

Early Praise for Testing Elixir

This book is sprinkled with excellent testing advice! The breadth of testing topics
covered within the Elixir ecosystem makes this book an excellent resource for any
Elixir developer! Highly recommend!

➤ Benjamin Tan
Author of The Little Elixir and OTP Guidebook

Testing Elixir is an incredible resource for developers of all skill levels. Whether
you are beginning your Elixir journey and are designing your first test suite or
are an experienced Elixir developer looking for reference material, there is some-
thing here for you. This book breaks down a wide range of testing concepts into
modular chunks so that you can grab what you need and be on your merry,
happily tested way.

➤ Sundi Myint
Co-Host of the Elixir Wizards Podcast and Developer, Smart Logic

This is exactly the book that was missing in the Elixir community. It introduces
its readers to various testing methodologies from an Elixir lens as well as when
to use them. It is loaded with code examples and detailed explanations. A must
read!

➤ Adi Iyengar
Back-End Engineer

I would recommend this book to anyone who wants to go beyond basic unit tests.
It covers all areas of Elixir apps with examples and information about libraries to
leverage in testing.

➤ Todd Resudek
Hex Core Team Member

Testing Elixir
Effective and Robust Testing for Elixir and its Ecosystem

Andrea Leopardi
Jeffrey Matthias

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Molly McBeath
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-782-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix

Introduction xiii

1. Unit Tests 1
Defining the Unit in Unit Test 2
Testing with ExUnit 4
Organizing Your Tests 9
Creating Comprehensive Test Coverage 15
Testing Pure Functions 22
Refactoring Toward Pure Functions 23
Isolating Code 25
Wrapping Up 32

2. Integration and End-to-End Tests 35
What Is an Integration Test? 35
Testing Against Real External Dependencies 37
Dependency Doubles 39
Interfacing to External Dependencies with Behaviours 43
Test Doubles: Stubs, Mocks, and Fakes 44
The Hidden Benefits of Dependency Doubles 53
Testing the Actual Interaction with Services 54
End-to-End Tests 64
Wrapping Up 65

3. Testing OTP 67
Testing a GenServer 67
Controlling the Life Cycle of OTP Processes in Tests 77
Testing Periodic Actions 81
Testing Singleton Resources 89

Testing Resiliency 93
Wrapping Up 100

4. Testing Ecto Schemas 101
Testing Your Schema Through Changesets 102
Refactoring to Increase Test Maintainability 109
Creating a SchemaCase for Shared Test Code 118
Testing an Ecto Schema as a Data Validator 121
Testing an Ecto Schema for Database Interactions 125
Testing Your Schema Through Database Calls 133
Setting Up Sandbox Mode 136
Wrapping Up 139

5. Testing Ecto Queries 141
Creating a Factory to Help with Setup 142
Adding a DataCase to Help with Setup 144
Testing Create 145
Testing Read 149
Testing Update 150
Testing Delete 152
Wrapping Up 153

6. Testing Phoenix 155
The Role of Phoenix in Your Application 155
Testing JSON-Based APIs 157
Testing Server-Rendered HTML Applications 169
Testing Phoenix Channels 177
Wrapping Up 186

7. Property-Based Testing 187
Property-Based Testing in Practice in the Elixir Standard
Library 188
Example-Based Tests 189
Introducing Randomness and Property-Based Testing 190
Data Generation 195
Writing Properties 201
Shrinking 205
Strategies for Designing Properties 208
Stateful Property-Based Testing 214
Wrapping Up 216

Contents • vi

A1. When To Randomize Test Data 217
A2. Test Life Cycle 221

The Life Cycle of an ExUnit Suite 221
Test Cases 223
Executing Tests 224
An Example and a Drawing 224

A3. Test Coverage 227
Built-In Test Coverage 228
Coveralls and the Excoveralls Library 230

Bibliography 233
Index 235

Contents • vii

Acknowledgments
Books don’t get published without people reviewing them first. We’re deeply
grateful to all the folks who spent their time and effort carefully reading and
reviewing this book. Thank you to Amos King, Ayomide Aregbede, Devon
Estes, Doyle Turner, Geoff Smith, Jonathan Carstens, Justin Smestad, Pedro
Medeiros, Solomon White, Todd Resudek, and Zach Thomas.

A special thank you goes to Karl Matthias, who provided thorough and
thoughtful comments that challenged our assumptions and pushed us to
rethink, reshape, and reword concepts and sentences all over the book. The
book’s quality wouldn’t have been the same without Karl’s input.

Another special thank you goes to Kim Shrier, whose reviews were so detailed
and neatly organized that it made addressing his comments a breeze.

Most importantly, this book would never have gotten to print without the
guidance (and patience) of our Development editor, Jackie Carter. Thank you.

Andrea Leopardi
The biggest thank you goes to the most important person in my life, my wife,
Kristina. I can’t imagine any other human being so full of support and
encouragement. You’re the light of my life.

Thank you to my parents for setting up a life for me that made it possible for
me to write a book about something. That’s pretty crazy. Thank you to my
other family, Contrada Cavalli, for filling that life with enough love and fun
to give me the energy to learn, work, grow, and write this book.

Thank you to José Valim for creating a beautiful programming language that
works the same way my mind does. José, you have been (possibly without
even knowing it) an incredible mentor in my career, both in programming as
well as in interacting with people.

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Thank you to everyone at Community.com who supported me and gave me
time and mental space to work on this book while giving me chance after
chance to learn and grow professionally.

Thank you to Jeffrey for dragging me into this adventure. You were a friend
before this book, but now we share something that will, if you think about
it, outlive both of us. Spooky but pretty cool.

Jeffrey Matthias
Before I ever started on this book, several people helped set me up for success.
Josh Kaiser and Ted Coleman gave me a trial by fire, making me the testing
expert for our team only months into my career. That formed the foundation
of everything that I know. Bradley Smith gave me my first opportunity to get
paid to work in Elixir and taught me a lot of the foundation of my software
knowledge, as well as tolerated my insistence on testing all the things.

I’m thankful to Ben Tan for helping me catch the Elixir bug in 2014 and then
years later for supporting me in getting this book out, from pitch to final
feedback. Moxley Stratton planted some seeds in my head that showed up
as content in this book. The Denver Erlang and Elixir meetup has endured
more testing talks than any group should have to. John Unruh deserves a
special callout for providing plentiful, helpful feedback as a beta reader.

Getting through this book while working at a quickly growing startup turned
out to be a team effort in a lot of ways. I’m grateful to everyone at Communi-
ty.com. Matt Peltier and Josh Rosenheck created an awesome place to work
and supported me from the day I was hired. Tomas Koci and Barry Steinglass
consistently made time for me to write. Joe Merriweather-Webb has served
as a partner to develop a lot of my Elixir testing techniques. Roland Tritsch
helped me climb out of burnout, prioritize the book, and get it over the finish
line. Every member of every team I’ve worked with has worked around my
schedule. You’re all the coolest.

Thanks to my co-author, Andrea, who let me talk him into this project. I’m
glad we’re still friends.

My parents have supported me through so many career changes that they
likely have whiplash. Thanks for sticking with me until I found one where I
am constantly learning and able to give back.

My older brother, Karl, has had an outsized impact. After getting me into
software in the first place, he’s supported me throughout my career. He

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

inspired me to write a book and then gave me lots of feedback and encourage-
ment the whole way through.

Most of all I want to thank my wife, Amy, and my kids, Noe and Brock, who
have been the most patient and supportive of all.

report erratum • discuss

Jeffrey Matthias • xi

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Introduction
Charles Kettering, an American inventor and the longtime head of research
for General Motors, has a quote that applies well to our approach to soft-
ware tests:

A problem well stated is a problem half-solved.

Think of your tests as stating the problem that your code solves. Once that’s
done, writing that code becomes easier. Moreover, tests not only state the
problem, but they also verify that the solution is correct. They’re an almost
indispensable part of software engineering, and we believe it’s important to
understand why and how to use them.

Some developers write tests for their software. Some developers don’t. There
is code running all over the world that doesn’t have a single test behind it.
So, why do we test? We do it for a plethora of reasons, but they fit into just
a few categories.

First of all, we test to increase confidence that our software does what it’s
supposed to do. Testing gives us confidence that our code works as expected.
This is true for all kinds of testing, whether for automated tests performed
by a machine or for manual tests performed by a human.

The other main reason for testing is to prevent breaking changes (also called
regressions). Imagine you have an existing codebase that you have to work
on in order to add a new feature. How can you feel confident that adding the
new feature won’t break any of the existing features? In most cases, testing
is the answer. If the existing codebase is well tested (automated, manual, or
both), then you’ll feel safer making changes if the testing suite reveals that
nothing broke.

In this book we’ll focus on automated testing. Manual testing, such as QA
(Quality Assurance), is fundamental for many reasons, but as developers we
often get more value from automated testing. A good automated test suite

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

allows us to have a fast feedback cycle during development and gives us tight
control over how we test specific parts of our applications.

Why Do We Need a Book for Testing in Elixir?
Elixir is an interesting and fairly unique programming language. It provides
features and concepts that can be hard to test if you’ve never dealt with
anything like them. Some of those features are common in other programming
languages but are more prominent in Elixir (and Erlang), such as concurrency
and immutability. Other features, such as resiliency or the OTP framework,
are more unique to Erlang and Elixir and can be challenging to test effectively.

From a more practical perspective, Elixir is a great language to write a testing
book about because the tools and patterns we use when testing Elixir code
are pretty consolidated in the Elixir community. One reason for this is that
Elixir comes equipped with its own testing framework, ExUnit. We’ll explore
ExUnit inside and out and we’ll learn how to use it in many different situations
in order to test our applications on different levels.

Elixir is closely tied to its “parent” language, Erlang. As you likely know, Elixir
compiles to the same bytecode as Erlang and runs on the Erlang virtual
machine (commonly known as the BEAM). Elixir code often seamlessly calls
out to Erlang code, and Elixir applications almost always depend on a few
Erlang libraries. However, testing seems to be an area where the two languages
have a bit less in common. The sets of tools and libraries used by the two
languages don’t intersect much. For these reasons, we won’t really talk about
testing in Erlang and will focus exclusively on testing in Elixir. We feel this
statement is worth clarifying since the two languages are so close to each
other.

Who This Book Is For
This book was written for people with a basic Elixir background who want
to get better at the testing tools and practices in the Elixir ecosystem. We
will skim over most Elixir concepts, such as the language constructs and
data types, OTP, Ecto, and Phoenix. Instead of covering those, we’ll learn
how to test those concepts and tools. Whether you’ve used Elixir just for
a bit or you’re an Elixir expert, we think you’ll learn a few new things
throughout the book.

Introduction • xiv

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

How to Read This Book
Each chapter in the book addresses a different aspect of testing in Elixir.

In Chapter 1, Unit Tests, on page 1, we’ll get going and learn about the
“smallest” kind of testing: unit testing. We will cover how and when to write
unit tests, the tools to write them in Elixir, and techniques to isolate code
under test.

In Chapter 2, Integration and End-to-End Tests, on page 35, we’ll move on
to testing different components of your system that interact with each other.
We’ll learn how to test components together, as well as how to isolate compo-
nents to run more focused integration tests. We’ll also touch on end-to-end
testing, that is, testing the whole system from the perspective of an outside
entity.

In Chapter 3, Testing OTP, on page 67, we’ll learn about testing one of Erlang
and Elixir’s most unique features, OTP. OTP and processes in general present
quite a few challenges when it comes to testing. We’re going to talk about
those and learn techniques to make testing these abstractions easier.

In Chapter 4, Testing Ecto Schemas, on page 101, and Chapter 5, Testing Ecto
Queries, on page 141, we’ll talk about testing code that uses the Ecto framework
to validate data and interact with databases. Ecto is a widely used library in
the Elixir landscape, and the community has created patterns on how to test
code that makes use of it.

In Chapter 6, Testing Phoenix, on page 155, we’ll cover Elixir’s most used web
framework, Phoenix. Phoenix provides several moving pieces. We’ll learn how
to test those pieces in isolation as well as how to test that the pieces of your
Phoenix application work correctly together.

In the last chapter, Chapter 7, Property-Based Testing, on page 187, we’ll
explore a technique for introducing randomness in your testing suite in order
to cover large amounts of inputs to your code and increase the chances of
finding inconsistencies.

Note: The chapters in the book don’t have to be read in the order they’re laid
out. For example, if you’re particularly interested in testing code that uses
the Ecto framework, you can jump directly to Chapter 4, Testing Ecto
Schemas, on page 101. Most chapters are self-contained. However, we recom-
mend that you read Chapter 1, Unit Tests, on page 1, and Chapter 2, Inte-
gration and End-to-End Tests, on page 35, in order: these chapters lay the

report erratum • discuss

How to Read This Book • xv

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

foundations for the terminology, tools, and techniques that we’ll use
throughout the book.

About the Code
A testing book is a strange beast. Most programming books show “application
code” when discussing examples and often omit or give little attention to tests.
In this book, we want to focus on testing, but we need application code since
there’s no point in testing if you don’t have anything to test. At the same time,
we don’t want to focus on the application code since it would take away from
what we want to talk about, which is testing. As we said, it’s a strange beast.

Throughout the book we’ll work on two main applications. In the first three
chapters, Chapter 1, Unit Tests, on page 1, Chapter 2, Integration and End-
to-End Tests, on page 35, and Chapter 3, Testing OTP, on page 67, we’ll work
on Soggy Waffle. Soggy Waffle is an application that reads the weather forecast
for a given area off the Internet and can send SMS alerts in case rain is
expected in the next few hours. It’s not a broadly useful application, but it
helps illustrate many Elixir testing concepts.

In the next two chapters, Chapter 4, Testing Ecto Schemas, on page 101, and
Chapter 5, Testing Ecto Queries, on page 141, we’ll use a very basic application,
called Testing Ecto, to illustrate how to test applications that use the Ecto
framework.

Chapter 6, Testing Phoenix, on page 155, will have a single application with
examples covering the different interfaces provided in the standard Phoenix
library.

The last chapter, Chapter 7, Property-Based Testing, on page 187, won’t follow
a particular application in order to focus on different concepts related to
property-based testing.

We’ll have to continuously “escape” these applications over and over again.
We made this choice because our focus is testing, and many times we would
have had to come up with artificial and forced features for these applications
in order to talk about some testing topic. In those cases, we’ll just go with
self-contained examples that allow us to directly address some testing topics
without making our main application a total mess.

Introduction • xvi

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Online Resources
You can get the code from the book page on the Pragmatic Bookshelf website.1

We hope that when you find errors or think of suggestions that you’ll report
them via the book’s errata page.2

One online resource we highly recommend is Elixir’s excellent documentation.
You can find that on Elixir’s official website.3 Particularly interesting for this
book is the ExUnit documentation since we’ll get to use ExUnit a lot.4

If you like the book, we hope you’ll take the time to let others know about it.
Reviews matter, and one tweet or post from you is worth ten of ours! We’re
both on Twitter and tweet regularly. Jeffrey’s handle is @idlehands and
Andrea’s is @whatyouhide.5 6 You can also drop notes to @pragprog.7

Andrea Leopardi and Jeffrey Matthias

July 2021

1. https://pragprog.com/book/lmelixir
2. https://pragprog.com/titles/lmelixir/errata
3. https://elixir-lang.org
4. https://hexdocs.pm/ex_unit/ExUnit.html
5. https://twitter.com/idlehands
6. https://twitter.com/whatyouhide
7. https://twitter.com/pragprog

report erratum • discuss

Online Resources • xvii

https://pragprog.com/book/lmelixir
https://pragprog.com/titles/lmelixir/errata
https://elixir-lang.org
https://hexdocs.pm/ex_unit/ExUnit.html
https://twitter.com/idlehands
https://twitter.com/whatyouhide
https://twitter.com/pragprog
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

CHAPTER 1

Unit Tests
For most engineers, the testing experience starts with the unit test. Unit tests
are the easiest to write since they have a limited focus and therefore usually
deal with less complexity than tests that involve large portions of an applica-
tion, such as integration tests. While unit tests are less complicated, the
testing tools and skills we use for them form the basis for all testing, making
unit tests the perfect place to start our exploration.

A lot of engineers coming to Elixir have experience with unit testing in some
other language with various testing frameworks. Most of that experience
transfers over pretty well to Elixir, but implementing some of the concepts in
Elixir can be a little different. For example, stubbing, a technique common
in interpreted languages is more complex in Elixir, which is compiled. The
functional nature of Elixir allows us to open up the definition of what consti-
tutes a “unit,” giving us new flexibility in our test design.

The ExUnit tools we use in unit tests are the basis of all of our testing. While
integration tests may introduce additional tooling, all of our tests will still be
structured similarly to unit tests and use the same assertions. In this chapter,
we’re going to learn how to define the scope of our tests, write tests for func-
tional code, learn how to structure a test file, and then explore some ways to
isolate your code under test.

By the end of the chapter, you’ll have a better idea of how to write unit tests
in Elixir and will understand how to organize both your application and test
code in ways that make it easier to maintain and write effective tests. You’ll
have a better understanding of how your code organization impacts testing,
and you’ll start to build a sense of how to define the scope of your unit tests.
These skills will transfer to all the tests you write for your Elixir code.

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

The first thing we need to cover is the scope of a unit test. Since the beginning
of software tests, engineers have been discussing how to define the scope of
these tests.

Why We Didn’t Test-Drive in This Book

Test-driven development, often called TDD, is a development practice that suggests
that you write your tests first, have them fail since you haven’t implemented your
code yet, and then run them continuously as you write your code until those tests
pass. It’s a common technique that we often like to use. However, we won’t practice
TDD in this book. Since the focus of our book is testing, we won’t pay much attention
to the application code, and we’ll only use the application code in order to provide
context for testing concepts. TDD conflicts with this: if we wanted to practice TDD,
we’d have to start with writing the tests but then write the application code in order
to make them pass. Instead, we’ll usually show you some application code that we
already wrote and then you’ll write the tests for that code alongside us.

Defining the Unit in Unit Test
A unit test is a software test that focuses on a subset of an application, often
removing the overarching context for how the code is used. It’s common to
find a unit test focused on a single function and just the logic in that function,
possibly encapsulating private functions available to it. Sometimes it makes
more sense to include code from multiple modules, or processes, inside the
scope of your unit tests, expanding the scope of the “unit.” Keeping a narrow
scope can be beneficial to finding errors faster, but learning when it makes
sense to expand the scope can greatly reduce the complexity of your codebase
and your tests. If the scope of your unit tests, the unit itself, can be expanded
slightly to include other modules, your tests can sometimes end up being
simpler and easier to maintain while still providing all the benefits of a tradi-
tional, narrowly scoped unit test.

Before we dive into when and how to expand the scope of your unit tests, let’s
touch on why we test. We need to keep four goals in mind when designing
our tests:

• Prove that your code does what it’s supposed to do.
• Prevent breaking changes (regressions).
• Make it easy to find where your code is broken.
• Write the least amount of test code possible.

It’s likely you’re already on board with the first two goals. However, the last
two goals are what will guide you in choosing how much of your code should

Chapter 1. Unit Tests • 2

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

constitute the unit in the scope of your tests. Your tests should draw a black
box around the code in their scope, which we’ll call the code under test or
the application code. This black box defines the places where your test code
interacts with your application code. In the case of a unit test, this black box
would often treat a single function as the unit. The advantage of keeping the
scope narrow is that if the code under test has issues, keeping the scope
small helps you quickly identify where the issue is. The downside to a narrow
scope is that often, in order to isolate the code under test, you need to write
more code in your tests, which can make it hard to follow what’s happening.
Allowing your test scope (black box) to include a well-tested, functional
dependency can help you take advantage of the narrow scope while avoiding
some of the steps of isolating the code that uses that dependency.

Your tests need to interact with the code under test in two ways. The first
is the more obvious one: your test will call a function (or send a message)
with parameters and it will get a return value. The second is more complex.
Your tests might need to intercept the calls out and return responses,
stepping in for a dependency, if your code depends on other code in your
codebase. We call this “isolating your code under test.” We will cover isolat-
ing code later in this chapter, but first we’ll look at when we can get away
without strict isolation. The following diagram shows the black box drawn
around the code under test.

Because the code under test depends on other code in the codebase, the tests
will have to address isolating the code. There are different methods of isolating
code, but all of them come with costs, typically in terms of time and test
complexity. The presence of purely functional code can impact what needs to
be isolated. A function is “pure” if it returns the exact same answer and has
no side effects every single time you call the function with the same parame-
ters. We’ll expand on this later in this chapter. When your dependency is
purely functional and well tested on its own, you can expand your black box
to include that dependency, as seen in the diagram shown on page 4.

report erratum • discuss

Defining the Unit in Unit Test • 3

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Expanding the black box allows us to skip the extra work of isolating your
code while not giving up the ability to easily locate your broken code. Your
tests are still narrowly focused on the code under test, and—because your
code is purely functional—the environment in which you’re testing your code
is completely controlled, preventing inconsistent results. When you’re able
to include dependencies in this fashion, your tests are easier to write,
understand, and maintain. Because your dependency is tested on its own,
you can write less test code while still being able to identify where your code
is broken when a test fails. If your dependency’s tests don’t fail but you have
failures in the tests where you pulled it in, you know that your failures are
in the new code and not in your dependency.

The challenge is finding the balance for when you should include your purely
functional dependencies in your test scope. Tuning this sense will take some
trial and error and learning from pain points. Start off by expanding your
black box to include those dependencies and then tighten the scope if you
find yourself having issues debugging your code. Practice will help you hone
your sense of when this is the right choice.

Now, let’s learn to write some tests.

Testing with ExUnit
From the beginning, Elixir was developed with ExUnit, the test framework,
as part of the core library. As a result, most of the test tooling we’ve come to
utilize in our production applications is straight out of the Elixir core. This
means that if you have Elixir and you’re familiar with what’s available, you
can write effective tests without needing to bring in other libraries.

To learn how to use ExUnit, we’re going to start by writing our first test and
then discuss some test theory, specifically the stages of testing. We’ll look at
how to organize test files and then explore using common Elixir to help
maximize the effectiveness of our tests. Finally, we’ll cover how to design code
so that it’s well organized and easy to test.

Chapter 1. Unit Tests • 4

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Our First Test
Let’s write our first test in our rain alert app, Soggy Waffle. Soggy Waffle
makes calls to an API and gets data back from it. It then standardizes the
data to its own terms and data structures for the rest of the application to
use. While those calls out to the API aren’t something we’ll focus on in this
chapter (but will in Integration and End-to-End Tests), the response transfor-
mation is a great example of code that can be tested in isolation. Let’s look
at the code that we’ll be testing.

We have included a copy of Soggy Waffle in the code with this book. Most
of the application files we’ll show in this chapter are from that code. The
example test files in Soggy Waffle have the extension .bak.exs so that they
won’t run when you run your tests, but they’re there for reference. If you
want to code along with the examples, you should do so inside of the pro-
vided Soggy Waffle application, adding test files in the locations we indicate
before the examples.

In theory, Soggy Waffle could work with any weather API as long as it returns
a timestamp and the weather conditions for that timestamp. As a best practice,
our application translates the API response into a list of SoggyWaffle.Weather
structs that it defines in lib/soggy_waffle/weather.ex with two fields, one for the
timestamp, datetime, and one for whether or not the weather condition trans-
lates to rain.

This means that our ResponseParser module will hold a lot of information specific
to the API we choose; in this case, that’s openweathermap.org. Notice the module
attributes in the code as well as the comment about where that information
came from.

unit_tests/soggy_waffle/lib/soggy_waffle/weather_api/response_parser.ex
defmodule SoggyWaffle.WeatherAPI.ResponseParser do

alias SoggyWaffle.Weather

@thunderstorm_ids [200, 201, 202, 210, 211, 212, 221, 230, 231, 232]
@drizzle_ids [300, 301, 302, 310, 311, 312, 313, 314, 321]
@rain_ids [500, 501, 502, 503, 504, 511, 520, 521, 522, 531]
@all_rain_ids @thunderstorm_ids ++ @drizzle_ids ++ @rain_ids

@spec parse_response(Weather.t()) ::
{:ok, list(Weather.t())} | {:error, atom()}

def parse_response(response) do
results = response["list"]

Enum.reduce_while(results, {:ok, []}, fn
%{"dt" => datetime, "weather" => [%{"id" => condition_id}]},
{:ok, weather_list} ->

possible weather codes: https://openweathermap.org/weather-conditions

report erratum • discuss

Testing with ExUnit • 5

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle/lib/soggy_waffle/weather_api/response_parser.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

new_weather = %Weather{
datetime: DateTime.from_unix!(datetime),
rain?: condition_id in @all_rain_ids

}

{:cont, {:ok, [new_weather | weather_list]}}

_anything_else, _acc ->
{:halt, {:error, :response_format_invalid}}

end)
end

end

Our test will need to pass in a response that’s shaped like data from the API,
and it’ll expect the response data to be in the shape of a list of SoggyWaffle.Weather
structs that it’s defined.

Now let’s open up a new test file at test/soggy_waffle/weather_api/response_parser_test.exs
in the provided Soggy Waffle code and start writing our first test! Copy the
code below into your file.

unit_tests/soggy_waffle_examples/weather_api/response_parser_test.exs
defmodule SoggyWaffle.WeatherAPI.ResponseParserTest doLine 1

use ExUnit.Case-

alias SoggyWaffle.WeatherAPI.ResponseParser-

alias SoggyWaffle.Weather-

5

describe "parse_response/1" do-

test "success: accepts a valid payload, returns a list of structs" do-

api_response = %{-

"list" => [-

%{"dt" => 1_574_359_200, "weather" => [%{"id" => 600}]},10

%{"dt" => 1_574_359_900, "weather" => [%{"id" => 299}]}-

]-

}-

-

assert {:ok, parsed_response} =15

ResponseParser.parse_response(api_response)-

-

for weather_record <- parsed_response do-

assert match?(-

%Weather{datetime: %DateTime{}, rain?: _rain},20

weather_record-

)-

-

assert is_boolean(weather_record.rain?)-

end25

end-

end-

end-

Chapter 1. Unit Tests • 6

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/weather_api/response_parser_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

This is a pretty basic test, but already a good bit is going on. An assert macro
is being called (line 15), and there are assertions inside of a list comprehension
(line 18). Let’s look at each piece separately.

Functions vs. Macros

The ExUnit tools are a mixture of macros and functions. From
your perspective, you’re safe to think of them all as functions, but
we’ve tried to be accurate when describing any specific code. For
more information on macros, check out the section in Elixir’s
Getting Started guide on macros.1

The assert call at line 15 works because if the function evaluates to true or
something “truthy,” the assert will pass. In our case, we’re handing it a pattern
match. If a pattern match is successful, it returns the data that matched the
pattern, which is “truthy.” ExUnit also provides the opposite, refute, which
will only pass if the expression it’s given as a parameter evaluates to false or
nil. Be careful, though, as refute doesn’t work with a pattern match in the way
you’d expect. If a pattern doesn’t match, a MatchError is raised. We’ll find a way
to handle this, if needed, shortly. Also, don’t make the common mistake of
thinking refute will pass with an empty list (refute []). refute will only pass if the
expression it’s given evaluates to false or nil. [] is empty, but it’s still a list. If
you want to assert that a list is empty, use Enum.empty?/1.

The last part for us to look at is the list comprehension at line 18. A couple
of things going on here are worth noting. The first is the comprehension itself.
The use of a list comprehension here means that we want to apply the same
assertions to multiple pieces of data. An Enum.each would work just as well
here and the choice of a list comprehension is purely a style choice in this
case. Using a list comprehension implies an assertion about the shape of our
response—that it’s enumerable. If the result can’t be iterated through, the
test will raise a Protocol.UndefinedError, revealing the bad value. The single element
pattern in our anonymous function implies, more specifically, that the
response is a list. If our code returned something that couldn’t be iterated
through, the test would fail with a Protocol.UndefinedError.

Let’s now look at the assertions inside the code block. The first one is passing
match?(%Weather{datetime: %DateTime{}, rain?: _rain}, weather_record) to assert. match?/2
is the other way of asserting on a pattern match. If you want to use refute with
pattern matching, this is how you would do it. Even though match? doesn’t
bind a value like using = would, you’ll still get a compile warning if you don’t

1. https://elixir-lang.org/getting-started/meta/macros.html

report erratum • discuss

Testing with ExUnit • 7

https://elixir-lang.org/getting-started/meta/macros.html
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

use an _ before the variable in the pattern. This assertion is focused solely
on the shape of the data and not on the values provided. Our parser is doing
more than one thing, and it’s often a best practice to split testing of different
responsibilities into multiple tests. If you have a failure in your tests, this
approach will lead you to the failing code faster.

The second assertion in the block, assert is_boolean(weather_record.rain?), is still
focused on the shape of the data and not on a specific value because convert-
ing weather IDs is additional functionality. Unit tests are typically quick to
run, and keeping them focused on a single aspect of your code can make
finding errors faster and easier. That’s OK because we’ll add other tests
shortly that will focus on specific values in the response.

Our next step is to run the test and see what happens. At the root level of
the application, run mix test and look for the response. If the test is written
correctly, it’ll pass and you’ll see a lovely dot representing a passed test. If
the test doesn’t pass, it’s likely that you have a typo somewhere. The errors
produced should guide you toward your mistake.

We mentioned before that we’d be adding more tests. But before we do, let’s
dive into some terminology so that we’re set up for success throughout the
rest of the book.

Running Tests Without Mix

While ExUnit works without utilizing Mix, it’s very unlikely that
you’ll find yourself writing many, if any, tests outside of a Mix
application. As a result, we’ll focus on using Mix and the test flow
that it entails.

Anatomy of a Test
As we begin our journey into the land of unit tests, let’s establish some basic
vocabulary and test theory. Software tests, no matter how complicated they
are, are comprised of no more than four stages. They have different names
depending on who you ask, so in this book we’ll use setup, exercise, verify,
and teardown. Simple tests may only have two of these stages; complex ones
might have cycles that repeat phases. Sometimes the order isn’t straightfor-
ward, but every test can be broken down into these four stages. Let’s take a
look at each one individually in the order that they “normally” occur.

Depending on the scope of the test, setup can be as simple as preparing data
to pass in as parameters to the code under test or it can mean staging data

Chapter 1. Unit Tests • 8

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

in some sort of shared state, like a database. This stage is very common; but
when testing purely functional code, setup is often not needed.

The exercise phase is always present. This is the call to run the code under
test. Without it, there’d be nothing to do.

Your tests make their assertions about the behavior of your code during the
verify phase. While sometimes inline with the exercise step, the verify stage
is always present in a test. Without verifying that your code behaves a certain
way, well, your tests would be pointless.

If your setup phase involved any impact on shared state, you’ll need to
return things to how they were beforehand during the teardown phase. If
there’s no shared state, like for a database, then this stage isn’t necessary.
Often tools are used to take care of this step automatically, like Ecto’s
sandbox, but that doesn’t mean this step doesn’t happen. Often when there
are “random” test failures, it’s because a test did not properly tear down
the data that was set up.

We mentioned that the order of the stages isn’t guaranteed to be setup,
exercise, verify, and teardown. Sometimes test code has to be written in a
different order than it is executed in. The most common case for this is
when a test double (a concept we’ll cover later) is used. If that test double
utilizes assertions, the code defining it will have to be written before the
exercise step, even though the actual assertions won’t be executed until
after the exercise step.

Earlier, we stated that complex tests may actually repeat some of these stages.
When you’re working in unit tests, a sign that your test might be doing too
much is if you see a second (or later) recurrence of a phase. User interface
tests, though, might need to have repeated stages, mirroring successive steps
through a user’s experience. We will cover that kind of testing in Chapter 6,
Testing Phoenix, on page 155. Within the context of this chapter, and of unit
tests, you can think of tests having each stage only once.

Now let’s look into how to structure your tests and what tools ExUnit pro-
vides to help organize tests, group them, and make your test suite easier
to maintain.

Organizing Your Tests
As well as making sure our code works, our test suite serves a secondary
purpose. If written well, it becomes a source of documentation for our code,
with text descriptions of how we expect the code to work and working examples

report erratum • discuss

Organizing Your Tests • 9

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

of how to exercise the code. This sounds like a lofty goal, but with a little
organization, it’s entirely achievable. Imagine a future you looking back at
code that you haven’t seen in months and trying to remember how it works
and how to use it. The more organized your test suite is, the more future you
will love past you for reducing the complexity of this challenge. That alone
can serve as motivation to think about the overall design of your tests. Fortu-
nately, ExUnit ships with some useful functions (and macros) that allow us
to organize an individual file in a way that’s readable and maintainable.

As we build more and more complicated tests, you’ll see these organizational
tools showing up in our examples. Let’s start by looking at those tools and
code examples and how you can use them to keep your test suite easier to
read and maintain.

Describing Your Tests
While it’s possible to have a readable test file with a flat organizational
structure, ExUnit gives us a good tool for grouping tests together within a
file, describe. This tool allows us to pass a description for the grouping and, as
we’ll discover shortly, to group tests that share a common setup. It’s important
to note that, unlike some other testing frameworks, the creators of ExUnit
made the decision to only allow one level of grouping, so you can’t nest describe
blocks. While this may seem counterintuitive at first, it strikes a healthy
balance between organizing your tests and avoiding a nesting nightmare for
setup.

As a general guideline, grouping your tests by function is a good place to
start, as laid out in the following example:

unit_tests/misc/describe.exs
defmodule YourApp.YourModuleTest do

use ExUnit.Case

describe "thing_to_do/1" do
test "it returns :ok, calls the function if the key is correct"
test "it does not call the function if the key is wrong"

end
end

You might have noticed that the description includes a /1 to denote arity (the
number of parameters the function takes). This is a style choice. You may
group your tests however you feel is most logical. Later in this book, when
we tackle integration tests, you may group your tests by something like the
endpoint they’re hitting. The point is to make it easier to read your tests so
you (and your collaborators) can decide what makes the most sense. One

Chapter 1. Unit Tests • 10

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/misc/describe.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

guide that can help drive your design is whether or not your functions have
a common setup.

Setup Blocks
While an individual test can contain its own setup code, sometimes you
realize you’re writing the same setup over and over. This situation is an
opportunity to consider a setup block instead. The code in a setup block will
be executed before each test inside of its scope. Since the code has the same
name as the stage in the test design, we’ll call the executable code a setup
block while referring to the stage of testing as setup.

A setup block needs to return a value that makes sense for what comes after
it. If the setup is to set state elsewhere and none of the values are useful in
the tests following it, the return value can be as simple as :ok. More often, the
return value from a setup block is passed to the tests it precedes. As Elixir
and ExUnit have matured, the common practice has become to have your
setup return a map of values that can be used in the subsequent test. When
testing purely functional code, this is often the only time you would use a
setup block, since there’s no shared state to set up. Let’s look at an example
of a setup block where no state is changed but we’ve decided that we don’t
want to redefine the same anonymous functions for each test.

unit_tests/misc/callbacks.exs
setup do

function_to_not_call = fn ->
flunk("this function should not have been called")

end

function_to_call = fn -> send(self(), :function_called) end

%{bad_function: function_to_not_call, good_function: function_to_call}
end

Remember that when you pull logic into a setup block, it makes it a little
harder to read an individual test. Not every value in your setup will be used
in every test, but if you’re pulling a value into your setup block, it should be
used in multiple tests. In the preceding example, it’s very unlikely that both
the bad function and the good function would ever be used in the same tests,
since one is used for success cases and the other for failure cases, but since
each is going to be used by multiple tests, they’re both worth pulling into the
common setup.

Accepting values from a setup in your tests requires a slight modification to
your test definition:

report erratum • discuss

Organizing Your Tests • 11

http://media.pragprog.com/titles/lmelixir/code/unit_tests/misc/callbacks.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

unit_tests/misc/callbacks.exs
test "does not call the function if the key is wrong",

%{bad_function: bad_function} do
assert {:error, _} =

YourModule.thing_to_do(:bad_first_arg, bad_function)
end

Adding a pattern as a second parameter to your test allows you to pull in
anything passed from the setup. If you have too many things being passed in
so that destructuring the map makes your test unreadable, you can always
just use a variable and pull what you need from it when you need it.

unit_tests/misc/callbacks.exs
test "does not call the function if the key is wrong", context do

assert {:error, _} =
YourModule.thing_to_do(:bad_first_arg, context.bad_function)

end

Choosing What to Move Into Common Setup

It can be easy to overreach on what code should be moved into
your setup. If you move too much into a common block, the pur-
pose of an individual test is hard to understand. You can avoid
this by choosing names that describe the things that you’re
accepting from the setup block. Instead of user, your variable could
be named user_with_completed_profile. Sometimes a long name can save
a lot of work for those who come after you.

The scope of your setup is set by the logical grouping of your tests. If your
setup is inside of a describe, it’ll be run before the tests grouped inside of that
describe. If it’s at the top of your test file—outside of any describes—it’ll be run
before all the tests in that file.

Your setups can build on top of each other. If you have a setup that’s common
to an entire file but also need a setup for your describe block, the setup in your
describe can accept values passed to it from the higher-up describe by adding a
pattern to the test’s parameters.

setup context do
additional_value = "example value"

Map.merge(context, %{additional_value: additional_value})
end

Adding a pattern can be helpful, but be careful that you’re selectively choosing
what should be moved into the higher-level setup block, since you’re starting
to spread the logic needed to understand each test to several different areas

Chapter 1. Unit Tests • 12

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/misc/callbacks.exs
http://media.pragprog.com/titles/lmelixir/code/unit_tests/misc/callbacks.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

of your file. There’s a lot of value in being able to read and understand a single
test without having to look in different places in the file or codebase.

Later we’ll discuss test cases, another construct to help reduce duplication
in your code. They provide an additional layer of setup, this time across
multiple test files. Because that setup is defined outside of your current test
file, it’s definitely worth taking the time to consider how to organize your tests
to make sure that everything is easy to follow. Even without nested describe
blocks, we’re getting close to a readability and maintenance nightmare if we
don’t think about that balance when organizing our tests.

One other feature of setup can help maintain clarity in your tests while still
reducing duplication in your individual tests or multiple setups: setup can accept
the name of a function or a list of function names instead of a block. Those
functions should conform to a pattern that accepts the existing context (the
data passed by previous setup blocks or functions) and returns an updated
context so that they can be piped. As you can see in the following example,
with_authenticated_user/1 expects a map of the data from previous setup functions,
adds more data to that map, and then returns that map.

unit_tests/misc/setup_with_helper_functions.exs
def with_authenticated_user(context) do

user = User.create(%{name: "Bob Robertson"})
authenticated_user = TestHelper.authenticate(user)

Map.put(context, :authenticated_user, authenticated_user)
end

If you have defined functions that follow that pattern, you can pass a list to
setup of the functions to execute:

unit_tests/misc/setup_with_helper_functions.exs
setup [:create_organization, :with_admin, :with_authenticated_user]

The functions are executed in the order they’re listed. This allows you to reuse
the same logic in different setup scopes and to keep your setup logic closer
(in the file) to where it’s being used. This functionality is intended to remove
the need for nested describe blocks. As you use it, you’ll find it to be a fairly
elegant solution.

While setup is the right solution for most scenarios, a couple of additional
functions can help organize your tests.

setup_all
Often you need a setup step, but you don’t need to repeat it before each test.
If your tests will work just fine with those steps being executed just one time

report erratum • discuss

Organizing Your Tests • 13

http://media.pragprog.com/titles/lmelixir/code/unit_tests/misc/setup_with_helper_functions.exs
http://media.pragprog.com/titles/lmelixir/code/unit_tests/misc/setup_with_helper_functions.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

for the whole file, you can use setup_all. Except for how often it’s run, setup_all
works just like setup, meaning that it can be used with a list of functions, a
block of code, or a pattern for the context and a block of code. The return
should match the pattern you’ve set up for the rest of your setup functions.

unit_tests/misc/callbacks.exs
setup_all do

function_to_not_call = fn ->
flunk("this function should not have been called")

end

function_to_call = fn -> send(self(), :function_called) end

%{bad_function: function_to_not_call, good_function: function_to_call}
end

Our example isn’t doing anything that needs to be repeated for every call. The
functions we define won’t change between the different tests. As a result, this
block is a good candidate for setup_all. Situations where setup_all is not the correct
solution include anything time-based where you need a new timestamp for
each test, or a setup for tests that require shared state and then alter that
state, which would leave it unusable for the next test. While we won’t cover
it in this chapter, tests that involve a data store are a good example of the
latter. When you use both, setup_all will be called first, and the context that it
returns will be passed into setup before being passed onto the test. For more
about the ordering and the test life cycle, check out Appendix 2, Test Life
Cycle, on page 221.

on_exit
We’ve covered the setup phase of testing and the tools that allow us to reduce
setup repetition. But ExUnit also provides us with an on_exit callback that lets
us organize the teardown stage in a similar way. This callback can be defined
inside your setup block or within an individual test.

unit_tests/misc/callbacks.exs
setup do

file_name = "example.txt"
:ok = File.write(file_name, "hello")

on_exit(fn ->
File.rm(file_name)

end)

%{file_name: file_name}
end

Notice that the return value of the setup is still the last line of the block. on_exit
will return :ok, which is likely not useful for your setup. In this example, the

Chapter 1. Unit Tests • 14

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/misc/callbacks.exs
http://media.pragprog.com/titles/lmelixir/code/unit_tests/misc/callbacks.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

setup has a return of the file name, giving the tests access to a file that’s
guaranteed to be there. As with all anonymous functions in Elixir, the function
you pass to on_exit is a closure, so you can reference any variables defined
before the function is defined.

on_exit is powerful because even if your test fails spectacularly, the anonymous
function will still be executed. This helps guarantee the state of your test
environment, no matter the outcome of an individual test. It isn’t as common,
but on_exit is available to you in an individual test as well. If you want to keep
your setup inside of a single test but need the guarantee that your teardown
will be done, no matter the test outcome, use on_exit.

Now that we have more tools for keeping our tests organized, we can jump
back to writing more tests utilizing these organizational tools.

Where Are Doctests?

Elixir makes documentation a first-class citizen, something few other languages do.
Anyone writing Elixir code is encouraged to add documentation to their public func-
tions. Part of that functionality is doctests. While they have “test” in their name,
they’re actually a tool to make sure the examples in your documentation are up-to-
date. We wholeheartedly encourage you to learn more about doctests, but we felt like
they were out of scope for this book, given that doctests aren’t part of your test suite
and aren’t focused on the behavior of your code but on the accuracy of your documen-
tation. Elixir’s Getting Started guide does a great job of explaining doctests in more
detail if you want to dive deeper.a

a. https://elixir-lang.org/getting-started/mix-otp/docs-tests-and-with.html#doctests

Creating Comprehensive Test Coverage
We’ve covered some of the very basics of testing and delved into a bit of test
theory. In order to provide solid coverage of a file, we’ll need to build on that
knowledge by pulling in some features of Elixir itself, as well as some
optional features of ExUnit’s assertions. These skills will help you write
maximum test coverage with minimal code and without trade-offs.

Using a Setup Block
Let’s jump back to where we left our Soggy Waffle test, SoggyWaffle.WeatherA-
PI.ResponseParserTest. We’ll make a modification to our existing test before adding
some more tests to our response parser. The data we used in our test was
hand-coded. That’s a great way to start, but we don’t own the original source
of the data, the weather API. While it’s easy to read the hard-coded data, it’s

report erratum • discuss

Creating Comprehensive Test Coverage • 15

https://elixir-lang.org/getting-started/mix-otp/docs-tests-and-with.html#doctests
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

actually a significantly pared down version of the real data from the weather
API. It would be nice to be working with data that’s as realistic as possible.
To do this, we can use a fixture file. A simple curl call to the API can provide
an actual JSON response payload. We’ve saved that to a file in the application,
test/support/weather_api_response.json. Let’s modify our test to use that data instead
of the handwritten values we used earlier:

unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
describe "parse_response/1" doLine 1

setup_all do-

response_as_string =-

File.read!("test/support/weather_api_response.json")-

5

response_as_map = Jason.decode!(response_as_string)-

%{weather_data: response_as_map}-

end-

-

test "success: accepts a valid payload, returns a list of weather structs",10

%{weather_data: weather_data} do-

assert {:ok, parsed_response} =-

ResponseParser.parse_response(weather_data)-

-

for weather_record <- parsed_response do15

assert match?(-

%Weather{datetime: %DateTime{}, rain?: _rain},-

weather_record-

)-

20

assert is_boolean(weather_record.rain?)-

end-

end-

Let’s update our test to use a setup block (line 2). In the setup code, you’ll see
that we’re reading the contents of a JSON file (line 3) and then decoding it to
an Elixir map (line 6). This leaves us with data parsed just like it would have
been by other parts of the application before being passed to ResponsePars-
er.parse_response/1. We now have real data, so let’s use it in the test.

Our test has been modified at line 11 to accept a test context. This is how
the data gets from the setup block into the test. Note that we destructured
the map so that we have immediate access to the variable, weather_data. After
that, we need to remove the old data setup and replace the parameter in the
exercise call with the new variable (line 12). Run mix test; because our test was
focused on the shape of the data and not on specific values, it should pass.

There are trade-offs to writing our test this way. As mentioned earlier, we
benefit from the comfort of knowing that our test data is as realistic as it gets.
To get there, though, we’ve sacrificed some of the readability of our test. The

Chapter 1. Unit Tests • 16

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

data we’re passing in is hidden in another file in JSON, a format that isn’t as
easy to read as a pared-down Elixir map. Additionally, to make the fixture
data available to other tests, we’ve moved it into a setup block.

Setup blocks are wonderful for test organization and for preventing repetition
in our test suite, but they remove some of the test setup from the test and
move it to another part of the file. Anytime the logic of a test extends outside
of the test itself, it’s harder to read and understand. That said, like everything
we do, we need to make a call on which way to go and which test design gives
us the best balance of coverage and readability/maintainability.

Setting Module Attributes in Test Files
Now that our first test is using a fixture, we’ll add tests that focus on spe-
cific values in the weather API response, meaning we won’t use the fixture
data because we don’t know the specific values. Since the module under
test (SoggyWaffle.WeatherAPI.ResponseParser) is focused on translating data specific
to an external API into internal data, the module must have a lot of
knowledge specific to that API. This shows up in the form of all the various
weather condition IDs at the top of the module.

Our tests will have to have that same level of knowledge so that they can test
the code thoroughly. This means adding a copy of all of the IDs to our test
file. It may seem like a good idea to put them somewhere where both the test
and the code under test can access them, but that’s discouraged. Any acci-
dental modifications to that list could cause our test to miss a needed case,
allowing our code under test to make it to production with a bug. You should
avoid using the Don’t Repeat Yourself (DRY) principle when the instances are
split between your tests and your code under test.2

In our case, we know that more than one test will likely make use of those
lists of IDs, so we’ll add them as module attributes to the top of the test file.

unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
@thunderstorm_ids {

"thunderstorm",
[200, 201, 202, 210, 211, 212, 221, 230, 231, 232]

}
@drizzle_ids {"drizzle", [300, 301, 302, 310, 311, 312, 313, 314, 321]}
@rain_ids {"rain", [500, 501, 502, 503, 504, 511, 520, 521, 522, 531]}

2. https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

report erratum • discuss

Creating Comprehensive Test Coverage • 17

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Leveraging List Comprehensions
Are you ready for something wild? We’re going to wrap our new test in a list
comprehension. Add the following code to your test file and we’ll step through
it. Keep the first for at the same level of indentation as the test before it.

unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
for {condition, ids} <- [@thunderstorm_ids, @drizzle_ids, @rain_ids] doLine 1

test "success: recognizes #{condition} as a rainy condition" do-

now_unix = DateTime.utc_now() |> DateTime.to_unix()-

-

for id <- unquote(ids) do5

record = %{"dt" => now_unix, "weather" => [%{"id" => id}]}-

-

assert {:ok, [weather_struct]} =-

ResponseParser.parse_response(%{"list" => [record]})-

10

assert weather_struct.rain? == true-

end-

end-

end-

Once you’ve got the code in, run mix test to make sure that your tests are
passing.

Before we talk about the list comprehension, let’s look at the data that we’re
passing into the function at the exercise step. It’s a hand-coded map. Now
that we’ve tested that our code handles correctly shaped data by passing a
real response, we can trust that if we pass in correctly shaped data, the code
will work fine. The payload has been distilled to the parts that our code cares
about: a map with “dt” and “weather” keys, with the ID nested in a list of
maps under the “weather” key. Keeping the input payload so small will help
us keep our tests easier to understand. Additionally, because we’re defining
the values inside our test file (and inside the test in this case), we’re safe to
make assertions on specific values without worrying about hard-to-maintain
tests.

The list comprehension actually adds three new tests, one for each kind of
weather condition that we’re interested in: thunderstorms, drizzle, and rain.
List comprehensions are useful when you have nearly identical tests but want
your errors separated. You’ll see that we had to use unquote,3 a metaprogram-
ming macro, to have access to the information inside the test. This can be
especially confusing since it’s not inside of a quote block, but it works and it’s
the only piece of metaprogramming we’ll introduce in this book. You’ll need

3. https://hexdocs.pm/elixir/Kernel.SpecialForms.html#unquote/1

Chapter 1. Unit Tests • 18

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
https://hexdocs.pm/elixir/Kernel.SpecialForms.html#unquote/1
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

to have a way to provide a unique test name for each iteration, like the way
we’re using the condition in the test name. If any of these tests fail, the output
from ExUnit will tell you which test it is, making it easier to hunt down the
issue.

1) test parse_response/1 success: recognizes drizzle as a rainy condition➤

(SoggyWaffle.WeatherAPI.ResponseParserTest)
test/soggy_waffle/weather_api/response_parser_test.exs:32

Writing Custom Test Failure Messages
While list comprehensions allow us to cover more test cases with less test
code, they run the risk of obfuscating your errors. If your test fails but you
can’t tell which values it was asserting against, you’ll lose time having to
debug the failure. In the test we just wrote, how would we know which ID we
were testing when we had the wrong value of rain? Let’s update that assertion
to use a custom failure message:

unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
for {condition, ids} <- [@thunderstorm_ids, @drizzle_ids, @rain_ids] doLine 1

test "success: recognizes #{condition} as a rainy condition" do2

«test body»3

4

assert weather_struct.rain? == true,5

"Expected weather id (#{id}) to be a rain condition"6

end7

end8

Adding a custom error message with string interpolation (line 6) now gives
us everything we need to know if the test fails. Having this information is very
important because otherwise it’ll be impossible to see which specific code
caused the test to fail. When designing your tests, take time to make sure
that the failure message points you straight at the issue. It doesn’t take long,
and you, or your teammates, will thank you later.

1) test parse_response/1 success:
recognizes drizzle as a rainy condition
(SoggyWaffle.WeatherAPI.ResponseParserTest)

test/soggy_waffle/weather_api/response_parser_test.exs:32
Expected weather id (300) to be a rain condition➤

code: for id <- unquote(ids) do

Covering All the Use Cases
While we will discuss property-based testing in a later chapter, we often don’t
need anything outside of ExUnit and Elixir to cover the rest of our cases.
We’ve added a test for the conditions that will return true for rain, but now

report erratum • discuss

Creating Comprehensive Test Coverage • 19

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

we need a test to make sure that no other codes will generate a true value.
Add another test to your file with the following code:

unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
test "success: returns rain?: false for any other id codes" doLine 1

{_, thunderstorm_ids} = @thunderstorm_ids-

{_, drizzle_ids} = @drizzle_ids-

{_, rain_ids} = @rain_ids-

all_rain_ids = thunderstorm_ids ++ drizzle_ids ++ rain_ids5

now_unix = DateTime.utc_now() |> DateTime.to_unix()-

-

for id <- 100..900, id not in all_rain_ids do-

record = %{"dt" => now_unix, "weather" => [%{"id" => id}]}-

10

assert {:ok, [weather_struct]} =-

ResponseParser.parse_response(%{"list" => [record]})-

-

assert weather_struct.rain? == false,-

"Expected weather id (#{id}) to NOT be a rain condition."15

end-

end-

It’s time for another test run (mix test) to make sure your tests are green.
Running your tests regularly is always a good way to keep from getting too
far down a rabbit hole before you realize you have a problem.

These tests are very thorough in that they test all possible positive values.
We’re able to do that because we have a known, finite list of rainy weather
IDs. We don’t have as comprehensive a list of non-rainy IDs. As a result,
looking at the documentation from the API, we’ve narrowed the range of codes
that we could get back to between 100 and 900. We’re using a list comprehen-
sion again, but this time we’re using the filter function of a list comprehension
to, on the fly, build a list of all IDs between 100 and 900 except the ones we
know to be rain IDs (line 8). Even though this means we’re testing a lot of
values, because our code is purely functional, the test will still run fairly
quickly. We again gave ourselves a custom error message to make sure that
if this test fails, we know the ID that caused the failure.

This test could have used a list comprehension in either of the ways we talked
about (creating a new test or a new assertion for each value) and there are
trade-offs with both. Generating a new test will remove the need for custom
error messages, but it’ll increase the actual number of tests that are run. It’s
up to you to decide which makes the most sense for you when you decide
that a list comprehension is the appropriate tool to reach for.

Chapter 1. Unit Tests • 20

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Testing Error Cases
Every test we’ve written has focused on success cases. We add “success”
and “error” to the beginning of our test names to help keep them sorted
mentally, but that’s a style choice in response to not being able to nest
describe blocks in our tests. Now let’s look at the places where our code
might not return a success response, in this case due to bad input data.
Since we want to test different functionality in separate tests, let’s choose
the malformed weather data.

Our application is fairly small and isn’t intended for customer-facing produc-
tion. If it were, we’d have more tests and would leverage Ecto Schema and
Changeset functions. We’ll cover examples of that in Chapter 4, Testing Ecto
Schemas, on page 101. For now, we’re going to add some basic coverage with
the understanding that once you’re done with this book, you’ll have better
tools to write even better validation tests for payloads. Add a new test inside
the same describe block; but this time, it’s an “error” test:

unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
test "error: returns error if weather data is malformed" do

malformed_day = %{
"dt" => 1_574_359_200,
"weather" => [
%{

"wrong_key" => 1
}

]
}

almost_correct_response = %{"list" => [malformed_day]}

assert {:error, :response_format_invalid} =
ResponseParser.parse_response(almost_correct_response)

end

Run your tests again with mix test.

By comparison, this test is almost boring. It’s able to be simple because we
already have a test that asserts that if we pass good data to the code under
test, the code parses it correctly. As a result, we just need to focus on one
small thing, a missing “id” key. It’s worth noting that, by choosing to name
the bad key “wrong_key”, we’re making our test self-documenting. Small
opportunities like this occur everywhere in your tests.

We’ll add one more test to our file to cover a missing datetime in the payload.
Add this one last test in that same describe block:

report erratum • discuss

Creating Comprehensive Test Coverage • 21

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
test "error: returns error if timestamp is missing" do

malformed_day = %{
wrong key
"datetime" => 1_574_359_200,
"weather" => [
%{

"main" => 1
}

]
}

almost_correct_response = %{"list" => [malformed_day]}

assert {:error, :response_format_invalid} =
ResponseParser.parse_response(almost_correct_response)

end

This test is almost identical to the previous test; but because it’s testing a
different part of the functionality of the code under test, we’ll leave it as a
separate test instead of finding a way to use a list comprehension to DRY
them up. If you think about your tests as documentation, your test names
are the top-level reference, and combining tests that aren’t focused on the
same thing removes some of your documentation.

Now that we’ve covered the anatomy of a test and written a comprehensive
test file, it’s time to start looking at how the design of our code impacts the
design of our tests. We’ll start by looking at testing purely functional code.

Testing Pure Functions
The simplest code to test is a pure function.4 A function is “pure” if, every
single time you call the function with the same parameters, it returns the
exact same answer and if it has no side effects. If a dependency can change
the result, the function is not pure. When testing a pure function, the test is
able to focus on the data going in—the function parameters—and the response.
That’s it.

With pure functions, the only setup we need is to prepare the data for the
parameters. The exercise step for the test is a function call, passing the input
parameters. The verify stage is just assertions on the response, and only the
response. There is no teardown because setup was only creating the parame-
ters, which have no impact outside of the test. Let’s take a look at some
examples of tests on a pure function.

4. https://en.wikipedia.org/wiki/Pure_function

Chapter 1. Unit Tests • 22

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_api/response_parser_test.exs
https://en.wikipedia.org/wiki/Pure_function
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

The one function that we’ve tested so far, SoggyWaffle.WeatherAPI.ResponsePars-
er.parse_response/1, is a pure function. Our tests never had to worry about side
effects and they consistently get the same response from the code under test,
no matter how many times they’re run.

While testing pure functions is simple, most applications can’t be comprised
entirely of pure functions, so we have to look at two strategies for testing code
that has state: moving logic into pure functions or designing functions to use
one of the available methods of dependency injection, allowing us to isolate
our code. We’ll explore moving our logic first and then start to delve into code
isolation.

Refactoring Toward Pure Functions
When you have a module that’s really hard to test, refactoring as much of
the logic into pure functions is the easiest way to simplify testing, if you can
make it work. We’ll deep dive into an example of this in the GenServer section
of Chapter 3, Testing OTP, on page 67, but let’s make sure we understand
the basic ideas before we move on. When code has an external dependency,
it rarely acts as a straight pass-through of the values of that dependency.
Most of the time, it will make a call to a dependency and then manipulate
the response before returning the result of the function call. The more
manipulation your code does of that data, the better a candidate it is for
refactoring the logic into a pure function.

Let’s look at a visual representation of a function that both calls out to a
dependency and manipulates that data before returning its response.

The section of our drawing labeled “manipulate data” is code that changes
the data without any external dependencies. If the code has significantly dif-
ferent outcomes, testing this function can be pretty painful, depending on

report erratum • discuss

Refactoring Toward Pure Functions • 23

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the data returned from the dependency. Each test, for each possible way that
logic can behave, will have to use some kind of mechanism to guarantee that
the dependency returns a predictable, known response. We’ll talk about one
of the ways to do that in the next section, but the alternative is to refactor
your code so that specifically that portion of logic (“manipulate data”) is pulled
out of the function and into a new, pure function. That way it becomes a new
dependency for our original function, as you can see in the following figure.

This may seem as though it makes things more complicated, but it doesn’t.
What we’ve done is pulled that code into a place where we can test it easily,
having multiple tests with either a simple setup or no setup, an exercise
phase, and a verify phase. When we learn about isolating code, you’ll get a
better idea of the complexity we’re able to avoid. Once that individual piece
of logic is well tested, it can now be considered safe to pull into the testing
black box for our original function. We know that code works and that it’ll
behave consistently every time it’s given the same input. We no longer need
to figure out how to create scenarios where the original dependency returns
different values, and we can reduce the number of tests needed to test the
original function.

Refactoring to pure functions works if you want to pull the logic into a new
function in your existing module or into a new function in a new module. The
only thing to remember is that it needs to be a public function and it needs
to be well tested.

Earlier in this chapter, we tested the SoggyWaffle.WeatherAPI.ResponseParser. Then
we discussed pure functions and named SoggyWaffle.WeatherAPI.ResponsePars-
er.parse_response/1 as an example. That module is only used by one other module,
SoggyWaffle. It would’ve been very easy for us to have just left all of the response-
parsing logic inside of SoggyWaffle. That would’ve looked something like this:

Chapter 1. Unit Tests • 24

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

unit_tests/soggy_waffle_examples/overloaded_soggy_waffle.ex
defmodule SoggyWaffle do

alias SoggyWaffle.Weather

@thunderstorm_ids [200, 201, 202, 210, 211, 212, 221, 230, 231, 232]
@drizzle_ids [300, 301, 302, 310, 311, 312, 313, 314, 321]
@rain_ids [500, 501, 502, 503, 504, 511, 520, 521, 522, 531]
@all_rain_ids @thunderstorm_ids ++ @drizzle_ids ++ @rain_ids

def rain?(city) do
with {:ok, response} <- SoggyWaffle.WeatherAPI.get_forecast(city) do
weather_data = parse_response(response)➤

SoggyWaffle.Weather.imminent_rain?(weather_data)
end

end

defp parse_response(response) do
«parsing logic»

end
end

The code organization isn’t awful, and the module isn’t very large. This would
likely be maintainable since this application isn’t expected to grow much. In
fact, the code looks almost deceptively simple. It’s getting data from an API
(not purely functional), parsing the data (purely functional), and then checking
for rain (purely functional).

From a code design standpoint, this function is coordinating three different
types of work. It’s good practice to keep functions that coordinate the
responses from other functions as light on internal logic as possible. Aside
from good software design, testing a function that coordinates multiple kinds
of logic is a challenge even when it doesn’t contain much of its own logic. If
conditions can vary before the internal logic, you’ll have to write tests that
set up every condition to make sure that code is exercised by your tests cor-
rectly. Everything about this scenario points to refactoring toward pure
functions, as we did with the SoggyWaffle.WeatherAPI.ResponseParser.

Alas, there are plenty of times where we can’t draw clear lines about what
can be extracted into a new function. When that’s the case, we still have
another tool at our disposal to create a controlled environment in which to
exercise our code. We can create a replacement for the dependency, isolating
our code. Let’s take a look at that next.

Isolating Code
We can employ multiple strategies to test our code in a way that removes
outside variables, controlling the situation in which our code under test must

report erratum • discuss

Isolating Code • 25

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/overloaded_soggy_waffle.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

perform and allowing us to expect a specific outcome. We’ll cover the easiest
method—injecting dependencies and creating basic substitutes (test dou-
bles)—in order to add another option to your testing tool belt.

Dependency Injection
Before we can leverage dependency injection to isolate the behavior of our
code under test, let’s take a moment to define dependency injection. A
dependency is any code that your code relies on. Dependency injection (often
abbreviated as DI) is a fancy name for any system that allows your code to
utilize a dependency without hard-coding the name of the dependency,
allowing any unit of code that meets a contract to be used. In Elixir, we have
two common ways to inject a dependency: as a parameter to a function and
through the application environment. Utilizing DI in our tests allows us to
create replacement dependencies that behave in predictable ways, allowing
the tests to focus on the logic inside the code under test.

Passing a dependency as a parameter is the more common way to inject
dependencies in unit testing, which is the style that we’ll focus on first. In
later chapters, we’ll cover dependency injection via the application environ-
ment, as well as Mox, a tool that aids in creating test doubles.

Test Double Terminology

In this chapter, we’ll refer to stand-ins for production code for the
purposes of testing as “test doubles.” This covers code that can
return a prescribed result and even assert that it was called, with
or without specific parameters. We’ll dive deeper into different
kinds of doubles in the next chapter.

Passing a Dependency as a Parameter
Passing a dependency as a parameter is as straightforward as it sounds and
is often the simplest solution. We can choose to either pass a function or a
module as a parameter. When you inject a module as shown in the following
code, it must meet an implicit contract. Otherwise calling the code will raise
an exception. The SoggyWaffle module has been written to allow a weather
forecast function to be passed in:

unit_tests/soggy_waffle/lib/soggy_waffle.ex
defmodule SoggyWaffle doLine 1

alias SoggyWaffle.WeatherAPI-

def rain?(city, datetime, weather_fn \\ &WeatherAPI.get_forecast/1) do-

with {:ok, response} <- weather_fn.(city) do-

{:ok, weather_data} =5

Chapter 1. Unit Tests • 26

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle/lib/soggy_waffle.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

SoggyWaffle.WeatherAPI.ResponseParser.parse_response(response)-

-

SoggyWaffle.Weather.imminent_rain?(weather_data, datetime)-

end-

end10

end-

Here, at line 3, we’re providing a function reference as the default parameter
for the injected dependency. This pattern allows us to not have to pass in the
real dependency during execution while allowing us to pass in a double during
testing. Injecting a function is a tool to reach for when you have a complicated
dependency that might return inconsistent results even within the same test
setup. Injecting a double allows you to remove unknown factors and give your
code under test a consistent environment in which it is tested. Injecting a
whole module, which we’ll explore in the next chapter, can be useful when
your code will call more than one function on that module.

In our code, the other two dependencies, SoggyWaffle.WeatherAPI.ResponseParser and
SoggyWaffle.Weather, are purely functional and are separately well tested. As a
result, we can save ourselves extra work by not worrying about injecting
doubles for those dependencies. They’ll never produce a different result. The
only part of the code that we need to remove from the test scenario, which is
why we call this code isolation, is the call to the weather API at line 4. It very
easily could return different results depending on when the code is executed,
preventing our test from being able to expect exact results.

Now that we added a mechanism to inject the dependency, let’s write a test
that can leverage that mechanism to create a scenario where the result should
always be the same. Add the following test file (test/soggy_waffle_test.exs) to your
application.

unit_tests/soggy_waffle_examples/test/soggy_waffle_test.exs
defmodule SoggyWaffleTest doLine 1

use ExUnit.Case-

-

describe "rain?/2" do-

test "success: gets forecasts, returns true for imminent rain" do5

now = DateTime.utc_now()-

future_unix = DateTime.to_unix(now) + 1-

expected_city = Enum.random(["Denver", "Los Angeles", "New York"])-

test_pid = self()-

10

weather_fn_double = fn city ->-

send(test_pid, {:get_forecast_called, city})-

-

data = [-

%{15

report erratum • discuss

Isolating Code • 27

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

"dt" => future_unix,-

"weather" => [%{"id" => _drizzle_id = 300}]-

}-

]-

20

{:ok, %{"list" => data}}-

end-

-

assert SoggyWaffle.rain?(expected_city, now, weather_fn_double)-

25

assert_received {:get_forecast_called, ^expected_city},-

"get_forecast/1 was never called"-

end-

end-

end30

The major feature of this test is the definition and use of a function-style test
double, weather_fn_double, at line 11. It matches the contract of SoggyWaffle.Weather-
API.get_forecast/1, but, unlike the real function, it’ll always return the exact same
response. Now our test can assert on specific values, helping us to know that
the module under test, SoggyWaffle, is behaving correctly.

Notice, though, that the test double doesn’t just meet the contract, it also
has a mechanism to report that the function was called and to send the
parameter passed to it back to the test, seen at line 12. When the double is
called, the module will send the test process the {:get_forecast_called, city} message.

The test code at line 26 makes sure that the function was called, but it also
ensures that the correct value was passed to it. We call this style of testing
an expectation. This way, if that dependency is never called, the test will fail.
This kind of expectation is mostly useful when there’s an expected side effect
of your code and your tests are concerned with making sure it happens.
Admittedly our test is just making a query via the function call, so the
expectation isn’t totally necessary in this case, but it still illustrates well how
to add an expectation to a test double.

Some other features of this test are worth noting before we move on. The code
under test uses time comparisons in its business logic, actually found in a
functional dependency, SoggyWaffle.Weather. Because we aren’t isolating Soggy-
Waffle from that dependency, knowledge of the time comparison has now bled
up into the knowledge needed to test SoggyWaffle. This ties back to our earlier
discussion of defining the unit, or black box, for our test. Because SoggyWaf-
fle.Weather is well tested, there is little downside to taking this approach, as it
will prove to be easier to understand and maintain in the long run, a very
important priority when we design our tests.

Chapter 1. Unit Tests • 28

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

The anonymous function is defined inside of the test at line 11, as opposed
to a named function in the same file, because it needs to have access to the
value bound to future_unix. Additionally, we have to define the test’s process ID
(or PID) outside of the function because self() won’t be evaluated until the
function is executed, inside the process of the code under test, which could
have a different PID than our test. Because anonymous functions are closures
in Elixir, the value of future_unix is part of the function when it gets executed.
The call to self() is evaluated at the definition of the anonymous function, with
the value being the PID of that test process. Leveraging closures is one of the
advantages of function-style dependency injection. We’ll examine other DI
tools later that give us similar power.

One last, notable feature of this test that isn’t related to dependency injection
is the use of randomized data at line 8. When test data is incidental, meaning
it shouldn’t change the behavior of your code, try to avoid hard-coded values.

Don’t worry about this issue when you’re making your first pass on a test.
But before you consider that test complete, we suggest you look for places
where you can switch from hard-coded values to randomized data. While you
aren’t looking to try to test your code with every possible value that could be
passed to it (that’s more in line with property-based testing, covered in
Chapter 7, Property-Based Testing, on page 187), it’s possible to accidentally
write code that only passes with a single specific input. That’s obviously not
ideal, so it’s nice to reach for the low-hanging fruit and add a little variation
to what’s passed in. In this case, there’s no benefit to testing all of the city
options because the value of the string itself won’t change anything: it’s just
being passed to the weather function. Our test’s concern is that the correct
value is passed to the double we injected. While we have a hard-coded list of
possible cities, there are libraries that can help generate random data, like
Faker.5 But even handling it locally like we did here will net you the benefits
without having to pull in a new dependency.

Be careful, though. The pursuit of dynamic tests like this can go too far,
leaving your test hard to understand and hard to maintain. Additionally, the
test must have a way to know what data it’s using, and the assertions should
be able to take that into account.

Finer Control over Dependency Injection
An alternative to injecting a whole function is to pass in a single value. An
example you might see in code is when the outside dependency is the system

5. https://hex.pm/packages/faker

report erratum • discuss

Isolating Code • 29

https://hex.pm/packages/faker
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

time. If your code under test needs to do something with system time, it’s
very difficult for your tests to assert a known response or value unless you
can control system time. While controlling your code’s concept of system time
is easy in some languages, it isn’t in Elixir. That makes this scenario a perfect
candidate for injecting a single value. The following code allows for an injected
value, but it defaults to the result of a function call if no parameter is passed:

unit_tests/soggy_waffle/lib/soggy_waffle/weather.ex
defmodule SoggyWaffle.Weather doLine 1

@type t :: %__MODULE__{}-

-

defstruct [:datetime, :rain?]-

5

@spec imminent_rain?([t()], DateTime.t()) :: boolean()-

def imminent_rain?(weather_data, now \\ DateTime.utc_now()) do-

Enum.any?(weather_data, fn-

%__MODULE__{rain?: true} = weather ->-

in_next_4_hours?(now, weather.datetime)10

-

_ ->-

false-

end)-

end15

-

defp in_next_4_hours?(now, weather_datetime) do-

four_hours_from_now =-

DateTime.add(now, _4_hours_in_seconds = 4 * 60 * 60)-

20

DateTime.compare(weather_datetime, now) in [:gt, :eq] and-

DateTime.compare(weather_datetime, four_hours_from_now) in [:lt, :eq]-

end-

end-

Looking at our function signature in line 7, we can see that without a value
passed in, the result of DateTime.utc_now/0 will be bound to the variable datetime.
Our tests will pass a value in, overriding the default, but the code will use
the current time when running in production. By allowing our function to
take a known time, we can remove the unknown. When running in production,
your code will never be passed another value, but testing it just got a lot
easier. Our tests can now create a controlled environment in which to test
our code.

unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_test.exs
defmodule SoggyWaffle.WeatherTest doLine 1

use ExUnit.Case-

alias SoggyWaffle.Weather-

-

describe "imminent_rain?/2" do5

test "returns true when it will rain in the future" do-

Chapter 1. Unit Tests • 30

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle/lib/soggy_waffle/weather.ex
http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

now = datetime_struct(hour: 0, minute: 0, second: 0)-

one_second_from_now = datetime_struct(hour: 0, minute: 0, second: 1)-

-

weather_data = [weather_struct(one_second_from_now, :rain)]10

-

assert Weather.imminent_rain?(weather_data, now) == true-

end-

Our code under test is all time-based, with “the future” being very important.
By passing in a value, we’re able to strictly control the conditions in which
our code is executed, isolating our code under test from its dependency,
system time (via DateTime.utc_now/0). This is especially important because we
need alignment between “now,” when the code is executing, and the time in
the weather data passed into the function.

Notice the one-second difference between “now” and the weather data. This is
a practice called boundary testing. Our code is looking for values in the future,
and we have made the future as close to the boundary as we can so that we
can be certain that any time more recent than that will also pass the test.
While technically our data could have been one microsecond in the future,
the data our application will get from the weather API is granular only down
to the second, so we’ll stick with a unit of time that most people are more
familiar with, the second. Whenever you’re writing tests for code that does
comparisons, you should strive to test right at the boundaries. This is even
more important if you’re dealing with any time zone–based logic, as testing
too far from a boundary can hide bad time-zone logic.

In our test, there are calls to two helper functions, datetime_struct/1 and weath-
er_struct/2. They can be explained fairly easily: datetime_struct/1 returns a %Date-
Time{} struct where all the values are the same each time except the overrides
for hour, minute, and second, while weather_struct/2 returns SoggyWaffle.Weather
structs as defined in the module of the same name in our application. These
allow us to easily construct test data in a way that improves the readability
of the test. Let’s see the definitions for these helper functions:

unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_test.exs
defp weather_struct(datetime, condition) do

%Weather{
datetime: datetime,
rain?: condition == :rain

}
end

defp datetime_struct(options) do
%DateTime{

calendar: Calendar.ISO,
day: 1,

report erratum • discuss

Isolating Code • 31

http://media.pragprog.com/titles/lmelixir/code/unit_tests/soggy_waffle_examples/test/soggy_waffle/weather_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

hour: Keyword.fetch!(options, :hour),
microsecond: {0, 0},
minute: Keyword.fetch!(options, :minute),
month: 1,
second: Keyword.fetch!(options, :second),
std_offset: 0,
time_zone: "Etc/UTC",
utc_offset: 0,
year: 2020,
zone_abbr: "UTC"

}
end

Be careful, though, because helper functions like this can become a mainte-
nance nightmare. When writing helper functions for your tests, try to keep
them defined in the same file as the tests using them, and try to keep them
simple in functionality, with clear, explanatory names. If you design the helper
function’s signature to enhance the readability of your tests, all the better.
In the case of our datetime_struct/1, the signature takes a keyword list, letting
the call itself highlight what’s important about the return value.

The keys aren’t necessary since plain values would have sufficed, but they
make it fairly easy to understand the difference in the return values at lines
7 and 8 of the test body from the SoggyWaffle.WeatherTest code sample on page
30. All the other values will be the same. By contrast, weather_struct/2 only takes
plain values; but intentional parameter naming, both of the variable name
and that atom, still keep the call easy to understand.

For unit testing, injecting dependencies through the API will help keep your
code clean and your tests easy and controlled. As you move on to dealing
with integration testing, you’ll need to explore other methods of dependency
injection since you won’t necessarily have the ability to pass a dependency
in from your tests like you would with a unit test. Both of these ways of
injecting dependencies are simple and easy to understand. Ultimately, that’s
the best argument for using them.

Wrapping Up
After writing our first tests, we dug into how to define the scope of a unit test.
We then explored the tools ExUnit provides us to organize our tests, rounding
out our exploration with ways to design our code to be more testable: refac-
toring to pure functions or leveraging dependency injection. The foundation
we’ve created—organizing test files, understanding the stages of a test, com-
bining list comprehensions with assertions, and designing our code to be

Chapter 1. Unit Tests • 32

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

testable—will serve as a starting point for all of the additional concepts in
this book.

In the next chapter, we’ll expand the scope of our testing black box through
integration testing. You’ll see how most of the patterns can be scaled when
testing across large parts of the application.

report erratum • discuss

Wrapping Up • 33

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

CHAPTER 2

Integration and End-to-End Tests
In the real world, it’s rare that our applications are made only of pure func-
tions. More frequently, a production application is made of many moving
pieces that interact with each other and, perhaps most importantly, with
external systems as well. We want to be confident that all the pieces work
together and that the integrations with external systems work correctly.
However, testing becomes more complex in this scenario. For example, say
our application consumes the Twitter API for sending status updates as tweets.
How do we test this behavior in an automated way without publishing any
tweets? How do we avoid going over the rate limits imposed by Twitter? These
kinds of problems require us to rethink how we write reproducible and auto-
mated tests when the number of moving parts increases.

In this chapter we’ll learn how to design tests for Elixir systems with separate
pieces interacting with each other and with external systems. This knowledge,
alongside what we learned in the previous chapters, will make us able to test
a system both from the perspective of simple functions and modules as well
as the interactions between the components of the system.

We’ll start by having a quick look at integration tests that cover the interaction
of different components within the same application. Then we’ll move on to the
harder stuff, testing the interaction of our application with external systems.
We’ll talk about different techniques for testing external dependencies and learn
about the tools that Elixir and its ecosystem provide to help with that.

What Is an Integration Test?
Tests that cover the integration of different components (be they external
systems or different parts of an application) are often referred to as integration
tests. In this book, when we use the term integration test, we mean a test
that covers a piece of code that calls out to two or more parts of a system or

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

external systems. Integration tests are fundamental to testing a system. Unit
tests give you confidence that your functions and modules behave correctly;
but you’ll need to test that your system functions correctly as a whole, and
to do that you need to test the glue between the components of the system.
Let’s start by looking at an example of integration testing.

A common scenario in HTTP-based web applications is having a router that
routes requests to different functions based on the request URI. Those func-
tions are usually contained in modules called controllers. A controller function
is responsible for doing any necessary manipulation on the request data,
formulating an output, and sending a response back to the client. The code
for the router and the controller could look something like this:

integration_tests/pseudocode_controller_and_router.ex
defmodule MyApp.Router do

route("POST", "/perform_action", {MyApp.Controller, :perform_action})
end

defmodule MyApp.Controller do
def perform_action(connection, params) do

parsed_params = parse_params(params)
action_result = perform_action(parsed_params)
response = build_response(action_result)
send_response(connection, response)

end
end

We know how to write unit tests. We can unit-test the single functionalities like
the manipulation of the input (parse_params/1), the isolated actions performed by
the controller (perform_action/1), and the building of the response (build_response/1).
That would give us confidence that the single pieces work correctly, but we’re
not confident that the pieces work well together: we need to test the integration
of these pieces. To get in the right frame of mind, think of an airplane. You can
test that the metal of the outer shell of the plane resists bending, the engines
turn on correctly, and the shape of the plane is correct for flying. But if the plane
hadn’t been tested to see if it would actually fly, would you hop on it?

The idea behind integration testing is the same. We want to test that our
components work together correctly, even if we’re confident that the compo-
nents work by themselves, thanks to unit tests. In our web router and con-
troller example, we want an integration test that simulates an HTTP request
to the /perform_action endpoint with raw parameters and then asserts that the
response returned by the controller is correct.

integration_tests/pseudocode_controller_and_router_test.exs
defmodule IntegrationTest do

use ExUnit.Case

Chapter 2. Integration and End-to-End Tests • 36

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/pseudocode_controller_and_router.ex
http://media.pragprog.com/titles/lmelixir/code/integration_tests/pseudocode_controller_and_router_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

test "POST /perform_action" do
params = %{"some" => "params"}
response = simulate_http_call("POST", "/perform_action", params)
assert response.status == 200
assert response.body == "OK"

end
end

Integration tests that deal with the integration of components within the same
system, like the router and controller in this example, are the simplest kind
of integration tests. Everything happens in a system you have control over,
so the behavior is predictable. The difficulties start when we need to test how
our system interfaces with external components. Let’s look at that next.

Testing Against Real External Dependencies
Many applications interface with databases, other services, or third-party
APIs. This makes integration testing harder, since we now have to deal with
other running systems in order to design and run our integration test suite.
There are two main approaches to dealing with an external dependency in
tests: we can either use the real dependency, or we can replace it with
something that doubles as the dependency. In this section, we’re going to
have a look at how we can test against external dependencies by using the
actual dependencies in our test suite, and then we’ll look at dependency
doubles in the next section. We’ll also offer some guidance on when each of
these solutions is appropriate.

Say our application is backed up by a database. The database is a dependency
that’s external to the application, since it’s not running inside it. For our
purposes, we can see it as a black box that we can assume works correctly
if used correctly. Let’s imagine that our application uses this database to
store blog articles and that it provides an HTTP API as the interface for creating
articles. We have an Article struct that represents an article:

integration_tests/real_external_dependencies/article.ex
defmodule Article do

defstruct [:title, :body, :author_email]
end

Then we have a router and a controller that handle the POST /create_article route:

integration_tests/real_external_dependencies/router_and_controller.ex
defmodule MyApp.Router do

route(
"POST",
"/create_article",

report erratum • discuss

Testing Against Real External Dependencies • 37

http://media.pragprog.com/titles/lmelixir/code/integration_tests/real_external_dependencies/article.ex
http://media.pragprog.com/titles/lmelixir/code/integration_tests/real_external_dependencies/router_and_controller.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

{MyApp.ArticleController, :create_article}
)

end

defmodule MyApp.ArticleController do
def create_article(connection, params) do

article = %Article{
title: params["title"],
body: params["body"],
author_email: params["author_email"]

}

article_id = Database.create(article)

send_response(connection, _status_code = 200, %{article_id: article_id})
end

end

We assume that we have a library that interfaces with the database and
exposes a Database module. The simplest way of testing this is to start the
database (on the machine where the application’s test suite is running) when
testing the application and actually call out to it when executing the test.
This way, we can also call out to the database in order to check that our code
created the article correctly in the database.

integration_tests/real_external_dependencies/http_api_test.exs
defmodule HTTPAPITest do

use ExUnit.Case

test "articles are created correctly" do
params = %{

"title" => "My article",
"body" => "The body of the article",
"author_email" => "me@example.com"

}

response = simulate_http_call("POST", "/create_article", params)

assert response.status == 200
assert %{"article_id" => article_id} = response.body

assert {:ok, article} = Database.fetch_by_id(Article, article_id)
assert article.title == "My article"
assert article.body == "The body of the article"
assert article.author_email == "me@example.com"

end
end

This test works, but we might run into a problem: we keep cluttering the
database with identical articles every time we execute it. A good practice is
to try to always start from a clean slate when running tests. In this case, that
could mean that we delete all articles before running the test.

Chapter 2. Integration and End-to-End Tests • 38

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/real_external_dependencies/http_api_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

This test gives us confidence that our code works, since it’s calling to the real
database and working as it would in a production setting. One drawback of
these tests, however, is that they can be much slower than tests that don’t
call out to any external dependencies.

The database is an example of an external dependency of the system that we
have complete control over. We can start it and stop it whenever we want,
and we can modify the data inside it however we want. The same isn’t true
for external services like third-party APIs. For example, if your application
uses the Twitter API, then we can’t create tweets and hit the API whenever
we want since we need to abide by the rules imposed by the API. This distinc-
tion between external dependencies that our application owns (like the
database) and external dependencies that we don’t own (like a third-party
API) is a fundamental one. When we have dependencies that we own, it’s
usually better to test against the running dependency so as to have our test
suite be as close as possible to the code that runs in production. In these
cases, we trade off the speed of our test suite for the gained confidence that
our code works correctly.

In the next section, we’ll explore how to deal with external services that we
don’t have control over.

Dependency Doubles
In this section, we’re going to see how to create something that acts as an
external dependency that we don’t have control over. This will allow us to test
the code that interacts with the external dependency without using the
dependency at all.

There’s one disclaimer to make before diving in deeper: the terminology around
dependency doubles is not “standard”: different people use these terms in
different ways. We’ll use the terms double, mock, stub, and others in the way
that we think makes the most sense and we’ll use them consistently, but you
might encounter the same concepts under different names outside of this
book. We’ll define these terms later on in this chapter. With that out of the
way, let’s get to it.

The component that acts as the external dependency is often referred to as
a double of that dependency. The name comes from the fact that, to the callers
of the dependency, the dependency double looks exactly like the dependency.
The implementations of dependency doubles can vary in complexity. Some-
times, a dependency double just looks like the external dependency but doesn’t
do anything. Other times, the dependency double can be used to gain insight

report erratum • discuss

Dependency Doubles • 39

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

into how the dependency is called and possibly to test the interaction as well.
Let’s dive into how we can use dependency doubles in our Soggy Waffle
application.

Soggy Waffle needs to interact with a weather API (through HTTP) in order
to periodically fetch the weather forecast. To our application, the weather
API is an external component, so it’s good design to isolate our interactions
with it into a module that acts as the interface between our application and
the API.

integration_tests/soggy_waffle/weather_api.ex
defmodule SoggyWaffle.WeatherAPI do

@spec get_forecast(String.t()) ::
{:ok, map()} | {:error, reason :: term()}

def get_forecast(city) when is_binary(city) do
app_id = SoggyWaffle.api_key()
query_params = URI.encode_query(%{"q" => city, "APPID" => app_id})

url =
"https://api.openweathermap.org/data/2.5/forecast?" <> query_params

case HTTPoison.get(url) do
{:ok, %HTTPoison.Response{status_code: 200} = response} ->

{:ok, Jason.decode!(response.body)}

{:ok, %HTTPoison.Response{status_code: status_code}} ->
{:error, {:status, status_code}}

{:error, reason} ->
{:error, reason}

end
end

end

The get_forecast/1 function in this module is called by our main SoggyWaffle.rain?/2
function:

integration_tests/soggy_waffle/soggy_waffle.ex
defmodule SoggyWaffle do

def rain?(city, datetime) do
with {:ok, response} <- SoggyWaffle.WeatherAPI.get_forecast(city) do
weather_data =

SoggyWaffle.WeatherAPI.ResponseParser.parse_response(response)

SoggyWaffle.Weather.imminent_rain?(weather_data, datetime)
end

end
end

We want to test the rain?/2 function. However, we don’t have control over the
weather API so it’s hard to test against it. If that API is down, our automated
tests (which should be reproducible) will fail. We have to find a way to respect

Chapter 2. Integration and End-to-End Tests • 40

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/weather_api.ex
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/soggy_waffle.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the rate limiting of that API so that our developers can run automated tests
as frequently as they want. These reasons suggest that we do something to
avoid contacting the weather API directly in tests. A common approach would
be to swap out the HTTP client we use in the SoggyWaffle.WeatherAPI module with
something that we can control during tests. However, this exposes a detail
of the implementation of the SoggyWaffle.WeatherAPI module that we might not
be interested in when testing the rain?/2 function. Let’s step up one level and
deal with the interface exposed by SoggyWaffle.WeatherAPI instead.

The simplest thing we can do is use dependency injection, as we discussed
in Chapter 1, Unit Tests, on page 1. When we used dependency injection
before, we passed a function or a value to our function. However, we usually
encapsulate interfaces inside modules, like we did with SoggyWaffle.WeatherAPI.
In those cases, it makes sense to pass in a module as the dependency we’re
injecting. Let’s modify the rain?/2 function to take a third argument, the “double”
module.

integration_tests/soggy_waffle/soggy_waffle_module_di.ex
def rain?(city, datetime, weather_api_module \\ SoggyWaffle.WeatherAPI) do➤

with {:ok, response} <- weather_api_module.get_forecast(city) do➤

weather_data =
SoggyWaffle.WeatherAPI.ResponseParser.parse_response(response)

SoggyWaffle.Weather.imminent_rain?(weather_data, datetime)
end

end

In production, the interfacing module will be SoggyWaffle.WeatherAPI. In our tests,
it can be SoggyWaffle.FakeWeatherAPI.

integration_tests/soggy_waffle/fake_weather_api.ex
defmodule SoggyWaffle.FakeWeatherAPI do

require Logger

@spec get_forecast(String.t()) :: {:ok, map()}
def get_forecast(city) do

_ = Logger.info("Getting forecast for city: #{city}")

response = %{
"list" => [

%{
"dt" => DateTime.to_unix(DateTime.utc_now()),
"weather" => [%{"id" => _thunderstorm = 231}]

}
]

}

{:ok, response}
end

end

report erratum • discuss

Dependency Doubles • 41

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/soggy_waffle_module_di.ex
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/fake_weather_api.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

In production code, we call rain?/2 without a third argument, defaulting to the
real weather API. During testing, we can swap that out with the fake module
and assert that SoggyWaffle.FakeWeatherAPI.get_forecast/1 has been called correctly
by testing that the correct line has been logged.

This approach to dependency injection works but has a drawback: every time
we call the rain?/2 function in tests, we need to remember to use SoggyWaf-
fle.FakeWeatherAPI as the second argument. This becomes especially painful
when we’re testing something that internally calls out to rain?/2, because we
need to propagate the additional module argument. Luckily for us, Elixir ships
with something that makes things easier in this case: the application environ-
ment. The application environment is a key-value in-memory global store
that’s usually used for things like configuration. We can store the weather
API module that we’re using in the application environment and read it when
executing rain?/2.

integration_tests/soggy_waffle/soggy_waffle_module_from_app_env.ex
def rain?(city, datetime) do

weather_api_module =➤

Application.get_env(➤

:soggy_waffle,➤

:weather_api_module,➤

SoggyWaffle.WeatherAPI➤

)➤
➤

with {:ok, response} <- weather_api_module.get_forecast(city) do
weather_data =
SoggyWaffle.WeatherAPI.ResponseParser.parse_response(response)

SoggyWaffle.Weather.imminent_rain?(weather_data, datetime)
end

end

The third argument to Application.get_env/3 is the default value that’s returned
when the :weather_api_module key isn’t set in the application environment. This
means that once again by default the behavior is using the real dependency.
We can then configure the value of the :weather_api_module just in the test envi-
ronment so that the fake interface is only used when testing. A common way
to configure the application environment is through Mix configuration.

integration_tests/soggy_waffle/config/test.exs
import Mix.Config

config :soggy_waffle, :weather_api_module, SoggyWaffle.FakeWeatherAPI

Since we’re using SoggyWaffle.FakeWeatherAPI in the test environment, we can modify
our test so that we assert on the output logged by SoggyWaffle.FakeWeatherAPI:

Chapter 2. Integration and End-to-End Tests • 42

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/soggy_waffle_module_from_app_env.ex
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/config/test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

integration_tests/soggy_waffle/test/soggy_waffle_test.exs
defmodule SoggyWaffleTest do

use ExUnit.Case

import ExUnit.CaptureLog

describe "rain?/2" do
test "success: gets forecasts, returns true for imminent rain" do
log =

capture_log(fn ->
SoggyWaffle.rain?("Los Angeles", DateTime.utc_now())

end)

assert log =~ "Getting forecast for city: Los Angeles"
end

end
end

This works fine now that SoggyWaffle.WeatherAPI only implements one function.
However, we may end up adding more and more functions to SoggyWaffle.Weather-
API during the development of our application. How do we keep track of all
the functions that SoggyWaffle.FakeWeatherAPI has to implement to mirror Soggy-
Waffle.WeatherAPI? Let’s figure it out in the next section.

Interfacing to External Dependencies with Behaviours
The interface that the SoggyWaffle.WeatherAPI module provides is simple, as it’s
made of just one function. However, if we expanded the functionalities of the
SoggyWaffle.WeatherAPI module, it would be hard to keep SoggyWaffle.FakeWeatherAPI
up to datedate to mirror SoggyWaffle.WeatherAPI. This situation is a great use
case for behaviours, Elixir modules that define a set of functions (an interface)
that other modules can agree to implement. We can define a behaviour that
specifies how we want to interface with the weather API and then implement
that behaviour both in the real weather API interface as well as the fake one.

integration_tests/soggy_waffle/weather_api_behaviour.ex
defmodule SoggyWaffle.WeatherAPI.Behaviour do

@callback get_forecast(city :: String.t()) ::
{:ok, term()} | {:error, term()}

end

Now we can add the @behaviour SoggyWaffle.WeatherAPI.Behaviour line to both our
SoggyWaffle.WeatherAPI module as well as our SoggyWaffle.FakeWeatherAPI module.
Having a behaviour for our interface has two benefits. The first is that the
behaviour will be checked at compile time; so if we add a function to SoggyWaf-
fle.WeatherAPI.Behaviour but forget to add it to all the modules that implement
that behaviour, then we’ll get a compile-time warning. The other benefit is
that a behaviour will clearly define the boundaries of the external system: the

report erratum • discuss

Interfacing to External Dependencies with Behaviours • 43

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/test/soggy_waffle_test.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/weather_api_behaviour.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

behaviour represents the interface that we use to work with the external
system.

Behaviours are a great tool for working with doubles, but there are easier
approaches to doubles than manually creating “fake” modules. In the next
section, we’ll see the different kinds of test doubles and how to use them.

Test Doubles: Stubs, Mocks, and Fakes
Until now, we’ve just used the term external dependency double to refer to
something that doubles as the external dependency. However, we can be more
precise than that and define three kinds of doubles: stubs, mocks, and fakes.
We already saw an example of a fake with SoggyWaffle.FakeWeatherAPI. A fake is
just something that acts as the external dependency without calling out to
the external dependency. A stub is a double where function implementations
can be replaced on demand to do something in isolation, for example by
replacing a function to do something in one test and something else in
another. Stubs can be used to provide a different behavior of a given function
based on the need of the test. Stubs are most useful when combined with
mocks. A mock is essentially a stub that can be used for asserting on how
and how many times the double is called.

Stubs and mocks require a little more work than fakes, since we have to be
able to work with the specific functions of an interface instead of faking the
whole interface at once. Luckily, in Elixir we can use a library called Mox.1

Mox lets us define test doubles based on behaviours and provides functional-
ities to make mocks or stubs of single functions in the behaviour. The library
works by defining dynamic modules on demand that have an interface of
functions that implements the behaviour you’re building the mock for. It’s
pretty cool.

The first thing we want to do is add Mox to the dependencies of our applica-
tion. We add the dependency only to the test environment since we don’t want
to bring Mox into a production application:

integration_tests/soggy_waffle/mix_with_mox.exs
defp deps do

[
«other dependencies»
{:mox, ">= 0.0.0", only: :test}➤

]
end

1. https://github.com/plataformatec/mox

Chapter 2. Integration and End-to-End Tests • 44

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/mix_with_mox.exs
https://github.com/plataformatec/mox
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

To start with Mox, we can use the Mox.defmock/2 function. This function takes
a module name and a :for option as the second argument. The module name
will be the name of the test double that Mox will generate. In our weather API
example, that module name could be SoggyWaffle.WeatherAPIMock. :for should be
a module (or a list of modules) that will act as a test double for the first
module passed to the function. The modules passed to :for should be
behaviours, since that’s how Mox will generate a module that provides the
correct interface. In our weather API example, we can generate a test double
for the SoggyWaffle.WeatherAPI.Behaviour behaviour. A great place to use Mox.defmock/2
is your application’s test/test_helper.exs, which is executed by ExUnit when
starting the test suite.

integration_tests/soggy_waffle/test/test_helper.exs
Mox.defmock(SoggyWaffle.WeatherAPIMock,

for: SoggyWaffle.WeatherAPI.Behaviour
)

Where to Stick Mock Definitions?

To get started, put Mox.defmock/2 calls in test/test_helper.exs. Mix will let Mox define the
mocks dynamically right before running the test suite.

However, you might find that defining mocks like this at runtime can cause some
compilation warnings if you use some of the techniques in this book, such as reading
the dependency double module at compile time in your application code. If that’s the
case, you can choose to define mock modules through Mox at compile time, too. This
way, the mock modules will be compiled like other modules in your application before
running any of the test suite.

To do that, we suggest you create a file such as test/support/mocks.ex and put all your
Mox.defmock/2 calls in there. This file won’t automatically be compiled by Elixir because
it doesn’t live inside the lib directory, so we need to tweak mix.exs. You can tell Elixir
where the files you want to compile are by listing the “compilation paths” under the
:elixirc_paths options in the project/0 function of your mix.exs file. Usually, you want to
choose compilation paths based on the Mix environment so that mocks are only
compiled and loaded during testing and won’t be included in your production code.

def project do
[

«other options»,
elixirc_paths: elixirc_paths(Mix.env())

]
end

defp elixirc_paths(:test), do: ["lib", "test/support"]
defp elixirc_paths(_env), do: ["lib"]

report erratum • discuss

Test Doubles: Stubs, Mocks, and Fakes • 45

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/test/test_helper.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Mox provides two main functions to create stubs and mocks of functions in
the behaviour. The first one is called Mox.stub/3. This function takes the mock
module, the name of the function to be stubbed, and an anonymous function
of the same arity of the function to be stubbed. This anonymous function is
what will be executed when the stubbed function is invoked on the mock
module. Usually, stub/3 is used inside single tests. We can rewrite the test for
our weather API example so that instead of using SoggyWaffle.FakeWeatherAPI, it
uses an anonymous function that does the same thing that SoggyWaf-
fle.FakeWeatherAPI.get_forecast/1 does:

integration_tests/soggy_waffle/test/soggy_waffle_test_with_mox_stub.exs
defmodule SoggyWaffleTest do

use ExUnit.Case

import ExUnit.CaptureLog
import Mox➤

require Logger

describe "rain?/2" do
test "success: gets forecasts, returns true for imminent rain" do
stub(SoggyWaffle.WeatherAPIMock, :get_forecast, fn city ->➤

Logger.info("Getting forecast for city: #{city}")➤
➤

response = %{➤

"list" => [➤

%{➤

"dt" => DateTime.to_unix(DateTime.utc_now()) + _seconds = 60,➤

"weather" => [%{"id" => _thunderstorm = 231}]➤

}➤

]➤

}➤
➤

{:ok, response}➤

end)➤

log =
capture_log(fn ->

assert SoggyWaffle.rain?("Los Angeles", DateTime.utc_now())
end)

assert log =~ "Getting forecast for city: Los Angeles"
end

end
end

When a function like get_forecast/1 is stubbed, it can be called any number of
times on the mock module. Stubs are usually used when you don’t really
need logic in the stubbed function but you want to return a value. For
example, say get_forecast/1 could return {:error, reason} to signal an error when
talking to the weather API. In tests that aren’t strictly testing the weather API

Chapter 2. Integration and End-to-End Tests • 46

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/test/soggy_waffle_test_with_mox_stub.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

functionality, we might want to stub out get_forecast/1 to just return :ok, effec-
tively not doing anything.

In our case, where we are performing an action in the stubbed function so
that we can test the results of the action later, a better tool than a stub is a
mock. A mock works the same way a stub does, but it lets you assert that
the mocked function is called a specific number of times. In our example, we
want to assert that rain?/2 calls get_forecast/1 only once. Semantically, mocks
are also used when you have some general expectations about the way the
mock module should be called. To create mock functions, Mox provides
Mox.expect/4, which takes the name of the mock module, the name of the
function, the number of times the mocked function can be invoked, and an
anonymous function (similarly to stub/3).

integration_tests/soggy_waffle/test/soggy_waffle_test_with_mox_expect.exs
describe "rain?/2" do

test "success: gets forecasts, returns true for imminent rain" do
expect(SoggyWaffle.WeatherAPIMock, :get_forecast, 1, fn city ->➤

assert city == "Los Angeles"➤
➤

response = %{➤

"list" => [➤

%{➤

"dt" => DateTime.to_unix(DateTime.utc_now()) + _seconds = 60,➤

"weather" => [%{"id" => _thunderstorm = 231}]➤

}➤

]➤

}➤
➤

{:ok, response}➤

end)➤

assert SoggyWaffle.rain?("Los Angeles", DateTime.utc_now())

verify!(SoggyWaffle.WeatherAPIMock)➤

end
end

We changed the call to the stub/3 function with a call to expect/4. We expect
get_forecast/1 to be called only once, so we use 1 as the expected number of
invocations (that’s the default, but we like to be explicit). In the anonymous
function passed to expect/4, we’re making assertions on how we expect the
mock to be called. By combining the expected number of invocations and the
assertions in the anonymous functions, we’re setting clear expectations on
how the weather API interface should be used by rain?/2.

There’s one more difference between using stub/3 and using expect/4. When we
use expect/4, we need to call Mox.verify!/1 at the end of the test. verify!/1 takes the

report erratum • discuss

Test Doubles: Stubs, Mocks, and Fakes • 47

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/test/soggy_waffle_test_with_mox_expect.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

name of a mock module (in this case it’s SoggyWaffle.WeatherAPIMock) and verifies
the expectations we set on the mock functions. If we call the mock function
less or more times than specified in expect/4, we won’t get an error unless we
call verify!/1.

In this case, a mock is the cleanest solution to testing that the rain?/2 function
uses the weather API interface correctly. When using a fake or a stub, we had
to resort to a Logger call (which is a global side effect) in order to test that the
weather API interface was called the correct number of times and with the
correct arguments. With a mock, however, we can put the assertions right in
the mock function and call it a day.

Let’s quickly talk about verifying expectations. A manual call to verify!/1 isn’t
used very often in real-world code, since Mox provides a few alternatives that
are less repetitive. The first one isn’t much more concise but it can simplify
things a little bit: instead of calling verify!/1 with the mock module name, we
can call Mox.verify!/0 with no arguments. When we do that, Mox will verify all
the expectations on all the mock modules used in the test where it’s called.
Another useful function is Mox.verify_on_exit!/1. When invoked, this function sets
up an on_exit hook for the current test that will verify all the expectations in
the test (similarly to verify!/0) when the test process exits. verify_on_exit!/1 takes
an optional argument, which is the test context. This is done for convenience,
since a great way to use verify_on_exit!/1 is to use it as a setup callback.

integration_tests/soggy_waffle/test/soggy_waffle_test_verify_on_exit_setup.exs
import Mox

setup :verify_on_exit!➤

When used in the global test context, Mox will verify expectations at the end
of each test. If we want more control, we can always use describe blocks (as
mentioned in Describing Your Tests, on page 10) and only use the setup
callback in the blocks where we need it.

Allowing Mocks to Be Used from Different Processes
We haven’t discussed how Mox decides who’s allowed to call the mock or stub
functions. When a function of a double is stubbed or mocked, that stub or
mock by default only works when that function is invoked from the process
that defines the stub or mock. In our weather API example, this doesn’t cause
any problems since the weather API interface is used directly from the process
that calls rain?/2, which is the test process. However, let’s slightly change the
code for the rain?/2 function so that the weather API interface is invoked in a
different process. We’ll use Task.async/1 to spawn the new process and Task.await/1

Chapter 2. Integration and End-to-End Tests • 48

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/test/soggy_waffle_test_verify_on_exit_setup.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

to block until the call to the weather API is done. We’re really forcing the code
to use another process since it doesn’t make sense in this particular case to
call the API asynchronously, but it’ll help show this Mox functionality, so
bear with us for just a second:

integration_tests/soggy_waffle/soggy_waffle_async_get_forecast.ex
def rain?(city, datetime) do

weather_api_module =
Application.get_env(

:soggy_waffle,
:weather_api_module,
SoggyWaffle.WeatherAPI

)

weather_api_task =➤

Task.async(fn ->➤

weather_api_module.get_forecast(city)➤

end)➤
➤

with {:ok, response} <- Task.await(weather_api_task) do➤

weather_data =
SoggyWaffle.WeatherAPI.ResponseParser.parse_response(response)

SoggyWaffle.Weather.imminent_rain?(weather_data, datetime)
end

end

If we try to run the same test as before, Mox will fail, saying that SoggyWaf-
fle.WeatherAPIMock can’t be called from outside the test process. For such cases,
Mox provides two functions that solve the issue. The first one is Mox.allow/3: it
takes the mock module name, the PID of the process that defines the stubs
or mocks, and the PID of a process that’s then allowed to use the same stubs
and mocks defined by the defining process. In practice, this function isn’t
used very often since it requires you to know the PID of the process that wants
to use the mock module. In our case, we don’t know the PID of the weather
API task from outside the rain?/2 function, so we can’t use allow/3. Luckily, Mox
also provides the Mox.set_mox_global/1 function. When Mox is set to global mode,
then mock modules can be called from any process. This is what we want in
our example. We could call set_mox_global/1 directly, but this function can be
used in the same way that verify_on_exit!/1 can, that is, as a setup callback.

integration_tests/soggy_waffle/test/soggy_waffle_test_set_mox_global_setup.exs
import Mox

setup :set_mox_global➤

setup :verify_on_exit!

To contrast set_mox_global/1, Mox also provides Mox.set_mox_private/1, which sets
Mox to private mode (the default). Using Mox’s global mode over private mode

report erratum • discuss

Test Doubles: Stubs, Mocks, and Fakes • 49

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/soggy_waffle_async_get_forecast.ex
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/test/soggy_waffle_test_set_mox_global_setup.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

or allow/3 calls has a disadvantage: the test case cannot be asynchronous. This
might make the test suite a bit slower, but in cases such as the rain?/2 one,
we don’t have an alternative.

Stubbing Entire Interfaces
Often we aren’t willing to use the mock module in all of our tests. Imagine we
have tests that cover a piece of code that internally calls rain?/2. In that case,
we probably don’t want to set expectations on functions in the SoggyWaffle.Weather-
APIMock module since we don’t care about checking how the mock module is
called. We want to stub the functions in SoggyWaffle.WeatherAPIMock so that they
do the bare minimum to pretend everything went fine when interfacing with
the weather API.

However, stubbing all the functions in each test that somehow end up calling
get_forecast/1 quickly becomes a pain. For this reason, Mox provides a
Mox.stub_with/2 function to stub all of the functions in a mock module with the
implementations in another module. For example, we could define a NoOp-
WeatherAPI module that implements the SoggyWaffle.WeatherAPI.Behaviour behaviour
but does absolutely nothing in the get_forecast/1 function.

integration_tests/soggy_waffle/no_op_weather_api.ex
defmodule SoggyWaffle.NoOpWeatherAPI do

@behaviour SoggyWaffle.WeatherAPI.Behaviour

@spec get_forecast(String.t()) :: {:ok, map()}
def get_forecast(city) do

response = %{
"list" => [

%{
"dt" => DateTime.to_unix(DateTime.utc_now()),
"weather" => [%{"id" => _thunderstorm = 231}]

}
]

}

{:ok, response}
end

end

Once we have SoggyWaffle.NoOpWeatherAPI, we can use it as a stub of the SoggyWaf-
fle.WeatherAPIMock module in every test where we don’t care about asserting how
SoggyWaffle.WeatherAPIMock is called. To do that, it’s enough to call stub_with/2 for
those tests:

Mox.stub_with(SoggyWaffle.WeatherAPIMock, SoggyWaffle.NoOpWeatherAPI)

Chapter 2. Integration and End-to-End Tests • 50

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/no_op_weather_api.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

If we want to default to the no-op module for all our tests and only use the
mock module in a few tests that assert how the interface is used, we can use
the application environment directly. For example, we can set our application
to use the no-op module in the configuration for the test environment:

import Mix.Config

config :soggy_waffle, :weather_api_module, SoggyWaffle.NoOpWeatherAPI

Then, in the tests where we want to use the mock to verify expectations, we
can set the value of :weather_api_module to SoggyWaffle.WeatherAPIMock:

integration_tests/soggy_waffle/test/soggy_waffle_test_app_env_setup.exs
defmodule SoggyWaffleTest do

use ExUnit.Case

setup do
current_weather_api_module =
Application.fetch_env!(

:soggy_waffle,
:weather_api_module,
SoggyWaffle.WeatherAPI

)

Application.put_env(
:soggy_waffle,
:weather_api_module,
SoggyWaffle.WeatherAPIMock

)

on_exit(fn ->
Application.put_env(

:soggy_waffle,
:weather_api_module,
SoggyWaffle.NoOpWeatherAPI

)
end)

end

«tests»
end

The application environment is a global storage; so if we take this approach,
we can’t make the test case asynchronous and we have to remember to set
the value of :weather_api_module in the application environment back to the
original value after the tests.

Before taking a step back and discussing the benefits of dependency doubles
in general, let’s look at one last pattern to fix a small code smell that we
introduced into the code.

report erratum • discuss

Test Doubles: Stubs, Mocks, and Fakes • 51

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/test/soggy_waffle_test_app_env_setup.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Improving Performance at Compile Time
The patterns we discussed are powerful and flexible, and they let us have
fine-grained control over testing interactions with external services. However,
there’s still one principle we’re going against: we’re introducing a runtime call
to decide which double to use in production code. That is, every time we’ll call
the rain?/2 function, we’ll call Application.get_env/3 (which is essentially a read from
an ETS table) to get the double module we want to use. Changing production
code to accommodate for testing is often a necessary evil, but it should be
limited as much as possible, especially when it comes with a performance
cost. In this case, the performance hit is negligible compared to the cost of
the HTTP call to the API when running in production. However, you can
imagine cases where you might want to shave off even the handful of
microseconds it takes to read from the ETS table in Application.get_env/3.

To solve this problem, a likely initial approach is to read the module at compile
time using Application.compile_env/3. compile_env/3 works like get_env/3, but this
function enforces that it’s used at compile time and allows Elixir to track
configuration values that change between runtime and compile time. We won’t
focus on this feature in particular here, but it’s good practice to use compile_env/3
in cases such as this one.

integration_tests/soggy_waffle/soggy_waffle_compile_time_di.ex
defmodule SoggyWaffle do

@weather_api_module Application.compile_env(➤

:soggy_waffle,➤

:weather_api_module,➤

SoggyWaffle.WeatherAPI➤

)➤

def rain?(city, datetime) do
with {:ok, response} <- @weather_api_module.get_forecast(city) do
weather_data =

SoggyWaffle.WeatherAPI.ResponseParser.parse_response(response)

SoggyWaffle.Weather.imminent_rain?(weather_data, datetime)
end

end
end

This approach works well in a few cases, but it has a critical drawback: you
can only use one double module throughout your testing environment. The
reason for this is that we read the application environment at compile time,
so our code will be compiled with a specific double module as the value for
@weather_api_module. What this all means is that you won’t be able to test both

Chapter 2. Integration and End-to-End Tests • 52

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/soggy_waffle_compile_time_di.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the actual SoggyWaffle.WeatherAPI module and use doubles to isolate tests like
we discussed in this chapter.

To address this issue, we came up with a pattern that takes advantage of
Mox.stub_with/2. The idea might sound confusing but here it goes: use a double
as the default module during testing, and stub it with the real module when
you need to test the actual interaction with the external system. Essentially,
you’re using a double and stubbing the double with the real module. Crazy
pants. Let’s see it in action.

We’ll keep reading from the application environment at compile time and
storing the weather API module in @weather_api_module. In the dev and prod
environments, this module will be SoggyWaffle.WeatherAPI, the real module. In
the test environment, we’ll set the module to SoggyWaffle.WeatherAPIMock. However,
when we want to test some code through real interactions with the API, we’ll
call stub_with/2:

integration_tests/soggy_waffle/test/soggy_waffle_test_stub_with.exs
describe "rain?/2" do

test "success: using the real API" do
Mox.stub_with(SoggyWaffle.WeatherAPIMock, SoggyWaffle.WeatherAPI)

«rest of the test»
end

end

In this test, the weather API mock will “route” function calls to the real Soggy-
Waffle.WeatherAPI module, letting us test that.

This pattern has zero runtime impact in the dev and prod environment, which
is where performance matters the most. By using this trick you’ll effectively
be as close as you can to not changing your production code to accommo-
date for tests while still using dependency injection and being able to test
in isolation.

Now that we have learned about the different kinds of dependency doubles,
let’s discuss the benefits that doubles bring to the design of your system.

The Hidden Benefits of Dependency Doubles
Let’s take a step back. We talked about integration tests from the perspective
of external dependencies. As we saw in the previous sections, it’s usually a
good rule of thumb to use external dependencies directly in tests if we own
the dependencies and go with dependency doubles otherwise.

Dependency doubles are a great tool for testing, but their benefits extend to
the design of our applications as well. If we look back at the changes we made

report erratum • discuss

The Hidden Benefits of Dependency Doubles • 53

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/test/soggy_waffle_test_stub_with.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

to be able to use a double for the weather API interface, there were two key
points: making the interface swappable at the call site (in rain?/2) and defining
a behaviour for the interface. Both of these things end up making our appli-
cation less tightly coupled and better architected. Now, we have a clear point
of separation between our system and the external system. The interface with
the external system is clearly defined by the behaviour, which forces us to
reason about how we interface with the dependency.

Finally, making the interface to the external system swappable means that
we can be flexible and change it to whatever is appropriate for a specific
environment. For example, we might want to use SoggyWaffle.WeatherAPIMock in
tests, SoggyWaffle.FakeWeatherAPI when developing the application and trying it
out locally, and the real SoggyWaffle.WeatherAPI module when in the acceptance,
staging, or production environments.

Testing the Actual Interaction with Services
When working with third-party APIs like the weather API, we push the code
that integrates with the API to the outside of our application in a lightweight
wrapper. When we’re testing our application, we’re able to swap out that small
part with a double to run the rest of our application. At some point, though,
we also need to make sure that the code that talks to the API works. In this
section, we’ll learn about the different approaches to do that.

In our weather API application, the code that talks to the weather API is this:

integration_tests/soggy_waffle/weather_api.ex
defmodule SoggyWaffle.WeatherAPI do

@spec get_forecast(String.t()) ::
{:ok, map()} | {:error, reason :: term()}

def get_forecast(city) when is_binary(city) do
app_id = SoggyWaffle.api_key()
query_params = URI.encode_query(%{"q" => city, "APPID" => app_id})

url =
"https://api.openweathermap.org/data/2.5/forecast?" <> query_params

case HTTPoison.get(url) do
{:ok, %HTTPoison.Response{status_code: 200} = response} ->

{:ok, Jason.decode!(response.body)}

{:ok, %HTTPoison.Response{status_code: status_code}} ->
{:error, {:status, status_code}}

{:error, reason} ->
{:error, reason}

end
end

end

Chapter 2. Integration and End-to-End Tests • 54

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle/weather_api.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

We’re using HTTPoison as our HTTP client. The get/1 function lets us send a
GET HTTP request to the URL we pass to it and returns an {:ok, response} tuple.
However, we still want to make sure that the URL is correct for our request,
that the request is performed correctly, and that the response is actually a
200 status code with a body that we’re able to parse. There’s no way out of
this other than to send the real request to the weather API, but there are a
few approaches on how to do it reliably and in a reproducible way.

Sending Real Requests
The simplest approach is to send the real request to the weather API in the
tests and assert on the response sent back by the API. The advantage of this
approach is that we test the real API directly, so if the API changes or if the
code that interacts with it changes, the tests will possibly fail. However, there
are some important disadvantages. First of all, our tests now depend on the
availability of a third-party system, which we don’t control. If the weather API
goes down or we don’t have access to the Internet, our tests will fail even if
the code is correct, which means that our tests are brittle and not repro-
ducible. Another disadvantage is that the API could change some returned
data that the test relies on without breaking the contract. In that case, the
test might start failing without signaling a real issue. The other main disadvan-
tage of this approach is that making real HTTP requests can cause problems in
many use cases. For example, the weather API we’re using is rate-limited (as
most APIs are in some way), which means that our tests could affect the rate
limiting of the API without providing a service to the users.

The disadvantages of the real requests approach can be mitigated in some
cases. For example, some third-party APIs provide a “staging” or “sandbox”
API with the same interface as the real API but with different behaviour.
For example, with a weather API like the one we’re using, the sandbox API
could always return the same weather data without actually talking to any
forecasting service. This would significantly reduce the load on the weather
API itself, allowing its developers to possibly lift the rate limiting in this
environment. However, many third-party APIs don’t provide anything like
this, so we have to come up with ways to avoid making real requests in
tests but still test the code that makes those requests. Let’s see the two
most common approaches next.

Building an Ad-hoc HTTP Server
The first approach we’re going to examine is building an ad-hoc HTTP server
we can send requests to that runs alongside our test suite. We’ll have control

report erratum • discuss

Testing the Actual Interaction with Services • 55

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

over the server itself, so we’ll be able to control its behaviour and send as
many requests to it as we want during testing.

Let’s go back to the weather API use case. The weather API exposes a GET
/data/2.5/forecast endpoint that we hit from our application. This endpoint accepts
two parameters in the query string: q, which is the query, and APPID, which
identifies the credentials of our application. The endpoint returns a 200 OK
HTTP response with a JSON body containing information about the weather
forecast. Let’s build an HTTP server that mimics this API.

The Elixir ecosystem has established libraries to build HTTP servers. For now,
we’re going to use Plug.2 Plug is a library that provides a common interface
over different Erlang and Elixir web servers. A commonly used web server is
Cowboy.3 The first thing we’ll need is to add Plug and Cowboy to our depen-
dencies, which can be done by adding the :plug_cowboy dependency. We’ll only
add this dependency in the :test environment so that it won’t be shipped with
our application (assuming our application doesn’t use Plug and Cowboy itself):

integration_tests/soggy_waffle_actual_integrations/mix_with_plug_cowboy.exs
defp deps do

[
«other dependencies»
{:plug_cowboy, ">= 0.0.0", only: :test}➤

]
end

Now let’s define a Plug that exposes the endpoint. We’ll use Plug.Router, which
provides an intuitive DSL for writing simple HTTP endpoints:

integration_tests/soggy_waffle_actual_integrations/test/support/weather_api_test_router.exs
defmodule SoggyWaffle.WeatherAPITestRouter do

use Plug.Router

We need to manually import the assertions since we're not
inside an ExUnit test case.
import ExUnit.Assertions

plug :match
plug :dispatch
plug :fetch_query_params

get "/data/2.5/forecast" do
params = conn.query_params

assert is_binary(params["q"])
assert is_binary(params["APPID"])

2. https://github.com/elixir-plug/plug
3. https://github.com/ninenines/cowboy

Chapter 2. Integration and End-to-End Tests • 56

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/mix_with_plug_cowboy.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/support/weather_api_test_router.exs
https://github.com/elixir-plug/plug
https://github.com/ninenines/cowboy
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

forecast_data = %{
"list" => [

%{
"dt" => DateTime.to_unix(DateTime.utc_now()),
"weather" => [%{"id" => _thunderstorm = 231}]

}
]

}

conn
|> put_resp_content_type("application/json")
|> send_resp(200, Jason.encode!(forecast_data))

end
end

We have a server that exposes an endpoint that behaves exactly like the
weather one but performs some assertions on the incoming request. We need
to start the server. Do that in the setup callback of the SoggyWaffle.WeatherAPI test
case:

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/api_test_plug_cowboy.exs
setup do

options = [
scheme: :http,
plug: SoggyWaffle.WeatherAPITestRouter,
options: [port: 4040]

]

start_supervised!({Plug.Cowboy, options})
:ok

end

We started an HTTP server on port 4040 that we can use throughout the tests
by hitting http://localhost:4040/data/2.5/forecast. However, the real weather API URL
(https://api.openweathermap.org/data/2.5/forecast) is hard-coded in the SoggyWaffle.Weather-
API module. We need to make that configurable. We can use the same approach
we used when passing a module as an optional argument when we were
dealing with doubles. Let’s change SoggyWaffle.WeatherAPI:

integration_tests/soggy_waffle_actual_integrations/lib/soggy_waffle/weather_api.ex
defmodule SoggyWaffle.WeatherAPI do

@default_base_url "https://api.openweathermap.org"

@spec get_forecast(String.t(), String.t()) ::
{:ok, map()} | {:error, reason :: term()}

def get_forecast(city, base_url \\ @default_base_url)➤

when is_binary(city) do➤

app_id = SoggyWaffle.api_key()
query_params = URI.encode_query(%{"q" => city, "APPID" => app_id})
url = base_url <> "/data/2.5/forecast?" <> query_params➤

report erratum • discuss

Testing the Actual Interaction with Services • 57

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/api_test_plug_cowboy.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/lib/soggy_waffle/weather_api.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

case HTTPoison.get(url) do
{:ok, %HTTPoison.Response{status_code: 200} = response} ->

{:ok, Jason.decode!(response.body)}

{:ok, %HTTPoison.Response{status_code: status_code}} ->
{:error, {:status, status_code}}

{:error, reason} ->
{:error, reason}

end
end

end

Now we can add a test for SoggyWaffle.WeatherAPI that hits the ad-hoc test server:

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/api_test_plug_cowboy.exs
test "get_forecast/1 hits GET /data/2.5/forecast" do

query = "losangeles"
app_id = "MY_APP_ID"
test_server_url = "http://localhost:4040"

assert {:ok, body} =
SoggyWaffle.WeatherAPI.get_forecast(

"Los Angeles",
test_server_url

)

assert %{"list" => [weather | _]} = body
assert %{"dt" => _, "weather" => _} = weather
«potentially more assertions on the weather»

end

This test will hit the test server every time it’s run and assert that the Soggy-
Waffle.WeatherAPI.get_forecast/1 function hits the correct endpoint. Writing our own
server from scratch works fine, but there’s room for improvement. For
example, in our test server we’re only asserting that the "q" and "APPID"
parameters are strings, but we’re not checking that they’re the same strings
as specified in the test. To do that, we would have to hard-code those strings
in the test server code, which in turn means that we’d have to build new test
servers to test different scenarios. There’s a tool called Bypass that helps in
this situation.

Bypass is a library that lets you define Plug-based servers on the fly with an
API similar to the one provided by Mox that we saw in the previous sections.
Let’s see how we can use it to improve our tests.4 First of all, add the library
to your dependencies in place of :plug_cowboy:

4. https://github.com/PSPDFKit-labs/bypass

Chapter 2. Integration and End-to-End Tests • 58

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/api_test_plug_cowboy.exs
https://github.com/PSPDFKit-labs/bypass
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

integration_tests/soggy_waffle_actual_integrations/mix_with_bypass.exs
defp deps do

[
«other dependencies»
{:bypass, ">= 0.0.0", only: :test}➤

]
end

Bypass provides Bypass.expect_once/4 to set up an expectation for a request. To
use this function, we need to open a Bypass connection in our tests.

Do that in the setup callback:

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_bypass.exs
setup do

bypass = Bypass.open()
{:ok, bypass: bypass}

end

We return a bypass data structure from the test that will contain informa-
tion like the port the server was started on. We’ll pass this data structure
around in tests through the test context, and we’ll then pass it into the
functions we invoke on the Bypass module so that they know how to
interact with the test.

Now we can rewrite the test for get_forecast/1 using a Bypass expectation:

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_bypass.exs
test "get_forecast/1 hits GET /data/2.5/forecast", %{bypass: bypass} do

query = "losangeles"
app_id = "MY_APP_ID"
test_server_url = "http://localhost:4040"

forecast_data = %{
"list" => [
%{

"dt" => DateTime.to_unix(DateTime.utc_now()) + _seconds = 60,
"weather" => [%{"id" => _thunderstorm = 231}]

}
]

}

Bypass.expect_once(bypass, "GET", "/data/2.5/forecast", fn conn ->
conn = Plug.Conn.fetch_query_params(conn)

assert conn.query_params["q"] == query
assert conn.query_params["APPID"] == app_id

conn
|> Plug.Conn.put_resp_content_type("application/json")
|> Plug.Conn.resp(200, Jason.encode!(forecast_data))

end)

report erratum • discuss

Testing the Actual Interaction with Services • 59

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/mix_with_bypass.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_bypass.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_bypass.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

assert {:ok, body} =
SoggyWaffle.WeatherAPI.get_forecast(

"Los Angeles",
test_server_url

)

assert body == forecast_data
end

Bypass.expect_once/4 expects the specified request to be issued exactly once. The
function passed to it takes a conn data structure (a Plug.Conn struct) that we
can use to make assertions and to send a response. As you can see, this API
is similar to what Mox provides and allows us to have fine-grained control
over the test server and set different expectations in each test.

This “real requests” approach has the advantage of letting us send as many
real HTTP requests as we want during testing so that we can exercise the
code that interfaces with the real HTTP API as well as the HTTP client we’re
using. However, this approach has a disadvantage as well. When building
the test server and setting request expectations, we’re effectively copying what
the third-party API does, and by doing so we’re tying ourselves to a specific
behaviour of that API. If the weather API were to change and we were only
relying on test-server-based tests, we wouldn’t notice the change when running
the test suite. This is important to keep in mind, as there’s no clear and
straightforward solution for this problem. The only way around it is to period-
ically check that the weather API still behaves in the same way as the test
server. We can do that either manually or by running the code against the
real weather API once in a while.

In the next section, we’ll see an alternative approach to the same problem
that compromises on some things for the sake of making it easier to keep the
tests up to date.

Recording Requests with Cassettes
So far, we’ve explored two alternatives for testing the interaction with a third-
party API: issuing requests to the real API or building a test server to mimic
the third-party API during testing. In this section we’ll explore one last
approach, which consists of recording and replaying requests through a library
called ExVCR.5

The idea behind ExVCR is to issue a request to the real third-party API the
first time and record the response into a file called a cassette. Then, when we

5. https://github.com/parroty/exvcr

Chapter 2. Integration and End-to-End Tests • 60

report erratum • discuss

https://github.com/parroty/exvcr
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

need to make that same request to the third-party API, ExVCR will replay
that request and return the response from the cassette without making any
real HTTP calls. By now you probably get why it’s called ExVCR: cassettes,
recording, replaying…. It makes sense.

The way ExVCR works is by creating implicit mocks of widely used Erlang
and Elixir HTTP clients, such as the built-in httpc or hackney.6 7 These mocks
intercept requests and record them if there’s no cassette for them, or replay
the requests from the respective cassette. This approach is limiting in cases
where you don’t use one of the HTTP clients supported by ExVCR, since
ExVCR won’t work. However, many applications do use clients supported by
ExVCR so it’s still worth exploring.

Let’s see how to change the SoggyWaffle.WeatherAPI test to make use of ExVCR.
Start by adding :ex_vcr as a dependency:

integration_tests/soggy_waffle_actual_integrations/mix_with_ex_vcr.exs
defp deps do

[
«other dependencies»
{:ex_vcr, ">= 0.0.0", only: :test}➤

]
end

The get_forecast/1 function uses HTTPoison as its HTTP client and HTTPoison
uses :hackney under the hood, so ExVCR will work. Now we need to call use
ExVCR.Mock to make the ExVCR DSL available in our tests and we’ll have to
use the ExVCR.Adapter.Hackney adapter.

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_ex_vcr.exs
use ExVCR.Mock, adapter: ExVCR.Adapter.Hackney

ExVCR provides a use_cassette/2 macro that takes a cassette name and a block
of code. Requests executed in the block of code are recorded to and replayed
from the specified cassette. Let’s rewrite the get_forecast/1 test to use use_cassette/2.

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_ex_vcr.exs
test "get_forecast/1 hits GET /data/2.5/forecast" do

query = "losangeles"
app_id = "MY_APP_ID"

use_cassette "weather_api_successful_request" do
assert {:ok, body} =

SoggyWaffle.WeatherAPI.get_forecast("Los Angeles")
end

6. http://erlang.org/doc/man/httpc.html
7. https://github.com/benoitc/hackney

report erratum • discuss

Testing the Actual Interaction with Services • 61

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/mix_with_ex_vcr.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_ex_vcr.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_ex_vcr.exs
http://erlang.org/doc/man/httpc.html
https://github.com/benoitc/hackney
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

assert %{"list" => [weather | _]} = body
assert %{"dt" => _, "weather" => _} = weather
«potentially more assertions on the weather»

end

The first time this test is run, the request is issued against the real weather
API. After the weather API returns a response, that response is recorded into
a cassette called weather_api_successful_request. We use a descriptive and unique
name so that it won’t conflict with other cassettes. When the same test is run
again, no HTTP requests are made and the response recorded into the cassette
is returned to the HTTP client.

This approach differs from a test server because it focuses less on asserting
that the request is made correctly. The main goal of a cassette is to behave
exactly like the real third-party service without having to write code to emulate
that third-party service. The workflow is, in fact, simpler than the test server:
we just wrap our code with use_cassette/2 and go on about our day. However,
cassettes present a similar problem to the test server, which is that they can
get out of sync with the actual API. The solution for cassettes is somewhat
simpler though, since we only have to delete the stale cassette and rerun our
tests in order to re-create an up-to-date cassette.

To push the idea of keeping cassettes up to date further, we can always force
real requests to be made when running tests in a continuous integration (CI)
server. This way, we’ll avoid making real HTTP requests when developing on
our local machine, but the CI server (which usually runs much less frequently)
will make sure that the cassettes haven’t gotten out-of-date. This approach
heavily depends on what making a request to the real API implies. In the
weather API example, making real requests to /data/2.5/forecast is feasible: if it’s
only done in CI then it’s unlikely that we’ll negatively affect our rate limiting.
In other cases, making requests might cost money or break things, so making
real requests on every CI run might not be ideal. Furthermore, we usually
want CI to be reproducible and consistent between runs, and depending on
the availability of an external API might not be feasible.

Our favorite use case for cassettes is an external service that allows you to
set up and tear down resources through its API. For example, the weather
API could expose endpoints to register and delete named queries. Now, if we
wanted to test that we can query the forecast through a named query, we
could create the named query, test the appropriate functions, and delete the
named query all in the same test. In this use case, the cassette merely becomes
a “cache” of HTTP requests. Even when not using cassettes (such as in CI),

Chapter 2. Integration and End-to-End Tests • 62

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the test would create and destroy all necessary resources to run the test,
leaving the external service’s state unchanged.

One important practice to keep in mind when working with ExVCR is to
never reuse cassettes. If you have two tests that make the same request, you
might be tempted to use the same cassette, but there’s a good chance that
at some point the request made in one of the two tests will change slightly
and then things won’t work anymore. If you use a different cassette in each
test, you’re guaranteed to not mess things up in this regard.

Let’s recap what we discussed in this section and see which approach is best
for different use cases.

What Approach Is Best for Testing External Services?
We saw three possible approaches to testing third-party HTTP services:
making real requests, running a test server that mocks the service, or
recording real requests and replaying them. As is often the case in our
industry, there’s no definitive best approach among these. Each one fits some
use cases better.

If you can get away with making real requests to a service, then it’s often a
good idea to do that. Many HTTP services provide sandbox environments
specifically for testing or are idempotent, meaning that you can make requests
without affecting the state of the service. Even in these cases, though, you
might want to avoid the real requests approach if you don’t want to rely on
an Internet connection in your tests. Nowadays it’s rare to not have an
Internet connection available, but there are situations (like being on a flight)
that take your Internet connection away. Relying on an Internet connection
can also cause all sorts of weird problems if the connection is unstable. Per-
sonally, we’re fans of a workaround that gives you a nice way to deal with
this: we tag our tests that use the Internet as @tag :requires_internet. This way,
if you don’t have a connection available, you can run mix test --exclude
requires_internet and still run all the tests that don’t require the connection. This
is a good workaround if you’re rarely without a connection. One thing to
consider is that this approach doesn’t necessarily let you test different kinds
of responses from an external service (such as temporary errors), so you might
have to mix this in with other approaches.

If you want tight control over how the third-party API should behave, then
building a test server is the way to go. This lets you test different responses
from the API and gives you flexibility. However, the trade-off is that you have
to build the test server and then keep it up to date with the real API.

report erratum • discuss

Testing the Actual Interaction with Services • 63

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

If you want to mimic the API perfectly and use one of the supported HTTP
clients, then ExVCR is a good alternative. The trade-off is that you have to
keep cassettes up to date, but that’s something that you can only avoid by
going with the real requests approach anyway.

Testing Non-HTTP Services
In the previous sections, we mostly talked about testing HTTP-based third-
party services. We explored how to build doubles for those services and then
how to test the interaction with the actual services. The concepts we discussed
mostly apply to non-HTTP services as well. If you’re talking with a service
that exposes a binary protocol, for example, you can build an interface (with
a behaviour) that specifies how to interact with the service. Then you can use
dependency doubles to test components that talk to the service through the
interface. However, testing the actual interaction with a service that doesn’t
expose an HTTP interface is a bit more complex because fewer tools are
available. If you want to build a test server, you’ll often have to implement
that yourself on top of lower-level protocols like TCP. If you want cassettes,
you’ll have to implement all of the infrastructure needed for them yourself
because there isn’t an ExVCR counterpart for protocols other than HTTP.

Luckily, most third-party services provide HTTP APIs. Usually, the external
systems that do not provide HTTP APIs are the ones we have control over,
such as databases or message queues.

Now that we have a good mental image of how to test external services, let’s
quickly discuss end-to-end tests.

End-to-End Tests
End-to-end tests are tests that sit one level higher than integration tests.
Instead of testing the integration between components of the system or
between the system and external dependencies, end-to-end tests exercise the
whole system from end to end as it might be used by the final user.

Let’s look at the weather API example from a wider perspective and think
about the whole system. End-to-end tests should test the system from the
perspective of a user. In this case, an end-to-end test would spin up the system
and perform assertions on the observable changes. For example, the end-to-
end test could start the system and then wait for an alert about rain.

The principle behind end-to-end tests is to test the real system, so using
dependency doubles rarely makes sense. However, the architecture induced

Chapter 2. Integration and End-to-End Tests • 64

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

by dependency doubles is still useful, since we can swap the doubles for the
real external dependencies when running end-to-end tests.

Unfortunately, it’s hard to find patterns for end-to-end tests when it comes
to interfacing with external dependencies, since finding patterns often depends
on the nature of the external dependency as well as how the system’s allowed
to use it.

It’s also hard to find patterns when it comes to an end-to-end test pretending
to be a user of the system under test. As with the interaction with external
systems, this heavily depends on the nature of the system we’re testing. For
example, if we’re testing a system that exposes an HTTP API, then we might
want to use an HTTP client in the end-to-end tests and perform actual requests
to the systems like a client of the API would. If our system is a website that
you can visit from the browser, we’d use tools that can script human-like
browser interactions. We’ll have a deeper look at some of these approaches
in Chapter 6, Testing Phoenix, on page 155.

Wrapping Up
We had a look at the practice of integration testing and end-to-end testing.
We discussed in-depth ways to write integration tests for parts of the system
that interface with external systems, and we looked at some Elixir-specific
tooling for doing so. In the next chapter, we’ll look at testing one of the most
peculiar tools in the Elixir and Erlang landscapes, the OTP set of abstractions.
There we’ll see some of the things mentioned in this chapter being used in
more practical scenarios.

report erratum • discuss

Wrapping Up • 65

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

CHAPTER 3

Testing OTP
In the previous two chapters, we established a mental framework to think
and work with different levels of testing. We now have the tools to test isolated
pieces of code through unit testing, test parts of the system that interact
together through integration testing, and test the whole system through end-
to-end testing. We covered many patterns that are specific to Elixir but also
talked about testing practices in general. In this chapter, we’re going to focus
on something that’s specific to Elixir: the OTP set of abstractions. We’re going
to dive deeper into testing a few OTP abstractions, such as GenServers and
supervisors, as well as talk about some patterns and things to pay attention
to when testing asynchronous code.

We’re going to start this chapter by discussing how to test GenServers, which
are usually considered the fundamental abstraction in OTP.

Testing a GenServer
Let’s refresh our memory: a GenServer is a process that holds state and
optionally provides an interface to read or update that state. OTP abstracts
all of the common parts of a GenServer, like spawning the process, having a
receive loop, and sending messages. What’s left to the user is to implement
callbacks that implement code that’s specific to a particular GenServer.

We’ll see how we can make use of a GenServer in the Soggy Waffle application,
but we’d like to start off with a self-contained example. It’s going to make
things easier when illustrating some concepts. We’ll use a GenServer that
provides a simple rolling average of the last N numeric measurements given
to it. We can start with a simple implementation by looking at the public API
exposed by the GenServer:

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

testing_otp/rolling_average/overloaded_genserver.ex
def start_link(max_measurements) do

GenServer.start_link(__MODULE__, max_measurements)
end

def add_element(pid, element) do
GenServer.cast(pid, {:add_element, element})

end

def average(pid) do
GenServer.call(pid, :average)

end

We have a function to start the GenServer, a function to store a new element
in the GenServer, and a function to get the average of the elements that the
GenServer is storing at a given time. From the public API, we know that this
is going to be a GenServer (because of the calls to GenServer functions), but we
don’t know what the internal state of the GenServer or the implementation
of the add_element/2 and average/1 functionalities will look like.

Let’s examine them now.

The internal state is going to be a struct with two fields: the maximum size
of measurements that the GenServer will store at once and the measurements
themselves.

testing_otp/rolling_average/overloaded_genserver.ex
defmodule RollingAverage do

use GenServer

defstruct [:size, :measurements]

Let’s look at the implementation of the init/1, handle_call/3, and handle_cast/2 call-
backs next.

testing_otp/rolling_average/overloaded_genserver.ex
@impl GenServer
def init(max_measurements) do

{:ok, %__MODULE__{size: max_measurements, measurements: []}}
end

@impl GenServer
def handle_call(:average, _from, state) do

{:reply, Enum.sum(state.measurements) / length(state.measurements), state}
end

@impl GenServer
def handle_cast({:add_element, new_element}, state) do

measurements =
if length(state.measurements) < state.size do
[new_element | state.measurements]

else

Chapter 3. Testing OTP • 68

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/overloaded_genserver.ex
http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/overloaded_genserver.ex
http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/overloaded_genserver.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

without_oldest = Enum.drop(state.measurements, -1)
[new_element | without_oldest]

end

{:noreply, %__MODULE__{state | measurements: measurements}}
end

Great. Let’s move on to testing this.

Writing the Tests
How do we go about testing this GenServer? We mentioned three different
options: initialization, adding a number to the queue, and getting the current
average. We’ll test these three. Our first test is focused on initialization:

testing_otp/rolling_average/overloaded_genserver_test.exs
defmodule RollingAverageTest do

use ExUnit.Case

describe "start_link/1" do
test "accepts a measurement count on start" do
max_measurements = 3
assert {:ok, _pid} = RollingAverage.start_link(max_measurements)

end
end

We’re testing that initializing the GenServer with an integer list size doesn’t
cause problems and returns a {:ok, pid} tuple. From a testing perspective, we
don’t know whether the size is actually used by the GenServer yet (and used
correctly for that matter), but this test helps us know that the GenServer at
least starts without causing issues.

Now we need to test that calling add_element/2 adds an element to the queue.
Let’s see the test itself first and then unpack what’s going on.

Disclaimer: The test we’re about to show you is a bit nasty. We’ll explain why
in just a second.

testing_otp/rolling_average/overloaded_genserver_test.exs
describe "add_element/2" doLine 1

test "adding an element to a full list rolls a value" do-

max_measurements = Enum.random(3..10)-

{:ok, pid} = RollingAverage.start_link(max_measurements)-

5

"Fill" the measurements with 4s.-

for _ <- 1..max_measurements do-

RollingAverage.add_element(pid, 4)-

end-

10

assert %{size: ^max_measurements, measurements: measurements} =-

:sys.get_state(pid)-

report erratum • discuss

Testing a GenServer • 69

http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/overloaded_genserver_test.exs
http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/overloaded_genserver_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

-

expected_measurements = List.duplicate(4, max_measurements)-

assert measurements == expected_measurements15

-

We add an element that we know causes an "overflow".-

RollingAverage.add_element(pid, 1)-

-

assert %{size: ^max_measurements, measurements: measurements} =20

:sys.get_state(pid)-

-

expected_measurements = [1 | List.duplicate(4, max_measurements - 1)]-

assert measurements == expected_measurements-

end25

end-

First notice that the test is set up to work with a dynamic-size list. When
given the option of static versus dynamic values in your tests, always tend
toward dynamic ones. This choice makes it less likely that you’ll miss edge
cases due to your test forcing your code to work only with specific values. In
this case, we’re starting with a list of 4s, as long as the maximum number of
measurements we pass to start_link/1 (this number is dynamic). Then, we fill
the state of the GenServer under test with this list and peek at the GenServer’s
state to assert on the expected state. After that, we add a 5 to the GenServer,
which causes the list of measurements to “overflow,” deleting the first added
element (a 4). Finally, we once again peek at the GenServer state and verify
that the oldest measurements have indeed been dropped and the new mea-
surement added to the state.

When using dynamic values, it’s important to make sure they show up in the
feedback on a failed test. In this case, you can see that max_measurements is
pinned and will be part of the failure feedback. This makes it easier to
reproduce the same conditions when debugging.

The add_element/2 test is doing a lot, but the biggest issue is that it can’t test
anything without using a system call to peek into the GenServer and grab its
state, seen at line 12. Our test has to know that the GenServer is storing the
measurements as a list. This violates the concept of a black box around your
code: the test code has to know the internal details of the code in order to
pass. However, we want our tests to still pass if we change the internal details
of our code but leave the public API unchanged. That would not happen here
if we, for example, moved from a list to an Erlang queue (see :queue1) for the
internal state representation. We warned you the test would be a bit nasty.

1. https://erlang.org/doc/man/queue.html

Chapter 3. Testing OTP • 70

report erratum • discuss

https://erlang.org/doc/man/queue.html
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Our third test is a little simpler. In combination with the test before it, we
have confidence that our “rolling” behavior works, so here we’re focusing just
on the cast callback returning the average. Again, though, setting up state
in our GenServer is a large part of the test.

testing_otp/rolling_average/overloaded_genserver_test.exs
describe "average/1" do

test "it returns the average for the elements" do
max_measurements = 2
{:ok, pid} = RollingAverage.start_link(max_measurements)

RollingAverage.add_element(pid, 5)
RollingAverage.add_element(pid, 6)
assert RollingAverage.average(pid) == 5.5

RollingAverage.add_element(pid, 7)
assert RollingAverage.average(pid) == 6.5

end
end

Having robust tests requires a little bit of dynamic setup and, as mentioned,
we’re using a call that’s normally better to avoid (:sys.get_state/1), to allow the
branching behavior to be tested without trying to interpret the results of the
average/1 function. Violating the black box model is a test smell, but without
it our tests would have to be numerous, because they’d have to set up various
different states and interpret the values returned from average/1. That approach
doesn’t just create a lot of tests to maintain; it also requires a decent-sized
mental load for anyone trying to understand what the tests are doing.

This example is basic, but the more complex the internal logic, the harder it
is to understand the tests. It becomes very tempting to start reaching into
the GenServer for its state more and more. In the next section, we’ll take a
look at how we can rethink our code so that it becomes more robust and at
the same time easier to test.

Isolating a Functional Core
An easier solution to this problem would be to move the logic out of the
GenServer’s module and into a new, purely functional module. This allows
you to take advantage of the ease of testing purely functional code while
leaving the GenServer tests focused on what GenServer does best: maintaining
state and presenting an API.

First, let’s look at the tests and code for the purely functional module, which
we’ll call the RollingAverageMeasurements because it’ll now handle the majority of
our code logic. This module is concise and clearly scoped:

report erratum • discuss

Testing a GenServer • 71

http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/overloaded_genserver_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

testing_otp/rolling_average/measurements.ex
defmodule RollingAverageMeasurements doLine 1

def new(max_measurements) do-

{[], max_measurements}-

end-

5

def add_element({measurements, max_measurements}, new_element)-

when length(measurements) < max_measurements do-

{[new_element | measurements], max_measurements}-

end-

10

def add_element({measurements, max_measurements}, new_element) do-

without_oldest = Enum.drop(measurements, -1)-

{[new_element | without_oldest], max_measurements}-

end-

15

def average({measurements, _max_measurements}) do-

Enum.sum(measurements) / length(measurements)-

end-

end-

We moved all the pure data structure logic to this module. The new/1 function
(line 2) returns a brand new set of measurements. Here, we’re designing
the measurements data structure as a two-element tuple, with the list of
measurements as the first element and the maximum number of allowed
measurements as the second element. We’re storing both these values in
the data structure so that the data structure contains all the necessary
information to perform the operations that our GenServer needs to do. By
“hiding” this data structure inside a module and providing a set of functions
to work with it, we’ll be able to change the internal representation without
touching the GenServer.

The add_element/2 (line 6) and average/1 (line 16) functions contain essentially
the same logic that the GenServer used to handle the respective cast and call,
but they hide the internal representation of the data structure from the
GenServer itself by accepting our tuple data structure as their first argument.
Keeping the boundaries of the black box intact leads to code that’s easily and
safely refactored.

Testing this purely functional code is much easier than testing the whole
GenServer. Our first test focuses on adding an element to the rolling average
data structure when there’s space for that element.

testing_otp/rolling_average/measurements_test.exs
defmodule RollingAverageMeasurementsTest do

use ExUnit.Case

describe "add_element/2" do

Chapter 3. Testing OTP • 72

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/measurements.ex
http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/measurements_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

test "adds an element when there are fewer elements than the size" do
measurements = RollingAverageMeasurements.new(_max_measurements = 3)

measurements =
measurements
|> RollingAverageMeasurements.add_element(1)
|> RollingAverageMeasurements.add_element(2)

assert RollingAverageMeasurements.add_element(
measurements,
3

) == {[3, 2, 1], 3}
end

end
end

Because we’re testing stateless code, our test only needs to focus on passing
in arguments and asserting on return values. No complex setup of state is
required. From reading this first test, you can see that we’re now able to focus
only on the exercise and verify stages of testing, showing that we’ve shifted
toward testing patterns for purely functional code. You’ll see that this test
inspects the internal data structure representation (the tuple). That’s okay
since we’re inside the black box here, so to speak, and external users of this
data structure still won’t need to know what it looks like.

In our previous tests, verifying that the “rolling” part of the rolling average
was working was difficult because it was hidden behind the interface of the
GenServer, requiring state to be set up and, ultimately, encouraging us to
violate the boundaries of the black box in order to keep the number of tests
to a minimum. Instead, with all the parts explicit, we can functionally test
the rolling behavior of our code, too:

test "adding an element to a full list rolls a value" do
initial_measurements =

RollingAverageMeasurements.new(_max_measurements = 3)

measurements =
RollingAverageMeasurements.add_element(measurements, 1)

measurements =
RollingAverageMeasurements.add_element(measurements, 1)

measurements =
RollingAverageMeasurements.add_element(measurements, 1)

assert RollingAverageMeasurements.add_element(measurements, 3) ==
{_list = [3, 1, 1], _max_measurements = 3}

end

With the complexity of the test reduced, it’s almost fun to figure out how to
make the input dynamic. The tests are pretty straightforward and easy to

report erratum • discuss

Testing a GenServer • 73

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

read, even with the dynamic list size. This is a good example of setup with
functional code. It doesn’t impact the state of anything, so no teardown is
required. But we do need to do a little work to create the right parameters for
the test.

We only have one more test that needs to be in our measurements module:
averaging a list. If Elixir (or Erlang) shipped with a mean average function,
we would potentially be able to skip this, but it’s simple enough to add a test
and a function:

describe "average/1" do
test "it returns the average of the list" do

max_measurements = Enum.random(1..100)
measurements = RollingAverageMeasurements.new(max_measurements)

input_list = Enum.take_random(1..1_000, max_measurements)

measurements =
Enum.reduce(input_list, measurements, fn input, acc ->

RollingAverageMeasurements.add_element(acc, input)
end)

expected_average = Enum.sum(input_list) / length(input_list)

assert RollingAverageMeasurements.average(input_list) ==
expected_average

end
end

In this case, the code in the test to build the expected return value is going
to look a whole lot like the logic in our code itself. This isn’t ideal, because
the code is pretty basic. So why have a test at all? This test will help prevent
regressions. It’s likely that the code under test will be worked on at some
point, and having this test will make sure that no one accidentally breaks
that functionality.

Our GenServer still needs to be tested but its purpose has now been reduced
significantly. It only keeps state and calls out to the measurements module.
This is an example of where we might want to expand our testing black box
to include the well-tested, purely functional RollingAverageMeasurements module,
as shown in the figure on page 75.

Because the measurements code is well tested and consists of truly pure
functions, there is very little risk in allowing the GenServer to call it. (Refer
back to our discussion of defining the scope of your unit tests in Chapter 1,
Unit Tests, on page 1, for more information.) While the risk is low, the reward
is that we don’t need to alter our code or our tests in a heavy-handed way to
make sure that the GenServer is calling out to the utility and verifying that

Chapter 3. Testing OTP • 74

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the data it’s sending is what’s expected. Instead, we can write some lightweight
tests that just make sure that the outside behavior is there, knowing that the
logic is separately tested.

testing_otp/rolling_average/thin_genserver_test.exs
defmodule RollingAverageServerTest doLine 1

use ExUnit.Case-

-

describe "initialization" do-

test "accepts a measurement count on start" do5

assert {:ok, _pid} =-

RollingAverageServer.start_link(max_measurements: 3)-

end-

end-

10

describe "adding and averaging" do-

test "it returns the rolling average for the elements" do-

assert {:ok, _pid} =-

RollingAverageServer.start_link(max_measurements: 2)-

15

RollingAverageServer.add_element(pid, 5)-

RollingAverageServer.add_element(pid, 6)-

-

assert RollingAverageServer.average(pid) == 5.5-

20

RollingAverageServer.add_element(pid, 7)-

-

assert RollingAverageServer.average(pid) == 6.5-

end-

end25

end-

We’re now down to two tests: one to make sure the initialization is correct
and one to make sure that the basic operations work as expected. Our first
test (line 5) is the same as before, but it was pretty small and easy to under-
stand to begin with. Normally, we would break out the tests for the two

report erratum • discuss

Testing a GenServer • 75

http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/thin_genserver_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

behaviors, adding elements and averaging the list into two separate tests.
However, as we found earlier, it’s not easy to test the addition of elements in
a way that doesn’t violate the black box. This is okay, though, since we’ve
already tested the logic around that through the measurements module. Our
second test (line 12) runs through the basic use of the GenServer, making
just enough assertions to verify that it’s working correctly.

The implementation code for the GenServer is now significantly easier to
understand as well:

testing_otp/rolling_average/thin_genserver.ex
defmodule RollingAverageServer do

use GenServer

defstruct [:measurements]

def start_link(options) do
max_measurements = Keyword.fetch!(options, :max_measurements)
GenServer.start_link(__MODULE__, max_measurements)

end

def add_element(pid, element) do
GenServer.cast(pid, {:add_element, element})

end

def average(pid) do
GenServer.call(pid, :average)

end

@impl true
def init(max_measurements) do

measurements = RollingAverageMeasurements.new(max_measurements)
{:ok, %__MODULE__{measurements: measurements}}

end

@impl true
def handle_call(:average, _from, state) do

average = RollingAverageMeasurements.average(state.measurements)
{:reply, average, state}

end

@impl true
def handle_cast({:add_element, new_element}, state) do

measurements =
RollingAverageMeasurements.add_element(

state.measurements,
new_element

)

{:noreply, %__MODULE__{state | measurements: measurements}}
end

end

Chapter 3. Testing OTP • 76

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/thin_genserver.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

By designing our code to pull the logic into a purely functional module, we
have taken code that was hard to test and hard to reason about and broken
it into two test files and modules that are easier to test and easier to under-
stand. When possible, moving toward testing purely functional code is a big
win. Sometimes it’s not as easy as our example here and sometimes your
code has dependencies that are not purely functional. In those cases, the
ideas discussed in Chapter 2, Integration and End-to-End Tests, on page 35,
come in handy.

Now let’s quickly take a look at a nice tool in ExUnit’s toolbox to help start
and stop GenServers (and other “OTP processes”) in our tests.

Controlling the Life Cycle of OTP Processes in Tests
Until now, when we needed to start a GenServer in our tests, we always called
the GenServer’s start_link/1 function directly. We even went as far as having
assertions on the return value of this function.

assert {:ok, pid} = RollingAverageServer.start_link(max_measurements: n)

This kind of assertion might be useful to test that the start_link/1 function
behaves properly, but it has a few drawbacks. The most important one is that
the process that we start is tied to the life cycle of the test process but not in
a clean way. The processes are just linked. When the test finishes executing,
the test process will terminate (peacefully); and since our GenServer process
is linked to it, the GenServer will die too. However, the test process doesn’t
know that it has to wait for the process we started with start_link/1 to properly
shut down. In other words, the GenServer process we start could still be
shutting down when the next test starts, potentially leading to some nasty
bugs and race conditions.

You can imagine why this situation is problematic: if we have two tests that
start the same process and register it using the same name, for example,
there might be name clashes if there’s not enough time between the first test
finishing and the next one starting up. Let’s see an example of this and
imagine that our RollingAverage server takes a :name option when starting, which
registers it with a name:

testing_otp/rolling_average/server_with_name_start_link_test.exs
test "some test" do

assert {:ok, _pid} =
RollingAverageServer.start_link(

name: :my_server,➤

max_measurements: 3
)

report erratum • discuss

Controlling the Life Cycle of OTP Processes in Tests • 77

http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/server_with_name_start_link_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

«assertions»
end

test "some other test" do
assert {:ok, _pid} =

RollingAverageServer.start_link(
name: :my_server,➤

max_measurements: 3
)

«other assertions»
end

In both tests, the server is started with the same name: :my_server option. When
ExUnit finishes running one of the tests and starts the other one, there’s no
guarantee that the server registered under the :my_server name (started in the
previous test) has terminated. Thus, there’s a chance that the second test
fails because another server registered with same :my_server name can’t be
started.

Lucky for us, ExUnit provides a useful workaround: ExUnit.Callbacks.start_super-
vised/1. This function takes a child specification to start your process under
an on-the-fly supervisor that it sets up for you. Let’s first see it in action:

testing_otp/rolling_average/thin_genserver_test_with_start_supervised.exs
defmodule RollingAverageServerTest do

use ExUnit.Case

describe "initialization" do
test "accepts a measurement count on start" do
assert {:ok, _pid} =

start_supervised(
{RollingAverageServer, max_measurements: 3}

)
end

end
end

start_supervised/1 still returns {:ok, pid} if successful, or {:error, reason} if unsuccess-
ful. Behind the scenes, it sets up an on-the-fly supervision tree with the given
process as one of its children. For what we’ve seen so far, it works almost
identically to our manual start_link/1 assertion. The magic happens when the
test shuts down. Since ExUnit knows you started this process under its on-
the-fly supervisor, it also knows that it has to shut the child process down
when the test finishes executing and the test process exits. When the test
finishes executing, ExUnit will gracefully shut down all the processes you
started with start_supervised/1, using the proper supervisor shutdown semantics.

Chapter 3. Testing OTP • 78

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/thin_genserver_test_with_start_supervised.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

That means it will wait for the processes to shut down before starting the
next test.

When you have to repeatedly start a process in many of your tests, there’s
no point in having assert {:ok, pid} every time, since you’re not effectively testing
that the process starts correctly every time. That is, it should start correctly
every time, but that’s not the focus of your test. We can see this happening
exactly as we just described in our original RollingAverageServerTest on line 14,
where we assert that start_link/1 returns {:ok, pid}, even though that’s not the
focus of the test. In those cases, ExUnit provides another helpful utility,
start_supervised!/1. It works the same as start_supervised/1, but raises an exception
if the process fails to start. We can use that in our test to make sure that we
start the process but without the need to assert on the {:ok, pid} tuple:

testing_otp/rolling_average/thin_genserver_test_with_start_supervised.exs
describe "adding and averaging" do

test "it returns the rolling average for the elements" do
pid = start_supervised!({RollingAverageServer, max_measurements: 2})

RollingAverageServer.add_element(pid, 5)
RollingAverageServer.add_element(pid, 6)

assert RollingAverageServer.average(pid) == 5.5

RollingAverageServer.add_element(pid, 7)

assert RollingAverageServer.average(pid) == 6.5
end

end

Although not as commonly used, ExUnit also provides a helper to shut down
processes started with start_supervised/1 (or start_supervised!/1) before the test fin-
ishes executing. Such helper is ExUnit.Callbacks.stop_supervised/1 (with the mirroring
stop_supervised!/1). The next test we’ll show is contrived and not the most useful,
but it’ll help us show stop_supervised/1 in action, so bear with us.

testing_otp/rolling_average/thin_genserver_test_with_start_supervised.exs
describe "error cases" do

test "asking for the average if the server has stopped crashes" do
pid = start_supervised!({RollingAverageServer, max_measurements: 2})

RollingAverageServer.add_element(pid, 5)
RollingAverageServer.add_element(pid, 6)

stop_supervised!(RollingAverageServer)

assert {:noproc, _} = catch_exit(RollingAverageServer.average(pid))
end

end

report erratum • discuss

Controlling the Life Cycle of OTP Processes in Tests • 79

http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/thin_genserver_test_with_start_supervised.exs
http://media.pragprog.com/titles/lmelixir/code/testing_otp/rolling_average/thin_genserver_test_with_start_supervised.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Ignore the call to catch_exit/1. We address that in the sidebar on catch_exit and
catch_throw. As you can see, in this test we needed to shut down our GenServer
before the end of the test. stop_supervised!/1 to the rescue! stop_supervised/1 and
stop_supervised!/1 still shut down the started processes gracefully, so we don’t
really have to worry about race conditions. One peculiarity to note is that
these helpers take the child ID of the process to shut down and not its PID.
This is in line with the APIs in the Supervisor module to shut down children,
which tend to use the children’s IDs rather than their PIDs. In our case, the
defaults in use GenServer mean that the child ID of our GenServer is its module
name, TestingElixirCodeSamples.RollingAverageServer.

catch_exit and catch_throw

In the previous test, we used a macro that we haven’t used before: catch_exit/1. ExUnit
provides two similar self-explanatory macros called catch_exit/1 and catch_throw/1. They
run the expression you give to them and assert that that expression exits or throws
something, respectively.

We won’t cover these two assertion helpers here. The main reason is that having a
public interface where you exit or throw something is highly discouraged in Elixir.
We absolutely don’t want you to use exits or throws as a control flow mechanism to
expose to users of your code (which might include other parts of your system itself).
Throwing can be useful for control flow, especially in deeply nested loops and recursive
functions, but you should always catch without exposing the thrown terms to users
of the code. Exits are different: they might make sense for cases where your process
doesn’t know what else to do. Mostly though, they’re Erlang heritage. In our test
above, the GenServer module exits if the GenServer.call/3 is issued against a server that’s
not alive. Nowadays, an Elixir developer would have probably used raise in that context
instead and you could’ve used assert_raise to test for that. Well, it is what it is. Some-
times, we have to deal with exits and throws. In those cases, catch_exit/1 and catch_throw/1
are there for you.

One last thing. You might be wondering why on earth these are macros. Why aren’t
they functions that take an anonymous 0-arity function, like catch_exit(fn -> ... end)?
Well, as it turns out, there’s no real reason. These were added to ExUnit at a time
when the Elixir team was happy to sprinkle macros around. Too late to change it!

In this section, we looked at how to test a GenServer that has a “normal”
interaction with its clients, that is, synchronous or asynchronous requests.
However, GenServers can also be used as background processes that hold
state. A common use for GenServers is as processes that do something peri-
odically based on their state. Testing those is nasty. Let’s go through it
together.

Chapter 3. Testing OTP • 80

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Testing Periodic Actions
At last we can get back to our beloved Soggy Waffle application. We saw how
to test a GenServer whose job is essentially to hold some state. Another
common use for GenServers is to have a process in your system that performs
an action periodically. For example, you could have a GenServer that resets
a cache every five minutes or a GenServer that looks for changes to system
environment variables every few seconds and updates other parts of your
system when that happens.

For Soggy Waffle, we need something like what we just described. Soggy
Waffle’s purpose is to alert us in case there’s going to be rain in the next few
hours. To do that, the application needs to periodically call out to the weather
API to check if there’s rain in the forecast for a given location. Remember the
weather API we worked with in Chapter 1, Unit Tests, on page 1, and
Chapter 2, Integration and End-to-End Tests, on page 35? We’ll finally be
able to put that to real use.

Performing weather API calls periodically and alerting if there’s rain in the
next few hours isn’t enough to make this work properly. The application also
needs to avoid alerting us every time the forecast says it’s going to rain in two
hours: if we check the API every 30 minutes and the forecast says it’ll rain in
two hours, we can’t alert every thirty minutes. We already get alerted by too
much stuff in this world. We need to store some data somewhere that’ll help
us avoid useless alerts. That sounds like keeping state.

So our use case is clear: perform some periodic action and store some state.
Seems like our best tool to solve this is exactly a GenServer—what a plot
twist.

We have one more detail to cover. We want Soggy Waffle to alert us through
SMS. To send SMSs, we’ll just use a third-party integration such as Twilio.2

Soggy Waffle will talk to Twilio via HTTP and Twilio will deal with the nitty-
gritty details of sending SMSs. Instead of diving into the details of how the
code to interact with Twilio would look like, we’ll only show you the interface
to Twilio that we’ll use. The idea is the same as that discussed in Chapter 2,
Integration and End-to-End Tests, on page 35: when isolating parts of our
system, we mostly care about the interfaces that those isolated parts expose.
The internals are a different concern. Here’s the interface we’ll have available:

2. https://www.twilio.com

report erratum • discuss

Testing Periodic Actions • 81

https://www.twilio.com
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

testing_otp/periodic_actions/twilio_interface.ex
defmodule SoggyWaffle.Twilio.Behaviour do

@callback send_sms(phone_number :: String.t(), text :: String.t()) ::
:ok | {:error, reason :: term()}

end

defmodule SoggyWaffle.Twilio do
@behaviour SoggyWaffle.Twilio.Behaviour

@impl true
def send_sms(phone_number, text)

when is_binary(phone_number) and is_binary(text) do
Make calls to the Twilio API here

end
end

We’ll once again use Mox to create a double for this interface.3 That’s why we
added the SoggyWaffle.Twilio.Behaviour behaviour. We’ll use the double later on to
ensure that the weather checker process calls the Twilio interface (and maybe
check how and how many times the checker calls it, but let’s not get ahead
of ourselves here).

testing_otp/periodic_actions/twilio_double.ex
Mox.defmock(SoggyWaffle.TwilioMock, for: SoggyWaffle.Twilio.Behaviour)

Now that we have a plan for how to send alerts, let’s start with a naive
GenServer that satisfies our requirements so that we can look at the challenges
of testing something like this.

Starting Simple: A GenServer That Doesn’t Keep State
We’ll write the simplest GenServer that we can think of. In this phase, we
don’t even care about storing the alerts we’ll send: we want to focus on the
periodic action part. The action itself that we want to perform consists of
calling the weather API to get the weather forecast, checking if there’ll be rain
in the next few hours, and potentially alerting through SMS in case rain is
expected. We’ll call our periodic-action GenServer SoggyWaffle.WeatherChecker:

testing_otp/periodic_actions/first_iteration_weather_checker.ex
defmodule SoggyWaffle.WeatherChecker doLine 1

use GenServer-

-

@twilio_module Application.fetch_env!(:soggy_waffle, :twilio_module)-

5

def start_link(opts) do-

GenServer.start_link(__MODULE__, opts)-

end-

-

3. https://github.com/plataformatec/mox

Chapter 3. Testing OTP • 82

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/periodic_actions/twilio_interface.ex
http://media.pragprog.com/titles/lmelixir/code/testing_otp/periodic_actions/twilio_double.ex
http://media.pragprog.com/titles/lmelixir/code/testing_otp/periodic_actions/first_iteration_weather_checker.ex
https://github.com/plataformatec/mox
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

@impl GenServer10

def init(opts) do-

interval = Keyword.fetch!(opts, :interval)-

-

state = %{-

city: Keyword.fetch!(opts, :city),15

phone_number: Keyword.fetch!(opts, :phone_number),-

}-

-

:timer.send_interval(interval, self(), :tick)-

20

{:ok, state}-

end-

-

@impl GenServer-

def handle_info(:tick, state) do25

TODO: figure out how to actually use the weather API.-

if SoggyWaffle.rain?(state.city, DateTime.utc_now()) do-

@twilio_module.send_sms(state.phone_number, "It's going to rain")-

end-

30

{:noreply, state}-

end-

end-

This GenServer works by periodically sending itself a “tick,” which is an Elixir
message. We use the :timer.send_interval/3 Erlang function on line 19 to send the
:tick message to the GenServer itself (self()) every time interval milliseconds have
passed.4 Then, we handle the :tick message in a handle_info/2 callback (on line
25). To handle a tick, the GenServer hits up the weather API; if the weather
API says it’s going to rain, then the GenServer sends an SMS to the provided
phone number with a rain alert.

One more thing to note: on line 4 we use a pattern we showed in Chapter 2,
Integration and End-to-End Tests, on page 35, to read the module to use
when calling the Twilio interface. In tests, this will allow us to swap SoggyWaf-
fle.Twilio for its double, SoggyWaffle.TwilioMock.

:timer.send_interval/3 or Process.send_after/3?

The use of :timer.send_interval/3 is discouraged for periodic actions that you have to do
at most a given number of times every given interval. The reason is that the timer will
fire off at the same intervals, but if your process is taking an unusually long time to
do some actions or is blocked by other factors, then it could end up “piling” up tick
messages and then executing them without enough time between them. A more
common approach in these scenarios is to use Process.send_after/3 to send one tick

4. http://erlang.org/doc//man/timer.html#send_interval-3

report erratum • discuss

Testing Periodic Actions • 83

http://erlang.org/doc//man/timer.html#send_interval-3
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

message at a time. Then you can call Process.send_after/3 after you handle every tick
message so that you’re sure that at least the given interval will pass between handling
subsequent tick messages. For our example, the interval is long, so we chose to not
complicate the code and used :timer.send_interval/3 instead, but we wanted to highlight
that :timer.send_interval/3 is not always the best choice.

How would we go about testing this? As it turns out, it’s not really that
straightforward. Let’s look at the code and then walk through it:

testing_otp/periodic_actions/first_iteration_weather_checker_test.exs
defmodule SoggyWaffle.WeatherCheckerTest do

use ExUnit.Case, async: true

import Mox

setup [:set_mox_from_context, :verify_on_exit!]

test "when the process \"ticks\", the Twilio interface is called" do
interval_in_ms = 5
phone_number = "+1 111 11 1111"

stub(SoggyWaffle.TwilioMock, :send_sms, fn to, text ->
assert to == phone_number
TODO: assert on text
:ok

end)

start_options = [
interval: interval_in_ms,
city: "Los Angeles",
phone_number: phone_number

]

start_supervised!({SoggyWaffle.WeatherChecker, start_options})

Process.sleep(interval_in_ms * 2)
end

end

The test starts the SoggyWaffle.WeatherChecker GenServer with a low interval (five
milliseconds), so that the GenServer calls the Twilio interface “soon enough,”
and then checks that the Twilio interface is called. As we learned in Chapter
2, Integration and End-to-End Tests, on page 35, we can use Mox.stub/3 to
check that the send_sms/2 function of the interface is called. Remember that
Mox.stub/3 doesn’t guarantee that the double is called; it only provides a way
to execute code when the stub function is called. Since our GenServer “ticks”
after starting, we also need to make sure that we wait for the first tick to
happen. Since we control the ticking interval, we could use Process.sleep/1 in

Chapter 3. Testing OTP • 84

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/periodic_actions/first_iteration_weather_checker_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the test and sleep enough (say, double the interval) to feel confident that the
stub has been called.

This works, but it’s a pretty bad test. Relying on Process.sleep/1 is usually a big
red flag, since it can make tests either brittle when the timeout is too short
or slow if the timeout is too long. Instead, we can use a fairly common Elixir
trick to get the timing just right: in the stub function, we can send a message
to the test process right before returning :ok. This way, the test process can
use assert_receive/1 to wait on the message sent from the stub function. This
will at least guarantee that the stub function is called (at least once). It doesn’t
guarantee that when we get the message, the stub function has returned.
Solving that is more problematic since we don’t want to break the black box
model and inspect what the GenServer is doing. Luckily for us, we know our
GenServer isn’t doing much after calling the stub function, so we’re fine with
this small inconsistency. Here’s the updated code that uses message-passing:

defmodule SoggyWaffle.WeatherCheckerTest do
use ExUnit.Case, async: true

«same setup as before»,
test "when the process \"ticks\", the Twilio interface is called" do

interval_in_ms = 5
phone_number = "+1 111 11 1111"
test_pid = self()➤

ref = make_ref()➤

stub(SoggyWaffle.TwilioMock, :send_sms, fn to, text ->
assert to == phone_number
TODO: assert on text
send(test_pid, {:send_sms_called, ref})➤

:ok
end)

start_options = [
interval: interval_in_ms,
city: "Los Angeles",
phone_number: phone_number

]

start_supervised!({SoggyWaffle.WeatherChecker, start_options})

assert_receive {:send_sms_called, ^ref}➤

end
end

It’s good practice to include a reference (generated with make_ref/0) with this
sort of message so that we’re positive that the message we assert on is the
one we mean to assert on. The reason we’re so certain is that references are
terms that are unique enough for practical purposes (each one reoccurs after

report erratum • discuss

Testing Periodic Actions • 85

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

approximately 282 calls to make_ref/0). We want to stress that the message-
sending technique above is quite commonly found in Elixir tests that cover
asynchronous code. There isn’t always a better alternative, so it’s a good tool
to have in our tool belt.

This GenServer and its test both work. However, there’s a problem with the
test: it’ll happily pass if we decide to refactor our GenServer so that it sends
two or more messages when it ticks. This happens because we use Mox.stub/3,
which allows you to call the stub function as many times as possible and
doesn’t make assertions on how many times it’s called. Let’s try to fix this
shortcoming in the next section.

Compromising Between the Black Box Model and Practical Needs
Mox provides the perfect function for what we want: Mox.expect/4. We can use
expect/4 to make sure that the send_sms/2 function is called exactly once. How-
ever, our problem persists because of the nature of our test subject. Since
the GenServer performs its action periodically, we don’t really know how many
times it’ll tick in our tests. For example, if our machine is particularly slow,
then the GenServer might tick a few times during the course of a single test,
if we use a fast interval like we did in the previous section. So the problem is
in the foundations of our test.

As it turns out, it’s quite hard to escape the hole we find ourselves in. In a
moment, we’ll see that this situation well summarizes a whole category of
test problems related to periodic actions. In this book, we always try to
strictly follow testing principles such as treating application code as a black
box, as well as avoiding changes to application code just for the sake of
making testing easier. However, we already bent the rules slightly before: for
example, reading the @twilio_module attribute at compile time in order to swap
the Twilio interface double during testing is surely a change that we made to
application code in order to favor testing. In this case, we’ll take a similar but
slightly more invasive approach and make a logic change to SoggyWaffle.Weath-
erChecker to make testing easier. We’re walking the line between clean tests
that are practical and effective at the same time.

The fundamental problem we have is that our GenServer performs a periodic
action in the background that, once set off, keeps repeating until we stop the
GenServer itself. Well, what if we didn’t perform the action periodically but
“on demand”? Our current SoggyWaffle.WeatherChecker doesn’t support that, but
it’s something we can change. We’ll add support for a :mode option when
starting the GenServer. This option controls whether the GenServer will behave

Chapter 3. Testing OTP • 86

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

like it does now and perform the tick periodically (:periodic mode) or whether
we’ll trigger each tick manually (:manual mode).

testing_otp/periodic_actions/weather_checker_with_mode.ex
defmodule SoggyWaffle.WeatherChecker do

use GenServer

«same module attribute and start_link/1 as before»
@impl GenServer
def init(opts) do

mode = Keyword.get(opts, :mode, :periodic)➤

interval = Keyword.fetch!(opts, :interval)

state = %{
city: Keyword.fetch!(opts, :city),
phone_number: Keyword.fetch!(opts, :phone_number),

}

case mode do➤

:periodic ->➤

:timer.send_interval(interval, self(), :tick)➤
➤

:manual ->➤

:ok➤

end➤

{:ok, state}
end

@impl GenServer
def handle_info(:tick, state) do

«exactly the same code as before»
end

end

As you can see, the changes we made are minimal. Now, if we pass mode:
:manual when starting the GenServer, the GenServer won’t initiate the ticking
loop. That means we need a way to manually tick. This is going to sound
horrible, but we think the best way is to send the GenServer a :tick message
to simulate exactly what mode: :periodic would do. It sounds bad because it
breaks the black box model by relying on an internal implementation detail
of our GenServer. However, we believe that it’s a simple and practical solution
that achieves the purposes of testing: if we change the internal implementa-
tion, the test will break, which is not ideal but at least will signal that there’s
something to fix and won’t slip through the cracks instead. We could come
up with more elegant ways of hiding this implementation detail, such as
exposing a tick/0 function in the GenServer, but we believe that keeping the
changes to the application code to a minimum yields more benefits than
hiding this detail.

report erratum • discuss

Testing Periodic Actions • 87

http://media.pragprog.com/titles/lmelixir/code/testing_otp/periodic_actions/weather_checker_with_mode.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Now our test can start the GenServer in :manual mode and use Mox.expect/4 to
assert that send_sms/2 is called exactly once during the test:

testing_otp/periodic_actions/weather_checker_with_mode_test.exs
defmodule SoggyWaffle.WeatherCheckerTest do

use ExUnit.Case, async: true

«same setup as before»,
test "when the process \"ticks\", the Twilio interface is called" do

interval_in_ms = 5
phone_number = "+1 111 11 1111"
test_pid = self()
ref = make_ref()

start_options = [
The :mode option is set explicitly for testing.➤

mode: :manual,➤

interval: interval_in_ms,
city: "Los Angeles",
phone_number: phone_number

]

pid = start_supervised!({SoggyWaffle.WeatherChecker, start_options})

expect(SoggyWaffle.TwilioMock, :send_sms, fn to, text ->
assert to == phone_number
TODO: assert on text
send(test_pid, {:send_sms_called, ref})
:ok

end)

send(pid, :tick)

assert_receive {:send_sms_called, ^ref}➤

end
end

There’s one last problem we need to solve: what if we want to start our
GenServer in our application’s supervision tree? That’s pretty likely, but it’ll
mean that our tests can’t rely on starting another SoggyWaffle.WeatherChecker in
the test, because both the application-level GenServer and the test-level
GenServer would call the same test double, making our Mox.expect/4 assertions
unreliable.

This problem is more general and is related to singleton resources, which are
components of your application that are singletons and started by your
application at startup. Those tend to cause different kinds of problems in
tests because usually you either can’t start other instances of those resources
in tests (after all, they’re singletons) or, if you can start other instances in

Chapter 3. Testing OTP • 88

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/periodic_actions/weather_checker_with_mode_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

tests, they’ll fight for the same resources against the singleton instance. Let’s
explore singleton resources more in the next section.

Testing Singleton Resources
It’s quite common in Elixir and Erlang applications to have singleton resources.
A singleton resource exists in your application as a single and unique unit.
For example, a process with a globally registered name is a singleton resource,
since no other process with that same name can exist in the system at the
same time. That example is a bit oversimplified.

A more common and realistic example is a process that does something that
should be done by at most one process at a time—for example, a process that
needs exclusive access to a file on the file system or a process that periodically
notifies users via SMS that it’s going to rain soon. See where we’re going with
the latter? If we have more than one of this kind of process, we’re going to
have a bad time because each of those processes will try to send text messages,
resulting in users getting notified more than once. The solution could be to
have a list of the notified users shared between the processes, for example in
an ETS table. However, we’re just moving the problem around: the singleton
resource is now the ETS table. Ouch. So, how do we test these scenarios?

We truly believe singletons often are one of the nastiest things to test. Writing
singleton resources isn’t usually challenging, since you’ll have one instance
of the resource running at any given time. However, when you want to test
these instances, you’ll usually want to spin up additional instances of the
singleton resource in order to test them in isolation. We’re going to cover a
few workarounds to test singleton resources, but don’t expect strong recom-
mendations on clean and established testing patterns. In this landscape,
testing might have to be thought out on a case-by-case basis, and it seems
that the Elixir community hasn’t found a widely accepted solution yet.

In general when testing a singleton resource, we suggest you identify what
makes it a singleton resource in the first place. Is it the registered name? Is
it the fact that it’s the only thing allowed to work with a particular file? Maybe
it’s the only connection to an external system? Let’s see how to find this out
and how to go about testing.

Making the Essence of a Singleton Resource Customizable
In the previous sections, when we added the mode: :manual option to SoggyWaf-
fle.WeatherChecker, we broke our core belief that application code shouldn’t be
changed just to make testing easier. Well, we’ll have to break that belief again.

report erratum • discuss

Testing Singleton Resources • 89

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

One of the easiest, simplest, and most efficient ways to test singleton resources
is to make whatever makes them singleton resources customizable.

Since we already worked with a singleton resource in the previous sections
(SoggyWaffle.WeatherChecker), we’ll use that as our case study. In this case, the
thing that makes SoggyWaffle.WeatherChecker a singleton resource is the fact that
it’s the only thing allowed to send SMS messages to users (in order to avoid
multiple messages to the same user). In code, we can translate that idea to
this statement: SoggyWaffle.WeatherChecker is the only thing allowed to use Soggy-
Waffle.Twilio.send_sms/2 at any given time.

The contents of Chapter 2, Integration and End-to-End Tests, on page 35,
are going to apply well here. Our weather checker GenServer already reads
the module to use for the Twilio interface from the application environment
at compile time.

As we mentioned when discussing integration testing, and in particular in
Stubbing Entire Interfaces, on page 50, a useful and flexible technique with
dependency doubles is to use a no-op fake in most tests that make up the
testing suite but use an actual mock during the specific test that exercises
the behavior we’re interested in.

In this case, we can use a Twilio fake that doesn’t do anything in all tests
except for the ones for the weather checker GenServer. The code for the fake
is short and sweet:

testing_otp/periodic_actions/no_op_twilio.ex
defmodule SoggyWaffle.NoOpTwilio do

@behaviour SoggyWaffle.Twilio.Behaviour

@impl true
def send_sms(_phone_number, _text), do: :ok

end

Then, whenever we need to spin up a weather checker process without it
interfacing with Twilio or the double, we can use Mox.stub_with/2:

Mox.stub_with(SoggyWaffle.TwilioMock, SoggyWaffle.NoOpTwilio)

We’ll also have to use mode: :manual when starting the weather checker in the
application’s supervision tree, to avoid the weather checker running in the
background.

When testing our GenServer, we’ll now be able to switch to the SoggyWaffle.Twil-
ioMock mock and test that the weather checker does the right calls to Twilio.

Chapter 3. Testing OTP • 90

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/periodic_actions/no_op_twilio.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Dirtier Solutions to the Singleton Problem
Sometimes you might feel as though you’re in a situation where you have a
singleton resource that you just can’t start in the test environment. Let’s come
up with a crazy example: your application needs to forcibly restart the whole
VM every hour at the thirty-seventh-minute mark, because that is the business
requirement. You’d do something like this with a cron job, but we said crazy
example, so let’s say you implement a GenServer that performs a check every
minute to see if the current minute is the thirty-seventh in the hour. If it is
the thirty-seventh minute, the GenServer restarts the VM. How do you test
something like this?

A solution that some people come up with is to use a different application
supervision tree in the test environment. For example, your Application.start/2
callback might look like the one below:

testing_otp/singleton_resources/different_sup_tree_for_testing/application.ex
@mix_env Mix.env()

def start(_type, _args) do
Supervisor.start_link(children(@mix_env), strategy: :one_for_one)

end

As you can see, we call children(@mix_env) in order to determine the children of
the application’s top-level supervisor based on the Mix environment. This
way, we can have different sets of children for the test environment than we
do for the dev and prod environments. Why read Mix.env() at compile time and
store it in @mix_env, you say? Well, because the Mix module (and the :mix
application) aren’t available at runtime in Elixir releases,5 so we want to read
the Mix environment when compiling our code. Good catch!

Now back to our code. The children/1 function could look like this:

defp children(:test) do
[

MyApp.OtherChild
]

end

defp children(_env) do
[

MyApp.VMRestarter,
MyApp.OtherChild

]
end

5. https://hexdocs.pm/mix/Mix.Tasks.Release.html

report erratum • discuss

Testing Singleton Resources • 91

http://media.pragprog.com/titles/lmelixir/code/testing_otp/singleton_resources/different_sup_tree_for_testing/application.ex
https://hexdocs.pm/mix/Mix.Tasks.Release.html
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

We only start the MyApp.VMRestarter GenServer in the dev and prod environments
but not in the test environment. However, if we don’t start the GenServer in
the test environment, how do we test the GenServer itself? Well, in this case,
you wouldn’t. Not being able to test the GenServer is the main reason why
we highly discourage doing something like this.

In our experience, there are no situations where a carefully placed dependency
double (a fake, a mock, or a stub) can’t save the day. In cases like the one
described above, though, you might have to get a bit off the high road and be
flexible with what a “dependency double” is. For example, in this case, the
GenServer would probably have to call something like the Erlang function
:init.reboot/0 in order to restart the VM.6 Well, then you could wrap an interface
module around this function and create a dependency double for that:

testing_otp/singleton_resources/different_sup_tree_for_testing/rebooter.ex
defmodule MyApp.RebooterBehaviour do

@callback reboot() :: :ok
end

defmodule MyApp.Rebooter do
@behaviour MyApp.RebooterBehaviour

@impl true
defdelegate reboot(), to: :init

end

Mox.defmock(RebooterFake, for: MyApp.Rebooter)

Here you’d use the RebooterFake module in tests and use MyApp.Rebooter in dev
and prod, like we showed in the previous sections.

We understand how “unclean” this practice can feel. Luckily, during our
professional careers we haven’t encountered too many cases where we had
to resort to such extreme measures. In those few cases, though, we found
this approach to be the “least terrible” solution, and we like it much more
than the different-supervision-trees solution. Least terrible is far from best,
but it’s better than most terrible, right?

The truth is, the more intertwined and complex the code gets and the more
it interacts with complex parts of the world (like the host machine, or time
itself when talking about periodic actions), the harder it gets to have control
over those parts of the world and make testing clean. The good news is that
there are some workarounds to these problems. The bad news is that they
aren’t always nice and tidy.

6. https://erlang.org/doc/man/init.html#reboot-0

Chapter 3. Testing OTP • 92

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/singleton_resources/different_sup_tree_for_testing/rebooter.ex
https://erlang.org/doc/man/init.html#reboot-0
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Now that we’ve covered how to test GenServers, periodic actions, and singleton
resources, let’s move on to testing another not-test-friendly Elixir and Erlang
feature, resiliency.

That is, let’s talk about testing what happens when things go bad at the
process level.

Testing Resiliency
Let’s start this section with a bold statement: we are not fans of testing process
crashes. We’ll get philosophical. Why does a process crash? Most of the time,
because of an unexpected error. In some cases, the best thing to do might be
to raise an exception or exit from a process for an error condition that we
know can happen (an expected error). However, we find that tends to be the
exception rather than the rule, because if the error is expected then you
likely want to handle it gracefully (think of TCP connections dropping or user
input error). In cases where you’re raising or exiting on purpose, it might
make sense to test that behavior.

Regardless of that, one of the most powerful features of the OTP architecture
is that if a process bumps into an unexpected error and crashes, there will
likely be a supervisor bringing it back up. That’s not behavior we want to test;
supervisors work and have been tested with automated and on-the-field
techniques for decades now. At the same time, we don’t really want to test
that processes can crash. But if they crash because of an unexpected error,
how do we test that if the error itself is unexpected? If you can test an unex-
pected error, we believe that error is by definition not unexpected. There’s
your philosophy right there.

So, we don’t want to test that processes are restarted if they crash and we
don’t want to test that processes can crash because of unexpected errors. So
what do we test? Well, one interesting thing to test about processes crashing
is the aftermath of a crash: the crash recovery, so to speak. Most of OTP is
designed in a way so as to have most things automatically cleaned up when
a process crashes, using things like links between processes and ports. For
example, if a GenServer starts a TCP socket using :gen_tcp, that socket will be
linked to the GenServer. If the GenServer were to crash, the socket would be
closed thanks to the existing link.

However, there are some cases where your processes start or open resources
aren’t automatically stopped or closed when their “parent process” dies. A
straightforward example could be a GenServer process that creates and opens
a file when starting and uses it to dump some internal state during its life

report erratum • discuss

Testing Resiliency • 93

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

cycle. It’s likely that you would want this file to be deleted and cleaned up if
the GenServer were to crash unexpectedly. This is something that we believe
is worth testing, so we’ll explore it a bit later in this section.

When it comes to supervision trees, we believe the thing that might be worth
testing is that your supervision tree is laid out correctly. However, we’ll be
frank here: that’s hard and messy to test. We’ll explore some solutions and
alternatives toward the end of this section, but we want to set the expectations
pretty low.

Testing Cleanup After Crashes
If you want to perform some cleanup after a process crashes in order to ensure
that the crash doesn’t leave anything behind, your best option will often be
a different and very straightforward process that monitors the first process
and whose job is to perform only the necessary cleanup when the first process
crashes. Let’s go back to the example we mentioned at the end of the last
section: a GenServer that dumps some terms to a file during its life cycle to
avoid keeping such state in memory:

testing_otp/cleanup_after_crashes/genserver_that_uses_file.ex
defmodule GenServerThatUsesFile do

use GenServer

def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)

end

def store(pid, term) do
GenServer.cast(pid, {:store, term})

end

@impl true
def init(opts) do

path = Keyword.fetch!(opts, :path)

File.touch!(path)

pid = self()
ref = make_ref()
spawn_link(fn -> monitor_for_cleanup(pid, ref, path) end)

Wait for the cleanup process to be ready, so that if this process
crashes before the cleanup process is trapping exits then we don't
leave a zombie process.
receive do
{^ref, :ready} -> :ok

end

{:ok, path}
end

Chapter 3. Testing OTP • 94

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/cleanup_after_crashes/genserver_that_uses_file.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

@impl true
def handle_cast({:store, term}, path) do

new_content = "\n" <> :erlang.term_to_binary(term)
File.write!(path, new_content, [:binary, :append])
{:noreply, path}

end

defp monitor_for_cleanup(pid, ref, path) do
Process.flag(:trap_exit, true)
send(pid, {ref, :ready})

receive do
{:EXIT, ^pid, _reason} ->

File.rm_rf!(path)
end

end
end

This GenServer doesn’t do anything useful, but you can imagine how it could
have an API to retrieve particular terms that it adds to the file, for example.
Let’s keep this possible API in our imagination for the sake of writing less
code.

There’s no reliable way to make sure that if this GenServer crashes it’ll clean
up the file. So, what we do is write a little “cleanup process.” This process
could also crash, yes, but it’s less likely to do so given how simple its code
is. We spawn this process directly from the GenServer’s init/1 callback. The
code isn’t the most straightforward, but it’s just taking care of possible race
conditions and ensuring the following:

• The GenServer process dies if—because of some freak accident—the
cleanup process dies, and

• The cleanup process only removes the file when the GenServer process
dies and then peacefully terminates.

Now that we have this process in place, testing the aftermath of it crashing
is straightforward. We can just kill the GenServer process and make sure
that the file isn’t there anymore:

testing_otp/cleanup_after_crashes/genserver_that_uses_file_test.exs
test "no file is left behind if the GenServer process crashes" do

path =
Path.join(
System.tmp_dir!(),
Integer.to_string(System.unique_integer([:positive]))

)

pid = start_supervised!({GenServerThatUsesFile, path: path})

report erratum • discuss

Testing Resiliency • 95

http://media.pragprog.com/titles/lmelixir/code/testing_otp/cleanup_after_crashes/genserver_that_uses_file_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

assert File.exists?(path)

Process.exit(pid, :kill)

wait_for_passing(_2_seconds = 2000, fn ->
refute File.exists?(path)

end)
end

The test generates a random path in the system’s temporary directory (using
System.tmp_dir!/0), then starts the GenServer and asserts that the file is there,
kills the GenServer brutally (with Process.exit/2 and reason :kill), and finally
asserts that the file isn’t there anymore. You’ll notice the use of a function
called wait_for_passing/2. This is a little function we find ourselves writing pretty
often when working on Elixir code. Its purpose is to avoid fancy message-
passing in order to know when we can run an assertion.

wait_for_passing/2’s job is to run an assertion repeatedly for a maximum given
interval of time (two seconds in this case), allowing it to fail during that
interval. After the time interval, the assertion is run one last time without
rescuing any exceptions so that if the assertion fails after the given time
interval, then the test will fail. We need wait_for_passing/2 in this test because if
we were to assert the non-existence of the file right after we killed the
GenServer, we’d have a race condition that could result in the file not having
been deleted yet when the assertion is run. By waiting for a couple of seconds
and trying the assertion over and over, we’re giving what’s likely more than
enough time to the cleanup process to delete the file. If after two seconds the
file is still there, it means that we probably have a problem. Note that we
could bump the interval to ten or twenty seconds or even more if we didn’t
feel comfortable: wait_for_passing/2 returns as soon as the assertion passes, so
our tests would remain fast unless the assertion would fail (which is unlikely
to be our normal test run since we’d hopefully fix the bug and make it pass
again!).

Let’s look at the code for this little helper function:

testing_otp/cleanup_after_crashes/genserver_that_uses_file_test.exs
defp wait_for_passing(timeout, fun) when timeout > 0 do

fun.()
rescue

_ ->
Process.sleep(100)
wait_for_passing(timeout - 100, fun)

end

defp wait_for_passing(_timeout, fun), do: fun.()

Chapter 3. Testing OTP • 96

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_otp/cleanup_after_crashes/genserver_that_uses_file_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

The implementation is straightforward and uses recursion. It decreases the
given timeout until it “runs out.” In this implementation, we’re hard-coding
Process.sleep(100) and timeout - 100, which means that the assertion is run every
100 milliseconds during the given interval, but we could change this value
or turn it into an argument to the wait_for_passing function to make it customiz-
able. wait_for_passing/2 isn’t the most efficient function since it repeatedly runs
the assertion and “wastes” a few hundred milliseconds between runs, but it’s
a good and effective tool that in the real world we’ve ended up using in more
than a few places.

This section has turned out to be more about the code to test than the tests
themselves, but we believe it serves the purpose of showing what it means to
test cleaning up after crashes. In this instance, the test was small and simple
enough. If things become more complicated, you’ll have the tools we learned
about in the previous chapters to help you architect your tests using things
like dependency doubles and message passing.

Let’s move on to the final enemy of easy testing in the OTP landscape:
supervisors.

Testing Supervision Trees
Supervisors are one of the strongest selling points of Erlang/Elixir and the
OTP set of abstractions. They allow you to structure the life cycle of the pro-
cesses inside your application in a resilient way, and they make isolating
failures a breeze. However, supervisors are one of the toughest things to test
that we’ve come across. The reason for this is that their main job is to allow
your application to recover from complex and cascading failures that are hard
to trigger on purpose during testing.

Imagine having a complex and “deep” supervision tree (with several levels
between the root of the tree and the leaf processes). Now imagine that a child
in a corner of the tree starts crashing and doesn’t recover just by being
restarted on its own. OTP works beautifully and propagates the failure to the
parent supervisor of that child, which starts crashing and restarting all of its
children. If that doesn’t solve the problem, then the failure is propagated up
and up until restarting enough of your application fixes the problem (or the
whole thing crashes, if it’s a really serious problem). Well, how do you test
this behavior? Do you even want to extensively test it?

It’s hard to inject a failure during testing that isn’t solved by a simple restart
but that also doesn’t bring down the whole application. At the same time, we
know that supervisors work: that is, we know that the failure isolation and

report erratum • discuss

Testing Resiliency • 97

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

“bubble up” restarting behavior work. We know that because supervisors
have been battle-tested for decades at this point. As already discussed, that’s
not what we want to test because it falls in the antipattern of “testing the
abstraction” instead of testing your own logic.

Our advice? In practice, we tend to just not have automated testing for
supervision trees. We test the individual components of our applications, and
sometimes those components are made of a set of processes organized in a
“subtree” of the main application supervision tree. In order to stay true to the
black box testing model, we often test the component as a whole regardless
of whether it’s made of multiple processes living inside a supervision tree. If
components are unit-tested and integration tested, then we happily rely on
OTP to make sure that supervisors behave in the right way.

However, we don’t fly completely blind. Most of the time, we spend some time
every now and then manually firing up our application and just doing some
manual testing. We kill processes in the running application and make sure
that the supervision tree isolates failures and recovers things as expected.
Let’s talk about this approach some more.

Exploratory Manual Testing

As it turns out, we find that in practice there is a way of testing supervision
trees that strikes a nice balance between increasing your confidence in the
resiliency of your application without having to write complex, convoluted,
and fragile test suites. We’re talking about exploratory manual testing. We’re
using this terminology exclusively to sound fancy, because what we really
mean is this: fire up observer, go right-click on random processes in your
application, kill them without mercy, and see what happens.

As crude as it sounds, this method is pretty efficient and practical. What we
do is start our application and simulate a situation in which it’s operating
under normal conditions. We could generate a constant flow of web requests
if we’re building an application with an HTTP interface, for example. Then,
we kill random processes in the supervision tree and observe what happens.
Of course, the expected outcome of a process being killed depends on the
process: if we kill the top-level supervisor, we’ll surely see our application
stop replying to HTTP requests. However, what happens if we, say, kill a
process handling a single web request? We should see one dropped request
but nothing else. This isn’t hard to observe. What happens if we kill the whole
pool of database connections? We’ll probably start to see a bunch of requests
return some 4xx or 5xx HTTP status codes. In most cases you should know
what happens when a part of the supervision tree crashes, because that exact

Chapter 3. Testing OTP • 98

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

knowledge should drive how to design the shape of the supervision tree in
the first place. If you want your database connections to fail in isolation while
your application keeps serving HTTP requests, for example, then you need to
isolate the supervision tree of the database connections from the supervision
tree of the HTTP request handlers, and maybe make them siblings in their
parent supervision tree.

Let’s talk about the downsides of this testing technique. The main one is that
this type of testing isn’t automated. You need to have a human do all the
steps manually: start the application, generate some work for it to perform,
run observer, kill processes, and observe the behavior. We’re all about automat-
ed testing, as you can imagine, so we aren’t big fans of this. However, in our
experience, the supervision trees of many applications tend to be changed
relatively rarely compared to the rest of the code. As such, this kind of man-
ual testing might be required only a few times during the life cycle of the
application. When comparing the time it takes to run such manual tests to
the time it would take to build automated testing for the failure behavior, it
might make practical sense to just run those manual tests a few times.

Another observation that we have from experience is that many Elixir and
Erlang applications have a relatively “flat” supervision tree, with only a
handful of children. The exploratory manual testing technique works signifi-
cantly better with smaller and simpler supervision trees since, well, there are
fewer failure cases to manually test in the first place. Testing a flat supervision
tree tends to be easier than testing a nested tree.

Property-Based Testing for Supervision Trees

Property-based testing is a technique that we’ll discuss more extensively in
Chapter 7, Property-Based Testing, on page 187. In short, it revolves around
generating random input data for your code and making sure your code
maintains a given set of properties regardless of the (valid) input data. This
might sound alien, but you’ll have time to dig in and understand these ideas
in the chapter. However, we just wanted to get slightly ahead of ourselves
and mention a library called sups by Fred Hebert.7 This library is experimental
but can be used with a couple of different Erlang property-based testing
frameworks to programmatically run your application, inject random failures
in the supervision tree, and monitor some properties of the application that
you define.

The library’s README explains this in the best way:

7. https://github.com/ferd/sups

report erratum • discuss

Testing Resiliency • 99

https://github.com/ferd/sups
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

In a scenario where the supervision structure encodes the expected failure
semantics of a program, this library can be used to do fault-injection and failure
simulation to see that the failures taking place within the program actually respect
the model exposed by the supervision tree.

We have never used this library in real-world projects ourselves because
we’ve never felt the need to have complex automated testing for our super-
vision trees (for the reasons mentioned in the previous sections). However,
we know Fred and trust his work, so we are referencing this library here for
the curious reader that wants or needs a bullet-proof testing suite for their
supervision trees. We want to stress that the library is experimental, so use
at your own risk.

We feel that the lack of more widely used or prominent tooling around testing
supervisors is a good sign that the Erlang and Elixir communities aren’t so
keen on having robust automated testing of supervision trees either. Maybe
one day the communities will figure out a good way of having simple and
effective testing for supervision trees. But as far as we can tell, it’s not that
day yet.

Wrapping Up
This was a hard chapter to write. OTP is undeniably one of the features that
most draws developers to Erlang and Elixir. However, while the abstractions
in OTP are often simple and effective, testing asynchronous and “background”
code remains one of the hardest things to do in the testing landscape.

This chapter was less “preachy” compared with the other chapters in the book
as a direct result of the complexity often involved in testing code that uses
OTP. Our aim was to give you options and ideas to address common problems
when testing OTP abstractions and asynchronous code in general. For
example, we saw how to isolate the functional core of a GenServer, which is
often a great approach to simplifying testing but not always possible to do.
We talked about techniques for testing asynchronous code, periodic actions,
and singleton resources. We finished the chapter by discussing philosophies
and ideas around testing failure recovery, resiliency, and supervision trees.
We hope you’ll be able to use some of these concepts and apply them to your
own test suite.

Next we’re going to look at testing the most widely used libraries and frame-
works in the Elixir ecosystem, Ecto and Phoenix.

Chapter 3. Testing OTP • 100

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

CHAPTER 4

Testing Ecto Schemas
As Elixir matures, the community is settling on certain libraries as the libraries
for certain use cases. Both because of the involvement of José Valim and due
to its inclusion in Phoenix, the de facto Elixir web framework, Ecto has found
itself positioned as the relational database library for Elixir. Due to Ecto’s
composition of a few discreet parts, Ecto.Schema has found a second purpose,
that of a casting and validation library separate from database-related needs.
This leaves us with the two most common use cases of Ecto: validation and
database interactions. Both uses have their own sets of tests, and we’ll cover
both in this chapter.

The common saying “Don’t test your framework” often leads people to
undertest their database code. Before we begin testing our Ecto code, let’s
examine this saying and identify what practical implications it brings. Ecto
is one of the most used libraries in the Elixir community and has a great team
behind it who are putting out very solid work. The library “just works.” If
there are bugs, they’re discovered very quickly. When we write our tests, we
should not test the actual functionality of the library, but we should test that
our code uses that library’s functionality correctly.

This can be confusing, but we can provide you a heuristic that’ll help you
know whether or not to test code: is it in your codebase? If yes, then generally
you should test it. If not, then generally you shouldn’t. That means that you
should not test that a function in Ecto works correctly, but you should test
that that function is called correctly from your codebase to the library code.
If you think about the code that uses Ecto, your tests should actually be
focused on the interface presented by that code. That means that your tests
should, in theory, not know or care if you’re using the library. They should
just be focused on input, return values, and side effects (in this case, changes
to the data in the database).

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

During our journey through testing Ecto, we’ll start by testing it as a validation
library and as a database schema. Then we’ll move on to testing your database
interactions. Finally, we’ll look at tooling, factories, and test cases that can
drastically speed up writing your tests. As a bonus, we’ll also hit on some
test tips and tricks that can be used in other tests as well.

Ecto’s Second Use Case

As of Ecto 3.0, the Ecto team has tipped their hat to Ecto’s sec-
ondary purpose as a validation library. They’ve actually separated
the library into two parts, allowing the use of schemas without
having to pull the database-specific code into your application if
you don’t need it. This separation of concerns is a great example
of discreet, composable parts being used to build a flexible library.

Testing Your Schema Through Changesets
As we mentioned, Ecto can be used for more than just database interactions,
the most common case being as a validator of data. Either way you use it,
there’s a common core of code in the schema file and therefore there are
common tests. We’ll start by testing that common code, and then we’ll make
some refactors to make our tests easier to maintain. After that, we’ll branch
out and refactor our code and tests twice, once for each use case. We’ll call
it out when it happens. This means that we’ll be working in very similar code
but switching between file names to keep the concepts separate.

Our Ecto-based code and tests are going to be written to reflect the belief that
schema files should contain a bare minimum of logic, usually just the schema
definition and functions that are focused on translating data to or from that
schema definition. If you like to put more logic in your modules, you’ll be on
your own for testing it.

Ecto provides two modules, Ecto.Schema and Ecto.Changeset, that we’ll use to
define our basic schema and core validation behavior. Ecto.Schema allows us
to define (Ecto) structs and their types using a domain-specific language
(DSL). Ecto.Changeset is code that, among other things, provides type casting
and validation logic. When you define a schema with Ecto.Schema, you’re
defining a container for data, but code tests are focused on behavior. On our
first pass, we’ll test code using Ecto.Changeset functions under the hood to allow
our tests to explore and validate both the definition of the schema as well as
the behavior of a single function.

Let’s start with a basic schema and then look at how it can be tested. We’ll
make a generic Ecto schema for a user and build onto it as we learn. Create

Chapter 4. Testing Ecto Schemas • 102

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

a new Mix project called testing_ecto with a supervision tree ($ mix new --sup test-
ing_ecto). Next, add {:ecto, "~> 3.0"} to the deps section of the mix.exs file. Run mix
deps.get to make sure you have pulled a local copy of Ecto for your project.
Now let’s create a file called lib/schemas/user_basic_schema.ex and add the following
code:

testing_ecto/lib/schemas/user_basic_schema.ex
defmodule TestingEcto.Schemas.UserBasicSchema do

use Ecto.Schema
import Ecto.Changeset

@optional_fields [:favorite_number]

@primary_key false
embedded_schema do

field(:date_of_birth, :date)
field(:email, :string)
field(:favorite_number, :float)
field(:first_name, :string)
field(:last_name, :string)
field(:phone_number, :string)

end

defp all_fields do
__MODULE__.__schema__(:fields)

end

def changeset(params) do
%__MODULE__{}
|> cast(params, all_fields())
|> validate_required(all_fields() -- @optional_fields)

end
end

If you’ve worked with Ecto before, you’re likely to notice that we did something
a little funny: we used embedded_schema instead of schema. This means that this
schema can’t be used to interact with the database because it isn’t associated
with a table. Don’t worry, we’ll cover associating it with a database later, but
remember that right now we’re focused on the core parts of the schema.

We also have a private function that uses the Ecto.Schema reflection functions.1

The advantage of this function is that it always returns an up-to-date list of
the fields (as atoms), even when a new field is added. Since for now we cast
all the fields in the changeset, this can be helpful.

1. https://hexdocs.pm/ecto/Ecto.Schema.html#module-reflection

report erratum • discuss

Testing Your Schema Through Changesets • 103

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/lib/schemas/user_basic_schema.ex
https://hexdocs.pm/ecto/Ecto.Schema.html#module-reflection
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

That’s Not How I Write Schemas!

This schema is already making choices that might not be in line
with everyone’s style. Some folks don’t like changeset functions
in their schemas. Others put more logic in the file. Some track
their required parameters differently. When used for database
interactions, it’s common, and advised, to have different changeset
functions for different operations, like inserting and updating.
Like Elixir, Mix, and Phoenix, Ecto is written to allow flexibility in
how it’s used. The concepts we’re going to show for testing will
work however you organize your code; you just may need to orga-
nize your tests a little differently to reflect your code. We recom-
mend following along with the book examples, though, as they
will help you focus on the contents and not worry about having
to make your customizations as you read along.

Let’s examine the code we have and discuss what aspects of it need to be
tested. Our basic schema defines five fields: date_of_birth, favorite_number, first_name,
last_name, and phone_number, with favorite_number being the only optional field.
Beyond the definition of the schema, we have a single function, changeset/1,
that has two lines of code logic in it. Our tests need to cover the basic schema
fields (and their types) as well as the two lines of logic in changeset/1, casting
and validating the presence of the required fields. We can test all of that
through the interface of changeset/1.

Let’s go ahead and start by writing a success test. Create a test file at
test/schemas/user_basic_schema_1_test.exs in your project. Note that we’ve appended
a 1 in the file name since, in order to provide you with refactored versions
with the included code, we had to version our test files. That breaks a conven-
tion of having your test file name match the name of the code under test (but
with a trailing _test.exs).

You’re welcome to skip this test file if you plan to do the upcoming refactors
in place instead of in a new file.

testing_ecto/test/schemas/user_basic_schema_1_test.exs
defmodule TestingEcto.Schemas.UserBasicSchema1Test doLine 1

use ExUnit.Case-

alias Ecto.Changeset-

alias TestingEcto.Schemas.UserBasicSchema-

5

@schema_fields [-

:date_of_birth,-

:email,-

Chapter 4. Testing Ecto Schemas • 104

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/schemas/user_basic_schema_1_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

:favorite_number,-

:first_name,10

:last_name,-

:phone_number-

]-

-

describe "changeset/1" do15

test "success: returns a valid changeset when given valid arguments" do-

params = %{-

"date_of_birth" => "1948-02-28",-

"email" => "example@example.com",-

"favorite_number" => 3.14,20

"first_name" => "Bob",-

"last_name" => "Matthews",-

"phone_number" => "555-555-5555"-

}-

25

changeset = UserBasicSchema.changeset(params)-

assert %Changeset{valid?: true, changes: changes} = changeset-

-

mutated = [:date_of_birth]-

30

for field <- @schema_fields, field not in mutated do-

actual = Map.get(changes, field)-

expected = params[Atom.to_string(field)]-

assert actual == expected,-

"Values did not match for field: #{field}\nexpected: #{35

inspect(expected)-

}\nactual: #{inspect(actual)}"-

end-

-

expected_dob = Date.from_iso8601!(params["date_of_birth"])40

assert changes.date_of_birth == expected_dob-

end-

-

end-

end45

We have a test file with a module attribute listing the fields on the schema
and a happy path test. We chose to use a local (in the test) list of the fields
instead of referencing the schema somehow, because it gives us basic protec-
tion against regressions. If someone accidentally deletes a line from the schema
defining a field, some of our tests will catch it. We’ll see that in a later test,
but for now we can file it away.

Our test is a happy path test. We have some hard-coded, known-good parame-
ters. It’s worth noting that our parameters have string keys, as this is common
since Ecto casting and validation often happen on external input (such as
deserialized JSON). We exercise the test at line 26, passing those parameters

report erratum • discuss

Testing Your Schema Through Changesets • 105

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

to changeset/1 and asserting that we’re getting back a valid changeset. We could
just have that line bind the response to a variable and make the assertion on a
subsequent line, but the error that’ll result if it fails is clear enough—especially
if you have color test output—that we don’t need to.

The following test failure output shows us that the two changesets vary on
the value of :valid?. If you have color output in your shell, it’ll be highlighted.

1) test changeset/1 success: returns a valid changeset when given valid
arguments (TestingEcto.Schemas.UserBasicSchema1Test)

test/schemas/user_basic_schema_1_test.exs:16
match (=) failed
code: assert %Changeset{valid?: true, changes: changes} = changeset
left: %Ecto.Changeset{changes: changes, valid?: true}
right: %Ecto.Changeset{

changes: %{date_of_birth: ~D[1948-02-28], first_name: "Bob",
last_name: "Matthews", phone_number: "555-555-5555"},

valid?: false,
«rest of test output»

Assuming the response is a valid changeset, we want to make sure that the
expected new values are present in the changes field of the returned changeset.
We leverage a list comprehension, using the module attribute @schema_fields
to provide the fields to check. We have to exclude the date of birth, though,
because the data itself will have changed when it was cast to Ecto’s :date type.
As a result, we need an additional assertion to validate that the correct date
is present in the changes.

Our test is a happy path test, but it tells us more than just that things work
when given the right data. As we mentioned before, since tests can only focus
on behavior (return values and side effects), we can’t directly test the
description of the schema. But this test, and the ones that follow, will only
pass if the schema is defined correctly. While no individual test can provide
that guarantee, all of the tests for changeset/1 will together provide that coverage.
We’ll look at another approach to this when we work on our refactor.

Our happy path test, in theory, only passes if the values are being cast, so this
is a success test for the cast/3 call in the changeset/1 function. Let’s lock down our
coverage of that line by adding an error test for that same line. We’ll pass values
that can’t be cast correctly and then look for the errors on the changeset. Add
this test inside of the same describe block, under your last test:

test "error: returns an error changeset when given un-castable values" doLine 1

not_a_string = DateTime.utc_now()-

-

params = %{-

"date_of_birth" => "not a date",5

Chapter 4. Testing Ecto Schemas • 106

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

"email" => not_a_string,-

"favorite_number" => "not a number",-

"first_name" => not_a_string,-

"last_name" => not_a_string,-

"phone_number" => not_a_string10

}-

-

changeset = UserBasicSchema.changeset(params)-

-

assert %Changeset{valid?: false, errors: errors} = changeset15

-

for field <- @schema_fields do-

assert errors[field], "expected an error for #{field}"-

{_, meta} = errors[field]-

20

assert meta[:validation] == :cast,-

"The validation type, #{meta[:validation]}, is incorrect."-

end-

end-

The setup is similar to the success test, but you’ll see that we’ve found different
data types that we know Ecto can’t cast to the types defined in the schema.
Our line to exercise is the same, and the following pattern match and assertion
only differ in that they expect valid? to be false. But then we hit a different list
comprehension. Using our list of expected fields, @schema_fields, we have a two-
part assertion for each field. The first, at line 18, is to make sure there’s an
error for that field. The second (line 22) is to make sure it’s a cast error. When
you write assertions like this, it’s helpful to make sure your custom error
messages are different. Even though test output tells you the line where the
error occurred, having the same message will make it too easy to accidentally
debug a failure at the wrong assertion. Ultimately, we only care that a cast
error is present, but because there are slight differences in the errors for each
field, as shown in the following code sample, we have to jump through a
couple of hoops. The following snippet shows the errors from our changeset:

[
favorite_number: {"is invalid", [type: :float, validation: :cast]},
date_of_birth: {"is invalid", [type: :date, validation: :cast]},
last_name: {"is invalid", [type: :string, validation: :cast]},
phone_number: {"is invalid", [type: :string, validation: :cast]}

]

Each error has a different type, which causes the need for the multistep
assertions. Another approach to this would be to process the errors ahead of
time and remap the list to only contain the field name and the validation type.
Phoenix provides a function, called errors_on, that remaps errors to just be the

report erratum • discuss

Testing Your Schema Through Changesets • 107

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

field name and the error message (the string). It’s a small function,2 and one
that can be copied straight into your non-Phoenix codebase, but we aren’t
fans of matching on strings when they aren’t needed. Later in this chapter
we’ll present an alternative. For now let’s leave the two-step assertion in place.

Between the success test and the error test, we’ve covered both that cast/3 is
present in the changeset function and that we’ve been able to make assertions
about data types in the field definitions. Let’s move on to testing the required
fields. When writing this next test, it’s important to know that Ecto treats nil,
empty strings (""), and missing keys as violations of validate_required/2. Let’s add
one more test, an error case, to that same describe block.

test "error: returns error changeset when required fields are missing" do
params = %{}

assert %Changeset{valid?: false, errors: errors} =
UserBasicSchema.changeset(params)

optional_params = [:favorite_number]
expected_fields = @schema_fields -- optional_params

for field <- expected_fields do
assert errors[field], "Field #{inspect(field)} is missing from errors."
{_, meta} = errors[field]

assert meta[:validation] == :required,
"The validation type, #{meta[:validation]}, is incorrect."

end

for field <- optional_params do
refute errors[field],

"The optional field #{field} is required when it shouldn't be."
end

end

The format of this test should feel familiar by now. The following explains
some notable changes in the preceding code:

• We’re passing an empty map of parameters to force the violation of the
required validation.

• We’re removing the optional parameter fields (in this case, just
:favorite_number) from the list comprehension.

• The type of error that we’re expecting is :required and not :cast.

There’s an additional assertion at the bottom to make sure that there isn’t
an error for :favorite_number. We could have assertions to guarantee that there

2. https://github.com/phoenixframework/phoenix/blob/cc261a67a83649555841b92c3cbc1df024888cc8/installer/
templates/phx_ecto/data_case.ex#L48

Chapter 4. Testing Ecto Schemas • 108

report erratum • discuss

https://github.com/phoenixframework/phoenix/blob/cc261a67a83649555841b92c3cbc1df024888cc8/installer/templates/phx_ecto/data_case.ex#L48
https://github.com/phoenixframework/phoenix/blob/cc261a67a83649555841b92c3cbc1df024888cc8/installer/templates/phx_ecto/data_case.ex#L48
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

are no errors on optional parameters, but because we’re passing an empty
map of parameters, there should be no way for an error to show up on a
parameter we didn’t pass.

When testing for the presence of Ecto errors, try to identify how to make sure
that your test covers what it needs with the bare minimum of assumptions
about the data it’s examining. This test is focused on the presence of required
errors. We didn’t assume we knew the size of the error list, a practice that
you’ll come across often. While it seems on the surface that such an assertion
might be helpful, it can lead to a brittle test. We know from our success test
that if we pass in good data, things are good. This test confirms that we’re
getting the right errors for missing data that is required. If we make any other
assumptions about what the errors on the changeset should look like, we
run the risk of having a test failure on the presence of an error that isn’t the
focus of the test. This situation could happen if there was more logic written
in the changeset/1 function that inserted a different error on :favorite_number. The
error would be present, but it isn’t the concern of this test. A good practice
for all unit tests, not just Ecto focused ones, is to ensure failures are caused
by problems in the code being tested, and not by the testing code.

We’ve now written the tests to cover a schema definition and a simple
changeset function. Our tests check every aspect of the return values, and
we can be confident that our code works as intended. If you were to make
changes to the schema, the tests we wrote would either need to be updated
(if new fields are added) or supplemented with new tests (if new validations
are added). Later in this chapter, we’ll branch the code and tests we just wrote
to specialize our schema for either input validation or for database interac-
tions. Before we do that, though, we’re going to make another pass at the
tests we just wrote to identify patterns and changes we can make to specialize
our tests for code that uses Ecto.Schema.

Refactoring to Increase Test Maintainability
Most applications that use Ecto have more than one schema, and over time
each schema grows to have more fields or more logic in its changeset functions.
We’re going to refactor our existing test file to allow our code to be easier to
maintain, but that means we’re going to tread into some territory that makes
some folk uncomfortable: we’re going to refactor our tests to be self-updating.
We’ll build safety into the way we test to avoid a lot of the typical caveats that
leave most people burned by writing self-updating tests.

We want to make it clear that we don’t promote this style of testing wholesale
across your application. We’re working in a section of our code that’s fairly

report erratum • discuss

Refactoring to Increase Test Maintainability • 109

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

predictable and limited in scope. Our schemas only carry the definition and
changeset functions.

We’re going to create a new test file, testing_ecto/test/schemas/user_basic_schema_2_test.exs,
but we’re going have it test the same schema code as our previous test file. We
mentioned earlier that we were adding numbers into the test file names that
would break the convention of matching the test and application file names.
Even though we called this a refactor, it’s probably best to create a second file,
too, because doing so will make it easier to follow along with the book.

Adding Safety Into Your Schema Tests
Open your new test file and add the following code. You’ll see that we’re
testing the same module as our previous file, TestingEcto.Schemas.UserBasicSchema:

testing_ecto/test/schemas/user_basic_schema_2_test.exs
defmodule TestingEcto.Schemas.UserBasicSchema2Test doLine 1

use ExUnit.Case-

alias Ecto.Changeset-

alias TestingEcto.Schemas.UserBasicSchema-

5

@expected_fields_with_types [-

{:date_of_birth, :date},-

{:email, :string},-

{:favorite_number, :float},-

{:first_name, :string},10

{:last_name, :string},-

{:phone_number, :string}-

]-

describe "fields and types" do-

@tag :schema_definition15

test "it has the correct fields and types" do-

actual_fields_with_types =-

for field <- UserBasicSchema.__schema__(:fields) do-

type = UserBasicSchema.__schema__(:type, field)-

{field, type}20

end-

-

assert MapSet.new(actual_fields_with_types) ==-

MapSet.new(@expected_fields_with_types)-

end25

end-

-

end-

Aside from the module name, the first real change is that instead of having
a module attribute, @schema_fields, we have an attribute called @expect-
ed_fields_with_types. This attribute contains a keyword list with the field names
and the expected field type for our schema. Our previous test did give us

Chapter 4. Testing Ecto Schemas • 110

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/schemas/user_basic_schema_2_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

confidence that the schema defined the correct types for the field, but having
this information duplicated in the test file is a major component of the safety
we promised to give you for this refactor. We’ll come back to why it’s important
after we’ve added more to our file.

The describe block at line 14 doesn’t follow the convention of a function name
because we aren’t testing a public function. Instead, our exercise code is a
little unusual. Instead of calling a function, we’re building a keyword list of
field names and types similar to that in our @expected_fields_with_types module
attribute. To do this, we’re leveraging two calls to reflection functions from
Ecto.Schema. If you recall, we first saw reflection in the schema file itself. We’re
already familiar with __schema__/1 (line 18). __schema__/2 (line 19) returns a single
atom for the field type. Our generator is just a call to UserBasic-
Schema.__schema__(:fields). Each iteration then calls UserBasicSchema.__schema__(:type,
field), which returns an atom representing the type, which will be exactly what
was set in the schema file itself. Our list comprehension returns a keyword
list of field names and types that comes from the schema definition itself, but
it’s formatted in the same way as the data stored in @expected_fields_with_types.

This test then checks that the test’s expectation of the field names and types
(@expected_fields_with_types) matches what’s really defined in the file. Again, we
didn’t do this in our first pass on the file because we didn’t need to. Our tests
provided coverage for this without us being so explicit. It’s important to note
that since we’re using == for the comparison in our assertion, both lists must
be in the same order for the assertion to pass. To address that, we call
MapSet.new/1 on both lists. Sets are unordered, and comparing two sets only
takes elements into consideration, making it perfect for this use case.

One last new feature of this test is the addition of a test tag, :schema_definition,
at line 15. At this point, our tests haven’t evolved enough for this to be useful.
Later in this chapter, we’ll leverage this tag to only run this test.

We stated that this test adds safety to the rest of the refactoring work we’re
about to do. Let’s play with this for a moment. Comment out one of the fields
from your schema; let’s say field(:first_name, :string). Now run your tests and check
the output. It should look something like the following.

1) test fields and types it has the correct fields and types
(TestingEcto.Schemas.UserBasicSchema2Test)

test/schemas/user_basic_schema_2_test.exs:16
Assertion with == failed
code: assert MapSet.new(actual_fields_with_types) ==

MapSet.new(@expected_fields_with_types)
left: #MapSet<[{:date_of_birth, :date}, {:favorite_number, :float},

{:last_name, :string}, {:phone_number, :string}]>

report erratum • discuss

Refactoring to Increase Test Maintainability • 111

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

right: #MapSet<[{:date_of_birth, :date}, {:favorite_number, :float},
{:first_name, :string}, {:last_name, :string},
{:phone_number, :string}]>

stacktrace:
test/schemas/user_basic_schema_2_test.exs:23: (test))

If you have color output from your tests, you’ll see immediately that {:first_name,
:string} is extra in the expected fields. A failure similar to this would happen
if you were to add a new field to your schema. We now have very fast validation
feedback that something isn’t right, which points us back to the schema
definition. @expected_fields_with_types is also going to be used in our upcoming
tests as a reference for how the schema is defined. The test we just wrote will
help us make sure it’s always accurate. If you need to add or remove fields
from your schema, you just need to update the list stored in @expect-
ed_fields_with_types as well.

There’s an added bonus to having this definition at the top of our test file.
We’ve mentioned previously in this book that well-written tests serve as doc-
umentation for your code. In this case, we’ve taken it a step further by making
sure there’s an accurate description of the schema basics sitting at the top
of the file. We don’t recommend doing this solely for the sake of having extra
reference information in your tests, but it can be nice to have when working
in the test file.

Now that we have guaranteed its accuracy, let’s write a test to take advantage
of @expected_fields_with_types. Before we continue, uncomment the field for first
name to get our code back to the correct state.

Creating a Self-Updating Test
Before we write our first test, we’re going to write a helper function at the
bottom of our test file, after all describe blocks. The new function will be called
valid_params/1. Define it with the following code:

defp valid_params(fields_with_types) do
valid_value_by_type = %{

date: fn -> to_string(Faker.Date.date_of_birth()) end,
float: fn -> :rand.uniform() * 10 end,
string: fn -> Faker.Lorem.word() end

}

for {field, type} <- fields_with_types, into: %{} do
{Atom.to_string(field), valid_value_by_type[type].()}

end
end

Chapter 4. Testing Ecto Schemas • 112

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

We’ll address the introduction of Faker shortly, but let’s discuss what this
function does first. The return value of this function is a map functionally
identical to the params we had in our success test in our previous iteration
of this file. It’s just a string-keyed map of valid parameters, but it’s built
dynamically based off of the list of fields and types passed to it. We’ll evolve
this concept later on. For now, we have a way to get a list of valid parameters
in a repeatable way. The values provided are randomized because the values
themselves shouldn’t impact the results of the test. We’re using anonymous
functions so that we get different values for the new field. This isn’t strictly
necessary, but it makes our data slightly more realistic. We’re using a new
library, Faker, to provide some of that data. Faker’s sole purpose is to provide
realistically shaped data. In our case, we’re using the module Lorem to gen-
erate random words. In order to keep our code compiling and running, you’ll
need to add Faker into the project dependencies. In the deps section of the
mix.exs file, you’ll need to add the line {:faker, "~> 0.13.0", only: [:test, :dev]}. We’ve
limited it to the test and dev environments because we don’t intend to use
Faker in production code. We’ve left it in :dev because it’s nice to be able to
drop into a shell session (iex -S mix) to explore the functionality.

Now that we have our helper function, we’re ready to write our test. Add this
new describe block and test to your test file. You’ll notice that it’s almost the
same, except that our list comprehension is using the @fields_and_types for its
generator (but dropping the type) and that the valid parameters are coming
from the helper function instead of being hard-coded.

describe "changeset/1" do
test "success: returns a valid changeset when given valid arguments" do

valid_params = valid_params(@expected_fields_with_types)

changeset = UserBasicSchema.changeset(valid_params)
assert %Changeset{valid?: true, changes: changes} = changeset

mutated = [:date_of_birth]

for {field, _} <- @expected_fields_with_types, field not in mutated do
actual = Map.get(changes, field)
expected = valid_params[Atom.to_string(field)]
assert actual == expected,

"Values did not match for field: #{field}\nexpected: #{
inspect(expected)

}\nactual: #{inspect(actual)}"
end

expected_dob = Date.from_iso8601!(valid_params["date_of_birth"])
assert changes.date_of_birth == expected_dob

end

end

report erratum • discuss

Refactoring to Increase Test Maintainability • 113

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Now that you’ve added the test, run the test file to make sure it’s passing.
Once you’ve got it passing, let’s explore the benefit of this refactor. Think of
the first test, asserting on fields and types, as a control. Any changes you
make to your file will require an intentional update to that control. So, let’s
imagine that our code is being upgraded and that we’re going to add a new
field to our schema. Add a new middle name field (field(:middle_name, :string))
into the schema definition. Now run your tests again, using mix test
test/schemas/user_basic_schema_2_test.exs. You’ll see more than one test failing.

While it’s easy to pick out the test failure to focus on when you have a fairly
new and small test file, you may have more test failures in a scenario like
this as your schema grows. Remember that tag we added to the test? Since
we know we changed the fields on the schema, it seems like a good time to
isolate the test that focuses on the schema definitions. Rerun your tests, but
this time we’ll pass the tag as well, mix test --only schema_definition
test/schemas/user_basic_schema_2_test.exs. You should see a single failure similar
to the following:

1) test fields and types it has the correct fields and types
(TestingEcto.Schemas.UserBasicSchema2Test)

test/schemas/user_basic_schema_2_test.exs:16
Assertion with == failed
code: assert Enum.sort(actual_fields_with_types) ==

Enum.sort(@expected_fields_with_types)
left: [{:date_of_birth, :date}, {:favorite_number, :float},

{:first_name, :string}, {:last_name, :string},
{:middle_name, :string}, {:phone_number, :string}]

right: [date_of_birth: :date, favorite_number: :float,
first_name: :string, last_name: :string, phone_number: :string]

stacktrace:
test/schemas/user_basic_schema_2_test.exs:23: (test)

We’ve seen similar failed output before when we commented out a field, but
now the test is telling us that more fields are on the schema than the test
expects, instead of a field missing on the schema. All we have to do is update
the test’s expectation of the definition to include the new field:

@expected_fields_with_types [
{:date_of_birth, :date},
{:favorite_number, :float},
{:first_name, :string},
{:last_name, :string},
{:middle_name, :string},
{:phone_number, :string}

After adding the field for middle name, rerun the whole test file. All of the
tests should pass. What did this bring us? We intentionally added a new field

Chapter 4. Testing Ecto Schemas • 114

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

and our tests immediately informed us that they were out-of-date. From their
feedback, we were able to update a single location in our test file, and now
the test for fields and types is passing, letting us know that our test and
schema have the same definition. Given that we didn’t have the test in the
first version of our file, this doesn’t really feel like a win. The value comes
from the fact that the second test, checking for success with valid params,
updated itself. The new field is automatically included in the test coverage
by updating @fields_and_types.

It’s important to note that if, like with :date_of_birth, the data is mutated by the
cast function in the changeset, you’ll need to add it to the list of mutated
values and add explicit assertions for the value in the changes in the
changeset. While it isn’t entirely self-updating in that case, you still have the
advantage that tests are making sure you update them, reducing the effort
of maintenance.

Before we write any more code, take your schema back to its previous state
by removing the middle name field from the definition in your schema and
from the @fields_and_types in your test file.

First we’ll update the test for the cast errors. To do this, we’ll add one more
helper function, similar to valid_params/1 but this time called invalid_params/1. It’ll
work similarly but will return values that can’t be cast for the field’s type.
Open your test file and add this function below your other helper function:

defp invalid_params(fields_with_types) do
invalid_value_by_type = %{

date: fn -> Faker.Lorem.word() end,
float: fn -> Faker.Lorem.word() end,
string: fn -> DateTime.utc_now() end

}

for {field, type} <- fields_with_types, into: %{} do
{Atom.to_string(field), invalid_value_by_type[type].()}

end
end

The function is clearly constructed to work like valid_params/1 but to return
values that can’t be cast to the matching types. With this added, we can now
write an updated version of our error test for casting. You can either write
the following test or copy the test from the old file and update it:

test "error: returns an error changeset when given un-castable values" doLine 1

invalid_params = invalid_params(@expected_fields_with_types)-

-

assert %Changeset{valid?: false, errors: errors} =-

UserBasicSchema.changeset(invalid_params)5

-

report erratum • discuss

Refactoring to Increase Test Maintainability • 115

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

for {field, _} <- @expected_fields_with_types do-

assert errors[field], "The field :#{field} is missing from errors."-

{_, meta} = errors[field]-

10

assert meta[:validation] == :cast,-

"The validation type, #{meta[:validation]}, is incorrect."-

end-

end-

Just like our previous test, this test is almost identical to the previous version,
but now it includes a call to the helper function to get the bad data on line
2. Since this test makes assertions on all of the fields for the schema, just
like the success test we already wrote, our work is done. You’re welcome to
repeat the process of adding a new field to the schema to see that it has the
same results we had previously. If you do so, you’ll see both the “fields and
types” test and the success test failing. The test we just wrote won’t fail
because it isn’t using the new field yet, but as soon as you update the test’s
@fields_and_types definition, all tests should pass and will be testing the new
field.

The last refactor for us will be the error test for required fields. Let’s look at
the code from the previous version of this test again:

test "error: returns error changeset when required fields are missing" do
params = %{}

assert %Changeset{valid?: false, errors: errors} =
UserBasicSchema.changeset(params)

optional_params = [:favorite_number]
expected_fields = @schema_fields -- optional_params

for field <- expected_fields do
assert errors[field], "Field #{inspect(field)} is missing from errors."
{_, meta} = errors[field]

assert meta[:validation] == :required,
"The validation type, #{meta[:validation]}, is incorrect."

end

for field <- optional_params do
refute errors[field],

"The optional field #{field} is required when it shouldn't be."
end

end

This test makes sure it only tests for errors on the required parameters by
maintaining an internal list of which parameters are optional. There are always
trade-offs to having something like this list. When your test file is small and
organized, it’s not too bad to maintain that list. When you add a new field

Chapter 4. Testing Ecto Schemas • 116

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

that’s optional, you need to remember to update the list, but it’s usually
manageable.

In our refactor, we can continue to keep and maintain the list in the test like
that. But instead, let’s explore moving it to the top of the file, just under the
@fields_and_types attribute. Update your attribute definitions to now have an
@optional module attribute.

Your attribute definitions should now look like the following:

@expected_fields_with_types [
{:date_of_birth, :date},
{:email, :string},
{:favorite_number, :float},
{:first_name, :string},
{:last_name, :string},
{:phone_number, :string}

]
@optional [:favorite_number]

Moving the test file’s list of optional parameters serves two purposes. The
most important is that it’s present, right under the definition of the fields and
types. That makes it way more likely that when you’re adding an optional
field to your schema, your tests will inform you that they don’t match the
schema and you need to update the types and fields. The second purpose,
which is more of a bonus, is that it adds just a little more documentation to
your test file. If you have different changesets with different required fields,
you’ll keep multiple lists like this. Just make sure to give them clear names
so that they’re helpful instead of confusing.

Now that we have that module attribute set, we’ll leverage it in our refactor.
Again, you can grab the following test from the old test file and modify it, or
you can type it all in. Add the following test into your file:

test "error: returns error changeset when required fields are missing" doLine 1

params = %{}-

-

assert %Changeset{valid?: false, errors: errors} =-

UserBasicSchema.changeset(params)5

-

for {field, _} <- @expected_fields_with_types, field not in @optional do-

assert errors[field], "The field :#{field} is missing from errors."-

{_, meta} = errors[field]-

10

assert meta[:validation] == :required,-

"The validation type, #{meta[:validation]}, is incorrect."-

end-

-

for {field, _} <- @optional do15

report erratum • discuss

Refactoring to Increase Test Maintainability • 117

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

refute errors[field],-

"The optional field #{field} is required when it shouldn't be."-

end-

end-

Since the test setup still requires an empty set of parameters, the only changes
we need to make to update our test are around filtering out the optional
parameters so that we only assert that there are errors for each of the required
parameters. We’ve updated our list comprehension similar to the previous
tests, where the type is being ignored. The other major update to the test is
that the list comprehension is now filtering out fields that are optional,
leveraging the filter functionality of list comprehensions and the new @optional
attribute.

Run your tests and they should all pass. We’ve now refactored our test file
to improve the maintainability of the file in two ways. The first is that some
of the tests actually update with changes to the file they test, and they do
so in a safe way. Most attempts at writing self-updating tests fail to provide
a mechanism to guarantee they work, and as a result end up creating way
more headaches than they remove. We’re comfortable doing this here
specifically because our pattern has a very limited scope (Ecto schemas) and
because we’ve written enough of these same files over and over again to be
confident in the patterns. Be very careful if you try to apply this style of
testing anywhere else.

The second benefit of this style of testing is that it raises alerts when things
have changed, instead of allowing new code to be untested. It’s very common
for a new field on a schema to not be tested correctly when it’s added after
the fact. These tests won’t let that happen.

Now that we’ve refactored our schema tests, let’s branch out and start to
specialize our schema file and update our tests to match it. We’ll start with
using our schema as data validation code.

Creating a SchemaCase for Shared Test Code
Case templates are very useful when we identify a pattern for test files that
would benefit from shared code. Our refactors on the basic schema tests
created two helper functions, valid_params/1 and invalid_params/1, that would be
good to move into a common place to be reused by all our schema tests. We’ll
create a case template called SchemaCase and move the helper functions there.
Create a new file called testing_ecto/test/schema_case.ex and add the basic structure
for a case template:

Chapter 4. Testing Ecto Schemas • 118

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

testing_ecto/test/schema_case.ex
defmodule TestingEcto.SchemaCase do

use ExUnit.CaseTemplate

using do
quote do
alias Ecto.Changeset
import TestingEcto.SchemaCase

end
end

end

For now, it’s pretty simple. We can alias Ecto.Changeset into the case template
because all future schema tests will need it. We have import TestingEcto.SchemaCase
included; so when we add the helper functions, anything that “uses” the
template will get those functions. Our last step is to copy the two functions,
valid_params/1 and invalid_params/1, into the file, below the “using” block. Just be
sure to make both functions public (def instead of defp), as import only works
with public functions. The case template is now ready to go, but we need to
make sure it’s compiled in our app when running tests. We’ll also make one
last refactor pass on our test file, making sure it uses the case template and
no longer contains the code locally.

To make sure the case template is available in the application when it runs
tests, let’s modify our mix.exs file. Open it up and add elixirc_paths:
elixirc_paths(Mix.env()), into the list in the project section:

testing_ecto/mix.exs
def project do

[
app: :testing_ecto,
version: "0.1.0",
elixir: "~> 1.10",
start_permanent: Mix.env() == :prod,
elixirc_paths: elixirc_paths(Mix.env()),
deps: deps()

]
end

That’s calling a function that doesn’t exist yet, elixirc_paths/1, so we need to add
that function as well. Above the deps section of your mix file, add the following
function heads:

testing_ecto/mix.exs
defp elixirc_paths(:test), do: ["lib", "test"]Line 1

defp elixirc_paths(_), do: ["lib"]2

report erratum • discuss

Creating a SchemaCase for Shared Test Code • 119

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/schema_case.ex
http://media.pragprog.com/titles/lmelixir/code/testing_ecto/mix.exs
http://media.pragprog.com/titles/lmelixir/code/testing_ecto/mix.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

The line that matters the most here is line 1, where we’re telling the application
to include all the files in the test directory when compiling in the test environ-
ment. This will make the SchemaCase file available in the :test environment
while keeping it out of the :dev and :prod environments, or any other environ-
ments added later.

Now we just need to refactor the test file. Instead of changing the code in
place, we’ll make a copy of testing_ecto/test/schemas/user_basic_schema_2_test.exs,
calling it testing_ecto/test/schemas/user_basic_schema_3_test.exs. Ignoring the tests,
nested inside of the describe blocks, your file will look like the following code:

testing_ecto/test/schemas/user_basic_schema_3_test.exs
defmodule TestingEcto.Schemas.UserBasicSchema3Test doLine 1

use TestingEcto.SchemaCase-

alias TestingEcto.Schemas.UserBasicSchema-

-

@expected_fields_with_types [5

{:date_of_birth, :date},-

{:email, :string},-

{:favorite_number, :float},-

{:first_name, :string},-

{:last_name, :string},10

{:phone_number, :string}-

]-

@optional [:favorite_number]-

-

describe "fields and types" do15

end-

-

describe "changeset/1" do-

end-

end20

As before, make sure to rename your test module, upping the number to 3
(line 1) to avoid naming conflicts. Replace the two lines containing use ExUnit.Case
and alias Ecto.Changeset with use TestingEcto.SchemaCase, as seen on line 2. Now,
since SchemaCase has the valid_params/1 and invalid_params/1 functions, you can
delete them from the file.

Run mix test test/schemas/user_basic_schema_3_test.exs to verify that all of your tests
pass the same as before. We’ve now moved the code that we believe will be
common between all our tests into a common place so that we only have to
maintain one copy of the functions we’ve written. We’ll add more common
code to our case template later in this chapter.

Chapter 4. Testing Ecto Schemas • 120

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/schemas/user_basic_schema_3_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Testing an Ecto Schema as a Data Validator
It’s very common in web applications to do some basic validation of user
input in the controller so that if easy-to-detect issues are present, the
application doesn’t spend time doing work (or calling the database) when
there isn’t a chance of success. The code that we have already written
takes input and casts it to the appropriate value, returning errors for
any data that can’t be cast or for any required parameters that are
missing. This is exactly the kind of basic validation that we’re talking
about. With some very minor changes, we will update our code to serve
as a validator. After that, we will update our refactored tests to reflect
the changes.

As mentioned, our code already does the work we want. The only issues we
have now is that the interface isn’t ideal. Our application code isn’t going to
want to receive a changeset when the code executes successfully. Ideally,
when the input is valid, our validator will return a tuple with :ok and a struct
with the fields and values. When it errors, we’ll still return the changeset with
errors, but inside of an error tuple. There’s one other interface change we
should make: renaming the function. Since we’re no longer returning a
changeset, we’ll rename the one public function, changeset/1, to instead reflect
what the code is doing. Make a copy of the schema file at the path
lib/schemas/user_validator.ex. We’ll show the updated file and then call out the
changes that need to be made:

testing_ecto/lib/schemas/user_validator.ex
defmodule TestingEcto.Schemas.UserValidator doLine 1

use Ecto.Schema-

import Ecto.Changeset-

-

@optional_fields [:favorite_number]5

-

@primary_key false-

embedded_schema do-

field(:date_of_birth, :date)-

field(:email, :string)10

field(:favorite_number, :float)-

field(:first_name, :string)-

field(:last_name, :string)-

field(:phone_number, :string)-

end15

-

defp all_fields do-

__MODULE__.__schema__(:fields)-

end-

20

report erratum • discuss

Testing an Ecto Schema as a Data Validator • 121

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/lib/schemas/user_validator.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

def cast_and_validate(params) do-

%__MODULE__{}-

|> cast(params, all_fields())-

|> validate_required(all_fields() -- @optional_fields)-

|> apply_changes_if_valid()25

end-

-

defp apply_changes_if_valid(%Ecto.Changeset{valid?: true} = changeset) do-

{:ok, Ecto.Changeset.apply_changes(changeset)}-

end30

-

defp apply_changes_if_valid(%Ecto.Changeset{} = changeset) do-

{:error, changeset}-

end-

end35

The first change to make is to the module name, updating it to TestingEc-
to.Schemas.UserValidator, as seen on line 1. Hopefully this is self-explanatory, but
it’s just a reminder that our naming and file structure matches the contrived
code for this book. We aren’t recommending this file structure and definitely
wouldn’t recommend keeping validators and “normal” schemas in the same
directory, since they are likely to be used in very different parts of the appli-
cation.

Next, update the name of the public function on the file to cast_and_validate, as
seen on line 21. The only thing left is to change the function to return tuples
and possibly a struct instead of a changeset. Add the following two private
function heads, as seen between lines 28 and 34. They’re expecting an
Ecto.Changeset struct and pattern matching off of the :valid? field in the
changeset. You can see that each wraps the response in a tuple with the
correct status (:ok or :error), and the success case calls Ecto.Change-
set.apply_changes/1,3 which will return a TestingEcto.Schemas.UserValidator struct with
all the new values. Be careful, though, as Ecto.Changeset.apply_changes/1 will work
even if the changeset isn’t valid, which is why we’ve branched the code.

Now all that’s left is to add our local apply_changes_if_valid/1 into the pipeline at
the end of the newly renamed cast_and_validate/1. You can see it in our code on
line 25. We now have a functional validator. We need to add tests.

We’ll copy our updated test file, testing_ecto/test/schemas/user_basic_schema_3_test.exs, to
a new location, testing_ecto/test/schemas/user_validator_test.exs. We’ll be able to update
the file without too much work. The first thing we need to do is update the name
of the file under test. Every instance of UserBasicSchema in the file needs to be

3. https://hexdocs.pm/ecto/3.4.4/Ecto.Changeset.html#//apple_ref/Function/apply_changes%2F1

Chapter 4. Testing Ecto Schemas • 122

report erratum • discuss

https://hexdocs.pm/ecto/3.4.4/Ecto.Changeset.html#//apple_ref/Function/apply_changes%2F1
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

replaced with UserValidator. If you’re able to do a blanket find and replace, the top
of your test file should end up looking like the following code:

testing_ecto/test/schemas/user_validator_test.exs
defmodule TestingEcto.Schemas.UserValidatorTest doLine 1

use TestingEcto.SchemaCase2

alias TestingEcto.Schemas.UserValidator3

The module name (line 1) and the alias for your test subject (line 3) should
match your code. Assuming you were able to easily replace all of the instances,
the test should be able to compile, but running mix test will produce three
failing tests because, while the test for “fields and types” exercises code
through the reflection functions, the three tests in the "changeset/1" describe
block all exercise a function that no longer exists. Let’s update our test to
address this next. Update the describe block and the first test in it to look
like this:

describe "cast_and_validate/1" doLine 1

test "success: returns a valid changeset when given valid arguments" do-

valid_params = valid_params(@expected_fields_with_types)-

-

{:ok, result} = UserValidator.cast_and_validate(valid_params)5

assert %UserValidator{} = result-

mutated = [:date_of_birth]-

-

for {field, _} <- @expected_fields_with_types, field not in mutated do-

assert Map.get(result, field) == valid_params[Atom.to_string(field)]10

end-

-

expected_dob = Date.from_iso8601!(valid_params["date_of_birth"])-

assert result.date_of_birth == expected_dob-

end15

Change the describe description to be cast_and_validate/1 (line 1). Next, we need
to update the line that exercises the code (line 5) in two ways. It should match
to {:ok, result} and it should call UserValidator.cast_and_validate/1 to exercise the code.
The following line (6) should be updated to assert that the result is the
expected kind of struct, %UserValidator{}. Those two lines could’ve been com-
bined, but we were facing line-length limitations. Feel free to add them
together if that’s your preferred style.

There are just two more places to update the test code. changes should be
replaced with result at lines 10 and 14. The test should now be able to run
and pass. Let’s try it out by running it with mix test test/schemas/user_validator_test.exs:
followed immediately by a line number from the middle of the test (for example,
mix test test/schemas/user_validator_test.exs:39). This will run just the one test, skipping
the tests that we already know don’t work. This won’t impact us here. The

report erratum • discuss

Testing an Ecto Schema as a Data Validator • 123

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/schemas/user_validator_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

reason to use a line number from the middle of the test instead of the line
the test starts on is so that, as you change your file, the line number you’re
using is more likely to continue to reference the same test. If you used the
line number from the first line of the test, adding a single line of code in your
file above breaks that reference. This is particularly useful if you have to add
debugging code into the file, which might shift the start of your test to a later
line number.

The test should pass, but you’ll still see some warnings that tell you that you
have an unused alias and that a private or undefined function is being called.
Let’s start to clear those up by updating the next test, the one focusing on
errors for values that can’t be cast.

The test should be updated to look like this:

test "error: returns an error changeset when given un-castable values" doLine 1

invalid_params = invalid_params(@expected_fields_with_types)-

-

assert {:error, %Changeset{errors: errors}} =-

UserValidator.cast_and_validate(invalid_params)5

-

for {field, _} <- @expected_fields_with_types do-

assert errors[field], "The field :#{field} is missing from errors."-

{_, meta} = errors[field]-

10

assert meta[:validation] == :cast,-

"The validation type, #{meta[:validation]}, is incorrect."-

end-

end-

The only actual changes are on the line that exercises the code (4), but there
are a few different things on that line. First, we need to update the pattern
on the left of the = to wrap the changeset in a tuple with :error as the first
element. Our test no longer cares if it’s getting an invalid changeset back;
instead, it only cares that if it gets an error tuple, the second element is a
changeset with errors. So, we can remove the valid?: false from the pattern.
Finally, update the function being called from changeset/1 to cast_and_validate/1.
The test should run and pass just fine now.

The last test should take the same changes and then look like this:

test "error: returns error changeset when required fields are missing" do
params = %{}

assert {:error, %Changeset{errors: errors}} =
UserValidator.cast_and_validate(params)

for {field, _} <- @expected_fields_with_types, field not in @optional do
assert errors[field], "The field :#{field} is missing from errors."

Chapter 4. Testing Ecto Schemas • 124

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

{_, meta} = errors[field]

assert meta[:validation] == :required,
"The validation type, #{meta[:validation]}, is incorrect."

end
end

All the tests should now be passing. You can see that the main concepts of
our tests stay the same as when we were testing our basic schema. The tests
just had to be updated to reflect the small changes in the UserValidator’s
interface.

Next we’ll step back to the basic schema and modify it for interactions with
the database. Then we’ll discuss the ways to test a database schema.

Testing an Ecto Schema for Database Interactions
The most common use case for Ecto schemas is to enable easy interaction
with a database. While we keep our schemas to a minimum of logic—just the
schema definition and changeset function or functions—we still need to make
some changes in order to use our schema with a database. We’ll update the
basic schema we wrote (skipping the changes we made for using it as a val-
idator) and then update our tests. Once we’ve covered the schema aspects,
we’ll move on to cover testing queries that use the schema.

Adding a Database into Our Application
Before we can make the necessary changes, we need to make sure that we
have a local running database. Given that every reader will have a different
local setup, we’re going to leverage Docker to reduce the chance issues due
to local environment differences. We have to make the assumption that you
already have or are able to set up Docker on your computer.4 We’ve provided,
with the testing_ecto application code, two files that you should copy into your
application directory: testing_ecto/docker-compose.yml and testing_ecto/Makefile. Keep
them at the root level of your local testing_ecto application.

The docker-compose.yml file has the specifications to start and run a Postgres
container that matches the username and password used in this book. To
make things easier, we’ve included a Makefile to give you simple commands
to get up and running. Once the files are in place, open a new shell session
in the same directory. This will allow us to jump between interacting with the
database and the application more easily. Run make up to download the image
and then create and start a running container with Postgres. You should see

4. https://docs.docker.com/get-started/

report erratum • discuss

Testing an Ecto Schema for Database Interactions • 125

https://docs.docker.com/get-started/
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the image get downloaded (the first time you run it) and then confirmation
that it’s running. The Make command runs it in daemon mode, meaning that
it’s running in the background until you explicitly shut it down. Later, when
you’re ready to shut it down, running make down will take care of it. The only
place where you might have trouble is if you’re running another copy of
Postgres on your computer. Our container will bind to port 5432, the default
for Postgres. If you get errors over port collisions, you’ll need to shut down
your other running Postgres while working through the book examples.

Updating Our Application to Work with the Database
Now that we have a database, we need to set up our application to connect
to it. The first thing is that we need to add in two new dependencies,{:ecto_sql,
"~> 3.4"} and {:postgrex, "~> 0.15.0"}, into the deps section of your mix.exs file. Ecto
SQL provides your application with the additional code needed to connect to
a database, and Postgrex provides the adapter that Ecto SQL needs to be able
to work specifically with a Postgres database. Run mix deps.get at the root
directory of your testing_ecto application to pull down the new libraries.

In the testing_ecto codebase, you’ll find that we’ve included a couple of very
basic configuration files (testing_ecto/config/config.exs and testing_ecto/config/test.exs)
and a very basic repo file (testing_ecto/lib/repo.ex). These are hard-coded with
values that will work with the instance of Postgres created by the docker-
compose file we provided. The only thing that might not be standard boilerplate
is that we’ve added the option migration_timestamps: [type: :utc_datetime_usec] to our
database configs. This will make our timestamps default to a UTC time zone,
unless explicitly overridden, and include microseconds in their definition.
We’ll have to remember this for later. Copy those into your project.

We need to make sure that the TestingEcto.Repo application is started with our
application so that we can interact with the database in later tests. Open up
lib/testing_ecto/application.ex and we’ll add our repo into the children:

testing_ecto/lib/testing_ecto/application.ex
defmodule TestingEcto.Application doLine 1

See https://hexdocs.pm/elixir/Application.html-

for more information on OTP Applications-

@moduledoc false-

5

use Application-

-

def start(_type, _args) do-

children = [-

TestingEcto.Repo10

]-

-

Chapter 4. Testing Ecto Schemas • 126

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/lib/testing_ecto/application.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

opts = [strategy: :one_for_one, name: TestingEcto.Supervisor]-

Supervisor.start_link(children, opts)-

end15

end-

Since this isn’t a real application but is just focused on testing the database,
our list of children will just contain the one element, TestingEcto.Repo. Now, when
we run our tests, we’ll have a running repo application to allow us to interact
with the database.

With database and repo running, plus the new libraries and the configuration
files (config/config.exs and config/test.exs), your application should be ready to
connect and interact with the database. Next, run MIX_ENV=test mix ecto.create
from either shell session to create the test instance of the database, called
testing_ecto_test. You should see the following output:

Generated testing_ecto app
The database for TestingEcto.Repo has been created

Whenever you’re having your application make changes to your database
structure, it’s good practice to check that the expected changes are reflected
in the database. In the second shell session, run make cli to connect to the
Postgres cli client inside your Docker container. It verifies that your database
was created correctly if you’re able to connect using this command. Since
we’ve only created the database, there isn’t much for us to do now except to
run \l to list the available databases. testing_ecto_test should be on the list. Now
we need to add a table to the database to correlate with the schema that we’re
setting up. Back at the command line in the application directory, run mix
ecto.gen.migration add_users_table. This will generate the nested directories and a
file with a timestamp in the name, like in the following output (you’ll have a
different timestamp):

Generated testing_ecto app
* creating priv/repo/migrations
* creating priv/repo/migrations/20200518212741_add_users_table.exs

Open the file and you should see a migration file with an empty change/0
function. Let’s add code to create a table to match our schema. Inside the
change/0 function, add the code to make your file match the following:

testing_ecto/priv/repo/migrations/20200518212741_add_users_table.exs
defmodule TestingEcto.Repo.Migrations.AddUsersTable doLine 1

use Ecto.Migration-

-

def change do-

create table(:users, primary_key: false) do5

add(:id, :uuid, primary_key: true)-

report erratum • discuss

Testing an Ecto Schema for Database Interactions • 127

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/priv/repo/migrations/20200518212741_add_users_table.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

add(:date_of_birth, :date, null: false)-

add(:email, :string, null: false)-

add(:favorite_number, :float)-

add(:first_name, :string, null: false)10

add(:last_name, :string, null: false)-

add(:phone_number, :string, null: false)-

-

timestamps()-

end15

-

create(unique_index(:users, [:email]))-

end-

end-

There are a couple of details to call out here. The first is that we’re telling the
migration to skip giving the table an auto-incrementing primary_key at line
5 and then add a primary key on line 6. Our table will use UUIDs for the
primary key. We’ll need to remember this when we update our schema later.
We also used the null: false option on all of our columns except favorite_number,
which we left optional on our schema. The last thing to note in our change/0
is that with the addition of timestamps()(line 14), we’ll be adding two fields that
aren’t currently on our schema, inserted_at and updated_at. These will also factor
into the updates to our schema.

Below the table definition, we also create a unique constraint on the email
column (line 17). We’ll address this once we’ve started interacting with the
database in our tests.

Now we need to run our migration to make sure that it works. We’re going to
focus on the test database here, so make sure to set the correct mix environ-
ment by running MIX_ENV=test mix ecto.migrate. This should produce successful
feedback:

15:36:12.729 [info] == Running 20200518212741
TestingEcto.Repo.Migrations.AddUsersTable.change/0 forward

15:36:12.730 [info] create table users

15:36:12.738 [info] == Migrated 20200518212741 in 0.0s

Go back to your session logged into the Docker container, where the Post-
gres cli is open. You should now be able to run \dt to see the tables users
and schema_migrations. Run \d users and verify that you see the following table
definitions:

Chapter 4. Testing Ecto Schemas • 128

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Table "public.users"
Column | Type | Collation | Nullable | Default

----------------+----------------------------+-----------+----------+---------
id | uuid | | not null |
date_of_birth | date | | not null |
email | character varying(255) | | not null |
favorite_number| double precision | | |
first_name | character varying(255) | | not null |
last_name | character varying(255) | | not null |
phone_number | character varying(255) | | not null |
inserted_at | timestamp without time zone| | not null |
updated_at | timestamp without time zone| | not null |

Indexes:
"users_pkey" PRIMARY KEY, btree (id)

Assuming your table matches ours, we’re ready to move on.

Updating Our Schema to Work with the Database
We’re now ready to update our schema to match this table. Technically we’ll
update a copy to the schema so that we can make changes without breaking
our other test files. Copy testing_ecto/lib/schemas/user_basic_schema.ex to a new file
called testing_ecto/lib/schemas/user_database_schema.ex. We’ll copy the test file to match
later.

For now, we’re going to update the schema file to look like this:

testing_ecto/lib/schemas/user_database_schema.ex
defmodule TestingEcto.Schemas.UserDatabaseSchema doLine 1

use Ecto.Schema-

import Ecto.Changeset-

-

@timestamps_opts type: :utc_datetime_usec5

@primary_key {:id, :binary_id, autogenerate: true}-

@optional_fields [:id, :favorite_number]-

-

schema "users" do-

field(:date_of_birth, :date)10

field(:email, :string)-

field(:favorite_number, :float)-

field(:first_name, :string)-

field(:last_name, :string)-

field(:phone_number, :string)15

-

timestamps()-

end-

-

defp all_fields do20

__MODULE__.__schema__(:fields)-

end-

-

report erratum • discuss

Testing an Ecto Schema for Database Interactions • 129

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/lib/schemas/user_database_schema.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

def changeset(params) do-

%__MODULE__{}25

|> cast(params, all_fields())-

|> validate_required(all_fields() -- @optional_fields)-

|> unique_constraint(:email)-

end-

end30

First, change the module name in user_database_schema.ex to be TestingEc-
to.Schemas.UserDatabaseSchema, like on line 1. We need to set some Ecto Schema
options in the file (using module attributes) to make it compatible with the
timestamp and primary key options we set in our migration. Add two options
@timestamps_opts type: :utc_datetime_usec (line 5) and @primary_key {:id, :binary_id, autogen-
erate: true} (line 6) to the file. These are options that could be set in a common
schema template if this were a real application. If you recall, our basic schema
had @primary_key false set right above the schema definition. Now that it’s being
updated to correspond to the database table, we’ll need to remove that. By
removing that, and by setting the option for the primary key to be a :binary_id,
our schema now has an additional field, :id, of type :binary_id.

For now, our changeset function is still a generic changeset function and
therefore would presumably be used for creating a new user. As a result,
while :id might be needed for an update changeset, we’ll need to make it an
optional field for when it’s used for create. Later we’ll split this function into
two more specific changeset functions, but we’re keeping a simple one for
now to keep the examples smaller. Notice that we updated the module attribute
with optional fields to include :id (line 7).

At this point, our schema isn’t designed to reference a database table because
it uses embedded_schema and not schema. We can update that line of the definition
to say schema "users" do (line 9) and the schema will now be set to reference our
“users” table. We’ve strayed from the convention of having the module name
match the table name because we’re dealing with a bunch of different versions
of the same file. Normally, we would’ve named our schema “User” and the
table “users.” At the bottom of the definition block, add timestamps(), like on
line 17, to add :inserted_at and :updated_at to the schema.

We made the email field unique, so we need to update the changeset to take
that into account, adding in the call to unique_constraint/2 on line 28. And that’s
it. Our schema file is now set up to reference a database table. Next, we’ll
update our tests to take the new fields into account. When that’s done, we’ll
look at how to test the unique_constraint code.

Chapter 4. Testing Ecto Schemas • 130

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Updating Our Tests to Include Database Fields
We have set up our schema, UserDatabaseSchema, to correspond with
a database table, but that means that there are three new fields (:id,
:inserted_at, and :updated_at). To make these changes, we’ll make yet another
copy of the last iteration of our basic schema test file, test-
ing_ecto/test/schemas/user_basic_schema_3_test.exs. Make a copy of it, named
testing_ecto/test/schemas/user_database_schema_test.exs. Let’s update the test name
to TestingEcto.Schemas.UserDatabaseSchemaTest and also replace all of our refer-
ences to UserBasicSchema with UserDatabaseSchema, including the alias.

With the correct module names, your test file should be able to run. Run mix
test --only schema_definition test/schemas/user_database_schema_test.exs and you should
see some errors, because we added new fields, but the test’s definition of the
fields and types (stored in @expected_fields_with_types) hasn’t been updated. The
test that we should be looking at will have this output:

1) test fields and types it has the correct fields and types
(TestingEcto.Schemas.UserDatabaseSchemaTest)

test/schemas/user_database_schema_test.exs:23
Assertion with == failed
code: assert Enum.sort(actual_fields_with_types) ==

Enum.sort(@expected_fields_with_types)
left: [{:date_of_birth, :date}, {:favorite_number, :float},

{:first_name, :string}, {:id, :binary_id},
{:inserted_at, :utc_datetime_usec}, {:last_name, :string},
{:phone_number, :string}, {:updated_at, :utc_datetime_usec}]

right: [date_of_birth: :date, favorite_number: :float,
first_name: :string, last_name: :string, phone_number: :string]

stacktrace:
test/schemas/user_database_schema_test.exs:30: (test)

We are familiar with this output and know what to do. We need to add :id,
:inserted_at, and :updated_at into the test’s schema definition. Update your
@expected_fields_with_types to include the new fields:

testing_ecto/test/schemas/user_database_schema_test.exs
@expected_fields_with_types [

{:id, :binary_id},
{:date_of_birth, :date},
{:email, :string},
{:favorite_number, :float},
{:first_name, :string},
{:inserted_at, :utc_datetime_usec},
{:last_name, :string},
{:phone_number, :string},
{:updated_at, :utc_datetime_usec}

]

report erratum • discuss

Testing an Ecto Schema for Database Interactions • 131

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/schemas/user_database_schema_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

After that, the individual test should pass, but what if we run the whole file?
Running mix test test/schemas/user_database_schema_test.exs will now yield errors that
we haven’t seen yet. Those errors will be for the success test and the test on
casting errors, and the output for both will look similar to the following:

1) test changeset/1 success: returns a valid changeset when given validLine 1

arguments (TestingEcto.Schemas.UserDatabaseSchemaTest)-

test/schemas/user_database_schema_test.exs:39-

** (BadFunctionError) expected a function, got: nil-

code: valid_params = valid_params(@expected_fields_with_types)5

stacktrace:-

(testing_ecto 0.1.0) test/schema_case.ex:34:-

anonymous fn/3 in TestingEcto.SchemaCase.valid_params/1-

(elixir 1.10.2) lib/enum.ex:2111:-

Enum."-reduce/3-lists^foldl/2-0-"/310

(testing_ecto 0.1.0) test/schema_case.ex:33:-

TestingEcto.SchemaCase.valid_params/1-

test/schemas/user_database_schema_test.exs:40: (test)-

The key to understanding these errors is line 4, where we see that the code
was expecting a function but got nil instead. Combined with the top of the
stacktrace (line 7), we can get a sense of what is breaking and where in the
code it’s happening. Our helper function, valid_params/1, is breaking because
it doesn’t have functions defined for our newly introduced data types, :binary_id
and :utc_datetime_usec. The second test will fail for almost the same reason:
invalid_params/1 is also missing those definitions.

We can take one of two approaches to address these failures: we can add just
the types that we need or we can go through all of the Ecto primitive types
and create functions to return valid and invalid data for each type.5 It’s rare
that you’ll ever need all of them and you may end up with custom Ecto types
in your application.6 Since we can’t have a definitive list, it makes more sense
to add new definitions as they’re needed. The good news is that since the code
is in the case template, we only need to add them once to make them available
for any tests using the same template.

Open the SchemaCase file (testing_ecto/test/schema_case.ex) and update your two
helper functions with the following new definitions:

testing_ecto/test/schema_case.ex
def valid_params(fields_with_types) do

valid_value_by_type = %{
date: fn -> to_string(Faker.Date.date_of_birth()) end,
float: fn -> :rand.uniform() * 10 end,

5. https://hexdocs.pm/ecto/Ecto.Schema.html#module-primitive-types
6. https://hexdocs.pm/ecto/Ecto.Type.html

Chapter 4. Testing Ecto Schemas • 132

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/schema_case.ex
https://hexdocs.pm/ecto/Ecto.Schema.html#module-primitive-types
https://hexdocs.pm/ecto/Ecto.Type.html
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

string: fn -> Faker.Lorem.word() end,
utc_datetime_usec: fn -> DateTime.utc_now() end,
binary_id: fn -> Ecto.UUID.generate() end

}

for {field, type} <- fields_with_types, into: %{} do
{Atom.to_string(field), valid_value_by_type[type].()}

end
end

def invalid_params(fields_with_types) do
invalid_value_by_type = %{

date: fn -> Faker.Lorem.word() end,
float: fn -> Faker.Lorem.word() end,
string: fn -> DateTime.utc_now() end,
utc_datetime_usec: fn -> Faker.Lorem.word() end,
binary_id: fn -> 1 end

}

for {field, type} <- fields_with_types, into: %{} do
{Atom.to_string(field), invalid_value_by_type[type].()}

end
end

Now that we’ve updated those helper functions, there’s one last test that
isn’t passing: the test for the required fields is complaining that there isn’t
an error for the :id field. Since it shouldn’t be required, we just need to
update our module attribute in test/schemas/user_database_schema_test.exs,
@optional, to include :id:

@optional [:id, :favorite_number]

With our optional field updates, our schema is now set up to reflect our table,
and our tests have been updated to match. We have a design issue, though,
that we should acknowledge: our changeset function requires an ID to be
passed in. This is because we have a single changeset function instead of
specialized ones for different purposes, such as creating new users and
updating an existing user. We’ll address that soon, but for now, let’s review
what we’ve accomplished. We have a thoroughly tested user schema that’s
set up to work with the “users” table. We added new fields, and the tests let
us know where to make updates. We’re ready to start working against the
database in our tests.

Testing Your Schema Through Database Calls
While we have a decent basic schema defined, we haven’t covered a subset
of the kinds of logic that you’ll find in changeset functions—code that requires
interaction with the database to verify that it works. The validations we’ve

report erratum • discuss

Testing Your Schema Through Database Calls • 133

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

tested so far have laid out a pattern for us that can be used with other valida-
tions beyond cast/3 and validate_required/2. Functions your code can call that can
be tested in similar ways include (but are not limited to) validate_inclusion/4, vali-
date_length/3, and validate_subset/4. A very common case where things are easier
to test with a database is a unique constraint on a column in your database.
In this section, we’ll add a new field to our schema and table, including such
a constraint. We’ll review why it makes sense to pull the database into testing
it, and then we’ll update the tests to show how to exercise that constraint.

You’ll recall that when we created our migration, we added a unique constraint
on the email field. We also updated our changeset/1 function to include logic
for this when we added unique_constraint/2. unique_constraint/2 is what we’ll focus
on next. Before we test it, we should talk about what that function does.

The unique constraint is handled by the database, not by our changeset
function. So why are we calling unique_constraint/2 in our changeset function?
That function adds a “note” into the changeset to let Ecto know that if the
database returns an error for a unique constraint on the email field, instead
of raising the error, it should add an Ecto constraint error to the list of errors
on the changeset. If you were to inspect the changeset returned from changeset/1,
you won’t see it because Ecto has a custom implementation for the Inspect
protocol.7 There’s a “hidden” section of the Changeset struct under the key
:constraints. If you were to dig into the value of that key on our returned
changeset, you would see the following code:

[
%{

constraint: "users_email_index",
error_message: "has already been taken",
error_type: :unique,
field: :email,
match: :exact,
type: :unique

}
]

This map is the “note” we mentioned in the previous paragraph. When Ecto
gets a unique_constraint error back from the database, it checks to see if the
changeset it was executing on has a matching constraint. If it does, it uses
the information in that map to generate an error. We can test that this logic
is in our function in one of two ways: test the return value on the changeset
or attempt to insert the changeset and test for the expected error. While the

7. https://github.com/elixir-ecto/ecto/blob/87ce8e3223a1c8a92d40536cf56ac83c0270d711/lib/ecto/change-
set.ex#L2935

Chapter 4. Testing Ecto Schemas • 134

report erratum • discuss

https://github.com/elixir-ecto/ecto/blob/87ce8e3223a1c8a92d40536cf56ac83c0270d711/lib/ecto/changeset.ex#L2935
https://github.com/elixir-ecto/ecto/blob/87ce8e3223a1c8a92d40536cf56ac83c0270d711/lib/ecto/changeset.ex#L2935
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

first option has appeal for keeping our tests simple and keeping everything
purely functional, it’s going to be somewhat hard to understand what it’s up
to unless everyone maintaining that test understands why this is a valid way
to test the unique constraint code.

“Philosophical purity” of the previous test aside, it’s quite easy for us to use
the second option, attempting to insert the data into the database, and the
test will end up looking a good bit like our previous tests. Consistency makes
things easier to maintain and easier to understand.

We’ll add one more error test at the bottom of the describe block for "changeset/1"
in the test file, test/schemas/user_database_schema_test.exs. Open up the file and add
the following test:

test "error: returns error changeset when an email address is reused" doLine 1

{:ok, existing_user} =-

valid_params(@expected_fields_with_types)-

|> UserDatabaseSchema.changeset()-

|> TestingEcto.Repo.insert()5

-

changeset_with_repeated_email =-

valid_params(@expected_fields_with_types)-

|> Map.put("email", existing_user.email)-

|> UserDatabaseSchema.changeset()10

-

assert {:error, %Changeset{valid?: false, errors: errors}} =-

TestingEcto.Repo.insert(changeset_with_repeated_email)-

-

assert errors[:email], "The field :email is missing from errors."15

{_, meta} = errors[:email]-

-

assert meta[:constraint] == :unique,-

"The validation type, #{meta[:validation]}, is incorrect."-

end20

Let’s examine this test and see how it differs from all our previous testing.
Our setup is creating an existing user in the database, actually calling
TestingEcto.Repo.insert/1 at line 5. We need this insert because we’re trying to
trigger an error in the database for a unique constraint violation.

The second part of the setup is to create a changeset with valid params except
for the email address, which we’re overriding with the email address from the
existing user (line 9). The exercise step of this test is not normal. The code
under test, the changeset/1 function, has already been called. Instead, we’re
using a second insert call to the database to trigger the error we’re looking
for. You can see that at line 12: the pattern reflects that expected return value
from the Repo.insert/1 and not that of our changeset/1.

report erratum • discuss

Testing Your Schema Through Database Calls • 135

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

We bind the errors to a variable, errors, and then the assertions look a lot like
those from our previous tests. Because we only have one field that should
reflect this error, we aren’t using a list comprehension for the assertions.
Also, it’s worth pointing out that the meta data on our error is a :constraint and
not a :validation like our previous tests.

This test was not written to either self-update or catch changes to the schema
in the same way that our previous tests were. Our tests don’t have a way of
using reflection to know which fields should handle a unique constraint. The
actual definition for that is in the database itself and not part of our schema
definition. The reflection functions in Ecto.Schema are only available for the
definition itself. This means that, while the basic functionality of our schema,
the definition, and the cast and required validations can be fairly dynamic,
when we want to update fields that have a unique constraint, we’ll need to
make sure to add them in. This test could be updated to use a list compre-
hension if we wanted to.

We should mention a couple of caveats about this test. The first is that the
code to insert users into the database is leveraging our own application code,
UserDatabaseSchema.changeset/1. In general, it’s a good practice to avoid using your
own application code in your setup steps because issues with your code that
aren’t relevant to that specific test can create numerous and misleading test
failures. We’ll present an alternative in the next chapter, using a helper
module called a factory.

The second issue with this test is that it’s missing an important stage of
testing: teardown. Fortunately, each test doesn’t need to keep track of what
it needs to tear down. Ecto provides us a way.

Setting Up Sandbox Mode
Our database keeps state, and right now this test is leaving new rows in the
database. In the short run, it’s very unlikely to create a problem because
we’re using a new, random string every time we run the test. In the long run,
having persistent data between test runs increases the likelihood of having
test failures due to unforeseen data collisions. If the same random string did
happen to be picked in different test runs, the test would fail on the first
inserted user, which was supposed to be part of the setup.

Working against your database in tests is one of the most common places
where leftover state changes can cause problems. We managed to avoid issues
with our test on the unique constraint by using randomized data. But even
with that, every successive test run is leaving one new row in the database.

Chapter 4. Testing Ecto Schemas • 136

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Each test works best when operating in a known good environment because
that’s the only way they can guarantee that their own setup is complete and
reliable. If a test can’t assume a clean working environment, we need to write
a lot more defensive code, checking the environment for existing data, instead
of just making what’s needed for the test and moving on. This approach both
slows down writing the tests, because more code is needed, but it also slows
down the tests themselves. While an extra database check or two isn’t really
an issue from a time standpoint, if you’re writing enough tests, they’ll add
up. In an isolated test, we’d focus on just making sure the test cleaned up
whatever it created. Fortunately, Ecto provides us a very nice solution so that
each individual test doesn’t have to track and clean up after itself: the Ecto
Sandbox.8

The Ecto Sandbox provides two key values to our tests. The first is by manag-
ing the connection pool: when properly configured, concurrent tests can run
without sharing state in the database. This means leveraging the speed boost
of concurrent tests without the kind of defensive programming we’re trying
to avoid. It’s a little bit complicated when setting it up, but it works well. The
second value that the Ecto Sandbox provides is that each database connection
is operating in a database transaction, and when a test is complete, the
transaction is rolled back. This means that there are no changes to the state
of the database when the tests are complete; in other words, the Ecto Sandbox
gives us automated teardown for the changes in our database.

We’re going to set up the Sandbox, choosing a mode that works well for the
limited scope of unit tests. We’ll discuss other modes, where the same Sandbox
needs to be shared by multiple processes, in our chapter on testing Phoenix.
In your case template file, testing_ecto/test/schema_case.ex, we’ll add a setup block
that will be used by all tests that use this case template. In that file, under
the using block, above the valid_params/1 function, add a setup block that looks
like this:

testing_ecto/test/schema_case.ex
setup _ do

Ecto.Adapters.SQL.Sandbox.mode(TestingEcto.Repo, :manual)
end

Every test that uses this case template will now run this code before the test
executes as part of the setup steps. This applies to the tests that don’t cause
any interactions with the database as well. Fortunately, this is a very fast,

8. https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.Sandbox.html

report erratum • discuss

Setting Up Sandbox Mode • 137

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/schema_case.ex
https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.Sandbox.html
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

lightweight call and it shouldn’t impact your test suite’s overall runtime sig-
nificantly.

In order for the Sandbox to be available in our tests, we need to make sure
that the configuration in config/test.exs sets TestingEcto.Repo to use the Sandbox.
If you’re using the file we provided with our copy of the application, you should
be all set, but we’ll call out the step to make sure you know how to set it up.
In the Ecto part of your test config, you need to tell Ecto that your database
connection pool will be using the Sandbox. It should have at least the following
lines in it:

testing_ecto/config/test.exs
config :testing_ecto, TestingEcto.Repo,

database: "testing_ecto_test",
pool: Ecto.Adapters.SQL.Sandbox

Setting the Sandbox to :manual sets each test to be able to request its own
sandbox connection. That connection will be the same connection throughout
the life of the individual test. In other words, if our test setup inserts a record,
that record will be present later, during calls to the database throughout the
exercise phase. This probably feels like it’s obvious, but it’s actually not
guaranteed with one of the other sandbox modes. The major limitation is that
each sandbox instance is usable only in tests that utilize a single process. In
our case, our test process is the only running process, as the code that’s
being exercised is all executed within the test process.

We need to update our test to explicitly request a connection from the Sandbox
at the beginning of the test. This way, tests that don’t utilize the database
won’t require any additional resources. In your test for the unique constraint
errors, update your test so that your very first line reads Ecto.Adapters.SQL.Sand-
box.checkout(TestingEcto.Repo). This tells the Sandbox to provide an isolated
database connection associated with the process ID (PID) of the test.

That’s all we need to do to make our tests not leave data in the database. Any
future runs of this test will not leave data, but remember that we already ran
the test at least once without the Sandbox. As a result, we should reset our
test database before we move on. Shutting down the Docker container (running
make down) will work because our docker-compose.yml doesn’t mount a disk any-
where for persistence. Starting it back up, though, will require you to create
and migrate your database again. The other option is to run the following
commands in order: MIX_ENV=test mix ecto.drop, MIX_ENV=test mix ecto.create, and,
finally MIX_ENV=test mix ecto.migrate. We have included a target in the Makefile to
do all of this by running make reset.test from the command line. The good news

Chapter 4. Testing Ecto Schemas • 138

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/config/test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

is that now that we’re using the Sandbox, we shouldn’t need to do a reset like
this again.

Wrapping Up
We’ve spent this chapter focusing on testing Ecto schemas. We used that
topic as a way to visit case templates and helper functions, and we touched
on the Ecto Sandbox. We also delved into building tests that either safely
update themselves or let you know when your test file is out of sync with the
schema definition, both of which reduce the work to maintain your test file.

In the next chapter, we’ll learn about testing queries and leveraging the factory
pattern to speed up writing tests and make robust setup easier.

report erratum • discuss

Wrapping Up • 139

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

CHAPTER 5

Testing Ecto Queries
Testing Ecto queries is fairly straightforward, especially if you’re coming from
testing database code in other languages. Some basic rules will help you make
sure that your coverage is effective. In this chapter, we’ll explore some addi-
tional tooling that can help make long-term ownership of your test suite
easier, and then we’ll write tests for Ecto queries. We’ll build on concepts
from the previous chapter, Testing Ecto Schemas. While it isn’t strictly neces-
sary to have read that chapter, without it you may miss some references to
code or concepts we’ve already covered. We’ve provided complete examples
of the previous chapter’s code with the book, so when needed, you can use
that for reference.

For this chapter, we’re going to work with a schema called test-
ing_ecto/lib/schemas/user.ex, which is provided in the copy of testing_ecto. It’s an
evolution of the schema we ended the last chapter with, with two notable
changes: now that we’re done changing the schema, we’re calling it User and
it has the changeset functions, create_changeset/1 and update_changeset/2, instead
of a single, multi-use function. We’ve also included an updated test file, test-
ing_ecto/test/schemas/user_test.exs. Copy both of those files into your local testing_
ecto project. The test file assumes that you have a copy of test-
ing_ecto/test/schema_case.ex as well, so if you skipped the work from the last
chapter, you’ll need to copy that over as well.

Next, we’ll create a factory file to make the setup phase of our tests easier
and more consistent. Then we’ll create a new case template and use both the
factory and the case template to test basic database query code.

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Creating a Factory to Help with Setup
In testing, we create factories to give ourselves consistent, repeatable ways
to provide data for our setup phase. One of the areas where this kind of
tooling is the most useful is when interacting with the database.

When we write tests that interact with database tables, we need two sets of
data that are either valid or invalid with regard to the table’s definition. As
our applications grow larger, we’ll find that having a single source of setup
data helps us keep the test suite maintainable. If we update our schema
definition, that single source is often the only place (aside from the tests for
the schema file itself) that’ll need to be updated in your test suite.

It’s totally possible to write a factory for your application entirely from scratch.
When we were testing our Ecto schemas, we started to do that by creating a
helper function called valid_params. It took a set of fields and types and returned
a set of randomized parameters that met the minimum requirements of the
schema’s definition. That function has some notable limitations, however. It
was written to be generic and therefore the data it returns isn’t very specific
to the exact field for which it’s making the data. An example is that since the
email field was a string, the function returned a single word string, not an
email address. This isn’t guaranteed to be an issue, but odd data can make
the debugging of failed tests a little harder. Additionally, when we had a test
that required the data to be inserted into the database, we had to write the
code to do the insertion as well.

We can solve this by creating common code that handles the insert for you.
While you can write your factory from scratch, we don’t suggest it. If you go
that route, you’ll keep finding edge cases (like overrides on values or handling
nested schemas) that require you to continue to update and upgrade your
factory. Many people have worked to solve these problems, and we can build
on their work. While there’s no perfect solution, we have settled on using the
ExMachina library from Thoughtbot as the basis for our factories.1

ExMachina brings a good bit of functionality out of the box, although it also has
some notable quirks. We’ll run through the basic use cases of ExMachina by
incorporating it into our TestingEcto application, and then we’ll show how you
supplement your ExMachina-based factory with additional data functions.
ExMachina was originally designed with producing data for Ecto schemas in mind.
As a result, it works well for producing data for the schemas themselves, as well as
providing a mechanism to insert data so that you don’t have to write your own code.

1. https://hex.pm/packages/ex_machina

Chapter 5. Testing Ecto Queries • 142

report erratum • discuss

https://hex.pm/packages/ex_machina
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

To begin, we’ll be working in the same project as the previous chapter. We
need to add ExMachina as an application dependency. Open your mix file
(testing_ecto/mix.exs) and insert {:ex_machina, "~> 2.4", only: :test}, into the list in the
deps/0 private function. Run mix deps.get to pull the library code into your project.
That’s enough for us to start using the library.

Now let’s add our own factory file. Create a new file for your factory at test-
ing_ecto/test/factory.ex. Insert the following code and then we’ll run through the
notable parts:

testing_ecto/test/factory.ex
defmodule TestingEcto.Factory doLine 1

use ExMachina.Ecto, repo: TestingEcto.Repo-

alias TestingEcto.Schemas.User-

-

def user_factory do5

%User{-

date_of_birth: to_string(Faker.Date.date_of_birth()),-

email: Faker.Internet.email(),-

favorite_number: :rand.uniform() * 10,-

first_name: Faker.Name.first_name(),10

last_name: Faker.Name.last_name(),-

phone_number: Faker.Phone.EnUs.phone(),-

}-

end-

end15

Unless you need more than one factory file (which can be useful for separation
of concerns as your application grows), sticking with the name Factory should
be just fine. At line 2, our module is “using” ExMachina.Ecto and passing it the
name of our application’s repo, TestingEcto.Repo. This means that this factory
will be usable specifically with that repo. In applications that connect to more
than one database, you’ll want to have multiple factories, naming each of
them something more specific.

We’ve added a single factory function (line 5), following an ExMachina conven-
tion: the name of the schema followed by “_factory”. ExMachina uses
metaprogramming under the hood; and to make it work, this convention is
a must. It ends up creating a slight disconnect when you actually use the
factory function, which we’ll call out later. For now, just know that any
functions in the factory file that need to work with ExMachina will need to
have “_factory” appended.

The function itself is pretty simple; it just returns a schema struct with pre-
populated values. If we were to call this function by name, it would return a
struct. That in itself is useful, but it isn’t anything we need another library

report erratum • discuss

Creating a Factory to Help with Setup • 143

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/factory.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

for. As long as you follow the naming convention, ExMachina offers a lot of
helper functions, ones that we’ll be using throughout the rest of this chapter.
The different functionality it provides works in two phases. First it generates
a data set from the factory defaults and any overrides passed in. When the
data is ready, it performs the action from the function call, such as inserting
a record or creating a string-keyed map. While the initial data set is based
off the same struct, the return value and side effects are determined by the
function you call. As we progress through this chapter, we’ll use different
ExMachina functions and explain them when we do.

As you develop your test suites, the factory might be a good place to add
additional helper functions, like invalid_data/1 from the last chapter. Anything
that’s focused on data and is reusable across tests is a good candidate to
move into the factory. The factory can then be pulled in directly or by using
the case template that includes it.

Adding a DataCase to Help with Setup
When testing our Ecto schemas, we made a case template called SchemaCase.
That was very specific to an exact kind of test. While the exercise of making
that was useful, you’ll likely find that a slightly higher-level case template
can cover your needs for anything that’s dealing with data as it’s needed for
database interactions. We’re going to create a new case template that will
look very similar and, if you took the time, would be able to replace the
SchemaCase that we used in the schema tests. Create a new file called test-
ing_ecto/test/data_case.ex and add the following code:

testing_ecto/test/data_case.ex
defmodule TestingEcto.DataCase doLine 1

use ExUnit.CaseTemplate-

-

using do-

quote do5

alias Ecto.Changeset-

import TestingEcto.DataCase-

alias TestingEcto.{Factory, Repo}-

end-

end10

-

setup _tags? do-

Ecto.Adapters.SQL.Sandbox.mode(TestingEcto.Repo, :manual)-

end-

end15

Right now, using this file brings only two advantages over using ExUnit.Case.
First, it provides the common sandbox setup, like our SchemaCase did in the

Chapter 5. Testing Ecto Queries • 144

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/data_case.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

last chapter. Second, it adds an alias for TestingEcto.Factory and TestingEcto.Repo
on line 8. We’ll need both of those for our query tests. As you build out a test
suite, keep looking for helper functions that can be moved into common files
to allow for reuse. A good rule of thumb is that if a function is focused on
making data, it can go into a factory. If not, it might belong in a case template.
If you find the same function is needed in multiple case templates, you may
have a candidate for a module with helper functions that can be pulled into
multiple case templates.

Now that we have a factory and a case template, we can start working on
testing our query code.

Testing Create
We’re going to start by looking at part of the logic file with our queries. The
file, called Users, contains the basic CRUD actions, in this case called create/1,
get/1, update/2, and delete/1. We’ve provided a file in the copy of testing_ecto
included with the book. You’re welcome to copy that over or type it in yourself.
The file and the create/1 function look like this:

testing_ecto/lib/users/users.ex
defmodule TestingEcto.Users do

@moduledoc false
alias TestingEcto.Repo
alias TestingEcto.Schemas.User

def create(params) do
params
|> User.create_changeset()
|> Repo.insert()

end
end

It’s pretty basic, as most CRUD queries are. As a result, testing it won’t be
very complicated, either. First we’ll write a success path test. Open up a new
file at testing_ecto/test/users/users_test.ex. In it, we’ll set up a basic test file structure
and then add a describe block for create/1 and our first test:

testing_ecto/test/users/users_test.exs
defmodule TestingEcto.UsersTest doLine 1

use TestingEcto.DataCase-

alias TestingEcto.Users-

alias TestingEcto.Schemas.User-

5

setup do-

Ecto.Adapters.SQL.Sandbox.checkout(TestingEcto.Repo)-

end-

-

report erratum • discuss

Testing Create • 145

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/lib/users/users.ex
http://media.pragprog.com/titles/lmelixir/code/testing_ecto/test/users/users_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

describe "create/1" do10

test "success: it inserts a user in the db and returns the user" do-

params = Factory.string_params_for(:user)-

now = DateTime.utc_now()-

-

assert {:ok, %User{} = returned_user} = Users.create(params)15

-

user_from_db = Repo.get(User, returned_user.id)-

assert returned_user == user_from_db-

-

mutated = ["date_of_birth"]20

-

for {param_field, expected} <- params,-

param_field not in mutated do-

schema_field = String.to_existing_atom(param_field)-

actual = Map.get(user_from_db, schema_field)25

-

assert actual == expected,-

"Values did not match for field: #{param_field}\nexpected: #{-

inspect(expected)-

}\nactual: #{inspect(actual)}"30

end-

-

expected_dob = Date.from_iso8601!(params["date_of_birth"])-

assert user_from_db.date_of_birth == expected_dob-

35

assert user_from_db.inserted_at == user_from_db.updated_at-

assert DateTime.compare(now, user_from_db.inserted_at) == :lt-

end-

-

end40

-

end-

The first thing to note in this test file is that common setup block at line 7.
Because this test file is for our queries, we can safely assume that every test
will require a database connection. Since our case template, DataCase, is
setting the Ecto Sandbox to :manual, we’ll need to check out a connection for
each test. Remember that at the end of the test, the connection will be released
and the database transaction holding all of our interactions will be rolled
back.

We see our first use of a factory function in the test itself, at line 12. We are
calling string_params_for/2 (even though we’re only passing one argument, there
is a second, optional argument). Under the hood, this takes the atom being
passed to it, in our case :user, and will call user_factory/0 in our factory. Even
though our function, user_factory/0, returns a User schema, ExMachina will
take the return value and convert it to a string-keyed map in order to provide
“string_params”. There’s a similar function called params_for/2, which returns

Chapter 5. Testing Ecto Queries • 146

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

an atom-keyed map instead. We’re requesting string params because that’s
the shape that most web-based input takes.

There’s a general pattern that starts to play out in this test. When a test is
exercising code that writes to the database, the test itself will need to read
from the database during the assertion phase in order to verify the side
effect(s). If a test is exercising code read from the database, the test will need
to write directly to the database during the setup phase. Don’t use your own
application’s code to do those reads and writes. On line 17, you’ll see that
our test is calling TestingEcto.Repo directly. You don’t want your test to depend
on your application code. If you do use application code and something
changes in your code, breaking its functionality, your test suite will blow up
with a lot of failing tests. Most of those will be misleading because they won’t
be tests that are focused on the failing code. One of our goals when designing
tests is to make it so that if there is a failure, it’s quick and easy to find where
our code isn’t behaving correctly.

On the line to exercise the code (line 15), we are asserting that the return
value is an :ok tuple and binding the returned user to a variable. We typically
strive to have a function do a single thing, focusing either on a return value
or a side effect. Unfortunately, query code like this typically has both a signif-
icant return value (in our case the user that was inserted) as well as an
important side effect (that data was inserted into the database). There are
two common mistakes made when testing functions like these.

The first mistake is that people tend to only focus on the return value. If,
under the hood, your code is as straightforward as this is, with the final call
being to Repo.insert/1, it would be fine. The problem is that code can change
over time, and testing only the return value doesn’t guarantee what’s arguably
the most important responsibility of the function under test: inserting data
into the database. Our test isn’t only binding the return value but also then
grabbing the data from the database. We’re fairly safe to assume that the ID
on the returned user is the same as that of the row in the database. At this
point, we have both the return value from the exercise line and the data
straight from the database. We compare them on line 18 to make sure they’re
identical (as they really should be). Once we know they’re the same, we can
pick either one to continue our testing. That leads us to the second common
mistake.

It’s incredibly common to see tests like this that make assertions on one or
two of the values and then assume that the rest are good to go. This is
unfortunate, because the point of the test is to make sure that the insertion
code is correct. How can it prove that if it doesn’t check all of the values? This

report erratum • discuss

Testing Create • 147

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

is where a list comprehension comes in. We run through all the values that
we’re expecting and check that the same value is present in the database
(and the returned User schema).

We have another layer of thoroughness in this test that we should discuss.
We’re checking that the two timestamps, :inserted_at and :updated_at, are the
same, and we’re checking that they’re newer than the time the test started.
Line 13 grabs a timestamp from before the test exercises the code, and then
line 37 compares the timestamps to the pre-exercise time. Updating the values
for the timestamps is the default behavior of the Ecto code. As long as your
code is using Ecto.Repo’s functions, this just happens. Additionally, the only
built-in function to compare datetimes has a pretty awkward API. It’s your
call, but this might be a place where you can feel comfortable skipping a
validation.

Aside from the assertions on the timestamps, the assertions in this test
probably feel a whole lot like the assertions we made in the testing for the
schema itself. While it’s very similar, it’s not the same, so don’t skip out on
one or the other. The schema tests are making sure that the schema’s
changeset function handles “correct” data, but it does nothing to cover whether
or not that “correct” data is valid against the database table definition itself,
whereas successfully inserting it does prove that. Why not skip the schema
testing then? A schema changeset function can be used by multiple queries,
sometimes even in different files. One of the nice things about having a well-
tested schema is that when we test code that’s using the schema, we don’t
need to write exhaustive tests for all of the error cases. The tests for the
schema cover that. So, for testing a function like our create/1, we only need a
single success test and a single error test. We’ll write that error test next.

Add a new test into your existing describe block for a failure:

test "error: returns an error tuple when user can't be created" do
missing_params = %{}

assert {:error, %Changeset{valid?: false}} =
Users.create(missing_params)

end

This test can be so simple because we’ve already tested the error cases thor-
oughly for the schema. Ecto has standardized the way that Repo errors and
Changeset errors are handled. All our test is doing is making sure that if there
is an error, the return value is shaped correctly: a tuple with :error as the first
element and a changeset carrying errors as the second element. If any other
functions use that same underlying changeset function on the schema, they

Chapter 5. Testing Ecto Queries • 148

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

can make the same assumptions, unless the function itself needs to change
the behavior.

These two tests set up a pattern that will continue for the rest of the functions
in this file: one success test and one error test. Let’s test our next function
and see it play out.

Testing Read
This next test is very simple. First, let’s take a look at the code in our Users
module. We used “Read” in the section header to keep it in line with CRUD,
but you’ll notice that we prefer to call our function get/1. This is entirely user
preference.

testing_ecto/lib/users/users.ex
def get(user_id) do

if user = Repo.get(User, user_id) do
{:ok, user}

else
{:error, :not_found}

end
end

Our function isn’t a straight pass-through to the Ecto code. Instead, if the
query returns a result, it wraps that result in a success (:ok) tuple, and if the
user doesn’t exist, it returns an error tuple. Our tests will be pretty straight-
forward as well. For success, we’ll need to insert a user into the database
before the exercise step. We’ll assert on the shape of the return value and
then make sure that the actual data matches what was inserted into the
database prior. The error test will try to “get” a user for a nonexisting ID.
Open up your test file, testing_ecto/test/users/users_test.ex, and add the following
describe block:

describe "get/1" doLine 1

test "success: it returns a user when given a valid UUID" do-

existing_user = Factory.insert(:user)-

-

assert {:ok, returned_user} = Users.get(existing_user.id)5

-

assert returned_user == existing_user-

end-

-

test "error: it returns an error tuple when a user doesn't exist" do10

assert {:error, :not_found} = Users.get(Ecto.UUID.generate())-

end-

end-

report erratum • discuss

Testing Read • 149

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/lib/users/users.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

These tests are pretty easy to understand. Because the function under test
is reading from the database, our test code will have to insert data before the
exercise step. We’re using our factory to insert the data into the database at
line 3. One of the many benefits of using a factory is that it provides an easy
and consistent way to insert data into the database without relying on your
own application code.

It’s very important to note, though, that because it isn’t using your application
code, the inserted data won’t be run through your changeset functions. If
rules about the data are present in the changeset logic but aren’t reflected in
the database, you need to make sure that your factory function only returns
valid data. That’s testing a read function.

Testing Update
Testing update is a bit of a combination of the testing for the create and read
functions. Let’s first look at the function we’re going to test:

testing_ecto/lib/users/users.ex
def update(%User{} = existing_user, update_params) do

existing_user
|> User.update_changeset(update_params)
|> Repo.update()

end

You can see that, like create/1, this function is a very lightweight wrapper
around calls to the schema’s changeset function (update_changeset/2 in this case)
and then to Repo.update/1. Testing it will be similar, but you’ll need to insert an
existing user to be updated by the code. Let’s write our success test first:

describe "update/2" doLine 1

test "success: it updates database and returns the user" do-

existing_user = Factory.insert(:user)-

-

params =5

Factory.string_params_for(:user)-

|> Map.take(["first_name"])-

-

assert {:ok, returned_user} = Users.update(existing_user, params)-

10

user_from_db = Repo.get(User, returned_user.id)-

assert returned_user == user_from_db-

-

expected_user_data =-

existing_user15

|> Map.from_struct()-

|> Map.drop([:__meta__, :updated_at])-

|> Map.put(:first_name, params["first_name"])-

-

Chapter 5. Testing Ecto Queries • 150

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/lib/users/users.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

for {field, expected} <- expected_user_data do20

actual = Map.get(user_from_db, field)-

-

assert actual == expected,-

"Values did not match for field: #{field}\nexpected: #{-

inspect(expected)25

}\nactual: #{inspect(actual)}"-

end-

-

refute user_from_db.updated_at == existing_user.updated_at-

assert %DateTime{} = user_from_db.updated_at30

end-

-

end-

The test uses the factory to insert a user on line 3. On line 5, the test is cre-
ating a parameter map to pass in. It’s using the factory to provide the data
for consistency, but it’s then using Map.take/2 to grab only a single key/value
pair. This is to keep the test as simple and unlikely to become stale as possible.
If the test updated every field allowed on the schema, the likelihood of the
test becoming outdated with any changes to the schema is higher. By
choosing a single field, and one that’s less likely to change, this test will be
easier to keep current. Additionally, the testing for update_changeset/2 does cover
the logic around which fields can be updated, so we don’t need to be robust
in this test.

Our test needs to assert that all the original fields have the same value except
:first_name (the updated field) and :updated_at (which will be handled separately).
To do this, the easiest thing is to construct a map with the expected keys and
values in it, and then compare that to the values pulled from the database.
There are plenty of ways to do this, but we chose to start with the existing
user because it carries almost all of the data we want.

At line 14, we transform that user’s data into a map and then update the one
value that changed. On line 17, the test drops two of the fields, meaning they
won’t be checked. :updated_at is dropped because it won’t be the same between
the two sets of data, and it doesn’t need to be. :__meta__ is dropped, even though
it’ll be the same on both sets, because it’s a hidden Ecto Schema field and
not part of the concerns of the test. The test is focused on the data that exists
in the database.

On line 29, we’re making a very basic assertion to make sure that the value
of the :updated_at field has been changed and that it’s still the right shape of
data, a DateTime struct. This ties back to our discussion of testing the
timestamps when we were testing create/1. We are balancing between

report erratum • discuss

Testing Update • 151

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

maintaining high coverage and reducing the work and maintenance involved
in our assertions.

Let’s add our error test next. Add a test under your success test, in the same
update/2 describe block, that looks like this:

test "error: returns an error tuple when user can't be updated" doLine 1

existing_user = Factory.insert(:user)2

bad_params = %{"first_name" => DateTime.utc_now()}3

4

assert {:error, %Changeset{}} = Users.update(existing_user, bad_params)5

6

assert existing_user == Repo.get(User, existing_user.id)7

end8

This test is pretty easy to understand. On line 3, it’s creating a parameter
that can’t be cast. This is the same kind of logic that we had in the helper
function, invalid_params/1, called from our schema tests, by means of our
SchemaCase file. This test isn’t using that same case template. If you find
yourself doing this sort of thing often in your query tests, it could be a good
candidate for a function in either DataCase or in the factory, because it’s focused
on data.

A common mistake when testing a failed update, like this test is doing, is to
miss checking that the data in the database hasn’t changed. Given how little
logic is in Users.update/2, it’s very unlikely that anything would have changed,
but it’s very little effort on our part and it builds in safety from regressions.
Line 7 shows a one-line assertion and call to the database to add that safety.

We’ve covered the major points of testing an update function. Let’s finish with
testing our logic to delete a user.

Testing Delete
Our last function, delete/1, is simple to test, as the code is a straight pass-
through to Repo.delete/1. Let’s look at the function:

testing_ecto/lib/users/users.ex
def delete(%User{} = user) do

Repo.delete(user)
end

end

We’ll only test the success path for this function because errors are incredibly
unlikely. Additionally, writing a test that can force an error on delete is com-
plicated and requires restructuring our code solely for testing. In this case,
the payoff isn’t there. When that’s the case, we typically let our applications

Chapter 5. Testing Ecto Queries • 152

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_ecto/lib/users/users.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

crash instead of trying to handle every possible failure. Let’s write our final
test and then review what it does:

describe "delete/1" do
test "success: it deletes the user" do

user = Factory.insert(:user)

assert {:ok, _deleted_user} = Users.delete(user)

refute Repo.get(User, user.id)
end

end

Our test sets up by inserting a user. It then exercises the delete/1 function,
asserting that it returns a success tuple. The last line is an assertion that
the data is no longer in the database. In our case, we aren’t even concerned
about the return value, so we’re dropping it. The most important thing is to
just make sure that you have that last check on the database.

Wrapping Up
In this chapter, we covered the basic CRUD functions and how to test them.
We looked at using a common setup source, a factory. We saw how to make
thorough assertions on return values and the data in the database. While no
two applications will have exactly the same functionality, these examples lay
out the basics that you can build on to make sure your queries are covered
by your tests.

Between Chapter 4, Testing Ecto Schemas, on page 101, and this chapter,
we’ve discussed the main concerns you should keep in mind when testing
your Ecto code. As you build bigger and more complicated query code, you
just need to remember that your tests need to cover both the return values
and the side effects. Failing to check the side effects (changes in the database)
is one of the most common mistakes we see, and it’s the most important part
of testing your query code.

In the next chapter, we’ll move on to testing a Phoenix application, building
on all of the concepts we’ve laid out here and in the previous chapters.

report erratum • discuss

Wrapping Up • 153

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

CHAPTER 6

Testing Phoenix
While Elixir is flexible enough to be used in countless ways, most people
writing Elixir will end up writing an application using the Phoenix framework
at some point. The framework provides a lot of tooling to build a web server
with relative ease and speed. Phoenix is rare among web frameworks, though,
in that it doesn’t have strong opinions on your application’s architecture or
file structure. It provides a standardized way of defining various web interfaces
and connecting them to application code. This chapter will cover the different
ways in which a Phoenix application can be tested, focusing on testing the
application as a whole via the web and websocket interfaces.

While we’ll cover testing Phoenix-specific patterns, it’s really important to
understand that for the most part, testing a Phoenix application will use
everything we’ve already covered in the previous chapters: unit tests, integra-
tion tests, OTP tests, and Ecto tests (which really are just specific variations
of unit and integration testing). We won’t rehash those ideas here. As a result,
this chapter isn’t entirely stand-alone. If you aren’t familiar with the basics
of testing, this chapter won’t be very helpful. Instead, we highly recommended
that you read the preceding chapters first so you’re familiar with the basics
of unit testing, integration tests, testing OTP, and testing Ecto.

The Role of Phoenix in Your Application
What we think of as the Phoenix framework is really a combination of libraries:
Ranch,1 Cowboy,2 Plug,3 Phoenix,4 and Ecto.5 This combination provides a

1. https://github.com/ninenines/ranch
2. https://github.com/ninenines/cowboy
3. https://github.com/elixir-plug/plug
4. https://github.com/phoenixframework/phoenix
5. https://github.com/elixir-ecto/ecto

report erratum • discuss

https://github.com/ninenines/ranch
https://github.com/ninenines/cowboy
https://github.com/elixir-plug/plug
https://github.com/phoenixframework/phoenix
https://github.com/elixir-ecto/ecto
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

lot of tools to spin up web-server applications fairly easily, drawing on the
history of many other frameworks, but it works very hard to not drive the
design of your application. That ultimately means that a standard Phoenix
application can be broken down into two main parts, the incoming web
interface part (which includes Ranch, Cowboy, Plug, and Phoenix) and the
rest of the application (mostly Elixir and Ecto code). In Phoenix lingo, that’s
YourAppWeb and YourApp. While Phoenix’s generators and documentation
nudge users to use the concept of contexts to organize their nonweb code,
the truth is that you can write and organize the application however you want.
As a result, testing the business logic of your application isn’t Phoenix-specific
in any way. It’s going to look like the unit and integration testing in any Mix
application.

Phoenix allows users to interact with it in several different ways: server-
rendered HTML, JSON-based endpoints, and Phoenix Channels (web sockets).
A new library, Phoenix LiveView, combines elements of server-rendered HTML
and web sockets to provide interactive clients. It’s not in the Phoenix core
and so we won’t cover it in this book. If you want to learn more about it and
how to test it, check out Programming Phoenix LiveView [TD21].

As part of testing these interfaces, we’ll also rope in testing routes, plugs, and
views. Code that calls out to other services while using the Internet to do so
isn’t included in this. This topic is covered under integration testing, and that
code would normally live in the nonweb part of your application.

There’s a lot of overlap between testing each kind of interface. To avoid very
repetitious examples, we’ll skip things we’ve already covered if there aren’t
any caveats. For example, if we cover testing plugs as part of testing a JSON
API, we won’t cover plugs in testing server-rendered HTML endpoints.

Plugs
The Phoenix library has been hugely helpful to the productivity of anyone
wanting to write an Elixir-based web application, but it’s useful to know that
it owes a lot of its success to another library, Plug.6 Plug is a basic specification
and tooling set that allows users to create composable web applications. In
this chapter, we’ll mention “plugs” as a reference to middleware that you
might be using in your application. Additionally, the Plug library provides
some of the testing tools that we’ll require. Don’t worry, though: because Plug
is a dependency of the Phoenix framework, if you’re working in a Phoenix-
based application, you already have Plug and its testing tools available to

6. https://github.com/elixir-plug/plug

Chapter 6. Testing Phoenix • 156

report erratum • discuss

https://github.com/elixir-plug/plug
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

you. We’ll refer to any modules, both those provided by Phoenix and those
custom written, that match the interface defined by Plug as plugs.

How to Use the Provided Application
With this book, we’ve provided an application, called NotSkull, that will serve
as the code samples for most of this chapter and the next. NotSkull is a
working application, complete with tests.

The tests you’ll write while working through this chapter will all be in new
files. If you’re having trouble, you’ll find a complete test file that exists under
the same name of the file we’ll have you create, but with .bak.exs as the file
extension instead of .exs.

Some of the functionality in the application is duplicated between interface
types. For example, there are two controllers for users: one for server-rendered
HTML and the other for a JSON-based API. There isn’t complete feature
parity, though, as the JSON-based code was just added to provide samples
for the book.

Like in the Testing Ecto Schemas chapter, the sample code provides a
Makefile to help get your database up and running. It’s important to note
that while the application code and tests are good, the database setup is
insufficient for a real application. It’s important to use stronger security
practices than our sample application provides. Don’t use our database setup
in a real application.

This chapter will only cover a fraction of the code and tests written in the
application, but the application has been tested using the same concepts as
those presented throughout this book. Feel free to use the examples as a
starting point for your own testing.

Testing JSON-Based APIs
We’re going to start by looking at testing a JSON-based API. This is a very
common use case for Phoenix and it’s the least complex of the interfaces we’ll
test. This will allow us to focus on some concepts that will apply across all
of the interface types we’ll cover, without getting too lost in the specifics of
the interface itself.

What Controller Tests Need to Cover
We strive to keep our controllers as small as possible, with as little branching
logic as possible. This accomplishes two goals: it keeps our business logic
out of the web part of our application, and it keeps the number of test cases

report erratum • discuss

Testing JSON-Based APIs • 157

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

needed to a minimum. Controller tests are some of our most expensive (in
terms of running time) since they often require the most setup. Ideally, we
have as few of them as possible while still leaving our application with solid
coverage.

The logic for most controller actions can be tested with two tests: a happy
path test and an error case test. There will always be exceptions to this, but
it should be your starting goal.

Beyond testing the logic in the actions themselves, you may need to include
tests to verify that certain plugs are included in your application’s call stack.
In this section, we’ll test a JSON-based endpoint, with a happy path and an
error case, and we’ll test for the presence of a plug.

Before we start writing tests, let’s look at the code we’ll test and how it fits
into the application.

Familiarizing Ourselves with the User Controller
Our application is a simple game. It’s a pared-down version of a classic game
called Skull and Roses. In our version, players simply take turns guessing if
the other players have presented a skull or a rose. Our focus starts when
players register in the application as users. Users are then able to create a
new game or edit their own profile settings. While the application has HTML-
rendered controller actions for user registration and profile updates, the
JSON-based API provides this same functionality. We’ll focus on testing the
edit endpoint, meaning that our test will start with a registered user. Let’s
take a look at the controller code called when a user hits the update endpoint
to change their own profile:

testing_phoenix/not_skull/lib/not_skull_web/controllers/json_api/user_controller.ex
defmodule NotSkullWeb.JsonApi.UserController doLine 1

@moduledoc false-

-

use NotSkullWeb, :controller-

5

alias NotSkull.Accounts-

-

def update(conn, params) do-

with {:ok, user} <- Accounts.get_user_by_id(params["id"]),-

{:ok, updated_user} <- Accounts.update_user(user, params) do10

conn-

|> put_status(200)-

|> json(user_map_from_struct(updated_user))-

else-

{:error, error_changeset} ->15

conn-

Chapter 6. Testing Phoenix • 158

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/lib/not_skull_web/controllers/json_api/user_controller.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

|> put_status(422)-

|> json(errors_from_changset(error_changeset))-

end-

end20

-

defp user_map_from_struct(user) do-

user-

|> Map.from_struct()-

|> Map.drop([:__struct__, :__meta__])25

end-

-

defp errors_from_changset(changeset) do-

serializable_errors =-

for {field, {message, _}} <- changeset.errors,30

do: %{"field" => to_string(field), "message" => message}-

-

%{errors: serializable_errors}-

end-

The start of the file looks like any other controller file. The update function
is a standard controller action, accepting a Plug.Conn and a map of params.
There’s a two-condition with statement (line 9) that’ll either execute the code
in the provided block if successful (line 11) or in the error handling (line 16)
if something goes wrong.

Only an existing user can call this endpoint. They must be logged in and they
can only try to edit their own information. To enforce this, the application
has a minimal implementation of JSON Web Tokens (JWT).7 Calling the end-
point to update the user will require a signed JWT, gained by logging in
through the login controller. The encoded JWT contains the user’s ID, allowing
the application to verify that a user is logged in. This decode and validation
logic exists in a custom plug (found in lib/not_skull_web/plugs/validate_jwt.ex), which
is why it isn’t seen in this file. There’s another plug that makes sure that the
user ID in the JWT matches the user ID in the path.

Both of these plugs are unit-tested, which is possible because plugs are
purely functional. While we aren’t covering the testing of the plugs used in
this chapter, they are tested in the application. The code under test, as well
as tests for verifying the JWT, can be found at lib/not_skull_web/plugs/validate_jwt.ex
and test/not_skull_web/plugs/validate_jwt_test.exs, respectively. The code under test
can be found in lib/not_skull_web/plugs/match_jwt_user_id.ex, and the tests are in
test/not_skull_web/plugs/match_jwt_user_id_test.exs. Aside from needing to conform to
the standards for plug callbacks (plugs must have a call/2 function that takes

7. https://jwt.io/

report erratum • discuss

Testing JSON-Based APIs • 159

https://jwt.io/
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

a Plug.Conn and parameters), you can see that the tests are structured like
they would be for any purely functional code, only focusing on return values.

While we won’t spend more time on the testing of the plugs, we will need to
write tests to make sure they’re utilized for this endpoint. After we’ve written
some tests around the logic in the controller itself, we can learn how to test
for the presence of plugs.

Let’s starting writing tests.

Testing the Update Endpoint
In the included repo, NotSkull, create a new test file at test/not_skull_web/con-
trollers/json_api/user_controller_test.exs. We’ve added nesting under json_api to avoid
conflicting with the tests for the user controller that we used for the server-
rendered HTML endpoint.

The following code will add a basic structure and setup block to the file you
created:

testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
defmodule NotSkullWeb.JsonApi.UserControllerTest doLine 1

use NotSkullWeb.ConnCase, async: false-

-

alias NotSkull.Accounts.User-

5

describe "PUT /api/users/:id" do-

setup context do-

{:ok, user} = Factory.insert(:user)-

-

conn_with_token =10

put_req_header(-

context.conn,-

"authorization",-

"Bearer " <> sign_jwt(user.id)-

)15

-

Map.merge(context, %{user: user, conn_with_token: conn_with_token})-

end-

end-

end20

When starting a new Phoenix project, the generators will create a few different
ExUnit test cases. One of them, ConnCase, or specifically NotSkull.ConnCase in our
app, will be used as the test case for all the HTTP-based interfaces. It’s
pulled in, as seen on line 2, by “using” the module. This makes a number
of helpers available, making it easier for us to build and manipulate conns,
or Plug.Conn structs. These helpers are a main extra component when testing

Chapter 6. Testing Phoenix • 160

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

web interfaces. Additionally, using the test case also imports our own
custom functions, defined in NotSkullWeb.ConnCase itself. This allows us to
create functions that we need more than once, across different tests, and
to make them available in the tests that need them.

The string passed to describe breaks our pattern of using a function name and
arity because, as a controller test, the exercise will hit an endpoint instead
of calling a specific function. As a result, we’ve named the describe block after
the HTTP action and path: "PUT /api/users/:id".

Leveraging the ConnCase
Our tests will use a common setup block, as most of them need two things:
a user to exist in the database and a signed JWT for that user. It’s good to
default to having your setup in each test so that the test reads without having
to look elsewhere. If you have multiple tests that need the same setup,
though, it can be useful to move that common code into a single place, in
this case the setup block. The JWT is included as a header in the Conn, as
seen on line 10. The actual JWT is created by a function defined in NotSkull-
Web.ConnCase (called on line 14), as we need to share some of its logic with the
other controller test file, for the login controller. While diving into how the
JWT is created isn’t terribly helpful, adding things to request headers with
put_req_header (line 11) is a very common thing to do in tests like these. That
function comes from Plug.Conn and is imported via NotSkullWeb.ConnCase.

Unlike most of the tests we’ve written in previous chapters, our setup block
accepts a context. This context comes from the test case. The generated file
has a function that looks like this:

testing_phoenix/not_skull/test/support/conn_case.ex
setup tags doLine 1

Mox.verify_on_exit!()-

-

:ok = Ecto.Adapters.SQL.Sandbox.checkout(NotSkull.Repo)-

5

unless tags[:async] do-

Ecto.Adapters.SQL.Sandbox.mode(NotSkull.Repo, {:shared, self()})-

end-

-

{:ok, conn: Phoenix.ConnTest.build_conn()}10

end-

The first behavior worth noting is that it sets the sandbox mode to :shared (line
7). This setting is important because it impacts how your tests can be run.
Shared mode allows any process to access the same database transaction,
behaving like a database would when running in production. Our interface

report erratum • discuss

Testing JSON-Based APIs • 161

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/support/conn_case.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

(API) tests are integration-style, and there’s a good chance that many processes
will want to access the same data, for example the user we seeded in the
database. You’ll notice that there’s a conditional (unless) wrapped around the
line setting the mode. Remember the async: false from the use line of our test
file? This code evaluates the value passed for async. This unless block makes it
so that any test using NotSkullWeb.ConnCase will default the sandbox mode to
shared mode unless it’s overridden with async: true. We added async: false to our
test file because being explicit is always good.

Also in that function is a call to the library Mox, on line 2, which we discussed
in Chapter 2, Integration and End-to-End Tests, on page 35. This is a good
reminder that the setup block in a test case will be shared by all tests that
use that file (unless specifically overridden). In this case, setting Mox to a
specific mode doesn’t hurt the tests that don’t use Mox, so while it doesn’t
pertain to the tests we’re looking at, it’s not a problem to have it there, either.

The setup block returns a new Plug.Conn because it’s assumed that all the tests
using the file will need it.

Defining an Error Test
It’s common to have your success tests before your error tests, but that doesn’t
mean you have to write them in that order. In our case, we’re going to start
with the simplest test for this endpoint: our error case.

Add the following test inside of the describe block you already created:

testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
test "error: does not update, returns errors when given invalid attributes",Line 1

%{-

conn_with_token: conn_with_token,-

user: existing_user-

} do5

conn =-

put(conn_with_token, "/api/users/#{existing_user.id}", %{name: ""})-

-

assert body = json_response(conn, 422)-

10

user_from_db = Repo.get(User, existing_user.id)-

assert user_from_db == existing_user-

-

actual_errors = body["errors"]-

refute Enum.empty?(actual_errors)15

-

expected_error_keys = ["field", "message"]-

-

for error <- actual_errors do-

assert_unordered_lists_are_equal(20

Chapter 6. Testing Phoenix • 162

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

actual: Map.keys(error),-

expected: expected_error_keys-

)-

end-

end25

As mentioned before, the test accepts a context from the setup block, in this
case giving it a user and a Plug.Conn that contains a header with a JWT for that
user (line 3). Because the setup is done before the test, the very first line of
the test body is the call to exercise (line 7). It’s using the function put/3, which
it has imported from Phoenix.ConnTest by “using” NotSkullWeb.ConnCase. Similar
functions are available for each of the HTTP action types, some of which we’ll
use later. In this case, the function takes a Plug.Conn (we’re passing the one
with the JWT), the path for the endpoint, and a PUT body. The return value
from all of them is an updated Plug.Conn that contains the response data.

Line 9 uses json_response/2 to do two things: it checks that the HTTP status
code on the returned Plug.Conn matches the code that’s passed as the second
argument (we’re expecting a 422 in this case). If those values match, it parses
the body field of the Plug.Conn from JSON into an Elixir map. While normally
it’s not great to do two things at once, especially two unrelated things like an
assertion and a transformation, this function has been around for years and
has never caused any issues. When it fails, it provides errors that make it
clear if it’s failing because of the status code or because it can’t parse the
body to JSON.

The rest of the test is fairly straightforward. It checks that, because this is
an error case, the data in the database hasn’t been changed as a result of
the HTTP call (line 12). This is an assertion that’s often overlooked in error
cases but needs to be there. Because the input was invalid, nothing should
have been changed in the database. This is an extra check on top of the
assertions on the return value. Unlike in most unit tests, endpoint tests,
because they’re inherently integration tests, almost always includes assertions
for the code under test’s return value and assertions on its side effects.

Speaking of return values, the test also verifies that the response body has
errors that are maps with the keys "field" and "message" (line 19). The test does
NOT check for specific errors, just that they are shaped correctly. We’ve
already written tests to make sure that the correct error is handed back from
our database code. This test is just focused on the controller and making
sure that it calls out to the right code and can properly handle an error. Since
our application standardizes the way we handle errors, we only need one

report erratum • discuss

Testing JSON-Based APIs • 163

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

somewhat generic test to confirm that our controller can handle any error
correctly.

We are going to add three more tests, but we won’t dive as deeply into what’s
happening in each of them, as they build on the basic structure that we just
wrote.

Testing the Happy Path
Our next test will be our happy path. In the same describe block, add this
test, ideally before the error case that we just reviewed:

testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
test "success: updates db returns record with good params", %{Line 1

conn_with_token: conn_with_token,-

user: existing_user-

} do-

new_name = "#{existing_user.name}-updated"5

-

conn =-

put(conn_with_token, "/api/users/#{existing_user.id}", %{-

name: new_name-

})10

-

assert parsed_return = json_response(conn, 200)-

-

user_from_db = Repo.get(User, existing_user.id)-

15

assert_values_for(-

expected: %{existing_user | name: new_name},-

actual: user_from_db,-

fields: fields_for(User) -- [:updated_at]-

)20

-

assert DateTime.to_unix(user_from_db.updated_at, :microsecond) >-

DateTime.to_unix(existing_user.updated_at, :microsecond)-

-

checking that the updated record is what is returned from endpoint25

assert_values_for(-

expected: user_from_db,-

actual: {parsed_return, :string_keys},-

fields: fields_for(User),-

opts: [convert_dates: true]30

)-

end-

The test is structured very similarly to the error test we wrote before it. The
common elements are these:

• It accepts a context with a Plug.Conn that contains a valid JWT.

Chapter 6. Testing Phoenix • 164

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

• It calls the endpoint using put/3, a helper from the Phoenix library.

• It uses json_response/2 to assert on the HTTP response code and to deserialize
the JSON response.

• It makes assertions on the return value.

• It makes assertions on the side effects.

In this case, it differs from the error case at the assertions. Because it’s a
happy path test, we should see that the HTTP response code was a 200. The
return value should be a serialized version of the updated record.

The assertions on the return value and the side effect are very related here.
Assuming the code under test is working correctly, the return value should
be the same information that’s in the row in the database: the updated user.
We also want to assert that the return value is the original record updated
with the new params, in this case just the new name. But it’s important to
lock down that the only values that changed are the ones that were passed
in through the endpoint. To assert that the values are correct for both the
return value and the data in the database (the side effect), we’ll turn to a
custom helper function, called assert_values_for/1.

Our Custom Test Helpers

All of the code for the helper function is provided in code/testing_phoenix/not_skull/test/sup-
port/assertion_helpers.ex, and you have access to it in the tests you are writing via use
NotSkullWeb.ConnCase. It’s more useful here to discuss what it does and why it does it
than how. The function accepts two pieces of data for which Enumerable is imple-
mented. It also takes a list of field names to check against. Assuming atom-based
keys, but allowing for the option of string keys, it iterates through and checks that
every field named has the same value in both the expected and the actual data. It
also accepts an option to convert between Elixir DateTime structs and ISO 8601
strings. The why of this function is simple: most engineers don’t explicitly test all
of the data available in their tests because writing assertions on every field is tedious.
By creating an easy-to-use, easy-to-reason-around, thorough helper function, we’re
attempting to eliminate this bad habit.

The first use of assert_values_for/1 is on line 16, where we define the expected to
be the existing user’s values updated with the new name (from the parameters
passed in the exercise call). A second helper function called fields_for/1 is used
on line 19. It returns a list of all the fields for whatever you pass it. In our
case, we’re giving it the User struct. Because it’s a list, we can easily remove
any fields we want to skip by using Elixir low-level list subtraction, Kernel.--/2.
In our case, we’re removing :updated_at from the list of values to check because

report erratum • discuss

Testing JSON-Based APIs • 165

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

it’ll have changed and we don’t have a way to know the new value from inside
our test. We’ve tested enough of the fields to have confidence that our code
called the correct function(s) under the hood. Because we emphasize thor-
oughness, though, we’ve added one last assertion to cover :updated_at as well,
at line 22. Our code is calling out to thoroughly tested code, so this assertion
could be considered optional.

Our second use of assert_values_for/1 is on line 26, where we’re checking the data
in the response. By already asserting that the data in the database is correct,
we can now treat it as our expected data. Because the returned data and the
data from the database have the same source, they should have identical
values, except where the formatting has changed due to serialization to JSON;
the keys and datetimes will be strings. assert_values_for/1 provides options so
that we don’t need to do any conversions in our test—the helper function can
handle them.

Our test has now checked every value relevant to this scenario. The controller
code is sending the params to the right place, causing the right side effects,
and it’s rendering all the data as expected. We’ve completed a happy path
test and tested that our controller handles errors correctly. This constitutes
the minimum basic coverage you’ll want on any interface for your application.
As mentioned earlier, though, two plugs should be called when hitting the
update endpoint. Let’s take a look at how to test that these calls happen.

Testing for the Presence of Plugs
While any basic plugs that you write should be unit-tested, we need to add
tests to our test suite to assert that they’re called on every endpoint that’s in
a pipeline that includes them. While every Plug is different, in our use case,
both are run before the controller in the call stack. The existing happy path
test we wrote covers when things are right. We only need to test for when
things aren’t right. That means that testing multiple endpoints for the presence
of the same plug(s) will start to look a little repetitive because the setup, if it
exists, and the assertions will be nearly identical. Often only the endpoint
will change. We’ll add two tests to assert the presence of our two plugs.

In the router (code/testing_phoenix/not_skull/lib/not_skull_web/router.ex), our update
endpoint is in a pipeline that contains our two custom plugs: ValidateJWT and
MatchJWTUserId. Let’s take a look at each, understanding what it does and then
adding a test to make sure it’s present.

The first Plug, ValidateJWT, decodes the JWT and makes sure that it’s valid. If
it is valid, the Plug takes the user’s ID from the JWT and adds it into the

Chapter 6. Testing Phoenix • 166

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

incoming params. If the Plug doesn’t detect a valid JWT, it halts the call stack,
returning an HTTP status code of 401 (“Unauthenticated”) and a simple JSON
response with a descriptive error.

Add the following new test in the same describe block, "PUT /api/users/:id", after
your error test:

testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
test "auth error: returns 401 when valid jwt isn't in headers", %{Line 1

conn: conn,-

user: existing_user-

} do-

conn =5

put(conn, "/api/users/#{existing_user.id}", %{-

name: "#{existing_user.name}-updated"-

})-

-

assert body = json_response(conn, 401)10

-

assert %{-

"errors" => [-

%{"message" => "Invalid token.", "field" => "token"}-

]15

} == body-

-

user_from_db = Repo.get(User, existing_user.id)-

-

assert_values_for(20

expected: existing_user,-

actual: user_from_db,-

fields: fields_for(User)-

)-

end25

We already have the code in setup that makes sure that we have a correctly
signed JWT; but in this case, we don’t want that, so our test uses the original
Plug.Conn provided to it by the setup block in NotSkullWeb.ConnCase. You can
see that it’s taking that from the context on line 2. It would also be OK to add
a header with an incorrectly encoded JWT. Both will have the same result
when decoded in our Plug. We chose the option with a little less work.

The exercise looks like the exercise step in the rest of our tests in this describe
block, as seen on line 6. We’re using a valid set of params because even
though that data should never have made it to the underlying update and
changeset functionality, our test is treating our code like a black box. As a
result, the implementation may change, but we need our tests to lock down
the outside behavior. In this case, if the JWT isn’t valid, we should not only

report erratum • discuss

Testing JSON-Based APIs • 167

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

get an error response, which we’ve tested, but the data in the database should
also not be changed. We’ll address that assertion shortly.

Our test asserts that the response body is a correctly formatted error, as you
can see on line 12. When previously testing errors, we went to lengths to not
assume we knew all of the errors but instead to just make sure the errors we
expected were present. That requires a list comprehension and some work
around being able to match. In this case, we’re testing a plug that should
only be run if all code executed before it was successful. If the preceding code
fails, no other code should run. As a result, the error is the only one that
should be present, so we can cut a corner by making a comparison against
the whole response body.

The last part of this test is fairly standard. Because the call was unauthen-
ticated, there should have been no side effect. As we mentioned a few
paragraphs above, we need to make sure that the data in the database
hasn’t changed. On line 18, we grab the row from the database and then
use assert_values_for/1 to make sure it’s identical to our record from before the
call, the data bound to the variable existing_user.

Our Plug test calls the endpoint that’s expected to have the plug. It intention-
ally fails the check in the plug, short-circuiting the call stack and forcing a
return value. The test then makes assertions on both the return value and
the data in the database (checking against side effects). This is very similar
to our other tests on the same endpoint.

Our last test for this endpoint is our second Plug test. This time, it’s a basic
plug to make sure that the user making the request is the same user whose
record is being updated. Open the same test file (test/not_skull_web/con-
trollers/json_api/user_controller_test.exs) and add this last test at the bottom of the
same describe block ("PUT /api/users/:id"):

testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
test "auth error: returns 403 when path and jwt user ids don't match",

%{
conn_with_token: conn_with_token,
user: existing_user

} do
conn =
put(conn_with_token, "/api/users/#{Factory.uuid()}", %{

name: "#{existing_user.name}-updated"
})

assert body = json_response(conn, 403)

assert %{
"errors" => [

Chapter 6. Testing Phoenix • 168

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/not_skull_web/controllers/json_api/user_controller_test.bak.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

%{
"message" => "You are not authorized for that action.",
"field" => "token"

}
]

} == body

user_from_db = Repo.get(User, existing_user.id)

assert_values_for(
expected: existing_user,
actual: user_from_db,
fields: fields_for(User)
)

end
end

end

The test itself is structured like our other Plug test. The differences are that
it uses the Plug.Conn with the valid token (JWT) and that the user ID in the
URL is different from what’s encoded in the token. The assertions are similar,
checking the status code (this time a 403), checking the error(s) in the
response body, and finally asserting that there were no side effects.

By running through these tests, we’ve laid out a basic structure that will be
used or built on in our tests for the other kinds of application interfaces. Let’s
look at server-rendered HTML endpoints next.

Testing Server-Rendered HTML Applications
Testing server-rendered HTML endpoints is very similar to testing JSON
endpoints, but the response is an HTML document instead of JSON. We’ll
write tests for the user controller that handles the server-rendered HTML
endpoints. Let’s start by looking at the controller code that we’ll be testing:

testing_phoenix/not_skull/lib/not_skull_web/controllers/user_controller.ex
defmodule NotSkullWeb.UserController do

use NotSkullWeb, :controller

alias NotSkull.Accounts
alias NotSkull.Accounts.User
alias NotSkull.ExternalServices.Email
def new(conn, _params) do

user = User.create_changeset(%{})
render(conn, "new.html", changeset: user)

end

def create(conn, %{"user" => user_params}) do
case Accounts.create_user(user_params) do
{:ok, user} ->

Email.send_welcome(user)

report erratum • discuss

Testing Server-Rendered HTML Applications • 169

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/lib/not_skull_web/controllers/user_controller.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

conn
|> put_session(:user_id, user.id)
|> put_flash(:info, "Your account was created successfully!")
|> redirect(to: Routes.user_path(conn, :show, user))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

end

This code is a controller that, under the hood, calls to the same context
module as the JSON controller we’ve already tested. Our testing will focus on
the two endpoints that call the new and create controller actions. new renders
the HTML form for adding a user, while create will accept the parameters for
a new user and, assuming good data, create a user with that data. We’ll dive
into the details of each before we write the tests.

Testing New
To begin, in the provided application, create a new test file at test/not_skull_web/con-
trollers/user_controller_test.exs and add in the following file structure:

testing_phoenix/not_skull/test/not_skull_web/controllers/user_controller_test.bak.exs
defmodule NotSkullWeb.UserControllerTest do

use NotSkullWeb.ConnCase, async: false

alias NotSkull.Accounts.User
end

This code should look like a very similar version of our test for the JSON API
endpoints. We use the exact same test case, NotSkullWeb.ConnCase and alias Not-
Skull.Accounts.User. We aren’t including any setup because the first endpoint
we’ll test, to render the form, requires no setup. Additionally, because there’s
no branching logic in the controller or the code that it’s calling, we’ll only
need a happy path test. In your file, add this describe block and test:

testing_phoenix/not_skull/test/not_skull_web/controllers/user_controller_test.bak.exs
describe "GET /users/new" doLine 1

test "success: it renders the form", %{conn: conn} do2

conn = get(conn, Routes.user_path(conn, :new))3

4

assert response = html_response(conn, 200)5

6

assert response =~ "Create a new account"7

end8

end9

Chapter 6. Testing Phoenix • 170

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/not_skull_web/controllers/user_controller_test.bak.exs
http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/not_skull_web/controllers/user_controller_test.bak.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

There’s a lot in common with our JSON API endpoint testing. Line 1 shows
us using the HTTP action and URL path to describe the block of tests. We
accept the Plug.Conn from the testing context on line 2. Line 3 does have a
difference that’s worth mentioning. Instead of passing our controller test’s
helper function, get/2, a path, we’re passing the result of Routes.user_path(conn,
:new). This helper is provided by the Phoenix framework. It’s your choice
whether or not to use it instead of the path. It can make maintenance a little
easier in situations when there are small shifts in the path, but it leaves a
level of obfuscation about which endpoint it’s calling. If you don’t have an
opinion, use the path like we did in the test for the JSON API, not the helper.

Line 5 shows us using a slightly different helper function, html_response/2, which
is provided by Phoenix, just as json_response/2 was. They work very similarly,
first asserting the HTTP status code; but instead of a decoded Elixir map, this
function returns the raw HTML as a string. That leads us to our last assertion,
on line 7, which uses the fuzzy match operator, Kernel.=~/2, to make sure that
the string "Create a new account" is present in the HTML response. This test
assumes that if that exact string is in the HTML, the whole form must have
been returned. Given that we’ve spent most of this book encouraging very
comprehensive test coverage, this may feel a little light. It is. Phoenix, out of
the box, doesn’t provide a way to verify a whole HTML payload.

Later, when we cover the error case, we’ll provide a more explicit approach,
but this is a fine time for us to remind you that even if your tests are well
designed and passing, you should still run your code on your computer and
verify with your own eyes that your application is behaving correctly. In this
case, that means running your server, mix phx.server, and hitting the endpoint,
http://localhost:4000/users/new. You should see the form rendered. Even if we had
every aspect of this endpoint locked down in tests, you should still always
just make sure your code behaves as intended by manually exercising it.

Testing the Happy Path for Create
Now that we’ve covered testing the new endpoint, which renders the form to
create a user, let’s take a look at the create endpoint. This is the endpoint hit
by the form rendered by our previous endpoint, for new. Let’s take a second
look at the code and discuss what we’ll need to test:

def create(conn, %{"user" => user_params}) do
case Accounts.create_user(user_params) do

{:ok, user} ->
Email.send_welcome(user)

conn
|> put_session(:user_id, user.id)

report erratum • discuss

Testing Server-Rendered HTML Applications • 171

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

|> put_flash(:info, "Your account was created successfully!")
|> redirect(to: Routes.user_path(conn, :show, user))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

There’s branching logic in this function, depending on the success of
Accounts.create_user(user_params). As a result, we know that we’ll need at least two
tests, a happy path test and an error test. There are four new code elements
that we haven’t tested before: sending email (an outside call as a side effect),
setting values in the session, setting the flash, and redirecting a call. Let’s
write our happy path test first, since it’s where we’ll cover these. Open up
your test file and add a new describe block and test as follows:

describe "POST /users" doLine 1

test "success: creates_user, redirects to show page when user is created",-

%{conn: conn} do-

params = Factory.atom_params(:user)-

5

expect_email_to(params.email)-

-

conn = post(conn, Routes.user_path(conn, :create), user: params)-

-

assert %{id: id} = redirected_params(conn)10

assert redirected_to(conn) == Routes.user_path(conn, :show, id)-

-

assert %{"user_id" => ^id} = get_session(conn)-

assert get_flash(conn, :info) =~ "success"-

15

user_from_db = Repo.get(User, id)-

-

fields_to_check = Map.keys(params) -- [:password]-

-

assert_values_for(20

expected: params,-

actual: user_from_db,-

fields: fields_to_check-

)-

25

assert user_from_db.password-

end-

end-

Like our previous tests, this one inherits a Plug.Conn from the test setup. On
line 4, we’re getting valid parameters from our factory. Line 6 calls out to a
custom helper function, expect_email_to/1, that sets up an expectation that we’ll
attempt to send email. When we’re done reviewing this test, we’ll circle back
and look at the code of that helper function. For now, we can assume from

Chapter 6. Testing Phoenix • 172

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the name that it creates an expectation that an email will be sent to the
address from our params. If that doesn’t happen, we’ll expect a test failure.

After the exercise line, which uses the Phoenix-provided post/3 in conjunction
with Routes.user_path/2, we can see that we aren’t parsing the response as HTML.
This is because, on successful user creation, the controller should return a
redirect instead of a page. We need the ID of the newly created user so that
we can make sure the redirect is to the expected path and to find the user in
the database. Phoenix provides a helper function, redirected_params/1, to give us
the parameters used in the redirect. Our test is using that function on line
10 to get that ID.

Now that we know the ID of the new user, we can assert that the server’s
response to a successful creation is a redirect to the “show” endpoint, as
shown on line 11. We can presume that endpoint is also tested on its own,
so our test can be scoped to just the interactions in the controller action to
create a user.

We’re about to show one of our first, and likely only, violations of the testing
black box we discussed in Chapter 1, Unit Tests, on page 1. Part of the
behavior of signing up in the application is to set the new user’s ID in the
server session so that subsequent calls to the API will have it available without
requiring login credentials with every call. If we were writing tests that exer-
cised an entire flow through multiple API calls, we would be leveraging the
session, and the subsequent calls would fail without that ID set in the session.
But we’re testing this endpoint in isolation. We still need to make sure that
the code is setting that ID. Line 13 makes sure that the ID from our redirect-
ed_params/1 is set in the session with the key “user_id”.

Because the response was a redirect, the only user-facing element for us to
check is that the flash is set correctly. Line 14 shows how to use get_flash/2 to
retrieve the contents of a specific key (:info in our case) from the flash. We then
assert that the message is what we expected.

The last part of the test is to validate the side effect, namely the creation of
the new user. We use assert_values_for/1 to check that all of our params, except
:password, made it into the database. The value for :password can’t be checked
directly because it won’t be the same value but a hashed value instead. We
can’t predict what the value will be. We can, though, assert that a password
value has been set. After that, we can feel confident that our code called the
intended context function and that the context function is tested well enough
that we don’t need to write a more explicit assertion in our controller test.

report erratum • discuss

Testing Server-Rendered HTML Applications • 173

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Testing Side Effects—Calls to a Third Party
Earlier, we said we would look at the helper function that asserted that an
email was sent out. Let’s take a look at that code, which is already included
in the sample application. It’s defined in NotSkullWeb.ConnCase and is called
expect_mail_to/1. Here is the code:

def expect_email_to(expected_email_address) doLine 1

Mox.expect(HttpClientMock, :request, fn method,-

url,-

_headers,-

json_body,5

_opts ->-

assert method == :post-

assert url == "https://api.sendgrid.com/v3/mail/send"-

-

decoded_body = Jason.decode!(json_body)10

-

assert %{-

"personalizations" => [-

%{-

"to" => [15

%{"email" => ^expected_email_address}-

]-

}-

]-

} = decoded_body20

end)-

end-

As can be seen on line 2, the function is a wrapper around a pre-defined Mox
call. The name is specific enough to tell us what it’s doing without us having
to worry about the how. That can be useful, as a single, descriptive function
call in our test can leave it more readable than dropping an entire Mox function
setup inside a test. And, of course, it makes it reusable.

Notice that we don’t pin the arguments in the anonymous function that we
pass to Mox.expect/3. Instead, we have assertions inside the anonymous function.
That’s because when there’s more than one required value, pinning the value
throws a FunctionClauseError on failure, which doesn’t highlight which value didn’t
match. Having each value in a separate assertion will provide immediate,
clear feedback as to which value is incorrect. That doesn’t mean you can’t
pin values if you need to. You can see that on line 16. We’re still able to use
a pinned value with a pattern match, but it’s happening inside the anonymous
function and not in the function head.

Chapter 6. Testing Phoenix • 174

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Our test helper makes sure that the specifics to sending an email out to a
customer are there, but it doesn’t go so far as to assert on the content of that
email. It’s your decision whether you find additional assertions to be helpful
there. The module to send email will need to be unit-tested on its own. We
could make our helper function less generic, taking in a string as an argument
and making sure that string was in the email body. We chose not to, though,
as this test just needs to make sure that the email is sent, leaving the
explicit testing to unit tests. Additionally, any email your application sends
should be manually tested to make sure that it renders correctly. As a result,
getting more explicit in the endpoint test is redundant.

Testing the Error Case for Create
We complete our coverage of this endpoint and controller action by testing a failure
case. Inside the same describe block, and under our previous test, add this:

test "error: does not insert, redirects to 'new' page w/invalid attributes",Line 1

%{-

conn: conn-

} do-

flunk_if_email_is_sent()5

-

expected_user_count = Repo.all(User) |> Enum.count()-

conn = post(conn, Routes.user_path(conn, :create), user: %{})-

-

assert html = html_response(conn, 200)10

-

parsed_html = Floki.parse_document!(html)-

for field <- ["name", "email", "password"] do-

using <> so that the first #(indicating an id) is easy to read-

field_as_id = "#" <> "#{field}-error"15

span = Floki.find(parsed_html, field_as_id)-

assert Floki.text(span) == "can't be blank"-

end-

-

assert Repo.all(User) |> Enum.count() == expected_user_count,20

"There should have been no records inserted during this test."-

end-

The test leverages a new custom helper function called flunk_if_email_is_sent/0, on
line 5, that’s defined in NotSkull.ConnCase, right next to our other helper function.
Like before, we’ll visit that code after we’ve discussed the rest of this test.

Because our test is a failure case, it needs to make sure that no new users
were created as a side effect. On line 7, the test is getting the pre-exercise
count of users in the database. This allows us to assert at the end of the test
(line 20) that the count didn’t change. While not bulletproof, this gives us
reasonably high confidence that nothing has changed. We don’t assert that

report erratum • discuss

Testing Server-Rendered HTML Applications • 175

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the count is zero, which it probably will be because of the sandbox, because
the test isn’t actually concerned that there’s no data in the database. It’s only
concerned that there isn’t new data as the result of exercising the code under
test. This way, if a new feature is added and the common setup is updated
to include adding a user for a different test, our test will still pass and provide
us the same confidence that no new users have been added. This reduces
the required maintenance for our test suite. It’s always worth looking for
opportunities to make your tests low maintenance.

A big difference between this test and our happy path test is that we’re using
a different method to make assertions on the values returned in the HTML.
On line 13, we have a list comprehension that goes through the three known
field names in the signup form. Because our test is posting empty parameters,
the rendered HTML should include a warning about each field being blank.
In the code block passed to the list comprehension, we’re using a newer library
called Floki.8 Floki gives you the ability to search HTML for specific selectors,
in our three cases, #name-error, #email-error, and #password-error. Calling Floki.text/1
and passing that element will return the text, as seen on line 17, allowing us
to make an assertion on the value.

Modified Boilerplate

When Phoenix generates a new project, the application has a
generated ErrorHelpers module that includes a function, error_tag/2,
that indirectly creates the HTML for form errors. It doesn’t normally
allow a CSS ID to be passed in. Our sample code has modified
that function to allow for an optional ID. You can see the modified
function, error_tag/3, in the included application in the file,
not_skull/test/support/assertion_helpers.ex. This function is generated and
not part of the Phoenix library, specifically to allow this kind of
customization specific to your needs.

Using Floki, and making sure our HTML is structured and includes CSS IDs
for the dynamic elements of the page, allows us to be very specific that the
view code is working correctly. We can now be certain that our application is
not only rendering the correct view but that the information in that view is
correct. We have effectively tested the return value from our endpoint.

Let’s finish this test exploration with a look at the helper function,
flunk_if_email_is_sent/0. Like expect_mail_to/1, this function is a wrapper around some
Mox functionality, as seen here:

8. https://hex.pm/packages/floki

Chapter 6. Testing Phoenix • 176

report erratum • discuss

https://hex.pm/packages/floki
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

def flunk_if_email_is_sent do
Mox.stub(HttpClientMock, :request, fn _, _, _, _, _ ->

flunk("An email should not have been sent.")
end)

end

If any email is sent for any reason during the execution of our test, the test
will fail. We chose to use Mox.stub/3 instead of Mox.expect/4 with an expectation
of zero calls because this allows us, by adding in ExUnit’s flunk/1, to write a
customized error message. This is just a test style preference. Using the
alternative would work just as well, but the error message if it failed would
be a little more vague about what happened.

In this test, we made assertions on the return value from the endpoint by
using Floki to assert on the dynamic information in the HTML. Our test also
covered side effects, specifically that no new users were created and that no
email was sent. We can feel confident that our test is protecting us from
regressions.

With these examples, we covered the concerns of controller testing that are
specific to server-rendered HTML endpoints. You may come up with edge
cases that aren’t covered here. When you do, try to remember to move most
branching logic out of a controller and into small files that can be individually
tested. This will allow you to keep your larger, more expensive tests (i.e.,
controller tests) limited in scope. Controller tests should just focus on making
sure “none of your wires are crossed.” In other words, controller tests make
sure that all of the code you tested in unit tests interacts correctly as a whole
application.

One last interface is included with the core of the Phoenix library, Phoenix
Channels. Let’s look at how to test those.

Testing Phoenix Channels
Phoenix Channels are an abstraction of web sockets that put a certain amount
of framework code on top of a somewhat open transfer protocol. They provide
enough opinion on how to use web sockets that it’s easier to get going, and
there’s a well-written and well-supported Phoenix JavaScript package that
makes building JavaScript clients relatively easy.9 Fortunately for us, Phoenix
also includes plenty of test helpers (called Phoenix.ChannelTest, and pulled in by
way of a generated ChannelCase module) to make testing Channels code fairly
straightforward as well.

9. https://www.npmjs.com/package/phoenix

report erratum • discuss

Testing Phoenix Channels • 177

https://www.npmjs.com/package/phoenix
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Unlike JSON-based APIs and server-rendered HTML, it seems useful here to
talk a little more about the actual use cases of Channels, to set the context
of the code we’ll test. Phoenix Channels are often used in conjunction with a
fully developed front-end JavaScript client. The application included with this
book uses a very small spattering of JavaScript to modify a server-rendered
HTML view. In either scenario, the server-side Channel code is the concern
of this book. We won’t focus on testing the JavaScript.

This section won’t exhaustively show every way to test Phoenix Channel code,
but it will cover enough to make it clear how testing Channels works. It’ll also
dive into some of the nuances that the test tooling provided with the library
specific to testing Phoenix Channels.

Testing the UserSocket
When a Phoenix Project is generated, it comes with a boilerplate UserSocket
module. We’ve added some authentication code to our UserSocket module so
that it looks like the following code:

testing_phoenix/not_skull/lib/not_skull_web/channels/user_socket.ex
defmodule NotSkullWeb.UserSocket doLine 1

use Phoenix.Socket-

alias NotSkull.{Accounts, JWTUtility}-

require Logger-

5

channel "lobby:*", NotSkullWeb.LobbyChannel-

-

@impl true-

def connect(%{"token" => token}, socket, _connect_info) do-

jwt = URI.decode_www_form(token)10

-

with {:ok, user_id} <- JWTUtility.user_id_from_jwt(jwt),-

{:ok, _valid_user} <- Accounts.get_user_by_id(user_id) do-

socket = assign(socket, :user_id, user_id)-

{:ok, socket}15

else-

something_else ->-

Logger.warn(inspect(something_else))-

:error-

end20

end-

-

def connect(_, _socket, _connect_info), do: :error-

-

@impl true25

def id(socket), do: "user_socket:#{socket.assigns.user_id}"-

end-

Chapter 6. Testing Phoenix • 178

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/lib/not_skull_web/channels/user_socket.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

The biggest changes from the boilerplate are on lines 12, 13, and 14. On line
12, we’re validating the JWT and getting the associated user ID. On 13, we’re
making sure that the user ID is actually in our system’s database. Your
authentication choices may vary, but it’s important to make sure that you
have authentication on your user socket. If those two checks are successful,
the function will return a socket with the user ID from the JWT set in the
assigns under the key :user_id.

Our test for the happy path will need to check that the user ID has been
added to the assigns as well as the socket ID, determined by the id/1 function
at line 26. Normally, we wouldn’t cover the behavior of two public functions
within a single test, but the way Channels are implemented, we have to verify
that the ID function behaves within the test for connect/3 and that the function
wouldn’t be called at any other time. With two possible places where this code
path could fail, we’ll need to make sure that we have tests for both of those
code paths as well.

Avoid Logging Tokens

This isn’t testing-related, but it’s important to call out if you are
using a pattern similar to the one we have in our sample code.
The JWT authentication token is being passed as a query param-
eter. Even if your application is using an encrypted protocol, it’s
very common for the requests to be logged, unencrypted, server-
side. Make sure that your logging isn’t including the query params
because logging an unencrypted, unexpired JWT can open up a
hole in your security. Anyone that can access your logging could
then impersonate the user whose JWT was logged.

To start testing this code, create a file called test/not_skull_web/channels/user_sock-
et_test.exs with the following test structure:

testing_phoenix/not_skull/test/not_skull_web/channels/user_socket_test.bak.exs
defmodule NotSkullWeb.UserSocketTest doLine 1

use NotSkullWeb.ChannelCase2

alias NotSkullWeb.UserSocket3

4

describe "connect/3" do5

end6

end7

This file is structured like all our other tests. The most notable callout is line
2, where we’re using NotSkullWeb.ChannelCase. This is a new test case, very similar
to our others, but it imports Phoenix.ChannelTest, the Channel-specific tooling
we mentioned earlier. It also has one line, @endpoint NotSkullWeb.Endpoint, that

report erratum • discuss

Testing Phoenix Channels • 179

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/not_skull_web/channels/user_socket_test.bak.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

we’ll discuss after we’ve written some tests. Add your first test, a happy path
to check that a socket will be returned when called with a valid JWT, by
adding the following code inside the describe block:

test "success: allows connection when passed a valid JWT for a real user" doLine 1

{:ok, existing_user} = Factory.insert(:user)2

jwt = sign_jwt(existing_user.id)3

4

assert {:ok, socket} = connect(UserSocket, %{token: jwt})5

assert socket.assigns.user_id == existing_user.id6

assert socket.id == "user_socket:#{existing_user.id}"7

end8

This test uses the first of the test helpers provided by Phoenix.ChannelTest (via
our ChannelCase module), called Phoenix.ChannelTest.connect/3 on line 5. It’s important
to understand that this isn’t directly calling connect/3 on our module under
test. Calling that function would require it to be called with the module name
as aliased, UserSocket.connect(UserSocket, %{token: jwt}). UserSocket.connect/3 doesn’t
have any optional params, whereas Phoenix.ChannelTest.connect/3 does, which is
how our test can call with it just passing two parameters.

This is one of the noticeable nuances of testing Channels. The boilerplate
code that was set up when the application was generated includes a line in
the ChannelCase module that reads @endpoint NotSkullWeb.Endpoint. This line is setting
a module attribute used by the Phoenix.ChannelTest.connect/3 macro. You can look
at the source code to get a better understanding of how it works.10 This macro
accepts the name of the socket module, NotSkullWeb.UserSocket in our case, and
parameters. It calls functions in NotSkullWeb.UserSocket that were added by macros
when “using” Phoenix.Socket, and eventually calls the connect/3 function defined in
our NotSkullWeb.UserSocket file, passing in the params from the test and a Socket
struct. The main takeaway is just to understand that the call to connect/3 on line
5 is effectively a call to the function connect/3 in your module under test.

As this is a happy path test, the return value from the code will be a tuple
with :ok and the Socket struct, which we’ll refer to as the socket. The code under
test doesn’t have side effects, so all that needs to happen now is to make sure
that the returned socket has the correct information. The first assertion is
that the user ID was placed in the assigns in the socket. That’s covered on line
6. As we mentioned earlier, our code will also have assigned an ID to the
socket. This ID is a string that’ll be used when the user needs to send a tar-
geted message instead of a broadcast to everyone subscribed to the channel.

10. https://github.com/phoenixframework/phoenix/blob/c8883af5582a38496e4b7e45e05d3a4d759a6caa/lib/phoenix/
test/channel_test.ex#L269

Chapter 6. Testing Phoenix • 180

report erratum • discuss

https://github.com/phoenixframework/phoenix/blob/c8883af5582a38496e4b7e45e05d3a4d759a6caa/lib/phoenix/test/channel_test.ex#L269
https://github.com/phoenixframework/phoenix/blob/c8883af5582a38496e4b7e45e05d3a4d759a6caa/lib/phoenix/test/channel_test.ex#L269
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

The string returned from id/1 needs to be specific to the UserSocket but also
include the user’s ID. Our assertion on line 7 checks that. This is, in a
roundabout way, checking the other public function in our module under
test, id/1, which, like connect/3 is part of the implementation required when
“using” Phoenix.Socket.

Our happy path test covers the return value when valid parameters are passed
in. Now we need to write error tests for the two ways that things can go wrong.
Inside of the same code block, add the following test:

@tag capture_log: true
test "error: returns :error for an invalid JWT" do

assert :error = connect(UserSocket, %{token: "bad_token"})
end

This first check in the code under test is to verify that there is a good JWT.
All our test needs to do is to pass in a known bad value for the token. In our
case, “bad_token” will suffice, and it makes it clear from reading the test what
we’re doing to cause the failure. The contract from our function is that the
return value in this situation should just be the atom :error. Our test is cap-
turing the logs so that our test output isn’t marred with the expected logging
from the code.

The error case for a valid JWT that contains an invalid user ID isn’t much
more complex. Within the same describe block, add this last test:

@tag capture_log: true
test "error: returns :error if user doesn't exist" do

jwt = sign_jwt(Factory.uuid())

assert :error = connect(UserSocket, %{token: jwt})
end

This test is using our JWT helper to create a valid JWT with a bad user ID in
it. We can guarantee that the user ID will be bad by creating a new UUID
specifically for this payload. There is no way that it exists in the database.
Just like the previous test, we’re able to combine our assertion that :error is
returned in the same line that we exercise the code under test. Also like the
previous test, the logs are captured since we expect error logging from our
code.

With these three tests, we’ve now covered every code path possible when
calling connect/3. The UserSocket module will be used to connect to our server
for the Channel that we do have, the LobbyChannel, but also to any other
Channels that we would need in the future. We have the connection code

report erratum • discuss

Testing Phoenix Channels • 181

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

covered. Next, let’s look at the code in the LobbyChannel and learn the nuances
of testing it.

Testing a Channel
The Phoenix Channel example we’ve provided in the NotSkull sample app,
LobbyChannel, has pretty limited functionality. As we test it, we won’t exhaus-
tively show how to use all of the test macros included in Phoenix.ChannelTest, but
we’ll cover enough so that you’ll understand how to use all of them. Let’s take
a look at the file:

testing_phoenix/not_skull/lib/not_skull_web/channels/lobby_channel.ex
defmodule NotSkullWeb.LobbyChannel doLine 1

use NotSkullWeb, :channel-

-

alias NotSkull.GameEngine.Game-

5

@impl true-

def join("lobby:lobby", _payload, socket) do-

{:ok, socket}-

end-

10

@spec broadcast_new_game(Game.t()) :: :ok | :error-

def broadcast_new_game(%Game{current_phase: :joining} = game) do-

NotSkullWeb.Endpoint.broadcast!("lobby:lobby", "new_game_created", %{-

game_id: game.id-

})15

end-

-

def broadcast_new_game(_) do-

:error-

end20

end-

This file provides just two functions, join/3 and broadcast_new_game/1. join/3, found
on line 7, is a required callback for the Channel framework and simply returns
a socket, assuming it’s been called with valid parameters. As a result, we’ll
cover this functionality in our test as part of our setup. On line 13 is broad-
cast_new_game/1, which will broadcast a map containing the ID of a new game
to any client connected to the Channel.

There’s one more clause for broadcast_new_game/1 that returns an error if either
something other than a %Game{} struct is passed in or if the value of the game
struct’s current_state is something other than :joining. We’ll need a happy path
test and error tests for each state that falls into the error clause. Create a
new test file at test/not_skull_web/channels/lobby_channel_test.exs and populate it with
the following code for the test file:

Chapter 6. Testing Phoenix • 182

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/lib/not_skull_web/channels/lobby_channel.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

testing_phoenix/not_skull/test/not_skull_web/channels/lobby_channel_test.bak.exs
defmodule NotSkullWeb.LobbyChannelTest doLine 1

use NotSkullWeb.ChannelCase-

alias NotSkullWeb.{LobbyChannel, UserSocket}-

-

describe "broadcast_new_game/1" do5

setup do-

user_id = Factory.uuid()-

-

{:ok, _, socket} =-

UserSocket10

|> socket("user_socket:#{user_id}", %{user_id: user_id})-

|> subscribe_and_join(LobbyChannel, "lobby:lobby")-

-

%{socket: socket}-

end15

end-

end-

Typical tests for a Phoenix Channel will start with the assumption that the
user has already connected to the websocket, through the code in the UserSocket,
and has joined the Phoenix Channel under test. Phoenix.ChannelTest provides
two test functions that we can use in the setup block to meet those conditions.

The first test function is socket/3, which we’re calling on line 11. It takes, as
arguments, the module name of the socket you want to connect to, which in
our case is UserSocket, the ID that the individual socket would have, and the
values that should be expected in the assigns. The second two arguments
require an explicit knowledge of what the UserSocket code does. The ID passed
in should be the same ID that’s generated by UserSocket.id/1, and the assigns
need to match whatever would be put in there from UserSocket.connect/3. While
this isn’t ideal, you’ll find that the UserSocket code is typically very low churn.
As a result, it’s rare that you’ll ever need to touch them again after you set
these values in your setup.

Once the socket is created, we’ll need to have that socket join the actual
Phoenix Channel itself and subscribe to events that come from the Channel.
The function called subscribe_and_join/3, called on line 12, provides exactly that
means. The arguments it requires are the socket that was created by the
previous function, socket/3, the module name for the Phoenix Channel, Lobby-
Channel in our case, and the topic for the correct join/3 function for the module
under test (LobbyChannel). We mentioned earlier that we wouldn’t be testing
join/3 directly but that it would be covered in our setup. This is a response to
the way the test functions were built. If you wanted to have more logic in your
LobbyChannel.join/3, it would be good to create a describe block for join/3 and use
one of the three Phoenix.ChannelTest.join functions (three different arities,

report erratum • discuss

Testing Phoenix Channels • 183

http://media.pragprog.com/titles/lmelixir/code/testing_phoenix/not_skull/test/not_skull_web/channels/lobby_channel_test.bak.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

depending on what you need) for your exercise step. In our case, there’s only
one way that the function can respond, so it would be overtesting to focus
on it.

It’s important to understand “what” has been subscribed to the Channel after
we’ve made this call. When subscribe_and_join/3 is called, the test process itself
is what’s subscribed. That means that the test process’s mailbox is where
messages from the Channel will arrive. There are test helpers, which we are
about to describe, that abstract the need to check the mailbox directly, but
it’s useful to understand what’s happening behind the scenes.

This leads us to writing tests for the other function in the Channel, broad-
cast_new_game/1. Under the hood, this function uses NotSkullWeb.Endpoint.broadcast!/3,
which is an imported function from Phoenix.Endpoint. Let’s add the following test
after the setup in our file and look at how to test the output:

test "success: returns :ok, sends broadcast when passed an open game" doLine 1

open_game = Factory.struct_for(:game, %{current_phase: :joining})2

3

assert :ok = LobbyChannel.broadcast_new_game(open_game)4

5

assert_broadcast("new_game_created", broadcast_payload)6

assert broadcast_payload == %{game_id: open_game.id}7

8

assert Jason.encode!(broadcast_payload)9

end10

The first thing to note about this test is that on line 1, it isn’t accepting the
test context, %{socket: socket}, from the setup. Our test doesn’t actually need
the socket because the test process itself is subscribed to the Channel. The
setup returns the socket to make it available in case we want to add more
functionality, and therefore more tests, to our application.

Our function under test never hits that database, so the data that we pass
in doesn’t need to be there. On line 2, we create a new game, passing in the
only override that’s important to the function we’re testing, which sets the
game’s current_phase to :joining. Then we exercise the function on line 4, asserting
that the return value is :ok, which happens to be the return value of NotSkull-
Web.Endpoint.broadcast!/3. The code under test is just passing that response back
to the test code.

The main behavior of the function under test isn’t the return value but a side
effect. Unlike other places, though, where we need a test double to verify that
a side effect happened, the side effect here is that a message should’ve been
sent to the mailbox of the test process. If any other processes were also sub-
scribed to the same Channel, they would’ve received the broadcast as well.

Chapter 6. Testing Phoenix • 184

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

On line 6, our test calls assert_broadcast/2. That function takes as arguments
the expected event name, "new_game_created", and a pattern, for which we’ve
passed an unbound variable. It’s common here to pin a pattern instead, but
we wanted to capture the whole payload for later assertions.

We do assert that the payload is what we were expecting on line 7. The last
assertion of our test is one that takes a little bit of understanding. As you
recall, the test process is subscribed directly to the Channel. Our test is
intended to be focused on the interaction that a client application would have
if a JavaScript client were subscribed to the same Channel. There’s a func-
tional difference between the interactions that client would have and that our
test has. When the socket/2 helper function was called, it created a socket that
skipped going through the real connection process in order to provide conve-
nience.

If you were to look at the data in the socket that was returned, you would
find a key called :serializer with a value of Phoenix.ChannelTest.NoopSerializer. This
“no operation” serializer doesn’t change the values it sends to the test process
in any way. If our test process was intended to represent another Elixir process
running inside of our application, this would be great. In our case, though,
we’re focused on what would come to a JavaScript client. Sockets for a
JavaScript client would have a different serializer. In our application’s case,
it would be the JSON serializer library, Jason. The test tools don’t allow you to
override this value, but one extra step in our tests can help us make sure
that this difference doesn’t cause us problems when trying to run our appli-
cation.

On line 9, we’re trying to find the lightest-weight way of testing that our
application won’t have issues by simply making sure that the event payload
can be serialized. We’re stopping at testing the values after serialization
because we should have a solid idea of what they’ll look like and we don’t
want to test the Jason library itself. This one extra step is very relevant when
dealing with return values that aren’t inherently serializable to JSON, for
example an Ecto schema struct. This’ll help make sure that the code in your
Channel takes care of the necessary conversion of data before the Phoenix
Channel framework tries to serialize the data.

The two biggest takeaways from this test should be that assert_broadcast takes
a pattern and that your payloads won’t be serialized. These lessons also apply
to assert_push/3 and assert_reply/4, which are the two most common test helpers
that we aren’t covering. It will help to demystify testing Phoenix Channels,
as well as build a foundation for robust coverage, if you remember that the

report erratum • discuss

Testing Phoenix Channels • 185

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

test process itself is subscribed to the Channel and that the Phoenix.Channel-
Test.NoopSerializer is always used.

Wrapping Up
In this chapter, we covered testing controllers and Phoenix Channels as the
interfaces to our Phoenix-based web application. Controller tests are used in
applications that serve JSON-based API endpoints as well as server-rendered
HTML endpoints. Channel tests cover the interactions over web sockets. You
should now be familiar with using the most common test-helper functions
provided by Phoenix, Plug, and ChannelTest. You should also understand
the how and why of making sure your tests cover both return values and side
effects.

In the next chapter, we’ll introduce you to property-based testing. We’ll show
you tooling that will help you lock down the behavior of your code where it’s
most likely to have large variation in its input.

Chapter 6. Testing Phoenix • 186

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

CHAPTER 7

Property-Based Testing
Even the best-designed unit tests are limited to the number of inputs you
can throw at your code and that you can come up with. You can use some
sort of enum wrapper around a test or try to come up with edge cases, but
you’re still limited to the inputs that you can actually type out, often leaving
out problematic inputs because, well, you never thought of them.

In this chapter, you’re going to learn about a new testing technique called
property-based testing. Property-based testing introduces randomness into
your tests by generating random inputs to feed to your code. This increases
your confidence in the code and can lead to discovering pesky bugs by gener-
ating weird edge cases. Property-based testing also forces you to think differ-
ently about the accepted inputs and the properties of your code, often helping
with the design and implementation.

The goal of this chapter is to introduce you to the basics of property-based
testing and when and how to integrate it into your test suite. You’ll also learn
about a particular tool called stream_data,1 a fairly common property-based
testing framework for Elixir written by one of the authors of this book (Andrea),
but the concepts and ideas discussed here apply to most frameworks you’ll
find in the wild.

Let’s start the chapter with an anecdote that we think captures the power
and usefulness of property-based testing.

1. https://github.com/whatyouhide/stream_data

report erratum • discuss

https://github.com/whatyouhide/stream_data
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Property-Based Testing in Practice in the Elixir Standard
Library
A while ago, an issue was opened in the Elixir language repository reporting
a problem with String.replace/3.2 String.replace/3 is a function that takes a subject
string, a pattern string, and a replacement string. The job of the function is
to replace the pattern string with the replacement string in the subject string.
The issue reported that the function failed when given an empty string "" as
the pattern string (the second argument). In other terms, replacing the empty
string in any string with something else wouldn’t work. It was soon pointed
out that the behavior of an empty string as the pattern string is tricky to
define: on one hand, you would think that the empty string is not contained
in any string, so you should never replace it and the code below should fail
or return the subject string unchanged:

String.replace(any_string, "", "some other string")

On the other hand, what if you try to use the empty string as the pattern
string but also as the subject string? That is, what if you replace the empty
string in the empty string?

String.replace("", "", "x")

Intuitively, you should get "x", right? To settle this discussion, the Elixir core
team ended up coming up with a property of String.replace/3. A property of a
piece of code is something that “holds” (stays true) regardless of the input
given to that code. In this case, a property of String.replace/3 could be something
that’s true regardless of the subject string and the string to replace. Ignore
the check all syntax here, which we’ll cover later on in the chapter, and just
focus on the semantics.

check all subject <- string(:printable),
replacement <- string(:printable) do

assert String.replace(subject, subject, replacement) == replacement
end

The property states that for any random string as subject string and for any
random string as replacement string, if you use the same string as the subject
string and the pattern string, then String.replace/3 should return the replacement.
As soon as tests were run to check this property, the empty string was found
to make the property not true. Since the Elixir team was confident that
String.replace/3 should have had this property, it meant that the implementation

2. https://github.com/elixir-lang/elixir/pull/6559

Chapter 7. Property-Based Testing • 188

report erratum • discuss

https://github.com/elixir-lang/elixir/pull/6559
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

of String.replace/3 was effectively wrong. String.replace/3 was fixed to handle the
empty pattern string in a way that would make the property hold.

iex> String.replace("ELIXIR", "", ".")
".E.L.I.X.I.R."

iex> String.replace("ELIXIR", "", "")
"ELIXIR"

This story about the replacement string is just an example of a property used
in the real world to drive the design of a piece of code and verify that it behaves
as expected. However, it shows the power of thinking about code in terms of
properties and generating random data to verify those properties when testing.
In the rest of the chapter, we’re going to learn more about the techniques and
tools around property-based testing. We’ll start by looking at the tests we’ve
written so far and how they fit in from the perspective of property-based
testing.

Example-Based Tests
When writing tests, we usually write something that we could call example-based
tests. In this section, we’ll have a new look at them from the perspective of the
inputs that we feed to our code. We’ll define terminology to identify example-
based tests, which will help us later compare them to property-based tests.

Let’s start with an example. Let’s say we want to test that the Enum.sort/1
function correctly sorts lists. We could call the following an example-based
test because it verifies that the code we want to test (Enum.sort/1 in this case)
works by giving a few examples of how it should work:

property_based_testing/sorting/test/example_based_sort_test.exs
defmodule ExampleBasedSortTest do

use ExUnit.Case

test "Enum.sort/1 sorts lists" do
assert Enum.sort([]) == []
assert Enum.sort([1, 2, 3]) == [1, 2, 3]
assert Enum.sort([2, 1, 3]) == [1, 2, 3]

end
end

In this example, we’re verifying that sorting an empty list returns an empty
list, that sorting an ordered list leaves it unchanged, and that sorting an
unsorted list returns the sorted version of that list. We chose three examples
that we thought would cover a representative sample of all the possible inputs
to Enum.sort/1. This works, but you can see that there are a lot more inputs we
could test, such as negative numbers, lists with duplicates in them, and so on.

report erratum • discuss

Example-Based Tests • 189

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/test/example_based_sort_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Sometimes, we try to test more inputs and simplify the test at the same time
by extracting the inputs and corresponding expected outputs and then running
the test on those inputs and outputs:

property_based_testing/sorting/test/tabular_sort_test.exs
defmodule TabularSortTest do

use ExUnit.Case

test "Enum.sort/1 sorts lists" do
inputs_and_outputs = [
{[], []},
{[1, 2, 3], [1, 2, 3]},
{[2, 1, 3], [1, 2, 3]},
{[2, 1, 2], [1, 2, 2]},
{[0, -1, -2], [-2, -1, 0]}

]

for {input, expected_output} <- inputs_and_outputs do
assert Enum.sort(input) == expected_output

end
end

end

When using this kind of approach, tests look like assertion tables. An assertion
table is a table of inputs and outputs, and the tests assert that running the code
on the input of each row of the table results in the output on that same row.
For this reason, an alternative name for example-based tests is tabular tests.

This kind of test has many benefits. First of all, tests like these are easy to write
since we know how our code works, and it’s usually straightforward to come
up with inputs for the code we’re testing. Another benefit of these tests is that,
since we’re specifying all inputs, we can choose to test corner cases that we
suspect might be problematic for our code. In our trivial sorting example, we
know that the empty list is a corner case because it’s a peculiar list, so we can
just go ahead and test our code on it every time we run the test.

However, these tests have some downsides as well. Testing the same known
inputs on every test run means that it’s hard to discover unknown corner
cases because, well, they’re unknown. At the same time, it’s hard to discover
inputs that our code doesn’t support or that it should support because we’re
the ones writing the examples in the test. Let’s see how we can improve the
situation.

Introducing Randomness and Property-Based Testing
We can solve some of the problems that example-based tests suffer from by
introducing a bit of chaos in our tests. Using randomness to generate inputs

Chapter 7. Property-Based Testing • 190

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/test/tabular_sort_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

will allow us to test a wider range of inputs against our code and potentially
create inputs that trigger edge cases.

In our sorting example, what we really want to test is that the output of
Enum.sort/1 is a sorted version of the input. For any random input, we can think
of a few properties that the output will always retain. For example, the output
list always has the same length as the input list. Another property is that the
output list is always sorted, which is something that we can check in a pretty
straightforward way by checking that each element is smaller than or equal
to the following one. Now that we’ve thought of these properties, we could
change our test so that we generate random lists and test these properties
on the output of our code instead of checking what the output is. Let’s see
how to do that:

property_based_testing/sorting/test/randomized_sort_test.exs
defmodule RandomizedSortTest doLine 1

use ExUnit.Case-

-

test "Enum.sort/1 sorts lists" do-

for _ <- 1..10 do5

random_list = random_list()-

sorted_list = Enum.sort(random_list)-

-

assert length(random_list) == length(sorted_list)-

assert sorted?(sorted_list)10

end-

end-

-

defp random_list do-

Stream.repeatedly(fn -> Enum.random(-100..100) end)15

|> Enum.take(_length = Enum.random(0..10))-

end-

-

defp sorted?([first, second | rest]),-

do: first <= second and sorted?([second | rest])20

-

defp sorted?(_other), do: true-

end-

The random_list/0 function creates an infinite stream of random numbers between
-100 and 100 and then picks a random number of elements from the stream
using Enum.take/2. The number of elements we pick from the stream is the
length of the random list, which we keep between 0 and 10 elements. The
sorted?/1 function checks that the first two elements of the list are sorted and
then recursively checks the rest of the list until it arrives at an empty or one-
element list, which is always sorted. On line 9, we check our first property,

report erratum • discuss

Introducing Randomness and Property-Based Testing • 191

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/test/randomized_sort_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

that the sorted list has the same number of elements as the input list. On
line 10, we check the second property, that the sorted list is sorted.

This approach to testing has a few benefits. One of the most obvious is that it
can potentially test on a lot more inputs than example-based testing can. In our
example, if we want to change the number of tested lists to a hundred or a
thousand, we can just change the right end of the range on line 5. However,
the usefulness of testing on many inputs is limited unless the inputs vary.

The Role of Randomness
This is where randomness comes into play. By having a lot of inputs generated
at random, our hope is to cover a decent part of the possible inputs to our
code and at the same time cover a good variety of inputs. Essentially, we want
a good sample of inputs that represents the input space, which is the set of
all possible inputs. In our example, we’re still covering a tiny part of our input
space (all lists of numbers), but covering the whole input space is often
unfeasible. Random generation gives us a nice compromise, especially consid-
ering that every time the tests are run, possibly different lists are generated.
Generating random elements also helps us to uncover potential corner cases
that we didn’t anticipate.

You might be asking yourself how much randomness is enough, that is, how
many inputs you need to generate or how many times you need to run these
tests to have confidence that they cover enough of the input space. In many
cases, the input space is infinite or too vast to cover, but only you will know
how far to push it based on the specific use case.

The test we wrote for Enum.sort/1 is an example of a kind of test called property-
based tests. They are called that because of the method we used to come up
with this kind of test: we think of properties that our code holds regardless
of the input we feed to it, provided the input is valid.

The benefits of property-based testing don’t end with what we’ve just dis-
cussed. Coming up with valid inputs and properties is a huge part of property-
based testing, but it’s also a helpful design tool. If you have to write down in
clear terms what the valid inputs of your code are, you could end up
expanding or shrinking the space of valid inputs. Coming up with properties,
instead, forces you to think about what your code should do regardless of
the specific input you feed to it, which might help with the design or imple-
mentation of the code. In the list-sorting example, the functionality is trivial,
so it’s hard to see the design benefits of property-based testing; but in more
complex contexts, it can be useful to think about these things.

Chapter 7. Property-Based Testing • 192

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Property-based testing is rarely done in a hand-rolled way like we did in our
example, as there’s a plethora of frameworks (for all kinds of programming
languages) that facilitate the implementation of property-based tests. Usually,
property-based testing frameworks provide powerful ways of generating data
and an infrastructure for verifying properties against that generated data.
There’s also one important feature that makes using a property-based testing
framework a clear advantage over rolling out your own randomness-based
tests: frameworks simplify the randomly generated inputs when a failure
occurs, and they present error messages that tend to be significantly easier
to understand and address than if you handwrite tests with random data like
we did.

For Elixir, the property-based testing framework we’re going to use from now
on is called stream_data.3

Why Use stream_data?

The Elixir and Erlang ecosystems have good support for property-based testing
through well-established libraries such as Quviq’s QuickCheck and PropEr for Erlang,a
b and PropCheck,c Quixir,d and stream_data for Elixir.

However, we’re biased toward stream_data since Andrea wrote the original library,
which means we know it well and are comfortable with it. In any case, the property-
based testing concepts we’re going to illustrate work well with all libraries.

We feel like having some context on why stream_data was created in the first place,
even if other property-based testing frameworks were already available, could be
helpful to readers. One reason was that originally the plan was to include stream_
data in the Elixir standard library, which meant having to write something from
scratch to make sure licensing wasn’t a problem and that the Elixir core team would
be able to maintain the code. The team later realized that stream_data worked well
enough as a library and so it didn’t end up in Elixir itself. Another reason was that
all existing property-based testing frameworks would only generate random data in
the context of property-based testing, without taking advantage of Elixir streams to
make data generation a general-purpose tool.

a. http://www.quviq.com/products/erlang-quickcheck/
b. https://github.com/proper-testing/proper
c. https://github.com/alfert/propcheck
d. https://github.com/pragdave/quixir

3. https://github.com/whatyouhide/stream_data

report erratum • discuss

Introducing Randomness and Property-Based Testing • 193

http://www.quviq.com/products/erlang-quickcheck/
https://github.com/proper-testing/proper
https://github.com/alfert/propcheck
https://github.com/pragdave/quixir
https://github.com/whatyouhide/stream_data
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Introducing stream_data
stream_data is a property-based testing framework for Elixir. It provides two
main functionalities, data generation and a framework for writing and running
properties. The data generation aspect of the library is usable outside of
property-based testing as a standalone feature, but it’s the backbone of the
whole framework and is also used extensively when writing properties.

To follow along in the next few sections, create a new Mix project with $ mix
new sorting and then add :stream_data as a dependency in your mix.exs file:

property_based_testing/sorting/mix.exs
defp deps do

[{:stream_data, ">= 0.0.0", only: [:dev, :test]}]
end

Now, run $ mix deps.get to fetch the dependency. As you can see in the code,
we’ve only added :stream_data in the :test environment since we’ll only be using
the library when testing.

Before diving into the framework, let’s rewrite the RandomizedSortTest test we
hand-rolled earlier to use the tools that stream_data provides:

property_based_testing/sorting/test/randomized_sort_stream_data_test.exs
defmodule FirstStreamDataPropertySortTest doLine 1

use ExUnit.Case-

use ExUnitProperties-

-

property "Enum.sort/1 sorts lists" do5

check all list <- list_of(integer()) do-

sorted_list = Enum.sort(list)-

-

assert length(list) == length(sorted_list)-

assert sorted?(sorted_list)10

end-

end-

-

defp sorted?([first, second | rest]),-

do: first <= second and sorted?([second | rest])15

-

defp sorted?(_other), do: true-

end-

Don’t worry about the new things you see in this test. We’ll cover all of them
in this chapter. The goal here is to show you what stream_data looks like.
For now, run mix test in the project where you added this file and see the
beautiful green dots.

Chapter 7. Property-Based Testing • 194

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/mix.exs
http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/test/randomized_sort_stream_data_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

As it turns out, the underlying shape of the test is quite similar to Randomized-
SortTest. Instead of using the test macro to define a test, we use property (on line
5). Then we use a new construct, check all, on line 6. This replaces the for
comprehension we had. On the same line, we have list <- list_of(integer()). That’s
exactly one of the most important features of a property-based framework:
data generators. Here stream_data takes care of generating random data (with
cool characteristics we’ll see later) for you. Now that we have an idea of what
a stream_data test looks like, let’s move on to dissecting its components in a
more detailed way.

In the next sections, we’re going to start exploring from the data generation
aspect of stream_data and then move on to designing and running properties.
To follow along, run iex -S mix to fire up an IEx session from the root of the
project that includes stream_data as a dependency.

You might be wondering why we won’t illustrate these concepts on one of the
applications we developed in the previous chapters (such as Soggy Waffle).
Well, the reason is that we would have to bend those applications in weird
ways to be able to show these ideas effectively. Instead, we decided to use
simple, small, and self-contained examples so that we can focus on property-
based testing concepts and tools.

Data Generation
One of the design goals of stream_data is to provide a set of tools for data
generation that could also work outside of property-based testing. For example,
generating random data can be useful when seeding databases with fake
data.

At the core of data generation are generators. A generator is a data structure
that contains logic that stream_data uses to generate data. Essentially, a
generator is like a function that we can call to generate random terms. Let’s
start with a simple instance of a generator, StreamData.integer/0. This generator
produces random integers. We can use all the stream_data generators as
Elixir streams since they implement the Enumerable protocol.

iex> StreamData.integer() |> Enum.take(5)
[-1, 2, -3, 0, 2]

stream_data generators are infinite streams of random data, so we only had
to take a few items out of the stream using Enum.take/2 in this example. If we
had called Enum.to_list/1 passing the generator as the argument, we would’ve
waited forever.

report erratum • discuss

Data Generation • 195

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

stream_data comes equipped with a few generators for simple data types, like
the ones for integers or booleans, plus a bunch of ways to combine generators.
For example, there’s no built-in generator for non-negative integers (positive
integers plus zero), but we can easily build one using StreamData.map/2 to map
the abs/1 function over the StreamData.integer/0 generator. This is similar to how
Enum.map/2 maps a function over an enumerable.

non_negative_integer = StreamData.map(StreamData.integer(), &abs/1)

Wait, why are we using StreamData.map/2 instead of Stream.map/2, given that
generators are Elixir streams? Stream.map/2 would work in the context of gen-
erating data for purposes that lie outside of property-based testing, such as
seeding a database with random data:

non_negative_integer = Stream.map(StreamData.integer(), &abs/1)

In general, all functions that operate on streams (such as many functions
found in the Enum and Stream standard-library modules) work on stream_data
generators. However, you should only use those functions in the context of
data generation and not in property-based tests. When using generators in
property-based tests, using Stream functions instead of StreamData ones will
render the generators unusable. In the example above, Stream.map/2 would
return a plain stream of non-negative integers, while StreamData.map/2 would
return a stream of non-negative integers that also provides specific function-
ality for property-based testing. We’ll learn more about this a little later, when
we talk about shrinking the generated data.

Mapping is just one of the ways to combine generators. There’s also filtering
as well as a few ways to create more complex data types based off simpler
generators. An example is StreamData.list_of/1, which takes a generator and
returns a new generator that produces lists of elements produced by the
generator we passed to it. For example, to generate lists of integers we can
use the StreamData.list_of(StreamData.integer()) generator.

iex> StreamData.list_of(StreamData.integer()) |> Enum.take(3)
[[1], [], [1, -2]]

The Basic Tool for Composing Generators: Binding
While there are a few ways to compose generators, like StreamData.map/2, it’s
important to know about StreamData.bind/2. bind/2 is a powerful function, and
other ways of combining generators can usually be built on top of it. It’s the
basic tool you can reach for when you need to combine two generators
together. bind/2 takes a generator and a function: the function will be invoked

Chapter 7. Property-Based Testing • 196

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

with each element produced by the generator and should return a new
generator.

Let’s make this easier with an example. Say we have a generator that produces
random email domains (like gmail.com or icloud.com). We want to generate random
emails that have a random alphanumeric username followed by a random
domain produced by our domain generator:

property_based_testing/misc/random_email_generator.exs
domains = ["gmail.com", "yahoo.com", "icloud.com"]Line 1

random_domain_generator = StreamData.member_of(domains)2

username_generator = StreamData.string(:alphanumeric, min_length: 1)3

4

random_email_generator =5

StreamData.bind(random_domain_generator, fn domain ->6

StreamData.map(username_generator, fn username ->7

"#{username}@#{domain}"8

end)9

end)10

In the first couple of lines, we can see our random domain generator, which
uses StreamData.member_of/1 to produce elements taken at random from the
given list. On line 3, we have our username generator, which produces
alphanumeric strings. Then we have our bind/2 call. We bind on the value
produced by the random domain generator, which is passed to the function
we give to bind/2. That function should return a new generator. On line 9, we
start with the username generator and map a function that concatenates an
@ plus the domain to the values that the username generator produces. The
result of the StreamData.map/2 call is a generator. When random_email_generator
needs to produce a random email, it will first create a random domain, then
use the generator returned by the anonymous function passed to bind/2 to
produce a random email.

bind/2 is powerful because it lets us create complex generators by combining
simpler generators. We’ll see that it’s heavily used in the context of property-
based testing. bind/2 is also necessary in cases such as this one: we wouldn’t
otherwise be able to take two generators and combine them together.

Next, let’s look at how generators can control the complexity of generated
data through generation size.

Generation Size
If you take a few elements out of a generator like StreamData.integer/0, you’ll
notice that those integers are simple, that is, they are small integers centered

report erratum • discuss

Data Generation • 197

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/random_email_generator.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

around zero. Now, try to take a few elements out of integer/0 but after discarding
a lot of elements:

iex> StreamData.integer() |> Stream.drop(100) |> Enum.take(5)
[43, -96, 45, -17, 40]

As you can see, the integers produced by the generator are now more com-
plex—as in, they’re bigger. This suggests that generators produce increasingly
more complex terms the more terms they generate. In the case of streaming
terms out of a generator, that’s exactly what happens. However, the mecha-
nism behind this is more generic. In order to have a generator generate a
term, we need to pass a size to the generator that we refer to as the generation
size. The generation size is a positive integer. Generators use the generation
size as a measure of the complexity of the generated terms. Some generators
will need to be tweaked to your use case so that they generate the “right”
data, so to use most property-based testing frameworks effectively (including
stream_data), it’s worth spending just a moment understanding generation
size better.

Let’s look at how integer/0 uses generation size. With a generation size of n,
integer/0 will produce an integer between -n and n. Other generators may use
the generation size differently: for example, binary/1 uses it to determine the
length of the generated binary. Composite generators (such as list_of/1) will
pass the generation size down to the inner generators. For example,
list_of(integer()) will use the generation size to determine both the length of the
generated list as well as the “complexity” of the integers in that list.

You might be wondering how the generation size is passed to a generator
when we want to produce an element out of that generator. There’s no way
to directly pass the generation size because generation is hidden from the
user, either by stream_data when using generators in property-based testing
or by the implementation of the Enumerable protocol. This is a design decision
in the library itself.

When using generators as streams, the implementation of the Enumerable pro-
tocol doesn’t allow for extra information to be passed alongside functions
(which would allow passing the generation size). In fact, when generators are
used as streams they start generating with a size of 1 and increase by one
every time a term is generated. This means that if we use Enum.take(generator,
5) to take five elements out of a generator, the fifth element will be produced
with a generation size of 5. While there’s no way to directly pass the generation
size when producing elements, there are a few indirect ways to manipulate

Chapter 7. Property-Based Testing • 198

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

it. These effectively “wrap” the generator so that it can carry the generation
size information around.

stream_data provides a few functions that change how a generator treats the
generation size passed to it.

The simplest of these functions is StreamData.resize/2. This function takes a
generator and an integer representing a new generation size and returns a
new generator. The new generator will always use the given generation size,
ignoring the generation size we pass to it. This is useful when you want a
generator with a fixed complexity.

iex> StreamData.integer() |> StreamData.resize(50) |> Enum.take(5)
[28, 25, -44, 10, 41]

If you want to apply some modifications to the generation size, you’re looking
for the StreamData.scale/2 function. It takes a generator and a function that takes
a size and returns a new size, and then it returns a new generator. The new
generator uses the generation size returned by the passed function. (That
was a mouthful.) Essentially, it modifies the generation size of a generator in
a dynamic way, based on the original generation size.

Scaling is especially useful in a couple of scenarios. The first one is when you
want to increase or decrease the speed at which the generation size progresses.
For example, it might be a good idea to reduce the growth of the generation
size for a complex and deeply nested generator. To do that, we can scale the
generation size with mathematic functions like square roots:

iex> generator = StreamData.list_of(StreamData.string(:ascii))
iex> scaled_generator =
...> StreamData.scale(generator, fn size ->
...> round(:math.sqrt(size))
...> end)
iex> scaled_generator |> Stream.drop(50) |> Enum.take(3)
[[""], ["#HdJ", "'x>", "3y](I", "D", "FFe?"], ["", "", "+,"]]

As you can see, even after fifty dropped elements we’re still generating small
lists with small strings in them.

The other use case for scaling is having a cap on the generation size.

capped_integer =
StreamData.scale(StreamData.integer(), fn size -> min(size, _cap = 20) end)

In this example, the capped_integer generator will use the given generation
size up to the cap, which is 20, and then we’ll keep using 20 for larger gen-
eration sizes. After all, resize/2 is just a particular version of scale/2, where

report erratum • discuss

Data Generation • 199

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

the function passed to scale/2 ignores the given generation size and always
returns a fixed size.

The last size-related function provided by stream_data is StreamData.sized/1. It
constructs a generator starting with only the generation size. This function
is useful if we want to determine the generator to use based on the generation
size. For example, we might want a generator that generates only integers up
to a given generation size, and then it starts generating floats as well:

property_based_testing/misc/sized_generator.exs
StreamData.sized(fn size ->

if size < 20 do
StreamData.integer()

else
StreamData.one_of([StreamData.integer(), StreamData.float()])

end
end)

It’s important to understand the purpose of the generation size and to know
about the functions we mentioned so that we can generate better data for our
use cases. The generation size is used both when treating generators as
streams, as well as when generators are used in the context of property-based
testing.

Let’s make one last practical example of how controlling generation size can
be useful in the real world. We’ll start from our random_email_generator generator
that we discussed earlier. In that generator, we were using a fixed list of
domains (such as "gmail.com") for our emails:

property_based_testing/misc/random_email_generator.exs
domains = ["gmail.com", "yahoo.com", "icloud.com"]
random_domain_generator = StreamData.member_of(domains)

We could have a “smarter” domain generator that does the following:

1. Picks one of the most common domains for small generation sizes (effec-
tively starting generation with those known domains), and

2. Uses the string/2 generator to generate random domains after a certain
generation size (keeping them small by scaling the generator).

This example might look a bit convoluted, but it’s not far from what a good
email domain generator might look like in real code. Note that we’re forcing
domains to end with .com: this is just to keep the generator contained and to
avoid having to use StreamData.bind/2 to combine random domain names with
random TLDs (such as .com, .org, .net, and so on):

Chapter 7. Property-Based Testing • 200

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/sized_generator.exs
http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/random_email_generator.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

property_based_testing/misc/random_email_domain_generator.exs
common_domains = ["gmail.com", "yahoo.com", "icloud.com"]Line 1

-

random_email_domain_generator =-

StreamData.sized(fn-

size when size <= 5 ->5

StreamData.member_of(common_domains)-

-

_size ->-

StreamData.string([?a..?z], min_length: 1)-

|> StreamData.scale(fn size -> trunc(:math.log(size)) end)10

|> StreamData.map(fn string -> string <> ".com" end)-

end)-

Now that we’re familiar with generators, let’s have a look at the tools that
stream_data provides to write properties. In the next sections, we’ll start by
writing some properties using the stream_data library. Then we’ll look at a
few design patterns that can make writing properties a bit easier.

Writing Properties
As we saw in our initial examples, part of property-based testing is generating
data and the other part is coming up with properties. In this and the next
sections, we’re going to focus on the latter.

The first thing to do when coming up with properties is to figure out what is
the shape of valid inputs that our code works with. “Shape“ is not a technical
term or a definition: we’re using it to describe the space of possible values
that the input can be, such as all strings or all lists of integers. Figuring out
the shape of valid inputs is where generators come into play in the context
of property-based testing. If our code works with lists of integers, and therefore
the shape of valid inputs is “lists of integers,” we can use the StreamDa-
ta.list_of(StreamData.integer()) generator to produce a sample of the possible values
of that shape. You create and combine generators that output valid data in
the shape accepted by your code.

After figuring out the valid inputs that our code accepts, we need to come up
with properties that our code holds regardless of the input, provided that the
input is valid.

Once we have generators to produce inputs of our desired shape and properties
that hold for all of those inputs, it’s the job of the property-based testing
framework to provide the infrastructure for generating data and verifying the
properties. stream_data comes bundled with tools and a DSL that let you do
exactly that. You know about stream_data generators by now, so the missing
piece is using those generators to produce inputs and test properties against

report erratum • discuss

Writing Properties • 201

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/random_email_domain_generator.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

those inputs. Let’s start with rewriting our properties for the Enum.sort/1 function
using the tools provided by stream_data in order to have a look at what stream
_data in action looks like. Then we’ll examine the snippet in more detail.

property_based_testing/sorting/test/first_property_sort_test.exs
defmodule FirstPropertySortTest doLine 1

use ExUnit.Case-

use ExUnitProperties-

-

property "Enum.sort/1 sorts lists" do5

check all list <- list_of(integer()) do-

sorted_list = Enum.sort(list)-

-

assert length(list) == length(sorted_list)-

assert sorted?(sorted_list)10

end-

end-

-

defp sorted?([first, second | rest]),-

do: first <= second and sorted?([second | rest])15

-

defp sorted?(_other), do: true-

end-

The first thing we need in order to use the property-based testing tools that
stream_data provides is the use ExUnitProperties call on line 3. This will import
all the generator functions (like list_of/1 or integer/0) as well as make the stream
_data DSL available. The DSL is made up of the StreamData.check/2 macro that
we used on line 6. This macro resembles the syntax of for comprehensions,
with clauses (<-) that have a generator on the right side and a generic pattern
on the left side (in our case, that pattern is a simple variable). With this syntax,
stream_data will take care of generating an element out of the generator,
matching it on the left side of the <- clause, then running the contents of the
do/end body. If the assertions don’t fail, then stream_data will repeat the
process.

By default, check all runs the assertions one hundred times, but that’s config-
urable in a number of different ways. Sometimes, you’ll have generators that
take more time to generate complex values or you’ll need to use many gener-
ators for a single property. In those cases, it might help to lower the number
of check all runs.

Running our SortTest case is the same as running any test case. If we were in
a Mix project, we would use mix test. The only difference in the output is that
properties will be reported as properties instead of tests.

Chapter 7. Property-Based Testing • 202

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/test/first_property_sort_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

> mix test

..

1 property, 1 test, 0 failures

Don’t worry about the “1 test” part of the output. That’s coming from the
dummy test that mix new generates when scaffolding the project.

The check all macro is important to understand in order to take advantage of
many stream_data features. Let’s look at it more closely.

The Check All Macro
check all supports multiple <- clauses. It also supports simple assignments
(with =) as well as expressions that are used as filters, similar to what for
supports. To show a more complex use of check all, let’s write an example of a
test that first generates a list, filters out empty lists, generates an element
taken out of that list, and finally checks that the in operator always returns
true for the two generated terms:

property_based_testing/misc/check_all_clauses.exs
check all list <- list_of(term()),

list != [],
member <- member_of(list) do

assert member in list
end

Given the example here, it might be a little easier to understand why Stream-
Data.bind/2, which we learned about earlier, is so important. Generating a list
and then generating a random element out of that list is essentially a call to
bind/2.

check all also supports options passed in after the <- clauses. You can find a
comprehensive list of options in the documentation for check all, but an
important one to know about is :max_runs. :max_runs lets you configure the
maximum number of times that check all should generate all inputs and check
that the property holds. By default, check all runs one hundred times, but it
can be useful to decrease the number of runs for slower properties or to
increase it to cover more of the input space. Here’s an example of how to
decrease the maximum number of runs for slower properties:

This is executed only 10 times.
check all value <- some_generator(), max_runs: 10 do

slow_code(value)
end

report erratum • discuss

Writing Properties • 203

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/check_all_clauses.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

The Reason for “Check All”

A common question about stream_data is why check all is written as two words instead
of one (check_all). The reason is that check all needs to trick the Elixir compiler in order
to work. Elixir supports macros, which are functions executed at compile time that
take code as Abstract Syntax Tree (AST, a representation of the code as data) and
return AST. Elixir doesn’t allow macros with a variable number of arguments since
the arity of functions and macros must be fixed. The AST for <- clauses is the AST
for the application of the :<- operator to the left side and right side. This means that
every <- clause would be an argument to a possible check_all macro. However, we want
the number of clauses to be variable, so that wouldn’t work. The trick we use is that
the compiler will parse the code and then call the check/2 macro with the AST for the
call to all(clause1, ...). The all function doesn’t exist, but this isn’t known yet at parsing
time, so the AST is happily passed to check/2, which can then manipulate it as desired.
for and with, two built-in constructs in Elixir that use the same syntax, can avoid this
trick because they’re special forms that are handled directly at the language level.
With this trick we can have a syntax that looks like for and with, but without having
to change the compiler or the runtime of Elixir. Awesome, right?

stream_data also provides a syntax similar to check all to create generators.
We’ll look at that in the next section.

The Gen All Macro
Writing new generators by composing other generators with functions like
bind/2 works fine, but for complex generators the syntax can become a bit
convoluted. For this reason, stream_data provides a gen all macro. This macro
looks exactly like check all, but it creates a generator instead. The values pro-
duced by the generator are whatever is returned from the block passed to gen
all. Let’s see an example of how to use this macro to generate an email, starting
from a random alphanumeric username and a random domain chosen from
a list of domains.

property_based_testing/misc/email_generator_gen_all.exs
domains = ["gmail.com", "yahoo.com", "icloud.com", "hotmail.com"]

email_generator =
gen all username <- string(:alphanumeric),

domain <- member_of(domains) do
username <> "@" <> domain

end

As you can see, the <- clauses are used to take values out of generators,
exactly like in check all. The generated value is the content of the do/end block,
in our case the concatenated strings that make up the email.

Chapter 7. Property-Based Testing • 204

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/email_generator_gen_all.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

gen all supports all the clauses supported by check all, like filtering clauses and
assignment (=) clauses.

Now that we’ve written a few properties, let’s see how property-based testing
frameworks handle failures in the properties.

Shrinking
In this section, we’ll look at what happens when a property-based test fails.
As we mentioned at the beginning of the chapter, property-based testing
frameworks such as stream_data help you in those cases by shrinking the
input that caused the test to fail and coming up with a simpler input that
still causes the failure. Shrinking plays a fundamental role in the usefulness
of property-based testing, and it’s important to understand how it works in
order to take full advantage of the testing framework.

What a Property Failure Looks Like
We’ve seen how property-based testing helps us write robust tests, in part
by covering a larger space of inputs to feed to our code. However, we haven’t
discussed what happens when the tests find an error in the code. To see what
happens in that case, let’s come up with a sorting function that we know
won’t work well. The simplest one that comes to mind is the identity function,
which is a function that takes one argument and returns that argument
unchanged. This is a terrible sorting function because, well, it doesn’t do
anything to the input list. However, this “sort” function still holds at least
one of the two properties we’ve been testing: the length of the sorted list is
the same as the length of the input list. That makes sense, since it’s the same
list. However, the identity function definitely doesn’t hold the property of the
output list being sorted. Let’s write this up in a property and see what happens
when it fails:

property_based_testing/sorting/test/bad_sort_test.exs
defmodule BadSortTest doLine 1

use ExUnit.Case-

use ExUnitProperties-

-

property "bad_sort/1 sorts lists" do5

check all list <- list_of(integer()) do-

IO.inspect(list)-

sorted_list = bad_sort(list)-

-

assert length(list) == length(sorted_list)10

assert sorted?(sorted_list)-

end-

end-

report erratum • discuss

Shrinking • 205

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/test/bad_sort_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

-

defp bad_sort(list), do: list15

-

defp sorted?([first, second | rest]),-

do: first <= second and sorted?([second | rest])-

-

defp sorted?(_other), do: true20

end-

When we run this test, it fails as expected, thanks to how we implemented
the sorting function on line 15 (as the identity function). Let’s take a look at
what a property failure looks like:

> mix test

1) property bad_sort/1 sorts lists (BadSortTest)
test/bad_sort_test.exs:5
Failed with generated values (after 3 successful runs):➤

➤

* Clause: list <- list_of(integer())➤

Generated: [1, 0]➤

Expected truthy, got false
code: assert sorted?(sorted_list)
arguments:

1
[1, 0]

stacktrace: «stacktrace»
Finished in 0.04 seconds
1 property, 1 failure

That looks a little bit different than our usual ExUnit tests. stream_data adds
the information in the highlighted lines to regular ExUnit errors. This section
includes information about the generated data. The first line tells us how
many terms stream_data generated before finding the failure. In this case, it
successfully generated three lists before finding one that would fail. After
that, stream_data reports the values that were generated for each clause in
the check all (we have only one clause here). This is more useful when there
are many clauses since it helps retrace the steps of what pieces of data were
generated.

We expected that our bad sorting function would fail for any list that wasn’t
already sorted. That’s exactly what happened: as soon as we got a simple not-
sorted list, [1, 0], the test failed. On second thought, isn’t it a bit suspicious
that the list that caused the failure is the simplest possible list that causes
this particular failure? This suspicion would be confirmed by running the
property again. If we run the property a few times, [1, 0] is going to be the

Chapter 7. Property-Based Testing • 206

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

failing list most of the time. Alternative results might look similar: for example,
[0, -1] or [2, 1]. To better understand what’s going on, we could print the gener-
ated list right as the first line in the do/end block of the check all.

> mix test

[]
[-1]
[1, 2]
[1, 1, 0]
[1, 0]➤

[0]➤

[1]➤

«rest of the test result»
Let’s make sense of these generated lists. The first one is [], which is a sorted
list, so our test passes. Same goes for [-1] and [1, 2]. Then, our generator spits
out [1, 1, 0], which makes our test fail. Why wasn’t that the list shown in the
test failure?

The reason is that property-based testing frameworks like stream_data perform
a process, called shrinking, on the terms that cause a property to fail.
Shrinking consists of simplifying the generated terms so that they keep
causing the test to fail but make them simpler to understand. In our example,
we can see the shrinking process in action in the highlighted lines. [1, 1, 0] is
first reduced to [1, 0] by removing the first element. [1, 0] still fails, so stream
_data tries to shrink it even more by taking more elements out. It tries [0] and
[1], but those are sorted lists, so our properties hold and we have to take a
step back to [1, 0]. 0 and 1 are the simplest possible integers from the perspec-
tive of stream_data, so the framework doesn’t try to simplify their values. This
means that the simplest list to cause the failure was found.

It might be hard to see the value of shrinking in such a simple example. How-
ever, imagine you are generating complex data and feeding them to complex
code. In those cases, shrinking is fundamental since it can make it much eas-
ier to understand what aspect of the generated data is causing the failure.
However, it’s important to understand that the shrinking process is heuristic,
which means that it doesn’t always find the simplest possible term that causes
a failure. Exploring the many possibilities of simpler data takes time, so stream
_data will go ahead and try a few ways of shrinking the generated data. After
a while, however (a hundred tries by default), it’ll stop and report the simplest
term it could come up with. This is why this same test might conclude that the
simplest list that causes a failure would be [0, -1], [2, 1], or similar, and why
you might see slightly different results when running the test.

report erratum • discuss

Shrinking • 207

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Shrinking and Generators
Remember how, when talking about data generators, we said that even if
they’re Elixir streams, you should use StreamData functions to manipulate
them? Well, the reason for that is shrinking—stream_data generators produce
terms that carry their own shrinking logic with them. For example, the integer/0
generator produces integers that know how to “shrink themselves.” When
you compose generators through StreamData functions, the composition carries
over to the shrinking logic as well. This is one of the most valuable reasons
to use a property-based testing framework in the first place over rolling out
your own randomness-based tests. Let’s look at a quick example. Let’s take
our friend bind/2 and use it to generate a tuple with two elements: a list and
a random element from that list:

bind(list_of(term()), fn list ->
tuple({constant(list), member_of(list)})

end)

We’re using constant/1 to turn a simple term into a generator, and we’re using
tuple/1 to return a generator of tuples. When shrinking, the term generated by
the inner tuple generator is shrunk first, but then the initial list generated
by list_of(term()) is shrunk and used to produce a new tuple generator in the
anonymous function. This behavior might seem complex, but most of the
time the user doesn’t need to care that this is happening behind the scenes
when composing generators. Even so, stream_data documents how every
generator shrinks and how every composition function affects the shrinking.

Strategies for Designing Properties
Up until now, we’ve only looked at property-based testing in simple scenarios,
where it’s easy to come up with good properties that give us confidence in
our code. However, one of the biggest challenges of property-based testing in
less-straightforward situations is coming up with good properties. Right at
the beginning of this chapter, we saw how the Elixir team used property-based
testing in a real-world scenario and how they came up with a property that
helped test code and drive its behavior.

In this section, we’ll discuss ways to make it easier to design properties for
your own code. We’ll start by showing you some design patterns that you can
recognize and apply to your code. Then we’ll quickly cover some common
pitfalls made when coming up with properties.

Chapter 7. Property-Based Testing • 208

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Design Patterns
Let’s dive into a few patterns that can help with the design of properties.
These patterns can help you with the difficult task of designing efficient,
accurate, and useful properties to test your code. The examples and ideas
we’re going to discuss aren’t specific to stream_data because they apply to
property-based testing in general, regardless of the framework.

Circular Code

This pattern can be applied any time you have two pieces of code where the
first piece does something and the second “undoes” it. This is where the name
circular code comes from. A common example of this kind of code is encoding
and decoding. Take the JSON protocol. If you write a JSON encoder/decoder,
it’s likely that it’ll provide a function to encode a term into JSON and a function
to decode the term from JSON. When you spot circular code, it’s usually
straightforward to design a property for it that verifies that the code is indeed
circular. Let’s see an example for this imaginary JSON library:

property_based_testing/misc/circular_property.exs
property "encoding + decoding is circular" do

check all term <- term() do
assert term == (term |> JSON.encode() |> JSON.decode())

end
end

This property could detect cases where the encoding loses information,
resulting in decoding to something different from what was encoded.

Oracle Model

Most of the time we tend to write code from scratch, but sometimes we need
to rewrite an existing piece of functionality. For example, sometimes we need
to rewrite something in a different language or rewrite some code to make it
more performant. In these scenarios, we can refer to the existing system as
the oracle. When we have an oracle and we’re writing a system that has the
same functionality as the oracle, we can take advantage of property-based
testing by testing that our system behaves like the oracle.

Let’s have a look at a concrete example. Imagine we wanted to write the
function for sorting lists that we tested throughout this whole chapter. Erlang
already provides a function for sorting lists, :lists.sort/1, but we want to write
an implementation in pure Elixir. We choose to go with the quicksort algo-
rithm. Let’s write this algorithm down in a ListSort.quicksort/1 function:

report erratum • discuss

Strategies for Designing Properties • 209

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/circular_property.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

property_based_testing/sorting/lib/list_sort.ex
defmodule ListSort do

def quicksort([head | rest]) do
{smaller_elements, larger_elements} =
Enum.split_with(rest, &(&1 <= head))

quicksort(smaller_elements) ++ [head] ++ quicksort(larger_elements)
end

def quicksort([]), do: []
end

Now we want to check whether our pure-Elixir quicksort implementation
works. What better way than to check against an implementation that already
exists and that we can assume works correctly, like :lists.sort/1? The property
for this is straightforward, as it’s just a matter of generating random lists and
asserting that sorting them through our quicksort implementation yields the
same results as using :lists.sort/1. Basically, :lists.sort/1 is our oracle. Let’s see
this property in action.

property_based_testing/sorting/test/list_sort_test.exs
defmodule ListSortTest do

use ExUnit.Case
use ExUnitProperties

property "quicksort/1 correctly sorts lists" do
check all list <- list_of(term()) do
assert ListSort.quicksort(list) == :lists.sort(list)

end
end

end

In our simple example, the oracle is just a small pure function, but this pattern
can be useful even when the oracle is an entire system.

Smoke Testing

Smoke testing refers to the practice of testing that code doesn’t behave in
unexpected ways rather than testing for the exact behavior of the code. The
idea is to run tests that only verify that nothing major is severely broken. For
example, our list-sorting function should always either return a list or fail
with a FunctionClauseError in case the argument is not a list, but it should never
fail with any other error or return anything other than a list. If that would be
the case, it would mean that something is very wrong. The list-sorting example
is a bit too simple to understand the benefits of smoke testing. But when the
system under test is complex, then a smoke test can be significantly faster
to write and to run, thus providing a lot of value. When it’s hard to generate
precise data for your code and it’s hard to find accurate properties to ensure

Chapter 7. Property-Based Testing • 210

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/lib/list_sort.ex
http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/test/list_sort_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

that code works correctly, property-based testing can still help with smoke
testing. Let’s take a look at our list-sorting example:

property_based_testing/sorting/test/list_sort_smoke_test.exs
defmodule ListSortSmokeTest do

use ExUnit.Case
use ExUnitProperties

property "quicksort/1 returns a list or fails with FunctionClauseError" do
check all term <- term() do

try do
ListSort.quicksort(term)

rescue
FunctionClauseError ->

:ok

other ->
raise "raised unexpected exception: #{inspect(other)}"

else
term ->

assert is_list(term)
end

end
end

end

As we mentioned, this example is contrived because we saw that it’s easy to
come up with properties to test a list-sorting function. However, when the
system under test gets more complex, this pattern becomes useful. For
example, let’s imagine we have an HTTP API. To write property-based tests
that cover the interaction with the API, we would need complex generators
capable of generating valid API calls with valid paths, headers, and bodies.
We’d also need to be able to come up with properties of responses to those
calls. Quite often, this is hard to do. However, we know that by design our
API can return responses with a status code of 200 if everything went well,
400 if there was an error with the request, or 404 if the URL was not found.

Without knowing anything else about our system, we can write a property
that generates random HTTP requests (with random paths, headers, and
bodies), sends them to our API, and then asserts that the API returns only
one of the expected codes. We’re not interested in whether the response
returned by the API is the correct response to the request that we sent; we
only care about the API not blowing up with something unexpected. We’re
just asserting that nothing is majorly broken. Let’s see what this property
could look like in pseudocode:

report erratum • discuss

Strategies for Designing Properties • 211

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/sorting/test/list_sort_smoke_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

property_based_testing/misc/api_smoke_test.exs
property "API only returns a response with status of 200, 400, or 404" do

host = "myapi.example.com"

check all method <- http_method_generator(),
path <- path_generator(),
headers <- headers_generator(),
body <- binary() do

response = send_http_request(host, method, path, headers, body)
assert response.status in [200, 400, 404]

end
end

This pattern is powerful. It tests a broad range of inputs to our system using
a small amount of code, with the chance of finding inputs that our system
blows up on, and it doesn’t require us to come up with good properties.

Avoiding Reimplementing Your Logic to Test It
A problem that often arises for novice users of property-based testing (and
possibly testing in general) is the feeling of having to reimplement the logic
of a piece of code in order to test it. In our examples, we didn’t suffer too
much from this problem, but we could see it creeping up when we had to
implement a sorted?/1 function to test if a list was sorted. That function is
simpler than a function that actually sorts the list. But we can imagine cases
where, in order to check that our logic is correct, we have to reimplement a
lot of the original logic in the properties.

Sometimes rewriting a working implementation can be a useful technique.
The trick is to not just rewrite the same implementation but to focus on
writing an implementation that makes us more confident that the logic works
at the expense of something else, like performance. If we write an inefficient
version of our code that we’re confident works correctly, we can use that as
the oracle for the code we’re trying to test.

Are Properties Enough?
Are properties enough to ensure that your code works and behaves correctly?
Sometimes, yes. Most times, no. A property verifies invariants of your code,
that is, properties of your code that stay the same regardless of the input.
Sometimes, the wrong code can maintain the same invariants that you’re
testing. Let’s see an example. Imagine we have a property that asserts that
when we concatenate two strings, then we can use String.contains?/2 to verify
that the concatenated string contains both the original strings:

Chapter 7. Property-Based Testing • 212

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/api_smoke_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

property_based_testing/misc/property_and_example_test.exs
property "concatenation of a and b contains both" do

check all left <- string(),
right <- string(),
concatenated = left <> right do

assert String.contains?(concatenate, left)
assert String.contains?(concatenate, right)

end
end

This is a good property for String.contains?/2 to hold. However, if this is the only
kind of testing that we’re doing on String.contains?/2, it means we can implement
String.contains?/2 as a function that always returns true.

def contains?(_string, _substring), do: true

This obviously wrong implementation still passes our property. For this reason,
it’s important that we still have unit or integration tests that actually verify
that our code works as we expect for some given inputs. Having tests alongside
properties is also useful for testing known corner cases of our code, because
those problematic inputs might not always be produced by the generators.
In the String.contains?/2 example, we’d probably have a test like the one below
alongside our property:

property_based_testing/misc/property_and_example_test.exs
test "String.contains?/2 works on known inputs" do

assert String.contains?("foobar", "foo")
assert String.contains?("foobar", "bar")
assert String.contains?("foobar", "ob")
refute String.contains?("foobar", "baz")

end

This test makes the dummy implementation that always returns true fail right
away. The combination of properties and example-based tests is powerful:
the properties assert that our code holds invariants, while example-based
tests verify that our code works for a few known (and corner) cases. This can
give us a high confidence in the correctness of the code.

In general, property-based testing is not a tool that can usually replace
example-based testing. Instead, it’s a tool that can complement example-
based testing. When it makes sense and when coming up with properties isn’t
too hard, then property-based testing can make it easy to test a large number
of inputs and corner cases in a concise way.

report erratum • discuss

Strategies for Designing Properties • 213

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/property_and_example_test.exs
http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/property_and_example_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Stateful Property-Based Testing
Until now, we’ve mostly looked at property-based testing in the context of
testing pure, stateless functions that take an input and return an output.
However, property-based testing is also useful for testing stateful systems. A
stateful system is a system that, well, carries state. For example, a database
is a stateful system.

In our examples so far, we only used property-based testing to generate some
data and then feed it to a piece of code and assert on the result of that. With
stateful systems, things change: we now have to deal with setting a state and
only executing some operations when the system is in a given state. Let’s see
how we can use property-based testing for something like that.

Modeling the Stateful System
We know how to generate random data through our property-based testing
framework. We can take advantage of this knowledge to generate random
commands that we can issue on our stateful system. For example, if our
stateful system is a database, we can generate random commands to issue
against this system. However, if the commands are random, how do we assert
on their effects on the system? Enter the system model. The whole idea
behind property-based testing of a stateful system revolves around the idea
of modeling the real system with a model that represents that system from
the perspective we’re interested in. Once we have this model, we can execute
the commands we generated on the real system and on the model and then
verify that the effects of the commands match. This sounds complex, so let’s
break it down with an example.

Let’s imagine we wrote a key-value store where we can write values stored
under unique keys and retrieve those values using the corresponding keys.

iex> kv_store = KVStore.new()
iex> KVStore.set(kv_store, "key1", "some value")
iex> KVStore.get(kv_store, "key1")
"some value"
iex> KVStore.delete(kv_store, "key1")
iex> KVStore.get(kv_store, "key1")
nil

This is a stateful system where the state is the set of key-value pairs stored
in the key-value store created with KVStore.new/0. One thing we could test about
this system is that retrieving an existing key always returns the last value
set for that key or a null value if the last operation was to delete the value,
no matter how many times we set or delete that key. How can we model our

Chapter 7. Property-Based Testing • 214

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

key-value store in order to test this property? We can start with a simple two-
element tuple {key, value} that stores the key we’re interested in and its current
value (or nil if the key hasn’t been set yet). Let’s use pseudocode to see how
we could generate a command assuming we’ve already generated a random
key called random_key:

property_based_testing/misc/stateful_testing.exs
def command do

one_of([
command(:set, [random_key, term()]),
command(:delete, [random_key])

])
end

For every possible command that we can issue on the stateful system, we
need to define what happens to our model. Let’s continue with pseudocode:

property_based_testing/misc/stateful_testing.exs
def set({key, _old_value}, key, new_value) do

{key, new_value}
end

def delete({key, _value}, key) do
{key, nil}

end

Now we also need to define a get command to retrieve the current value for
the key in our model:

property_based_testing/misc/stateful_testing.exs
def get({key, value}, key) do

value
end

We have our commands reflected in the model. Now comes the fun part. We
generate a random list of commands. Then, we execute those commands one
by one both on the model and on the real system. Finally, we verify that the
value stored in our model is the same as the value stored under our key in
the stateful system.

The reason we’re being generic and not showing working code in these
examples is that stream_data still doesn’t provide tools for working with
stateful testing (even if it’s coming up in the future).

The Benefits of Stateful Property-Based Testing
Even if stream_data doesn’t support stateful property-based testing yet,
we still wanted to mention it and go over the basic concepts behind it since
it’s a powerful and useful tool. All of the benefits of property-based testing

report erratum • discuss

Stateful Property-Based Testing • 215

http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/stateful_testing.exs
http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/stateful_testing.exs
http://media.pragprog.com/titles/lmelixir/code/property_based_testing/misc/stateful_testing.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

that we’ve discussed in this chapter apply to stateful property-based testing
as well.

An especially useful behavior of stateful property-based testing is that the
random lists of commands that we generate is shrunk in case of failure. This
means that when a property fails, the framework will present us a small list
of commands with small inputs that cause the failure. This can turn out to
be invaluable. A great testimony of this is Google’s leveldb, where as mentioned
in Joseph Wayne Norton’s slides,4 property-based testing uncovered a sequence
of 17 calls and then 31 calls that would generate ghost keys in the database.
Those were shrunk sequences of commands! Reproducing those bugs would
have been a nightmare for a human.

Wrapping Up
We saw how property-based testing is a powerful tool that can help
strengthen your test suite and increase confidence in your code by testing it
against randomly generated inputs. You learned to use the stream_data library
both for data generation as well as for property-based testing. Then, we looked
at some patterns that can help when designing properties. Finally, we had a
quick look at stateful property-based testing. An important thing to remember
is that property-based testing is not a silver bullet and it doesn’t replace
other kinds of testing, but it can be a great addition to your test suite.

This is the last chapter of the book. You made it! You’re now a skilled tester
of Elixir code. We hope you’ll have fun (or at least productive times) with the
things you learned. Happy testing!

4. http://htmlpreview.github.io/?https://raw.github.com/strangeloop/lambdajam2013/master/slides/Norton-
QuickCheck.html

Chapter 7. Property-Based Testing • 216

report erratum • discuss

http://htmlpreview.github.io/?https://raw.github.com/strangeloop/lambdajam2013/master/slides/Norton-QuickCheck.html
http://htmlpreview.github.io/?https://raw.github.com/strangeloop/lambdajam2013/master/slides/Norton-QuickCheck.html
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

APPENDIX 1

When To Randomize Test Data
Many of the test examples in this book show the use of randomized test data.
This is a topic where experienced software developers have differing opinions.
We’re adding this appendix to help you understand when it’s safe to use
randomized data and to give you enough background to help you decide if
you’ll take that approach.

When setting up data for a test, the values can fall into two categories:
essential data and incidental data. Explaining the difference is easier if we
start with incidental data. Data is incidental if it should have no impact on
the behavior of your code under test. In Unit Tests, we used this example:

when_to_randomize_data/soggy_waffle.ex
defmodule SoggyWaffle doLine 1

alias SoggyWaffle.WeatherAPI-

-

def rain?(city, datetime, weather_fn \\ &WeatherAPI.get_forecast/1) do-

with {:ok, response} <- weather_fn.(city) do5

{:ok, weather_data} =-

SoggyWaffle.WeatherAPI.ResponseParser.parse_response(response)-

-

SoggyWaffle.Weather.imminent_rain?(weather_data, datetime)-

end10

end-

end-

As a reminder, in this example, our test is passing in a test double. The
behavior of the code under test is largely to pass data that it’s received to
other functions. The first time it does this is on line 5, where it passes the
city name it was provided to the test double it was also provided. In this case,
the value bound to the city variable won’t affect the way that the code behaves
in any way. In fact, the important part of the behavior here is that no matter
the value bound to that variable, it’ll always pass that to the test double.

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/when_to_randomize_data/soggy_waffle.ex
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Let’s take a look at the test to better understand how this all works together.

when_to_randomize_data/soggy_waffle_test.exs
test "success: gets forecasts, returns true for imminent rain" doLine 1

now = DateTime.utc_now()-

future_unix = DateTime.to_unix(now) + 1-

expected_city = Enum.random(["Denver", "Los Angeles", "New York"])-

test_pid = self()5

-

weather_fn_double = fn city ->-

send(test_pid, {:get_forecast_called, city})-

«build return data»-

{:ok, %{"list" => data}}10

end-

-

assert SoggyWaffle.rain?(expected_city, now, weather_fn_double)-

-

assert_received(15

{:get_forecast_called, ^expected_city},-

"get_forecast was never called"-

)-

end-

end20

The first line of code executed when the test double is called is send(test_pid,
{:get_forecast_called, city}) (seen on line 8). This code sends the value bound to
that variable back to the test process itself. At the end of the test, on line 16,
the code uses assert_received to verify that the value the code under test passed
to the test double was the same value the test originally sent when exercising
the code.

Our test uses a naive way to randomize the data, using Enum.random/1 to choose
the value passed in and expected to be passed to the double. In an application
with more complete data generators, like Factory.city_name/0 or something similar,
the data set might be larger, but the effect will be the same: the city name
itself is incidental, but the same value must be passed along by the code
under test.

Randomizing the incidental data in this test makes sure that the code under
test isn’t changing that data. Our tests should focus on the outside contracts
of the code under test (keeping our black box), and in this case that means
input data and data sent to another function or process.

Understanding incidental test data will help us define essential test data. In our
previous example, we don’t need to test all the possible input values. If a specific
set of city names would work while others wouldn’t, the data would no longer
be considered incidental but instead would be essential. We would need to test
that every valid city name did work while names not in that list did not.

Appendix 1. When To Randomize Test Data • 218

report erratum • discuss

http://media.pragprog.com/titles/lmelixir/code/when_to_randomize_data/soggy_waffle_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

An example of this in the book is from Chapter 1, Unit Tests, on page 1,
where we used a list comprehension to assert on every valid response value
that we knew of from the weather API we were calling:

when_to_randomize_data/response_parser_test.exs
defmodule SoggyWaffle.WeatherAPI.ResponseParserTest do

use ExUnit.Case
alias SoggyWaffle.WeatherAPI.ResponseParser

weather codes come from: https://openweathermap.org/weather-condition
@thunderstorm_ids {

"thunderstorm",
[200, 201, 202, 210, 211, 212, 221, 230, 231, 232]

}
@drizzle_ids {"drizzle", [300, 301, 302, 310, 311, 312, 313, 314, 321]}
@rain_ids {"rain", [500, 501, 502, 503, 504, 511, 520, 521, 522, 531]}

for {condition, ids} <- [@thunderstorm_ids, @drizzle_ids, @rain_ids] do
test "success: recognizes #{condition} as a rainy condition" do
now_unix = DateTime.utc_now() |> DateTime.to_unix()

for id <- unquote(ids) do
record = %{"dt" => now_unix, "weather" => [%{"id" => id}]}

assert {:ok, [weather_struct]} =
ResponseParser.parse_response(%{"list" => [record]})

assert weather_struct.rain? == true
end

end
end

end

The code under test, ResponseParser.parse_response/1, will behave differently
depending on the response it’s passed. If we’re to prevent regressions, each
valid weather condition ID must be tested. In the test, these IDs are essential
data.

This may all feel like a lead into property-based testing, but it’s important to
understand the difference. When you can know all of the valid values, you
can test explicitly for them, treating them as essential data. When you can’t
know them all but you can define rules about them, you can look to property-
based testing.

We promised to empower you to make a decision about whether you should
randomize your incidental test data or not. First, we’ll discuss reasons to do
it and then follow up with the arguments often made against it.

Randomizing your incidental data has a couple of benefits. If you’re reading
an existing test and you see that data is being randomized, it can be a very

report erratum • discuss

Appendix 1. When To Randomize Test Data • 219

http://media.pragprog.com/titles/lmelixir/code/when_to_randomize_data/response_parser_test.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

quick indicator that the data is incidental. This will help you to reason about
behavior of the code under test from the test itself.

If you write your code before your tests, it’s entirely possible to accidentally
have hard-coded values present. Normally your tests would help you find
this mistake; but if you just wrote the code, that hard-coded value might be
fresh in your memory and you could use the same value in your test. This
will result in a false sense of security that your code under test is behaving
correctly, though it’s actually quite broken. This is another case where ran-
domized data would help.

Randomizing your incidental test data has potential risks as well. People who
are opposed to randomizing often cite examples where the random values
actually cause issues that can be hard to replicate. An example that we’ve
seen is a test that selected a random time zone for a timestamp in the test,
with the code under test converting between time zones. As it turned out, our
test would occasionally pick a time zone that was offset from UTC by half an
hour. The code under test couldn’t handle anything that wasn’t offset by
complete hours. Given that the application only needed to serve time zones
that were offset by whole hours, it could be viewed that the random failures
were an issue with the test and not the code.

The problem was that it took some debugging time to understand why the
test was failing in the first place. Fortunately, ExUnit provides the ability to
pass the seed for randomization to the test run. If the seed reported in the
output of a failed test run is 654321, you can replicate the test run by passing
the flag --seed 654321 when you run mix test. Combined with some additional
test output (IO.inspect/1 calls), we were able to identify the problem. But if we’d
written the test with a known valid value in the first place, we never would’ve
lost time on this issue, and our code still would’ve operated as intended.

Remember that if you’re ever intentionally trying to find values that will break
your code, property-based testing is the correct solution. Randomizing your
test inputs finds specific value dependencies in your code, but it won’t help
you guarantee that your code works for a wide variety of inputs in a single
test run.

Having good failure output from your tests and being able to pass a random
seed can help reduce issues like this, but the more asynchronous your test
runs are, the more likely that you can’t replicate a previous test run exactly.

Whether you prefer to randomize your incidental data is up to you. But either
way, understanding the difference between essential and incidental data will
help you design your tests in a thoughtful and intentional way.

Appendix 1. When To Randomize Test Data • 220

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

APPENDIX 2

Test Life Cycle
Once you get familiar with ExUnit as the tool you use to write Elixir tests,
you’ll probably want to have a deeper understanding of the exact life cycle of
a test and of your whole test suite. In this appendix, we’ll look at how ExUnit
executes your test suite, including setup, running tests, and teardown. We’ll
also learn about how tests, setup callbacks, and teardown callbacks relate to
processes, that is, what the “process architecture” of an ExUnit test suite is.

This knowledge isn’t only useful to improve your understanding of ExUnit as
a tool. At some point, you’ll likely need to come up with unconventional
strategies in order to test particular pieces of code (for a number of possible
reasons). In those cases, it’s important to know which process your test code
is running on, which steps in the testing suite are blocking and which are
asynchronous, and which test processes are linked between each other.

The Life Cycle of an ExUnit Suite
When you run mix test, Mix is essentially compiling your project, loading all
the files ending in _test.exs from the test directory of your project and then
running test/test_helper.exs. Mix is taking care of starting the ExUnit suite for
you. However, there’s no magic involved.

What Mix executes is a single call to ExUnit.start/1 that Mix itself includes in all
test/test_helper.exs files, which typically look like the snippet below:

ExUnit.start()

The documentation for ExUnit.start/1 does a good job at summing up the role of
this function:1

Starts ExUnit and automatically runs tests right before the VM terminates.

1. https://hexdocs.pm/ex_unit/ExUnit.html#start/1

report erratum • discuss

https://hexdocs.pm/ex_unit/ExUnit.html#start/1
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

ExUnit.start/1 relies on System.at_exit/1 to actually run the whole test suite right
before shutting down the virtual machine. This gives you a chance to load
everything you need and compile every test case module before running any
tests. That’s all Mix is doing when you run mix test.

If you want to run the test suite “on demand” and not before shutting down
the VM, you can use ExUnit.run/0. It’s what ExUnit.start/1 also uses under the hood,
after all. However, you’ll need to somehow start the :ex_unit application before
running ExUnit.run/0. A common way of doing this is to call ExUnit.start/1 with the
autorun: false option, which tells ExUnit to not run the test suite before shutting
down the VM. A possible example of manually running the test suite is
included below:

ExUnit.start(autorun: false)

IO.puts("About to run the test suite!")

result = ExUnit.run()

IO.puts("The test suite finished running.")
IO.puts("The result is: #{inspect(result)}")

To run some code after your ExUnit suite finishes running, you can use the
ExUnit.after_suite/1 callback available since Elixir 1.8. Before Elixir 1.8, you
would’ve used System.at_exit/1 directly, but ExUnit.after_suite/1 gives you handy
additional information about the results of the suite itself. ExUnit.after_suite/1
takes a callback function and runs that function when the suite finishes
executing. The callback function must take one argument, a map that contains
non-negative integers representing the numbers of different categories of tests
in the suite.

%{
excluded: 2,
failures: 1,
skipped: 0,
total: 84

}

You can call ExUnit.after_suite/1 as many times as you want. All callbacks that
you register will be executed, in reverse order to how you registered them, at
the end of the test suite. All the callbacks are executed sequentially in the
same process that calls ExUnit.run/0. If you use ExUnit.start/1, all the callbacks are
going to be executed in the separate process that System.at_exit/1 creates to
execute its callback.

ExUnit.after_suite/1 is useful for different things, but we found it most useful for
any sort of teardown or notification. You can use some Internet of Things

Appendix 2. Test Life Cycle • 222

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

magic to make a smart light in your house turn red if there are any failures
in the suite. You can use it to delete all the temporary directories you set up
in your tests. Your imagination is the limit.

We looked at code and callbacks related to the ExUnit suite as a whole. Let’s
move on and learn how cases are executed.

Test Cases
Every module whose name ends with a trailing Test and that contains a call
to use ExUnit is considered a test case. A test case is essentially a collection of
setup callbacks and tests.

The most important thing to know here is that test cases can be executed
either concurrently or sequentially in relation to other test cases. All the test
cases that use the async: true option in use ExUnit are executed concurrently.
Then, the rest of the test cases are executed sequentially (in the order they
were defined), by default in random order.

As we mentioned, a test case by itself doesn’t contain any logic. It’s only a
container for setup callbacks and tests. The execution of a test case goes
like this:

1. All setup_all callbacks are executed.
2. All tests are executed with their test-specific setup and teardown callbacks.

report erratum • discuss

Test Cases • 223

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Let’s start from setup_all. All setup_all callbacks are executed in the order they’re
defined in the test case, and they’re executed in the same process. Essentially,
before running any tests, the test case spawns a process, runs all the setup_all
callbacks in that process, and then starts running tests.

After the setup_all callbacks, the test case runs tests. Tests inside a single test
case are always run sequentially, by default in random order (unless a suite
seed is provided). If you’re curious as to why single tests are not run in parallel,
the reason is performance: in most cases, single tests are quick enough that
the overhead of executing them in parallel and each in its own process is
bigger than the time it takes to run the tests.

The only thing left to understand is the life cycle of single tests.

Executing Tests
When executing a single test, the test case does roughly this:

1. Runs all the setup callbacks in the order they were defined.
2. Runs the test body.
3. Runs all the on_exit callbacks in the order they were registered.

Let’s look at each of these steps separately.

The first thing a test case does when running a test is spawn a new process
to run that test in. All the setup callbacks are run sequentially inside that
process.

After the setup callbacks are executed, the test case runs the body of the test
itself inside the test process.

Once the test body exits (by finishing or by exiting explicitly, for example
through an exception), it’s time to run the on_exit callbacks. A new process is
spawned for the purpose of running all on_exit callbacks. All on_exit callbacks
are executed in that process, one after the other (that is, sequentially). on_exit
callbacks are not executed in the test process because, after all, the test
process just exited so it’s not alive anymore.

An Example and a Drawing
In this short section, we’ll provide a very artificial example of a test case with
some tests, setup callbacks, and teardown callbacks in it. We’ll also provide
a visual representation of the processes involved in running this test case,
as well as the output of running the test case. You can run this file yourself
and see the results by calling elixir test_case_example.exs.

Appendix 2. Test Life Cycle • 224

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

test_lifecycle/test_case_example.exs
We use an empty list of formatters so that ExUnit doesn't
output anything on the standard output.
ExUnit.start(autorun: false, formatters: [])

defmodule TestCaseExampleTest do
use ExUnit.Case

setup_all do
IO.puts("setup_all #1 in process: #{inspect(self())}")

end

setup_all do
IO.puts("setup_all callback #2 in process: #{inspect(self())}")

end

setup do
IO.puts("setup callback #1 in process: #{inspect(self())}")

end

setup do
IO.puts("setup callback #2 in process: #{inspect(self())}")

end

test "#1" do
on_exit(fn ->
IO.puts(

"on_exit callback #1 (test #1) in process: #{inspect(self())}"
)

end)

on_exit(fn ->
IO.puts(

"on_exit callback #2 (test #1) in process: #{inspect(self())}"
)

end)

IO.puts("test #1 in process: #{inspect(self())}")
end

test "#2" do
IO.puts("test #2 in process: #{inspect(self())}")

end
end

result = ExUnit.run()

IO.puts("The return value of ExUnit.run/0 is:")
IO.inspect(result)

The output is below.

setup_all #1 in process: #PID<0.109.0>
setup_all callback #2 in process: #PID<0.109.0>
setup callback #1 in process: #PID<0.110.0>
setup callback #2 in process: #PID<0.110.0>

report erratum • discuss

An Example and a Drawing • 225

http://media.pragprog.com/titles/lmelixir/code/test_lifecycle/test_case_example.exs
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

test #2 in process: #PID<0.110.0>
setup callback #1 in process: #PID<0.111.0>
setup callback #2 in process: #PID<0.111.0>
test #1 in process: #PID<0.111.0>
on_exit callback #2 (test #1) in process: #PID<0.112.0>
on_exit callback #1 (test #1) in process: #PID<0.112.0>
The return value of ExUnit.run/0 is:
%{excluded: 0, failures: 0, skipped: 0, total: 2}

Maybe the visual representation below also helps:

We hope that this appendix helps when you’re dealing with trickier tests or
if you just want to understand the exact life cycle of a whole ExUnit suite,
down to the test cases and the single tests within them.

Appendix 2. Test Life Cycle • 226

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

APPENDIX 3

Test Coverage
When writing tests, it’s useful to be able to measure the impact of your tests.
You want to know that the tests you’re writing are exercising your code.
Moreover, you want to know that the codebase has as few “blind spots” as
possible, meaning code that’s never executed when running tests. Code could
be run by different levels of testing: unit tests, integration tests, and end-to-
end tests. Usually, many parts of the codebase are exercised by more than
one level of testing, as it’s common that higher levels of testing (like end-to-
end testing) cover large parts of the codebase.

The most commonly used metric to measure how much code your tests are
exercising is test coverage, which is the subject of this appendix. It’s a percent-
age that measures the relative amount of code in your codebase that’s run
by tests. For example, a test coverage of 60% means that six out of every ten
lines of your code are executed at least once during the test suite, but four
are not executed at all. Test coverage support is usually part of the language’s
test tooling, either as a built-in functionality or as an additional tool. Measur-
ing coverage is a language-specific problem and, as you can imagine, requires
deep language integration in order to find out what lines of source code are
being executed during a test suite.

Elixir and Erlang provide built-in support for test coverage. Mix and ExUnit
ship with test coverage functionalities, providing a default built-in test coverage
tool as well as support for external test coverage tools. In this appendix, we’re
going to talk about the default test coverage tool as well as a third-party tool
that integrates with Coveralls.1 We’re gonna end the appendix looking at the
shortcomings of test coverage tools that are specific to Elixir.

1. https://coveralls.io

report erratum • discuss

https://coveralls.io
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Built-In Test Coverage
ExUnit provides a built-in test coverage tool. You can use it right out of the
gate in a Mix project via the --cover flag passed to mix test.

Let’s use the code we wrote for Chapter 1, Unit Tests, on page 1, to try things
out. Open up the unit_tests/soggy_waffle directory in your terminal and run mix
test --cover:

> mix test --cover
Cover compiling modules ...
...............

Finished in 1.8 seconds
15 tests, 0 failures

Randomized with seed 384102

Generating cover results ...

Percentage	Module
0.00%	SoggyWaffle.SmsApi
75.00%	SoggyWaffle
85.71%	SoggyWaffle.Weather
100.00%	SoggyWaffle.WeatherAPI
100.00%	SoggyWaffle.WeatherAPI.ResponseParser
-----------	--------------------------
85.00%	Total

Generated HTML coverage results in "cover" directory

As seen in the output above, we get a list of the modules contained in our
Mix project. Each module is listed alongside a percentage: that’s our code
coverage ratio right there. A result of 100% means that every single line in a
module is executed at least once during our test run. A result of 0% means
that none of the code in that module has been executed during the test run.

The built-in code coverage tool also generates a bunch of HTML report files
(by default in the cover directory). Let’s open the HTML file for the SoggyWaf-
fle.Weather module, you can see what it looks like in the figure on page 229.

Reading this report is straightforward. The lines highlighted in green are the
ones that’ve been executed during the test run. Each of the green lines has
a number to the left that shows how many times the line has been executed.
The lines highlighted in red are the ones that have not been executed during
the test run. All the other lines are lines that don’t account for any coverage
for various reasons. For example, function definitions aren’t counted toward
code coverage and neither are lines that contain multiline expressions.

Appendix 3. Test Coverage • 228

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Code coverage reports like the HTML ones generated by mix test --cover are
fundamental in order to spot and address potential problems. Knowing only
the coverage percentage of a module is useful to have an idea of which modules
might need more attention, but a detailed line-by-line report allows us to
know exactly what tests we might be missing in order to increase the coverage
of our code.

A few aspects of the coverage can be configured through a handful of options
to return from the project/0 function of a mix.exs file. An option that’s often
useful is the :ignore_modules option. In our example above, the SoggyWaffle.SmsApi
module has 0% coverage because it’s the “real” implementation of the HTTP
API that reaches out to an external system, and we don’t have any integration
tests or end-to-end tests executing it. Let’s pretend we don’t want to write
such tests and that we don’t want to count this particular module toward the
total coverage. We can include it in the list of ignored modules in mix.exs:

defmodule SoggyWaffle.MixProject do
use Mix.Project

def project do
[

app: :soggy_waffle,

report erratum • discuss

Built-In Test Coverage • 229

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

version: "0.1.0",
elixir: "~> 1.9",
start_permanent: Mix.env() == :prod,
deps: deps(),
test_coverage: [ignore_modules: [SoggyWaffle.SmsApi]]➤

]
end

«rest of mix.exs contents»
We can see this in action when running mix test --cover again:

> mix test --cover
Cover compiling modules ...
...............

Finished in 1.6 seconds
15 tests, 0 failures

Randomized with seed 969266

Generating cover results ...

Percentage	Module
75.00%	SoggyWaffle
85.71%	SoggyWaffle.Weather
100.00%	SoggyWaffle.WeatherAPI
100.00%	SoggyWaffle.WeatherAPI.ResponseParser
-----------	--------------------------
89.47%	Total

Generated HTML coverage results in "cover" directory

The SoggyWaffle.SmsApi module isn’t present anymore in the report, and the total
code coverage went up a few percentage points.

Coveralls and the Excoveralls Library
The built-in test coverage tool provides a useful set of functionalities out of
the box: percentage summaries and line-by-line HTML visual reports. However,
many of us might want a more “complete” package, with additional function-
ality, such as hosting for those HTML reports, CI-friendly integrations, and
insights into test coverage history of a given project.

A common service that provides such features is Coveralls.2 This service allows
you to “post” test coverage results on their platform and then browse projects,
see insights, browse file-by-file and line-by-line reports, and more. The service
is free for open-source projects and has a paid option for businesses.

2. https://coveralls.io

Appendix 3. Test Coverage • 230

report erratum • discuss

https://coveralls.io
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

The Excoveralls library integrates Elixir projects with Coveralls and allows
reporting of test coverage to Coveralls.3 To try it out, let’s add it as a depen-
dency in our mix.exs file and set it as the test coverage tool via the :tool option
under :test_coverage:

defmodule SoggyWaffle.MixProject do
use Mix.Project

def project do
[

app: :soggy_waffle,
version: "0.1.0",
elixir: "~> 1.9",
start_permanent: Mix.env() == :prod,
deps: deps(),
test_coverage: [tool: [ExCoveralls]],➤

]
end

defp deps do
[
{:excoveralls, "~> 0.13.0", only: :test}
«rest of the dependencies»

]
end

«rest of mix.exs contents»
Now, running mix test --cover will use Excoveralls as its ”coverage tool” instead
of the built-in tool:

mix test --cover
Compiling 5 files (.ex)
Generated soggy_waffle app
...............

Finished in 1.5 seconds
15 tests, 0 failures

Randomized with seed 131302

COV FILE LINES RELEVANT MISSED
100.0% lib/soggy_waffle.ex 11 3 0
100.0% lib/soggy_waffle/weather.ex 24 5 0
100.0% lib/soggy_waffle/weather_api.ex 20 4 0
100.0% lib/soggy_waffle/weather_api/response_pa 30 4 0
[TOTAL] 100.0%

This looks very similar to what we saw with the built-in tool. The coverage
percentages are different because this tool calculates code coverage differently,

3. https://github.com/parroty/excoveralls

report erratum • discuss

Coveralls and the Excoveralls Library • 231

https://github.com/parroty/excoveralls
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

but the report style is alike. If you want HTML reports as well, you can run
MIX_ENV=test mix coveralls.html instead. Excoveralls also provides other output
formats, such as JSON (MIX_ENV=test mix coveralls.json) and XML (MIX_ENV=test mix
coveralls.xml), which allow developers to integrate the output of test coverage
runs in different systems and platforms programmatically.

As far as integrations go, Excoveralls provides a few ways to post coverage
results to Coveralls. You can post to Coveralls from common CI platforms,
such as CircleCI4 (mix coveralls.circle) or Semaphore5 (mix coveralls.semaphore).
Additionally, Excoveralls allows you to post to any Coveralls-compatible host
via mix coveralls.post. For example, OpenCov6 is a solid self-hosted coverage
platform compatible with the Coveralls API.

We briefly looked at what test coverage is, why it’s useful, and how it can be
used for Elixir projects. Test coverage is just one possible tool to increase
confidence in your test suite, but it’s not necessarily a guarantee that your
test suite is solid and well written. However, it can be useful to spot areas of
your code that aren’t well tested or, at the other end of the spectrum, areas
of your code that are “hot paths” and are executed many times during testing.
In our experience, a sky-high test coverage (somewhere around 95% and
above) doesn’t necessarily translate to a healthy and functioning codebase.
Once the code coverage is high enough, striving to increase it might start to
have diminishing returns. On the other hand, a low coverage (for example,
somewhere around 40% or 50%) can point to an undertested codebase that
might need some work. In general, the usefulness of test coverage varies from
project to project, but it’s a useful tool to have in our testing tool belt.

4. https://circleci.com
5. https://semaphoreci.com
6. https://github.com/danhper/opencov

Appendix 3. Test Coverage • 232

report erratum • discuss

https://circleci.com
https://semaphoreci.com
https://github.com/danhper/opencov
http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Bibliography

[TD21] Bruce A. Tate and Sophie DeBenedetto. Programming Phoenix LiveView.
The Pragmatic Bookshelf, Raleigh, NC, 2021.

report erratum • discuss

http://pragprog.com/titles/lmelixir/errata/add
http://forums.pragprog.com/forums/lmelixir

Index

A
anonymous functions

assertions in, 174
in dependency injection,

29
in on_exit block, 14

APIs, third-party, see third-
party APIs and services

application code, 2, see al-
so example applications;
test coverage

documentation for, tests
as, 9

test scope (black box) for,
2–4, 70–71, 74, 86–89,
173

application environment, de-
pendency injection using,
26, 42–43, 52–53

Application.compile_env/3 function,
52

Application.get_env/3 function,
42, 52

assert macro, 7

assert_broadcast/2 function, 185

assert_push/3 function, 185

assert_reply/4 function, 185

assert_values_for/1 function, 165,
168, 173

assertion tables, 190

assertions, 7–8
in anonymous functions,

47, 174
catch_exit and catch_throw

helpers for, 80
custom error message

with, 19

with Floki, 177
with fuzzy match opera-

tor, 171
in list comprehensions,

7–8
for list order, 111
in mock functions, 48
multistep, 107
on return value and side

effects, 163
pattern matching with, 7–

8
running multiple times in

interval, 96
with test doubles, 9

automated testing, xiii, 100

B
.bak.exs extension, 5, 157

BEAM (Erlang virtual ma-
chine), xiv

behaviours, interfacing to ex-
ternal dependencies, 43

black box (test scope), 2–4,
70–71, 74, 86–89, 173

Bypass library, 58

Bypass.expect_once/4 function,
59–60

C
callbacks, GenServer, 67–69

case templates, 118–120,
144–145

cast/3 function, 133

catch_exit macro, 80

catch_throw macro, 80

changesets, see Ecto change-
sets

check all macro, 202–204

CI (continuous integration)
server, 62

circular code pattern, 209

code under test, 2

ConnCase test case, 160–162

continuous integration (CI)
server, 62

controllers, 36–37, 157–161

--cover flag, 228–230

Coveralls service, 230–232

Cowboy library, 56, 155

CRUD actions
create, testing, 145–149
delete, testing, 152–153
read (get), testing, 149–

150
update, testing, 150–152

D
data validation, Ecto, 102,

121–125

database, Ecto, 101
adding to application,

125–129
case templates for, 144–

145
create, testing, 145–149
delete, testing, 152–153
factories for, 142–144
migrating, 127–129, 138
read (get), testing, 149–

150
repo used with, 126–129
Sandbox for, 136–139
testing interactions with,

125–133

testing schemas using,
133–136

update, testing, 150–152
updating schema for,

129–130

database, external, 37–39

dependencies, see also exter-
nal dependencies

data from, manipulated
before returning, 23–24

including in black box, 3–
4

within a system, 36–37

dependency double (test dou-
ble), 26, 39–40

benefits of, 53
fakes for, 44
integration tests using,

39–53
mocks for, 44–50
order of test stages for, 9
performance with, 52–53
stubs for, 44–48, 50–51
types of, 44
unit tests using, 26–32

dependency injection (DI)
methods for, 26
passing a function or

module, 26–29, 41
passing a value, 29–32
through application envi-

ronment, 26, 42–43,
52–53

describe block, 10

design patterns, for proper-
ties, 208–212

DI, see dependency injection

Docker, 125–129

doctests, 15

documentation, tests as, 9

double, see dependency dou-
ble (test double)

DRY (Don’t Repeat Yourself)
principle, 17

E
Ecto, 101–102

as part of Phoenix, 155
case templates for, 118–

120, 144–145
factories for, 142–144
self-updating tests for,

109–118
test coverage with, 101,

147

Ecto changesets
case templates using,

118–120, 144–145
in CRUD tests, 148, 150
in self-updating tests,

115
testing schema using,

102–109
in tests with database

calls, 133–136

Ecto queries, 141
create, testing, 145–149
delete, testing, 152–153
read (get), testing, 149–

150
update, testing, 150–152

Ecto Sandbox, 136–139

Ecto schemas
case templates for, 118–

120, 144–145
contents of, flexibility

with, 104
embedded, 103
reflection functions, 103,

111
self-updating tests for,

109–118
testing as data validator,

121–125
testing database interac-

tions with, 125–133
testing through database

calls, 133–136
testing using changesets,

102–109
updating to work with

database, 129–130
validation using, 102

Ecto SQL, 126

Ecto.Adapters.SQL.Sandbox,
see Ecto Sandbox

Elixir, testing tools, xiv, see
also Ecto queries; Ecto
schemas; end-to-end tests;
ExUnit; integration tests;
OTP; Phoenix; processes;
property-based tests; unit
tests

embedded schemas, Ecto,
103

end-to-end tests, 64–65

Enum.random/1 function, 29,
191, 218

Enum.take/2 function, 191

Erlang, xiv

Erlang virtual machine
(BEAM), xiv

error messages, custom, 19

essential test data, 218–219

example applications, xvi–xvii
NotSkull, 157–186
RollingAverage, 67–80
SoggyWaffle, xvi, 5–8, 15–

22, 26–32, 40–51, 54–
65, 81–89, 228–230

example-based tests (tabular
tests), 189–190, 213

Excoveralls library, 230–232

exercise stage, 9, 224

ExMachina library, 142–144

expectations, 28, 47, 59–60,
114, 172

exploratory manual testing,
98–99

.exs extension, 6, 157

external dependencies
end-to-end tests for, us-

ing real dependency, 64
integration tests for, us-

ing behaviours, 43–44
integration tests for, us-

ing dependency double,
39–43

integration tests for, us-
ing real owned depen-
dency, 37–39

integration tests for, us-
ing real third-party de-
pendency, 54–64

external dependency double,
see dependency double (test
double)

ExUnit, xiv, 4–9
built-in test coverage,

228–230
supervised processes,

starting, 78–79
supervised processes,

stopping, 79
test cases, 223–224
test life cycle, 221–226

ExUnit.after_suite/1 callback, 222–
223

ExUnit.Callbacks.start_supervised!/1
function, 79

ExUnit.Callbacks.start_supervised/1
function, 78

ExUnit.Callbacks.stop_supervised!/1
function, 79

Index • 236

ExUnit.Callbacks.stop_supervised/1
function, 79

ExUnit.run/0 function, 222

ExUnit.start/1 function, 221–222

ExUnitProperties library, 201

ExVCR library, 60–63

F
factories for test setup, 142–

144

failure messages, see error
messages

fakes, 44

fixture files, 15–17

Floki library, 176

functional core, isolating, 71–
77

functions, see also specific
functions

anonymous functions,
14, 29

compared to macros, 7
helper functions, 31–32,

112–113, 115–116,
118–119, 144, 165

passing for dependency
injection, 26–29, 41

pure functions, 3, 22–25,
71–77

reflection functions for
Ecto schemas, 103,
111

fuzzy match operator, 171

G
gen all macro, 204–205

generators, 195–201
binding, 196–197
filtering, 196
mapping, 196
shrinking by, 208
size of, 197–201

GenServer, 67–69
adding elements, testing,

69, 72
averaging elements, test-

ing, 71, 74
callbacks, 67–69
initialization, testing, 69,

75
isolating functional core,

71–77
periodic actions, testing,

81–89
process crashes, testing,

93–100

process life cycle, control-
ling, 77–80

singleton resources, test-
ing, 89–93

ticks, sending, 83–88

H
helper functions

custom, 165
moving to factory, 144
for self-updating tests,

112–113, 115–116
in shared test code, 118–

119
in tests, 31–32

HTTP APIs
end-to-end tests for, 65
exploratory manual test-

ing for, 98
property-based testing

for, 211
recording requests with

cassettes for, 60–63
sending real requests to,

55
testing actual interation

with, 54–64
testing approach for,

choosing, 63–64
testing with ad-hoc HTTP

server, 55–60
testing with dependency

doubles, 39–53

HTTP applications, 36–37, see
also Phoenix

HTTPoison, 55, 61

I
incidental test data

compared to essential
test data, 217–218

whether to randomize,
219–220

input space, 192

integration tests, 35–37
for components within a

system, 36–37
for external dependen-

cies, using behaviours,
43–44

for external dependen-
cies, using dependency
double, 39–43

with real owned external
dependencies, 37–39

with real third-party exter-
nal dependencies, 54–
64

interface, module acting as,
40–42

isolating code, 3, 25, see al-
so dependency double; de-
pendency injection; pure
functions

J
JSON files, 15–17

JSON Web Tokens (JWT), 159

JSON-based endpoints, with
Phoenix, 156–160

controllers, testing, 157–
158

edit endpoint, testing,
158–160

error tests, 162–164
plugs, presence of, 166–

169
success tests, 164–166
update endpoint, testing,

160–161

JWT (JSON Web Tokens), 159

L
list comprehensions, 7–8, 18–

19

M
macros, compared to func-

tions, 7

manual testing, xiii, 98–99

mix test command, 8, 221

mocks, 44–50

module attributes, 5, 17

Mox library, 44–53, 82–93,
162, 176–177

Mox.expect/4 function, 86, 88

Mox.stub/3 function, 84

Mox.stub_with/2 function, 90

N
NotSkull application example,

157
JSON-based endpoints,

testing, 158–162
Phoenix Channels, test-

ing, 178–186
server-rendered HTML,

testing, 169–177

O
on_exit callback, 14–15

online resources
doctests, 15
Elixir and ExUnit, xvii

Index • 237

example code, xvii
macros, 7
Phoenix libraries, 155
stream_data framework,

193
sups library, 99

oracle model pattern, 209–
210

OTP, see GenServer; supervi-
sors

P
pattern matching, with asser-

tions, 7–8

performance
choosing test double at

runtime, 52–53
of tests run in parallel,

224

Phoenix, 155–157
ConnCase test case for,

160–162
JSON-based endpoints

with, 156–169
libraries in, 155
plugs with, 156
server-rendered HTML

with, 156, 169–177
web sockets (Phoenix

Channels) with, 156,
177–186

Phoenix Channels, 156, 177–
178

channels, testing, 182–
186

UserSocket, testing, 178–
182

Phoenix LiveView, 156

Plug library, 56, 155–156

plugs, 156
testing, 159
testing for presence of,

166–169

Postgres database, 125–129

Process.send_after/3 function, 83

Process.sleep/1 function, 85

property-based tests, 187–
189

benefits of, 192, 215
compared to example-

based tests, 189–190
data generation for, 195–

201
failure of, 205–207
input space for, 192

properties for, designing,
208–212

properties for, writing,
190–192, 201–205

reimplementing logic for,
212

shrinking by, 205–208
for stateful systems, 214–

216
stream_data framework

for, 193–195
sufficiency of, 212–213
for supervision trees, 99
when to use, 219–220

pure functions, 22
including in black box, 3
refactoring toward, 23–

25, 71–77
unit tests for, 22–23

Q
QA (Quality Assurance), xiii

R
Ranch library, 155

randomized test data, see al-
so property-based tests

with Enum.random/1 func-
tion, 29, 191, 218

when to use, 217–220

redirected_params/1 function, 173

reflection functions, Ecto
schemas, 103, 111

refute macro, 7

regressions, xiii, 2

repo application, 126–129

RollingAverage application
example, 67–69

adding elements, testing,
69, 72

averaging elements, test-
ing, 71, 74

initialization, testing, 69,
75

isolating functional core,
71–77

routers, 36–37

S
schemas, see Ecto schemas

self-updating tests, 109–118

server-rendered HTML, with
Phoenix, 156, 169–170

create endpoint error
case, testing, 175–177

create endpoint success
case, testing, 171–173

new endpoint, testing,
170–171

third-party calls, testing,
174–175

services, third-party,
see third-party APIs and
services

setup block, 11–13

setup stage, 8, 11, 223–224

setup_all block, 13–17

shared state
setup stage for, 8
teardown stage for, 9

shared test code, case tem-
plates for, 118–120

smoke-testing pattern, 210–
212

SMS alerts, 81–89

SoggyWaffle application exam-
ple, xvi

custom error messages,
19

dependency doubles in,
40–44

end-to-end tests for, 64–
65

error cases, covering, 21–
22

list comprehensions in,
18–19

mocks in, 45–50
module attributes in, 5,

17
passing dependency as

parameter, 26–32
periodic actions with

GenServer, 81–89
process crashes, testing,

93–100
real interaction with

third-party services,
54–63

setup_all block in, 15–17
singleton resources, test-

ing, 89–93
SMS alerts, 81–89
stubs in, 45–48, 50–51
success cases, covering,

19
test coverage for, 228–

230
unit tests for, 5–8

stateful systems, property-
based tests for, 214–216

Index • 238

stream_data framework, 193–
195

data generation, 195–201

StreamData.bind/2 function, 196–
197, 208

StreamData.check/2 macro, 202

StreamData.integer/0 function,
195, 198

StreamData.list_of/1 function, 196

StreamData.listof/1 function, 198

StreamData.map/2 function, 196

StreamData.resize/2 function, 199

StreamData.scale/2 function, 199

StreamData.sized/1 function, 200

stubs, 1, 44–48, 50–51

supervision trees
at application level, test-

ing in, 88, 90
separate, for testing envi-

ronment, 91
starting, 78
testing, 94, 97–100

supervisors
starting, 78–79
stopping, 79
testing, 93, 97–100

sups library, 99

system model, 214–215

System.at_exit/1 function, 222

T
tabular tests (example-based

tests), 189–190, 213

TDD (test-driven develop-
ment), 2

teardown stage, 9
ExUnit.after_suite/1 callback

for, 222–223
on_exit callback for, 14–

15, 224

test cases, 223–224

test coverage, 15–22, 101,
147, 166, 227–232

test data
essential, 218–219
generating with stream_

data, 195–201

incidental, 217–220
when to randomize, 217–

220

test double, see dependency
double (test double)

test scope (black box), 2–4,
70–71, 74, 173

test-driven development
(TDD), 2

tests, see also Ecto queries;
Ecto schemas; end-to-end
tests; ExUnit; integration
tests; OTP; Phoenix; pro-
cesses; property-based
tests; unit tests

as documentation, 9
automated, xiii
Elixir tools for, xiv
execution of, 223–226
expectations in, 28, 47,

59–60, 114, 172
helper functions in, 31–

32
life cycle of, 221–226
manual, xiii
organization of, 9–17
randomized data in, 29
reasons for, xiii, 2
running on demand, 222
scope of (black box), 2–4,

70–71, 74, 86–89, 173
self-updating, 109–118
shared test code, 118–

120
stages of, 8–9

third-party APIs and services
end-to-end tests for, 65
exploratory manual test-

ing for, 98
non-HTTP services, test-

ing, 64
property-based testing

for, 211
recording requests with

cassettes for, 60–63
sandbox or staging area

for, 55
sending real requests to,

55
testing actual interation

with, 54–64
testing approach for,

choosing, 63–64

testing with ad-hoc HTTP
server, 55–60

testing with dependency
doubles, 39–53

:timer.send_interval/3 function, 83

Twilio, 81–89

U
unique_constraint/2 function,

130, 134

unit tests, 1–4
creating, 6–8
custom error messages

in, 19
error cases, covering, 21–

22
expectations in, 28
helper functions in, 31–

32
list comprehensions in,

18–19
module attributes in, 17
organization of, 9–17
running, 8
scope of (black box), 2–4
stages of, 9
success cases, covering,

19

use cases, covering, 19–22

user interface tests, test
stages for, 9

V
validate_inclusion/4 function, 133

validate_length/3 function, 133

validate_required/2 function, 133

validate_subset/4 function, 133

validation, Ecto, 102, 121–
125

verify stage, 9, see also asser-
tions

W
web sockets, with Phoenix,

156, 177–178
channels, testing, 182–

186
UserSocket, testing, 178–

182

web-server applications,
see Phoenix

Index • 239

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2021 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2021

https://pragprog.com

Kotlin and Android Development featuring Jetpack
Start building native Android apps the modern way in
Kotlin with Jetpack’s expansive set of tools, libraries,
and best practices. Learn how to create efficient, re-
silient views with Fragments and share data between
the views with ViewModels. Use Room to persist valu-
able data quickly, and avoid NullPointerExceptions
and Java’s verbose expressions with Kotlin. You can
even handle asynchronous web service calls elegantly
with Kotlin coroutines. Achieve all of this and much
more while building two full-featured apps, following
detailed, step-by-step instructions.

Michael Fazio
(444 pages) ISBN: 9781680508154. $49.95
https://pragprog.com/book/mfjetpack

Learn to Program, Third Edition
It’s easier to learn how to program a computer than it
has ever been before. Now everyone can learn to write
programs for themselves—no previous experience is
necessary. Chris Pine takes a thorough, but lightheart-
ed approach that teaches you the fundamentals of
computer programming, with a minimum of fuss or
bother. Whether you are interested in a new hobby or
a new career, this book is your doorway into the world
of programming.

Chris Pine
(230 pages) ISBN: 9781680508178. $45.95
https://pragprog.com/book/ltp3

https://pragprog.com/book/mfjetpack
https://pragprog.com/book/ltp3

Intuitive Python
Developers power their projects with Python because
it emphasizes readability, ease of use, and access to a
meticulously maintained set of packages and tools.
The language itself continues to improve with every
release: writing in Python is full of possibility. But to
maintain a successful Python project, you need to know
more than just the language. You need tooling and in-
stincts to help you make the most out of what’s avail-
able to you. Use this book as your guide to help you
hone your skills and sculpt a Python project that can
stand the test of time.

David Muller
(140 pages) ISBN: 9781680508239. $26.95
https://pragprog.com/book/dmpython

Modern CSS with Tailwind
Tailwind CSS is an exciting new CSS framework that
allows you to design your site by composing simple
utility classes to create complex effects. With Tailwind,
you can style your text, move your items on the page,
design complex page layouts, and adapt your design
for devices from a phone to a wide-screen monitor.
With this book, you’ll learn how to use the Tailwind
for its flexibility and its consistency, from the smallest
detail of your typography to the entire design of your
site.

Noel Rappin
(90 pages) ISBN: 9781680508185. $26.95
https://pragprog.com/book/tailwind

https://pragprog.com/book/dmpython
https://pragprog.com/book/tailwind

Essential 555 IC
Learn how to create functional gadgets using simple
but clever circuits based on the venerable “555.” These
projects will give you hands-on experience with useful,
basic circuits that will aid you across other projects.
These inspiring designs might even lead you to develop
the next big thing. The 555 Timer Oscillator Integrated
Circuit chip is one of the most popular chips in the
world. Through clever projects, you will gain permanent
knowledge of how to use the 555 timer will carry with
you for life.

Cabe Force Satalic Atwell
(104 pages) ISBN: 9781680507836. $19.95
https://pragprog.com/book/catimers

Resourceful Code Reuse
Reusing well-written, well-debugged, and well-tested
code improves productivity, code quality, and software
configurability and relieves pressure on software devel-
opers. When you organize your code into self-contained
modular units, you can use them as building blocks
for your future projects and share them with other
programmers, if needed. Understand the benefits and
downsides of seven code reuse models so you can
confidently reuse code at any development stage. Cre-
ate static and dynamic libraries in C and Python, two
of the most popular modern programming languages.
Adapt your code for the real world: deploy shared
functions remotely and build software that accesses
them using remote procedure calls.

Dmitry Zinoviev
(64 pages) ISBN: 9781680508208. $14.99
https://pragprog.com/book/dzreuse

https://pragprog.com/book/catimers
https://pragprog.com/book/dzreuse

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/lmelixir
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/lmelixir
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Andrea Leopardi
	Jeffrey Matthias

	Introduction
	Why Do We Need a Book for Testing in Elixir?
	Who This Book Is For
	How to Read This Book
	About the Code
	Online Resources

	1. Unit Tests
	Defining the Unit in Unit Test
	Testing with ExUnit
	Organizing Your Tests
	Creating Comprehensive Test Coverage
	Testing Pure Functions
	Refactoring Toward Pure Functions
	Isolating Code
	Wrapping Up

	2. Integration and End-to-End Tests
	What Is an Integration Test?
	Testing Against Real External Dependencies
	Dependency Doubles
	Interfacing to External Dependencies with Behaviours
	Test Doubles: Stubs, Mocks, and Fakes
	The Hidden Benefits of Dependency Doubles
	Testing the Actual Interaction with Services
	End-to-End Tests
	Wrapping Up

	3. Testing OTP
	Testing a GenServer
	Controlling the Life Cycle of OTP Processes in Tests
	Testing Periodic Actions
	Testing Singleton Resources
	Testing Resiliency
	Wrapping Up

	4. Testing Ecto Schemas
	Testing Your Schema Through Changesets
	Refactoring to Increase Test Maintainability
	Creating a SchemaCase for Shared Test Code
	Testing an Ecto Schema as a Data Validator
	Testing an Ecto Schema for Database Interactions
	Testing Your Schema Through Database Calls
	Setting Up Sandbox Mode
	Wrapping Up

	5. Testing Ecto Queries
	Creating a Factory to Help with Setup
	Adding a DataCase to Help with Setup
	Testing Create
	Testing Read
	Testing Update
	Testing Delete
	Wrapping Up

	6. Testing Phoenix
	The Role of Phoenix in Your Application
	Testing JSON-Based APIs
	Testing Server-Rendered HTML Applications
	Testing Phoenix Channels
	Wrapping Up

	7. Property-Based Testing
	Property-Based Testing in Practice in the Elixir Standard Library
	Example-Based Tests
	Introducing Randomness and Property-Based Testing
	Data Generation
	Writing Properties
	Shrinking
	Strategies for Designing Properties
	Stateful Property-Based Testing
	Wrapping Up

	A1. When To Randomize Test Data
	A2. Test Life Cycle
	The Life Cycle of an ExUnit Suite
	Test Cases
	Executing Tests
	An Example and a Drawing

	A3. Test Coverage
	Built-In Test Coverage
	Coveralls and the Excoveralls Library

	Bibliography
	Index
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

