

Early Praise for Adopting Elixir

Adopting Elixir is brilliant: a practical, no-frills guide for all teams who want to
use Elixir and get it right the first time. All ideas completely overlap with my
consulting experience and I’ll be sure to recommend it to all customers I work
with.

➤ Claudio Ortolina
Consultant and Head of Elixir, Erlang Solutions Ltd.

Adopting Elixir is the comprehensive guide I only wish we, one of the earliest
adopters of Elixir, had available years ago. Whether you are still considering Elixir
or actively coding and scaling your team, this book distills the lessons we learned
into a detailed and thorough adoption plan.

➤ David Marks
Senior Director of Engineering, Bleacher Report

Required reading for anyone considering or planning to use Elixir in production.
It picks up where other books left off, with great higher-level discussions of devel-
opment, deployment, and production.

➤ Saša Jurić
Author of Elixir in Action and Developer at Aircloak, Aircloak

If you’re looking to bring Elixir into your organization, you will find no better
source of information than the team who wrote this book. They’ve walked the walk
of using Elixir in production from the earliest days of the language. They introduce
a wide range of topics—from staffing to tricky technical bits like distributed Erlang.
Then they give you the knowledge you need, at just the right level of detail, to
make great decisions for your team.

➤ Lance Halvorsen
Senior Software Architect, Le Tote

Adopting Elixir
From Concept to Production

Ben Marx
José Valim
Bruce Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-252-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix

Introduction xiii

1. Three Adoption Stories 1
The Acquisition of icanmakeitbetter 2
Bleacher Report Improves Performance and Reliability 6
Plataformatec Supports Early Adopters 11
Embracing End-To-End Adoption 14
Wrapping Up 15

Part I — Concept

2. Team Building 19
Training Developers 20
When Things Go Wrong 22
Hiring Elixir Developers 26
Conducting Interviews 32
Wrapping Up 36

3. Ensuring Code Consistency 37
Coding Standards 38
Typespecs and Dialyxir 43
Documentation 48
Tests and Code Coverage 51
Putting It All Together: Code Reviews 57
Wrapping Up 59

4. Legacy Systems and Dependencies 61
Replacing a Legacy Web App 62
Terraform and API Evolution 65

Moving Incremental Releases into Production 69
Umbrella Projects: Between Monoliths and Services 71
Managing Third-Party Dependencies 75
Wrapping Up 78

Part II — Development

5. Making the Functional Transition 81
Elixir vs. Mutable Objects 82
Polymorphism 87
Agents and Tasks 89
The Generic Server 90
Supervisors 98
Wrapping Up 100

6. Distributed Elixir 103
Remote Message Passing 104
Persistence Strategies 107
Finding Processes 112
Cache and ETS 116
Message Delivery Guarantees 117
Homogeneous vs. Heterogeneous Systems 118
Wrapping Up 120

7. Integrating with External Code 123
Lay of the Land 124
Strategy 1: Native Implemented Functions (NIFs) 125
Strategy 2: Communicating via I/O with Ports 130
Strategy 3: The Erlang Distribution Protocol 137
Wrapping Up 140

Part III — Production

8. Coordinating Deployments 145
Deploying with Mix 146
run_erl and heart 149
Releases 153
Upgrading Code 159
Distributed Erlang 165
Wrapping Up 170

Contents • vi

9. Metrics and Performance Expectations 171
Instrumenting Your System 172
Instrumenting Ecto 178
Instrumenting Phoenix 180
Performance Assessment Workflow 182
Load Testing 183
Profiling 186
Benchmarking 189
Wrapping Up 191

10. Making Your App Production Ready 193
Logs and Errors 193
SASL Reports 199
Tracing 201
Using Other Advanced Tools 205
Wrapping Up 207

Bibliography 209
Index 211

Contents • vii

Acknowledgments
More than any other Elixir book that’s ever been written, this book is a com-
munity book. The early adopters we profile shared their experiences directly
in time-consuming interviews; inventors and committers for hundreds of
projects made the very libraries we describe in these pages; beta testers tried
new releases; and beta readers helped refine each word you find here. We
owe our deepest gratitude to each of you and this book is dedicated to you.
We can’t possibly enumerate all of those that made this book possible, but
we have to try.

We would like to thank the prags for believing in this concept. Our dear friend
Jackie helped shape the words, Andy has been a constant source of support,
Susannah made the start smooth, and Janet has guided the process from
end to end. Many others shaped this book, from indexers to artists and copy
editors. Thanks to each of you.

Thanks to all of our technical reviewers: Alexandre Hamez, Claudio Ortolina,
Dave Marks, Kim Shrier, Maurice Kelly, Nigel Lowry, Saša Jurić , Sean Calla-
han, Shaun Collette, and Xavier Noria. Whether the suggestions were technical
or stylistic, or a sounding board to bounce ideas off of, the book is that much
richer and we are grateful for the reviews.

Thanks to Daniel Perez, Dave Marks, Hidetaka Kojo, Lauren Tan, Myron
Marston, Pejvan Beigui, Shaun Collett, Steve Cohen, Tetiana Dushenkivska,
Tsunenori Oharam, and Yusuke Tanaka for perspective and insight in their
interviews. One of the goals of the book was to not only tell our Elixir adoption
stories but to hear from varied members of the Elixir community. Each per-
son’s interview helped illuminate a different area of Elixir adoption.

From Ben:
I’m eternally grateful to Dave Marks for not only hiring me at Bleacher Report
but encouraging and supporting me—and our entire team—as we undertook
the monumental task of moving from our legacy sytem to the new Elixir-based

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

platform. He’s been an insightful mentor and has become a dear friend over
these last years.

Many thanks to everyone at Bleacher Report; this was a team effort and we
revamped everything from back end to front end to design and we have great
plans for a bright future. Thanks especially to Miguel DeAvila for all that
you’ve done to support me over the last year and also to Dave Finocchio for
permission to write about Bleacher Report and leading a company I’m proud
to be a part of.

This book wouldn’t have happened had Bruce not approached me after a talk
in Mexico about Elixir adoption. Bruce has been an excellent and encouraging
mentor and co-author as the book came together. From our first call talking
about the book, José has been nothing but a supportive and collaborative
co-author. It’s been an unforgettable and treasured experience.

Thanks to the Elixir core team, the Phoenix and Nerves core teams, and to
the Elixir community and ElixirBridge for all the hard work you do to make
this community innovative and inclusive.

And of course, the person who has supported me throughout this entire
process and really in everything that I do, Aoi Yamaguchi. When I spent nights
and weekends writing, she was there to encourage me to keep going and see
this through to the end. I look forward to the continued adventures and
excitement that we’ll share together.

From José:
I have been working on Elixir for the past six years and Elixir wouldn’t exist
without Plataformatec. They adopted Elixir when it was only an idea and they
were the first ones to invest in it. As the language grew, Plataformatec reached
different companies using Elixir around the world, providing the challenges
and insights that made this book possible.

We also wouldn’t have gotten this far without Elixir’s early adopters. In the
first years of the language, there was a great amount of uncertainty. Every
person who sent a pull request, wrote about it, started an event, or deployed
it to production gave us confidence to move forward. You helped move Elixir
beyond a personal project and shaped it into one driven by a community.

I also want to thank the Elixir team, past and current members: Aleksei
Magusev, Alexei Sholik, Andrea Leopardi, Eric Meadows-Jönsson, and James
Fish. You bring different perspectives into the project and help me grow pro-
fessionaly and personally.

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Bruce and Ben, my co-authors, you have been great friends throughout this
journey and made me a better writer.

Finally, all of this wouldn’t have been possible without the unconditional
support of my wife, Małgosia, on this long journey: you are a constant source
of inspiration and encouragement. I also want to thank my parents and friends
for teaching me the lessons that still guide me on this journey.

From Bruce:
Thanks so much to my employers at LRW. Shaun, Paul, and Matt, thanks
for being patient with those professional activities you’ve supported like this
one that help us be good citizens in the Elixir space.

Thanks to my good friends José and Ben for your great attitudes and insights.
Our readers will tell us if the efforts are worthwhile. I think they will be.

Thank you to Jim Freeze and Dave Thomas. Without your efforts, we wouldn’t
have the same Elixir community we do today.

It’s always the family that pays the biggest cost for books like these. Julia
and Kayla, I love you very much. Maggie, you’re my love and inspiration.

To my readers and the Elixir community, books exist to be read (and bought!).
Thanks for making this writing thing possible and enjoyable.

report erratum • discuss

From Bruce: • xi

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Introduction
Elixir is a rapidly growing functional language and the first production applica-
tions are emerging. Still, early adopters may find some important details
missing. As with any emerging language, common questions arise:

• At what point do the promising rewards of the Elixir platform outweigh
the risks?

• How do you recruit and train teammates who might never have used a
functional language before to build consistent code?

• How do you wrestle with the trade-offs with distributed systems?

• What tools do the pros use to test, deploy, and measure your applications?

• What critical but less popular tools are available to solve issues like inte-
grating external code or measuring performance trade-offs in production?

We wrote Adopting Elixir to change that. Rather than write another Elixir book
about some narrow aspect of the language, we decided to write an experiential
book containing the kinds of details that are typically difficult to find for an
emerging language. It’s a daunting task.

Said another way, you can find plenty of books out there to cover known
topics. This book is more of an exploration of the expansive field of resources
for new Elixir developers. Most often, we won’t give you all of the answers.
Instead, we’ll help you know what you don’t know, help you build a limited
foundation with the basic trade-offs between possible solutions to a problem,
and point you to the community for more answers.

Who This Book Is For
Each adoption story has many actors, and many of them have broadly different
roles and responsibilities. Our book cuts across all adoption stories.

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Such a book will have many different types of readers, and no single reader
will find everything covered here relevant to them. Team leads and technical
managers will want to know how to recruit and train, but pure programmers
will probably find such details distracting. Beginners from traditional lan-
guages like Java or Ruby will crave more information on making the transition
to a more functional, concurrent language.

We decided to write this book anyway, because the information is important
right now for the greater community. We hope you’ll agree.

Still, this book is not for everyone. If you’re the type of reader who is likely to
be frustrated when you find content that is not specifically for you, we don’t
think you’ll be happy. The Pragmatic Bookshelf has the biggest selection of
Elixir books in the industry and we’ll gladly help you find one that’s right for
you, but you may want to pass on this one.

If you are a CTO looking for a book to help you build a business case for using
Elixir, we don’t believe such a book exists. The first couple of chapters will
introduce you to a few stories that you may find instructive, with some hints
toward financial justifications beyond “It scales well.” But in the end, we
decided we did not want to build a full business case in this book. This book
may help some technical managers who code, but is probably not for the C-
level executive.

We’re writing this book for those in the technical Elixir community who find
themselves adopting Elixir (or who plan to in the near future). Look, Elixir
adoption can be hard because the collective problems we’re solving are
demanding. It’s a functional, concurrent, distributed language. Any one of
those concepts is difficult to understand. Many of our readers will be learning
all of them at once. Have courage, though. We also know that many teams
are making the successful transition.

Our combined experience suggests there is a growing segment of Elixir pro-
grammers who need to walk with successful Elixir practitioners. That list
includes day-to-day developers looking for help making the transition from
other languages. Experienced programmers may be deploying their solution
from the experimental staging servers into production for the first time, or
learning to scale their solution, or beginning to dabble in distribution for
better fault tolerance. We can’t promise you’ll like everything in this book,
but we can guarantee that you’ll find something you’ll like, something you’ve
not seen before.

Introduction • xiv

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

About the Authors
Ben Marx is one of the first developers to use Elixir at scale. As a lead devel-
oper at Bleacher Report, he was intimately involved in their transition from
Ruby on Rails. His involvement spans the whole development cycle, from the
initial plans for the Elixir migration through recruiting, development, produc-
tion, and debugging that live system.

José Valim is the creator of the Elixir programming language and was once a
member of the Rails Core Team. He graduated with an engineering degree from
São Paulo University, Brazil, and has a Master of Science from Politecnico di
Torino, Italy. He is also co-founder and Director of R&D at Plataformatec, a
consultancy firm based in Brazil. He is the author of Programming Phoenix
[TV16] and Crafting Rails 4 Applications [Val13]. He now lives in Kraków,
Poland, with his wife and children.

Based out of Chattanooga, Tennessee, Bruce Tate is a father of two, as well as
a climber and mountain biker. As CTO, he helped grow icanmakeitbetter.com,
the insight community platform, from a cocktail napkin drawing in 2010 to
its acquisition in 2016. As of this writing, he is leading the company through
an Elixir migration. He’s an international speaker and the author of several
other books, including Programming Phoenix [TV16] and Seven Languages in
Seven Weeks [Tat10].

Now you know us. Let’s get to the book.

How To Read This Book
We’ll cover the whole adoption lifecycle in three parts, from concept to devel-
opment and finally into production. As you progress through the book, the
chapters will go deeper into technical details. This is intentional, as we’re
working to fill the many holes we’ve seen our teams and customers encounter.
We’ll try to provide enough detail to lay the right theoretical foundations and
point you toward the right solution, and then move on.

Feel free to read the individual parts in any order, or not at all based on your
needs. We’ve designed the code and prose so that you can do so. We’ll tell
you if there’s something from an earlier chapter we think you should know.
For example, if you have already built and trained your Elixir team, you may
find more value in the development and production lessons explored in Parts
II and III. On the other hand, if you are early in your adoption journey and

report erratum • discuss

About the Authors • xv

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

you are still deciding if Elixir is the right tool for you, you will likely get more
mileage from the first chapters and you can revisit the production discussion
once development starts.

We understand that’s not the typical experience, but we made that trade-off
because each adopting developer has a different set of needs. No simplistic
grouping of technologies can cover everything that needs to be said. We’re
willing to take our lumps in the review process because we believe in the need
for this book in the greater community.

With those bits of housekeeping done, let’s dive into the parts of the book.
We’ll also highlight which parts will be of particular interest based on your
individual use case.

Part I: Concept
Adoption is in part a social problem. Adopting an emerging technology means
becoming a salesperson. Helping stakeholders, teammates, and potential new
hires understand that our technical decisions are wise and in the best interests
of the companies we serve is a critical part of the process. New languages
often mean new hiring and team-building strategies. Adoption is changing
habits and practices to take best advantage of our new platform. This book
will give you tools to help automate those things you can and lay out experi-
ences to help you handle the things you can’t. We’ll walk you through the
discussion in three chapters:

Team Building
Building a team for an emerging language is a little different than ramping
up for a well-known, established technology. We’ll tell you what we did
to train and recruit talent, set expectations, and keep folks motivated. If
you have an established effective team and a good handle on recruiting
and training, you will probably want to skip this chapter. If you find
yourself ramping up or training for a new adoption or if you’re concerned
about finding talent, this chapter will help you in your efforts.

Ensuring Code Consistency
It’s easy to fall into old habits when you’re learning a new language, but
that would limit the benefits you’d reap. This chapter will show you how
to use automated tools to gently nudge your team toward a more beautiful
idiomatic coding style. If you have a comfortable cadence and are already
well versed with lexers like Credo, Elixir’s testing ecosystem, and Elixir’s
documentation tools, you may not give this chapter more than a quick

Introduction • xvi

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

skim, but most developers will appreciate the concepts outlined in this
chapter. You can automate many different aspects of code quality.

Legacy Systems and Dependencies
Many of the companies adopting Elixir are choosing it to replace a legacy
system, and we’ll cover that topic. Dealing with legacy systems also means
carefully considering each new line of code you write and each new
dependency you add. Sometimes code becomes legacy because of business
needs, other times because the code becomes less healthy. In this chapter
we will talk about how to replace legacy systems, building tomorrow’s
friendlier legacy systems as you write code today, and working with
internal and external dependencies.

If you’re a manager, an executive, or a team lead tasked with building a team
and establishing culture, Part I is for you. The chapters in this part will also
be of interest if you are starting your own project and need to understand
what tools can help you build consistent code.

When you’re through with Part I, you’ll understand how to build a unified
tool that writes uniform code. You’ll then think about the best ways to think
about taking that old system apart to adopt the new, should that be your
chosen path.

Part II: Development
This part will show you how others have successfully built Elixir applications
using new development teams or retooled teams who wrote in some other
language. We’ll focus on how to write code to do things beyond what you’d
find in most typical technology books. We’ll focus specifically on ideas and
tools we’ve found difficult to find elsewhere. In particular, we’ve divided this
part into the following chapters:

Making the Functional Transition
Object-oriented developers sometimes have trouble learning functional
languages. This chapter gives advice to help make that transition. It is
tailored specifically for beginning and intermediate Elixir developers,
especially those who have come from other ecosystems.

Distributed Elixir
Adopting a new language is hard enough when you’re only concerned about
one system. It takes experience to learn to split concepts across the wire.
This chapter provides exactly that. We’ll talk about how to name things,
the role of OTP, and how to think about distribution. If you’re a technical

report erratum • discuss

How To Read This Book • xvii

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

lead or looking to break Elixir out of a single box, this chapter will help you
reason about the next level of challenges you’re likely to face.

Integrating with External Code
Sometimes, Elixir is not enough. When your code needs to step out of its
universe, Erlang and Elixir provide several tools to do exactly that. This
chapter covers those tools, whether you decide to stay in the same mem-
ory space, or use different processes or different machines altogether. If
you plan to stay within the Elixir ecosystem for all of your application
needs, you’ll likely want to skip this chapter. Just give it a quick skim so
you’ll know the techniques available to you should the need arise.

If you’re a new Elixir developer making the transition from OOP to FP, the
early chapters in this part will help. If you’re an experienced developer but
struggling with what it means to write a distributed project or the approaches
to integrating external code, the later chapters in this part will have something
you find useful.

When you’ve completed Part II, you’ll have more tools to think about the
things that trip up early adopters from functional programming to concur-
rency, even distributed systems. Then, in the final part, we’ll worry about
deployment.

Part III: Production
Every new language community has to work out what to do with deployment.
Elixir is no different. It’s not surprising that one of the most common questions
Plataformatec received was how to deploy, and how to monitor the system
once deployed. This part of the book will point to some prevailing wisdom in
these areas. In particular, you’ll see chapters for:

Coordinating Deployments
Deploying a simple system on a single server is a pretty easy problem,
but modern applications no longer fit that profile. This chapter will show
how successful DevOps folks think about releases and the tools they use
to deploy. In some teams, the folks that write the code are the same ones
that deploy and support it in production. If you’re involved in any way in
deploying Elixir or packaging your code for deployment, this chapter is
for you.

Metrics and Performance Expectations
Typically, new languages have some lesser-utilized areas with less docu-
mentation than others. Since performance measurements often happen

Introduction • xviii

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

after production applications are close to ready, this topic is one of the
last to develop. When it’s time to push Elixir to the limits and test perfor-
mance, you’ll need to know how to measure your performance and report
those results. This chapter will tell you what you need to know. The
techniques are advanced and the topics specialized, so you’ll want your
Elixir foundations to be pretty solid to attack this material.

Making Your App Production Ready
Once a system reaches deployment, the debugging and monitoring tools
change. That throws many developers off, but Elixir has some unique
capabilities that greatly simplify this process. This chapter will focus on
instrumenting, measuring, and monitoring production systems. Just
about all developers need to know about the debugging, logging, and
reporting techniques in this chapter.

If you’re in operations or responsible for seeing that your application is easy
to deploy and manage, this part will be invaluable to you. Leads and architects
will also want to understand how the deployment story fits together.

When you’ve finished this part, you’ll know how others deploy with confidence.
You’ll learn what to measure, how to instrument your code, and how to
monitor for the best possible reliability and information.

About the Code
The sample code and examples included in this book are written using the
Elixir programming language, and will walk you through many broadly differ-
ent Elixir concepts. Some of those are just fragments and some are full
working examples. We’ll show you how to use each example in the context of
the book.

This book is about showing you a wider picture of the evolving greater Elixir
ecosystem. Keep in mind that the nature of this book is that some of these
code examples are just snippets, or segments of a fully working system. We
can’t possibly show you whole working systems for all of the examples in this
book. Such a book would be many times the size of this one and take much
longer to write.

Instead, we will let the prose and the code work together. Let the prose guide
you through the proper use of the code examples. If you find any concepts
that are not clear, just let us know in the forums. We will help you the best
we can.

report erratum • discuss

About the Code • xix

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Online Resources
You can find all the example code for this book on its Pragmatic Bookshelf
website,1 alongside a handy community forum if you’d like to reach out for
help along the way.

While we’ve worked hard to make our code examples and explanations bug-
free and clear in every way for our readers, we’ve written enough software to
know that we’re fallible. Thanks in advance for reporting any issues that you
find in the book code or text via the errata form, also conveniently found on
the book website.

Thank you for joining us in your Elixir adoption story! We are excited to have
you with us.

Ben Marx, José Valim, & Bruce Tate

March 2018

1. https://pragprog.com/book/tvmelixir/adopting-elixir

Introduction • xx

report erratum • discuss

https://pragprog.com/book/tvmelixir/adopting-elixir
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

CHAPTER 1

Three Adoption Stories
As we were putting the finishing touches on this book, a solar eclipse crossed
the United States, moving as fast as 2,400 miles per hour. Many were near
the path of totality, but not quite in that magic zone. Ben, in San Francisco,
didn’t have to move an inch to see 80% of the sun covered by the moon. Bruce
could have stepped outside and witnessed 99.8% coverage, avoiding the worst
predicted traffic in ten years. He decided to make the two-hour trip to the full
eclipse zone rather than staying at home because a partial eclipse and a total
eclipse are not the same.

In the same way, instead of writing about adoption of Elixir as a whole, we
might have chosen to write exclusively about some single tool, problem, or
technology. Such a book would have been easier to conceive and most likely
far easier to write. In a world where publishers focus on an increasingly narrow
set of topics, language adoption books are becoming rarer. Some will
doubtlessly believe that if you understand the sum of the technologies sur-
rounding a language, you’ll know what it takes to adopt them.

We are writing a book about adoption because we believe books about the
individual pieces and books about adoption of the whole are not the same. As
a team of early adopters, we each have special insight into details that could
smooth adoption for others. Where most other books in this space focus on
answers, we’ll focus on questions. We’ll examine several problem spaces,
talking to others who have experience and laying enough of a foundation to
help you understand what the trade-offs between solutions might be as we
understand them. Then we’ll point you to solutions or resources in the
industry for further study. If a chapter isn’t useful to you, feel free to skip it.
We’ve designed the book to make sense either way.

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

In this chapter, we’ll tell our adoption stories and let you know what questions
these experiences prompted. We’ll start with Bruce’s company and the ican-
makeitbetter.com acquisition.

The Acquisition of icanmakeitbetter
Our first story is one of acquisition. We tell this tale because acquisitions
highlight the tensions between risk versus reward at the heart of every other
adoption story. It starts with an entrepreneur, a few slices of pizza, and a
dirty napkin. You see, icanmakeitbetter was a tech startup.

In 2011, Paul Janowitz was a young entrepreneur with a growing market
research company and an idea. He came to understand that asking folks the
best questions, even with excellent effort and world-class analysis, wouldn’t
mean anything if you asked the wrong people. He met with Bruce Tate over
pizza to talk about ways to automate the process of building research commu-
nities to find and engage the best customers. They brainstormed and sketched,
and days later icanmakeitbetter was formed. Alas, that first napkin went into
the trash because of irredeemable sauce stains.

The freshly merged company had just two programmers, and one worked his
first full year from New Zealand. They stood up a product quickly and landed
a few whales to feed the company as it grew. They knew the business model
would be fluid so they chose a software stack that optimized the developer
rapid-prototyping experience. Scalability could come later.

Growing the Business
Over the next few years, the young startup tweaked their platform to hone in
on a business model that could better scale. They encountered several tech-
nical problems along the way. Their initial idea platform scaled easily because
it was built primarily of pages that were easy to cache, and because the traffic
moved to the platform organically, with a steady, equally distributed traffic
load throughout the day.

As the company moved into new areas (including surveys), performance
problems emerged. Complex survey platforms are tricky to scale with caching
because the content and structure of each page depends on the answers to
questions on previous pages.

Survey platforms also depend heavily on email and push notifications. When a
researcher invites tens of thousands of people through an automated invitation,
they tend to show up at the same time. Since it’s tough to determine which
surveys will have high completion rates, the traffic can be unpredictable. The

Chapter 1. Three Adoption Stories • 2

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

platform started to show signs of strain under the weight. The caching strategy
wouldn’t work anymore, and Bruce started looking for potential solutions.

After attending dozens of conferences internationally over a two-year period,
icanmakeitbetter landed on Elixir to solve these scalability problems and to
offer more interactive experiences to their users. Elixir was a functional lan-
guage with strong concurrency and fault tolerance, so it would scale. The
fledgling language supported an advanced and readable syntax with excellent
metaprogramming, so it would support their highly productive programming
environment. The Erlang foundation underneath Elixir gave the team confi-
dence in long-term stability and reliability.

Bruce began to get involved with José, the creator of the language, and other
members of the community to help jump-start the libraries, conferences, and
publishing that Elixir would need to emerge as a serious language. They hired
Elixir’s second committer, Eric Meadows-Jönsson, to give the language some
stability. Then, icanmakeitbetter first launched an Elixir chat application
blending the concepts of quantitative and qualitative research. When that
project proved successful, they then migrated their core survey platform to
Elixir and the company started to see benefits trickling in.

The icanmakeitbetter team assumed their association with this new technology
would make their company more attractive to potential suitors. Better technol-
ogy meant better scalability and stability. You’ll soon see this assumption was
not necessarily accurate.

The Acquisition
While the technical team worked on the long process of migrating to their
new language, the business side of the company was enjoying newfound
success with their research communities. At a time when traditional research
firms were having trouble growing, icanmakeitbetter grew because they found
ways to better engage their customers by providing research communities,
leading to a sense of connection and better research.

Others noticed too. LRW is a family of market research companies in an industry
going through substantial change. As part of a new growth strategy, they
wanted to acquire icanmakeitbetter to compete in a fast-growing space called
insight communities. Shaun Collett, their CTO, and his team were responsible
for evaluating icanmakeitbetter’s technology stack for business risks.

Then the questions started coming, fast and furious. Initially, Shaun was
quite concerned about adopting a new language, based on the difficulty of
finding developers and tools to work with it. As a good businessman and

report erratum • discuss

The Acquisition of icanmakeitbetter • 3

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

experienced CTO, he understood what could happen when good developers
adopted leading-edge technologies for the wrong reasons. Let’s hear what he
had to say, in his own words:

Bruce: Can you tell me a bit more about why LRW and ISA were interested in
acquiring icanmakeitbetter?

Shaun: The market research industry is undergoing rapid change. Today’s busi-
nesses need to make decisions faster and more iteratively to fuel growth. Commu-
nity platforms have emerged in the past five to eight years to address this, offering
tools and technologies to help clients make more meaningful business decisions in
ways previously not possible or which were otherwise cost prohibitive. We knew
we were late to the game and to catch up quickly, sought to acquire icanmakeitbetter.
The platform was one of the most advanced community platforms in the industry
and had great potential to grow even more, especially after looking under the hood.

Bruce: Through the acquisition process, did you have any concerns with ican-
makeitbetter’s strategy to move toward Elixir?

Shaun: The short answer is “yes.” As a business leader and technologist, I’m
always mindful to separate technologies that are simply “cool” with those that create
real business value, or present meaningful business risk. I had never heard of Elixir
before meeting Bruce and his team. After learning more about it, I thought it had
potential to create real business value, but I also had significant concern about how
new it was. While promising, new languages come with inherent risks, specifically
surrounding people and development speed. I was worried through the acquisition
process that if anyone left, we’d have a very hard time backfilling that position in
a timely manner. Additionally, I worried about the speed of development, as
immature languages don’t give you many packages or “plugs” to get started, which
can slow development speed and increase cost. After seeing our Ruby engineers
pick up Elixir and experiencing early success building an incredibly successful chat
feature, we felt both were worthwhile risks to take on and decided to move forward
with the acquisition.

Bruce: Did the business face any challenges as we proceeded with this migration
strategy?

Shaun: After cutting our teeth with the chat feature, next we tackled a core busi-
ness feature that was suffering from inherent performance and scalability limitations
from our Ruby codebase: our data collection process, our surveys. Our scalability
issues were more than just performance. The complexity of our codebase suffocated
us. The reality of business is that it doesn’t stop changing, which in fact is a good
thing. We knew we had to continue supporting critical business changes while we
moved surveys to Elixir. This took longer than we expected, created some angst
among business leaders as not as many features could be worked on, and created
long weeks for the team, but we got through it, launching a totally new platform
roughly six months after start. The most important thing was trust—we leaned on
it significantly as we asked business leaders to be patient while we re-laid the
tracks under a fast-moving train.

Chapter 1. Three Adoption Stories • 4

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Bruce: Since migrating the platform, what benefits have you seen?

Shaun: Sure, we were able to scale, but that value was secondary. More impor-
tantly, we could quickly develop and release complex features across our survey
platform that the business had been asking for. We couldn’t (or shouldn’t) have
built these features on our old Ruby platform, as it wouldn’t have scaled well enough
to serve the business, so we felt great that we could finally deliver this. Once the
business saw the features and understood that it was the work of the previous six
months that enabled this—as well as many other features on our roadmap—to be
possible, it created a lot of positive momentum, trust, and support for our work. I’m
delighted to say that we’re truly rocking and rolling!

Shaun’s comments show that adoption is more than a technology problem.
He had some well-founded concerns about acquiring a company in the midst
of transition.

Over the next year, progress slowed. icanmakeitbetter didn’t stop working on
the Elixir migration, but the focus was divided across some features they
needed to build to stay competitive and maintain growth. As their platform
stabilized and gained critical mass, they started to deliver new features at an
accelerated rate.

As this story unfolded, Bruce began to think of Elixir in a different light,
through the eyes of other early adopters. He spent two years speaking about
technology adoption, making it easier for developers who were struggling with
older technologies to make a case for Elixir based on the needs of their busi-
nesses. In short, he was helping adopters to discover new questions to ask
and where to go to find the answers.

Leadership Questions for Early Adopters
As the startup joined the acquirer, Bruce and Shaun began to work together
more closely. Bruce invited Shaun to ElixirConf 2016 in Orlando and the two
attended other events together. They began to work on the political side of
technology adoption, asking themselves:

• How do you fully involve upper management stakeholders at the earliest
stages of the decision process?

• Where can you find developers to work on new technologies?

• Where can programmers go to learn about how to write functional, con-
current code?

As you get deeper into this book, you’ll see new questions form about each
of these topics. We’ll also interview others who dealt with some of those
questions before you.

report erratum • discuss

The Acquisition of icanmakeitbetter • 5

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

If this first story highlights the inherent risks of early adoption, the next
highlights the rewards. It is the story of Elixir at Bleacher Report.

Bleacher Report Improves Performance and Reliability
Our second story concerns migration. We tell it because adoption is tense
business, and early adopters need to dream together. The story begins with
a good dream, an angry clock, and a cup of coffee. You see, Ben had pager
duty and the site wasn’t working. Let’s go back to the beginning.

Bleacher Report is the second biggest sports platform in the world and
quickly grew to that size by offering sports fans something that no one else
did: personalization and rapid content production, while following local to
international sports. Most early users accessed the site through a computer
or from newsletters that would, in turn, lead them back to the site.

In general, it was a passive model—you had to go to the site to get the infor-
mation. Since most pages were static, they could cache them for performance.
Spikes were relatively gentle, even when news broke.

Mobile Changes the Rules of the Game
Almost overnight, that landscape changed. When the iPhone exploded, com-
panies quickly developed apps that transformed the way customers interact
with the web. Suddenly, when news broke, push notifications or emails would
send everyone to their favorite sports site at once. Spikes were instant and
violently sharp.

It’s hard to express just how much impact this kind of change could have.
Say a famous star like Kevin Durant, one of the most famous basketball
players in the world, suddenly gets traded to the San Francisco area. The
news site would push out ten million notifications. If only 5% clicked, they’d
have an instant spike of a half million users, and the site couldn’t handle it.

With a mobile phone in everyone’s pocket, the definition of what was major
news changed too. Now, the end of a good game or an upset became major
news. While this shift certainly wasn’t limited to Bleacher Report, it hit them
particularly hard. They knew they had to do something, but deciding exactly
what to do wasn’t easy.

Early Responses to the Challenge
At first, the sports news publisher did what everyone does. They threw hard-
ware at the problem. For a while, it worked. Then, an unexpected guest named
“Success” crashed the party. As more sports junkies found the site, the cost

Chapter 1. Three Adoption Stories • 6

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

for scaling through hardware went up too quickly to absorb. Soon the site
was running on over a hundred servers. To save money, the team introduced
auto scaling to add servers on demand. That too failed because ramping up
a new environment takes time, and they were failing users at peak demands.

They had to make their next logical play. They cached. The early results were
promising, serving content many times faster. At this point, another guest
named “Personalization” slammed through the door without an invitation. As
athletes published their own Twitter feeds and they started showing highly
variable content like scores, caching made less sense because each user saw
something different. Imagine the user subscribes to college basketball, inter-
national soccer, major league baseball, and a couple of the streams that are
topic-focused. You simply can’t cache that. Increasingly, the scrambling
software engineers decided to only build pages based on what they could
cache, drastically hurting personalization. They realized that caching was a
deal with the devil, and he had collected his price: the very innovation that
made Bleacher Report great.

So Bleacher Report developers were on call because their existing technology
stack was not up to the problems the next few years would throw at it. The
industry was changing, the servers were overloaded, and the developers were
going as hard as they could go. Something had to give.

At some point, the development leadership and management teams both
agreed that they had to take some bitter medicine to get better. For many of
the same reasons as icanmakeitbetter, they settled on Elixir: they wanted
scalability and reliability without compromising productivity. And with that
decision made, they set out to find some problems to prove their hypothesis.

Establishing Early Wins
Matt Pruitt and Michael Schäfermeyer were the Elixir advocates at Bleacher
Report who first championed the language. They were able to quickly develop
a proof of concept. It was still a prototype when Ben came to Bleacher Report
but they’d done the hard work of demonstrating its viability to the company.

Ben first worked on a tiny service that fetched titles, descriptions, and the
like from external services. By fetching all of the metadata concurrently instead
of doing each request sequentially, his tiny team reduced the response time
dramatically. The simple service took a day to prototype, a few more to finish
out and deploy, and solved a key business need.

Neither prototype was aesthetically pleasing, but both were conceptually
beautiful. The code was explicit, concurrent, and well organized, running

report erratum • discuss

Bleacher Report Improves Performance and Reliability • 7

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

much faster with better stability than the code it replaced. They’d established
a few quick political wins.

Based on the early success, the anxious but excited initial group made a firm
commitment to Elixir and sought ways to expand on their initial successes
and kept chipping away. It wasn’t always easy. Those were the early days of
the Elixir community. Elixir and Phoenix, the dominant web framework in
the community, were changing rapidly, so early code had a great deal of
churn. Elixir’s flexibility for rapid prototyping mitigated the damage somewhat,
and the team was eager to rewrite early attempts to more idiomatic Elixir.

Over time, Bleacher Report increased the scope of their prototypes and moved
more substantial pieces of their application into production. Elixir was
improving both scale and reliability, one bottleneck at a time. The developers
gathered confidence. Management and customers also started to notice.

Eventually, over four years, they’d moved the bulk of their system. The benefits
weren’t just tangible. They were transforming.

Enjoying the Benefits on Draft Day
For the first time in years, the platform was stable and response times were
largely traffic independent. The following graph shows the number of requests
(y) over time (x) for the sports site’s busiest week of the year, the NFL draft
for 2017, after the migration. The massive peaks and valleys are the first
three draft rounds. The specific details are proprietary, but it’s the highest
number of concurrent users in their history:

Traffic is higher than usual throughout the week because of the news coming
out about the draft. They expected to see a relative increase in traffic on the

Chapter 1. Three Adoption Stories • 8

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

first nights of the draft but they didn’t expect to break their highest number
of concurrent users by almost 30,000!

In the past, when traffic would ebb and flow, there would be corresponding,
sustained fluctuations in the response times. This NFL draft also happened
to be the first NFL draft where the majority of their stack was Elixir. The fol-
lowing figure shows how the Elixir app API gateway that serves their client
apps—iOS, Android, and web—fared during this record-breaking time.

Now, for the kicker. Let’s look at the response times in seconds (y) against
time (x):

The average response time hovers around 50ms, and remains rock solid. On
April 29th, around 10 p.m. EST, when the traffic shot up to the highest
number of concurrent users, the response time only increases to around
170ms! The response times hovered around 170ms for a few minutes even
as the number of requests were fairly constant for a much longer time.

In years past, the NFL draft meant everyone was on-call and quite often many
needed to come in. In 2017, folks were relaxed, laughing and marveling at
how the system fared. Soon after, people started to go home.

That’s what a planned event looks like today. Unplanned events are very
much the same. You may recall our mention of NBA MVP Kevin Durant’s
announcement to join his team’s biggest rival. The news broke suddenly,
flinging the sports universe into a maelstrom of conjecture and speculation.
At the office, nothing happened. There were no alarms, no new servers spinning
up, nothing buckled, and the response times hovered around 100ms. The
biggest unplanned story of the year was a sports blockbuster, but a technical
non-event.

report erratum • discuss

Bleacher Report Improves Performance and Reliability • 9

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The View from Management
You’ve heard some anecdotes from the Bleacher Report rank and file. Some-
times, a manager’s words can be more convincing. Let’s talk to Dave Marks,
the Senior Engineering Director at Bleacher Report. He’ll tell you about Elixir
adoption from a senior manager’s perspective:

Ben: As someone who doesn’t have a background in Elixir, how did you assess
the risk and reward of adopting it?

Dave: It was clear we needed to change what we were doing to meet the demands
of our growing user base and it was a big gamble to choose Elixir. I had confidence
in our developers to make a reasonable choice and as the prototypes yielded better-
than-expected results, I was more convinced. What really showed the power of
Elixir was how resilient our apps are when traffic spikes. Now we can rest assured
that our platform can handle breaking news spikes without any issue. In fact,
duplexing and multiplying production traffic to a test environment showed that we
can handle about ten times our current load before any response time increases.

Ben: Did you have any doubts along the way?

Dave: In the beginning we had only three or four developers who could write Elixir.
If one or more of them left, it might have caused us some headaches as we trained
other developers. That, of course, didn’t come to pass. The fact that we use Elixir
so extensively has attracted a lot of talent and retained our developers who enjoy
working with the language so much. And now, we’ve trained all of our back-end
developers to use Elixir so it’s a moot point.

Ben: What other benefits has Elixir provided?

Dave: It’s simplified our stack. Previously we used third-party integrations to help
us handle our scaling needs. Now we can do what we do with just Elixir. It’s saved
us not insubstantial amounts of money and has also, as it turns out, made our
system faster. Server savings is another big win. It’s sometimes hard to explain to
stakeholders why moving to a new language is a good idea because it cuts down
on feature development. If, however, you can show tangible savings and a faster
and more stable platform, it’s much easier to convince them that you’ve made a
worthwhile choice.

We’ve been able to largely do away with caching at the application layer and only
cache at the CDN level. Our system is simpler now and easier to reason about. It’s, as
always, a work in progress as we improve but Elixir has given us the tools to move
forward and go from firefighting to feature development and platform expansion.

That’s powerful stuff. A development director’s two biggest goals for cutting
costs are often at odds. Choosing to emphasize development productivity
often reduces the size and cost of the development staff. Sometimes this thrust
comes at the cost of performance, as it once did at Bleacher Report. This
project, though, shows a simplification of the development stack and better

Chapter 1. Three Adoption Stories • 10

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

development buy-in. It reduced the costs of feature development and made
it easier to bring in new staff when it’s necessary.

Questions and Answers About Development
The Bleacher Report story is a struggle that took several years. They successfully
waded through the politics we identified in the first story, setting expectations
and building consensus. They identified a problem that was too big for their
current technology stack and solved it by establishing some quick wins. Then,
they methodically migrated the rest of their system, piece by piece. Though
they’re still not done, they’re close enough to reap major rewards of a more
effective development staff, better stability, and excellent performance.

Getting to that point was hard. Ben made it his mission to write articles and
speak at conferences to tell others about questions Bleacher Report developed
through their process:

• With a larger migration, how do you decide what to do first?
• How do you train a large team on Elixir?
• How do you address a legacy monolith?
• How do you maintain good code quality with measurable heuristics for

quality given an inexperienced team?

Ben and Bruce met at a conference in Mexico City and decided to write a book
about their growing number of questions surrounding adoption. Bleacher
Report is the most pervasive adoption story in this book. We’ll help you
identify the questions you should be asking as you develop your application.
We’ll then help you build some intuition around potential solutions and point
you toward tools and techniques that can help you find the answers you seek.

Now you’ve seen the two individual stories. The third is a collective one.

Plataformatec Supports Early Adopters
Our third story is comprised of the many tales that were spun as Plataformatec
supported the first few Elixir adoptions. You might be tempted to think that
each new adoption is a snowflake with its own intricate set of unique circum-
stances, but as this example illustrates, they have many lessons in common.
The story begins with a keyboard, a rebellious wrist, and a restless mind. You
see, José was one of the most helpless creatures in all of nature: a programmer
with a wrist injury.

José had been typing too much with the wrong keyboard setup and his body
was telling him to slow down. He couldn’t type, so he had to stop to think.
He started reading a paper on concurrency, then chased that one with an

report erratum • discuss

Plataformatec Supports Early Adopters • 11

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

article on type systems, a book on languages, and a blog post on virtual
machines. He was planting a seed deep within himself that would sprout
when that wrist was healthy enough to brave his new ergonomic keyboard.
He began to build a prototype that would become Elixir.

The Plataformatec cofounder and consultant took his new language to his
founding partners and together they decided that with some time and
investment Elixir could become something special. José began to work part
time on the emerging language.

Over time, success stories began to emerge, many of which had no connection
whatsoever to Plataformatec. Some early promising benchmarks showed
staggering numbers, especially with many cores, that rivaled the top frame-
works in the industry. Gaming companies used it to work efficiently with in-
memory systems instead of putting everything in the database. Embedded
systems vendors used Elixir to build faster systems with a much simpler and
efficient tool chain. Plain old web programmers used the new language to
make their systems more scalable and productive. Others simply applied it
to odd jobs that needed a better solution than the ones they already had.

For example, Pinterest used Elixir for focused, high-volume, high-impact
service around performance tooling and monitoring. Steve Cohen is a software
engineer who’s been working with their early adoption teams:

José: Why did you choose Elixir?

Steve: We chose Elixir because we were looking for a system that was easy for
programmers to understand and could take better advantage of our servers. I was
intrigued at Elixir’s combination of friendly syntax, powerful metaprogramming
features, and incorporation of the Actor model.

José: In what capacity are you using Elixir?

Steve: We’re using Elixir as a rate limiter in our developer ecosystem, an ads API,
and heavily inside our spam detection and remediation systems. The spam-fighting
systems process all the write requests sent to Pinterest and handle many tens of
megabytes of data per second per server. It’s also not one monolithic system, but
several interconnected systems, many of which are Elixir based. The spam team
consists of five engineers, though we have maybe 15 engineers that have contributed
to our Elixir codebases.

José: What was your biggest concern when first approached to use Elixir?

Steve: Our first use of Elixir was fairly early in its evolution, so I was a little con-
cerned with whether or not it’d be successful as a language. Thankfully, that concern
appears to be unfounded. I was also concerned by the perception of others about
introducing a new language. People’s natural desire to work with technologies
they’re familiar with means that introducing something new is difficult. Add to the

Chapter 1. Three Adoption Stories • 12

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

fact that Elixir runs on an unfamiliar VM and introduces an often-new programming
paradigm, and you have the recipe for difficult adoption. We had our detractors,
but over time won over most people with the advantages that Elixir offers: perfor-
mance, efficiency, fault tolerance, and fewer bugs.

José: How has your company benefited from Elixir?

Steve: That’s pretty easy. When I started on the spam team, we had close to 1,400
servers running. When we converted several parts to Elixir, we reduced that by
around 95%. One of the systems that ran on 200 Python servers now runs on four
Elixir servers (it can actually run on two servers, but we felt that four provided more
fault tolerance). The combined effect of better architecture and Elixir saved Pinterest
over $2 million per year in server costs. In addition, the performance and reliability
of the systems went up despite running on drastically less hardware. When our
notifications system was running on Java, it was on 30 c32.xl instances. When we
switched over to Elixir, we could run on 15. Despite running on less hardware, the
response times dropped significantly, as did errors.

This story is a microcosm of what’s been happening in the Elixir space.
icanmakeitbetter and Bleacher Report both experienced early success with
stunning scalability numbers. In fact, most new Elixir deployments experience
significant performance improvements. What you might not know is the impact
of performance beyond the cost of servers.

Performance matters to development productivity every bit as much as it
matters in production. icanmakeitbetter’s test suites in Elixir all run in under
20 seconds. About two-thirds of the total codebase is written in Ruby, and
runs tests in just under 10 minutes. Both suites measure 100% code coverage,
and have about the same density per function. Productive developers demand
fast cycles because they impact programming flow. Nothing disrupts flow
more than waiting helplessly for a lethargic compilation cycle, glacially slow
tests, or tedious wait times for deployments to staging. Concurrent tests and
well-conceived tools to lend concurrency to deployments or tests mean hap-
pier and more productive developers.

Performance is also one of the most important criteria for customer acquisition
and retention. As time goes on and user interfaces get more responsive, you
need to respond in a short, predictable time frame. You’ll need to respond
even faster if you have a higher percentage of mobile users since mobile
platforms have greater latencies.

From the growing list of users, customers in the midst of early adoption began
to call Plataformatec. The early Elixir investment was beginning to pay divi-
dends. At the same time, they understood they could not support all compa-
nies interested in Elixir directly. They had to scale and decentralize Elixir’s
adoption by bringing to light the common questions all early adopters face.

report erratum • discuss

Plataformatec Supports Early Adopters • 13

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

By answering those questions, Plataformatec and their clients could focus
on the business, rather than on the adoption mechanics. The company began
meeting with customers to answer the inevitable blocking questions all early
adopters face.

Common Questions
Some of the earliest questions were difficult and at times impossible to answer.
Folks would wonder about web frameworks before Phoenix or Ecto, only to
be told to use Erlang libraries that had questionable support for Elixir. Over
time, though, the platform matured and the questions started to get more
interesting.

As the folks in the community began to fill the obvious gaps of web servers,
database layers, and the like, a more sophisticated family of questions sur-
faced, especially in the context of the private conversations in the design
reviews Plataformatec was doing. Some of those questions were specific to a
business problem or implementation detail, but others were common across
most customers:

• How do I architect my application and integrate with my existing
infrastructure?

• How do I deploy, monitor, and measure my live system?

• When should I use hot code swapping?

• When should I use processes or genservers instead of just functions?

• What are the security implications of distributed Elixir?

Every one of these questions had reasonable answers, and Plataformatec
could satisfy each customer inquiry with a report with reasonable responses
based on well-studied foundations. That’s what they did for a while. Once the
questions settled down long enough, José realized that the story should be
told to a broader audience, so he joined the team to write this book.

Embracing End-To-End Adoption
We strongly believe the Elixir community needs a holistic book with broad
lessons, both technical and political, across the whole application development
perspective. We think new teams need a place to go for how to introduce this
new language into their own environments. In short, we’ll try to give the wide
variety of readers advice we and our customers could have used.

Chapter 1. Three Adoption Stories • 14

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

When you encounter topics that are not interesting to you, please understand
that this book has been rigorously reviewed. We’ve cut away material that is
not broadly interesting. If it’s in the book, someone cares.

If you’re adopting Elixir, we do think you’ll find something you can use. Stories
have power. We’ll show you how Bleacher Report and others have successfully
answered many of the same questions you’re likely to face. You’ve also seen
that stories have values, so we’ll show you more of them in the form of inter-
views with the folks who did the work, or those whose job was on the line.
We want to help weave them together in a way that helps you see what’s
worked for others in the past.

Wrapping Up
In this chapter, we’ve introduced three adoption stories. In the icanmakeitbet-
ter story, an acquisition, you learned that adoption is a political problem.
Though new language adopters speak in glowing terms about the finished
product, you saw how upper management and talented developers perceive
the real risks. The Bleacher Report migration showed what kind of rewards
are possible if you’re careful. The Plataformatec experience showed how
adoption stories are important, with critical similarities we can mine.

Now you are ready to begin in earnest. Turn the page and we’ll begin with
Part I!

report erratum • discuss

Wrapping Up • 15

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Part I

Concept

For any application, success begins when you write the first line of code. When you’re
adopting a new language, that’s doubly true. In this part, you’ll get ready to adopt
Elixir. You’ll start with a compelling business case and address the factors compelling
you to make a move, from financial considerations to the health of your team and
codebase. We’ll then discuss how to convince business stakeholders and key technical
staff. Throughout, we’ll mix our own stories with circumstantial evidence, objective
facts, and interviews so you’re armed with convincing arguments that will help you
think about the case you have to make.

From there, you’ll begin to think about your own Elixir team. You’ll see up close how
we built our team—we’ll talk you through the tools we use every day to objectively
provide more consistent code with standards and tools to help ensure quality. Then,
you’ll explore tools and techniques to support a migration from existing technologies.
While you won’t generally find books on these techniques, each of them can help
contribute to your success.

CHAPTER 2

Team Building
Each time you adopt a new technology, you need to address talent acquisition.
Whether you’re dealing with a small team or a larger one, your training and
recruiting processes will necessarily change. We understand this chapter isn’t
for everyone. If you’re confident in your training and recruiting, you’ll want
to skip ahead to Chapter 3, Ensuring Code Consistency, on page 37, knowing
you’re already prepared to recruit, hire, and train an effective Elixir team. If
you’re nervous about this topic or know others in your organization who might
be, you might want to give it a careful read, or at least a quick skim.

Imagine this: you’ve convinced your boss that your company can’t stay on
your current technology stack. You’ve put in your time to research all of the
alternatives. You sell the stakeholders one by one. Some come grudgingly
and some immediately, but eventually you win them over.

You can almost touch the tangible sense of excitement in the room as you
get the green light to start building prototypes using technology you all believe
in. The stakeholders are patiently waiting for the payoffs you’ve promised,
and then it hits you. There’s exactly one developer in the whole company who
knows Elixir. It’s a scary feeling.

Take heart. One of the reasons you should be adopting Elixir is to retain,
attract, and motivate top talent. Let’s talk about how to do so.

To thrive, you’re going to need to build a team of Elixir developers, perhaps
without breaking the bank. A recurring theme that all of us hear is that
working with good, new technologies helps companies attract and retain good
developers.

We’ll talk about two ways to find Elixir developers. You can build them or
buy them. In this chapter, we’re going to show you techniques we’ve learned
to build a team by training your existing staff, or augment it by getting new

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

developers. Don’t kid yourself. Both practices are a little different when you’re
adopting a new technology. Let’s get started.

Training Developers
Training developers for a new language is more than simply sending a few of
them at a time to classes and conferences. A holistic approach is better.
Early adopters are learning and deploying a new technology at the same time
and you want to minimize where things can go wrong.

Once you decide to make a commitment to Elixir, your first goal should be
to solve a single, focused problem. That may be a small web service, a proto-
type, or the sketch of a system you plan to rewrite.

It is also worth shaping your first team of Elixir developers with the future in
mind. Experienced developers will be more comfortable with leading the project
and working as mentors. Some may have been exposed to functional program-
ming, which will ease the migration to Elixir, and others may have deep
domain knowledge.

Remember you don’t have to immediately train everyone at once to write
Elixir. At Bleacher Report, they had only two to four full-time Elixir developers
in the first year. This strategy gave developers time to learn the language and
get the prototype apps into production. Once you have established early
success and momentum, you will be ready to engage the rest of the develop-
ment staff bit by bit.

Let’s take a closer look.

Establish Momentum with Early Prototypes
Your first prototype will have a tremendous impact on the adopting of Elixir
at your company. Start by establishing what the language can do and what
it can’t. Since you’re reading this book, you are already on the right track.
An early prototype has to balance the following aspects:

Tangible business value
You need to quickly reward the business side of the house with a quick
win. That win might be fixing a problem they’re seeing in their existing
application or establishing a new capability that’s cost-prohibitive using
older technology.

Central enough to be seen and big enough to matter
You need a visible political win and a technical win. A trivial problem may
not give you either.

Chapter 2. Team Building • 20

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Small enough to permit failure
You don’t want to bet the company on success because you didn’t have
enough experience to take on such a large risk.

In essence, you should aim for low risk and high reward, both on the technical
side and the business side. At some companies, picking up a new technology
is a straightforward process. In other companies, you may need to involve
your stakeholders in the decision making and planning to get the maximum
political value for the win.

Your adoption decision is the most fragile at the very beginning. With the first
political win, you are actually doing three things at once: you’re giving
stakeholders a view of the business benefit, you’re offering technical staff a
taste of the success, and you’re also establishing some new team members.

Developers Training Developers
Once your first Elixir projects hit production, you should expect more team
members to get enthusiastic about learning Elixir. This early buy-in is critical.
You need to manage technology adoption by consensus instead of by decree
because you’re going to have to build trust for when you need to dictate, and
that will happen more often than you think. When you’ve invested in trust, the
more difficult decisions that come later in your adoption curve will be easier.

You’ll have early hurdles to overcome, and if the team isn’t willing to work
through them, it’s a non-starter. It’s also OK for a few to disagree. You’ll want
to build some excitement, and small gestures matter. Bleacher Report got the
team a copy of Programming Elixir 1.3 by Dave Thomas and gave them some
office time to start working through it, alone or in groups. Slowly the team
built an overall feel for the language. Developers can learn the theory in books
and open up your codebase to see how things work in practice. Your earliest
code won’t be polished, but that’s fine.

If you’d like to take the same approach, you have several good books to choose
from, and the Elixir website is a good start when looking up Elixir resources.1

There are many other techniques we’ve seen successfully employed to engage
teams:

• Spread out the Elixir maintenance work for the new prototypes to new
members. Assign some relatively easy tickets to new developers and let
them add some simple functionality to an existing feature.

1. elixir-lang.org/learning.html

report erratum • discuss

Training Developers • 21

http://elixir-lang.org/learning.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

• When working with legacy systems, assign porting of legacy functionality
to new Elixir developers. In many ways, it’s easier to port existing legacy
functionality to a new Elixir app if you already understand how the code
works. We will explore this exact scenario in Chapter 4, Legacy Systems
and Dependencies, on page 61.

• Set aside time for refactoring and make sure new developers get feedback
from experienced ones. If not, you could be reinforcing bad habits instead
of breaking them in favor of good ones.

• Set aside time to talk about bad habits that show up in the codebase,
and let the leaders talk about why the discussion matters. An old Japanese
proverb applies here. Fix the problem, not the blame.

• Write tests. It’s easy to write tests in Elixir, especially when you’re assigned
relatively simple, small amounts of functionality. Tests force decoupled
code with small functions and will give confidence to developers that join
the codebase later on.

Each of these approaches has a time and place for establishing coding skills
in a real-world context. It’s real-life experience with production problems that
best accelerates adoption.

At each step, look for chances to pair, review, or mentor. When you’re
adopting any new technology, much of the risk is consolidated into two criti-
cally important times. The first is your initial ramp up of your novice develop-
ers. The second is keeping your developers from blocking when critical prob-
lems happen. Building a program to train and develop those programmers is
critical to your success.

As you ramp up with Elixir, you will learn that a great deal of thought has
gone into making the language work for new developers. The Elixir website
is enough for developers to get started and the language documentation is
extensive and accessible. The built-in tooling takes care of everything from
creating a new project, to managing dependencies and running tests. Still,
language adoption is never easy. It pays to be prepared for the inevitable
problems you’ll encounter.

When Things Go Wrong
You’ve built your first prototype and your new leaders are starting to, well,
lead. It may seem like a feedback loop that’s just too suspiciously positive.
Don’t worry. Things will eventually break. Expect periods of success followed

Chapter 2. Team Building • 22

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

by frustration. At some point, your team will stall on your learning curve,
and how you address that challenge will make or break your adoption.

Keep in mind how much you’re asking your developers to learn. The old lan-
guages don’t work as well anymore precisely because they are missing core
concepts your new systems need. Functional programming, concurrency, and
distribution are all demanding disciplines. Learning them won’t happen
overnight. If you expect some pushback from your team and yourself, you’ll
be better equipped to handle it.

The trick to breaking through with a new concept is to minimize the time
each developer is stuck. You do that by pairing inexperienced developers with
experienced ones. Whether that happens in a classroom setting, a conference,
pairing sessions, or code review is up to you. The key is to keep attitudes
receptive and positive while you’re opening learning channels through real
coding experience.

Some concepts may be hard to break through. What clicks immediately for
one developer may require time for other developers to digest. When that
happens, it’s OK to put it aside and revisit it later.

Programmers are a sum of their experience. When you’re learning a new
language, it’s inevitable that your old programming habits carry over to your
new language. Some will work in your favor, and you’ll have to break others.
When you’re learning a new programming paradigm, that’s doubly true. In
this section, let’s see how the Bleacher Report team was able to break through
the concept of “functions transform data” and the importance of managing
expectations along the way.

Functions Transform Data
When we say “functions transform data” what do we mean? It’s a deceptively
simple statement. It’s easy to understand how a single function transforms
data. Give some function an input, and it’ll produce an output. The same
input always yields the same output. As you might imagine, it gets more
challenging when you move beyond simple functions to applications and more
complex systems.

Bleacher Report is a news and content company first and foremost. The users
come to the app and site because they want to read breaking news or gain
insight into various sports happenings. The content programmers at Bleacher
Report want to engage with the users in new and exciting ways, and they do
that in part by using different content types.

report erratum • discuss

When Things Go Wrong • 23

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

One business requirement made the team realize that the current data model
would be unsustainable. The business wanted the ability to switch content
types. For instance, when news breaks, Twitter is usually the place where
people first report it. After some time, articles or videos come to add more
detail. Bleacher Report wanted to simulate that concept in code so that the
user would have the whole experience through Bleacher Report instead of
having to sift through different sources.

The initial modeling represented each content type as a distinct data structure,
each with its own database table. As the system grew, common logic and
requirements between content types were moved to shared modules. Later,
that database structure bit them because changes to this shared functional-
ity affected content types in unexpected ways. Eventually they found them-
selves scattering conditionals around the code to manage the different types
and depending on heuristics that often failed.

The trouble here is that they were still too hung up on the names and nouns
in their systems. They created artificial boundaries between content types
and they were struggling with the dependencies between those boundaries.
The solution that they came up with was a watershed moment for understand-
ing functional programming. Since most content types have overlapping fea-
tures, what if the team generalized the modeling and used functions to validate
and transform that data before inserting it into the database?

Fortunately, they were using Ecto as their database abstraction and Ecto
Changesets2 was exactly what Bleacher Report needed. Changesets are
quintessential functions that transform data. With changesets you validate
and modify the data through a series of functions. Different content types
should be in a different pipeline of functions, all working on the same data.

Whenever the content publisher added or modified an article, the content_type
field would tell the application which functions and validations to use. Here
is a simplified version of what the team did:

def changeset(post, content_type, params) do
data
|> cast(params, @required_fields)
|> cast_content_type(content_type, params)
other general validations

end

2. https://hexdocs.pm/ecto/Ecto.Changeset.html

Chapter 2. Team Building • 24

report erratum • discuss

https://hexdocs.pm/ecto/Ecto.Changeset.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

defp cast_content_type(audio, "audio", params) do
validate_extension(audio, :url, [:mp3])

end
defp cast_content_type(video, "video", params) do

validate_extension(video, :url, [:mp4])
end
defp cast_content_type(tweet, "tweet", params) do

...
end

With this schema, the team broke out of the traditional database-backed
model pattern and embraced a new confident, declarative pattern more in
line with functional programming paradigms.

An unexpected pleasant side effect of moving to this new schema was that it
lowered the barrier to entry for developers working on Elixir. The team now
had a great pattern for adding new content types and an easily teachable one,
too. Developers who were learning Elixir could quickly add a new content
type; it inspired confidence, and it was discrete functionality that the devel-
oper could see in the app.

This is just one example but these are the ways in which you can build your
team. Lower the barrier to entry by setting up defined patterns and then teach
them to the enthusiastic developers. Their enthusiasm will spread to others
and then suddenly you’ll find yourself with a team full of Elixir developers.
That’s exactly what happened at Bleacher Report.

Managing Expectations
As you work to establish your initial wins, it’s easy for your team or your
management to get frustrated or concerned when things take too long. You’ve
likely promised plenty of benefits for your new language, but initially, you’ll
likely take longer to do the most trivial tasks because it’s new. To prevent all-
out mutiny, you’ll need to manage the expectations of the involved parties.

Once your team comes up to speed, you will find that you are able to move
at a faster pace, but sometimes to realize those improvements, you need to
rework some of your past infrastructure. When Bleacher Report developers
realized that they could model their data in a much more efficient and
extensible way using Elixir, they had to negotiate how to validate those ideas
and move forward.

Re-modeling the data was no small undertaking, and it took more time than
they had initially anticipated. They did their best to explain why this was
worth the time it took, and the stakeholders agreed. After they finished the
project, the benefits were immediate. It’s now a trivial amount of work—an

report erratum • discuss

When Things Go Wrong • 25

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

hour or two—to add a new content type. The initial delay in feature work
paid for itself and more with the rate at which they can now develop new
features.

Building a new team by training your existing developers is not easy, but it’s
possible. It’s the primary technique used by this whole author team. If you’re
careful to slow down and manage expectations, you can do quite well with
this approach.

Sometimes, this strategy isn’t enough. Whether you need to grow or add a
critical skill you don’t have on staff, you’ll need to find a way to bring in
external developers. Elixir has not quite grown to the point where there are
more developers than jobs, so you may need to adjust your typical staffing
routine. That’s the subject of the next section.

Hiring Elixir Developers
Training your existing staff is only one way to build a team of skilled Elixir
developers. Another way is to recruit them. It’s not easy; finding good devel-
opers in any language is tough, and the pool of Elixir talent is still small,
though growing. All in all, it’s a deviously complex process, so let’s cover two
topics. Since we’re Elixir programmers, let’s deal with that complexity the
same way we deal with the complexity of our codebase, with function trans-
formations. Here’s a good starting point.

candidate_pool
|> interview
|> offer

This pipeline starts with a pool of candidates. The interview process is funda-
mentally a filter and ends with an offer. The offer process is highly dependent
on business parameters such as how much you can spend, where your can-
didates can live, job stability, and the growth you can offer. Such topics are
beyond the scope of this book. Beyond the flippant “Paying more will improve
your closing percentage,” we just can’t offer much.

The other two are very much front and center in an adoption story. You can
improve your hiring process by either increasing your candidate pool or
refining your filter (or both). Let’s start at the top of the pipeline.

Expanding Your Pool
If your process has the right kinds of filters, improving your candidate pool
will improve the quality of your hires. We’ll talk about two different ways to

Chapter 2. Team Building • 26

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

improve your candidate pool. The first is to get involved in the community.
The second is to find good developers from other programming communities
and train them.

Go Where They Go

As with all new languages, the total pool of programmers is relatively smaller,
but don’t lose heart. They are also often among the most motivated candidates
to make a move. If you make yourself visible in the Elixir community, you’ll
often have opportunities that others don’t.

When you want to find Elixir developers, get involved in the Elixir community.
As you contribute, you’ll meet folks and start to understand where to go to
find talent. At icanmakeitbetter, Bruce had great luck going to conferences
and listening. They initially met Eric Meadows-Jönnson in Stockholm at the
Erlang User Community. They’d worked with José on establishing the Plug
library and asked him how best to help the Elixir community. José mentioned
Eric, a graduating college student who built the Hex package manger and the
Ecto library. They hired Eric to help them build their initial Elixir implemen-
tation. The initial push was a great success. When the Swedish market
matured allowing Eric to take a job closer to home, they were able to tap the
conference circuit once again in Orlando, Florida, and Austin, Texas. They
hired James Edward Gray II, who was a speaker at both events and is now
writing a book on application design.

When companies invest in building the ecosystem, good things happen for
everyone. In Tokyo, Japan, Elixir is growing in the gaming, media, and
advertisement industries. In 2013, Japan overtook the United States to become
the world’s number one country in mobile systems revenue, thanks to the
growth of smartphone and tablet games. It is a large market with increasing
competition and demand. With pressure to improve the reliability and perfor-
mance of those services, many companies looked to new technologies,
including Elixir.

Though Japanese programmers and managers had watched Elixir because
of its Ruby heritage and its established Erlang underpinnings, this familiarity
wasn’t enough. They still had to convince their bosses who had reservations
about hiring and building their teams. Rather than just wait for the Elixir
community to grow organically, they decided to take matters into their own
hands.

report erratum • discuss

Hiring Elixir Developers • 27

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

To address this issue, CTOs and engineers of five different companies—
XFLAG/mixi,3 Akatsuki,4 Drecom,5 dwango,6 and gumi7—decided to team up
and organize meetups and others activities, leading to elixirconf.jp, a one-day
Elixir conference in Tokyo with more than 300 attendees. This conference
served as a platform to grow the Elixir presence in Japan, provided a platform
for companies to recruit and train developers, and established the language
as a less risky alternative. José was lucky enough to speak at the event and
to have a round table discussion with their engineering leads:

José: Why did you choose Elixir?

Tsunenori Ohara (Drecom): We were planning to use Erlang and when Elixir
v1.0 came out we ended up evaluating four options: Scala, Erlang, Elixir, and Ruby.
We were looking for reliability and performance and Elixir faired well in our trials.
We also have many Ruby engineers and the similarities between languages played
an important role.

Yusuke Tanaka (Akatsuki): We are mostly a Ruby company and we were looking
at languages with better performance. In the end, we were conflicted between Elixir
and Go. Elixir came out ahead thanks to its active development and community.
We also had engineers familiar with Erlang and brought a couple more onboard,
which helped with the migration to this new runtime.

José: In what capacity are you using Elixir?

Yusuke Tanaka (Akatsuki): We first built a contact management system in
Phoenix as our proof of concept. Then we developed two new services, related to
authentication and payments, which are also running with no hiccups. Now that
we are comfortable with the language and runtime, we are planning to build our
next game in Elixir.

Hidetaka Kojo (XFLAG/mixi): Since we are used to working with different tech-
nology stacks, establishing new technologies internally has always been relatively
straightforward. Today we already have three services running in Elixir and a fourth
in development, being worked on by about twenty engineers.

José: What was your biggest concern when you were first approached to use
Elixir?

Yusuke Tanaka (Akatsuki): While our engineering teams were sold on Elixir, we
still had to convince our bosses about the stability of the language and the commu-
nity. Our solution was to invest in them ourselves and help the community grow in
Japan.

3. https://xflag.com/
4. https://aktsk.jp/
5. http://www.drecom.co.jp/
6. http://dwango.co.jp/
7. https://gu3.co.jp/

Chapter 2. Team Building • 28

report erratum • discuss

https://xflag.com/
https://aktsk.jp/
http://www.drecom.co.jp/
http://dwango.co.jp/
https://gu3.co.jp/
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Tsunenori Ohara (Drecom): The same here. After we convinced our bosses with
prototypes and benchmark results, they were still worried about finding engineers.

You can see that these leads adopted Elixir for many of the same reasons as
others around the world. All were worried about the future of the community
and hiring prospects. Even so, to date the adoption stories have been success-
ful. To mitigate their recruiting risk, they invested in the Elixir community
to grow the new language locally. We’ll watch this story closely to see how
the community grows for them.

When you’re hiring, you don’t have to run a full conference yourself. Many
meetups are looking for meeting spaces or sponsors to bring in speakers or
food. Organize your own or find one and invest. Get the lay of the land before
you announce a job posting. Then, when you know the local community and
they know you, tell them what you’re looking for.

Hiring Programmers from Other Language Communities

When you can’t find an Elixir developer who’s ready on day one, you need to
evaluate your development needs. You have several options beyond simply
increasing what you’re willing to pay a full-time employee.

If you need immediate help but you’re OK with a temporary solution, you
might consider an Elixir consultancy. Plataformatec is the company behind
Elixir and has an excellent team of developers led by José Valim. Chris
McCord, creator of Phoenix, works at Dockyard, a consultancy with increasing
investment in Elixir. Supporting them means also investing in the ecosystem.

Even within the realm of consultants and contractors, you have options. If
you have a more limited budget and some knowledge in house, you can hire
occasional consulting help to do design reviews at critical junctures in your
development. Your bet is that an experienced consultancy can keep you from
making big mistakes. It was during one of many of those reviews that José
Valim realized the impact this book could have in Elixir’s adoption.

Other times, you may want to focus on in-house, full-time employees. If you
have some time to invest, the best approach is often to hire excellent program-
mers and teach them Elixir. The directors from Drecom and Akatsuki success-
fully tapped Ruby and Erlang engineers to supplement their teams. The pro-
cess goes about like you’d expect. Look for the skills or attributes that are
most important to you, and those that predict good success in learning
functional languages. These are some areas that you might consider:

• Hiring people with past successes often leads to future success.

report erratum • discuss

Hiring Elixir Developers • 29

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

• Functional programming and concurrency are sometimes more important
than syntax. Think Erlang or Scala, which both have a very close concur-
rency model to Elixir.

• If you’ll need domain-specific languages, Lisp developers often work well.
Building languages and tweaking syntax within Elixir often means working
with macros, and Elixir’s macros are based on similar features in Lisp.

• Focus on your problem domain such as machine learning or mapping. If
you’re working in a demanding discipline, learning Elixir will be easier
than learning your domain.

These are a few strategies you can use for finding senior development talent
when you can’t find or afford an Elixir developer. Select a skill that’s critical
for your project and look for that instead. If your candidate knows Clojure
and is applying for an Elixir job, they’re willing to learn. If they are outstanding
with Clojure, they’ll learn Elixir just fine. At icanmakeitbetter, Bruce’s finalists
included an Erlang developer, a Ruby developer, and a Clojure developer.
Bruce is confident that any of those three would have worked just fine.

A Case Study for Hiring Developers

EasyMile is a company from Toulouse, France, that has a similar experience.
They develop software for autonomous vehicles and aim to provide turnkey
solutions—such as geolocation, managing fleets, and so on—for any kind of
autonomous vehicles. They support vehicles around the world, so they need
robust systems to manage them. The system must stay up while people are
inside the vehicles. Elixir, and OTP in particular, is a great addition to
EasyMile’s tech stack.

Autonomous vehicles are a relatively new industry. The odds EasyMile will
find candidates that are familiar with their domain and OTP at the same time
is virtually zero, so they need to build skills from within. They hire smart
engineers and developers who are eager to learn. They must compete with
big local companies such as Airbus, so they also need an edge, and Elixir
may be it. Here’s what Pejvan Beigui, EasyMile’s CTO, had to say:

José: Why did you choose Elixir?

Pejvan: My personal opinion had been for a while that a functional programming
approach with a focus on concurrency would be a better fit for our particular use
case. And having played around with Erlang and its VM, I thought we could benefit
from its distinctive features such as fault tolerance and live upgrades. From there,
it’s easy to get attracted to Elixir, which builds on the strength of Erlang, while
adding a modern and productive feel to the platform.

Chapter 2. Team Building • 30

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

But since I would not be involved in the actual coding, I didn’t want to impose a
language on the team who would be writing the code, so while the team was
studying multiple stacks, such as Node.js, I just threw in a one-liner: “You might
also want to have a look at this new language called Elixir.”

As the CTO, it was a very proud moment because a week later, when I came back
to the office, I discovered that they had not only settled on using Elixir for the plat-
form but had also gone so far as to completely rewrite our initial C++ prototype
using it. It was amazing to see them build this so quickly, with far less code and
complexity, and for the prototype to be already much more stable than the C++ one.

José: How has your company benefited from Elixir?

Pejvan: First of all, the fact we are doing Elixir has attracted developers. There
are some developers who applied only because we are exploring new technologies
such as Elixir. The whole approach that we have for recruitment is very opportunistic.
If we find great developers, we hire them even if we don’t have a place right now.
We are also organizing meetups and sponsoring events such as ElixirConf Europe.
And that’s also a benefit. Elixir’s young and growing community is such that a small
company such as EasyMile can have an impact, whereas it would have been very
hard for us to do the same in the PHP or Java community.

When talking about our platform to clients and investors, we also mention that our
system is built on the Erlang VM, with its background in telecommunication and
building robust and fault-tolerant systems. We consider it a competitive edge and
it has been well received.

José: Have you had hiccups or roadblocks along the way? How did you overcome
them?

Pejvan: We have been proactively removing the roadblocks that we expect in the
future. Still, we’re learning how to leverage OTP, and OTP itself is a big beast. There
is a learning curve, but the codebase is more compact and organized than we would
expect so we are looking forward to benefits in the long run.

For doing things in the right way, we have also brought companies like Plataformatec
to help with code reviews and architectural decisions.

The bottom line is that only you know what you need. If you need someone
to be productive from day one in Elixir, you’ll need to find a way to hire an
Elixir developer. If you’re willing to expand your search a bit, you can add
some excellent candidates by looking for domain-specific knowledge across
similar families of languages. You’ll be able to quickly shape such folks into
productive developers. In fact, a great Erlang developer would probably con-
tribute sooner than a decent Ruby developer with six months of Elixir experi-
ence. If you’ve chosen well, the process will go smoothly. Let’s talk about how
to find good candidates and make the right choice for your situation.

report erratum • discuss

Hiring Elixir Developers • 31

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Conducting Interviews
So far, we’ve been talking about recruiting as if it were an Elixir pipeline.
Recall the flow:

candidate_pool
|> interview
|> offer

We’ve discussed some ways to increase the talent pool, possibly beyond Elixir
developers. Let’s look at the second way to improve the quality of your recruits.
You can improve the interview filter. That’s the topic of this section.

After exchanging experiences, we realized the processes we coordinate at our
respective companies were fairly similar. In this section, we’ll highlight what
has been working for us. You are free to try those ideas and cherry-pick what
best suits you. Let’s break down that interview pipeline:

candidate_pool
|> phone_screen
|> code_test
|> onsite_interviews

In programming terms, the phone_screen, the code_test, and the onsite_interviews
are all filters. The strength of the filters in your chain shapes your recruiting
progress, but the source for your filter matters too. Your filters can be more
selective if your candidate_pool is deeper.

Whenever there is an open position and résumés arrive, the process generally
works the same. The recruiting team looks at a résumé and at any attached
project links. If all are in agreement, it is time for a phone screen.

Phone Screens
The first filter is the phone screen. It is an opportunity to reduce your candi-
date pool without much energy. Since you’ll invest many hours in recruiting
and interviewing a single candidate, removing pretenders from the pool as
early as possible is important.

Phone screens can be aggressive or conservative. An aggressive approach
tends to want to let only the top fraction of applicants through. For example,
at icanmakeitbetter, phone screens recently trimmed a list of ten résumés to
the top two. At Bleacher Report, phone screens usually just weed out the
obvious pretenders. Their phone screens usually take about fifteen to twenty
minutes, and unless the candidate inflated their résumé or ducks the call,
they are invited to do a code test and then an in-person interview.

Chapter 2. Team Building • 32

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

In general, open-ended questions based on personal experience are the
hardest ones to fake. Here are a few sample questions we’ve used in the past
for Elixir candidates:

• What’s been your most difficult problem?
• What’s your open source history?
• What don’t you like about Elixir?

These questions provide a good gauge to see how much the candidate is
interested and if they’ve done anything with the language. Serious candidates
can speak about their experience confidently; an ideal candidate can freely
discuss language fundamentals, what they like and what they don’t. If a
candidate has Elixir projects to show off, take notes. An open source project
can be worth ten coding tests.

Once they’ve passed the screen, it is time to ask them to write some code.

The Code Test
Sometimes, once you’ve identified what you think is an ideal candidate, you
can enter a contract-to-hire relationship. Other times, you may have direct
professional knowledge from another job or project. If you don’t know first-
hand whether a candidate can code, you’ll need to measure their ability to
do so. The best way to do so is with a code test.

The goal of the code test is the second filter, and perhaps the most important
one. Use it to assess critical thought and real-world problem-solving. There
are at least four different kinds of coding tests:

• Whiteboard tests ask a candidate to sketch solutions to difficult problems.

• In-office coding tests put a candidate in a room with a keyboard and a
problem.

• Pairing interviews let the candidate work with senior members of a
development team.

• Take-home tests allow a candidate to work on the problem outside of the
interview setting and submit the solution by a certain deadline.

The test should be an accurate gauge of skills that apply directly to your
problems. Like many others,8 we recommend you forgo puzzle questions.
Instead, you should ask the types of questions that your developers would
have to solve in a typical workday. It’s much harder to fake critical thought

8. https://github.com/poteto/hiring-without-whiteboards

report erratum • discuss

Conducting Interviews • 33

https://github.com/poteto/hiring-without-whiteboards
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

than to memorize puzzle question answers. Almost all developers need docu-
mentation to look up functions, parameters, and other language characteris-
tics. Often, you’ll read different blog posts if you’re developing a new feature
to get insight on how other developers have done it. This is how most of us
work, so we should evaluate developers in the same way.

Take-Home Tests

Bleacher Report and Plataformatec use take-home tests. If your company
infrastructure is composed of multiple services and you need a back-end
developer, you may want them to integrate with a mock version of an internal
API. You’ll need to provide a basic set of instructions: what their implementa-
tion should do, what it should return, and other details. The design and
implementation details should be left up to the applicant.

The candidate should spend roughly three hours writing the API. It’s enough
time to write something more than a trivial API, but it’s not so much time
that it feels like a burden. Try to make it a worthwhile investment for both
the applicant and you. Also give them plenty of time to complete the test,
typically a week. If a candidate asks for more time, don’t fret—it is a great
opportunity to assess how the candidate communicates on such situations.

Even though we’re all busy, carving three hours out of the week to finish a
test for a job you want isn’t excessive. It’s also self-selecting in some ways. If
a programmer disagrees, you can part ways knowing that hiring this person
involves more risk than you’re willing to take.

It’s also easier on the candidate; on-site interviews can be up to a full day of
work. It’s troublesome to arrange time off to go to an on-site interview for a
job they might not get. With the take-home test, they have more flexibility to
manage their working hours.

After wrapping up the code test, you should talk to the programmer. It’s
important to talk about the candidate’s decisions as a part of the code test.
We’ll talk about that step in The Interview, on page 35. For now, let’s look at
some other ways to evaluate a programmer’s technical skills.

The Pairing Test

At icanmakeitbetter, the approach is very much the same, but often uses
pairing instead. The test can be local or remote, depending on your interview
process. It’s best that the pairing mirrors the feel of your office development
as closely as it can. With the right interviewers on staff you can learn a sur-
prising amount about an applicant in a pairing session. Problems with many
different requirements of escalating difficulty are excellent choices.

Chapter 2. Team Building • 34

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Like a take-home test, a pairing test measures skill, but it also eliminates
cheating and measures the ability to interact while coding. It’s much easier
to get feedback throughout the process on the reasoning behind choices for
data structures, algorithms, and style. You can do an extended pairing test
by working with a paid contractor for a short time before hiring them as a
full-time employee.

It’s important to watch a candidate navigate their tool chain. Pay attention
to whether they automate and how they interact with both command-line
and graphical tools. Watch them switch context. See how they handle infor-
mation flow across user interfaces. These can be good indicators of whether
the candidate’s experience level matches the résumé.

Both the pairing test and the take-home test can put the candidate at ease in
ways a simple in-office test can’t. Keep in mind neither of these approaches require
Elixir knowledge. You can ask for a coding test in any language. If you were
recruiting a Scala or Clojure developer, you’d just provide a JSON block or a
straightforward HTTP response and ask for a simple passing test. You confirm
the ability to think critically and check parameters against desired outcomes.

We pay attention to the API design, extensibility, code hygiene, documentation,
and tests, but we don’t ask those things in an interview. We let the code do
the talking. “Do you write tests?” is an easy interview question to beat. The
code, though, doesn’t lie.

The Interview
We won’t try to shape your full interview process, because that’s beyond the
scope of this book. Still, when you’re adopting a new language, there are a
few things you should know. Having competition is usually critically important
because it’s easier to negotiate a fair deal, leading to reasonable expectations
and generally a better relationship. The interview’s role is to reduce the pool
of candidates, eventually to the one you decide to hire.

On-site interviews are expensive in terms of time, so it’s important to do all
you can to evaluate the candidate before they ever reach your doorstep. In
most places, in-person interviews are the central part of the technical evalu-
ation of a candidate, but if you’ve followed the advice in this chapter, they
don’t need to be your sole source of information. Having a good take-home
test or open source evaluation takes some of the guesswork out of a technical
evaluation, and removes unnecessary pressure from the process. Interviews
with enough space between provide a much better experience with more
natural interactions that lead to better decisions.

report erratum • discuss

Conducting Interviews • 35

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Regardless of whether the candidate passes or fails, give them feedback. Tell
them what was lacking and where they can improve. This rewards them for
their time investment and can cause a positive impression, even if they are
not hired. Maybe the code test reveals the candidate doesn’t quite fit a senior
role today but they might in a year or two.

After you’ve chosen your candidate and they’ve accepted, you know what to
do. The process is similar to the flow of ramping up your existing developers.
It’s a good place to pause and reflect on this material.

Wrapping Up
In this chapter, we talked about how to build a team. We looked at techniques
to train existing staff or hire new developers. Many companies will need to
know how to do both to have a successful adoption experience.

The chapter began by walking through how our companies initially ramped
up with Elixir. When we trained our developers, we started by choosing a
small part of the application and put together a small team of potential leaders
to do that work. We used techniques like pairing and code reviews to quickly
ramp them up. After our initial prototype, we had a finished application, a
win for the business advocates, and a small and growing list of assets in new
leaders and code.

When we had to hire new developers, we sometimes needed to look beyond
our typical staffing techniques because the language is still relatively new.
You saw that giving back to the community paid dividends later by expanding
our exposure to new Elixir developers. You also learned how to find and hire
developers who might not have Elixir experience. We talked about the critical
data that a code test can provide, examining both take-home and pairing
versions of that technique.

After a whole chapter troubleshooting problems you’ll find when hiring for a
new technology, it’s important to emphasize the converse too. You can use
the excitement around Elixir to attract and retain talent too. In the next
chapter, you’ll learn to take the next step with those new developers. You’ll
learn how to build consistent code with repeatable, measurable quality. Don’t
stop now! You’re almost through Part I. Turn the page!

Chapter 2. Team Building • 36

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

CHAPTER 3

Ensuring Code Consistency
In the past ten years, programmers have made tremendous strides in crafts-
manship. Collectively, we’re paying more attention to code structure, testing,
types, and more because these concepts matter. New adopters might not have
enough experience to completely control every implementation detail, but
they can embrace code consistency.

Whether you’re working on a big team or a young team, you’ll want to establish
a baseline so that your code stays fresh, and the coding stays fun. It’s natural
that technical debt accrues more quickly as inexperienced programmers learn
the best ways to write code that’s easy to understand and maintain. That’s
why code standards are so crucial. Churn without boundaries is chaotic;
churn within a framework is annoying but tolerable.

In this chapter, we’re going to walk you through code quality. We’ll provide
some guidance in five primary areas:

Coding standards
The Elixir community has settled on coding standards so code looks the
same not just from one module to the next, but also one project to the next.

Types
Type annotations provide documentation for the programmer and infor-
mation for tools that help you find bugs.

Documentation
For your public-facing modules, documentation will help you describe
what’s happening in your codebase so others will know how to best use
your code.

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Tests
Testing for functional languages is different. The focus on immutability
will let you build shorter, simpler tests.

Reviews
Fungus grows in the dark. Each different set of eyes is like sunlight into
a damp, dark corner, improving quality and adding accountability.

Many of the tools we’ll show you are not just guidelines you have to police
yourself. They’re automations. That way, you can continuously get many of
these benefits with a fraction of the cost of manual intervention. When you
commit to guidelines throughout your organization and as part of your whole
lifecycle, from setting expectations when you hire your first developer to
maintaining code that’s already in production, you’ll profit.

Before we get started, let’s do one bit of housekeeping. You may be asking
yourself, “How much is too much?” We don’t have an answer for you. Which
tools you install will depend on the size and experience levels for your team,
the size and complexity of your codebase, and your affinity for the approaches
we suggest. We’ll offer two pieces of advice:

• You almost certainly don’t want to implement all of this at once.
• If it feels good, do it more. If it hurts, stop.

None of the authors on this team use all of the tools in this chapter. We all
select the best tools for our teams and circumstances. We suggest you do the
same. With that guidance in mind, let’s get to work. We’ll start with automated
coding standards.

Coding Standards
Every programming language has built-in idioms and practices that collectively
shape the look and feel of a codebase’s structure and contents. That’s coding
style. Good style is especially important to adoption because it reduces friction
between developers and makes a collective codebase easier to read.

As you can imagine, some tools can help you manage many of these elements
automatically. Such tools are typically divided in two categories:

• Code formatters focus on code layout concerns, such as indentation, use
of spaces and newlines, line length, and the like.

• Linters focus on code quality and code structure concerns that go beyond
layout, such as function and variable names.

Chapter 3. Ensuring Code Consistency • 38

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The Elixir community embraced linters years ago but formatters are a more
recent addition. Let’s start with them.

Code Formatters
You and your teams have probably already had one or more heated discussions
about code style. Should you use tabs or spaces? Should you add spaces
after commas or not? To mature, all new language communities must go
through these discussions at some point.

Even when teams are in perfect agreement and choose a style guide that
already exists in the community, enforcing such guidelines requires constant
effort during development as well as code reviews. To make matters worse,
as your company grows, each new developer needs to get acquainted with
the house rules, and that may take some time getting used to.

The Elixir team has heard those complaints loud and clear. To address them,
they have recently announced that Elixir will include a Code Formatter
starting with release v1.6. This new feature can format your code using a
consistent style. Assume a file like this one:

defmodule HelloWorld do
def greet(first, last) do

name = first<>" "<>last
IO.puts "Hello #{ name }!"

end
end

mix format will rewrite that code to:

defmodule HelloWorld do
def greet(first, last) do

name = first <> " " <> last
IO.puts("Hello #{name}!")

end
end

We strongly advise all teams and companies to adopt Elixir’s code formatter.
With it, your team no longer needs to worry about small style decisions that
sap productivity. They can now focus on the issues that matter.

The Elixir formatter is also a great teaching tool. If a new developer joins your
team and they are not yet familiar with Elixir, they can learn how to write
idiomatic code that is consistent with your company and the whole commu-
nity by simply running the formatter as they program. They get immediate
feedback and grow more confident their code will fit right in.

report erratum • discuss

Coding Standards • 39

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Elixir’s code formatter provides as little configuration as possible. A formatter
with too many options would lead to many different sets of rules, causing
fragmentation inside companies and in the community. Instead, the commu-
nity gets greater consistency and new hires or open source contributors know
exactly what to expect.

Finally, note that the formatter will never change the code semantics. The
formatter guarantees any code before and after formatting will behave exactly
the same. This guarantee implies Elixir won’t be able to handle all code style
rules such as underscored_names versus camelCase because such a change would
impact the meaning of the code.

Luckily, the Elixir community provides other tools, such as linters, to handle
all other concerns that the formatter cannot.

Credo: Linter as Teacher
Linters are important because they automate tedious style and code quality
checks. Linter rules don’t exist in a vacuum; the coding rules come from the
language community. As the language evolves, so does the linter. One of the
most useful libraries for code consistency you’ll find is René Föhring’s Credo.1

It’s a linter like Ruby’s Rubocop or JSLint for JavaScript, but as it proclaims
in the tagline on GitHub, it’s a linter “with a focus on code consistency and
teaching.” That aim is what makes Credo so interesting.

With a standard linter, you might get some warning or suggestion, and instead
of understanding the issue you make the change and move on. The linter
helps improve the quality of the code, but it doesn’t give the developer much
context as to why these changes are necessary.

Credo, too, tells you “what,” but also answers “why.”

Let’s look at a contrived simple Mix application. Elixir has a package manager
called Hex.2 Every time you add a dependency to your project, Hex is
responsible for downloading it. Many packages in Hex are named after the
package domain followed by an _ex prefix, such as html_sanitize_ex, kafka_ex, and
many others.

Our application will “hexify” library names by appending _ex to the given string
unless one already exists. Let’s create it:

$ mix new belief_structure

1. https://github.com/rrrene/credo
2. https://hex.pm/

Chapter 3. Ensuring Code Consistency • 40

report erratum • discuss

https://github.com/rrrene/credo
https://hex.pm/
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The BeliefStructure module in lib/belief_structure.ex defines the main hexify function:

ensuring_code_consistency/belief_structure/lib/belief_structure.ex
defmodule BeliefStructure do

def hexify(package) do
case String.ends_with?(package, "ex") do
true -> package
false -> BeliefStructure.Hexify.name(package)

end
end

end

And in lib/belief_structure/hexify.ex, you’ll find this:

ensuring_code_consistency/belief_structure/lib/belief_structure/hexify.ex
defmodule BeliefStructure.Hexify do

def name(package) do
package(package)

end

defp package(package) do
package <> "_ex"

end
end

As you can guess, it works like this:

iex(1)> BeliefStructure.hexify("warden")
"warden_ex"

iex(2)> BeliefStructure.hexify("aws_ex")
"aws_ex"

It works fine, and the code looks OK, but let’s run Credo to check our code.
First, add Credo to your deps:

ensuring_code_consistency/belief_structure/mix.exs
defp deps do

[
{:credo, "~> 0.8.8", only: [:dev], runtime: false}

]
end

From the command line, run the command mix credo. Credo has multiple levels
of warnings and suggestions. If you’d like to see all levels, run mix credo --strict,
which should return the following output:

Software Design
?
? [D] ? Nested modules could be aliased at the top of the invoking module.
? lib/belief_structure.ex:6:16 (BeliefStructure.hexify)

report erratum • discuss

Coding Standards • 41

http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/lib/belief_structure.ex
http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/lib/belief_structure/hexify.ex
http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/mix.exs
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Code Readability
?
? [R] ? Modules should have a @moduledoc tag.
? lib/hexify.ex:1:11 (BeliefStructure.Hexify)
? [R] ? Modules should have a @moduledoc tag.
? lib/belief_structure.ex:1:11 (BeliefStructure)

Please report incorrect results: https://github.com/rrrene/credo/issues

Analysis took 0.1 seconds (0.00s to load, 0.1s running checks)
5 mods/funs, 2 code readability issues, 1 software design suggestion.

Credo reports improvements over a wide range of categories. While those
suggested improvements may quickly resonate with experienced Elixir
developers, new adopters may not understand what they mean or why they
matter. That’s why Credo goes a step further. Let’s try it out (note that your
output might vary based on the particular version of Credo you’re running):

mix credo lib/belief_structure.ex:1:11

?
? [R] Category: readability
? ? Priority: normal
?
? Modules should have a @moduledoc tag.
? lib/hexify.ex:1:11 (BeliefStructure.Hexify)
?
? __ CODE IN QUESTION
?
? 1 defmodule BeliefStructure.Hexify do
? ^^^^^^^^^^^^^^^^^^^^^^
? 2 def name(package) do
? 3 package(package)
?
? __ WHY IT MATTERS
?
? Every module should contain comprehensive documentation.
?
? Many times a sentence or two in plain english, explaining why
? the module exists, will suffice. Documenting your train of
? thought this way will help both your co-workers and your
? future-self.
?
? Other times you will want to elaborate even further and show some
? examples of how the module's functions can and should be used.
?
? In some cases however, you might not want to document things about
? a module, e.g. it is part of a private API inside your project.
? Since Elixir prefers explicitness over implicit behavior, you
? should "tag" these modules with
?

Chapter 3. Ensuring Code Consistency • 42

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

? @moduledoc false
?
? to make it clear that there is no intention in documenting it.
?
? __ CONFIGURATION OPTIONS
?
? You can disable this check by using this tuple
?
? {Credo.Check.Readability.ModuleDoc, false}
?
? There are no other configuration options.

It’s concise and clear. With such an explanation, anyone in the organization
could act on it. If your organization doesn’t use these tags, or at least uses
them sparsely, you can add {Credo.Check.Readability.ModuleDoc, false} to your .credo.exs
and supress such warnings as suggested by Credo here.

Credo has significantly helped Elixir adoption at Bleacher Report for all of
the reasons just mentioned. They adopted Elixir around October 2014 when
the language was quite young. Credo didn’t yet exist and style guides were
just developing. Each app had its own personality but since the team at
Bleacher Report was all learning Elixir, there were varying degrees of technical
debt and experimentation. This state of constant churn made it harder to
switch between apps and no one was exactly sure how to style or unify the
apps in development.

As the community grew, tools started to emerge and they nudged the
Bleacher Report team in the right direction. Most of the tools came in the
form of documents outlining advice or coding suggestions. Using such man-
uals, developers can often miss these stylistic and design inconsistencies, or
worse will only focus on these types of issues during a code review and miss
critical logical errors or regressions. With code formatters and linters such
as Credo, most of those concerns are automated away.

Other elements of code consistency go much deeper. In the next section, we
will work on consistency of types.

Typespecs and Dialyxir
Functional languages depend heavily on types to determine how functions
interact with one another. You can dramatically improve a function’s declara-
tion of intent with typespecs. A typespec annotates the expected input and
outputs of a function. Typespecs aren’t required, but they may be worthwhile
because they require the developer to explicitly state what a function accepts
and what it returns.

report erratum • discuss

Typespecs and Dialyxir • 43

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Since many bugs creep in at system boundaries such as function interfaces,
declaring and enforcing types when you make your function definitions lets you
find bugs and improve documentation for your programs. Typespecs are a con-
sistent and repeatable way to document your system and decrease bugs. They’re
especially useful for teams adopting functional languages for the first time:

• To use them effectively, programmers must reason through how their
functions interact.

• They help tools find bugs that tests might not.

In this section, we’ll show you how to write typespecs and use them to find bugs
in your programs. We’ll work through some code examples, use some Elixir type
specs, and then use an automated tool called Dialyxir to look for type bugs.

Conscious Coding
By default, Elixir checks the arity, or the number of arguments each function
requires. A type spec is an extra annotation for a function that does more.
Creating one is declaring your intent that your function takes specific types
as arguments and produces a return value of a specific type.

Think of a function that adds two integers and returns the sum. Here’s the
function:

def add(x, y), do: x + y

Both inputs and the output might be of type integer(), so your typespec would
look like this:

@spec add(integer(), integer()) :: integer()
def add(x, y), do: x + y

Comments and documentation are subjective opinions; typespecs are objective
facts. Many programmers think of types as a hurdle to satisfy compilers. But
types can be a great communication tool when extended to your domain.

Imagine you are writing a function that computes the distance between two
points:

@spec distance({number(), number()}, {number(), number()}) :: float()
def distance({x1, y1}, {x2, y2}) do

:math.sqrt(:math.pow(x2 - x1, 2) + :math.pow(y2 - y1, 2))
end

The typespec tells us about the inputs and outputs but it is devoid of any
domain knowledge. That makes it hard to read and even full of duplication,
as seen in the {number(), number()} tuple.

Chapter 3. Ensuring Code Consistency • 44

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Let’s rewrite it to rely on user-defined types:

@type point() :: {number(), number()}
@type distance() :: float()

@spec distance(point(), point()) :: distance()
def distance({x1, y1}, {x2, y2}) do

:math.sqrt(:math.pow(x2 - x1, 2) + :math.pow(y2 - y1, 2))
end

User-defined types have more semantic meaning than the default Elixir types
for the developers reading and writing the code. As the module grows, you
will re-use those types, leading to clearer and more understandable code. The
full reference for typespecs in Elixir can be found in the Elixir documentation.3

They are interesting on their own, but get more useful once you start automating
error checking.

Dialyxir
Since Elixir is a dynamically typed language, the compiler doesn’t bother to
evaluate whether your typespecs are correct. The compiler only cares if the
number of function arguments, or arity, and function name match.

Typespecs don’t seem useful; you can remove them without upsetting the
compiler. You might ask yourself why you’d ever go through the effort for
extraneous typespecs. Worse, typespecs could easily fall out of alignment
with the functions they support and lead to confusion. We need some kind
of tool to automate type checking just as Credo automates style checks.

Jeremy Huffman4 has written a library called Dialyxir,5 which is a set of easy-
to-use mix tasks for Dialyzer, an Erlang tool named from the characters in
DIscrepancy AnaLYZer for ERlang. The tool actually analyzes your code for
type consistency using your typespecs for extra information. Let’s give Dialyxir
a try. In the same hexify project from the previous section, add Dialyxir to
your dependencies in mix.exs:

ensuring_code_consistency/belief_structure/mix_1.exs
defp deps do

[
{:credo, "~> 0.8.8", only: [:dev], runtime: false},
{:dialyxir, "~> 0.5", only: [:dev], runtime: false}

]
end

3. https://hexdocs.pm/elixir/typespecs.html
4. https://github.com/jeremyjh
5. https://github.com/jeremyjh/dialyxir

report erratum • discuss

Typespecs and Dialyxir • 45

http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/mix_1.exs
https://hexdocs.pm/elixir/typespecs.html
https://github.com/jeremyjh
https://github.com/jeremyjh/dialyxir
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

and now let’s configure it:

ensuring_code_consistency/belief_structure/mix_1.exs
def project do

[
app: :belief_structure,
dialyzer: [plt_add_deps: :transitive],

You’re likely wondering what plt does. The Persistent Lookup Table (PLT) is a
compiled cache containing the analysis of your application. Otherwise, running
Dialyxir would take ages. First run:

> mix dialyzer

Wait some time for it to run. And continue to wait a bit more. You’ll eventually
need to cancel it. And now you understand why building this cache is
important.

Let’s add some incorrect specs to see what Dialyxir says. Crack open hexify.ex
again, and add these typespecs:

ensuring_code_consistency/belief_structure/lib/belief_structure/hexify_1.ex
defmodule BeliefStructure.Hexify do

@spec name(integer) :: integer
def name(package) do

package(package)
end

@spec package(boolean) :: boolean
def package(package) do

package <> "_ex"
end

end

After mix dialyzer, you’ll clearly see what’s broken:

>> mix dialyzer

...
hexify.ex:2: Invalid type specification
for function 'Elixir.BeliefStructure.Hexify':name/1.
The success typing is (binary()) -> <<_:24,_:_*8>>

hexify.ex:7: Invalid type specification
for function 'Elixir.BeliefStructure.Hexify':package/1.
The success typing is (binary()) -> <<_:24,_:_*8>>

done in 0m1.12s
done (warnings were emitted)

Mercifully this only took 0m1.12s to analyze. The Invalid type specification warning
shows that the both name/1 and package/1 expect a binary. You can infer both

Chapter 3. Ensuring Code Consistency • 46

report erratum • discuss

http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/mix_1.exs
http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/lib/belief_structure/hexify_1.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

from the code, but Dialyxir makes it explicit. Fix the specs and rerun Dialyxir,
like this:

ensuring_code_consistency/belief_structure/lib/belief_structure/hexify_2.ex
defmodule BeliefStructure.Hexify do

@spec name(String.t) :: String.t
def name(package) do

package(package)
end

@spec package(String.t) :: String.t
defp package(package) do

package <> "_ex"
end

end

Now when you run mix dialyzer, you get a successful report. All our types are
correct, and we’re confident these functions expect a string and return a
string. These typespecs, in turn, lead to better tests and better documentation.

One thing to be aware of is that Dialyzer warnings can be difficult to under-
stand and troubleshoot. You can potentially lose a lot of time trying to sort out
somewhat cryptic errors, and it could even spook some of your team while they
are learning Elixir. Take a look at the following warnings emitted by Dialyzer:

1. Function handle_cast/2 has no local return

2. The return type tuple() in the specification of init/1 is not a
subtype of 'ignore' | {'ok',_} | {'stop',_} | {'ok',_,'hibernate' |
'infinity' | non_neg_integer()}, which is the expected return type
for the callback of 'Elixir.GenServer' behaviour

Both of them are relatively easily solved. For the no local return warning, you
must explicitly declare the handle_cast/2 function will fail by adding no_return()
as the return type of its @spec. The second warning happens when the return
type of your @spec does not match the return type defined for the callback by
Elixir’s GenServer.

The point is, though, that these kinds of warnings can be overwhelming if
you’re retroactively adding in the typespecs or you’ve been adding typespecs
along the way without testing them against Dialyzer.

Finally, even if you spec all your functions in your application correctly,
warnings might still pop up from external libraries you include in your
application, just as you’d get compiler warnings from included libraries.

Dialyzer does require an explicit step to run and it produces cryptic errors,
so it is an acquired taste. But if you tend to like the safety types can offer,

report erratum • discuss

Typespecs and Dialyxir • 47

http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/lib/belief_structure/hexify_2.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

typespecs with Dialyzer may provide just enough support for you. We will
explore one of those areas next. Let’s talk about documentation.

Documentation
We’ve discussed strategies for how to enforce consistent coding standards
and typespecs. These are arguably objective metrics. Documentation, on the
other hand, is essential to maintaining a consistent codebase, but since it’s
for human readers, it’s much more subjective.

For experienced developers, documentation of public and common interfaces
allows rapid ramp up and removes friction. For new adopters, documentation
is essential. Documentation will help them internalize how your new applica-
tion works, and serves as a first point of communication between the code
producer and consumer. In this section, we’re going to look at ways to help
automate aspects of your documentation. We’ll look at tools to help you build
tested examples into your code and check the health of your documentation
with a single automated metric.

The Elixir team emphasizes first-class documentation support. The documen-
tation for your application should be easy to write and easy to read. For
writing, use the @doc and @moduledoc attributes. The former documents public
functions and macros, and the latter describes the module. Write Elixir doc-
umentation in Markdown.6

Elixir makes a strong distinction between documentation and code comments.
Documentation is written for developers that consume your APIs, and must
be understandable without opening the source code. In contrast, code com-
ments should be reserved for important observations that developers might
otherwise miss, and should be used sparingly.

The Elixir guides provide an overview on how to write documentation7 and a
couple of ground rules. As with the other tools mentioned in this chapter, the
most important rules will come from within your team and organization,
especially when it comes to what to document.

For reading documentation, you may be able to access it in IEx via the h
helper or directly from your editor. But most commonly, developers access
documentation via the browser, in the form of HTML pages. To build those,
you’ll use ExDoc.

6. https://guides.github.com/features/mastering-markdown/
7. https://hexdocs.pm/elixir/writing-documentation.html

Chapter 3. Ensuring Code Consistency • 48

report erratum • discuss

https://guides.github.com/features/mastering-markdown/
https://hexdocs.pm/elixir/writing-documentation.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Using ExDoc
Using ExDoc is easy because it feels like any other tool in the Elixir ecosystem.
Add ExDoc to your mix.exs as you would any other library, like this:

{:ex_doc, "~> 0.18", only: [:dev], runtime: false}

Run mix deps.get and then mix docs to output the documentation. There are many
configuration options detailed on the GitHub page to configure ExDoc as you
see fit.

To see examples of ExDoc check any of the packages on hex.pm. For example,
if we browse over to hexdocs.pm/ecto we can see its output. If you point your
browser at hexdocs.pm/ecto you’ll see something like the following figure:

One of the benefits to how ExDoc outputs the documentation is that it feels
like annotated code rather than a division between code and documentation.
It’s accessible and therefore useful. You can see the results of your module
tags. With ExDoc, you can keep minimal focus on the contents of your docu-
mentation and leave the more mechanical elements to your tool chain.

While ExDoc automates how you document each piece of code, InchEx mea-
sures the level of your code’s documentation coverage.

InchEx
InchEx is another tool written by Credo’s René Föhring, and it takes a more
laissez-faire approach to measuring documentation coverage. Instead of
assigning an overall percentage of covered documentation, it evaluates and

report erratum • discuss

Documentation • 49

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

grades each module. You can decide how much is enough. A more experienced
team might work for a grade of say 50%. A newer team might aim higher
because such programmers need more support. OpenSource frameworks
might aim especially high.

Let’s start adding some documentation for InchEx to measure. Examples
complement even the most basic of functions. Elixir promotes such practices
by providing doctests, automatically running the examples in the documen-
tation when running tests:

ensuring_code_consistency/belief_structure/lib/belief_structure_1.ex
defmodule BeliefStructure do

@doc """
Adds the "_ex" suffix to the package name if necessary.

Examples

iex> BeliefStructure.hexify("math_ex")
"math_ex"

"""
@spec hexify(String.t) :: String.t
def hexify(package) do

case String.ends_with?(package, "ex") do
true -> package
false -> BeliefStructure.Hexify.name(package)

end
end

end

Now that we’ve added some documentation, we can run InchEx on our code-
base like any other hex package. Add it to your deps in mix.exs:

{:inch_ex, "~> 0.5", only: [:dev, :test], runtime: false}

Then run mix deps.get and then mix inch. It’ll return something like this:

$ mix inch

Properly documented, could be improved:

┃ B ↑ Hexify.package/1

Undocumented:

┃ U ↑ BeliefStructure
┃ U ↗ BeliefStructure.hexify/1

Grade distribution (undocumented, C, B, A): █ ▁ ▄ ▄

mix inch can give reviewers a quick snapshot of the documentation health.
Important open source projects, such as Plug and Ecto, rely on InchEx to
guarantee their APIs are well documented and help to spot any undocumented

Chapter 3. Ensuring Code Consistency • 50

report erratum • discuss

http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/lib/belief_structure_1.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

code. Documentation is essential on any codebase that is meant to be used
by a group of developers beyond the team who maintains it.

Tests and Code Coverage
In the past fifteen years, we’ve seen a tremendous growth in automated soft-
ware testing. Elixir embraces this trend. Rather than give you a deep dive
into any single tool, we’re going to walk you through a few important ones
that will help ease your adoption.

ExUnit
Elixir ships with a unit testing framework called ExUnit.8 Based on longstanding
principles, it serves as the basic building block for almost all other Elixir
testing frameworks.

The Elixir community expects applications and libraries to be well tested.
We’ll not give you more than a brief overview here, but we will touch on some
ExUnit basics:

• Tests are a series of scripts that mix discovers and runs based on their
name.

• Each test runs a flow of setup, test, teardown.

• After setup, a test executes some piece of application code and then makes
one or more assertions about what should be true.

• If an assertion is not true or there’s an unplanned application exception,
the test fails.

ExUnit has a strong focus on usability. Every time an assertion fails, you get
detailed reporting on what went wrong. Recent Elixir versions even show
colored diffs in those reports, making it trivial to spot errors.

Most of your interactions with the test suite happen through mix test.9 Because
it integrates with ExUnit tags, mix test provides plenty of control of what to
test on every invocation. For example, if you have tests that need to talk to
external services, you may want to hide those behind an external tag and run
those only when necessary with mix test --only external. We recommend checking
out the other flags available in the mix test command. We use flags such as
--stale and --cover on a daily basis.

8. https://hexdocs.pm/ex_unit/ExUnit.html
9. https://hexdocs.pm/mix/Mix.Tasks.Test.html

report erratum • discuss

Tests and Code Coverage • 51

https://hexdocs.pm/ex_unit/ExUnit.html
https://hexdocs.pm/mix/Mix.Tasks.Test.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The testing philosophy is equally important to the tooling. Elixir developers
put a strong emphasis on concurrent tests. ExUnit lets you run a group of
tests concurrently by simply passing the async: true option when defining your
test cases. Frameworks such as Phoenix build on those capabilities, allowing
you to run tests concurrently even when your application needs to talk to the
database.10

Avoid Mocking Libraries
Another important testing philosophy is that the Elixir community prefers to
avoid mocking libraries that dynamically change the code under test.11 For
example, if you need to communicate to external services, tools such as
Bypass12 let you to run a web API on the same VM as your tests. This API can
be controlled by your tests through composed external responses. This way your
tests fully exercise the code that integrates with the third-party service, from
your business logic to the HTTP client. Bypass has been invaluable to test the
integration with external systems at Bleacher Report and icanmakeitbetter.

On the other hand, if you really need to define a mock in your application,
you can use Mox.13 That library is an option that enforces explicit contracts
in your code while still allowing tests to run concurrently.

As you get into Elixir, those practices and philosophies will become clearer
through the documentation and the tooling. If you are using individual
frameworks such as Nerves and Phoenix, those ecosystems will help point
you in the right direction as well.

With that basic introduction out of the way, let’s move on to other useful
testing tools. In the next section, we’ll show you how to capture a basic metric
for test health: coverage.

Measuring Test Coverage with Excoveralls
In this chapter, we’ve focused not just on automation tools but measurement
tools. One such measurement is test coverage. Code coverage doesn’t measure
the quality of your tests. It measures how much of your system your tests
execute. As your team adopts Elixir, it’s easy for code to creep into the code-
base without tests. With a coverage tool, you can objectively measure how
much of your code that’s exercised by at least one test. Just as importantly,

10. https://hexdocs.pm/ecto/Ecto.Adapters.SQL.Sandbox.html
11. http://blog.plataformatec.com.br/2015/10/mocks-and-explicit-contracts/
12. https://github.com/PSPDFKit-labs/bypass
13. https://github.com/plataformatec/mox

Chapter 3. Ensuring Code Consistency • 52

report erratum • discuss

https://hexdocs.pm/ecto/Ecto.Adapters.SQL.Sandbox.html
http://blog.plataformatec.com.br/2015/10/mocks-and-explicit-contracts/
https://github.com/PSPDFKit-labs/bypass
https://github.com/plataformatec/mox
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

you can use it to see whether any individual line of code in the system has
supporting tests.

Test coverage is a good rubric by which to measure the overall health and
stability of an application. With high test coverage, we can be confident when
we refactor or add new features. It helps eliminate regression and other bugs.
Ultimately, if you have meaningful tests, it’s a testament to the code doing
what it says it does.

Excoveralls14 is a library that measures test coverage, sending a report to the
command line, to HTML, or to external services. For our purposes, let’s focus
on the command-line and HTML output options.

To use Excoveralls add ex_coveralls to the deps function in mix.exs:

ensuring_code_consistency/belief_structure/mix_2.exs
defp deps do

[
{:credo, "~> 0.8.8", only: [:dev], runtime: false},
{:dialyxir, "~> 0.5", only: [:dev], runtime: false},
{:excoveralls, "~> 0.7.4", only: [:test], runtime: false},
{:ex_doc, "~> 0.18", only: [:dev], runtime: false},
{:inch_ex, "~> 0.5", only: [:dev, :test], runtime: false}

]
end

You also need to add the test_coverage tuple to the project function. The test_cov-
erage configuration is a mechanism to configure the tool and options for how
you want to test your application. The default is a wrapper around cover15 that
ships as part of Erlang/OTP.

Now, open up mix.exs and fill out the preferred_cli_env to use with coveralls.
preferred_cli_env allows you to set the preferred environment to run command-
line tasks:

ensuring_code_consistency/belief_structure/mix_2.exs
def project do

[
app: :belief_structure,
preferred_cli_env: [

"coveralls": :test,
"coveralls.detail": :test,
"coveralls.post": :test,
"coveralls.html": :test,

],
test_coverage: [tool: ExCoveralls],

14. https://github.com/parroty/excoveralls
15. http://erlang.org/doc/man/cover.html

report erratum • discuss

Tests and Code Coverage • 53

http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/mix_2.exs
http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/mix_2.exs
https://github.com/parroty/excoveralls
http://erlang.org/doc/man/cover.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Now just run mix coveralls:

COV FILE LINES RELEVANT MISSED
66.7% lib/belief_structure.ex 18 3 1
0.0% lib/belief_structure/hexify.ex 11 2 2

[TOTAL] 40.0%

If you run mix coveralls.detail you’ll get a command-line output of each file with
the covered lines highlighted in green. Like mix coveralls.detail, mix coveralls.html
outputs to cover/excoveralls.html.

These detailed reports can help to up test coverage or, from a reviewer’s point
of view, make it easy to see how the code-to-be-committed fits in with the rest
of the application and how well it’s tested.

As with InchEx, you can decide how much coverage you want to maintain.
The icanmakeitbetter team maintains full 100% coverage, except for ignored
files that work on external interfaces. At Bleacher Report, the team does not
require full coverage, but does measure it. They choose to invest in code
quality in other ways. You’ll need to figure out what makes sense for your
team and stick with the approach that works best for you.

Bureaucrat
Many of the tools available directly in Elixir, such as ExUnit and documenta-
tion, focus on modules and functions. ExUnit is a great tool for unit testing.
ExDoc is excellent for generating documentation from your modules and
functions, with guides covering the remaining functionality.

However, as developers tackle particular domains, such as the domain of web
applications with Phoenix, the need for more specific tools arises. So before
finishing the testing section, we are going to cover two tools that are specific
to web applications, exploring them in the context of Phoenix. If you are using
Elixir for other domains, such as embedded software or data processing, it
is likely those domains include their own abstractions, which provide similar
benefits.

To get started, let’s take a look at a Phoenix controller test:

test "GET /posts/:id ", %{conn: conn} do
response =

get(conn, "/posts/post-name")
|> json_response(200)

assert response.status == 200

Chapter 3. Ensuring Code Consistency • 54

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

It’s a standard controller test. Every framework has its quirks, and Phoenix
is no different. You’ll pass in the %{conn: conn} map. This is just syntactic
sugar for MyApp.ConnTest.build_conn() which sets up a test connection.

Recall that conn is the data that Phoenix needs to describe the whole life of a
connection, from the initial attributes about the URL to intermediate data in
an application and eventually to the response and status code. Since response
is the output of the set of functions you can assert or refute anything that’s
related to the request and response cycle. It makes integration tests easy to
write and explain to new Elixir developers.

But documenting all of the endpoints and attributes available in our APIs is
a constant struggle. Those of us who have coded more than a couple of decades
remember excessive comments. Our teachers and mentors would request
acres of comments at the top of each method. Over time, some have come to
understand that comments can get out of sync with your codebase.

A similar issue occurs with API documentation. The problem is that no matter
how vigilant one is in maintaining it, inconsistencies emerge. For someone
who writes loads of API docs, it’s a time-consuming process, and errors
undermine confidence.

Enter Bureaucrat,16 a tool that attempts to solve this discrepancy problem.
Bureaucrat is a library that generates API documentation from tests. If you
have good API tests, then the API docs are always in sync.

Let’s try it out. By now, the steps for integrating a new tool should seem
familiar. Add bureaucrat to the deps section in mix.exs and then run mix deps.get.
You’ll also need to update test/test_helper.exs and modify it like so:

Bureaucrat.start
ExUnit.start(formatters: [ExUnit.CLIFormatter, Bureaucrat.Formatter])

All this does is start Bureaucrat when you run your tests and adds the Bureau-
crat.Formatter module to the list of formatters to run when ExUnit runs. Addition-
ally, you need to modify test/support/conn_case.ex:

defmodule MyApp.ConnCase do
using do

quote do
... all of the other Phoenix imports omitted
import Bureaucrat.Helpers

end
end

end

16. https://github.com/api-hogs/bureaucrat

report erratum • discuss

Tests and Code Coverage • 55

https://github.com/api-hogs/bureaucrat
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

And that’s it. All that remains is to tell which tests Bureaucrat should docu-
ment. Bureaucrat makes it spectacularly easy to generate documentation
from tests:

test "creates and renders resource when data is valid", %{conn: conn} do
conn =

conn
|> post("/ratings", rating: @valid_attrs)
|> doc

assert json_response(conn, 201)["data"]["id"]
assert Repo.get_by(Rating, @valid_attrs)

end

Then run DOC=1 mix test, and it generates your documentation, which should
look something like this:

Chapter 3. Ensuring Code Consistency • 56

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

By default, Bureaucrat outputs documentation to web/controllers/README.md but
you may also output all documentation to a custom directory like this:

Bureaucrat.start(
writer: Bureaucrat.MarkdownWriter,
default_path: "doc/APIDOCS.md",
paths: [],
env_var: "EXPORT"

)

Creating accurate API docs on the fly is invaluable because now as long as
there is sufficient test coverage, the relevant documentation is always in sync.

Putting It All Together: Code Reviews
All previous sections in this chapter lead to the code review. Each section
reinforces the others and paves the way for meaningful collaboration in the
form of code reviews.

Authors have editors, builders have inspections, and judges have appellate
courts; even cosmetologists have oversight. Programmers, on the other hand,
have none of these things. Although bad code often has serious real-life con-
sequences (such as grounded planes or stolen identities), we don’t handle
formal reviews very well as an industry. Healthy code needs accountability,
and that requires many sets of eyes on the same code. Here’s the thing about
code reviews, though: good code reviews take effort, and inconsistent code
provides friction that multiplies that effort.

Automating Your Consistency Checks
Everything we’ve written so far builds up to writing the healthiest, most consistent
code possible so your reviews can be better and more effective. You don’t have to
follow all of these techniques, but each one helps prepare a pull request so the
reviewer can focus on what’s important to you. Putting together the last few sec-
tions we can now create an alias in your mix.exs to do all the work for us. You can
make your mix file look like this:

ensuring_code_consistency/belief_structure/mix_3.exs
def aliases do

[
"ensure_consistency": ["test", "dialyzer", "credo --strict", "inch",

"coveralls"]
]

end
def project do

[
app: :belief_structure,
aliases: aliases(),

report erratum • discuss

Putting It All Together: Code Reviews • 57

http://media.pragprog.com/titles/tvmelixir/code/ensuring_code_consistency/belief_structure/mix_3.exs
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Now, whenever you run this alias, you’ll get all the information a developer
needs—from style to documentation to typespecs and test and test cover-
age—before a code review, after a major refactoring, when hiring a new
developer, or before a major release. When these requirements are met, you’ll
be better prepared for whatever the world throws at you.

You may even decide to run tests, or check for the existence of one or more
of these artifacts each time you commit. To do so, you can use a continuous
integration (CI) server such as Travis-CI,17 circle-ci,18 or Jenkins.19 Another
compelling tool is Ebert.20 This tool automates your review process by running
linters such as Credo each time you do a pull request. In the interest of full
disclosure, keep in mind that Ebert is a paid service from Plataformatec, the
company behind Elixir.

The computer can do the things computers are good at—measuring test cov-
erage, enforcing types, and the tedious job of implementing consistent style.
The computer can even automate enforcement of the above. Reviewers can
then focus on ensuring that business logic matches your business rules, and
the functions do what they are supposed to do. Let’s assume you’ve run your
consistency check, with a CI server or by hand. The next step is to get a set
of experienced eyes on that code.

Performing Code Reviews
The best way for new programmers to learn is to start coding—but that’s not
enough. Coders need oversight just like code does. Without good mentoring
and proper reviews, simply writing code just reinforces bad habits. Good
mentoring that can augment code reviews instead breaks bad habits before
they start and reinforces good behaviors.

How you do code reviews is up to you. Sometimes, two developers can pair,
with the author walking the reviewer through the most critical details. Other
times, team leads might review code from a formal pull request, or a senior
developer might simply read through a commit summary. You can use many
different approaches to get to the same place. The important thing is that
your development process builds in accountability and oversight so real
people read code as soon as it is ready. Keep these concepts in mind as you
decide what’s best for you:

17. https://travis-ci.org/
18. https://circleci.com/
19. https://jenkins.io/
20. https://ebertapp.io/

Chapter 3. Ensuring Code Consistency • 58

report erratum • discuss

https://travis-ci.org/
https://circleci.com/
https://jenkins.io/
https://ebertapp.io/
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

• Larger and more inexperienced teams need more communication.

• Larger teams need more formal mechanisms to enforce reviews.

• Reviews are one of the most important ways to ramp up inexperienced
developers quickly.

• All teams need regular reviews.

Once you’ve decided how to perform your reviews, your next decision is how
to provide feedback. A quick word of advice: code reviews don’t impact all
programmers in the same way. Stay gentle and kind. Refrain from making
judgments about people, and avoid biting humor. In this context, such com-
ments often prove more toxic than you expect.

Even if your reviews are verbal, it’s best to come out of each review with a
tangible punch list. Your punch list may be an informal text file, but tickets
work best. You can even combine many tasks in a single ticket if the requests
aren’t too sweeping. This approach allows you to formalize follow-up with the
tools you already have on hand.

Wrapping Up
This chapter took a look at code consistency. More than a dry list of dos and
don’ts, we focused instead on how to build a process with a series of automat-
ed measurements to ensure a lasting, healthy codebase. These techniques
and tools are not mandates. Each team must decide which ones to adopt and
which to ignore based on experience, code complexity, and the makeup of
the team.

We started with coding standards. Elixir’s code formatter enforces a consistent
style and the Credo linter helps to measure code quality. We then moved on
to types. Typespecs help make your intentions clear and Dialyzer uses them
with other clues in the language to find bugs and stylistic inconsistencies.
Documentation tools help establish metrics for the health of your system and
build more effective documentation.

We spent a good amount of time on tests. Elixir’s testing philosophy is differ-
ent, with a focus on concurrency and eschewing dynamic mocks and stubs
in favor of tools such as Bypass and Mox. Measurement tools such as Coveralls
measure coverage as a basic metric for code health and Bureaucrat builds
documentation for external interfaces.

report erratum • discuss

Wrapping Up • 59

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

All of these concepts build toward better code reviews. Automating these ele-
ments led to code reviews that could focus on the application domain rather
than tediously pointing out lacking tests, inconsistent style, or imperfect
documentation. This was a lot to cover, but we’re ready to stop talking about
coding standards and consistency, and start talking about implementation.
In the next chapter, we’ll discuss how to integrate with legacy systems and
manage your dependencies. You’re almost through Part I.

Chapter 3. Ensuring Code Consistency • 60

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

CHAPTER 4

Legacy Systems and Dependencies
If you’re considering Elixir and you have legacy code, your head is likely
swimming with risk factors, plans, and contingencies. You may even be con-
sidering Elixir for the exact purpose of replacing a legacy system. Migrating
some small aspect of your system is hard. Migrating an application in
another language complicates simpler migrations by changing not just your
language but the set of libraries and tools you’ve come to depend on. In this
chapter, we’ll show you some approaches that will help you mitigate that risk.

On the other hand, if you are using Elixir to start a brand-new business or
project, you may be wondering how to keep the code you are writing today
from becoming legacy. We have bad news and good news. The bad news is
that the code you wrote today is already legacy code. You will have to maintain,
evolve, and support it. That’s OK. The good news is that a lot can be done to
make this maintenance a pleasant experience.

This book is about adopting Elixir to write maintainable applications. Making
tomorrow’s legacy code beautiful is something we can work on proactively
and continuously, but our applications do not exist in a vacuum. They also
have dependencies, even some that may be out of our control. If you are not
careful, any dependency may become a legacy system to replace.

A complete discussion of legacy systems and dependencies could fill a book of
its own. Therefore we will focus on three main topics that are actively debated
in the Elixir community. The first one is how to replace a legacy web application
gradually with Elixir. Then we will talk about umbrella projects as an alternative
to manage dependencies by your team. The third topic will cover how to manage
code dependencies. We won’t discuss how to handle external dependencies,
like third-party APIs, nor how to choose other parts of your stack that you
depend on, such as the operating system and the database.

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

That’s a pretty full list, so let’s get started.

Replacing a Legacy Web App
You may have heard this old joke: the only way to move a mountain is one
stone at a time. Legacy application migrations are nearly impossible to handle
all at once. You have to break the problem into manageable pieces to even
have a chance. Over the course of this section, we’ll walk you through this
process. The resources available to you and the size of your platform certainly
has an effect on how long this process will take, but the process will remain
the same. There’s a political element and a technical one.

The political element involves setting expectations and managing risk.
Throughout this book, we stress the importance of setting expectations. Pro-
gramming is more than 1s and 0s. Successful programmers communicate.

The technical element is isolating small bits of the application to migrate,
step by step. With a little time and effort, you can have a common web API
that has two back ends, one for your legacy system and one for the new. Then,
you can flip the switch, either all at once or one subsystem at a time.

Where you begin depends on a number of factors, including your company’s
architecture and urgency. Let’s start with architecture, of which we’ll consider
two general types: monolithic and service-oriented architecture (SOA). Many
companies with scaling and code maintenance issues use a monolith of some
sort. Monoliths are large systems written as a single project with little to no
boundaries between its components. They are often hard to understand and
maintain due to their size and the coupling they promote between components.
Even worse, such large applications often take a long time to boot, followed
by a long-running test suite, both undermining the development feedback
cycle. Since monoliths are the hardest one to manage, we’ll assume your
legacy system is a monolith.

Most organizations who adopt service-oriented architectures do so because
they’ve been through the pain of managing a monolith. SOA is composed of
many services that communicate via a protocol, such as HTTP+JSON or
Apache Thrift. Replacing a service is a matter of looking at the Elixir ecosystem
for libraries that implement said protocol and then replacing the problematic
services by others implemented in Elixir while keeping the same API. One of
the benefits of SOA is exactly the replaceability of subsystems and that’s what
we get here.

Here is the plan. We will start with a case study from Bleacher Report on how
they migrated their eight-year-old monolith gradually, discussing how they

Chapter 4. Legacy Systems and Dependencies • 62

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

mitigated risk and their approach to incremental APIs. Luckily for us, the
Elixir ecosystem has grown considerably since Bleacher Report took this effort
and tools built specifically for interfacing with legacy systems have surfaced.
After that, we will explore one of them called Terraform.

When Bleacher chose to adopt Elixir, their system as a single application was
eight years old. Their monolith was designed as a desktop-first experience,
and now the majority of the company’s traffic comes from mobile devices.
Their business grew as they added the capability to follow individual teams
and players. With the advent of the smartphone, notifications alerted users
to breaking news and events, driving their traffic higher.

The problems that haunted their system were scaling and serving personalized
content on demand. You’ve read about their attempts to cache or add servers.
After that, it was clear they had to introduce a new technology, as they had
reached the limits of their existing stack. They had to break up the monolith.

Around this time they forged their agreement with key stakeholders. The
potential risk was enormous. The team decided to build their core content
streams in a language that had only recently reached 1.0 (in 2014) and use
Phoenix, a framework that was about a year away from 1.0. That was the
core of their business.

The team drew the boundaries around this first Elixir service. The service
would fetch a user’s subscriptions and built content streams for each sub-
scription. As they built the service, they also had to change the legacy appli-
cation to request the service using an HTTP client. Eventually the service
would serve as the single source of truth for the rest of Bleacher Report.
Today, mobile applications and the front end access the service directly
without passing through the legacy application.

Once the team came up with the app boundaries, the next problem was
deciding who should work on it. They wanted to balance two concerns. They
identified leaders who were the primary Elixir advocates. They also needed
to mix in enough business experience to solve the problem, so they identified
the developers who wrote or supported the legacy code. That combination
gave them both domain knowledge and enough Elixir chops to solve the crit-
ical problem.

It was high-risk, high-precision surgery with a small and confident team. The
sports giant decided to replace a core part of their system but one very limited
in scope. Doing too much or getting too many people involved would have
increased risk even further, and that’s the last thing they wanted.

report erratum • discuss

Replacing a Legacy Web App • 63

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Once a prototype was ready, they didn’t deploy it to production right away.
Instead, they ranked content streams roughly by ascending popularity to
proxy to the new Elixir service.

They used less popular streams to test how the service performed. If a stream
were to fail, they’d prefer to draw the ire from Olympic equestrian fans in a
non-Olympic year than World Cup soccer fans at the peak of the tournament.
They built a simple app to direct requests based on a static file, routing
streams to either the Elixir servers or the existing legacy ones. As Bleacher
Report has roughly 70,000 content streams, this approach was quite cumber-
some. It did work though and it allowed both the development team and
business side stakeholders to develop confidence until they completely removed
the stop-gap.

That was the basic rubric that the team used to port its first critical legacy
component to Elixir. To summarize:

• They isolated the part of the legacy system that was failing the most.
• They built a team just large enough to solve the problem.
• They included both Elixir skill and legacy domain experience.
• They tested their prototype in production gradually until they had enough

confidence to fully depend on it.

With their first victory in hands, the technical team was ready to push forward
and migrate other critical components to Elixir. They chose the strangler vine1

technique to move forward. The strangler vine means you build new pieces
of a large application over months or even years using a new technology until
the old system just dies and is subsumed. It was deliberate and incremental.
Steady, iterative progress will win over time.

Three years after they started, they’re still porting the last few bits of the legacy
system, partially because the urgency isn’t as great. Some of the stragglers aren’t
traffic-dependent services and others are internal tools around the edges of their
system. Now their performance is better, their teams are more productive, their
customers are happier, and their software is easier to extend.

In the next section, we will add some technical depth by exploring the Ter-
raform project and show how some of the techniques used by Bleacher Report
translate to code.

1. https://www.martinfowler.com/bliki/StranglerApplication.html

Chapter 4. Legacy Systems and Dependencies • 64

report erratum • discuss

https://www.martinfowler.com/bliki/StranglerApplication.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Terraform and API Evolution
As Bleacher Report took their first steps in replacing a legacy web applica-
tion, one of their initial challenges was visualizing how to go from a single
application to potentially many without disrupting the service. They opted
for an approach where the new service was completely decoupled from the
legacy application but the legacy application had to be changed to talk to
this new system via an HTTP client. This worked well in their case, as the
functionality they were isolating was quite focused. While a good chunk of
their system would depend on this new service, the service in itself depended
on little else.

You may not be so lucky. Depending on your application, you may be hard
pressed to find a subsystem that does not depend on other core components,
such as authentication. For this reason, many companies choose the
authentication service to be the first to be replaced or extracted from the
legacy system. This can get quite complex, as you need both old and new
code to have the same logic when it comes to encryption of passwords and
generation of tokens.

In this section, you will explore one particular approach to migrating legacy
web applications. You’ll replace a legacy application with Lauren Tan and
Dan McClain’s Terraform library.2 Terraforming is the act of transforming a
planet so as to resemble the earth, especially so that it can support human
life. The Terraform library allows you to wrap endpoints of your web application
and replace them with an Elixir alternative. That allows you to change your
“planet” as smoothly as possible by keeping the overall web API the same
while you work in small increments, replacing a single API at a time. Terraform
handles the rest. You don’t need to change all of your endpoints at once
because Terraform proxies unhandled legacy requests and hands them off to
the old system.

Lauren’s blog post “Rise from the Ashes”3 walks you through the Terraform
basics.

Let’s take a look at Lauren’s example application4 for a Terraform primer.
Like any other dependency, the first step is to add it to the mix.exs file in your
projects:

2. https://github.com/poteto/terraform/
3. https://medium.com/@sugarpirate/rise-from-the-ashes-incremental-apis-with-phoenix-b08cd66bd142
4. https://github.com/poteto/reverse_proxy

report erratum • discuss

Terraform and API Evolution • 65

https://github.com/poteto/terraform/
https://medium.com/@sugarpirate/rise-from-the-ashes-incremental-apis-with-phoenix-b08cd66bd142
https://github.com/poteto/reverse_proxy
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

defp deps do
[
...#omitted
{:terraform, "~> 1.0.1"}

]
end

Next, we need to define both a terraformer and a client. A terraformer
matches on the incoming request and proxies it to the legacy application. In
the reverse proxy example, the terraformer matches all GET requests and
raises a Not Implemented Yet exception otherwise. Let’s go through this module
bit by bit:5

defmodule ReverseProxy.Terraformers.Giphy do
use Plug.Router
require Logger
alias ReverseProxy.Clients.Giphy

@host Application.fetch_env!(:reverse_proxy, :giphy)[:host]

plug :match
plug :dispatch

The external API URL in this case is Giphy. plug :match and plug :dispatch are the
building blocks of a Plug.Router.6 This router tells Plug to first match on a
route and then dispatch the request. Let’s see the routes next:

match specific path
get "/v1/hello-world", do: send_resp(conn, 200, "Hello world")

catch all `get`s
get _ do

%{
method: "GET",
request_path: request_path,
params: params,
req_headers: req_headers

} = conn
logging omitted
res = Giphy.get!(request_path, req_headers, [params: Map.to_list(params)])

This section of the module defines what routes terraformer proxies to the
external service. Remember, a proxy is simply a service that forwards one
request to some third party. This example handles /v1/hello-world locally, and
hands other requests to the general catch-all get _ do. Any request that falls
through to this catch-all will proxy to Giphy, returning hilarious and
insightful gifs.

5. https://github.com/poteto/reverse_proxy/blob/master/lib/reverse_proxy/terraformers/giphy.ex
6. https://hexdocs.pm/plug/Plug.Router.html

Chapter 4. Legacy Systems and Dependencies • 66

report erratum • discuss

https://github.com/poteto/reverse_proxy/blob/master/lib/reverse_proxy/terraformers/giphy.ex
https://hexdocs.pm/plug/Plug.Router.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Next, we should handle non-get requests, like this:

match _, do: raise "Not implemented yet"

defp send_response({ :ok, conn,
%{headers: headers, status_code: status_code, body: body}}) do

conn = %{conn | resp_headers: headers}
send_resp(conn, status_code, body)

end

The second catch-all match handles any non-GET routes. A private function
handles and formats the response from the external API. Terraform provides
an elegant way to handle incremental API development both in its flexibility
and in its simplicity, server side.

Let’s take a look at the client now:7

defmodule ReverseProxy.Clients.Giphy do
use HTTPoison.Base

@host Application.fetch_env!(:reverse_proxy, :giphy)[:host]
@secret Application.fetch_env!(:reverse_proxy, :giphy)[:secret]

def process_url(url) do
@host <> url

end

def process_request_headers(headers) do
headers
|> List.keyreplace("accept", 0, {"accept", "application/json"})
|> List.keydelete("host", 0)

end
end

Beautiful. This example shows simple layering of functional APIs. The client
uses an HTML client called HTTPoison8 to do much of the heavy lifting.
HTTPoison.Base enables Giphy, our custom client. With Terraform, you need to
define process_url/1 and handle the response.

Finally, add the transformer in web/router.ex like so:

use Terraform,
terraformer: ReverseProxy.Terraformers.Giphy

That’s all there is to it. Now you can start porting all of your code route by
route as needed, eventually phasing out the legacy system completely. There
is a slight overhead in the response time but it’s minimal. You can see the
results of Lauren’s load test in the blog post referenced earlier.

7. https://github.com/poteto/reverse_proxy/blob/master/lib/reverse_proxy/clients/giphy.ex
8. https://github.com/edgurgel/httpoison

report erratum • discuss

Terraform and API Evolution • 67

https://github.com/poteto/reverse_proxy/blob/master/lib/reverse_proxy/clients/giphy.ex
https://github.com/edgurgel/httpoison
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Now that we’ve taken Terraform for a spin, it’s time to see how it came to be.
Let’s see what Lauren has to say about the library migrating legacy systems:

Ben: What prompted you to write Terraform? Was it for work or personal projects?

Lauren: It started out as a toy library to see if it would even be possible. You can
already do reverse proxying in something like Nginx, but I was curious to see if it
would be possible to do so in an idiomatic way for Phoenix apps that aren’t behind
Nginx, HAProxy, or something similar. I also wanted the solution to be simple to
implement and allow teams to quickly start porting smaller endpoints into Phoenix.

Ben: What have been some of the difficulties associated with migrating legacy
apps to Elixir/Phoenix?

Lauren: At my previous company, I worked on a project where we were asked
by a client to rewrite their Node.js API with Elixir and Phoenix. This was before I
wrote the Terraform plug with Dan McClain (my colleague at the time). The number
one challenge was that the rewrite was up against a moving target, as the Node.js
API was still in active feature development. They didn’t have a very comprehensive
test suite either, so this was another difficulty. We also couldn’t ship the Phoenix
application until it achieved feature parity with the production API. This was quite
frustrating! In fact, I would say that this was one of the primary frustrations that
led us to write the Terraform plug.

Ben: How have you gone about identifying which legacy systems to replace?

Lauren: I generally advise against rewrites unless there is a compelling reason
to do so. In most cases, I believe people will cite factors like performance and
maintainability as motivating factors for rewrites, but I think that you can very
likely solve those problems by paying off technical debt in your current technology
rather than going into a full rewrite.

To me, a rewrite only makes sense if the benefits greatly outweigh the cost, and
that the new language/platform is something that the development team can
quickly ramp up on and be productive.

Elixir is a really great choice if your legacy system has constraints/requirements
that make it difficult to maintain in the current language. For example, there are
fault-tolerance libraries in various languages, and probably none of them can do
as good of a job as an Erlang/Elixir-based system while staying maintainable. If
the legacy application is frequently failing and negatively affecting the business,
then switching to Erlang/Elixir could make sense. It might also be that your legacy
system needs to be able to handle a large number of concurrent WebSocket connec-
tions. Then Phoenix becomes a very compelling choice.

I would definitely also factor in the skillset of the development team and whether
they would be able to rapidly become proficient in Elixir and usage of OTP.

Ben: Any unexpected difficulties you’ve encountered when porting legacy systems
to new Elixir apps?

Chapter 4. Legacy Systems and Dependencies • 68

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Lauren: None that are unexpected so far. I am exploring ways to integrate Elixir
web applications and microservices into Netflix, and the primary challenge is being
able to effectively use the suite of tools that we already have on our platform. The
good news is that this is very possible, so I’m excited to see what I can come up
with in a few months.

As with most of the best tools, Lauren created Terraform to satisfy a specific
need. Given this context you can see how the proxy approach evolved and
how it allows you to port legacy systems with an incremental strategy that
moves one endpoint at a time.

Moving Incremental Releases into Production
Once you’ve decided on an approach to incrementally migrate your application
and chosen the technology to go with it you can begin to think about your
release strategy. Whether or not you decide to use a service like Terraform,
you will begin to migrate your legacy system piece by piece. You will incremen-
tally release new versions to production as you phase the old system out.

Imagine you’ve finished working on a new version, and you’re ready to deploy
it. You’ve load-tested it sufficiently and feel fairly confident that it should
perform as expected. You’re confident that you’ve uncovered all of the myster-
ies the legacy app contains. Then you put it into production, and error reports
start rolling in.

There’s a better approach to sanity checking your application before it goes
live. It works like this. You build a throw-away staging server that will run
your code just as it would on a production server, but with copied data. You
plan to throw away the results and mine the error logs and reports for infor-
mation about bugs.

Let’s look at the approach in more detail. You’ll proxy the requests you are
receiving in production to staging servers. Elixir’s lightweight independent
processes let us test each new service much more safely than you could in
the legacy system. In the Task module, there’s a start/1 function. start/1 is
essentially a fire-and-forget function. As the docs say,9 you should only use
start/1 if you have “no interest in the returned result.”

Here’s how this process plays out. A user makes a request to the server. If
the duplexing is inactive, the staging server never receives a request. When
duplexing is active, we use Task.start/1 to make a non-blocking request with
the same parameters to the staging server. This approach works equally well
with monoliths and smaller services.

9. https://hexdocs.pm/elixir/Task.html#start/1

report erratum • discuss

Moving Incremental Releases into Production • 69

https://hexdocs.pm/elixir/Task.html#start/1
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

You can probably see where this is going. Let’s add this functionality to the
Terraform example from the previous section. Let’s make sure that all requests
to the legacy system also include a request to the staging system. We are
using Terraform but this technique could work with other libraries as well.
Open up the ReverseProxy.Clients.Giphy file again, specifically the process_url/1
function:

@host Application.fetch_env!(:reverse_proxy, :giphy)[:host]

def process_url(url) do
@host <> url

end

We can use Task.start/1 and set another attribute called proxy_host to point to the
staging environment:

@host Application.fetch_env!(:reverse_proxy, :giphy)[:host]
@stag_host Application.fetch_env!(:reverse_proxy, :stag_giphy)[:host]

def process_url(url) do
Task.start(fn -> proxy_request_to_stag(url) end)
@host <> url

end

defp proxy_request_to_stag(url) do
@stag_host <> url
make request

end

Now there’s a non-blocking fire-and-forget request that the application sends
off to the staging environment. It doesn’t have any noticeable effect on perfor-
mance, and you can gauge how your app performs with real traffic. Since
Task.start/1 returns nothing, you’ll need some monitoring and logging on the
staging servers to verify that the expected amount of traffic is flowing through
the app. Fortunately, we cover that technique in detail in Chapter 10, Making
Your App Production Ready, on page 193.

Eddie Dombrowski, an engineer at Bleacher Report, came up with the initial
idea and the Bleacher Report team has had great success with this strategy.
They use the proxy technique whenever they launch any major service,
practically eliminating launch-related bugs. We’ve seen many others that had
the same experience.

So far we’ve seen strategies for migrating an existing application. That’s only
half the battle. Now, let’s examine how to keep it from becoming a monolith
just like the one you’re are replacing. That’s our next topic.

Chapter 4. Legacy Systems and Dependencies • 70

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Umbrella Projects: Between Monoliths and Services
Over time, we’ve come to understand that clean lines between independent
services make more maintainable software. Think about using modules to
organize code. Beginning programmers often throw all functions into a single
module. More experienced programmers learn to group related functions into
modules, better defining the responsibilities of each. Modules improve even
more when you take the time to define which functions are private and which
are public because that practice better defines your module’s API, and helps
you control the interactions between modules.

Breaking your applications into well-defined modules leads to code that’s
easier to understand, test, and maintain. Umbrella projects work in the same
way. A monolith is like the first few apps you built as a programmer, with all
of the functions in the same place. An umbrella helps you better delineate
the individual responsibilities of the major parts of your application and then
formalize the communications between them.

Now that we’ve built the intuition, let’s formalize the definition some. Many
negative traits characterize monoliths:

• Monoliths force coupling across components with poorly specified bound-
aries, making the application hard to evolve, maintain, and understand.

• Monoliths often have large codebases, leading to long compilation times,
a slow boot process, and long-running test suites which overall mean
slow feedback cycles.

• You can only scale a monolith in one direction, as you are unable to scale
each component independently.

• Organizing multiple teams around a monolith requires coordination across
development efforts and deployment.

We are not saying all monoliths are plagued by these issues but many are.
One alternative to monoliths is to build an architecture around services or
microservices that communicates via your protocol of choice. You can develop
those services independently and deploy them in complete isolation. Choosing
such architecture will require a very different set of skills from your engineer-
ing teams and introduce its own set of complexities.

Others argue for a mixed approach called “Monolith First,”10 where you start
with a monolith and migrate to services once you have a better understanding

10. https://martinfowler.com/bliki/MonolithFirst.html

report erratum • discuss

Umbrella Projects: Between Monoliths and Services • 71

https://martinfowler.com/bliki/MonolithFirst.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

of your domain and of the solution. At this point, it is painfully clear that there
is no silver bullet and our goal with this section is not to present one. Instead,
you’ll find an approach between monoliths and service-oriented approaches.

Elixir provides an alternative called umbrella projects. An umbrella project
hosts many applications that you can develop together but test and deploy
separately, provided there are no conflicting dependencies between them.
Umbrella projects tackle some of the development, testing, and deployment
woes associated with monoliths by defining clearly delineated boundaries
between applications when you’re working on the details. It also allows
developers to run the entire application when you’re working on the interfaces
between each app in the umbrella.

Monoliths, SOA, and Umbrellas

If you have ever read about or used SOAs, you may be wondering how SOA services
compare to umbrellas. Let’s break them down.

Monoliths are single-tier applications that combine data, user interface, and control
logic into a single application. Elixir umbrellas are separate applications that live in
the same repository and share common resources like configuration and dependencies.
SOA services are completely independent services that are built separately and share
nothing but well-defined interfaces.

If monoliths are single, tightly coupled applications, SOA and Elixir umbrellas are
two strategies for decoupling them. SOAs provide complete independence. You can
develop and deploy each app independently, with no potential dependency entangle-
ments. You can use Elixir to build SOAs. Umbrellas are an alternative to manage
large applications without resorting to SOA. You get some decoupling between the
components of the umbrella but they do not yield the same development independence
and deployment isolation that SOAs do.

Building an Umbrella Example
Let’s create an umbrella project with two applications inside. Go to your
command line and type the following:

$ mix new my_umbrella --umbrella

This command creates a new umbrella project. Different from regular Elixir
projects, the umbrella project does not have a lib directory but rather an apps
one. Now run this:

$ cd my_umbrella/apps
$ mix new app_1
$ mix new app_2

Chapter 4. Legacy Systems and Dependencies • 72

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

That’s it, you created two applications in the apps directory. Now, you can see
the full power of umbrellas. You can access, compile, and test each of those
applications individually. You can also run the application altogether when
you’re trying to work on integrations between the components. Let’s go back
to the umbrella project root and do it all at once:

$ cd ..
$ mix test

All Elixir systems are built of multiple applications, typically packaged as
OTP servers. Applications are responsible for packaging your code. The Elixir
programming language itself is an application that is part of all Elixir systems.
Each application has its own initialization and shutdown logic and can be
started and stopped as a unit.

Elixir applications are naturally isolated and decoupled. The applications
app_1 and app_2 we have created are very similar to any other Elixir application,
except for four lines of code that can be found in their mix.exs configuration:

build_path: "../../_build",
config_path: "../../config/config.exs",
deps_path: "../../deps",
lockfile: "../../mix.lock",

Those four lines of code add some coupling between app_1 and app_2. The first
two say that they use the same configurations, the last two say they use the
same dependencies. This coupling means any dependency shared by app_1
and app_2 have to use the exact same version with the exact same configura-
tions. If there is a new version of a dependency used by both, you can’t update
app_1 without also updating app_2. app_1 and app_2 also can’t use the same
dependency with slightly different configurations. If you are running into
those scenarios, then you will have to break those applications into their own
projects.

This coupling only applies to dependencies and configurations; app_1 and app_2
are still isolated. They can be compiled, tested, and deployed separately. If
app_1 depends on app_2, it needs to be explicitly added as a dependency in
app_1’s mix.exs file:

defp deps do
[

{:app_2, in_umbrella: true}
]

end

By explicitly listing the dependencies between the umbrella’s applications,
we start to outline the boundaries between them. It also guarantees our

report erratum • discuss

Umbrella Projects: Between Monoliths and Services • 73

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

applications won’t have cyclic dependencies. If app_1 depends on app_2 which
in turns depend on app_1, you will run into compilation errors.

Dividing Applications
Now that you have some of the theory behind umbrellas, let’s get a bit more
concrete. One approach is to have several different web applications, each
using Phoenix for its own presentation layer. One application is stable but
the other is in active development. Now imagine the Phoenix team releases a
new version. You can’t move the currently developed app to the new Phoenix
version without also updating the stable one.

In other words, you get independence between the apps that are part of the
umbrella but they are tied to the same dependencies. This guarantees a
smooth development experience in your umbrella projects. It means switching
between applications in an umbrella won’t require you to fetch new dependen-
cies nor will it require you to recompile your codebase. The downside is that
you’ll need to evolve them together.

Another approach is to use umbrellas for code organization purposes. This
is the method introduced in Phoenix v1.3. Imagine part of your codebase
needs to talk to an external API, another needs to talk to a database, and so
forth. You can develop each of those concerns as separate applications and
have one other application that is responsible for the “web” presentation,
taking care of HTTP, HTML, JSON, GraphQL, or what have you. In this sce-
nario, you never really wanted to deploy those components independently,
but you may still use umbrella projects to break a big application into man-
ageable chunks.

In practice, you may end up with a hybrid approach. Using this strategy,
you’ll build a mixture of independent services and apps created for code
organization purposes. For example, one umbrella project may be made of
four apps:

• domain: This is the app that talks to your data store and holds most of
your business logic

• cms: A small app that runs your homepage, a blog, and other marketing-
related concerns

• web: An app that interfaces with cms and domain and presents them over
HTTP

• event_processor: An app that consumes events out of RabbitMQ (or similar)
and acts on them, often sending new data to the domain app

Chapter 4. Legacy Systems and Dependencies • 74

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The domain and cms apps just shown could have been a single application.
However, since the CMS is used by the marketing team and completely isolated
from the business logic, we created them as separate components. As your
system grows, you may even break the domain application apart, extracting
concerns such as payments and authentication to separate apps, each with
their own storage.

On the other side, web and event_processor are completely independent services,
so we develop them as such, but build and deploy them together for convenience.

One question that comes with umbrella projects is whether to introduce a
new application to the umbrella. Our advice is to not overthink this decision
and create new apps when they are built on different infrastructure, such as
different data sources, and when there are clear domain segmentations, such
as a CMS for your marketing team. Once you get familiar with breaking your
app apart in broad strokes, you will become more confident with handling
more complex relationships, should it become necessary.

The reality is that every application will one day become a legacy application.
You can control whether that legacy system will be easy to maintain and
modify or not. By building systems in isolated pieces, you will ensure that
future maintenance will be much more incremental, and thus less invasive.
With Elixir, you have a choice. You can build every application as a separate
project, as you’d typically do for a SOA. Alternatively, if you have applications
that you’ll frequently run together, ones that share common services, you
can optionally use an umbrella.

Umbrella projects provide an alternative for those who have been burned by
monoliths but are worried about the complexity associated with SOAs. Con-
trary to monoliths, umbrella projects allow developers to define their own
boundaries through applications. Like monoliths, all of the code in your
umbrellas needs to be built on the same set of dependencies and configuration.
If your goal is to build truly independent and isolated subsystems, each with
their own technological stack, then services are the way to go.

Applications inside an umbrella may depend on each other but often we must
depend on code that we didn’t write. That’s the subject of the next section.

Managing Third-Party Dependencies
At its roots, dealing with legacy systems means dealing with dependencies,
each with its own set of potential problems. You’ll have to understand whether
your dependencies are healthy, poorly maintained, or abandoned altogether.
Every application depends on other libraries and each dependency may depend

report erratum • discuss

Managing Third-Party Dependencies • 75

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

on libraries of its own, often requiring specific versions. Developers need a
way to manage these dependency trees so each language has a reliable way
to list dependencies, compute the right versions that fit together, and work
with the result.

Elixir has a package manager called Hex.11 Adding Hex dependencies to a
project is quite easy but it does not mean it should be done carelessly.

Any dependency becomes fully married to your application, for better or for
worse. You may need to get support for it or even debug it yourself. In extreme
scenarios, a dependency can eventually become fully unmaintained, forcing
you to to either maintain or replace it. While you don’t need to worry about
the most prominent projects in the community being abandoned, thinking
about each added dependency carefully is a helpful exercise. We offer the
following advice:

• Before adding a dependency to your project, take a look at its codebase
and ask yourself “Would I be able to maintain this library if I had to?”
Look for documentation and especially for a test suite.

• Is the functionality that you need complex enough to warrant bringing in
an external library, which often comes with its own set of features? Some-
times a little strategic copying is better than adding a full dependency.

• See if the library is maintained. Be forewarned: a lack of activity does not
mean the code is unmaintained—sometimes a library is simply complete.

• See if the project has a license you can work with.

• If the project is very active, check if it maintains a CHANGELOG so you
have a clear path when updating versions.

After you add a dependency, eventually you will have to update them. The
simplest way to get a real-time status of your libraries is the mix hex.outdated
command. From the root of your application, run the following command:

$ mix hex.outdated

You should see something like the following:

Dependency Current Latest Update possible
benchfella 0.3.4 0.3.5 Yes
bypass 0.7.0 0.8.1 Yes
cowboy 1.0.4 1.1.2 No
credo 0.6.1 0.8.5 No
decimal 1.3.1 1.4.0 No

11. https://hex.pm/

Chapter 4. Legacy Systems and Dependencies • 76

report erratum • discuss

https://hex.pm/
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

earmark 1.1.1 1.2.3 No
ex_doc 0.17.1 0.17.1
excoveralls 0.6.5 0.7.2 No
gettext 0.13.1 0.13.1
httpoison 0.11.2 0.13.0 No
inch_ex 0.5.6 0.5.6
logger_file_backend 0.0.10 0.0.10
phoenix 1.2.4 1.3.0 No
phoenix_ecto 3.2.3 3.2.3
phoenix_live_reload 1.0.8 1.0.8
phoenix_pubsub 1.0.2 1.0.2
plug_logger_json 0.3.1 0.4.0 No
postgrex 0.13.3 0.13.3

A green version in latest means you have the latest version of a
given package. Update possible indicates if your current requirement
matches the latest version. Run `mix hex.outdated APP` to see
requirements for a specific dependency.

You can get more information about upgrading a particular package by giving
its name to mix hex.outdated:

$ mix hex.outdated phoenix

There is newer version of the dependency available 1.3.0 > 1.2.4!

Source Requirement
mix.exs ~> 1.2.4
phoenix_live_reload ~> 1.0 or ~> 1.2-rc

A green requirement means that it matches the latest version.

If you decide to update a dependency such as Phoenix, set a moment aside
to read its CHANGELOG, assess the risks behind the update, and estimate
the efforts the update would entail.

While it is important to keep your dependencies relatively up to date, your
team also needs to deliver value to your clients so you will need to find a
balance between upgrading too frequently and never upgrading.

The only time an update is strictly necessary is when there is a security release
or the version you are currently running on has a critical bug. Luckily, Hex
also includes a task called mix hex.audit that let us know whenever a package
is retired. Let’s see how to audit Hex dependencies. For example, Distillery
v1.3.312 had a package retired because important functionality was broken.
Say your project depended on Distillery 1.3.3, a dependency for building
deployment releases. Running mix hex.audit would give you:

12. https://hex.pm/packages/distillery/1.3.3

report erratum • discuss

Managing Third-Party Dependencies • 77

https://hex.pm/packages/distillery/1.3.3
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

$ mix hex.audit
Dependency Version Retirement reason
distillery 1.3.3 (other) Custom commands are broken in this release
Found retired packages

If there are retired packages, mix hex.audit will exit with a non-zero status, which
can be useful if you want to integrate the command in your continuous inte-
gration pipeline.

Finally, if you like to live on the leading edge and give valuable feedback to the
community and the projects you use, you can run beta versions and release
candidates in staging and even use the duplexing technique we learned in Moving
Incremental Releases into Production, on page 69 to test upcoming releases.

Wrapping Up
In this chapter we focused on legacy code. We spent most of our time working
through tips and techniques for moving larger applications but we also
assessed Elixir dependencies.

The migration of any large application is a problem with both technology and
people. Understanding the risk factors and getting buy-in from the beginning
are critical elements. The application you move might be composed of inde-
pendent services or a few monoliths. Moving a monolith means isolating dif-
ferent elements and moving them one section at a time.

Terraform is a library that eases monolith migrations by allowing a team to
move a few endpoints at a time. The toolset uses a proxy technique. Each
new request is either processed in the new system or sent to the old server
for processing. Sometimes, within the transition period, it makes sense to
send the requests to both new servers and old for a period of time to test the
services on a staging environment and catch errors.

Migrating monoliths is especially hard, so we spent some time working on
techniques to prevent new codebases from becoming monoliths. The
umbrella approach is not quite a full services architecture, but it is an
incremental movement in that direction. Umbrella projects allow a project
with related dependencies to be developed, deployed, tested, and maintained
separately. Carefully considering dependencies is another element of creating
beautiful, maintainable code. Hex has some mix tasks that can help with that
effort called mix hex.outdated and mix hex.audit. They can both assist a team in
maintaining a viable, healthy set of dependencies.

Now that we’ve got a plan in place, it’s time to move to the next part of the
book where we’ll start the process of developing with Elixir.

Chapter 4. Legacy Systems and Dependencies • 78

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Part II

Development

Every plan looks great in the beginning, but no plan survives contact with the enemy.
In this section, you’ll explore the techniques you’ll need to succeed once you start
coding in a new language. Since many teams will come from backgrounds with object-
oriented languages, we’ll show you how to think about organizing your Elixir project,
and how to reason through the different concepts you’ll find in this functional, concur-
rent language. You’ll explore the design techniques that build the correct boundaries
in your system and keep your code adaptable and extensible. You’ll then grapple with
some of the tricky details that make the effective design and implementation of dis-
tributed systems so difficult. Finally, you’ll explore some tools that will help you inte-
grate with applications that you can’t or shouldn’t move to Elixir.

CHAPTER 5

Making the Functional Transition
You’ve made the business case for Elixir, and started shaping your team with
the right building blocks for personal growth and consistency. You have read
the getting started guide, consulted the documentation, and reviewed some
of the many books available, yet something is still missing. That’s only natural.

If you and your team are familiar with Elixir and functional programming,
you might skip ahead to the next chapter but we know from our research
that a fair number of our readers are not quite comfortable with Elixir. Here’s
what we mean. If you’ve ever watched a non-native speaker learn any spoken
language, you probably saw them borrow native language concepts that didn’t
quite fit. On this team, José is famous for his English puns, but occasionally
he’ll try one that has us all scratching our heads.

Learning Elixir is like that. The basics take time, and even after establishing
the fundamentals, questions will remain in the journey from apprentice to
master. Object-oriented developers adopting functional languages tend to try
to reinvent object-oriented concepts in them. It’s common for such users to
have questions:

• If you are coming from an object-oriented background, what does it take
to properly design applications in a functional and concurrent program-
ming language like Elixir?

• When are modules and functions enough and when should we resort to
processes?

• What’s a GenServer, and why is it one of the most prevalent Elixir abstractions?

• What role does Supervisor play in building applications?

Each of these concepts is new to teams who code object-oriented applications
that only dabble in concurrency. In this chapter, we will talk about these

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

questions and more. We will cover higher level concepts and abstractions.
Internalizing these foundational concepts will speed your adoption curve
tremendously. Along the way, you will see examples that will provide a mental
framework that lets you put your newly acquired knowledge to use. We expect
that you are already familiar with Elixir data types such as lists, tuples, and
maps. You will also need to know about abstractions such as tasks and
agents.

Let’s go beyond the basics. We want to help you apply foundational Elixir
concepts in the context of the complex applications you’ll encounter in the
real world. Let’s start with one of the most fundamental concepts of functional
programming languages: immutability.

Elixir vs. Mutable Objects
Since Elixir is a functional programming language, it does not have objects.
The language also has a strong focus on immutability. In Elixir we transform
data rather than mutate it.

Said another way: OO changes. FP copies.

While this difference may be subtle and might even seem inefficient, it’s
transformational. Many of Elixir’s most important benefits flow directly from
this design decision. In this section, we’re going to look at what those benefits
might be, and why they matter to you. Let’s take that apart.

Understanding Mutation
Mutable objects bundle three concerns that are distinct in Elixir: state,
behavior, and time. Take this example:

dictionary.store("key", "value")

If this were like most object-oriented programs, dictionary would be an object
holding a dictionary with multiple keys and values, probably in the form of
a hash. That object would provide a store method that changes the hash in
place. It’s this in-place change that we call a mutation.

In object-oriented languages, mutations represent time because the value of
the object will depend on when you access it. If you access that dictionary
after a mutation, you get the new version and the old version no longer exists.
Such changes are very hard to track, especially when more than one client
uses the same piece of code. Adding more objects often introduces more
moving parts, with little visibility on how those parts change through time;
adding concurrency makes reasoning about such code nearly impossible.

Chapter 5. Making the Functional Transition • 82

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Elixir decouples these three concepts. Data structures are immutable and
represent state. Modules define our behavior. Processes send and receive
messages, embodying the concept of time.

The previous code would be written in Elixir as:

new_map = Map.put(map, "key", "value")

map is the data and Map.put/3 is a function defined in the Map module that
receives three arguments. Map.put/3 never mutates the map; it always returns
a new one. map will never change so for this code:

value1 = Map.get(map, "key")
...
Some other code
...
value2 = Map.get(map, "key")

value1 and value2 will always be the same unless map is reassigned to another
value somewhere between the two calls. And even if you rebind the map vari-
able, the underlying map does not change. The variable is just pointing
somewhere new.

Now you have a guarantee. The map referenced by the variable map will never
change, even if some other code is holding a reference to the same map, and
that guarantee makes all of the difference in the world. We pass the map around
confident in the fact that no other code can modify it.

If you want to intentionally violate this guarantee, you’ll need to reach for
another abstraction, the process. We’re going to hold a tiny bit of state in
another process, an agent, and we’ll communicate with that process as
needed. Consider this counter:

{:ok, pid} = Agent.start_link(fn -> 0 end)
value1 = Agent.get(pid, fn x -> x end)
Agent.update(pid, fn x -> x + 1 end)
value2 = Agent.get(pid, fn x -> x end)

In this example, calling Agent.get/2 with the exact same arguments may give
you different results. This arrangement lets you save state using separate
processes. Since you can only communicate with a process via explicit mes-
sages, Elixir allows developers to reason about how their application state
changes over time. In effect, processes such as agents isolate state change
with the explicit, formal set of rules governing message passing.

If you wanted to, you could use agents, or files, or any other stateful abstraction
as mutable variables, and completely undo Elixir’s stateless advantages. In fact,

report erratum • discuss

Elixir vs. Mutable Objects • 83

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

many beginners fall into this trap. Good languages sometimes let you run
with scissors. Elixir’s important decision in this regard is to keep these
choices explicit. An agent feels like a more serious commitment than a
mutable variable because it is a more serious level of commitment.

While time adds complexity to our applications, functional programming is
about making the complex parts of our system explicit. By modeling state
changes with processes and message-passing, we make our software easier
to understand, simpler to write, and much more stable.

Elixir as an Object-Oriented Language

You may have heard that Elixir processes are objects, according to Dr. Alan Kay’s
definition of “object-oriented programming.” In an email discussion with Stefan Ram,a

Kay coined the term object-oriented programming and says “OOP to me means only
messaging, local retention and protection and hiding of state-process, and extreme
late-binding of all things.”

While Elixir processes do neatly fit that description, we think the comparison may
cause more confusion than insight, as processes should not be used as a code design
tool in the same way objects are used in most object-oriented programming languages.

a. http://www.purl.org/stefan_ram/pub/doc_kay_oop_en

Immutability and Memory
The pipe operator |> is one of the first constructs Elixir developers learn, as
it embodies transformation and the decoupling between data and behavior.
When we pipe between functions, it receives all data it needs as input and
returns all relevant information as output. There’s never hidden or mutated
data. Each pipe is a standalone transformation with an explicit contract.

When writing your business logic, you may use Ecto1 changesets to handle
data casting and validation:

def changeset(user, params \\ %{}) do
user
|> cast(params, [:name, :email, :age])
|> validate_required([:name, :email])
|> validate_format(:email, ~r/@/)
|> validate_inclusion(:age, 18..120)
|> unique_constraint(:email)

end

1. https://github.com/elixir-ecto/ecto

Chapter 5. Making the Functional Transition • 84

report erratum • discuss

http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
https://github.com/elixir-ecto/ecto
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Each function along the way transforms the changeset. You may be asking
yourself about the cost of immutability. Many developers assume that each
time you change a map or a struct, Elixir creates a whole new one in memory.
That’s not true.

Elixir represents a map with multiple elements as a tree in memory. Adding,
putting, or deleting an element requires changing only the path to that element
on the tree. All other elements in the map are shared between the old map
and newly transformed map. Let’s explore how that sharing works with a list
example.

Elixir represents lists internally as cons cells. Each cons cell is a simple data
structure with two elements in the [left | right] form.

Lists are nested cons cells. The list [1, 2, 3] expressed with cons cells is
[1 | [2 | [3 | []]]]. In memory, it would be represented like this:

[1 | •]
↘
[2 | •]

↘
[3 | •]

↘
[]

Let’s see what happens when we create a new list from an old one. Consider
this code:

iex> list = [1, 2, 3]
[1, 2, 3]
iex> first = [4 | list]
[4, 1, 2, 3]
iex> second = [5 | list]
[5, 1, 2, 3]

Elixir does not need to create two full copies. It simply needs to create two
new cons cells, one with 4 and list and another with 5 and list, like this:

[4 | •]
↘
[1 | •]
↗ ↘

[5 | •] [2 | •]
↘
[3 | •]

↘
[]

report erratum • discuss

Elixir vs. Mutable Objects • 85

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

That’s why prepending to lists is always fast, while appending is slow.
Prepending enables sharing, appending requires us to copy the whole list
since we need to change the last cons cell to point somewhere else.

The exact transformation mechanisms and costs depend on the data structure,
and we’ll not go into them here. What’s important is that immutability is
exactly what makes this kind of transformation efficient, because the VM knows
the data underneath is not going to change. For example, if you have a tuple
with three elements, {:one, 2, "three"}, in memory you have a tuple container
that points to :one, 2, and "three". If you change the second element of the tuple,
you get a new tuple, but it will still point to the same :one and "three" exactly
because, even if another piece of the code is holding a reference to the old
tuple, no one can mutate any of its contents.

This immutability contract gives Elixir tremendous freedom. Think about this
simple function:

def one_two_three do
[1, 2, 3]

end

Other languages that support mutability would likely need to return a separate
copy of the list upon each invocation because each client could mutate the
list. Elixir doesn’t have that restriction. Each time you invoke that function,
you’ll get the same exact list in the same exact memory address because
nobody will ever change it.

Immutability makes our software easier to understand and also introduces
simplifications at the compiler level that make it easier to share data
throughout.

There’s a cost, though. In some situations immutability may have performance
implications. Even though the language relies on advanced techniques such
as sharing, a piece of code needing to execute millions of operations per second
on the same data structure may generate an unnecessary amount of garbage.
In such cases, you may need to resort to the mutable components available
in Elixir, such as ETS or the process dictionary.

However, it is worth pointing out that in our 10 years of collective experience
working with Elixir, we recall such performance-centric optimization was
necessary only once, when implementing a data-processing engine.

Chapter 5. Making the Functional Transition • 86

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Data and Behavior
By separating data and behavior, Elixir allows developers to focus on the
shape of the data. The code is more explicit than languages that don’t do so,
and explicit code makes its intentions clear. Consider this OO code:

URI.parse(url).path.split("/").last

Each . makes it hard to track the source of each method. You might ask
yourself “Where does split("/") come from?” Maybe it is a String method, or maybe
there is a Path object in there somewhere. You just don’t know.

Contrast that example with this one in Elixir, where each operation along the
way is explicitly named:

URI.parse(url).path
|> String.split("/")
|> List.last

Granted, the Elixir version is more verbose. In exchange, you and your editor
know exactly where each function comes from. The use of the pipe operator
clarifies each step in the transformation. Each step transforms the data but
never mutates it.

Polymorphism
Sometimes, adopting a new language means letting go of features that you’ve
grown to depend on. Even though Elixir decouples the concepts of data,
behavior, and time, you still may argue in favor of other OO concepts like
polymorphism. For example, in the previous section, we wrote this code:

URI.parse(url).path.split("/").last

We argued that .split("/").last may be a source of confusion since we don’t know
where methods like split come from. You might counter “It’s not a bug; it’s a
feature.” In some situations, you don’t actually care which object has the
function; you only care that it knows how to split("/"). That’s polymorphism.

It’s our position that polymorphism is an essential mechanism for designing
applications. You can’t build good software without it, but if you’re not careful,
you’ll complicate your code and doom future developers to a special kind of hell.
Bad polymorphism can obscure your intentions and hide critical concepts. Use
polymorphism with the same care and wisdom you use to treat mutable state.

report erratum • discuss

Polymorphism • 87

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Polymorphism in Elixir happens in two forms. The first form is pattern
matching with function heads or case. Take this example:

def split(contents, path) when is_list(contents) do
contents
|> List.to_string
|> split(path)
|> Enum.map(&String.to_charlist/1)

end

def split(contents, path) when is_binary(contents) do
String.split(contents, path)

end

This code can handle lists, strings, or any other case we consider upfront
when implementing the split/2 function. With pattern matching, you organize
code around the task, not the type. Use pattern matching when you know all
scenarios up front. Once the code is compiled, you cannot extend it without
changing the code again.

Pattern matching is what Bleacher Report used when designing their content-
type system outlined in Functions Transform Data, on page 23:

def changeset(post, content_type, params) do
data
|> cast(params, @required_fields)
|> cast_content_type(content_type, params)
other general validations

end

defp cast_content_type(audio, "audio", params) do
validate_extension(audio, :url, [:mp3])

end
defp cast_content_type(video, "video", params) do

validate_extension(video, :url, [:mp4])
end

Adding a new content type to their application consisted of implementing a
new function clause in cast_content_type that matches on the new value. Pattern
matching was essential in helping them make the transition from their object-
oriented mindset to functional concepts.

At other times we want polymorphism to be extensible as in many object-
oriented languages. You may want to say “I don’t care what this argument
might be as long as it satisfies my contract.” Rather than using pattern
matching, Elixir uses protocols to handle this form of polymorphism.

Let’s say you wanted to split more than strings or lists. You could define a
Splittable protocol, like this:

Chapter 5. Making the Functional Transition • 88

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

defprotocol Splittable do
def split(data, pattern)

end

Each desired data structure would then implement the protocol. You can
define a Protocol at any time. Your application can define a new protocol and
retroactively implement it for all the built-in data types that are part of Elixir.
Alternatively, you can create your own data structures and implement the
protocols provided by any library or the Elixir language itself, such as:

• Enumerable is used by the Enum module to enumerate collections, such as
in Enum.map/2.

• String.Chars is used by to_string/1 to convert a data type with a valid string
representation.

• And many others.

Protocols associate data and behavior in an opt-in fashion, exactly when you
need it.

Agents and Tasks
Processes play a crucial role in Elixir. We have seen how processes model
state changes. Processes are also used to enable concurrency and provide
fault tolerance.

Elixir provides two abstractions, called agents and tasks, that are specializa-
tions of those use cases. Agents and tasks are supervised processes. An agent2

is a process that handles state. An agent is perfect for keeping some shared
state that is accessed by multiple processes in your application. Earlier in
this chapter we implemented a counter using agents.

A task3 is about supervised behavior. For example, to do two things concur-
rently, use Task.async/1 to spawn each task and Task.await/1 to wait for the result,
like this:

task1 = Task.async(fn -> do_some_work() end)
task2 = Task.async(fn -> do_more_work() end)
Task.await(task1)
Task.await(task2)

We start two tasks concurrently and wait for both to finish. The Task.async
function makes a couple of assumptions. By default, if do_some_work() or

2. https://hexdocs.pm/elixir/Agent.html
3. https://hexdocs.pm/elixir/Task.html

report erratum • discuss

Agents and Tasks • 89

https://hexdocs.pm/elixir/Agent.html
https://hexdocs.pm/elixir/Task.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

do_more_work() fail, the process that called them will fail too. That’s an explicit
design choice: the async and await combination helps you add concurrency to
sequential code without changing the code semantics. So if the previous code
would fail if any of those functions failed, the concurrent code will fail too.
That’s normally what you want.

The Task module also provides a wide range of APIs when those assumptions
aren’t enough. The Task API can give you explicit control over how long to wait
for a task to terminate, via Task.yield/2, or when to shut it down. You can use the
Task module to control timeouts or determine how failure may affect the system.

As specialized solutions, agents and tasks are simple and readable, but some-
times processes need to juggle state, concurrency, and fault tolerance at the same
time, so agents and tasks might not be enough. In such cases, we need full-blown
processes without restrictions and those often take the shape of GenServers.

The Generic Server
One of the most important abstractions for both the Elixir and Erlang
ecosystems is called OTP, and the heart of OTP is the generic server. It’s an
abstraction that you’ll use to wrap up critical features as application services,
represent state using processes, and use built-in supervision to make those
features reliable. As you saw in Elixir vs. Mutable Objects, on page 82, Elixir
leans heavily on processes to make the notions of state, behavior, and time
explicit. In this section, we’ll focus on OTP, a critical abstraction providing
common services many processes need, such as supervision.

In the following sections, we want to shine a light on GenServer and discuss
cases of use and misuse, relaying some stories from the field and greater
Elixir community. To do so, we’ll walk you through enough foundational
concepts so that you can appreciate the nuanced conclusions that follow.

The GenServer’s Story
If you’re like many new Elixir developers, the terms OTP and GenServer may
immediately send you into a trance like a fraternity student after a big party
at that 8 a.m. calculus class. We’re going to build the intuition for a generic
server from the ground up.

The essence of OTP is not complex, but it is important. You’re going to need
these concepts as you make your way through this book and throughout your
Elixir programming career. When we’re done with this section, you’ll under-
stand the essence of how you might use recursion, concurrency, and super-
vision to build lightweight services that do all kinds of things.

Chapter 5. Making the Functional Transition • 90

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Take this very simple Counter. It receives messages to increment its state and
allows other processes to request its value, like this:

making_fun_transition/counter_1.ex
defmodule Counter do

def start_link(initial_value) do
{:ok, spawn_link(__MODULE__, :loop, [initial_value])}

end

def loop(counter) do
receive do
{:read, caller} ->

send(caller, {:counter, counter})
loop(counter)

:bump ->
loop(counter + 1)

end
end

end

That example uses some basic Elixir constructs to start a process with the
start_link function using spawn_link. Then, you’ll see a recursive function called
loop that responds to two messages. The first returns the value of our counter,
and recursively calls loop. The second bumps the counter and calls loop. Think
of loop as a long-lived function, and counter as the state for one invocation of
that function.

This program uses the foundational pattern underneath all OTP programs.
Our small server receives messages, some that require a reply, such as {:read,
caller}, and some that do not. Now let’s add the client API to the same module
that will effectively send messages to the server:

making_fun_transition/counter_2.ex
defmodule Counter do

def read(counter) do
send(counter, {:read, self()})
receive do
{:counter, counter} -> {:ok, counter}

end
end

def bump(counter) do
send counter, :bump

end

The previous code may not look offensive but it has some major flaws. For
example, let’s see what happens to read/1 when the counter is no longer run-
ning. Run iex counter.ex and then try this:

report erratum • discuss

The Generic Server • 91

http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/counter_1.ex
http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/counter_2.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

iex> {:ok, counter} = Counter.start_link(0)
{:ok, #PID<0.56.0>}
iex> Counter.read(counter)
{:ok, 0}
iex> Process.unlink(counter)
true
iex> Process.exit(counter, :kill)
true
iex> Counter.read(counter)
you'll be here a while.

We started a counter, read its value, then removed the link between the IEx
process and the counter process so we can kill the counter without terminating
the shell. Then we called read again. This time, the counter blocks indefinitely,
because it will never get a reply.

You could add a typical five-second timeout, but that’s wasteful. Furthermore,
a single timeout doesn’t necessarily imply a dead server. Maybe the client
didn’t wait long enough or maybe the server was temporarily busy. In both
cases, you may end up with unwanted replies. For a more robust service,
you’ll need to take some steps to remedy this problem:

• Add a timeout, and exit in case the timeout is reached. The exit will work
as a back-pressure mechanism because a timeout typically implies the
server is busy. Users can catch the exit if they want to at their own peril.

• Change read to handle a dead process by monitoring the counter before
each invocation and handling a DOWN message.

• Identify each request with the unique reference returned from the monitor
call.

Let’s do those things now:

making_fun_transition/counter_3.ex
def read(counter, timeout \\ 5000) do

ref = Process.monitor(counter)
send counter, {:read, {self(), ref}}
receive do

{^ref, counter} ->
Process.demonitor(ref, [:flush])
{:ok, counter}

{:DOWN, ^ref, _, _, reason} ->
exit(reason)

after
timeout -> exit(:timeout)

end
end

Chapter 5. Making the Functional Transition • 92

report erratum • discuss

http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/counter_3.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Let’s also change the loop function to match on the reference received in the
:read message and include the same reference in the reply:

making_fun_transition/counter_3.ex
def loop(counter) do

receive do
{:read, {caller, ref}} ->
send(caller, {ref, counter})
loop(counter)

:bump ->
loop(counter + 1)

end
end

If you look closely, you’ll find each of our three previous improvements. The
after clause for receive addresses the timeout, the monitor request monitors each
invocation, and the receive clauses now pass the reference returned by the
monitor.

Keep in mind that changing this Counter in a larger application isn’t enough.
You’d need to change all of our services like this, because each service needs
these features, or something like them. Furthermore, you’ve not yet addressed
the loop implementation, which has issues of its own:

• The loop/1 function only reads certain messages out of its inbox. Unexpected
messages will wait forever on its inbox, leaking memory.

• The counter process is hard to debug, and the existing implementation
has no hooks for retrieving useful runtime information.

• You’ll need to bring down the counter in production to update the code,
destroying the state.

Once you’ve addressed all of these requirements, it is easy to see why process-
es are a powerful primitive but not enough for building your applications.
You might suggest that we encapsulate those solutions in a single place.
That’s a better idea. Let’s build a module to handle all of these concerns.

Call this module Boat. After all, a wise man once said that a boat is a hole in
the water to pour time and money into. If you don’t like that name, you could
choose MoneyPit or TimePit. At this point, you’re probably thinking that a wiser
man once said that other people’s boats are way better than your own. Let’s
get someone to write that module for us and call it OtherPeoplesBoats. You’re in
luck. They already did, and called it the GenServer.

A GenServer is a great abstraction that encapsulates the generic concerns for
managing state, concurrency, and fault tolerance. For example, in a GenServer,

report erratum • discuss

The Generic Server • 93

http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/counter_3.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

we can find both GenServer.call/3 and GenServer.cast/3, which encapsulate the
behavior found in the previous read/2 and bump/1 functions. It’s exactly these
concepts that make the design of the Erlang VM so elegant. The basic primi-
tives such as processes, monitors, links, and exit signals provide all of the
components necessary for building the concurrent, fault-tolerant and distribut-
ed applications the language is known for.

Gen stands for generic, and generic is beautiful and dangerous. These simple,
open concepts leave a wide open field for exploration—and venturing into that
space without a guide can hurt you. While it may be hard for us to outline
all of the use cases for a GenServer, we can certainly provide a few examples
and discuss some patterns and anti-patterns along the way.

Use GenServer as a Coordinator
In the previous section we have peeked at all of the concerns a GenServer han-
dles for us when we attempted to implement a mutable counter. At the same
time, we have also shown how we can implement a very simple counter with
agents in four lines of code. Behind the scenes, agents are implemented with
GenServers. Therefore, if we want to use a GenServer, we need more than just
mutable state. One such example is when we need a process to coordinate
the action of multiple other processes.

In a concurrent system, coordinating the allocation and release of resources is
sometimes demanding. You may have heard that Elixir developers rarely rely
on try/catch or try/rescue. In many cases, it’s cleaner to use tuples and pattern
matching because operations such as File.read/1 return {:ok,contents} or {:error,reason}
instead of failing with an exception. There’s more to the story, though.

try and catch or rescue are just not enough when processes are involved. If a
process terminates due to another linked process, you’re done. You can’t
catch, after, or rescue across processes. Check this out:

iex> try do
...> Task.async(fn -> raise "oops" end) |> Task.await()
...> after
...> IO.puts "this will never be printed"
...> end
** (EXIT from #PID<0.84.0>) an exception was raised:

** (RuntimeError) oops

For cases like this one, the correct solution is to implement a process that keeps
the state for different processes running in the system and do the proper clean-
up action. In other words, we need a minimal coordinating process, a little state,
and fault tolerance for proper clean-ups. A GenServer fits perfectly.

Chapter 5. Making the Functional Transition • 94

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Imagine you need to accumulate or compute some data to upload to an
external service. You have already determined the most efficient way of doing
so is by writing the data to disk and then letting the operating system do the
work of uploading the file. You plan to remove the file once the upload com-
pletes. You no longer need the file on disk and it must be removed.

This solution won’t work:

{:ok, file} = File.open!("path/to/temp/file")
write_to_file(file, data)
File.close(file)

because write_to_file/2 might fail so the file won’t be removed from disk. try/after
won’t save you.

GenServer comes to the rescue. It can work as an allocator of file system paths.
Every time you need a temporary file, you will ask the server for a temporary
file path. The server will generate one and monitor the calling process. When
the caller terminates, the server can automatically remove the file.

Let’s get started and set up a GenServer with a start link and an allocate API:

making_fun_transition/path_allocator_1.ex
defmodule PathAllocator do

use GenServer

Store the name in a module attribute for readability
@name PathAllocator

def start_link(tmp_dir) when is_binary(tmp_dir) do
GenServer.start_link(__MODULE__, tmp_dir, name: @name)

end

def allocate do
GenServer.call(@name, :allocate)

end

GenServer.start_link will invoke the init callback which we define next. The callback
receives the temporary directory, which it returns as part of its state, alongside
an empty map:

making_fun_transition/path_allocator_1.ex
def init(tmp_dir) do

{:ok, {tmp_dir, %{}}}
end

Next, we implement handle_call, which contains the allocation logic. For each
path allocated, we monitor the process that owns the path. Monitoring a
process returns a unique reference ref which we will store in the map alongside
the path we have just generated:

report erratum • discuss

The Generic Server • 95

http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/path_allocator_1.ex
http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/path_allocator_1.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

making_fun_transition/path_allocator_1.ex
def handle_call(:allocate, {pid, _}, {tmp_dir, refs}) do

path = Path.join(tmp_dir, generate_random_filename())
ref = Process.monitor(pid)
refs = Map.put(refs, ref, path)
{:reply, path, {tmp_dir, refs}}

end

defp generate_random_filename do
Base.url_encode64(:crypto.strong_rand_bytes(48))

end

Now our server will receive a message whenever a monitored process termi-
nates. The last step is to match on this message in the handle_info callback and
remove the path associated to the message:

making_fun_transition/path_allocator_1.ex
def handle_info({:DOWN, ref, _, _, _}, {tmp_dir, refs}) do

{path, refs} = Map.pop(refs, ref)
File.rm(path)
{:noreply, {tmp_dir, refs}}

end
end

And that’s it. You can start the allocator with PathAllocator.start_link(System.tmp_dir)
and get a new path at any time with PathAllocator.allocate().

This structure is fairly common for a GenServer that needs to coordinate or
clean up after other processes. The goal is to monitor a process, store the
monitoring reference, match on the dying process, and then do your work.

That’s a positive example. Let’s take a look at a negative one.

Don’t Use GenServers for Code Organization
We just saw an example that plays to all of the GenServer strengths. GenServer
is a beautiful abstraction, and like anything good in the hands of an inexpe-
rienced developer, it’s prone to overuse. Let’s look at some of its properties.
A GenServer:

• Encapsulates a shared service.
• Holds state.
• Allows concurrent access to shared resources.
• Handles supervision to take care of normal and abnormal startup and

cleanup.

These are the problems a GenServer is built to solve. The previous problem needed
all four of these characteristics, so a GenServer was an excellent fit. When you
need to organize code, you don’t need a full GenServer. You need a module.

Chapter 5. Making the Functional Transition • 96

report erratum • discuss

http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/path_allocator_1.ex
http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/path_allocator_1.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Here’s the point: if you see the characteristics that remind you of GenServers,
use a GenServer. If you don’t, don’t. In particular, don’t use a GenServer to layer
or organize your code. For example, imagine you wanted to write a Calculator
module. You could use a GenServer to build your API, like this:

def add(a, b) do
GenServer.call(__MODULE__, {:add, a, b})

end

def handle_call({:add, a, b}, _from, state) do
{:reply, a + b, state}

end

def handle_call({:subtract, a, b}, _from, state) do
{:reply, a - b, state}

end

...

You’ve built a codebase that loses the essence of a calculator in all of the
noise. Worse yet, you’ve introduced a potential bottleneck into your applica-
tion. Any piece of code that needs to use the calculator now needs to go
through a main calculator process.

A calculator is all about functions. To build it, use a module holding functions.
Group those into modules. You don’t need anything else.

Sadly, we’d be lying to you if we said we’ve never seen this exact pattern in
production. A new developer team started building their Phoenix applications.
They had always heard GenServers could be treated like microservices but even
tinier. This “wisdom” led them to push all of their database access control to
GenServers. They even built a DSL making it easier to put their implementation
behind a GenServer. At the end of the day, they had code like this:

defmodule MyApp.PostsService do
use MyApp.Services

defcall all() do
MyApp.DatabaseRepository.all(Post)

end
end

where defcall would define both the client and server API which eventually
invoked MyApp.DatabaseRepository.all(Post). One month later, they had enough built
to put a prototype into production and they started benchmarking it. The
performance was abysmal. Under high-enough load, some pages took 3 sec-
onds to render because they built a bottleneck where none existed. They
defeated Ecto connection pools because all access happened through a single
process.

report erratum • discuss

The Generic Server • 97

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

In essence, they made it easy to create global, mutable variables in Elixir. They
essentially crippled the single biggest advantage of functional languages, for
no gain whatsoever.

Once they converted their code back to functions, the problem disappeared.
They achieved better performance with much simpler code.

Although this example used GenServers, it applies to processes in general. Use
processes to model runtime properties, such as mutable state, concurrency,
and failures, but never for code organization.

Supervisors
Most new Elixir developers tend to think of supervisors in terms of fault tol-
erance because they provide the restart strategies that are the essential part
of building reliable systems. Supervisors are so much more. They form the
backbone of Elixir applications.

Ultimately, supervisors are responsible for how our processes start and shut
down, whether an application is crashing and restarting or simply starting.
Restarting of processes is optional, while starting and stopping them is
essential. Let’s explore startup flow by addressing a bug in our PathAllocator
implementation defined in Use GenServer as a Coordinator, on page 94.

Starting a supervisor is a matter of defining all of its child specifications and
then calling start_link. A child specification specifies exactly how the supervisor
starts a child process, when and how many times to restart it, and how to
shut it down. For a complete reference on child specifications, consult the
Elixir documentation for Supervisors.4

We can start the PathAllocator example in Use GenServer as a Coordinator, on
page 94 under a supervisor by defining a list of children, where each element
is a tuple with the module name as first element and the argument given to
start_link as second argument, like this:

children = [
{PathAllocator, System.tmp_dir}

]

Supervisor.start_link(children, strategy: :one_for_one)

Upon startup, a supervisor starts all of its children in the order they’re defined.
Similarly, upon shutdown, the supervisor terminates all of its children in the

4. https://hexdocs.pm/elixir/Supervisor.html

Chapter 5. Making the Functional Transition • 98

report erratum • discuss

https://hexdocs.pm/elixir/Supervisor.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

reverse order. The initialization logic is in the init/1 function, but we haven’t
defined the termination logic.

Whenever a supervisor restarts its children or the node shuts down, PathAllo-
cator’s supervisor is going to send it an exit signal. By default, that exit signal
will terminate the PathAllocator, regardless if it has processed all messages in
its inbox or not, leaving spurious paths behind.

Let’s address this bug by cleaning up all files in the refs map on terminate.
The first step is to trap exits with Process.flag(:trap_exit, true) on init, like this:

making_fun_transition/path_allocator_2.ex
def init(tmp_dir) do

Process.flag(:trap_exit, true)
{:ok, {tmp_dir, %{}}}

end

By trapping exits, if any external process causes the allocator to exit, the
allocator won’t shut down immediately. Instead, it will run the terminate/2
callback. Next, we can write the termination logic, like this:

making_fun_transition/path_allocator_2.ex
def terminate(_reason, {_tmp_dir, refs}) do

for {_, path} <- refs do
File.rm(path)

end
:ok

end

The logic is dead simple. We simply remove every file in refs. This change
guarantees PathAllocator will clean up all entries on shutdown or even when a
bug causes part of your application to restart.

This example highlights the importance of proper termination of supervision
trees in our applications. Once the supervisor sends the exit shutdown signal
to the worker, the worker has 5 seconds to terminate, by default. If a given
process requires more time to shutdown, you can specify the shutdown time
when defining the process child specification.

Be careful, though. terminate/2 won’t happen in extreme scenarios, such as a
spilled beer or a machine shutdown, so be defensive. For example, our
PathAllocator’s init function could remove all files from the given directory to
ensure a fresh start.

When we run an Elixir system in production, starting up a system is a matter
of starting all applications and their supervision trees. Shutting a system
down consists of stopping all applications and their supervisors trees in the

report erratum • discuss

Supervisors • 99

http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/path_allocator_2.ex
http://media.pragprog.com/titles/tvmelixir/code/making_fun_transition/path_allocator_2.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

reverse order. Each child in a supervision tree has its own start and stop
specification, giving us full control on how our system boots and terminates.

Whenever our system is up and running, it is important to think about the
guarantees such a structure provides. If you are working on an application
that talks to a database, its supervision tree probably starts a process that
connects to the database.

children = [
... some children ...
{StorageConnection, username: "josé", password: "password123"},
... more children ...

]

At this point, you have a guarantee that, if your application boots, it has a
connection to a working database. The flip side is also useful. If the database
is not available, then your application will not boot at all.

For some applications, the lack of a database connection indeed means that
the application should not be online. For others, this choice has disastrous
consequences, as other parts of the system could be running even without a
database. In those cases, you will need to use a different strategy, such as
starting the connection outside of the initialization process with the help of
functions such as Supervisor.start_child/2.

At the end of the day, supervisors go beyond fault tolerance and provide our
systems with guarantees around starting up and shutting down. For an
overview on how applications are started and stopped as part of a system,
see the Application module documentation.5 For further discussion on the
supervisor guarantees, we recommend Fred Hébert’s article “It’s All About
the Guarantees.”6

Wrapping Up
In this chapter, we noted that object-oriented developers learning Elixir tend
to use object-oriented concepts because that’s what they know, and we
examined the most popular ones. Adopting Elixir means more than learning
its idioms and syntax. To get the most out of it, you’ll need to understand its
basic abstractions.

We started by examining how to think about mutable state. When you’ve
made the transition, you’ll see how the concepts of behavior, state, and time

5. https://hexdocs.pm/elixir/Application.html
6. https://ferd.ca/it-s-about-the-guarantees.html

Chapter 5. Making the Functional Transition • 100

report erratum • discuss

https://hexdocs.pm/elixir/Application.html
https://ferd.ca/it-s-about-the-guarantees.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

go from something implicit and tightly coupled to much more explicit concepts.
Just using stronger, higher-order abstractions such as processes and concur-
rency raise mutable state to a more serious level, where it belongs.

Next, we talked about polymorphism. Where most object-oriented developers
reach for inheritance first, Elixir developers tend to use pattern matching
when dealing with a known set of variables. To support unknown services in
an API or application, you can use protocols. Taken together, these two provide
all of the power of inheritance and a more complete list of options for organiz-
ing code.

Finally, we introduced Agents, Tasks, and GenServers. We used agents to model
state with processes, and tasks to model behaviors. Then we looked at the
GenServer abstraction to do both at once. You learned to use processes to:

• Model state accessed by multiple processes.
• Run multiple tasks concurrently.
• Gracefully handle clean startup and exit concerns.
• Communicate between servers (to be discussed in a future chapter).

We learned that applications that require most of these services are ideal
targets for OTP, but those that don’t should reach for simpler abstractions
like modules and functions first. Then, we looked at some examples for each.

Next, we learned the GenServer is your go-to abstraction when you need to
tackle state, concurrency, and fault tolerance all at once. If you don’t need
those things, don’t use a GenServer. Understanding when a GenServer fits and
how to leverage agents and tasks will take you far in your Elixir journey.

Lastly, we learned that beyond reliability, supervisors define how our system
starts and shuts down as a whole. Elixir takes full advantage to provide
guarantees for services your application depends on.

In the next chapter, we’ll make a shift toward deeper technical advice. As you
begin your Elixir journey, you’ll have some tools available to you that you
might not have had on your previous platform, tools that should make you
think about organization and architecture in a different way. Among other
topics, we’ll discuss the different alternatives you’ll have for persisting data
and evaluate strategies for sending remote messages. We’re turning up the
intensity so it’s no time to slow down. Turn the page and we’ll get started!

report erratum • discuss

Wrapping Up • 101

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

CHAPTER 6

Distributed Elixir
Most programmers think of distributed systems as black magic, at once
mysterious, valuable, and extraordinarily sensitive. They’re not far from wrong,
but nearly all systems have distributed elements—every mobile application
that reaches a server to exchange information, a load balanced web server,
each new car navigation system that is part of a network, an application that
communicates with a database, even simple web servers that connect to a
social network for authentication. As programming requirements change,
languages have to change with them.

The fact of the matter is that distributed systems are hard. Elixir doesn’t
make them easy. It merely tries to make things a bit easier by offering tools,
abstractions, and guarantees in the form of messages, nodes, and more. They
help greatly when you do the difficult work of reasoning through the inevitable
design constraints.

Take a simple database such as PostgreSQL. You might reach for it by default,
but that choice brings assumptions. When you adopt your database as your
sole source of truth, your choice impacts your response times. Every time
you need new information from the database, your request will go over the
network, and that takes time. Your database can also become a bottleneck
(although a database used correctly will perform quite well despite popular
folklore).

More to the point, if the database goes offline, in the best-case scenario it will
be unable to accept writes or even be completely unusable. That’s the crux
of distributed systems design. Communication between working nodes is only
a small part of the problem. It’s usually availability and resilience rather than
performance that drive us to distributed systems. Handling the unexpected
is the heart of excellent distributed systems design. In essence, you need to
get comfortable entertaining the question “What happens if I kill this?”

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Rather than give you incomplete chapters that deliver a poor attempt at a
complete anthology of distributed systems, we’ll explore Elixir’s constructs
for distribution and how to leverage them for building systems you wouldn’t
have considered otherwise. Like the other chapters in this book, this one will
help you put core concepts in place and tell you where to find more. Then,
when the time comes, you’ll be ready to go in depth on your own.

Remote Message Passing
Throughout this book, we’ve been addressing your Elixir adoption one layer
at a time. We started with functions and walked through how to organize
code and think functionally. Next, we moved into concurrency. In Elixir, the
fundamental constructs for concurrency are processes, and the OTP
abstraction built upon them. We talked about building layered applications
and a structure for sending messages between them.

Next, we’ll introduce the concept of nodes. A node is an abstract group of
processes. They may be running on the same machine or different ones. When
you’re using Elixir, you send messages between remote processes and local
processes in exactly the same way. That means processes form the foundation
of distributed applications. Elixir uses the same send/2 function for sending
messages to processes running on the same node or on a separate node over
the network. Throughout this chapter, we’re going to set up some nodes and
do exactly that.

To start a node, you need to start it with a name. The name may be short,
allowing connections only from the same machine, or long, allowing connec-
tions over the network. In both cases, nodes can only communicate if they
share the same cookie. It is not a browser cookie; it is a unique identifier
stored as an atom. You can find this cookie at ~/.erlang.cookie. Erlang creates
one automatically when you start a named node, or you can pass the --cookie
flag when starting the VM to specify your own. Keep in mind data sent
between nodes is not encrypted out of the box. The security implications of
running distributed Erlang in production are discussed in Security Guidelines,
on page 166.

Start a new IEx session and give the node a short name of chip. You’ll only be
able to access this node by name from other nodes running on the same
machine, like this:

$ iex --sname chip
iex(chip@macbook)> node()
:"chip@macbook"

Chapter 6. Distributed Elixir • 104

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Now, start another node, named dale:

$ iex --sname dale
iex(dale@macbook)> Node.list()
[]
iex(dale@macbook)> Node.connect(:"chip@macbook")
true
iex(dale@macbook)> Node.list()
[:"chip@macbook"]

Your two nodes are now connected. Remember the examples here will likely
have different node names when running on your machine and you need to
adjust it accordingly.

When connected, Elixir maintains an open TCP connection between the nodes.
If more nodes join the network, they’ll hold direct connections to each other.
We call such a network a fully meshed network. If the TCP connection between
two nodes drops or the node becomes unresponsive, those two nodes will
then disconnect. You can do so explicitly via Node.disconnect, like this:

$ iex --sname dale
iex(dale@macbook)> Node.disconnect(:"chip@macbook")
true
iex(dale@macbook)> Node.list()
[]

To send a message from a process running in chip to a process running in dale,
you need to be able to identify and find processes across nodes. One option
is to give the process a local name and ask the node to send a message to a
process running locally with a given name.

Back in chip@macbook, give the IEx process the name of :my_iex:

iex(chip@macbook)> Process.register(self(), :my_iex)
true

Now in dale@macbook, let’s send a message to node chip, asking it to deliver that
message to a local process named :my_iex:

iex(dale@macbook)> send {:my_iex, :"chip@macbook"}, :hello_from_dale
:hello_from_dale

Elixir used the tuple {process_name, node_name} to (a) open a connection to node
chip@macbook if one does not yet exist, (b) serialize, and (c) send the message.
The first point deserves special attention. Elixir will always attempt to connect
the two nodes when sending remote messages, even if they’ve been explicitly
disconnected.

report erratum • discuss

Remote Message Passing • 105

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Back on chip@macbook, you can run flush() and verify the IEx process has indeed
received a message and the nodes are connected once again, like this:

iex(chip@macbook)> flush()
:hello_from_dale
:ok
iex(chip@macbook)> Node.list()
[:"dale@macbook"]

So, you can send messages across nodes. You can monitor processes across
nodes too. Back in dale@macbook, monitor the :my_iex process running on
chip@macbook:

iex(dale@macbook)> Process.monitor({:my_iex, :"chip@macbook"})
#Reference<0.0.4.113>

Now, if you terminate the chip@macbook node, the IEx session running on
dale@macbook will receive a :DOWN message with a :noconnection reason, like this:

iex(dale@macbook)> flush()
{:DOWN,

#Reference<0.0.4.124>,
:process,
{:my_iex, :"chip@macbook"},
:noconnection}

The same primitives we use for building concurrent and fault-tolerant appli-
cations are also available for building distributed systems. None of this
behavior is specific to Elixir; it is all part of the Erlang runtime. But don’t let
that fool you. Network communication brings a whole new set of trade-offs
to consider.

For instance, in order to exchange messages between processes in these
examples, you named the IEx process running on chip@macbook. To uniquely
name a process, you need to use a process registry. The process registry used
here is a local process registry. We’ll talk more about them in Finding Process-
es, on page 112 so we’ll just give you a quick working definition now.

A local process registry is straightforward to implement but it’s limited in capa-
bilities. For example, to check if a process exists on a given node, you’ll always
need to use the network to ask that node if the process is alive. Furthermore,
a local process registry only guarantees uniqueness locally, but a distributed
process registry must guarantee that a name is unique across the whole cluster.

Different process registries will choose different trade-offs and those choices
will impact the design of your applications. To understand how this affects
your systems, you’ll need to understand state, persistence, and replication.

Chapter 6. Distributed Elixir • 106

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Persistence Strategies
In the previous chapters, you learned about Elixir’s excellent tools for reason-
ing about state. In this chapter, we’ve begun to explore some of the abstrac-
tions for building distributed systems. At this point, you may be wondering,
when to use Elixir abstractions and when to instead rely on off-the-shelf
solutions. Sometimes the lines between creating a database and a GenServer
may blur.

You are not alone. The team at Plataformatec heard similar questions, from
the community and different clients around the world. Those conversations
often involved different technologies, ranging from databases to messaging
systems. To address such questions, the first topic Plataformatec engineers
would bring up was about persistence.

To frame any persistence application, you need to answer one question first:
“Can you afford to lose the data?” Often, an application’s data is essential,
and losing it is catastrophic, but sometimes, such as in a cache, the data is
disposable. We call such data ephemeral or ephemeral state.

If you can’t afford to lose data, your choice is usually easy. Don’t reinvent the
wheel; choose a database that fits your constraints.

Dealing with Ephemeral Data
If the data is ephemeral, you’re in for a treat. Elixir is great at dealing with
such problems. In such cases, you can likely keep the information in memory,
and use all of the tooling Elixir provides. Let’s view a classic example of
ephemeral state.

Imagine that you want to show how many users are connected to your
application right now. Every time a new connection arrives, you start moni-
toring that connection process and increase the connection counter. Once
you receive a notification that the connection process no longer exists, you
decrease the counter.

If the server crashes, you lose the state of however many connections were
in that server, but you don’t care, because all connections were dropped
anyway when the server crashed!

If you have a single server or you are only interested in counting the connec-
tions per server, then you can go have a beer, or a Shirley Temple, with a
smug “mission–accomplished” grin. However, if you would rather show how
many users are connected across all servers in the cluster then you need to

report erratum • discuss

Persistence Strategies • 107

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

find a mechanism to replicate the data across servers, and your work has
only begun.

The choice of replication depends on how much precision you require. It is
likely you want only a rough estimate of connected users. In this case, you
can likely have each server report to each other how many users are connected
locally in a given time interval, such as every 15 seconds. The data won’t be
precise because over that time interval, users could have come or gone, but
you have a reasonable interval for updates.

However, if you need an exact count, the periodic solution falls apart. Keeping
all servers in sync will likely be too expensive. You could implement a consen-
sus protocol but that is not a straightforward task. In those cases, an off-the-
shelf solution such as a database might be a better choice.

We may have started and ended this discussion telling you to use a database,
but the devil is in the details between those extremes. That’s where Elixir
shines. Throughout this chapter, we’ll discuss different trade-offs and show
that they do not only impact the choice of external tools, such as PostgreSQL,
Redis, or RabbitMQ, but also the tools within the Erlang VM for tracking
processes.

Still, one scenario trumps all others in terms of simplicity: read-only data,
which we’ll see next.

Case Study: Moz with a Database-Free Architecture
One of the biggest problems with keeping data in memory is what to do when
it changes. Dealing with large amounts of mutable in-memory data leads to
all of the same challenges as handling mutable data in a database or file
system. You’ll need to persist changes, back up the data, replicate it, and
solve all of those problems that mutability causes, but on a different scale.
If you’re fortunate enough to be working with clean, unchanging data, you
won’t have to deal with any of those problems, and a database-free architecture
can open up exciting possibilities.

Such is the case with Moz. This company takes historical digital marketing
and SEO data and offers timely, actionable analysis on numerous search
marketing dimensions. Recently Moz started a comprehensive overhaul of
their back-end architecture in order to improve the performance and user
experience of their applications while satisfying their clients with timely
releases of important features.

Chapter 6. Distributed Elixir • 108

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

In an article describing their implementation,1 some of the “limiting factors
were non-scalability, non-standard use of MySQL, and concurrency limitations
in Ruby.” As their feature set grew and they accumulated more data, they
became more and more limited due to their database architecture. Even if
they had hundreds of weeks of data stored, they could only show the last 12
weeks and at limited depth.

Here’s the interesting part. Since their system dealt with historical data, they
didn’t have a mutability problem. Sure, the datasets for customers grew, but
past data never changed. They decided to forgo their sharded MySQL archi-
tecture to use a database-free solution with Elixir.

In their new system, instead of storing their dataset on MySQL, they store
the data as serialized data structures using the mechanism provided by the
Erlang VM, composed of :erlang.term_to_binary/1 and :erlang.binary_to_term/1. Their
application fetches the raw data from S3, converts it to indexed Elixir data
structures, and persists it on a network share. When a given client wants to
analyze some information, they fetch the indexed data from the network share,
deserialize it, and keep it in memory while the user navigates the application.
Working with the data in-memory by using Elixir functions like map, filter, and
group is much more efficient than going over the network to reach the database.

The new solution provides 20 times faster response times and greatly improves
the user experience. Indexing is 30 times faster and uses 63 times less disk
space. The new architecture allows them to effectively remove the 12-week
limitation, showing up to 156 weeks in some of their active campaigns.

Myron Marston is one of the developers that implemented the system described
in this case study and we had the opportunity to ask him some questions
about Elixir and its usage inside Moz:

José: Why did Moz choose Elixir?

Myron: As a team, we were looking to build our next generation of services in
something besides Ruby, having run into some maintainability and performance
problems with our Ruby applications. Given the multi-core servers our code runs
on, we wanted something that made it easy to take advantage of all those cores.
We also found the immutable data structures and explicit state management of a
functional language appealing.

Elixir met all of our criteria. A couple of us had played around with Elixir and Phoenix
and were very impressed with how productive we were, particularly given that we
were newcomers, and how easy it was to get good performance. Moreover, in spite
of it being such a new language, Elixir’s use of the Erlang VM meant that its runtime

1. https://moz.com/devblog/moz-analytics-db-free/

report erratum • discuss

Persistence Strategies • 109

https://moz.com/devblog/moz-analytics-db-free/
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

had a long, proven track record. Finally, we were extremely impressed with how
easy it was to create abstractions that worked correctly in a concurrent environment.
Unlike a more imperative language like Ruby, where you’d have to do careful syn-
chronization to make something threadsafe, in Elixir, we’ve found we arrive at
concurrency-safe abstractions naturally.

José: In what capacity are you using Elixir?

Myron: The Moz Pro Platform team is the only one at Moz using Elixir. Six of us
on the team are using Elixir as the primary language across three production sys-
tems. One of those in particular is quite a large codebase, having seen continuous
development since July 2015. In other languages we probably would have felt the
need to split the project into multiple systems, but with Elixir’s umbrella apps, we’ve
found an elegant way to decompose the app into smaller components while keeping
it all part of one system.

José: What was your biggest concern when you first considered using Elixir?

Myron: No one on the team had ever run an Erlang or Elixir system in production
before. With any language runtime, you’re going to run into unanticipated hiccups
in production, and it’s typical to rely on people with pre-existing knowledge of the
technology for troubleshooting help. Embarking on a major architecture project
without this domain expertise on the team was a risk.

José: How has your company benefited from Elixir?

Myron: We’ve seen benefits in several areas:

Maintainability We’ve found Elixir systems to be very easy to maintain, and our
velocity has been very consistent over nearly two years of continuous develop-
ment.

Reliability Our Elixir services have been much more reliable than our Ruby services
ever were. In particular, our on-call rotation receives a small fraction of the
pages with the new Elixir system compared to the old Ruby-based one. In
addition, the only outage we’ve ever experienced from this application had
nothing to do with our Elixir code (our Storage Area Network ran out of space)!

Performance As detailed in our blog post, we saw a 20x performance improvement
from moving to Elixir.

Ease of deployment Early on, we encountered challenges deploying Elixir apps as
we adjusted to significant differences from Capistrano. Having acclimated to
Erlang release process we now find deployment a breeze. We build our produc-
tion releases as part of our CI on TravisCI, which facilitates a rapid, three-step
deploy process that fetches the release from S3, unpackages it, and starts it.

Lower cost Our Elixir services take much less hardware than our Ruby services did.

Unlocked features Rebuilding a service in Elixir allowed us to unlock key features
that our product team wanted, as detailed in our blog post.

Chapter 6. Distributed Elixir • 110

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

To be fair, many of these benefits are as much about the architecture we chose for
the new system as it is for Elixir itself, but in many ways, Elixir is the enabling
factor that allowed us to choose that architecture. A language like Ruby with a
Global Interpreter Lock (GIL) would not have supported the style of architecture
we’ve gone with.

José: Have you had hiccups or roadblocks along the way? How did you overcome
them?

Myron: One of our early challenges was related to how we handle production
configuration. Mix config works well but isn’t suitable for credentials and other
runtime config values, especially when we use an external service (Travis) for our
CI. We wound up creating our own RuntimeConfig library that allows us to put
config in an external JSON file. The path to the JSON file is then injected via an
environment variable.

For most of our other hiccups and roadblocks, the Elixir community was there to
support us. We’ve received help from members of the community on IRC, from the
mailing list, and on the Elixir forum. One recent example was when we were trying
to troubleshoot GenServer timeouts, and you helped us out.2

José: Any other comment?

Myron: Elixir was an optimal fit for our team here at Moz. In addition to the myriad
technical benefits and operational improvements we realized in our migration to the
Elixir ecosystem, we were delighted to find a community that echoed Moz’s values.
Elixir’s mission and its code of conduct describe a community that is friendly and
welcoming; happy and helpful. Our own TAGFEE code3 similarly promotes openness
and generosity in all we do. As our team of engineers from varying backgrounds
and levels of experience embarked on this project, they found in Elixir both a tech-
nology and a community that were an ideal match.

One of the most important aspects of their solution is the decoupling between
the writing and reading of the data. They still certainly have an infrastructure
for collecting all of those events, but their Elixir backend does not care about
it. This particular technique has nothing to do with language! It’s easy to
manage static data in memory because it will never change. In a hard crash,
the user request just goes to another node, which simply loads the indexed
data. Nothing is lost. And if they need to add new features that require
extracting different insights from the data, they can just reindex it.

Elixir helped them maximize their database-free design by giving them
abstractions to reason about state. The app can create separate processes
and keep information about different clients isolated. When busy, the system
purges the oldest data first to make room for new requests.

2. https://elixirforum.com/t/troubleshooting-a-slow-genserver/3939
3. https://moz.com/about/tagfee

report erratum • discuss

Persistence Strategies • 111

https://elixirforum.com/t/troubleshooting-a-slow-genserver/3939
https://moz.com/about/tagfee
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Finding Processes
When building distributed systems with Elixir, naming and grouping processes
is fundamental. A process registry lets you uniquely name a process. A process
group lets you group processes based on a property or on a shared attribute.

Process registries and process groups store mutable information. After all, a
registry can name a processes, assign it to a group, or destroy that information
at any time. However, process data is still ephemeral. Once a process is dead,
its name or group don’t matter. If an asteroid strikes your data center, all
name and group information will be lost, but all processes will be gone too.

For process registries and process groups, you don’t need to worry about
persistence, but you do need to discuss the trade-offs between local and dis-
tributed storage, and the strategies for replicating data.

Process Registries
A process registry lets you uniquely name a process.

There are two kinds of registries: local registries store the names of processes
that belong to the current machine, and distributed registries store the names
of processes across the whole cluster. Let’s explore some of the registries and
their trade-offs, focusing on the registries that are part of Erlang and Elixir
standard libraries.

The Local atom-Based Registry

The atom registry is a tool that binds an atom to a process. In a previous
chapter, we defined a PathAllocator which started like this:

defmodule PathAllocator do
@name PathAllocator

def start_link(tmp_dir) when is_binary(tmp_dir) do
GenServer.start_link(__MODULE__, tmp_dir, name: @name)

end

...
end

When Elixir starts a process and gives it an atom name, such as PathAllocator, it
uses the local registry from the Erlang VM. By convention, Elixir names those
processes by the module defining them to simplify introspection and debugging.

Since the registry is local, node A can’t see if there’s a process named PathAllo-
cator on node B, but node A can ask node B to send a message to local process
named PathAllocator.

Chapter 6. Distributed Elixir • 112

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The atom registry supports only atom names. Because atoms are not garbage
collected, you should never use the atom registry to register dynamically
named processes! That would lead to a memory leak. Use the atom registry
when you know the name at compilation time.

Beginning with version v1.4.0,4 if you want to dynamically register non-atom
names locally, you can use the local, highly scalable Registry module5 that
ships as part of the Elixir standard library.

Both the built-in atom-based registry and the Registry module are local. If you
want to uniquely identify a processes in a cluster, you can use OTP’s :global
registry.6 Check out its documentation for examples and a full reference. Here
we’ll focus only on the design decisions and trade-offs taken by the :global
module.

The :global Registry

:global is a distributed registry with atomic registrations so a global process
named :my_iex will be visible to all nodes at the same time. Each node keeps
its own copy of registered processes so there’s no central storage and the
translation of a name to a PID is always fast. Each node can answer without
resorting to communication if there is a process named :my_iex or not.

The downside of this approach is that registration becomes more expensive
as the number of nodes grows. If you have 10 nodes, registering a single
process requires coordination across all nodes. If one of these nodes is unre-
sponsive, it may block the registration for many seconds, until the node is
back up or other nodes mark the unresponsive node as offline.

Those design decisions imply that :global may also not suit you well if you want
to dynamically register names, as the rate of registrations become quite lim-
ited when the number of nodes grows. The :global registry is best used when
you need to identify processes that must always be running from the moment
the system starts. Its limitations are well known and documented; for more
information, see the paper “Evaluating Scalable Distributed Erlang for Scala-
bility and Reliability”7 by N. Chechina, K. MacKenzie, et. al.

For example, if you are building a multiplayer game, you may need to identify
where each player is connected in your cluster. Players can join the game at
any time at a pace so fast that the built-in :global registry may not provide the

4. http://elixir-lang.org/blog/2017/01/05/elixir-v1-4-0-released/
5. https://hexdocs.pm/elixir/Registry.html
6. http://erlang.org/doc/man/global.html
7. http://ieeexplore.ieee.org/document/7820204/?reload=true

report erratum • discuss

Finding Processes • 113

http://elixir-lang.org/blog/2017/01/05/elixir-v1-4-0-released/
https://hexdocs.pm/elixir/Registry.html
http://erlang.org/doc/man/global.html
http://ieeexplore.ieee.org/document/7820204/?reload=true
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

throughput necessary. In such cases, you can try alternatives provided by
the community, such as Syn,8 or use a third-party data store for the user
tracking.

Process Groups
While process registries allow you to uniquely identify a process, a process
group allows us to group processes under a given topic or property. Like
registries, process groups may be local or distributed.

Let’s briefly explore the process group implementations available in the
standard libraries and ecosystem.

The Registry Module

Elixir’s Registry module9 has two modes of operation. When configured to use
unique keys, it works as a process registry, storing a unique entry for each
key. When you choose duplicate keys, it stores multiple entries under each
single key, and it effectively works as a process group. It’s all about the data
structures you choose. In the former, a key maps on to a value; in the latter,
a key maps to a list of values.

Let’s see an example with duplicate keys. First, start the registry:

iex> Registry.start_link(:duplicate, MyProcessGroup)
{:ok, #PID<0.65.0>}

“hello” has no worker processes:

iex> Registry.lookup(MyProcessGroup, "workers")
[]

Now, register the same process twice, with different properties, and then
perform another lookup:

iex> {:ok, _} = Registry.register(MyProcessGroup, "workers", :high_priority)
iex> {:ok, _} = Registry.register(MyProcessGroup, "workers", :low_priority)
iex> Registry.lookup(MyProcessGroup, "workers")
[{#PID<0.59.0>, :high_priority}, {#PID<0.59.0>, :low_priority}]

Registry.register always registers the current process and expects the registry
name, the key (which is the group name), and some property of the registration.

Registry implements a local process group. Curiously, you can send a message
to all processes in a cluster that belong to a given group by using the local
atom-based registry and a local process group:

8. https://github.com/ostinelli/syn
9. https://hexdocs.pm/elixir/Registry.html

Chapter 6. Distributed Elixir • 114

report erratum • discuss

https://github.com/ostinelli/syn
https://hexdocs.pm/elixir/Registry.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

1. On every node, start a GenServer named MyPubSub and a process group named
MyProcessGroup using the Registry module.

2. Each process interested in joining the group “workers” registers itself
under their local MyProcessGroup.

3. To broadcast a message to all workers in the whole cluster, you get a list
of all nodes, using Node.list, and use send/2 to send a message to the MyPubSub
process running on each node, as we did in the “Remote Message Passing”
section. Being a GenServer, MyPubSub will receive the message on its handle_
info/2 callback and proceed to broadcast the message to the local “workers”
group using the Registry API.

That’s effectively how distributed pubsub works in Phoenix.PubSub. See the Registry
documentation10 for more use cases and the complete API reference.

The :pg2 Module

The :pg2 module11 provides a distributed process group implementation. Using
:pg2, you can create groups and processes may join and leave those groups
at any time.

Though you could implement a distributed PubSub using the Registry module,
other operations may be expensive to perform using only local tools. Say you
wanted to both broadcast messages and know how many of your cluster’s
processes are in the “workers” group. One solution would be to message each
node and ask their local count, which they would message back. That’s going
to be inefficient.

:pg2 is like :global. Joining a group happens atomically across the whole cluster.
Each node keeps its own copy of available groups so there’s no central storage.
Fetching all of a group’s processes in the cluster is always fast because it’s
a local request. The downside is the same as in :global. Joining becomes more
expensive as the number of nodes grows, so you should use :pg2 to identify
group services only at startup time. Avoid :pg2 for dynamic registrations.

As usual, the community has filled in the blanks with their own solutions.
Phoenix implements Phoenix.PubSub and also a presence mechanism called
Phoenix.Presence. Behind the scenes, it uses a distributed process group imple-
mentation called Phoenix.Tracker.12 Each process joins a Phoenix.Tracker group
locally, and nodes in the cluster periodically exchange group information.

10. http://erlang.org/doc/man/registry.html
11. http://erlang.org/doc/man/pg2.html
12. https://hexdocs.pm/phoenix_pubsub/Phoenix.Tracker.html

report erratum • discuss

Finding Processes • 115

http://erlang.org/doc/man/registry.html
http://erlang.org/doc/man/pg2.html
https://hexdocs.pm/phoenix_pubsub/Phoenix.Tracker.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

This solution trades instant visibility for availability and performance. We say
such a system is eventually consistent.

This trade-off is completely reasonable for Phoenix Presence. If a user connects
to node A, users connected to node B can easily wait a few seconds to see node
A user. You’ll need to decide if this kind of trade-off works for your application.

That’s all of the tools we want to cover here. If you don’t find what you’re
looking for here, check out the other tools in your ecosystem.

Cache and ETS
Moz fetched all of their data up front using a databaseless strategy. Another
company called Ministry of Games kept mutable data in-memory and persisted
it to the database at specific moments and time intervals.13 Those are great
examples of leveraging the power of Elixir to design optimal solutions.

You can also leverage the tooling provided by the VM machine on simpler
problems, such as caching. A cache allows you to store the result of a compu-
tation and re-use it several times, perhaps by multiple entities. Caches are
a classic example of ephemeral data. If you lose the cache, you can just rebuild
it again.

In Elixir, when you need to store shared data across multiple processes, you
can use ETS,14 which is the Erlang Term Storage. ETS provides a high-level
mechanism for storing data in-memory, and it’s often the tool of choice for
caches. For example, Ecto uses ETS to cache the compilation of Ecto queries,
leading to great performance. Then each application needs to compile its
query once. There’s one ETS table per node, and a single Elixir node scales
very well, so ETS makes a highly efficient cache.

If you can build the cache cheaply and you have multiple instances of the
Erlang VM deployed across multiple servers, it’s better for each instance to
have its own cache rather than using some network cache. We call such a
cache local. Remember: accessing the data stored in-memory is orders of
magnitude faster than using any external service. That’s why Elixir developers
rarely resort to Redis or Memcached. ETS, or ETS abstraction such as
con_cache,15 is almost always a better solution.

If a local ETS cache is not enough, developers can use the tools described in
this chapter to provide more sophisticated solutions. For example, imagine

13. https://www.infoq.com/presentations/building-scalable
14. http://erlang.org/doc/man/ets.html
15. https://github.com/sasa1977/con_cache

Chapter 6. Distributed Elixir • 116

report erratum • discuss

https://www.infoq.com/presentations/building-scalable
http://erlang.org/doc/man/ets.html
https://github.com/sasa1977/con_cache
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

that building the cache is slightly expensive and, if another node in the net-
work has already built the cache, you would rather get a copy of the cache
than rebuild it. You can use a process group implementation to keep a list
of processes across your cluster that hold certain caches. When you need to
access the cache and the list of caches is not empty, you can ask one of those
processes to send the cache to you.

In the worst-case scenario, where computing of the cache on demand is
infeasible, you may want to resort to a more robust solution that builds the
cache in the background and updates a global storage, such as a database
or even S3, in a solution quite similar to the Moz application.

Message Delivery Guarantees
Good developers often associate certain words with particular pitfalls or
techniques for avoiding them. Large dataset aggregation suggests the map-
reduce pattern; immutability may suggest functional languages. In this section,
we’ll build another association. Whenever you consider events, you should
also consider message delivery guarantees.

Consider a simple welcome email that you might want to send each time a
user creates an account. You could do so asynchronously with the Task
module, but if the client fails or the server abruptly terminates, the email
won’t be sent. Maybe you are willing to live with the consequences—if the
email contained the user confirmation token, they can always request a new
one later. In such cases, we provide at-most-once delivery. The email may be
sent or not.

Maybe you’re not willing to drop the email, because losing it could impact
adoption. This means you need a persistence mechanism. If the node
responsible for sending the email catches on fire, another node needs to pick
this job up. Once persistence becomes part of the equation, don’t reinvent
the wheel. Use a third-party solution designed for the problem, such as
RabbitMQ.

Once we add persistence, we can explore other delivery guarantees. In the
email case, the best we can do is at-least-once delivery. For example, imagine
that when the user creates an account, we store a job on RabbitMQ. A
worker in your cluster picks up that job and sends the email, but while
sending the email, an error happens. Was the email sent or not really?

Due to how emails work, we can’t quite answer this question. So the best
strategy is to consider the job as failed and try again. Maybe the user will
receive the email twice but they will hardly lose sleep over it.

report erratum • discuss

Message Delivery Guarantees • 117

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

At-least-once delivery is not enough in certain cases. For example, when
billing a credit card, you surely don’t want to bill it twice. We need exactly-
once delivery. It happens that, when communicating over the network, it is
quite hard to guarantee exactly-once delivery. Imagine you send a message
to an external server and it does not reply in 30 seconds. Does it mean it
failed? Or does it mean it is busy and your message will be processed eventu-
ally? How long should you wait then?

If you need exactly-once delivery, the safest bet you can make is to guarantee
that your messages are idempotent: if messages are idempotent, sending
multiple messages won’t further affect the status of the system. In the billing
case, this can be done by generating unique numbers for each transaction.
When you message the billing service, you can include a unique ID. If the
request fails, you send the same request, with the same unique ID. If the server
has already seen and processed that unique ID, it can reply back that all is
OK. If the server has not seen the ID, then it knows it has work to do.

Homogeneous vs. Heterogeneous Systems
Thanks to Erlang, Elixir excels at building homogeneous systems, which are
systems where all nodes are running exactly the same code. In this section,
we explore the alternative. Two completely different codebases that use a
common communication protocol is a heterogeneous system. Typically, you
won’t build one with Erlang/Elixir for a number of reasons:

• The Erlang distribution keeps a fully meshed network. Fully meshed
systems means any node can talk to any other node in the system. In
such a system, nodes having nothing in common may end up directly
connected. For example, if system B needs to talk to systems A and C,
systems A and C will end up connecting by default. The runtime supports
hidden nodes but that will require more work on your end.

• Many of the tools we’ve talked about so far are hard to customize for
heterogeneous systems. For example, when a process joins a group, :pg2
adds it to all nodes in the cluster. In case of heterogeneous systems, that
means system A would end up receiving process group updates from the
processes running in system B, simply because they have been connected
via the Erlang distribution.

• We need to not only consider Elixir limitations, but also the availability
of tooling and other design constraints. For example, if system A wants
to talk to system B, there are probably many nodes in system B that are

Chapter 6. Distributed Elixir • 118

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

able to fulfill system A requests. In such case, which node to choose?
Which process? You may end up reimplementing load balancing.

At the end of the day, if you are interested in building heterogeneous systems,
you may also be interested in mixing and matching systems that are written
in different languages. Sticking to distributed Erlang means you are limited
in terms of choices. You can only use platforms that implement distributed
Erlang protocols.

When confronted with such choices, many teams decide to use HTTP and
JSON for communicating between systems. We find this can be a verbose,
inefficient, and unproductive method for system communication. We would
recommend relying on middleware solutions, such as messaging systems, for
the communication between those different systems. Messaging systems may
come with the benefit of adding persistence, which will help guarantee mes-
sages exchanged between systems won’t be lost.

We stress the importance of using existing solutions, however pedestrian,
because they are often the best tool for the job. Here is an anecdote of junior
and senior developers exploring persistence possibilities:

Junior: “We don’t need a database. We are going to store everything in a
GenServer.”

Senior: “Great! Can you afford to lose data?”

Junior: “No… but we could do backups at certain intervals. And we have two
instances.”

Senior: “Are you going to partition the data and direct the access accordingly?”

Junior: “Hm. Maybe we can replicate the data between nodes?”

Senior: “Congratulations; you’ve just invented a database!”

This team ended up storing their data in PostgreSQL. A couple weeks later
the service was up and running in production, with no surprises—just high
uptime and happy users.

We are not saying you always need a database, but neither are we saying you
should always ditch your database. And as you saw throughout this chapter,
your choice is not strictly binary, either.

Sometimes the choice depends on data locality. For cache systems, we can
compute the information locally and optionally rely on an ad-hoc communi-
cation system for sharing the cache in a cluster. A database or a shared

report erratum • discuss

Homogeneous vs. Heterogeneous Systems • 119

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

storage should only be used as a last resort for caches that are expensive
to build.

Other systems, such as Phoenix.Presence, keep only ephemeral data: the users
connected to your system right now. Each node running Phoenix.Presence repli-
cates the information they have based on a time interval. There is no need
for an external storage, data is replicated between nodes directly.

Finally, we saw some systems prefer to keep mutable data in-memory but
persist the latest version of the data to a shared storage every 3 minutes or
when the user reaches particular check points. The huge majority of the time,
you will not observe any data loss, but when things go bad, no more than the
last 3 minutes of the user’s progress will be lost.

Remember, one size does not fit all. You can explore the many tools the VM
provides to find your best design. That’s enough for now. It’s time to wrap up.

Wrapping Up
In this chapter, we looked at bringing distributed applications into the mix.
While the Erlang patterns implemented in Elixir make solving such problems
easier, the nuances can take years of experience to get right. The best way
to learn is to try and fail (or follow the wisdom others have acquired during
their own attempts). You’ve seen a broad collection of advice and experience
based on years of experience with Plataformatec and the customers they’ve
encountered.

We started the discussion with distributed message passing. You learned that
Elixir uses the same abstractions to send local messages and messages across
nodes. Along the way, we built a sample app using nothing but the console,
and saw how to monitor nodes just as you would processes.

Next, we looked into managing persistence, state, and replication. We looked
at a family of problems that don’t have to worry about changing state, opening
up a broad array of potential solutions. We examined a database-free archi-
tecture created by the Moz team and looked at the trade-offs that made such
a solution possible. Later, we talked about the trade-offs that might lead you
to use a database instead.

We then moved on to the topic of finding processes in a distributed system.
We looked at three basic solutions: the local registry, the global registry, and
process groups.

We discussed caches as simple in-memory key-value pairs. We learned that
ETS tables are perfect abstractions for caching data, and saw how to build

Chapter 6. Distributed Elixir • 120

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

such a system. We wrapped up the chapter with brief discussions of message
delivery guarantees and a small discussion of homogeneous versus heteroge-
neous systems.

We understand that our treatment of distributed systems is far from complete.
People can and have spent whole careers studying individual topics that we’ve
covered in a few short paragraphs. The best we can do is to show you what’s
out there, and point you in the right direction.

In the next chapter, we’ll finish up our development discussion. We’ll focus
on integrating with code written in other languages. A bunch of exciting things
are happening in these areas. To find out for yourself, just turn the page!

report erratum • discuss

Wrapping Up • 121

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

CHAPTER 7

Integrating with External Code
So far we have been talking about scenarios where Elixir and the Erlang VM
really shine. The combination of a couple of years of explosive growth and
Erlang’s decades’ long history will serve you well when you need to integrate
with the tens of thousands of available packages and libraries written in both
Erlang and Elixir.

We’re not blind, though. Elixir has its limitations. For example:

Serious math Statistical libraries and the like can be slow because the VM
was not designed for number crunching. If your application depends on
computing statistics, executing numerical methods, or finances, you may
find the VM lacking.

Solutions built on top of matrices The naïve implementation of matrices in
Elixir would use lists of lists, which are not an efficient representation of
multidimensional matrices. Also, the lack of mutability would make
modifying large matrices expensive and lead to excessive copying regard-
less of the data structure your implementation uses.

Shared memory parallel algorithms Engineers designed certain families of
algorithms for parallel computing with shared memory in mind. Graph
algorithms, such as minimum spanning tree, are hard to implement effi-
ciently using the shared-nothing concurrency that Elixir provides.

Command-line applications The VM takes about 0.3s from startup to shutdown
on modern hardware, so Elixir may not be as good as some other scripting
languages or languages that build native executables. After all, Erlang
was designed for long-running systems. Plus, every command-line appli-
cation needs to ship with the VM, unless the command-line application
is for Elixir developers.

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Existing non-Elixir libraries You may find that you need to interface with
libraries native to languages like C or C++ that are already implemented.

That’s not a comprehensive list. You’ll doubtless find your own set of problems
that Elixir is not ideally suited to solve. Most of the time, you’ll probably be
willing to live with trade-offs. For example, when it comes to mutability, con-
currency, and list handling, Elixir’s approach has performance implications
based on the types of problems you’re solving. We’re not talking about these
kinds of trade-offs.

We’re talking about times when Elixir would cripple a single aspect of a criti-
cally important problem, such as heavy statistics on large datasets or grinding
through huge machine learning scenarios. If Elixir fits most of your require-
ments, you don’t have to abandon it just to satisfy that final 5% of your
application. There are some excellent integration options available to you.
When Elixir and the Erlang VM aren’t good enough, you can solve such
problems in other languages and technologies, and integrate them with your
Elixir codebase.

In this chapter, we’ll show you some of the mechanisms you can use to do
so. We’ll look at some integration options and write some basic code. Let’s
get started.

Lay of the Land
You may use three main strategies to integrate with external code. Each
strategy has a different level of coupling. With the tightest coupling first, here
they are:

• Strategy 1: Your application can share the same memory address space.
Think of it as a function running in the same OS process. You can load
the external code inside the VM that is running your Elixir code. This is
implemented in the Erlang VM using the so-called native implemented
functions (NIFs).

• Strategy 2: Your code can invoke the external code as a separate program
on the same machine. Think of this strategy as a different OS process,
but running on the same machine. In Elixir, we do so by using ports.

• Strategy 3: You can communicate with the external code over the network.
This strategy is a different OS process, different machine. Rather than using
generic solutions such as HTTP APIs or message queues, we are interested
in exploring solutions that are specific to the Erlang VM. We will communi-
cate with external systems using the Erlang distribution protocol.

Chapter 7. Integrating with External Code • 124

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

In this chapter, we will explore solutions to each of those problems. We’re not
aiming for complete solutions. Instead, we’ll focus on a quick exploration
allowing us to examine the trade-offs of each solution. Let’s look at each
strategy in more detail.

Strategy 1: Native Implemented Functions (NIFs)
Native implemented functions, or NIFs, allow developers to load external code
into the same memory address space as the Erlang VM. Your code can inte-
grate quite closely with functions implemented in other languages. While such
tight integration may seem appealing because of the obvious performance
benefits, you need to be careful. This power comes at a price. If you’ve ever
had a bad experience with a roommate, you know exactly what we mean.
NIFs may be clean, but they do not necessarily share the same founding
principles we do in ElixirLand. We must think of NIFs as unsafe. In particular:

• A crash in a native function will crash the whole VM, not just one process.

• A native function can cause internal VM inconsistencies, leading to
crashes or unexpected behavior.

• They may interfere with Elixir’s scheduling. A native function doing lengthy
work can block other processes from running, causing inconsistent per-
formance, high memory usage, and poor load balancing. We’ll learn more
a little later.

In other words, NIFs are dangerous. Treat them as such.

A Short Example
Let’s build a quick example of using NIFs within Elixir. The steps are
straightforward. We’re going to create a project, build an Elixir module that
loads a NIF, build our C NIF, then build it all and run it. Let’s start a new
project:

mix new elixir_nif

The main responsibility of the Elixir code is to define a template for functions
that’ll be replaced when the C code is loaded by the VM. Open up lib/elixir_nif.ex:

external_code/elixir_nif/lib/elixir_nif.ex
defmodule ElixirNif do

@on_load :load_nif

def load_nif do
nif = Application.app_dir(:elixir_nif, "priv/elixir_nif")
:ok = :erlang.load_nif(String.to_charlist(nif), 0)

end

report erratum • discuss

Strategy 1: Native Implemented Functions (NIFs) • 125

http://media.pragprog.com/titles/tvmelixir/code/external_code/elixir_nif/lib/elixir_nif.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

def hello do
"Hello from Elixir"

end
end

The @on_load :load_nif annotation tells the VM to execute the load_nif/0 function.
Timing is important. As soon as the VM loads the ElixirNif module into memory,
the @on_load directive will fire the load_nif function. It will happen at compile
time and also the first time the VM references ElixirNif on startup.

The load_nif/0 function will look for an .so or .dll file in the priv/elixir_nif directory.
load_nif/0 must return :ok. Otherwise, the module won’t successfully load.

This C code replaces the hello/0 function defined in Elixir with a hello function
implemented in C. If you want, you can provide a default implementation in
Elixir, and use a C implementation if it’s available. If you prefer, you can code
defensively by raising in the Elixir definition, like this:

def hello do
raise "NIF could not be loaded"

end

Finally, the C code in c_src/elixir_nif.c will define a hello function that receives 0
arguments and instructs the VM to load it into ElixirNif.hello/0, like this:

external_code/elixir_nif/c_src/elixir_nif.c
#include "string.h"
#include "erl_nif.h"

static ERL_NIF_TERM hello(ErlNifEnv* env,
int argc,
const ERL_NIF_TERM argv[]) {

ErlNifBinary *output_binary;
enif_alloc_binary(sizeof "Hello from C", output_binary);
strcpy(output_binary->data, "Hello from C");
return enif_make_binary(env, output_binary);

}

static ErlNifFunc nif_funcs[] = {
{"hello", 0, hello},

};

ERL_NIF_INIT(Elixir.ElixirNif, nif_funcs, NULL, NULL, NULL, NULL)

At the top, our erl_nif.h header contains the structs, macros, and definitions used
in the snippet. You can find the full reference in the Erlang documentation.1

1. http://erlang.org/doc/man/erl_nif.html

Chapter 7. Integrating with External Code • 126

report erratum • discuss

http://media.pragprog.com/titles/tvmelixir/code/external_code/elixir_nif/c_src/elixir_nif.c
http://erlang.org/doc/man/erl_nif.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The hello function allocates a new ErlNifBinary C struct, copies the C string
“Hello from C” into its data and builds an Elixir binary with enif_make_binary.
At the end of the file, we call the ERL_NIF_INIT macro with Elixir.ElixirNif, our com-
plete module name, followed by the functions we want to replace in that
module. When you’re working with Erlang, remember to prefix all Elixir
modules with Elixir.

After we define the C function, we need to compile the C code into a shared
library with the proper flags. First, we need to find the Erlang installation
and the path to its C header files, like this:

$ elixir -e "IO.puts :code.root_dir()"
/usr/local/Cellar/erlang/18.1/lib/erlang

That command will vary based on your operating system, but you get the
idea. The result is the Erlang install path. Inside that directory, you’ll find a
directory that looks something like erts-x.y, such as erts-9.2. That directory will
have an include directory inside, where you will find the erl_nif.h file. Whew.

Now, we can compile our C library. First, make sure the priv directory exists,
which is where we will write the compiled artifacts. We’ll show the versions
for a few different operating systems, but you may need to tweak them for
your environment and your Erlang installation.

On Linux:

gcc -o priv/elixir_nif.so -shared -fpic \
-I/usr/local/erlang/18.1/lib/erlang/erts-9.2/include \
c_src/elixir_nif.c

Remember, you’ll have to replace the -I with the path you found previously.
The flags -shared and -fpic tell GCC to build a shared library with position-
independent code, meaning the code does not expect to be loaded into a
specific memory address.

On macOS, we need to specify two extra flags and the correct path for -I,
like this:

gcc -o priv/elixir_nif.so -shared -fpic -dynamiclib \
-undefined dynamic_lookup \
-I/usr/local/Cellar/erlang/18.1/lib/erlang/erts-9.2/include \
c_src/elixir_nif.c

Remember to type the previous on one line. And on Windows, on one line:

cl /IERTS_INCLUDE_PATH=C:\erlang\18.1\lib\erlang\erts-9.2\include
/LD /MD /Fe priv\elixir_nif.so src\elixir_nif.c

report erratum • discuss

Strategy 1: Native Implemented Functions (NIFs) • 127

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

In practice, you’ll probably not compile any of your C code by hand. You’ll
use Makefiles.2 Once you create your Makefile, you can invoke it directly from
Mix with Elixir Make.3

To learn more, you can look at existing projects like the ones below to learn
how to organize your C code:

• https://github.com/riverrun/comeonin
• https://github.com/antipax/nifsy
• https://github.com/devinus/markdown

Finally, the Erlang VM documentation also contains tutorials on writing NIFs4

and includes a reference manual,5 linked earlier in this section. Before we
wrap this section up, we need to dive into a couple of details.

Preemption and Dirty Schedulers
Elixir processes use preemptive multitasking. Each process gets a discrete
number of reductions which are the basic building blocks that make up our
programs. When a process runs its allocation of reductions, the Elixir VM
preempts it to allow the next process to run its allocated reductions. That’s
an important design choice that allows the VM to provide predictable latency.

Unfortunately, NIFs are not preempted by the virtual machine. If a NIF requires
1 second to run, it will run for the whole second, without giving any other
VM processes the opportunity to run. As you might expect, this is a problem.
The official recommendation from the OTP team is to not perform operations
that take longer than one millisecond in a NIF.

This time limitation can be quite restrictive. Code that requires more than
one millisecond to run requires adjustments. You may need to build in the
ability to stop mid-processing and yield the control back to the VM, and that
means your C programs get more complicated, and more likely to crash—which
brings down the whole VM.

Luckily, to solve this problem, the folks at Basho teamed up with the OTP
team to provide a feature called dirty schedulers. Here’s how they work.

For every core, the BEAM virtual machine starts a thread that runs a sched-
uler. By default, there are as many schedulers as cores, each running in its

2. https://en.wikipedia.org/wiki/Makefile
3. http://github.com/elixir-lang/elixir_make
4. http://erlang.org/doc/tutorial/nif.html
5. http://erlang.org/doc/man/erl_nif.html

Chapter 7. Integrating with External Code • 128

report erratum • discuss

https://en.wikipedia.org/wiki/Makefile
http://github.com/elixir-lang/elixir_make
http://erlang.org/doc/tutorial/nif.html
http://erlang.org/doc/man/erl_nif.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

own thread. Those schedulers are the ones responsible for scheduling which
VM process or port (to be discussed in the next section) will run next.

You can get the total number of schedulers by calling :erlang.system_info(:schedulers).
You can fetch the number of online schedulers, or the schedulers currently
running, by calling :erlang.system_info(:schedulers_online). You can configure the
number of schedulers only during the VM startup, but you can turn schedulers
on and off with :erlang.system_flag(:schedulers_online, number_of_schedulers_online).

Because NIFs run in the scheduler’s processes, long-running NIFs means
blocking the scheduler, and that’s bad. Erlang recently introduced a separate
group of schedulers, ones designed especially for running NIFs. These so-
called dirty schedulers were introduced as an experimental feature in Erlang
18. To enable them, compile Erlang from source with the flag --enable-dirty-
schedulers. The feature became official by Erlang 20.

We divide dirty schedulers into two categories: I/O bound and CPU bound.
Similar to schedulers, we have one CPU-bound dirty scheduler per core. The
VM also starts ten threads as I/O-bound dirty schedulers. If you compile
Erlang with the dirty schedulers flag, you should see the dirty schedulers
information when starting up IEx:

Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [ds:4:4:10]
[async-threads:10] [hipe] [kernel-poll:false]

Interactive Elixir (1.5.2) - press Ctrl+C to exit (type h() ENTER for help)

The [ds:4:4:10] says dirty schedulers is enabled, with four dirty CPU schedulers,
where all four of them are online, followed by ten dirty I/O schedulers.

Your C code will choose which dirty scheduler to use when you build your
ErlNifFunc structs. If you specify a dirty scheduler, the NIF will no longer run
in the primary scheduler but in one of the specified dirty schedulers, like this:

static ErlNifFunc nif_funcs[] = {
{"hello", 0, hello, ERL_NIF_DIRTY_JOB_CPU_BOUND},

};

You can choose between ERL_NIF_DIRTY_JOB_CPU_BOUND or ERL_NIF_DIRTY_JOB_IO_BOUND.
For more information on dirty schedulers, consult Erlang’s reference docu-
mentation.6 There’s also an excellent video from ElixirConf 2017 called “Well-
Behaved Native Implemented Functions for Elixir” by Andrew Bennett.7 For
a reference implementation, check the Nifsy project.8

6. http://erlang.org/doc/man/erl_nif.html
7. https://www.youtube.com/watch?v=FYQcn9zcZVA
8. https://github.com/antipax/nifsy

report erratum • discuss

Strategy 1: Native Implemented Functions (NIFs) • 129

http://erlang.org/doc/man/erl_nif.html
https://www.youtube.com/watch?v=FYQcn9zcZVA
https://github.com/antipax/nifsy
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

To summarize, NIFs allow very tightly integrated C code. You can get great
performance if you’re careful, and spotty concurrency, inconsistent data, and
instability if you’re not.

Strategy 2: Communicating via I/O with Ports
Ports provide a safer alternative to integrate with external software. Each port
starts the third-party software as a separate process in the operating system.
If that port terminates, your Elixir code gets a message, and you can act
accordingly. A segmentation fault in the external port won’t bring your Elixir
system down.

It is possible that you’ve already spawned ports in your Elixir applications,
like this:

System.cmd("elixir", ["-e", "IO.puts 21 * 2"])
{"42\n", 0}

This command finds the elixir executable in your operating system and invokes
it passing the command-line arguments -e, for code evaluation, and the con-
tents IO.puts 21 * 2. Then System.cmd returns the result written to the standard
output, which is "42\n" and the status code, which is 0, indicating success.
Similar to processes, ports are built on top of asynchronous communication.
System.cmd hides this communication behind a synchronous command that
blocks only the current process until the executable exits.

If you need to integrate with a third-party program, you should consider ports
before resorting to NIFs. Ports put stability and reliability before perfor-
mance—and you should as well, unless you really need the numbers.

Sometimes, external code is a crucial part of your architecture and may even
play a central role. If you’re using Nerves, the core Elixir framework for
embedded systems, you’re using ports. Let’s see how Nerves leverages ports
for building embedded systems and how Le Tote is using those systems in
production.

A Case Study: Nerves and Le Tote
Nerves9 is a framework to craft and deploy bulletproof embedded software in
Elixir. When you write embedded software, you need to communicate with
all kinds of peripheral devices, such as displays to show status, buttons to
customize automations, Wi-Fi board to communicate with other devices, RFID

9. http://nerves-project.org/

Chapter 7. Integrating with External Code • 130

report erratum • discuss

http://nerves-project.org/
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

readers to read identity chips, and the like. Assembling all the drivers and
software to integrate with those devices is an error-prone and riddling process.

The Nerves creators saw this is as a perfect opportunity to use Elixir and
OTP. Instead of building custom operating systems that try to tie this all
together, they decided to let Elixir control them. Their application spawns a
process that communicates with the Wi-Fi board or a barcode scanner, and
if something goes wrong with those devices, Elixir can restart it. Elixir thrives
in that environment because it was built to solve such problems.

Nerves offloads the burden of managing those devices from the embedded
operating system. This strategy has certain specialized requirements. For
example, a bug in the RFID reader should not bring your system down so all
the communication with the RFID reader must happen through ports. As
with the rest of the Elixir ecosystem, Nerves reliability depends on active
supervision. When the process controlling the port dies, the supervisor will
take action, such as a restart.

he Nerves team follow this guideline almost religiously. All integration happens
through ports. Even when they need to write C code to expose new capabilities,
they write the C program and communicate with it through a port.

Bringing Elixir’s fault-tolerance and developer productivity principles to
embedded software proved to be a successful combination. Nerves is capable
of automating the whole process of packaging and deploying embedded sys-
tems. During development, it can even push code to the device over the wire.

Charlie Bowman is the CTO at Le Tote, a forward-thinking fashion rental
company that is attacking embedded systems development, a branch of our
industry that badly needs retooling. Le Tote is betting on using Nerves and
embedded systems to provide a much more automated experience for their
warehouse, which is critical for the fashion rental business.

Ben: Why did you choose Elixir?

Charlie: We were rethinking our entire warehouse management system (WMS)
and Elixir offered the best solution to our problem. One reason for the WMS rethink
was due to our desire to move from a barcode-based system to RFID. We wanted
to create custom hardware and software solutions that maintained a constant
connection to the cloud-based application so that we could have real-time inventory
data in the warehouse. Phoenix channels was perfect for this on the software side.
We also started creating custom hardware devices to be used, and Nerves allowed
us to quickly develop custom firmware to be used on these devices. These customer
hardware devices running Nerves allowed us to create a perfectly optimized solution
to our problem.

report erratum • discuss

Strategy 2: Communicating via I/O with Ports • 131

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Ben: What was your biggest concern when you first considered using Elixir?

Charlie: My lack of experience was my biggest concern. This was my first time
making a decision for a given technology that I was not at least somewhat experi-
enced in. My background was in OOP, specifically Ruby, so the thought of moving
to a functional system based on OTP was a big leap for me. It took some time for
me to wrap my head around Elixir processes and GenServers.

Ben: How has your company benefited from Elixir?

Charlie: Far and away the biggest benefit from moving to Elixir has been the team
we’ve been able to assemble. Passionate and experienced engineers have already
started making the move to Elixir because it keeps so many things they love about
modern programming (expressive languages, MVC frameworks, rapid development)
while offering proven strategies for concurrency and fault tolerance. From a purely
technical point of view, Elixir, Phoenix, and Nerves all offer rapid development and
fault tolerance, both of which are absolutely critical when writing software that is
used by hundreds of people in a warehouse that requires near perfect uptime.

In short, Elixir and ports allowed Le Tote to revamp their entire warehouse
management system. Le Tote is at the forefront of the coming automation
revolution. They’re solving problems with cutting-edge technology in Nerves,
and they’re even creating the technology as they go along.

We like to share this story because developers have this dangerous habit of
valuing performance above everything else. Nerves and Elixir help to balance
the scales by focusing on reliability. When it comes to external systems, ports
are the way to go. Let’s code an example.

All-Caps I/O Program
In this section we are going to implement an all-caps I/O program in Elixir
and interact with it using ports. The program is going to read lines from the
standard input, upper case them, and then write them to the standard output.
In practice you’ll use ports to interact with software written in all kinds
of languages except Elixir itself. Using Elixir here is enough to learn how it
all works.

This time, we’ll work with two script files instead of creating a full Elixir
project, one to provide the all-caps implementation and the other to run it.
Let’s start with all_caps.exs:

external_code/port_1/all_caps.exs
for line <- IO.stream(:stdio, :line) do

IO.write String.upcase(line)
end

Chapter 7. Integrating with External Code • 132

report erratum • discuss

http://media.pragprog.com/titles/tvmelixir/code/external_code/port_1/all_caps.exs
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Run it with elixir all_caps.exs. Give it a try:

$ elixir all_caps.exs
hello
HELLO

Hitting Ctrl+D closes the I/O device, terminating the I/O loop and the software.
Our second script will open up a port to use the all_caps.exs program. Crack
open program.exs and key this in:

external_code/port_1/program.exs
port = Port.open({:spawn, "elixir all_caps.exs"}, [:binary])

send port, {self(), {:command, "hello\n"}}
receive do

{^port, {:data, data}} ->
IO.puts "Got: #{data}"

end

send port, {self(), :close}
receive do

{^port, :closed} ->
IO.puts "Closed"

end

You can run it like this:

$ elixir program.exs
Got: HELLO

Closed

The program opens up a port by spawning elixir all_caps.exs and configures it to
return binaries. Then, we send messages to the port, using send/2, just as if it
were an Elixir process! We can also get data from the port, which is “hello\n”
in all caps. Finally we issue a message to close the port and wait for its
termination.

Don’t lose sight of what’s happening here. You’re taking an application,
potentially written in a different language, and you’re interacting with it just
as if it were written in Elixir. With this technique, your ability to organize and
layer your code is limited only by the interface you can build in the external
language.

If you want, you can access a port using the Port API. The functions in the Port
module are synchronous. Let’s rewrite program.exs to use the Port API:

report erratum • discuss

Strategy 2: Communicating via I/O with Ports • 133

http://media.pragprog.com/titles/tvmelixir/code/external_code/port_1/program.exs
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

external_code/port_1/program_command.exs
port = Port.open({:spawn, "elixir all_caps.exs"}, [:binary])

Port.command(port, "hello\n")
receive do

{^port, {:data, data}} ->
IO.puts "Got: #{data}"

end

Port.close(port)
IO.puts "Closed"

Refer to the Port module documentation10 for a description of all messages
sent to and received by ports as well as the Port module API.

Before we wrap up our discussion about ports, there are some details we
should discuss. First, we’ll discuss packets, which are helpful when you’re
working with communication protocols. Next, we’ll talk about shutting down
port applications cleanly, and what to look out for in case you don’t.

Packets
When you open a port, you’ll use the Port.open/2 function, which accepts a wide
range of options. In the all-caps program we used the :binary option to receive
string data from a port, but we could have easily used a list. Here are some
useful options you can use, alone or together:

• :exit_status will send a status message on termination. Sometimes, you don’t
need to use the output of a program. You just need to know if it was
successful.

• :cd starts the port with the given current working directory.

• :args passes a list of arguments to the port. For example, we could have
started the port as Port.open({:spawn, "elixir"}, args: ["all_caps.exs"]).

• :env executes the port program with additional environment variables.

• :nouse_stdio uses file descriptions 3 and 4 for communication instead of the
standard io for communication. Use this option when the software writes
messages you don’t want in the standard output.

The Port module documentation has many other options. In this section, we
will explore one other option, called the :packet option.

The trouble with our all_caps.exs software is that we have no control over the
size of the messages we receive. For example, if we attempt to upcase a long

10. https://hexdocs.pm/elixir/Port.html

Chapter 7. Integrating with External Code • 134

report erratum • discuss

http://media.pragprog.com/titles/tvmelixir/code/external_code/port_1/program_command.exs
https://hexdocs.pm/elixir/Port.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

message, the response may be split over multiple port messages. If your goal
is to keep the port open and send it multiple messages, over and over again,
it becomes hard to know when a response for a given message is complete.

The packets option instructs the port to automatically include a number of
bytes: 1, 2, or 4, at the beginning of every message with the message length.
In fact, we must precede all messages with the length as well. This way we
know exactly how long each message is and the Port module takes care of only
delivering us the response when it is complete. We are also no longer
restricted to finish each command with a new line.

Let’s use a packet of 4 bytes for the length encoding. To do so, we’ll change
all_caps.exs to read only the first four bytes, containing exactly 32 bits. Then,
we’ll decode those bytes into an integer containing the message length. When
we write the message back, we’ll need to compute its length and place it as
the leading 32 bits. Here’s the new, improved all_caps.exs:

external_code/port_2/all_caps.exs
for length_binary <- IO.stream(:stdio, 4) do

<<length::32>> = length_binary
all_caps = length |> IO.read() |> String.upcase()
IO.write <<byte_size(all_caps)::32, all_caps::binary>>

end

Our program.exs also requires only one small adjustment, passing the packet: 4
option when the port is open. We will use this opportunity to include a more
complex example:

external_code/port_2/program.exs
port = Port.open({:spawn, "elixir all_caps.exs"}, [:binary, packet: 4])

Port.command(port, "command without newline")
receive do

{^port, {:data, data}} ->
IO.puts "Got: #{data}"

end

Port.close(port)
IO.puts "Closed"

Now let’s run it:

$ elixir program.exs
Got: COMMAND WITHOUT NEWLINE
Closed

As you can see, the program converted our message all at once, though it
contained a newline.

report erratum • discuss

Strategy 2: Communicating via I/O with Ports • 135

http://media.pragprog.com/titles/tvmelixir/code/external_code/port_2/all_caps.exs
http://media.pragprog.com/titles/tvmelixir/code/external_code/port_2/program.exs
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

All Caps and Unicode

When converting all_caps.exs to use packets, notice we receive the message length,
convert the message to all caps, and then compute a new message length. However,
you may be wondering: won’t the returned message have the same length as the
incoming message?

The answer might surprise you. Since the String module works on Unicode, it will
upcase not only ASCII characters, but also many other characters. One such character
is the Latin ligature ff, represented by the codepoint FB00, which occupies 3 bytes.
When converted to uppercase, ff becomes FF, which is the ASCII letter F twice, repre-
sented by the codepoint 0046, which takes 2 bytes!

So, the answer is “The returned messages will not necessarily have the same length.”

Next, we’ll cover a common ports concern. You will want to take measures to
make sure your processes terminate cleanly.

Termination and Zombie Processes
In this section, we want to cover a common trap. The termination of the Elixir
software that starts a port will not guarantee the termination of the port itself.
Instead, the port’s standard I/O device is closed. That’s what your port should
use to decide what to terminate!

We didn’t have to worry about this edge case in any of the previous examples
because our all_caps.exs file streams the I/O device, and that stream automat-
ically stops when we close the standard input, causing Elixir to terminate.

However, not all software you’ll want to use from a port will read from standard
input, so there is a chance they won’t terminate when the standard input
closes. That can lead to zombie processes when your ports terminate abruptly.

Luckily, there are many solutions available. For example, the Elixir documen-
tation for the Port module11 includes a section on Zombie processes with a
bash script you can use to wrap ports that don’t listen on the standard input.

Our last ports topic will help you build common, shared resources to handle
common tasks.

Pools
While you can start as many ports as you want from Elixir, your memory
may not love you for it. For example, imagine that you are building a web

11. https://hexdocs.pm/elixir/Port.html

Chapter 7. Integrating with External Code • 136

report erratum • discuss

https://hexdocs.pm/elixir/Port.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

application that needs to start a port for each request of an export action. If
that port process takes about 20MB, 100 concurrent requests to that page
means 100 ports, which will take around 2GB. There’s a better way.

If you are expecting concurrent usage of your ports and you want to limit the
amount of ports started, we recommend the same strategy that many
databases and message queues use: pooling. You can use libraries such as
poolboy12 to start a certain amount of processes, each with its own port, and
limit the number of ports to a number you can configure at startup. This
strategy trades raw concurrency for predictable growth and performance.

We’ve covered NIFs and ports. It’s time to cover our lone distributed strategy:
the Erlang distribution protocol.

Strategy 3: The Erlang Distribution Protocol
On our spectrum, the strategies have moved from very tight integration
within the same process to looser coupling between processes. Both of these
techniques integrate systems that reside on the same machine. This last
technique will introduce distribution between machines.

In Chapter 6, Distributed Elixir, on page 103, we introduced the Erlang distri-
bution protocol which Elixir uses to communicate between nodes. There’s no
reason to limit its use to the Erlang VM. As long as a language or a platform
implements the distribution protocol, you can use that language to commu-
nicate with Erlang nodes.

Implementing the Erlang distribution protocol is not easy because it requires
the ability to serialize and deserialize Erlang data structures into binaries,
and the capability to communicate with Erlang’s Port Mapper Daemon (EPMD).
Luckily, OTP itself ships with the implementation of the distribution protocol
for C and Java, called ErlInterface and JInterface, respectively. Those inter-
faces provide another mechanism for Elixir developers to leverage the wide
range of libraries in those ecosystems.

The EchoServer Class
Let’s take a look at an example. We’ll build an EchoServer in Java. The
EchoServer will register itself as a node on EPMD and start a message box which
will receive messages from other nodes. We’ll create our simple Java program,
set our class path so Java can find our Erlang integration, compile our service,
start it, and then access it from the Elixir shell.

12. https://github.com/devinus/poolboy

report erratum • discuss

Strategy 3: The Erlang Distribution Protocol • 137

https://github.com/devinus/poolboy
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Let’s get started. Create a file named EchoServer.java, and key this in:

external_code/distributed_erlang/EchoServer.java
import com.ericsson.otp.erlang.*;

public class EchoServer {
public static void main(String[] args) throws Exception {

OtpNode node = new OtpNode("java");
OtpMbox mbox = node.createMbox("echo");

while (true) {
OtpErlangTuple message = (OtpErlangTuple) mbox.receive();
OtpErlangPid from = (OtpErlangPid) message.elementAt(0);
OtpErlangObject[] reply = new OtpErlangObject[2];
reply[0] = mbox.self();
reply[1] = message.elementAt(1);
mbox.send(from, new OtpErlangTuple(reply));

}
}

}

We give our Java node the name :java and register the inbox as :echo. After our
method creates the message box, we enter a loop waiting for messages to
arrive on the inbox. The new messages will have the format {elixir_pid, contents}.
We can then extract the PID, the contents, and send a message back in the
format of {java_pid, contents}, where java_pid is the PID for the Java message box.

In order to compile our EchoServer class, we need to invoke javac with the OtpEr-
lang.jar in the classpath. To find the JAR file, first find the root of your Erlang
installation:

$ elixir -e "IO.puts :code.root_dir()"
/usr/local/Cellar/erlang/18.1/lib/erlang

You’ll find the JAR file at lib/jinterface-x.y/priv/OtpErlang.jar, starting from the Erlang
root directory we previously found. Note though some Erlang distributions
may not include the .jar files unless explicitly instructed to do so during
installation.

We can compile the EchoServer like this (but all on one line):

javac -classpath "/usr/local/Cellar/erlang/18.1/lib/erlang/lib/
jinterface-1.6/priv/OtpErlang.jar" EchoServer.java

Now, everything is compiled. It’s time to take it for a spin.

Running EchoServer
We’ll use the java command, just as you’d expect. Start the server like this
(keeping it all on one line):

Chapter 7. Integrating with External Code • 138

report erratum • discuss

http://media.pragprog.com/titles/tvmelixir/code/external_code/distributed_erlang/EchoServer.java
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

java -classpath ".:/usr/local/Cellar/erlang/18.1/lib/erlang/lib/
jinterface-1.6/priv/OtpErlang.jar" EchoServer

We can verify the server is running on EPMD, like this:

$ epmd -names
epmd: up and running on port 4369 with data:
name java at port 62257

The Java node will use the same cookie as Erlang nodes, which by default is
stored in ~/.erlang.cookie. That means we can connect to the Java node directly
from IEx, like this:

$ iex --sname elixir
Interactive Elixir (1.6.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(elixir@macbook)1> Node.connect(:"java@macbook")
true
iex(elixir@macbook)2> send {:echo, :"java@macbook"}, {self(), "hello"}
{#PID<0.62.0>, "hello"}
iex(elixir@macbook)3> flush()
{#PID<8579.1.0>, "hello"}
:ok

In this quick snippet, we connected to the Java node, sent it a message, and
got our echo message back. Your local names will likely be different than
java@macbook and elixir@macbook, so you’ll need to adjust the examples here
accordingly.

If you want to know more, check out the documentation on both Jinterface13

and Erl_Interface14 for more information about these Java and C interfaces.

Remember, communication between nodes is not encrypted, though you’ll
need a cookie to join the conversation. Overall, the pitfalls of using the Erlang
distribution protocol for communicating with Java, C, or other languages are
the same ones you’ll encounter when building heterogeneous systems on top
of the Erlang distribution (refer back to Homogeneous vs. Heterogeneous
Systems, on page 118 for more information).

If you need to run multiple Java nodes, you will have to decide how to load
balance them from Elixir, and that’s a demanding problem to solve. You’ll
also probably need to reimplement part of your infrastructure, and that
implementation will probably limit you to languages in the Erlang family.
Considering these severe trade-offs, it is more likely that you will end up
building an API based on web standards or use a messaging system. Still, if

13. http://erlang.org/doc/apps/jinterface/jinterface_users_guide.html
14. http://erlang.org/doc/tutorial/erl_interface.html

report erratum • discuss

Strategy 3: The Erlang Distribution Protocol • 139

http://erlang.org/doc/apps/jinterface/jinterface_users_guide.html
http://erlang.org/doc/tutorial/erl_interface.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

you are in a situation where the Erlang distribution is sufficient, you have
enough to get started.

Wrapping Up
There you have it. In this chapter, we explored three strategies for integrating
external code:

• Strategy 1: Native implemented functions (NIFs) allow developers to load
code into the same memory space address as the Erlang VM. It is the
most performant option but also potentially unstable and insecure. A
crash on a NIF can bring the whole node down and long-running calls
can cause the VM to misbehave, but dirty schedulers can mitigate some
of the disadvantages.

• Strategy 2: Ports run on the same machine as the Erlang VM node, but in
a different process. They use I/O for communication. Ports are generally
the best option to consider for integration, as it does not contain any of
the safety implications behind NIFs nor the overhead behind the Erlang
distribution protocol.

• Strategy 3: The Erlang distribution protocol allows other platforms to
piggyback on Erlang VM’s ability to communicate between nodes to allow
integration with other languages. It has the same downsides of using the
Erlang distribution for heterogeneous systems (as it is effectively a hetero-
geneous system).

In the unlikely scenario none of these strategies suit you, there are many
other options we haven’t explored here. These are beyond the scope of this
book, but we will point them out for further exploration:

• The Interoperability tutorial15 provided by the OTP team covers the solu-
tions reviewed here as well as other topics we haven’t discussed, such as
linked-in drivers.

• Projects such as Porcelain16 and erlexec17 are built on top of ports to
provide a different set of APIs and conveniences.

• The erlport project18 provides integration with languages like Ruby and
Python.

15. http://erlang.org/doc/tutorial/introduction.html
16. https://github.com/alco/porcelain
17. https://github.com/saleyn/erlexec
18. https://github.com/hdima/erlport

Chapter 7. Integrating with External Code • 140

report erratum • discuss

http://erlang.org/doc/tutorial/introduction.html
https://github.com/alco/porcelain
https://github.com/saleyn/erlexec
https://github.com/hdima/erlport
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

• Finally, projects such as Rustler19 provide a safe bridge for creating NIFs
in Rust.

That wraps up Part II, Development, on page 79. We explored building clean
code based on clean abstractions, and how to instrument and measure results
so it stays beautiful and easy to implement. Then we worked through integra-
tion strategies for other nodes and external libraries.

Next, we’ll introduce Part III, Production, on page 143. In it, you’ll learn how to
deploy code, make it fast, and make the measurements you need to keep it
running fast and smooth. We’re hitting the home stretch, so turn the page!

19. https://github.com/hansihe/rustler

report erratum • discuss

Wrapping Up • 141

https://github.com/hansihe/rustler
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Part III

Production

In this final part, you will learn how people are thinking about deployment. It usually
takes a little time to develop good automated systems for deploying when working
with new languages, and Elixir is no exception. Now that the details are coming
together, you’ll find out how teams handle that challenge today. You’ll also learn to
measure your system and assess its performance so you can get the most out of Elixir.
In addition, we’ll cover the tools you’ll need to trace running systems, understand
crash reports, and establish good alerting and logging practices, ensuring your team
is ready and gets notified when problems do occur.

CHAPTER 8

Coordinating Deployments
A common story we’ve heard from Elixir newcomers is that deployment was
particularly challenging. If you’re going to successfully adopt any new lan-
guage, you need to be able to get that beautiful, powerful code onto production
servers, but that’s not enough. You need to do so reliably, without downtime,
and with the ability to gracefully recover should things go wrong.

To illustrate this point, meet Tetiana Dushenkivska. She’s a Ruby developer
who adopted Elixir early on and was the keynote speaker at ElixirConf Europe
2017. She mastered Elixir concepts when we had one-tenth of the available
learning resources that we do today:

Bruce: How was your first encounter with Elixir?

Tetiana: I was happily working with Ruby, when a colleague shared his finding,
Elixir. At first, I didn’t get too excited. I was thinking: “Those languages and
frameworks keep popping up and I don’t have time right now to learn another lan-
guage.” Regardless of that thought, I still took a quick look. At first glance it looked
much like Ruby, but soon enough I started to understand that maybe it looks like
Ruby, but it doesn’t behave like Ruby. The more I read about Elixir, however, the
more I wanted to keep learning about it. The first thing to motivate me to start
building something in Elixir was the ability to do things concurrently. Then I thought:
“Oh, this language looks VERY interesting, I should definitely learn more about it.”

Bruce: How did you move forward from there?

Tetiana: Programming Elixir by Dave Thomas was my introduction to Elixir,
together with the official getting started guide on the website.

The concept of functional languages resonated quickly with me. When I was
studying electronic engineering at university I learned about signals and how they’re
transformed from one shape to another. Functional programming is somewhat
similar. A signal is like data in functional programming which when put through
some filters, or functions in Elixir, results in a new signal. You can’t rebind a signal.

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

You just have an input signal and when it comes out of the black box it’s a new
signal. And every time we pass the same input to the black box, we get the same
output.

Bruce: Have you had hiccups or roadblocks along the way? How did you overcome
them?

Tetiana: I would say deployment was hard. There are lots of ways to “build
releases” and it took a bit of time to research and find a way that would work for
me. Thankfully, the Elixir community is a great place to ask questions. Michał
Muskała pointed me in the right direction, which helped me solve the deploying
applications challenge.

The Elixir community is doing a great job helping people who are stuck, to solve
their problems. I am glad that people who have learned something are happy to
share their knowledge, so that everyone else can learn faster.

Tetiana is not alone. For new languages, the deployment story almost always
takes time to crystallize. We’ve heard story after story from happy early
adopters of many emerging languages identifying deployment as a pain point.
The same is true with Elixir.

Even so, we’re starting to see some overarching strategies and contenders
begin to surface in the deployment space. In this chapter, you’ll learn about
these emerging technologies. Elixir developers are moving beyond the Mix
tool for deployment, and they’re formally defining releases using tools such
as Distillery. Then, rather than focusing on hot-code-swapping, they’re using
a technique called blue-green deployments. We’ll walk you through how these
tools and techniques work. That’s what we’ll focus on, but there are a few
topics we won’t cover.

In this chapter, we won’t discuss any particular stack. We won’t give you
specific recipes for deploying to Heroku or using Docker containers,
automating with Chef, or managing your cluster with Kubernetes. In fact,
we’ve seen all of those options being successfully used to run Elixir systems.
Instead of giving a way-too-thin blow by blow for each option out there or
anointing a winner when the market has yet to decide, we’re going to focus
on the Elixir bits. After all, this book is called Adopting Elixir. Let’s get to it.

Deploying with Mix
The emergence of deployment tools within git and Elixir’s basic tooling makes
it pretty simple to stand up a dead-simple deployment strategy for a single
machine. The easiest way to run an Elixir application in production is by
fetching or pushing the source code to your servers and calling:

Chapter 8. Coordinating Deployments • 146

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

$ MIX_ENV=prod mix run --no-halt

mix run will compile and start the current application and all of its dependen-
cies. --no-halt guarantees Elixir won’t terminate just after the application is
booted. Phoenix is similar. Instead of mix run --no-halt, you will execute mix
phx.server, still setting the Mix environment to “prod”.

MIX_ENV=prod ensures your application is running in the production environment
with the relevant configurations. One of those configurations is the :start_per-
manent option, which you will find in your mix.exs file:

start_permanent: Mix.env == :prod

Each application runs as :temporary or :permanent. If a permanent application
shuts down, it automatically causes the whole VM to shut down too, so
something else can restart it.

Here’s the problem :permanent was designed to solve. Say you were to start a
Phoenix application without setting :start_permanent. Suppose its top-level
supervisor has to restart its children multiple times in a short period due to
a fault. If the supervisor exceeds the amount of restarts allowed in a timeframe,
it terminates, causing your application to also terminate. If your application
has not been set to permanent, the remaining applications will continue
running without your Phoenix app, so you can’t accept any more requests.
In development, that’s likely fine, but in production, you want to shut the VM
down so something else can restart it cleanly.

If you are using a Platform-as-a-Service (PaaS) offering such as Heroku for
your deployment, it’s likely using mix run or a similar task for starting your
applications. The advantage of using Mix in production is that you can rely
on the same tooling that you use for your development. All you need is the
source code. It is an option that works well for very simple deployments.

As soon as you want to leverage some of the more advanced capabilities that
the VM offers you, this approach starts to fall apart. That’s what we will do
now. We will add some nuts and bolts to our Mix deployment and show it
quickly becomes unmanageable.

The –no-compile Flag
Our first modification will add support for a multi-server deployment. We’ll
compile once and push that code to each server.

Mix was designed primarily as a development tool. When you execute the mix
run task, Mix checks to see whether your code requires compilation. Since

report erratum • discuss

Deploying with Mix • 147

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

you’re deploying to multiple servers, you may want to compile your application
only once and not per server. One option is to have a build machine that
exists specifically to build the deployment artifact. When done, the build
machine can push the artifact to your production servers or your production
servers can fetch it directly from the build machine. Let’s see how to construct
this artifact with Mix.

On your build machine, you’d run:

$ MIX_ENV=prod mix compile

And in production:

$ MIX_ENV=prod mix run --no-halt

Mix works by tracking the modification times of source files and of the gener-
ated beam files. There’s a problem with this approach. Moving your files
changes your modification times, so the mix run task notices the changed times
and recompiles, defeating the whole purpose of the build server!

There’s a simple fix. You can pass the --no-compile flag when starting in produc-
tion, like this:

$ MIX_ENV=prod mix run --no-halt --no-compile

It is one small change, but the first of many. There’s more work to do.

The –no-deps-check Flag
There’s another Mix downside. It requires the whole source code tree and its
dependencies in production, so if you have git dependencies, Mix will require
git on the production server. To solve this problem, you’d pass the --no-deps-
check flag to disable dependency checking.

On your build machine, you would run:

$ MIX_ENV=prod mix compile
$ rm -rf deps/*/.git

And in production:

$ MIX_ENV=prod mix run --no-halt --no-compile --no-deps-check

The previous command still requires dependency source code but does allow
removal of any version control metadata from our dependencies. That in turn
reduces the size of your production artifacts. The problem is solved, but wait,
there’s more.

Chapter 8. Coordinating Deployments • 148

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

VM Configuration
On production, you’ll often want to fine-tune both Elixir and the VM. You can
handle some of this tuning in the config/config.exs file. For example, you can
choose the proper Logger level by setting:

config :logger, :level, :warn

That change will show log entries at the :warn level of severity or stronger.
That’s not the only configuration you’ll encounter because some configuration
happens when the VM boots.

For example, many applications may want to tweak +K and +A flags for pro-
duction. +K true enables kernel pooling, which provides an OS-specific I/O
event notification system. +A increases the async thread pool, which is a group
of threads started by the VM responsible for all of the I/O work done by your
code. By default the async pool has 10 threads, but if you are doing a lot of
I/O, you likely want to increase that count to about 8 threads per core. If you
have 8 cores, 64 threads is a better starting point.

Unfortunately the mix run command can’t receive VM configurations because
you need to specify those commands when the VM starts. The solution is to
invoke mix through elixir, like this:

$ MIX_ENV=prod elixir --erl "+K true +A 16" -S \
> mix run --no-halt --no-compile --no-deps-check

By using the elixir command-line script, you’ve eliminated the problem. You
can simply pass VM commands with the --erl flag, using the -S flag to instruct
elixir to run the mix command available in your system. Those aren’t the only
flags to consider, though. If you want to run distributed Erlang, you’ll need
still more flags.

This kind of application startup complexity is common for running all but
the simplest applications. You can try to juggle startup parameters in this
way, but you’d be playing with fire because it’s an error-prone approach.

In case you’re not yet convinced, let’s continue pushing the boundaries and
see how far we can go.

run_erl and heart
Erlang is more than the standard library and virtual machine. As you might
expect after thirty years of history, it ships with many tools for successfully
running Erlang in production. Two of those tools are run_erl and heart.

report erratum • discuss

run_erl and heart • 149

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Managing Shared I/O
run_erl1 helps you manage the standard input and output of a program. The
Unix tool redirects all output to log files. For those so inclined, there’s a sim-
ilar Windows tool named start_erl.2

run_erl expects a pipe name, the log directory, and the command to execute.
Remember the log directory must be created before you invoke run_erl, otherwise
it will silently fail. Let’s give run_erl a try:

$ mkdir ./log
$ run_erl ./loop ./log "elixir -e 'Enum.map Stream.interval(1000), &IO.puts/1'"

This command runs an Elixir script that prints a number to standard output
every second. Assuming you’ve created a log directory beforehand, you’ll see
a new file at log/erlang.log.1 with the convenient sequence of logs. run_erl automat-
ically rotates logs every 100KB, keeping the last four files.

In production, run_erl is usually executed with the -daemon flag. Let’s give it a
try but this time with iex:

$ run_erl -daemon ./iex_sample ./log "iex"

Here we used run_erl to start iex as a daemon. Notice we have no access to iex
though. That’s where to_erl comes in.

The first run_erl argument is a named pipe. The pipe lets us interface with any
running program via the to_erl tool, like this:

$ to_erl ./iex_sample
Attaching to ./iex_sample (^D to exit)

iex(1)> 1 + 2
3

to_erl allows us to interact with any system through standard I/O. If you want
to shut down the VM, you can invoke System.stop(), which gracefully shuts the
Erlang system down, stopping all applications with their respective supervi-
sion trees. You can directly invoke System.stop() in your IEx session or send it
via to_erl:

$ echo "System.stop()" | to_erl ./iex_sample

If your application requires specific shutdown instructions, you can send
them as well:

1. http://erlang.org/doc/man/run_erl.html
2. http://erlang.org/doc/man/start_erl.html

Chapter 8. Coordinating Deployments • 150

report erratum • discuss

http://erlang.org/doc/man/run_erl.html
http://erlang.org/doc/man/start_erl.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

$ echo "MyApp.clean_shutdown()" | to_erl ./my_app

While run_erl provides logging and log rotation, to_erl can be an excellent tool
for debugging live systems. Teams running Elixir in production should defi-
nitely account for those tools in their stack. Let’s continue to build on our
mix run commands, adding run_erl:

$ mkdir ./log
$ run_erl -daemon ./my_app ./log \
> "MIX_ENV=prod iex --erl '+K true +A 16' -S \
> mix run --no-halt --no-compile --no-deps-check"

We are now using iex instead of elixir to boot the app, allowing us to use to_erl
and interact with our application at any moment. Note we are nesting single
and double quotes. Pay attention. With each step, the blob continues to grow.

Monitoring Heartbeat
heart,3 another program that ships with Erlang, provides application heartbeat
monitoring, restarting it when needed. Start it with the -heart VM flag:

$ elixir --erl "-heart" -e "Enum.map Stream.interval(1000), &IO.puts/1" \
heart_beat_kill_pid = 48495
0
1
...

Notice the PID of the VM. Now, on another terminal session or using the
operating system activity or task manager, kill that process using the next
command or your system task manager:

$ kill -9 48495

Back on the Elixir session, you’ll see this:

$ elixir --erl "-heart" -e "Enum.map Stream.interval(1000), &IO.puts/1" \
heart_beat_kill_pid = 48495
0
1
...
Killed: 9
heart: Wed May 17 00:38:21 2017: Erlang has closed.
heart: Wed May 17 00:38:21 2017: Would reboot. Terminating.

Notice how heart has detected the Erlang VM terminated. Rather than starting
a new instance, it said “Would reboot.”

3. http://erlang.org/doc/man/heart.html

report erratum • discuss

run_erl and heart • 151

http://erlang.org/doc/man/heart.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

To fix this problem, we need to set the HEART_COMMAND environment variable.
In this case, since the initial command is also the command we want heart to
execute, set it accordingly:

$ export HEART_COMMAND=\
> "elixir --erl '-heart' -e 'Enum.map Stream.interval(1000), &IO.puts/1'"

Now, run the command by evaluating HEART_COMMAND:

$ eval $HEART_COMMAND

Now when you kill the reported pid, you’ll see heart come to life and start a
new instance. The new VM will either start counting from 0 again or it will
crash:

heart: Wed May 17 01:00:22 2017: Erlang has closed.
heart: Wed May 17 01:00:22 2017: Executed "elixir ..." -> 256. Terminating.
heart_beat_kill_pid = 73275
** (ErlangError) Erlang error: :terminated

(stdlib) :io.put_chars(:standard_io, :unicode, ["1", 10])
(elixir) lib/enum.ex:1230: anonymous fn/3 in Enum.map/2
(elixir) lib/enum.ex:1798: anonymous fn/3 in Enum.map/2
(elixir) lib/stream.ex:1358: Stream.do_unfold/4
(elixir) lib/enum.ex:1797: Enum.map/2
(stdlib) erl_eval.erl:669: :erl_eval.do_apply/6
(elixir) lib/code.ex:176: Code.eval_string/3

You might see such an error when the new instance started by heart does not
have access to the standard input and output, since the original instance
was directly connected to the shell. You can stop heart from restarting the
system indefinitely by finding its pid in the operating system and sending it
an exit signal.

To permanently solve the issue, ideally you’d have your application write your
standard output to disk instead of to the terminal. Since that’s exactly what
run_erl does, let’s tie it all together and use heart to manage your app:

$ mkdir ./log
$ export HEART_COMMAND="run_erl -daemon ./my_app ./log \
> \"MIX_ENV=prod iex --erl '-heart +K true +A 16' -S \
> mix run --no-halt --no-compile --no-deps-check\""
$ eval $HEART_COMMAND

At this point, we were able to add log rotation, a pluggable REPL, and multiple
VM configurations to our Mix deployment but our start script has become
unmanageable. Let’s count the issues:

• Properly handling the escaping of commands with double and single
quotes is fragile.

Chapter 8. Coordinating Deployments • 152

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

• You would like to be able to take advantage of existing scripts and snippets
like this written by others.

• Our Mix deployment still has other intrinsic limitations, such as the need
to ship the source code to production and, as we will see next, the
inability to control how code is loaded and how applications are started.

Let’s stop the madness. For any slightly non-trivial deployment in Elixir,
developers should be using releases, which give fine-grained control over the
VM boot and encapsulates the usage of tools such as heart and run_erl.

Releases
A release is a self-contained deployment artifact that includes all of your
dependencies, including Erlang and Elixir itself. Releases give fine-grained
control over how the virtual machine is started. They also provide reliable
configuration mechanisms for production systems. When you use this tech-
nique, you’ll notice several important benefits:

Code preloading
The VM has two mechanisms for loading code: interactive and embedded.
By default, it runs in the interactive mode which dynamically loads
modules when they are used for the first time. The first time your appli-
cation calls List.first/1, the VM will find the List module and load it. There’s
a downside. When you start a new server in production, it may need to
load many other modules, causing the first requests to have an unusual
spike in response time. Releases run in embedded mode, which loads all
available modules upfront, guaranteeing your system is ready to handle
requests after booting.

Application configuration
When talking about Mix deployment, we discussed the :start_permanent flag
and how it sets all applications to :permanent mode, but sometimes you
may not want that setting. Maybe you don’t want to restart a given com-
ponent should it fail. Mix does not provide fine-grained control over your
dependencies but releases do. You can control how to start each applica-
tion or even set up distributed ones.4

Multiple releases
Sometimes you must configure the same source code to run in production
with different settings than you would use in development. For example,

4. http://erlang.org/doc/design_principles/distributed_applications.html

report erratum • discuss

Releases • 153

http://erlang.org/doc/design_principles/distributed_applications.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

imagine you have both small and large server instances and you’ve mea-
sured optimal configurations for both. You can easily build different
releases from the same source code, using different configuration and
targeting different capabilities.

Self-contained
A release does not require the source code to be included in your produc-
tion artifacts. In fact, it does not even require Erlang or Elixir in your
servers, as it is capable of including the whole Erlang runtime itself.

Management scripts
Most release tools include a series of scripts that make it straightforward
to manage your releases. Those scripts take care of setting up the proper
run_erl and heart programs, just as we discussed in the previous section.

A release is a .tar.gz file that must be unpacked on your production servers
and then directly executed. Your continuous integration pipeline can build a
release, or you may use dedicated build servers. Then your production servers
will either download releases from a safe location or have an orchestration
tool directly push the release to your machines. We won’t discuss the details
on how to deliver the .tar.gz package. Instead, we’ll focus on how to build it.

Using Distillery
We’re going to use a release tool called Distillery.5 From the readme file:

“Distillery takes your Mix project and produces an Erlang/OTP release, a
distilled form of your raw application’s components; a single package which
can be deployed anywhere, independently of an Erlang/Elixir installation. No
dependencies, no hassle.”

Let’s walk through building a release for a new project using Distillery. First
start with mix to set up a new project:

$ mix new sample

Now open up mix.exs and add :distillery under your dependencies. At the time
of writing, v1.5.2 is the latest version, so let’s require at least 1.5:

def deps do
[

{:distillery, "~> 1.5"}
]

end

5. https://github.com/bitwalker/distillery

Chapter 8. Coordinating Deployments • 154

report erratum • discuss

https://github.com/bitwalker/distillery
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Now let’s fetch dependencies and get started with our release process:

$ mix deps.get
$ mix release.init

Open up the generated rel/config.exs and look at its contents.

Similar to Mix, releases have different environments. For :dev, Distillery sets
dev_mode to true, which supports code reloading for Phoenix and Nerves
applications, and sets include_erts to false. ERTS stands for the Erlang Runtime
System, which includes the virtual machine and low-level features, such as
NIF support. For :prod, we always include the runtime system but skip the
source code. For both environments, rel/config.exs also generates a cookie value.
Elixir uses the cookie value to authenticate nodes when building distributed
Erlang/Elixir clusters.

While Distillery supports cross-compilation by tweaking the :include_erts option,
it becomes a very complex topic if your application or any of your dependencies
include Erlang NIFs. As you’ll recall from Strategy 1: Native Implemented
Functions (NIFs), on page 125, NIFs stands for native implemented functions,
and they require specific native tools. In such cases, you should build
releases in an environment that matches your production target.

Unlike Mix, Distillery supports multiple releases. By default, the rel/config.exs
lists a single release, with the same name as the current application:

release :sample do
set version: current_version(:sample)
set applications: [

:runtime_tools
]

end

This release uses the version declared in your mix.exs and lists the :runtime_tools
your application needs as extra applications, in addition to the ones already
declared in your mix.exs. :runtime_tools contains conveniences to debug and
observe production systems. We will explore it in Chapter 10, Making Your
App Production Ready, on page 193.

You can declare as many releases as you want and give different configurations
to each of them. You can also list applications with different requirements.
Suppose your project depends on an application called :not_really_important_app.
It’s not a very important app. If it crashes, you want the VM to continue
running. You can specify so in the applications configuration:

report erratum • discuss

Releases • 155

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

release :sample do
set version: current_version(:sample)
set applications: [

runtime_tools: :permanent,
not_really_important_app: :temporary

]
end

Check out the Distillery documentation6 for more configuration information.

Once you’ve specified your releases, you can finally build them by running
mix release. Let’s do that for production:

$ MIX_ENV=prod mix release
==> Assembling release..
==> Building release sample:0.1.0 using environment prod
==> Including ERTS 9.2 from /usr/local/Cellar/erlang/18.1/lib/erlang/erts-9.2
==> Packaging release..
==> Release successfully built!

You can run it in one of the following ways:
Interactive: _build/prod/rel/sample/bin/sample console
Foreground: _build/prod/rel/sample/bin/sample foreground
Daemon: _build/prod/rel/sample/bin/sample start

The whole release is in the _build/prod/rel/sample directory. From there you can
either start it by executing a command such as bin/sample start or fetch the .tar.gz
file from _build/prod/rel/sample/releases/0.1.0.

Let’s do some peeking under the hood to see what we can learn. Under the
_build/prod/rel/sample you will find four directories. bin contains scripts for running
your release. In practice, those scripts end up executing the scripts for the
latest release you’ll find in the releases directory. The erts directory contains
the Erlang Runtime System while lib contains all applications that are part
of the release, all of them properly versioned. If you update your dependencies
and build a new release, both old and new versions of your dependencies will
be listed there. Finally, the releases directory contains metadata about your
releases and everything required to start your system.

Inside _build/prod/rel/sample/releases/0.1.0, we will find many interesting files. sample.rel
is the one that effectively describes the release:

{release,{"sample","0.1.0"},
{erts,"9.2"},
[{kernel,"5.4.1"},
{stdlib,"3.4.3"},
{distillery,"1.5.2"},
{logger,"1.6.0"},

6. https://hexdocs.pm/distillery/configuration.html

Chapter 8. Coordinating Deployments • 156

report erratum • discuss

https://hexdocs.pm/distillery/configuration.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

{compiler,"7.1.4"},
{elixir,"1.6.0"},
{sample,"0.1.0"},
{iex,"1.6.0"},
{sasl,"3.1.1"},
{runtime_tools,"1.12.3"}]}.

It declares a release, with its name, version, the ERTS version, and all appli-
cations that are part of the release. Many of the versions shown here might
differ based on the versions of Elixir and Erlang you are using. From the
sample.rel file, we build the sample.script file, containing every single instruction
the runtime will perform when it boots. Open it up and skim it. Between
instructions, you will see the script preloads all modules and applications.
From sample.script, a binary sample.boot file is written.

Another important file in your releases is the _build/prod/rel/sample/releases/0.1.0/
vm.args file, which includes the arguments that are given to the VM when
starting the release:

Name of the node
-name sample@127.0.0.1

Heartbeat management; auto-restarts VM if it dies or becomes unresponsive
##-heart

Enable kernel poll and a few async threads
##+K true
##+A 5

Increase number of concurrent ports/sockets
##-env ERL_MAX_PORTS 4096

Tweak GC to run more often
##-env ERL_FULLSWEEP_AFTER 10

When we first deployed with mix, we used the following command:

$ MIX_ENV=prod elixir --erl "+K true +A 16" -S \
> mix run --no-halt --no-compile --no-deps-check

Now you can move the --erl option configuration to the vm.args file, with relevant
notes and code comments. You’ll likely want to copy the vm.args file to rel/vm.args
in the root of your project and specify the release to use a custom vm.args instead:

release :sample do
set version: current_version(:sample)
set vm_args: "rel/vm.args"
set applications: [

:runtime_tools
]

end

report erratum • discuss

Releases • 157

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

You can see some lovely simplification taking shape here. Now, if you want
to enable -heart, simply list it in vm.args, as Distillery scripts take care of setting
the HEART_COMMAND environment variable. Similarly, Distillery sets up run_erl
and to_erl by default.

Overall, releases provide a more structured mechanism to deploy and configure
production systems. After a release is built, keep in mind mix is no longer
available. For example, your Ecto and Phoenix applications will need different
mechanisms for running migrations and starting servers. Luckily, Distillery’s
documentation7 covers those features and more.

Application Configuration
Before we discuss upgrading production systems, we should cover application
configuration. Most Elixir developers use config/config.exs to configure their
applications and dependencies, but you should remember that Mix loads
config/config.exs when building the release. That means environment variables
or configuration files you read in config.exs will be available while you build
your release, but not in production.

To work around this limitation, many projects like Ecto and Phoenix started
to support a special value called {:system, "env"} to allow some dynamic config-
uration. The problem with this solution is that it works only for certain keys
and only for certain applications. Fortunately, Ecto v2.1 and Phoenix v1.3
are moving to a more standardized approach. They’ll both move runtime
configuration to inside the init callback. Take the following example.

In earlier Ecto versions, if you wanted to dynamically configure the database
URL Ecto connects to, you’d do so in your config/config.exs, like this:

config :my_app, MyApp.Repo,
url: {:system, "DATABASE_URL"}

While this code effectively moves the configuration to runtime, it is a
workaround that works only for the :url option. If you attempt to use the
{:system, "env"} format anywhere else, it will likely fail. Furthermore, if you need
to dynamically read the database URL from somewhere else rather than the
system environment, you’re out of luck.

Ecto v2.1 pushes runtime configuration to runtime. Most processes and ser-
vices should be configured during an init callback. Under Ecto 2.1, the previous
code should be moved to the repository:

7. https://hexdocs.pm/distillery/

Chapter 8. Coordinating Deployments • 158

report erratum • discuss

https://hexdocs.pm/distillery/
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

defmodule MyApp.Repo do
use Ecto.Repo, otp_app: :my_app

def init(_, config) do
{:ok, Keyword.put(config, :url, System.get_env("DATABASE_URL"))}

end
end

Now if you need to read the database URL from an environment variable, file
system, or even an internal service, you just need to change the code
accordingly.

At the time of this writing, we believe the Elixir community relies too much
on the application environment. Don’t get us wrong. This environment is
excellent for end-user applications, such as your Phoenix and Nerves projects,
but it is a flawed approach for most libraries and frameworks because it is
global. For example, imagine using a JSON encoding and decoding library in
a project. Many of the dependencies in your project may depend on that same
library. If you tried to configure this JSON dependency through the application
environment, it would become impossible for each dependency to use that
library in a different way, with different configuration requirements.

Instead, most configuration should happen at runtime, by passing options
when invoking functions or when starting processes. For example, if you are
decoding some JSON payload:

JSONDecoding.decode(some_data, option: "foo", another_option: "bar")

If instead you are starting a process that connects to the database:

SomeDatabase.start_link(username: "...", password: "...")

Doing so lets your users configure your application as they wish, be it using
a direct value, relying on config/config.exs, reading from System.get_env/1 or from
the file system.

Upgrading Code
Now that you’ve deployed your code to production, eventually you’ll need to
update your production systems, whether you’re using Mix or releases. You
may even have heard the Erlang VM is capable of performing hot code upgrades.
This feature provides the ability to upgrade code live in production without
bringing the system down. To do so, you need to build your releases first.

In practice, hot code upgrades are tricky, as they require developers to care-
fully maintain code and upgrade the state of all changed processes in all
running applications. For example, imagine on v1.0 you have a process with

report erratum • discuss

Upgrading Code • 159

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

a map with keys :first_name and :last_name as state. In v1.1, you decided to merge
those keys under a new one called :name. You need to remember to implement
the code_change callback and appropriately upgrade the server state. And since
the VM cannot upgrade all processes at once, as that would imply the system
needs to stop running for a while, you need to carefully identify each group
of processes you need to upgrade together, or make sure processes can handle
messages from both v1.0 and v1.1, as there will be a period where both ver-
sions run at the same time.

As you’ll see, the versioning problem is not specific to your Elixir code. As
soon as you deploy to more than one server, there will always be a moment
when you are upgrading your production systems where the old and new
version will coexist. Many teams are familiar with those trade-offs when
talking about data and storage. Hot code upgrades have the unfortunate side
effect of introducing this problem to your in-memory data too.

For those reasons, we rarely see hot code upgrades used in production. It is
easy to understand the benefits of hot code upgrades for old telecommunica-
tion systems, where someone is always on the phone, often for very long time
periods, and dropping calls is not acceptable. However, most systems running
on the web were designed to cope with reconnections. Once you deploy a new
version, your server can gracefully move clients to the new one, especially in
web applications. In such cases, you can use the load balancer or a reverse
proxy to route traffic from old nodes to new nodes transparently.

In this book, we won’t cover hot code upgrades and rather focus on blue-green
deployments. Hot code upgrades require heavy time investment during
development and testing that bring little to no benefit when compared to
other solutions. If you are in the rare position where hot code upgrades are
a necessity, then we recommend reading more on the Distillery documentation
as well as the .relup8 and .appup9 manuals.

This, however, does not mean hot code upgrades are useless. Both Phoenix
and Nerves frameworks use the module versioning features that power hot
code upgrades to perform code reloading in development. Other companies
use those features alongside the Erlang distribution to build their own upgrade
mechanisms.10 For most of us, though, blue-green deployments bring all of
the benefits we need.

8. http://erlang.org/doc/man/relup.html
9. http://erlang.org/doc/man/appup.html
10. http://confreaks.tv/videos/elixirconf2014-otp-in-production-the-nitty-gritty-details-of-game-servers

Chapter 8. Coordinating Deployments • 160

report erratum • discuss

http://erlang.org/doc/man/relup.html
http://erlang.org/doc/man/appup.html
http://confreaks.tv/videos/elixirconf2014-otp-in-production-the-nitty-gritty-details-of-game-servers
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Blue-Green Deployments
Two decades ago, getting a new server meant literally acquiring or renting
new hardware. As a result we would often deploy new versions of our systems
to the same machine, mutating our infrastructure as we updated our system.

Today, getting new production machines is only a few clicks away. As the
internet grew, automating deployment became a necessity. Downtime or
maintenance breaks are no longer acceptable. A spike in requests per second
means you need to make new servers available immediately. The virtualization
and containerization of software means that setting up new servers can be
efficient and automatized. Nowadays autoscaling has become a common
offering between cloud services, allowing cloud infrastructures to automati-
cally spawn new servers as deemed necessary.

In the last five years, terms like “immutable server” and “immutable infras-
tructure” also started to become commonplace. Once a system is created, it
is never modified. If there is a new version, you build new containers or new
servers. This goes hand in hand with automation, as the operation team is
no longer allowed to connect to the server for last-minute tweaks.

You will notice some of those ideas go directly against hot code upgrades.
That’s fine. Remember, most of us won’t benefit from hot code upgrades
anyway. But it begs the question: if you can’t upgrade your servers live, how
do you swap from the old version to the new version with no downtime when
upgrading systems?

The idea behind blue-green deployment is that you have two production
environments running simultaneously when deploying new versions.11 Imagine
that your system is currently live. You have a load balancer and a group of
machines running your application. Let’s call this the blue machines group.
To deploy a new version, the software is tested and verified on a new group
of machines, that’s the green one. After the green group is ready, the load
balancer starts to send all incoming requests to the green nodes.

For a while, both green and blue nodes will process requests, especially with
long-running requests such as file uploads, downloads, and websocket con-
nections. Over time, blue node requests complete and close, so the nodes can
come down gracefully.

Blue-green deployments also provide the benefit of fast rollbacks. If errors
start to show up as soon as you flip the switch to green, you can rollback to

11. https://martinfowler.com/bliki/BlueGreenDeployment.html

report erratum • discuss

Upgrading Code • 161

https://martinfowler.com/bliki/BlueGreenDeployment.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

blue and carefully debug what went wrong. Another benefit is that your
deployment recipes can give your old machines plenty of time to correctly
shut down as another group of machines handles new requests. As we will
see, this plays well with supervision trees and the runtime ability to perform
graceful shutdowns even in the face of asynchronous work.

Since two versions of your application may be running at the same time, this
style of deployment requires special care when it comes to communication
and data. For example, when writing distributed Elixir applications, blue and
green nodes may exchange data. That may be desired but it may also lead to
errors. Luckily, this can be solved by generating a new authentication cookie
on every deployment, keeping each deployment group fairly isolated.

Unfortunately, matters are slightly more complex when a database is involved.
Given both blue and green nodes may be running at the same time, any
destructive operation in the database must be carefully planned and rolled
out through multiple deployments.

Let’s iron out some of those details before moving forward.

Graceful Shutdown
In blue-green deployments, whenever a new version comes up, the load bal-
ancer will stop routing traffic to the old version. Only after a couple of minutes
or so have passed is it safe to shut those VMs down. While this should be
enough time to process all incoming work, sometimes that won’t be the case.
Let’s consider a few examples.

Imagine that some of the incoming requests start new tasks that are respon-
sible for sending emails asynchronously. You want to guarantee that the VM
will not shut down before it finishes its tasks.

Supervision trees provide that guarantee. When you invoke System.stop(), the
Erlang runtime will stop all running applications in the opposite order they
were started within their respective supervision trees, respecting the configured
shutdown values for each child. At the beginning of this chapter, we showed
you how to pipe System.stop() into the runtime with to_erl. If you are using
releases, that’s also what bin/sample stop does.

When you build a GenServer, Agent, or other supervised process, you can
specify how long the supervisor should wait before shutting down a child:

defmodule MyApp.EmailSender do
use GenServer, shutdown: 5000

...

Chapter 8. Coordinating Deployments • 162

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

You can also override the shutdown value per children when starting the
supervisor:

children = [
Supervisor.child_spec(MyApp.EmailSender, shutdown: 5_000)

]

Supervisor.start_link children, strategy: :one_for_one

When shutting down the system, the supervisor will send an initial :shutdown
exit signal to all children and then wait 5 seconds (the default) for the
EmailSender process. Once a child process receives an exit signal, the process
terminates immediately unless it is trapping exits. This means the email
sender processes must be trapping exits if we do not want them to terminate
on :shutdown, as explained in Use GenServer as a Coordinator, on page 94. After
the initial :shutdown signal, the supervisor will kill any remaining child processes
that don’t finish in the specified interval (5 seconds, in our example).

The shutdown logic is often important—it guarantees that your application
has processed all tasks. You should carefully test all such shutdown logic in
your application’s test suite.

Other times, your graceful shutdown strategy requires you to explicitly disable
some parts of your application. A load balancer can ensure it will no longer
send requests to your node but there are other components depending on
your application services.

For example, imagine that your application also includes a job-processing
component that retrieves messages from RabbitMQ or a database to process
them. A new version of the system may generate new kinds of events that the
old version does not know how to process. In those cases, it is best to stop
pulling messages from RabbitMQ as soon as the new group of nodes is up.
If you are using Distillery, you can accomplish this task with custom com-
mands.12 In this case, a custom command may simply call the appropriate
process and instruct it to no longer pull messages in. Keep in mind that in
case of rollbacks you will need to do the exact opposite and reenable the job-
processing component once again.

Graceful shutdown deals with compatibility of requests and messages.
Sometimes, your application will need to deal with other kinds of compatibil-
ity, namely, persistent data.

12. https://hexdocs.pm/distillery/custom-commands.html

report erratum • discuss

Upgrading Code • 163

https://hexdocs.pm/distillery/custom-commands.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Data Migration
Another concern during blue-green deployments is the role of databases and
data compatibility. Imagine you want to rename a table column in the
database; for external reasons username has suddenly become name. Your first
approach may be to rename all occurrences of username to name in the codebase
and then write a SQL script, or a database migration if using Ecto, that
renames the username column to name. Upon deployment, either the blue or
green system will break. Let’s see why.

When deploying, you first want to migrate the database before switching from
blue to green. That’s because green may use new features that require new
tables or columns in the database. However, if you rename a column, blue
will attempt to query the database using the old username column, which no
longer exists, even before green goes live. Once green goes live, everything will
work as expected, but not before getting multiple error reports from requests
being processed by blue.

That’s why destructive changes to the database must always be carefully
planned. Let’s break that harmful migration down into several gentler
migrations.

In this case, instead of renaming username to name, you’ll first want to add a
new name column and prepare the code to read from the name or username
columns. You can then deploy this version without any further changes to
the database. All writes should still target username.

Once the version that reads from both username and name is up and running
successfully, you can change the code to write to the name column and prepare
a script that copies data from the old username column to name if name is blank.
After you safely convert all of the data, you can deploy a new version that
effectively removes username access from the codebase and the username column
from the database.

You can see why hot code upgrades are so complicated. Imagine the burden
of managing these kinds of details at both the database level and also for
every process in your application.

You’ve seen how graceful shutdown and data migration apply to blue-green
deployments. It is worth mentioning those issues are not specific to blue-
green deployments at all. Destructive changes to the database are dangerous
to any deployment pipeline that supports rollbacks. Graceful shutdowns are
necessary regardless of your deployment strategy.

Chapter 8. Coordinating Deployments • 164

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Blue-green deployments simply bring those issues to light precisely because
they allow us to update systems without downtime while making rollbacks
straightforward. If you are building some kind of Platform-as-a-Service
application, odds are that you are already using blue-green deployments.
With Elixir, you can rely on supervision trees to give you insights on how your
application initializes and shuts down, equipping your team with tools and
practices that help you tackle such problems.

So far, we’ve shown you how to build a simple deployment strategy with Mix;
we tacked on to that solution until it broke, and we remedied that problem
with Distillery releases. Before we close out this chapter, we should talk a bit
about distributed Erlang, from an operations perspective.

Distributed Erlang
In Chapter 6, Distributed Elixir, on page 103, we discussed distribution from
a development and architectural perspective. This time, we will explore it
under the operations view, directly tied to the Erlang runtime.

Let’s start with a quick summary.

Distributed Erlang works by establishing TCP connections between nodes.
Nodes can only successfully establish connections if they share the same
cookie. When distributed Erlang starts, it can automatically create a cookie,
but we strongly advise teams to generate their own cookies. Once connected,
nodes form a fully meshed network, where each node can communicate with
all others. By default, the runtime does not encrypt the connection but can
be configured to do so.

Nodes keep an open connection between them while both are up and running.
Both nodes send a configurable heartbeat (also called ticktime) over the connec-
tion. If either node fails to receive a heartbeat in a time interval, the connection
is dropped and the nodes disconnected. Since nodes send heartbeats over
the same connection as data, you should refrain from sending large amounts
of data between them at once, as that would delay the heartbeat message.

Each node has a name and host address. Both :"my_app@node1" and :"my_app
@192.168.1.1" are valid node names. The former requires host names to be
properly configured in your clusters.

To aid the connection between nodes, Erlang ships with a tool called EPMD,
Erlang Port Mapper Daemon.13 Once a node goes up, it registers its name and

13. http://erlang.org/doc/man/epmd.html

report erratum • discuss

Distributed Erlang • 165

http://erlang.org/doc/man/epmd.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

port to the EPMD running locally. When a node wants to connect to instance
:"my_app@192.168.1.1", it first reaches the EPMD instance running on 192.168.1.1 to
fetch all available names and ports. If my_app is one of the available names, it
then attempts to connect to the Erlang runtime on the registered port.

Communication with EPMD does not use the cookie for authorization and is
not encrypted. This means if the port EPMD runs on is publicly available, an
external entity will be able to query EPMD for the list of names and ports.
Fortunately, the external entity will only be able to connect to a node if they
know the cookie.

The use of EPMD means that distributed Erlang needs two ports for every
machine. EPMD by default runs on port 4369. The other port, which is used
for connecting Erlang nodes, is randomly assigned. Luckily the range of
assigned ports can be configured when starting Elixir under the --erl flag:

$ elixir --erl "-kernel inet_dist_listen_min 9100 \
> -kernel inet_dist_listen_max 9200"

If you need to use a fixed port, you can set both configurations to the same
value. An advantage of using a fixed port is that you no longer need to run
EPMD, as the whole goal of EPMD is mapping names to ports, reducing the
number of required ports to 1. You can combine this approach with orches-
tration tools to provide straightforward management of Erlang clusters.

Let’s look at how to do so. First, we’ll provide general security guidelines.
Then, we’ll show a distributed Erlang example without EPMD and we’ll discuss
dynamically setting up clusters.

Security Guidelines
Elixir provides the framework for building safe, secure, and reliable applica-
tions, but you’ll still need to do your part. Here are the general guidelines for
running distributed Erlang:

• Never expose the Erlang distribution ports and EPMD to the public
network.

• Never rely on automatic cookies. Generate your own and make sure it is
sufficiently large. Distillery automatically takes care of this step.

• If you are running distributed Erlang over a known port, consider disabling
epmd (as you’ll see next). Given traffic to and from EPMD cannot be
encrypted, disabling it may also appease operation teams that do not allow
unencrypted services to run, even when the service is not publicly exposed.

Chapter 8. Coordinating Deployments • 166

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

• Remember the connection between nodes is not encrypted. If someone
can eavesdrop the communication in your cluster or if encryption is
required, use TLS.14 More complete resources are also available.15

With that out of the way, let’s configure Erlang clusters without EPMD.

Removing EPMD
If your nodes run on a known port, there is no need to run epmd alongside
the Erlang VM. We have seen this being handy on two different situations.

In the first situation, all communication had to be encrypted, no questions
asked. In the second case, the operations team had to explicitly authorize
each port. Sometimes those rules are in place by corporate mandate. You
could try to break the rules, but new technology adopters must choose battles
wisely. Other times, the rules are there because of external needs, such as
in financial institutions or health organizations dealing with patient data.

There are multiple ways to ensure Erlang nodes run on a known port. One
option is to choose a fixed port and apply it to all nodes. For this example, we’ll
choose a slightly more complex mechanism. We’ll encode the port in the node
name. For example, a node named “example” should now be named “example-
9100”, where 9100 is the port it is running on. Once you’ve chosen this
mechanism, you can implement a custom EPMD client module that won’t
invoke EPMD at all. Instead, you can parse the port out of the node name.

Let’s start with the EPMD client module. It needs to implement a group of
functions, like this:

coordinating_deployments/name_and_port.ex
defmodule NameAndPort do

The current distribution protocol version.
@protocol_version 5

Our new EPMD client does not have an underlying process, so we return
:ignore:

coordinating_deployments/name_and_port.ex
def start_link do

:ignore
end

Without EPMD, there is nowhere to register the name and port. We return a
“creation” number between 1 and 3 as required by Erlang:

14. http://erlang.org/doc/apps/ssl/ssl_distribution.html
15. https://www.erlang-solutions.com/blog/erlang-distribution-over-tls.html

report erratum • discuss

Distributed Erlang • 167

http://media.pragprog.com/titles/tvmelixir/code/coordinating_deployments/name_and_port.ex
http://media.pragprog.com/titles/tvmelixir/code/coordinating_deployments/name_and_port.ex
http://erlang.org/doc/apps/ssl/ssl_distribution.html
https://www.erlang-solutions.com/blog/erlang-distribution-over-tls.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

coordinating_deployments/name_and_port.ex
def register_node(_name, _port, _version) do

{:ok, :rand.uniform(3)}
end

This implementation will retrieve the port from the node name, and there is
no need to contact EPMD:

coordinating_deployments/name_and_port.ex
def port_please(name, _ip) do

shortname = name |> to_string() |> String.split("@") |> hd()

with [_prefix, port_string] <- String.split(shortname, "-"),
{port, ""} <- Integer.parse(port_string) do

{:port, port, @protocol_version}
else

_ -> :noport
end

end

There are also no names to fetch without EPMD:

coordinating_deployments/name_and_port.ex
def names(_hostnames) do

{:error, :no_epmd}
end

end

Write this code to a file and then compile it:

$ elixirc name_and_port.ex

This command will generate a .beam file at the current directory.

With the new EPMD client in hand, we can start iex using a custom name,
port, and our custom client. Note you will need at least Erlang 19.1, as the
ability to configure the EPMD client was added in that version:

$ iex --sname "example-9100" --erl "-start_epmd false \
> -epmd_module Elixir.NameAndPort -kernel inet_dist_listen_min 9100 \
> -kernel inet_dist_listen_max 9100"
Interactive Elixir (1.5.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(example-9101@macbook)1>

On another terminal, do the same, except we need to use a different name
and a matching port:

$ iex --sname "example-9101" --erl "-start_epmd false \
> -epmd_module Elixir.NameAndPort -kernel inet_dist_listen_min 9101 \
> -kernel inet_dist_listen_max 9101"
Interactive Elixir (1.5.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(example-9101@macbook)1>

Chapter 8. Coordinating Deployments • 168

report erratum • discuss

http://media.pragprog.com/titles/tvmelixir/code/coordinating_deployments/name_and_port.ex
http://media.pragprog.com/titles/tvmelixir/code/coordinating_deployments/name_and_port.ex
http://media.pragprog.com/titles/tvmelixir/code/coordinating_deployments/name_and_port.ex
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

In the last session, we can connect to the first one by running Node.connect(:"exam-
ple-9100@macbook") and everything should work as expected. Remember your
node name won’t be precisely :"example-9100@macbook", so change the Node.connect
call accordingly.

Although in this example we have defined a file and compiled it by hand, if
you are using releases, Mix will take care of compiling the file for you. All you
need to do is to move the relevant flags given to --erl to the vm.args file.

Getting rid of EPMD is a fairly straightforward process. If you have fixed ports
across all nodes, it can be even simpler. You just need to change the port_please/2
implementation to always return {:port, 9876, @protocol_version}, where 9876
should be replaced by your port of choice. In such cases, the node names are
no longer relevant and you can use any name of your choice as long as each
one is unique.

Setting Up Clusters
In the previous section, we have explicitly called Node.connect/1 to connect two
nodes. Setting up a cluster is simply a matter of calling Node.connect/1 whenever
a new node joins the cluster. In the rare cases the list of nodes is static, all
you need to do on boot is:

Enum.map(list_of_known_nodes, &Node.connect/1)

In practice, new nodes may join the cluster at any moment and you need a
mechanism to propagate this information throughout the cluster. If you are
using a cloud platform like AWS or an orchestration tool such as Kubernetes,
it is very likely they expose an API where you can retrieve the IP of all nodes.
To dynamically set up a cluster, all you need is to periodically request a list
of all nodes to such tools, and then call Node.connect/1 whenever there is a new
entry. Those tools and platforms are not required for setting up clusters, but
when already in place, they play well with the Erlang runtime by removing
the hurdles of cluster membership.

While this mechanism is relatively straightforward to set up, there are existing
packages in the community, such as peerage16 and libcluster,17 that provide
integration with external services as well as their own discovery alternatives
via multicast. If you’d rather roll your own, we recommend exploring the
source code of those tools for guidance.

16. https://github.com/mrluc/peerage
17. https://github.com/bitwalker/libcluster

report erratum • discuss

Distributed Erlang • 169

https://github.com/mrluc/peerage
https://github.com/bitwalker/libcluster
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The solutions described in this and the last section are orthogonal. For
instance, you may use Kubernetes, an alternative deployment system, without
EPMD by relying on the fixed port technique outlined in the previous section.

Wrapping Up
In this chapter, we addressed deployment, the first step toward moving our
development application into production. It was a long process with sever-
al steps.

First, we looked at an overly simplified approach to deployment with nothing
but a few Mix tasks. We pushed that solution further to include a build
server, and worked in some configuration. Then, we added run_erl to direct
standard out to a file with rotating logs. Finally, we looked at heart, which
provides heartbeat support. We soon learned that Mix couldn’t take us as far
as we wanted to go.

Next, we formalized the production deployment process a bit. We introduced
the concept of a release, a set of artifacts that run on a production server.
We implemented a Distillery deployment and used it to build a release, and
then discussed how that improved structure allows a simplified layering of
typical deployment scripts you’ll find in this Elixir ecosystem. We then dis-
cussed the different strategies for configuration, and why major Elixir
frameworks such as Ecto and Phoenix use init callbacks in the most recent
versions.

Finally, we reviewed distributed Erlang, this time from an operations perspec-
tive. We introduced key security guidelines and the options for running with
and without EPMD, the Erlang port mapper.

In the next chapter, we’re going to stay on the production side, and shift to
application performance. You’re almost done. Turn the page!

Chapter 8. Coordinating Deployments • 170

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

CHAPTER 9

Metrics and Performance Expectations
We’re coming to the end of the road in our adoption journey, but there’s still
some work to do. After you have decided how to deploy your application, it’s
time to shift your focus to keeping things running quickly and uniformly.
That task will take you into gathering metrics for performance analysis. Before
we dive into tools, let’s talk a bit about why we need to do so.

Maybe you chose Elixir precisely because you were facing performance issues
or battling scalability challenges. There are many reasons those things are
important.

First, consider the impact of uniformly strong performance on your customers.
If you are building a web application, performance directly impacts the user
experience and that relates to revenue.

Large players such as Google and Amazon report that latencies as low as
100ms are enough to impact the user engagement. A/B tests and studies
organized by multiple companies show that load times have a direct impact
on conversion rates. On the other hand, we know that the time spent on the
server is only part of the journey in delivering web content to your users. We
should also expect that Elixir developers building embedded systems have a
whole different set of performance expectations.

Second, your development productivity also contributes directly to your bottom
line. The performance of your system also has a direct impact on the developer
experience. The fact that Elixir can compile your code in parallel and Hex can
download packages concurrently improves each programmer’s experience
immensely. Imagine for a second how your productivity would be affected if
the Elixir compiler and your test suite was two or four times slower than it
is today. Feedback cycles matter.

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

In this chapter, we’re going to examine how to assess your application’s per-
formance. To do so, you need tools that help you collect and visualize the
right low-level details so you can piece together what’s happening. That task
has three parts: code instrumentation, data collection, and data visualization.
Many commercial solutions roll up the collection and visualization system
into a package called a metrics system.

When the Elixir community was young, those metrics systems were hard to
find, but as we grew, we accumulated more options for instrumenting and
monitoring. For example, Bleacher Report uses exometer1 to collect the data
and uses stats to push the data to DataDog.2 The Football Addicts engineers
prefer Telegraf and InfluxDB.3 Still others use Prometheus and Grafana4 or
a SaaS solution, such as AppSignal,5 PryIn,6 WombatOAM,7 or Scout.8

The truth is that there are many different tools, each with their own strengths
and weaknesses. You could write a book on any one of these solutions so we
can’t cover them all but we can focus on code instrumentation. We will tell
you how to provide the metrics that your system can use. Along the way, we’ll
discuss the different kinds of metrics you can get out of your production
system and the various APIs you can use to gather that data.

That process is in some ways passive, providing insight when things go wrong.
That’s often not enough. We will also take you through proactive stress testing
so you can see how your application performs under load so you can find
potential bottlenecks before your customers do.

To eliminate those potential bottlenecks, you’ll need specific data on functions,
both counts and times. Together we’ll examine a test case, using profilers to
identify a problem. That’s a full agenda so let’s get started.

Instrumenting Your System
Many different applications can show you what’s going on provided you feed
it the right data. Although we can’t recommend which tool you should use,
we can try to give you an overview of the data you can gather. In short, instead

1. https://github.com/Feuerlabs/exometer
2. https://www.datadoghq.com/blog/statsd/
3. http://tech.footballaddicts.com/blog/gathering-metrics-in-elixir-applications
4. https://aldusleaf.org/monitoring-elixir-apps-in-2016-prometheus-and-grafana/
5. https://appsignal.com/elixir
6. https://pryin.io
7. https://www.erlang-solutions.com/products/wombatoam.html
8. https://scoutapp.com/elixir

Chapter 9. Metrics and Performance Expectations • 172

report erratum • discuss

https://github.com/Feuerlabs/exometer
https://www.datadoghq.com/blog/statsd/
http://tech.footballaddicts.com/blog/gathering-metrics-in-elixir-applications
https://aldusleaf.org/monitoring-elixir-apps-in-2016-prometheus-and-grafana/
https://appsignal.com/elixir
https://pryin.io
https://www.erlang-solutions.com/products/wombatoam.html
https://scoutapp.com/elixir
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

of discovering how to view the different performance views of your system,
we’d like to focus on what to measure. We’ll show you what useful data you
can coax out of the VM and how to use it to inform your decisions. Let’s get
started.

Using Observer as a Guide
Because Elixir chose early on to build onto the Erlang ecosystem you can
take advantage of many tools. One of those is Observer, a tool for understand-
ing how your application is using resources like processes and memory. While
you won’t use Observer to gather metrics in production, it’s a great tool to
explore what the VM offers you. If the information is available to Observer, it
is available to you.

In this section, we will create a new Phoenix application and we’ll use it
through the rest of the chapter. We will start by observing this application
and translating ideas we find into code.

We chose a Phoenix application because it comes with enough code for us to
jump straight into measuring. In any case, the lessons here apply to any
Elixir application.

If you are not yet familiar with Phoenix, see their website to get started.9 Once
you have the Phoenix installer available on your machine, create a new
application like this:

$ mix phx.new demo

You’ll then need to follow the instructions printed out to get your app up and
running with iex -S mix. When the iex prompt becomes available, type :observ-
er.start(). That command will start Observer in all of its glory as shown in the
figure on page 174.

When Observer opens, you’ll see several tabs. The system tab is open by
default. For the two panels on your left, most of the information comes from
a function called :erlang.system_info/1.10 They’re fairly static, and just a small
subset of all the information system_info/1 returns.

Measuring Memory Usage
The first pane on the right shows memory usage. That’s definitely the kind
of information you want to push to your metrics system. You can retrieve all

9. http://www.phoenixframework.org/
10. http://erlang.org/doc/man/erlang.html#system_info-1

report erratum • discuss

Instrumenting Your System • 173

http://www.phoenixframework.org/
http://erlang.org/doc/man/erlang.html#system_info-1
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

of this information programmatically by calling :erlang.memory/0.11 Try it in your
terminal, like this:

iex> :erlang.memory()
[

total: 17479216,
processes: 4837512,
processes_used: 4831320,
system: 12641704,
atom: 264529,
atom_used: 248278,
binary: 64888,
code: 5903532,
ets: 350960

]

Total is the total amount of memory dynamically allocated, not including the
VM itself or the system libraries the VM has started. It is the sum of the
memory currently allocated by processes and the system. The process key shows
the amount of memory allocated for processes and process used shows how
much of that memory is in use.

The system memory is broken into the memory allocated for atoms, the binaries
that are not in the process heap, the code loaded by the VM, and finally the
memory allocated for ets tables.

11. http://erlang.org/doc/man/erlang.html#memory-0

Chapter 9. Metrics and Performance Expectations • 174

report erratum • discuss

http://erlang.org/doc/man/erlang.html#memory-0
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

You can use this information to identify resource leakage. For example, if the
amount of atoms keep growing, your application may be leaking atoms. The
code key is the same. If your application somehow dynamically defines modules,
you want to make sure to purge them from the system, otherwise the amount
of memory used by code will keep growing and growing. Having this informa-
tion in your dashboards can help you identify leaks before they bring the
system down.

Some of those resources have hard limits. For example, the last pane on the
right shows Statistics about the system. Part of those statistics is exactly how
many processes exist and what is the maximum number of processes allowed.
If you reach that limit, the VM will simply refuse to start processes. In a web
application, it means you are unable to accept more requests. Therefore, you
want to make sure to measure the number of processes and ensure that they
are safely below the maximum number of processes, say 80% of your process
capacity.

Tracking Process, Port, and Atom Limits
We can compute the ratio of existing processes by the maximum amount of
allowed processes like this:

iex> 100 * :erlang.system_info(:process_count) /
iex> :erlang.system_info(:process_limit)
0.0167

If your servers are reaching the stipulated threshold and the machine still
has plenty of resources available, you can increase this limit at boot time by
passing --erl flags. For example, to set the limit north of one million processes:

$ iex --erl "+P 1000000"
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [ds:4:4:10]

[async-threads:10] [hipe] [kernel-poll:false]

Interactive Elixir (1.5.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> :erlang.system_info(:process_limit)
1048576

You can also use :port_count and :port_limit to track the number of ports your
system is using. This metric is especially useful if you are integrating with
external code using ports, as outlined in Strategy 2: Communicating via I/O
with Ports, on page 130.

Erlang/OTP 20 also introduced the ability to compute usage rates for atoms:

iex> 100 * :erlang.system_info(:atom_count) / :erlang.system_info(:atom_limit)
0.0167

report erratum • discuss

Instrumenting Your System • 175

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Most applications should expect their atom usage to be constant after their
application has warmed up in production. Pairing the ratio above with mem-
ory usage can help you quickly discover if your application is leaking atoms.

Getting the Run Queue Length
Another important statistic to track is the run queue. When your VM boots, it
starts a scheduler per core, and each core has a queue of actions the scheduler
should perform. That’s the run queue. An overloaded system will show a
steadily increasing number of actions in your run queue.

To understand the impact of the Run Queue, let’s revisit a discussion that hap-
pened on the Elixir Forum.12 In that thread, Myron Marston reported that
some calls to a GenServer were exceeding the default limit of 5 seconds and
timing out. Throughout the week, they tried to find the source of the slow
down but they were getting stumped. After gathering more information, they
noticed that the GenServer message queue was not getting backed up and
that each GenServer callback executed quickly. The numbers didn’t add up.
If the GenServer was never busy and the callbacks were fast, why were the
calls still timing out?

José Valim jumped into the discussion and suggested Myron and team to
look at the run queue metric. If the system is overloaded, it may take a while
until each process gets a chance to run. So even if the GenServer is not busy
and can answer fairly fast, by the time the GenServer executes, the timeout
value of 5 seconds may have already passed! After measuring the run queue,
they concluded the system was indeed overloaded. They could fix it by either
getting more powerful machines (scaling vertically) or by adding more nodes
(scaling horizontally).

You can retrieve the Run Queue by calling :erlang.statistics/1.13 Use :erlang.statistics
(:total_run_queue_lengths) to get the total run queue length. Avoid using :erlang.statis-
tics(:run_queue) as it is atomic and therefore can be quite expensive.

If you are expecting to push the VM to the limit, it is worth carefully reading
the docs for the statistics function to learn more about all of the available
metrics.

At this point you may be wondering what is an appropriate value for run queue.
That’s a very hard question to answer since it depends on your machine, your
application, and the kind of loads you expect. However, graphing the run queue

12. https://elixirforum.com/t/troubleshooting-a-slow-genserver/3939
13. http://erlang.org/doc/man/erlang.html#statistics-1

Chapter 9. Metrics and Performance Expectations • 176

report erratum • discuss

https://elixirforum.com/t/troubleshooting-a-slow-genserver/3939
http://erlang.org/doc/man/erlang.html#statistics-1
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

can still be very useful when diagnosing problems. For example, if you have
an increase in error rates or requests are taking too long, if you’ve also noticed
a simultaneous surge in the run queue, you will have more insight into what
may be happening.

Tracking Process Health
Another area worth exploring is the Processes tab. The following figure shows
it in action:

By default Observer lists all processes in your system, showing their memory
usage, message queue length, and the amount of reductions (instructions)
they have executed. High values in any area may indicate a bottleneck or
memory leak.

You can find all processes in the system by running Process.list/0, or fetch all
locally registered processes with Process.registered/0, which returns a list of pro-
cess IDs. You can use these PIDs to get additional information with Process.info/1.
For example, you can get the top five processes by memory usage like this:

iex> Process.list |> Enum.sort_by(&Process.info(&1, :memory)) |> Enum.take(-5)
[#PID<0.48.0>, #PID<0.81.0>, #PID<0.36.0>, #PID<0.4.0>, #PID<0.31.0>]

In practice, it is unlikely that you will instrument all of the processes in your
system. Instead, you want to choose processes that are more likely to be
a central part of the system. Those often come up when stress testing the
system.

report erratum • discuss

Instrumenting Your System • 177

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Observer has many other tabs and we won’t explore them all. The lesson here,
though, applies regardless of the tab: for any information you see in Observer,
you can likely find an API to push it to your metrics system as well.

Instrumenting Ecto
The metrics in the virtual machine are important building blocks, but they
do not always tell what you need to know about the rest of your application.
Moving up one level, let’s learn how to get data from the database layer.
While you might find it comforting that the metrics system will tell you when
your database queries are waiting for more than a second in the connection
pool queue, it is better to know this will happen before you ever put your
system into production. Ecto14 is the best place to start. To get detailed met-
rics, hook into the Ecto logging API. Let’s see how that works using our
sample application.

First, we’ll generate some blog code to test. Use Phoenix generators to build
a context that interacts with Postgres via Ecto, like this:

$ mix phx.gen.html Blog Post posts title

Make sure to follow the instructions shown at the end of the command, then
open up config/config.exs and change your repository configuration to the
following:

config :demo, Demo.Repo,
loggers: [Ecto.LogEntry, Demo.EctoInspector]

This code tells Ecto to include Demo.EctoInspector in its list of loggers. Don’t
remove the original Ecto.LogEntry if you want to write messages to the console.

Next, define Demo.EctoInspector in your application. Ecto will call Demo.EctoInspec-
tor.log/1 passing an Ecto.LogEntry struct. The function must return the given
struct. Our implementation will simply call IO.inspect/1 with the struct to see
which fields are available to us. Then, we’ll just return it without modification.
Create a lib/demo/ecto_inspector.ex file and key this in:

defmodule Demo.EctoInspector do
def log(log) do

IO.inspect(log)
log

end
end

14. https://github.com/elixir-ecto/ecto

Chapter 9. Metrics and Performance Expectations • 178

report erratum • discuss

https://github.com/elixir-ecto/ecto
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

We’re ready to see some data. Start the server with mix phx.server and access
"posts" to fetch all posts. Internally your application will call Demo.Repo.all(Post),
which will cause the following to be printed to your terminal:

%Ecto.LogEntry{
ansi_color: nil,
connection_pid: nil,
decode_time: 32319,
params: [],
query: "SELECT p0.\"id\", p0.\"title\", p0.\"inserted_at\", ...",
query_time: 3691285,
queue_time: 64728,
result: {:ok, %Postgrex.Result{...}},
source: "posts"

}

The struct includes the query, the result, and a couple other fields, including
the following measurements:

:query_time
The amount of time the query took to execute. This time is reported by
the database itself. If those times are too high, you need to change your
query, add an index, or optimize your database.

:queue_time
The amount of time spent retrieving the database connection from the
pool. If those times are high, it means a capacity problem. Either your
load is too great, or your pool is too small.

:decode_time
This measurement shows how much time was spent converting your
results into Elixir data structures. The database drivers, such as Postgrex
and Mariaex, are quite optimized when it comes to decoding. Custom
decoding functions may be a problem, though, such as those defined in
custom Ecto.Types.

The measurements just shown are in native units. They are reported in the
maximum resolution supported by the OS. To convert it to a known measure,
use System.convert_time_unit/3, like this:

iex> System.convert_time_unit 64728, :native, :microseconds
64

Those are the measurements you will want to push to whatever metrics system
you’ve decided to use. Third-party performance tools will likely extract all of
this information for you. In case they do not, you can tweak Demo.EctoInspector
to publish the data to your data gathering services.

report erratum • discuss

Instrumenting Ecto • 179

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

That’s the gist of the information Ecto makes accessible to developers. Notice
that you may also bring in what you learned in the previous section. For
example, you should consider monitoring the underlying Demo.Repo.Pool process,
keeping count of its memory usage, the amount of reductions, and message
queue length. That will tell you more about the resources Elixir is consuming
to manage your database.

Now that we are extracting useful information from Ecto, it’s time to keep
moving up the application stack. Let’s see what Phoenix has to offer.

Instrumenting Phoenix
The heart of a Phoenix application is the endpoint module. It is the entry
point for web requests and it encapsulates the supervision tree of our web
application. In our app, it is called DemoWeb.Endpoint. This module also contains
a function named instrument/3, which we can use to instrument any event inside
our web stack:

require DemoWeb.Endpoint
DemoWeb.Endpoint.instrument(:long_operation_in_controller,

%{metadata: "foobar"}, fn ->
code to be instrumented

end)

Phoenix itself instruments a handful of events, listed here:

• phoenix_controller_call measures how long the controller takes to process your
request.

• phoenix_controller_render measures the time the controller takes to render
your view.

• phoenix_channel_join records each time a user joins a channel.

• phoenix_channel_receive records each message received by a client on a
channel.

To consume those events published by your own application or by Phoenix,
you’ll probably want to instrument them through a specific Elixir module.
This module should export functions with the same name as the events
themselves. Phoenix will call each function twice per event, once when the
event starts, and again when it finishes.

For example, to instrument the phoenix_controller_call event, we would define a
module with two functions:

Chapter 9. Metrics and Performance Expectations • 180

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

defmodule DemoWeb.PhoenixInspector do
def phoenix_controller_call(:start, compile_metadata, runtime_metadata) do

IO.inspect {:start, compile_metadata, runtime_metadata}
:ok

end

def phoenix_controller_call(:stop, time_in_native_unit, _result_of_start) do
IO.inspect {:stop, time_in_native_unit}

end
end

Note the result of the :start callback is given to the :stop callback with the time
elapsed between events in native units. Just as you did with the Ecto events,
convert them to known units using System.convert_time_unit/3.

Create the module above in lib/demo_web/phoenix_inspector.ex. Then, tell Phoenix
to use it in config/config.exs:

config :demo, DemoWeb.Endpoint,
instrumenters: [DemoWeb.PhoenixInspector]

Start the server once again and you should see our instrumenter kicking in
and printing the controller information:

{:start,
%{

application: :demo,
file: "demo/lib/demo_web/controllers/page_controller.ex",
function: "call/2",
line: 2,
module: DemoWeb.PageController

},
%{

conn: %Plug.Conn{...},
log_level: :debug

}
}
{:stop, 335169}

You can see the start event includes compile time information such as the
application name, source file, function name, and so on. The stop event
includes the time the action effectively took.

Phoenix instrumenters provide a mechanism to instrument and hook into
existing events, allowing you to push this data to anywhere you would like,
including external systems. Similar to Ecto, if you are picking up an existing
tool, it is most likely those hooks are already in place.

report erratum • discuss

Instrumenting Phoenix • 181

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

At ElixirConf EU 2017, Chris McCord announced metrics and monitoring
would be the next focus of the Phoenix team. This means the process of getting
information out of Ecto and Phoenix will likely become much more streamlined.
Still, understanding the measurements and their impact on the system is
essential, so what you have learned here will still serve you well, even if the
plumbing in the future is not quite the same.

Even though we have focused on Ecto and Phoenix, the process for other
libraries will be quite similar. If they provide their own metrics and instrumen-
tation hooks, then you should look into integrating with them and pushing
the data to your own systems. If they do not, then your best bet is to measure
important function calls and track any important process that may be part
of the third-party library. If you are not sure which processes are part of those
libraries, you can use Observer to explore the different supervision trees in
your system.

Now that we have hooked up our metrics, it is time to assess if our system
will behave how we expect it to.

Performance Assessment Workflow
Good performance analysis is about taking mountains of facts and focusing on
the most important grains of truth. In the previous sections we established what
to measure so you’ll know how your system behaves through different traffic
patterns. There’s plenty of data to gather, should you be so inclined. In fact,
there would be too much information to decipher if you decided to measure
everything we’ve outlined. Remember, the name of the game is focus. It’s time
to find out which processes to target for more detailed instrumentation.

Regardless of whether you are optimizing a web server, an embedded system
or the tools used by your team, the journey is quite similar. Before you begin,
load test a feature and compare that to your performance requirements. If it
is behaving as desired, you can gladly move forward. If it is not, you will want
to profile the system and identify the hotspots. Then, you can use benchmarks
to compare different solutions and remove the bottleneck.

That’s the flow we will explore here, using the Phoenix application we created
in the previous section as a starting point. Before we move on to load testing
with specific tools, consider the following suggestions.

Chapter 9. Metrics and Performance Expectations • 182

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

First, never measure only averages. Besides the average, you also want to
measure at least one of the 90th, 95th, and 99th percentiles. When talking
about web applications, most page loads experience 99% latencies15 so it is
essential to include those percentiles in your measurements.

Second, quantify your gains. Since determining how fast a system or a feature
should be is sometimes hard, you should try to convert that time into monetary
gains, even if it is back-of-the-napkin calculus. If you can reduce the page
load by 1 second, many companies report gains from 2% to 10% in conversion
rates, and you can do assumptions based on existing case studies. Similarly,
if you are in a team of five engineers with a slow test suite that you run on
average 20 times per day and you believe you can cut the test time from 20
seconds to 10 seconds, that will save your team 8 hours every month altogeth-
er. If the speedup takes a day, you will recoup that back by the end of the
month and your team will feel more confident.

Finally, avoid performance regressions. Every time you find a hotspot, you
should consider feeding this information back to your metrics system. If a
process is a bottleneck, track its message queue length. If a function turns
out to be computationally expensive, instrument it. You should also consider
setting up performance tests that you run in your CI server. That will give
you confidence the server performance won’t regress as you add new features.

Now that you have some basic guidelines to work from, it’s time to collect
some real data through load testing.

Load Testing
Load testing is the process of determining the system behavior under load.
Ideally, you want to run load tests against an environment that closely
matches your production environment. You might use a staging environment
or a production build from your continuous integration pipeline.

For simplicity, we will run tests against a production version of our Phoenix
application running on our development machine. This scenario is not ideal
since the load tester itself will compete with the Phoenix app for machine
resources but it is good enough to get started and build an expectation of the
system behavior. At the end of this section we will cover other tools that will
provide better end-to-end testing.

15. http://latencytipoftheday.blogspot.com/2014/06/latencytipoftheday-most-page-loads.html

report erratum • discuss

Load Testing • 183

http://latencytipoftheday.blogspot.com/2014/06/latencytipoftheday-most-page-loads.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Load Testing with wrk
The tool we will use is wrk,16 an HTTP benchmarking and load testing tool.
You can find it in most package managers. To get started, let’s start our
Phoenix application in production mode:

$ MIX_ENV=prod mix ecto.setup
$ PORT=4040 MIX_ENV=prod mix phx.server

The environment variable signals Phoenix to start in production mode. Now
let’s put wrk to work:

$ wrk -t5 -c10 -d30s --latency http://127.0.0.1:4040/posts
Running 30s test @ http://127.0.0.1:4040/posts

5 threads and 10 connections
Thread Stats Avg Stdev Max +/- Stdev

Latency 2.65ms 1.11ms 30.03ms 80.87%
Req/Sec 768.82 58.71 0.89k 71.20%

Latency Distribution
50% 2.46ms
75% 3.08ms
90% 3.81ms
99% 6.46ms

114871 requests in 30.03s, 158.65MB read
Requests/sec: 3824.80
Transfer/sec: 5.28MB

This example uses five threads to run requests over ten connections against
our application for 30 seconds. We can see the application averages to
3824req/s with a latency of 2.46ms on average and of 6.46ms on the 99th
percentile. Fair enough.

Now, let’s increase the concurrency factor to 100:

$ wrk -t5 -c100 -d30s --latency http://127.0.0.1:4040/posts
Running 30s test @ http://127.0.0.1:4040/posts

5 threads and 100 connections
Thread Stats Avg Stdev Max +/- Stdev

Latency 28.70ms 10.15ms 152.78ms 90.48%
Req/Sec 710.45 157.64 0.95k 71.47%

Latency Distribution
50% 25.68ms
75% 30.66ms
90% 38.21ms
99% 72.88ms

106215 requests in 30.05s, 146.69MB read
Requests/sec: 3534.14
Transfer/sec: 4.88MB

16. https://github.com/wg/wrk

Chapter 9. Metrics and Performance Expectations • 184

report erratum • discuss

https://github.com/wg/wrk
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Our server now has more work to do. The throughput reduces, the latency
increases, but the 99th percentile is not even an order of magnitude away
from the average. That’s why we say the Erlang VM provides predictable
latency. The VM preempts slow processes to allow all processes to still move
forward, even when the system is under load. Although the throughput and
latency here are reasonable, you may want to consider some changes to
achieve better performance:

• Set the logger level to :warn in your config/prod.exs. If you have a metrics
system in place, as outlined in the previous section, there is no reason
to log the same expensive information to disk on every request.

• Increase the number of keepalive requests. Load testing tools work by
opening connections to the server and issuing many requests repeatedly
over the same connection. Cowboy, by default, allows at most 100 requests
on the same connection before requiring the client to start a new one.
This is a completely reasonable behavior for most browsers and most
clients, but it may show up in benchmarks. You can increase this limit
by setting protocol_options: [max_keepalive: 5_000_000] under the :http options in
the lib/demo_web/endpoint.ex file.

• You should also consider changing your database pool size in config/
prod.secret.exs. Keep in mind a larger pool does not imply better performance.
Both the database and Ecto perform a lot of caching per connection and
increasing the pool means those caches are used less frequently while
also putting more load on the database. Phoenix’s :pool_size of 15 is a rea-
sonable default but you may want to raise it if you see increased queue
times in your Ecto metrics.

Let’s do the first two changes and see how our server behaves. Restart the
server and re-run the first command:

$ wrk -t5 -c10 -d30s --latency http://127.0.0.1:4040/posts
Running 30s test @ http://127.0.0.1:4040/posts

5 threads and 10 connections
Thread Stats Avg Stdev Max +/- Stdev

Latency 1.84ms 1.58ms 59.31ms 98.14%
Req/Sec 1.13k 101.69 1.28k 85.73%

Latency Distribution
50% 1.70ms
75% 2.04ms
90% 2.42ms
99% 4.15ms

168932 requests in 30.02s, 233.28MB read
Requests/sec: 5627.71
Transfer/sec: 7.77MB

report erratum • discuss

Load Testing • 185

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

We saw an increase of almost 50% for two lines of code. We’ll take it. Saša
Jurić , author of Elixir in Action [Jur15], has written an excellent article on
Phoenix latency17 that can complement what we discussed in this section.

Wrk is also scriptable using LuaJIT.18 This technique is useful for testing
endpoints that require more complex setup such as an authenticated session.
However, if you want to test complex user interactions or other protocols such
as WebSockets, you need to bring in the big guns.

Scripting Load Tests with Tsung
Tsung is a load testing tool written in Erlang. It comes with:

• A dashboard to see an overview of your tests
• The ability to coordinate multiple clients over multiple machines, and
• An XML configuration system to control complex user interactions.

Tsung is the tool used by the Phoenix team to load test its channels imple-
mentation over WebSockets. In a particular benchmark, the Phoenix team
used Tsung to coordinate forty-five machines to push two million connections
to a single Phoenix server.19

If you are looking for more streamlined solutions that do not require you to
set up and coordinate all machines, you should take a look at Blazemeter,20

which is built on top of JMeter21 and provides a complete set of features.
There are many other options available, such as loader.io22 and flood.io.23

Assuming load testing is in place and you find a particular feature or endpoint
that is not behaving as expected, you will need to go deeper. That’s when
profiling can be handy.

Profiling
Profiling is a performance tuning technique that measures primarily the fre-
quency and duration of function calls. Erlang/OTP ships with three profilers.
cprof counts the number of invocations, eprof measures execution time, and fprof
measures both frequency and time. Each has its own advantages and disad-
vantages. cprof runs quite fast and has a minimal impact on execution times,

17. http://theerlangelist.com/article/phoenix_latency
18. https://github.com/wg/wrk/tree/master/scripts
19. http://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
20. https://www.blazemeter.com/
21. http://jmeter.apache.org/
22. https://loader.io/
23. https://flood.io/

Chapter 9. Metrics and Performance Expectations • 186

report erratum • discuss

http://theerlangelist.com/article/phoenix_latency
https://github.com/wg/wrk/tree/master/scripts
http://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
https://www.blazemeter.com/
http://jmeter.apache.org/
https://loader.io/
https://flood.io/
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

but doesn’t tell you as much as full execution times. On the other hand, fprof
provides much more data, but expect it to impact your execution time.

Elixir provides integration with cprof, eprof, and fprof via the Mix tool. In this
section, we’ll provide a quick example of using cprof and fprof.

Imagine that your load tests found one fairly slow route. After looking at the
data, the slowdown was in the index action of the PostController. We need to figure
out exactly what is happening.

In our Phoenix application, create a file named post_index.exs in a new perf
directory. We want to write a piece of code that will execute the action we
want to profile. We’ll rely on the same functions we use to test our controllers
to do so, like this:

defmodule PostIndex do
use Phoenix.ConnTest
@endpoint DemoWeb.Endpoint

import DemoWeb.Router.Helpers
import ExUnit.Assertions

def run do
conn = build_conn()
conn = get conn, post_path(conn, :index)
assert html_response(conn, 200)

end
end

Now let’s run the profiler with cprof. We will run it in production, to make sure
our measurements won’t be affected by any development configuration, such
as logging:

$ PORT=4040 MIX_ENV=prod mix \
profile.cprof -r perf/post_index.exs -e "PostIndex.run"

Warmup...

CNT
Total 1327
Enum 140

Enum."-reduce/3-lists^foldl/2-0-"/3 92
Enum.reduce/3 27
Enum.map_reduce/3 5
...

Plug.Conn
Plug.Conn.valid_header_key?/1 59
Plug.Conn.put_private/3 11

We invoked the count profiler in production, using the -r flag to determine which
profilers to load into memory and the -e flag to run it. Notice the results of cprof
are quite limited and potentially misleading. For example, in the preceding

report erratum • discuss

Profiling • 187

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

snippet we can see Plug.Conn.valid_header_key?/1 is called 59 times. At first, that
seems like a large value. After all, the sum of request and response headers
in most HTTP requests should be far less than 59 entries. However, once you
check the definition of that function, you will see its high count is due to its
recursive implementation that traverses each byte in the response header.

Furthermore, a high count for one function does not imply it is the bottleneck.
At best, think of cprof as a tool that gives you a rough sketch of the modules
and functions invoked during the request, without much insight.

To fill in details for your rough sketch, you’ll need something more detailed.
Where cprof is a count profiler, fprof is a more detailed function profiler. Simply
replace cprof with fprof and run the command again, like this:

$ PORT=4040 MIX_ENV=prod mix \
profile.fprof -r perf/post_index.exs -e "PostIndex.run"

Warmup...

CNT ACC (ms) OWN (ms)
Total 1542 10.843 8.966
:fprof.apply_start_stop/4 0 10.843 0.019
anonymous fn/0 in :elixir_compiler_1.__FILE__/1 1 10.817 0.005
PostIndex.run/0 1 10.812 0.017
Phoenix.ConnTest.dispatch/5 1 9.671 0.013
Phoenix.ConnTest.dispatch_endpoint/5 1 9.634 0.010
DemoWeb.Endpoint.call/2 1 9.132 0.013
DemoWeb.Endpoint."call (overridable 2)"/2 1 9.056 0.002
DemoWeb.Endpoint.plug_builder_call/2 1 9.054 0.026
DemoWeb.Router.call/2 1 8.589 0.013
Phoenix.Router.__call__/1 1 8.508 0.008
DemoWeb.PostController.call/2 1 7.876 0.009

This run tells a different story. It shows call frequency and execution times
for both a function with its children (ACC) and the function itself (OWN). The
first entry in the profiler results is a call to the profiler itself, which then
executes the -e command we specified. The third entry is finally our own
PostIndex.run/0. The profiling data is usually quite long so you should scan from
top to bottom looking for unexpectedly high ACC or OWN entries. Keep in
mind the first entries in the profiling results will always have the highest ACC,
since they capture all of their own times plus the children below.

The mix profile.fprof task also provides other options, such as --sort, --callers, and
--details to give you deeper insights into the profiled code. Run mix help profile.fprof
to learn more.

After you’ve profiled your code, you’ll find out what’s broken. You’ll want to
try out some potential solutions. Don’t guess. Make sure you measure

Chapter 9. Metrics and Performance Expectations • 188

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

improvements against potential solutions and the original code. That’s the
topic of the next section.

Benchmarking
Use benchmarking tools to compare different implementations to the same
problem. Proper benchmarking requires care: we need to guarantee a mea-
surement won’t affect subsequent ones. For example, each measurement
should run on a new process to make sure data generated in the first mea-
surement won’t affect the second one by triggering the garbage collector. We
also need to make sure we warm up the code before each measurement, to
make sure the VM won’t kick in dynamic code loading for some cases but not
others. The details are tricky so most folks use a benchmarking tool instead
of rolling their own solutions.

Imagine that your application needs to find the longest word from a file. Each
word is on a separate line. Initially everything works fine, but due to business
demands, the file you have to process steadily grows until your measurements
notice the difference.

Profiling trimmed the scope of the problem down to the following code snippet:

path_to_file_in_disk
|> File.read!
|> String.split("\n")
|> Enum.max_by(&String.length/1)

You read the whole file from disk, split the file by newlines, and then compute
the largest one. Each function call in there is a candidate for improvement.
You start by looking at the File module to look for alternatives and you
quickly find File.stream!. The ability to stream the file line by line should save
you memory since you’ll load a small fraction of the file instead of the whole
file, but will these memory improvements make it any faster? Let’s use the
benchee tool24 to answer this question.

First add it to the deps section of your mix.exs:

{:benchee, ">= 0.0.0", only: :dev}

This tool is a development-only dependency because benchmarks usually
run at the low level where the differences between development and production
should not impact us much. If you really want to benchmark broader slices
of the Phoenix stack, you may want to revisit that restriction, but our function
is isolated.

24. https://github.com/PragTob/benchee

report erratum • discuss

Benchmarking • 189

https://github.com/PragTob/benchee
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The next step is to find the data we will use for our benchmarks. Since the
issue starts to show up with large files, let’s make sure we have a big enough
corpus. This repository25 is a good start. Download the words.txt file and save
it to disk. Now we are ready to write our benchmark.

Create a file at perf/file_bench.exs with the following contents:

defmodule FileBench do
@fixture "path/to/words.txt"

def run do
Benchee.run(%{

"with read" => &with_read/0,
"with stream" => &with_stream/0,

}, time: 10)
end

def with_read do
@fixture
|> File.read!
|> String.split("\n")
|> Enum.max_by(&String.length/1)

end

def with_stream do
@fixture
|> File.stream!
|> Enum.max_by(&String.length/1)
|> String.trim()

end
end

The file has three functions. run executes the entire benchmark, comparing
the with read results with the with stream results. The other two functions provide
the implementations we’re benchmarking.

We’re ready to run it:

$ mix run -r perf/file_bench.exs -e "FileBench.run"
Number of Available Cores: 4
Available memory: 17.179869184 GB
Elixir 1.5.0
Erlang 19.0
Benchmark suite executing with the following configuration:
warmup: 2.00 s
time: 10.00 s
parallel: 1
inputs: none specified
Estimated total run time: 24.00 s

25. https://github.com/dwyl/english-words

Chapter 9. Metrics and Performance Expectations • 190

report erratum • discuss

https://github.com/dwyl/english-words
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Benchmarking with read...
Benchmarking with stream...

Name ips average deviation median
with stream 1.00 1.00 s ±5.27% 0.98 s
with read 0.45 2.23 s ±0.88% 2.23 s

Comparison:
with stream 1.00
with read 0.45 - 2.23x slower

Jackpot! The stream implementation is more than twice as fast. We can now
plug the stream implementation into our codebase. Benchee can also run
benchmarks against multiple inputs and render the results in different for-
mats. Read the excellent documentation to find what features are available.

You’ve now seen how to collect statistics, profile to isolate a problem, and
benchmark different solutions to choose the right one. We’ve accomplished
a good deal in this chapter, so it’s time to recap.

Wrapping Up
Elixir provides a wide range of tools to help you instrument your application
to measure performance in production. The first section showed how to
monitor and fine-tune Observer to ensure everything runs well in production.
The Erlang Observer tool uses the same low-level APIs to collect data that
you can use to instrument your own solutions. You learned how to use those
APIs to measure memory usage, resources by process, and other details such
as run queue length.

The next topic was profiling. You can use three important tools to count
function call frequencies or call time (or both), and each has inherent trade-
offs. Profiling can give you a good idea of where a performance problem might
be, down to the offending function.

Finally, we ran a benchmark to fix a problem. Our code benchmarked a
potential solution against the offending code to verify that the cure was in
fact better than the disease.

Since you now know how to monitor an application that’s running well, it’s
time to shift gears. In the next chapter, you’ll learn ways to be aware of
application errors and what we can do about it. There’s one more chapter to
go, so let’s dig in!

report erratum • discuss

Wrapping Up • 191

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

CHAPTER 10

Making Your App Production Ready
Over the course of this book, we’ve covered the broadly diverse landscape of
adoption. Much of our discussion has focused on preventing our application
from breaking in the first place. When your application does fail, and it will,
you’ll need the right kind of data to diagnose the problem. Just as a good
user interface designer anticipates the needs of a user, you the developer
must anticipate your future needs when it’s time to provide support.

In this chapter, you will learn how to listen for failures and the tools available
to debug your system when things go wrong. We’ll primarily worry about
logging. We’ll find ways to keep your logs efficient and easy to read.

When we’ve considered those sources of information, we’ll look at some Erlang
libraries built for diagnostics. We’ll shift for a short time to debuggers. Finally,
we’ll end on a discussion of CrashDump, another Erlang tool that can help you
analyze the data that Erlang exports each time a VM crashes. This is the last
step in your journey and an essential one, so let’s get started!

Logs and Errors
The first defense against bugs is application-specific information, and the best
way to acquire that is via old-fashioned logging. Elixir comes with the creatively
named built-in Logger for logging messages. The word “messages” matters, because
Logger was designed with a focus on text-based reports and not structured data.

Logger contains four severity levels. From least to most severe, they are :debug,
:info, :warn, and :error. When you configure Logger for the :info level, it will log :info
and everything more severe, including :warn and :error messages. A developer
can log any message at any time through the Logger API, like this:

require Logger
Logger.debug "hello"

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Logger also handles errors for all processes that terminate abruptly in the
system. To see an example, try this in iex:

iex> Task.start_link fn -> raise "oops" end
...

23:27:12.221 [error] Task #PID<0.83.0> started from #PID<0.81.0> terminating
** (RuntimeError) oops

(elixir) lib/task/supervised.ex:85: Task.Supervised.do_apply/2
(stdlib) proc_lib.erl:247: :proc_lib.init_p_do_apply/3

Function: #Function<20.52032458/0 in :erl_eval.expr/5>
Args: []

Logger writes the previous error report to the terminal. You can use the Logger
API in your own application. As any other tool, developers can misuse it. Many
applications such as Phoenix and Ecto tend to log events with measurements
but these kinds of messages are for development use precisely because the
data is unstructured messages.

Using extensive logging to the default standard output on production is an
expensive operation in a concurrent system since the standard output is a
single entity that forces serial access! As such, it may become a bottleneck
under high load.

Limiting Logger for Production Mode
Luckily, in Chapter 9, Metrics and Performance Expectations, on page 171, you
saw how to get structured metrics out of your system, including data coming
from third-party libraries such as Ecto and Phoenix. In production, you don’t
need to rely on Logger for :debug and :info messages. Those messages are quite
frequent and not nearly structured enough for useful metrics systems. The
only remaining messages are warnings, which most likely do not require
immediate intervention, and errors, which most likely require a developer to
look at. Furthermore, restricting logger to warnings and errors makes it
unlikely we will write to standard output frequently enough for it to become
a bottleneck. In the unlikely scenario that happens, logger has built-in
mechanisms to drop messages and ensure the system won’t collapse.

Let’s take a closer look at common needs when using logger, such as cheap
logging, custom formatters, and custom backends.

Cheap Logging
If you still haven’t set up monitoring or if the application is too small to war-
rant one, logging :info messages in production will likely be fine. If you do have

Chapter 10. Making Your App Production Ready • 194

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

a metrics system properly set up, the first best-practice in Logger is to bump
the log level to :warn in your production environment:

config :logger, :level, :warn

Be careful, though. Simply setting the logger level to :warn doesn’t completely
alleviate the performance cost of :debug and :info messages. It’s best to make
the messages we are not interested in consuming as cheap as possible. In
Logger, you can do so in two ways.

The first option is to set :compile_time_purge_level to :warn or :error. This option
removes all Logger calls below your configured severity at compilation time. For
a production environment with :warn severity, an application invoking Logger.
debug("hello") would see no performance hit whatsoever. The log message
effectively becomes a no-op!

The downside of the compile time purging is that you are unable to access
purged messages without recompiling the source code. For example, imagine
that you are introspecting a live system and you would like to temporarily
turn on :info messages. If you purged them, they simply won’t be available.

The second approach to cheap logging is wrapping each log message in an
anonymous function. For example, in Plug,1 instead of logging like this:

stop = System.monotonic_time()
diff = System.convert_time_unit(stop - start, :native, :micro_seconds)

Logger.info [connection_type(conn), ?\s, Integer.to_string(conn.status),
" in ", formatted_diff(diff)]

it wraps the whole computation in an anonymous function, like this:

Logger.info fn ->
stop = System.monotonic_time()
diff = System.convert_time_unit(stop - start, :native, :micro_seconds)

[connection_type(conn), ?\s, Integer.to_string(conn.status),
" in ", formatted_diff(diff)]

end

In the first approach, if the Logger level is :warn, the whole message will be
computed, including the time measurements, only to be discarded. The second
approach wraps everything in an anonymous function which will only be
executed if we are interested in the message in the first place.

1. https://github.com/elixir-plug/plug

report erratum • discuss

Logs and Errors • 195

https://github.com/elixir-plug/plug
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

With anonymous functions, the cost of each missed log message is kept to a
minimum, without any compile restrictions. Therefore, you should wrap all
debug or info Logger calls in your application in anonymous functions.

Custom Formatters
So far, you’ve learned how to configure our logger level to :warn and guarantee
the :debug and :info messages are as cheap as possible. Logger is ready to support
your custom needs. Well, almost. The external system expects all log messages
to be in a specific format, one that might not match your application. Luckily,
Logger supports custom formatters. To see one in action, let’s create a new
Elixir application:

$ mix new formatter

Start a new IEx session with iex -S mix and log a message, like this:

iex> require Logger
iex> Logger.error "hello"

15:37:39.791 [error] hello
:ok

Next, we want to log messages as JSON and include as much metadata as
possible. To do so, we will need to write our own formatter. We need to bring
some dependencies into the project so open up mix.exs and add Poison2 as a
dependency, like so:

{:poison, ">= 0.0.0"}

We’ll define our formatter in the Formatter module defined in lib/formatter.ex. Our
function will receive the log level, the log message, the current timestamp,
and metadata as a keyword list. The formatter should convert it to JSON,
like this:

defmodule Formatter do
def json_formatter(level, message, time, metadata) do

[encode_to_json(level, message, time, Map.new(metadata)), ?\n]
end

defp encode_to_json(level, message, _time, metadata) do
Poison.encode! %{

level: level,
message: message,
metadata: metadata

}
end

end

2. https://github.com/devinus/poison

Chapter 10. Making Your App Production Ready • 196

report erratum • discuss

https://github.com/devinus/poison
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Next, configure the :console backend in config/config.exs to use the new formatter.
Let’s also make sure to include some metadata, like this:

config :logger, :console,
format: {Formatter, :json_formatter},
metadata: [:application, :file, :line, :module]

Run a quick command to try out our slick new formatter:

$ mix run -e "require Logger; Logger.error ~s[hello]"
{"metadata":{"module":null,"line":1,"file":"nofile"},
"message":"hello",
"level":"error"}

It works! Careful, though. Our formatter has a dangerous limitation. It may
poorly format some messages, or worse, crash the system:

$ mix run -e "require Logger; Logger.error ~c[hello]"
{"metadata":{"module":null,"line":1,"file":"nofile"},
"message":[104,101,108,108,111],
"level":"error"}

In this example, we passed the logger a char list. The logger formatted that list
as JSON but the message field showed up as a list of integers instead of a
string. We’ll need to fix that.

There’s another problem too. Let’s make Logger crash. Ask it to log more
metadata, including a :pid, like this:

config :logger, :console,
format: {Formatter, :json_formatter},
metadata: [:application, :file, :line, :module, :pid]

Now let’s try again:

$ mix run -e "require Logger; Logger.error ~c[hello]"

Our logger crashed, so nothing was logged! That’s why it is extremely impor-
tant to never crash the logger nor the logger formatter because should that
happen, you’ll get nothing to help you debug the problem.

Let’s fix those limitations:

defmodule Formatter do
def json_formatter(level, message, time, metadata) do

message = IO.chardata_to_string(message)
[encode_to_json(level, message, time, Map.new(metadata)), ?\n]

end

report erratum • discuss

Logs and Errors • 197

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

defp encode_to_json(level, message, _time, metadata) do
Poison.encode! %{

level: level,
message: message,
metadata: metadata

}
rescue

_ ->
Poison.encode! %{

level: level,
message: "error while formatting #{inspect message} with

#{inspect metadata}",
metadata: %{}

}
end

end

Give it another try:

$ mix run -e "require Logger; Logger.error ~c[hello]"
{"metadata":{},
"message":"error while formatting \"hello\" with

%{file: \"nofile\", line: 1, module: nil, pid: #PID<0.70.0>}",
"level":"error"}

This time we at least got a message, making it clear we could not format the
metadata. At this point, there is not much we can do. Either we choose not
to log the PID, or we explicitly handle data we can’t format, such as PIDs, in
our formatter. For now, remove the :pid entry from the :logger configuration in
config/config.exs and try it once more:

$ mix run -e "require Logger; Logger.error ~c[hello]"
{"metadata":{"module":null,"line":1,"file":"nofile"},
"message":"hello", "level":"error"}

We are back to properly formatted data. We customize logged console data
but that requires care in handling the different kinds of inputs, especially
making sure our formatter never crashes.

Error Notification with Custom Backends
While customizing the logger formatter is handy, it is not enough to cover all
logging use cases. Sometimes, you need to write your own implementation.
For this reason, Logger supports custom backends, letting you push log mes-
sages anywhere you want.

If your metrics are in place, the logging system will focus on warnings and
errors. This means the most common use case for logger backends is to push
data to exception and error tracking systems. Luckily, the Elixir community

Chapter 10. Making Your App Production Ready • 198

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

provides integration with different services, such as Rollbar3 via rollbax,4

Sentry5 via sentry-elixir,6 and Honeybadger7 via honeybadger-elixir.8

If you are interested in writing your own backends, you should consult the
Elixir documentation9 and look at any of the previously listed examples, or
Logger.Backend.Console that ships as part of Elixir itself.

Tracking errors is essential in any production system, so developers have an
understanding of what is going wrong and when. Combined with logging, if
you have the foresight to capture information in advance, logging can be an
excellent source of information, but sometimes, completely unplanned bad
things happen. That’s the topic of the next section.

SASL Reports
SASLs, or System Architecture Support Libraries, ship as part of Erlang/OTP,
providing detailed progress and crash reports. They extend Erlang and Elixir
loggers to provide detailed reports from supervisors. We can enable it either
with a command-line flag or a configuration option.

You can start Elixir or IEx with SASL enabled by passing the --logger-sasl-reports
true flag. Create a new application to try it out:

$ mix new sasl_sample

Start it in an IEx session with the SASL reports flag enabled, like this:

$ iex --logger-sasl-reports true -S mix

00:10:51.385 [info] Child Logger.ErrorHandler of
Supervisor Logger.Supervisor started

Pid: #PID<0.79.0>
Start Call: Logger.Watcher.start_link({:error_logger, ...})
Restart: :permanent
Shutdown: 5000
Type: :worker

00:10:51.392 [info] Application logger started at :nonode@nohost

You’ll immediately notice our system is logging more frequently. You can see
every started application and which supervisor starts which child. Those

3. https://rollbar.com/
4. https://github.com/elixir-addicts/rollbax
5. https://sentry.io/
6. https://github.com/getsentry/sentry-elixir
7. https://www.honeybadger.io/
8. https://github.com/honeybadger-io/honeybadger-elixir
9. hexdocs.pm/logger

report erratum • discuss

SASL Reports • 199

https://rollbar.com/
https://github.com/elixir-addicts/rollbax
https://sentry.io/
https://github.com/getsentry/sentry-elixir
https://www.honeybadger.io/
https://github.com/honeybadger-io/honeybadger-elixir
http://hexdocs.pm/logger
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

messages, called progress reports, are particularly useful when you’re
debugging startup issues or when you can’t figure out why some application
is not running in development or test.

We also get crash reports every time a supervisor notices a terminated child.
Type this example in the same iex session:

iex> {:ok, sup} = Task.Supervisor.start_link()
{:ok, #PID<0.83.0>}
iex> Task.Supervisor.start_child(sup, fn -> raise "oops" end)
{:ok, #PID<0.88.0>}

00:23:19.798 [error] Task #PID<0.88.0> started
from #PID<0.81.0> terminating

...

00:23:19.799 [error] Process #PID<0.88.0> terminating
...

00:23:19.799 [error] Child Task.Supervised of
Supervisor #PID<0.83.0> terminated

...

In the preceding example, you should see three reports:

• The first report says the task we started (#PID<0.88.0>) terminated with
reason “oops.”

• The second contains low-level information about the terminated process.

• The supervisor (#PID<0.83.0>) emits the third report with supervision
metadata.

Take a detailed look at those reports and notice the wealth of information
available to us. If you would rather have SASL started whenever your appli-
cation boots, either add it to your mix.exs file under the :extra_applications list or
list it as a deployment dependency in tools such as Distillery. Whenever you
do so, you need to explicitly configure Logger to handle the SASL reports for
you. If you don’t configure Logger, Erlang’s :error_logger will be the one reporting
and it will do so using Erlang terms. You can configure Logger in your config
files as follows:

config :logger, handle_sasl_reports: true

It is also important to guarantee the :sasl application is started before the
:logger application. Otherwise you will get duplicate reports. Your mix.exs should
look like this:

extra_applications: [:sasl, :logger]

Chapter 10. Making Your App Production Ready • 200

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Now, you’ve seen the logging tools at your disposal for Elixir and OTP. Those
passive tools can record information you determine in advance. You also have
active tools to call on, ones that will allow you to step through execution. Let’s
not stop there, though. We will focus on the tools that will help you debug
live systems.

Tracing
When it comes to debugging, Elixir developers have two main options: use
the debugger GUI10 that ships with Erlang or the new IEx.break!11 Elixir tools.
Debuggers let you stop the execution of one or more processes and inspect
their environment, but debugging is clearly not a good match for a production
system. If you interrupt an important process in your application while
debugging, you could start to accumulate requests, leading to timeouts or
even restarts. In the end, your email inbox may begin to rapidly fill.

Because the risks of interacting with live systems and security concerns are
acute, many companies simply do not give developers access to production
nodes except under special circumstances. Even if you work at one of those
companies, these next few useful lessons can help you debug systems in
staging environments or under load tests.

To debug such systems, we need tools that are light-weight and have little to
no effect in the system operations. And as one would expect from a technology
that has been battle-tested for decades, the Erlang VM has some good options
available. One of those options is :erlang.trace/3.12 Tracing allows you to ask the
VM to send a message to a chosen process whenever some event happens.
Let’s take an example. We’ll use the API to trace all of the messages to a
process:

iex> {:ok, agent} = Agent.start_link(fn -> %{} end)
{:ok, #PID<0.83.0>}
iex> :erlang.trace(agent, true, [:receive])
1
iex> Agent.get(agent, & &1)
%{}
iex> flush()
{:trace, #PID<0.83.0>, :receive,
{:"$gen_call", {#PID<0.81.0>, #Reference<0.0.2.98>},
{:get, #Function<6.52032458/1 in :erl_eval.expr/5>}}}

10. http://www1.erlang.org/doc/apps/debugger/debugger_chapter.html
11. https://hexdocs.pm/iex/IEx.html#break!/4
12. http://erlang.org/doc/man/erlang.html#trace-3

report erratum • discuss

Tracing • 201

http://www1.erlang.org/doc/apps/debugger/debugger_chapter.html
https://hexdocs.pm/iex/IEx.html#break!/4
http://erlang.org/doc/man/erlang.html#trace-3
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

We started an agent, asked the VM to track all messages received by that
agent, and then invoked Agent.get/2. Since Agent.get/2 sends a message to the
agent to retrieve its state, the tracing system sent the IEx process a message.
We then call flush() to immediately deliver it. This example is just a small
subset of what’s available. In fact, this much power needs structure so you
won’t usually invoke those functions directly.

Instead, you’ll use modules and libraries with more accessible APIs. One such
tool is the marvelously inappropriately named :dbg module13 that ships with
Erlang/OTP as part of the :runtime_tools application. Let’s give it a try. Notice
you will need to start a new IEx session since the VM supports only one
tracing process at a time:

iex(1)> {:ok, agent} = Agent.start_link fn -> %{} end
{:ok, #PID<0.83.0>}
iex(2)> :dbg.c Agent, :get, [agent, & &1]
(<0.87.0>) <0.83.0> ! {'$gen_call',{<0.87.0>,#Ref<0.0.3.98>},

{get,#Fun<erl_eval.6.52032458>}}
(Timestamp: {1501, 610975, 867375})

(<0.87.0>) out {gen,do_call,4} (Timestamp: {1501,610975,867384})
(<0.87.0>) << {#Ref<0.0.3.98>,#{}} (Timestamp: {1501,610975,867404})
(<0.87.0>) in {gen,do_call,4} (Timestamp: {1501,610975,867412})
%{}

With :dbg, instead of manually setting up the traces, we asked it to invoke the
:get function in the Agent module with the given arguments. Then :dbg logged
all events directly to the terminal, including:

• The message sent to the agent

• The fact that the process was scheduled out because it is now waiting for
a message

• The reply the process received from the agent

• The process was scheduled back in because it has receive a message

When you’re working to understand message queue flows between processes,
:dbg.c is an excellent tool.

Sometimes, such brief flows are not enough. It is also possible to set long-
running traces, such as tracing when certain modules or functions are called
by any process in the system. The first step is to get a tracer and then
explicitly set the events we want to track:

13. http://erlang.org/doc/man/dbg.html

Chapter 10. Making Your App Production Ready • 202

report erratum • discuss

http://erlang.org/doc/man/dbg.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

iex> :dbg.tracer
{:ok, #PID<0.83.0>}
iex> :dbg.p :all, [:call]
{:ok, [{:matched, :nonode@nohost, 46}]}
iex> :dbg.tp URI, []
{:ok, [{:matched, :nonode@nohost, 22}]}
iex> URI.decode_query "foo=bar"
(<0.81.0>) call 'Elixir.URI':'__info__'(macros)
(<0.81.0>) call 'Elixir.URI':decode_query(<<"foo=bar">>)

This time, we called :dbg.p and asked it to trace all processes for the :call event.
Whenever you set up a call event, you also need to set a trace pattern. Our
trace pattern will print whenever the URI module is called, regardless of the
function or the arity.

You have to be careful when passing the :all option to any function in :dbg.
Don’t believe us? Try this out:

iex> :dbg.p :all, :all

You are now tracing all events in the system on all processes, even the trace
itself. Since the tracing of events itself generates more events, you just started
an infinite loop.

There are a couple things you can do to make sure this does not happen in
live systems. The first rule of the all flag in trace club: do not pass the :all flag.

The other one is to set up custom tracers. You can configure these tracers to
print tracing messages in Elixir terms, which has the benefit of printing structs
and other data structures as they were meant to be. Let’s give it a try:

iex> fun = fn _, 100 -> :dbg.stop_clear()
iex> msg, n -> IO.inspect(msg) && n + 1 end
iex> :dbg.tracer(:process, {fun, 0})
iex> :dbg.p :all, :all
{:trace_ts, #PID<0.84.0>, :send,
{:dbg, {:ok, [{:matched, :nonode@nohost, 51}]}}, #PID<0.81.0>,
{1501, 612544, 238908}}

This time, even though we did make the mistake of tracing all events on all
processes, we configured our tracer function to stop :dbg after 100 events.
That means you won’t get fired for melting your server.

In practice, if you are tracing production systems, we recommend you define
a MyApp.DBG module in your application. It should have the tracer function
above as well as any convenience functions you and your team will discover
to be necessary in future sessions, like this:

report erratum • discuss

Tracing • 203

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

defmodule MyApp.DBG do
@moduledoc """
Conveniences and safety around Erlang's :dbg.
"""

@doc """
Sets up a new tracer.
"""
def tracer(limit \\ 100) do

fun = fn
_, ^limit ->

:dbg.stop_clear()
msg, n ->

IO.inspect(msg)
n + 1

end
:dbg.tracer(:process, {fun, 0})

end
end

Now, whenever you need, you can import the MyApp.DBG module into your IEx
session for careful tracing. For instance, you could trace the last 100 messages
received by a named process like this:

iex> import MyApp.DBG
iex> tracer()
iex> :dbg.p MyApp.Process, [:receive]

And you’re off to the races. You can now be using the console tracing systems
at a moment’s notice.

Due to the complexity and risks behind the tracing API, many developers will
tell you that tracing is an acquired taste. This shared sentiment led to the
creation of alternative tracing libraries such as recon14 and tracer.15 If you find
:dbg too complex or error-prone for tracing, you should be able to find a library
that suits your tastes.

One other alternative is the :sys module16 that ships as part of Erlang/OTP.
:sys allows you to trace the default Elixir behavior, such as GenServer and
Supervisor, and collect statistics. The Elixir docs on the GenServer module17

provide a good starting point for those interested in learning more.

Now that you’ve seen both logging and tracing, we’re almost done. Before we
close out this chapter, let’s see a few more tools at your disposal.

14. http://ferd.github.io/recon/
15. https://github.com/gabiz/tracer
16. http://erlang.org/doc/man/sys.html
17. https://hexdocs.pm/elixir/GenServer.html#module-debugging-with-the-sys-module

Chapter 10. Making Your App Production Ready • 204

report erratum • discuss

http://ferd.github.io/recon/
https://github.com/gabiz/tracer
http://erlang.org/doc/man/sys.html
https://hexdocs.pm/elixir/GenServer.html#module-debugging-with-the-sys-module
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Using Other Advanced Tools
We have learned how trace can be used to debug live systems with minimum
impact. There are many other libraries in Erlang/OTP and in the community
you can use to understand production systems. We’ll look at three Erlang
tools: the :runtime_tools library, the :crash_dump viewer, and the :recon project.

Debugging with Runtime Tools
You’ve already seen one of the :runtime_tools. The :dbg module enables tracing.
We only scratched the surface. The useful library also includes more advanced
functionality such as:

• An Observer backend for remote debugging. If you want to remotely ana-
lyze a production node using the Observer tool, the node must have
runtime_tools running. For the details of remote observing, see this article
by Plataformatec.18

• Integration with OS-level tracers, such as Linux Trace Toolkit,19 DTRACE,20

and SystemTap.21

• Microstate accounting,22 a tool that measures how much time the runtime
spends in several low-level tasks in a short time interval.

As your adopters get more advanced, :runtime_tools is an important application
for learning about your production systems.

Exploring Crash Dumps
Whenever a production system terminates abruptly, the Erlang VM will write
a crash report to disk. It is a quite detailed file with a lot of useful information.
In truth, for a typical dump, you’ll likely get more information than you can
handle. Let’s generate one:

$ elixir -e 'System.halt("oops")'
Crash dump is being written to: erl_crash.dump...done
oops

The crash dump for a system that is simply running Elixir is roughly 540KB.
You can imagine that one for an actual running system with users is going
to take several megabytes and no developer would be able to study it by hand.

18. http://blog.plataformatec.com.br/2016/05/tracing-and-observing-your-remote-node/
19. http://erlang.org/doc/apps/runtime_tools/LTTng.html
20. http://erlang.org/doc/apps/runtime_tools/DTRACE.html
21. http://erlang.org/doc/apps/runtime_tools/SYSTEMTAP.html
22. http://erlang.org/doc/man/msacc.html

report erratum • discuss

Using Other Advanced Tools • 205

http://blog.plataformatec.com.br/2016/05/tracing-and-observing-your-remote-node/
http://erlang.org/doc/apps/runtime_tools/LTTng.html
http://erlang.org/doc/apps/runtime_tools/DTRACE.html
http://erlang.org/doc/apps/runtime_tools/SYSTEMTAP.html
http://erlang.org/doc/man/msacc.html
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Fortunately Erlang ships with a crash dump viewer as part of the :observer
application. Let’s view one from iex:

:crashdump_viewer.start

Now select the crash dump we just generated and open it. You will see a
screen like this one:

In the crash dump, you’ll find information about running processes, ports,
ETS tables, atoms, modules, memory usage, and more. You can tell exactly
how the crash happened. If a system terminates for an unknown reason, the
crash dump alongside the log and SASL reports we enabled earlier in this
chapter should provide enough data to isolate the issue to a specific part of
your application.

Other Tools
While we have covered the tools that are part of Elixir and OTP, we can find
many other tools and alternatives in the community:

• wObserver23 observes production nodes through a web interface.
• visualixir24 is a development-time process message visualizer.
• erlyberly25 is a GUI for tracing during development.

23. https://github.com/shinyscorpion/wObserver
24. https://github.com/koudelka/visualixir
25. https://github.com/andytill/erlyberly

Chapter 10. Making Your App Production Ready • 206

report erratum • discuss

https://github.com/shinyscorpion/wObserver
https://github.com/koudelka/visualixir
https://github.com/andytill/erlyberly
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

The author of the recon tracing library, Fred Hebert, wrote a great book called
Erlang in Anger26 covering advanced topics for running Erlang and Elixir
systems in production. If you are interested in digging deeper into the VM
and into other diagnostic options, we can’t recommend this book enough.

Wrapping Up
This area, called DevOps, could be a book of its own. It’s easy to skip these
important lessons as you adopt Elixir, but a little time spent with these tools
can save you considerable effort as your system starts to grow. Erlang has a
wonderful reliability and scalability history, owed in part to strong investments
in DevOps.

In this chapter, we took the next step in your journey toward preparing your
system for production. Our logging discussions showed you how to make the
best out of the Elixir Logger, limiting logging to warnings and errors. We took
a step-by-step tour through log customization, including custom formatters
and back ends.

Then, we moved into tracing tools that can give you a good overview of what’s
happening in your production system when things go wrong. You learned to
use the break! debugger and SASL reports. You saw how tracers such as dbg
are great fits when debugging concurrent systems with message queues.

Finally, we concluded the chapter by taking a look at three advanced tools
to use when logging and tracing are not enough. Crash dumps with Observer
give you a graphical view of a crash dump, runtime_tools provides good tools for
runtime debugging and analysis, and the recon library offers a series of tools
to simplify and analyze the many sources of production data.

With this wrap up, we’re through with this topic and this book. We hope
you’ve enjoyed learning about the language, community, and ecosystem as
much as we’ve enjoyed sharing it with you. You probably have an increased
appreciation for those who’ve put in the thankless hours into building tools,
writing prose, and blazing new ground with exciting applications. If so, con-
sider giving back to the community that is supporting all of us, whether it’s
a simple Stack Overflow post or a grand open source project of your own
based on Elixir.

May your adoption story be as rewarding as ours was. Happy coding!

26. https://www.erlang-in-anger.com/

report erratum • discuss

Wrapping Up • 207

https://www.erlang-in-anger.com/
http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Bibliography

[Jur15] Saša Jurić. Elixir in Action. Manning Publications Co., Greenwich, CT,
2015.

[Tat10] Bruce A. Tate. Seven Languages in Seven Weeks. The Pragmatic Bookshelf,
Raleigh, NC, 2010.

[TV16] Chris McCord, Bruce Tate, and José Valim. Programming Phoenix. The
Pragmatic Bookshelf, Raleigh, NC, 2016.

[Val13] José Valim. Crafting Rails 4 Applications. The Pragmatic Bookshelf, Raleigh,
NC, 2013.

report erratum • discuss

http://pragprog.com/titles/tvmelixir/errata/add
http://forums.pragprog.com/forums/tvmelixir

Index

SYMBOLS
|> (pipe operator), 84

A
adoption stories and case

studies, see also Bleacher
Report; icanmakeitbetter;
Plataformatec

Easy Mile, 30–31
Le Tote, 130–132
Moz, 108–111

agents, 89–90

application configuration,
153, 158–159

architectures, see monolith
architecture; SOA (service-
oriented architecture); um-
brella projects

atom usage, 176

B
behavior

modules representing, 83
tasks handling, 89

benchmarking, 189–191

Bleacher Report, 6–11
data model selection, 23,

25
migration of web applica-

tion, 62–64
phone screens, 32
take-home tests, 34
training developers, 20–

21

blue-green deployments, 161–
165

Bureaucrat, 54–57

C
caching, 116–117

case studies, see adoption
stories and case studies

child specifications, of super-
visor, 98

code consistency, xvi, 37–59
automating checks for,

57–58
code reviews for, 57–59
documentation for, 48–51
standards for, 38–43
testing for, 51–57
typespecs for, 43–48

code coverage, 52–54

code examples, xix

code formatters, 39–40

code reviews, 57–59

code tests, for developer can-
didates, 33–35

concurrency
GenServers for, 93–96
pools for, 137
processes enabling, 89–

90
tests running concurrent-

ly, 52

configuration
application, 153, 158–

159
VM, 149

crash dumps, 205–206

Credo, 40–43

D
data

ephemeral, 107–108

functions transforming,
23

as immutable, 83, 87
persisting, 107–111
state represented by, 83

databases
Ecto Changesets for, 24
queries, performance of,

178–180
when to use, 107–108

debugging, xix, see also test-
ing

crash dumps for, 205–
206

logging for, 193–199
runtime tools for, 205
SASL reports for, 199–

201
tracing for, 201–204

dependencies, managing,
xvii, 75–78

deployment, xviii, see also pro-
duction

challenges with, 145
of distributed systems,

165–170
Mix tool for, 146–149

developers
expectations for, manag-

ing, 25–26
hiring, 26–36
training, 20–26

development productivity
at Bleacher Report, 7
at icanmakeitbetter, 3–4
at Moz, 109
performance affecting,

13, 171

Dialyxir, 45–48

dirty schedulers, 129–130

Distillery tool, 154–158

distributed process registries,
106, 113

distributed systems, xvii,
103–120

caching with ETS, 116–
117

deployment of, 165–170
homegeneous compared

to heterogeneous, 118–
120

message delivery guaran-
tees, 117–118

persistence, 107–111
process groups, 114–116
process registries, 112–

114
remote message passing,

104–106

distribution protocol, Erlang,
137–140

documentation, 48–51

E
EasyMile case study, 30–31

Ecto, 24, 84, 178–180

Elixir
adopting, early proto-

types for, 20–21
adopting, managing ex-

pectations for, 25–26
adopting, Plataformatec

supporting, 11–14
code consistency for, 37–

59
deployment, 145–149
developers for, finding

and training, 19–36
distributed systems, 103–

120
Erlang VM used by, 30–

31, 93, 109, 123–124,
149

external code integration,
123–140

functional programming,
xvii, 21, 82–100

GenServers, 90–98
limitations of, 123–124
migrating legacy systems

to, 62–78
as object-oriented, prob-

lems with, 84
production, 150–165

embedded systems, Nerves
for, 130–132

ephemeral data, 107–108

EPMD (Erlang Port Mapper
Daemon), 137, 139

Erlang Term Storage (ETS),
116–117

Erlang VM, 30–31, 93, 109,
123–124, 149

ErlInterface, 137, 139

errors, logging, 193–199

ETS (Erlang Term Storage),
116–117

examples, see adoption sto-
ries and case studies; code
examples

Excoveralls, 52–54

ExDoc, 49

external code integration,
xviii, 123–140

distribution protocol for,
137–140

NIFs for, 125–130
ports for, 130–136
reasons for, 123–124
strategies for, 124–125

ExUnit, 51–52

F
fault tolerance

GenServers for, 93–96
supervisors for, 98–100

fully meshed network, 105

functional programming, xvii,
82–100

agents, 89–90
compared to object-orient-

ed programming, 82–89
GenServers, 90–98
learning, resources for,

21
processes, 89–90
supervisors, 98–100
tasks, 89–90

functions, data transformed
by, 23

G
GenServers (generic servers),

90–98
uses for, 93–96
when not to use, 96–98

:global registry, 113

H
heart tool, 151–153

heterogeneous systems, 118–
120

Hex package manager, 76

hiring developers, 26–36
code tests, 33–35
interviewing, 32–36
phone screens, 32
where to find candidates,

27–31

homogeneous systems, 118–
120

hot code upgrades, 159–160

I
icanmakeitbetter, 2–6

finding developers, 27, 30
pairing tests, 34
phone screens, 32

immutability, 82–87
benefits of, 87
compared to mutable ob-

jects, 82–84
performance affected by,

86
representation of data in

memory, 84–86

InchEx, 49

interviewing developer candi-
dates, 32–36

J
JInterface, 137–140

L
Le Tote case study, 130–132

legacy systems, migrating,
xvii

dependencies, managing,
75–78

for monolith systems, 62–
64

moving into production,
69–70

with Terraform library,
65–69

linters, 40–43

load testing, 183–186

local cache, 116

local process registries, 106,
112

Logger, 193–199
custom backends for,

198–199

Index • 212

custom formatters for,
196–198

limiting for production
mode, 194–196

severity levels, 193

logging output, 150–151

M
memory

representation of im-
mutable data in, 84–86

usage, as performance
metric, 173–175

messages
delivery guarantees for,

117–118
logging, 193–199
sending remotely, 104–

106

metrics, see performance

metrics systems, 172
Ecto, 178–180
Observer, 173–178

migrating legacy applications,
see legacy systems, migrat-
ing

Mix tool
building release from Mix

project, 154–155
deployment using, 146–

149

mocking libraries, 52

modules, representing behav-
ior, 83

monitoring, xix

monolith architecture, 62–
64, 72

Mox library, 52

Moz case study, 108–111

mutation, 82–84

N
native implemented func-

tions, see NIFs

Nerves, 130–132

network communication,
104–106

NIFs (native implemented
functions), 125–130

dirty schedulers for, 129–
130

risks with, 125, 128–130
using, 125–128

nodes, 104

O
object-oriented programming,

compared to functional
programming, 82–89

objects, as mutable, 82–84

Observer, 173–178

online resources, xx
debugging tools, 206
dirty schedulers, 129
Elixir, learning, 21
ErlInterface, 139
external code integration,

140
JInterface, 139
metrics systems, 172
NIFs, 128
Phoenix, 173
ports, 134, 136

OTP, see GenServers

P
packets option, with ports,

134–136

pairing tests, for developer
candidates, 34

pattern matching, polymor-
phism with, 88

performance, xviii
assessment workflow for,

182–183
atom usage, 176
benchmarking, 189–191
at Bleacher Report, 6–9
customer expectations of,

13
database queries, 178–

180
development productivity

affected by, 13, 171
Ecto for, 178–180
immutability affecting, 86
importance of, 171
load testing, 183–186
memory usage, 173–175
metrics systems for, 172
Observer for, 173–178
Phoenix instrumentation

for, 180–182
ports, number of, 175
processes, health of, 177–

178
processes, number of,

175
profiling, 186–189
run queue length, 176–

177

Tsung tool for, 186
wrk tool for, 184–186

persistence, 107–111

Persistent Lookup Table
(PLT), 46

:pg2 module, 115

Phoenix
Bureaucrat with, 54–57
load testing with, 184–

186
Mix deployment with, 147
performance measure-

ments from, 180–182
Phoenix.Presence, 115, 120
Phoenix.PubSub, 115
profiling in, 187
resources for, 173
Terraform with, 68
umbrellas with, 74
updating, 77

phone screens, 32

pipe operator (|>), 84

Plataformatec, 11–14
Elixir consultancies

through, 29
take-home tests, 34

PLT (Persistent Lookup Ta-
ble), 46

polymorphism, 87–89

pools, with ports, 136

ports, 130–136
Nerves using, 130–132
number of, 175
packets option for, 134–

136
pools used with, 136
spawning, 130, 133
termination of, 136
using, 132–136

premptive multitasking, 128

process groups, 114–116

process registries, 106, 112–
114

processes
agents as, 89–90
coordinating, GenServers

for, 94–96
health of, 177–178
number of, 175
as objects, problems

with, 84
supervisors managing,

98–100
tasks as, 89–90
time represented by, 83

Index • 213

production, xix, 150–165,
194, see also debugging;
deployment

application configuration,
158–159

blue-green deployments
after, 161–165

Distillery tool for, 154–
158

hot code upgrades after,
159–160

interacting with applica-
tions, 150–151

limiting Logger for, 194–
196

logging output, 150–151
monitoring applications,

151–153
moving migrated systems

into, 69–70
releases for, 153–158

profiling, 186–189

protocols, polymorphism
with, 88

prototypes, early, 20–21

Q
queries, performance of, 178–

180

R
RabbitMQ, 117

reductions, 128

registry module, 114

releases, 153–158

remote message passing,
104–106

resources, see online re-
sources

run queue length, 176–177

run_erl tool, 150–151

runtime tools, 205

S
SASL reports, 199–201

scalability
at Bleacher Report, 6–9
at icanmakeitbetter, 2, 5

schedulers, 128

servers, generic,
see GenServers

SOA (service-oriented architec-
ture), 62, 72

standards, coding, 38–43

state
agents handling, 89
data representing, 83
GenServers managing,

93–96

stories of Elixir adoption,
see adoption stories and
case studies

strings, Unicode used with,
136

supervisors, 98–100

T
take-home tests, for developer

candidates, 34

tasks, 89–90

TCP connection, between
nodes, 105

team building, xvi, 19–36
at Bleacher Report, 10
hiring developers, 26–36
at icanmakeitbetter, 4
training developers, 20–

26

Terraform library, 65–69

testing, 51–57, see also debug-
ging

code coverage, 52–54
concurrent, 52
mocking libraries, 52
unit tests, 51–52
web applications, 54–57

third-party dependencies,
managing, 75–78

time, processes representing,
83

to_erl tool, 150–151

tracing, 201–204

training developers, 20–26
early prototypes for, 20–

21
expectations for, manag-

ing, 25–26
obstacles, overcoming,

21–25

Tsung tool, 186

typespecs, 43–48

U
umbrella projects, 71–75

Unicode, with strings, 136

unit tests, 51–52

upgrading code
blue-green deployments

for, 161–165
hot code upgrades for,

159–160

V
VM, see Erlang VM

W
web applications, migrating,

see legacy systems, migrat-
ing

web applications, testing, 54–
57

website resources, see online
resources

wrk tool, 184–186

Z
zombie processes, with ports,

136

Index • 214

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2018 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2018

https://pragprog.com

A Better Web with Phoenix and Elm
Elixir and Phoenix on the server side with Elm on the front end gets you the best of both
worlds in both worlds!

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that run-time errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(250 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

https://pragprog.com/book/lhelph
https://pragprog.com/book/jfelm

From Beginner to Expert
Need to introduce functional programming concepts to the team? Or leapfrog the competition
with GraphQL? We’ve got you covered.

Learn Functional Programming with Elixir
Elixir’s straightforward syntax and this guided tour
give you a clean, simple path to learn modern function-
al programming techniques. No previous functional
programming experience required! This book walks
you through the right concepts at the right pace, as
you explore immutable values and explicit data trans-
formation, functions, modules, recursive functions,
pattern matching, high-order functions, polymorphism,
and failure handling, all while avoiding side effects.
Don’t board the Elixir train with an imperative mindset!
To get the most out of functional languages, you need
to think functionally. This book will get you there.

Ulisses Almeida
(198 pages) ISBN: 9781680502459. $42.95
https://pragprog.com/book/cdc-elixir

Craft GraphQL APIs in Elixir with Absinthe
Your domain is rich and interconnected, and your API
should be too. Upgrade your web API to GraphQL,
leveraging its flexible queries to empower your users,
and its declarative structure to simplify your code.
Absinthe is the GraphQL toolkit for Elixir, a functional
programming language designed to enable massive
concurrency atop robust application architectures.
Written by the creators of Absinthe, this book will help
you take full advantage of these two groundbreaking
technologies. Build your own flexible, high-performance
APIs using step-by-step guidance and expert advice
you won’t find anywhere else.

Bruce Williams and Ben Wilson
(250 pages) ISBN: 9781680502558. $47.95
https://pragprog.com/book/wwgraphql

https://pragprog.com/book/cdc-elixir
https://pragprog.com/book/wwgraphql

Better by Design
From architecture and design to deployment in the harsh realities of the real world, make
your software better by design.

Design It!
Don’t engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091. $41.95
https://pragprog.com/book/mkdsa

Release It! Second Edition
A single dramatic software failure can cost a company
millions of dollars—but can be avoided with simple
changes to design and architecture. This new edition
of the best-selling industry standard shows you how
to create systems that run longer, with fewer failures,
and recover better when bad things happen. New cov-
erage includes DevOps, microservices, and cloud-native
architecture. Stability antipatterns have grown to in-
clude systemic problems in large-scale systems. This
is a must-have pragmatic guide to engineering for
production systems.

Michael Nygard
(376 pages) ISBN: 9781680502398. $47.95
https://pragprog.com/book/mnee2

https://pragprog.com/book/mkdsa
https://pragprog.com/book/mnee2

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux 2
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. With this updated
second edition for tmux 2.3, you’ll customize, script,
and leverage tmux’s unique abilities to craft a produc-
tive terminal environment that lets you keep your fin-
gers on your keyboard’s home row.

Brian P. Hogan
(102 pages) ISBN: 9781680502213. $21.95
https://pragprog.com/book/bhtmux2

Modern Vim
Turn Vim into a full-blown development environment
using Vim 8’s new features and this sequel to the
beloved bestseller Practical Vim. Integrate your editor
with tools for building, testing, linting, indexing, and
searching your codebase. Discover the future of Vim
with Neovim: a fork of Vim that includes a built-in
terminal emulator that will transform your workflow.
Whether you choose to switch to Neovim or stick with
Vim 8, you’ll be a better developer.

Drew Neil
(190 pages) ISBN: 9781680502626. $39.95
https://pragprog.com/book/modvim

https://pragprog.com/book/bhtmux2
https://pragprog.com/book/modvim

Exercises and Teams
From exercises to make you a better programmer to techniques for creating better teams,
we’ve got what you need.

Exercises for Programmers
When you write software, you need to be at the top of
your game. Great programmers practice to keep their
skills sharp. Get sharp and stay sharp with more than
fifty practice exercises rooted in real-world scenarios.
If you’re a new programmer, these challenges will help
you learn what you need to break into the field, and if
you’re a seasoned pro, you can use these exercises to
learn that hot new language for your next gig.

Brian P. Hogan
(118 pages) ISBN: 9781680501223. $24
https://pragprog.com/book/bhwb

Creating Great Teams
People are happiest and most productive if they can
choose what they work on and who they work with.
Self-selecting teams give people that choice. Build well-
designed and efficient teams to get the most out of your
organization, with step-by-step instructions on how to
set up teams quickly and efficiently. You’ll create a
process that works for you, whether you need to form
teams from scratch, improve the design of existing
teams, or are on the verge of a big team re-shuffle.

Sandy Mamoli and David Mole
(102 pages) ISBN: 9781680501285. $17
https://pragprog.com/book/mmteams

https://pragprog.com/book/bhwb
https://pragprog.com/book/mmteams

The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take
a healthier approach to programming.

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

The Healthy Programmer
To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
https://pragprog.com/book/jkthp

https://pragprog.com/book/mcmath
https://pragprog.com/book/jkthp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/tvmelixir
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/tvmelixir

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/tvmelixir
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/tvmelixir
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	From Ben:
	From José:
	From Bruce:

	Introduction
	Who This Book Is For
	About the Authors
	How To Read This Book
	About the Code
	Online Resources

	1. Three Adoption Stories
	The Acquisition of icanmakeitbetter
	Bleacher Report Improves Performance and Reliability
	Plataformatec Supports Early Adopters
	Embracing End-To-End Adoption
	Wrapping Up

	Part I—Concept
	2. Team Building
	Training Developers
	When Things Go Wrong
	Hiring Elixir Developers
	Conducting Interviews
	Wrapping Up

	3. Ensuring Code Consistency
	Coding Standards
	Typespecs and Dialyxir
	Documentation
	Tests and Code Coverage
	Putting It All Together: Code Reviews
	Wrapping Up

	4. Legacy Systems and Dependencies
	Replacing a Legacy Web App
	Terraform and API Evolution
	Moving Incremental Releases into Production
	Umbrella Projects: Between Monoliths and Services
	Managing Third-Party Dependencies
	Wrapping Up

	Part II—Development
	5. Making the Functional Transition
	Elixir vs. Mutable Objects
	Polymorphism
	Agents and Tasks
	The Generic Server
	Supervisors
	Wrapping Up

	6. Distributed Elixir
	Remote Message Passing
	Persistence Strategies
	Finding Processes
	Cache and ETS
	Message Delivery Guarantees
	Homogeneous vs. Heterogeneous Systems
	Wrapping Up

	7. Integrating with External Code
	Lay of the Land
	Strategy 1: Native Implemented Functions (NIFs)
	Strategy 2: Communicating via I/O with Ports
	Strategy 3: The Erlang Distribution Protocol
	Wrapping Up

	Part III—Production
	8. Coordinating Deployments
	Deploying with Mix
	run_erl and heart
	Releases
	Upgrading Code
	Distributed Erlang
	Wrapping Up

	9. Metrics and Performance Expectations
	Instrumenting Your System
	Instrumenting Ecto
	Instrumenting Phoenix
	Performance Assessment Workflow
	Load Testing
	Profiling
	Benchmarking
	Wrapping Up

	10. Making Your App Production Ready
	Logs and Errors
	SASL Reports
	Tracing
	Using Other Advanced Tools
	Wrapping Up

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Z –

