic calls, but it’s not all that

report erratum • discuss

Writing Properties • 209

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

obvious). Instead, it’s easier to pretend next_state/3 is only run during symbolic
execution: assume that _Res contains opaque placeholders, and only use its
value to blindly update your model’s state, without the ability to look at what
it contains and reveals about the running system.

The two execution flows are important to keep in mind: since the calls to precon-
ditions, commands, and state transitions are executed both when generating
commands and when running the actual system, side effects should be avoided
in the model. And any value coming from the actual system that gets transferred
to the model should be treated as an opaque blob that can’t be inspected,
matched against, or used in a function call that aims to transform it.

The abstract phase has to pass some of these values in to make them available
to the model, but since the actual system isn’t running, it can’t provide the
data. PropEr instead passes in abstract placeholders. These don’t look like
the actual expected data; they can be of an entirely different type than what
you expect, which is why the data must be treated as opaque.

The Model Decides

This is very abstract for now, but the core concept to keep in mind
is that the model is the source of authority that leads the test
execution, not the system; the system is being tested and is not
in the driver’s seat.

That’s a lot of theory, but it’ll really make things simpler when it comes to putting
it in practice. Not being aware of the execution model makes for a difficult
learning experience. Feel free to come back to the diagrams and descriptions
as often as you need them, until it becomes natural. You might need them a bit
in the following example, which uses stateful testing with a cache process.

Testing a Basic Concurrent Cache
To use stateful tests, we’ll first need a stateful system to validate. In this
section, we’ll use a cache implemented as an OTP gen_server. A common opti-
mization pattern in Erlang is to use an ETS table for reads, and to make the
writes sequential through calls to the gen_server, which ensures they’re safe.
This creates a bit of contention on the write operations, so instead, we’ll try
to write a cache that only uses ETS for all operations, and the gen_server’s job
is just to keep the ETS table alive. The simple conceptual model—a cache
handling data like a key-value store—along with an implementation danger-
ously accessing ETS tables concurrently makes this is a great candidate to
demonstrate stateful property tests. We’ll see the cache implementation, and
then how to approach modeling it to find potential bugs it may hide.

Chapter 9. Stateful Properties • 210

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Our cache will have a simple set of requirements:

• Values can be read by searching for their key.

• The cache can be emptied on demand.

• The cache can be configured with a maximum number of items to hold
in memory.

• Once the maximal size is reached, the oldest written value is replaced.

• If an item is overwritten, even with a changed value, the cache entry re-
mains in the same position.

Those are a bit unconventional: most caches care about evicting entries that
were not accessed for a long time, whereas ours focuses on writes, and does
not even care about updates in its eviction policy. But that is fine because
we want to show how to model that cache, not necessarily how to write a good
one, so we will stick with these requirements that are friendlier to a succint
implementation.

Implementing the Cache
In general, stateful tests are often used during integration tests. So you’ll
likely use stateful properties later in a project’s lifetime, and will likely write
tests after the program has been written. We’ll respect this by writing the
cache implementation itself first, then we’ll put the system in place and add
tests after the fact.

We’ll start with a standard gen_server set of callbacks and public exports:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/StatefulProperties/erlang/pbt/src/cache.erl

-module(cache).
-export([start_link/1, stop/0, cache/2, find/1, flush/0]).
-behaviour(gen_server).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2]).

start_link(N) ->
gen_server:start_link({local, ?MODULE}, ?MODULE, N, []).

stop() ->
gen_server:stop(?MODULE).

report erratum • discuss

Testing a Basic Concurrent Cache • 211

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/StatefulProperties/elixir/pbt/lib/cache.ex

defmodule Cache do
use GenServer

def start_link(n) do
GenServer.start_link(__MODULE__, n, name: __MODULE__)

end

def stop() do
GenServer.stop(__MODULE__)

end

The process will be unique to the entire node by virtue of having the {local,
?MODULE} name. Since all operations will be done in an ETS table, we can read
from the cache using the table directly, assuming the table is named cache.
We’ll give the table’s records a structure of the form {Index, {Key, Val}}, where
Index ranges from 1 to the max value allowed, basically forcing the table to be
used like a big 1-indexed array. Whenever we write to the table, we increment
the Index value before doing so, wrapping around to the first entry whenever
we fill the array.

Unfortunately, this does mean we’ll need to scan the table on every read oper-
ation, but optimizing is not the point here. Here’s how the table is initialized:

Erlang code/StatefulProperties/erlang/pbt/src/cache.erl

init(N) ->
ets:new(cache, [public, named_table]),
ets:insert(cache, {count, 0, N}),
{ok, nostate}.

handle_call(_Call, _From, State) -> {noreply, State}.

handle_cast(_Cast, State) -> {noreply, State}.

handle_info(_Msg, State) -> {noreply, State}.

Elixir code/StatefulProperties/elixir/pbt/lib/cache.ex

def init(n) do
:ets.new(:cache, [:public, :named_table])
:ets.insert(:cache, {:count, 0, n})
{:ok, :nostate}

end

def handle_call(_call, _from, state), do: {:noreply, state}

def handle_cast(_cast, state), do: {:noreply, state}

def handle_info(_msg, state), do: {:noreply, state}

Chapter 9. Stateful Properties • 212

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

You’ll see a magic record {count, 0, Max} inserted in the table. That’s basically
our index-tracking mechanism. Each writer will be able to increment it before
writing its own data, ensuring the index is always moving forward. You’ll also
note that the gen_server callbacks are otherwise empty, since we don’t need
them. Let’s see how reads work:

Erlang code/StatefulProperties/erlang/pbt/src/cache.erl

find(Key) ->
case ets:match(cache, {'_', {Key, '$1'}}) of

[[Val]] -> {ok, Val};
[] -> {error, not_found}

end.

Elixir code/StatefulProperties/elixir/pbt/lib/cache.ex

def find(key) do
case :ets.match(:cache, {:_, {key, :"$1"}}) do

[[val]] -> {:ok, val}
[] -> {:error, :not_found}

end
end

Here the ets:match/2 pattern basically means “ignore the index” ('_'), “match the
key we want” (Key), and “return the value” ('$1'). The documentation for ets:match/22

contains more details if you need further explanations.

Writing to the cache is a bit more complex:

Erlang code/StatefulProperties/erlang/pbt/src/cache.erl

cache(Key, Val) ->
case ets:match(cache, {'$1', {Key, '_'}}) of % find dupes

[[N]] ->❶
ets:insert(cache, {N,{Key,Val}}); % overwrite dupe

[] ->
case ets:lookup(cache, count) of % insert new

[{count,Max,Max}] ->❷
ets:insert(cache, [{1,{Key,Val}}, {count,1,Max}]);

[{count,Current,Max}] ->❸
ets:insert(cache, [{Current+1,{Key,Val}},

{count,Current+1,Max}])
end

end.

2. http://erlang.org/doc/man/ets.html#match-2

report erratum • discuss

Testing a Basic Concurrent Cache • 213

http://erlang.org/doc/man/ets.html#match-2
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/StatefulProperties/elixir/pbt/lib/cache.ex

def cache(key, val) do
case :ets.match(:cache, {:"$1", {key, :_}}) do

[[n]] ->❶
:ets.insert(:cache, {n, {key, val}})

[] ->
case :ets.lookup(:cache, :count) do

[{:count, max, max}] ->❷
:ets.insert(:cache, [{1, {key, val}}, {:count, 1, max}])

[{:count, current, max}] ->❸
:ets.insert(:cache, [
{current + 1, {key, val}},
{:count, current + 1, max}

])
end

end
end

We have three cases considered here:

1. When the value to insert matches a key that already exists (at ❶), we just
overwrite.

2. When the value is inserted in a regular case (at ❸), we insert it after
having incremented the index.

3. When we reach the max point of the index (at ❷), we reset the index and
start writing from the start, wrapping the cache around.

That’s all a bit convoluted—and probably feels risky when thinking of concur-
rent code execution—but let’s keep going with the last function, the one to
flush the cache:

Erlang code/StatefulProperties/erlang/pbt/src/cache.erl

flush() ->
[{count,_,Max}] = ets:lookup(cache, count),
ets:delete_all_objects(cache),
ets:insert(cache, {count, 0, Max}).

Elixir code/StatefulProperties/elixir/pbt/lib/cache.ex

def flush() do
[{:count, _, max}] = :ets.lookup(:cache, :count)
:ets.delete_all_objects(:cache)
:ets.insert(:cache, {:count, 0, max})

end

Chapter 9. Stateful Properties • 214

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

This empties the cache table and resets the {count, CurrentIndex, Max} entry.

You can play with the code in the shell a bit if you want to see if it works;
otherwise we’ll get started right away with the stateful property tests.

Writing the Tests
With the cache complete, we can write tests for it that will show whether it
works correctly. As we’ve seen earlier, stateful properties are executed in two
big phases: a symbolic one to generate the command set, and a real one,
where the commands are run against the real system for validation purposes.

We’re going to follow the same pattern here, and we’ll start with a focus on
the symbolic execution by setting up the model before adding validation rules,
and then running the property to see if it seems sound.

Building the Model

The first step in coming up with a good stateful model is to think like an
operator, someone in charge of running or debugging your code in production.
If people are to operate and run your code, they have to be able to understand
what to expect out of it. Whatever expectations they form as operators turn
out to be a mental model: they play the operations in their heads and make
guesses as to what data or behavior they’ll get back out of the system.
Whenever their mental model is wrong (“the system doesn’t do what I think
it should”), you get a bug report or a production incident.

If you can figure out how you’d explain how the system works to an operator
in a way that is both realistic and simple, you’ve given them a reliable mental
model to work with. That mental model is something we can try to encode as
a property.

Interestingly, if a good way to come up with a model is to try to figure out
how you’d explain your component to a human operator having to run it in
production, the opposite is true as well: if you have to explain your system
to someone, the model you used in your tests could be a good starting point.
If your tests are complex, convoluted, and hard to explain, then know that
your testing experience is likely to match their operational experience as well.

Since our cache works a bit like a big array where old entries are evicted to
make place for new ones, we can use any data structure or implementation
with first-in-first-out (FIFO) semantics as a model, and it should be accurate.
We’ll use all of proper_statem’s callbacks to write our simpler FIFO structure to
show whether the real cache works or not. Let’s set this up:

report erratum • discuss

Testing a Basic Concurrent Cache • 215

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/StatefulProperties/erlang/pbt/test/prop_cache.erl

-module(prop_cache).
-include_lib("proper/include/proper.hrl").
-behaviour(proper_statem).
-export([command/1, initial_state/0, next_state/3,

precondition/2, postcondition/3]).

-define(CACHE_SIZE, 10).

prop_test() ->
?FORALL(Cmds, commands(?MODULE),

begin
cache:start_link(?CACHE_SIZE),
{History, State, Result} = run_commands(?MODULE, Cmds),
cache:stop(),
?WHENFAIL(io:format("History: ~p\nState: ~p\nResult: ~p\n",

[History,State,Result]),
aggregate(command_names(Cmds), Result =:= ok))

end).

Elixir code/StatefulProperties/elixir/pbt/test/cache_test.exs

defmodule CacheTest do
use ExUnit.Case
use PropCheck
use PropCheck.StateM
doctest Cache
@moduletag timeout: :infinity

@cache_size 10

property "stateful property", [:verbose] do
forall cmds <- commands(__MODULE__) do
Cache.start_link(@cache_size)
{history, state, result} = run_commands(__MODULE__, cmds)
Cache.stop()

(result == :ok)
|> aggregate(command_names(cmds))
|> when_fail(

IO.puts("""
History: #{inspect(history}
State: #{inspect(state)}
Result: #{inspect(result)}
""")

)
end

end

Chapter 9. Stateful Properties • 216

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

We’ve used an arbitrary ?CACHE_SIZE value for the sake of simplicity. We could
have used a generator for more thorough testing, but we’ll get the basics of
stateful testing without that. Important to note is that the setup and teardown
functions (cache:start_link/1 and cache:stop/0) run as part of the property, every
time. Had we used the ?SETUP macro instead, we’d have needed to only call
cache:flush() after every run to ensure it’s always empty, but the current form
is just a bit longer, and it provides few enough setup and teardown require-
ments that it’ll do fine for our example.

For our model’s state, we’ll try to use as little data as possible, carrying only
what’s strictly necessary to validate everything:

Erlang code/StatefulProperties/erlang/pbt/test/prop_cache.erl

-record(state, {max=?CACHE_SIZE, count=0, entries=[]}).

%% Initial model value at system start. Should be deterministic.
initial_state() ->

#state{}.

Elixir code/StatefulProperties/elixir/pbt/test/cache_test.exs

defmodule State do
@cache_size 10
defstruct max: @cache_size, count: 0, entries: []

end

def initial_state(), do: %State{}

We’ll use a list to contain the model’s data, along with a count of how many
entries seen. The list will contain {Key,Value} pairs, and the counter will know
when to drop pairs from the list—as simple as it can be.

The command generation is straightforward as well. We put emphasis on
writes for the tests by using the frequency/1 generator:

Erlang code/StatefulProperties/erlang/pbt/test/prop_cache.erl

command(_State) ->
frequency([

{1, {call, cache, find, [key()]}},
{3, {call, cache, cache, [key(), val()]}},
{1, {call, cache, flush, []}}

]).

report erratum • discuss

Testing a Basic Concurrent Cache • 217

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/StatefulProperties/elixir/pbt/test/cache_test.exs

def command(_state) do
frequency([

{1, {:call, Cache, :find, [key()]}},
{3, {:call, Cache, :cache, [key(), val()]}},
{1, {:call, Cache, :flush, []}}

])
end

We can then use the precondition to add constraints, such as preventing calls
to empty the cache when it’s already empty:

Erlang code/StatefulProperties/erlang/pbt/test/prop_cache.erl

%% Picks whether a command should be valid under the current state.
precondition(#state{count=0}, {call, cache, flush, []}) ->

false; % don't flush an empty cache for no reason
precondition(#state{}, {call, _Mod, _Fun, _Args}) ->

true.

Elixir code/StatefulProperties/elixir/pbt/test/cache_test.exs

def precondition(%State{count: 0}, {:call, Cache, :flush, []}) do
false

end

def precondition(%State{}, {:call, _mod, _fun, _args}) do
true

end

You can define the generators for key() and val() as such:

Erlang code/StatefulProperties/erlang/pbt/test/prop_cache.erl

key() ->
oneof([range(1,?CACHE_SIZE), % reusable keys, raising chance of dupes

integer()]). % random keys

val() ->
integer().

Elixir code/StatefulProperties/elixir/pbt/test/cache_test.exs

def key() do
oneof([range(1, @cache_size), integer()])

end

def val() do
integer()

end

Chapter 9. Stateful Properties • 218

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The generator for keys is designed to allow some keys to be repeated multiple
times: by using a restricted set of keys (with the range/2 generator) along with
an unrestricted integer(), we ensure some keys will be reused, which forces our
property to exercise any code related to key reuse or matching, but without
losing the ability to fuzz the system with occasionally unexpected new keys.

The next_state callback completes command generation by allowing the model
to stay up-to-date with what the system state should be:

Erlang code/StatefulProperties/erlang/pbt/test/prop_cache.erl

%% Assuming the postcondition for a call was true, update the model
%% accordingly for the test to proceed.
next_state(State, _, {call, cache, flush, _}) ->

State#state{count=0, entries=[]};
next_state(S=#state{entries=L, count=N, max=M}, _Res,

{call, cache, cache, [K, V]}) ->
case lists:keyfind(K, 1, L) of

false when N =:= M -> S#state{entries = tl(L) ++ [{K,V}]};❶
false when N < M -> S#state{entries = L ++ [{K,V}], count=N+1};❷
{K,_} -> S#state{entries = lists:keyreplace(K,1,L,{K,V})}❸

end;
next_state(State, _Res, {call, _Mod, _Fun, _Args}) ->

State.

Elixir code/StatefulProperties/elixir/pbt/test/cache_test.exs

Assuming the postcondition for a call was true, update the model
accordingly for the test to proceed
def next_state(state, _res, {:call, Cache, :flush, _}) do

%{state | count: 0, entries: []}
end

def next_state(
s = %State{entries: l, count: n, max: m},
_res,
{:call, Cache, :cache, [k, v]}

) do
case List.keyfind(l, k, 0) do

nil when n == m ->❶
%{s | entries: tl(l) ++ [{k, v}]}

nil when n < m ->❷
%{s | entries: l ++ [{k, v}], count: n + 1}

{^k, _} ->❸
%{s | entries: List.keyreplace(l, k, 0, {k, v})}

end
end

report erratum • discuss

Testing a Basic Concurrent Cache • 219

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def next_state(state, _res, {:call, _mod, _fun, _args}) do
state

end

The first clause says that whenever we flush the cache, we must empty the
model by dropping all its entries and returning the count to 0. The second
clause is about adding items to the cache. There are three cases identified.
First, at ❶ is a clause entered when the FIFO list is full. Whenever that hap-
pens, we drop the oldest element of the list by calling tl(L) and then add the
new entry at the end. The case just after that, at ❷, deals with a cache that
still has space and so it just adds the term at the end of the list and incre-
ments the counter. The last branch (❸) replaces an existing entry wherever
it was in the list.

Finally, the last function clause tells us that any other call (like lookups) have
no impact on the model state; it remains unchanged.

With this in place, commands can be generated. If you stub out postcondition/3
(write it as something like postcondition(_, _, _) -> true.) and try it in the shell, you
can see the kinds of commands PropEr generates:

$ rebar3 as test shell
«build output»
1> proper_gen:sample(proper_statem:commands(prop_cache)).
[{set,{var,1},{call,cache,cache,[3,63]}},
{set,{var,2},{call,cache,find,[2]}},
{set,{var,3},{call,cache,find,[5]}}]

[{set,{var,1},{call,cache,cache,[2,-1]}},
{set,{var,2},{call,cache,flush,[]}},
{set,{var,3},{call,cache,cache,[9,-9]}},
{set,{var,4},{call,cache,cache,[3,1]}},
{set,{var,5},{call,cache,cache,[8,18]}},
{set,{var,6},{call,cache,cache,[-14,6]}},
{set,{var,7},{call,cache,cache,[8,-12]}}]
«more runs»
[{set,{var,1},{call,cache,cache,[-4,-1]}},
{set,{var,2},{call,cache,flush,[]}},
{set,{var,3},{call,cache,cache,[3,2]}},
{set,{var,4},{call,cache,cache,[-25,-43]}},
{set,{var,5},{call,cache,cache,[3,3]}},
{set,{var,6},{call,cache,find,[3]}}]

Don’t worry about the format it has ({set, VarNum, Call}) since that’s something
PropEr deals with internally. Just know that you can see the sequence of
calls it would run, and in what order. The run_commands/2 function provided by
PropEr and used in our property will deal with the rest. Now let’s see how we
can validate the actual system.

Chapter 9. Stateful Properties • 220

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Validating the System

When dealing with a cache like this, we expect all writes to always succeed.
So the only operation we can really use to validate the system is find/1. By
observing the results we get when reading values, we can see if they match
those the model predicts we’d return based on the write sequences we applied.
If the key we’re looking up is in the model state, then the actual system better
return the value we expect, and return nothing when it’s not there.

This is rather straightforward to implement:

Erlang code/StatefulProperties/erlang/pbt/test/prop_cache.erl

%% Given the state `State' *prior* to the call `{call, Mod, Fun, Args}',
%% determine whether the result `Res' (coming from the actual system)
%% makes sense.
postcondition(#state{entries=L}, {call, cache, find, [Key]}, Res) ->

case lists:keyfind(Key, 1, L) of
false -> Res =:= {error, not_found};
{Key, Val} -> Res =:= {ok, Val}

end;
postcondition(_State, {call, _Mod, _Fun, _Args}, _Res) ->

true.

Elixir code/StatefulProperties/elixir/pbt/test/cache_test.exs

Given that state prior to the call `{:call, mod, fun, args}`,
determine whether the result (res) coming from the actual system
makes sense according to the model
def postcondition(%State{entries: l}, {:call, _, :find, [key]}, res) do

case List.keyfind(l, key, 0) do
nil ->
res == {:error, :not_found}

{^key, val} ->
res == {:ok, val}

end
end

def postcondition(_state, {:call, _mod, _fun, _args}, _res) do
true

end

The lookup is done on the model’s state (the L list), and based on this expected
value, we compare the result Res from the actual system. Only if they agree
do we say the operation is valid.

report erratum • discuss

Testing a Basic Concurrent Cache • 221

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Go ahead and run the property:

$ rebar3 proper -n 1000
«build information»
===> Testing prop_cache:prop_test()
..«more tests»
OK: Passed 1000 test(s).

63% {cache,cache,2}
21% {cache,find,1}
14% {cache,flush,0}

This looks decent enough. In a real project, we may want to repeat the steps
we’ve taken in earlier chapters: measure whether the operations executed are
those we really want. Are the reads numerous enough? Are we only reading
nonexisting keys? Do we ever have a read after a flush to validate that it
worked? And so on. You know how to do this by now, so let’s just do a simple
sanity check to make sure our property works fine by injecting a bug and
seeing if it picks up on it.

Replace the init/1 function with this one:

init(N) ->
ets:new(cache, [public, named_table]),
ets:insert(cache, {count, 0, N-1}),
{ok, nostate}.

This simply makes sure that the maximum cache size is one less than what
is asked for, which means we should start dropping entries earlier than
expected by the model. Run the property a bunch of times and you should
eventually trigger a failure like:

$ rebar3 proper -n 10000
«build information»
===> Testing prop_cache:prop_test()
.....«more tests».....!
Failed: After 747 test(s).
[{set,{var,1},{call,cache,find,[8]}},[...]]❶
History: [{{state,10,0,[]},{error,not_found}},

«more history»]
State: {state,10,10, «cache model list»}
Result: {postcondition,false}

Shrinking(6 time(s))❷
[{set,{var,5},{call,cache,cache,[10,36]}},«more commands»,❸
{set,{var,18},{call,cache,find,[10]}}]

History: [{{state,10,0,[]},true},❹
{{state,10,1,[{10,36}]},true},
{{state,10,2,[{10,36},{-19,-6}]},true},
{{state,10,3,[{10,36},{-19,-6},{12,5}]},true},
«more history»

Chapter 9. Stateful Properties • 222

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

{{state,10,10,[{10,36},{-19,-6},{12,5},{9,26},{-4,-30},{-75,17},
{13,-22},{42,5},{31,55},{197,18}]},

{error,not_found}}]
State: {state,10,10, [{10,36},{-19,-6},{12,5},

{9,26},{-4,-30},{-75,17},{13,-22},
{42,5},{31,55},{197,18}]}❺

Result: {postcondition,false}

This is very noisy output, with a lot of data. Let’s go through and figure it out.
First, at ❶, we get the initial failing case. It can be huge with a high number of
operations, so when possible, we ignore that one. Instead you should move past
the shrinking step (at ❷), so that we get a simpler minimal counterexample.

The shortened output, based on the ?WHENFAIL macro we have in our property,
is divided in four categories: the failing list of commands, the state and call
history, the final state, and the failing result. ❸ shows the final set of com-
mands that caused the failure as output by PropEr. It’s all on one line and a
bit hard to read. You can cross-reference this set of commands with the his-
tory, starting at ❹. The history section tracks the progression of all of our
model’s states. The {state, 10, N, List} format is the underlying representation of
the record #state{max=10, count=N, entries=List}, followed with the result of the
command that caused it. The history starts at the initial state, so there should
be one more entry in there than there are commands.

Checking the sequence of commands against the history will prove helpful
in most cases, but it requires quite careful attention to detail. To help a bit,
the final model state is output at ❺, and the last line contains the error for
the failure—usually just false, unless you make your postcondition fails with
something more descriptive.

In this case, data shows that the last call to find(10) had the system return
{error, not_found} whereas the model contains a tuple {10,36} in its state list,
meaning that we expected that key to be found. The pair is the first one of
the list (the next to be dropped!), and the shrinking also managed to drop all
commands it could until the counter hit the value 10, which is also a clue.
With all of that data, identifying the bug and fixing it is hopefully doable.

In this case we know what the error is, but it’s nice to see that our test picks
it up, albeit with many iterations. Perhaps improving the test by altering
generators to get longer sequences or more repeated reads would prove useful.

This is pretty neat. Anything we can model, we can likely test with this kind
of property. If the actual system used geodistributed databases with complex
protocols instead of just ETS tables, the same model could be used to validate

report erratum • discuss

Testing a Basic Concurrent Cache • 223

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

it, since the expectations it fulfills are the same—albeit with more tolerance
to local datacenter outages. That’s pretty amazing stuff.

One thing this property doesn’t do, however, is find concurrency errors that
could happen with our ETS usage. Our model is purely sequential, but we
decided to use ETS specifically for concurrency. The good news is that PropEr
gives us one more tool just for that.

Testing Parallel Executions
One of the most interesting features of stateful tests with PropEr is the ability
to take the models we write for sequential ones and automatically turn them
into parallel tests that have a decent chance at finding concurrency bugs in
your code at nearly no cost. It requires just a few minor changes to the
property, and the rest is done for you.

The way it works is conceptually simple. The framework first takes the existing
command generation mechanism, and then builds a sequence—something
like the following, in abstract terms:

A -> B -> C -> D -> E -> F -> G

It next picks a common root of operations. Here for example, A -> B is shared
by all operations that follow them both. PropEr will take the remaining chain
(C -> D -> E -> F -> G) and split it up in concurrent timelines based on some fan-
cypants analysis (your preconditions will help drive this process), giving
something like this:

,-> C -> E -> G
A -> B

'-> D -> F

This new sequence will be represented as a tuple of the form {SequentialRoot,
[LeftBranch, RightBranch]}. PropEr will run the common sequential root, and then
run both alternative branches in parallel in an attempt to cause bugs to
surface. It will check the model for any possible interleaving that matches
what the actual system returns. If nothing works and the postconditions fail
no matter what, then there’s a bug.

The only changes required will be in the generator and command used to run
the tests, and some adjustments to the ?WHENFAIL macro:

Erlang code/StatefulProperties/erlang/pbt/test/prop_cache.erl

prop_parallel() ->
?FORALL(Cmds, parallel_commands(?MODULE),

begin

Chapter 9. Stateful Properties • 224

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

cache:start_link(?CACHE_SIZE),
{History, State, Result} = run_parallel_commands(?MODULE, Cmds),
cache:stop(),
?WHENFAIL(io:format("=======~n"

"Failing command sequence:~n~p~n"
"At state: ~p~n"
"=======~n"
"Result: ~p~n"
"History: ~p~n",
[Cmds,State,Result,History]),

aggregate(command_names(Cmds), Result =:= ok))
end).

Elixir code/StatefulProperties/elixir/pbt/test/cache_test.exs

property "parallel stateful property", numtests: 10000 do
forall cmds <- parallel_commands(__MODULE__) do

Cache.start_link(@cache_size)
{history, state, result} = run_parallel_commands(__MODULE__, cmds)
Cache.stop()

(result == :ok)
|> aggregate(command_names(cmds))
|> when_fail(
IO.puts("""
=======
Failing command sequence
#{inspect(cmds)}
At state: #{inspect(state)}
=======
Result: #{inspect(result)}
History: #{inspect(history)}
""")

)
end

end

As you can see here, we replaced commands/1 with parallel_commands/1, and
run_commands/2 with run_parallel_commands/2. Our model remains exactly the same.
If you run this test, it will likely pass even with thousands of runs:

$ rebar3 proper
«build info and other test runs»
===> Testing prop_cache:prop_parallel()
................f..f........
..........................
OK: Passed 100 test(s).

65% {cache,cache,2}
19% {cache,find,1}
14% {cache,flush,0}

report erratum • discuss

Testing Parallel Executions • 225

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Here, each f stands for a nonparallelizable command generation that failed
and had to be retried. PropEr tried to make parallel branches of the command,
but couldn’t do it without breaking some precondition. This lets you know if
it’s hard to make good parallel executions or not for your property.

Unfortunately for us, the Erlang scheduler is rather predictable, and making
it test random interleavings is not really obvious nor something we can control.
This means that if it doesn’t fail right away, it will need more luck finding
bugs, which means more executions. Only after an ungodly number of itera-
tions might it find something in this cache, if at all:

$ rebar3 proper -p prop_parallel -n 10000
«build info and other test runs»
===> Testing prop_cache:prop_parallel()
«lots of dots»
Failed: After 3850 test(s).
An exception was raised:

error:{'EXIT',{{case_clause,[[-27],[3]]},[{cache,find,«stacktrace»]
Stacktrace: [«stacktrace»].
«huge command dump»
Shrinking(6 time(s))
{[{set,{var,2},{call,cache,find,[-4]}},{set,{var,3},{call,cache,cache,
[7,22]}},{set,{var,4},{call,cache,cache,[2,3]}}],[[{set,{var,5},{call,cache,
cache,[9,15]}},{set,{var,6},{call,cache,find,[2]}},{set,{var,7},{call,cache,
cache,[2,14]}},{set,{var,8},{call,cache,cache,[-1,2]}},{set,{var,12},{call,
cache,find,[4]}}],[{set,{var,11},{call,cache,flush,[]}},{set,{var,14},{call,
cache,cache,[2,-27]}}]]}
===>
1/2 properties passed, 1 failed
===> Failed test cases:
prop_cache:prop_parallel() -> false

Ouch. We’ll get back to this one a bit later, because first we should talk about
why it took so many tests to find the bug. As mentioned earlier, the Erlang
scheduler is quite predictable even if it isn’t deterministic. The best you can
do to help from the outside is pass some flags to the Erlang VM that will force
it to preempt processes more often, even if that has no guarantee of finding
anything. You can do this through the +T0 to +T9 emulator flags, which allow
you to play with timing values such as how long a process takes to spawn,
the amount of work it can do before being scheduled out, or the perceived
cost of IO operations. Those are intended for testing only and can be enabled
by setting them like this: ERL_ZARGS="+T4" rebar3 proper -n 10000.

This is unlikely to help much with our cache since there’s not that much
work going on for it (but in larger systems it may prove useful). Instead, we
can go the manual way and tell Erlang when to deschedule processes by

Chapter 9. Stateful Properties • 226

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

peppering calls to erlang:yield() around the places in code that seem worrisome.
This will tend to generate errors fast:

Erlang code/StatefulProperties/erlang/pbt/src/cache.erl

cache(Key, Val) ->
case ets:match(cache, {'$1', {Key, '_'}}) of % find dupes

[[N]] ->
ets:insert(cache, {N,{Key,Val}}); % overwrite dupe

[] ->
erlang:yield(),❶
case ets:lookup(cache, count) of % insert new

[{count,Max,Max}] ->
ets:insert(cache, [{1,{Key,Val}}, {count,1,Max}]);

[{count,Current,Max}] ->
ets:insert(cache, [{Current+1,{Key,Val}},

{count,Current+1,Max}])
end

end.

flush() ->
[{count,_,Max}] = ets:lookup(cache, count),
ets:delete_all_objects(cache),
erlang:yield(),❷
ets:insert(cache, {count, 0, Max}).

Elixir code/StatefulProperties/elixir/pbt/lib/cache.ex

def cache(key, val) do
case :ets.match(:cache, {:'$1', {key, :'_'}}) do

[[n]] ->
:ets.insert(:cache, {n,{key,val}})

[] ->
:erlang.yield()❶
case :ets.lookup(:cache, :count) do

[{:count,max,max}] ->
:ets.insert(:cache, [{1,{key,val}}, {:count,1,max}])

[{:count,current,max}] ->
:ets.insert(:cache, [{current+1, {key,val}},

{:count,current+1,max}])
end

end
end

def flush() do
[{:count,_,max}] = :ets.lookup(:cache, :count)
:ets.delete_all_objects(:cache)
:erlang.yield()❷
:ets.insert(:cache, {:count, 0, max})

end

report erratum • discuss

Testing Parallel Executions • 227

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Here we’ve added calls to erlang:yield/0 at ❶ and ❷. These calls basically tell
the Erlang VM: “once you reach this point, deschedule my process and run
another one if you can.” Since they are placed in suspect code—the places
where various reads and writes take place on a shared resource—PropEr finds
issues almost instantly:

$ rebar3 proper -n 10000 -p prop_parallel
===> Testing prop_cache:prop_parallel()
..!
Failed: After 3 test(s).
An exception was raised:

error:{'EXIT',{{case_clause,[[1],[2]]},[{cache,cache,2,[«stacktrace»
Stacktrace: «stacktrace»
{[],[[{set,{var,1},{call,cache,find,[0]}},«commands»
Shrinking(4 time(s))
{[],[[{set,{var,2},{call,cache,cache,[0,2]}}],

[{set,{var,5},{call,cache,cache,[0,1]}}]]}

And just like that, in merely three runs, it found conflicts between two cache
write operations. The most basic functionality of our cache is not safe for
concurrency. Put in a graphical form, this is what breaks:

,-> cache(0,2)
[] --+

'-> cache(0,1)

With the error being a case_clause in cache:cache/2 as per the exception, we know
the bug to be in here:

cache(Key, Val) ->
case ets:match(cache, {'$1', {Key, '_'}}) of % find dupes

[[N]] ->
ets:insert(cache, {N,{Key,Val}}); % overwrite dupe

[] ->
«insertion code»

end.

Whenever two insertions happen concurrently, there’s a slight chance that
our two writes check for an existing key before either of them is written, and
that both of them increment the counter one after the other, causing two
records to exist: {0,{Key,Val1}} and {1,{Key,Val2}}. We have two items in the cache
sharing the same key, but with two distinct values. Unless the model is wrong
(it isn’t in this case), that’s our bug.

Chapter 9. Stateful Properties • 228

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Alternative Tools

If finding concurrency bugs is a big concern for you, a QuickCheck
license may be worthwhile since it comes with PULSE, a user-
level scheduler that you can use to augment concurrency in the
VM to weed out these bugs in property tests.

Otherwise, look into tools like Concuerror (at concuerror.com),
which aims to focus solely on concurrency bugs in Erlang. In fact,
it can be used as a full formal proof that some execution paths
are not going to be sensitive to concurrency bugs.

Fixing the bug requires changing our approach fundamentally, by making
sure all destructive updates to the cache are done in a mutually exclusive
manner. We could do this with locks, but an easier fix is to move write oper-
ations within the process that owns the table so that it will force all destructive
updates to be sequential:

Erlang code/StatefulProperties/erlang/pbt/src/cache.erl

-module(cache).

-export([start_link/1, stop/0, cache/2, find/1, flush/0]).
-behaviour(gen_server).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2]).

start_link(N) ->
gen_server:start_link({local, ?MODULE}, ?MODULE, N, []).

stop() ->
gen_server:stop(?MODULE).

find(Key) ->
case ets:match(cache, {'_', {Key, '$1'}}) of

[[Val]] -> {ok, Val};
[] -> {error, not_found}

end.

cache(Key, Val) ->
gen_server:call(?MODULE, {cache, Key, Val}).

flush() ->
gen_server:call(?MODULE, flush).

%%%%%%%%%%%%%%%
%%% Private %%%
%%%%%%%%%%%%%%%
init(N) ->

ets:new(cache, [public, named_table]),
ets:insert(cache, {count, 0, N}),
{ok, nostate}.

report erratum • discuss

Testing Parallel Executions • 229

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

handle_call({cache, Key, Val}, _From, State) ->
case ets:match(cache, {'$1', {Key, '_'}}) of % find dupes

[[N]] ->
ets:insert(cache, {N,{Key,Val}}); % overwrite dupe

[] ->
erlang:yield(),
case ets:lookup(cache, count) of % insert new

[{count,Max,Max}] ->
ets:insert(cache, [{1,{Key,Val}}, {count,1,Max}]);

[{count,Current,Max}] ->
ets:insert(cache, [{Current+1,{Key,Val}},

{count,Current+1,Max}])
end

end,
{reply, ok, State};

handle_call(flush, _From, State) ->
[{count,_,Max}] = ets:lookup(cache, count),
ets:delete_all_objects(cache),
erlang:yield(),
ets:insert(cache, {count, 0, Max}),
{reply, ok, State}.

handle_cast(_Cast, State) -> {noreply, State}.

handle_info(_Msg, State) -> {noreply, State}.

Elixir translation on page 329.

Now you can re-run the property and see that it always works:

$ rebar3 proper -p prop_parallel -n 10000
.......f.......................................f...«more tests»
OK: Passed 10000 test(s).

63% {cache,cache,2}
21% {cache,find,1}
15% {cache,flush,0}

You can then take out the erlang:yield() calls from the code before committing
it, and be more confident that the cache works well.

Wrapping Up
This chapter has shown you the basics of stateful property testing, based on
a single simple model. We’ve been through the two phases of the test: the
symbolic one, where the model is used to generate a sequence of commands
that represents what the system should do, and the real one, where the
symbolic sequence of commands is applied to the real system, and the results
compared with what the model expects.

Chapter 9. Stateful Properties • 230

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

We’ve put these concepts in practice through a cache server modeled as a
first-in-first-out list and showed that the model seems to hold fine under
sequential operations. You’ve then seen how PropEr can take that same exact
model and create a parallel version of it that could, with some amount of help,
find concurrency bugs in our cache program.

You’ve seen the base mechanism of how stateful properties work, but truth
be told, the cache example we used resulted in a rather simple model. In the
next chapter, we’ll experiment with a more complex stateful system based on
SQL queries, with varying amounts of determinism. We’ll move past the basics
of stateful properties and explore more advanced techniques to handle the
complexity of modeling large systems for integration tests.

Exercises

Question 1

Which callbacks for stateful tests belong in which execution phases?

Solution on page 323.

Question 2

Pattern matching on the model state can be used to direct the generation of com-
mands based on the current context, but preconditions are still required. Why
are commands alone not sufficient and why do preconditions need to be used?

Solution on page 323.

Question 3

A file shows the three ways to initialize a stateful property test:

Erlang

prop_test1() ->
?FORALL(Cmds, commands(?MODULE),

begin
actual_system:start_link(),
{_History, _State, Result} = run_commands(?MODULE, Cmds),
actual_system:stop(),
Result =:= ok

end).

prop_test2() ->
?SETUP(fun() ->

actual_system:start_link(),
fun() -> actual_system:stop() end

end,

report erratum • discuss

Wrapping Up • 231

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

?FORALL(Cmds, commands(?MODULE),
begin

{_History, _State, Result} = run_commands(?MODULE, Cmds),
Result =:= ok

end)
end).

prop_test3() ->
actual_system:start_link(),
?FORALL(Cmds, commands(?MODULE),

begin
{_History, _State, Result} = run_commands(?MODULE, Cmds),
Result =:= ok

end),
actual_system:stop().

Elixir

property "first example" do
forall cmds <- commands(__MODULE__) do

ActualSystem.start_link()
{_history, _state, result} = run_commands(__MODULE__, cmds)
ActualSystem.stop()
result == :ok

end
end

The second example cannot be translated in Elixir since PropCheck
Does not support the setup macro at the time of this writing --
instead, you may use ExUnit's own setup macro as a workaround

property "third example" do
ActualSystem.start_link()
forall cmds <- commands(__MODULE__) do

{_history, _state, result} = run_commands(__MODULE__, cmds)
result == :ok

end
ActualSystem.stop()

end

What will happen to the actual system in every one of them?

Solution on page 323.

Question 4

What is the caveat of using the Res value—the result from the actual system—
in the next_state/3 callback? Is there a scenario where it is absolutely useful to
use it?

Solution on page 324.

Chapter 9. Stateful Properties • 232

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

CHAPTER 10

Case Study: Bookstore
One of the things that make stateful properties really impressive is that once
you understand them well enough to test a basic Erlang or Elixir component,
you also understand them well enough to test almost anything, including systems
not related to Erlang nor Elixir at all. The modeling and testing approaches
mostly remain the same no matter how the actual system is implemented; only
the calls reaching out to it end up changing.

In this chapter, we’ll see how to do this with a more complex system—an Erlang
bookstore implementation that uses a PostgreSQL back end, with SQL queries
and network connections as part of the code to be tested. Even with all these
moving pieces, we’ll still be able to test it all using either Erlang or Elixir.

Since real-world systems contain more moving parts, they’ll have a far larger
portfolio of errors and weird behaviors to detect and to debug. We’ll keep on
using stateful properties, but we may have to adjust our strategy a bit to
make our life easier.

We’ll start by setting up the system we’re going to test. For the testing, we’ll first
write generators that map to the types we expect to see in the system, and then
we’ll start throwing our stateful tests from a very broad position (“Does the
system even boot?”), slowly narrowing it down (“Can it run random queries?”),
until we close up with far more deterministic and rigorous tests (“Does the
system behave the way I expect it to?”). This will let you get familiar with a
bunch of techniques to write effective properties and how to debug them.

Introducing the Application
Like many other system tests, we’ll start with a prewritten system, and
mainly focus on testing it. The base system will use a few open source libraries,
mostly around interacting with a database.

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

For Elixir Readers

If you’re following along with Elixir, the dependencies of the Erlang
application won’t be replaced by their equivalents from the Elixir
ecosystem: we’ll stick with the Erlang ones. Since the various
integration bugs our test suites could find may differ based on the
libraries used, you’ll be able to follow along the text more easily
by reusing the same components as those used in the base Erlang
implementation, even if the final implementation may look less
idiomatic than if it had all been written in Elixir.

The first big dependency for this chapter is going to be an install of Post-
greSQL, at version 9.6 or above. (While things may work with an older version,
this chapter’s material wasn’t tested with anything prior to 9.6.) We’ll assume
that you have it on your system. If you don’t, you’ll find instructions in
Appendix 3, Installing PostgreSQL, on page 343. With PostgreSQL installed,
you’re ready to set up the application.

Project Setup
To get started in Erlang, use a standard OTP application template from rebar3
to start a new project (call rebar3 new app name=bookstore), and then edit the
rebar3.config file to look like this:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/Bookstore/erlang/bookstore/rebar.config

{project_plugins, [rebar3_proper]}.

%% Set up a standalone script to set up the DB
{escript_name, "bookstore_init"}.
{escript_emu_args, "%%! -escript main bookstore_init\n"}.

{deps, [
eql,
{pgsql, "26.0.1"}

]}.

{profiles, [
{test, [

{erl_opts, [nowarn_export_all]},
{deps, [{proper, "1.3.0"}]}

]}
]}.

Chapter 10. Case Study: Bookstore • 234

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%% auto-boot the app when calling `rebar3 shell'
{shell, [{apps, [bookstore]}]}.

This sets up a standard project with the PropEr dependencies, but also in-
cludes some configuration values related to an escript1 we will use to initialize
the database.

With this in place, you’ll want to modify the file at src/bookstore.app.src to contain
the following:

Erlang code/Bookstore/erlang/bookstore/src/bookstore.app.src

{application, bookstore,
[{description, "Handling books and book accessories"},
{vsn, "0.1.0"},
{registered, []},
{mod, { bookstore_app, []}},
{applications, [kernel, stdlib, eql, pgsql]},
{env,[

{pg, [
{user, "ferd"}, % replace with your own $USER
{password, ""},
{database, "bookstore_db"}, % as specified by bookstore_init.erl
{host, "127.0.0.1"},
{port, 5432},
{ssl, false} % not for tests!

]}
]},
{modules, []}

]}.

This adds all dependencies and applications variables (in the env tuple)
required to make things work. You can put the information relating to your
user, password, and port for the database here.

Elixir users may prefer to use the following commands and configuration
instead, for an equivalent experience. First create a new project (mix new book-
store) and set the following mix.exs file, which sets up the same environment
variables and escript setup:

Elixir code/Bookstore/elixir/bookstore/mix.exs

defmodule Bookstore.MixProject do
use Mix.Project

1. http://erlang.org/doc/man/escript.html

report erratum • discuss

Introducing the Application • 235

http://erlang.org/doc/man/escript.html
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def project do
[

app: :bookstore,
version: "0.1.0",
elixir: "~> 1.6",
elixirc_paths: elixirc_paths(Mix.env),
start_permanent: Mix.env() == :prod,
deps: deps(),
escript: escript_config()

]
end

defp elixirc_paths(:test), do: ["lib","test/"]
defp elixirc_paths(_), do: ["lib"]

Run "mix help compile.app" to learn about applications.
def application do

[
extra_applications: [:logger],
mod: {Bookstore.App, []},
env: [

pg: [
Single quotes are important
user: 'ferd', # replace with your own $USER
password: '',
database: 'bookstore_db', # as specified by bookstore_init.ex
host: '127.0.0.1',
port: 5432,
ssl: false # not for tests!

]
]

]
end

Run "mix help deps" to learn about dependencies.
defp deps do

[
{:eql, "~> 0.1.2", manager: :rebar3},
{:pgsql, "~> 26.0"},
{:propcheck, "~> 1.1", only: [:test, :dev]}

]
end

defp escript_config do
[main_module: Bookstore.Init, app: nil]

end
end

Do take the time to set the right user for your PostgreSQL installation.

Chapter 10. Case Study: Bookstore • 236

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

These configuration files show the PropEr plugin being used, an escript being
generated (to set up the database), and dependencies on pgsql, a database
client, and eql, a library used to access SQL queries stored on disk by name
within the BEAM VM.

We can now add the first code file for the project, the initialization script that
sets up the database:

Erlang code/Bookstore/erlang/bookstore/src/bookstore_init.erl

-module(bookstore_init).
-export([main/1]).

main(_) ->
%% See: https://www.postgresql.org/docs/9.6/static/server-start.html
ok = filelib:ensure_dir("postgres/data/.init-here"),
io:format("initializing database structure...~n"),
cmd("initdb -D postgres/data"),
io:format("starting postgres instance...~n"),

%% On windows this is synchronous and never returns until done
StartCmd = "pg_ctl -D postgres/data -l logfile start",
case os:type() of

{win32, _} -> spawn(fun() -> cmd(StartCmd) end);
{unix, _} -> cmd(StartCmd)

end,
timer:sleep(5000), % wait and pray!

io:format("setting up 'bookstore_db' database...~n"),
cmd("psql -h localhost -d template1 -c "

"\"CREATE DATABASE bookstore_db;\""),
io:format("OK.~n"),
init:stop().

cmd(Str) -> io:format("~s~n", [os:cmd(Str)]).

Elixir translation on page 331.

All this script does is call PostgreSQL tools for the initial set up in a portable
manner. Rebar3 users can call the script as follows:

$ rebar3 escritpize
«building the project»
$ _build/default/bin/bookstore_init
initializing database structure...
«DB build output»
starting postgres instance...
setting up 'bookstore_db' database...
CREATE DATABASE

OK.

report erratum • discuss

Introducing the Application • 237

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Or you can just call escript <path/to/file> and get the same result. Elixir users
will instead run this:

$ mix deps.get
«fetching dependencies»
$ mix escript.build
«building the project»
$./bookstore
initializing database structure...
«DB build output»
With that in place, we can start looking at the actual application code.

Application Code
The application starts a standard supervisor without children:

Erlang code/Bookstore/erlang/bookstore/src/bookstore_app.erl

-module(bookstore_app).
-behaviour(application).

%% Application callbacks
-export([start/2, stop/1]).

start(_StartType, _StartArgs) ->
bookstore_sup:start_link().

stop(_State) ->
ok.

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/app.ex

defmodule Bookstore.App do
use Application

def start(_type, _args) do
Bookstore.Sup.start_link()

end

def stop(_state) do
:ok

end
end

And for the supervisor itself, we have this:

Erlang code/Bookstore/erlang/bookstore/src/bookstore_sup.erl

-module(bookstore_sup).
-behaviour(supervisor).

Chapter 10. Case Study: Bookstore • 238

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

-export([start_link/0]).
-export([init/1]).

start_link() ->
supervisor:start_link({local, ?MODULE}, ?MODULE, []).

init([]) ->
bookstore_db:load_queries(),
{ok, {{one_for_all, 0, 1}, []}}.

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/sup.ex

defmodule Bookstore.Sup do
use Supervisor

def start_link() do
Supervisor.start_link(__MODULE__, [], name: __MODULE__)

end

def init([]) do
Bookstore.DB.load_queries()
Supervisor.init([], strategy: :one_for_one)

end
end

Note that bookstore_db:load_queries() gets called. This function is not yet defined
(we’ll get there in a minute). Its role, though, will be to find all the SQL queries
within a file we’ll define in priv/queries.sql, and which are labeled by name in
comments (-- :<name>):

Bookstore/erlang/bookstore/priv/queries.sql
-- Setup the table for the book database
-- :setup_table_books
CREATE TABLE books (

isbn varchar(20) PRIMARY KEY,
title varchar(256) NOT NULL,
author varchar(256) NOT NULL,
owned smallint DEFAULT 0,
available smallint DEFAULT 0

);

-- Clean up the table
-- :teardown_table_books
DROP TABLE books;

-- Add a book
-- :add_book
INSERT INTO books (isbn, title, author, owned, available)

VALUES ($1, $2, $3, $4, $5);

report erratum • discuss

Introducing the Application • 239

http://media.pragprog.com/titles/fhproper/code/Bookstore/erlang/bookstore/priv/queries.sql
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

-- Add a copy of an existing book
-- :add_copy
UPDATE books SET

owned = owned + 1,
available = available + 1

WHERE isbn = $1;

-- Borrow a copy of a book
-- :borrow_copy
UPDATE books SET available = available - 1 WHERE isbn = $1 AND available > 0;

-- Return a copy of a book
-- :return_copy
UPDATE books SET available = available + 1 WHERE isbn = $1;

-- Find books
-- :find_by_author
SELECT * FROM books WHERE author LIKE $1;
-- :find_by_isbn
SELECT * FROM books WHERE isbn = $1;
-- :find_by_title
SELECT * FROM books WHERE title LIKE $1;

Those represent all possible operations our system can do with the database.
Each query supports a format amenable to parameterized queries,2 which lets
us securely replace each $1, $2 and other variables with actual values without
having to escape them.

Elixir users can put the same queries.sql file in a priv/ directory in the root of
the project as well for a similar result.

To make use of the queries, we’ll write a module called bookstore_db, which will
export wrappers around each operation:

Erlang code/Bookstore/erlang/bookstore/src/bookstore_db.erl

-module(bookstore_db).
-export([load_queries/0, setup/0, teardown/0,

add_book/3, add_book/5, add_copy/1, borrow_copy/1, return_copy/1,
find_book_by_author/1, find_book_by_isbn/1, find_book_by_title/1]).

%% @doc Create the database table required for the bookstore
setup() ->

run_query(setup_table_books, []).

%% @doc Delete the database table required for the bookstore
teardown() ->

run_query(teardown_table_books, []).

2. https://www.postgresql.org/docs/9.6/static/protocol-overview.html#PROTOCOL-QUERY-CONCEPTS

Chapter 10. Case Study: Bookstore • 240

report erratum • discuss

https://www.postgresql.org/docs/9.6/static/protocol-overview.html#PROTOCOL-QUERY-CONCEPTS
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%% @doc Add a new book to the inventory, with no copies of it.
add_book(ISBN, Title, Author) ->

add_book(ISBN, Title, Author, 0, 0).

%% @doc Add a new book to the inventory, with a pre-set number of owned
%% and available copies.
add_book(ISBN, Title, Author, Owned, Avail) ->

BinTitle = iolist_to_binary(Title),
BinAuthor = iolist_to_binary(Author),
case run_query(add_book, [ISBN, BinTitle, BinAuthor, Owned, Avail) of

{{insert,0,1},[]} -> ok;
{error, Reason} -> {error, Reason};
Other -> {error, Other}

end.

%% @doc Add a copy of a book to the bookstore's inventory
add_copy(ISBN) ->

handle_single_update(run_query(add_copy, [ISBN])).

%% @doc Borrow a copy of a book; reduces the count of available
%% copies by one. Who borrowed the book is not tracked at this
%% moment and is left as an exercise to the reader.
borrow_copy(ISBN) ->

handle_single_update(run_query(borrow_copy, [ISBN])).

%% @doc Return a book copy, making it available again.
return_copy(ISBN) ->

handle_single_update(run_query(return_copy, [ISBN])).

%% @doc Search all books written by a given author. The matching is loose
%% and so searching for `Hawk' will return copies of books written
%% by `Stephen Hawking' (if such copies are in the system)
find_book_by_author(Author) ->

handle_select(
run_query(find_by_author, [iolist_to_binary(["%",Author,"%"])])

).

%% @doc Find books under a given ISBN.
find_book_by_isbn(ISBN) ->

handle_select(run_query(find_by_isbn, [ISBN])).

%% @doc Find books with a given title. The matching us loose and searching
%% for `Test' may return `PropEr Testing'.
find_book_by_title(Title) ->

handle_select(
run_query(find_by_title, [iolist_to_binary(["%",Title,"%"])])

).

Elixir translation on page 332.

This module acts as a model by abstracting away the implementation from
the data we want to obtain. It becomes rather cheap to change storage layers,
whether they’ll be using SQL, a microservice, or just raw files on disk. Each

report erratum • discuss

Introducing the Application • 241

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

function has its own doc line explaining what it does. You’ll find that all of
them depend on a run_query/2 function, which accepts the query name and its
arguments. Before showing its implementation, let’s first take a look at how
queries are loaded and made available:

Erlang code/Bookstore/erlang/bookstore/src/bookstore_db.erl

load_queries() ->
ets:new(bookstore_sql, [named_table, public, {read_concurrency, true}]),
SQLFile = filename:join(code:priv_dir(bookstore), "queries.sql"),
{ok, Queries} = eql:compile(SQLFile),
ets:insert(bookstore_sql, Queries),
ok.

query(Name) ->
case ets:lookup(bookstore_sql, Name) of

[] -> {query_not_found, Name};
[{_, Query}] -> Query

end.

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/db.ex

def load_queries() do
:ets.new(

:bookstore_sql,
[:named_table, :public, {:read_concurrency, true}]

)

sql_file = Path.join(:code.priv_dir(:bookstore), "queries.sql")
{:ok, queries} = :eql.compile(sql_file)
:ets.insert(:bookstore_sql, queries)
:ok

end

defp query(name) do
case :ets.lookup(:bookstore_sql, name) do

[] -> {:query_not_found, name}
[{_, query}] -> query

end
end

The first function creates an ETS table,3 reads the queries from disk with
eql:compile/1, and stores them in there. That function is called once, by book-
store_sup, which therefore owns the ETS table. The query/1 function can then
be used by the module to fetch the right query from the ETS cache.

This is exactly what run_query/2 ends up doing. Here’s how it’s implemented:

3. http://erlang.org/doc/man/ets.html

Chapter 10. Case Study: Bookstore • 242

report erratum • discuss

http://erlang.org/doc/man/ets.html
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/Bookstore/erlang/bookstore/src/bookstore_db.erl

%% @doc Run a query with a given set of arguments. This function
%% automatically wraps the whole operation with a connection to
%% a database.
run_query(Name, Args) ->

with_connection(fun(Conn) -> run_query(Name, Args, Conn) end).

%% @doc Run a query with a given set of arguments, within the scope
%% of a specific PostgreSQL connection. For example, this allows to run
%% multiple queries within a single connection, or within larger
%% transactions.
run_query(Name, Args, Conn) ->

pgsql_connection:extended_query(query(Name), Args, Conn).

%% @doc Takes a function, and runs it with a connection to a PostgreSQL
%% database connection as an argument. Closes the connection after
%% the call, and returns its result.
with_connection(Fun) ->

%% A pool call could be hidden and wrapped here, rather than
%% always grabbing a new connection
{ok, Conn} = connect(),
Res = Fun(Conn),
close(Conn),
Res.

%% @doc open up a new connection to a PostgreSQL database from
%% the application configuration
connect() -> connect(application:get_env(bookstore, pg, [])).

%% @doc open up a new connection to a PostgreSQL database with
%% explicit configuration parameters.
connect(Args) ->

try pgsql_connection:open(Args) of
{pgsql_connection, _} = Conn -> {ok, Conn}

catch
throw:Error -> {error, Error}

end.

%% @doc end a connection
close(Conn) -> pgsql_connection:close(Conn).

Elixir translation on page 334.

This lets you simply execute the parameterized queries, and encapsulate the
connection mechanisms and logic behind utility functions. While it currently
uses a new connection for every request, it would be relatively simple to use
a connection pool instead, for example.

Another set of functions you may have noticed being called are the following,
which wrap the SQL results and reformats them into a more useful format
for our module:

report erratum • discuss

Introducing the Application • 243

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/Bookstore/erlang/bookstore/src/bookstore_db.erl

handle_select({{select, _}, List}) -> {ok, List};
handle_select(Error) -> Error.

handle_single_update({{update,1}, _}) -> ok;
handle_single_update({error, Reason}) -> {error, Reason};
handle_single_update(Other) -> {error, Other}.

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/db.ex

defp handle_select({{:select, _}, list}), do: {:ok, list}
defp handle_select(error), do: error

defp handle_single_update({{:update, 1}, _}), do: :ok
defp handle_single_update({:error, reason}), do: {:error, reason}
defp handle_single_update(other), do: {:error, other}

This is all that we need for our application to work at a basic level, and more
than enough for us to test:

$ rebar3 shell
«build output»
===> Booted eql
===> Booted pgsql
===> Booted bookstore
1> bookstore_db:setup().
{{create,table},[]}
2> bookstore_db:add_book(
2> "978-0-7546-7834-2", "Behind Human Error", "David D Woods"
2>).
ok
3> bookstore_db:find_book_by_author("Woods").
{ok,[{<<"978-0-7546-7834-2">>,<<"Behind Human Error">>,

<<"David D. Woods">>,0,0}]}
4> bookstore_db:borrow_copy(<<"978-0-7546-7834-2">>).
{error,{{update,0},[]}}
5> bookstore_db:add_copy(<<"978-0-7546-7834-2">>).
ok
6> bookstore_db:borrow_copy(<<"978-0-7546-7834-2">>).
ok
7> bookstore_db:borrow_copy(<<"978-0-7546-7834-2">>).
{error,{{update,0},[]}}
8> bookstore_db:teardown().
{{drop,table},[]}

Some of the output could be made nicer, but this is good enough for our
purposes. The system seems to work well enough for us to start testing with
stateful properties, bit by bit. We’ll start with broad sequential tests, but first,
let’s write some generators that will remain useful for everything we do.

Chapter 10. Case Study: Bookstore • 244

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Writing Generators
When you’ve got a fairly large stateful system to validate, a good strategy to get
you going is to start by figuring out what data the system should accept—what
is valid and invalid. This is useful because it sets some baseline for expectations
on which to build and can hint at useful paths or strategies moving forward.

We’ve got a basic idea about the shape of data based on our database schema.
Let’s start a property test module and begin with the title and author generators:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

-module(prop_bookstore).
-include_lib("proper/include/proper.hrl").
-compile(export_all).

title() ->
?LET(S, string(), elements([S, unicode:characters_to_binary(S)])).

author() ->
?LET(S, string(), elements([S, unicode:characters_to_binary(S)])).

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

defmodule BookstoreTest do
use ExUnit.Case
use PropCheck
use PropCheck.StateM
doctest Bookstore

def title() do
let s <- utf8() do
elements([s, String.to_charlist(s))])

end
end

def author() do
let s <- utf8() do
elements([s, String.to_charlist(s))])

end
end

«...»
end

Since this is Erlang (or Elixir), and given that the virtual machine has no
dedicated string types, both generators will create either lists of characters
(string()) or binaries of the same text encoded as UTF-8. This will let us check
out whether the entire stack can support both types.

report erratum • discuss

Writing Generators • 245

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The next generator is for ISBNs. ISBN stands for the International Standard
Book Number,4 a series of ten or thirteen digits that uniquely identify every
book published.

We don’t really care about their format too much for this text and will assume
some other part of the system would test, validate, and normalize them.
Instead, we’ll use a more random generator that will let us focus on state
transitions for the stateful model. The generator looks like this:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

isbn() ->
?LET(ISBN,

[oneof(["978","979"]),
?LET(X, range(0,9999), integer_to_list(X)),
?LET(X, range(0,9999), integer_to_list(X)),
?LET(X, range(0,999), integer_to_list(X)),
frequency([{10, range($0,$9)}, {1, "X"}])],

iolist_to_binary(lists:join("-", ISBN))).

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

def isbn() do
let isbn <- [

oneof(['978', '979']),
let(x <- range(0, 9999), do: to_charlist(x)),
let(x <- range(0, 9999), do: to_charlist(x)),
let(x <- range(0, 999), do: to_charlist(x)),
frequency([{10, [range(?0, ?9)]}, {1, 'X'}])

] do
to_string(Enum.join(isbn, "-"))

end
end

You can see the kind of identifiers this generates in the shell:

$ rebar3 as test shell
«build output»
1> proper_gen:sample(prop_bookstore:isbn()).
<<"978-1507-2709-357-1">>
<<"978-1347-142-554-X">>
<<"979-9363-9561-334-0">>
<<"979-531-2666-141-X">>
<<"978-8024-8930-890-9">>
<<"979-245-64-445-5">>

4. https://en.wikipedia.org/wiki/Isbn

Chapter 10. Case Study: Bookstore • 246

report erratum • discuss

https://en.wikipedia.org/wiki/Isbn
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

<<"978-3938-5049-65-3">>
<<"979-9883-2469-411-1">>
<<"978-208-3140-344-0">>
<<"979-8351-3610-508-6">>
<<"979-4012-3820-833-X">>

We now have generators for authors, titles, and the ISBNs. The only other
values we’ll need for our tests are going to be counters for books, which are
just integers. We’re good to get started with the initial stateful property.

Broad Stateful Testing
We’ll start with a very wide scanning of the system to make sure the basic
stuff works. This will check for simple API misunderstandings, errors that
type analysis couldn’t reveal, or issues with configuration or the basic test
setup.

Let’s first add the actual property declaration to our module:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

-module(prop_bookstore).
-include_lib("proper/include/proper.hrl").
-compile(export_all).

prop_test() ->
?SETUP(fun() ->

{ok, Apps} = application:ensure_all_started(bookstore),
fun() -> [application:stop(App) || App <- Apps], ok end

end,
?FORALL(Cmds, commands(?MODULE),

begin
bookstore_db:setup(),
{History, State, Result} = run_commands(?MODULE, Cmds),
bookstore_db:teardown(),
?WHENFAIL(io:format("History: ~p\nState: ~p\nResult: ~p\n",

[History, State, Result]),
aggregate(command_names(Cmds), Result =:= ok))

end)
).

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

defmodule BookstoreTest do
use ExUnit.Case
use PropCheck
use PropCheck.StateM
doctest Bookstore

report erratum • discuss

Broad Stateful Testing • 247

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

property "bookstore stateful operations", [:verbose] do
forall cmds <- commands(__MODULE__) do

No setup macro in PropCheck yet, do it all inline
{:ok, apps} = Application.ensure_all_started(:bookstore)
Bookstore.DB.setup()
{history, state, result} = run_commands(__MODULE__, cmds)
Bookstore.DB.teardown()
for app <- apps, do: Application.stop(app)

(result == :ok)
|> aggregate(command_names(cmds))
|> when_fail(
IO.puts("""
History: #{inspect(history)}
State: #{inspect(state)}
Result: #{inspect(result)}
""")

)
end

end

As you can see, we make use of the ?SETUP macro to boot the bookstore OTP
application once for all the tests, making sure that all libraries and dependen-
cies are in place, and then call the bookstore:setup/0 and bookstore:teardown/0
functions on each iteration to get rid of the database table and its state
between each test so that the execution is clean.

We can start on the model. To keep with the spirit of broad testing, let’s do
nothing but call the functions:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

%% Initial model value at system start. Should be deterministic.
initial_state() -> #{}.

command(_State) ->
oneof([

{call, bookstore_db, add_book, [isbn(), title(), author(), 1, 1]},
{call, bookstore_db, add_copy, [isbn()]},
{call, bookstore_db, borrow_copy, [isbn()]},
{call, bookstore_db, return_copy, [isbn()]},
{call, bookstore_db, find_book_by_author, [author()]}, % or part
{call, bookstore_db, find_book_by_title, [title()]}, % or title part
{call, bookstore_db, find_book_by_isbn, [isbn()]}

]).

%% Picks whether a command should be valid under the current state.
precondition(_State, {call, _Mod, _Fun, _Args}) ->

true.

Chapter 10. Case Study: Bookstore • 248

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%% Given the state `State' *prior* to the call `{call, Mod, Fun, Args}',
%% determine whether the result `Res' (coming from the actual system)
%% makes sense.
postcondition(_State, {call, _Mod, _Fun, _Args}, _Res) ->

true.

%% Assuming the postcondition for a call was true, update the model
%% accordingly for the test to proceed.
next_state(State, _Res, {call, _Mod, _Fun, _Args}) ->

NewState = State,
NewState.

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

initial model value at system start. Should be deterministic.
def initial_state(), do: %{}

def command(_state) do
oneof([

{:call, Bookstore.DB, :add_book, [isbn(), title(), author(), 1, 1]},
{:call, Bookstore.DB, :add_copy, [isbn()]},
{:call, Bookstore.DB, :borrow_copy, [isbn()]},
{:call, Bookstore.DB, :return_copy, [isbn()]},
{:call, Bookstore.DB, :find_book_by_author, [author()]}, # or part
{:call, Bookstore.DB, :find_book_by_title, [title()]}, # or part
{:call, Bookstore.DB, :find_book_by_isbn, [isbn()]}

])
end

Picks whether a command should be valid under the current state.
def precondition(_state, {:call, _mod, _fun, _args}) do

true
end

Given the state *prior* to the call {:call, mod, fun, args},
determine whether the result (coming from the actual system)
makes sense.
def postcondition(_state, {:call, _mod, _fun, _args}, _res) do

true
end

Assuming the postcondition for a call was true, update the model
accordingly for the test to proceed
def next_state(state, _res, {:call, _mod, _fun, _args}) do

new_state = state
new_state

end

The command/1 function is the only significant one, with the rest untouched
from the rebar3 template. You can run this property to see how things go:

report erratum • discuss

Broad Stateful Testing • 249

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

$ rebar3 proper
===> Verifying dependencies...
===> Compiling bookstore
===> Testing prop_bookstore:prop_test()
..!
Failed: After 65 test(s).
«failure output»
Shrinking(4 time(s))
[{set,{var,11},{call,bookstore_db,find_book_by_author,[
[6,13,3,1,15,23,5,115,30,0,3,523,0,27]]}}]

History: []
State: #{}
Result: {exception,error,badarg,

[{erlang,iolist_to_binary,
[["%",[6,13,3,1,15,23,5,115,30,0,3,523,0,27],"%"]],
[]},

{bookstore_db,find_book_by_author,1,
[{file, «path»/src/bookstore_db.erl},
{line,49}]},

«stacktrace»
So at some point in our code, an author name is getting converted from an
iolist data type into a binary, but in this specific case, it fails. It’s interesting to
note that the iolist that causes problems hasn’t been shrunk down to a simpler
string: are the 0s what cause issues, the length, or something else? We don’t
necessarily know, because stateful properties primarily focus on finding tricky
state transitions over plain tricky data inputs, which are rather the specialty
of stateless properties. We’ll see later in this chapter how shrinking works for
stateful properties, which will explain this kind of behavior.

Erlang and Unicode

Erlang’s Unicode situation is complex, with multiple formats of strings:

• Lists of bytes and binaries mixed together; they are assumed to be latin1 text
and named iolists

• Lists of unicode codepoints (0..16#10ffff), to be converted to a specific UTF encoding
by whatever driver handles the output

• A binary piece of data representing text in any of UTF-8, UTF-16, or UTF-32
encodings

• Lists of unicode codepoints and UTF-encoded binaries mixed together, referred
to as chardata; they are the unicode-aware version of iolists

All unicode-aware types can be converted and handled by the unicode module, and
unicode string algorithms are implemented starting in OTP 20 in the string module.

Chapter 10. Case Study: Bookstore • 250

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

To make things simple and to save us the time of writing a stateless property
to find the bad input, the problem in the counterexample above is the value
523. The iolist_to_binary/1 function converts bytes (0..255) from a list format to a
binary format, but doesn’t care for string encoding. The number 523 represents
the character ȋ (Latin small letter i with inverted breve) in Unicode. The function
we need here, specifically for Unicode support, is unicode:characters_to_binary/1.

By changing the database queries to always convert all forms of input to utf8-
encoded binaries, the bug should go away. Let’s start with the book addition:

Erlang code/Bookstore/erlang/bookstore/src/bookstore_db.erl

%% @doc Add a new book to the inventory, with no copies of it.
add_book(ISBN, Title, Author) ->

add_book(ISBN, Title, Author, 0, 0).

%% @doc Add a new book to the inventory, with a pre-set number of owned
%% and available copies.
add_book(ISBN, Title, Author, Owned, Avail) ->

BinTitle = unicode:characters_to_binary(Title),
BinAuthor = unicode:characters_to_binary(Author),
case run_query(add_book, [ISBN, BinTitle, BinAuthor, Owned, Avail]) of

{{insert,0,1},[]} -> ok;
{error, Reason} -> {error, Reason};
Other -> {error, Other}

end.

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/db.ex

@doc """
Add a new book to the inventory, with no copies of it
"""
def add_book(isbn, title, author) do

add_book(isbn, title, author, 0, 0)
end

@doc """
Add a new book to the inventory, with a pre-set number of
owned and available copies
"""
def add_book(isbn, title, author, owned, avail) do

bin_title = IO.chardata_to_string(title)
bin_author = IO.chardata_to_string(author)

case run_query(:add_book, [isbn, bin_title, bin_author, owned, avail]) do
{{:insert, 0, 1}, []} -> :ok
{:error, reason} -> {:error, reason}
other -> {:error, other}

end
end

report erratum • discuss

Broad Stateful Testing • 251

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

And then the lookup functions can be adjusted as well:

Erlang code/Bookstore/erlang/bookstore/src/bookstore_db.erl

%% @doc Search all books written by a given author. The matching is loose
%% and so searching for `Hawk' will return copies of books written
%% by `Stephen Hawking' (if such copies are in the system)
find_book_by_author(Author) ->

handle_select(
run_query(find_by_author,

[unicode:characters_to_binary(["%",Author,"%"])])
).

%% @doc Find books under a given ISBN.
find_book_by_isbn(ISBN) ->

handle_select(run_query(find_by_isbn, [ISBN])).

%% @doc Find books with a given title. The matching us loose and searching
%% for `Test' may return `PropEr Testing'.
find_book_by_title(Title) ->

handle_select(
run_query(find_by_title,

[unicode:characters_to_binary(["%",Title,"%"])])
).

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/db.ex

@doc """
Search all books written by a given author. The matching is loose and so
searching for `Hawk' will return copies of books written by `Stephen
Hawking' (if such copies are in the system)
"""
def find_book_by_author(author) do

handle_select(
run_query(

:find_by_author,
[IO.chardata_to_string(['%', author, '%'])]

)
)

end

@doc """
Find books under a given ISBN
"""
def find_book_by_isbn(isbn) do

handle_select(run_query(:find_by_isbn, [isbn]))
end

@doc """
Find books with a given title. The matching us loose and searching
for `Test' may return `PropEr Testing'.
"""

Chapter 10. Case Study: Bookstore • 252

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def find_book_by_title(title) do
handle_select(

run_query(
:find_by_title,
[IO.chardata_to_string(['%', title, '%'])]

)
)

end

This should take care of everything. Run the tests and see:

$ rebar3 proper
«build output»
===> Testing prop_bookstore:prop_test()
...
.........................
OK: Passed 100 test(s).

16% {bookstore_db,add_book,5}
15% {bookstore_db,borrow_copy,1}
15% {bookstore_db,find_book_by_title,1}
13% {bookstore_db,find_book_by_isbn,1}
13% {bookstore_db,return_copy,1}
13% {bookstore_db,add_copy,1}
12% {bookstore_db,find_book_by_author,1}

Right now, it seems like the calls tend to all succeed. We’re now in a good
position to start adding postconditions and to track state transitions, testing
the system in more detail. We’ll grow our model, track books, check availabil-
ity, and refine our ability to look things up in the database.

Precise Stateful Modeling
It’s time we use a model to dig deeper into what the system can or can’t do.
Once again, a critical property of models is that they are simpler but sufficient
to represent the real thing. For our database, a map will prove sufficient to
track all changes. But first, before we start to add postconditions, we may
want to make an inventory of all kinds of operations we will want to check:

• Adding a book that is not yet in the system is expected to succeed.

• Adding a book that is already in the system is expected to fail.

• Adding a copy of a book that is already in the system is expected to suc-
ceed (and make one more copy available right away).

• Adding a copy of a book that isn’t yet in the system should return an error.

• Borrowing a book that is in the system and available makes one less copy
available.

report erratum • discuss

Precise Stateful Modeling • 253

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

• Borrowing a book that is in the system but unavailable returns an error
saying it is unavailable.

• Borrowing a book that is not in the system would return an error saying
it is not found.

• Returning a book that is in the system makes it available again.

• Returning a book that is not in the system returns an error saying it was
not found.

• Returning a book that is in the system but for which all copies are ac-
counted for returns an error as well.

• Looking up a book by ISBN should succeed if the book is in the system
already.

• Looking up a book by ISBN should fail if the book is not in the system yet.

• Finding a book by author should succeed if the submitted name matches
a part of or the full name of one or more existing books.

• Finding a book by title should succeed if the submitted title matches a
part of or the full name of one or more existing books.

• Lookups of titles or authors for which we expect no match should return
an empty result set.

The obvious way to go about validation is to just fill up next_state/3 callback
clauses for each call in bookstore_db, stick all the checks into postconditions
right there, and call it a day. The downside of this approach is that it will be
difficult to gather metrics and know how many of our calls will hit each of
the cases, or if most attempts will only hit the same case over and over again
(such as inserting new records without errors). Similarly, it might be trickier
to debug a failing test case if we need a lot of context to know what the actual
operation was.

Using a Shim
A nicer approach is to force the model clauses to become more deterministic
and explicit. The more determinism we have, the easier it will be to emphasize
one type of operation over another one and to figure out what goes on. The
best trick to make clauses deterministic (without affecting generation) is to
use a shim module—a module that wraps regular operations with a known
name to add more context—to make all other proper_statem callbacks simpler.
Here’s the implementation we’ll use:

Chapter 10. Case Study: Bookstore • 254

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/Bookstore/erlang/bookstore/test/book_shim.erl

-module(book_shim).
-compile(export_all).

add_book_existing(ISBN, Title, Author, Owned, Avail) ->
bookstore_db:add_book(ISBN, Title, Author, Owned, Avail).

add_book_new(ISBN, Title, Author, Owned, Avail) ->
bookstore_db:add_book(ISBN, Title, Author, Owned, Avail).

add_copy_existing(ISBN) -> bookstore_db:add_copy(ISBN).
add_copy_new(ISBN) -> bookstore_db:add_copy(ISBN).

borrow_copy_avail(ISBN) -> bookstore_db:borrow_copy(ISBN).
borrow_copy_unavail(ISBN) -> bookstore_db:borrow_copy(ISBN).
borrow_copy_unknown(ISBN) -> bookstore_db:borrow_copy(ISBN).

return_copy_full(ISBN) -> bookstore_db:return_copy(ISBN).
return_copy_existing(ISBN) -> bookstore_db:return_copy(ISBN).
return_copy_unknown(ISBN) -> bookstore_db:return_copy(ISBN).

find_book_by_isbn_exists(ISBN) -> bookstore_db:find_book_by_isbn(ISBN).
find_book_by_isbn_unknown(ISBN) -> bookstore_db:find_book_by_isbn(ISBN).

find_book_by_author_matching(Author) ->
bookstore_db:find_book_by_author(Author).

find_book_by_author_unknown(Author) ->
bookstore_db:find_book_by_author(Author).

find_book_by_title_matching(Title) ->
bookstore_db:find_book_by_title(Title).

find_book_by_title_unknown(Title) ->
bookstore_db:find_book_by_title(Title).

Elixir translation on page 334.

All possible cases from our prior list are represented within the shim module.
This one is fairly straightforward, and as you can see, all variations of a given
call directly call the same function. That’s fine, since we’ll just want to be
able to see which use case we get in our properties.

Shim Modules

Shim modules are the perfect place to do things such as turn an
asynchronous interface into a synchronous one, capture side
effects as if they were functional values, or to wrap nondetermin-
istic values into a more deterministic format. They are helpers
that always have access to runtime data and only run during real
execution. Use them to shape and adapt your actual system to
your model’s needs.

report erratum • discuss

Precise Stateful Modeling • 255

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

We can then rewrite our command/1 callback to use the shim module:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

%% Initial model value at system start. Should be deterministic.
initial_state() -> #{}.

command(State) ->
AlwaysPossible = [

{call, book_shim, add_book_new, [isbn(), title(), author(), 1, 1]},
{call, book_shim, add_copy_new, [isbn()]},
{call, book_shim, borrow_copy_unknown, [isbn()]},
{call, book_shim, return_copy_unknown, [isbn()]},
{call, book_shim, find_book_by_isbn_unknown, [isbn()]},
{call, book_shim, find_book_by_author_unknown, [author()]},
{call, book_shim, find_book_by_title_unknown, [title()]}

],
ReliesOnState = case maps:size(State) of

0 -> % no values yet
[];

_ -> % values form which to work
S = State,
[{call, book_shim, add_book_existing,

[isbn(S), title(), author(), 1, 1]},
{call, book_shim, add_copy_existing, [isbn(S)]},
{call, book_shim, borrow_copy_avail, [isbn(S)]},
{call, book_shim, borrow_copy_unavail, [isbn(S)]},
{call, book_shim, return_copy_existing, [isbn(S)]},
{call, book_shim, return_copy_full, [isbn(S)]},
{call, book_shim, find_book_by_isbn_exists, [isbn(S)]},
{call, book_shim, find_book_by_author_matching, [author(S)]},
{call, book_shim, find_book_by_title_matching, [title(S)]}]

end,
oneof(AlwaysPossible ++ ReliesOnState).

Elixir translation on page 335.

That’s very repetitive, but it’s also simple. Simplicity is good in a model, so
that’s an acceptable tradeoff. You’ll note that we’ve split the call generators
in two segments: those that don’t need to look at the state to make sense (all
calls about unknown or new data, where random stuff is fine), and those that
must have access to existing state and keys to work (because you can only
find an existing book by reading a book from the state). The stateful calls are
never generated if no state is available.

Here are the new generators we need to make this work:

Chapter 10. Case Study: Bookstore • 256

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

isbn(State) ->
elements(maps:keys(State)).

author(State) ->
elements([partial(Author) || {_,_,Author,_,_} <- maps:values(State)]).

title(State) ->
elements([partial(Title) || {_,Title,_,_,_} <- maps:values(State)]).

%% Create a partial string, built from a portion of a complete one.
partial(String) ->

L = string:length(String),
?LET({Start, Len}, {range(0, L), non_neg_integer()},

string:slice(String, Start, Len)).

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

def isbn(state), do: elements(Map.keys(state))

def author(s) do
elements(for {_,_,author,_,_} <- Map.values(s), do: partial(author))

end

def title(s) do
elements(for {_,title,_,_,_} <- Map.values(s), do: partial(title))

end

create a partial string, built from a portion of a complete one
def partial(string) do

string = IO.chardata_to_string(string)
l = String.length(string)
let {start, len} <- {range(0, l), non_neg_integer()} do

String.slice(string, start, len)
end

end

This will allow for quick generation, but won’t be sufficient for the model to
hold up in all circumstances.

Enforcing Preconditions
Since all our shim calls map to the same underlying functionality, we can
use preconditions to enforce the requirements for each shimmed function
name. Also remember that preconditions are essential to enforce constraints
when shrinking, so we’ll need to double-check constraints as well:

report erratum • discuss

Precise Stateful Modeling • 257

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

%% Picks whether a command should be valid under the current state.
%% -- all the unknown calls
precondition(S, {call, _, add_book_new, [ISBN|_]}) ->

not has_isbn(S, ISBN);
precondition(S, {call, _, add_copy_new, [ISBN]}) ->

not has_isbn(S, ISBN);
precondition(S, {call, _, borrow_copy_unknown, [ISBN]}) ->

not has_isbn(S, ISBN);
precondition(S, {call, _, return_copy_unknown, [ISBN]}) ->

not has_isbn(S, ISBN);
precondition(S, {call, _, find_book_by_isbn_unknown, [ISBN]}) ->

not has_isbn(S, ISBN);
precondition(S, {call, _, find_book_by_author_unknown, [Author]}) ->

not like_author(S, Author);
precondition(S, {call, _, find_book_by_title_unknown, [Title]}) ->

not like_title(S, Title);
precondition(S, {call, _, find_book_by_author_matching, [Author]}) ->

like_author(S, Author);
precondition(S, {call, _, find_book_by_title_matching, [Title]}) ->

like_title(S, Title);
%% -- all the calls with known ISBNs
precondition(S, {call, _Mod, _Fun, [ISBN|_]}) ->

%% to hell with it, we blank match the rest since they're all
%% constraints on existing ISBNs.
has_isbn(S, ISBN).

Elixir translation on page 336.

These preconditions mostly reencode the same restrictions we had in command/1.
It’s all repetitive and trivial, but that’s a good sign: our constraints are trivial
and straightforward. Tests that are easy to reason about are good tests; tests
that are almost as tricky as your system can also be good tests, but they’ll
require more care and attention. Taking a more deterministic shim-based
approach is exactly what creates this repetitive-but-simple code. If this annoys
you and you prefer less repetitive code, you’re free to avoid shims, but be
aware that modifying, expanding, or debugging your tests may prove trickier
later on.

You’ll also note that pretty much all preconditions rely on the following helper
functions:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

%%%%%%%%%%%%%%%
%%% Helpers %%%
%%%%%%%%%%%%%%%
has_isbn(Map, ISBN) ->

maps:is_key(ISBN, Map).

Chapter 10. Case Study: Bookstore • 258

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

like_author(Map, Auth) ->
lists:any(fun({_,_,A,_,_}) -> nomatch =/= string:find(A, Auth) end,

maps:values(Map)).

like_title(Map, Title) ->
lists:any(fun({_,T,_,_,_}) -> nomatch =/= string:find(T, Title) end,

maps:values(Map)).

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

Helpers
def has_isbn(map, isbn), do: Map.has_key?(map, isbn)

def like_author(map, auth) do
Enum.any?(

Map.values(map),
fn {_,_,a,_,_} -> contains?(a, auth) end

)
end

def like_title(map, title) do
Enum.any?(

Map.values(map),
fn {_,t,_,_,_} -> contains?(t, title) end

)
end

defp contains?(string_or_chars_full, string_or_char_pattern) do
string = IO.chardata_to_string(string_or_chars_full)
pattern = IO.chardata_to_string(string_or_char_pattern)
String.contains?(string, pattern)

end
defp contains_any?(string_or_chars, patterns) when is_list(patterns) do

string = IO.chardata_to_string(string_or_chars)
patterns = for p <- patterns, do: IO.chardata_to_string(p)
String.contains?(string, patterns)

end

The has_isbn/2 function checks whether the given ISBN is in the current state.
The has_author/2 and has_title/2 checks are used for functions that wrap book-
store_db:find_book_by_author/1 and bookstore_db:find_book_by_title/1, which both use
fuzzy-matching logic (LIKE "%string%" in SQL). This fuzzy matching means that
we’re not looking for full titles and author names, only partial ones, and so
we must filter them explicitly.

The next step will be to drive state transitions forward.

Advancing the Model State
We can use the next_state callback to define state transitions:

report erratum • discuss

Precise Stateful Modeling • 259

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

%% Assuming the postcondition for a call was true, update the model
%% accordingly for the test to proceed.
next_state(State, _, {call, _, add_book_new,

[ISBN, Title, Author, Owned, Avail]}) ->
State#{ISBN => {ISBN, Title, Author, Owned, Avail}};

next_state(State, _, {call, _, add_copy_existing, [ISBN]}) ->
#{ISBN := {ISBN, Title, Author, Owned, Avail}} = State,
State#{ISBN => {ISBN, Title, Author, Owned+1, Avail+1}};

next_state(State, _, {call, _, borrow_copy_avail, [ISBN]}) ->
#{ISBN := {ISBN, Title, Author, Owned, Avail}} = State,
State#{ISBN => {ISBN, Title, Author, Owned, Avail-1}};

next_state(State, _, {call, _, return_copy_existing, [ISBN]}) ->
#{ISBN := {ISBN, Title, Author, Owned, Avail}} = State,
State#{ISBN => {ISBN, Title, Author, Owned, Avail+1}};

next_state(State, _Res, {call, _Mod, _Fun, _Args}) ->
NewState = State,
NewState.

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

Assuming the postcondition for a call was true, update the model
accordingly for the test to proceed
def next_state(

state,
_,
{:call, _, :add_book_new, [isbn, title, author, owned, avail]}

) do
Map.put(state, isbn, {isbn, title, author, owned, avail})

end
def next_state(state, _, {:call, _, :add_copy_existing, [isbn]}) do

{^isbn, title, author, owned, avail} = state[isbn]
Map.put(state, isbn, {isbn, title, author, owned + 1, avail + 1})

end
def next_state(state, _, {:call, _, :borrow_copy_avail, [isbn]}) do

{^isbn, title, author, owned, avail} = state[isbn]
Map.put(state, isbn, {isbn, title, author, owned, avail - 1})

end
def next_state(state, _, {:call, _, :return_copy_existing, [isbn]}) do

{^isbn, title, author, owned, avail} = state[isbn]
Map.put(state, isbn, {isbn, title, author, owned, avail + 1})

end
def next_state(state, _res, {:call, _mod, _fun, _args}) do

new_state = state
new_state

end

Chapter 10. Case Study: Bookstore • 260

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

This one is much shorter, thanks to the shim. Only calls that we expect to
be successful change the state, the rest of them leave it unchanged. Since
we baked all conditions for success or failure in the function name (and
through preconditions), we need to do very little dynamic detection to know
how to update the state.

With transitions in place, validating that everything is correct is the last step.

Checking Postconditions
You’ll find that the simplification due to shims also applies to postconditions,
which we can write to all rely on pattern matching:

%% Given the state `State' *prior* to the call `{call, Mod, Fun, Args}',
%% determine whether the result `Res' (coming from the actual system)
%% makes sense.
postcondition(_, {_, _, add_book_new, _}, ok) ->

true;
postcondition(_, {_, _, add_book_existing, _}, {error, _}) ->

true;
postcondition(_, {_, _, add_copy_existing, _}, ok) ->

true;
postcondition(_, {_, _, add_copy_new, _}, {error, not_found}) ->

true;
postcondition(_, {_, _, borrow_copy_avail, _}, ok) ->

true;
postcondition(_, {_, _, borrow_copy_unavail, _}, {error, unavailable}) ->

true;
postcondition(_, {_, _, borrow_copy_unknown, _}, {error, not_found}) ->

true;
postcondition(_, {_, _, return_copy_full, _}, {error, _}) ->

true;
postcondition(_, {_, _, return_copy_existing, _}, ok) ->

true;
postcondition(_, {_, _, return_copy_unknown, _}, {error, not_found}) ->

true;

Elixir translation on page 337.

For all of these clauses, all we have to do is pattern match on functions and
their result—we don’t even need to look at the state (the first argument as ‘_’)
since we know what we want ahead of time.

Do note that most of these functions also turn out to be the side-effectful
ones, those we expect will modify the state. Aside from getting the result
telling us that they worked or not (ok or {error, _}), most write-only operations
are not observable to the user; you have to trust the system. The impact of

report erratum • discuss

Precise Stateful Modeling • 261

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

these functions is instead generally visible only by checking side effects (like
logs or metrics), or when reading data back from the system.

And reading data is exactly what our next batch of postconditions worry
about. This is what will make sure that the ok values returned by write oper-
ations are not just lies. Let’s start with reads with an ISBN lookup:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

postcondition(S, {_, _, find_book_by_isbn_exists, [ISBN]}, Res) ->
Res =:= {ok, [maps:get(ISBN, S, undefined)]};

postcondition(_, {_, _, find_book_by_isbn_unknown, _}, {ok, []}) ->
true;

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

def postcondition(s, {_, _, :find_book_by_isbn_exists, [isbn]}, res) do
res == {:ok, [Map.get(s, isbn, nil)]}

end

def postcondition(_, {_, _, :find_book_by_isbn_unknown, _}, {:ok, []}) do
true

end

That’s rather straightforward. The function looks for an ISBN, and we want
to make sure the record we get from the model state (S) is the same stuff we
get in the full Res result. An unknown ISBN just returns {ok, []} and that’s it.

The two other reader functions have to do with matching a substring with
the author and the title. We can do this using string:find(String, Pattern), which
will tell whether Pattern is anywhere in String:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

postcondition(S, {_, _, find_book_by_author_matching, [Auth]}, {ok,Res}) ->
Map = maps:filter(fun(_, {_,_,A,_,_}) ->

nomatch =/= string:find(A, Auth)
end, S),

lists:sort(Res) =:= lists:sort(maps:values(Map));
postcondition(_, {_, _, find_book_by_author_unknown, _}, {ok, []}) ->

true;
postcondition(S, {_, _, find_book_by_title_matching, [Title]}, {ok,Res}) ->

Map = maps:filter(fun(_, {_,T,_,_,_}) ->
nomatch =/= string:find(T, Title)

end, S),
lists:sort(Res) =:= lists:sort(maps:values(Map));

postcondition(_, {_, _, find_book_by_title_unknown, _}, {ok, []}) ->
true;

Chapter 10. Case Study: Bookstore • 262

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

def postcondition(
state,
{_, _, :find_book_by_author_matching, [auth]},
{:ok, res}

) do
map = :maps.filter(

fn _, {_,_,a,_,_} -> contains?(a, auth) end,
state

)
Enum.sort(res) == Enum.sort(Map.values(map))

end

def postcondition(_, {_,_,:find_book_by_author_unknown,_}, {:ok,[]}) do
true

end

def postcondition(
state,
{_, _, :find_book_by_title_matching, [title]},
{:ok, res}

) do
map = :maps.filter(

fn _, {_,t,_,_,_} -> contains?(t, title) end,
state

)
Enum.sort(res) == Enum.sort(Map.values(map))

end

def postcondition(_, {_,_,:find_book_by_title_unknown,_}, {:ok,[]}) do
true

end

Note that the result set in Res is never used to drive the results. The expected
result set is entirely built from the model state S, and only then do we check
whether the results from the actual system match. The model drives the test
and validates the system, not the other way around.

Unimportant Ordering

Whenever ordering is not important in a result set, use lists:sort/1
on both the model’s result and the system’s result so that their
initial ordering is made irrelevant

Finally, all the cases not covered here are considered invalid:

report erratum • discuss

Precise Stateful Modeling • 263

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

postcondition(_State, {call, _Mod, _Fun, _Args}, _Res) ->
io:format("~nnon-matching postcondition: {~p,~p,~p} -> ~p~n",

[_Mod, _Fun, _Args, _Res]),
false.

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

def postcondition(_state, {:call, mod, fun, args}, res) do
mod = inspect(mod)
fun = inspect(fun)
args = inspect(args)
res = inspect(res)
IO.puts(

"\nnon-matching postcondition: {#{mod}, #{fun}, #{args}} -> #{res}"
)
false

end

This is a useful clause to have since all the direct matching on results in the
previous clauses means whatever didn’t fit before is caught here. The last catch-
all clause always being false is your best shot at catching errors early on.

Think Like an Operator

If you find yourself in situations where you find it hard to write a model that works
predictably without first poking at the running system, it means the people operating
your system will likely have the same problem. Similarly, if you find it hard to validate
the data you received in a postcondition because of lots of possible valid outputs,
people debugging your system will feel the same pain. This is a good signal that you
may need to rethink your approach a bit.

Think the way an operator would while debugging in production. If the system is too
unpredictable, you can modify it to match a simpler model when possible, or broaden
the model to be more relaxed. If relaxing the model feels unsafe and playing way too
loose with your tests, that’s how your operators would feel. Another option is to make
the system more observable, meaning that you leave traces that make it easy for an
operator to guess what the system’s internal state is: should logs or metrics be pro-
duced and consulted? Can events be generated or messages sent? Can these be
wrapped up and considered regular output? Take a holistic view of your system,
consider what are valid inputs and outputs, and adjust the commands and make
your tests work in a friendlier way, the way a human would enjoy it.

It can only result in more reliable and operable software for everyone.

Chapter 10. Case Study: Bookstore • 264

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

With this done, our initial model is complete. We can run the tests against it
and progressively refine both the model and the system until we trust it to
do a good job in production.

Refining the Tests
We’ve got a complete rather deterministic model, with a complete piece of
code to test. What we have to do now is just run tests until they fail—if they
don’t, that’s a bit scary, so we should feel free to cause a failure ourselves—and
then fix the problems as they come up. That step could save us from this
kind of release cycle:

1. Write code.

2. Test code as usual.

3. Deploy or release the code.

4. A customer opens a ticket.

5. After scratching your head to figure out how in hell they get the problem,
you finally reproduce it.

6. Fix the problem.

7. Go to 1.

Instead, we’re now more likely to have this release cycle:

1. Write code.

2. Stateful property test the code.

3. Find a problem that the framework easily reproduces for you.

4. Deploy or release the code.

5. Wait a lot longer before getting a customer bug report. (It will still happen
given enough time.)

6. … and so on.

You have to expect bugs to still exist in the system, just fewer of them, and
a much shorter bug-detection-to-bug-fixing cycle than you would other-
wise have.

report erratum • discuss

Refining the Tests • 265

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Order of Failures

Property tests are probabilistic. If you are following along, you may
find different issues (or the same issues in a different order) than
those in this text. This is normal, and rerunning the property a
few times may yield different errors each time.

The first error in this section can’t be reproduced easily in Elixir,
where the string() generator is not exported by PropCheck. Instead,
utf8() is used (also available in Erlang). However, utf8() more frequent-
ly returns well-formed Unicode data that doesn’t cause the failure.

Let’s see what kind of bugs we get with the bookstore:

$ rebar3 proper
«build and test output»
!
Failed: After 4 test(s).
«initial counterexample»
Shrinking (0 time(s))
[{set,{var,1},{call,book_shim,add_book_new,[<<57,55,57,45,57,56,53,45,54,56,
55,45,54,48,51,45,56>>,<<>>,[0],1,1]}}]

History: [
{#{},
{error,
{pgsql_error,

[{severity,<<"ERROR">>},
{{unknown,86},<<"ERROR">>},
{code,<<"22021">>},
{message, <<"invalid byte sequence for encoding \"UTF8\": 0x00">>},
{file,<<"wchar.c">>},
{line,<<"2017">>},
{routine,<<"report_invalid_encoding">>}]}}}]

State: #{}
Result: {postcondition,false}

Running the tests then fails on unicode values of 0x00, meaning that the
protocol likely uses null-terminated strings,5 which causes failures. Anyone
using this PostgreSQL driver needs to protect themselves against such strings.

For now, we’ll assume that those invalid unicode values should either be fil-
tered somewhere else (possibly at the same place that should validate that
ISBNs have the right format) or that a bunch of other properties or unit tests
will handle these, and we’ll instead work around it by making sure our gen-
erators don’t generate that data anymore. In fact, we’ll find a lot of other
troublesome characters: % and _ will influence PostgreSQL search in ways

5. https://en.wikipedia.org/wiki/Null-terminated_string

Chapter 10. Case Study: Bookstore • 266

report erratum • discuss

https://en.wikipedia.org/wiki/Null-terminated_string
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

that string:find/2 wouldn’t, and \ will mess with escaping in SQL whereas our
model won’t care.

We have to ask ourselves whether what we want to test here is the minutiae
of the SQL string handling, or whether these strings are a tool we use to val-
idate the state transitions of our stateful model. This is the point where you
can decide to split your property into two distinct properties:

1. One property to test the search patterns explicitly—to see if there are
risky things happening with special characters

2. One property to test the state transitions and various matches

We’ll focus on the second one, by ignoring all kinds of special characters in
searches, titles, and authors:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

title() -> friendly_unicode().

author() -> friendly_unicode().

friendly_unicode() ->
?LET(X, ?SUCHTHAT(S, string(),

not lists:member(0, S) andalso
nomatch =:= string:find(S, "\\") andalso
nomatch =:= string:find(S, "_") andalso
nomatch =:= string:find(S, "%") andalso
string:length(S) < 256),

elements([X, unicode:characters_to_binary(X)])).

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

def title(), do: friendly_unicode()

def author(), do: friendly_unicode()

def friendly_unicode() do
bad_chars = [<<0>>, "\\", "_", "%"]
friendly_gen =

such_that s <- utf8(), when: (not contains_any?(s, bad_chars)) &&
String.length(s) < 256

let x <- friendly_gen do
elements([x, String.to_charlist(x)])

end
end

This makes sure that the character 0 never makes it through the generator,
but also blocks backslashes and other troublesome characters. This will let

report erratum • discuss

Refining the Tests • 267

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

us test our transitions without having to care about edge cases like that
(which we decided should belong in another property). Let’s run the test again
and see what we get:

$ rebar3 proper
«build and test output»
!
Failed: After 7 test(s).
«initial counterexample»
Shrinking (2 time(s))
non-matching postcondition: {book_shim,return_copy_unknown,

[<<"99957-261-1-X">>]} -> {error, {{update, 0}, []}}
[{set,{var,1},{call,book_shim,return_copy_unknown,[<<57,57,57,53,55,45,50,
54,49,45,49,45,88>>]}}]

History: [{#{},{error,{{update,0},[]}}}]
State: #{}
Result: {postcondition,false}

Interesting. So we fell through a case where return_copy_unknown returns an error
for 0 updated rows. Our postcondition for this specific deterministic function
instead expects this:

postcondition(_, {_, _, return_copy_unknown, _}, {error, not_found}) ->
true;

The original code for this is in bookstore_db and can be fixed by adding one
clause to handle_single_update/1 returning {error, not_found} as expected, and fixing
all the functions using it:

Erlang code/Bookstore/erlang/bookstore/src/bookstore_db.erl

handle_select({{select, _}, List}) -> {ok, List};
handle_select(Error) -> Error.

handle_single_update({{update,1}, _}) -> ok;
handle_single_update({{update,0}, _}) -> {error, not_found};
handle_single_update({error, Reason}) -> {error, Reason};
handle_single_update(Other) -> {error, Other}.

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/db.ex

defp handle_select({{:select, _}, list}), do: {:ok, list}
defp handle_select(error), do: error

defp handle_single_update({{:update, 1}, _}), do: :ok
defp handle_single_update({{:update, 0}, _}), do: {:error, :not_found}
defp handle_single_update({:error, reason}), do: {:error, reason}
defp handle_single_update(other), do: {:error, other}

Chapter 10. Case Study: Bookstore • 268

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

We’re good to run tests again. Let’s see what we get:

$ rebar3 proper
«build output»
........!
Failed: After 10 test(s).
«initial counterexample»
Shrinking ..(2 time(s))
[{set,{var,2},{call,book_shim,add_book_new,[<<57,55,56,45,57,55,49,45,56,
55,49,57,45,55,55,45,54>>,<<>>,[2,13],1,1]}},{set,{var,4},
{call,book_shim,find_book_by_author_matching,[[13]]}}]

History: [{#{},ok},
{#{<<"978-971-8719-77-6">> =>

{<<"978-971-8719-77-6">>,<<>>,[2,13],1,1}},
{ok,[{<<"978-971-8719-77-6">>,<<>>,<<2,13>>,1,1}]}}]

State: #{<<"978-971-8719-77-6">> =>
{<<"978-971-8719-77-6">>,<<>>,[2,13],1,1}}

Result: {postcondition,false}

This one’s interesting. If we do the check by hand, things seem to be reason-
able. We’re looking for a book written by an author whose name contains the
character 13 in it (that is U+000D, also known as carriage return, or \r). The
database returns one book with that value, written by <<2,13>>, whereas our
state contains the book author [2,13]. Those are the same author! We’ve just
been hit by a bug in our test caused by our desire to support both UTF-8
binaries and character lists in the same interface.

Iterative Development

Although we developed the model at once and then refined it in
two distinct steps, this is mainly done for the clarity of text rather
than an ideal workflow. Especially when getting started, you may
find it easier to start modeling one piece of functionality at a time,
and then test it end-to-end while refining it. With this done, you
can start validating more functionality. A more iterative approach
makes for a smoother learning curve.

The fix to this problem is to revisit our postconditions. We have to make sure
that the string comparisons they contain won’t care whether the string is a
binary or a list of characters. We can devise some custom functions that will
do that for us:

report erratum • discuss

Refining the Tests • 269

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

books_equal([], []) ->
true;

books_equal([A|As], [B|Bs]) ->
book_equal(A, B) andalso books_equal(As, Bs);

books_equal(_, _) ->
false.

book_equal({ISBNA, TitleA, AuthorA, OwnedA, AvailA},
{ISBNB, TitleB, AuthorB, OwnedB, AvailB}) ->

{ISBNA, OwnedA, AvailA} =:= {ISBNB, OwnedB, AvailB}
andalso
string:equal(TitleA, TitleB) andalso string:equal(AuthorA, AuthorB).

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

defp books_equal([], []) do
true

end
defp books_equal([a | as], [b | bs]) do

book_equal(a, b) && books_equal(as, bs)
end
defp books_equal(_, _) do

false
end

defp book_equal(
{isbn_a, title_a, author_a, owned_a, avail_a},
{isbn_b, title_b, author_b, owned_b, avail_b}

) do
{isbn_a, owned_a, avail_a} == {isbn_b, owned_b, avail_b} &&

String.equivalent?(
IO.chardata_to_string(title_a),
IO.chardata_to_string(title_b)

) &&
String.equivalent?(
IO.chardata_to_string(author_a),
IO.chardata_to_string(author_b)

)
end

The first function takes two lists of books, and checks that all of its elements
are the same, with the help of the second function (book_equal/2). The latter one
tests the equality of all fields with a format known to be stable, and then uses
string:equal/2 on the fields with varying unicode encodings to safely compare
them for equality. The functions can be edited in our existing postconditions:

Chapter 10. Case Study: Bookstore • 270

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

«bunch of postconditions»
postcondition(S, {_, _, find_book_by_isbn_exists, [ISBN]}, {ok, [Res]}) ->

book_equal(Res, maps:get(ISBN, S, undefined));
«bunch of postconditions»
postcondition(S, {_, _, find_book_by_author_matching, [Auth]}, {ok,Res}) ->

Map = maps:filter(fun(_, {_,_,A,_,_}) ->
nomatch =/= string:find(A, Auth)

end, S),
books_equal(lists:sort(Res), lists:sort(maps:values(Map)));

«bunch of postconditions»
postcondition(S, {_, _, find_book_by_title_matching, [Title]}, {ok,Res}) ->

Map = maps:filter(fun(_, {_,T,_,_,_}) ->
nomatch =/= string:find(T, Title)

end, S),
books_equal(lists:sort(Res), lists:sort(maps:values(Map)));

Elixir translation on page 338.

The first edit replaces one of our existing clauses and makes it use the new
comparison function. The last two clauses work on lists and use books_equal/2
instead of book_equal/2.

Hopefully we’re good to go now. We can run the tests again, crossing our
fingers real hard:

$ rebar3 proper
«build output»
........................
non-matching postcondition:
{book_shim,borrow_copy_unavail,[<<"7-080930-26-5">>]} -> ok

!
Failed: After 25 test(s).
«counterexample and shrinking»
[{set,{var,1},{call,book_shim,add_book_new,[

<<55,45,48,56,48,57,51,48,45,50,54,45,53>>,<<11,8,8>>,[20,10,2],1,1]}},
{set,{var,5},{call,book_shim,borrow_copy_unavail,

[<<55,45,48,56,48,57,51,48,45,50,54,45,53>>]}}]
History: [{#{},ok},

{#{<<"7-080930-26-5">> =>
{<<"7-080930-26-5">>,<<11,8,8>>,[20,10,2],1,1}},

ok}]
State: #{<<"7-080930-26-5">> =>

{<<"7-080930-26-5">>,<<11,8,8>>,[20,10,2],1,1}}
Result: {postcondition,false}

report erratum • discuss

Refining the Tests • 271

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Good news, we have a failure. Have a look at the shrunken counterexample:

1. add_book_new(ISBNA, Title, Author, 1, 1) -> ok

2. borrow_copy_unavail(ISBNA) -> ok

It appears our problem is our model allows calling book_shim:borrow_copy_unavail/1
when the copy is in fact available. This is a problem with our preconditions
not checking the right constraints. Currently, it is validated with this:

%% -- all the calls with known ISBNs
precondition(S, {call, _Mod, _Fun, [ISBN|_]}) ->

%% to hell with it, we blank match the rest since they're all
%% constraints on existing ISBNs, no matter the number of arguments
has_isbn(S, ISBN).

But it visibly doesn’t check for book availability. Let’s add clauses for this call
specifically, and the bookstore_db:return_copy calls too, since they’ve the same problem:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

precondition(S, {call, _, borrow_copy_avail, [ISBN]}) ->
0 < element(5, maps:get(ISBN, S));

precondition(S, {call, _, borrow_copy_unavail, [ISBN]}) ->
0 =:= element(5, maps:get(ISBN, S));

precondition(S, {call, _, return_copy_full, [ISBN]}) ->
{_, _, _, Owned, Avail} = maps:get(ISBN, S),
Owned =:= Avail;

precondition(S, {call, _, return_copy_existing, [ISBN]}) ->
{_, _, _, Owned, Avail} = maps:get(ISBN, S),
Owned =/= Avail;

«more clauses»

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

def precondition(s, {:call, _, :borrow_copy_avail, [isbn]}) do
0 < elem(Map.get(s, isbn), 4)

end
def precondition(s, {:call, _, :borrow_copy_unavail, [isbn]}) do

0 == elem(Map.get(s, isbn), 4)
end
def precondition(s, {:call, _, :return_copy_full, [isbn]}) do

{_, _, _, owned, avail} = Map.get(s, isbn)
owned == avail

end
def precondition(s, {:call, _, :return_copy_existing, [isbn]}) do

{_, _, _, owned, avail} = Map.get(s, isbn)
owned != avail

end
«more clauses»

Chapter 10. Case Study: Bookstore • 272

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Let’s try again, with one more run:

$ rebar3 proper
«build output»
......................
non-matching postcondition: {book_shim,return_copy_full,

[<<"979-976-2-33736-X">>]} -> ok
!
Failed: After 23 test(s).
[{set,{var,1}, {call,book_shim,find_book_by_title_unknown,

[<<9,2,4,7,10,7>>]}},
{set,{var,2}, {call,book_shim,borrow_copy_unknown,

[<<"978-90-8387-621-2">>]}},
{set,{var,3}, {call,book_shim,add_book_new,

[<<"979-976-2-33736-X">>,[7,12,17],<<1,33>>,1,1]}},
{set,{var,4}, {call,book_shim,add_book_new,

[<<"7-7662357-3-X">>,[2,4,25,1,10,10,4,16],[2],1,1]}},
{set,{var,5}, {call,book_shim,find_book_by_isbn_unknown,

[<<"979-977-879-375-2">>]}},
{set,{var,6}, {call,book_shim,add_copy_new,[<<"978-7-2-1624032-X">>]}},
{set,{var,7}, {call,book_shim,find_book_by_isbn_exists,

[<<"979-976-2-33736-X">>]}},
{set,{var,8}, {call,book_shim,return_copy_full,

[<<"979-976-2-33736-X">>]}}]
«more output»
Shrinking
«shrinking»
===>
0/1 properties passed, 1 failed
===> Failed test cases:
prop_bookstore:prop_test() ->

{'EXIT',
{{badkey,<<"979-976-2-33736-X">>},
[{maps,get,[<<"979-976-2-33736-X">>,#{}],[]},
{prop_bookstore,precondition,2,
[{file, "Bookstore/erlang/bookstore/test/prop_bookstore.erl"},
{line,81}]},

«more stacktrace»
Now we’ve got a problem! Shrinking fails with a hard crash whereas the initial
failure seemed legitimate. We’ll have to go figure how to debug this property.

Debugging Stateful Properties
The previously failing property is interesting. If you look at the initial coun-
terexample, it looks like a regular failure where our model or the system might
have been wrong, but the shrinking totally imploded, and the source of failure
isn’t obvious. In this section, we’ll revisit the shrinking mechanism of stateful

report erratum • discuss

Debugging Stateful Properties • 273

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

properties to understand what goes on exactly and how to get PropEr to solve
our problems for us.

Let’s first compare the initial failing command set and then compare it to the
shrunken one. The initial failure was caused by the following sequence of
events:

1. find_book_by_title_unknown(_) -> {ok, []}

2. borrow_copy_unknown(_) -> {error, not_found}

3. add_book_new(ISBNA, TitleA, AuthorA, 1, 1) -> ok

4. add_book_new(ISBNB, TitleB, AuthorB, 1, 1) -> ok

5. find_book_by_isbn_unknown(_) -> {ok, []}

6. add_copy_new(_) -> {error, not_found}

7. find_book_by_isbn_exists(ISBNA) -> {ok, [BookA]}

8. return_copy_full(ISBNA) -> ok

So we might have a legitimate bug since we successfully returned a copy of
a book that was never borrowed, but the shrinking isn’t helping us since it
appears it can’t prune the irrelevant operations out of the list without crashing.
This isn’t great. How come shrinking failed us? The solution lies in the
shrinking model.

In stateful properties, when we’re given a sequence of commands [A,B,C,D,E,F]
that yields a failure, shrinking will be done by progressively removing com-
mands from the sequence to see if a shorter one can cause the problem as
shown in the figure on page 275.

Then the framework might decide that [A,C,F,G] is the minimal sequence of
commands able to reproduce the failure. The caveat with this approach is
that if command B introduced the state required to make the precondition for
D work, removing B will cause an inconsistency for D. In this previous illustra-
tion, the third list of commands may crash for the wrong reason and point
toward a bug that doesn’t actually exist, hiding the real one that triggered
the initial failure. The distinction is very important:

• Deciding which commands to generate within command/1 works, but must
be seen as an optimization to speed up generation.

• Encoding the constraints of command generation into preconditions is
mandatory for shrinking to work.

Chapter 10. Case Study: Bookstore • 274

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

In our case with the bookstore, the mistake we made was to base our precondi-
tions for book borrowing and returning on the assumption that the requested
ISBN will always be in the map, with calls such as maps:get(ISBN, Map), which
crashes if ISBN isn’t in Map. So we can take the full sequence of operations that
led to a failure and randomly remove some of them to see if it still fails:

1. find_book_by_title_unknown(_) -> {ok, []}

2. borrow_copy_unknown(_) -> {error, not_found}

3. add_book_new(ISBNA, TitleA, AuthorA, 1, 1) -> ok

4. add_book_new(ISBNB, TitleB, AuthorB, 1, 1) -> ok

5. find_book_by_isbn_unknown(_) -> {ok, []}

6. add_copy_new(_) -> {error, not_found}

7. find_book_by_isbn_exists(ISBNA) -> {ok, [BookA]}

8. return_copy_full(ISBNA) -> ok

We may get in a scenario where find_book_by_isbn_exists(ISBNA) was initially valid
at step 7, but now can never be true again since we took out the addition of
that book (third item of the list). Shrinking would then start misleading us.

report erratum • discuss

Debugging Stateful Properties • 275

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Since all constraints must be repeated in the preconditions, we have to
reedit our clauses:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

precondition(S, {call, _, borrow_copy_avail, [ISBN]}) ->
0 < element(5, maps:get(ISBN, S, {fake,fake,fake,fake,0}));

precondition(S, {call, _, borrow_copy_unavail, [ISBN]}) ->
0 =:= element(5, maps:get(ISBN, S, {fake,fake,fake,fake,1}));

precondition(S, {call, _, return_copy_full, [ISBN]}) ->
{_, _, _, Owned, Avail} = maps:get(ISBN, S, {fake,fake,fake,0,0}),
Owned =:= Avail andalso Owned =/= 0;

precondition(S, {call, _, return_copy_existing, [ISBN]}) ->
{_, _, _, Owned, Avail} = maps:get(ISBN, S, {fake,fake,fake,0,0}),
Owned =/= Avail andalso Owned =/= 0;

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

def precondition(s, {:call, _, :borrow_copy_avail, [isbn]}) do
0 < elem(Map.get(s, isbn, {:fake, :fake, :fake, :fake, 0}), 4)

end
def precondition(s, {:call, _, :borrow_copy_unavail, [isbn]}) do

0 == elem(Map.get(s, isbn, {:fake, :fake, :fake, :fake, 1}), 4)
end
def precondition(s, {:call, _, :return_copy_full, [isbn]}) do

{_, _, _, owned, avail} = Map.get(s, isbn, {:fake, :fake, :fake, 0, 0})
owned == avail && owned != 0

end
def precondition(s, {:call, _, :return_copy_existing, [isbn]}) do

{_, _, _, owned, avail} = Map.get(s, isbn, {:fake, :fake, :fake, 0, 0})
owned != avail && owned != 0

end
«more clauses»
By using default values that are fake and guaranteed to make the precondition
fail in maps:get/3, we can ensure that removing a previously vital command for
the current command will be seen as invalid by PropEr, and shrinking will
only work on the actual bug. We can run the test one more time, and this
time it should be able to shrink right:

$ rebar3 proper
«build output and similar failure as before»
Shrinking (3 time(s))
[{set,{var,2},{call,book_shim,add_book_new,

[<<56,56,45,49,53,45,57,54,54,50,48,45,88>>,
<<3,8>>,<<12,15,2,7,5>>,1,1]}},

{set,{var,4},{call,book_shim,return_copy_full,
[<<56,56,45,49,53,45,57,54,54,50,48,45,88>>]}}]

Chapter 10. Case Study: Bookstore • 276

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

History: [{#{},ok},
{#{<<"88-15-96620-X">> =>

{<<"88-15-96620-X">>,<<3,8>>,<<12,15,2,7,5>>,1,1}},
ok}]

State: #{<<"88-15-96620-X">> =>
{<<"88-15-96620-X">>,<<3,8>>,<<12,15,2,7,5>>,1,1}}

Result: {postcondition,false}

Finally! A failure that makes sense, is not related to special characters, and
appears to be in our actual system. Adding a book with one copy available,
and then somehow returning that copy returns ok rather than the {error, _}
tuple we expected. This points to the SQL query behind it all being wrong.
You’ll have to change the :return_copy query:

Bookstore/erlang/bookstore/priv/queries.sql
-- Return a copy of a book
-- :return_copy
UPDATE books SET available = available + 1
WHERE isbn = $1 AND available < owned;

If you run the tests once more, you’ll find a problem with the function
returning {error, not_found} rather than {error, unavailable}. The problem with this
is that because of the WHERE clause in SQL, we don’t know if an update oper-
ation fails because a book is not found, or because it is no longer available.
To do so, we have to do two distinct checks:

Erlang code/Bookstore/erlang/bookstore/src/bookstore_db.erl

%% @doc Borrow a copy of a book; reduces the count of available
%% copies by one. Who borrowed the book is not tracked at this
%% moment and is left as an exercise to the reader.
borrow_copy(ISBN) ->

case find_book_by_isbn(ISBN) of
{error, Reason} -> {error, Reason};
{ok, []} -> {error, not_found};
{ok, _} ->

case handle_single_update(run_query(borrow_copy, [ISBN])) of
{error, not_found} -> {error, unavailable}; % rewrite error
Other -> Other

end
end.

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/db.ex

@doc """
Borrow a copy of a book; reduces the count of available copies by one.
Who borrowed the book is not tracked at this moment and is left as an
exercise to the reader.
"""

report erratum • discuss

Debugging Stateful Properties • 277

http://media.pragprog.com/titles/fhproper/code/Bookstore/erlang/bookstore/priv/queries.sql
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def borrow_copy(isbn) do
case find_book_by_isbn(isbn) do

{:error, reason} ->
{:error, reason}

{:ok, []} ->
{:error, :not_found}

{:ok, _} ->
case handle_single_update(run_query(:borrow_copy, [isbn])) do

{:error, :not_found} ->
{:error, :unavailable}

other ->
other

end
end

end

You can run the tests, knowing that it will now finally pass:

$ rebar3 proper -n 1000
«lots of periods»
OK: Passed 1000 test(s).

That was quite a bit of work for a rather straightforward application, but we
found a few tricky bugs that would’ve been hard to find otherwise. We’ve also
found interesting properties about the SQL protocol (it can’t support NULL
characters in strings) and further things to test with regards to escaping.
We’ll leave that for some other time, since now we’ll get to try our system with
parallel tests.

Parallel Tests
As with the last chapter, the parallel version of our system can be adapted
by just declaring a new property and reusing the same model, to see if any
glaring concurrency issue can be found.

You just have to add the parallel property to the same file:

Erlang code/Bookstore/erlang/bookstore/test/prop_bookstore.erl

prop_parallel() ->
?SETUP(fun() ->

{ok, Apps} = application:ensure_all_started(bookstore),
fun() -> [application:stop(App) || App <- Apps], ok end

end,
?FORALL(Cmds, parallel_commands(?MODULE),

begin
bookstore_db:setup(),
{History, State, Result} = run_parallel_commands(?MODULE, Cmds),

Chapter 10. Case Study: Bookstore • 278

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

bookstore_db:teardown(),
?WHENFAIL(io:format("=======~n"

"Failing command sequence:~n~p~n"
"At state: ~p~n"
"=======~n"
"Result: ~p~n"
"History: ~p~n",
[Cmds, State,Result,History]),

aggregate(command_names(Cmds), Result =:= ok))
end)

).

Elixir translation on page 339.

Once again, few changes are required aside from the name of the generator
function and the one to run commands. We can run it, and see it pass:

$ rebar3 proper -n 1000 -p prop_parallel
«lots of periods»
OK: Passed 1000 test(s).

As we also saw in last chapter, the PropEr parallel tests are not necessarily
great at finding concurrency issues, so we shouldn’t take this as a proof of
success. You can try to add erlang:yield() calls in multiple areas, but it won’t
necessarily uncover much. Careful analysis can always help clarify things.

It turns out that by default, any PostgreSQL query runs in an implicit transaction
even if you don’t specify one.6 Those transactions run in read committed isolation
levels, and are all simple SELECT and UPDATE queries with no external data and
no need for reads from other queries. This means the operations are safe for
concurrency.7 The one case that could look funky is the last one we changed
where we check whether a book exists before borrowing it. Since the two opera-
tions aren’t in a transaction, there could be a risk of bad results where the wrong
kind of error is returned, but no operation would succeed where it shouldn’t.

In any case, these tests will help in case implementations change (say, using
epgsql8 instead of pgsql), or when some unsafe query usage or pooling takes
place, rather than one connection per request like the project currently uses.

With all this, you now have nearly complete integration tests for the applica-
tion’s interactions with the database. Connectivity failures are still left
untouched, but those may be more interesting to cover in another property,
rather than adding to the complexity of this one.

6. https://www.postgresql.org/docs/9.6/static/sql-begin.html
7. https://www.postgresql.org/docs/10/static/transaction-iso.html
8. https://github.com/epgsql/epgsql

report erratum • discuss

Parallel Tests • 279

https://www.postgresql.org/docs/9.6/static/sql-begin.html
https://www.postgresql.org/docs/10/static/transaction-iso.html
https://github.com/epgsql/epgsql
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Wrapping Up
In this chapter, we’ve been through a realistic integration test suite written
as stateful properties. All we had was a model layer for a bookstore using a
PostgreSQL instance, with no tests in it. We first started by drawing up the
generators for our base data types, which helps do some broader testing to
make sure the system works without throwing exceptions. That’s where we
encountered and resolved our first encoding bug.

With this out of the way, we established the initial model, using a wrapper
module (a shim) to allow as much determinism as possible. As you’ve seen,
this approach tends to create a bit more repetition with precondition-heavy
code, but makes tests more decideable, and simpler to debug. You’ve also
seen this at work as we refined the model through multiple failures and dis-
covered yet more tricky aspects of using SQL.

Additionally, we’ve been through a round of debugging, seeing how PropEr
shrinks stateful property command sequences to debug our models, before
doing a final sanity check with parallel tests.

With this, you’ve seen most of what there is to see with stateful properties.
The one exception is a specialization for systems that represent finite state
machines, which you’ll get to discover next.

Chapter 10. Case Study: Bookstore • 280

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

CHAPTER 11

State Machine Properties
If you’ve ever had a system that could do things differently based on context,
you probably have an intuitive knowledge of what a finite state machine is.
Finite state machines (FSM) are, informally speaking, an abstraction describing
certain stateful programs. The program can be in only one of multiple known
states at a time (such as a traffic light being red, yellow, or green), and transitions
from one state to another based on specific inputs or events. Within each
state, the program may behave differently.

Let’s imagine a program that should take special measures—such as forbidding
some actions or enabling new features—depending on whether network con-
nectivity is good, bad, or entirely unavailable. Testing such a program with
stateful properties while keeping them deterministic would create a kind of
explosion of possible cases. If there are six possible events and three possible
states, you quickly get at least eighteen possible combinations of calls versus
states, and you have to do quite a bit of filtering in preconditions to hope to
cover all kinds of transitions.

To help with this, PropEr provides finite state machine properties, which allow
you to specifically model state machines: state names and transitions are
made into first-class citizens, allowing you to properly explore their expected
transitions in a less cumbersome manner than would be required with regular
stateful properties or example tests.

Finite state properties are specifically useful when your users can interact
with the system while perceiving multiple states, as opposed to just knowing
that the system has a state machine internally. To put it another way, state
machine properties are for when the model itself is a state machine, not the
system. If there are no specific discernible states for the user—and therefore
no specific discernible states for the model—then regular stateful properties
are more appropriate.

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

In this chapter, we’ll see the state machine properties’ structure, and see how
PropEr executes them. You’ll find a lot of parallels with stateful properties,
but we’ll highlight all differences through testing a circuit-breaker1 library,
showing where this type of property really shines.

Laying Out State Machine Properties
State machine properties are very similar to regular stateful properties, con-
ceptually speaking. They share the same the three major components:

• A model, which represents what the system should do at a high level.

• A generator for commands, which represent the execution flow of the
program.

• An actual system, which is validated against our model.

Since FSM properties are really a specialization of stateful properties, the
differences are subtle. If switching from basic to stateful properties was like
trying an entirely new kind of food you had never seen before, learning about
FSM properties should feel more like eating a new kind of spaghetti sauce.

The Model
The model for state machine properties keeps the same spirit as other models:
it must be a simpler and straightforward version of your system, used to
ensure the real system acts according to your expectations. For FSM proper-
ties, they’re made of three parts:

1. A data structure that represents the expected state of the system—the
data it should contain and that you’d expect to be able to get from it (the
model’s data).

2. The name of a state—either an atom or a tuple—representing the name
of the modeled finite state machine, such as on or off as two state names
for a light.

3. A function that transforms the model’s data based on commands that
could be applied to the system (named next_state_data).

The model is similar to stateful properties, but with state names as an extra
thing to carry around and keep in mind.

1. https://en.wikipedia.org/wiki/Circuit_breaker_design_pattern

Chapter 11. State Machine Properties • 282

report erratum • discuss

https://en.wikipedia.org/wiki/Circuit_breaker_design_pattern
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

State and Data

When dealing with stateful components in Erlang and Elixir, we
often refer to their “state” as the ensemble of data that is living
within the component. In fact, “state” and “data” are often used
interchangeably.

When dealing with finite state machines, we need to be accurate:
state refers to the name of the state the FSM is in (a lock is in
either locked or unlocked states), and data refers to actual information
and records being held by the FSM. (The combination to open the
lock is 3-13-37 and may be held in its data.)

The Commands
As with stateful properties, FSM properties have command generators. They
work a bit differently, since they’re based on the state. These command gen-
erators contain the following:

1. A list of functions sharing the name of the states, each of which returns
a list of symbolic calls with generators defining their arguments, along
with the name of the next state to transition to.

2. A series of preconditions defining whether a given symbolic call would
make sense to apply according to the current model state and data.

3. An optional callback that defines the probability for a given state transition
to happen; if no weight is defined, all transitions are equally likely.

Depending on your experience with stateful properties, this is rather
straightforward, and examples will clarify everything. The last part needed is
the validation.

The Validation
When it comes to validating our system against the model, we’ll once again
borrow a lot from stateful properties. The mechanism here relies fully on
postconditions, with the one distinction that the state names involved in a
transition are considered in the system.

Let’s look at the execution model of FSM properties.

report erratum • discuss

Laying Out State Machine Properties • 283

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

How State Machine Properties Run
PropEr divides the execution of a finite state machine test in two phases, one
abstract and one real. The abstract phase is used to create a test scenario,
only using the model and command generation callbacks, and call these to
build out the sequence of calls that will later be applied to the system.

A graphical representation for it might look like this:

This should be familiar to you from stateful properties. The two big conceptual
changes are for the initial state, now using both initial_state and initial_state_data,
and an optional weight callback. Once the initial state and data are generated,
the StateName callback is called, along with the optional weight function, to
generate the next state transition and symbolic call to run.

That symbolic call is then passed, along with the data, to a precondition callback,
which determines whether the call is valid or not. If the validation fails,
PropEr tries again with a new generated command and state. Once a suitable
command is found, the FSM generation moves forward.

The next_state_data function takes the command and the current state, and has
to return a new data structure. Then the whole process is repeated over and
over, until PropEr decides it has enough commands.

Once a full sequence of commands is generated, PropEr will start applying
them against the real system:

The rest of the mechanism is conceptually the same as for stateful properties.
The preconditions are still reevaluated to ensure consistency so that if a
generated precondition that used to work suddenly fails, the entire test also

Chapter 11. State Machine Properties • 284

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

fails. If it doesn’t fail, the next symbolic call in the list is executed, with its
result stored. The postcondition is then evaluated, and if it succeeds, the
state transition for the command is applied, the data is updated, and the next
command can be processed.

Writing Properties
As with stateful properties, we can make use of the rebar3 plugin’s templates
to get a property suite within any standard Erlang project. Call the following
within an existing project:

$ rebar3 new proper_fsm name=fsm
===> Writing test/prop_fsm.erl

The generated file contains the prop_fsm module, a test suite that is divided in
two sections: one section for the state machine property we’ll want to execute,
and one for the model, which is a mix of callbacks and generators. Let’s start
by looking at the property:

Erlang

-module(prop_fsm).
-include_lib("proper/include/proper.hrl").

-export([initial_state/0, initial_state_data/0,
on/1, off/1, service/3, % State generators
weight/3, precondition/4, postcondition/5, next_state_data/5]).

prop_test() ->
?FORALL(Cmds, proper_fsm:commands(?MODULE),❶

begin
actual_system:start_link(),
{History,State,Result} = proper_fsm:run_commands(?MODULE, Cmds),❷
actual_system:stop(),
?WHENFAIL(io:format("History: ~p\nState: ~p\nResult: ~p\n",

[History,State,Result]),
aggregate(zip(proper_fsm:state_names(History),❸

command_names(Cmds)),
Result =:= ok))

end).

Elixir

defmodule FSMTest do
use ExUnit.Case
use PropCheck
use PropCheck.FSM

report erratum • discuss

Writing Properties • 285

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

property "FSM property", [:verbose] do
forall cmds <- commands(__MODULE__) do❶

ActualSystem.start_link()
{history, state, result} = run_commands(__MODULE__, cmds)❷
ActualSystem.stop()

(result == :ok)
|> aggregate(

:proper_statem.zip(state_names(history), command_names(cmds))❸
)
|> when_fail(
IO.puts("""
History: #{inspect(history)}
State: #{inspect(state)}
Result: #{inspect(result)}
""")

)
end

end

This property has a lot of exports. Many of them are variations on those for
stateful properties, and we’ll revisit them soon. Functions such as on/1, off/1,
and service/3 are state-machine–specific and represent individual states: on,
off, and a state called service. They will allow us to generate sequences of
commands in a context-sensitive manner based on the FSM state.

At ❶ and ❷, special variations of stateful properties’ command generators
and runners are used. The rest of the property is mostly similar, aside from
❸, where a special zip/2 function (a specialized adaptation of lists:zip/2 made for
FSM properties output that is autoimported by PropEr) is used along prop-
er_fsm:state_names/1 to generate readable output in case of a test failure. The
rest works as usual. Let’s take a look at the callbacks, starting with the initial
state and data.

Erlang

-record(data, {}).

%% Initial state for the state machine
initial_state() -> on.
%% Initial model data at the start. Should be deterministic.
initial_state_data() -> #data{}.

Elixir

Initial state for the state machine
def initial_state(), do: :on
Initial model at the start. Should be deterministic
def initial_state_data(), do: %{}

Chapter 11. State Machine Properties • 286

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Both function calls must be deterministic. If the initial state name or the
initial data are unpredictable, PropEr won’t be able to know how to shrink a
failing case, since every sequence being replayed may end up being entirely
different. Once both values are chosen, data can be generated:

Erlang

%% State commands generation
on(_Data) -> [{off, {call, actual_system, some_call, [term(), term()]}}].

off(_Data) ->
[{off, {call, actual_system, some_call, [term(), term()]}},❶
{history, {call, actual_system, some_call, [term(), term()]}},❷
{{service,sub,state}, {call, actual_system, some_call, [term()]}}].❸

service(_Sub, _State, _Data) ->❹
[{on, {call, actual_system, some_call, [term(), term()]}}].

%% Optional callback, weight modification of transitions
weight(_FromState, _ToState, _Call) -> 1.

Elixir

State command generation
def on(_data) do

[{:off, {:call, ActualSystem, :some_call, [term(), term()]}}]
end

def off(_data) do
[

{:off, {:call, ActualSystem, :some_call, [term(), term()]}},❶
{:history, {:call, ActualSystem, :some_call, [term(), term()]}},❷
{{:service, :sub, :state},❸
{:call, ActualSystem, :some_call, [term(), term()]}}

]
end

def service(_sub, _state, _data) do❹
[{:on, {:call, ActualSystem, :some_call, [term(), term()]}}]

end

Optional callback, weight modification of transitions
def weight(_from_state, _to_state, _call), do: 1

First, we have two simple states: on and off. These can generate a sequence
of commands of the form {NextState, {call, Mod, Fun, Args}}. Here the on state can
only transition to the off state through some_call. The off state can transition to
the off state (basically meaning “stay in the same state”) in one of two ways:

1. Through an explicit transition to the off state (at ❶).

report erratum • discuss

Writing Properties • 287

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

2. Through an implicit transition by using the history state, which repeats
the current state (at ❷)—a form that is useful when other functions are
used to generate common calls used in all states, for example.

Following this, a transition can be made to a nested state, at ❸. A nested
state is built as a tuple of the form {ParentState, SubState, SubSubState}, and the
callback for it is shown at ❹: ParentState(SubState, SubSubState, Data). In the previous
example, _Sub would be bound to sub, and _State to state. Any number of sub-
states can be put in the tuple, as long as a callback generator function is in
place to handle them all with the right arity.

Finally, the code sample shows the weight/3 callback, which lets us specify a
relative probability for a given state transition or call. For example, if you
wanted the transition from off to {service, sub, state} to be more probable than
off to off, this callback lets you do that. It’s entirely optional, and if omitted,
all transitions are as likely as each other.

The remaining callbacks are more straightforward:

Erlang

%% Picks whether a command should be valid.
precondition(_From, _To, #data{}, {call, _Mod, _Fun, _Args}) -> true.

%% Given the state states and data *prior* to the call
%% `{call, Mod, Fun, Args}', determine if the result `Res' (coming
%% from the actual system) makes sense.
postcondition(_From, _To, _Data, {call, _Mod, _Fun, _Args}, _Res) -> true.

%% Assuming the postcondition for a call was true, update the model
%% accordingly for the test to proceed.
next_state_data(_From, _To, Data, _Res, {call, _Mod, _Fun, _Args}) ->

NewData = Data,
NewData.

Elixir

Picks whether a command should be valid
def precondition(_from, _to, _data, {:call, _mod, _fun, _args}) do

true
end

Given that state prior to the call `{:call, mod, fun, args}`,
determine whether the result (res) coming from the actual system
makes sense according to the model
def postcondition(_from, _to, _data, {:call, _mod, _fun, _args}, _res) do

true
end

Chapter 11. State Machine Properties • 288

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Assuming the postcondition for a call was true, update the model
accordingly for the test to proceed
def next_state_data(_from, _to, data, _res, {:call, _m, _f, _args}) do

new_data = data
new_data

end

They are all pretty much adaptations of regular stateful properties, but with
an additional pair of arguments which contain the current state (_From) and
the next one (_To) if the call succeeds.

We’ll put these callbacks in practice soon by seeing how we can model a circuit
breaker with PropEr.

Testing a Circuit Breaker
Circuit breakers are one of the most interesting concepts in fault isolation
for reliable systems. They are used to account for errors that happen over
time in a part of the system. If the frequency at which the errors happen is
considered too high compared to the successful cases, the breaker is tripped.
Once tripped, further calls automatically fail before having a chance to reach
the subsystem gated by the breaker. The idea is that failures tend to be
costly and take a lot of time; and a failing system under heavy stress is even
harder to get back into a usable state. The circuit breaker allows you to prevent
the client from doing work that would result in expensive failures and
directly turn them into a cheap failures, while letting the failing subsystem
recuperate under less stress.

For this example, we’ll use the circuit_breaker2 library from Klarna,3 and give it
tests. But first, let’s see how it works.

Understanding circuit_breaker
circuit_breaker is a library that has seen significant production use and has some
unit tests, but nearly no documentation. So we’ll go over how the library
works and write tests for it.

The library can be used as a wrapper over a given function call. This wrapper
looks at the return values and duration of each function call, and efficiently
tracks various failure rates to figure out if the breaker should be tripped or
not. Once tripped, the breaker prevents function calls from taking place. It
can be untripped after either a cooldown period or a manual intervention. As

2. https://github.com/klarna/circuit_breaker/
3. https://www.klarna.com

report erratum • discuss

Testing a Circuit Breaker • 289

https://github.com/klarna/circuit_breaker/
https://www.klarna.com
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

a user, you can define a tolerance of how many errors per period of time are
required to break the circuit, including acceptable error values and timeout
thresholds. If the defined rate is crossed, the breaker trips. You can also trip
the breaker manually to prevent any calls from taking place; this lets operators
of a system selectively enable or disable features.

Here’s what a circuit_breaker call looks like:

Erlang

circuit_breaker:call(
{myservice, SomeId},❶
fun() -> some_call(State) end,❷
timer:minutes(1),❸
fun() -> true end,❹
timer:minutes(5),❺
%% Options
[{n_error, 3},❻
{time_error, timer:minutes(30)},
{n_timeout, 3},❼
{time_timeout, timer:minutes(30)},
{n_call_timeout, 3},❽
{time_call_timeout, timer:minutes(25)},
{ignore_errors, [not_found]}]❾

).

Elixir

:circuit_breaker.call(
{:my_service, :id},❶
fn -> 2+2 end,❷
:timer.minutes(1),❸
fn -> true end,❹
:timer.minutes(5),❺
options
n_error: 3,❻
time_error: :timer.minutes(30),
n_timeout: 3,❼
time_timeout: :timer.minutes(30),
n_call_timeout: 3,❽
time_call_timeout: :timer.minutes(30),
ignore_errors: [:not_found]❾

)

This is kind of a verbose function call, but it speaks to the flexibility of the
library. The first argument (❶) is the service identifier for a given circuit
breaker. Each service name is registered on its first use of circuit_breaker:call/6.

Chapter 11. State Machine Properties • 290

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Through the service name, you could use one circuit breaker for all database
calls in your system, or use one per _type_ of call, or one per account if you want.
This identifier lets you specify the scope of each breaker since it’s unrelated
to the function call to be monitored, which is the second argument (❷). This
function call can be anything at all; it will run within a dedicated process
while circuit_breaker looks for failures or long delays—the timeouts of which are
defined with the third argument at ❸.

Whenever the breaker is tripped, calls will automatically fail. It will take a
given cooldown period (the fifth argument at ❺) before the circuit breaker
goes back to a valid state, after which the fourth argument (❹) will be called,
mostly for side-effect purposes.

The list of options defines what constitutes unacceptable error rates. The
n_error and time_error values (❻) tell the maximal frequency for errors—in this
case, three failures per half hour.

You can use the n_timeout option (❼) when the calls to monitor return the value
{error, timeout}, such as when a socket call to gen_tcp:recv/3 takes too long and
gives up. We won’t test this one; instead, we’ll focus on n_call_timeout (❽), which
checks for the call taking too long to return according to a timer within the
circuit breaker library. Finally, some errors can explicitly be ignored through
the ignore_errors option, at ❾, which allows you to whitelist a bunch of values
found in {error, Reason} tuples. In the sample call, {error, not_found} is considered
to be a valid, nonerroneous return value.

But that’s not all. The library also exposes a few more calls, namely circuit_break-
er:block/1, circuit_breaker:deblock/1, and circuit_breaker:clear/1, which allows operators
to respectively break the circuit with a manual override, go back to normal,
or to clear circuit breaker trips that were automatically triggered by error
rates. Those would be interesting to test as well.

With all of this, we can say that our model state machine should have three
states:

1. The ok state, which is to be used when the circuit breaker has not been
tripped and all systems are considered to be functional.

2. The tripped state, where too many failures have happened and the circuit
breaker forces calls to fail.

3. The blocked state, which simulates operator-induced tripping of the circuit
breaker as an attempt to prevent operations from taking place.

report erratum • discuss

Testing a Circuit Breaker • 291

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

For the sake of simplicity, the finite state machine model we’ll set up won’t
consider the time-handling aspects of the circuit breaker in terms of recovery,
but only the manual clearing of its state with circuit_breaker:clear/1. This will allow
us to go over the FSM properties’ different mechanisms without making things
too complex.

Testing Time-Sensitive Mechanisms

Testing a time-sensitive mechanism is always tricky, since time isn’t very deterministic,
and waiting through delays can take quite a while. In general, a few approaches are
worth exploring:

• Make shim calls whose whole purpose is waiting until a predefined delay is over.
You may need to couple that with a scaling of timers (making delays longer) to
make it easy to keep everything as deterministic as possible. In general this
approach is difficult to do well since it’s hard to make delays predictable over
long sequences of operations.

• When using synchronous calls (such as when calling passive sockets or
gen_servers), mocking libraries such as meck may be used to simulate timeout
results. Those can be tricky to make work well when only some of multiple calls
must fail, so this approach tends to make most sense when time constraints are
tested in isolation.

• Injecting timeout events tends to be the easiest way around. If the system you
are testing uses built-in Erlang timers to send messages, you can often manually
send the expected messages to simulate various timers firing whenever you want.
You just have to configure the real timers to take long enough to ensure that
only your fake messages will be active during the test. Injecting events that way
will make time testing work well and fast.

Whenever you end up requiring timeout delays, experiment with any of these to see
how it goes. Other approaches may be possible but might be application-specific and
require clever solutions. For example, you may end up creating facilities to do fault
injection in your production system, if only to ease testing.

With this information in hand, we can start implementing the actual model.

Modeling the Circuit Breaker
For stateful properties, we’d initially started our test suite by defining gener-
ators. We then needed to refine them when it came to writing the command
generation, and ended up writing a shim module. This time around, we’re
going to start directly with the shim module. It’s a good opportunity to revisit
all kinds of possibile calls that can take place.

Chapter 11. State Machine Properties • 292

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Since we’re testing the circuit breaker itself, we’ll want to cover these:

• Successful calls and their effect on the internal state of the breaker
• Calls ending in errors
• Calls ending in errors that are whitelisted, and therefore seen as successful
• Calls timing out
• Manual operations to trip and untrip the circuit breaker

Our first step is to ensure the libraries we need are all available to the project:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/FSMProperties/erlang/circuit/rebar.config

{erl_opts, [nowarn_export_all]}.
{project_plugins, [rebar3_proper]}.

{deps, [
{circuit_breaker,
{git, "https://github.com/klarna/circuit_breaker.git", {tag, "1.0.1"}}}

]}.

{profiles, [
{test, [

{deps, [
{proper, "1.3.0"}

]}
]}

]}.

For Elixir, you’ll instead need the following mix.exs file:

Elixir code/FSMProperties/elixir/circuit/mix.exs

defmodule Circuit.MixProject do
use Mix.Project

def project do
[

app: :circuit,
version: "0.1.0",
elixir: "~> 1.6",
elixirc_paths: elixirc_paths(Mix.env),
start_permanent: Mix.env() == :prod,
deps: deps()

]
end

report erratum • discuss

Modeling the Circuit Breaker • 293

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

defp elixirc_paths(:test), do: ["lib","test/"]
defp elixirc_paths(_), do: ["lib"]

Run "mix help compile.app" to learn about applications.
def application do

[
extra_applications: [:logger]

]
end

Run "mix help deps" to learn about dependencies.
defp deps do

[
{:circuit_breaker,
git: "https://github.com/klarna/circuit_breaker.git",
tag: "1.0.1",
manager: :rebar3},

{:propcheck, "~> 1.1", only: [:test, :dev]}
]

end
end

Let’s continue with the various calls within the shim module:

Erlang code/FSMProperties/erlang/circuit/test/break_shim.erl

-module(break_shim).
-export([success/0, err/1, ignored_error/1, timeout/0,

manual_block/0, manual_deblock/0, manual_reset/0]).

-define(SERVICE, test_service).

success() ->
circuit_breaker:call(
?SERVICE,
fun() -> success end, timer:hours(1),
fun() -> true end, timer:hours(1),
options()

).

err(Reason) ->
circuit_breaker:call(
?SERVICE,
fun() -> {error, Reason} end, timer:hours(1),
fun() -> true end, timer:hours(1),
options()

).

ignored_error(Reason) -> err(Reason). % same call

Chapter 11. State Machine Properties • 294

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

timeout() ->
circuit_breaker:call(
?SERVICE,
fun() -> timer:sleep(infinity) end, 0,❶
fun() -> true end, timer:hours(1),
options()

).

Elixir translation on page 339.

The successful call returns success, the error-related calls return {error, Reason}
(with Reason passed as an argument by the soon-to-be-written property), and all
of them set all timeouts to one hour—which ensures timers won’t accidentally
interfere with our tests. The one exception is the timeout() call, which, at ❶, will
sleep forever while setting a timeout value of 0, ensuring we will trigger a manual
timeout there. Its cooldown period is still one hour, as set on the line after.

All options have been hidden within a function call, which is defined as follows:

Erlang code/FSMProperties/erlang/circuit/test/break_shim.erl

options() ->
[{n_error, 3},
{time_error, timer:minutes(30)},
{n_timeout, 3},
{time_timeout, timer:minutes(30)},
{n_call_timeout, 3},
{time_call_timeout, timer:minutes(30)},
{ignore_errors, [ignore1, ignore2]}].

Elixir code/FSMProperties/elixir/circuit/test/break_shim.ex

defp options() do
[

n_error: 3,
time_error: :timer.minutes(30),
n_timeout: 3,
time_timeout: :timer.minutes(30),
n_call_timeout: 3,
time_call_timeout: :timer.minutes(30),
ignore_errors: [:ignore1, :ignore2]

]
end

They set all thresholds values to 3. We will have to remember this and keep
it in sync in our model. It’s an arbitrary value, but it should work. All delays

report erratum • discuss

Modeling the Circuit Breaker • 295

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

for error rates are also set at thirty minutes, ensuring we won’t have to play
with time limitations for now.

Time and Circuit Breaking

Testing time with the circuit breaker library would be quite a bit
trickier. To preserve a more deterministic model, we’d have to write
calls such as “error calls within a critical time threshold,” “error
calls outside of a critical time threshold,” and so on. Those would
in turn require either a lot of waiting (for timers to safely fire) or
an awareness of the internals of the library so that we could find
where to overwrite and modify the data to get the results we want,
and fast. Alternatively, time handling could be checked in other
properties or with more traditional unit tests, to cover for the gaps
in the current approach, or the model could be relaxed to not care
as much about the states it’s in.

While this is all possible to do well, it’d be distracting from our
objectives of learning about the finite state machine properties.

Finally, we can add the manual calls to finish it off:

Erlang code/FSMProperties/erlang/circuit/test/break_shim.erl

manual_block() -> circuit_breaker:block(?SERVICE).
manual_deblock() -> circuit_breaker:deblock(?SERVICE).
manual_reset() -> circuit_breaker:clear(?SERVICE).

Elixir code/FSMProperties/elixir/circuit/test/break_shim.ex

def manual_block(), do: :circuit_breaker.block(@service)
def manual_deblock(), do: :circuit_breaker.deblock(@service)
def manual_reset(), do: :circuit_breaker.clear(@service)

We can now get ready for the property itself. Add the test module to your
project through the rebar3 template with rebar3 new proper_fsm break and let’s set
the property up:

Erlang code/FSMProperties/erlang/circuit/test/prop_break.erl

-module(prop_break).
-include_lib("proper/include/proper.hrl").

-export([initial_state/0, initial_state_data/0,
unregistered/1, ok/1, tripped/1, blocked/1, % State generators
precondition/4, postcondition/5, next_state_data/5]).

Chapter 11. State Machine Properties • 296

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

prop_test() ->
?FORALL(Cmds, proper_fsm:commands(?MODULE),

begin
{ok, Pid} = circuit_breaker:start_link(),
{History,State,Result} = proper_fsm:run_commands(?MODULE, Cmds),
gen_server:stop(Pid, normal, 5000),❶
?WHENFAIL(io:format("History: ~p\nState: ~p\nResult: ~p\n",

[History,State,Result]),
aggregate(zip(proper_fsm:state_names(History),

command_names(Cmds)),
Result =:= ok))

end).

Elixir code/FSMProperties/elixir/circuit/test/break_test.exs

defmodule BreakTest do
use ExUnit.Case
use PropCheck
use PropCheck.FSM

property "FSM property for circuit breakers", [:verbose] do
Application.stop(:circuit_breaker) # we take over that
forall cmds <- commands(__MODULE__) do
{:ok, pid} = :circuit_breaker.start_link()
{history, state, result} = run_commands(__MODULE__, cmds)
GenServer.stop(pid, :normal, 5000)❶

(result == :ok)
|> aggregate(

:proper_statem.zip(state_names(history), command_names(cmds))
)
|> when_fail(

IO.puts("""
History: #{inspect(history)}
State: #{inspect(state)}
Result: #{inspect(result)}
""")

)
end

end

You can see the three generators in the Erlang version’s -export attribute: ok/1,
tripped/1, and blocked/1, and also a fourth one, unregistered/1. This generator will
be added because manual calls aren’t available until the circuit breaker’s
service id is registered, and this turns out to happen automatically on first
use. This peculiarity will be encoded in the state machine itself.

You can also see that we’re starting the circuit breaker process by hand,
which is paired with a call to gen_server:stop/3 at ❶. The circuit breaker module
doesn’t expose a callback to terminate the breaker, usually preferring to let

report erratum • discuss

Modeling the Circuit Breaker • 297

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

a supervision tree do that work. The gen_server behavior, however, exposes
functions that let us bypass that by ordering the process to stop itself. Aside
from this, the property is rather straightforward.

The model itself is where most of the complexity might live. The first set of call-
backs we’ll want to tackle are those that are initalizing the state and data for
the state machine. We’ll want to track the number of failures seen for each type,
and the total number of failures we should expect before the breaker trips:

Erlang code/FSMProperties/erlang/circuit/test/prop_break.erl

-record(data, {
limit = 3 :: pos_integer(),
errors = 0 :: pos_integer(),
timeouts = 0 :: pos_integer()

}).

%% Initial state for the state machine
initial_state() -> unregistered.
%% Initial model data at the start. Should be deterministic.
initial_state_data() -> #data{}.

Elixir code/FSMProperties/elixir/circuit/test/break_test.exs

Initial state for the state machine
def initial_state(), do: :unregistered
Initial model at the start. Should be deterministic
def initial_state_data() do

%{limit: 3, errors: 0, timeouts: 0}
end

We start by defining #data{} record.4 The two callbacks then specify that we’ll
start in the unregistered state, with the data set to its default value. As mentioned
earlier, the unregistered state lets us represent the fact that manual calls need
the service to be registered (through normal calls) to be available.

Overall, our circuit breaker state machine should be able to transition as
shown in the diagram on page 299. The most straightforward state is the first
one, unregistered, which instantly transitions to ok through a successful call:

Erlang

%% State commands generation
unregistered(_Data) ->

[{ok, {call, break_shim, success, []}}].

4. https://learnyousomeerlang.com/a-short-visit-to-common-data-structures#records

Chapter 11. State Machine Properties • 298

report erratum • discuss

https://learnyousomeerlang.com/a-short-visit-to-common-data-structures#records
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir

State command generation
def unregistered(_data) do

[{:ok, {:call, BreakShim, :success, []}}]
end

The call to the shim should be successful, but we’ll validate that in postcon-
ditions. The ok state itself is a bit more complex, with far more possible calls:

Erlang

ok(_Data) ->
[{history, {call, break_shim, success, []}},
{history, {call, break_shim, err, [valid_error()]}},
{tripped, {call, break_shim, err, [valid_error()]}},
{history, {call, break_shim, ignored_error, [ignored_error()]}},
{history, {call, break_shim, timeout, []}},
{tripped, {call, break_shim, timeout, []}},
{blocked, {call, break_shim, manual_block, []}},
{ok, {call, break_shim, manual_deblock, []}},
{ok, {call, break_shim, manual_reset, []}}].

Elixir

def ok(_data) do
[

{:history, {:call, BreakShim, :success, []}},
{:history, {:call, BreakShim, :err, [valid_error()]}},
{:tripped, {:call, BreakShim, :err, [valid_error()]}},
{:history, {:call, BreakShim, :ignored_error, [ignored_error()]}},
{:history, {:call, BreakShim, :timeout, []}},
{:tripped, {:call, BreakShim, :timeout, []}},
{:blocked, {:call, BreakShim, :manual_block, []}},
{:ok, {:call, BreakShim, :manual_deblock, []}},
{:ok, {:call, BreakShim, :manual_reset, []}}

]
end

report erratum • discuss

Modeling the Circuit Breaker • 299

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Notice something interesting in these operations. Successful calls and ignored
errors are unsurprisingly remaining in the ok state (through the history atom),
and the manual operations have the impact you’d expect them to have, but
both errors and timeouts are there twice: once successfully, and once transi-
tioning to the tripped state. It’s odd because it doesn’t sound like the same call
could transition to any of two distinct states while remaining deterministic.

This is because PropEr handles generation in two steps. First it picks the call
to run (such as break_shim:err/1), and then it sees, through preconditions,
whether a single one of the target states makes sense. In the case above, we’ll
have to make sure that calls to break_shim:err/1 can unambiguously target only
one or the other of the target states (ok or tripped) through preconditions and
the FSM’s data. If that’s not done, PropEr will complain. Keep that in
mind—we’ll revisit it soon—but for now let’s check out the other generators:

Erlang

tripped(_Data) ->
[{history, {call, break_shim, success, []}},
{history, {call, break_shim, err, [valid_error()]}},
{history, {call, break_shim, ignored_error, [ignored_error()]}},
{history, {call, break_shim, timeout, []}},
{ok, {call, break_shim, manual_deblock, []}},
{ok, {call, break_shim, manual_reset, []}},
{blocked, {call, break_shim, manual_block, []}}].

Elixir

def tripped(_data) do
[

{:history, {:call, BreakShim, :success, []}},
{:history, {:call, BreakShim, :err, [valid_error()]}},
{:history, {:call, BreakShim, :ignored_error, [ignored_error()]}},
{:history, {:call, BreakShim, :timeout, []}},
{:ok, {:call, BreakShim, :manual_deblock, []}},
{:ok, {:call, BreakShim, :manual_reset, []}},
{:blocked, {:call, BreakShim, :manual_block, []}}

]
end

Manually resetting and deblocking should both return to the ok state. Aside
from that, nothing for this state will go back to ok on its own since we disregard
time for this property. Here’s the last state to cover:

Erlang

blocked(_Data) ->

Chapter 11. State Machine Properties • 300

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

[{history, {call, break_shim, success, []}},
{history, {call, break_shim, err, [valid_error()]}},
{history, {call, break_shim, ignored_error, [ignored_error()]}},
{history, {call, break_shim, timeout, []}},
{history, {call, break_shim, manual_block, []}},
{history, {call, break_shim, manual_reset, []}},
{ok, {call, break_shim, manual_deblock, []}}].

Elixir

def blocked(_data) do
[

{:history, {:call, BreakShim, :success, []}},
{:history, {:call, BreakShim, :err, [valid_error()]}},
{:history, {:call, BreakShim, :ignored_error, [ignored_error()]}},
{:history, {:call, BreakShim, :timeout, []}},
{:history, {:call, BreakShim, :manual_block, []}},
{:history, {:call, BreakShim, :manual_reset, []}},
{:ok, {:call, BreakShim, :manual_deblock, []}}

]
end

This works the same and has the same requirements as the previous genera-
tors. Do note that once in the blocked state, no other command than manu-
al_deblock can get you out of there. It overrides even clearing errors; the operator
who ordered the breaker to be blocked is in total control.

We have two generators left to define, valid_error() and ignored_error():

Erlang

valid_error() -> elements([badarg, badmatch, badarith, whatever]).
ignored_error() -> elements([ignore1, ignore2]).

Elixir

def valid_error() do
elements([:badarg, :badmatch, :badarith, :whatever])

end
def ignored_error() do

elements([:ignore1, :ignore2])
end

These are based off the option() function in break_shim, which ignored both ignore1
and ignore2 errors, making them be perceived as a successful call.

With this in place, we can write the preconditions required for our case gen-
eration to work:

report erratum • discuss

Modeling the Circuit Breaker • 301

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/FSMProperties/erlang/circuit/test/prop_break.erl

%% Picks whether a command should be valid under the current state.
precondition(unregistered, ok, _, {call, _, Call, _}) ->

Call =:= success;
precondition(ok, To, #data{errors=N, limit=L}, {call,_,err,_}) ->

(To =:= tripped andalso N+1 =:= L) orelse (To =:= ok andalso N+1 =/= L);
precondition(ok, To, #data{timeouts=N, limit=L}, {call,_,timeout,_}) ->

(To =:= tripped andalso N+1 =:= L) orelse (To =:= ok andalso N+1 =/= L);
precondition(_From, _To, _Data, _Call) ->

true.

Elixir code/FSMProperties/elixir/circuit/test/break_test.exs

Picks whether a command should be valid
def precondition(:unregistered, :ok, _, {:call, _, call, _}) do

call == :success
end
def precondition(:ok, to, %{errors: n, limit: l}, {:call, _, :err, _}) do

(to == :tripped and n + 1 == l) or (to == :ok and n + 1 != l)
end
def precondition(

:ok,
to,
%{timeouts: n, limit: l},
{:call, _, :timeout, _}

) do
(to == :tripped and n + 1 == l) or (to == :ok and n + 1 != l)

end
def precondition(_from, _to, _data, _call) do

true
end

You can see both calls to erroneous cases only being valid in mutually
exclusive instances: (To =:= tripped andalso N+1 =:= L) means that the switch to
the tripped state can happen if the next failure (the one being generated) brings
the total to the limit L, and (To =:= ok andalso N+1 =/= L) means our state machine
can only transition to the ok state if this new failure does not reach the limit.
All other calls are valid, since they only transition from one possible source
state to one possible target state, and the circuit breaker requires no other
special cases. Using an FSM property simplified this filtering drastically
compared to what we’d have with a regular stateful property.

Chapter 11. State Machine Properties • 302

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The next step is to do the data changes after each command. For these, we
mostly have to worry about error accounting:

Erlang code/FSMProperties/erlang/circuit/test/prop_break.erl

%% Assuming the postcondition for a call was true, update the model
%% accordingly for the test to proceed.
next_state_data(ok, _To, Data=#data{errors=N}, _Res, {call,_,err,_}) ->

Data#data{errors=N+1};
next_state_data(ok, _To, Data=#data{timeouts=N}, _Res, {call,_,timeout,_}) ->

Data#data{timeouts=N+1};
next_state_data(_From, _To, Data, _Res, {call,_,manual_deblock,_}) ->

Data#data{errors=0, timeouts=0};
next_state_data(_From, _To, Data, _Res, {call,_,manual_reset,_}) ->

Data#data{errors=0, timeouts=0};
next_state_data(_From, _To, Data, _Res, {call, _Mod, _Fun, _Args}) ->

Data.

Elixir code/FSMProperties/elixir/circuit/test/break_test.exs

Assuming the postcondition for a call was true, update the model
accordingly for the test to proceed
def next_state_data(:ok, _, data = %{errors: n}, _, {_, _, :err, _}) do

%{data | errors: n + 1}
end
def next_state_data(:ok, _, d = %{timeouts: n}, _, {_, _, :timeout, _}) do

%{d | timeouts: n + 1}
end
def next_state_data(_from, _to, data, _, {_, _, :manual_deblock, _}) do

%{data | errors: 0, timeouts: 0}
end
def next_state_data(_from, _to, data, _, {_, _, :manual_reset, _}) do

%{data | errors: 0, timeouts: 0}
end
def next_state_data(_from, _to, data, _res, {:call, _m, _f, _args}) do

data
end

Error and timeout calls both increment their count by 1, and deblocking and
resetting turn them back to 0. Everything else should have no impact on the
data we track.

The last part to cover before running the model and seeing if we have every-
thing right (or if the circuit breaker is correct) is the postcondition/5 callback.
This one is slightly trickier:

report erratum • discuss

Modeling the Circuit Breaker • 303

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/FSMProperties/erlang/circuit/test/prop_break.erl

%% Given the state `State' *prior* to the call `{call, Mod, Fun, Args}',
%% determine whether the result `Res' (coming from the actual system)
%% makes sense.
postcondition(tripped, tripped, _Data, _, {error, {circuit_breaker, _}}) ->

true;
postcondition(_, blocked, _Data, {call, _, manual_block, _}, ok) ->❶

true;
postcondition(_, blocked, _Data, _Call, {error, {circuit_breaker, _}}) ->❷

true;
postcondition(_, ok, _Data, {call, _, success, _}, success) ->

true;
postcondition(_, ok, _Data, {call, _, manual_deblock, _}, ok) ->

true;
postcondition(_, _, _Data, {call, _, manual_reset, _}, ok) ->

true;
postcondition(ok, _, _Data, {call, _, timeout, _}, {error, timeout}) ->❸

true;
postcondition(ok, _, _Data, {call, _, err, _}, {error, Err}) ->

not lists:member(Err, [ignore1, ignore2]);
postcondition(ok, _, _Data, {call, _, ignored_error, _}, {error, Err}) ->

lists:member(Err, [ignore1, ignore2]);
postcondition(_From, _To, _Data, {call, _Mod, _Fun, _Args}, _Res) ->

false.

Elixir translation on page 340.

The first clause validates that once the circuit breaker is tripped, all calls that
keep it in the tripped state (success, err, ignored_error, and timeout) have no effect
and see a circuit-breaker error.

The same is true of all calls that land you into the blocked state—first the
manual tripping itself at ❶, and then all the other failing calls at ❷. Right
after that are all calls to success that are expected to work and should end in
the ok state, followed by calls that manually deblock and reset the breaker
and also end up in ok.

Since all the error cases are already covered, the timeout clause at ❸ is guar-
anteed to be in the ok state and to “succeed” in timing out. Same for errors,
where we do an additional check on whether the right category of error is
used in either case. Any other return value is considered invalid.

You can now run the tests to see if we have it all right or all wrong:

Chapter 11. State Machine Properties • 304

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

rebar3 proper
===> Verifying dependencies...
===> Compiling circuit
===> Testing prop_break:prop_test()
..!
Failed: After 65 test(s).
«initial failure»
Shrinking(6 time(s))
[{set,{var,8},{call,break_shim,success,[]}},
{set,{var,9},{call,break_shim,timeout,[]}},
{set,{var,10},{call,break_shim,ignored_error,[ignore1]}},
{set,{var,11},{call,break_shim,timeout,[]}},
{set,{var,12},{call,break_shim,timeout,[]}},
{set,{var,13},{call,break_shim,err,[whatever]}}]

History: [{{unregistered,{data,3,0,0}},success},
{{ok,{data,3,0,0}},{error,timeout}},
{{ok,{data,3,0,1}},{error,ignore1}},
{{ok,{data,3,0,1}},{error,timeout}},
{{ok,{data,3,0,2}},{error,timeout}},
{{tripped,{data,3,0,3}},{error,whatever}}]

State: {tripped,{data,3,0,3}}
Result: {postcondition,false}
===>
0/1 properties passed, 1 failed
===> Failed test cases:
prop_break:prop_test() -> false

Let’s figure out what we need to do to get it working.

Adjusting the Model
The first step of any stateful failure is to figure out what failing sequence
exactly caused the problem. Shrinking does most of the job, but we still have
to extract meaning out of it. We have the following:

[{set,{var,8},{call,break_shim,success,[]}},
{set,{var,9},{call,break_shim,timeout,[]}},
{set,{var,10},{call,break_shim,ignored_error,[ignore1]}},
{set,{var,11},{call,break_shim,timeout,[]}},
{set,{var,12},{call,break_shim,timeout,[]}},
{set,{var,13},{call,break_shim,err,[whatever]}}]

History: [{{unregistered,{data,3,0,0}},success},
{{ok,{data,3,0,0}},{error,timeout}},
{{ok,{data,3,0,1}},{error,ignore1}},
{{ok,{data,3,0,1}},{error,timeout}},
{{ok,{data,3,0,2}},{error,timeout}},
{{tripped,{data,3,0,3}},{error,whatever}}]

State: {tripped,{data,3,0,3}}

report erratum • discuss

Adjusting the Model • 305

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

This creates a sequence of events and state transitions as follows:

At least, that’s the expectation from the history we have. But for the last error
call, we expected to see {error, {circuit_breaker, _}} since we’re in the tripped state.
Instead the call returned {error, whatever}, which contradicts our expectations
of the tripped state. This means our model’s state machine and the real system
are out of sync.

The underlying cause for this can be found in circuit_breaker’s source code. After
a code dive, you’ll find that the actual circuit breaker doesn’t just look for
any N failures in a period of time, but instead decreases the counter by 1 on
every successful call, first on errors, and then on timeouts, and only after
some failures have been registered. So if, for example, every failing call is
immediately followed by a successful one, as long as the breaker tolerates
more than one failure, it will never trip. You’ll need a higher ratio of failures
than successful calls over time to trip it. This is a small but very important
detail when defining failure thresholds.

Chapter 11. State Machine Properties • 306

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The state machine should instead have behaved like this:

We can easily adapt the state transitions to work in a way that respects this:

Erlang code/FSMProperties/erlang/circuit/test/prop_break.erl

%% Assuming the postcondition for a call was true, update the model
%% accordingly for the test to proceed.
next_state_data(ok, _To, Data=#data{errors=N}, _Res, {call,_,err,_}) ->

Data#data{errors=N+1};
next_state_data(ok, _To, Data=#data{timeouts=N}, _Res, {call,_,timeout,_}) ->

Data#data{timeouts=N+1};
next_state_data(_From, _To, Data, _Res, {call,_,manual_deblock,_}) ->

Data#data{errors=0, timeouts=0};
next_state_data(_From, _To, Data, _Res, {call,_,manual_reset,_}) ->

Data#data{errors=0, timeouts=0};
next_state_data(ok, _To, Data=#data{errors=E, timeouts=T}, _Res,❶

{call, _, F, _}) when F =:= success; F =:= ignored_error ->
if E > 0 -> Data#data{errors = E-1};

T > 0 -> Data#data{timeouts = T-1};
E =:= 0, T =:= 0 -> Data

end;
next_state_data(_From, _To, Data, _Res, {call, _Mod, _Fun, _Args}) ->

Data.

Elixir translation on page 342.

report erratum • discuss

Adjusting the Model • 307

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The new clause is marked at ❶. On any nonfailure call to the circuit breaker,
lower the errors by one. If the errors are at zero, then decrease the timeout
counter instead, and only if it’s above zero. This should cover and fix our
problems:

$ rebar3 proper
===> Verifying dependencies...
===> Compiling circuit
===> Testing prop_break:prop_test()
..
........................
OK: Passed 100 test(s).

12% {ok,{break_shim,err,1}}
12% {ok,{break_shim,timeout,0}}
8% {unregistered,{break_shim,success,0}}
7% {ok,{break_shim,manual_deblock,0}}
6% {ok,{break_shim,manual_block,0}}
6% {ok,{break_shim,success,0}}
5% {ok,{break_shim,manual_reset,0}}
5% {blocked,{break_shim,manual_block,0}}
5% {ok,{break_shim,ignored_error,1}}
5% {blocked,{break_shim,timeout,0}}
4% {blocked,{break_shim,err,1}}
4% {blocked,{break_shim,manual_deblock,0}}
4% {blocked,{break_shim,success,0}}
4% {blocked,{break_shim,manual_reset,0}}
3% {blocked,{break_shim,ignored_error,1}}
0% {tripped,{break_shim,ignored_error,1}}
0% {tripped,{break_shim,manual_deblock,0}}
0% {tripped,{break_shim,err,1}}
0% {tripped,{break_shim,manual_block,0}}
0% {tripped,{break_shim,timeout,0}}
0% {tripped,{break_shim,manual_reset,0}}
0% {tripped,{break_shim,success,0}}
===>
1/1 properties passed

That’s good! But it feels like the statisics are kind of disappointing. The tripped
state is rather poorly represented, with less than 1% calls for each of them.

This is not necessarily surprising since getting into the tripped state requires
at least three more failures than successes, without having to accidentally
get into the manual blocked state first. We can use the optional weight/3 call-
back to give a higher probability of failing into a tripped breaker:

Chapter 11. State Machine Properties • 308

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/FSMProperties/erlang/circuit/test/prop_break.erl

-export([initial_state/0, initial_state_data/0, weight/3,
unregistered/1, ok/1, tripped/1, blocked/1, % State generators
precondition/4, postcondition/5, next_state_data/5]).

«code»
weight(ok, tripped, _) ->

5;
weight(ok, ok, {call, _, F, _}) ->

case F of
error -> 4;
timeout -> 4;
_ -> 1

end;
weight(_, _, _) ->

1.

Elixir code/FSMProperties/elixir/circuit/test/break_test.exs

Optional callback, weight modification of transitions
def weight(:ok, :tripped, _) do

5
end
def weight(:ok, :ok, {:call, _, f, _}) do

case f do
:error -> 4
:timeout -> 4
_ -> 1

end
end
def weight(_, _, _) do

1
end

The call raises the probability of any call forcing a transition from ok to tripped
and also increases the probability of all error calls in the ok state; the rest of
calls—such as error calls while already in the tripped state and manual
blocks—remain neutral in terms of probabilities.

Let’s run the test again and see what we get:

$ rebar3 proper
===> Verifying dependencies...
===> Compiling circuit
===> Testing prop_break:prop_test()
...
.........................
OK: Passed 100 test(s).

report erratum • discuss

Adjusting the Model • 309

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

25% {ok,{break_shim,timeout,0}}
17% {ok,{break_shim,err,1}}
8% {unregistered,{break_shim,success,0}}
3% {ok,{break_shim,ignored_error,1}}
3% {blocked,{break_shim,success,0}}
3% {blocked,{break_shim,manual_reset,0}}
3% {blocked,{break_shim,manual_block,0}}
3% {ok,{break_shim,manual_block,0}}
3% {ok,{break_shim,manual_reset,0}}
3% {blocked,{break_shim,ignored_error,1}}
3% {ok,{break_shim,manual_deblock,0}}
2% {blocked,{break_shim,err,1}}
2% {blocked,{break_shim,manual_deblock,0}}
2% {blocked,{break_shim,timeout,0}}
2% {ok,{break_shim,success,0}}
2% {tripped,{break_shim,manual_block,0}}
2% {tripped,{break_shim,success,0}}
1% {tripped,{break_shim,err,1}}
1% {tripped,{break_shim,manual_deblock,0}}
1% {tripped,{break_shim,ignored_error,1}}
1% {tripped,{break_shim,manual_reset,0}}
1% {tripped,{break_shim,timeout,0}}
===>
1/1 properties passed

It’s nothing amazing in terms of changes, but we get a much better distribution
of tripped circuit breaker events than on previous runs.

Wrapping Up
In this final chapter, you’ve seen how to bring stateful properties to the next
level in cases where the system under test can be modeled as a finite state
machine. In such cases, FSM properties represent a useful specialization
mechanism that lets you generate calls and data according to the state in
which the system should be. We’ve been through the data generation model
(both symbolic and real) for the property and have put it all in practice through
tests for Klarna’s circuit_breaker library. We came up with a multistate model,
which proved to be ill-fitting for the actual library. We then went through the
debugging steps required to fix the model and, through the statistics collected
in the test execution—the step you should never forget!—rebalanced the
possible generated events to get better transition coverage.

You now have all the knowledge required to use properties to find tricky bugs
in all kinds of systems, from basic unit tests up to larger integration suites.
You’re ready to go on and start adding better tests to your software, to make
your software better as well. Enjoy!

Chapter 11. State Machine Properties • 310

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

APPENDIX 1

Solutions
Writing Properties

Question 1
proper_gen:pick(proper_type:Type())

Question on page 31.

Question 2
What the property is doing is validating the lists:seq(Start, Stop) function, which
would be expected to return a list of integers in the range [Start, ..., Stop]. For
example, running lists:seq(2,5) should return [2,3,4,5]. The property does the
validation of this by looking at two aspects of such a list:

• The list should contain as many entries as the range covered by both
terms (2..5 has 4 entries, or just (5-2)+1).

• To avoid having the test succeed on outputs such as [1,1,1,1], the increments/1
function is used to ensure that each number is greater than the next one.

Question on page 31.

Thinking in Properties

Question 1
Your answer could be any three of these strategies:

• Modeling—comparing the implementation with a simpler but obviously
correct one

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

• Generalizing traditional tests by automating steps we would do by hand
• Finding program invariants to validate
• Using symmetric properties

Question on page 47.

Question 2
Two example solutions:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_solutions.erl

%% @doc this function tests that any lists of `{Key,Val}' pairs
%% end up being able to be sorted by the key by using `lists:keysort/2'.
prop_keysort1() ->

?FORALL(List, list({term(),term()}),
begin

%% is_key_ordered checks that all tuples' keys are ordered.
is_key_ordered(lists:keysort(1, List))

end).

is_key_ordered([{A,_},{B,_}=BTuple|T]) ->
A =< B andalso is_key_ordered([BTuple|T]);

is_key_ordered(_) -> % smaller lists
true.

%% @doc This function instead works by using random tuples with various
%% sizes, and picking a random key to test it.
%% This tests broader usages of lists:keysort, such as
%% `lists:keysort(2, [{a,b},{e,f,g},{t,a,n,e}])' yielding the list
%% `[{t,a,n,e},{a,b},{e,f,g}]', where the comparison takes place
%% on the second element of each tuple.
%%
%% While more complete than the previous one, this function
%% does not accurately portray the need for stability in the
%% function as documented: `[{a,b}, {a,a}]' being sorted will
%% not be tested here!
%% Those can either be added in a regular test case, or would
%% require devising a different property.
prop_keysort2() ->

?FORALL(List, non_empty(list(non_empty(list()))),
begin

%% Since the default built-in types do not let us easily
%% create random-sized tuples that do not include `{}',
%% which is not working with `lists:keysort/2', we
%% create variable-sized tuples ourselves.
Tuples = [list_to_tuple(L) || L <- List],
%% To know what position to use, we're going to use
%% the smallest, to avoid errors
Pos = lists:min([tuple_size(T) || T <- Tuples]),

Appendix 1. Solutions • 312

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Sorted = lists:keysort(Pos, Tuples),
Keys = extract_keys(Pos, Sorted),
%% The keys returned by keysort have to be in the
%% same order as returned by `lists:sort/1', which
%% we now trust.
Keys == lists:sort(Keys)

end).

extract_keys(Pos, List) -> [element(Pos,T) || T <- List].

Elixir code/ThinkingInProperties/elixir/pbt/test/solutions_test.exs

property "pair keysort approach" do
This function tests that any list of {key,val} pairs
end up being able to be sorted by the key by using List.keysort
forall list <- list({term(), term()}) do

is_key_ordered checks that all tuples' keys are ordered.
is_key_ordered(List.keysort(list, 0))

end
end

def is_key_ordered([{a, _}, {b, _} = btuple | t]) do
a <= b and is_key_ordered([btuple | t])

end

def is_key_ordered(_) do
true

end

This function instead works by using random tuples with various sizes,
and picking a random key to test it.
This tests broader usages of List.keysort/2, such as
List.keysort([{:a,:b},{:e,:f,:g},{:t,:a,:n,:e}], 2) yielding the list
[{:t,:a,:n,:e},{:a,:b},{:e,:f,:g}], where the comparison takes place
on the second element of each tuple.
#
While more complete than the previous one, this function does not
accurately portray the need for stability in the function:
[{:a,:b}, {:a,:a}] being sorted in the same order will not be tested
here!
#
Those can either be added in a regular test case, or would require
devising a different property.
property "multi-sized tuple keysort approach" do

forall list <- non_empty(list(non_empty(list()))) do
Since the default built-in types do not let us easily create
random-sized tuples that do not include {}, which wouldn't work
with List.keysort/2, we create variable-sized tuples ourselves
tuples = for l <- list, do: List.to_tuple(l)
To know what position to use, we're going to use the smallest,
to avoid errors
pos = Enum.min(for t <- tuples, do: tuple_size(t)) - 1

report erratum • discuss

Thinking in Properties • 313

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

sorted = List.keysort(tuples, pos)
keys = extract_keys(sorted, pos)
The keys returned by keysort have to be in the same order as
returned by Enum.sort/1, which we now trust.
keys == Enum.sort(keys)

end
end

def extract_keys(list, pos) do
for t <- list, do: :erlang.element(pos + 1, t)

end

Question on page 47.

Question 3
The problem is with the model; sets don’t generally allow duplicate elements.
Here, the call that generates ModelUnion adds both lists together. This inadver-
tently maintains duplicate elements, which the actual sets module avoids.

If the call to lists:sort/1 is changed to lists:usort/1 (which removes duplicated ele-
ments) when handling ModelUnion, the property will adequately represent sets
by removing duplicate elements and pass.

Question on page 47.

Question 4
The function is shaky because it validates only the keys portion of dictionary
merging. The values resulting from the merge operation are untouched, and
the test makes no mention of how it may resolve or report conflicts. To be
safe, the property should either take into account the conflict-resolution
function for merging, or a second property should be added to cover it.

Question on page 48.

Question 5
First the function:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_solutions.erl

word_count(String) ->
Stripped = string:trim(dedupe_spaces(String), both, " "),
Spaces = lists:sum([1 || Char <- Stripped, Char =:= $\s]),
case Stripped of

"" -> 0;
_ -> Spaces + 1

end.

Appendix 1. Solutions • 314

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

dedupe_spaces([]) -> [];
dedupe_spaces([$\s,$\s|Rest]) -> dedupe_spaces([$\s|Rest]);
dedupe_spaces([H|T]) -> [H|dedupe_spaces(T)].

Elixir code/ThinkingInProperties/elixir/pbt/test/solutions_test.exs

def word_count(chars) do
stripped = :string.trim(dedupe_spaces(chars), :both, ' ')
spaces = Enum.sum(for char <- stripped, char == ?\s, do: 1)

case stripped do
'' -> 0
_ -> spaces + 1

end
end

defp dedupe_spaces([]), do: []
defp dedupe_spaces([?\s, ?\s | rest]), do: dedupe_spaces([?\s | rest])
defp dedupe_spaces([h | t]), do: [h | dedupe_spaces(t)]

And next, the test, using an alternative implementation:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_solutions.erl

prop_word_count() ->
?FORALL(String, non_empty(string()),

word_count(String) =:= alt_word_count(String)
).

alt_word_count(String) -> space(String).

space([]) -> 0;
space([$\s|Str]) -> space(Str);
space(Str) -> word(Str).

word([]) -> 1;
word([$\s|Str]) -> 1+space(Str);
word([_|Str]) -> word(Str).

Elixir code/ThinkingInProperties/elixir/pbt/test/solutions_test.exs

property "word counting" do
forall chars <- non_empty(char_list()) do

word_count(chars) == alt_word_count(chars)
end

end

report erratum • discuss

Thinking in Properties • 315

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

defp alt_word_count(string), do: space(to_charlist(string))

defp space([]), do: 0
defp space([?\s | str]), do: space(str)
defp space(str), do: word(str)

defp word([]), do: 1
defp word([?\s | str]), do: 1 + space(str)
defp word([_ | str]), do: word(str)

Question on page 49.

Custom Generators

Question 1
• collect(Term, BoolExpression) (in Elixir, BoolExpression |> collect(Term))
• aggregate([Term], BoolExpression) (in Elixir, BoolExpression |> aggregate(Term))

Question on page 83.

Question 2
?LET(Var, Generator, ErlangExpr); otherwise, the generators are abstract representa-
tions that won’t be modifiable the way the generated data would be. The same
syntax in Elixir is let var <- Generator do ElixirExpr end instead.

Question on page 83.

Question 3
Whenever a generator that may probabilistically choose multiple branches is
called, using eager evaluation means that all alternative paths for it will be
evaluated at once. If the generator is made recursive, this can quickly blow
the size of the computation to very large levels. The ?LAZY(Generator) macro
allows to only evaluate a given branch when required, ensuring faster execu-
tion with more predictable memory usage.

Question on page 84.

Question 4
The first step is to ensure the generator can terminate by using ?LAZY macros:

Appendix 1. Solutions • 316

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/CustomGenerators/erlang/pbt/test/prop_solutions.erl

tree() ->
tree(term()).

tree(Type) ->
frequency([

{3, {node, Type, undefined, undefined}},
{2, {node, Type, ?LAZY(tree(Type)), undefined}},
{2, {node, Type, undefined, ?LAZY(tree(Type))}},
{3, {node, Type, ?LAZY(tree(Type)), ?LAZY(tree(Type))}}

]).

Elixir code/CustomGenerators/elixir/pbt/test/solutions_test.exs

def tree(), do: tree(term())

def tree(type) do
frequency([

{3, {:node, type, nil, nil}},
{2, {:node, type, lazy(tree(type)), nil}},
{2, {:node, type, nil, lazy(tree(Type))}},
{3, {:node, type, lazy(tree(type)), lazy(tree(type))}}

])
end

Although the tree may terminate, finding a good balance can still prove tricky.
The numbers have been modified a bit to fit better, but using the Size variable
proves more effective to put a predictable boundary on growth:

Erlang code/CustomGenerators/erlang/pbt/test/prop_solutions.erl

limited_tree(Type) ->
?SIZED(Size, limited_tree(Size, Type)).

limited_tree(Size, Type) when Size =< 1 ->
{node, Type, undefined, undefined};

limited_tree(Size, Type) ->
frequency([

{1, {node, Type, ?LAZY(limited_tree(Size-1, Type)), undefined}},
{1, {node, Type, undefined, ?LAZY(limited_tree(Size-1, Type))}},
{5, {node, Type,

%% Divide to avoid exponential growth
?LAZY(limited_tree(Size div 2, Type)),
?LAZY(limited_tree(Size div 2, Type))}}

]).

report erratum • discuss

Custom Generators • 317

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Elixir code/CustomGenerators/elixir/pbt/test/solutions_test.exs

def limited_tree(type) do
sized(size, limited_tree(size, type))

end

def limited_tree(size, type) when size <= 1, do: {:node, type, nil, nil}

def limited_tree(size, type) do
frequency([

{1, {:node, type, lazy(limited_tree(size - 1, type)), nil}},
{1, {:node, type, nil, lazy(limited_tree(size - 1, type))}},
{5,
{

:node,
type,
divide to avoid exponential growth
lazy(limited_tree(div(size, 2), type)),
lazy(limited_tree(div(size, 2), type))

}}
])

end

Although more verbose, it behaves much better.

Question on page 84.

Question 5

For morning stamps

The first implementation, while clear to its intent, is likely to be far less effi-
cient as it is going to require dropping roughly half of all the generated terms
to replace them with new ones, assuming a roughly equal distribution for
digits between 0 and 23 for the H position.

By comparison, the generator with a ?LET uses a modulus to ensure that any
hour greater than 11 starts over at 0. It will need to do one operation per
generator, and will never have to retry. It is the better implementation.

For ordered stamps

Similarly in the second one, chances are roughly 50% that the first generator
will need to be discarded because the probability that one stamp is greater
than the other should be fairly even. Using the min/2 and max/2 functions gives
a proper ordering without needing to generate newer stamps. The second
solution is better.

Appendix 1. Solutions • 318

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

For meeting hours

In this set of generators, there is no clearly defined way to use a ?LET to transform
data that is’t acceptable into data that is acceptable. The filtering done there is
roughly the same as the one in ?SUCHTHAT and some ad-hoc procedure is used
to generate alternative data. Because the range of restricted samples is fairly
limited when compared to the whole problem space, the readability of the first
solution is likely better in the long run.

Question on page 85.

Question 6
Using the provided wrapper functions, it’s enough to export them and then
use them with {'$call, ...} symbolic calls:

Erlang code/CustomGenerators/erlang/pbt/test/prop_solutions.erl

file(Name) ->
?SIZED(

Size,
lines(Size, {'$call', ?MODULE, file_open, [Name, [read,write,raw]]})

).

lines(Size, Fd) ->
if Size =< 1 -> Fd
; Size > 1 -> lines(Size-1, {'$call', ?MODULE, file_write, [Fd,bin()]})

end.

bin() ->
non_empty(binary()).

Elixir code/CustomGenerators/elixir/pbt/test/solutions_test.exs

def file(name) do
sized(

size,
lines(
size,
{:"$call", __MODULE__, :file_open, [name, [:read, :write, :utf8]]}

)
)

end

def lines(size, fd) when size <= 1, do: fd
def lines(size, fd) do

lines(
size - 1,
{:"$call", __MODULE__, :file_write, [fd, non_empty(utf8())]}

)
end

report erratum • discuss

Custom Generators • 319

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

The file is opened in both read/write mode to be more flexible to whoever will
use it when running the test. The raw mode is entirely optional. It makes
things go faster, but removes some flexibility when using the file module
regarding encoding and buffering. Then the file is created. The generator asks
for a name (which may or may not be a generator) and uses the Size parameter
to know how big of a file to generate.

In the Elixir version, the raw mode is replaced with the utf8 mode and the
binary() generator with utf8(). The reason for that is that the write wrappers for
this solution use the IO module, which forbids using the raw mode.

By using shim functions, as many bytes can be added as desired over multiple
calls. In this case, nonempty binaries are just sufficient, but the generator
could as well have been written to let the user pass a generator for the data
to file() and lines(), becoming fully configurable.

Question on page 86.

Shrinking

Question 1
• ?SHRINK(Generator, [AltGenerators, ...])
• ?LETSHRINK([Pattern, ...], [Generator, ...], Expression)

Question on page 176.

Question 2
?LETSHRINK always takes a list of arguments and generators, whereas ?LET takes
any pattern and any generator in its first two arguments. When failing in a
test case and needing a new simplified generator, one of the generators in the
list will be used, but without the transformations being applied. A ?LET macro
has no such rule and the transformation is always applied.

Question on page 176.

Question 3
The problem here is that the property expects a list coming out of the gener-
ator, but the way ?LETSHRINK works is that every single of the variable between
Appetizer, Drink, Entree, or Dessert is an atom put in a list. During a failing test
case, the shrinking attempt will fail as the property can’t work through
receiving an atom when it expects a list.

Appendix 1. Solutions • 320

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Instead, the generator should be reworked as follows:

Erlang code/Shrinking/erlang/pbt/test/prop_solutions.erl

meal() ->
?LETSHRINK([Appetizer, Drink, Entree, Desert],

[[elements([soup, salad, cheesesticks])],
[elements([coffee, tea, milk, water, juice])],
[elements([lasagna, tofu, steak])],
[elements([cake, chocolate, icecream])]],

Appetizer ++ Drink ++ Entree ++ Desert).

Elixir code/Shrinking/elixir/pbt/test/solutions_test.exs

def meal() do
let_shrink([

appetizer <- [elements([:soup, :salad, :cheesesticks])],
drink <- [elements([:coffee, :tea, :milk, :water, :juice])],
entree <- [elements([:lasagna, :tofu, :steak])],
dessert <- [elements([:cake, :chocolate, :icecream])]

]) do
appetizer ++ drink ++ entree ++ dessert

end
end

This ensures that every single variable is always a list, and the final result
passed to the property in a successful case also remains a list. The elements
generated should always have the same type as the one returned for ?LETSHRINK
to work well.

Question on page 176.

Question 4
Since the special list and the price list are both required for the rest of opera-
tions, those two ?LET will be left alone. The third ?LET is where the merging
takes place, and that’s where we’ll operate.

The gotcha here is once again that the types generated by the ?LET expression
as a whole ({Items, Expected, PriceList, SpecialList}) don’t match what the generators
produce inside the ?LET ({{RegularItems, RegularExpected}, {SpecialItems, SpecialExpect-
ed}}). We can’t just replace it wholesale for a ?LETSHRINK.

To do so, we must ensure that the values match. This can be done by adding
an intermediary step where we use ?LETSHRINK to build the merged lists of items
and the merged expected price, and use ?LET to join them in the final 4-tuple
expected by the property rather than doing it all at once:

report erratum • discuss

Shrinking • 321

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Erlang code/Shrinking/erlang/pbt/test/prop_solutions.erl

item_price_special() ->
%% first LET: PriceList
?LET(PriceList, price_list(),

%% second LET: SpecialList
?LET(SpecialList, special_list(PriceList),

%% third LET: Regular + Special items and prices
?LET({Items, Price},

%% Help shrinking by first trying only one of the
%% two possible lists in case a specific form causes
%% the problems on its own
?LETSHRINK([{RegularItems, RegularExpected},

{SpecialItems, SpecialExpected}],
[regular_gen(PriceList, SpecialList),
special_gen(PriceList, SpecialList)],

%% And we merge:
{RegularItems ++ SpecialItems,
RegularExpected + SpecialExpected}),

{Items, Price, PriceList, SpecialList}))).

Elixir code/Shrinking/elixir/pbt/test/solutions_test.exs

def item_price_special() do
first let: freeze the price list
let price_list <- price_list() do

second let: freeze the list of specials
let special_list <- special_list(price_list) do

third let: regular + special items and prices
help shrinking by first trying only one of the
two possible lists in case a specific form causes
the problems on its own
and we merge
let {items, price} <-

(let_shrink([
{regular_items, regular_expected} <-
regular_gen(price_list, special_list),

{special_items, special_expected} <-
special_gen(price_list, special_list)

]) do
{regular_items ++ special_items,
regular_expected + special_expected}

end) do
{items, price, price_list, special_list}

end
end

end
end

Appendix 1. Solutions • 322

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

This transformation ensures that the inputs and outputs of ?LETSHRINK are
always 2-tuples that include a list of items and a price expected. The surround-
ing ?LET is in charge of taking the values and pairing them up in a 4-tuple
with the price list and special list. Doing so, gives PropEr hints how to isolate
whether the problem is with regular items, special items, or both at once.

Question on page 177.

Stateful Properties

Question 1
• The abstract phase contains: initial_state/0, command/1, precondition/2, and
next_state/3

• The real interacting with the actual system contains: initial_state/0, command/1,
precondition/2, next_state/3, and postcondition/3

Question on page 231.

Question 2
The pattern matching in the generator works fine to create an initial list of
commands to run on the model system, but as soon as a failure happens––or
a constraint needs to be enforced when parallelizing commands––the modifi-
cation of the command list is done without regard to the initial patterns in
command generations. Only the preconditions can be used to ensure the valid-
ity of the command sequence. Without preconditions, the framework isn’t able
to manipulate the sequence in any way, and parallelism and shrinking can’t be
effective.

Question on page 231.

Question 3
1. For the first one, the actual system will be started and stopped before

every single test iteration.

2. The actual system will be booted once before the tests run, and the system
instance will be shared for all iterations, before being shut down after the
whole run.

report erratum • discuss

Stateful Properties • 323

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

3. The actual system will be started, then an abstract representation of the
test case will be created. After this, the system will be stopped. But the
test itself will not have run once at that point, so by the time the frame-
work would try to execute the test, the actual system would have already
shut down.

Question on page 231.

Question 4
The value must be treated as opaque since placeholders will be generated by
the framework during the abstract phase of command generation. Symbolic
calls may be added to the command when used in an actual execution context.

It is simpler to avoid it entirely, but one of the useful cases comes when
interaction with the actual system relies on values it has returned and are
not predictable. Those may include process identifiers, sockets, or any other
unique, unpredictable, or transient resource. Whenever the system returns
one of these and expects them back, you may not be able to plan the value
ahead of time from the model state. The model is then better off holding a
reference to that value without altering it.

Question on page 232.

Appendix 1. Solutions • 324

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

APPENDIX 2

Elixir Translations
Thinking in Properties

Putting It All Together
Here’s the code for this whole chapter put together:

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

defmodule PbtTest do
use ExUnit.Case
use PropCheck

property "finds biggest element" do
forall x <- non_empty(list(integer())) do
Pbt.biggest(x) == model_biggest(x)

end
end

def model_biggest(list) do
List.last(Enum.sort(list))

end

property "picks the last number" do
forall {list, known_last} <- {list(number()), number()} do
known_list = list ++ [known_last]
known_last == List.last(known_list)

end
end

property "a sorted list has ordered pairs" do
forall list <- list(term()) do
is_ordered(Enum.sort(list))

end
end

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def is_ordered([a, b | t]) do
a <= b and is_ordered([b | t])

end

lists with fewer than 2 elements
def is_ordered(_) do

true
end

property "a sorted list keeps its size" do
forall l <- list(number()) do
length(l) == length(Enum.sort(l))

end
end

property "no element added" do
forall l <- list(number()) do
sorted = Enum.sort(l)
Enum.all?(sorted, fn element -> element in l end)

end
end

property "no element deleted" do
forall l <- list(number()) do
sorted = Enum.sort(l)
Enum.all?(l, fn element -> element in sorted end)

end
end

property "symmetric encoding/decoding" do
forall data <- list({atom(), any()}) do
encoded = encode(data)
is_binary(encoded) and data == decode(encoded)

end
end

def encode(t), do: :erlang.term_to_binary(t)
def decode(t), do: :erlang.binary_to_term(t)

end

Translation of Erlang code on page 45.

Responsible Testing
This is the CSV module providing all of the parsing:

Elixir code/ResponsibleTesting/elixir/bday/lib/csv.ex

defmodule Bday.Csv do
def encode([]), do: ""

Appendix 2. Elixir Translations • 326

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def encode(maps) do
keys = Enum.map_join(Map.keys(hd(maps)), ",", &escape(&1))

vals =
for map <- maps, do: Enum.map_join(Map.values(map), ",", &escape(&1))

to_string([keys, "\r\n", Enum.join(vals, "\r\n")])
end

def decode(""), do: []

def decode(csv) do
{headers, rest} = decode_header(csv, [])
rows = decode_rows(rest)
for row <- rows, do: Map.new(Enum.zip(headers, row))

end

defp escape(field) do
if escapable(field) do

~s|"| <> do_escape(field) <> ~s|"|
else

field
end

end

defp escapable(string) do
String.contains?(string, [~s|"|, ",", "\r", "\n"])

end

defp do_escape(""), do: ""
defp do_escape(~s|"| <> str), do: ~s|""| <> do_escape(str)
defp do_escape(<<char>> <> rest), do: <<char>> <> do_escape(rest)

defp decode_header(string, acc) do
case decode_name(string) do

{:ok, name, rest} -> decode_header(rest, [name | acc])
{:done, name, rest} -> {[name | acc], rest}

end
end

defp decode_rows(string) do
case decode_row(string, []) do

{row, ""} -> [row]
{row, rest} -> [row | decode_rows(rest)]

end
end

defp decode_row(string, acc) do
case decode_field(string) do

{:ok, field, rest} -> decode_row(rest, [field | acc])
{:done, field, rest} -> {[field | acc], rest}

end
end

report erratum • discuss

Responsible Testing • 327

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

defp decode_name(~s|"| <> rest), do: decode_quoted(rest)
defp decode_name(string), do: decode_unquoted(string)

defp decode_field(~s|"| <> rest), do: decode_quoted(rest)
defp decode_field(string), do: decode_unquoted(string)

defp decode_quoted(string), do: decode_quoted(string, "")

defp decode_quoted(~s|"|, acc), do: {:done, acc, ""}
defp decode_quoted(~s|"\r\n| <> rest, acc), do: {:done, acc, rest}
defp decode_quoted(~s|",| <> rest, acc), do: {:ok, acc, rest}

defp decode_quoted(~s|""| <> rest, acc) do
decode_quoted(rest, acc <> ~s|"|)

end

defp decode_quoted(<<char>> <> rest, acc) do
decode_quoted(rest, acc <> <<char>>)

end

defp decode_unquoted(string), do: decode_unquoted(string, "")

defp decode_unquoted("", acc), do: {:done, acc, ""}
defp decode_unquoted("\r\n" <> rest, acc), do: {:done, acc, rest}
defp decode_unquoted("," <> rest, acc), do: {:ok, acc, rest}

defp decode_unquoted(<<char>> <> rest, acc) do
decode_unquoted(rest, acc <> <<char>>)

end
end

Translation of Erlang code on page 103.

This code contains unit tests that cover content defined by examples in the
CSV RFC:

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

test "one record per line" do
assert [%{"aaa" => "zzz", "bbb" => "yyy", "ccc" => "xxx"}] ==

Csv.decode("aaa,bbb,ccc\r\nzzz,yyy,xxx\r\n")
end

test "optional trailing CRLF" do
assert [%{"aaa" => "zzz", "bbb" => "yyy", "ccc" => "xxx"}] ==

Csv.decode("aaa,bbb,ccc\r\nzzz,yyy,xxx")
end

test "double quotes" do
assert [%{"aaa" => "zzz", "bbb" => "yyy", "ccc" => "xxx"}] ==

Csv.decode("\"aaa\",\"bbb\",\"ccc\"\r\nzzz,yyy,xxx")
end

Appendix 2. Elixir Translations • 328

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

test "escape CRLF" do
assert [%{"aaa" => "zzz", "b\r\nbb" => "yyy", "ccc" => "xxx"}] ==

Csv.decode("\"aaa\",\"b\r\nbb\",\"ccc\"\r\nzzz,yyy,xxx")
end

test "double quote escaping" do
Since we decided headers are mandatory, this test adds a line
with empty values (CLRF,,) to the example from the RFC.
assert [%{"aaa" => "", "b\"bb" => "", "ccc" => ""}] ==

Csv.decode("\"aaa\",\"b\"\"bb\",\"ccc\"\r\n,,")
end

this counterexample is taken literally from the RFC and
cannot work with the current implementation because maps
do not allow duplicate keys
test "dupe keys unsupported" do

csv =
"field_name,field_name,field_name\r\n" <>

"aaa,bbb,ccc\r\n" <> "zzz,yyy,xxx\r\n"

[map1, map2] = Csv.decode(csv)
assert ["field_name"] == Map.keys(map1)
assert ["field_name"] == Map.keys(map2)

end

Translation of Erlang code on page 105.

Stateful Properties
Here’s the code to make the cache code sequential:

Elixir code/StatefulProperties/elixir/pbt/lib/cache_fixed.ex

defmodule Cache do

use GenServer

Public API
def start_link(n) do

GenServer.start_link(__MODULE__, n, name: __MODULE__)
end

def stop() do
GenServer.stop(__MODULE__)

end

def find(key) do
case :ets.match(:cache, {:_, {key, :"$1"}}) do

[[val]] -> {:ok, val}
[] -> {:error, :not_found}

end
end

report erratum • discuss

Stateful Properties • 329

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def cache(key, val) do
GenServer.call(__MODULE__, {:cache, key, val})

end

def flush() do
GenServer.call(__MODULE__, :flush)

end

GenServer callbacks
def init(n) do

:ets.new(:cache, [:public, :named_table])
:ets.insert(:cache, {:count, 0, n})
{:ok, :nostate}

end

def handle_call({:cache, key, val}, _from, state) do
case :ets.match(:cache, {:"$1", {key, :_}}) do
[[n]] ->

:ets.insert(:cache, {n, {key, val}})

[] ->
:erlang.yield()

case :ets.lookup(:cache, :count) do
[{:count, max, max}] ->

:ets.insert(:cache, [{1, {key, val}}, {:count, 1, max}])

[{:count, current, max}] ->
:ets.insert(:cache, [

{current + 1, {key, val}},
{:count, current + 1, max}

])
end

end

{:reply, :ok, state}
end

def handle_call(:flush, _from, state) do
[{:count, _, max}] = :ets.lookup(:cache, :count)
:ets.delete_all_objects(:cache)
:erlang.yield()
:ets.insert(:cache, {:count, 0, max})
{:reply, :ok, state}

end

def handle_cast(_cast, state), do: {:noreply, state}

def handle_info(_msg, state), do: {:noreply, state}
end

Translation of Erlang code on page 229.

Appendix 2. Elixir Translations • 330

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Case Study: Bookstore

Introducing the Application
Script to initialize the database:

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/init.ex

defmodule Bookstore.Init do
def main(_) do

See: https://www.postgresql.org/docs/9.6/static/server-start.html
File.mkdir_p!("postgres/data/")
stdout = IO.stream(:stdio, :line)

IO.puts("initializing database structure...")
System.cmd("initdb", ["-D", "postgres/data"], into: stdout)
IO.puts("starting postgres instance...")

args = ["-D", "postgres/data", "-l", "logfile", "start"]
case :os.type() do
{:win32, _} ->

spawn(fn -> System.cmd("pg_ctl", args, into: stdout) end)
{:unix, _} ->

System.cmd("pg_ctl", args, into: stdout)
end

wait and pray
Process.sleep(5000)
IO.puts("setting up 'bookstore_db' database...")
System.cmd(

"psql",
[

"-h", "localhost",
"-d", "template1",
"-c", "CREATE DATABASE bookstore_db;"

],
into: stdout

)
IO.puts("OK.")
:init.stop()

end
end

Translation of Erlang code on page 237.

report erratum • discuss

Case Study: Bookstore • 331

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Application Code
The bookstore module handling most operations related to databases:

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/db.ex

defmodule Bookstore.DB do
@doc """
Create the database table required for the bookstore
"""
def setup do

run_query(:setup_table_books, [])
end

@doc """
Delete the database table required for the bookstore
"""
def teardown() do

run_query(:teardown_table_books, [])
end

@doc """
Add a new book to the inventory, with no copies of it
"""
def add_book(isbn, title, author) do

add_book(isbn, title, author, 0, 0)
end

@doc """
Add a new book to the inventory, with a pre-set number of
owned and available copies
"""
def add_book(isbn, title, author, owned, avail) do

bin_title = :erlang.iolist_to_binary(title)
bin_author = :erlang.iolist_to_binary(author)

case run_query(:add_book, [isbn, bin_title, bin_author, owned, avail]) do
{{:insert, 0, 1}, []} -> :ok
{:error, reason} -> {:error, reason}
other -> {:error, other}

end
end

@doc """
Add a copy of the book to the bookstore's inventory
"""
def add_copy(isbn) do

handle_single_update(run_query(:add_copy, [isbn]))
end

Appendix 2. Elixir Translations • 332

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

@doc """
Borrow a copy of a book; reduces the count of available copies by one.
Who borrowed the book is not tracked at this moment and is left as an
exercise to the reader.
"""
def borrow_copy(isbn) do

handle_single_update(run_query(:borrow_copy, [isbn]))
end

@doc """
Return a copy of a book, making it available again
"""
def return_copy(isbn) do

handle_single_update(run_query(:return_copy, [isbn]))
end

@doc """
Search all books written by a given author. The matching is loose and so
searching for `Hawk' will return copies of books written by `Stephen
Hawking' (if such copies are in the system).
"""
def find_book_by_author(author) do

handle_select(
run_query(

:find_by_author,
[:erlang.iolist_to_binary(['%', author, '%'])]

)
)

end

@doc """
Find books under a given ISBN
"""
def find_book_by_isbn(isbn) do

handle_select(run_query(:find_by_isbn, [isbn]))
end

@doc """
Find books with a given title. The matching is loose and searching
for `Test' may return `PropEr Testing'.
"""
def find_book_by_title(title) do

handle_select(
run_query(

:find_by_title,
[:erlang.iolist_to_binary(['%', title, '%'])]

)
)

end

Translation of Erlang code on page 240.

report erratum • discuss

Case Study: Bookstore • 333

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

And the other functions that finalize database handling:

Elixir code/Bookstore/elixir/bookstore/lib/bookstore/db.ex

defp run_query(name, args) do
with_connection(fn conn -> run_query(conn, name, args) end)

end

defp run_query(conn, name, args) do
:pgsql_connection.extended_query(query(name), args, conn)

end

defp with_connection(f) do
{:ok, conn} = connect()
res = f.(conn)
close(conn)
res

end

defp connect() do
connect(Application.get_env(:bookstore, :pg, []))

end

defp connect(args) do
try do

conn = {:pgsql_connection, _} = :pgsql_connection.open(args)
{:ok, conn}

catch
:throw, err -> {:error, err}

end
end

defp close(conn) do
:pgsql_connection.close(conn)

end

Translation of Erlang code on page 243.

Precise Stateful Modeling
Here’s the shim module for stateful modeling:

Elixir code/Bookstore/elixir/bookstore/test/book_shim.ex

defmodule BookShim do
def add_book_existing(isbn, title, author, owned, avail) do

Bookstore.DB.add_book(isbn, title, author, owned, avail)
end
def add_book_new(isbn, title, author, owned, avail) do

Bookstore.DB.add_book(isbn, title, author, owned, avail)
end

Appendix 2. Elixir Translations • 334

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def add_copy_existing(isbn), do: Bookstore.DB.add_copy(isbn)
def add_copy_new(isbn), do: Bookstore.DB.add_copy(isbn)

def borrow_copy_avail(isbn), do: Bookstore.DB.borrow_copy(isbn)
def borrow_copy_unavail(isbn), do: Bookstore.DB.borrow_copy(isbn)
def borrow_copy_unknown(isbn), do: Bookstore.DB.borrow_copy(isbn)

def return_copy_full(isbn), do: Bookstore.DB.return_copy(isbn)
def return_copy_existing(isbn), do: Bookstore.DB.return_copy(isbn)
def return_copy_unknown(isbn), do: Bookstore.DB.return_copy(isbn)

def find_book_by_isbn_exists(isbn) do
Bookstore.DB.find_book_by_isbn(isbn)

end
def find_book_by_isbn_unknown(isbn) do

Bookstore.DB.find_book_by_isbn(isbn)
end

def find_book_by_author_matching(author) do
Bookstore.DB.find_book_by_author(author)

end
def find_book_by_author_unknown(author) do

Bookstore.DB.find_book_by_author(author)
end

def find_book_by_title_matching(title) do
Bookstore.DB.find_book_by_title(title)

end
def find_book_by_title_unknown(title) do

Bookstore.DB.find_book_by_title(title)
end

end

Translation of Erlang code on page 255.

Here’s the rewritten command/1 callback, which now uses the shim module:

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

initial model value at system start. Should be deterministic.
def initial_state(), do: %{}

def command(state) do
always_possible = [

{:call, BookShim, :add_book_new, [isbn(), title(), author(), 1, 1]},
{:call, BookShim, :add_copy_new, [isbn()]},
{:call, BookShim, :borrow_copy_unknown, [isbn()]},
{:call, BookShim, :return_copy_unknown, [isbn()]},
{:call, BookShim, :find_book_by_isbn_unknown, [isbn()]},
{:call, BookShim, :find_book_by_author_unknown, [author()]},
{:call, BookShim, :find_book_by_title_unknown, [title()]}

]

report erratum • discuss

Case Study: Bookstore • 335

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

relies_on_state =
case Map.equal?(state, %{}) do
true -> # no values yet

[]
false -> # values from which to work

s = state
[

{:call, BookShim, :add_book_existing,
[isbn(s), title(), author(), 1, 1]},

{:call, BookShim, :add_copy_existing, [isbn(s)]},
{:call, BookShim, :borrow_copy_avail, [isbn(s)]},
{:call, BookShim, :borrow_copy_unavail, [isbn(s)]},
{:call, BookShim, :return_copy_existing, [isbn(s)]},
{:call, BookShim, :return_copy_full, [isbn(s)]},
{:call, BookShim, :find_book_by_isbn_exists, [isbn(s)]},
{:call, BookShim, :find_book_by_author_matching, [author(s)]},
{:call, BookShim, :find_book_by_title_matching, [title(s)]}

]
end

oneof(always_possible ++ relies_on_state)
end

Translation of Erlang code on page 256.

The initial set of preconditions for stateful tests:

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

Picks whether a command should be valid under the current state.
- all the unknown calls
def precondition(s, {:call, _, :add_book_new, [isbn|_]}) do

not has_isbn(s, isbn)
end
def precondition(s, {:call, _, :add_copy_new, [isbn]}) do

not has_isbn(s, isbn)
end
def precondition(s, {:call, _, :borrow_copy_unknown, [isbn]}) do

not has_isbn(s, isbn)
end
def precondition(s, {:call, _, :return_copy_unknown, [isbn]}) do

not has_isbn(s, isbn)
end
def precondition(s, {:call, _, :find_book_by_isbn_unknown, [isbn]}) do

not has_isbn(s, isbn)
end
def precondition(s, {:call, _, :find_book_by_author_unknown, [auth]}) do

not has_isbn(s, auth)
end

Appendix 2. Elixir Translations • 336

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def precondition(s, {:call, _, :find_book_by_title_unknown, [title]}) do
not has_isbn(s, title)

end
def precondition(s, {:call, _, :find_book_by_author_matching, [auth]}) do

like_author(s, auth)
end
def precondition(s, {:call, _, :find_book_by_title_matching, [title]}) do

like_title(s, title)
end
- all calls with known ISBNs
def precondition(s, {:call, _mod, _fun, [isbn|_]}) do

has_isbn(s, isbn)
end

Translation of Erlang code on page 258.

The initial set of postconditions for stateful tests:

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

Given the state *prior* to the call {:call, mod, fun, args},
determine whether the result (coming from the actual system)
makes sense.
def postcondition(_, {_, _, :add_book_new, _}, :ok) do

true
end
def postcondition(_, {_, _, :add_book_existing, _}, {:error, _}) do

true
end
def postcondition(_, {_, _, :add_copy_existing, _}, :ok) do

true
end
def postcondition(_, {_, _, :add_copy_new, _}, {:error, :not_found}) do

true
end
def postcondition(_, {_, _, :borrow_copy_avail, _}, :ok) do

true
end
def postcondition(

_,
{_, _, :borrow_copy_unavail, _},
{:error, :unavailable}

) do
true

end
def postcondition(_, {_,_,:borrow_copy_unknown,_}, {:error,:not_found}) do

true
end
def postcondition(_, {_, _, :return_copy_full, _}, {:error, _}) do

true
end

report erratum • discuss

Case Study: Bookstore • 337

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def postcondition(_, {_, _, :return_copy_existing, _}, :ok) do
true

end
def postcondition(_, {_,_,:return_copy_unknown,_}, {:error,:not_found}) do

true
end

Translation of Erlang code on page 261.

Refining the Tests
Edited postconditions:

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

«bunch of postconditions»
def postcondition(

state,
{_, _, :find_book_by_isbn_exists, [isbn]},
{:ok, [res]})

do
book_equal(res, Map.get(state, isbn, nil))

end
«bunch of postconditions»

def postcondition(
state,
{_, _, :find_book_by_author_matching, [auth]},
{:ok, res}

) do
map = :maps.filter(

fn _, {_,_,a,_,_} -> contains?(a, auth) end,
state

)
books_equal(Enum.sort(res), Enum.sort(Map.values(map)))

end
«bunch of postconditions»

def postcondition(
state,
{_, _, :find_book_by_title_matching, [title]},
{:ok, res}

) do
map = :maps.filter(

fn _, {_,t,_,_,_} -> contains?(t, title) end,
state

)
books_equal(Enum.sort(res), Enum.sort(Map.values(map)))

end
«bunch of postconditions»
Translation of Erlang code on page 271.

Appendix 2. Elixir Translations • 338

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Parallel Tests
The parallelized version of tests:

Elixir code/Bookstore/elixir/bookstore/test/bookstore_test.exs

property "parallel stateful property", [:verbose] do
forall cmds <- parallel_commands(__MODULE__) do

No setup macro in PropCheck yet, do it all inline
{:ok, apps} = Application.ensure_all_started(:bookstore)
Bookstore.DB.setup()
{history, state, result} = run_parallel_commands(__MODULE__, cmds)
Bookstore.DB.teardown()
for app <- apps, do: Application.stop(app)

(result == :ok)
|> aggregate(command_names(cmds))
|> when_fail(
IO.puts("""
=======
Failing command sequence
#{inspect(cmds)}
At state: #{inspect(state)}
=======
Result: #{inspect(result)}
History: #{inspect(history)}
""")

)
end

end

Translation of Erlang code on page 278.

State Machine Properties

Modeling the Circuit Breaker
First, the shim module:

Elixir code/FSMProperties/elixir/circuit/test/break_shim.ex

defmodule BreakShim do
@service :test_service

def success() do
:circuit_breaker.call(
@service,
fn -> :success end,
:timer.hours(1),

report erratum • discuss

State Machine Properties • 339

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

fn -> true end,
:timer.hours(1),
options()

)
end

def err(reason) do
:circuit_breaker.call(

@service,
fn -> {:error, reason} end,
:timer.hours(1),
fn -> true end,
:timer.hours(1),
options()

)
end

def ignored_error(reason), do: err(reason)

def timeout() do
:circuit_breaker.call(

@service,
fn -> :timer.sleep(:infinity) end,❶
0,
fn -> true end,
:timer.hours(1),
options()

)
end

Translation of Erlang code on page 294.

And the circuit breaker postconditions:

Elixir code/FSMProperties/elixir/circuit/test/break_test.exs

Given that state prior to the call `{:call, mod, fun, args}`,
determine whether the result (res) coming from the actual system
makes sense according to the model
def postcondition(

:tripped,
:tripped,
_data,
_call,
{:error, {:circuit_breaker, _}}

) do
true

end

Appendix 2. Elixir Translations • 340

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

def postcondition(_, :blocked, _data, {_, _, :manual_block, _}, :ok) do❶
true

end
def postcondition(

_from,
:blocked,
_data,
_call,
{:error, {:circuit_breaker, _}}❷

) do
true

end
def postcondition(_, :ok, _data, {_, _, :success, _}, :success) do

true
end
def postcondition(_, :ok, _data, {_, _, :manual_deblock, _}, :ok) do

true
end
def postcondition(_, _, _data, {_, _, :manual_reset, _}, :ok) do

true
end
def postcondition(❸

:ok,
_to,
_data,
{_, _, :timeout, _},
{:error, :timeout}

) do
true

end
def postcondition(:ok, _to, _data, {_, _, :err, _}, {:error, err}) do

not Enum.member?([:ignore1, :ignore2], err)
end
def postcondition(

:ok,
_to,
_data,
{_, _, :ignored_error, _},
{:error, err}

) do
Enum.member?([:ignore1, :ignore2], err)

end
def postcondition(_from, _to, _data, {:call, _m, _f, _args}, _res) do

false
end

Translation of Erlang code on page 304.

report erratum • discuss

State Machine Properties • 341

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Adjusting the Model
The adapted transitions are as follows:

Elixir code/FSMProperties/elixir/circuit/test/break_test.exs

Assuming the postcondition for a call was true, update the model
accordingly for the test to proceed
def next_state_data(:ok, _, data = %{errors: n}, _, {_, _, :err, _}) do

%{data | errors: n + 1}
end
def next_state_data(:ok, _, d = %{timeouts: n}, _, {_, _, :timeout, _}) do

%{d | timeouts: n + 1}
end
def next_state_data(_from, _to, data, _, {_, _, :manual_deblock, _}) do

%{data | errors: 0, timeouts: 0}
end
def next_state_data(_from, _to, data, _, {_, _, :manual_reset, _}) do

%{data | errors: 0, timeouts: 0}
end
def next_state_data(❶

:ok,
_to,
data = %{errors: e, timeouts: t},
_res,
{:call, _, f, _}

)
when f == :success or f == :ignored_error do

cond do
e > 0 ->

%{data | errors: e - 1}
t > 0 ->

%{data | timeouts: t - 1}
e == 0 and t == 0 ->

data
end

end
def next_state_data(_from, _to, data, _res, {:call, _m, _f, _args}) do

data
end

def valid_error() do
elements([:badarg, :badmatch, :badarith, :whatever])

end
def ignored_error() do

elements([:ignore1, :ignore2])
end

end

Translation of Erlang code on page 307.

Appendix 2. Elixir Translations • 342

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

APPENDIX 3

Installing PostgreSQL
If you’re using a Unix-like system, chances are your package manager already
has prebuilt versions ready to go. You can just follow the instructions on the
PostgreSQL download page,1 or those found in common tutorials2 until the
init_db steps where you are asked to create a database, where we’ll take over
since they are common to both Windows and other operating systems.

If you’re a Windows user, you’ll need something a bit more convoluted. You
can find the installer from the download page mentioned previously, grab a
copy of the database (which takes around 150 megabytes), and then run
through the following steps:

• Run the wizard.

– Pick the command line tools options for our later setup scripts to work.
– Pick a root password and note it down.
– Leave the default port (5432) or note the new one down if you change it.
– Stick with the default locale.
– Wait for the install to complete.

• Add C:\Program Files\PostgreSQL\10\bin (make sure to pick a path that matches
your installation) to your PATH environment variable so that the various
PostgreSQL scripts are visible from everywhere.

– See https://stackoverflow.com/a/44272417/35344 for a detailed
walkthrough.

– Restart your terminal session.

1. https://www.postgresql.org/download/
2. https://wiki.postgresql.org/wiki/Detailed_installation_guides

report erratum • discuss

https://www.postgresql.org/download/
https://wiki.postgresql.org/wiki/Detailed_installation_guides
http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

No matter the platform you use, you should be able to call the following
command after installation to confirm that everything is installed and that
command line tools are available:

$ initdb --help
initdb initializes a PostgreSQL database cluster.

Usage:
initdb [OPTION]... [DATADIR]

Options:
«list of options»
If the command runs, then you know all the tools are available in your path
and you’re ready to go.

Appendix 3. Installing PostgreSQL • 344

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

APPENDIX 4

Generators Reference
SampleData GeneratedGenerator

Any of the samples
below

Any Erlang term PropEr can
produce

any()

'ós43Úrcá\200'Erlang atomsatom()
<<2,203,162,42,84,141>>Binary data aligned on bytesbinary()
<<98,126,144,175,175>>Binary data of fixed length Len,

in bytes
binary(Len)

<<10,74,2:3>>Binary data without byte alignmentbitstring()
<<11:5>>Binary data of fixed length Len,

in bits
bitstring(Len)

true, falseAtoms true or false. Also bool()boolean()
23Character codepoint, between 0

and 1114111 inclusively
char()

choose(1, 1000) => 596Any integer between Min and Max
inclusively

choose(Min, Max)

fixed_list([boolean(), byte(),
atom()]) => [true,2,b]

A list where all entries match
a generator from the list of
arguments

fixed_list([Type])

4.982972307245969Floating point number. Also real()float()
float(0.0, 10.0) =>
5.934602482212932

Floating point number between Min
and Max inclusively

float(Min, Max)

frequency([{1,atom()},
{10,char()}, {3,binary()}])

The value matching the generator
of one of those in the second tuple

frequency([{N,
Type}])

=> 23 (chances of get-
ting an atom are 1⁄14)

element, with a probability similar
to the value N. Also weighed_union/1

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

SampleData GeneratedGenerator

function([char(), bool()],
atom()) => #Fun<proper_
gen.25.96459342>

An anonymous functionfunction([Arg],
Ret])

89234An integerinteger()
Any of the samples, as
list elements

A list of terms, equivalent to
list(any())

list()

list(boolean()) => [true, true,
false]

A list of terms of type Typelist(Type)

loose_tuple(boolean()) =>
{true, true, false}

A tuple with terms of type Typeloose_tuple(Type)

map(integer(), boolean()) =>
#{0 => true, -4 => true,
18 => false}

A map with keys of type KeyType and
values of type ValType

map(KeyType,
ValType)

-1231An integer smaller than 0neg_integer()
non_empty(list()) => [abc]Constrains a binary or a list gener-

ator into not being empty
non_empty(Gen)

98.213012312A float greater than or equal to 0.0non_neg_float()
98An integer greater than or

equal to 0
non_neg_integer()

123A float or integernumber()
oneof([atom(), char()]) => aThe value created by the generator

of one of those in Types, also
oneof(Types)

union(Types) and elements(Types). In
QuickCheck, oneof() shrinks toward
a failing element, whereas elements()
shrinks toward the first element of
the list. PropEr does not make that
distinction.

1Integer greater than 0pos_integer()
range(1, 1000) => 596Any integer between Min and Max

inclusively
range(Min, Max)

"^DQ^W^R/D" (may gen-
erate weird escape
sequences!)

Equivalent to list(char())string()

Any of the samples in
this table

Same as any()term()

Appendix 4. Generators Reference • 346

report erratum • discuss

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

SampleData GeneratedGenerator

312Union of non_neg_integer() generator
and the atom infinity

timeout()

tuple() => {true, 13.321123,
-67}

A tuple of random termstuple()

{boolean(), char()} =>
{true, 1}

A literal tuple with types in it{T1, T2, ...}

<<" Բ3ـʳ"/utf8>> (may
generate weird escape
sequences!)

Generates to utf8-encoded text as
a binary data structure

utf8()

vector(5, integer()) =>
[17,0,1,3,8]

A list of length Len of type Typevector(Len, Type)

report erratum • discuss

Appendix 4. Generators Reference • 347

http://pragprog.com/titles/fhproper/errata/add
http://forums.pragprog.com/forums/fhproper

Index

SYMBOLS
{} (braces) literal tuple gener-

ator, 23, 347

A
aggregate() function, 58–61,

185

anchors
broad properties as, 153
unit tests as, 44, 97, 106

annealing, simulated, 183–
185, 189–191

any() generator, 23, 345

assertions, see unit tests

atom() generator, 23, 345

automated symbolic calls, 80–
83

B
binary trees example, 186–

193

binary() generator, 23, 345

bitstring() generator, 345

bookstore example, 233–279
application code, 238–

244
broad stateful testing for,

247–253
causing failures to refine

tests, 265–273
database for, 233, 237–

244
debugging properties,

273–278
generators for, 245–247
parallel tests, 278–279

postconditions for, 261–
265

precise stateful testing
for, 253–265

preconditions for, 257–
259

project setup, 233–238
shim module for, 254–

257
state transitions for, 259–

261

boolean() generator, 23, 345

braces ({}) literal tuple gener-
ator, 23, 347

broad properties, 44, 153–
156, 247–253

C
char() generator, 345

chardata type, 250

choose() generator, 23, 345

circuit breaker example, 289–
310

application code for, 289–
292

generators for, 297, 301
modeling, 292–305
preconditions for, 301
state transitions for,

298, 306–310

code coverage metrics, 59,
127, 151

code examples
binary trees, 186–193
bookstore, 233–279
circuit breaker, 289–310
concurrent cache, 210–

224

conventions used in this
book, xiii–xiv

employee records, 92–132
parallel executions, 224–

230
quicksort, 193–197
supermarket, 133–166

collect() function, 54–58, 185

comma-separated-values
(CSV) parser, 92, 95–106

command generation
for state machine proper-

ties, 283
for stateful properties,

203, 206, 209

commands
mix new command, 13, 95
mix test command, 16
rebar3 new escript command,

94
rebar3 new lib command, 11
rebar3 new proper command,

14, 18
rebar3 new proper_fsm com-

mand, 285
rebar3 new proper_statem

command, 205
rebar3 proper command,

12, 21, 182

commands() generator, 206

Concuerror tool, 229

concurrent cache example,
210–224

building model, 215–220
implementing cache,

211–215
tests for, 215–224
validating system, 221–

224

constraints on generators,
see filtering generators

counterexample, 29, 67, see
also shrinking

CSV (comma-separated-val-
ues) parser, 92, 95–106

D
data, generating, see genera-

tors

database, see also SQL
queries

in bookstore example,
233, 237–244

PostgreSQL, installing,
234, 343–344

transitioning from CSV
to, 117

doc meta-function, 182

documentation output for
failed tests, 182

E
elements() generator, 57, see

also oneof() generator

Elixir
properties, adding to

modules, 15–16, 19
properties, running, 16
repeating tests, 28
setting up for property-

based testing, 12–14
targeted properties not

yet supported, 179

email templates, 128–130

employee records example,
92–132

CSV parser, 95–106
email templates, 128–130
employee module, 116–

128
filtering records, 106–116
program structure for,

92–95

Erlang
properties, adding to

modules, 14, 18
properties, running, 15
setting up for property-

based testing, 11–12
Unicode formats, 250

errors
errors on filtering, 68
order of errors received,

152, 266
warnings in shell, 24

example tests, generalizing
from, 37–38, 135

example-based testing, 7–10,
135

examples
binary trees, 186–193
bookstore, 233–279
circuit breaker, 289–310
concurrent cache, 210–

224
conventions used in this

book, xiii–xiv
employee records, 92–132
parallel executions, 224–

230, 278–279
quicksort, 193–197
supermarket, 133–166

?EXISTS macro, 185

ExUnit framework, 12

F
file structure, for modules,

18–20

filtering generators, 67–69

filtering records, 106–116

finite state machines, 281,
see also state machine
properties

fixed_list() generator, 345

float() generator, 23, 345

?FORALL macro, Erlang, 20–21

forall statement, Elixir, 20–21

?FORALL_TARGETED macro, Er-
lang, 180–182

frameworks, see also PropEr
framework; QuickCheck
framework

PropEr, library for, xiv
PropEr, setting up, 10–14
StreamData, 11
Triq, 10

frequency() generator, 69–72,
74–75, 345

function() generator, 345

functions for properties
naming, 19, 26
structure of, 20–21

fuzzing, 163

G
generalizing example tests,

37–38, 135

generators, see also shrinking
about, 17, 22

bookstore example, 245–
247

circuit breaker example,
297, 301

default, limitations of,
51–53

default, list of, 23–24,
345–347

file structure for, 19
filtering, 67–69
grown by default, 61
manually generating da-

ta, 108–111
probabilities of, changing,

69–72
recursive, 72–80, 185
resizing, 61–65
for state machine proper-

ties, 283, 286
for stateful properties,

203–204, 206
supermarket example,

141–148
symbolic calls as, 80–83,

203, 283
targeted properties influ-

encing, 179–197
transforming, 65–68
trying in shell, 24
for Unicode, 69

GPLv3 license, 11

H
helper functions, 19

hill climbing, 183–184

I
inputs, generating, see gener-

ators

installing PostgreSQL, 234,
343–344, see also setting
up PropEr

integer() generator, 23, 345

integration tests, see al-
so stateful properties

stateful tests, 36, 211
vs. unit tests, 92

invariants, 38–42, 44

iolist type, 250

iolist_to_binary() function, 250

L
?LAZY macro, Erlang, 75–78

lazy() function, Elixir, 75–78

?LET macro, Erlang, 66–68,
75, 143–145

Index • 350

let statement, Elixir, 66–68,
75, 143–145

let_shrink() function, Elixir,
172–175

?LETSHRINK macro, Erlang, 172–
175

libraries, see also PropEr
framework

creating, 11
library project, creating,

11
mocking, 292
PropCheck, xiv

list() generator, 23, 26, 38, 345

loose_tuple() generator, 345

M
map() generator, 345

?MAXIMIZE macro, Erlang, 181

meck library, 292

mergesort, 193–195

messages
errors on filtering, 68
order of errors received,

152, 266
using timers, 292
warnings in shell, 24

meta-functions, 182

?MINIMIZE macro, Erlang, 181

mix build tool, 12

mix new command, 13, 95

mix test command, 16

mocking libraries, 292

model
circuit breaker example,

292–305
concurrent cache exam-

ple, 215–220
for state machine proper-

ties, 282–283, 292–305
for stateful properties,

201–202, 207–210,
215–220

model checking, 201

modeling, 33–36

models, for stateful proper-
ties, 36

modules
file structure for, 18–20
properties, adding, 14–

16, 18–19
shim modules, 254–257,

292, 294–296
as test suites, 19

N
neg_integer() generator, 345

negative testing, 152–166
broad properties, 153–

156
calibrating negative prop-

erties, 156–159
relaxing constraints,

160–166

neighbor selection, 183–185,
189–193

nested states, for state ma-
chine properties, 288

new command, mix, 13, 95

new escript command, rebar3, 94

new lib command, rebar3, 11

new proper command, rebar3,
14, 18

new proper_fsm command, rebar3,
285, see also state machine
properties

new proper_statem command, re-
bar3, 205, see also stateful
properties

next_state function, 202, 209,
259–261

next_state_data function, 284

non_empty() generator, 23, 67,
345

non_neg_float() generator, 345

non_neg_integer() generator, 345

?NOT_EXISTS macro, 185

number() generator, 22–23, 345

O
oneof() generator, 57, 69–72,

345

online resources
PropEr documentation,

xiv, 23
Quickcheck documenta-

tion, xiv, 23
for this book, xiv

operator, perspective of, 264

opts meta-function, 182, 195

oracle, for modeling, 36

order
error order, 152, 266
unimportant ordering,

263

P
parallel executions example,

224–230, 278–279

parser, CSV (comma-separat-
ed-values), 92, 95–106

pos_integer() generator, 345

postconditions
for state machine proper-

ties, 283
for stateful properties,

203, 209, 261–265

PostgreSQL, 234, 343–344,
see also database

preconditions
for state machine proper-

ties, 283–284, 300
for stateful properties,

203, 209, 257–259

probabilities of generators,
changing, 69–72

program structure, testability
of, 92–95

project setup, 10–14, 233–
238

prop_ modules, 14

PropCheck library, xiv

propcheck package, 12

proper command, rebar3, see
also new proper command, re-
bar3

options for, 12
overriding options for,

182
using, 21

PropEr framework, see al-
so properties; property-
based testing

about, 10
documentation, xiv, 23
library for, xiv
setting up, 10–14

proper.hrl file, 21

proper_gen:pick() function, 22

proper_types:bool() function, 24

proper_types:float() function, 24

proper_types:function() function,
24

proper_types:non_empty() function,
24

proper_types:number() function,
22, 24

proper_types:range() function, 24

proper_types:term() function, 21

Index • 351

properties, see also state ma-
chine properties; stateful
properties, targeted proper-
ties

about, 7–9, 17
adding to modules, 14–

16, 18–19
broad, 44, 153–156, 247–

253
documentation output on

failure of, 182
functions for, naming,

19, 26
functions for, structure

of, 20–21
invariants, 38–42, 44
number of, recommenda-

tions for, 46
running, 15–16, 21–22
stateful, 201–230
stateless, 17, 24–31
statistics from results of,

53–61
structure of, 18–22, 44–

46
symmetric, 42–44, 97
targeted, 179–197
types of, 17
unit tests as alternative

to, 107, 111–116
unit tests as anchors for,

44, 97, 106
writing, generalizing ex-

amples for, 37–38, 135
writing, iterative process

for, 24–31
writing, modeling for, 33–

36

properties-driven develop-
ment

about, 133
implementing features

for, 148–152
negative testing for, 152–

166
specification for, 134–135
writing properties for,

135–145

property keyword, 26

property-based testing
about, 8–9
benefits of, 4–7
compared to example-

based testing, 9–10
learning curve for, 4–5, 7
when to use, 91

Q
queries, see also database

in bookstore example,
237–244

filtering invalid values
for, 267

testing, 277–278

QuickCheck framework
about, 10
concurrency testing with,

229
differences with oneof()

and elements(), 57
documentation, xiv, 23
example results from, 5–

6

quicksort example, 193–197

R
range() generator, 23, 345

rebar.config file, 12, 182

rebar3 build tool, 11

rebar3 new escript command, 94

rebar3 new lib command, 11

rebar3 new proper command, 14,
18

rebar3 new proper_fsm command,
285, see also state machine
properties

rebar3 new proper_statem com-
mand, 205, see also state-
ful properties

rebar3 proper command
options for, 12
overriding options for,

182
using, 21

recursive generators, 72–80,
185

regressions, 106

resize() function, 61–63

resizing generators, 61–65

restrictions on generators,
see filtering generators

reversible operations, testing,
see symmetric properties

rules, see properties

S
search and variation, 191

search macros, 185

search_steps argument, 181

setup
Elixir, 12–14

Erlang, 11–12
project, 10–14, 233–238
PropEr, 10–14
?SETUP macro, 207, 248
stateful properties, 207

?SETUP macro, 207, 248

shim module, 254–257, 292,
294–296

?SHRINK macro, Erlang, 168–
172

shrink() function, Elixir, 168–
172

shrinking, 167–175
about, 27, 29
choosing zero point for,

168
dividing data for, 172–

175
failures in, debugging,

273–278
re-centering with, 168–

172

side effects, 93, see also inte-
gration tests; stateful prop-
erties

simulated annealing, 183–
185, 189–191

?SIZED macro, Erlang, 63–65,
78–80

sized() function, Elixir, 63–65,
78–80

SQL queries, see al-
so database

in bookstore example,
237–244

filtering invalid values
for, 267

testing, 277–278

state machine properties,
281–310

circuit breaker example
using, 289–310

command generation for,
283

components, 282–283
execution phases of, 284–

285
initial state for, 284, 286
model for, 282–283, 292–

305
nested states for, 288
postconditions for, 283
preconditions for, 283–

284, 300
state diagram for, 284
state transitions for,

284, 287–289

Index • 352

validation for, 283
weight for, 284, 288, 308
writing, 285–289

stateful properties, 201–230
about, 17
bookstore example using,

233–279
command generation for,

203, 206, 209
concurrent cache exam-

ple using, 210–224
debugging, 273–278
execution phases for,

204–205, 210
initial state for, 209
model for, 36, 201–202,

207–210, 215–220
parallel executions exam-

ple using, 224–230
postconditions for, 203,

209, 261–265
preconditions for, 203,

209, 257–259
setting up and tearing

down, 207
state diagrams for, 204
state transitions for,

202, 204–205, 210,
246, 259–261, 267–268

validation for, 203, 221–
224

writing, 205–210

stateless properties, see al-
so properties

about, 17
employee records exam-

ple using, 92–132
writing, iterative process

for, 24–31

statistics
gathering from test re-

sults, 53–61, 127, 151
target properties not al-

lowing, 185

StreamData framework, 11

string() generator, 23, 345

such_that statement, Elixir, 67–
69

?SUCHTHAT macro, Erlang, 67–
69

supermarket example, 133–
166

negative tests for, 152–
166

specification for, 134–135
testing specials, 140–152
testing sums, 135–140

symbolic calls as generators,
80–83, 203, 283

symmetric properties, 42–44,
97

T
targeted properties, 179–197

binary trees example us-
ing, 186–193

Elixir not yet supporting,
179

limitations of, 185–186
quicksort example using,

193–197
search macros used by,

185
simulated annealing used

by, 183–185, 189–191
syntax of, 180–182

TDD (test-driven develop-
ment), xi, 133, see al-
so properties-driven devel-
opment

temperature, in simulated
annealing, 184, 190–191

term() generator, 21–22, 345

test command, mix, 16

test suites, 19, see also mod-
ules

test-driven development
(TDD), xi, 133, see al-
so properties-driven devel-
opment

testing, see example-based
testing; integration tests;
negative testing; property-
based testing; unit tests

time-sensitive mechanisms,
testing, 292

timeout() generator, 295, 347

to_range/2 function, 55

transforming generators, 65–
68

Triq framework, 10

tuple() generator, 347

U
Unicode formats, Erlang, 250

Unicode generation, 69, 251–
253

unicode:characters_to_binary()
function, 251–253

union() generator, 57, see al-
so oneof() generator

unit tests, see also stateless
properties

about, 17, 92
as anchors for properties,

44, 97, 106
employee records exam-

ple, 92–93
when to use instead of

properties, 107, 111–
116

?USERNF macro, 189

utf8() generator, 69, 266, 347

V
validation

for state machine proper-
ties, 283

for stateful properties,
203, 221–224

variation and search, 191

vector() generator, 347

W
warnings

errors on filtering, 68
order of errors received,

152, 266
warnings in shell, 24

weight, for state machine
properties, 284, 288, 308

Index • 353

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2019 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2019

https://pragprog.com

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir 1.6
This book is the introduction to Elixir for experienced
programmers, completely updated for Elixir 1.6 and
beyond. Explore functional programming without the
academic overtones (tell me about monads just one
more time). Create concurrent applications, but get
them right without all the locking and consistency
headaches. Meet Elixir, a modern, functional, concur-
rent language built on the rock-solid Erlang VM. Elixir’s
pragmatic syntax and built-in support for metaprogram-
ming will make you productive and keep you interested
for the long haul. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(410 pages) ISBN: 9781680502992. $47.95
https://pragprog.com/book/elixir16

Programming Erlang (2nd edition)
A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(546 pages) ISBN: 9781937785536. $42
https://pragprog.com/book/jaerlang2

https://pragprog.com/book/elixir16
https://pragprog.com/book/jaerlang2

A Better Web with Phoenix and Elm
Elixir and Phoenix on the server side with Elm on the front end gets you the best of both
worlds in both worlds!

Programming Phoenix 1.4
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.4, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert, as you build the next generation of web ap-
plications.

Chris McCord, Bruce Tate and José Valim
(325 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix14

Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that run-time errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(250 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

https://pragprog.com/book/phoenix14
https://pragprog.com/book/jfelm

Learn Why, Then Learn How with Elixir
Help introduce Elixir in your organization where it makes most sense, and dive into GraphQL
for better APIs in Elixir. It’s all here.

Adopting Elixir
Adoption is more than programming. Elixir is an excit-
ing new language, but to successfully get your applica-
tion from start to finish, you’re going to need to know
more than just the language. You need the case studies
and strategies in this book. Learn the best practices
for the whole life of your application, from design and
team-building, to managing stakeholders, to deploy-
ment and monitoring. Go beyond the syntax and the
tools to learn the techniques you need to develop your
Elixir application from concept to production.

Ben Marx, José Valim, Bruce Tate
(242 pages) ISBN: 9781680502527. $42.95
https://pragprog.com/book/tvmelixir

Craft GraphQL APIs in Elixir with Absinthe
Your domain is rich and interconnected, and your API
should be too. Upgrade your web API to GraphQL,
leveraging its flexible queries to empower your users,
and its declarative structure to simplify your code.
Absinthe is the GraphQL toolkit for Elixir, a functional
programming language designed to enable massive
concurrency atop robust application architectures.
Written by the creators of Absinthe, this book will help
you take full advantage of these two groundbreaking
technologies. Build your own flexible, high-performance
APIs using step-by-step guidance and expert advice
you won’t find anywhere else.

Bruce Williams and Ben Wilson
(302 pages) ISBN: 9781680502558. $47.95
https://pragprog.com/book/wwgraphql

https://pragprog.com/book/tvmelixir
https://pragprog.com/book/wwgraphql

Level Up
From data structures to architecture and design, we have what you need for everyone on
your team.

A Common-Sense Guide to Data Structures and Algorithms
If you last saw algorithms in a university course or at
a job interview, you’re missing out on what they can
do for your code. Learn different sorting and searching
techniques, and when to use each. Find out how to
use recursion effectively. Discover structures for spe-
cialized applications, such as trees and graphs. Use
Big O notation to decide which algorithms are best for
your production environment. Beginners will learn how
to use these techniques from the start, and experienced
developers will rediscover approaches they may have
forgotten.

Jay Wengrow
(220 pages) ISBN: 9781680502442. $45.95
https://pragprog.com/book/jwdsal

Design It!
Don’t engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091. $41.95
https://pragprog.com/book/mkdsa

https://pragprog.com/book/jwdsal
https://pragprog.com/book/mkdsa

Pragmatic Programming
We’ll show you how to be more pragmatic and effective, for new code and old.

Your Code as a Crime Scene
Jack the Ripper and legacy codebases have more in
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring
direction, and understand how your team influences
the design. With its unique blend of forensic psychology
and code analysis, this book arms you with the
strategies you need, no matter what programming
language you use.

Adam Tornhill
(218 pages) ISBN: 9781680500387. $36
https://pragprog.com/book/atcrime

The Nature of Software Development
You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(176 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjnsd

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/fhproper
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/fhproper

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/fhproper
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/book/fhproper
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Who Is This Book For
	Why Both Elixir and Erlang
	What’s in This Book
	How to Read This Book
	About the Code
	Online Resources

	Part I—The Basics
	1. Foundations of Property-Based Testing
	Promises of Property-Based Testing
	Properties First
	Property-Based Testing in Your Project
	Running a Property
	Wrapping Up

	2. Writing Properties
	Structure of Properties
	Default Generators
	Putting It All Together
	Wrapping Up

	3. Thinking in Properties
	Modeling
	Generalizing Example Tests
	Invariants
	Symmetric Properties
	Putting It All Together
	Wrapping Up

	4. Custom Generators
	The Limitations of Default Generators
	Gathering Statistics
	Basic Custom Generators
	Fancy Custom Generators
	Wrapping Up

	Part II—Stateless Properties in Practice
	5. Responsible Testing
	The Specification
	Thinking About Program Structure
	CSV Parsing
	Filtering Records
	Employee Module
	Templating
	Plumbing It All Together
	Wrapping Up

	6. Properties-Driven Development
	The Specification
	Writing the First Test
	Testing Specials
	Implementing Specials
	Negative Testing
	Wrapping Up

	7. Shrinking
	Re-centering with ?SHRINK
	Dividing with ?LETSHRINK
	Wrapping Up

	8. Targeted Properties
	Understanding Targeted Properties
	Targeted Properties in Practice
	Thinking Outside the Box
	Wrapping Up

	Part III—Stateful Properties
	9. Stateful Properties
	Laying Out Stateful Properties
	How Stateful Properties Run
	Writing Properties
	Testing a Basic Concurrent Cache
	Testing Parallel Executions
	Wrapping Up

	10. Case Study: Bookstore
	Introducing the Application
	Writing Generators
	Broad Stateful Testing
	Precise Stateful Modeling
	Refining the Tests
	Debugging Stateful Properties
	Parallel Tests
	Wrapping Up

	11. State Machine Properties
	Laying Out State Machine Properties
	How State Machine Properties Run
	Writing Properties
	Testing a Circuit Breaker
	Modeling the Circuit Breaker
	Adjusting the Model
	Wrapping Up

	A1. Solutions
	Writing Properties
	Thinking in Properties
	Custom Generators
	Shrinking
	Stateful Properties

	A2. Elixir Translations
	Thinking in Properties
	Responsible Testing
	Stateful Properties
	Case Study: Bookstore
	State Machine Properties

	A3. Installing PostgreSQL
	A4. Generators Reference
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

