

ß
Under Construction: The book you’re reading is still under develop-
ment. As part of our Beta book program, we’re releasing this copy
well before a normal book would be released. That way you’re able
to get this content a couple of months before it’s available in finished
form, and we’ll get feedback to make the book even better. The idea
is that everyone wins!

Be warned: The book has not had a full technical edit, so it will
contain errors. It has not been copyedited, so it will be full of typos, spelling mistakes,
and the occasional creative piece of grammar. And there’s been no effort spent doing
layout, so you’ll find bad page breaks, over-long code lines, incorrect hyphenation,
and all the other ugly things that you wouldn’t expect to see in a finished book. It also
doesn't have an index. We can’t be held liable if you use this book to try to create a
spiffy application and you somehow end up with a strangely shaped farm implement
instead. Despite all this, we think you’ll enjoy it!

Download Updates: Throughout this process you’ll be able to get updated ebooks
from your account at pragprog.com/my_account. When the book is complete, you’ll get
the final version (and subsequent updates) from the same address.

Send us your feedback: In the meantime, we’d appreciate you sending us your
feedback on this book at pragprog.com/titles/ruby5/errata, or by using the links at the
bottom of each page.

Thank you for being part of the Pragmatic community!

The Pragmatic Bookshelf

http://pragprog.com/my_account
http://pragprog.com/titles/ruby5/errata

Programming Ruby, 3.2
The Pragmatic Programmers’ Guide

Noel Rappin
with Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC
was aware of a trademark claim, the designations have been printed in initial capital letters or in all
capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no re-
sponsibility for errors or omissions, or for damages that may result from the use of information (in-
cluding program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit
us at http://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-982-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: B5.0—July 28, 2023

http://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Change History xi

Preface xiii

Acknowledgments xvii

Part I — Facets of Ruby

1. Getting Started 3
Installing Ruby 3
Installing Ruby For Windows 7
Running Ruby 11
Creating Ruby Programs 13
Getting More Information about Ruby 14
What’s Next 15

2. Ruby.new 17
Ruby Is an Object-Oriented Language 17
Some Basic Ruby 19
Arrays and Hashes 22
Symbols 24
Control Structures 25
Regular Expressions 26
Blocks 28
Reading and ‘Riting 30
Command-Line Arguments 30
Commenting Ruby 31
What’s Next 31

3. Classes, Objects, and Variables 33
Defining Classes 33
Objects and Attributes 36
Classes Working with Other Classes 42
Specifying Access Control 45
Variables 48
Reopening Classes 49
What’s Next 51

4. Collections, Blocks, and Iterators 53
Arrays 53
Hashes 56
Digging 58
Word Frequency: Using Hashes and Arrays 58
Blocks and Enumeration 62
What’s Next 83

5. More About Methods 85
Defining a Method 85
Calling a Method 93
What’s Next 99

6. Sharing Functionality: Inheritance, Modules, and Mixins 101
Inheritance and Messages 101
Modules 105
Inheritance, Mixins, and Design 115
What’s Next 116

7. Basic Types: Numbers, Strings, and Ranges 117
Numbers 117
Strings 120
Ranges 125
What’s Next 127

8. Regular Expressions 129
What Regular Expressions Let You Do 129
Creating and Using Regular Expressions 129
Regular Expression Patterns 132
Regular Expression Syntax 134
What’s Next 142

9. Expressions 143
Operator Expressions 144
Command Expressions 146
Assignment 146
Conditional Execution 150
Loops and Iterators 157
Pattern Matching 163
What’s Next 170

10. Exceptions 171
The Exception Class 171
Handling Exceptions 172
Raising Exceptions 175
Using Catch and Throw 177
What’s Next 178

11. Basic Input and Output 179
What Is an I/O Object? 179

Contents • iv

Opening and Closing Files 179
Reading and Writing Files 180
Talking to Networks 185
What’s Next 186

12. Threads, Fibers, and Ractors 187
Multithreading with Threads 188
Running Multiple External Processes 196
Creating Fibers 200
Understanding Ractors 202
What’s Next 206

13. Testing Ruby Code 207
Why Unit Test? 207
Testing With Minitest 208
Structuring Tests 212
Creating Mock Objects in Minitest 215
Organizing and Running Tests 217
Testing with RSpec 219
What’s Next 228

Part II — Ruby in Its Setting

14. Ruby from the Command Line 231
Calling the Ruby Command 231
Ruby Command-Line Options 233
Making Your Code an Executable Program 237
Processing Command-Line Arguments to Your Code 237
Accessing Environment Variables 242
Where Ruby Finds Its Libraries 244
Using the Rake Build Tool 245
The Build Environment 249
What’s Next 249

15. Ruby Gems 251
Installing and Managing Gems 251
Using Bundler to Manage Groups of Gems 253
Writing and Packaging Your Own Code Into Gems 261
Organizing Your Source Code 265
Distributing and Installing Your Code 272
What’s Next 275

16. Interactive Ruby 277
Using irb 278
Navigating irb 280
Configuring irb 283
What’s Next 288

Contents • v

17. Debugging Ruby 289
Printing Things 289
The Ruby Debugger 290
Pry 294
Debugging Performance Issues with Benchmark 296
What’s Next 297

18. Typed Ruby 299
What’s a Type? 299
Official Ruby Typing with RBS 301
Ruby Typing with Sorbet 307
What’s Next 311

19. Documenting Ruby 313
Documenting with RDoc 313
Adding RDoc to Ruby Code 316
Running RDoc 320
Documenting with YARD 321
What’s Next 324

Part III — Ruby Crystallized

20. Ruby and the Web 327
Ruby’s Web Utilities 327
Templating with ERB 329
Serving Ruby Code to the Web 332
Ruby in the Browser with Web Assembly 340
What’s Next 342

21. Ruby Style 343
Written Ruby Style 343
Using RuboCop 348
Using Standard 353
Ruby Style in the Large 354
Duck Typing 355
What’s Next 369

22. The Ruby Object Model and Metaprogramming 371
Understanding Objects and Classes 371
Defining Singleton Methods 374
Inheritance and Visibility 380
Modules and Mixins 381
Metaprogramming Class-Level Macros 387
Using instance_eval and class_eval 396
Using Hook Methods 399
A Metaprogramming Example 405
Top-Level Execution Environment 407
What’s Next 408

Contents • vi

23. Reflection and Object Space 409
Looking at Objects 409
Looking at Classes 411
Calling Methods Dynamically 412
System Hooks 415
Tracing Your Program’s Execution 417
Behind the Curtain: The Ruby VM 419
Marshaling and Distributed Ruby 420
What’s Next 425

Part IV — Ruby Language Reference

24. Language Reference: Literal Types and Expressions 429
Source Layout 429
Ruby Literals 432
Regular Expressions 439
Names 445
Values, Variables and Constants 446
Expressions, Conditionals, and Loops 453

25. Language Reference: Objects and Classes 465
Method Definition 465
Invoking a Method 470
Aliasing 475
Defining Classes 475
Defining Modules 477
Access Control 479
Blocks, Closures, and Proc Objects 480
Exceptions 484
Catch and Throw 486
Typed Ruby 486

Part V — Ruby Library Reference

26. Library Reference: Core Data Types 495
Dates and Times 495
Math 502
Numbers 502
Random and SecureRandom 509
Regexp 511
Strings 522
Symbols 534

27. Library Reference: Ruby’s Object Model 535
BasicObject 535
Class 537
Comparable 538
Kernel 539

Contents • vii

Method 549
Module 550
Object 554

28. Library Reference: Enumerators and Containers 559
Array 559
Enumerable 565
Enumerator 575
Hash 577
Set 582

29. Library Reference: Input, Output, Files, and Formats 585
CSV 585
Dir 588
File 591
FileUtils 595
IO 598
JSON 607
Pathname 608
StringIO 609
Tempfile 610
URI 611
YAML 613

30. Library Reference: Ruby on Ruby 617
Benchmark 617
Data 618
Delegator and SimpleDelegator 620
Logger 621
ObjectSpace 622
Observable 623
OpenStruct 625
PP 625
Ripper 626
Singleton 628
Struct 628
Unbound Method 630

Part VI — Appendixes

A1. Troubleshooting Ruby 633
Common Issues 633
Debugging Tips 636

A2. I Can’t Look It up! 637
A3. Command-Line Basics 641

The Command Prompt 641
Folders, Directories, and Navigation 641

Contents • viii

A4. Ruby Runtimes 645
Just In Time Compilers 645
TruffleRuby 648
JRuby 649
mRuby 650
Other Runtimes 650

A5. Ruby Changes 651
Version 2.0 651
Version 2.1 651
Version 2.2 652
Version 2.3 652
Version 2.4 652
Version 2.5 652
Version 2.6 652
Version 2.7 652
Version 3.0 652
Version 3.1 653
Version 3.2 653

Index 655

Contents • ix

Change History
The book you’re reading is in beta. This means we update it frequently. Here is a list of the
major changes that have been made at each beta release of the book, with the most recent
change first.

Beta 5–July 28, 2023
• Some changes have been made to Part V: The chapter formally known as “Meta Ruby”

has been split into Chapter 27, Library Reference: Ruby’s Object Model, on page 535 and
Chapter 30, Library Reference: Ruby on Ruby, on page 617. Also, the basic reference for
Regexp and MatchData have been added.

• Many miscellaneous changes have been made throughout the book based on reviewer
comments.

• Current errata have been fixed.
• The book is content complete and heading to copyedit and indexing.

Beta 4—May 18, 2023
• The final two chapters have been added to Part V, Ruby Library Reference: Chapter 29,

Library Reference: Input, Output, Files, and Formats, on page 585 and Chapter 30, Library
Reference: Ruby on Ruby, on page 617.

• The final two appendixes have been added: Appendix 1, Troubleshooting Ruby, on
page 633 and Appendix 3, Command-Line Basics, on page 641.

• Method references in the existing chapters of Part V have been made more consistent.
• Current errata have been fixed.

Beta 3—March 28, 2023
• Two new chapters have been added to Part V, Ruby Library Reference: Chapter 26,

Library Reference: Core Data Types, on page 495 and Chapter 28, Library Reference:
Enumerators and Containers, on page 559.

• Current errata have been fixed.

Beta 2—January 24, 2023
• The book now uses Ruby 3.2 for all code. References to Ruby versions in the book have

been updated.
• The section on Strings in Chapter 7, Basic Types: Numbers, Strings, and Ranges, on page

117, has additional information on encodings.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Chapter 20, Ruby and the Web, on page 327 has been moved to Part III, and a new section
on web assembly has been added.

• The rest of Part III has been added with a new chapter on ruby style and duck typing,
a chapter on metaprogramming, and a chapter on reflection and object space.

• Part IV has been added, which includes a complete syntax reference spread over two
chapters.

• Two new appendixes have been added, one on Ruby runtimes and one on the significant
Ruby changes by version since 2.0.

• Typos and errata have been fixed. Thank you to all the people who have submitted
them.

Beta 1—October 26, 2022
• Initial beta release.

Change History • xii

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Preface
This is the fifth edition ofProgrammingRuby, which many Ruby developers call “The Pickaxe
Book.” It covers Ruby up to and including Ruby 3.2.

Since the previous edition of this book, Ruby has continued to grow and evolve. New syntax
has been added; old syntax has been refined. Major new features have such as pattern
matching and type signatures are now part of the language. Tools that did not exist or were
in their early stages of development then are now in constant use by Ruby developers around
the world. The entire ecosystem is thriving.

The Pickaxe Book continues to be your guide to learning Ruby the language, understanding
how the parts of Ruby work together, and how to use the most popular and important Ruby
tools.

Why Ruby?
When Dave Thomas and Andy Hunt wrote the first edition, they explained the appeal of
Ruby. Among other things, they wrote, “When we discovered Ruby, we realized that we’d
found what we’d been looking for. More than any other language with which we have
worked, Ruby stays out of your way. You can concentrate on solving the problem at hand,
instead of struggling with compiler and language issues. That’s how it can help you become
a better programmer: by giving you the chance to spend your time creating solutions for
your users, not for the compiler.”

That belief is even stronger today. More than thirty years after Ruby’s first release on
February 24, 1993, Ruby still enables developers to focus on their solutions—from the
smallest utility script to the services of companies with billions of dollars in revenue. Ruby
can support it all.

A Word About Ruby Versions
This edition of The Pickaxe Book documents Ruby up to and including Ruby 3.2, and any
point updates to 3.2 that have been released. New Ruby version releases come out annually
on December 25, with Ruby 3.2 released on December 25, 2022. The book’s code was devel-
oped against Ruby 3.2.

In the main text, we do not typically note what version of Ruby introduced a new feature,
but there is a brief list of the largest changes in Appendix 5, Ruby Changes, on page 651. We
recommend referring to the Ruby Evolution page by Victor Shepelev at https://rubyrefer-
ences.github.io/rubychanges/evolution.html for a full listing of the changes implemented since
Ruby 2.0.

report erratum • discuss

https://rubyreferences.github.io/rubychanges/evolution.html
https://rubyreferences.github.io/rubychanges/evolution.html
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Exactly what version of Ruby did we use to write this book? Let’s ask Ruby:

$ ruby -v
ruby 3.2.0 (2022-12-25 revision a528908271) [arm64-darwin22]

This illustrates an important point. Most of the code samples you see in this book are executed
each time we format the book. When you see output from a program, that output was pro-
duced by running the code and inserting the results into the book.

Notation Conventions
Literal code examples are shown using a sans-serif font:

class SampleCode
def run
#...

end
end

Within the text, a class name followed by a hash followed by a method name, as in
Fred#do_something, is a reference to an instance method (in this case, the method do_something
of class Fred). Class methods are written with a dot as Fred.new, and Fred.EOF is a class constant.
In other Ruby documentation, you may see class methods written as Fred::new. This is per-
fectly valid Ruby syntax; we just happen to think that Fred.new is less distracting to read and
is much more common to see in practice.

The decision to use a hash character to indicate instance methods was a tough one. It isn’t
valid Ruby syntax, but we thought that it was important to differentiate between the instance
and class methods of a particular class. When you see us use File.read, you know we’re talking
about the class method read. When instead we use File#read, we’re referring to the instance
method read. This convention is standard in most Ruby discussions and documentation.

When discussing various commands or Ruby snippets, we will refer to variable parts of the
commands by including them in angle brackets, so if we say rbenv global <VERSION> that
means the section in the brackets is not a literal part of the command, you’d replace it with
the actual value you wanted to use, for example rbenv global 3.2.2.

This book contains many snippets of Ruby code. Where possible, we’ve tried to show what
happens when they run. In some cases, we show the value of expressions on the same line
as the expression. Here’s an example:

a = 1
b = 2
a + b # => 3

Here, you can see that the result of evaluating a + b is the value 3, shown in a comment at
the end of the line, # => 3. If you typed this fragment of code into a file and executed it using
Ruby, you wouldn’t see the value 3 output—you’d need to use a method such as puts to have
the values written to program output.

a = 1 # => 1
a + 2 # => 3

If the program produces more complex output, we show it after the program code:

3.times { puts "Hello!" }

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

Hello!
Hello!
Hello!

In some of the library documentation, we wanted to show where spaces appear in the output.
You’ll see these spaces as ␣ characters.

Unless we are trying to make a point, or highlight a specific language feature, Ruby code
examples have been formatted to match the rules of the Standard gem1.

Command-line invocations are shown with literal text in a regular font, and parameters you
supply are shown in an italic font. Optional elements are shown in brackets.

ruby ‹ flags ›* progname ‹ arguments ›*

In keeping with the style of previous editions of the book, we use the wordwewhen referring
to the authors collectively in the body of the book. Many of the words come from the first
four editions, and I (Noel) don’t want to claim any credit for Dave Thomas’s, Andy Hunt’s,
and Chad Fowler’s previous work. That said, opinions on recent Ruby features, even when
prefaced by “we,” are usually just my (Noel’s) opinion, and are not an attempt to put words
in the mouths of the previous authors.

Road Map
The main text of this book is divided into five parts, each with its own personality and each
addressing different aspects of the Ruby language.

InPart I, Facets of Ruby, you’ll find a Ruby tutorial. It starts with notes on getting Ruby running
on your system followed by a short chapter on the terminology and concepts that are unique
to Ruby. This initial chapter also includes enough basic syntax so that the other chapters
will make sense. The rest of the tutorial is a top-down look at Ruby. There we talk about
classes and objects, types, expressions, and all the other things that make up the language.
We end with a chapter on unit testing.

One of the great things about Ruby is how well it integrates with its environment. Part II,
Ruby in Its Setting, investigates this. Here you’ll find practical information on using Ruby:
using the interpreter options, using irb, documenting your Ruby code, type checking, and
packaging your Ruby gems so that others can enjoy them.

Part III, Ruby Crystallized, contains more advanced material. Here you’ll find all the details
about using Ruby for the web, Ruby style, the concept of duck typing, the object model,
metaprogramming, reflection, and object space. You could probably speed-read this the first
time through, but we think you’ll come back to it as you start to use Ruby in earnest.

Part IV, Ruby Language Reference, includes more complete notes on syntax and fuller docu-
mentation of language features discussed in the first three parts.

The Ruby Library Reference makes up Part V. It’s not a complete reference to the entire Ruby
library—that’s much more readily available at https://docs.ruby-lang.org/en—but it is a map to
the most commonly used and most useful features of the library.

1. https://github.com/testdouble/standard

report erratum • discuss

Road Map • xv

https://docs.ruby-lang.org/en
https://github.com/testdouble/standard
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

How should you read this book? Well, depending on your level of expertise with program-
ming in general and object-oriented programming in particular, you may initially want to
read just a few portions of the book. Here are our recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part I. Keep the
library reference close at hand as you start to write programs. Get familiar with the basic
classes such as Array, Hash, and String. As you become more comfortable in the environment,
you may want to investigate some of the more advanced topics in Part III.

If you’re already comfortable with JavaScript, Python, or Java, then we suggest reading
Chapter 1, Getting Started, on page 3, which talks about installing and running Ruby, fol-
lowed by the introduction in Chapter 2, Ruby.new, on page 17. From there, you may want
to take the slower approach and keep going with the tutorial that follows, or you can skip
ahead to the details starting in Part III, followed by the library reference in Part IV.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive straight into the lan-
guage reference in Chapter 24, Language Reference: Literal Types and Expressions, on page
429, skim the library reference, and then use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with just starting at the beginning and working your way
through page by page.

And don’t forget: if you run into a problem that you can’t figure out, help is available. For
more information, see Appendix 1, Troubleshooting Ruby, on page 633.

Resources
Visit the Ruby website at http://www.ruby-lang.org to see what’s new. You can find a list of
community resources, including the official mailing list and Discord server, at https://www.ruby-
lang.org/en/community.

And we’d certainly appreciate hearing from you. Comments, suggestions, errors in the text,
and problems in the examples are all welcome. Email us at rubybook@pragprog.com.

If you find errors in the book, you can add them to the errata page at https://devtalk.com/books/
programming-ruby-3-2-5th-edition/errata. If you’re reading the PDF version of the book, you can
also report an erratum by clicking the link in the page footers.

You’ll find links to the source code for almost all the book’s example code at
https://www.pragprog.com/titles/ruby5.

With all that out of the way, let’s start learning about Ruby.

Preface • xvi

report erratum • discuss

http://www.ruby-lang.org
https://www.ruby-lang.org/en/community
https://www.ruby-lang.org/en/community
https://devtalk.com/books/programming-ruby-3-2-5th-edition/errata
https://devtalk.com/books/programming-ruby-3-2-5th-edition/errata
https://www.pragprog.com/titles/ruby5
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Acknowledgments
In January 2001, I bought myself a programming book as a birthday present. It had a pickaxe
on the cover and it was written by the two people who wrote The Pragmatic Programmer. It
was about this new programming language from Japan that I had heard about on the Extreme
Programming mailing list, and it sounded very interesting.

I can’t thank Dave Thomas and Andy Hunt enough. It’s hard to even begin to list what I’ve
gained from purchasing that initial book and from my association with The Pragmatic
Bookshelf. Thanks also to Chad Fowler for his work on subsequent versions of the book. I
inherited a great book from the three of you, and I hope this version will continue to bring
people into the Ruby language and the Ruby community.

The path from buying a book on a whim to being the person updating that book more than
20 years later doesn’t happen without a lot of help.

As much as I love Ruby the language, I also love Ruby the community and the many, many
people who I’ve come to know through Ruby. The risk of starting to list people is that I’m
sure I will inadvertently leave somebody out, but I want to particularly thank Gregg Pollack,
Jason Seifer, Avdi Grimm, James Edward Gray II, Betsy Haibel, Justin Searls, Marty Haught,
Kerri Miller, Brian Hogan, Ray Hightower, Fable Tales, Matt Polito, Even Light, Allison
McMillan, and Jim Remsik. There are many more I could list—thank you to all of you.

Mark Guzdial was my graduate advisor and the person who encouraged me to write about
programming and teach programming.

This is somehow the seventh title I’ve worked on with Katharine Dvorak as the editor. As
always, she makes working on the book easier and helps structure the book into its most
coherent form. Dave Rankin at The Pragmatic Bookshelf was the person who agreed to let
me work on this book. Thanks so much for the opportunity and the vote of confidence.

The following people reviewed all or part of the book, and their feedback and knowledge
have made this a better and more accurate book: Jean Boussier, Avdi Grimm, Chris Houhoulis,
Gabi Jack, Bernard Kaiflin, Brian Lesperance, Stefan Magnuson, Kevin Murphy, Ryan Prinz,
Nishant Roy, Victor Shepelev, and Brandon Weaver.

Everything in my life is better because of my family. Thanks to my children, Amit and Elliot,
who have enriched my life in so many ways. And something beyond thanks to my wife Erin,
these small sentences can’t express how much I love you and how much your love and
support mean to me.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Part I

Facets of Ruby

Welcome to Ruby! This section is a tutorial through all the Ruby
you’ll need to be able to understand a good-sized Ruby application.
We’ll cover the most important parts of the syntax and the stan-
dard library, and go beyond the basics in a couple of places where
Ruby has a particularly interesting or powerful tool at hand.

CHAPTER 1

Getting Started
We’re going to spend a lot of time in this book talking about the Ruby language. Before we
do, we want to make sure you can get Ruby installed and running on your computer. That
way, you can try sample code and experiment on your own as you read along. If you want
to learn Ruby you should get into the habit of writing code as you are reading.

If you are not comfortable with using a command line, we can help. Please turn to Appendix
3, Command-Line Basics, on page 641 and we will give you all the information you need to
get started.

Installing Ruby
There’s a good chance your operating system already has Ruby installed. Try typing ruby --
version at a command prompt—you may be pleasantly surprised. Likely, though, you’ll find
that the Ruby version is out of date. For example, as this is being written, macOS ships with
Ruby 2.6.10, which is multiple versions behind the current Ruby.

The examples in this book are written against Ruby 3.2. While most of the code will work
in older versions of Ruby, for performance and security reasons you should try to get on the
most current version. Refer to Appendix 5, Ruby Changes, on page 651 for a listing of the
features added and changes made to Ruby at each iteration.

You can install Ruby in a variety of different ways, so providing general installation
instructions becomes a little bit of a choose-your-own-adventure story. Most of the examples
in this book assume you are using a Linux or Unix style system that responds to Linux-style
commands. This includes all Linux distributions, macOS, Windows systems running Windows
Subsystem for Linux (WSL),1 and most Docker2 containers as well as cloud-based development
environments such as Replit.3

That said, Ruby does run on Windows. The process for managing a Ruby installation on
Windows is different, and we’ll cover it in full detail later in this chapter.

Please note that the tooling around Ruby installation does change frequently, and some of
the specific instructions might be out of date or replaced by newer tools.

1. https://docs.microsoft.com/en-us/windows/wsl/install
2. https://www.docker.com
3. https://replit.com

report erratum • discuss

https://docs.microsoft.com/en-us/windows/wsl/install
https://www.docker.com
https://replit.com
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Opting Out of Installation

If you don’t want to install anything on your computer for some reason, you
can take advantage of cloud-based development environments such as Replit
or GitHub Codespaces. These environments enable you to write your code in
a browser and run it against a cloud-based virtual machine.

Installing Ruby with the rbenv Version Manager
To facilitate our installation of Ruby, we’ll use a version manager, which is a tool that allows
you to install and switch between multiple Ruby versions on the same machine. There are
many reasons to use a version manager to handle your Ruby installation. Being able to eas-
ily switch between multiple versions of Ruby gives you the flexibility to work with multiple
projects that might have been written at different times. In addition, the version managers
have been created for easy installation, so installing multiple Ruby versions with a version
manager is easier than installing a single version by itself. More powerful and easier to use
is a hard combination to beat. If you are interested in just downloading one version of Ruby,
you can find system-by-system instructions at https://www.ruby-lang.org/en/documentation/instal-
lation.

The tool we’ll use in this book is called rbenv.4 Rbenv is not the only Ruby version manager,
but it’s probably the most commonly used these days. Other commonly used version man-
agers are RVM5 and chruby.6 (And yes, having competing tools named “RVM” and “rbenv”
is confusing.) If you are using version management for multiple languages, you might want
to look at a project called asdf, which unifies different languages’ version managers,7 and is
rapidly becoming more popular within Ruby.

We’ll install rbenv through the conveniently provided rbenv-installer program. If executing
somebody else’s shell script makes you nervous, you can inspect the script at https://github.com/
rbenv/rbenv-installer/blob/main/bin/rbenv-installer before you run it.

From a command terminal, enter this command all on one line (the line is split here for page-
width reasons):

$ curl -fsSL
https://github.com/rbenv/rbenv-installer/raw/HEAD/bin/rbenv-installer | bash

Curl is a command-line tool for accessing URLs and doing something useful with the return
value—in this case, retrieving a shell script from the rbenv GitHub repo and passing it along
to a bash shell to be executed.

This script will install rbenv using the appropriate package manager for your system, and
will also install a helper program called ruby-build that will manage the download and
installation of different Ruby versions.

The installation command might produce a lot of output—especially if you are on a macOS
system that uses the Homebrew package manager. On a Mac, it should end with the following,
a Windows user under WSL might see something different:

4. https://github.com/rbenv/rbenv
5. https://rvm.io
6. https://github.com/postmodern/chruby
7. https://asdf-vm.com

Chapter 1. Getting Started • 4

report erratum • discuss

https://www.ruby-lang.org/en/documentation/installation
https://www.ruby-lang.org/en/documentation/installation
https://github.com/rbenv/rbenv-installer/blob/main/bin/rbenv-installer
https://github.com/rbenv/rbenv-installer/blob/main/bin/rbenv-installer
https://github.com/rbenv/rbenv
https://rvm.io
https://github.com/postmodern/chruby
https://asdf-vm.com
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

All done! Note that this installer does NOT edit your shell configuration files: 1. Run `rbenv init' to view
instructions on how to configure rbenv for your shell. 2. Launch a new terminal window after editing shell
configuration files.

Following instructions, run rbenv init. This is the output on a Mac running zshell (your
instructions may be different):

$ rbenv init
Load rbenv automatically by appending
the following to ~/.zshrc:

eval "$(rbenv init - zsh)"

No matter what your setup is, what you should get in this instruction is:

• The file that contains the shell configuration you need to update
• The text you need to put at the end of the file

You need to put the suggested line of text at the end of your configuration file and open a
new terminal window – the change only takes effect when a window is loaded, so the easiest
way to get rbenv started is to open a new terminal window. Again, if you have any questions
about how to use the terminal, see Appendix 3, Command-Line Basics, on page 641.

Now, let’s install a specific Ruby version.

Installing Rubies with rbenv
Rbenv allows you to see a list of the Ruby versions you are most likely to want to install
with the command rbenv install -l. Here’s the list as of today:

$ rbenv install -l
2.7.8
3.0.6
3.1.4
3.2.2
jruby-9.4.2.0
mruby-3.2.0
picoruby-3.0.0
truffleruby-22.3.1
truffleruby+graalvm-22.3.1

Only latest stable releases for each Ruby implementation are shown.
Use 'rbenv install --list-all / -L' to show all local versions.

This list is the most current patch version of various Ruby implementations. You can see
Ruby versions for the main Ruby implementation version 2.7, 3.0, 3.1, and 3.2. (When talking
about different Ruby implementations, the main one is sometimes called CRuby, and
sometimes called MRI, for “Matz’s Ruby Interpreter.”) There are also other versions we’re
not going to talk about much here. JRuby8 is a Ruby version that runs on the Java Virtual
Machine, mruby is a special limited build of Ruby for running on embedded hardware.
TruffleRuby9 is an implementation of the language that is focused on high performance.

Our interest right now is Ruby 3.2.2, which we can install with the command rbenv install
3.2.2. If you don’t see the most current version of Ruby on the list, and you’ve installed rbenv

8. https://www.jruby.org
9. https://github.com/oracle/truffleruby

report erratum • discuss

Installing Ruby • 5

https://www.jruby.org
https://github.com/oracle/truffleruby
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

previously, you may get instructions on how to update ruby-build to get newer Ruby versions
in your list. Note that none of the rbenv commands require us to have superuser access or
to use sudo. One of the joys of the Ruby version managers, including rbenv, is that they do
everything inside your home directory—you don’t have any special system privileges to
install or use new Ruby versions.

$ rbenv install 3.2.2
To follow progress, use
'tail -f <REDACTED>'
or pass --verbose
Installing openssl-3.0.7...
Installed openssl-3.0.7 to /Users/noel/.rbenv/versions/3.2.2

Installing ruby-3.2.2...
ruby-build: using readline from homebrew
ruby-build: using gmp from homebrew
Installed ruby-3.2.2 to /Users/noel/.rbenv/versions/3.2.2

Your output may be slightly different, depending on the exact version number and whether
you are re-installing the Ruby version.

We can verify that the Ruby version has been installed with rbenv versions, for example

$ rbenv versions
* system
3.2.2

The system here is the pre-defined Ruby for the operating system if such a thing exists, and
the asterisk shows which version is currently active.

Right now, the system Ruby is still active. Let’s change that.

Switching Rubies with rbenv
This is where we start to see the payoff. Once different Ruby versions are installed Rbenv
allows us multiple ways to switch the Ruby version we are using.

The command rbenv local <version> changes the Ruby version for the directory you are in:

$ ruby --version
ruby 2.6.10p210 (2022-04-12 revision 67958) [universal.arm64e-darwin22]

$ rbenv local 3.2.2

$ ruby --version
ruby 3.2.2 (2023-03-30 revision e51014f9c0) [arm64-darwin22]

If the new Ruby you think you have installed does not seem to be available, you may need
to run the command rbenv rehash. This command produces no output, but it does enable
rbenv to use the newly installed Ruby.

This setting for the directory persists even if you leave the directory and come back. (If you
don’t want the change to persist beyond the current session, you can use rbenv shell <version>)
instead of rbenv local.

$ cd ..

$ cd test

Chapter 1. Getting Started • 6

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

$ ruby --version
ruby 3.2.2 (2023-03-30 revision e51014f9c0) [arm64-darwin22]

Rbenv accomplishes this by putting a file in the directory called .ruby-version, which just
contains the version number of the Ruby you’ve set for that directory.

% cat .ruby-version
3.2.0

This file also works in reverse—if you have rbenv installed and you change to a directory
that contains a .ruby-version file, rbenv will automatically change to that versions Ruby if
installed, or warn you that the directory expects an uninstalled Ruby if it is not. Many Ruby
projects use a .ruby-version file to specify their Ruby version, and it is respected by all the
Ruby version managers.

If you want to set a default Ruby version for directories that don’t specify their own, you
can do so with rbenv global <version>.

This may be more work than you were expecting to install Ruby. If all you ever wanted to
do was use a single version of Ruby, we’d agree. But what you’ve really done here is given
yourself an incredible amount of flexibility. Maybe in the future a project comes along that
uses Ruby 2.7.5, per its .ruby-version file. That’s not a problem—just use rbenv install 2.7.5 and
rbenv will automatically pick up the version from the .ruby-version file.

What Is rbenv Actually Doing?

Rbenv attempts to provide its dynamic behavior with as little change to your regular terminal envi-
ronment as possible.

A Unix terminal uses a global environment variable called PATH to determine what directories it looks
in for executable programs when you type a command. If you look in your configuration file for your
terminal, you will likely see the PATH variable being modified.

When the rbenv init command is executed as part of your terminal setup, it inserts a directory at the
front of your PATH, so that your operating system will look in the rbenv directory before looking
anyplace else. In that directory are a set of what rbenv calls shims; small programs that match all the
executable commands in all your Ruby versions. (The reason why you may need to run rbenv rehash
after installing a new Ruby is to refresh this directory). When you call a Ruby command, like ruby or
(as you’ll see in a minute) irb, the rbenv shim is encountered first, and dynamically chooses which
Ruby is active, usually based on the presence of a .ruby-version file. Then the command is handed off
to the actual executable program in that current version. You can see those actual versions, they live
in your home directory at ~/.rbenv/versions.

Installing Ruby For Windows
Ruby is not available as a default option in Windows the way it is in Unix distributions or
MacOS, but it can be installed and used and can interact with the underlying environment
to automate Windows-specific resources.

We’re going to focus on two ways to install Ruby on Windows: using the Windows Subsystem
for Linux (WSL)10, which allows you to run a Linux command-line terminal in your Windows

10. https://docs.microsoft.com/en-us/windows/wsl

report erratum • discuss

Installing Ruby For Windows • 7

https://docs.microsoft.com/en-us/windows/wsl
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

system, and using RubyInstaller11 to install a Windows application that lets you execute
Ruby programs.

The two different kinds of Ruby can both be installed on the same machine, and have different
purposes. Using WSL gives you a command shell that is effectively a Linux distribution,
allowing you to seamlessly use any of the other Ruby tooling in this book. Using RubyInstaller
gives you access to Ruby from within a regular Windows PowerShell prompt, allowing you
to execute Ruby programs from the File Explorer, and giving you access to Windows-specific
libraries.

No matter which way you want to run Ruby, you should also install Windows Terminal so
that you have a fully featured terminal program available. You can download Windows
Terminal at https://docs.microsoft.com/en-us/windows/terminal/install, where there are also instructions
on how to make it your default terminal program. From Windows Terminal, you can set up
new command-line sessions using either Microsoft’s PowerShell or the WSL shell. (You can
also use Visual Studio Code’s terminal to run either kind of command line.)

Also, if you need a brief tutorial on how Unix command lines work, see Appendix 3, Com-
mand-Line Basics, on page 641.

Using Windows Subsystem for Linux
Windows Subsystem for Linux (WSL) allows you to run a Linux distribution binary inside
your Windows setup without incurring the performance penalty of using a virtual machine
or Docker container. WSL defines the wiring between the Linux OS commands and the
Windows OS, allowing you to run your favorite Linux distribution from a command line
transparently without having to deal with the Windows part at all. You can also have editing
tools like Visual Studio Code or RubyMine interact with WSL as they run your Ruby code.

We’re going to cover the basics of how to use WSL here, but if you need more information,
the official documentation is available from Microsoft.12

Installing WSL
The first step in using Ruby with WSL is installing WSL itself. You need to be running
Windows 11 or Windows 10 version 2004 or higher for this to work. We’re installing WSL
version 2 here.

You need to open an administrator Windows command terminal—it doesn’t matter whether
it’s PowerShell or the regular terminal, but it does have to be an administrator shell. In
Windows 11, the easiest way to get an admin shell is to right-click on the start menu and
select the “Windows Terminal (Administrator)” option, which will open Windows Terminal
in an admin shell. Depending on your Windows version, you may get prompted to say
whether you will allow the program to make changes to your system. Say yes.

From the admin shell, type the command wsl --install. This will give us the default Linux
installation, which is Ubuntu. The session looks like this when it’s through, but it may take
a little time to get through the download and installation process.

PS C: \Users\noelr> wsl --install
Installing: Virtual Machine Platform

11. https://rubyinstaller.org
12. https://docs.microsoft.com/en-us/windows/wsl

Chapter 1. Getting Started • 8

report erratum • discuss

https://docs.microsoft.com/en-us/windows/terminal/install
https://rubyinstaller.org
https://docs.microsoft.com/en-us/windows/wsl
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Virtual Machine Platform has been installed.
Installing: Windows Subsystem for Linux
Windows Subsystem for Linux has been installed.
Downloading: WSL Kernel
Installing: WSL Kernel
WSL Kernel has been installed.
Downloading: GUI App Support
Installing: GUI App Support
GUI App Support has been installed.
Downloading: Ubuntu
The requested operation is successful.
Changes will not be effective until the system is rebooted

Reboot the system. This may take some time.

When the system comes back up, open Windows Terminal. The pull-down menu in the tabs
now should give you the option of an Ubuntu prompt. You may get prompted to do an sudo
apt-get update to update programs in the Ubuntu distribution.

You will then get prompted to create a Unix account for WSL:

Installing, this may take a few minutes.
Please create a default UNIX user account.
The username does not need to match your Windows username
For more information visit: httos://aka.ms/wslusers
Enter new UNIX username:

The username is not in any way connected to your Windows account—it’s a brand new
account for the Linux distribution you’ve installed using WSL. After you enter the username,
you will be prompted for the password. You won’t get challenged for the password every
time you open a WSL terminal, but you should write it down just in case, because someday
you may want to sudo something and you will get asked for your password before getting
superuser rights. (Ask us how we know.) That said, don’t depend on this password being
super-secure by default; the root WSL user has no password.

At this point, you can use Windows terminal to open a WSL terminal by clicking on the
downward arrow next to the + in the tab bar and selecting Ubuntu from the menu.

Installing Ruby Under WSL
We’re partway there but the default Ubuntu installation doesn’t include Ruby or a version
manager. These instructions are adapted from https://gorails.com/setup/windows/10#linux-subsystem.

The Ubuntu distribution uses a package manager called apt-get to distribute its applications.
We need to install some dependencies:

$ sudo apt-get update
$ sudo apt-get install git-core curl
$ sudo apt-get install zlib1g-dev build-essential libssl-dev
$ sudo apt-get install libreadline-dev libyaml-dev libsqlite3-dev sqlite3
$ sudo apt-get install libxml2-dev libxslt1-dev libcurl4-openssl-dev
$ sudo apt-get install software-properties-common libffi-dev

The first line updates apt-get itself so you get the most current version of everything and the
following lines install the packages that Ruby will need. Note that you can do all those
installs on a single line (we’re just splitting it up for page-width purposes).

report erratum • discuss

Installing Ruby For Windows • 9

https://gorails.com/setup/windows/10#linux-subsystem
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

At this point, you should be able to install the rbenv version manager using the instructions
in Installing Ruby with the rbenv Version Manager, on page 4. The GoRails site listed above
has slightly different rbenv instructions, they should both work.

Using WSL and Ruby
You should be good to go, as you can confirm by opening up a new WSL terminal and typing
irb. Within WSL, you can use any of the Unix tools that we’ve described elsewhere in this
book.

Ruby programs can be invoked using ruby from the WSL command line just as we discuss
in Chapter 14, Ruby from the Command Line, on page 231. Where it gets a little bit tricky is
sharing files. WSL sets up what is, in effect, its own file system. For performance reasons,
you are encouraged to keep all the files you use in WSL code in the WSL file system (as
apparently file read and write between the two systems is expensive).

That said, it is possible to share. Windows files are set up in WSL under the mnt directory
(short for “mount point”). Your C: drive is /mnt/c. You can access Windows files using that
path as a prefix. Other drives, like network drives, can also be connected to a mount point,
but it doesn’t happen by default.

From the Windows side, WSL files show up in the File Explorer under their own “Linux”
heading. You can right-click on those files, and open them in a Windows editor, but you
can’t directly invoke them in WSL from the Windows file system. (You could, in theory,
create a shortcut that invokes a terminal and a single bash command to run a WSL file.)

Visual Studio Code has a WSL extension that you can install that allows you to load a WSL
directory from regular Windows version of Visual Studio Code, run that directory using the
WSL ruby, and use the WSL terminal as a prompt. Similarly, RubyMine allows you to connect
to WSL as a remote interpreter and open a WSL project and run it using the WSL Ruby.

Using RubyInstaller
Although WSL is nice, and it’s great to be able to seamlessly integrate with existing Ruby
tooling, from the point of view of a Windows user, it does have some drawbacks. WSL has
some performance overhead, including taking up a lot of memory. It also doesn’t integrate
with the Windows system directly, meaning that you can’t do Windows-specific things.

There is a native Ruby installation for Windows, simply called RubyInstaller.13 RubyInstaller
is a regular Windows installer that gives you a regular Windows executable Ruby interpreter
that you can use to run Ruby code.

Installing Ruby With RubyInstaller
RubyInstaller can be downloaded from https://rubyinstaller.org, where there are versions corre-
sponding to each Ruby patch version for both x64 machines and x86 machines. There are
versions both with and without Devkit, which is an add-on that allows Ruby gems that have
native C-language extensions to be compiled. There are a couple of prominent Ruby gems
that have extensions, so we recommend the Devkit version.

Once the installer has downloaded, run it and you’ll get a standard Windows installer. You
will have options to “Add Ruby executables to your PATH” and “Associate .rb and .rbw

13. https://rubyinstaller.org

Chapter 1. Getting Started • 10

report erratum • discuss

https://rubyinstaller.org
https://rubyinstaller.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

files with this Ruby installation,” both of which we recommend. You’ll then have the option
to install “Ruby RI and HTML documentation” and the “MSYS2 development toolchain,”
which again, we recommend. At the end, you’ll be asked to run “ridk install” to set up the
development toolchain. Doing so will give you a popup window that will ask you which
MSYS2 components to install and to confirm the defaults are what you want (which they
are, keep the defaults). Press ENTER to start the MSYS2 installation. After the installation
finishes that phase, it will prompt you again. If the brackets in the prompt are empty,
pressing ENTER will finish the installation.

Using Ruby With RubyInstaller
At this point from a regular Windows terminal, you can run ruby and irb with the same
options as we discussed in Chapter 14, Ruby from the Command Line, on page 231 and
Chapter 16, Interactive Ruby, on page 277.

You’ll find two versions of the Ruby interpreter in the RubyInstaller distribution. The ruby
version is meant to be used at a command prompt (DOS shell or PowerShell), just as in the
Unix version. For applications that read and write to the standard input and output, this is
fine. This means that any time you run ruby, you’ll get a DOS shell even if you don’t want
one—Windows will create a new command prompt window and display it while Ruby is
running.

This may not be appropriate behavior if, for example, you double-click a Ruby script that
uses a graphical interface or if you are running a Ruby script as a background task or from
inside another program. In these cases, you will want to use rubyw. It is the same as ruby
except that it does not provide standard in, standard out, or standard error and does not
launch a DOS shell when run.

On Windows 11, you can also run Ruby code by right-clicking Ruby files in the file explorer.

Running Ruby
Now that Ruby is installed, you’d probably like to run some programs. Unlike compiled
languages, you have two ways to run Ruby—you can type in code interactively, or you can
create program files and run them. Typing in code interactively is a great way to experiment
with the language, but for code that’s more complex or code that you will want to run more
than once, you’ll need to create program files and run them. But, before we go any further,
let’s test to see whether Ruby is installed. Bring up a fresh command prompt, and type this:

$ ruby --version
ruby 3.2.0 (2022-12-25 revision a528908271) [arm64-darwin22]

Technically, you can run Ruby interactively by just typing ruby at the shell prompt. You’ll
get a blank line in response, and you can type Ruby code there.

$ ruby
puts "Hello, world!"
^D
Hello, world!

In this example we typed in a single line of Ruby. That line consists of two parts. The first
part, puts, is the name of a method. A method is a pre-defined chunk of code. In this case, the
putsmethod is one of several methods defined for us by Ruby. The second part, "Hello, world!",
is text surrounded by double quotes, which is called a string. Combining the two, the Ruby

report erratum • discuss

Running Ruby • 11

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

code puts "Hello, world!" calls the method putswith the argument "Hello, world!". The putsmethod
then outputs that argument back to the terminal—puts is short for “outPUT String”.

On the next line we typed an end-of-file character (which is Ctrl+D on our system), which
exited the program and caused what we typed to be evaluated. Using Ruby like this works,
but it only shows responses if you explicitly print them out. Also, it’s painful if you make a
typo, and you can’t see what’s going on as you type.

Happily, there’s a better way to interact with Ruby.

Interactive Ruby, or irb, is the tool of choice for executing Ruby interactively. Irb is a complete
Ruby shell, with command-line history, line-editing capabilities, and job control. (In fact, it
has its own chapter in this book : Chapter 16, Interactive Ruby, on page 277.) You run irb from
the command line. Once it starts, type in Ruby code. It will show you the value of each
expression as it evaluates it. Exit an irb session by typing exit or Ctrl+D.

Here’s a sample session:

$ irb
irb(main):001:1* def sum(n1, n2)
irb(main):002:1* n1 + n2
irb(main):003:0> end
=> :sum
irb(main):004:0> sum(3, 4)
=> 7
irb(main):005:0> sum("cat", "dog")
=> "catdog"
irb(main):006:0> exit

In the first three lines of this session, we’re defining a method called sum. The act of defining
that method returns a value called :sum, which is a Ruby symbol matching the name of the
method and we’ll talk more about symbols and method names later. In line 4 of the input,
we’re calling the method, first with arguments 3 and 4, returning 7, then on line 5 with
arguments "cat" and "dog”. In Ruby, adding strings concatenates them, so that line returns
the string "catdog". Then we exit on line 6.

If you try this in Ruby 3.1 or higher you’ll notice that irb attempts to offer autocompletion
of variable names or commands, and also color codes, neither of which is easy to show in a
book.

We recommend that you get familiar with irb—it’s a great way to explore Ruby concepts
and debug your code, and it will make your experience with Ruby more fun.

What About Docker?

If you are using Ruby on a larger project or with a larger team, there’s a good chance that Docker is
part of your development environment. Docker is a tool that allows you to define and run containers
A container is a way to package all the dependencies needed to run code, effectively it’s a virtual
operating system inside your computer. Using Docker, you can simulate a Linux environment no
matter what operating system you are running.

A full description of Docker is out of this book’s scope, but if you are already familiar with Docker
in general, it’s worth mentioning that Docker maintains images with different Ruby versions pre-
installed, and you can always get to the latest released version with ruby:latest, and you can go straight

Chapter 1. Getting Started • 12

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

to a Dockerized irb prompt with docker run -it ruby irb. Running external Ruby files in the Docker con-
tainer is doable as well, but requires a little more Docker knowledge.

Creating Ruby Programs
The most common way to write Ruby programs is to put the Ruby code in one or more text
files. You’ll use a text editor or Integrated Development Environment (IDE) to create and
maintain these files—there are many popular editors, including Visual Studio Code, vim,
Sublime Text, and RubyMine, that feature Ruby support. You’ll then run the files either from
within the editor or from the command line. Both techniques are useful, you might run from
within the editor for single-file programs and from the command line for more complex
ones.

Let’s create a short Ruby program and run it. Open a terminal window and create an empty
directory somewhere, perhaps you could call it pickaxe.

Then, using your editor of choice, create the file myprog.rb, containing the following text.

pickaxe/myprog.rb
puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

Note that the second string contains the text Time.now between curly braces, not parentheses.

You can run a Ruby program from a file as you would any other shell script or program in
another scripting language like Python. Run the Ruby interpreter, giving it the script name
as an argument:

$ ruby myprog.rb
Hello, Ruby Programmer
It is now 2023-05-14 18:21:36 -0500

On Unix systems, you can use the “shebang” notation as the first line of the program file. If
your system supports it, you can avoid hard-coding the path to Ruby in the “shebang” line
by using #!/usr/bin/env ruby, which will search your path for ruby and then execute it.

#!/usr/bin/env ruby
puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

If you make this source file executable (using, for instance, chmod +x myprog.rb), Unix lets you
run the file as a program:

$./myprog.rb
Hello, Ruby Programmer
It is now 2023-05-14 18:21:36 -0500

You can do something similar under Microsoft Windows using file associations, and you
can run Ruby GUI applications by double-clicking their names in Windows Explorer.

report erratum • discuss

Creating Ruby Programs • 13

http://media.pragprog.com/titles/ruby5/code/pickaxe/myprog.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Getting More Information about Ruby
As the volume of the Ruby libraries has grown, it has become impossible to document them
all in one book; the standard library that comes with Ruby now contains more than 9,000
methods.

The official Ruby documentation is at https://docs.ruby-lang.org, with official pages for the Ruby
3.2 core library at https://ruby-doc.org/core-3.2.0 and the standard library at https://ruby-doc.org/
stdlib-3.2.0. In Ruby 3.2, irb will also give you documentation of standard method names as
you type.

Much of this documentation is generated from comments in the source code using a tool
called RubyDoc, which we’ll look at in Chapter 19, Documenting Ruby, on page 313 The
RubyDoc site at https://www.rubydoc.info contains documentation for Ruby projects that use
RubyDoc. Third-party libraries in the Ruby world are called gems, and the official listing of
Ruby Gems is at https://rubygems.org, we’ll talk lots more about gems in Chapter 15, Ruby
Gems, on page 251.

There is also a command-line tool for the Ruby core documentation called ri. To find the
documentation for a class, type ri <classname>. For example, the following is the beginning
of the summary information for the String class. If you type ri with no arguments, you get a
prompt asking you for a class.

= String < Object

--
= Includes:
Comparable (from ruby core)

(from ruby core)
--

A String object has an arbitrary sequence of bytes, typically
representing text or binary data. A String object may be created using
String::new or as literals.

String objects differ from Symbol objects in that Symbol objects are
designed to be used as identifiers, instead of text or data.

It goes on to list all the methods of String.

You can also try a method name:

$ ri strip

= .strip

(from ruby core)
=== Implementation from String
--
str.strip -> new_str

--

Returns a copy of the receiver with leading and trailing whitespace
removed.

Whitespace is defined as any of the following characters: null,
horizontal tab, line feed, vertical tab, form feed, carriage return,

Chapter 1. Getting Started • 14

report erratum • discuss

https://docs.ruby-lang.org
https://ruby-doc.org/core-3.2.0
https://ruby-doc.org/stdlib-3.2.0
https://ruby-doc.org/stdlib-3.2.0
https://www.rubydoc.info
https://rubygems.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

space.

" hello ".strip #=> "hello"
"\tgoodbye\r\n".strip #=> "goodbye"
"\x00\t\n\v\f\r ".strip #=> ""
"hello".strip #=> "hello"

You can then exit the listing by typing q.

What’s Next
Now that you’re up and running with Ruby, it’s time to learn how Ruby works and the main
features of the language. First, however, we’ll do a quick overview of the highlights of the
entire language.

report erratum • discuss

What’s Next • 15

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 2

Ruby.new
Many books on programming languages look about the same. They start with chapters on
basic types: integers, strings, and so on. Then they look at expressions like 2 + 3, before
moving on to if and while statements and loops. Then, perhaps around Chapter 7 or 8, they’ll
start mentioning classes. We find that somewhat tedious.

Instead, when we designed this book, we had a grand plan. We wanted to document the
language from the top down, starting with classes and objects and ending with the nitty-
gritty syntax details. It seemed like a good idea at the time. After all, most everything in
Ruby is an object, so it made sense to talk about objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language top-down. If you haven’t
covered strings, if statements, assignments, and other details, it’s difficult to write examples
of classes. Throughout our top-down description, we kept coming across low-level details
we needed to cover so that the example code would make sense.

So we came up with another grand plan (they don’t call us pragmatic for nothing). We’d
still describe Ruby starting at the top. But before we did that, we’d add a short chapter that
described all the common language features used in the examples along with the special
vocabulary used in Ruby, a mini-tutorial to bootstrap us into the rest of the book. And that
mini-tutorial is this chapter.

Ruby Is an Object-Oriented Language
Let’s say it again. Ruby is an object-oriented language. In programming terms, an object is a
thing that combines data with the logic that manipulates that data, and a language is “object-
oriented” if it provides language constructs that make it easy to create objects. Typically,
object-oriented languages allow their objects to define what their data is, define their func-
tionality, and provide a common syntax to allow other objects to access that functionality.

However, many languages claim to be object-oriented, and those languages often have a
different interpretation of what object-oriented means and a different terminology for the
concepts they employ. Unlike other object-oriented languages such as Java, JavaScript, and
Python, all Ruby types are objects, and there are no non-object basic types that behave dif-
ferently.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Before we get too far into the details, let’s briefly look at the terms and notations that we’ll
be using to talk about Ruby.

When you write object-oriented programs, you’re looking to model concepts from the outside
world or from your logical domain. During this modeling process you’ll discover categories
of related data and behavior that need to be represented in code. In a system representing
a jukebox, the concept of a “song” could be such a category. A song might combine state
(for example, the name of the song) and methods that use that state (perhaps a method to
play the song). In Ruby, you’d define a class called Song to represent the general case of what
songs do.

Once you have these classes, you’ll typically want to create a number of separate instances
of each. For the jukebox system containing a class called Song, you’d have separate instances
for popular hits with different names such as “Ruby Tuesday,” “Enveloped in Python,”
“String of Pearls,” “Small Talk,” and so on. Each of these instances has their own state but
shares the common behavior of the class. The word object is often used interchangeably with
instance.

In Ruby, instances are created by calling a constructor, which is a special method associated
with a class. The standard constructor is called new. As we’ll see later in Chapter 3, Classes,
Objects, and Variables, on page 33, the new method is defined for you by Ruby, and you
don’t need to define it on your own. You might create instances like this:

song1 = Song.new("Ruby Tuesday")
song2 = Song.new("Enveloped in Python")
and so on

These instances are both derived from the same class, but they each have unique character-
istics. Every object has a unique object identifier (abbreviated as object id), accessible via the
property object_id. In the above example, if you were to check song1.object_id and song2.object_id,
you would find they have different values.

For each instance, you can define instance variables, variables with values that are unique to
that instance. These instance variables hold an object’s state. Each of our songs, for example,
will have an instance variable that holds that song’s title.

Within each class, you can define instance methods. Each method is a chunk of functionality
that may be called in the context of the class and usually from outside the class, although
you can set constraints on what methods can be used externally. These instance methods
have access to the object’s instance variables and hence to the object’s state. A Song class, for
example, might define an instance method called play. If a variable referenced a particular
Song instance, you’d be able to call that instance’s play method and play that song.

Syntactically, a method is invoked using dot syntax, here are some examples:

intro/puts_examples.rb
"gin joint".length # => 9
"Rick".index("c") # => 2
42.even? # => true
sam.play(song) # => "duh dum, da dum de dum ..."

Each line shows a method being called. The item before the dot is called the receiver of the
method, and what comes after the period is the name of the method to be invoked. The first
example asks the string "gin joint" for its length; the second asks a different string to find the

Chapter 2. Ruby.new • 18

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/intro/puts_examples.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

index within it of the letter c. The third line asks the number 42 if it is even (the question
mark is part of the method name even?). Finally, we ask an object called sam to play us a song
(assuming there’s an existing variable called sam that references an appropriate object which
we have defined elsewhere).

When we talk about methods being sent, we often say that we send a message to the object.
The message contains the method’s name, along with any arguments the method may expect.
The object responds to the message by invoking the method with that name. This idea of
expressing method calls in the form of messages to objects comes from the programming
language Smalltalk. When an object receives a message, it looks into its own class for a cor-
responding method. If found, that method is executed. If the method isn’t found, Ruby goes
off to look for it—we’ll get to where Ruby looks in Method Lookup, on page 113.

It’s worth noting here a major difference between Ruby and other object-oriented languages.
In Java, for example, you’d find the absolute value of some number by calling a separate
function and passing in that number. You could write this:

num = Math.abs(num); // Java code

In Ruby, the ability to determine an absolute value is built into the numbers class which
takes care of the details internally. You send the message abs to a number object and let it
do the work:

num = -1234 # => -1234
positive = num.abs # => 1234

The same applies to all Ruby objects. In Python you’d write len(name), but in Ruby it would
be name.length, and so on. This consistency of behavior is what we mean when we say that
Ruby is a pure object-oriented language with no basic types.

Some Basic Ruby
Not everybody likes to read heaps of boring syntax rules when they’re picking up a new
language, so we’re going to cheat. In this section, we’ll hit the highlights—the stuff you’ll
need to know if you’re going to write Ruby programs. Later, in Part IV, Ruby Language
Reference, on page 427, we’ll go into all the gory details.

Let’s start with a short Ruby program. We’ll write a method that returns a personalized
greeting. We’ll then invoke that method a couple of times:

intro/hello1.rb
def say_hello_goodbye(name)
result = "I don't know why you say goodbye, " + name + ", I say hello"
return result

end

call the method
puts say_hello_goodbye("John")
puts say_hello_goodbye("Paul")

produces:

I don't know why you say goodbye, John, I say hello
I don't know why you say goodbye, Paul, I say hello

As the example shows, Ruby syntax is uncluttered. You don’t need semicolons at the ends
of statements as long as you put each statement on a separate line. Ruby comments start

report erratum • discuss

Some Basic Ruby • 19

http://media.pragprog.com/titles/ruby5/code/intro/hello1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

with a # character and run to the end of the line. Code layout is up to you; indentation is
not significant. That said, two-character indentation—spaces, not tabs—is the overwhelming
choice of the Ruby community.

Methods are defined with the keyword def, followed by the method name—in this case, the
name is say_hello_goodbye—and then the method’s parameters between parentheses. (In fact,
the parentheses are optional, but we recommend you use them.) Ruby doesn’t use braces to
delimit the bodies of compound statements and definitions. Instead, you finish the body
with the keyword end. Our method’s body is pretty short. The first line concatenates the lit-
eral string "I don't know why you say goodbye, " and the parameter name and the literal string ",
I say hello" and assigns the result to the local variable result. The next line returns that result
to the caller. Note that we didn’t have to declare the variable result; it sprang into existence
when we assigned to it.

Having defined the method, we invoke it twice. In both cases, we pass the result to the
method puts, which simply outputs its argument followed by a newline (moving on to the
next line of output):

I don't know why you say goodbye, John, I say hello
I don't know why you say goodbye, Paul, I say hello

The line puts say_hello_goodbye("John") actually contains two method calls, one to the method
say_hello_goodbye with the argument “John” and the other to the method putswhose argument
is the result of the call to say_hello_goodbye . Why does one call have its arguments in paren-
theses while the other doesn’t? In this case, it’s purely a matter of taste—the puts method is
available to all objects and is often written without parentheses around its argument. Ruby
does not require parenthesis unless they are directly needed for the interpreter to parse the
statement the way you want. The following lines are equivalent:

puts say_hello_goodbye("John")
puts(say_hello_goodbye("John"))

Life isn’t always simple, and precedence rules can make it difficult to know which argument
goes with which method invocation, so we recommend using parentheses in all but the
simplest cases. You will see that Ruby programs often omit the parenthesis when the method
does not have an explicit receiver and only has one argument.

This example also shows Ruby string objects. Ruby has many ways to create a string object,
but the most common is to use string literals, which are sequences of characters between
single or double quotation marks. The two forms differ in the amount of processing Ruby
does on the string while constructing the literal. In the single-quoted case, Ruby does very
little. With a few exceptions, what you enter in the string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitution sequences
that start with a backslash character and replaces them with some binary value. The most
common of these substitutions is \n, which is replaced with a newline character. When a
string containing a newline is output, that newline becomes a line break:

puts "Hello and goodbye to you,\nGeorge"

produces:

Hello and goodbye to you,
George

Chapter 2. Ruby.new • 20

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The second thing that Ruby does with double-quoted strings is expression interpolation.
Within the string, the sequence #{EXPRESSION} is replaced by the value of EXPRESSION. We
could use this to rewrite our previous method:

def say_hello_goodbye(name)
result = "I don't know why you say goodbye, #{name}, I say hello"
return result

end
puts say_hello_goodbye("Ringo")

produces:

I don't know why you say goodbye, Ringo, I say hello

When Ruby constructs this string object, it looks at the current value of name and substitutes
it into the string. Arbitrarily complex expressions are allowed in the #{...} construct. In the
following example, we invoke the capitalize method, defined for all strings, to output our
parameter with a leading uppercase letter:

def say_hello_goodbye(name)
result = "I don't know why you say goodbye, #{name.capitalize}, I say hello"
return result

end
puts say_hello_goodbye("john")

produces:

I don't know why you say goodbye, John, I say hello

For more information on strings, as well the other Ruby standard types, see Chapter 7, Basic
Types: Numbers, Strings, and Ranges, on page 117.

We could simplify our say_hello_goodbye method some more. In the absence of an explicit
return statement, the value returned by a Ruby method is the value of the last expression
evaluated, so we can get rid of the temporary variable and the return statement altogether.

def say_hello_goodbye(name)
"I don't know why you say goodbye, #{name}, I say hello"

end
puts say_hello_goodbye("Paul")

produces:

I don't know why you say goodbye, Paul, I say hello

This version is considered more idiomatic, by which we mean that it is more in line with how
expert Ruby programmers have chosen to write Ruby programs. Idiomatic Ruby tends to
lean into Ruby’s shortcuts and specific syntax. A good clearinghouse for the guidelines for
idiomatic Ruby style can be found in the documentation for the Standard gem at
https://github.com/testdouble/standard, which has been used for the code in this book (except
where we deliberately break its rules to make a point.)

We promised that this section would be brief. We have just one more topic to cover: Ruby
names. For brevity, we’ll be using some terms (such as class variable) that we aren’t going to
define here. However, by talking about the rules now, you’ll be ahead of the game when we
actually come to discuss class variables and the like later.

Ruby uses a convention that may seem strange at first: the first characters of a name indicate
how broadly the variable is visible. Local variables, method parameters, and method names

report erratum • discuss

Some Basic Ruby • 21

https://github.com/testdouble/standard
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

should all start with a lowercase letter or an underscore (Ruby itself has a couple of methods
that start with a capital letter, but in general this is not something to do in your own code).

Global variables are prefixed with a dollar sign, $, and instance variables begin with an “at”
sign, @. Class variables start with two “at” signs, @@. Although we talk about global and
class variables here for completeness, you’ll find they are rarely used in Ruby programs.
There’s a lot of evidence that global variables make programs harder to maintain. Class
variables are not as dangerous as global variables, but they are still tricky to use safely—peo-
ple tend not to use them much, because there are often easier ways to get similar functional-
ity. Finally, class names, module names, and other constants must start with an uppercase
letter. Samples of different names are given in Table 1, Example variable, class, and constant
names, on page 23.

Following this initial character, a name can contain any combination of letters, digits, and
underscores, with the exception that the character following an @ sign may not be a digit.
However, by convention, multiword instance variables are written with underscores between
the words, like first_name or zip_code, and multiword class names are written in MixedCase
(sometimes called CamelCase) with each word capitalized, like FirstName or ZipCode. Constant
names are written in all caps, with words separated by underscores, like FIRST_NAME or
ZIP_CODE. Method names may end with the characters ?, !, and =.

Arrays and Hashes
Ruby provides a few different ways to combine objects into collections. Most of the time,
you’ll use two of them: Arrays and Hashes. An Array is a linear list of objects, you retrieve
them via their index, which is the number of their place in the array, starting at zero for the
first slot. A Hash is an association, meaning it is a key/value store where each value has an
arbitrary key, and you retrieve the value via that key. Both arrays and hashes grow as
needed to hold new elements. Any particular array or hash can hold objects of differing
types; you can have an array containing an integer, then a string, then a floating-point
number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set of elements
between square brackets. Given an array object, you can access individual elements by
supplying an index between square brackets, as the next example shows. Note that Ruby
array indices start at zero.

a = [1, 'cat', 3.14] # array with three elements
puts "The first element is #{a[0]}"
set the third element
a[2] = nil
puts "The array is now #{a.inspect}"

produces:

The first element is 1
The array is now [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In many languages,
the concept of nil (or null) means “no object.” In Ruby, that’s not the case; nil is an object, just
like any other. It’s just an object that represents the concept of nothing. Anyway, let’s get
back to arrays and hashes.

Chapter 2. Ruby.new • 22

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

name fish_and_chips x_axis thx1138 _x _26Local Variable:
@name @point_1 @X @_ @plan9Instance Variable:
@@total @@symtab @@N @@x_pos @@SINGLEClass Variable:
$debug $CUSTOMER $_ $plan9 $GlobalGlobal Variable:
String ActiveRecord MyClassClass Name:
FEET_PER_MILE DEBUGConstant Name:

Table 1—Example variable, class, and constant names

Ruby hash syntax is similar to array syntax. A hash literal uses braces rather than square
brackets. The literal must supply two objects for every entry: one for the key, the other for
the value. Most generically, the key and value are separated by =>, though we’ll see that
there is a very commonly used shortcut.

For example, you could use a hash to map musical instruments to their orchestral sections.

instrument_section = {
"cello" => "string",
"clarinet" => "woodwind",
"drum" => "percussion",
"oboe" => "woodwind",
"trumpet" => "brass",
"violin" => "string"

}

The thing to the left of the => is the key, and the thing to the right is the corresponding value.
Keys in a particular hash must be unique; you can’t have two entries for “drum.” The keys
and values in a hash can be arbitrary objects. You can have hashes where the values are
arrays, other hashes, and so on. The order of the keys in the hash is stable and will always
match the order in which the keys were added to the hash. If you assign a new value to a
key, the old value is erased.

Hashes are indexed using the same square bracket notation as arrays.

p instrument_section["oboe"] # => "woodwind"\n"string"
p instrument_section["cello"] # => "string"\nnil
p instrument_section["bassoon"] # => nil

The default behavior of a hash when indexed by a key it doesn’t contain is to return nil,
representing the absence of a value.

Sometimes you’ll want to change this default behavior. For example, if you’re using a hash
to count the number of times each different word occurs in a file, it’s convenient to have the
default value be zero. Then you can use the word as the key and increment the corresponding
hash value without worrying about whether you’ve seen that word before. This can be done
by specifying a default value when you create a new, empty hash:

histogram = Hash.new(0) # The default value is zero
histogram["ruby"] # => 0
histogram["ruby"] = histogram["ruby"] + 1
histogram["ruby"] # => 1

report erratum • discuss

Arrays and Hashes • 23

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Symbols
Often, when programming, you need to use the same string over and over. Perhaps the
string is a key in a Hash, or maybe the string is the name of a method. In that case, you’d
probably want access to that string to be immutable so its value can’t change, and you also
want accessing the string be as fast and use as little memory as possible.

Which brings us to Ruby’s symbols. Symbols aren’t exactly optimized strings, but for most
purposes, you can think of them as special strings that are immutable, are only created once,
and are very fast to look up. Symbols are meant to be used as keys and identifiers, where
strings are meant to be used for data.

A symbol literal starts with a colon and is followed by some kind of name:

walk(:north)
look(:east)

In this example, we are using the symbols :north and :east to represent constant values in the
code. We don’t need to declare the symbols or assign them a value—Ruby takes care of that
for you. The value of a symbol is equivalent to its name.

Ruby also guarantees that no matter where they appear in your program, symbols with the
same name will have the same value—indeed, they will be the same internal object. As a
result, you can safely write the following:

def walk(direction)
if direction == :north
...

end
end

Because their values don’t change, symbols are frequently used as keys in hashes. We could
write our previous hash example using symbols as keys:

intro/hash_with_symbol_keys.rb
instrument_section = {
:cello => "string",
:clarinet => "woodwind",
:drum => "percussion",
:oboe => "woodwind",
:trumpet => "brass",
:violin => "string"

}
instrument_section[:oboe] # => "woodwind"
instrument_section[:cello] # => "string"
Note that strings aren"t the same as symbols...
instrument_section["cello"] # => nil

Note from the last line that a symbol key is different from a string key, and access via one
will not result in a value associated with the other.

Symbols are so frequently used as hash keys that Ruby has a shortcut syntax: you can use
name: value pairs to create a hash instead of name => value if the key is a symbol:

intro/hash_with_symbol_keys_19.rb
instrument_section = {

Chapter 2. Ruby.new • 24

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/intro/hash_with_symbol_keys.rb
http://media.pragprog.com/titles/ruby5/code/intro/hash_with_symbol_keys_19.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

cello: "string",
clarinet: "woodwind",
drum: "percussion",
oboe: "woodwind",
trumpet: "brass",
violin: "string"

}
puts "An oboe is a #{instrument_section[:oboe]} instrument"

produces:

An oboe is a woodwind instrument

This syntax was added, in part, to be familiar to programmers familiar with JavaScript and
Python, both of which use a colon as a separator in key/value pairs.

Control Structures
Ruby has all the usual control structures, such as if statements and while loops. Java or Java-
Script programmers may be surprised by the lack of braces around the bodies of these
statements. Instead, Ruby uses the keyword end to signify the end of a body of a control
structure:

intro/weekdays.rb
today = Time.now

if today.saturday?
puts "Do chores around the house"

elsif today.sunday?
puts "Relax"

else
puts "Go to work"

end

produces:

Relax

One thing you might find unusual is that in the second clause Ruby uses the keyword elsif
—one word, missing an “e”—to indicate “else if”. Breaking that keyword up into else ifwould
be a syntax error.

Similarly, while statements are terminated with end and loop as long as the condition on the
line with the while is true:

num_pallets = 0
weight = 0
while weight < 100 && num_pallets <= 5
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

Most lines that look like statements in Ruby are actually expressions that return a value,
which means you can use those expressions as conditions. For example, the Kernel method
gets returns the next line from the standard input stream or nil when the end of the file is
reached. Because Ruby treats nil as a false value in conditions, you could write the following
to process the lines in a file:

report erratum • discuss

Control Structures • 25

http://media.pragprog.com/titles/ruby5/code/intro/weekdays.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

while (line = gets)
puts line.downcase

end

The assignment statement sets the variable line to the result of calling gets, which will either
be the next line of text or nil. Then the while statement tests the value returned by the assign-
ment statement, which is the value assigned. When the value is nil, that means the output
has no further lines and the while loop terminates.

Ruby statement modifiers are a useful shortcut if the body of an if or while statement is just a
single expression. Write the expression, followed by if or while and the condition. For example,
here’s a single-line if statement:

if radiation > 3000
puts "Danger, Will Robinson"

end

Here it is again, rewritten using a statement modifier:

puts "Danger, Will Robinson" if radiation > 3000

Similarly, this while loop:

square = 4
while square < 1000
square = square * square

end

becomes this more concise version:

square = 4
square = square * square while square < 1000

The if version of these modifiers is perhaps most commonly used as a guard clause at the
beginning of a method, as in return nil if user.nil?. The while version is much less commonly
used.

Regular Expressions
Most of Ruby’s built-in types will be familiar to all programmers. A majority of languages
have strings, integers, floats, arrays, and so on. However not all languages have built-in
support for regular expressions, the way that Ruby or JavaScript do. This is a shame, because
regular expressions, although cryptic, are a powerful tool for working with text. And having
them built in, rather than tacked on through a library interface, makes a big difference.

Entire books have been written about regular expressions (for example, Mastering Regular
Expressions by Jeffrey Friedl), so we won’t try to cover everything in this short section. Instead,
we’ll look at a few examples of regular expressions in action. You’ll find more coverage of
regular expressions in Chapter 8, Regular Expressions, on page 129.

A regular expression is a way of specifying a pattern of characters to be matched in a string.
In Ruby, you typically create a regular expression by writing a pattern between slash char-
acters (/pattern/). And, Ruby being Ruby, regular expressions are objects and can be manip-
ulated as such.

Chapter 2. Ruby.new • 26

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

For example, you could write a pattern that matches a string containing the text Ruby or the
text Rust using the following regular expression:

/Ruby|Rust/

The forward slashes delimit the pattern, which consists of the two things we are matching,
separated by a pipe character (|). In regular expressions, the pipe character means “either
the thing on the right or the thing on the left,” in this case either Ruby or Rust. You can use
parentheses within patterns, just as you can in arithmetic expressions, so this pattern
matches the same set of strings:

/Ru(by|st)/

You can also specify repetitionwithin patterns. /ab+c/matches a string containing an a followed
by one or more b’s, followed by a c. Change the plus to an asterisk, and /ab*c/ creates a regular
expression that matches one a, zero or more b’s, and one c.

You can also match one of a group of characters within a pattern. Some common examples
are character classes such as \s, which matches a whitespace character (space, tab, newline,
and so on); \d, which matches any digit; and \w, which matches any character that may appear
in a typical word. A dot (.) matches (almost) any character. A table of these character classes
appears in Table 2, Character class abbreviations, on page 136.

We can put all this together to produce some useful regular expressions:

/\d\d:\d\d:\d\d/ # a time such as 12:34:56
/Ruby.*Rust/ # Ruby, zero or more other chars, then Rust
/Ruby Rust/ # Ruby, exactly one space, and Rust
/Ruby *Rust/ # Ruby, zero or more spaces, and Rust
/Ruby +Rust/ # Ruby, one or more spaces, and Rust
/Ruby\s+Rust/ # Ruby, one or more whitespace characters, then Rust
/Java (Ruby|Rust)/ # Java, a space, and either Ruby or Rust

Once you have created a pattern, it seems a shame not to use it. The match operator =~ can
be used to match a string against a regular expression. If the pattern is found in the string,
=~ returns its starting position; otherwise, it returns nil. This means you can use regular
expressions as the condition in if and while statements. For example, the following code
fragment writes a message if a string contains the text Ruby or Rust:

line = gets
if line =~ /Ruby|Rust/
puts "Programming language mentioned: #{line}"

end

Both strings and regular expressions have a match? method which is synonymous to the =~
operator:

line = gets
if line.match?(/Ruby|Rust/)
puts "Scripting language mentioned: #{line}"

end

The match? form is probably more common in written Ruby.

The part of a string matched by a regular expression can be replaced with different text using
one of Ruby’s substitution methods:

report erratum • discuss

Regular Expressions • 27

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

line = gets
newline = line.sub(/Python/, 'Ruby') # replace first 'Python' with 'Ruby'
newerline = line.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby'

You can replace every occurrence of JavaScript and Python with Ruby using this:

line = gets
newline = line.gsub(/JavaScript|Python/, 'Ruby')

We’ll have a lot more to say about regular expressions as we go through the book.

Blocks
This section briefly describes one of Ruby’s particular strengths — blocks. A code block is a
chunk of code you can pass to a method, as if the block were another parameter. This is an
incredibly powerful feature, allowing Ruby methods to be extremely flexible. One of this
book’s early reviewers commented at this point: “This is pretty interesting and important,
so if you weren’t paying attention before, you should probably start now.” We still agree.

Syntactically, code blocks are chunks of code that can be delimited one of two ways: between
braces or between do and end. This is a code block at the end of a message call:

foo.each { puts "Hello" }

This is also a code block at the end of a message call:

foo.each do
club.enroll(person)
person.socialize

end

The two kinds of block delimiter have different precedence: the braces bind more tightly
than the do/end pairs, a fact that will almost never make a difference in your code. In practice,
the standard you will most often see is to use braces for single-line blocks and do/end for
multiline blocks.

You can pass a block as an argument to any method call, even if the method doesn’t do
anything with the block. You do this by starting the block at the end of the method call, after
any other parameters. For example, in the following code, the block containing puts "Hi" is
associated with the call to the method greet (which we don’t show here):

greet { puts "Hi" }

If the method has parameters, they appear before the block, and you can only pass one block
per method call. In Blocks and Enumeration, on page 62, we’ll see other ways to manage
blocks and arbitrary chunks of code.

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the Ruby yield
statement. The yield statement invokes the block that was passed to the method, passing
control to the code inside the block.

The following example shows a block call in action. We define a method that calls yield twice.
We then call this method, putting a block on the same line after the call, and after any argu-
ments to the method. You can think of the association of a block with a method as a kind of

Chapter 2. Ruby.new • 28

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

argument passing. This works on one level, but it isn’t really the whole story. The block is
effectively an entire other method that can be invoked or passed forward as an argument to
another method. For example:

intro/block_example.rb
def call_block
puts "Start of method"
yield
yield
puts "End of method"

end

call_block { puts "In the block" }

produces:

Start of method
In the block
In the block
End of method

In this example, code in the block (puts "In the block") is executed twice, once for each call to
yield passing control to the block.

You can provide arguments to yield, and they will be passed to the block. Within the block,
you list the names of the parameters to receive these arguments between vertical bars
(|params...|). The following example shows a method calling its associated block twice, passing
the block two arguments each time:

intro/block_example2.rb
def who_says_what
yield("Dave", "hello")
yield("Andy", "goodbye")

end

who_says_what { |person, phrase| puts "#{person} says #{phrase}" }

produces:

Dave says hello
Andy says goodbye

You can use code blocks to package code to implement a later callback. Code blocks can be
used to pass around chunks of code, and are used throughout the Ruby standard library to
allow methods to perform an action on successive elements from a collection such as an
array. The act of doing something similar to all objects in a collection is called enumeration
in Ruby; other languages call this iteration.

animals = ["ant", "bee", "cat", "dog"] # create an array
animals.each { |animal| puts animal } # iterate over the contents

produces:

ant
bee
cat
dog

Many of the looping constructs that are built into languages such as Java and JavaScript are
method calls in Ruby, with the methods invoking an associated block zero or more times:

report erratum • discuss

Blocks • 29

http://media.pragprog.com/titles/ruby5/code/intro/block_example.rb
http://media.pragprog.com/titles/ruby5/code/intro/block_example2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

["cat", "dog", "horse"].each { |name| print name, " " }
5.times { print "*" }
3.upto(6) { |i| print i }
("a".."e").each { |char| print char }
("a".."e").each { print _1 }

produces:

cat dog horse *****3456abcdeabcde

In the first line, we ask an array to call the block once for each of its elements. Next, the object
5 calls a block five times, printing * each time. Rather than use for loops, the third example
shows that in Ruby we can ask the number 3 to call a block, passing in successive values
until it reaches 6. Finally, we use Ruby’s literal syntax for ranges of values to have the range
of characters from a to e invoke a block using the method each, we show that example twice,
once using Ruby’s normal block parameter syntax, and the second using Ruby’s shortcut
for block parameters that we’ll see in Blocks, on page 65.

Reading and ‘Riting
Ruby comes with a comprehensive library to manage input and output (I/O). However, in
most of the examples in this book, we’ll stick to a few simple methods. We’ve already come
across methods that write output: puts writes its arguments with a newline after each; p also
writes its arguments but will produce more debuggable output. Both can be used to write
to any I/O object, but by default they write to the standard output stream.

There are many ways to read input into your program. Probably the most traditional is to
use the method gets—short for “get string”, which returns the next line from your program’s
standard input stream:

line = gets
print line

Because gets returns nil when it reaches the end of input, you can use its return value in a
loop condition. Notice that in the following code the condition to the while is an assignment:
we store whatever gets returns into the variable line and then test to see whether that returned
value was nil or false before continuing:

while (line = gets)
print line

end

In Chapter 11, Basic Input and Output, on page 179, we’ll talk more about how to read and
write from a file or other data source.

Command-Line Arguments
When you run a Ruby program from the command line, you can pass in arguments. These
are accessible from your Ruby code in two different ways.

First, the global array ARGV contains each of the arguments passed to the running program.
Create a file called cmd_line.rb that contains the following:

puts "You gave #{ARGV.size} arguments"
p ARGV

Chapter 2. Ruby.new • 30

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

When we run it with arguments, we can see that they get passed in:

$ ruby cmd_line.rb ant bee cat dog
You gave 4 arguments
["ant", "bee", "cat", "dog"]

Often, the arguments to a program are the names of files that you want to process. In this
case, you can use a second technique: the variable ARGF is a special kind of I/O object that
acts like all the contents of all the files whose names are passed on the command line (or
standard input if you don’t pass any filenames). We’ll look at that some more in ARGF, on
page 238.

Commenting Ruby
Ruby has two ways of adding comments to source code, one of which you will use, and one
of which you will almost certainly not use. The common one is the# symbol—anything after
that symbol until the end of the line is a comment and is ignored by the interpreter. If the
next line continues the comment, it needs its own # symbol.

Ruby also has a vary rarely used multiline comment, where the first line starts with =begin
and everything is a comment until the code reaches =end. Both the =begin and =end must be
at the very beginning of the line, they cannot be indented.

While we did just say that Ruby ignores comments, Ruby uses a very small number of
“magic comments” for configuration options on a per-file basis. These comments have the
form of # directive: value and must appear in the file before the first line of actual Ruby code.

The most commonly used magic comment is # frozen_string_literal: true. If this directive is true,
then every string literal that does not have an interpolation inside it will automatically be
frozen, as though freeze was called on it.

You might also see an # encoding: VALUE directive, which specifies the encoding for string and
regular expression literals inside that particular file. Ruby also has a # warn_indent: BOOLEAN
flag that will throw code warnings if a file’s indentation is mismatched. There’s an experi-
mental directive called # sharable_constant_value: which affects how values are shared using
the Ractor multithreading tools.

What’s Next
We finished our lightning-fast tour of some of the basic features of Ruby. We took a look at
objects, methods, strings, containers, and regular expressions; saw some simple control
structures; and we looked at some rather nifty iterators. We hope this chapter has given you
enough ammunition to be able to attack the rest of this book.

It’s time to move on and move up—up to a higher level. Next, we’ll be looking at classes
and objects, things that are at the same time both the highest-level constructs in Ruby and
the essential underpinnings of the entire language.

report erratum • discuss

Commenting Ruby • 31

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 3

Classes, Objects, and Variables
From the examples we’ve shown so far, you may be wondering about our earlier assertion
that Ruby is an object-oriented language. Well, here is where we justify that claim. We’re
going to be looking at how you create classes and objects in Ruby and at some of the ways
that Ruby is more flexible than other object-oriented languages.

As we said on page 17, everything we manipulate in Ruby is an object. And every object in
Ruby was instantiated either directly or indirectly from a class. In this chapter, we’ll look in
more depth at creating and manipulating those classes.

Defining Classes
Let’s give ourselves a simple problem to solve. Suppose we’re running a secondhand book-
store. Every week, we do stock control. A gang of clerks uses portable bar-code scanners to
record every book on our shelves. Each scanner generates a comma-separated value (CSV)
file containing one row for each book scanned. The row contains (among other things) the
book’s ISBN and price. An extract from one of these files looks something like this:

tut_classes/stock_stats/data.csv
"Date","ISBN","Price"
"2013-04-12","978-1-9343561-0-4",39.45
"2013-04-13","978-1-9343561-6-6",45.67
"2013-04-14","978-1-9343560-7-4",36.95

Our job is to take all the CSV files and work out how many of each title we have, as well as
the total list price of the books in stock.

Whenever you’re designing an Object-Oriented system, a good first step is to identify the
domain concepts you’re dealing with. Typically the domain concepts—which could represent
a physical object, or a process, or some other kind of entity—become classes in your final
program, and then individual examples of those concepts are instances of these classes.

It seems pretty clear that we’ll need something to represent each data reading captured by
the scanners. Each instance of this class will represent a particular row of data, and the col-
lection of all of these objects will represent all the data we’ve captured.

Let’s call this class BookInStock. (Remember, class names start with an uppercase letter, and
method names normally start with a lowercase letter.) Here’s how we declare that class in
Ruby using the keyword class:

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/data.csv
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

class BookInStock
end

As we saw in the previous chapter, we can create new instances of this class using the method
new:

a_book = BookInStock.new
another_book = BookInStock.new

After this code runs, we’d have two distinct objects, both instances of class BookInStock. But
there’s nothing to distinguish one instance from the other, aside from the fact that they have
different internal object ids. Worse, these objects don’t yet hold any of the information we
need them to hold.

The best way to fix this is to provide the class with an initialize method. This method lets us
set the state of each object as it is constructed. We store this state in instance variables inside
the object. (Remember instance variables? They’re the ones that start with an@ sign.) Because
each object in Ruby has its own distinct set of instance variables, each object can have its
own unique state.

Here’s our updated class definition:

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
end

The initialize method is special in Ruby programs. When you call BookInStock.new to create a
new object, Ruby allocates some memory to hold an uninitialized object and then calls that
object’s initialize method, passing through all arguments that were passed to new. This gives
you a chance to write code that sets up your object’s state.

For class BookInStock, the initialize method takes two parameters. These parameters act just
like local variables within the method, so they follow the local variable naming convention
of starting with a lowercase letter. But, as local variables, they would just evaporate once
the initialize method returns, so we need to transfer them into instance variables. This is very
common behavior in an initialize method—the intent is to have our object set up and usable
by the time initialize returns.

This method also illustrates something that often trips up newcomers to Ruby. Notice how
we say @isbn = isbn. It’s easy to imagine that the two variables here, @isbn and isbn, are
somehow related. It looks like they have the same name, but they don’t. The former is an
instance variable, and the “at” sign is actually part of its name.

Finally, this code illustrates a basic piece of validation. The Float method takes its argument
and converts it to a floating-point number, terminating the program with an error if that
conversion fails. Later in the book we’ll see other, more resilient, ways to handle these
exceptional situations. (We know that we shouldn’t be holding prices in inexact old floats.
Ruby has classes that hold fixed-point values exactly, but we want to look at classes, not
arithmetic, in this section.)

What we’re doing here is saying that we want to accept any object for the price parameter as
long as that parameter can be converted to a float. We can pass in a float, an integer, or even

Chapter 3. Classes, Objects, and Variables • 34

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

a string containing the representation of a float, and it will work. Let’s try this now. We’ll
create three objects, each with different initial state. The p method prints out an internal
representation of an object. Using it, we can see that in each case our parameters got trans-
ferred into the object’s state, ending up as instance variables:

tut_classes/stock_stats/book_in_stock_1.rb
class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
end

b1 = BookInStock.new("isbn1", 3)
p b1

b2 = BookInStock.new("isbn2", 3.14)
p b2

b3 = BookInStock.new("isbn3", "5.67")
p b3

produces:

#<BookInStock:0x00000001049d87a8 @isbn="isbn1", @price=3.0>
#<BookInStock:0x00000001049d8320 @isbn="isbn2", @price=3.14>
#<BookInStock:0x00000001049d80c8 @isbn="isbn3", @price=5.67>

Why did we use the p method to write out our objects, rather than puts? Well, let’s repeat
the code using puts:

tut_classes/stock_stats/book_in_stock_1a.rb
class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
end

b1 = BookInStock.new("isbn1", 3)
puts b1

b2 = BookInStock.new("isbn2", 3.14)
puts b2

b3 = BookInStock.new("isbn3", "5.67")
puts b3

produces:

#<BookInStock:0x00000001001b8860>
#<BookInStock:0x00000001001b84c8>
#<BookInStock:0x00000001001b8388>

Remember, putswrites strings to your program’s standard output. When you pass it an object
based on a class you wrote, it doesn’t really know what to do with the object yet, so it uses
a simple expedient: it writes the name of the object’s class, followed by a colon and the
object’s unique object identifier, which is a hexadecimal number. It puts the whole lot inside
#<...>.

report erratum • discuss

Defining Classes • 35

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_1a.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Our experience tells us that during development we’ll be printing out the contents of a
BookInStock object many times, and the default formatting leaves something to be desired.
Fortunately, Ruby has a standard message, to_s, that it sends to any object it wants to render
as a string. The default behavior of to_s, defined in the Object class, is the ClassName then
colon then object id behavior we just described, So, when we pass one of our BookInStock
objects to puts, the puts method calls to_s in that object to get its string representation.

If we want different behavior, we can override the default implementation of to_s to give us
a better rendering of our objects, we’ll talk more about how this works in Chapter 6, Sharing
Functionality: Inheritance, Modules, and Mixins, on page 101:

tut_classes/stock_stats/book_in_stock_2.rb
class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def to_s
"ISBN: #{@isbn}, price: #{@price}"

end
end

b1 = BookInStock.new("isbn1", 3)
puts b1
b2 = BookInStock.new("isbn2", 3.14)
puts b2
b3 = BookInStock.new("isbn3", "5.67")
puts b3

produces:

ISBN: isbn1, price: 3.0
ISBN: isbn2, price: 3.14
ISBN: isbn3, price: 5.67

The p method actually has a different message it calls on objects, that method is named
inspect<mi:classmethod>Kernel#inspect</mi:classmethod>. The difference is that inspect is designed
to produce a representation that is useful to a developer when debugging and to_s is supposed
to produce a human-readable one for more general output.

There’s something going on here that’s both trivial and profound. See how the values we
set into the instance variables @isbn and @price in the initialize method are subsequently
available in the to_s method? That shows how instance variables work—they’re stored with
each object and available to all the instance methods of those objects.

Objects and Attributes
The BookInStock objects we’ve created so far have an internal state (the ISBN and price). That
state is private to those objects—no other object can access an object’s instance variables. In
general, this is a Good Thing. It means that the object is solely responsible for maintaining
its own consistency. (We feel obligated to note here that there is no such thing as perfect
privacy in Ruby, and you should not depend on Ruby’s language privacy for security pur-
poses.)

Chapter 3. Classes, Objects, and Variables • 36

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

However, an object that is totally secretive is pretty useless—you can create it, but then you
can’t do anything with it. You’ll normally define methods that let you access and manipulate
the state of an object, allowing the outside world to interact with the object. These externally
visible facets of an object are called its attributes.

For our BookInStock objects, the first thing we may need is the ability to find out the ISBN and
price (so we can count each distinct book and perform price calculations). One way of doing
that is to write accessor methods:

tut_classes/stock_stats/book_in_stock_3.rb
class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def isbn
@isbn

end

def price
@price

end
..

end

book = BookInStock.new("isbn1", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"

produces:

ISBN = isbn1
Price = 12.34

Here we’ve defined two accessor methods to return the values of the two instance variables.
The method isbn, for example, returns the value of the instance variable @isbn, because the
last (and only) thing executed in the method is the expression that evaluates the@isbn variable.
Later, in Method Bodies, on page 86 we’ll look at a shorter syntax for declaring one-line
methods.

As far as other objects are concerned, there’s no difference between calling these attribute
accessor methods and any other method. This is great because it means that the internal
implementation of the object can change without the other objects needing to be aware of
the change.

Because writing accessor methods is such a common idiom, Ruby provides convenient
shortcuts. The method attr_reader creates these attribute reader methods for you:

tut_classes/stock_stats/book_in_stock_4.rb
class BookInStock
attr_reader :isbn, :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

..

report erratum • discuss

Objects and Attributes • 37

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_3.rb
http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_4.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

book = BookInStock.new("isbn1", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"

produces:

ISBN = isbn1
Price = 12.34

This is the first time we’ve used symbols in this chapter. As we discussed on page 24, symbols
are just a convenient way of referencing a name. In this code, you can think of :isbn as
meaning the name isbn and think of plain isbn as meaning the value of the variable. In this
example, we named the accessor methods isbn and price. The corresponding instance variables
are @isbn and @price. These accessor methods are identical to the ones we wrote by hand
earlier—they will return the value of the instance variable whose name matches the name
of the accessor method. These methods only allow you to read the attribute, and not to
change it.

There’s a common misconception that the attr_reader declaration actually declares instance
variables. It doesn’t. It creates the accessor methods, but the variables themselves don’t need
to be declared. An instance variable just pops into existence when you assign a value to it,
and any instance value that hasn’t been assigned a value returns nil when accessed. Ruby
completely decouples instance variables and accessor methods, as we’ll see in Attributes
Are Just Methods Without Arguments, on page 40.

Writing to Attributes
Sometimes you need to be able to set an attribute from outside the object. For example, let’s
assume that we have to discount the price of some titles after reading in the raw scan data.

In other languages that restrict access to instance variables such as C# and Java, you’d do
this with setter functions:

// Java code
class JavaBookInStock {

private double _price;
public double getPrice() {

return _price;
}
public void setPrice(double newPrice) {

_price = newPrice;
}

}
b = new JavaBookInStock(....);
b.setPrice(calculate_discount(b.getPrice()));

In Ruby, the attributes of an object can be accessed via the getter method and that access
looks the same as any other method. We saw this earlier with phrases such as book.isbn. So,
it seems natural for setting the value of an attribute to look like normal variable assignment,
such as book.isbn = "new isbn". You enable that assignment by creating a Ruby method whose
name ends with an equals sign. A method so named can be used as the target of assignments:

tut_classes/stock_stats/book_in_stock_5.rb
class BookInStock

Chapter 3. Classes, Objects, and Variables • 38

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_5.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

attr_reader :isbn, :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price=(new_price)
@price = new_price

end

...
end

book = BookInStock.new("isbn1", 33.80)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price
puts "New price = #{book.price}"

produces:

ISBN = isbn1
Price = 33.8
New price = 25.349999999999998

The assignment book.price = book.price * 0.75 invokes the method price= in the book object,
passing it the discounted price as an argument. If you create a method whose name ends
with an equals sign, that name can appear on the left side of an assignment (and the Ruby
parser will ignore whitespace between the end of the name and the equals sign, which is
how book.price = gets parsed to the method named price=. You can even treat the setter
method like a regular method invocation if you want—book.price = 1.50 is identical to the
somewhat odder-looking book.price=(1.50).

Again, Ruby provides a shortcut for creating these simple attribute-setting methods. If you
want a write-only accessor, you can use the form attr_writer, but that’s fairly rare. You’re far
more likely to want both a reader and a writer for a given attribute, so you’ll use the handy-
dandy attr_accessor method:

tut_classes/stock_stats/book_in_stock_6.rb
class BookInStock
attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
...

end

book = BookInStock.new("isbn1", 33.80)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price
puts "New price = #{book.price}"

produces:

ISBN = isbn1

report erratum • discuss

Objects and Attributes • 39

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_6.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Price = 33.8
New price = 25.349999999999998

In this example, the line attr_accessor :price creates both the getter method that allows you to
write puts book.price and the setter method that allows you to write book.price = book.price *
0.75.

Attributes Are Just Methods Without Arguments
These attribute-accessing methods do not have to be just mere wrappers around an object’s
instance variables. For example, you may want to access the price as an exact number of
cents, rather than as a floating-point number of dollars.

tut_classes/stock_stats/book_in_stock_7.rb
class BookInStock
attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price_in_cents
(price * 100).round

end
...

end

book = BookInStock.new("isbn1", 33.80)
puts "Price = #{book.price}"
puts "Price in cents = #{book.price_in_cents}"

produces:

Price = 33.8
Price in cents = 3380

We multiply the floating-point price by 100 to get the price in cents and then use the round
method to convert it to an integer. Why? Because floating-point numbers don’t always have
an exact internal representation. When we multiply 33.8 by 100, we get
3379.99999999999954525265. The Integer method would truncate this to 3379. Calling round
ensures we get the best integer representation. This is a good example of why you want to
use BigDecimal, not Float, in financial calculations, see Chapter 26, Library Reference: Core
Data Types, on page 495 for more on BigDecimal.

We can take this even further and create a writing method parallel to the reader method,
mapping the value to the instance variable internally:

tut_classes/stock_stats/book_in_stock_8.rb
class BookInStock
attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

Chapter 3. Classes, Objects, and Variables • 40

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_7.rb
http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_8.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def price_in_cents
(price * 100).round

end

def price_in_cents=(cents)
@price = cents / 100.0

end
...

end

book = BookInStock.new("isbn1", 33.80)
puts "Price = #{book.price}"
puts "Price in cents = #{book.price_in_cents}"
book.price_in_cents = 1234
puts "Price = #{book.price}"
puts "Price in cents = #{book.price_in_cents}"

produces:

Price = 33.8
Price in cents = 3380
Price = 12.34
Price in cents = 1234

Here we’ve used attribute methods to create a virtual instance variable. To the outside world,
price_in_cents seems to be an attribute like any other. Internally, though, it has no corresponding
instance variable.

This is more than a curiosity. In his landmark book, Object-Oriented Software Construction,
Bertrand Meyer calls this the Uniform Access Principle. By hiding the difference between
instance variables and calculated values, you are shielding the rest of the world from the
implementation of your class. You’re free to change how things work in the future without
impacting the millions of lines of code that use your class—for example, you could switch
from a float to a BigDecimal and the users of this class would never need to know. This is a
big win.

Attributes, Instance Variables, and Methods
This description of attributes may leave you thinking that they’re nothing more than meth-
ods—why’d we need to invent a fancy name for them? In a way, that’s absolutely right. An
attribute is just a method. Sometimes an attribute simply returns the value of an instance
variable. Sometimes an attribute returns the result of a calculation. And sometimes those
funky methods with equals signs at the end of their names are used to update the state of
an object. So, the question is, where do attributes stop and regular methods begin? What
makes something an attribute and not just a plain old method? Ultimately, that’s one of
those “angels on a pinhead” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also decide how that state
is to appear on the outside to users of your class. The internal state is held in instance vari-
ables. The external state is exposed through methods we’re calling attributes. And the other
actions your class can perform are just regular methods. It really isn’t a crucially important
distinction, but by calling the external state of an object its attributes, you’re helping clue
people in to how they should view the class you’ve written.

report erratum • discuss

Objects and Attributes • 41

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Classes Working with Other Classes
Our original challenge was to read in data from multiple CSV files and produce various
simple reports. So far, all we have is BookInStock, a class that represents the data for one book.

During OO design, you identify external things and make them classes in your code. But
there’s another source of classes in your designs—the classes that correspond to things inside
your code itself. For example, we know that the program we’re writing will need to consol-
idate and summarize CSV data feeds. But that’s a very passive statement. Let’s turn it into
a design by asking ourselveswhat does the summarizing and consolidating. And the answer
(in our case) is a CSV reader. Let’s make it into a class as follows:

class CsvReader
def initialize
...

end

def read_in_csv_data(csv_file_name)
...

end

def total_value_in_stock
...

end

def number_of_each_isbn
...

end
end

We’d call it using something like this:

reader = CsvReader.new
reader.read_in_csv_data("file1.csv")
reader.read_in_csv_data("file2.csv")
: : :

puts "Total value in stock = #{reader.total_value_in_stock}"

We need to be able to handle multiple CSV files, so our reader object needs to accumulate
the values from each CSV file it is fed. We’ll do that by keeping an array of values in an
instance variable. And how shall we represent each book’s data? Well, we just finished
writing the BookInStock class, so that problem is solved. The only other question is how we
parse data in a CSV file. Fortunately, Ruby comes with a good CSV library, which we will
cover in detail in Chapter 29, Library Reference: Input, Output, Files, and Formats, on page
585. Given a CSV file with a header line, we can iterate over the remaining rows and extract
values by name:

tut_classes/stock_stats/csv_reader.rb
class CsvReader
def initialize
@books_in_stock = []

end

def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row|
@books_in_stock << BookInStock.new(row["ISBN"], row["Price"])

Chapter 3. Classes, Objects, and Variables • 42

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/csv_reader.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end
end

end

Because you’re probably wondering what’s going on, let’s dissect that read_in_csv_datamethod.
On the first line, we tell the CSV library to open the file with the given name. The headers:
true option tells the library to parse the first line of the file as the names of the columns, and
parse each row into a hash with the column names as the keys and the row values as the
values.

The library then reads the rest of the file, passing each row in turn to the block (the code
between do and end). Inside the block, we extract the data from the ISBN and Price columns
and use that data to create a new BookInStock object. We then append that object to an instance
variable called @books_in_stock (the << operator does different things in Ruby, in this case, it
means “append to an array”). And just where does that variable come from? It’s an array
that we created in the initialize method.

Again, this is the pattern you want to aim for. Your initialize method sets up an environment
for your object, leaving it in a usable state. Other methods then use that state.

If you encounter an error along the lines of “‘Float’: can’t convert nil into Float (TypeError)”
when you run this code, you likely have extra spaces at the end of the header line in your
CSV data file. The CSV library is pretty strict about the formats it accepts.

Let’s turn this from a code fragment into a working program. We’re going to organize our
source into three files. The first, book_in_stock.rb, will contain the definition of the class
BookInStock. The second, csv_reader.rb, is the source for the CsvReader class. Finally, a third file,
stock_stats.rb, is the main driver program. We’ll start with book_in_stock.rb:

tut_classes/stock_stats/book_in_stock.rb
class BookInStock
attr_reader :isbn, :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price_in_cents
(price * 100).round

end
end

We’re keeping the price_in_centsmethod so we can do money arithmetic without accumulating
floating point errors.

Here’s the csv_reader.rb file. The CsvReader class has two external dependencies: it needs the
standard CSV library, and it needs the BookInStock class that’s in the file book_in_stock.rb. Ruby
has a couple of helper methods that let us load external files.

tut_classes/stock_stats/csv_reader.rb
require "csv"
require_relative "book_in_stock"

class CsvReader
def initialize
@books_in_stock = []

report erratum • discuss

Classes Working with Other Classes • 43

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock.rb
http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/csv_reader.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row|
@books_in_stock << BookInStock.new(row["ISBN"], row["Price"])

end
end

def total_value_in_stock
later we'll see easier ways to sum a collection
sum = 0.0
@books_in_stock.each { |book| sum += book.price_in_cents }
sum / 100.0

end

def number_of_each_isbn
...

end
end

In this file, we use the requiremethod to load in the Ruby CSV library from the Ruby standard
library and we use require_relative to load in the book_in_stock file we wrote. We use
require_relative for this because the location of the file we’re loading is easiest to define relative
to the file we’re loading it from—they’re both in the same directory.

We’re using price_in_cents to compute the total value.

And finally, here’s our main program, in the file stock_stats.rb:

tut_classes/stock_stats/stock_stats.rb
require_relative "csv_reader"

reader = CsvReader.new

ARGV.each do |csv_file_name|
$stderr.puts "Processing #{csv_file_name}"
reader.read_in_csv_data(csv_file_name)

end

puts "Total value = #{reader.total_value_in_stock}"

Again, this file uses require_relative to bring in the library it needs (in this case, the csv_reader.rb
file). It uses the ARGV variable to access the program’s command-line arguments, loading
CSV data for each file specified on the command line.

We can run this program using the CSV data file as we demonstrated on page 33:

$ ruby stock_stats.rb data.csv
Processing data.csv
Total value = 122.07

Do we need three source files for this? Not necessarily. But as your programs grow (and
almost all programs grow over time), you’ll find that large files start to get cumbersome.
You’ll also find it harder to write automated tests against the code if it is in a monolithic
chunk. Finally, you won’t be able to reuse classes if they’re all bundled into the final program.
As a result, it’s fairly common to only have one Ruby class per individual file.

Let’s get back to our discussion of classes.

Chapter 3. Classes, Objects, and Variables • 44

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/stock_stats.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Specifying Access Control
When designing a class interface, it’s important to consider just how much of your class
you’ll be exposing to the outside world. Allow too much access into your class, and you risk
increasing the amount that different classes depend on each other’s internal implementation,
which is called coupling. Users of your class will be tempted to rely on details of your class’s
implementation, rather than on its logical interface. The good news is that the only easy way
to change an object’s state in Ruby is by calling one of its methods. Control access to the
methods, and you’ve controlled access to the object. A good rule of thumb is never to expose
methods that could leave an object in an invalid state.

Ruby gives you three levels of access control:

• Public methods can be called by anyone—no access control is enforced. Methods are
public by default (except for initialize, which is always private).

• Protected methods can be invoked only by objects of the defining class and its subclasses.
Access is kept within the family. We’ll talk more about subclasses in Chapter 6, Sharing
Functionality: Inheritance, Modules, and Mixins, on page 101.

• Private methods cannot be called with an explicit receiver—the receiver is always the
current object, also known as self. This means that private methods can be called only
in the context of the current object, and with self as the explicit receiver or with the
implicit receiver. You can’t invoke another object’s private methods with normal dot
syntax. (There are, however, ways around this using metaprogramming tools that we
will discuss in Chapter 22, The Ruby Object Model and Metaprogramming, on page
371)

The difference between “protected” and “private” is fairly subtle and is different in Ruby
than in other common OO languages. If a method is protected, it may be called by any
instance of the defining class or its subclasses. If a method is private, it may be called only
within the context of the calling object—it is never possible to access another object’s private
methods directly, even if the object is of the same class as the caller. In practice, it is somewhat
rare to see “protected” in use.

Access control in Ruby is determined dynamically, as the program runs, not statically when
the program is compiled or interpreted. You will get an access violation only when the code
attempts to execute the restricted method.

You specify access levels to methods within class or module definitions using one or more
of the three access methods public, protected, and private. You can use each function in three
different ways.

If called with no arguments, the three functions set the default access control of subsequently
defined methods. This is probably familiar behavior if you’re a C# or Java programmer,
where you’d use keywords such as public to achieve the same effect. Although this usage
looks like a keyword, in Ruby, the access control is actually a method.

class MyClass
default is "public"
def method1
This method is public

end

report erratum • discuss

Specifying Access Control • 45

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

protected
subsequent methods will be "protected"
def method2
This method is protected

end

private
subsequent methods will be private"
def method3
This method is private

end

public
subsequent methods will be "public"
def method4
this method is public

end
end

Since the default access for methods is public, it’s rare to use public explicitly to denote access
control.

As a matter of style, the methods after the call to an access method like public are typically
not indented—you aren’t defining a block, just the access status of subsequent methods.

Alternatively, you can set access levels of named methods by listing them as arguments to
the access control functions:

class MyClass
def method1
end

def method2
end
... and so on

public :method1, :method4
protected :method2
private :method3

end

This mechanism is somewhat rare in practice, but it does enable the third way to declare
access in Ruby.

We’ve mentioned that most statements in Ruby return a value. In particular, defining a
method with def returns a value—the name of the new method as a symbol. As a result, you
can declare access directly preceding a method definition.

class MyClass
def method1
This method is public

end

protected def method2
This method is protected

end

private def method3
This method is private

Chapter 3. Classes, Objects, and Variables • 46

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

public def method4
This method is public

end
end

What’s happening here is that the def method2 statement is returning the value :method2,
which is immediately being passed as an argument to protected, resulting in protected :method2,
and making that method, and only that method, protected. Access declared this way does
not propagate down the file, it only applies to the method that the access modifier directly
precedes.

We prefer this last form, because it’s much more explicit about the access level of each
method. That said, the first form is older, and currently more common in code you are likely
to see.

It’s time for some examples. Perhaps we’re modeling an accounting system where every
debit has a corresponding credit. Because we want to ensure that no one can break this rule,
we’ll make the methods that do the debits and credits private, and we’ll define our external
interface in terms of transactions.

class Account
attr_accessor :balance

def initialize(balance)
@balance = balance

end
end

class Transaction
def initialize(account_a, account_b)
@account_a = account_a
@account_b = account_b

end

def transfer(amount)
debit(@account_a, amount)
credit(@account_b, amount)

end

private def debit(account, amount)
account.balance -= amount

end

private def credit(account, amount)
account.balance += amount

end
end

savings = Account.new(100)
checking = Account.new(200)

transaction = Transaction.new(checking, savings)
transaction.transfer(50)

Protected access is used when objects need to access the internal state of other objects of the
same class. For example, we may want to allow two individual Account objects to compare

report erratum • discuss

Specifying Access Control • 47

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

their balances directly but to hide those balances from the rest of the world (perhaps because
we present them in a different form):

class Account
protected attr_reader :balance # accessor method 'balance' but make it protected

def greater_balance_than?(other)
@balance > other.balance

end
end

Because balance is protected, it’s available only within Account objects.

Variables
Now that we’ve gone to the trouble to create all these objects, let’s make sure we don’t lose
them. Variables are used to keep track of objects; each variable holds a reference to an object.
Let’s confirm this with some code:

person = "Tim"
puts "The object in 'person' is a #{person.class}"
puts "The object has an id of #{person.object_id}"
puts "and a value of '#{person}'"

produces:

The object in 'person' is a String
The object has an id of 60
and a value of 'Tim'

On the first line, Ruby creates a new string object with the value Tim. A reference to this
object is placed in the local variable person. A quick check shows that the variable has indeed
taken on the personality of a string, with a class, an object id, and a value.

So, is a variable an object? In Ruby, the answer is “no.” A variable is simply a reference to
an object. Objects float around in a big pool somewhere (the operating system’s heap, most
of the time) and are pointed to by variables. Let’s make the example slightly more compli-
cated:

person1 = "Tim"
person2 = person1
person1[0] = 'J'

puts "person1 is #{person1}"
puts "person2 is #{person2}"

produces:

person1 is Jim
person2 is Jim

What happened here? We changed the first character of person1 (Ruby strings are mutable,
unlike Java), but both person1 and person2 changed from Tim to Jim.

It all comes back to the fact that variables hold references to objects, not the objects themselves.
Assigning person1 to person2 doesn’t create any new objects; it simply copies person1’s object
reference to person2 so that both person1 and person2 refer to the same object, as shown in the
following illustration.

Chapter 3. Classes, Objects, and Variables • 48

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Tim
Stringperson1

person1 = "Tim"

Tim
Stringperson1

person2
person2 = person1

Jim
Stringperson1

person2
person1[0] = "J"

Assignment aliases objects, potentially giving you multiple variables that reference the same
object.

Can’t this cause problems in your code? It can, but not as often as you’d think (objects in
Java, for example, work exactly the same way). In the previous example, for instance, you
could avoid aliasing by using the dupmethod of String, which creates a new string object with
identical contents:

person1 = "Tim"
person2 = person1.dup
person1[0] = "J"
puts "person1 is #{person1}"
puts "person2 is #{person2}"

produces:

person1 is Jim
person2 is Tim

You can also prevent anyone from changing a particular object by freezing it. Attempt to
alter a frozen object, and Ruby will raise a RuntimeError exception:

person1 = "Tim"
person2 = person1
person1.freeze # prevent modifications to the object
person2[0] = "J"

produces:

from prog.rb:4:in `<main>'
prog.rb:4:in `[]=': can't modify frozen String: "Tim" (FrozenError)

Numbers and symbols are always frozen in Ruby, so those values are always immutable.

Reopening Classes
While we are talking about classes in Ruby we feel like we should at least mention one of
the most unique features of Ruby’s class structure: the ability to re-open a class definition
and add new methods or variables to it at any time, even classes that are part of the third-
party tools or the standard library.

In other words, if you have something like this in Ruby:

class Book
attr_accessor :title

report erratum • discuss

Reopening Classes • 49

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

and a bunch of other stuff
end

Later, you can do this:

class Book
def uppercase_title
title.upcase

end
end

If you declare class Book and there is already a Book class, Ruby will not error and the new
definitions in the second declaration will be added to the existing class. This is true even if
the existing class is part of Ruby itself. This process of reopening classes to add or change
methods is colloquially known as monkey-patching.

Typically, you would only extend a class like this if the original class is not part of your code,
but it’s reasonably common in Ruby to use this method to add utility functions to core
classes or the standard library. Ruby on Rails, for example, does this a lot.

To give an example, Ruby on Rails defines a method called squish, which clears excessive
whitespace in a string, so

"This string has whitespace"

becomes "This string has whitespace." By monkey-patching, Rails can define the method like
this :

class String
def squish
implementation

end
end

And then call it using str.squish just like any other method.

The alternative, which many other languages use, is to define a utility class or classes and
define class method on them, which looks like this:

class StringUtilities
def self.squish(str)
implementation

end
end

Which you would then call with StringUtilities.squish(str).

This example shows the advantage of allowing classes to reopen—the ability to add and
easily use utility methods is very convenient. It’s nice not to have to know which methods
are defined by Rails, and which of the many possible utility classes the method might be in.

That said, this is something to be done with caution—many teams don’t allow it in their
own code without a very clear reason. And you should be quite wary of using monkey
patching to change the behavior of existing methods, rather than adding new methods as
we did here. Monkey patching can make the behavior of code unpredictable, it can be hard
to tell where behavior is defined, and these changes are global, meaning that if two files

Chapter 3. Classes, Objects, and Variables • 50

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

define the same method, the last defined one will win, leading to potentially hard-to-find
bugs.

Later in Chapter 22, The Ruby Object Model and Metaprogramming, on page 371), we’ll talk
about refinements, a Ruby feature that gives you the benefit of re-opening classes, but also
limits the scope of your changes.

What’s Next
There’s more to say about classes and objects in Ruby. We still have to look at class methods
and at concepts such as mixins and inheritance. We’ll do that in Chapter 6, Sharing Function-
ality: Inheritance, Modules, and Mixins, on page 101. But, for now, know that everything you
manipulate in Ruby is an object and that objects start life as instances of classes. And one of
the most common things we do with objects is create collections of them. But that’s the
subject of our next chapter.

report erratum • discuss

What’s Next • 51

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 4

Collections, Blocks, and Iterators
Most real programs have to manage collections of data: the people in a course, the songs in
your playlist, the books in the store. Ruby comes with two classes that are commonly used
to handle these collections: arrays and hashes. A Ruby array is an ordered collection of data.
A Ruby hash is a key/value pair, equivalent to a Python dictionary, a Java Map, or a JavaScript
object. Mastery of these two classes, and their large interfaces, is an important part of being
an effective Ruby programmer.

But it isn’t just these two classes that give Ruby its power when dealing with collections.
Ruby also has a block syntax that lets you encapsulate chunks of code. When paired with
collections, these blocks can build powerful iterator constructs. In this chapter, we’ll look at
the two collection classes as well as blocks and iterators.

Arrays
The class Array holds a collection of object references. Each object reference occupies a position
in the array, identified by an integer index. You can create arrays by using literals or by
explicitly creating an Array object. A literal array is a comma-delimited list of objects between
square brackets:

a = [3.14159, "pie", 99]
a.class # => Array
a.length # => 3
a[0] # => 3.14159
a[1] # => "pie"
a[2] # => 99
a[3] # => nil

You can create an empty array with either [] or by directly calling Array.new:

b = Array.new
b.class # => Array
b.length # => 0
b[0] = "second"
b[1] = "array"
b # => ["second", "array"]

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

As the example shows, array indices start at zero. Index an array with a non-negative integer,
and it returns the object at that position or returns nil if nothing is there. Index an array with
a negative integer, and it counts from the end, with -1 being the last element of the array.

a = [1, 3, 5, 7, 9]
a[-1] # => 9
a[-2] # => 7
a[-99] # => nil

The following diagram shows array access in a different way:

"cat"a[2]

"elk"a[-3]

"elk", "fly", "gnu"a[-3..-1] []

positive
negative

0 1 2 3 4 5 6

-7 -6 -5 -4 -3 -2 -1

"elk", "fly"a[4..-2] []

"bat", "cat"a[1...3] []

"bat", "cat", "dog"a[1..3] []

"ant", "bat", "cat", "dog", "elk", "fly", "gnu"a = []

Arrays are accessed using the [] operator. As with most Ruby operators, this operator is
implemented as a method, specifically, an instance method of class Array. The last two lines
of this example are equivalent:

a = [3.14159, "pie", 99]
a[0] # => 3.14159
a.[](0) # => 3.14159

The last line of code treats [] as a normal method. In practice, you wouldn’t write code like
the last line, we just wanted to show how flexible Ruby is.

You can also index arrays with a pair of numbers, [start, count]. This returns a new array
consisting of references to count number of objects starting at position start:

a = [1, 3, 5, 7, 9]
a[1, 3] # => [3, 5, 7]
a[3, 1] # => [7]
a[-3, 2] # => [5, 7]

You can also index arrays using ranges, in which start and end positions are separated by
two or three dots. The two-dot form includes the end position; the three-dot form does not.
We’ll talk more about ranges in Chapter 7, Basic Types: Numbers, Strings, and Ranges, on
page 117.

a = [1, 3, 5, 7, 9]
a[1..3] # => [3, 5, 7]
a[1...3] # => [3, 5]
a[3..3] # => [7]
a[-3..-1] # => [5, 7, 9]

Chapter 4. Collections, Blocks, and Iterators • 54

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The [] operator has a corresponding []= operator, which lets you set elements in the array.
If used with a single integer index, the element at that position is replaced by whatever is
on the right side of the assignment. Any gaps that result will be filled with nil:

a = [1, 3, 5, 7, 9] #=> [1, 3, 5, 7, 9]
a[1] = 'bat' #=> [1, "bat", 5, 7, 9]
a[-3] = 'cat' #=> [1, "bat", "cat", 7, 9]
a[3] = [9, 8] #=> [1, "bat", "cat", [9, 8], 9]
a[6] = 99 #=> [1, "bat", "cat", [9, 8], 9, nil, 99]

Again, []= is just a regular method, and you could write it as a.[]=(index, new_value).

If the index to []= is two numbers (a start and a length) or a range, then those elements in
the original array are replaced by whatever is on the right side of the assignment. If the
length of the selected elements on the left is zero, the right side is inserted into the array
before the start position; no elements are removed. If the right side is itself an array, its ele-
ments are used in the replacement. The array size is automatically adjusted if the index
selects a different number of elements than are available on the right side of the assignment.

a = [1, 3, 5, 7, 9] #=> [1, 3, 5, 7, 9]
a[2, 2] = "cat" #=> [1, 3, "cat", 9]
a[2, 0] = "dog" #=> [1, 3, "dog", "cat", 9]
a[1, 1] = [9, 8, 7] #=> [1, 9, 8, 7, "dog", "cat", 9]
a[0..3] = [] #=> ["dog", "cat", 9]
a[5..6] = 99, 98 #=> ["dog", "cat", 9, nil, nil, 99, 98]

In the line a[2, 2] = "cat", the subarray starting at index 2 and of length 2, which is [5, 7] is
replaced by cat. In the next line, the subarray [2, 0] is of length 0, so dog is just inserted at
index 2. Then the subarray represented by [1, 1], which is [3] is replaced by [9, 8, 7] being
inserted in the array—notice that the entire right-side array is not inserted as one element,
rather each element in the right hand side is inserted individually. The last two lines are
similar, but use ranges instead of start and length.

It’s common to create arrays of short words, but that can be a pain, what with all the quotes
and commas. Fortunately, Ruby has a shortcut; %w does just what we want:

Instead of this:

a = ["ant", "bee", "cat", "dog", "elk"]
a[0] # => "ant"
a[3] # => "dog"

You can use %w followed by a delimiter, followed by space-separated individual words.

a = %w[ant bee cat dog elk]
a[0] # => "ant"
a[3] # => "dog"

You can use any character after %w as the delimiter, if it’s something with a pair, like a
bracket or a parenthesis, then the array will continue until the other side of the pair, otherwise
the array will continue until it reaches the same character again.

If you want an array of symbols instead of strings, Ruby has a similar %i delimiter:

a = %i[ant bee cat dog elk]
a[0] # => :ant

report erratum • discuss

Arrays • 55

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

a[3] # => :dog

Arrays have a large number of other useful methods. Using them, you can treat arrays as
stacks, sets, queues, dequeues, and first-in first-out (FIFO) queues. (Though Ruby does also
have a dedicated Set class, which we’ll cover in Chapter 28, Library Reference: Enumerators
and Containers, on page 559.)

For example, push and pop add and remove elements from the end of an array, so you can
use the array as a stack:

stack = []
stack.push "red"
stack.push "green"
stack.push "blue"
stack # => ["red", "green", "blue"]

stack.pop # => "blue"
stack.pop # => "green"
stack.pop # => "red"
stack # => []

Similarly, unshift and shift add and remove elements from the beginning of an array. Combine
shift and push, and you have a first-in-first-out (FIFO) queue.

queue = []
queue.push "red"
queue.push "green"
queue.shift # => "red"
queue.shift # => "green"

The first and last methods return (but don’t remove) the n entries at the head or end of an
array. If you don’t pass an argument, the default number is one.

array = [1, 2, 3, 4, 5, 6, 7]
array.first # => 1
array.first(4) # => [1, 2, 3, 4]
array.last # => 7
array.last(4) # => [4, 5, 6, 7]

We’ll look at more of the methods of array later on in Array, on page 559.

Hashes
Hashes (sometimes known as associative arrays, maps, or dictionaries) are similar to arrays in
that they are indexed collections of object references. However, while you index arrays with
integers, you index a hash with objects of any type, most often symbols and strings but also
regular expressions or anything else in Ruby. When you store a value in a hash, you actually
supply two objects—the index, which is called the key, and the value, or entry to be stored
with that key. You can subsequently retrieve the entry by indexing the hash with the same
key value that you used to store it.

Chapter 4. Collections, Blocks, and Iterators • 56

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Why Are They Called Hashes?

The data structure that Ruby calls a Hash—where an arbitrary key is an index
to an arbitrary value—has different names in different programming languages.
The most generic term is probably key-value store. You will also see them called
dictionaries because the values are looked up based on the keys, or map because
the individual keys are mapped to individual values, or associative array because
they associate keys with values.

The name “Hash” (or the related Java term “HashMap”) is named after an
implementation detail. The keys are stored in memory based on a function that
returns a (hopefully) unique value for each object. Because the location of each
key can be found without referring to the entire object, lookup is very fast. The
function that returns the unique value is called a hashing function and so the
data structure is called a Hash.

The example that follows uses hash literals—a list of key value pairs between braces, then
uses square bracket syntax to access the value at each key both for retrieving the value, and
for setting the value:

h = {"dog" => "canine", "cat" => "feline", "bear" => "ursine"}

h.length # => 3
h["dog"] # => "canine"
h["cow"] = "bovine"
h[12] = "dodecine"
h["cat"] = 99
h # => {"dog"=>"canine", "cat"=>99, "bear"=>"ursine", "cow"=>"bovine",

.. 12=>"dodecine"}

In the previous example, the hash keys were strings, and the hash literal used => to separate
the keys from the values. (The => is sometimes called a hashrocket.) If the keys are symbols,
there is a shortcut you can use. You can still use => to separate symbol keys from values:

h = {:dog => "canine", :cat => "feline", :bear => "ursine"}

You can also write the literal by moving the colon to the end of the symbol and dropping
the =>.

h = { dog: "canine", cat: "feline", bear: "ursine"}

Because the value of a symbol doesn’t change, symbols are often used as hash keys, and this
shortcut is therefore very common.

There is an even shorter shortcut. Often when creating a new hash, you are using existing
data stored in variables that share the same name as the key that the variable will be indexed
under in the hash. Something like this:

firstname = "Fred"
lastname = "Flintstone"
user = {firstname: firstname, lastname: lastname}
puts user

produces:

{:firstname=>"Fred", :lastname=>"Flintstone"}

You don’t need to duplicate the key and the value if they have the same name:

report erratum • discuss

Hashes • 57

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

firstname = "Fred"
lastname = "Flintstone"
user = {firstname:, lastname:}
puts user

produces:

{:firstname=>"Fred", :lastname=>"Flintstone"}

Ruby will infer that the value should come from a variable with the same name as the key.
If you try to use a key shortcut and there is no such local variable, Ruby will throw an error.

Compared with arrays, hashes have one significant advantage: they can use any object as
an index. And you’ll find something that might be surprising: Ruby remembers the order
in which you add items to a hash. When you subsequently iterate over the entries, Ruby will
return them in that order.

You’ll find that hashes are one of the most commonly used data structures in Ruby. Later,
Chapter 5, More About Methods, on page 85 lists more of the methods implemented by
class Hash.

Digging
Often data is not simply a single hash or array, but comes in a complex package that combines
hashes and arrays. Accessing data in a complicated structure can be a pain, but Ruby provides
a shortcut with the dig method.

The dig method, which is defined for Array, Hash, and Struct, allows you to “dig” through a
complicated data structure in a single command.

data = {
mcu: [
{name: "Iron Man", year: 2010, actors: ["Robert Downey Jr.", "Gwyneth Paltrow"]}

],
starwars: [
{name: "A New Hope", year: 1977, actors: ["Mark Hamill", "Carrie Fisher"]}

]
}
data[:mcu][0][:actors][1] # => "Gwyneth Paltrow"
data.dig(:mcu, 0, :actors, 1) # => "Gwyneth Paltrow"

The biggest advantage of using dig is that if an element is not in the data structure, the method
returns nil and does not raise an exception.

Word Frequency: Using Hashes and Arrays
Let’s round off this discussion of hashes and arrays with a program that calculates the
number of times each word occurs in some text. (So, for example, in this sentence, the word
the occurs two times.)

The problem breaks down into two parts. First, given some text as a string, return a list of
words. That sounds like an array. Then, build a count for each distinct word. That sounds
like a use for a hash—we can index it with the word and use the corresponding entry to
keep a count.

Let’s start with the method that splits a string into words:

Chapter 4. Collections, Blocks, and Iterators • 58

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

tut_containers/word_freq/words_from_string.rb
def words_from_string(string)
string.downcase.scan(/[\w']+/)

end

This method uses two very useful string methods: downcase returns a lowercase version of
a string, and scan returns an array of substrings that match a given pattern. In this case, the
pattern is [\w']+, which matches sequences containing “word characters” and single quotes.

We can play with this method. Notice how the result is an array, and notice that the words
are in lowercase and the punctuation is gone:

p words_from_string("I like Ruby, it is (usually) optimized for programmer happiness")

produces:

["i", "like", "ruby", "it", "is", "usually", "optimized", "for", "programmer",
"happiness"]

Our next task is to calculate word frequencies. To do this, we’ll create a hash object indexed
by the words in our list. Each entry in this hash stores the number of times that word occurred.
Let’s say we already have read part of the list, and we have seen the word the already. Then
we’d have a hash that contained this data:

{..., "the" => 1, ...}

If the variable next_word contains the word the, then incrementing the count is as simple as
setting the hash to increment the value at that key:

counts[next_word] += 1

We’d then end up with a hash containing the following:

{..., "the" => 2, ...}

Our only problem is what to do when we encounter a word for the first time. If we try to
increment the entry for that word, there won’t be one, so our program will fail. There are a
number of solutions to this problem. One is to check to see whether the entry exists before
doing the increment:

if counts.key?(next_word)
counts[next_word] += 1

else
counts[next_word] = 1

end

However, there’s a tidier way. If we create a hash object using Hash.new(0), the parameter, 0
in this case, will be used as the hash’s default value—it will be the value returned if you look
up a key that isn’t yet in the hash. Using that, we can write our count_frequency method:

tut_containers/word_freq/count_frequency.rb
def count_frequency(word_list)
counts = Hash.new(0)
word_list.each do |word|
counts[word] += 1

end
counts

end

report erratum • discuss

Word Frequency: Using Hashes and Arrays • 59

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/words_from_string.rb
http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/count_frequency.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

p count_frequency(["sparky", "the", "cat", "sat", "on", "the", "mat"])

produces:

{"sparky"=>1, "the"=>2, "cat"=>1, "sat"=>1, "on"=>1, "mat"=>1}

We haven’t really talked about loops or blocks yet, but each takes a block argument and
executes the block once for each element in the array, in this case, checking the hash for each
word and incrementing the count associated with that word.

There is one little job left. The hash containing the word frequencies is ordered based on the
first time it sees each word. It would be better to display the results based on the frequencies
of the words. We can do that using the hash’s sort_by method. When you use sort_by, you
give it a block that tells the sort what to use when making comparisons. In our case, we’ll
just use the count. The result of the sort is an array containing a set of two-element arrays,
with each subarray corresponding to a key/entry pair in the original hash. This makes our
whole program look like this:

tut_containers/word_freq/ugly_word_count.rb
require_relative "words_from_string"
require_relative "count_frequency"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count."

word_list = words_from_string(raw_text)
counts = count_frequency(word_list)
sorted = counts.sort_by { |word, count| count }
top_five = sorted.last(5)

top_five.reverse_each do |word, count|
puts "#{word}: #{count}"

end

produces:

a: 6
the: 3
count: 2
word: 2
sounds: 2

Note that the sorted array is low to high, so we use last to take the last five elements of the
array, meaning the one with the highest count, and then reverse_each to iterate them highest
to lowest.

At this point, a quick test may be in order to validate our code. These tests are going to be
valuable in a moment because we’re going to change that code into more commonly used
Ruby and we want to make sure the behavior doesn’t change.

To do this, we’re going to use a testing framework called Minitest that comes with the stan-
dard Ruby distributions. We won’t describe it fully yet (we do that in Chapter 13, Testing
Ruby Code, on page 207). For now, we’ll just say that the class MiniTest::Test brings in testing
functionality, including the method assert_equal, which checks that its two parameters are
equal, complaining bitterly if they aren’t. We’ll use assertions to test our two methods, one

Chapter 4. Collections, Blocks, and Iterators • 60

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/ugly_word_count.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

method at a time. (That’s one reason why we wrote them as separate methods—it makes
them testable in isolation.)

Here are some tests for the word_from_string method:

tut_containers/word_freq/test_words_from_string.rb
require_relative "words_from_string"
require "minitest/autorun"

class TestWordsFromString < Minitest::Test
def test_empty_string
assert_equal([], words_from_string(""))
assert_equal([], words_from_string(" "))

end

def test_single_word
assert_equal(["cat"], words_from_string("cat"))
assert_equal(["cat"], words_from_string(" cat "))

end

def test_many_words
assert_equal(
["the", "cat", "sat", "on", "the", "mat"],
words_from_string("the cat sat on the mat")

)
end

def test_ignores_punctuation
assert_equal(
["the", "cat's", "mat"],
words_from_string("<the!> cat's, -mat-")

)
end

end

produces:

Run options: --seed 18894
Running:

....
Finished in 0.000422s, 9478.6730 runs/s, 14218.0096 assertions/s.
4 runs, 6 assertions, 0 failures, 0 errors, 0 skips

The test starts by requiring the source file containing our words_from_string method, along
with the unit test framework itself. It then defines a test class. Within that class, any methods
whose names start with test are automatically run by the testing framework. The results
show that four test methods ran, successfully executing six assertions.

We can also test that our count of word frequency works:

tut_containers/word_freq/test_count_frequency.rb
require_relative "count_frequency"
require "minitest/autorun"

class TestCountFrequency < Minitest::Test
def test_empty_list
assert_equal({}, count_frequency([]))

end

def test_single_word

report erratum • discuss

Word Frequency: Using Hashes and Arrays • 61

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/test_words_from_string.rb
http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/test_count_frequency.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

assert_equal({"cat" => 1}, count_frequency(["cat"]))
end

def test_two_different_words
assert_equal({"cat" => 1, "sat" => 1}, count_frequency(["cat", "sat"]))

end

def test_two_words_with_adjacent_repeat
assert_equal({"cat" => 2, "sat" => 1}, count_frequency(["cat", "cat", "sat"]))

end

def test_two_words_with_non_adjacent_repeat
assert_equal({"cat" => 2, "sat" => 1}, count_frequency(["cat", "sat", "cat"]))

end
end

produces:

Run options: --seed 49449
Running:

.....
Finished in 0.000428s, 11682.2430 runs/s, 11682.2430 assertions/s.
5 runs, 5 assertions, 0 failures, 0 errors, 0 skips

In previous versions of the book, we stopped here. However, since then, the Ruby Standard
Library has evolved, and the Array class now has a tally method that does exactly what our
count_frequency method does. We can use tally instead:

tut_containers/word_freq/better_word_count.rb
require_relative "words_from_string"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count."

word_list = words_from_string(raw_text)
counts = word_list.tally➤

sorted = counts.sort_by { |word, count| count }
top_five = sorted.last(5)

top_five.reverse_each do |word, count|
puts "#{word}: #{count}"

end

produces:

a: 6
the: 3
count: 2
word: 2
sounds: 2

And we get the same answer.

Blocks and Enumeration
In our program that wrote out the results of our word frequency analysis, we had the follow-
ing loop:

Chapter 4. Collections, Blocks, and Iterators • 62

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/better_word_count.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

top_five.reverse_each do |word, count|
puts "#{word}: #{count}"

end

The method reverse_each is an example of an iterator—a general term for a method that invokes
a block of code repeatedly. Ruby also uses the term enumerator for such a method.

The most general iterator in Ruby is each, which takes a block and invokes the block once
for each element in the collection. In this case, we’re using reverse_each, a shortcut method
which invokes the block once for each element of the list, but in reverse order.

Enumerator methods can have different behavior beyond just executing the block of code.
A Ruby programmer might use a different enumerator method called map to write the code
more compactly. For example:

puts top_five.reverse.map { |word, count| "#{word}: #{count}" }

The map applies its block to each element of the array in turn, returning a new array made
up of the result of each invocation of the block.

Now the whole example looks like this:

tut_containers/word_freq/best_word_count.rb
require_relative "words_from_string"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count."

word_list = words_from_string(raw_text)
counts = word_list.tally
sorted = counts.sort_by { |word, count| count }
top_five = sorted.last(5)
puts top_five.reverse.map { |word, count| "#{word}: #{count}" }

produces:

a: 6
the: 3
count: 2
word: 2
sounds: 2

The map method is now taking each element of our top five array and converting it to a new
array made of the strings that come as the result of executing the block.

Because each local variable is only used as the receiver of the next message, you could chain
all the values together and get something like this:

tut_containers/word_freq/bester_word_count.rb
require_relative "words_from_string"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count."

puts words_from_string(raw_text)
.tally

report erratum • discuss

Blocks and Enumeration • 63

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/best_word_count.rb
http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/bester_word_count.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

.sort_by { |word, count| count }

.last(5)

.reverse

.map { |word, count| "#{word}: #{count}" }

produces:

a: 6
the: 3
count: 2
word: 2
sounds: 2

In this example, each message returns a new collection of data that is processed by the next
message until we finally return the list of strings that is sent to puts.

You may wonder how you might debug that long chain of methods if something is not
working and you want to determine what each individual step is. Ruby provides a method
called tap that is designed to allow you to “tap into” this kind of method pipeline. All tap
does is take a block, pass the receiver into the block, and then return the original receiver of
the method (which, from the perspective of the method pipeline does nothing—the receiver
calls tap and then the same object is returned to receive the next method in the chain). So tap
is a no-op, except that it does invoke a block. That block could have a side effect, such as
printing a value to the console for debugging purposes:

tut_containers/word_freq/bester_word_count_with_tap.rb
require_relative "words_from_string"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count."

puts words_from_string(raw_text)
.tally
.sort_by { |word, count| count }
.tap { |result| puts "sorted tally: #{result}\n\n" }
.last(5)
.tap { |result| puts "only the last five: #{result}\n\n" }
.reverse
.tap { |result| puts "reversed: #{result}\n\n" }
.map { |word, count| "#{word}: #{count}" }

produces:

sorted tally: [["keep", 1], ["problem", 1], ["breaks", 1], ["down", 1], ["into",
1], ["two", 1], ["parts", 1], ["first", 1], ["given", 1], ["some", 1], ["text",
1], ["as", 1], ["we", 1], ["can", 1], ["index", 1], ["it", 1], ["with", 1],
["and", 1], ["corresponding", 1], ["entry", 1], ["to", 1], ["string", 1],
["return", 1], ["list", 1], ["of", 1], ["words", 1], ["an", 1], ["array", 1],
["then", 1], ["build", 1], ["each", 1], ["distinct", 1], ["hash", 1], ["like",
2], ["for", 2], ["use", 2], ["that", 2], ["sounds", 2], ["word", 2], ["count",
2], ["the", 3], ["a", 6]]

only the last five: [["sounds", 2], ["word", 2], ["count", 2], ["the", 3], ["a",
6]]

reversed: [["a", 6], ["the", 3], ["count", 2], ["word", 2], ["sounds", 2]]

a: 6

Chapter 4. Collections, Blocks, and Iterators • 64

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/bester_word_count_with_tap.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

the: 3
count: 2
word: 2
sounds: 2

It’s worth briefly mentioning that Ruby does have traditional for loops, and you could start
the code with something like for i in 0...5. But the for loop is too knowledgeable about the
array; it magically knows that we’re iterating over five elements, and it retrieves values in
turn from the array. To do this, it has to know that the structure it is working with is an array
of two-element subarrays. All that knowledge makes the code brittle—subject to breaking
if the underlying data changes. The enumeration construction is more robust and flexible.

However you use them, enumeration and code blocks are among the more interesting features
of Ruby, so let’s spend a while looking into them.

Blocks
A block is a chunk of code either enclosed between braces or between the keywords do and
end. The two forms are identical except for precedence, which is rarely an issue in practice.
Ruby style favors using braces for blocks that fit on one line and do/end when a block spans
multiple lines. Also, style has spaces between the brace and the code to distinguish a block
from a Hash literal.

some_array.each { |value| puts value * 3 }

sum = 0
other_array.each do |value|
sum += value
puts value / sum

end

You can think of a block as being somewhat like the body of an anonymous method. Like a
method, the block can take parameters (but, unlike a method, those parameters appear at
the start of the block between vertical bars). Both the blocks in the preceding example take
a single parameter, value. And, like a method, the body of a block is not executed when Ruby
first sees it. Instead, the block is saved away to be called later.

Blocks can appear in Ruby source code only immediately after the invocation of a method.
If the method takes parameters, the block appears after these parameters. You can think of
the block as being an extra parameter passed to that method. Let’s look at an example that
sums the squares of the numbers in an array:

sum = 0
[1, 2, 3, 4].each do |value|
square = value * value
sum += square

end
puts sum

produces:

30

The block is being called by the each method once for each element in the array, with each
element passed to the block as the value parameter in turn. But there’s something else going

report erratum • discuss

Blocks and Enumeration • 65

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

on. Take a look at the sum variable. It’s declared outside the block, updated inside the block,
and then passed to puts after the each method returns.

This example illustrates an important rule: the block has access to the variable scope outside
the block, and does not, by default, create new variables with existing names. There’s only
one variable sum in the preceding program. (You can override this behavior, as we’ll see
later.)

If, however, a variable appears only inside a block, then that variable is local to the block—in
the preceding program, we couldn’t have written the value of square in the puts statement at
the end of the code, because square is no longer defined at that point. It is defined only inside
the block itself.

This scoping behavior can lead to unexpected problems. For example, say our program was
dealing with drawing different shapes. We might have this:

assume Shape is defined elsewhere
square = Shape.new(sides: 4)
.. lots of code
sum = 0

[1, 2, 3, 4].each do |value|
square = value * value
sum += square

end
puts sum

square.draw # Error! Square is a number now...

This code would fail, because the variable square, which originally held a Shape object, will
have been overwritten inside the block and will hold a number by the time the each method
returns. This problem doesn’t bite often, but when it does, it can be very confusing.

Fortunately, Ruby has a couple of answers.

Parameters to a block are always local to a block, even if they have the same name as variables
in the surrounding scope. (You’ll get a warning message when you do this if you run Ruby
with the -w option.)

In this example, declaring thing as a parameter of the block, means that the block gets its own
version of thing and the value outside the block is undisturbed by the rest of the block:

thing = "some shape"
[1, 2].each { |thing| puts thing }
puts thing

produces:

1
2
some shape

Second, you can define block-local variables by putting them after a semicolon in the block’s
parameter list. So, in our sum-of-squares example, we should have indicated that the square
variable was block-local by writing it as follows:

square = "some shape"

sum = 0

Chapter 4. Collections, Blocks, and Iterators • 66

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

[1, 2, 3, 4].each do |value; square|
square = value * value # this is a different variable
sum += square

end
puts sum
puts square

produces:

30
some shape

To be fair, this syntax is pretty rare in actual Ruby code.

By making square block-local, values assigned inside the block will not affect the value of
the variable with the same name in the outer scope.

Ruby also offers a shortcut way to access the arguments to a block based on their numerical
position. Where before we wrote our block like this:

[1, 2].each { |thing| puts thing }

you can instead use the special variable _1 to indicate the first positional argument to the
block, meaning you can write this as:

[1, 2].each { puts _1 }

If the block had more arguments, you could reference them as _2, _3 and so on. We think
that if this goes past _1, you are probably better off giving the block variables their own
names.

This version is shorter, but can be harder to read if the name of the argument was conveying
important information. Later, we’ll see another common shortcut for simple block invocations.

Iterators
A method that can invoke a block of code repeatedly for one or more elements is sometimes
called an iterator or an enumerator. We said earlier that a block may appear only in the source
adjacent to a method call and that the code in the block is not executed at the time it is
encountered. Instead, Ruby remembers the context in which the block appears (the local
variables, the current object, and so on—Ruby refers to all of this information as a binding)
and then enters the method that was called. This is where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using the
yield statement. Whenever a yield is executed, it invokes the code in the block passed to the
method. If there is no block, Ruby throws an error. When the block exits, control picks back
up immediately after the yield. Let’s start with a trivial example:

Why "yield"?

Programming-language buffs will be pleased to know that the keyword yield
was chosen to echo the yield function in Liskov’s language CLU, a language
that is more than forty years old and yet contains features that still haven’t been
widely exploited by the CLU-less.

def two_times
yield

report erratum • discuss

Blocks and Enumeration • 67

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

yield
end
two_times { puts "Hello" }

produces:

Hello
Hello

The block (the code between the braces) is part of the call to the two_times method. Within
this method, yield is called two times. Each time, it invokes the code in the block, and a cheery
greeting is printed.

What makes blocks interesting, however, is that you can pass parameters to them and receive
values from them. For example, we could write a simple function that calculates members
of the Fibonacci series up to a certain value. (The basic Fibonacci series is a sequence of
integers, starting with two 1s, in which each subsequent term is the sum of the two preceding
terms. The series is sometimes used in sorting algorithms and in analyzing natural phenom-
ena.)

Continuing the example, let’s say we want the method to be able to do something arbitrary
with each new Fibonacci number. We can allow that by passing a block to the method, and
then yielding to the block each time we identify a new Fibonacci number.

tut_containers/fibonacci_up_to.rb
def fibonacci_up_to(max)
parallel assignment (i1 = 1 and i2 = 1)
i1, i2 = 1, 1
while i1 <= max
yield i1
i1, i2 = i2, i1 + i2

end
end

fibonacci_up_to(1000) { |f| print f, " " }
puts

produces:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

In this example, the yield statement has an argument. This value is passed to the associated
block, which tells the method what to do with each successive element.

In the definition of the block, the parameter list appears between vertical bars. In this instance,
the variable f receives the value passed to yield and then by yield to the block, so the block
prints successive members of the series. (This example also shows parallel assignment in
action. We’ll come back to this later on page 148.) Using the shortcut syntax we saw earlier,
this block could also have been written as { print _1, " " }.

Although it is common to pass just one value to a block, this is not a requirement; a block
may have any number of arguments. Blocks can use any of the argument patterns that
methods use, including keyword arguments, * and ** splats , and & arguments. These patterns
are discussed further in Chapter 5, More About Methods, on page 85.

Ruby provides many iterators that are available to all Ruby collections. Let’s look at three:
each, find, and map.

Chapter 4. Collections, Blocks, and Iterators • 68

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_containers/fibonacci_up_to.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The each method is probably the simplest iterator—all it does is yield successive elements
of its collection:

[1, 3, 5, 7, 9].each { |i| puts i }

produces:

1
3
5
7
9

The each iterator has a special place in Ruby; we’ll describe how it’s used as the basis of the
language’s ‘for‘ loop on page 160, and we’ll see on page 110 how all the other enumerable
methods are defined in terms of each. Just defining an eachmethod can add a whole lot more
functionality to your classes.

A block returns a value to the method that yields to it. The value of the last expression
evaluated in the block is passed back to the method as the value of the yield expression. This
is how the find method used by class Array works. (The find method is actually defined in
module Enumerable, which is mixed into class Array.) Its implementation would look something
like the following:

class Array
def find
each do |value|
return value if yield(value)

end
nil

end
end

[1, 3, 5, 7, 9].find { |number| number * number > 30 } # => 7

Let’s break this down. The find method is defined here as an instance method of Array. The
last line of code creates a literal array, [1, 3, 5, 7, 9], and sends it the find method.

The find method uses each to pass successive elements of the array to the associated block.
You can assume that the each method here is being called as if on the same array instance,
as if it was [1, 3, 5, 7, 9].each, we’ll talk about why that is so in Method Receiver, on page 87.

So, each takes its own block, and passes values to that block in succession. On the first iteration,
that’ll be the first element of the array, or 1. We then get to the line return value if yield(value).
The first part evaluated is yield(value), which passes control of the block argument to find,
namely { |number| number * number > 30 }. With 1 as the argument that’s 1 * 1 > 30, which is
false. Because the if clause value is false, the return value part of that line is not evaluated, and
the each method goes on to the next value in the array, which in this case is 3.

If the block returns true (that is, a value other than nil or false), the method exits, returning
the corresponding element, that’s the return value part. In this case, that return will happen
when the block gets to the element 7. If the method goes through the entire array and no
element matches, the method goes to the expression after the each and returns nil—methods
and blocks both return the value of their last expression.

report erratum • discuss

Blocks and Enumeration • 69

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

There’s a not-so-obvious piece of control flow here: when you return from inside a block, the
return also acts as a return on the associated method. So when the return value finally does
execute inside the each block, that value is also returned from the entire find method.

The example shows the benefit of Ruby’s approach to iterators. The Array class does what it
does best, accessing array elements, and leaves the application code to concentrate on its
particular requirement (in this case, finding an entry that meets some criteria).

Another common iterator ismap (also sometimes known as collect), which takes each element
from the collection and passes it to the block. The results returned by the block are used to
construct a new array. The following example uses the String#succmethod, which increments
a string value:

["H", "A", "L"].map { |x| x.succ } # => ["I", "B", "M"]

The implementation of map looks something like this:

class Array
def map
result = []
each do |value|
result << yield(value)

end
result

end
end

We start off with an empty result array, and for each element in the array, yield is invoked
on the block and the resulting value is appended to the array. At the end of the method the
result, now containing all the individual values that have been returned by blocks, is itself
returned.

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in the
Fibonacci example, an iterator can return derived values. This capability is used by Ruby’s
input and output classes, which implement an iterator interface that returns successive lines
(or bytes) in an I/O stream. In other words, they implement an each method that invokes its
block once for each line in the file, so you can iterate through a file like so:

f = File.open("testfile")
f.each do |line|
puts "The line is: #{line}"

end
f.close

produces:

The line is: This is line one
The line is: This is line two
The line is: This is line three
The line is: And so on...

Sometimes you want to keep track of how many times you’ve been through the block. The
with_index method is your friend. It is added as an additional method call after an iterator,
and adds a sequence number to each value returned by that iterator. The original value and
that sequence number are then passed to the block:

f = File.open("testfile")

Chapter 4. Collections, Blocks, and Iterators • 70

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

f.each.with_index do |line, index|
puts "Line #{index} is: #{line}"

end
f.close

produces:

Line 0 is: This is line one
Line 1 is: This is line two
Line 2 is: This is line three
Line 3 is: And so on...

The cool thing about with_index is that if the receiving object properly defines each, then
with_index can be chained to any iterator method, you can do map.with_index or find.with_index
or whatever.

Let’s look at one more useful iterator. The reduce method (which can also be referred to as
inject for historical reasons), lets you accumulate a value across the members of a collection.
It lets you reduce an array to a single scalar value. For example, you can sum all the elements
in an array or find their product using code such as this:

[1,3,5,7].reduce(0) { |sum, element| sum + element } # => 16
[1,3,5,7].reduce(1) { |product, element| product * element } # => 105

Here’s how reduce works: the first time the associated block is called, the first argument to
the block is set to the first argument passed to reduce and the second argument to the block
is set to the first element in the collection. In this case, for sum, the first time through the
block, sum is 0, the argument, and element is 1, from the collection. The block performs sum
+ element, returning 1.

The second and subsequent times the block is called, the first block argument is set to the
value returned by the block on the previous call, while the second argument continues to
be passed successive items from the collection. So, the next time through the block, sum is 1
and element is 3, and the block therefore returns 4. Next time, sum is 4 and the element is 5,
returning 9, then next time, 9 and 7 return 16. The final value of reduce is the value returned
by the block the last time it was called.

If reduce is called with no parameter, it uses the first element of the collection as the initial
value and starts the iteration with the second value. This means that we could have written
the previous examples like this:

[1,3,5,7].reduce { |sum, element| sum + element } # => 16
[1,3,5,7].reduce { |product, element| product * element } # => 105

To make things shorter, instead of a block, you can pass it the name of the method you want
to apply to successive elements of the collection. These examples work because, in Ruby,
addition and multiplication are simply methods on numbers, and :+ is the symbol corre-
sponding to the method +:

[1,3,5,7].reduce(:+) # => 16
[1,3,5,7].reduce(:*) # => 105

But for one of these examples, there’s a shortcut:

[1,3,5,7].sum # => 16

report erratum • discuss

Blocks and Enumeration • 71

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

(Array#product is also a method, but it does something different, it returns the cross-product
of two arrays…)

[1,3,5,7].product([2, 4, 6]) # => [[1, 2], [1, 4], [1, 6], [3, 2], [3, 4], [3,
.. 6], [5, 2], [5, 4], [5, 6], [7, 2], [7, 4], [7,
.. 6]]

Using Blocks for Transactions
Although blocks are often used as the target of an iterator, they have other uses. Let’s look
at a few.

You can use blocks to define a chunk of code that must be run as part of some kind of
transaction. For example, you’ll often open a file, do something with its contents, and then
need to ensure that the file is closed when you finish. Opening and closing the file is a
transaction that you want to happen together regardless of what you do with the contents.
Although you can manage a transaction using conventional linear code, a version using
blocks is simpler and turns out to be less error prone. A naive implementation (ignoring
error handling) could look something like the following:

class File
def self.open_and_process(*args)
f = File.open(*args)
yield f
f.close()

end
end

File.open_and_process("testfile", "r") do |file|
while line = file.gets
puts line

end
end

produces:

This is line one
This is line two
This is line three
And so on...

The method open_and_process is a class method—its receiver is the class itself, and it may be
called independently of any particular file object. We’ll discuss class methods more in
Chapter 5, More About Methods, on page 85. We want open_and_process to take the same
arguments as the conventional File.open method, but we want to just pass them through no
matter what the arguments are. So, we’ve specified the parameter list as *args meaning
“collect the positional parameters passed to the method into an array named args”. We then
call File.open, passing it *args as an argument. This expands the array back into individual
parameters. The net result is that open_and_process transparently passes its non-block arguments
to File.open.

Once the file has been opened, open_and_process calls yield, passing the open file object to the
block. When the block returns, the file is closed. In this way, the responsibility for closing
an open file has been shifted from the users of file objects to the file objects themselves.

Chapter 4. Collections, Blocks, and Iterators • 72

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The technique of having files manage their own life cycle is so useful that the class File supplied
with Ruby supports it directly. If File.open has an associated block, then that block will be
invoked with a file object, and the file will be closed when the block terminates. This is
interesting, because it means that File.open has two different behaviors. When called with a
block, it executes the block and closes the file. When called without a block, it just returns
the file object. This is made possible by the method block_given?, which returns true if a block
is associated with the current method. Using this method, you could implement something
similar to the standard File.open (again, ignoring error handling) using the following:

class File
def self.my_open(*args)
file = File.new(*args)
return file unless block_given?
result = yield file
file.close
result

end
end

In this version, we use the guard clause return file unless block_given? to exit the method early
if block_given? is false. Otherwise, we proceed with the same yield then close as our previous
code.

This code has one last missing piece: in the previous examples of using blocks to control
resources, we didn’t address error handling. If we wanted to implement these methods
properly, we’d need to ensure that we closed a file even if the code processing that file
somehow aborted. We do this using exception handling, which we talk about later on page
171.

Using Blocks as Objects
Blocks are like anonymous methods, but there’s more to them than that. You can also store
a block in a variable, pass it as an argument to a function, and then invoke its code later.

Remember we said that you can think of blocks as an extra implicit argument that’s passed
to a method? Well, you can make that argument explicit. If the last parameter in a method
definition is prefixed with an ampersand (such as &action), Ruby looks for a code block
whenever that method is called. That code block is converted to an object of class Proc and
assigned to the parameter. You can then treat the parameter as any other variable.

Here’s an example where we create a Proc object in one instance method and store it in an
instance variable. We then invoke the proc from a second instance method.

class ProcExample
def pass_in_block(&action)
@stored_proc = action

end

def use_proc(parameter)
@stored_proc.call(parameter)

end
end

eg = ProcExample.new
eg.pass_in_block { |param| puts "The parameter is #{param}" }

report erratum • discuss

Blocks and Enumeration • 73

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

eg.use_proc(99)

produces:

The parameter is 99

See how the call method on a proc object invokes the code in the original block?

Many Ruby programs store and later call blocks in this way—it’s a great way of implementing
callbacks, dispatch tables, and so on. But you can go one step further. If a block can be turned
into an object by adding an ampersand parameter to a method, what happens if that method
then returns the Proc object to the caller? What can you do with that Proc object?

Well, you can call it, for one thing…

def create_block_object(&block)
block

end

bo = create_block_object { |param| puts "You called me with #{param}" }

bo.call(99)
bo.call("cat")

produces:

You called me with 99
You called me with cat

The create_block_object method converts its block argument to the variable named block and
then returns it. The returned value is a Proc object and can be called with the call method.

Creating a variable with a block value is so useful that Ruby provides multiple ways to do
so:

The one you might see the most in newer code is the “stabby lambda” syntax, where the ->
operator declares that a block is coming:

bo = ->(param) { puts "You called me with #{param}" }
bo.call(99)
bo.call("cat")

produces:

You called me with 99
You called me with cat

The stabby lambda is a shortcut for the Ruby Kernel method lambda:

bo = lambda { |param| puts "You called me with #{param}" }
bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

There’s a related Kernel method called proc:

bo = proc { |param| puts "You called me with #{param}" }
bo.call 99
bo.call "cat"

Chapter 4. Collections, Blocks, and Iterators • 74

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

You called me with 99
You called me with cat

Both proc and lambda invoke the new method of the Proc class, although current style prefers
using one of the above mechanisms to using Proc.new directly:

bo = Proc.new { |param| puts "You called me with #{param}" }
bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

There are very slight differences between the behavior of the resulting object based on the
lambda calls versus the proc calls. Specifically, the lambda values return an error if called with
the wrong number of arguments, while proc will allow the call, and either truncate extra
arguments or assign nil to unspecified arguments. Also, using return inside a proc will also
return from the method the proc is inside, whereas using return inside a lambda will not.

Blocks Are Closures
We said earlier that a block can use local variables from the surrounding scope. Let’s look
at a slightly different example of a block doing just that:

def n_times(thing)
->(n) { thing * n }

end

p1 = n_times(23)
p1.call(3) # => 69
p1.call(4) # => 92
p2 = n_times("Hello ")
p2.call(3) # => "Hello Hello Hello "

The method n_times uses stabby lambda syntax to return a Proc object that references the
method’s parameter, thing. Even though that parameter is out of scope by the time the block
is called outside the method, the parameter remains accessible to the block. This is called a
closure—variables in the surrounding scope that are referenced in a block remain accessible
for the life of that block and the life of any Proc object created from that block.

Here’s another example—a method that returns a Proc object that returns successive powers
of 2 when called:

def power_proc_generator
value = 1
-> { value += value }

end

power_proc = power_proc_generator

puts power_proc.call
puts power_proc.call
puts power_proc.call

produces:

2

report erratum • discuss

Blocks and Enumeration • 75

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

4
8

Stabby Lambdas
Let’s look at that lambda syntax a little more. You can write the following:

-> (params) { ... }

As a shortcut to:

lambda { |params| ... }

Why ->?

Let’s start by getting something out of the way. Why ->? For compatibility
across all the different source file encodings, Matz is restricted to using pure
7-bit ASCII for Ruby operators, and the choice of available characters is
severely limited by the ambiguities inherent in the Ruby syntax. He felt that
-> was (kind of) reminiscent of a Greek lambda character λ.

The parenthesis around the parameters are optional. Here are some examples:

proc1 = -> arg { puts "In proc1 with #{arg}" }
proc2 = -> arg1, arg2 { puts "In proc2 with #{arg1} and #{arg2}" }
proc3 = ->(arg1, arg2) { puts "In proc3 with #{arg1} and #{arg2}" }

proc1.call "ant"
proc2.call "bee", "cat"
proc3.call "dog", "elk"

produces:

In proc1 with ant
In proc2 with bee and cat
In proc3 with dog and elk

The -> form is more compact than using lambda and is especially useful when you want to
pass one or more Proc objects to a method:

def my_if(condition, then_clause, else_clause)
if condition
then_clause.call

else
else_clause.call

end
end

5.times do |val|
my_if(
val < 2,
-> { puts "#{val} is small" },
-> { puts "#{val} is big" }

)
end

produces:

0 is small
1 is small
2 is big

Chapter 4. Collections, Blocks, and Iterators • 76

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

3 is big
4 is big

One good reason to pass blocks to methods is that you can reevaluate the code in those
blocks at any time.

Here’s an example of reimplementing a while loop using a method. Because the condition is
passed as a block, it can be evaluated each time around the loop:

def my_while(cond, &body)
while cond.call
body.call

end
end

a = 0
my_while(-> { a < 3 }) do
puts a
a += 1

end

produces:

0
1
2

Block Parameter Lists
When you are using the -> syntax, you declare the parameters in a separate list before the
block body, similar to a method definition. Blocks written using the other syntax forms
declare their parameter lists between vertical bars. In both cases, the parameter list looks
just like the list you can give to methods. It can take default values, splat arguments (described
later on page 89), keyword arguments, and its own block parameter (a trailing argument
starting with an ampersand). You can write blocks that are just as versatile as methods.
Actually, they are more versatile, because these blocks are also closures, while methods are
not. Here’s a block using the lambda notation:

proc1 = lambda do |a, *b, &block|
puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

proc1.call(1, 2, 3, 4) { puts "in block1" }

produces:

a = 1
b = [2, 3, 4]
in block1

And here’s one using the -> notation:

proc2 = -> (a, *b, &block) do
puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

report erratum • discuss

Blocks and Enumeration • 77

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

proc2.call(1, 2, 3, 4) { puts "in block2" }

produces:

a = 1
b = [2, 3, 4]
in block2

Enumerators
As powerful and flexible as the Ruby enumeration methods are, the ones we’ve seen all have
the same structure. A block is passed to an object, and that object controls how it interacts
with the block and traverses the collection.

As useful as that structure is, it doesn’t cover all the cases where iteration is useful. Sometimes,
you want an external object or method to control how the collection is traversed. You may
need a more complicated kind of access to the block methods. For example, you might want
to iterate over two collections in parallel, which is very difficult using Ruby’s internal iterator
scheme.

Fortunately, Ruby comes with a built-in Enumerator class, which implements external iterators
in Ruby for just such occasions. An external iterator is an iterator where you control the
iteration behavior outside the iterator itself, meaning we have a specific way of explicitly
triggering when the iterator should move to the next element in its collection.

The Enumerator class is not to be confused with the Enumerablemodule, which we will discuss
in Chapter 6, Sharing Functionality: Inheritance, Modules, and Mixins, on page 101. The
Enumerablemodule is a mixin that provides functionality to a variety of classes. The Enumerator
class is a class that allows for external iterators.

You can create an Enumerator object by calling the to_enum method (or its synonym, enum_for
) on a collection such as an array or a hash. Once you have an Enumerator, you can access the
next element in the collection with the method next:

a = [1, 3, "cat"]
enum_a = a.to_enum
enum_a.next # => 1
enum_a.next # => 3

h = {dog: "canine", fox: "vulpine"}
enum_h = h.to_enum
enum_h.next # => [:dog, "canine"]
enum_h.next # => [:fox, "vulpine"]

By default, the new enumerator uses the each method as the way it walks the underlying
enumeration, but you can use any method that successively yields values to a block:

a = [1, 3, "cat"]
enum_a = a.to_enum(:reverse_each)
enum_a.next # => "cat"
enum_a.next # => 3

Most of Ruby’s internal iterator methods—the ones that normally yield successive values
to a block—will return an Enumerator object if called without a block:

a = [1, 3, "cat"]

enum_a = a.each

Chapter 4. Collections, Blocks, and Iterators • 78

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

enum_a.next # => 1
enum_a.next # => 3

Ruby’s Kernel module has a method called loop that does nothing but repeatedly invoke its
block. Typically, your code in the block will look for an ending condition and break out of
the loop when that condition occurs. But loop is also smart when you use an Enumerator—when
an enumerator object runs out of values inside a loop, the loop will terminate cleanly.

The following example shows this in action—the loop iterates both arrays in parallel and
ends when the three-element enumerator runs out of values. You can also handle this in
your own iterator methods by rescuing the StopIteration exception, but because we haven’t
talked about exceptions yet, we won’t go into details here.

short_enum = [1, 2, 3].to_enum
long_enum = ('a'..'z').to_enum

loop do
puts "#{short_enum.next} - #{long_enum.next}"

end

produces:

1 - a
2 - b
3 - c

Enumerators Are Objects
Enumerators take something that’s normally executable code (the act of iterating—by default,
calling each) and turn it into an object. This means you can do things programmatically with
enumerators that aren’t easily done with regular loops.

For example, the Enumerablemodule defines the method each_with_index. This invokes its host
class’s each method, returning successive values along with an index:

result = []
['a', 'b', 'c'].each_with_index { |item, index| result << [item, index] }
result # => [["a", 0], ["b", 1], ["c", 2]]

But what if you wanted to iterate and receive an index but use a different method than each
to control that iteration? For example, you might want to iterate over the characters in a
string. There’s no method called each_char_with_index built into the String class.

Enumerators to the rescue. The each_charmethod of strings will return an enumerator if you
don’t give it a block, and you can then call each_with_index on that enumerator:

result = []
"cat".each_char.each_with_index { |item, index| result << [item, index] }
result # => [["c", 0], ["a", 1], ["t", 2]]

In fact, this is such a common use of enumerators that Matz has given us with_index, which
makes the code read better:

result = []
"cat".each_char.with_index { |item, index| result << [item, index] }
result # => [["c", 0], ["a", 1], ["t", 2]]

report erratum • discuss

Blocks and Enumeration • 79

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

By separating the with_index from the each_char, we can even chain in a map call and simplify
the code even further:

"cat".each_char.with_index.map { |item, index| [item, index] }

You can also create the Enumerator object explicitly—in this case we’ll create one that calls
our string’s each_char method. We can call to_a on that enumerator to iterate over it:

enum = "cat".each_char
enum.to_a # => ["c", "a", "t"]

If the method we’re using as the basis of our enumerator takes parameters, we can pass them
to enum_for:

enum_in_threes = (1..10).enum_for(:each_slice, 3)
enum_in_threes.to_a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

Enumerators Used as Generators and Filters
In addition to creating enumerators from existing collections, you can create an enumerator
explicitly with Enumerator.new, passing it a block that takes a single argument. The code in
the block will be used when next is called on the enumerator object and it needs to supply a
fresh value to your program. However, the block isn’t simply executed from top to bottom.
When first called, execution starts at the top of the block and pauses when the block calls
yield on its argument, which yields a value to the calling code. When next is called again,
execution resumes at the statement following the yield.

Among other things, this lets you write enumerators that generate infinite sequences:

triangular_numbers = Enumerator.new do |yielder|
number = 0
count = 1
loop do
number += count
count += 1
yielder.yield(number)

end
end

5.times { print triangular_numbers.next, " " }
puts

produces:

1 3 6 10 15

We start by creating an iterator using Enumerator.new and assigning that value to the variable
triangular_numbers. After that, we loop 5.times, each time calling triangular_numbers.next. The
first time next is called, we start at the top of the block, setting number and count before
entering the loop. In the loop number is set to 1 and count is incremented to 2 and then yield-
er.yield is called, passing number back to the caller.

The following time that next is called, we continue at the point of yield meaning that we stay
in the loop rather than start at the beginning again. The code updates number to 3, increments
count to three, and yields. And so on…

That syntax for infinite sequences is confusing, though. So, a simpler mechanism was added
for creating infinite sequences. The produce method takes an initial value and a block. Every

Chapter 4. Collections, Blocks, and Iterators • 80

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

time the block is invoked via next, the resulting value is stored and used as the input to the
next call. This means all you need to do is define the succession function, and you don’t need
to worry about managing yielders and whatnot:

triangular_numbers = Enumerator.produce([1, 2]) do |number, count|
[number + count, count + 1]

end

5.times { print triangular_numbers.next.first, " " }
puts

produces:

1 3 6 10 15

Note that we’re returning a two-element array to keep both values, so we need to call first
on the result to get the actual number. We’ll see a work around in a second.

Enumerator objects are also enumerable (that is to say, the methods available to enumerable
objects are also available to them). That means we can use Enumerable’s methods (such as
first) on them:

triangular_numbers = Enumerator.produce([1, 2]) do |number, count|
[number + count, count + 1]

end

p triangular_numbers.first(5).map { _1.first }

produces:

[1, 3, 6, 10, 15]

You have to be careful with enumerators that can generate infinite sequences. Some of the
regular Enumerable methods such as count and select will happily try to read the whole enu-
meration before returning a result. If you want a version of select that works with infinite
sequences, you need to use the lazy method of Enumerable.

If you call lazy on any Ruby enumerable, you get back an instance of class Enumerator::Lazy.
This enumerator acts just like the original, but it reimplements methods such as select and
map so that they can work with infinite sequences. Putting it another way, none of the lazy
versions of the methods actually consume any data from the collection until that data is
requested, and then they only consume enough to satisfy that request. In other words, they
are “lazy”.

To work this magic, the lazy versions of the various methods do not return arrays of data.
Instead, each returns a new enumerator that includes its own special processing—the select
method returns an enumerator that knows how to apply the select logic to its input collection,
the map enumerator knows how to handle the map logic, and so on. The result is that if you
chain a bunch of lazy enumerator methods, what you end up with is a chain of enumera-
tors—the last one in the chain takes values from the one before it, and so on.

Let’s play with this a little. To start, let’s create a class that generates a stream of integers…

class InfiniteStream
def all
Enumerator.produce(0) do |number|
number += 1

end.lazy
end

report erratum • discuss

Blocks and Enumeration • 81

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

p InfiniteStream.new.all.first(10)

produces:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

See how we convert the basic generator into a lazy enumerator with the call to lazy after the
end of the block.

Calling the first method on this with the argument 10 returns the numbers 1 through 10, but
this doesn’t exercise the method’s lazy characteristics. Lets instead get the first 10 multiples
of three.

p InfiniteStream.new.all
.select { (_1 % 3).zero? }
.first(10)

produces:

[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

Without the lazy enumerator, the call to selectwould effectively never return, as selectwould
try to read all the values from the generator. But the lazy version of select only consumes
values on demand, and in this case the subsequent call to first only asks for 10 values.

Let’s make this a little more complex—how about multiples of 3 whose string representations
are palindromes?

def palindrome?(n)
n = n.to_s
n == n.reverse

end

p InfiniteStream.new.all
.select { (_1 % 3).zero? }
.select { palindrome?(_1) }
.first(10)

produces:

[0, 3, 6, 9, 33, 66, 99, 111, 141, 171]

Remember that our lazy filter methods simply return new Enumerator objects? That means
we can split up the previous code:

multiple_of_three = InfiniteStream.new.all.select { (_1 % 3).zero? }

p multiple_of_three.first(10)

m3_palindrome = multiple_of_three.select { palindrome?(_1) }

p m3_palindrome.first(10)

produces:

[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
[0, 3, 6, 9, 33, 66, 99, 111, 141, 171]

You could also code up the various predicates as free-standing procs, if you feel it aids
readability or reusablility.

multiple_of_three = -> n { (n % 3).zero? }

Chapter 4. Collections, Blocks, and Iterators • 82

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

palindrome = -> n { n = n.to_s; n == n.reverse }

p InfiniteStream.new
.all
.select(&multiple_of_three)
.select(&palindrome)
.first(10)

produces:

[0, 3, 6, 9, 33, 66, 99, 111, 141, 171]

This also gives us a way to fix our definition of triangular numbers so that the user of that
method doesn’t have to know about the two-element array, we just use lazy andmap to return
only the number we care about:

triangular_numbers = Enumerator.produce([1, 2]) do |number, count|
[number + count, count + 1]

end.lazy.map { _1.first }

p triangular_numbers.first(5)

produces:

[1, 3, 6, 10, 15]

What’s Next
Collections, blocks, and iterators are core concepts in Ruby. The more you write in Ruby,
the more you’ll find yourself moving away from conventional looping constructs. Instead,
you’ll write classes that support iteration over their contents. And you’ll find that this code
is compact, easy to read, and a joy to maintain. If this all seems too weird, don’t worry. After
a while, it’ll start to come naturally. And you’ll have plenty of time to practice as you use
Ruby libraries and frameworks. Now, lets talk more about how Ruby lets you define and
call methods.

report erratum • discuss

What’s Next • 83

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 5

More About Methods
So far in this book, we’ve been defining and using methods without much thought. Now
it’s time to get into the details.

Defining a Method
As we’ve seen, a method is defined using the keyword def.

The keyword def creates a method and returns the name of the method as a symbol, which
we saw in Specifying Access Control, on page 45 allows us to put decorator methods like
private before the declaration.

The body of a method contains normal Ruby expressions. The return value of a method is
the value of the last expression executed or the argument of an explicit return expression.

An important fact about def is that if you define a method a second time, Ruby will not raise
an error, it will print a warning, then it will just redefine the method using the second defi-
nition:

class Batman
def who_is_robin
puts "Dick Grayson"

end

def who_is_robin
puts "Damian Wayne"

end
end

Batman.new.who_is_robin

produces:

Damian Wayne

When combined with the ability to reopen classes that we saw in Reopening Classes, on
page 49, the ability to redefine methods is an important, but potentially dangerous, feature
of how classes work.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Method Bodies
In a “regular” method definition, the method body starts on the line after the method decla-
ration and continues until a matching end. Ruby does not require the method body to be
indented, but standard code style does indent method bodies two characters:

def a_method_name(arg)
puts arg

end

Starting in Ruby 3.0, you can create one-line methods with a different syntax, sometimes
called an “endless method,” because you don’t need the end statement.

It’s the method name, any arguments, an optional space, an = and the method body:

def a_method_name(arg) = puts arg

The right side of the equal sign is a single expression. If the method takes arguments, the
argument list must be surrounded by parentheses (the parentheses are optional in a regular
definition). There must be either parenthesis or a space between the method name and the
equals sign, or else the parser will consider the equals sign to be part of the method name.

Sometimes you will want to define a method with no body, often because it’s a method that
will be fully defined by subclasses. While you can do that in two lines, you will sometimes
see this idiom:

def a_method_name; end

The semicolon, which is rare in Ruby code, is used here as a separator between multiple
expressions on the same line. If the method is called, it returns nil.

Method Names
Method names should begin with a lowercase letter or underscore followed by a combination
of letters, digits, and underscores. You won’t get an error if you start a method name with
an uppercase letter, but when Ruby sees you calling the method, it might guess that it is a
constant, not a method invocation, and as a result it may parse the call incorrectly. By con-
vention, method names starting with an uppercase letter are in the Kernel module and are
used for type conversion. The Integer method, for example, converts its parameter to an
integer.

In addition to letters, digits, and underscores, a method name may end with one of ?, !, or
=.

Methods that return a boolean result (so-called predicate methods) are often named with a
trailing ?:

1.even? # => false
2.even? # => true
1.instance_of?(Integer) # => true

Methods that are “dangerous,” or that modify their receiver, may be named with a trailing
exclamation point, !. These are sometimes called bang methods, and are often paired with a
“safe” version that does not end in an exclamation point. For instance, class String provides
both chop and chop! methods. The first returns a modified string; the second modifies the
receiver in place.

Chapter 5. More About Methods • 86

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

sample = "this is my code"
sample.chop # => "this is my cod"
sample # => "this is my code"

sample.chop! # => "this is my cod"
sample # => "this is my cod"

Methods that can appear on the left side of an assignment (a feature we discussed back in
the chapter on classes on page 38) end with an equal sign (=).

?, !, and = are the only weird characters allowed as method name suffixes. These characters
are only allowed at the end of a method name.

In addition, there is a limited set of operators that you can override by defining them as
methods. For example:

class Matrix
attr_reader :x, :y

def initialize(x, y)
@x = x
@y = y

end

def to_s = "(#{x}, #{y})"

def +(other)
Matrix.new(x + other.x, y + other.y)

end
end

first = Matrix.new(1, 2)
second = Matrix.new(3, 4)
puts first + second

produces:

(4, 6)

Here we are defining the + operator to implement matrix addition and return a new matrix
object. Even though the + is defined as a method, it is still written as a binary operator. The
full list of operator names that you can define as methods is in Chapter 25, Language Refer-
ence: Objects and Classes, on page 465.

Method Receiver
An instance method definition, like the ones we just saw, adds the method to the class it is
defined within and makes the method available to instances of that class. (We’ll talk in
Chapter 25, Language Reference: Objects and Classes, on page 465 about what Ruby does
for method definitions that are not inside a class.)

Ruby also allows you to define a method for one specific object, rather than the current class.
The most common use of this feature is to assign methods to the class itself, rather than to
instances of the class.

The syntax is to put the object name, followed by a dot, before the method name:

class Computer
def self.function

report erratum • discuss

Defining a Method • 87

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

"I'm afraid I can't do that"
end

end

puts Computer.function

produces:

I'm afraid I can't do that

In this example, the object name is self and at the point of the method declaration, selfmeans
“The class this method is being declared inside”, in this case Computer, so the method is
accessible as Computer.function. (You could actually define the method as def Computer.function,
and you might see older Ruby code that uses that syntax.) We’ll talk more about self in
Chapter 22, The Ruby Object Model and Metaprogramming, on page 371.

Although class methods are the most common use of this feature, methods can be attached
to any object:

class Computer
end

mac = Computer.new
pc = Computer.new

def mac.introduction = "I'm a Mac"

def pc.introduction = "I'm a PC"

puts mac.introduction
puts pc.introduction

produces:

I'm a Mac
I'm a PC

In this case, we’ve attached separate methods to each of the two instances, so calling introduction
on each instance behaves differently.

You’ll see this syntax for class methods frequently, and the individual object version of it
quite rarely. We’ll talk more in Chapter 25, Language Reference: Objects and Classes, on
page 465 about why this works, and how class methods behave in Ruby.

Method Parameters
Now that we’ve defined our new method, we may need to declare some parameters to the
method. Parameters are defined using a list of local variable names. Using parentheses
around a method’s parameters in the definition is optional. The standard convention is to
use them when a method has parameters and omit them when it doesn’t. Note that if the
method is defined using the “endless method” syntax, the parameter list must be surrounded
by parentheses, but you don’t need to include empty parentheses.

def my_new_method(arg1, arg2, arg3) # 3 parameters
Code for the method would go here
end

def my_other_new_method # No parameters
Code for the method would go here
end

Chapter 5. More About Methods • 88

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Ruby lets you specify default values for a method’s parameters—values that will be used if
the caller doesn’t pass them explicitly. You do this using an equal sign (=) followed by a
Ruby expression. That expression can include references to previous parameters in the list:

def cool_dude(arg1="Miles", arg2="Coltrane", arg3="Roach")
"#{arg1}, #{arg2}, #{arg3}."

end

cool_dude # => "Miles, Coltrane, Roach."
cool_dude("Bart") # => "Bart, Coltrane, Roach."
cool_dude("Bart", "Elwood") # => "Bart, Elwood, Roach."
cool_dude("Bart", "Elwood", "Linus") # => "Bart, Elwood, Linus."

Here’s an example where the default parameter references a previous parameter:

def surround(word, pad_width=word.length/2)
"[" * pad_width + word + "]" * pad_width

end

surround("elephant") # => "[[[[elephant]]]]"
surround("fox") # => "[fox]"
surround("fox", 10) # => "[[[[[[[[[[fox]]]]]]]]]]"

The default parameter value is re-evaluated every time the method is called, and any variable
that would be visible inside the method itself is available for the default value expression.

Variable-Length Parameter Lists
But what if you want to pass in a variable number of parameters or want to capture multiple
arguments into a single parameter? Placing an asterisk before the name of the parameter
lets you do just that. This is sometimes called a splat (presumably because the asterisk looks
somewhat like a bug after hitting the windscreen of a fast-moving car).

def variable_args(arg1, *rest)
"arg1=#{arg1} -- rest=#{rest.inspect}"

end

variable_args("one") # => arg1=one -- rest=[]
variable_args("one", "two") # => arg1=one -- rest=["two"]
variable_args("one", "two", "three") # => arg1=one -- rest=["two", "three"]

In this example, the first argument is assigned to the first method parameter as usual.
However, the next parameter is prefixed with an asterisk, so all the remaining arguments
are bundled into a new Array, which is then assigned to that parameter.

Folks sometimes use a splat to specify parameters that are not used by the method but that
are perhaps used by the corresponding method in a superclass. (Note that in this example
we call super with no parameters. This is a special case that means “invoke this method in
the superclass, passing it all the parameters that were given to the original method.” More
about this is found in Super Lookup, on page 114.)

class Child < Parent
def do_something(*not_used)
our processing
super

end
end

report erratum • discuss

Defining a Method • 89

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If the parameter is really not used, you can also leave off the name of the parameter and just
write an asterisk:

class Child < Parent
def do_something(*)
our processing
super

end
end

And you can pass the anonymous splat parameter to another method without giving it a
name.

class Example
def method_1(*)
method_2(*)

end

def method_2(*array_args)
puts array_args.join(", ")

end
end

puts Example.new.method_1("a", "b", "c")

produces:

a, b, c

You do have to give the splat a name if you want to use it, though, so you can’t write *.join
or something like that.

You can put the splat parameter anywhere in a method’s parameter list, allowing you to
write this:

def split_apart(first, *splat, last)
puts "First: #{first.inspect}, splat: #{splat.inspect}, " +
"last: #{last.inspect}"

end

split_apart(1,2)
split_apart(1,2,3)
split_apart(1,2,3,4)

produces:

First: 1, splat: [], last: 2
First: 1, splat: [2], last: 3
First: 1, splat: [2, 3], last: 4

In practice, we find this confusing, but your milage may vary.

If you cared only about the first and last parameters, you could define this method using
the bare asterisk syntax:

def split_apart(first, *, last)

You can have only one array splat parameter in a method—if you had two, parameter
assignment would be ambiguous. You also can’t put parameters with default values after

Chapter 5. More About Methods • 90

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

the splat parameter. In all cases, the splat argument receives the values left over after
assigning to the positional arguments.

Hash and Keyword Parameters
Ruby allows you to define parameters to methods using keywords, with the requirement
that the arguments will also be passed using the same keyword. In Calling a Method, on
page 93, we’ll talk more about how those arguments are passed.

The difference between a positional and keyword parameter in the method definition is that
a keyword parameter name is followed by a colon:

def method_with_keywords(city:, state:, zip:)
end

method_with_keywords(city: "Chicago", state: "IL", zip: "60606")

As with positional parameters, you can specify a default value for a keyword parameter that
is not called. For keyword parameters, this involves placing the default value after the colon.
Keyword parameters with default values don’t need be included in each call:

def method_with_keywords(city:, state: "IL", zip:)
end

method_with_keywords(city: "Chicago", zip: "60606")

When a method with keywords is called, each keyword parameter must ether be part of the
call or have a default value, otherwise Ruby raises an ArgumentError.

If a method has both positional and keyword parameters, the keyword parameters must
come after the positional parameters.

You can collect arbitrary keyword arguments into a Hash with the double-splat, or **:

def varargs(arg1, **rest)
"arg1=#{arg1}. rest=#{rest.inspect}"

end

varargs("one") # => arg1=one. rest={}
varargs("one", color: "red") # => arg1=one. rest={:color=>"red"}
varargs "one", color: "red", size: "xl" # => arg1=one. rest={:color=>"red",

.. :size=>"xl"}

As with the single-splat, you can use the bare ** to ignore keyword parameters, or use it to
pass the entire hash on to another method. A bare single splat will catch positional arguments,
a bare double splat will catch keyword arguments.

class Child < Parent
def do_something(**)
do_something_else(**)

end
end

Ruby also allows you to use **nil to explicitly indicate that the method does not accept any
keyword arguments. Otherwise, a method definition that uses a single splat will pull in
keyword arguments as a hash. If you don’t want that behavior, **nil will raise an exception.

report erratum • discuss

Defining a Method • 91

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Ruby Keywords Pre 3.0

We don’t normally mention deprecated or removed Ruby features in this book, but this is a pattern
you are extremely likely to see in older Ruby code.

Before Ruby had true keyword parameters, it had a syntax that simulated them. Any arbitrary
key/value pair passed after the positional parameters to a method were automatically rolled up and
converted to a Hash. In other words, you could do this:

class SongList
def search(field, options = {})
implementation

end
end

Songlist.new.search(:titles, genre: "jazz", duration_less_than: 270)

In that case, the genre and duration_less_than parameters would be rolled together and placed in the last
parameter of the method, in this case options (the default empty hash is there in case no extra parameters
are passed). It was then the responsibility of the method to determine if the list of key/value pairs in
the hash were valid.

Ruby added true keyword parameters in version 2.0, and the true keyword parameters and hash
parameters lived awkwardly together until Ruby 3.0, which removed the arbitrary hash parameters,
fully replacing them with keyword arguments and the double splat.

Methods and Block Parameters
As we discussed in the section on blocks and iterators on page 62, when a method is called
it may be associated with a block. Normally, you call the block from within the method using
yield:

def double(p1)
yield(p1 * 2)

end

double(3) { |val| "I got #{val}" } # => "I got 6"
double("tom") { |val| "Then I got #{val}" } # => "Then I got tomtom"

However, if the last parameter in a method definition list is prefixed with an ampersand,
any associated block is converted to a Proc object, and that object is assigned to the parameter.
This allows you to store the block for use later.

class TaxCalculator
def initialize(name, &block)
@name, @block = name, block

end

def get_tax(amount)
"#@name on #{amount} = #{ @block.call(amount) }"

end
end

tc = TaxCalculator.new("Sales tax") { |amt| amt * 0.075 }

tc.get_tax(100) # => "Sales tax on 100 = 7.5"
tc.get_tax(250) # => "Sales tax on 250 = 18.75"

Chapter 5. More About Methods • 92

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

You don’t have to give the block parameter a name if you are only going to pass it along,
you can just use a bare & character.

class Child < Parent
def do_something(&)
do_something_else(&)

end
end

Combining all these mechanisms, if you just want to roll all the arguments of a method along
to a different method, then def(*args, **kwargs, &block) is an awkward way to gather all the
arguments. Ruby has a simpler way.

class Thing
def do_something(...)
do_something_else(...)

end
end

The triple dot syntax is an anonymous way to pass all arguments to one method onward to
a different method.

Calling a Method
You call a method by optionally specifying a receiver, giving the name of the method, and
optionally passing some arguments and an optional block. Here’s a code fragment that shows
us calling a method with a receiver, a positional argument, a keyword argument and a block:

connection.download_mp3("jitterbug", speed: :slow) { |p| show_progress(p) }

In this example, the object connection is the receiver, download_mp3 is the name of the method,
the string "jitterbug" is the positional parameter, the key/value pair speed: :slow is a keyword
parameter, and the code between the braces is the associated block argument. When the
method is called, Ruby invokes the method in that object, and inside that method, self is set
to that receiver object. For class and module methods, the receiver will be the class or module
object.

File.size("testfile") # => 66
Math.sin(Math::PI/4) # => 0.7071067811865475

Ruby allows you to omit the receiver, in which case the default receiver is self, the current
object. In this example, all the methods in write_on are called with the current object as the
implicit receiver.

class InvoiceWriter
def initialize(order)
@order = order

end

def write_on(output)
called on current object, as there is no reciever
write_header_on(output)
write_body_on(output)
write_totals_on(output)

end

report erratum • discuss

Calling a Method • 93

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def write_header_on(output)
...

end

def write_body_on(output)
...

end

def write_totals_on(output)
...

end
end

This defaulting mechanism is how Ruby handles private methods. Private methods may not
be called with a receiver other than self, so they must be methods available in the current
object. In the previous example, we might want to make the helper methods private, because
they shouldn’t be called from outside the InvoiceWriter class:

class InvoiceWriter
def initialize(order)
@order = order

end

def write_on(output)
write_header_on(output)
write_body_on(output)
write_totals_on(output)

end

private def write_header_on(output)
...

end

private def write_body_on(output)
...

end

private def write_totals_on(output)
...

end
end

If the method name ends in =, and only if the method name ends in =, Ruby allows you to
call the method as the left side of an assignment statement. Ruby allows you to place
whitespace between the rest of the method name and the closing =. The last two lines of this
example are equivalent:

class Person
def name=(new_name)
@name = new_name

end
end

p = Person.new
p.name = "Brandi Carlile"
p.name=("Elton John")

Chapter 5. More About Methods • 94

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

This use of methods on the left side of an assignment leads to a potential ambiguity between
a local variable assignment and a method call:

class Person
def name=(new_name)
@name = new_name

end

def change_things(new_name, address)
name = new_name➤

end
end

In this example, it is potentially ambiguous whether the line name = new_name creates a local
variable called name and assigns to it or whether it uses the implicit receiver syntax to call
the method self.name=.

Ruby handles this potential issue consistently and always in favor of creating the local
variable. When calling a method on the left side of an assignment, you must specify the
receiver explicitly. In this case, the highlighted line must be changed to self.name = new_name.
Not doing so can lead to some hard to track down bugs. (Ask us how we know.)

Passing Arguments to a Method
Any arguments follow the method name. If no ambiguity exists, you can omit the parentheses
around the argument list when calling a method. Ruby documentation sometimes describes
method calls without parentheses as commands, and as you’ve seen, method calls that look
like commands or macros, such as puts, are often written without parentheses. There are also
a lot of Ruby tools, like RSpec, that skip parentheses to make their domain specific languages
flow more naturally.

However, except in the simplest cases, we don’t recommend skipping parentheses—some
subtle problems can trip you up. In particular, you must use parentheses on a method call
that is itself an argument to another method call (unless it is the last parameter). Our rule is
simple: if you have any doubt, use parentheses.

for some suitable value in obj:
a = obj.hash # Same as
a = obj.hash() # this.

obj.some_method "Arg1", arg2, arg3 # Same thing as
obj.some_method("Arg1", arg2, arg3) # with parentheses.

Positional arguments are passed to the method based on their position, but keyword argu-
ments are passed based on the keyword, and can be listed in any order:

def method_with_keywords(city:, state:, zip:)
"I live in #{city}, #{state} #{zip}"

end

puts method_with_keywords(city: "Chicago", state: "IL", zip: "60606")
puts method_with_keywords(zip: "02134", city: "Boston", state: "MA")

produces:

I live in Chicago, IL 60606
I live in Boston, MA 02134

report erratum • discuss

Calling a Method • 95

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Method Return Values
Every method you call returns a value (although there’s no rule that says you have to use
that value). The value of a method is the value of the last expression executed by the method:

def method_one
"one"

end

method_one # => "one"

def method_two(arg)
case
when arg > 0 then "positive"
when arg < 0 then "negative"
else "zero"
end

end
method_two(23) # => "positive"
method_two(0) # => "zero"

Ruby has a return statement, which exits from the currently executing method. The value of
a return is the value of its argument(s). It is idiomatic Ruby to omit the return in the last
expression of a method since it is redundant, as shown by the previous two examples.

This next example uses return to exit from a loop inside the method:

def method_three
100.times do |num|
square = num * num
return num, square if square > 1000

end
end
method_three # => [32, 1024]

As the last case illustrates, if you give return multiple parameters, the method returns them
in an array. You can use parallel assignment to collect this return value:

num, square = method_three
num # => 32
square # => 1024

Splat! Expanding Collections in Method Calls
We’ve seen that if you prefix the name of a method argument with an asterisk, multiple
arguments in the call to the method will be passed as an array. Well, the same thing works
in reverse.

When you call a method, you can convert any collection or enumerable object, or object that
implements to_a into its constituent elements and pass those elements as individual arguments
to the method. Do this by prefixing array arguments with an asterisk:

def five(a, b, c, d, e)
"I was passed #{a} #{b} #{c} #{d} #{e}"

end

five(1, 2, 3, 4, 5) # => "I was passed 1 2 3 4 5"
five(1, 2, 3, *['a', 'b']) # => "I was passed 1 2 3 a b"

Chapter 5. More About Methods • 96

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

five(*['a', 'b'], 1, 2, 3) # => "I was passed a b 1 2 3"
five(*(10..14)) # => "I was passed 10 11 12 13 14"
five(*[1,2], 3, *(4..5)) # => "I was passed 1 2 3 4 5"

Splat arguments can appear anywhere in the argument list, and you can intermix splat and
regular arguments.

Similarly, you can expand hashes, or anything that implements to_h, into keyword arguments
by prefixing the argument with a double-splat:

def method_with_keywords(city:, state:, zip:)
"I live in #{city}, #{state} #{zip}"

end

data = {city: "Chicago", state: "IL", zip: "60606"}
puts method_with_keywords(**data)

produces:

I live in Chicago, IL 60606

You can also use the shortcut access syntax if the name of the keyword and the name of the
variable in the local context are the same, similar to the Hash shortcut we saw in Hashes, on
page 56.

def method_with_keywords(city:, state:, zip:)
"I live in #{city}, #{state} #{zip}"

end

city = "Chicago"
state = "IL"
zip = "60606"
puts method_with_keywords(city:, state:, zip:)

produces:

I live in Chicago, IL 60606

Passing Block Arguments
Earlier we saw how an & in a parameter list converted a block argument to a Proc object. You
can also do this in reverse by passing a Proc object, or anything that implements the method
to_proc, and prefixing it with an & to convert it to a block argument.

A very common example of the use of objects that implement to_proc is Symbol. The following
two lines of code behave identically:

["a", "b", "c"].map { |s| s.upcase } # => ["A", "B", "C"]
["a", "b", "c"].map(&:upcase) # => ["A", "B", "C"]

And the reason why this works is that the class Symbol implements the to_proc method,
returning a Proc object that says “take the argument to this proc, and call the method whose
name matches this symbol”. The returned Proc object gets used as the block argument and
behaves the same as the explicit block in the first line. You’ll frequently see this syntax as a
shortcut for methods that take simple blocks like map or sort_by.

We’ve already seen how to associate a block with a method call:

collection.each do |member|
...

report erratum • discuss

Calling a Method • 97

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

Usually, this is perfectly good enough—you associate a fixed block of code with a method
in the same way you’d have a chunk of code after an if or while statement.

But sometimes you’d like to be more flexible. In this example, we’re teaching math skills.
The student could ask for an n-plus table or an n-times table. If the student asked for a 2-
times table, we’d output 2, 4, 6, 8, and so on. (This code does not check its inputs for errors.)

print "(t)imes or (p)lus: "
operator = gets
print "number: "
number = Integer(gets)

if operator.start_with?("t")
puts((1..10).collect { |n| n*number }.join(", "))

else
puts((1..10).collect { |n| n+number }.join(", "))

end

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the if statement. It
would be nice if we could factor out the block that does the calculation:

print "(t)imes or (p)lus: "
operator = gets
print "number: "
number = Integer(gets)
if operator.start_with?("t")
calc = -> (n) { n * number }

else
calc = -> (n) { n + number }

end
puts((1..10).map(&calc).join(", "))➤

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

In this version, we assign the correct block to a variable named calc, and then in the highlight-
ed line, we pass calc to the standard method map, prefixing it with an &, (&calc).

If the last argument to a method is preceded by an ampersand, Ruby calls to_proc on the
object. It removes it from the argument list, converts the Proc object into a block, and associates
it with the method. In this case, the object is already a Proc, so that means that map is called
with the lambda as its block argument and uses that block to convert the elements of the
method receiver.

There’s a shorter way to write this code. Ruby objects have a method named method, which
takes a symbol and returns the object’s method of the same name. We can use the same
to_proc feature that symbols have:

Chapter 5. More About Methods • 98

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

print "(t)imes or (p)lus: "
operator = gets
print "number: "
number = Integer(gets)
method = number.method(operator.start_with?("t") ? :* : :+)
puts((1..10).map(&method).join(", "))➤

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

In this case, we are using method to grab the method named :+ or :* based on the input and
using the ampersand’s to_proc powers to create a proc that calls that method.

What’s Next
A well-written Ruby program will typically contain many methods, each quite small, so it’s
worth getting familiar with the options available when defining and using them. At some
point you’ll probably want to read Chapter 25, Language Reference: Objects and Classes,
on page 465 to see exactly how arguments in a method call get mapped to the method’s formal
parameters when you have combinations of default parameters and splat parameters.

Now that we have methods, we need to talk about how different classes can share function-
ality defined by their methods, so it’s time to talk about inheritance and modules.

report erratum • discuss

What’s Next • 99

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 6

Sharing Functionality: Inheritance,
Modules, and Mixins

One of the principles of good software design is the elimination of unnecessary duplication.
We work hard to make sure that each concept in our application is expressed just once in
our code. Why? Because the world changes. And when you adapt your application to each
change, you want to know that you’ve changed exactly the code you need to change. If each
real-world concept is implemented at a single point in the code, this becomes vastly easier.

We’ve already seen how classes help reduce duplication. All the methods in a class are
automatically accessible to instances of that class. But there are other, more general types of
sharing that we want to do. Maybe we’re dealing with an application that ships goods. Many
forms of shipping are available, but all forms share some basic functionality, perhaps weight
calculation. We don’t want to duplicate the code that implements this functionality across
the implementation of each shipping type.

Or maybe we have a more generic capability that we want to inject into a number of different
classes. For example, an online store may need the ability to calculate sales tax for carts,
orders, quotes, and so on. Again, we don’t want to duplicate the sales tax code in each of
these places.

In this chapter, we’ll look at two different but related mechanisms for this kind of sharing
in Ruby. The first, class-level inheritance, is common in object-oriented languages. We’ll then
look at mixins, a technique that is often preferable to inheritance. We’ll wind up with a dis-
cussion of when to use each.

Inheritance and Messages
In a previous chapter, we saw that when the puts method needs to convert an object to a
string, it calls that object’s to_s method. But we’ve also written our own classes that don’t
explicitly implement to_s. Despite this, instances of these classes respond successfully when
we call to_s on them. How this works has to do with inheritance and how Ruby uses inheri-
tance to determine what method to run when you send a message to an object.

Inheritance allows you to create a class that is a refinement or specialization of another class.
This specialized class is called a subclass of the original, and the original is a superclass of the
subclass. People also refer to this relationship as child and parent classes.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The basic mechanism of subclassing is that the child inherits all of the capabilities of its
parent class. All the parent’s instance methods are available to instances of the child.

Let’s look at a minimal example and then later build on it. Here’s a definition of a parent
class and a child class that inherits from it:

class Parent
def say_hello
puts "Hello from #{self}"

end
end

p = Parent.new
p.say_hello

class Child < Parent
end

c = Child.new
c.say_hello

produces:

Hello from #<Parent:0x0000000102418978>
Hello from #<Child:0x0000000102418658>

The parent class defines a single instance method, say_hello. We call that method by creating
a new instance of the class and store a reference to that instance in the variable p, and then
using dot syntax, p.say_hello.

We then create a subclass using class Child < Parent. The < notation means we’re creating a
subclass of the thing on the right; the fact that we use less-than is meant to signal that the
child class is supposed to be a specialization of the parent.

Note that the child class defines no methods, but when we create an instance of it, we can
call say_hello. That’s because the child inherits all the methods of its parent. Note also that
when we output the value of self—the current object—it shows that we’re in an instance of
class Child, even though the method we’re running is defined in the parent.

The superclass method returns the parent of a particular class:

class Parent
end

class Child < Parent
end

Child.superclass # => Parent

But what’s the superclass of Parent?

class Parent
end
Parent.superclass # => Object

If you don’t define an explicit superclass when defining a class, Ruby automatically uses
built-in class Object as class’s parent. Let’s go further:

Object.superclass # => BasicObject

Chapter 6. Sharing Functionality: Inheritance, Modules, and Mixins • 102

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Class BasicObject is a very, very minimal object that is used in certain kinds of metaprogram-
ming, acting as a blank canvas. What’s its parent?

BasicObject.superclass # => nil

So, we’ve finally reached the end. BasicObject is the root class of our hierarchy of classes.
Given any class in any Ruby application, you can ask for its superclass, then the superclass
of that class, and so on, and you’ll eventually get back to BasicObject.

We’ve seen that if you call a method in an instance of class Child and that method isn’t in
Child’s class definition, Ruby will look in the parent class. It goes deeper than that, because
if the method isn’t defined in the parent class, Ruby continues looking in the parent’s parent,
the parent’s parent’s parent, and so on, through the ancestors until it runs out of classes.
Method lookup in Ruby is actually a little bit more complex, we’ll talk more about it in
Method Lookup, on page 113.

And this explains our original question about to_s. We can work out why to_s is available in
just about every Ruby object. to_s, it turns out, is defined in class Object. Because Object is an
ancestor of every Ruby class except BasicObject, instances of every Ruby class have a to_s
method defined:

class Person
def initialize(name)
@name = name

end
end

p = Person.new("Michael")
puts p

produces:

#<Person:0x0000000100248dc0>

We saw in the previous chapter that we can override the to_s method:

class Person
def initialize(name)
@name = name

end

def to_s
"Person named #{@name}"

end
end

p = Person.new("Michael")
puts p

produces:

Person named Michael

Armed with our knowledge of subclassing, we now know there’s nothing special about this
code. The putsmethod calls to_s on its arguments. In this case, the argument is a Person object.
Because class Person defines a to_s method, that method is called. If it doesn’t define a to_s
method, then Ruby looks for (and finds) to_s in Person’s parent class, Object.

report erratum • discuss

Inheritance and Messages • 103

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

It is common to use subclassing to add application-specific behavior to a standard library
or framework class. If you’ve used Ruby on Rails,1 you’ll have subclassed ActionController::Base
when writing your own controller classes. Your controllers get all the behavior of the base
controller and add their own specific handlers to individual user actions.

Let’s look at an example where inheritance can spare us a significant amount of duplication.
Imagine you are working on a task-tracker application. A task might be in one of several
states—it might be done, it might be started but incomplete, or it might be defined but not
started. There may be other statuses, but just those three are probably enough to make the
point.

If you are writing code that interacts with the tasks in this system, you’ll likely have to take
a task’s status into account in your code. In other words, you’ll likely be forever writing code
like this:

def chatty_string(task)
case task.status
when "done" then "I'm done"
when "started" then "I'm not done"
when "unstarted" then "I haven't even started"
end

end

You will be continually switching on the status of a task. This is a form of duplication—if
the list of statuses changes, every one of these if statements or case statements would need
to be updated; therefore, it seems worth trying to reduce the amount of times we use that
switching logic.

We can use inheritance to create a hierarchy of status classes, and then only do our switching
logic once:

tut_modules/status.rb
class Status
def self.for(status_string)
case status_string
when "done" then DoneStatus.new
when "started" then StartedStatus.new
when "defined" then DefinedStatus.new
end

end

def done? = false

def chatty_string = raise NotImplementedError
end

class DoneStatus < Status
def to_s = "done"

def done? = true

def chatty_string = "I'm done"
end

class StartedStatus < Status
def to_s = "started"

1. http://www.rubyonrails.org

Chapter 6. Sharing Functionality: Inheritance, Modules, and Mixins • 104

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_modules/status.rb
http://www.rubyonrails.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def chatty_string = "I'm not done"
end

class DefinedStatus < Status
def to_s = "defined"

def chatty_string = "I'm not even started"
end

Now, if we want to get at that particular chatty string above, rather than having to do the
case expression explicitly, we can write something like this:

Status.for(task.status).chatty_string

The case logic is now behind the scenes, in our Status.for method. Once we call it, we know
what kind of status we have, and each kind of status knows its own behavior, so we can
now call chatty_string directly on the status. More to the point, once we call Status.for, we don’t
need to have that case logic again; we’ve removed the potential duplication.

The done?method is defined in the parent class as being false, which is fine for the StartedStatus
and DefinedStatus classes, but incorrect for the DoneStatus class, which therefore overrides
done? to the correct value—true—for that class. There is no default for the chatty_stringmethod
though, so the parent class throws an exception if it is somehow called. This is a signal that
all the subclasses must define this method.

This is a common idiom when using subclassing. A parent class assumes that it will be
subclassed and calls a method that it expects its children to implement. This allows the parent
to take on the brunt of the processing but to invoke what are effectively hook methods in
subclasses to add application-level functionality. As we’ll see at the end of this chapter, just
because this idiom is common doesn’t always make it good design.

Instead, let’s look atmixins, a different way of sharing functionality in Ruby code. But, before
we look at mixins, we’ll need to get familiar with Ruby modules.

In Ruby, a module can do everything that a class can do, except create instances. It turns
out, that even without creating instances, it still can be useful to group related methods and
data together. Let’s explore how.

Modules
Modules are a way of grouping together methods, classes, and constants. Modules give you
two major benefits:

• Modules provide a namespace and prevent name clashes.
• Modules can be included in other classes, a facility known as a mixin.

Namespaces
As you start to write bigger Ruby programs, you’ll find yourself producing chunks of reusable
code—libraries of related routines that are applicable in many different contexts. You’ll want
to break this code into separate files so the contents can be shared among different Ruby
programs.

Often this code will be organized into classes, so you’ll probably stick a class into each file.
However, there are times when you want to group things together that don’t naturally form

report erratum • discuss

Modules • 105

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

a class—for example the methods that you want to group together may be utility methods
that don’t manage their own state.

An initial approach may be to put all these things into a file and simply load that file into
any program that needs it. This is the way the C language works. However, this approach
has a potential problem—name collisions. To give an admittedly contrived example, say
you write a set of the trigonometry functions, sin, cos, and so on. You stuff them all into a
file, trig.rb, for future generations to enjoy. Meanwhile, another developer is working on a
role-playing game where characters might choose to be good or evil, and codes a set of her
own useful routines, including be_good and sin, and sticks them into a file called morality.rb.
Now you want to add some physics calculations to this game, and you therefore, you need
to load both trig.rb andmorality.rb into your program. But both define a method called sin. Bad
news.

The answer is the module mechanism. Modules define a namespace, a sandbox in which your
methods and constants can play without having to worry about being stepped on by other
methods and constants. The trig functions can go into one module:

tut_modules/trig.rb
module Trig
PI = 3.141592654
def self.sin(x)
..

end

def self.cos(x)
..

end
end

and the good and bad “moral” methods can go into another:

tut_modules/morals.rb
module Morals
VERY_BAD = 0
BAD = 1
def self.sin(badness)
...

end
end

Module names are just like class names, both are global constants with an initial uppercase
letter. Their method definitions look similar, too: module methods are defined just like class
methods, using the def self.method_name syntax.

If a third program wants to use these modules, it can simply load the two files (using the
Ruby require or require_relative method). To reference the name sin unambiguously, our code
can then qualify the name using the name of the module containing the implementation we
want:

tut_modules/pin_head.rb
require_relative "trig"
require_relative "morals"
y = Trig.sin(Trig::PI / 4)
wrongdoing = Morals.sin(Morals::VERY_BAD)

Chapter 6. Sharing Functionality: Inheritance, Modules, and Mixins • 106

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_modules/trig.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/morals.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/pin_head.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

As with class methods, you call a module method by preceding its name with the module’s
name and a period. As a result, one method is now accessible as Trig.sin and the other is
Moral.sin and the names no longer conflict. Module constants are referenced using the module
name followed by two colons, which is called the scope resolution operator, so in this example,
Trig::PI and Moral::VERY_BAD.

Mixins
Modules have another, wonderful use. They can provide an alternative to inheritance as
way of extending classes. This facility is sometimes called a mixin. Mixins enable something
very much like multiple inheritance in other languages.

In the previous section’s examples, we defined module methods, methods whose names
were prefixed with self. If this made you think of class methods, your next thought may well
be “What happens if I define instance methods within a module?” Good question. A module
can’t have instances, because a module isn’t a class. However, you can include a module
within a class definition. When this happens, all the module’s instance methods are suddenly
available as instance methods in the class as well. They get mixed in. In fact, for method
lookup, mixed-in modules effectively behave as superclasses.

tut_modules/who_am_i.rb
module Debug
def who_am_i?
"#{self.class.name} (id: #{self.object_id}): #{self.name}"

end
end

class Phonograph
include Debug

attr_reader :name

def initialize(name)
@name = name

end
...

end

class EightTrack
include Debug

attr_reader :name

def initialize(name)
@name = name

end
...

end

phonograph = Phonograph.new("West End Blues")
eight_track = EightTrack.new("Surrealistic Pillow")

phonograph.who_am_i? # => "Phonograph (id: 60): West End Blues"
eight_track.who_am_i? # => "EightTrack (id: 80): Surrealistic Pillow"

By including the Debug module, both the Phonograph and EightTrack classes gain access to the
who_am_i? instance method.

report erratum • discuss

Modules • 107

http://media.pragprog.com/titles/ruby5/code/tut_modules/who_am_i.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

We’ll make a couple of points about the include statement before we go on.

First, although include looks like a statement, it’s actually a method of the Module class. Next,
the include method has nothing to do with files. The Ruby include method simply makes a
reference to a module. If that module is in a separate file, you must use require or require_relative
to drag that file in before using include. The require call is at the file level, and loads the module
into the Ruby application as whole, the include call is at the class level, and adds the module’s
behavior to the class in which it is included.

Second, a Ruby include does not copy and paste the module’s instance methods into the class.
Instead, it makes a reference from the class to the included module. If multiple classes include
that module, they’ll all point to the same thing. If you change the definition of a method
within a module, even while your program is running, all classes that include that module
will exhibit the new behavior. Of course, we’re speaking only of methods here. Instance
variables are always different per object.

Mixins give you a wonderfully controlled way of adding functionality to classes. However,
their true power comes out when the code in the mixin can make assumptions about code
in the class that uses it and then can interact with that code.

Ruby uses mixin behavior in the standard library extensively. Many of the behaviors we
have seen that are available to all objects are actually defined in a module called Kernelwhich
is included into Object and therefore of all objects. Methods like puts, p, lambda, proc and many
more are added to objects using mixin behavior.

The standard Ruby module Comparable is another great example of a mixin, but one that
makes an assumption about the classes that use it. Including Comparable as a mixin adds the
comparison operators (<, <=, ==, >=, and >), as well as the method between?, to a class. For
these methods to work, Comparable assumes that any class that uses it defines the method
<=>, also known as the “spaceship operator”. The spaceship operator compares two values,
returning -1, 0, or +1 depending on whether the first is less than, equal to, or greater than
the second, respectively. As a class writer, you can define one method, <=>; include Compa-
rable; and get six comparison functions for free.

Let’s take a Person class. We’ll make people comparable based on their names:

tut_modules/comparable.rb
class Person
include Comparable
attr_reader :name

def initialize(name)
@name = name

end

def to_s
@name.to_s

end

def <=>(other)
name <=> other.name

end
end

p1 = Person.new("Matz")
p2 = Person.new("Guido")

Chapter 6. Sharing Functionality: Inheritance, Modules, and Mixins • 108

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_modules/comparable.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

p3 = Person.new("Larry")

if p1 > p2
puts "#{p1.name}'s name > #{p2.name}'s name"

end

puts "Sorted list:"
puts [p1, p2, p3].sort

produces:

Matz's name > Guido's name
Sorted list:
Guido
Larry
Matz

We included Comparable in our Person class and then defined a <=> method. We were then
able to perform comparisons (such as p1 > p2) and even sort an array of Person objects.

Inheritance and Mixins

Some object-oriented languages (such as C++ or Python) support multiple inheritance, where a class
can have more than one immediate parent, inheriting functionality from each. Although powerful,
this technique can be dangerous, because the inheritance hierarchy can become ambiguous.

Other languages, such as Java, JavaScript, and C#, support single inheritance. Here, a class can have
only one immediate parent. Although cleaner (and easier to implement), single inheritance also has
drawbacks—in the real world, objects often inherit attributes from multiple sources (a ball is both a
bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you the simplicity of single inheritance
and the power of multiple inheritance. A Ruby class has only one direct parent, so Ruby is a single-
inheritance language. However, Ruby classes can include the functionality of any number of mixins
(a mixin is like a partial class definition). This provides a controlled multiple-inheritance-like capabil-
ity with an unambiguous inheritance hierarchy and method lookup path.

Ruby provides two mechanisms for mixing in module behavior which are related to include
but combine the module and the class differently. The behavior of include is to add the
module’s methods as instance methods to the class in which the module is being included,
and to have those module methods be looked up after the class itself is checked for a method.

Ruby also provides the method extend. The behavior of extend is to add the methods directly
to the receiver of extend rather than as instance methods of a class. As most commonly used,
the effect of extend is to add the module methods as class methods:

tut_modules/extend.rb
module ExtendedNew
def new_from_string(string, delimiter = ",")
new(*string.split(delimiter))

end
end

class Person
extend ExtendedNew

def initialize(first_name, last_name)
@first_name = first_name

report erratum • discuss

Modules • 109

http://media.pragprog.com/titles/ruby5/code/tut_modules/extend.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

@last_name = last_name
end

def full_name = "#{@first_name} #{@last_name}"
end

superman = Person.new_from_string("Clark,Kent")
batman = Person.new_from_string("Bruce|Wayne", "|")
puts superman.full_name
puts batman.full_name

produces:

Clark Kent
Bruce Wayne

In this example, the ExtendedNew module is extended into the Person class, and therefore Per-
son.new_from_string is available.

Ruby also provides prepend. The behavior of prepend is the same as include except that a method
in a prepended module is executed before a method of the same name in the class. Typically,
the method in the prepended module calls super so that the method in the class is also called.
Prepending is often used to add logging or other logistical information to classes.

Iterators and the Enumerable Module
The Ruby collection classes (Array, Hash, and so on) support a large number of operations
that do various things with the collection: traverse it, sort it, and so on. You may be thinking,
“Gee, it’d sure be nice if my class could support all these neat-o features, too!”

Well, your classes can support all these neat-o features, thanks to the magic of mixins and
module Enumerable. All you have to do is write an iterator called each, which returns the
elements of your collection in turn. Mix in Enumerable, and suddenly your class supports
methods such as map, include?, and find_all?. If the objects in your collection implement
meaningful ordering semantics using the spaceship operator <=> method, you’ll also get
methods such as min, max, and sort.

Composing Modules
Enumerable is a mixin in the Ruby standard library, implementing a bunch of methods in
terms of the host class’s each method. One of the methods defined by Enumerable is reduce,
which we saw previously on page 71. This method applies a function or operation to the
first two elements in the collection and then applies the operation to the result of this com-
putation and to the third element, and so on, until all elements in the collection have been
used.

Because reduce is made available by Enumerable, we can use it in any class that includes the
Enumerable module and defines the method each. Many built-in classes do this.

[1, 2, 3, 4, 5].reduce(:+) # => 15
("a".."m").reduce(:+) # => "abcdefghijklm"

We could also define our own class that mixes in Enumerable and hence gets reduce support:

tut_modules/vowel_finder.rb
class VowelFinder
include Enumerable

Chapter 6. Sharing Functionality: Inheritance, Modules, and Mixins • 110

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_modules/vowel_finder.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def initialize(string)
@string = string

end

def each
@string.scan(/[aeiou]/) do |vowel|
yield vowel

end
end

end

tut_modules/vowel_finder_eg.rb
require_relative "vowel_finder"
vf = VowelFinder.new("the quick brown fox jumped")
puts vf.reduce(:+)

produces:

euiooue

Note we used the same pattern in the call to reduce in these examples—we’re using it to
perform a summation. When applied to numbers, it returns the arithmetic sum; when applied
to strings, it concatenates them. We can use a module to encapsulate this functionality too:

tut_modules/vowel_finder_sum.rb
require_relative "vowel_finder"

module Summable
def sum
reduce(:+)

end
end

class Array
include Summable

end

class Range
include Summable

end

class VowelFinder
include Summable

end

puts [1, 2, 3, 4, 5].sum
puts ("a".."m").sum

vf = VowelFinder.new("the quick brown fox jumped")
puts vf.sum

produces:

15
abcdefghijklm
euiooue

Note that you don’t need to define this particular example in Ruby since sum is already
defined as part of the Enumerable module.

report erratum • discuss

Modules • 111

http://media.pragprog.com/titles/ruby5/code/tut_modules/vowel_finder_eg.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/vowel_finder_sum.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Instance Variables in Mixins
People learning Ruby often ask, “What happens to instance variables in a module that is
used as a mixin?

Remember how instance variables work in Ruby: the first mention of an@-prefixed variable
creates the instance variable in the current object, self.

For a mixin, this means the module you mix into your client class may create instance vari-
ables in the client object and may use attr_reader and friends to define accessors for these
instance variables. For instance, the Observable module in the following example adds an
instance variable @observer_list to any class that includes it:

tut_modules/observer_impl.rb
module Observable
def observers
@observer_list ||= []

end

def add_observer(obj)
observers << obj

end

def notify_observers
observers.each { |o| o.update }

end
end

However, this behavior exposes us to a risk. A mixin’s instance variables can clash with
those of the host class or with those of other mixins. The example that follows shows a class
that uses our Observable module but that unluckily also uses an instance variable called
@observer_list. At runtime, this program will go wrong in some hard-to-diagnose ways:

tut_modules/observer_impl_eg.rb
require_relative "observer_impl"

class TelescopeScheduler
other classes can register to get notifications
when the schedule changes
include Observable

def initialize
@observer_list = [] # folks with telescope time

end

def add_viewer(viewer)
@observer_list << viewer

end

...
end

For the most part, mixin modules don’t use instance variables directly—they use accessors
to retrieve data from the client object. But if you need to create a mixin that has to have its
own state, ensure that the instance variables have unique names to distinguish them from
any other mixins in the system (perhaps by using the module’s name as part of the variable
name). Alternatively, the module could use a module-level hash, indexed by the current
object ID, to store instance-specific data without using Ruby instance variables:

Chapter 6. Sharing Functionality: Inheritance, Modules, and Mixins • 112

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_modules/observer_impl.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/observer_impl_eg.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

tut_modules/state_eg.rb
module Test
def self.states
@states ||= {}

end

def state=(value)
Test.states[object_id] = value

end

def state
Test.states[object_id]

end
end

class Client
include Test

end

c1 = Client.new
c2 = Client.new
c1.state = "cat"
c2.state = "dog"
c1.state # => "cat"
c2.state # => "dog"

A downside of this approach is that the data associated with a particular object will not get
automatically deleted if the object is deleted. In general, a mixin that requires its own state
is not a mixin—it should be written as a class.

Method Lookup
Because of modules being mixed in, Ruby’s story for method lookup becomes more compli-
cated. In particular, what happens if methods with the same name are defined in a class, in
that class’s parent class, and in a module included into the class?

When a method is called, Ruby looks for a definition of the method. Typically, this search
starts in the receiver’s class. If the method is found there, great! Ruby executes that method.
If not, Ruby continues up the search tree to included modules and superclasses.

The exact order of places that Ruby searches for an instance method is:

• Any module that has been added to the receiver’s class using prepend, the last module
so added is checked first.

• Methods that have specifically been added to that instance using the def foo.bar that
we’ve seen or the class << foo syntax that we haven’t talked about yet.

• Methods that are actually defined in the receiver’s class.
• Any module that is added to the receivers’s class using include, the last module so added

is checked first.
• If the method has not yet been found at this point, the entire loop is started over with

the superclass of the receiver’s class.

And so on up until either a match is found or the top of the inheritance structure is reached
and no match is found.

report erratum • discuss

Modules • 113

http://media.pragprog.com/titles/ruby5/code/tut_modules/state_eg.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The entire list of classes and modules in this lookup path can be accessed by calling the
method ancestors, as in String.ancestors. Modules that have been prepended will show up
before the receiver, and superclasses and appended modules will show up after.

If no match is found, the entire loop is tried again from the receiver’s class, this time for
looking for a special method called method_missing. If no method_missing is found to handle
the message, a NameError is thrown.

Class or module methods have a slightly different path:

• Methods added directly to the class or module via the def self.foo or class << self syntax.
• Methods in modules that are added to the receiving class or module via extend

And so on upward via superclasses.

Super Lookup
When executing a method, if Ruby encounters the keyword super, it acts as though a method
of the same name as the method being executed had been called, but starts the search later.
Specifically, the method lookup for super starts after the point where the method being exe-
cuted is located. If the method being executed is defined inside the class as a normal instance
method—step 3 in the above lookup loop—then Ruby starts looking in step 4, with included
modules, then goes looking to the superclass. If, instead, the method is defined in a prepended
module—step 1 in the above lookup loop—then Ruby starts looking in step 2, and step 3 for
regular instance methods.

If super has no argument list, the same method arguments from the original method call are
passed forward, if any argument list (even an empty one with empty parentheses) is specified,
those arguments are passed through.

Short examples of method lookup are kind of contrived, but let’s try one anyway:

tut_modules/lookup.rb
module Log
def execute
puts "logging"
super

end
end

module Caller
def execute
puts "calling"
super

end
end

class Parent
def execute
puts "parenting"

end
end

class Child < Parent
prepend Log
include Caller

Chapter 6. Sharing Functionality: Inheritance, Modules, and Mixins • 114

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_modules/lookup.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def execute
puts "childing"
super

end
end

puts Child.new.execute

produces:

logging
childing
calling
parenting

When the execute method is called, Ruby looks first at the prepended module, Log, and exe-
cutes there. That method calls super, which continues the lookup chain upward, to the actual
Child class. The super in that method moves up the lookup chain to the included module Caller,
and the super in that method moves up the chain to Parent.

Inheritance, Mixins, and Design
Inheritance and mixed-in modules both allow you to write code in one place and use that
code in multiple classes. So, when do you use each?

As with most questions of design, the answer is, well…it depends. However, over the years
developers have come up with some general guidelines to help us decide.

First let’s look at subclassing. Classes in Ruby are related to the idea of types. It would be
natural to say that "cat" is a string and [1, 2] is an array. And that’s another way of saying
that the class of "cat" is String and the class of [1, 2] is Array. When we create our own classes,
you can think of it as adding new types to the language. And when we subclass either a
built-in class or our own class, we’re creating a subtype.

Now, a lot of research has been done on type theories. One of the more useful concepts is
the Liskov Substitution Principle. The Liskov Substitution Principle states that you should be
able to substitute an object of a child class wherever you use an object of the parent class—the
child should honor the parent’s contract. There’s another way of looking at this relationship:
we should be able to say that the child object is a kind of the parent. We’re used to saying
this in English: a car is a vehicle, a cat is an animal, and so on. This means that a cat should,
at the very least, be capable of doing everything we say that a generic animal can do.

So, when you’re looking for subclassing relationships while designing your application, be
on the lookout for these is-a relationships.

But…here’s the bad news. In the real world, there really aren’t that many true is a relation-
ships. Instead, it’s far more common to have has a or uses a relationships between things. The
real world is built using composition, not strict hierarchies.

In the past, we’ve tended to gloss over that fact when programming. When inheritance is
the only scheme available for sharing code, it’s easy to say things like “My Person class is a
subclass of my DatabaseWrapper class.” (Indeed, the Ruby on Rails framework makes just this
design choice.) But a person object is not a kind of database wrapper object. A person object
uses a database wrapper to provide persistence services.

report erratum • discuss

Inheritance, Mixins, and Design • 115

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Is this just a theoretical issue? No! Inheritance represents an incredibly tight coupling of two
components. Change a parent class, and you risk breaking the child class. But, even worse,
if code that uses objects of the child class relies on those objects also having methods defined
in the parent, then all that code will break, too. The parent class’s implementation leaks
through the child classes and out into the rest of the code. With a decent-sized program, this
becomes a serious inhibitor to change.

And that’s why we tend to move away from inheritance in our designs. Instead, we need to
be using composition wherever we see a case of A uses a B, or A has a B. Our persisted Person
object won’t subclass DataWrapper. Instead, it’ll construct a reference to a database wrapper
object and use that object reference to save and restore itself.

But that can also make code messy. And that’s where a combination of mixins come to the
rescue, because we can say this:

class Person
include Persistable
...

end

instead of this:

class Person < DataWrapper
...

end

If you’re new to object-oriented programming, this discussion may feel remote and abstract.
But as you start to code larger and larger programs, we urge you to think about the issues
discussed here. Try to reserve inheritance for the times where it is justified. And try to explore
all the cool ways that mixins let you write decoupled, flexible code.

What’s Next
In this chapter, we looked at using Ruby modules to encapsulate code into namespaces and
to share code by using the include method to mix modules into classes. We also talked about
how module inclusion affects method lookup and when to use mixins versus inheritance.

Now that we’ve learned some of Ruby’s class and object structure, let’s look at some of the
classes that Ruby uses for standard types.

Chapter 6. Sharing Functionality: Inheritance, Modules, and Mixins • 116

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 7

Basic Types: Numbers, Strings, and Ranges
We’ve been having fun implementing programs using arrays, hashes, and procs, but we
haven’t covered the most basic types in Ruby: numbers, strings, and ranges. Let’s spend a
few pages on these basic building blocks now.

Numbers
Ruby supports integers, floating-point, rational, and complex numbers. Integers can be any
length (up to a maximum determined by the amount of free memory on your system), and
are of type Integer.

Integers are assumed to be decimal base 10, but, you can write integers using a leading sign
as an optional base indicator—0 for octal, 0x for hex, or 0b for binary (and 0d for decimal)—fol-
lowed by a string of digits in the appropriate base.

Underscore characters are ignored in the digit string, you’ll see them used in place of commas
in larger numbers.

123456 => 123456 # base 10
0d123456 => 123456 # base 10
123_456 => 123456 # underscore ignored
-543 => -543 # negative number
0xaabb => 43707 # hexadecimal
0377 => 255 # octal
-0b10_1010 => -42 # binary (negated)
123_456_789_123_456_789 => 123456789123456789

A numeric literal with a decimal point and/or an exponent is turned into a Float corresponding
to double-width floating point numbers in the underlying system. You must both precede
and follow the decimal point with a digit—if you write 1.0e3 as 1.e3, Ruby will try to invoke
the method e3 on the object 1.

The standard Ruby library contains the BigDecimal class, which is Ruby’s high-precision
decimal class. When you require BigDecimal, in addition to the class itself, the Kernel module
gets a BigDecimal method for converting strings or numbers to BigDecimal instances.

require "bigdecimal"
x = BigDecimal("3.14")
y = BigDecimal("4.13")
x + y # => 0.727e1

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Ruby includes support for rational and complex numbers. Rational numbers are the ratio
of two integers—they are fractions—and hence have an exact representation (unlike floats).
Complex numbers represent points on the complex plane. They have two components, the
real and imaginary parts.

Ruby has a literal syntax for both Rational and Complex numbers, but it might not be what
you expect. Rationals first. If you try to represent a fraction like, say 3/4 directly, Ruby will
interpret that as integer division and return 0. To make the fraction into a Ruby Rational
instance, you need to add the letter r, as in 3/4r. You can convert decimals into Rationals with
this syntax, for example 0.75r will also convert into three-fourths (but note that just .75r is
still a syntax error, because decimal numbers need to have digits on both sides of the decimal
point). Strings can be converted to rationals with the to_r method. Finally, Ruby offers a
conversion method, Rational, which takes either a string or two arguments and creates a
Rational instance.

3/4 # => 0
3/4r # => (3/4)
0.75r # => (3/4)
"3/4".to_r # => (3/4)
Rational(3, 4) # => (3/4)
Rational("3/4") # => (3/4)

The literal syntax for Complex numbers uses i as a suffix, alternately you can convert strings
via the to_c method, and there is a Complex conversion method.

1+2i # => (1+2i)
"1+2i".to_c # => (1+2i)
Complex(1, 2) # => (1+2i)
Complex("1+2i") # => (1+2i)

If, in fact, you were wondering, a number can be both rational and imaginary, 5.7ri, but the
r needs to come before the i otherwise you get a syntax error.

All numbers are objects and respond to a variety of messages. So, unlike, say, Python, you
find the absolute value of a number by writing num.abs, not abs(num).

Finally, we’ll offer a warning for users of other languages. Strings that contain just digits are
not automatically converted into numbers when used in expressions. This tends to bite when
reading numbers from a file or when trying to use the parameters from a web request.

For example, we may want to find the sum of the two numbers on each line for a file such
as the following:

3 4
5 6
7 8

The following code doesn’t work:

some_file.each do |line|
v1, v2 = line.split # split line on spaces
print v1 + v2, " "

end

produces:

34 56 78

Chapter 7. Basic Types: Numbers, Strings, and Ranges • 118

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The problem is that the input was read as strings, not numbers. The plus operator for strings
concatenates them, so that’s what we see in the output. To fix this, use the Integer method to
convert the strings to integers:

some_file.each do |line|
v1, v2 = line.split
print Integer(v1) + Integer(v2), " "

end

produces:

7 11 15

How Numbers Interact
Most of the time, numbers work the way you’d expect. If you perform some operation
between two numbers of the same class, the answer will typically be a number of that same
class. If the two numbers are different classes, the result will have the class of the more
general one. If you mix integers and floats, the result will be a float; if you mix floats and
complex numbers, the result will be complex.

1 + 2 # => 3
1 + 2.0 # => 3.0
1.0 + 2 # => 3.0
1.0 + 1+2i # => (2.0+2i)
1 + 2/3r # => (5/3)
1.0 + 2/3r # => 1.6666666666666665

The return-type rule still applies when it comes to division. However, this often confuses
folks, because division between two integers yields an integer result. If you want integer
division to yield a float, you can either convert one side of the division with the to_fmethod,
or multiply one side by 1.0, which is the same thing, or use the fdiv method

1.0 / 2 # => 0.5
1 / 2.0 # => 0.5
1 / 2 # => 0
1.to_f / 2 # => 0.5
1 * 1.0 / 2 # => 0.5
1.fdiv(2) # => 0.5

Looping Using Numbers
Integers also support several iterators. We’ve seen one already: 5.times. Others include upto
and downto for iterating up and down between two integers. Class Numeric also provides the
more general method step, which is more like a traditional for loop.

3.times { print "X " }
1.upto(5) { |i| print i, " " }
99.downto(95) { |i| print i, " " }
50.step(80, 5) { |i| print i, " " }

produces:

X X X 1 2 3 4 5 99 98 97 96 95 50 55 60 65 70 75 80

As with other iterators, if you leave the block off, the call returns an Enumerator.

10.downto(7).with_index { |num, index| puts "#{index}: #{num}" }

report erratum • discuss

Numbers • 119

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

0: 10
1: 9
2: 8
3: 7

Strings
Ruby strings are sequences of characters. They normally hold printable characters, but that
is not a requirement; a string can also hold binary data. Strings are instances of class String,
and are often created using string literals—sequences of characters between delimiters.

Ruby has a lot of different ways to create string literals, which differ in how much processing
is done on the characters in the string. One kind of processing is an escape sequence. An escape
sequence allows you to represent data that is otherwise impossible to represent in the string.
Escape sequences in Ruby start with a backslash (\).

The simplest literal in Ruby is the single-quoted string. Inside a single-quoted string, only
two escape sequences are recognized. Two consecutive backslashes (\\) are replaced by a
single backslash, and a backslash followed by a single quote (\\') becomes a single quote. In
these cases, the escape sequence allows you to represent a character that would otherwise
cause problems because the character has meaning to the Ruby parser.

'escape using "\\"' # => escape using "\"
'That\'s right' # => That's right

Note that the double quote inside the top string is handled normally.

Double-quoted strings support a boatload more escape sequences. The most common is
probably \n, the newline character.

Double-quoted strings also support string interpolation. With string interpolation, you can
substitute the value of any Ruby code into a string using the sequence #{ expr }. If the
expression being evalutated is just a global variable, a class variable, or an instance variable,
you can omit the braces, so #@foo, or #@@foo, or #$foo.

"Seconds/day: #{24 * 60 * 60}" # => Seconds/day: 86400
"#{'Ho! ' * 3}Merry Christmas!" # => Ho! Ho! Ho! Merry Christmas!
"The input file name is #$FILENAME" # => The input file name is -

The interpolated code can be one or more statements, not just an expression—we don’t rec-
ommend this, but…

puts "now is #{
def the(a)
'the ' + a

end
the('time')

} for all bad coders..."

produces:

now is the time for all bad coders...

You will sometimes see style guides that prefer single-quotes if interpolation is not used on
the grounds that they are faster. As far as we’ve been able to tell, there’s no significant speed

Chapter 7. Basic Types: Numbers, Strings, and Ranges • 120

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

difference between the two, so you’ll need a different justification if you want to prefer that
style quirk.

Ruby will concatenate string literals that are next to each other if there is no operator between
them:

"This" "is" "just" "one" "string" # => "Thisisjustonestring"

Ruby provides an alternative to single and double-quote delimiters, which comes in handy
sometimes when the string you want to quote contains the delimiter you need. The syntax
is%q or%Q followed by a delimiter character. The%q delimiter is equivalent to single-quote,
and %Q is equivalent to double quote. In fact, the Q is optional, just a % followed by the
delimiter is equivalent to double-quote:

%q/general single-quoted string/ # => general single-quoted string
%Q!general double-quoted string! # => general double-quoted string
%Q{Seconds/day: #{24*60*60}} # => Seconds/day: 86400
%!general double-quoted string! # => general double-quoted string
%{Seconds/day: #{24*60*60}} # => Seconds/day: 86400

Notice that the delimiter changes from line to line. Whatever character follows the initial q
or Q is the delimiter—this also goes for other variants on the flexible delimiter syntax we
will see. If the character is an opening bracket [, brace {, parenthesis (, or less-than sign <,
the string is read until the matching close symbol is found. Otherwise, the string is read until
the next occurrence of the same delimiter. The delimiter can be any nonalphanumeric or
nonmultibyte character. Current code style guidelines will suggest that you stick to paren-
thesis as the string delimiter, %q().

Finally, you can construct a string using a here document, or heredoc. A heredoc allows you
to build a multi-line string.

string = <<END_OF_STRING
The body of the string is the input lines up to
one starting with the same text that followed the '<<'

END_OF_STRING

A here document consists of lines in the source up to but not including the terminating string
that you specify after the << characters. Normally, this terminator must start in column one.
However, if you put a minus sign after the << characters, you can indent the terminator:

string = <<-END_OF_STRING
The body of the string is the input lines up to
one starting with the same text that followed the '<<'
END_OF_STRING

And if you put a tilde after the << characters you can indent the text. Well, you can always
indent the text, but if you use a ~, then Ruby will remove the indentation spaces from the
beginning of each line, making it easier to lay out a long string:

def a_long_string
<<~END_OF_STRING
Faster than a speeding bullet, more powerful than
a locomotive, able to leap tall buildings in a single
bound—look, up there in the sky, it's a bird, it's a
plane, it's Superman!

END_OF_STRING

report erratum • discuss

Strings • 121

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end
puts a_long_string

produces:

Faster than a speeding bullet, more powerful than
a locomotive, able to leap tall buildings in a single
bound—look, up there in the sky, it's a bird, it's a
plane, it's Superman!

You can also have multiple here documents on a single line. Each acts as a separate string.
The bodies of the here documents are fetched sequentially from the source lines that follow:

print <<-STRING1, <<-STRING2
Concat

STRING1
enate
STRING2

produces:

Concat
enate

This is generally considered super confusing.

Note that Ruby does not strip leading spaces off the contents of the strings in these cases. If
you want to do so, you can call a method on the initial delimiter, x = <<EOL.strip

Strings and Encodings
An encoding is a mechanism for translating bits into characters. For many years, most
developers who used English used ASCII, a 7-bit encoding of English characters, such as
binary 101 to capital A—it used to be extremely common for programming books to include
a table of ASCII values as an appendix. Somewhat later, an 8-bit representation called Latin-
1 that included most characters in European language became common.

All of these were eventually superseded by Unicode,1 a global standard for all text characters
used in all languages. A Unicode character is two bytes long, however, which makes a Uni-
code string twice as long internally as a Latin-1 string. As a result, the overwhelming
majority of web pages use an encoding called UTF-8, which represents any unicode character,
but uses fewer bytes for ASCII or Latin-1 characters. UTF-8 is not the only encoding you’ll
encounter, but is the default for Ruby and the one you will likely encounter most often.

Every string in Ruby has an associated encoding. The default encoding of a string literal
depends on the encoding of the source file that contains it. With no explicit encoding specified,
a source file (and its strings) is encoded using UTF-8:

plain_string = "dog"
puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}"

produces:

Encoding of "dog" is UTF-8

1. https://home.unicode.org

Chapter 7. Basic Types: Numbers, Strings, and Ranges • 122

report erratum • discuss

https://home.unicode.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If you want to use your own encoding for some reason (and honestly, it’s hard to think of a
good reason), you can use a magic comment at the top of the file to change the encoding for
that file. If you override the encoding, you’ll do that for all strings in the file:

#encoding: utf-8
plain_string = "dog"
puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}"
utf_string = "δog"
puts "Encoding of #{utf_string.inspect} is #{utf_string.encoding}"

produces:

Encoding of "dog" is UTF-8
Encoding of "δog" is UTF-8

If there’s a shebang line, the encoding comment must be after the shebang, but before any
actual Ruby code:

#! /usr/local/rubybook/bin/ruby
encoding: utf-16

The special constant __ENCODING__ returns the encoding of the current source file.

Working with Strings
String is probably the largest built-in Ruby class, with more than one hundred standard
methods. We won’t go through them all here; the online API documentation has a complete
list. Instead, we’ll look at some common string idioms—things that are likely to pop up
during day-to-day programming.

Maybe we’ve been given a file containing information on a song playlist. For historical reasons
(are there any other kind?), the list of songs is stored as lines in the file. Each line holds the
name of the file containing the song, the song’s duration, the artist, and the title, all in vertical
bar–separated fields. A typical file may start like this:

tut_stdtypes/songdata
/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'
/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World
/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

Looking at the data, it’s clear that we’ll be using some of class String’s many methods to
extract and clean up the fields before we use them. At a minimum, we’ll need to

• break each line into fields
• convert the running times from mm:ss to seconds, and
• remove those extra spaces from the artists’ names.

Our first task is to split each line into fields, and String#splitwill do the job nicely. In this case,
we’ll pass split a regular expression, /\s*\|\s*/, that splits the line into tokens wherever split
finds a vertical bar, optionally surrounded by spaces (more about regular expressions in
Chapter 8, Regular Expressions, on page 129). And, because the line read from the file has a
trailing newline, we’ll use chomp to strip it off each line as we read it.

We’ll store details of each song in a Struct that contains an attribute for each of the three fields.
(A Struct is simply a data structure that contains a given set of attributes—which in this case
is the title, name, and length. It’s a shortcut for declaring a class that only has instance vari-
ables but little to no logic. For more, see Struct, on page 628.)

report erratum • discuss

Strings • 123

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/songdata
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

tut_stdtypes/read_songdata_1.rb
Song = Struct.new(:title, :name, :length)

songs = File.readlines("code/tut_stdtypes/songdata", chomp: true).map do |line|
_file, length, name, title = line.chomp.split(/\s*\|\s*/)
Song.new(title, name, length)

end
puts songs[1]

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

We’re using readlines and map here to convert each line of the input file into its own Song.

Unfortunately, whoever created the original file entered the artists’ names in columns, so
some of them contain extra spaces that we’d better remove before we go much further. We
have many ways of doing this, but probably the simplest is String#squeeze, which trims runs
of repeated characters.

tut_stdtypes/read_songdata_2.rb
Song = Struct.new(:title, :name, :length)

songs = File.readlines("code/tut_stdtypes/songdata", chomp: true).map do |line|
_file, length, name, title = line.chomp.split(/\s*\|\s*/)
Song.new(title, name.squeeze(" "), length)

end
puts songs[1]

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Finally, we have the minor matter of the time format: the file says 2:58, and we want the
number of seconds, 178. We could use split again, this time splitting the time field around
the colon character:

"2:58".split(":") # => ["2", "58"]

Instead, we’ll use a related method. String#scan is similar to split in that it breaks a string into
chunks based on a pattern. However, unlike split, with scan you specify the pattern that you
want the chunks to match. In this case, we want to match one or more digits for both the
minutes and seconds components. The pattern for one or more digits is /\d+/, then we convert
the resulting minutes and seconds to length in seconds.

tut_stdtypes/read_songdata_3.rb
Song = Struct.new(:title, :name, :length)

songs = File.readlines("code/tut_stdtypes/songdata", chomp: true).map do |line|
_file, length, name, title = line.chomp.split(/\s*\|\s*/)
minutes, secs = length.scan(/\d+/)
Song.new(title, name.squeeze(" "), minutes.to_i * 60 + secs.to_i)

end
puts songs[1]

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length=178>

We could spend the next fifty pages looking at all the methods in class String. However, let’s
move on instead to look at a simpler data type: the range.

Chapter 7. Basic Types: Numbers, Strings, and Ranges • 124

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/read_songdata_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/read_songdata_2.rb
http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/read_songdata_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Ranges
Ranges occur everywhere: January to December, 0 to 9, rare to well done, lines 50 through
67, and so on. If Ruby is to help us model reality, it seems natural for it to support these
ranges. In fact, Ruby goes one better: it uses ranges to implement sequences and intervals.

Ranges as Sequences
The first and perhaps most natural use of ranges is to express a sequence of values. Sequences
have a start point, an end point, and a way to produce successive values in the sequence. In
Ruby, these sequences are created using the .. and ... range operators. The two-dot form
creates an inclusive range, and the three-dot form creates a range that excludes the specified
high value:

1..10
"a".."z"
0...3

If you are looking for a way to remember which is which, you can imagine the third dot as
replacing the high end value. The two-dot form is more common in actual code, and we
recommend not switching between the two—it’s a subtle distinction and hard to read.

You can convert a range to an array using the to_a method and convert it to an Enumerator
using to_enum.

(1..10).to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
('bar'..'bat').to_a # => ["bar", "bas", "bat"]
enum = ('bar'..'bat').to_enum
enum.next # => "bar"
enum.next # => "bas"

Sometimes people worry that ranges take a lot of memory. That’s not an issue: the range
1..100000 is held as a Range object containing references to two Fixnum objects. However,
convert a range into an array, and all that memory will get used.

Ruby also allows you to specify ranges that have no beginning or no end. While this can be
useful for generating infinite sequences, it’s also pretty useful to define a subrange for an
array or string. A range starting with [..x] goes from the beginning of the sequence to index
x, while [x..] goes from x to the end of the sequence:

arr = [1, 2, 3, 4, 5, 6]
arr[..2] # => [1, 2, 3]
arr[2..] # => [3, 4, 5, 6]

Ranges have methods that let you iterate over them and test their contents in a variety of
ways:

digits = 0..9
digits.include?(5) # => true
digits.max # => 9
digits.reject { |i| i < 5 } # => [5, 6, 7, 8, 9]
digits.reduce(:+) # => 45

So far we’ve shown ranges of numbers and strings. However, as you’d expect from an object-
oriented language, Ruby ranges can be based on objects that you define. The only constraints

report erratum • discuss

Ranges • 125

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

are that the objects must respond to succ by returning the next object in sequence and the
objects must be comparable using <=> (as described in Mixins, on page 107).

In reality, this isn’t something you do very often, so examples tend to be a bit contrived.
Here’s one—a class that presents numbers that are powers of 2. Because it defines <=> and
succ, we can use objects of this class in ranges:

class PowerOfTwo
attr_reader :value
def initialize(value)
@value = value

end

def <=>(other)
@value <=> other.value

end

def succ
PowerOfTwo.new(@value + @value)

end

def to_s
@value.to_s

end
end

p1 = PowerOfTwo.new(4)
p2 = PowerOfTwo.new(32)

puts (p1..p2).to_a

produces:

4
8
16
32

Ranges as Intervals
A final use of the versatile range is as an interval test: seeing whether some value falls
within the interval represented by the range. We do this using===, the case equality operator,
which is equivalent to the include?methods for boolean testing. Ranges also provide the cover?
method, which is identical to include? for numbers, but for non-numeric sequences behaves
differently. The cover?method includes any item between the start and end of the range even
if the item is not in the range itself.

(1..10) === 5 # => true
(1..10) === 15 # => false
(1..10) === 3.14159 # => true
('a'..'j') === 'c' # => true
('a'..'j') === 'z' # => false
('a'..'j').include?('c') # => true
('a'..'j').include?('bb') # => false
('a'..'j').cover?('bb') # => true

Since case statements use triple-equals for comparisons, ranges are often used as a convenient
shortcut for branch conditions.

Chapter 7. Basic Types: Numbers, Strings, and Ranges • 126

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

tut_stdtypes/range_case.rb
car_age = gets.to_f # let's assume it's 9.5
case car_age
when 0...1
puts "Mmm.. new car smell"

when 1...3
puts "Nice and new"

when 3...10
puts "Reliable but slightly dinged"

when 10...30
puts "Clunker"

else
puts "Vintage gem"

end

produces:

Reliable but slightly dinged

Note the use of exclusive ranges in the previous example. These are usually the correct choice
in case statements. If instead we had written the following, we’d get the wrong answer
because 9.5 does not fall within any of the ranges, so the else clause triggers:

tut_stdtypes/range_case_2.rb
car_age = gets.to_f # let's assume it's 9.5
case car_age
when 0..0
puts "Mmm.. new car smell"

when 1..2
puts "Nice and new"

when 3..9
puts "Reliable but slightly dinged"

when 10..29
puts "Clunker"

else
puts "Vintage gem"

end

produces:

Vintage gem

What’s Next
In this chapter we covered some of Ruby’s most commonly used types—numbers, strings,
and ranges. We showed how to create literals and how to use the functionality of these types.
Now let’s look at one of Ruby’s most powerful standard types: regular expressions.

report erratum • discuss

What’s Next • 127

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/range_case.rb
http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/range_case_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 8

Regular Expressions
We spend much of our time in Ruby working with strings, so it seems reasonable for Ruby
to have great tools for working with those strings. As we’ve seen, the String class itself is no
slouch—it has more than 100 methods. But there are still things that the basic String class
can’t do on its own. For example, we might want to see whether a string contains two or
more repeated characters, or we might want to replace every word longer than fifteen
characters with its first five characters and an ellipsis. This is when we turn to the power of
regular expressions.

Regular expressions are powerful and are used in many languages besides Ruby. In this
chapter, we’ll cover the basics of what regular expressions can do in Ruby; later, in Regular
Expressions, on page 439, we’ll show you all the details and more complex techniques.

What Regular Expressions Let You Do
A regular expression is a pattern that can be matched against a string. It can be a simple
pattern, such as the stringmust contain the sequence of letters “cat,” or the pattern can be complex,
such as the stringmust start with a protocol identifier, followed by two literal forward slashes, followed
by…, and so on. This is cool in theory. But what makes regular expressions so powerful is
what you can do with them in practice:

• You can test a string to see whether it matches a pattern.
• You can extract from a string the sections that match all or part of a pattern.
• You can change the string, replacing parts that match a pattern.

Ruby provides built-in support that makes pattern matching, extraction, and substitution
convenient and concise. In this first section, we’ll work through the basics of regular
expression patterns and see how Ruby supports matching and replacing based on those
patterns. In the sections that follow, we’ll dig deeper into both the patterns and Ruby’s
support for them.

Creating and Using Regular Expressions
There are many ways of creating a regular expression pattern in Ruby. By far the most
common is to write the pattern between forward slashes. Thus, the pattern /cat/ is a regular
expression literal in the same way that "cat" is a string literal.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

/cat/ is an example of a simple pattern. It matches any string that contains the substring cat.
In fact, inside a regular expression pattern, all characters except ., |, (,), [,], {, }, +, \, ^, $, *,
and ?match themselves. So, at the risk of creating something that sounds like a logic puzzle,
here are some patterns and examples of strings they match and don’t match:

Matches "dog and cat" and "catch" but not "Cat" or "c.a.t."/cat/
Matches "86512312" and "abc123" but not "1.23"/123/
Matches "hit a ball" but not "table"/t a b/

If you want to match one of the special characters literally in a pattern, precede it with a
backslash, so /*/ is a pattern that matches a single asterisk, and /\// is a pattern that matches
a forward slash. Those backslashes can be confusing, so Ruby provides a %r delimiter for
regular expressions, similar to%q for strings. The recommended delimiter is the curly brace,
so you can write regular expression literals as %r{cat} or %r{\/}.

Regular expression literals are processed like double-quoted strings. In particular, you can
use #{...} expression interpolations in the pattern.

Matching Strings with Patterns
The Ruby operator =~ matches a string against a pattern. It returns the character offset of
the string at which the beginning of the match occurred:

/cat/ =~ "dog and cat" # => 8
/cat/ =~ "catch" # => 0
/cat/ =~ "Cat" # => nil

If you only want the boolean true or false of if the match occurred, and don’t need the
character offset, you can use the match? method. The use of match? is more common than the
operator in current Ruby style.

/cat/.match?("dog and cat") # => true
/cat/.match?("catch") # => true
/cat/.match?("Cat") # => false

You can put the string on the left hand side of either the =~ operator or the match? method
if you prefer.

"dog and cat" =~ /cat/ # => 8
"catch" =~ /cat/ # => 0
"catch".match?(/cat/) # => true
"Cat" =~ /cat/ # => nil

Because pattern matching returns nil when it fails and because nil is equivalent to false in a
boolean context, you can use the result of a pattern match as a condition in statements such
as if and while.

str = "cat and dog"

if str.match?(/cat/)
puts "There's a cat here somewhere"

end

produces:

There's a cat here somewhere

Chapter 8. Regular Expressions • 130

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The following code prints the lines in testfile that have the string on in them:

File.foreach("testfile").with_index do |line, index|
puts "#{index}: #{line}" if line.match?(/on/)

end

produces:

0: This is line one
3: And so on...

You can test to see whether a pattern does not match a string using the negative match
operator !~:

File.foreach("testfile").with_index do |line, index|
puts "#{index}: #{line}" if line !~ /on/

end

produces:

1: This is line two
2: This is line three

Changing Strings with Patterns
The String method sub takes a pattern and some replacement text. (Actually, it does more
than that, but we won’t get to that for a while.) If it finds a match for the pattern in the string,
it replaces the matched substring with the replacement text.

str = "Dog and Cat"
new_str = str.sub(/Cat/, "Gerbil")
puts "Let's go to the #{new_str} for a pint."

produces:

Let's go to the Dog and Gerbil for a pint.

The sub method changes only the first match it finds. To replace all matches, use gsub. (The
g stands for global.)

str = "Dog and Cat"
new_str1 = str.sub(/a/, "*")
new_str2 = str.gsub(/a/, "*")
puts "Using sub: #{new_str1}"
puts "Using gsub: #{new_str2}"

produces:

Using sub: Dog *nd Cat
Using gsub: Dog *nd C*t

Both sub and gsub return a new string. (If no substitutions are made, that new string will just
be a copy of the original.)

If you want to modify the original string, use the sub! and gsub! forms—often in the Ruby
library the use of ! at the end of a method name means the method modifies the receiver in
place rather than duplicating it.

str = "now is the time"
str.sub!(/i/, "*")
str.gsub!(/t/, "T")
puts str

report erratum • discuss

Creating and Using Regular Expressions • 131

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

now *s The Time

Unlike sub and gsub, sub! and gsub! return the string only if the pattern was matched. If no
match for the pattern is found in the string, they return nil instead. This means it can make
sense (depending on your need) to use the ! forms in conditions.

Regular Expression Patterns
Like most things in Ruby, regular expressions are just objects—they are instances of the class
Regexp. This means you can assign them to variables, pass them to methods, and so on:

str = "dog and cat"
pattern = /nd/
pattern.match?(str) # => true
str.match?(pattern) # => true

You can also create regular expression objects by calling the Regexp class’s new method or by
using the arbitrary delimiter%r{...} syntax. The%r syntax is particularly useful when creating
patterns that contain forward slashes:

/mm\/dd/ # => /mm\/dd/
Regexp.new("mm/dd") # => /mm\/dd/
%r{mm/dd} # => /mm\/dd/

Playing with Regular Expressions

If you’re like us, you’ll sometimes get confused by regular expressions. You create something that
should work, but it just doesn’t seem to match. That’s when we fall back to irb. We’ll cut and paste the
regular expression into irb and then try to match it against strings. We’ll slowly remove portions until
we get it to match the target string and add stuff back until it fails. At that point, we’ll know what we
were doing wrong.

Another option is to use the website Rubular, at https://rubular.com. Rubular allows you to enter a reg-
ular expression and a test string and shows what the match result is. The site also allows you to create
a permalink for your particular regular expression and test string which is excellent for using as a
comment where the regular expression is defined in your code.

Regular Expression Options
A regular expression may include one or more options that modify the way the pattern
matches strings. If you’re using literals to create the Regexp object, then the options are one
or more characters placed immediately after the terminator. If you’re using Regexp.new, the
options are constants used as the second parameter of the constructor.

The pattern match will ignore the case of letters in the pattern and
string.

Case insensitive.i

Any #{...} substitutions in a particular regular expression literal will
be performed just once, the first time it is evaluated. Otherwise, the

Substitute once.o

substitutions will be performed every time the literal generates a
Regexp object.

Chapter 8. Regular Expressions • 132

report erratum • discuss

https://rubular.com
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Normally, “.” matches any regexp option character except a newline.
With the /m option, “.” matches any character.

Multiline mode.m

Complex regular expressions can be difficult to read. The x option
allows you to insert spaces and newlines in the pattern to make it
more readable. You can also use # to introduce comments.

Extended mode.x

It’s worth taking a second to explore extended mode, which allows you to add whitespace
and comments into the regular expression definition. If there’s actually whitespace in the
pattern, you need to explicitly use character classes to denote the whitespace. This can make
the regular expression more readable – we’ll see what all this syntax means in a moment:

city_state_zip = %r{
(\w.*), # city name followed by a comma
\s # a space
([A-Z][A-Z]) # a two character state abbreviation
\s # a space
(\d{5}) # 5 digits for the US simple zip code

}x

"Chicago, IL 60601".match?(city_state_zip) # => true

Another set of options allows you to set the language encoding of the regular expression. If
none of these options is specified, the regular expression will have US-ASCII encoding if it
contains only 7-bit characters. Otherwise, it will use the default encoding of the source file
containing the literal. The options are:

• n: no encoding (ASCII)
• e: EUC
• s: SJIS
• u: UTF-8

Matching Against Patterns
Once you have a regular expression object, you can match it against a string using the Reg-
exp#match method, the boolean match? method, or the match operators =~ (positive match)
and !~ (negative match). The methods and match operators are defined for both String and
Regexp objects. One operand of the match operator must be a regular expression.

name = "Fats Waller"
name =~ /a/ # => 1
name =~ /z/ # => nil
/a/ =~ name # => 1
/a/.match(name) # => #<MatchData "a">
Regexp.new("all").match(name) # => #<MatchData "all">

The different versions return different results:

Return on no matchReturn on matchMethod or operator

nilindex of beginning of first match in string=~
truefalse!~
nilMatchData objectmatch
falsetruematch?

report erratum • discuss

Regular Expression Patterns • 133

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

After a successful match using either =~ or match, but not using match?, Ruby sets a whole
bunch of magic global variables with data.

• The global variable $~ receives the entire MatchData object.
• The same MatchData object is also accessible as Regexp.last_match.
• $& receives the complete matched text.
• $` receives the part of the string that preceded the match.
• $' receives the string after the match.
• $1 receives the first capture group, $2 the second, and so on. More on that in Grouping,

on page 138.

However, these particular variables are considered to be fairly ugly, so most Ruby program-
mers instead use theMatchData object returned from thematchmethod, because it encapsulates
all the information Ruby knows about the match. Given a MatchData object, you can call
pre_match to return the part of the string before the match, post_match for the string after the
match, and index using [0] to get the matched portion.

"Faster than a speeding bullet" =~ /speed/ # => 14
$~ # => #<MatchData "speed">
$& # => "speed"
$` # => "Faster than a "
$' # => "ing bullet"

match_data = "Faster than a speeding bullet".match(/speed/)
match_data # => #<MatchData "speed">
match_data[0] # => "speed"
match_data.pre_match # => "Faster than a "
match_data.post_match # => "ing bullet"

We can use these to write show_regexp, a method that shows where a pattern matches:

tut_regexp/show_match.rb
def show_regexp(string, pattern)
match = pattern.match(string)
if match
"#{match.pre_match}->#{match[0]}<-#{match.post_match}"

else
"no match"

end
end

We could use this method like this:

show_regexp('very interesting', /t/) # => very in->t<-eresting
show_regexp('Fats Waller', /lle/) # => Fats Wa->lle<-r
show_regexp('Fats Waller', /z/) # => no match

Regular Expression Syntax
We said earlier that, within a pattern, all characters match themselves except . | () [] { } + \
^ $ * and ?. Those characters all have special meanings in regular expression patterns. First,
always remember that you need to escape any of these characters with a backslash if you
want them to be treated as regular characters to match:

show_regexp('yes | no', /\|/) # => yes ->|<- no
show_regexp('yes (no)', /\(no\)/) # => yes ->(no)<-

Chapter 8. Regular Expressions • 134

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_regexp/show_match.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

show_regexp('are you sure?', /e\?/) # => are you sur->e?<-

Now let’s see what some of these characters mean if you use them without escaping them.

Anchors
By default, a regular expression will try to find the first match for the pattern in a string.
Match /iss/ against the string “Mississippi,” and it will find the substring “iss” starting at
position 1 (the second character in the string). But what if you want to force a pattern to
match only at the start or end of a string?

The patterns ^ and $ match the beginning and end of a line, respectively. These are often
used to anchor a pattern match; for example, /^option/ matches the word option only if it
appears at the start of a line. Similarly, the sequence \A matches the beginning of a string,
and only at the beginning of a string, whereas ^ would match the first character after a
newline even if it is not the beginning of the string. Similarly, you have \z and \Zwhich match
the end of the entire string rather than the end of a line. The difference is that \Z matches the
end of a string unless the string ends with \n, in which case it matches just before the \n.

str = "this is\nthe time"
show_regexp(str, /^the/) # => this is\n->the<- time
show_regexp(str, /is$/) # => this ->is<-\nthe time
show_regexp(str, /\Athis/) # => ->this<- is\nthe time
show_regexp(str, /\Athe/) # => no match

The pattern \b is an anchor that matches a word boundary. A word boundary is the separation
between a word character—an ASCII letter, a number, or an underscore—and something
that isn’t a word character. In the string “six o’clock”, there are six word boundaries:

• Before the s—the beginning of the string is considered a non-word character
• After the x—between the ASCII letter x and the space
• Before the o—between the space and the letter o
• Before and after the ', because apostrophes are not word characters
• After the k—the end of the string is also considered a non word character

You can see where word boundaries occur by replacing every instance of a word boundary
with an * using gsub:

"six o'clock".gsub(/\b/, "*") # => "*six* *o*'*clock*"

The \B pattern is the inverse, it matches the boundary between any two characters that is not
a word boundary. The string “six o’clock” also has six of those.

"six o'clock".gsub(/\B/, "*") # => "s*i*x o'c*l*o*c*k"

You use these anchors to limit a match to the beginning or end of a word (\b), or prevent a
match from happening at the beginning or end of a word (\B).

show_regexp("this is\nthe time", /\bis/) # => this ->is<-\nthe time
show_regexp("this is\nthe time", /\Bis/) # => th->is<- is\nthe time

Character Classes
A character class is a set of characters between brackets: [characters]. The character class pattern
matches any individual character between the brackets, with no delimiter separating them,

report erratum • discuss

Regular Expression Syntax • 135

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

so [aeiou] matches any of the five vowels, [,.:;!?] matches some punctuation, and so on. The
significance of the special regular expression characters—.|(){+^$*?—is turned off inside the
brackets. However, normal string substitution still occurs, so (for example) \b represents a
backspace character, and \n represents a new line.

show_regexp('Price $ 12.', /[aeiou]/) # => Pr->i<-ce $ 12.
show_regexp('Price $ 12.', /[0123456789]/) # => Price $ ->1<-2.
show_regexp('Price $ 12.', /[$.]/) # => Price ->$<- 12.

Within the brackets, a sequence such as c1-c2 represents all the characters from c1 to c2 in the
current string encoding:

a = 'see [The PickAxe-page 123]'
show_regexp(a, /[A-F]/) # => see [The Pick->A<-xe-page 123]
show_regexp(a, /[A-Fa-f]/) # => s->e<-e [The PickAxe-page 123]
show_regexp(a, /[0-9]/) # => see [The PickAxe-page ->1<-23]
show_regexp(a, /[0-9][0-9]/) # => see [The PickAxe-page ->12<-3]

It’s common to see [a-zA-Z] to represent all the English letters or [0-9] to represent all the digits.

You can negate a character class by putting an up arrow (^, sometimes called a caret)
immediately after the opening bracket:

show_regexp('Price $12.', /[^A-Z]/) # => P->r<-ice $12.
show_regexp('Price $12.', /[^\w]/) # => Price-> <-$12.
show_regexp('Price $12.', /[a-z][^a-z]/) # => Pric->e <-$12.

Some character classes are used so frequently that Ruby provides abbreviations for them.
These abbreviations are listed in Table 2, Character class abbreviations, on page 136. They
may be used both within brackets and in the body of a pattern.

show_regexp('It costs $12.', /\s/) # => It-> <-costs $12.
show_regexp('It costs $12.', /\d/) # => It costs $->1<-2.

If you want to include the literal characters] and - in a character class, escape them with a
backslash:

a = 'see [The PickAxe-page 123]'
show_regexp(a, /[\]]/) # => see [The PickAxe-page 123->]<-
show_regexp(a, /[0-9\]]/) # => see [The PickAxe-page ->1<-23]
show_regexp(a, /[\d\-]/) # => see [The PickAxe->-<-page 123]

Finally, a period (.) appearing outside brackets represents any character except a newline
(though in multiline mode it matches a newline, too):

a = 'It costs $12.'
show_regexp(a, /c.s/) # => It ->cos<-ts $12.
show_regexp(a, /./) # => ->I<-t costs $12.
show_regexp(a, /\./) # => It costs $12->.<-

Characters matchedLogical intentSequence

(?a), (?d)→ [0-9]
(?u)→ Decimal_Number

Decimal digit\d

All characters not matched by \dAny character except a decimal digit\D
[0-9a-fA-F]Hexadecimal digit character\h

Chapter 8. Regular Expressions • 136

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Characters matchedLogical intentSequence

All characters not matched by \hAny character except a hex digit\H
Matches any ASCII or Unicode linebreak.
May also match the two characters \r\n.

A generic linebreak sequence.\R

(?a), (?d)→ [␣\t\r\n\f\v]
(?u)→ [\t\n\r\x{000B}\x{000C}\x{0085}] plus
Line_Separator, Paragraph_Separator, Space
_Separator

Whitespace\s

Any character not matched by \sAny character except whitespace\S
(?a), (?d)→ [a-zA-Z0-9_]
(?u)→ Letter, Mark, Number ,Connector_
Punctuation

A “word” character (really, a program-
ming language identifier)

\w

Any character not matched by \wAny character except a word character\W
An extended Unicode grapheme (two
or more characters that combine to
form a single visual character).

\X

Table 2—Character class abbreviations
For some of these classes, the meaning depends on the character set mode selected for the pattern. In these cases,
the different options are shown like this:

(?a), (?d)→ [a-zA-Z0-9_]
(?u)→ Letter, Mark, Number, Connector_Punctuation

In this case, the first line applies to ASCII and default modes, and the second to unicode. In the second part of each
line, the […] is a conventional character class. Words in italic are Unicode character classes.

Repetition
Back in Working with Strings, on page 123, we specified the pattern that split the song list
line, /\s*\|\s*/, and we said we wanted to match a vertical bar surrounded by an arbitrary
amount of whitespace. We now know that the \s sequences match a single whitespace char-
acter and \| means a literal vertical bar, so it seems likely that the asterisks somehow mean
“an arbitrary amount.” In fact, the asterisk is one of a number of modifiers that allow you
to match multiple occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern, then:

Matches zero or more occurrences of rr*
Matches one or more occurrences of rr+
Matches zero or one occurrence of rr?
Matches at least m and at most n occurrences of rr{m,n}
Matches at least m occurrences of rr{m,}
Matches at most n occurrences of rr{,n}
Matches exactly m occurrences of rr{m}

These repetition constructs have a high precedence—they bind only to the immediately
preceding matching construct in the pattern. /ab+/matches an a followed by one or more b’s,
not a sequence of ab’s. If you want a sequence of ab’s, you need to group the pattern, /(ab)+/.

report erratum • discuss

Regular Expression Syntax • 137

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

These patterns are called greedy, because by default they will match as much of the string as
they can. You can alter this behavior and have them match the minimum by adding a
question mark suffix. The repetition is then called lazy—it stops once it has done the minimum
amount of work required.

a = "The moon is made of cheese"
show_regexp(a, /\w+/) # => ->The<- moon is made of cheese
show_regexp(a, /\s.*\s/) # => The-> moon is made of <-cheese
show_regexp(a, /\s.*?\s/) # => The-> moon <-is made of cheese
show_regexp(a, /[aeiou]{2,99}/) # => The m->oo<-n is made of cheese
show_regexp(a, /mo?o/) # => The ->moo<-n is made of cheese
show_regexp(a, /mo??o/) # => The ->mo<-on is made of cheese

The lazy versions, on line three and six behave differently than their matching greedy versions
on lines two and five.

Be very careful when using the * modifier. It matches zero or more occurrences. We often
forget about the zero part. In particular, a pattern that contains just a * repetition will always
match, whatever string you pass it. For example, the pattern /a*/ will always match, because
every string contains zero or more a’s.

Both of these examples match an empty substring at the start of the string:

a = "The moon is made of cheese"
show_regexp(a, /m*/) # => -><-The moon is made of cheese
show_regexp(a, /Z*/) # => -><-The moon is made of cheese

Alternation
We know that the vertical bar is special, because our line-splitting pattern had to escape it
with a backslash. That’s because an unescaped vertical bar, as in |, matches either the construct
that precedes it or the construct that follows it:

a = "red ball blue sky"
show_regexp(a, /d|e/) # => r->e<-d ball blue sky
show_regexp(a, /al|lu/) # => red b->al<-l blue sky
show_regexp(a, /red ball|angry sky/) # => ->red ball<- blue sky

There’s a trap for the unwary here, because | has a very low precedence. The last example
in the previous lines matches red ball or angry sky, not red ball sky or red angry sky. To match
red ball sky or red angry sky, you’d need to override the default precedence using grouping,
/red (ball|angry) sky/.

Grouping
You can use parentheses to group terms within a regular expression. Everything within the
group is treated as a single regular expression.

The first example here, without a group, matches an ‘a’ followed by one or more ‘n’s. The
second, using a group, matches the sequence ‘an’ one or more times.

show_regexp('banana', /an+/) # => b->an<-ana
show_regexp('banana', /(an)+/) # => b->anan<-a

a = 'red ball blue sky'
show_regexp(a, /blue|red/) # => ->red<- ball blue sky

Chapter 8. Regular Expressions • 138

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

show_regexp(a, /(blue|red) \w+/) # => ->red ball<- blue sky
show_regexp(a, /(red|blue) \w+/) # => ->red ball<- blue sky
show_regexp(a, /red|blue \w+/) # => ->red<- ball blue sky
show_regexp(a, /red (ball|angry) sky/) # => no match
a = 'the red angry sky'
show_regexp(a, /red (ball|angry) sky/) # => the ->red angry sky<-

Parentheses do double duty in regular expressions, they also collect the results of pattern
matching. Ruby counts opening parentheses and for each stores the result of the partial
match between it and the corresponding closing parenthesis. You can use this partial match
both within the rest of the pattern and in your Ruby program. Within the pattern, the sequence
\1 refers to the match of the first group, \2 the second group, and so on. Outside the pattern,
the special global variables $1, $2 , and so on, serve the same purpose, and are reset on every
regular expression match, just like $~.

/(\d\d):(\d\d)(..)/ =~ "12:50am" # => 0
"Hour is #$1, minute #$2" # => "Hour is 12, minute 50"
/((\d\d):(\d\d))(..)/ =~ "12:50am" # => 0
"Time is #$1" # => "Time is 12:50"
"Hour is #$2, minute #$3" # => "Hour is 12, minute 50"
"AM/PM is #$4" # => "AM/PM is am"

If you’re using the MatchData object returned by the match method, you can index into it to
get the corresponding subpatterns. This is much more common than using the global magic
variables.

md = /(\d\d):(\d\d)(..)/.match("12:50am")
"Hour is #{md[1]}, minute #{md[2]}" # => "Hour is 12, minute 50"
md = /((\d\d):(\d\d))(..)/.match("12:50am")
"Time is #{md[1]}" # => "Time is 12:50"
"Hour is #{md[2]}, minute #{md[3]}" # => "Hour is 12, minute 50"
"AM/PM is #{md[4]}" # => "AM/PM is am"

The ability to use part of the current match later in that match allows you to look for various
forms of repetition:

match duplicated letter
show_regexp('He said "Hello"', /(\w)\1/) # => He said "He->ll<-o"
match duplicated substrings

show_regexp('Mississippi', /(\w+)\1/) # => M->ississ<-ippi

Rather than use numbers, you can use names to refer to previously matched content. You
give a group a name by placing ?<_name_> immediately after the opening parenthesis. You
can subsequently refer to this named group using \k<_name_> (or \k'_name_').

tut_regexp/named_regex_groups_1.rb
match duplicated letter
str = 'He said "Hello"'
show_regexp(str, /(?<char>\w)\k<char>/) # => He said "He->ll<-o"

match duplicated adjacent substrings
str = "Mississippi"
show_regexp(str, /(?<seq>\w+)\k<seq>/) # => M->ississ<-ippi

The named matches in a regular expression are also available as local variables, but only if
you use a literal regexp and that literal appears on the left hand side of the =~ operator. (So

report erratum • discuss

Regular Expression Syntax • 139

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

you can’t assign a regular expression object to a variable, match the contents of that variable
against a string, and expect the local variables to be set.)

tut_regexp/named_regex_groups_2.rb
/(?<hour>\d\d):(?<min>\d\d)(..)/ =~ "12:50am" # => 0
"Hour is #{hour}, minute #{min}" # => "Hour is 12, minute 50"

You can mix named and position-based references
"Hour is #{hour}, minute #{$2}" # => "Hour is 12, minute 50"

Finally, the named matches also can be used as indexes into a MatchData instance.

tut_regexp/named_regex_groups_3.rb
md = /(?<hour>\d\d):(?<min>\d\d)(..)/.match("12:50am")
"Hour is #{md[:hour]}, minute #{md[:min]}" # => "Hour is 12, minute 50"

As you can see in these examples, named groups are a mixed bag—they can make the actual
regular expression look more complicated, but can also make expressions using the result
of the match clearer.

Pattern-Based Substitution
We’ve already seen how sub and gsub replace the matched part of a string with other text.
In those previous examples, the pattern was always fixed text, but the substitution methods
work equally well if the pattern contains repetition, alternation, and grouping.

a = "quick brown fox"
a.sub(/[aeiou]/, "*") # => "q*ick brown fox"
a.gsub(/[aeiou]/, "*") # => "q**ck br*wn f*x"
a.sub(/\s\S+/, "") # => "quick fox"
a.gsub(/\s\S+/, "") # => "quick"

The substitution methods can take a string or a block. If a block is used, the block is passed
each matching substring, and the block’s return value is substituted into the original string.

a = "quick brown fox"
a.sub(/^./) { |match| match.upcase } # => "Quick brown fox"
a.gsub(/[aeiou]/) { |vowel| vowel.upcase } # => "qUIck brOwn fOx"

Maybe we want to normalize city names entered by users into a web application, even if the
city name is multiple words. They may enter NEW YORK, new york, or nEw yORk, and
we’d like to store it as New York. The following method is a simple first iteration. The pattern
that matches the first character of a word is \b\w—look for a word boundary followed by a
word character. Combine this with gsub, and we can hack the names:

def mixed_case(name)
name.downcase.gsub(/\b\w/) { |first| first.upcase }

end
mixed_case("NEW YORK") # => "New York"
mixed_case("new york") # => "New York"
mixed_case("nEw yORk") # => "New York"

As we saw previously, that substitution block could also be written as either { _1.upcase } or
as a second argument written as &:upcase.

def mixed_case(name)
name.downcase.gsub(/\b\w/, &:upcase)

Chapter 8. Regular Expressions • 140

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_2.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

mixed_case("nEw yORk") # => "New York"

You can also give sub and gsub a hash as the replacement parameter, in which case they will
look up matched groups and use the corresponding values as replacement text:

replacement = { "cat" => "feline", "dog" => "canine" }
replacement.default = "unknown"

"cat and dog".gsub(/\w+/, replacement) # => "feline unknown canine"

Backslash Sequences in the Substitution
Earlier we noted that the sequences \1, \2, and so on, are available in the pattern, standing
for the _n_th group matched so far. The same sequences can be used in the second argument
of sub and gsub.

puts "fred:smith".sub(/(\w+):(\w+)/, '\2, \1')
puts "nercpyitno".gsub(/(.)(.)/, '\2\1')

produces:

smith, fred
encryption

You can also reference named groups:

tut_regexp/named_regex_groups_4.rb
puts "fred:smith".sub(/(?<first>\w+):(?<last>\w+)/, '\k<last>, \k<first>')
puts "nercpyitno".gsub(/(?<c1>.)(?<c2>.)/, '\k<c2>\k<c1>')

produces:

smith, fred
encryption

Additional backslash sequences work in substitution strings: \& (last match), \+ (last matched
group), \ (string prior to match), ’ (string after match), and \‘ (a literal backslash).

It gets confusing if you want to include a literal backslash in a substitution. Your first attempt
might be str.gsub(/\\/, '\\\\').

Clearly, this code is trying to replace each backslash in strwith two. The programmer doubled
up the backslashes in the replacement text, knowing that they’d be converted to \\ in syntax
analysis. However, when the substitution occurs, the regular expression engine performs
another pass through the string, converting \\ to \, so the net effect is to replace each single
backslash with another single backslash. You need to write gsub(/\\/, '\\\\\\\\')!

str = 'a\b\c' # => "a\b\c"
str.gsub(/\\/, '\\\\\\\\') # => "a\\b\\c"

However, using the fact that \& is replaced by the matched string, you could also write this:

str = 'a\b\c' # => "a\b\c"
str.gsub(/\\/, '\&\&') # => "a\\b\\c"

If you use the block form of gsub, the string for substitution is analyzed only once (during
the syntax pass), and the result is what you intended:

str = 'a\b\c' # => "a\b\c"

report erratum • discuss

Regular Expression Syntax • 141

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_4.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

str.gsub(/\\/) { '\\\\' } # => "a\\b\\c"

What’s Next
So that’s it! If you’ve made it this far, consider yourself a regular expression ninja. Get out
there and match some strings. Now we’ll look more generally at Ruby expressions.

Chapter 8. Regular Expressions • 142

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 9

Expressions
So far, we’ve been fairly cavalier in our use of expressions in Ruby. After all, a = b + c is
pretty standard stuff. That said, Ruby expressions are different than what you might see in
JavaScript, Python, or Java, and there’s a lot of power and flexibility there. You could write
a whole lot of Ruby code without reading any of this chapter, but it wouldn’t be as much
fun.

One of the first differences in Ruby is that anything that can reasonably return a value does:
just about everything is an expression. What does this mean in practice?

Well, for one thing, we have the ability to chain statements together:

a = b = c = 0
[3, 1, 7, 0].sort.reverse # => [7, 3, 1, 0]

Code structures that are statements in languages like JavaScript or Java are expressions in
Ruby. For example, the if and case statements both return the value of the last expression
executed:

song_type = if song.mp3_type == MP3::Jazz
if song.written < Date.new(1935, 1, 1)
Song::TradJazz

else
Song::Jazz

end
else
Song::Other

end

rating = case votes_cast
when 0...10 then Rating::SkipThisOne
when 10...50 then Rating::CouldDoBetter
else
Rating::Rave

end

We’ll talk more about if and case later on page 153.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Operator Expressions
Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few surprises. A complete
list of the operators, and their precedences, is given in Table 19, Ruby operators (high to
low precedence), on page 454.

In Ruby, many binary operators are implemented as method calls. For example, when you
write a * b + c, you’re actually asking the object referenced by a to execute the method *,
passing in the parameter b. You then ask the object that results from that calculation to execute
the + method, passing c as a parameter. This is the same as writing the following (perfectly
valid) Ruby:

a, b, c = 1, 2, 3
a * b + c # => 5
(a.*(b)).+(c) # => 5

Because everything is an object and because you can redefine instance methods, you can
always redefine basic arithmetic if you don’t like the answers you’re getting:

class Integer
alias old_plus +

Redefine addition of Integers. This is a BAD IDEA!
def +(other)
old_plus(other).succ

end
end

1 + 2 # => 4
a = 3
a += 4 # => 8
a + a + a # => 26

What’s going on here? First off, we’re re-opening the Integer class to allow new definitions
inside it, a feature of the Ruby object model that we talked about in Reopening Classes, on
page 49. Inside the class, the keyword alias allows you to give a new name to an existing
method, here we rename the + method to old_plus. The syntax here might seem odd, there’s
just a space between the new name and the old name. Typically, you’d use alias because you
are planning on overwriting the existing method but you want that new method to still be
able to access the original, as in this case, we’ve re-written + to use old_plus but add 1.

More usefully, classes you write can participate in operator expressions just as if they were
built-in objects. For example, the left shift operator, <<, is often used to mean append to
receiver. Arrays support this:

a = [1, 2, 3]
a << 4 # => [1, 2, 3, 4]

You can add similar support to your classes:

class ScoreKeeper
def initialize
@total_score = @count = 0

end

def <<(score)

Chapter 9. Expressions • 144

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

@total_score += score
@count += 1
self

end

def average
fail "No scores" if @count.zero?
Float(@total_score) / @count

end
end

scores = ScoreKeeper.new
scores << 10 << 20 << 40
puts "Average = #{scores.average}"

produces:

Average = 23.333333333333332

Note that there’s a subtlety in this code—the << method explicitly returns self. It does this
to allow the method chaining in the line scores << 10 << 20 << 40. Because each call to <<
returns the scores object, you can then call << again, passing in a new score. (Arrays also
implement << the same way, and for the same reason.)

In addition to operators such as +, *, and <<, indexing using square brackets is also imple-
mented as a method call. When you write this:

some_obj[1, 2, 3]

you’re actually calling a method named [] on some_obj, passing it three parameters, equivalent
to some_obj.[](1, 2, 3). You’d define this method using this:

class SomeClass
def [](p1, p2, p3)
...

end
end

Similarly, assignment to an element is implemented using the []= method. This method
receives each object passed as an index as its first nparameters and the value of the assignment
as its last parameter:

class SomeClass
def []=(*params)
value = params.pop
puts "Indexed with #{params.join(', ')}"
puts "value = #{value.inspect}"

end
end

s = SomeClass.new
s[1] = 2
s['cat', 'dog'] = 'enemies'

produces:

Indexed with 1
value = 2
Indexed with cat, dog
value = "enemies"

report erratum • discuss

Operator Expressions • 145

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Command Expressions
If you enclose a string in backquotes (sometimes called backticks) or use the delimited form
%x{…}, the string will (by default) be executed as a command by your underlying operating
system. The value returned is the standard output of that command. Newlines will not be
stripped, so it is likely that the value you get back will have a trailing return or linefeed
character.

`date` # => "Sun May 14 18:21:54 CDT 2023\n"
`ls`.split[34] # => "lookup.md"
%x{echo "hello there"} # => "hello there\n"

You can use expression expansion and all the usual escape sequences in the command string:

0..3.each do |i|
status = `dbmanager status id=#{i}`
...

end

The exit status of the command is available in the global variable $?, also aliased as Pro-
cess.last_status.

In the description of the command expression, we said that the string in backquotes would
“by default” be executed as a command. In fact, the string is passed to the Kernel method
called ` (a single backquote). If you want, you can override this method. This example uses
Process.last_status, which contains the status of the last external process run:

alias old_backquote `

def `(cmd)
result = old_backquote(cmd)
unless Process.last_status.success?
puts "*** Command #{cmd} failed: status = #{Process.last_status.exitstatus}"

end
result

end

print `ls -l /etc/passwd`
print `ls -l /etc/wibble`

produces:

-rw-r--r-- 1 root wheel 8164 Apr 1 11:46 /etc/passwd
ls: /etc/wibble: No such file or directory
*** Command ls -l /etc/wibble failed: status = 1

Assignment
Just about every example we’ve given so far in this book has featured assignment. It’s about
time we said something about it.

An assignment statement sets the variable or attribute on its left side (the lvalue) to refer to
the value on the right (the rvalue). It then returns that rvalue as the result of the assignment
expression. This means you can chain assignments, and you can perform assignments in
some unexpected places:

a = b = 1 + 2 + 3

Chapter 9. Expressions • 146

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

a # => 6
b # => 6
a = (b = 1 + 2) + 3
a # => 6
b # => 3

File.open(name = gets.chomp)

Ruby has two basic forms of assignment. The first assigns an object reference to a variable
or constant. This form of assignment is hardwired into the language:

instrument = "piano"
MIDDLE_A = 440

The second form of assignment involves having an object attribute or element reference on
the left side. These forms are special, because they are implemented by calling methods in
the lvalues, which means you can override them.

We’ve already seen how to define a writable object attribute. Simply define a method name
ending in an equals sign. This method receives as its parameter the assignment’s rvalue.
We’ve also seen that you can define [] as a method:

tut_expressions/assignment.rb
class ProjectList
def initialize
@projects = []

end

def projects=(list)
@projects = list.map(&:upcase) # store list of names in uppercase

end

def [](offset)
@projects[offset]

end
end

list = ProjectList.new
list.projects = %w[strip sand prime sand paint sand paint rub paint]
list[3] # => "SAND"
list[4] # => "PAINT"

As this example shows, these attribute-setting methods don’t have to correspond with
internal instance variables, and you don’t need an attribute reader for every attribute writer
(or vice versa).

The value of the assignment is always the value of the parameter; the return value of the
method is discarded. In the code that follows, resultwill be set to 2, even though the attribute
setter actually returns 99.

tut_expressions/assignment_setter.rb
class Test
def val=(val)
@val = val
return 99

end
end

report erratum • discuss

Assignment • 147

http://media.pragprog.com/titles/ruby5/code/tut_expressions/assignment.rb
http://media.pragprog.com/titles/ruby5/code/tut_expressions/assignment_setter.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

t = Test.new
result = (t.val = 2)
result # => 2

You can also flip the order of assignments in Ruby using the=> operator, which is sometimes
called “rightward assignment”, and is a special case of Pattern Matching, on page 163.

2 => x
puts x

produces:

2

Note that the return value of the rightward assignment itself is nil, not the value of the
assignment.

Parallel Assignment
You may have had to write code to swap the values in two variables, and done so by creating
a temporary variable:

C, or Java, or ...
int a = 1;
int b = 2;
int temp;

temp = a;
a = b;
b = temp;

You can do this swap much more cleanly in Ruby with parallel assignment:

a, b = 1, 2 # a=1, b=2
a, b = b, a # b=2, a=1

Ruby lets you have a comma-separated list of rvalues (the things on the right of the assign-
ment). Once Ruby sees more than one rvalue in an assignment, the rules of parallel assignment
come into play. What follows is a description at the logical level: what happens inside the
interpreter is somewhat hairier.

When Ruby interprets a parallel assignment, the values on the left are evaluated before the
values on the right.

Then all the rvalues are evaluated, left to right, and collected into an array (unless they are
already an array). This array will be the eventual value returned by the overall assignment.

Next, the left side result is inspected. If it contains a single element, the array is assigned to
that element.

a=[1, 2, 3, 4]a = 1, 2, 3, 4
b=[1, 2, 3, 4]b = [1, 2, 3, 4]

If the left side contains a comma, Ruby matches values on the right side against successive
elements on the left side. Excess elements are discarded.

a=1, b=2a, b = 1, 2, 3, 4

Chapter 9. Expressions • 148

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

c=1c, = 1, 2, 3, 4

Splats and Assignment
If Ruby sees any splats on the right side of an assignment (that is, rvalues preceded by an
asterisk), each will be expanded inline into its constituent values during the evaluation of
the rvalues and before the assignment to lvalues starts:

a=1, b=2, c=3, d=4, e=5a, b, c, d, e = *(1..2), 3, *[4, 5]

Exactly one lvalue may be a splat. This makes it greedy—it will end up being an array, and
that array will contain as many of the corresponding rvalues as possible. So, if the splat is
the last lvalue, it will soak up any rvalues that are left after assigning to previous lvalues:

a=1, b=[2, 3]a, *b = 1, 2, 3
a=1, b=[]a, *b = 1

If the splat is not the last lvalue, then Ruby ensures that the lvalues that follow it will all
receive values from rvalues at the end of the right side of the assignment—the splat lvalue
will soak up only enough rvalues to leave one for each of the remaining lvalues.

a=[1, 2, 3], b=4*a, b = 1, 2, 3, 4
c=1, d=[2, 3], e=4c, *d, e = 1, 2, 3, 4
f=1, g=[], h=2, i=3, j=4f, *g, h, i, j = 1, 2, 3, 4

As with method parameters, you can use a raw asterisk to ignore some rvalues:

first=1, last=6first, *, last = 1,2,3,4,5,6

Nested Assignments
The left side of an assignment may contain a parenthesized list of terms. Ruby treats these
terms as if they were a nested assignment statement. It extracts the corresponding rvalue,
assigning it to the parenthesized terms, before continuing with the higher-level assignment.

a=1, b=2, c=nil, d=3a, (b, c), d = 1,2,3,4
a=1, b=2, c=nil, d=3a, (b, c), d = [1,2,3,4]
a=1, b=2, c=3, d=4a, (b, c), d = 1,[2,3],4
a=1, b=2, c=3, d=5a, (b, c), d = 1,[2,3,4],5
a=1, b=2, c=[3, 4], d=5a, (b,*c), d = 1,[2,3,4],5

Operator Plus Assignment
Ruby has a syntactic shortcut for the case where you want to apply an operation to a value
and immediately assign that value the new result: a = a + 2 may be written as a += 2. The
second form is converted internally to the first. This means that operators you have defined
as methods in your own classes work as you’d expect:

class List
def initialize(*values)
@list = values

report erratum • discuss

Assignment • 149

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

def +(other)
@list.push(other)

end

end

a = List.new(1, 2) # => [1, 2]
a += 3 # => [1, 2, 3]

Ruby doesn’t have the autoincrement (++) and autodecrement (–) operators that C, Java, and
JavaScript have. Use the += and -= forms instead.

Conditional Execution
Ruby has several different mechanisms for conditional execution of code; they should feel
similar to other programming languages, but many have some neat twists. Before we get
into them, though, we need to spend a short time looking at boolean expressions.

Boolean Expressions
Ruby has a simple definition of truth. Any value that is not nil or the constant false is true
—"cat", 99, 0, and :a_song are all considered true. An empty string, "", an empty array [], and
an empty hash {} are all true in Ruby. (You will sometimes see Rubyists refer to the set of
all false values as “falsey” and the set of all true values as “truthy”)

In this book, when we want to talk about a general true or false value, we use regular Roman
type: true and false. When we want to refer to the actual constants, we write true and false.

The fact that nil is considered to be false is convenient. For example, gets, which returns the
next line from a file, returns nil at the end of file, enabling you to write loops such as this:

while (line = gets)
process line
end

And, Or, and Not
Ruby supports all the standard boolean operators. Both the keyword and and the operator
&& (logical and) return their first argument if it is falsey. Otherwise, they evaluate and return
their second argument (this is sometimes known as short circuit evaluation).

nil && 99 # => nil
false && 99 # => false
"cat" && 99 # => 99

The only difference in the two forms is precedence—the && has higher precedence than and,
meaning that where there’s a choice of operators to evaluate, && will be evaluated first but
and will be evaluated last.

result = "a" && "b"
result # => "b"

result = "a" and "b"
result # => "a"

Chapter 9. Expressions • 150

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In the first line, the operator && has higher precedence than the assignment, so it is evaluated
first, returning "b", and result is set to "b", as if the line was written result = ("a" && "b").

In the second line, the assignment has higher precedence than and, so result is set to "a" first,
then the and is evaluated, as if it was (result = "a") and "b" – the entire sequence still returns
"b", but in the second line, the result is set to "a". We strongly recommend that you use
parentheses in any case where the order of execution might be ambiguous or confusing.

The && and and operators return a true value only if both of their arguments are true.

Similarly, both or and || return their first argument unless it is falsey, in which case they
evaluate and return their second argument.

nil || 99 # => 99
false || 99 # => 99
"cat" || 99 # => "cat"

As with and, the only difference between or and || is their precedence. To make life interesting,
and and or have the same precedence, but && has a higher precedence than ||.

The spelled out versions of and and or are useful as a kind of control flow, EXPRESSION or exit
will perform the expression, no matter how complex it is, and return that value if it is truthy,
exiting only if the entire expression is false.

A common idiom is to use ||= to assign a value to a variable only if that variable isn’t already
set:

var ||= "default value"

This is almost, but not quite, the same as var = var || "default value". It differs in that no
assignment is made at all if the variable is already set. In pseudocode, this might be written
as var = "default value" unless var or as var || var = "default value".

not and ! (logical not) return the opposite of their operand (false if the operand is any true
value and true if the operand is any false value). And, yes, not and ! differ only in precedence.
You’ll sometimes see a !! used as an implicit conversion to boolean, since the first ! converts
any value to either true or false and the second ! reverses the value to match the boolean status
of the original value. Teams definitely will have different opinions about whether !! is good
style, keep an eye out for that.

All these precedence rules are summarized in Table 19, Ruby operators (high to low prece-
dence), on page 454.

The defined? Keyword
The defined? keyword returns nil if its argument (which can be an arbitrary expression) is not
defined in the current scope; otherwise, it returns a description of that argument. If the
argument is yield, defined? returns the string “yield” if a code block is associated with the
current context.

defined? 1 # => "expression"
defined? dummy # => nil
defined? printf # => "method"
defined? String # => "constant"
defined? $_ # => "global-variable"
defined? Math::PI # => "constant"

report erratum • discuss

Conditional Execution • 151

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

defined? a = 1 # => "assignment"
defined? 42.abs # => "method"
defined? nil # => "nil"

Comparing Objects
In addition to the boolean operators, Ruby objects support comparison using the methods
==, ===, <=>, =~, eql?, and equal? (see Table 3, Common comparison operators, on page
153). All but<=> are defined in classObject but are often overridden by descendants to provide
appropriate semantics. For example, class Array redefines == so that two array objects are
equal if they have the same number of elements and the corresponding elements are equal.

It’s relatively rare to see eql? or equal? in Ruby code. Also, if you are familiar with JavaScript,
please note that triple-equal,===means something very different in Ruby than in JavaScript.

Both == and =~ have negated forms, != and !~. When evaluating the negated versions, Ruby
first looks for methods called != or !~, calling them if found. If not, it will then invoke either
== or =~, negating the result.

In the following example, Ruby calls the == method to perform both comparisons:

tut_expressions/equality.rb
class Type
def ==(other)
puts "Comparing self == #{other}"
other == "value"

end
end

t = Type.new
p(t == "value")
p(t != "value")

produces:

Comparing self == value
true
Comparing self == value
false

If instead we explicitly define !=, Ruby calls it:

tut_expressions/negated_equality.rb
class Type
def ==(other)
puts "Comparing self == #{other}"
other == "value"

end

def !=(other)
puts "Comparing self != #{other}"
other != "value"

end
end

t = Type.new
p(t == "value")
p(t != "value")

Chapter 9. Expressions • 152

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_expressions/equality.rb
http://media.pragprog.com/titles/ruby5/code/tut_expressions/negated_equality.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

Comparing self == value
true
Comparing self != value
false

You can use a Ruby range as a boolean expression. A range such as exp1..exp2 will evaluate
as false until exp1 becomes true. The range will then evaluate as true until exp2 becomes true.
Once this happens, the range resets, ready to fire again.

MeaningOperator

Test for equal value.==
Test for "matching" as defined by the type of the operand. Used most often
to compare each of the items with the target in the when clause of a case
statement.

===

General comparison operator. Returns -1, 0, or +1, depending on whether
its receiver is less than, equal to, or greater than its argument.

<=>

Comparison operators for less than, less than or equal, greater than or equal,
and greater than.

<, <=, >=, >

Regular expression pattern match.=~
True if the receiver and argument have both the same type and equal values.
1 == 1.0 returns true, but 1.eql?(1.0) is false.

eql?

True if the receiver and argument have the same object ID.equal?

Table 3—Common comparison operators

if and unless Expressions
An if expression in Ruby is pretty similar to if statements in other languages:

if artist == "Gillespie" then
handle = "Dizzy"

elsif artist == "Parker" then
handle = "Bird"

else
handle = "unknown"

end

The then keyword is optional if you lay out your statements on multiple lines:

if artist == "Gillespie"
handle = "Dizzy"

elsif artist == "Parker"
handle = "Bird"

else
handle = "unknown"

end

However, if you want to lay out your code more tightly, you must separate the boolean
expression from the following statements with the then keyword:

if artist == "Gillespie" then handle = "Dizzy"
elsif artist == "Parker" then handle = "Bird"
else handle = "unknown"

report erratum • discuss

Conditional Execution • 153

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

You can have zero or more elsif clauses and an optional else clause. And notice that there’s
no e in the middle of elsif.

As we’ve said before, an if statement is an expression—it returns a value. You don’t have to
use the value of an if statement, but it can come in handy:

handle = if artist == "Gillespie"
"Dizzy"

elsif artist == "Parker"
"Bird"

else
"unknown"

end

Ruby also has a negated form of the if statement:

unless volume.nil?
play_the_song

end

The unless statement does support else, but it’s always clearer to switch to an if statement in
these cases.

Finally, Ruby also supports the ternary operator conditional expression, as seen in C, Java-
Script, and Java:

cost = duration > 180 ? 0.35 : 0.25

A ternary expression returns the value of the expression either before or after the colon,
depending on whether the boolean expression before the question mark is true or false. In
the previous example, if the duration is greater than three minutes, the expression returns
0.35. For shorter durations, it returns 0.25. The result is then assigned to cost.

if and unless Modifiers
Statement modifiers let you tack conditional statements onto the end of a normal statement:

mon, day, year = $1, $2, $3 if date =~ /(\d\d)-(\d\d)-(\d\d)/
puts "a = #{a}" if $DEBUG
print total unless total.zero?

For an if modifier, the preceding expression will be evaluated only if the condition is true.
The unless modifier works the other way around:

File.foreach("/etc/passwd") do |line|
next if line =~ /^#/ # Skip comments
parse(line) unless line =~ /^$/ # Don't parse empty lines

end

case Expressions
The Ruby case expression is a powerful beast: a multiway if on steroids.

A Ruby case expression can be written as basically a series of if statements; it lets you list a
series of conditions and execute a statement corresponding to the first one that’s true:

Chapter 9. Expressions • 154

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

case
when song.name == "Misty"
puts "Not again!"

when song.duration > 120
puts "Too long!"

when Time.now.hour > 21
puts "It's too late"

else
song.play

end

The else clause at the end is optional, and is evaluated if none of the earlier expressions are
true.

Note that standard Ruby style has the when statements at the same level as the parent case,
not indented.

More commonly, you can specify a target at the top of the case statement, and each when
clause lists one or more comparisons to be tested against that target:

case command
when "debug"
dump_debug_info
dump_symbols

when /p\s+(\w+)/
dump_variable($1)

when "quit", "exit"
exit

else
print "Illegal command: #{command}"

end

The first comparison to match the target is evaluated. Again, the else clause is optional and
evaluates if none of the other clauses do.

Unlike JavaScript, you do not need to explicitly break out of each when clause, Ruby will only
evaluate the expression of the first clause to match.

As with if, case returns the value of the last expression executed, and you can use a then
keyword in order to place the expression on the same line as the condition:

kind = case year
when 1850..1889 then "Blues"
when 1890..1909 then "Ragtime"
when 1910..1929 then "New Orleans Jazz"
when 1930..1939 then "Swing"
else "Jazz"

end

A case expression operates by comparing the target (the expression after the keyword case)
with each of the comparison expressions after thewhen keywords. This test is a little unusual,
in that it uses an operator that is unique to Ruby, the === operator. Please note that Ruby’s
=== is different that JavaScript’s. Ruby’s means “matches, as defined by the type of the left
operand”, which is very different from JavaScript’s “equal and of the same type” operator.

report erratum • discuss

Conditional Execution • 155

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

What does _comparison_ === _target_ mean? It depends on how the class defines it. Different
classes define different meaningful semantics for ===.

For example, regular expressions define === as a pattern match:

case line
when /title=(.*)/
puts "Title is #$1"

when /track=(.*)/
puts "Track is #$1"

end

Ruby classes are instances of class Class (try saying that three times quickly). The === oper-
ator is defined in Class to test whether the argument is an instance of the receiver or one of
its superclasses. So (abandoning the benefits of polymorphism and bringing the gods of
refactoring down around your ears), you can test the class of objects:

case shape
when Square, Rectangle
...

when Circle
...

when Triangle
...

else
...

end

This example shows another syntactic feature of Ruby’s case statement, which is that if you
have multiple comparisons for the same result, you can put them in the same when statement
and separate them with a comma, as this example does with Square, Rectangle.

There are a couple of other interesting uses of ===. For a Range, === means the target is
inside the range. A Set is === if the target is in the set. A Proc checks for === by calling the
proc with the target as an argument and using the truth value of whatever the proc returns.

Safe Navigation
It’s common to have a chain of method calls on a series of objects. For example, you might
want to retrieve a string from a hash and perform other processing on it:

data[:name].upcase

There’s only one problem: You might have no way of knowing if data[:name] returns a value
or returns nil. If a value is returned, great! The line of code works as intended. If nil is returned,
there’s a problem because nil.upcase is not defined and will raise an exception.

As a result, checking for nil is a common pattern:

name = data[:name]
if name then name.upcase else nil end

This is often written with the && as a shortcut:

data[:name] && data[:name].upcase

This version, however is a little awkward, and it requires the fetch to be executed twice.

Chapter 9. Expressions • 156

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

To make this pattern a little nicer, Ruby offers the safe navigation operator, &. (ampersand
followed by dot). You’ll sometimes see this called the lonely operator, because Matz thought
that the ampersand dot combination looked like a person sitting alone staring off into space.
It works like this:

data[:name]&.upcase

The way the &. works is that if the receiver of the message on the left side (in this case
data[:name]) is nil, then the message is not sent and the nil value is returned without raising
an exception. If the receiver is not nil, then the message is processed normally.

This is what we want—the code works as desired for both nil and non-nil values for the
data[:name].

The safe navigation operator’s powers only last for the one message, if you want to continue
with more downstream messages, you need more safe navigation operators.

data[:name]&.upcase&.strip&.split

The safe navigation operator is a great shortcut, but it’s not a substitute for software design.
If you have a lot of values and you don’t know whether or not they are nil, it’s worth thinking
about whether there’s a better way to structure the code.

Loops and Iterators
We’ve seen some discussion of Ruby iterators back in Chapter 4, Collections, Blocks, and
Iterators, on page 53, when we talked about blocks and iterators. In this section, we’ll talk
about all of Ruby’s looping constructs in more depth.

Loops
Ruby has primitive built-in looping constructs, separate from the iterator constructs we’ve
already seen.

The most basic loop of all. Ruby provides a built-in iterator method called loop:

loop do
block ...

end

The loop iterator calls the associated block forever (or at least until you break out of the loop,
but you’ll have to read ahead to find out how to do that).

The while loop executes its body zero or more times as long as its condition is true. For
example, this idiom reads until the input is exhausted, assigning each line to the local variable
line:

while (line = gets)
...

end

The until loop is the opposite; it executes the body until the condition becomes true:

until play_list.duration > 60
play_list.add(song_list.pop)

end

report erratum • discuss

Loops and Iterators • 157

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

As with if and unless, you can use both of the loops as statement modifiers:

a = 1
a *= 2 while a < 100
a # => 128
a -= 10 until a < 100
a # => 98

Earlier, we said that a range can be used as a kind of flip-flop, returning true when some
event happens and then staying true until a second event occurs. This facility is normally
used within loops. In the example that follows, we read a text file containing the first ten
ordinal numbers (“first,” “second,” and so on) but print only the lines starting with the one
that matches “third” and ending with the one that matches “fifth”:

file = File.open("ordinal")
while line = file.gets
puts(line) if line =~ /third/ .. line =~ /fifth/

end

produces:

third
fourth
fifth

The start and end of a range used in a boolean expression can themselves be expressions.
These are evaluated each time the overall boolean expression is evaluated. For example, the
following code uses the fact that the variable $. contains the current input line number to
display the first three lines as well as those lines between a match of /eig/ and /nin/:

File.foreach("ordinal") do |line|
if (($. == 1) || line =~ /eig/) .. (($. == 3) || line =~ /nin/)
print line

end
end

produces:

first
second
third
eighth
ninth

You’ll come across a wrinkle when you use while and until as statement modifiers. If the
statement they are modifying is a begin…end block, the code in the block will always execute
at least one time, regardless of the value of the boolean expression:

print "Hello\n" while false
begin
print "Goodbye\n"

end while false

produces:

Goodbye

Chapter 9. Expressions • 158

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Iterators
If you read the beginning of the previous section, you may have been discouraged. “Ruby
has primitive built-in looping constructs,” it said. Don’t despair, gentle reader, for we have
good news. Ruby doesn’t need sophisticated built-in loops, because all the fun stuff is
implemented using Ruby’s iterators.

As we’ll see, even Ruby’s for loop is defined in terms of Ruby iterators.

Ruby uses methods defined in various built-in classes to provide equivalent, but less error-
prone functionality to other languages primitive for loops.

Let’s look at some examples:

3.times do
print "Ho! "

end

produces:

Ho! Ho! Ho!

It’s easy to avoid fence-post and off-by-one errors; this loop will execute three times, period.
In addition to times, integers can loop over specific ranges by calling downto and upto, and all
numbers can loop using step. For instance, a simple “for” loop that runs from 0 to 9 (something
that you’d write in JavaScript as for(let i = 0; i < 10; i++)) is written as follows:

0.upto(9) do |x|
print x, " "

end

produces:

0 1 2 3 4 5 6 7 8 9

A loop from 0 to 12 by 3 can be written as follows:

0.step(12, 3) { |x| print x, " " }

produces:

0 3 6 9 12

Similarly, iterating over arrays and other containers is easy if you use their each method:

[1, 1, 2, 3, 5].each { |val| print val, " " }

produces:

1 1 2 3 5

And once a class supports each, it can also include Enumerable, and the additional methods
in the Enumerable module become available. (We talked about this back in the Modules
chapter on page 101.) For example, the File class provides an eachmethod, which returns each
line of a file in turn. Using the grep method in Enumerable, we could iterate over only those
lines that end with a d:

File.open("ordinal").grep(/d$/) do |line|
puts line

end

produces:

second

report erratum • discuss

Loops and Iterators • 159

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

third

for … in
Earlier we said that the only built-in Ruby looping primitives were while and until. Technically,
that’s not true, Ruby does have a for keyword. What’s this for thing, then? Well, for is a different
way to write an each loop.

When you write this:

for song in playlist
song.play

end

Ruby translates it into something like this:

playlist.each do |song|
song.play

end

The only difference between the for loop and the each form is the scope of local variables that
are defined in the body.

You can use for to iterate over any object that responds to the method each, such as an Array
or a Range:

for i in ['fee', 'fi', 'fo', 'fum']
print i, " "

end

for i in 1..3
print i, " "

end

for i in File.open("ordinal").find_all { |line| line =~ /d$/ }
print i.chomp, " "

end

produces:

fee fi fo fum 1 2 3 second third

As long as your class defines a sensible each method, you can use a for loop to traverse its
objects:

class Periods
def each
yield "Classical"
yield "Jazz"
yield "Rock"

end
end

periods = Periods.new
for genre in periods
print genre, " "

end

produces:

Classical Jazz Rock

Chapter 9. Expressions • 160

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

break, redo, and next
The loop control constructs break, redo, and next let you alter the normal flow through a loop
or iterator.

break terminates the immediately enclosing loop; control resumes at the statement following
the block. redo repeats the current iteration of the loop from the start but without reevaluating
the condition or fetching the next element in an iterator. next skips to the end of the loop,
effectively starting the next iteration:

while (line = gets)
next if line.matches?(/^\s*#/) # skip comments
break if line.matches?(/^END/) # stop at end

substitute stuff in backticks and try again
redo if line.gsub!(/`(.*?)`/) { eval($1) }

process line ...
end

These keywords can also be used within blocks. Although you can use them with any block,
they make the most sense when the block is being used for iteration:

i=0
loop do
i += 1
next if i < 3
print i
break if i > 4

end

produces:

345

A value may be passed to break or next. A value passed to break is returned as the value of
the loop when the break is triggered. A value passed to next is effectively lost, while you can
pass a value to next, there’s no reason to do so. If a conventional loop doesn’t execute a break,
its value is nil.

Here’s a contrived example:

result = while (line = gets)
break(line) if line =~ /answer/

end

process_answer(result) if result

Variable Scope, Loops, and Blocks
The while, until, and for loops are built into the language and do not introduce new scope;
previously existing locals can be used in the loop, and any new locals created will be available
afterward. Depending on what languages you might be used to, this will either seem normal
(Python), very weird (Java), or actually a model of relative clarity (JavaScript).

The scoping rules for blocks (such as those used by loop and each) are different. Normally,
the local variables created in these blocks are not accessible outside the block:

[1, 2, 3].each do |x|

report erratum • discuss

Loops and Iterators • 161

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

y = x + 1
end
[x, y]

produces:

[x, y]
^
prog.rb:4:in `<main>': undefined local variable or method `x' for main:Object
(NameError)

However, if at the time the block executes a local variable already exists with the same name
as that of a variable in the block, the existing local variable will be used in the block. Its value
will therefore be available after the block finishes. As the following example shows, this
applies to normal variables in the block but not to the block’s parameters:

x = "initial value"
y = "another value"
[1, 2, 3].each do |x|
y = x + 1

end
[x, y] # => ["initial value", 4]

Note that the assignment to the outer variable doesn’t have to be executed; the Ruby inter-
preter just needs to have seen that the variable exists on the left side of an assignment:

a = "never used" if false
[99].each do |i|
a = i

end
a # => 99

The a = i statement in the block sets the outer value of a even though a = “never used” is not
executed.

You can list block-local variables in the block’s parameter list, preceded by a semicolon. This
code does not use block-locals:

square = "yes"
total = 0

[1, 2, 3].each do |val|
square = val * val
total += square

end

puts "Total = #{total}, square = #{square}"

produces:

Total = 14, square = 9

In contrast, the following code, which uses a block-local variable, square in the outer scope
is not affected by a variable of the same name within the block:

square = "yes"
total = 0

[1, 2, 3].each do |val; square|
square = val * val

Chapter 9. Expressions • 162

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

total += square
end

puts "Total = #{total}, square = #{square}"

produces:

Total = 14, square = yes

If you are concerned about the scoping of variables with blocks, turn on Ruby warnings,
and declare your block-local variables explicitly.

Pattern Matching
When you are dealing with a complicated data structure, but only need to use part of the
structure, it can be awkward to access the structure through regular [] methods, with some-
thing likemovies[:mcu][1][:actors][1][:first_name]. Not only is the access complicated, but validat-
ing that the data has the shape you are looking for can also be difficult.

In Ruby, pattern matching is designed to make both these tasks easier by allowing you to
specify the structure of the data as a pattern, and assign values to the parts of the data that
match. Please note that many programming languages have features they call “pattern
matching”, but Ruby’s implementation is somewhat different from many of these. The most
similar seems to be in Python.

Pattern matching in Ruby compares a target, which can be any Ruby object, to a pattern. A
pattern is also a Ruby object, but the pattern can also contain the names of not-yet-defined
local variables. If the target matches the pattern, the target is deconstructed into the pattern,
setting the value of those variables.

Single-Line Pattern Matching
Ruby uses the keyword in to match a target to a pattern. When used this way, the expression
returns true if the target matches, and false if it doesn’t.

The simplest pattern match is that values match themselves:

"banana" in "banana" # => true
"banana" in "apple" # => false
3 in 3 # => true
3 in 5 # => false
2i in 2i # => true

Behind the scenes, the pattern match for values uses the same === triple-equal operator that
case statements do. This means that classes that implement === can do more general
matches. As we saw earlier, a class is === to instances of that class, regular expressions are
=== to strings that match the expression, and ranges are === to elements covered by the
range.

So we can write the following patterns:

"banana" in String # => true
"banana" in Integer # => false
"banana" in /b(an+)/ # => true
3 in 1..10 # => true

That’s starting to look a little more interesting.

report erratum • discuss

Pattern Matching • 163

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The next step is that you can match not just scalar values, but arrays and hashes. Each
subelement of the array or hash can be a pattern that matches the associated element in the
target. For an array, every element in the array must match the associated pattern element.
For a hash, only keys in the pattern must match, the existence of other keys in the target
does not fail the match. If you want to have an exact hash match, you need to include **nil
in the pattern.

[1, 2, 3] in [Integer, Integer, Integer] # => true
[3, "banana", "apple"] in [1..10, String, /p{2}/] # => true
{name: "Fred", city: "Bedrock"} in {city: String} # => true
{name: "Fred", city: "Bedrock"} in {} # => false

That last line shows that the empty hash is treated differently—an empty hash only matches
another empty hash.

You can use * at the end of an array pattern to indicate rest, and you can use one at the front
to indicate a “find pattern”, where you are looking for an element in the middle.

[1, "potato", 2, "potato"] in [Integer, "potato", Integer, "potato"] # => true
[1, "potato", 2, "potato"] in [Integer, "potato", *] # => true
[1, "potato", 2, "potato"] in [*, "potato", 2, *] # => true

You can nest the data:

{likes: [3, 5], dislikes: [2, 4]} in {likes: [3, *], dislikes: [2, *]} # => true

And you can provide multiple patterns using “or” logic:

[1, 2, 3] in [Integer, Integer, Integer] | [String, String, String] # => tr
.. ue

["a", "b", "c"] in [Integer, Integer, Integer] | [String, String, String] # => tr
.. ue

["a", "b", 3] in [Integer, Integer, Integer] | [String, String, String] # => fa
.. ls
.. e

The last example is false because the left side of the expression does not match either of the
patterns completely.

Variable Binding
Where this starts to get really powerful is that you can also assign values in the target to
variables in the pattern, and then use those values. You can include a bare variable in the
pattern by adding a hashrocket => and a local variable name to any part of a pattern:

"value" in String => a
puts a

produces:

value

Note that the in expression still returns true, the variable assignment is a side effect.

If you just want the variable assignment and don’t care about the truth value, you can replace
the in operator with =>, which we have already seen can be used for rightward assignment:

"value" => String => a

Chapter 9. Expressions • 164

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

puts a

produces:

value

There’s a shortcut if the part of the pattern being assigned doesn’t have any other pattern
matching syntax, you can leave off the hashrocket and just put in the local name:

"value" in a
puts a

"Another value" => b
puts b

produces:

value
Another value

The second form here is the rightward assignment we’ve already seen. This can be used in
more complex patterns:

[1, "potato", 2, "potato"] => [first, String, second, String]

puts "the numbers are #{first} and #{second}"

produces:

the numbers are 1 and 2

There’s a shorter shortcut for hash patterns where you are only asserting that the key exists,
including the name of the key assigned a local variable with that name.

{rank: "Ace", suit: "Hearts"} => {rank:, suit:}

puts "Your card is the #{rank} of #{suit}."

produces:

Your card is the Ace of Hearts.

If the pattern doesn’t match, the variable assignment behavior is technically “undefined” to
allow for potential performance improvements in the future. It looks like variables are
assigned up to the point of the first mismatch, but we wouldn’t recommend depending on
that. This pattern assigns first but not second:

[1, "potato", 2, "potato"] in [Integer => first, Integer, Integer => second, String]

puts "the numbers are #{first} and #{second}"

produces:

the numbers are 1 and

If you use => instead of in here, the behavior is much more clearly defined, you get a
NoMatchingPatternError error and neither variable is assigned.

There are two limitations on assigning variables in pattern matching. First, you can only
assign to a local variable. Specifically, you cannot assign to an @ instance variable inside a
pattern match. This seems to be related to performance and thread-safety concerns (it’s
actually related to the undefined performance of failed matches mentioned above), and
there’s a decent chance this changes in the future.

report erratum • discuss

Pattern Matching • 165

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

And second, you cannot do a variable assignment inside a pattern that uses the | to provide
alternative patterns, you’ll get a syntax error. We’re honestly not 100% sure why this is, but
we suspect it’s related to the performance concerns. (Technically, you can do this if the
variable names start with an _ but the official docs suggest not relying on this behavior, since
the underscore is supposed to indicate a variable that is being discarded.)

Case Pattern Matching
Having mentioned that pattern matching uses the Ruby === operator, and that it compares
a target value against another value, this might remind you of Ruby’s case statement case
Expressions, on page 154, which also uses the === operator and compares a target value.

And in fact, Ruby does support a case/in statement that pattern matches the target against
one or more successive patterns:

tut_expressions/pick_a_card_1.rb
def pick_a_card(cards)
case cards
in [*, {rank: "Ace", suit: String => s}, *]
"You have an Ace! Its suit is #{s}."

in [*, {rank: r, suit: "Diamonds"}, *]
"You have a Diamond! Its rank is #{r}."

in [*, {rank: "Queen", suit:}, *]
"You have a Queen! Its suit is #{suit}."

else
"You have no interesting cards,"

end
end

puts pick_a_card([
{rank: "Ace", suit: "Hearts"},
{rank: "King", suit: "Diamonds"},
{rank: "Queen", suit: "Clubs"}

])

produces:

You have an Ace! Its suit is Hearts.

The case/in statement works like a successive set of pattern matchings the way we’ve already
seen pattern matches work. The target variable, in this case our list of card hashes that is
passed to cards, is matched against the first pattern. The first pattern is a find pattern,
matching against the first hash with key rank and value Ace. The rest of the pattern assigns
the variable in the suit key to s, and then that variable is local to all the code within that pattern.

If that pattern does not match, the next one is tried. In this case the second pattern looks for
a suit of Diamonds, and we’re not expecting anything in particular for the matching rank, so
we can just bind it to r. If that doesn’t match, the third line shows another shortcut for variable
assignment, in this one the hash key shortcut is used to assign suit to the suit of the card that
matches rank: "queen".

Eventually, we run out of patterns. If there’s an else clause, then the else clause is executed.
If not, the statement raises a NoMatchingPatternError. The expectation is that case statement will
be complete and always have a clause to execute, even if that clause is the else clause.

Chapter 9. Expressions • 166

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

A case statement either has in clauses or it has when clauses, you cannot mix the two in a
single statement.

Pinning Values
Pattern matching is a great way to combine validating data with variable assignment, but
we are still missing an important piece of the puzzle.

In our earlier card example, the pick_a_card example hard codes the ranks of cards it is looking
for. But what if you wanted to use an existing value, for example if you wanted to pass a
value to look for?

tut_expressions/pick_a_card_2.rb
def pick_a_card(rank_to_look_for, suit_to_look_for, cards)
case cards
in [*, {rank: ^rank_to_look_for, suit:}, *]
"You have a #{rank_to_look_for}! Its suit is #{suit}."

in [*, {rank:, suit: ^suit_to_look_for}, *]
"You have a {rank}! Its suit is #{suit_to_look_for}."

else
"You have no interesting cards,"

end
end

puts pick_a_card("King", "Clubs", [
{rank: "Ace", suit: "Hearts"},
{rank: "King", suit: "Diamonds"},
{rank: "Queen", suit: "Clubs"}

])

produces:

You have a King! Its suit is Diamonds.

The new syntax in that example is the ^, which is called the pin operator because it “pins” a
value to part of the pattern. Without the ^, Ruby would interpret the use of rank_to_look_for
and suit_to_look_for as variables to be bound by the pattern match, with the ^, Ruby interprets
them as existing values that are part of the pattern.

Unlike a variable assignment, you can pin any value, including and instance variable, ^@foo
or a global variable ^$global.

You can even pin a local variable assigned earlier in the pattern match, which makes pattern
matching much more powerful:

tut_expressions/pick_a_card_3.rb
def pick_a_card(cards)
case cards
in [*, {rank: }, {rank: ^rank}, *]
"You have a pair of #{rank}s."

else
"You have no interesting cards,"

end
end

puts pick_a_card([
{rank: "Ace", suit: "Hearts"},
{rank: "Ace", suit: "Diamonds"},

report erratum • discuss

Pattern Matching • 167

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_2.rb
http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

{rank: "Queen", suit: "Clubs"}
])

produces:

You have a pair of Aces.

In this example, the pattern [*, {rank: }, {rank: ^rank}, *] looks for a match where the first
matching object sets the rank local variable using the hash shortcut syntax, and the second
matching object matches if its rank is equal to the existing rank by pinning the value using
^rank.

You can also pin an expression rather than a mere value, allowing for something like this
(we converted the rank attribute to an integer to make this a little easier to write, also we’re
sorting the cards by rank up front):

tut_expressions/pick_a_card_4.rb
def pick_a_card(cards)
cards = cards.sort_by { _1[:rank] }
case cards
in [{rank:}, {rank: ^(rank + 1)}, {rank: ^(rank + 2)}]
"You have three consecutive cards"

else
"You have no interesting cards,"

end
end

puts pick_a_card([
{rank: 7, suit: "Hearts"},
{rank: 8, suit: "Diamonds"},
{rank: 9, suit: "Clubs"}

])

produces:

You have three consecutive cards

In this example, the pattern matches if the first card has a rank, the second card has a rank
that is rank + 1, and the third card has rank + 2.

Pinning also works on single-line patterns, it’s not limited to patterns within case statements.

Guard Clauses
There’s one other thing that you can do with patterns. You can use a boolean statement to
add a guard clause at the end of the pattern, the pattern only matches if the clause is true.

tut_expressions/pick_a_card_5.rb
def pick_a_card(cards)
cards = cards.sort_by { _1[:rank] }
case cards
in [{rank:}, {rank: ^(rank + 1)}, {rank: ^(rank+ 2)}] if rank > 6
"You have three consecutive high cards"

else
"You have no interesting cards,"

end
end

puts pick_a_card([

Chapter 9. Expressions • 168

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_4.rb
http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_5.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

{rank: 7, suit: "Hearts"},
{rank: 8, suit: "Diamonds"},
{rank: 9, suit: "Clubs"}

])

produces:

You have three consecutive high cards

In the above example, the clause if rank > 6 limits the pattern to match only cases where the
lowest rank of the three cards is greater than 6. As you can see, variables assigned as part
of the pattern can be used in the clause. You can use unless instead of if here, in which case
the pattern matches when the unless clause is false.

Custom Pattern Matching
Our “pick a card” examples so far have had our card data stored in a Ruby hash, but it’s not
unlikely that we’d rather have them stored in their own class.

At this point, we can no longer pattern match against our card class because a hash match
no longer works:

tut_expressions/pick_a_card_6.rb
class Card
attr_accessor :rank, :suit

def initialize(rank, suit)
@rank = rank
@suit = suit

end
end

def pick_a_card(cards)
cards = cards.sort_by(&:rank)
case cards
in [{rank:}, {rank: ^(rank + 1)}, {rank: ^(rank+ 2)}] if rank > 6
"You have three consecutive high cards"

else
"You have no interesting cards,"

end
end

puts pick_a_card([
Card.new(7, "Hearts"),
Card.new(8, "Diamonds"),
Card.new(9, "Clubs")

])

produces:

You have no interesting cards,

The problem is that {rank:} no longer matches anything because Card isn’t a hash.

Happily, Ruby provides a way for this to work, the Card class can implement a method called
deconstruct_keys that returns a Hash version of the class suitable for pattern matching.

Here we use the hash shortcut to define our deconstruct_keys method:

report erratum • discuss

Pattern Matching • 169

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_6.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

tut_expressions/pick_a_card_7.rb
class Card
attr_accessor :rank, :suit

def initialize(rank, suit)
@rank = rank
@suit = suit

end

def deconstruct_keys(keys)
{rank:, suit:}

end
end

def pick_a_card(cards)
cards = cards.sort_by(&:rank)
case cards
in [{rank:}, {rank: ^(rank + 1)}, {rank: ^(rank+ 2)}] if rank > 6
"You have three consecutive high cards"

else
"You have no interesting cards,"

end
end

puts pick_a_card([
Card.new(7, "Hearts"),
Card.new(8, "Diamonds"),
Card.new(9, "Clubs")

])

produces:

You have three consecutive high cards

This works, because now the pattern match runs against the hash returned by deconstruct_keys.

The deconstruct_keysmethod takes an argument that in many cases you can ignore. The value
of that argument is the set of keys that the pattern is actually inquiring about, and the purpose
of that information is to allow you to send back a subset of your object for performance
reasons. For simple cases, the subset operation is probably more expensive than just creating
the hash. If the argument is nil, then the pattern has used ** to request the entire hash. The
return value of deconstruct_keys is arbitrary, but typically it’s a hash representation of the data
in the object.

There is an analogous method called deconstruct which allows your class to match against
array patterns. It takes no arguments, and the expectation is that you return an array that is
a representation of your instance. We suspect that fewer classes will use deconstruct than
deconstruct_keys—it seems like many classes don’t have an array representation with a clear
order. But if you do have a class where the data has a clearly ordered representation, like a
date, or a cartesian point, or something, then deconstruct would be useful. A class can imple-
ment both if there is both a useful array and hash representation.

What’s Next
In this chapter, we went through a lot of different Ruby expressions, from assignment to
math to logic to loops to patterns. Next we’ll look at Ruby’s exception handling and see what
to do when things go wrong.

Chapter 9. Expressions • 170

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_7.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 10

Exceptions
So far we’ve been developing code in Pleasantville, a wonderful place where nothing ever,
ever goes wrong. Every library call succeeds, users never enter incorrect data, and resources
are plentiful and cheap. Well, that’s about to change.

In the real world, errors happen. Good programs (and programmers) anticipate them and
arrange to handle them gracefully. This isn’t always as easy as it may sound. Often the code
that detects an error does not have the context to know what to do about it. For example,
attempting to open a file that doesn’t exist is acceptable in some circumstances and is a fatal
error at other times. What’s your file-handling module to do?

One approach is to use return codes to signal errors (for example, the Go language uses this
pattern). In this approach, Ruby’s File.open method could return some specific value to say
it failed. This value is then propagated back through the layers of calling routines until
someone wants to take responsibility for it.

The problem with this approach is that managing all these error codes can be a pain. If a
function calls open, then read, and finally close and if each can return an error indication, how
can the function distinguish these error codes in the value it returns to its caller?

Ruby uses exceptions to help solve the problem of responding to errors. Exceptions let you
package information about an error into an object. That exception object is then propagated
back up the calling stack automatically until the runtime system finds code that explicitly
declares that it knows how to handle that type of exception.

The Exception Class
Information about an exception is encapsulated in an object of class Exception or one of class
Exception’s children. Ruby predefines a tidy hierarchy of exceptions, see https://docs.ruby-lang.org/
en/master/Exception.html for the full list. As we’ll see later, this hierarchy makes handling
exceptions considerably easier.

The most important subclass of Exception is StandardError. The StandardError exception and its
subclasses represent the exceptional conditions that you are going to want to capture in your
code. Other subclasses of Exception are raised by Ruby internals or system-level problems.
Almost all of the time, if you want to capture exceptions, you capture StandardError or one its
children.

report erratum • discuss

https://docs.ruby-lang.org/en/master/Exception.html
https://docs.ruby-lang.org/en/master/Exception.html
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

When you need to raise an exception, you can use one of the built-in Exception classes, or you
can create one of your own. Your own exception classes should be subclasses of StandardError
or one of its children, for the same reason we just gave. Making your exceptions children of
StandardError ensures that regular Ruby processes will capture them appropriately.

Often, the only new piece of data associated with a custom exception is that it’s a custom
exception, so you can declare it in one line:

class MissingUserError < StandardError; end

Semicolons, which are rare in Ruby, are used to separate expressions when you put more
than one on a line, this syntax is often used to indicate a class with no particular new data
other than its parent class. By convention, custom exception class names end with Error.

Every Exception has associated with it a message string and a stack backtrace. If you define
your own exceptions, you can add extra information, see Adding Information to Exceptions,
on page 176.

Handling Exceptions
Here’s some simple code that uses the open-uri library to download the contents of a web
page and write it to a file, line by line:

tut_exceptions/fetch_web_page/fetch1.rb
require "open-uri"
URI.open("https://pragprog.com/news/index.html") do |web_page|
output = File.open("index.html", "w")
while (line = web_page.gets)
output.puts line

end
output.close

end

What happens if we get a fatal error halfway through? We certainly don’t want to store an
incomplete page to the output file.

Let’s add some exception-handling code and see how it helps. To start exception handling,
we enclose the code that could raise an exception in a begin/end block and use one or more
rescue clauses to tell Ruby the types of exceptions we want to handle. If our code was already
inside a method or an existing Ruby block, we would not need a separate begin/end block to
trigger exception handling—the method or block is considered to be a begin/end block on its
own. This code isn’t in a method, so we need to create an explicit begin/ end block.

tut_exceptions/fetch_web_page/fetch2.rb
require "open-uri"

file_name = "index.html"
URI.open("https://pragprog.com/news/#{file_name}") do |web_page|
output = File.open(file_name, "w")
begin
while (line = web_page.gets)
output.puts line

end
output.close

rescue StandardError
$stderr.warn "Failed to download #{file_name}: #{$!}"

Chapter 10. Exceptions • 172

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/fetch_web_page/fetch1.rb
http://media.pragprog.com/titles/ruby5/code/tut_exceptions/fetch_web_page/fetch2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

output.close
File.delete(file_name)
raise

end
end

Because we specified StandardError in the rescue line, that clause will handle exceptions of
class StandardError and all of its children, which means that we won’t catch Ruby internal
errors, which is fine. In the error-handling block, we report the error, close and delete the
output file, and then re-raise the exception. It’s also worth noting that the close and delete
calls could also raise exceptions, and those exceptions are not caught in the code above. We’ll
see a partial fix for that in a moment.

As matter of style, the rescue statement is outdented to the level of the begin/end block.

When an exception is raised, independent of any subsequent exception handling, Ruby
places a reference to the associated exception object into the global variable $! (the exclamation
point presumably mirroring our surprise that any of our code could cause errors). In the
previous example, we used the $! variable to format our error message.

After closing and deleting the file, we call raise with no parameters, which reraises the
exception that is currently stored in $!. This is a useful technique, because it allows you to
write code that filters exceptions, passing on those you can’t handle to higher levels. It’s
almost like implementing an inheritance hierarchy for error processing.

You can have multiple rescue clauses in a method or begin block, and each rescue clause can
specify multiple exceptions to catch. At the end of each rescue clause, you can give Ruby the
name of a local variable to receive the matched exception. Most people find this more readable
than using $! all over the place:

begin
eval string

rescue SyntaxError, NameError => e
print "String doesn't compile: " + e

rescue StandardError => e
print "Error running script: " + e

end

How does Ruby decide which rescue clause to execute? It turns out that the processing is
similar to that used by the case statement. For each rescue clause in the begin block, Ruby
compares the raised exception against each of the parameters in turn. If the raised exception
matches a parameter, Ruby executes the body of the rescue and stops looking. The match is
made using _parameter_ === $!.

This means that the match will succeed if the exception named in the rescue clause is the
same as or a superclass of the type of the currently thrown exception. This comparison
happens because exceptions are classes, and classes in turn are kinds of Module. The ===
method is defined for modules, returning true if the class of the operand is the same as or is
a descendant of the receiver. If you write a rescue clause with no parameter list, the parameter
defaults to StandardError, so technically our declaration of StandardError in the earlier code is
redundant.

report erratum • discuss

Handling Exceptions • 173

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If no rescue clause matches or if an exception is raised outside a begin/end block, Ruby moves
up the stack and looks for an exception handler in the caller, then in the caller’s caller, and
so on. If nothing catches the exception, the program typically halts.

Although the parameters to the rescue clause are typically the names of exception classes,
they can be arbitrary expressions (including method calls) that return an Exception class.

Tidying Up
Sometimes you need to guarantee that particular processing is done at the end of a block of
code, regardless of whether an exception was raised. For example, you may have a file open
on entry to the block, and you need to make sure it always gets closed as the block exits.

The ensure clause does just this. An ensure clause goes after the last rescue clause and contains
a chunk of code that will always be executed as the block terminates. It doesn’t matter if the
block exits normally, if it raises and rescues an exception, or if it is terminated by an uncaught
exception—the ensure block will get run:

f = File.open("testfile")
begin
.. process

rescue
.. handle error

ensure
f.close

end

You might assume that the File.open call should be inside the begin block. In this case, having
the File.open inside this begin block would be a problem, because open can itself raise an
exception. If the exception happened on open, you wouldn’t want to run the code in the ensure
block, because there’d be no file to close.

In the specific case of File.open, you can pass the call a block argument that uses exception
handling techniques to ensure the file is closed at the end of the block. For example (we
talked about this in Using Blocks for Transactions, on page 72):

File.open("testfile") do |f|
.. process

end

The else clause is a similar, although less useful, construct. If present, it goes after the rescue
clauses and before any ensure. The body of an else clause is executed only if no exceptions
are raised by the main body of code.

f = File.open("testfile")
begin
.. process

rescue
.. handle error

else
puts "Congratulations-- no errors!"

ensure
f.close

end

Chapter 10. Exceptions • 174

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Play It Again
Sometimes you may be able to correct the cause of an exception. In those cases, you can use
the retry statement within a rescue clause to repeat the entire begin/end block. Clearly,
tremendous scope exists for infinite loops here, so this is a feature to use with caution (and
with a finger resting lightly on the interrupt key).

As an example of code that retries on exceptions, take a look at the following, which is very
simplified code that you might find making a network connection.

attempts = 0
begin
attempts += 1
@connection = @remote_server.read_data

rescue TimeOutError
if @remote_server && attempts < 10 then
sleep(attempts ** 2)
retry

else
raise

end
end

This code tries to read data from remote_server. If the code returns a TimeOutError and if the
remote_server exists, the code sleeps for a while, then tries again. It keeps track of the number
of attempts, lengthening the time out, until eventually if the number of attempts gets too
high, it stops trying to connect and just raises the error.

Raising Exceptions
So far, we’ve been on the defensive, handling exceptions raised by others. It’s time to turn
the tables and go on the offensive. It’s time to raise some… exceptions.

You can raise exceptions in your code with the raise method (or its judgmental and less
commonly used synonym, fail):

raise
raise "bad mp3 encoding"
raise InterfaceException, "Keyboard failure"

The first form simply reraises the current exception (or raises a RuntimeError if there is no
current exception). This is used in exception handlers that intercept an exception before
passing it on.

The second form creates a new RuntimeError exception, setting its message to the given string.
This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated
message to the second argument. Typically the first argument will be either the name of a
class in the Exception hierarchy or a reference to an instance of one of these classes—if the
argument is a class name, then Ruby will create an instance using a call to new with no
arguments. Technically, this argument can be any object that responds to the message
exception by returning an object such that object.kind_of?(Exception) is true.

Here are some typical examples of raise in action:

report erratum • discuss

Raising Exceptions • 175

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

raise

raise "Missing name" if name.nil?

if i >= names.size
raise IndexError, "#{i} >= size (#{names.size})"

end

raise ArgumentError, "Name too big", caller

In the last example, we show that we can add a stack trace as an optional third argument to
the raise method. The effect of this usage is to remove the current routine from the stack
backtrace, which is often useful in library modules. We do this using the Kernel#callermethod,
which returns the current stack trace. The ability to edit the stack trace sent to the exception
for more focused information is why you have the optional third argument.

The Kernel#callermethod just returns an array of strings with information about the call stack.
We can take this further by just manipulating that array. The following code removes two
routines from the backtrace by passing only a subset of the call stack to the new exception:

raise ArgumentError, "Name too big", caller[1..]

Adding Information to Exceptions
You can define your own exceptions to hold any information that you need to pass out from
the site of an error. For example, certain types of network errors may be transient depending
on the circumstances. If such an error occurs and the circumstances are right, you could set
a flag in the exception to tell the handler that it may be worth retrying the operation.

Here’s what part of the remote server from the previous example might look like.

tut_exceptions/retry_exception.rb
class RetryException < RuntimeError
attr_reader :ok_to_retry
def initialize(ok_to_retry)
@ok_to_retry = ok_to_retry

end
end

Somewhere down in the depths of the code, a transient error occurs:

tut_exceptions/read_data.rb
def read_data(attempt_count)
data = @socket.read(512)
if data.nil?
raise RetryException.new(attempt_count < 10), "transient read error"

end
.. normal processing

end

And we might incorporate that in our call:

attempts = 0
begin
attempts += 1
@connection = @remote_server.read_data(attempts)

rescue RetryException => e

Chapter 10. Exceptions • 176

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/retry_exception.rb
http://media.pragprog.com/titles/ruby5/code/tut_exceptions/read_data.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

retry if e.okay_to_retry
raise

end

Using Catch and Throw
Although the exception mechanism of raise and rescue is great for abandoning execution
when things go wrong, it’s sometimes nice to be able to jump out of some deeply nested
construct during normal processing. This is where the rarely used catch and throw come in
handy.

Here’s a trivial example. The following code reads a list of words one at a time and adds
them to an array. When done, it prints the array in reverse order. However, if any of the
lines in the file doesn’t contain a valid word, we want it to abandon the whole process.

tut_exceptions/catch_1.rb
word_list = File.open("wordlist")
catch(:done) do
result = []
while (line = word_list.gets)
word = line.chomp
throw :done unless /^\w+$/.match?(word)
result << word

end
puts result.reverse

end

catch defines a block that is labeled with the given name (which may be a Symbol or a String).
The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a catch block with a
matching symbol. When it finds it, Ruby unwinds the stack to that point and terminates the
block. So, in the previous example, if the input does not contain correctly formatted lines,
the throw will skip to the end of the corresponding catch, not only terminating the while loop
but also skipping the code that writes the reversed list. If the throw is called with the optional
second parameter, that value is returned as the value of the catch. In this example, our word
list incorrectly contains the line *wow*. Without the second parameter to throw, the correspond-
ing catch returns nil.

tut_exceptions/catch_2.rb
word_list = File.open("wordlist")
word_in_error = catch(:done) do
result = []
while (line = word_list.gets)
word = line.chomp
throw(:done, word) unless /^\w+$/.match?(word)
result << word

end
puts result.reverse

end
if word_in_error
puts "Failed: '#{word_in_error}' found, but a word was expected"

end

report erratum • discuss

Using Catch and Throw • 177

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/catch_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_exceptions/catch_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

Failed: '*wow*' found, but a word was expected

The following example uses a throw to terminate interaction with the user if ! is typed in
response to any prompt:

tut_exceptions/catchthrow.rb
def prompt_and_get(prompt)
print prompt
res = readline.chomp
throw :quit_requested if res == "!"
res

end

catch :quit_requested do
name = prompt_and_get("Name: ")
age = prompt_and_get("Age: ")
sex = prompt_and_get("Sex: ")
..
process information

end

As this example illustrates, the throw does not have to appear within the static scope of the
catch.

What’s Next
In this chapter, we looked at how to make our Ruby code more error-proof by catching and
raising exceptions, and you saw how to create your own exception classes that might have
their own data. Next up, we’re going to talk about a leading cause of exceptions in code:
managing input and output.

Chapter 10. Exceptions • 178

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/catchthrow.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 11

Basic Input and Output
Ruby provides what looks at first sight like two separate sets of input and output (I/O) rou-
tines. The first is the simple interface—we’ve been using that one a lot so far:

print "Enter your name: "
name = gets

This whole set of I/O-related methods is implemented in the Kernel module, including gets,
open, print, printf, putc, puts, readline, readlines, and test. The I/O methods are available to all
objects, and make it simple and convenient to write straightforward Ruby programs. These
methods typically do I/O to standard input and standard output, which makes them useful
for writing simple tasks.

The other way to do I/O, which gives you a lot more control, is to use Ruby’s dedicated IO
classes.

What Is an I/O Object?
Ruby defines a single base class, IO, to handle input and output. This base class is subclassed
by classes File and BasicSocket to provide more specialized behavior, but the principles are
the same. An IO object is a bidirectional channel between a Ruby program and some external
resource.

In this chapter, we’ll be concentrating on class IO and its most commonly used subclass, class
File.

Opening and Closing Files
You can create a new file object using File.new:

file = File.new("testfile", "r")
... process the file
file.close

The first parameter to the method is the filename. The second is called themode string, which
lets you declare whether you are opening the file for reading, writing, or both. Here we
opened testfile for reading with an "r". We could also have used "w" for write or "r+" for read-
write. The full list of allowed modes appears in the reference section on page 591.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

You can also optionally specify file permissions when creating a file. After opening the file,
we can write and/or read data as needed and as specified by the mode string. When we are
done, as responsible software citizens, we close the file, ensuring that all buffered data is
written and that all related resources are freed.

But Ruby can make life a little bit easier for you. The method File.open also opens a file. In
regular use, it behaves just like File.new. However, if you associate a block with the call, open
behaves differently, see Using Blocks for Transactions, on page 72. Instead of returning a
new File object, it invokes the block, passing the newly opened File as a parameter. When the
block exits, the file is automatically closed.

File.open("testfile", "r") do |file|
... process the file

end # <- file automatically closed here

Using File.open with a block has an added benefit. When using File.new as we did earlier, if
an exception is raised while processing the file, the call to File.close may not happen. Once
the file variable goes out of scope, then garbage collection will eventually close it, but this
may not happen for a while. Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is raised inside the block,
the file is closed before the exception is propagated on to the caller. It’s as if the File.open
method looks like the following:

class File
def self.open(*args)
f = File.new(*args)
result = f
if block_given?
begin
result = yield f

ensure
f.close

end
end
result

end
end

Reading and Writing Files
The same methods that we’ve been using for “simple” I/O from standard input and output
are available for File objects. So, where Kernel#gets reads a line from standard input (or from
any files specified on the command line when the script was invoked), File#gets reads a line
from the file object.

For example, we could create a program called copy.rb:

tut_io/copy.rb
while (line = gets)
puts line

end

If we run this program with no arguments, it will read lines from the console and copy them
back to the console. Note that each line is echoed once the Return key is pressed. (In this and

Chapter 11. Basic Input and Output • 180

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_io/copy.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

later examples, we show user input in a bold font.) The ^D is the end-of-file character on
Unix systems.

$ ruby copy.rb
These are lines
These are lines
that I am typing
that I am typing
^D

We can also pass in one or more filenames on the command line, in which case the filenames
are passed to standard input and the Kernel#gets will read from each in turn as if all the files
in the command line were concatenated to a single file. From the top directory of the sample
code:

$ ruby code/tut_io/copy.rb code/tut_io/testfile
This is line one
This is line two
This is line three
And so on...

We have another option.

we can explicitly open the file and read from it using File#gets:

File.open("testfile") do |file|
while line = (file.gets)
puts line

end
end

produces:

This is line one
This is line two
This is line three
And so on...

In addition to gets, I/O objects define an additional set of access methods, all intended to
make our lives easier.

Iterators for Reading
While the usual loops work to allow you to read data from an IO stream, Ruby also defines
some task-specific iterators. The method each_byte invokes a block with the next 8-bit byte
from an IO object (in this case, an object of type File). The Integer#chr method converts an
integer to the corresponding ASCII character:

File.open("testfile") do |file|
file.each_byte.with_index do |ch, index|
print "#{ch.chr}:#{ch} "
break if index > 10

end
end

produces:

T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 l:108 i:105 n:110 e:101

report erratum • discuss

Reading and Writing Files • 181

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The method IO#each_line calls the block with each line from the file. In the next example, we’ll
make the original newlines visible using String#dump, which returns the string in double-
quotes with escape characters, so you can see that we’re not cheating:

File.open("testfile") do |file|
file.each_line { |line| puts "Got #{line.dump}" }

end

produces:

Got "This is line one\n"
Got "This is line two\n"
Got "This is line three\n"
Got "And so on...\n"

The each_linemethod includes the line ending at the end of each line of data. That’s why you
see the \n characters in the output of the previous example. You don’t have to use \n as the
separator, though. You can pass each_line an argument, any sequence of characters. The
method will use that argument as a line separator, and will break up the input accordingly,
returning the separator at the end of each line of data. In the next example, we’ll use the
character e as the line separator:

File.open("testfile") do |file|
file.each_line("e") { |line| puts "Got #{ line.dump }" }

end

produces:

Got "This is line"
Got " one"
Got "\nThis is line"
Got " two\nThis is line"
Got " thre"
Got "e"
Got "\nAnd so on...\n"

If you combine the idea of an iterator with the autoclosing block feature, you get IO.foreach,
or the subclass method File.foreach. This method takes the name of an I/O source, opens it for
reading, calls the iterator once for every line in the file, and then closes the file automatically:

File.foreach("testfile") { |line| puts line }

produces:

This is line one
This is line two
This is line three
And so on...

Or, if you prefer, you can retrieve an entire file into a string:

str = IO.read("testfile")
str.length # => 66
str[0, 30] # => "This is line one\nThis is line "

Or into an array of lines:

arr = IO.readlines("testfile")
arr.length # => 4
arr[0] # => "This is line one\n"

Chapter 11. Basic Input and Output • 182

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Don’t forget that I/O is never certain in an uncertain world—exceptions will be raised on
most errors, and you should be ready to rescue them and take appropriate action.

Writing to Files
So far, we’ve been merrily calling puts and print, passing in any old object and trusting that
Ruby will do the right thing (which, of course, it does). But what exactly is it doing?

With a couple of exceptions, every object you pass to puts or print is converted to a string by
calling that object’s to_s method. If for some reason the to_s method doesn’t return a valid
string, a string is created containing the object’s class name and ID, something like <Class-
Name:0x123456>. This example opens a file for writing (note the mode string is "w", then reads
the file in and prints its contents to STDOUT). As with the other Kernel methods, there’s an
equivalent IO#puts that we can use.

File.open("output.txt", "w") do |file|
file.puts "Hello"
file.puts "1 + 2 = #{1+2}"

end

puts File.read("output.txt")

produces:

Hello
1 + 2 = 3

There is one slight differences between puts and print. The putsmethod inserts a newline after
the output unless the output already ends in a newline, print does not.

There are two exceptions to the “every object calls its to_s method. The nil object will print
as the empty string, and an array passed to puts will be written as if each of its elements in
turn were passed separately to puts.

More generally, we have File#write, which writes its argument to the file, converting non-
strings to string with to_s. The difference being that write returns the number of bytes written
to the file, while puts returns nil.

File.open("output.txt", "w") do |file|
file.write "Hello"
file.write "1 + 2 = #{1+2}"

end

puts File.read("output.txt")

produces:

Hello1 + 2 = 3

What if you want to write binary data and don’t want Ruby messing with it? Well, normally
you can simply use print and pass in a string containing the bytes to be written. However,
you can get at the low-level I/O routines if you really want—look at the documentation for
sysread and syswrite at https://docs.ruby-lang.org/en/master/IO.html#method-i-sysread.

And how do you get the binary data into a string in the first place? The three common ways
are to use a literal, poke it in byte by byte, or use Array#pack, which takes an array of data
and packs it into a string.

str1 = "\001\002\003" # => "\u0001\u0002\u0003"

report erratum • discuss

Reading and Writing Files • 183

https://docs.ruby-lang.org/en/master/IO.html#method-i-sysread
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

str2 = ""
str2 << 1 << 2 << 3 # => "\u0001\u0002\u0003"
[1, 2, 3].pack("c*") # => "\x01\x02\x03"

The first example here is using escape sequences to put raw bytes into the string, the second
example is using the shovel operator to add the numbers one by one, and the third is using
Array#pack, the argument c* says that all the elements of the array should be converted as 8-
bit unsigned values.

Finding Files
Ruby has a couple of utility methods that can help you find files. Typically, when you search
for a file, the pathname is relative to the directory from where the script was invoked, but
in a large code base that’s unlikely to be the file you are writing code in.

To help orient yourself, Ruby provides __FILE__, which always has the relative name of the
file it is contained in, and __dir__ which has the absolute pathname of that file. File.realpath
returns the absolute path to a file, so File.realpath(__FILE__) gives you the absolute path to the
current file, and so __dir__ = File.dirname(File.realpath(__FILE__)).

You are probably wondering why __FILE__ is capitalized, while __dir__ is not. Technically,
__FILE__ is a reserved word (not quite a constant, but close), while __dir__ is a method of Kernel.
That’s not much of an explanation, but it’s what we’ve got.

One use of realpath that you might do is to use it to figure out what Ruby is thinking of as
the base path. You might try to do something like File.open("local.txt"), only to have Ruby tell
you that local.txt doesn’t exist. In that case, putting in a debug statement like puts File.real-
path("local.txt") will go a long way toward orienting you as to where Ruby thinks it’s looking.

I/O with Streams
Just as you can append an object to an Array using the << operator, you can also append an
object to an output IO stream:

endl = "\n"
$stdout << 99 << " red balloons" << endl

produces:

99 red balloons

Again, the << method uses to_s to convert its arguments to strings before printing them.

There are actually some good reasons for using the << operator. Because other classes (such
as String and Array) also implement a << operator with similar semantics, you can quite often
write code that appends to something using << without caring whether it is added to an
array, a file, or a string. This kind of flexibility also makes unit testing easy. We discuss this
idea in greater detail in Chapter 21, Ruby Style, on page 343.

Doing I/O with Strings
There are often times where you need to work with code that assumes it’s reading from or
writing to one or more files. But you have a problem: the data isn’t in files. Perhaps it’s
available instead via a remote network call, or it has been passed to you as command-line
parameters. Or maybe you’re running unit tests, and you don’t want to alter the real file
system.

Chapter 11. Basic Input and Output • 184

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Enter StringIO objects. They behave just like other I/O objects, but they read and write strings,
not files. If you open a StringIO object for reading, you supply it with a string. All read oper-
ations on the StringIO object then read from this string. Similarly, when you want to write to
a StringIO object, you pass it a string to be filled.

require "stringio"

ip = StringIO.new("now is\nthe time\nto learn\nRuby!")
op = StringIO.new("", "w")

ip.each_line do |line|
op.puts line.reverse

end
op.string # => "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"

Talking to Networks
Ruby is fluent in most of the Internet’s protocols, both low-level and high-level.

For those who enjoy groveling around at the network level, Ruby comes with a set of classes
in the socket library (https://docs.ruby-lang.org/en/master/Socket.html). These give you access to
TCP, UDP, SOCKS, and Unix domain sockets, as well as any additional socket types supported
on your architecture. The library also provides helper classes to make writing servers easier.
Here’s a simple program that gets information about our user website on a local web server
using the HTTP OPTIONS request:

tut_io/socket.rb
require "socket"

client = TCPSocket.open("127.0.0.1", "www")
client.send("OPTIONS /~dave/ HTTP/1.0\n\n", 0) # 0 means standard packet
puts client.readlines
client.close

At a higher level, the “lib/net” set of library modules provides handlers for a set of application-
level protocols (currently FTP, HTTP, HTTPS, IMAP, POP, and SMTP). For example, the
following program lists the images that are displayed on this book’s home page. (To save
space, we show only the first three):

tut_io/networking.rb
require "net/http"

uri = URI("https://pragprog.com/titles/ruby5/programming-ruby-3-2-5th-edition/")
Net::HTTP.start(
"pragprog.com",
Net::HTTP.https_default_port,
use_ssl: true

) do |http|
request = Net::HTTP::Get.new(uri)
response = http.request(request)
if response.code == "200"
puts response.body.scan(/<img class=".*?" src="(.*?)"/m).uniq[0, 3]

end
end

produces:

/titles/ruby5/programming-ruby-3-2-5th-edition/ruby5-beta-250.jpg

report erratum • discuss

Talking to Networks • 185

https://docs.ruby-lang.org/en/master/Socket.html
http://media.pragprog.com/titles/ruby5/code/tut_io/socket.rb
http://media.pragprog.com/titles/ruby5/code/tut_io/networking.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

/img/pdf_icon.png
/titles/rails7/agile-web-development-with-rails-7/rails7-125.jpg

This example could be improved significantly. In particular, it doesn’t do much in the way
of error handling. It should really report “Not Found” errors (the infamous 404) and should
handle redirects (which happen when a web server gives the client an alternative address
for the requested page).

We can take this to a higher level still. By bringing the open-uri library into a program, the
URI.openmethod recognizes http:// and ftp://URLs in the filename. Not just that—it also handles
redirects automatically.

tut_io/networking_2.rb
require "open-uri"

URI.open("https://pragprog.com/titles/ruby5/programming-ruby-3-2-5th-edition/") do |f|
puts f.read.scan(/<img class=".*?" src="(.*?)"/m).uniq[0,3]

end

produces:

/titles/ruby5/programming-ruby-3-2-5th-edition/ruby5-beta-250.jpg
/img/pdf_icon.png
/titles/rails7/agile-web-development-with-rails-7/rails7-125.jpg

What’s Next
We’ve seen both Ruby’s simple I/O library, implemented as a series of methods in the Kernel
module, and the more complicated I/O methods in the class IO and its children. We’ve seen
how to read and write data.

A common problem with I/O is that it is slow and blocks programs. A common workaround
is to use threading to allow the program to do multiple things at once. Let’s take a look at
some of Ruby’s threading options.

Chapter 11. Basic Input and Output • 186

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_io/networking_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 12

Threads, Fibers, and Ractors
Being able to do more than one thing at the same time is pretty useful. For a computer pro-
gram, being able to multitask means that if the program has to wait for one task to finish,
like an API call to a slow server, it can turn control over to another task so as to get useful
work done even while it waits. Being able to multitask can also mean that on a computer
that has more than one CPU—which, these days, means a computer—then the program can
split tasks across multiple CPUs. You can achieve tremendous speed boosts this way.

Being able to do more than one thing at a time is also pretty complicated for a computer
program. When a program multitasks, another task can change the state of the data one task
is using without that task doing anything, so its understanding of the data may not be correct.
When a program multitasks, its tasks may fight for access to limited resources, like the
filesystem, and might even overwrite each others changes. People are notoriously bad at
predicting the effects of even mildly complicated threading scenarios, so unexpected bug
cases are a real problem.

When writing programs that are doing multiple things at once, each “thing” is called a thread,
and the goal is to have thread safety, meaning the code will execute correctly no matter in
what order the threads operate. In cases where the order of operation matters—for example,
if two threads are writing to a log file and instead of appending to the log file, the last thread
overwrites the first one—this is called a race condition and is bad.

A key to achieving thread safety is to avoid having data or status information shared between
threads, especially if that data is changeable by one thread without the knowledge of the
other. Sometimes, though, you must share information, like access to a common database.
In that case, you need constructs that limit access to shared resources such that only one
thread can access them at a time.

Historically, Ruby programs have a Global Interpreter Lock (GIL), which insures that only
one thread is actually being executed by Ruby at any time. The GIL is one way Ruby protects
thread safety—since only one thread can run at a time, shared global resources within Ruby
are automatically protected from being changed behind your thread’s back. You still get the
advantage of allowing one thread to take over execution if other threads are blocked. But
you can’t take advantage of, say, multiple parallel CPUs with a single Ruby interpreter (with
the exception of the Ractor library). Ruby installations that do want to take advantage of
multiple CPUs typically run multiple Ruby interpreters that communicate via an external
data source or message system. (There’s one relatively new Ruby construct that works around
this—called Ractors—which we’ll talk about at the end of this chapter.)

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In this chapter, we’ll look at Ruby’s different threading abstractions that allow you to organize
your program so that you can run different parts of it apparently “at the same time.” The
Thread class is the basic unit of multithreaded behavior in Ruby. Ruby also allows you to
spawn processes out to the underlying operating system and multithread those processes.
Fibers are an additional abstraction that lets you suspend execution of one part of your pro-
gram and run some other part. Finally, The Ractor library allows you to bypass the GIL and
have true multithreading using Ruby.

Let’s start with the Thread class, which is the basis for Ruby multithreaded behavior.

Multithreading with Threads
The lowest-level mechanism in Ruby for doing two things at once is to use the Thread class.
Although threads can in theory take advantage of multiple processors or multiple cores in
a single processor, there’s a major catch. Many Ruby extension libraries are not thread safe,
because they expect to be protected by the GIL. So, Ruby uses native operating system threads
but operates only a single thread at a time. Unless you use the Ractor library, you’ll never
see two threads in the same application running Ruby code truly concurrently. You will,
however, see threads busy executing Ruby code while another thread waits on an I/O
operation.

Creating Ruby Threads
The code that follows is a simple example. It downloads a set of web pages in parallel. For
each URL that it is asked to download, the code creates a separate thread that handles the
HTTP transaction:

tut_threads/fetcher.rb
require "net/http"

pages = %w[www.rubycentral.org www.pragprog.com www.google.com]

threads = pages.map do |page_to_fetch|
Thread.new(page_to_fetch) do |url|
http = Net::HTTP.new(url, 80)
print "Fetching: #{url}\n"
response = http.get("/")
print "Got #{url}: #{response.message}\n"

end
end
threads.each { |thread| thread.join }
print "We're done here!\n"

Which results in something like:

Fetching: www.rubycentral.org
Fetching: www.pragprog.com
Fetching: www.google.com
Got www.google.com: OK
Got www.pragprog.com: Moved Permanently
Got www.rubycentral.org: OK
We're done here!

Let’s look at this code in more detail, because a few subtle things are happening.

Chapter 12. Threads, Fibers, and Ractors • 188

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_threads/fetcher.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

New threads are created with the Thread.new call. The Thread.new call is given a block that
contains the code to be run in the new thread. In our case, the block uses the net/http library
to fetch the page from the URL that is passed to the thread. Once the thread is created, it is
available to be scheduled for execution by the operating system, and, in this code at least,
we do not have direct control over when the thread runs.

This code uses a map call to create three new threads from the list of sites to call and stores
the threads in an array. Threads, like everything else in Ruby, are objects that can be assigned
to variables, returned from blocks or methods, and passed as parameters.

Our output tracing shows that these fetches are going on in parallel, because all three “fetch”
statements happen before any of the “got” statements do. Broadly, what’s happening is that
the first thread is being created, is scheduled for control, makes its HTTP request, is blocked
while it waits for the answer, and control reverts back to the main program, which immedi-
ately creates the second thread, and so on. The thread creation is much faster than the HTTP
request, so even with the overhead of making the threads, all three threads will usually be
created before any of them return. Just to be clear, we are dealing with one word and two
meanings: “block” means both “a chunk of Ruby code” and “being stalled waiting for a
response.”

When we create the thread, we pass the required URL as a parameter to the block as url, even
though the same value is already available as page_to_fetch outside the block. Why do we do
this? The answer relates to thread safety and how threads share values.

A thread shares all global, instance, and local variables that are in existence and available at
the time the thread starts. Despite what Mr. Rogers says, sharing isn’t always a good thing.
In this case, all three threads share the variable page_to_fetch, defined outside the Thread.new
block. The first thread gets started, and page_to_fetch is set to "www.rubycentral.org". In the
meantime, the loop creating the threads is still running. The second time around, page_to_fetch
gets set to "pragprog.com". If the first thread has not yet finished using the page_to_fetch variable,
it will suddenly start using this new value. In our case, that would likely manifest as using
one value in the actual http.get command, and then the value changing while the thread was
blocked, and a different value being used in the print statement on the next line. This would
be, to say the least, confusing. These kinds of bugs are difficult to track down.

However, local variables created within a thread’s block are truly local to that thread—each
thread will have its own copy of these variables. In our case, the variable url will be set at
the time the thread is created, and each thread will have its own copy of the page address.
You can pass any number of arguments into the block via Thread.new, the arguments to the
method become the arguments to the block.

This code also illustrates a gotcha. Inside the loop, the threads use print to write out the
messages, rather than puts. Why? Well, behind the scenes, puts splits its work into two chunks:
it writes its argument, and then it writes a newline. Between these two, a thread could get
scheduled, and the output would be interleaved. Calling printwith a single string that already
contains the newline gets around the problem.

Manipulating Threads
Another subtlety occurs in the next-to-last line of our program, where we call join on each
thread.

report erratum • discuss

Multithreading with Threads • 189

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

When a Ruby program terminates, all threads are killed, regardless of their states. Since we
don’t control the scheduling of any internally created threads, it’d be easy for this program
to reach the end while one or more threads are still waiting for responses. The program
would terminate and we’d never get those responses.

You can wait for a particular thread to finish by calling that thread’s Thread#joinmethod. The
thread in which the join method is called—in our case, that’s the original program—will
block until the thread receiving the join call has finished. The sub thread has been off on its
own, but rejoins the parent thread so the parent thread can move forward.

By calling join on each of the requested threads, you can make sure that all three requests
have completed before you terminate the main program—we can see that in our code because
the “we’re done here” print statement will always happen after all three threads complete.
Even though the join methods are called one at a time, the order and speed of the sub thread
execution ultimately doesn’t matter because the main thread will wait on all of them.

The join method normally returns the thread itself. If you don’t want to block forever, you
can give join a timeout parameter—if the timeout expires before the thread terminates, the
join call returns nil. The expiration of the timeout does not actually terminate the thread, but
it does allow the calling thread to continue, which might mean that the program will end
before the thread is complete. Another variant of join, the method Thread#value, returns the
value of the last statement executed by the thread. The valuemethod does not have a timeout
parameter.

In addition to join, a few other handy routines are used to manipulate threads. The current
thread is always accessible using Thread.current. You can obtain a list of all threads using
Thread.list, which returns a list of all Thread objects that are runnable or stopped. You can stop
a thread with Thread#exit which is aliased as kill and terminate.

To determine the status of a particular thread, you can use Thread#status and Thread#alive?.
The statusmethod returns "run" if the thread is executing normally, "sleep" if it has been paused
or is blocked, "aborting" if it is in the process of being killed. If the thread ended normally it
returns false, if the thread terminated exceptionally, it returns nil. The alive? method returns
true if the status is “run” or “sleep.”

You can adjust the priority of a thread using Thread#priority=. Higher-priority threads will
run before lower-priority threads, though the operating system is free to ignore this setting.

Thread Variables
A thread can normally access any variables that are in scope when the thread is created.
Variables local to the block containing the thread code are local to the thread and are not
shared. But what if you need per-thread variables that can be accessed by other
threads—including the main thread? Class Thread has a facility that allows thread-local
variables to be created and accessed by name. You can treat the thread object as if it were a
Hash, writing to elements using []= and reading them back using []. A true thread-local variable
can be accessed using Thread.thread_variable_get and Thread.thread_variable_set.

In the example that follows, each thread records the current value of the variable count in a
thread-local variable with the key mycount. To do this, the code uses the symbol :mycount
when indexing thread objects:

tut_threads/thread_variables.rb
count = 0

Chapter 12. Threads, Fibers, and Ractors • 190

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_threads/thread_variables.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

threads = 10.times.map do
Thread.new do
sleep(rand(0.1))
Thread.current[:mycount] = count
count += 1

end
end

threads.each do |t|
t.join
print t[:mycount], ", "

end
puts "count = #{count}"

produces:

6, 0, 8, 7, 5, 4, 1, 9, 3, 2, count = 10

The main thread waits for the subthreads to finish and then prints that thread’s value of
count. Just to make it interesting, we use rand(0.1) to have each thread wait a random of amount
time before recording the value, so that we can’t predict the order in which the threads will
finish.

A subtle race condition exists in this code. A race condition occurs when two or more pieces
of code (or hardware) both try to access some shared resource, and the outcome changes
depending on the order in which they do so. In the example here, it is possible for one thread
to set the value of its mycount variable to count, but before it gets a chance to increment count,
the thread gets descheduled and another thread reuses the same value of count. These issues
are fixed by synchronizing the access to shared resources such as the count variable, see
Synchronization via Mutual Exclusion, on page 193.

Threads and Exceptions
If a thread raises an unhandled exception, what happens next depends on the setting of the
Thread.abort_on_exception flag and on the setting of the interpreter’s $DEBUG flag.

If abort_on_exception is false and the debug flag is not enabled (the default condition), an
unhandled exception simply kills the current thread—all the rest continue to run. In fact,
you don’t even hear about the exception until you issue a join on the thread that raised it. In
the following example, thread 1 blows up and fails to produce any output. However, you
can still see the trace from the other threads:

tut_threads/exception_01.rb
4.times.map do |number|
Thread.new(number) do |i|
raise "Boom!" if i == 1
print "#{i}\n"

end
end
puts "Waiting"
sleep 0.1
puts "Done"

produces:

#<Thread:0x00000001010d4150 code/tut_threads/exception_01.rb:2 run> terminated
with exception (report_on_exception is true):
code/tut_threads/exception_01.rb:3:in `block (2 levels) in <main>': Boom!

report erratum • discuss

Multithreading with Threads • 191

http://media.pragprog.com/titles/ruby5/code/tut_threads/exception_01.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

(RuntimeError)
Waiting
0
3
2
Done

You normally don’t sleep waiting for threads to terminate—you’d use join. If you join to a
thread that has raised an exception, then that exception will be raised in the thread that does
the joining:

tut_threads/exception_02.rb
threads = 4.times.map do |number|
Thread.new(number) do |i|
raise "Boom!" if i == 1
print "#{i}\n"

end
end

puts "Waiting"
threads.each do |t|
t.join

rescue RuntimeError => e
puts "Failed: #{e.message}"

end
puts "Done"

produces:

#<Thread:0x0000000104703eb0 code/tut_threads/exception_02.rb:2 run> terminated
with exception (report_on_exception is true):
code/tut_threads/exception_02.rb:3:in `block (2 levels) in <main>': Boom!
(RuntimeError)
Waiting
0
3
Failed: Boom!
2
Done

However, set abort_on_exception to true or use -d to turn on the debug flag, and an unhandled
exception kills the main thread, so the message Done never appears.

tut_threads/exception_03.rb
Thread.abort_on_exception = true
threads = 4.times.map do |number|
Thread.new(number) do |i|
raise "Boom!" if i == 1
print "#{i}\n"

end
end

puts "Waiting"
threads.each { |t| t.join }
puts "Done"

produces:

#<Thread:0x0000000104674058 code/tut_threads/exception_03.rb:3 run> terminated

Chapter 12. Threads, Fibers, and Ractors • 192

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_threads/exception_02.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/exception_03.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

with exception (report_on_exception is true):
code/tut_threads/exception_03.rb:4:in `block (2 levels) in <main>': Boom!
(RuntimeError)
code/tut_threads/exception_03.rb:4:in `block (2 levels) in <main>': Boom!
(RuntimeError)
Waiting
0
3
2

Controlling the Thread Scheduler
In a well-designed application, you’ll normally just let threads do their thing. Building timing
dependencies into a multithreaded application is generally considered to be bad form because
it makes the code far more complex and also prevents the thread scheduler from optimizing
the execution of your program.

That said, the Thread class provides a number of methods that control or give hints to the
scheduler. Invoking Thread.stop stops the current thread, and invoking Thread#run arranges
for a particular thread to be run. The method Thread.pass deschedules the current thread,
allowing others to run, and Thread#join and Thread#value block the calling thread until a given
thread finishes. These last two are the only low-level thread control methods that the average
program should use. In fact, we believe that the low-level thread control methods are too
complex and dangerous to be used correctly in programs we write. Fortunately, Ruby has
support for higher-level thread synchronization.

Synchronization via Mutual Exclusion
Let’s start by looking at a simple example of a race condition—multiple threads updating a
shared variable:

tut_threads/race_condition.rb
sum = 0
threads = 10.times.map do
Thread.new do
100_000.times do
new_value = sum + 1
print "#{new_value} " if new_value % 250_000 == 0
sum = new_value

end
end

end
threads.each(&:join)
puts "\nsum = #{sum}"

produces:

250000 250000 250000 250000 250000 250000 250000 250000
sum = 349999

We create 10 threads, and each increments the shared sum variable 100,000 times. And yet,
when the threads all finish, the final value in sum is considerably less than 1,000,000. We
have a race condition. The reason is the print call that sits between the code that calculates
the new value and the code that stores it back into sum. In one thread, the updated value
gets calculated—let’s say that the value of sum is 99,999, so new_value will be 100,000. Before

report erratum • discuss

Multithreading with Threads • 193

http://media.pragprog.com/titles/ruby5/code/tut_threads/race_condition.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

storing the new value back into sum, we call print, and that causes another thread to be
scheduled (because the thread blocks waiting for the I/O to complete). So a second thread
also fetches the value of 99,999 and increments it. It stores 100,000 into sum, then loops around
again and stores 100,001, and 100,002, and so on. Eventually the original thread continues
running because it finished writing its message. It immediately stores its value of 100,000
into the sum, overwriting (and losing) all the values stored by the other thread(s). We lost
data.

Fortunately, that’s easy to fix. We use the built-in class Mutex (short for “mutually exclusive”)
to create synchronized regions—areas of code that only one thread may enter at a time.

Some grade schools coordinate students’ hall access during class time using a system of hall
passes. The number of passes is limited, and to leave the classroom, you need to take a pass
with you. If someone else already has that pass, you have to wait for that person to return.
The pass controls access to the shared resource—you have to own the pass to use the resource,
and only one person can own it at a time.

A mutex is like that hall pass. You create a mutex to control access to a resource and then
lock it when you want to use that resource. If no one else has it locked, your thread continues
to run. If someone else has already locked that particular mutex, your thread suspends until
they unlock it.

Here’s a version of our counting code that uses a mutex to ensure that only one thread
updates the count at a time:

tut_threads/mutex_1.rb
sum = 0
mutex = Thread::Mutex.new
threads = 10.times.map do
Thread.new do
100_000.times do
one at a time, please
mutex.lock
new_value = sum + 1
print "#{new_value} " if new_value % 250_000 == 0
sum = new_value
mutex.unlock

end
end

end
threads.each(&:join)
puts "\nsum = #{sum}"

produces:

250000 500000 750000 1000000
sum = 1000000

This pattern—lock a mutex, do something, then unlock—is so common that the Mutex class
providesMutex#synchronize, which locks the mutex, runs the code in a block, and then unlocks
the mutex. This also ensures that the mutex will get unlocked even if an exception is thrown
while it is locked. Otherwise, an exception might cause the mutex to never unlock and per-
manently prevent other threads from gaining access to the shared resource.

tut_threads/mutex_2.rb
sum = 0

Chapter 12. Threads, Fibers, and Ractors • 194

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

mutex = Thread::Mutex.new
threads = 10.times.map do
Thread.new do
100_000.times do
mutex.synchronize do
new_value = sum + 1
print "#{new_value} " if new_value % 250_000 == 0
sum = new_value

end
end

end
end

threads.each(&:join)
puts "\nsum = #{sum}"

produces:

250000 500000 750000 1000000
sum = 1000000

Sometimes you want to claim a lock if a mutex is currently unlocked, but you don’t want to
suspend the current thread if the mutex is locked. The Mutex#try_lock method takes the lock
if it can, but returns false if the lock is already taken. The following code illustrates a hypo-
thetical currency converter. The ExchangeRates class caches rates from an online feed, and a
background thread updates that cache once an hour. This update takes a minute or so. In
the main thread, we interact with our user. However, rather than just go dead if we can’t
claim the mutex that protects the rate object, we use try_lock and print a status message if the
update is in process.

tut_threads/mutex_3.rb
rate_mutex = Thread::Mutex.new
exchange_rates = ExchangeRates.new
exchange_rates.update_from_online_feed

Thread.new do
loop do
sleep(3600)
rate_mutex.synchronize do
exchange_rates.update_from_online_feed

end
end

end

loop do
print "Enter currency code and amount: "
line = gets
if rate_mutex.try_lock
begin
puts(exchange_rates.convert(line))

ensure
puts "Ensuring unlock"
rate_mutex.unlock

end
else
puts "Sorry, rates being updated. Try again in a minute"

end

report erratum • discuss

Multithreading with Threads • 195

http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

By using ensure the unlock command is guaranteed to run even if the puts raises an exception.

If you are holding the lock on a mutex and you want to temporarily unlock it, allowing
others to use it, you can call Mutex#sleep. We could use this to rewrite the previous example:

tut_threads/mutex_4.rb
rate_mutex = Thread::Mutex.new
exchange_rates = ExchangeRates.new
exchange_rates.update_from_online_feed

Thread.new do
rate_mutex.lock
loop do
rate_mutex.sleep(3600)
exchange_rates.update_from_online_feed

end
end

loop do
print "Enter currency code and amount: "
line = gets
if rate_mutex.try_lock
begin
puts(exchange_rates.convert(line))

ensure
puts "Ensuring unlock"
rate_mutex.unlock

end
else
puts "Sorry, rates being updated. Try again in a minute"

end
end

Running Multiple External Processes
Sometimes you may want to split a task into several process-sized chunks—maybe to take
advantage of all those cores in your shiny new processor. Or perhaps you need to run a
separate process that was not written in Ruby. Not a problem: Ruby has a number of methods
by which you may spawn and manage separate processes.

Spawning New Processes
You have several ways to spawn a separate process; the easiest is to run some command
and wait for it to complete. You may find yourself doing this to run a system command or
retrieve data from the host system. Ruby lets you spawn a process with the system or by
using backquote (or backtick) methods:

system("tar xzf test.tgz") # => true
spawn("date") # => 28526\nSun May 14 18:22:01 CDT 2023
`date` # => "Sun May 14 18:22:01 CDT 2023\n"

The method Kernel#system executes the given command in a subprocess; it returns true if the
command was found and executed properly. It raises an exception if the command cannot
be found. It returns false if the command ran but returned an error. In case of an error, you’ll

Chapter 12. Threads, Fibers, and Ractors • 196

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_4.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

find the subprocess’s exit code in the global variable $?. The spawn method is the same as
system, except that it returns the process ID of the spawned process and does not wait for
the process to be finished to move forward.

One problem with system is that the command’s output will simply go to the same destination
as the program’s output, which may not be what you want. To capture the standard output
of a subprocess, you can use the backquote characters, as with date in the previous example.
Note that you may need to use String#chomp to remove the line-ending characters from the
result.

This is fine for simple cases—we can run an external process and get the return status. But
many times we need a bit more control than that. We’d like to carry on a conversation with
the subprocess, possibly sending it data and possibly getting some back. The method IO.popen
does just this. The popenmethod runs a command as a subprocess and connects that subpro-
cess’s standard input and standard output to a Ruby IO object. Write to the IO object, and the
subprocess can read it on standard input. Whatever the subprocess writes is available in the
Ruby program by reading from the IO object.

For example, on our systems one of the more useful utilities is pig, a program that reads
words from standard input and prints them in pig latin (or igpay atinlay). We can use this
when our Ruby programs need to send us output that our five-year-olds shouldn’t be able
to understand:

pig = IO.popen("local/util/pig", "w+")
pig.puts "ice cream after they go to bed"
pig.close_write
puts pig.gets

produces:

iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the more subtle real-world com-
plexities involved in driving subprocesses through pipes. The code certainly looks simple
enough: open the pipe, write a phrase, and read back the response. But it turns out that the
pig program doesn’t flush the output it writes. Our original attempt at this example, which
had a pig.puts followed immediately by a pig.gets, hung forever. The pig program processed
our input, but its response was never written to the pipe. We had to insert the pig.close_write
line. This sends an end-of-file to pig’s standard input, and the output we’re looking for gets
flushed as pig terminates.

The popen method has one more twist. If the command you pass it is a single minus sign (-)
, popen will fork a new Ruby interpreter. Both this and the original interpreter will continue
running by returning from the popen. The original process will receive an IO object back, and
the child will receive nil. This works only on operating systems that support the fork call1

(and for now this excludes Windows, unless you use WDSL).

tut_threads/fork.rb
new_pipe = IO.popen("-","w+")
if new_pipe
new_pipe.puts "Get a job!"
$stderr.puts "I'm the parent, the child said to me '#{new_pipe.gets.chomp}'"

else

1. https://www.freebsd.org/cgi/man.cgi?query=fork

report erratum • discuss

Running Multiple External Processes • 197

http://media.pragprog.com/titles/ruby5/code/tut_threads/fork.rb
https://www.freebsd.org/cgi/man.cgi?query=fork
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

$stderr.puts "I'm the child, the parent said to me '#{gets.chomp}'"
puts "OK"

end

produces:

I'm the child, the parent said to me 'Get a job!'
I'm the parent, the child said to me 'OK'

Let’s walk this one through. The original, soon to be parent, interpreter calls IO.popen with
the minus sign argument. At this point we now have two Ruby interpreters each of which
moves forward from this point. The original interpreter gets an IO pipe back as new_pipe,
and the new, child, interpreter gets nil. At this point, the parent can send text to the child
using new_pipe.puts and can listen for text from the child using new_pipe.gets. From the child’s
perspective, new_pipe is nil, but it can communicate with the parent using the regular Kernel
methods, gets to listen for input and puts to send output to the parent.

So, the if new_pipe expression – for the child, the pipe is nil and this expression is false, and
the child goes down the else branch. For the parent, the pipe exists, the expression is true,
and the parent goes down the main branch.

In the parent branch, the parent immediately uses new_pipe.puts to send a string to the child
branch, then calls $stderr.puts to write something to the global standard error output. That
string contains new_pipe.gets, meaning that it will block waiting for something to be sent from
the child.

In the child branch, similar things happen. The $stderr.puts call includes a call to gets which
is listening for the text coming from the parent process, and then the child puts text to be
read by the parent process.

We’re using the standard error port here rather than standard out, because standard error
automatically flushes its text after being called. If we used standard output, we’d likely get
the first part of each output statement interleaved while it waits for the text coming from
the other process.

In addition to the popenmethod, some platforms support the methods Kernel#fork, Kernel#exec
, and Kernel#pipe. The file naming convention of many IO methods and Kernel#open will also
spawn subprocesses if you put a pipe character, |, as the first character of the filename. Note
that you cannot create pipes using File.new; that method is just for files.

Independent Children
Sometimes we don’t need to be quite so hands-on; we’d like to give the subprocess its
assignment and then go on about our business. Later, we’ll check to see whether it has fin-
ished. For instance, we may want to kick off a long-running external sort:

pid = spawn("sort testfile > output.txt")
The sort is now running in a child process
carry on processing in the main program

... dum di dum ...

then wait for the sort to finish
Process.wait(pid)

The call to Kernel#spawn here executes a system-level command and returns its process id.
But it does not wait for the command to finish, so Ruby processing continues apace. Later,

Chapter 12. Threads, Fibers, and Ractors • 198

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

we issue a Process.wait<mi:classmethod>Process.wait</mi:classmethod> call with the process id,
which causes the parent process to wait for the child process running the sort to complete,
and returns the child process ID.

If you’d rather be notified when a child exits (instead of just waiting around), you can set
up a signal handler using Kernel#trap. Here we set up a trap on SIGCLD, which is the signal
sent on “death of child process”:

tut_threads/trap.rb
trap("CLD") do
pid = Process.wait
puts "Child pid #{pid}: terminated"

end

spawn("sort testfile > output.txt")

Do other stuff...

produces:

Child pid 40022: terminated

Blocks and Subprocesses
The IO.popen method takes a command as an argument and an optional block. It runs the
command and returns an IO object attached to that command. The method then passes the
IO object to the block, where you can read from it or (more rarely) write to it.

IO.popen("date") { |f| puts "Date is #{f.gets}" }

produces:

Date is Sun May 14 18:22:01 CDT 2023

The IO object will be closed automatically when the code block exits, just as it is with IO.open.

If you associate a block with Kernel#fork, the code in the block will be run in a Ruby subprocess,
and the parent will continue after the block:

tut_threads/fork_02.rb
fork do
puts "In child, pid = #{$$}"
exit 99

end
pid = Process.wait
puts "Child terminated, pid = #{pid}, status = #{$?.exitstatus}"

produces:

In child, pid = 40038
Child terminated, pid = 40038, status = 99

The $$ here is a global variable that is the process id of the running process.

The wait method will, by default, wait for any subprocess to complete, but you can pass it a
process id (pid) as an argument if you want to wait on a specific process.

$? is a global variable that contains information on the termination of a subprocess.

Although Ruby’s thread utilities are powerful, they are kind of low-level, and there are some
common usage patterns. Ruby gives us two built-in higher-level patterns to support common
usage: fibers and Ractors. We’ll talk about fibers first.

report erratum • discuss

Running Multiple External Processes • 199

http://media.pragprog.com/titles/ruby5/code/tut_threads/trap.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/fork_02.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Creating Fibers
Although the name “fibers” suggests some kind of lightweight thread, Ruby’s fibers are just
a mechanism for denoting a block of code that can be stopped and restarted, which is
sometimes called a coroutine. Fibers in Ruby are cooperatively multitasked, meaning that the
responsibility for yielding control rests with the individual fibers and not the operating
system. Fibers can explicitly yield control, or be set to automatically yield control when its
operations are blocked.

Fibers let you write programs that share control without incurring all of the complexity
inherent in low-level threading. Let’s look at a simple example. We’d like to analyze a text
file, counting the occurrence of each word. We could do this (without using fibers) in a
simple loop:

tut_threads/loop_word_count.rb
counts = Hash.new(0)
File.foreach("./testfile") do |line|
line.scan(/\w+/) do |word|
word = word.downcase
counts[word] += 1

end
end
counts.keys.sort.each { |k| print "#{k}:#{counts[k]} " }

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

However, this code is messy—it mixes word finding with word counting. We could fix this
by writing a method that reads the file and yields each successive word. But fibers give us
a simpler solution:

tut_threads/fiber_word_count.rb
words = Fiber.new do
File.foreach("./testfile") do |line|
line.scan(/\w+/) do |word|
Fiber.yield word.downcase

end
end
nil

end

counts = Hash.new(0)
while (word = words.resume)
counts[word] += 1

end
counts.keys.sort.each { |k| print "#{k}:#{counts[k]} " }

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

The constructor for the Fiber class takes a block and returns a fiber object. Unlike a thread,
the code in the block for a Fiber is not immediately executed.

After the Fiber is created, we can call resume on the fiber object. Calling resume the first time
causes the block to start execution. In this case, the file is opened, and the scanmethod starts
extracting individual words, and passing each individual word to the block passed to scan.

Chapter 12. Threads, Fibers, and Ractors • 200

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_threads/loop_word_count.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/fiber_word_count.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Inside that block, Fiber.yield is called. Calling Fiber.yield suspends execution of the fiber—the
resume method that we called to run the block returns any value passed to Fiber.yield.

Upon receiving the yielded value as the return value of resume, our main program enters
the body of the loop and increments the count for the first word returned by the fiber. It then
loops back up to the top of the while loop, which again calls words.resume while evaluating
the condition. The resume call goes back into the block, continuing where it left off at the line
after the Fiber.yield call.

When the fiber runs out of words in the file, the foreach block exits, and the code in the fiber
terminates. Just as with a method call, the return value of the fiber will be the value of the
last expression evaluated (in this case the nil). In this case, the nil is not strictly needed, as
foreach will return nil when it terminates. The nil just makes it explicit. The next time resume
is called, it returns this value nil. You’ll get a FiberError if you attempt to call resume again after
the fiber has terminated.

Fibers can be used to generate values from infinite sequences on demand. Here’s a fiber that
returns successive integers divisible by 2 and not divisible by 3:

tut_threads/infinite_fiber.rb
twos = Fiber.new do
num = 2
loop do
Fiber.yield(num) unless num % 3 == 0
num += 2

end
end
10.times { print twos.resume, " " }

produces:

2 4 8 10 14 16 20 22 26 28

However, you can more easily use lazy enumerators to gracefully create infinite lists. These
are described Enumerators Used as Generators and Filters, on page 80.

Because fibers are just objects, you can pass them around, store them in variables, and so
on. Fibers can be resumed only in the thread that created them.

Fibers can also use the transfer method to explicitly transfer control between specific fibers.
The tricky part here is that the receiver of transfer is the thread to be resumed—in other words,
the call is fiber_that_gets_control.transfer(args) and not, calling_fiber.transfer(fiber_that_gets_control).
The return value of the transfer call is the same as yield—the last expression before the fiber
pauses control again.

The yield/resume mechanism for switching control and the transfer method don’t work well
together. Specifically, if a fiber is started with resume then cedes control, it can only receive
control using the same mechanism. If it uses yield, it can only be returned with resume. If it
transfers out, it can only be transfered back. If a fiber is started with transfer, it can only return
control using transfer, not yield. Using the wrong mechanism will result in an exception.

Fibers can be non-blocking, meaning that when a fiber would otherwise block because of I/O
or waiting on another process it automatically cedes control to a fiber scheduler which
chooses another fiber to wake up and controls resuming the original fiber when it has
whatever it needs to proceed.

report erratum • discuss

Creating Fibers • 201

http://media.pragprog.com/titles/ruby5/code/tut_threads/infinite_fiber.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

To create a non-blocking Fiber, you need to do two things:

• Call Fiber.set_scheduler to set a scheduler
• Create the fiber with Fiber.new(blocking: false)

The scheduler is the tricky part, because Ruby does not distribute a standard scheduler, only
an interface that schedulers are expected to implement. Bruno Sutic’s website https://github.com/
bruno-/fiber_scheduler_list maintains a list of schedulers that are available, and recommends
using FiberScheduler2 in Ruby 3.1 and up.

Understanding Ractors
Ruby 3.0 introduced ractors, a Ruby implementation of the Actor pattern for multithreaded
behavior. (Experimental support for the feature was originally developed under the name
“Guilds.”) As of Ruby 3.2, Ractors are still considered experimental.

How Ractors Work
Ractors allow true parallelism within a single Ruby interpreter: each Ractor maintains its
own GIL, allowing for potentially better performance. In order for this to work ractors have
only limited ability to access variables outside their scope, and can communicate with each
other in only specific, pre-defined ways. (Also, if for some reason you are running multiple
threads inside a single ractor—probably you shouldn’t do this—those threads are subject to
the equivalent of a global lock on the ractor and will not run in parallel.)

We think that showing trivial examples of ractor code tends to obfuscate what’s going on,
so what we’re going to do is explain conceptually how ractors work and talk about the API,
and then show some code that can actually do a thing.

You can think of a ractor as being a chunk of code that has a single input port and a single
output port. Metaphorically, you can think of a room with one door marked “entrance” and
one door marked “exit.” The entrance door has a potential queue to get in.

You create a ractor with Ractor.new, which always takes a block. The block becomes the inside
of our metaphorical room. The newmethod optionally takes an arbitrary number of positional
arguments, plus there’s an optional keyword argument called name: that you should use to
give the ractor a unique name. We find it helps to realize that in many or most useful cases,
the block will contain a loop of some kind. Once a Ractor is created, the original part of the
thread is called the main ractor, and can be accessed with Ractor.main.

Ractors mostly interact with each other in one of four ways:

• A ractor (including the main thread) can send arguments to a known other ractor. In
our metaphor, this is asking somebody to stand in line at the entrance door to a different
ractor. The entrance lines are infinite, and the sending call is guaranteed not to block
where by “guaranteed” we mean “if this goes wrong you have much larger problems.”
The API call is send and the receiver of the message is the ractor that the message is
being sent to, other_ractor.send(my_args). This is similar to the API for fibers.

• A ractor (or the main thread) can take output from a known other ractor. In our metaphor,
we are waiting by the exit door for the next value to emerge and grabbing it. The API

2. https://github.com/bruno-/fiber_scheduler

Chapter 12. Threads, Fibers, and Ractors • 202

report erratum • discuss

https://github.com/bruno-/fiber_scheduler_list
https://github.com/bruno-/fiber_scheduler_list
https://github.com/bruno-/fiber_scheduler
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

call here is take, as in new_value = other_ractor.take, and the take call will block waiting for
a value to be sent by the other ractor.

• Inside the ractor, the ractor can block waiting for an incoming message. Metaphorically,
the ractor is waiting for somebody to show up at the entrance door. The API call here
is Ractor.receive, and yes, that’s a class method of the class Ractor.

• Inside the ractor, the ractor can block waiting for another ractor to ask for a value.
Metaphorically, the ractor is waiting for somebody to knock on the exit door, and will
then send a value out for them. The API call is Ractor.yield(obj), and the argument is the
value that is sent out.

The pattern here is that the external calls are messages sent to a ractor and the internal calls
are class messages sent to Ractor that know that they take place inside a specific ractor. The
API is constrained here to allow for some automatic thread safety to happen as values are
passed to a ractor using send or from a ractor using yield or take.

The lifecycle of a ractor goes like this:

First, the ractor is created using Ractor.new. The block is immediately started, any arguments
passed to new are passed to the block as though they came from a sendmessage—we haven’t
talked about what that means yet.

The new ractor is isolated, a concept that comes from other languages, but is a new thing for
Ruby added just for ractors, which means that the code inside the block will not be able to
access any variables that are not defined in the block, no globals, no external locals. The only
way to have a value be visible to a ractor is via send.

The code block passed to the ractor executes, until one of the following happens:

• The code block hits a Ractor.yield call, in which case it waits for a different ractor to call
ractor.take, at which point it passes away the argument to yield and continues operation.

• The code block hits a Ractor.recieve call, in which case it waits to receive another call to
send, the arguments to send are the result of the recieve call, and then continues operation.

• The code block ends. The last expression value is available for one other ractor to retrieve
using take.

Let’s take a look at how ractors might be used to do the same word count example we just
did using fibers:

tut_threads/ractor_word_count.rb
reader = Ractor.new(name: "reader") do
File.foreach("testfile") do |line|
line.scan(/\w+/) do |word|
Ractor.yield(word.downcase)

end
end
nil

end

counter = Ractor.new(reader, name: "counter") do |source|
result = Hash.new(0)
while(word = source.take)
result[word] += 1

end
result

end

report erratum • discuss

Understanding Ractors • 203

http://media.pragprog.com/titles/ruby5/code/tut_threads/ractor_word_count.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

counts = counter.take
counts.keys.sort.each { |k| print "#{k}:#{counts[k]} " }

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

We’ve maintained the same structure of the code, there’s one ractor that is reading the file
and another ractor that is actually doing the word count.

Here’s more or less how this plays out, with the understanding that because this is parallel
code, the exact order may differ slightly.

First, we create the reader ractor. The block starts immediately (or is scheduled to start
immediately), and opens the file and scans the first line, at which point it blocks on Ractor.yield
with the first word scanned.

Moving down the file, the counter ractor is created, with—and this is important—the reader
as an argument. The counter block is now executed with the reader passed in as source. We
have to pass the ractor to the block because the ractor is isolated. The block inside the ractor
does not have access to the local variable reader.

Inside the counter ractor block, we build an empty hash, then a while loop on source.take. Each
time we call source.take, we grab the most recent value yielded by the reader, and the reader
continues forward until it blocks on the next yield call.

Eventually, the reader runs out of words in the file and hits the nil at the end of the block.
Subsequently, the last source.take returns nil and ends the while loop and the counter returns
the result.

After both blocks is the counter.take call, which will block the main ractor until the counter
ractor is ready to return a value. Since the counter ractor doesn’t yield anywhere, that call
waits until it exits, and then the final value is available to take. It’s a good thing we have
that take call blocking, because if we didn’t block on something in the main ractor, the code
would terminate and all the internal ractors would be stopped.

Having pulled that last value, we then print out the results.

And it works. The two ractors run in parallel. But I don’t really like that the reader is blocked
on every word, it seems like you’d rather allow the reader to get as far ahead as it can, and
let the counter catch up.

You can do that by reversing the direction of the interaction, like this:

tut_threads/ractor_word_count_flipped.rb
counter = Ractor.new(name: "counter") do
result = Hash.new(0)
while (word = Ractor.receive)
result[word] += 1

end
result

end

Ractor.new(counter, name: "reader") do |worker|
File.foreach("./testfile") do |line|
line.scan(/\w+/) do |word|
worker.send(word.downcase)

end

Chapter 12. Threads, Fibers, and Ractors • 204

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_threads/ractor_word_count_flipped.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end
worker.send(nil)

end

counts = counter.take
counts.keys.sort.each { |k| print "#{k}:#{counts[k]} " }

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

Same logic, same result. This time, though, we start the counter first, it creates its hash and
then blocks at Ractor.receive. Then we create the reading ractor, which takes the counter as
an argument, again because otherwise the ractor block would be isolated. Inside the block,
the reader opens the files and scans as before, but this time it uses send to pass each word
back to the counter without blocking. Note that in this case, we need to explicitly also send
nil at the end to terminate the loop.

The final two lines are the same, waiting on the counter to be finished, but overall, this version
of the code should block less and should allow the reader to get ahead of the worker if it
can.

How Ractors Pass Variables
We’ve hinted variables passed to and from ractors don’t behave the same way as regular
variable passing does in Ruby. The goal of the ractor implementation is to prevent ractors
from changing values that other ractors depend on. One way that is done is by preventing
ractors from having access to mutable variables that exist outside the ractor scope.

As we’ve already mentioned, ractors are isolated from the rest of their binding, variables
that would normally be in-scope for the block are not available inside the ractor.

Additionally, ractors apply special semantics to values that are passed to a ractor using send
or yield. The ractor world divides Ruby objects into “shareable” or “unsharable.”

Broadly, sharable objects are objects whose value can not be changed—immutable objects
and objects that have been frozen. Specifically, the following are all considered shareable:

• The special values true, false, and nil.
• Symbols
• “Small integers.” What’s a small integer? If you are familiar with Ruby before 2.4, it’s

an integer small enough to be represented as a Fixnum. For everybody else, it’s an integer
small enough to fit in one memory location, so on a 64-bit machine, 2^^62 - 1. (That’s
one bit for sign and one bit to mark it as an integer.)

• Instances of type Float, Complex, Rational, String, or Regexp or larger Integers if they have
been frozen.

• Instances of Class or Module – not instances of an individual class, instances of Class itself.
• Individual ractors.
• An instance of an object whose instance variables are all sharable.

Ruby provides the method Ractor.make_sharable(obj) which tries to make an arbitrary object
sharable by walking through all its attributes and freezing them all. With the keyword
argument copy: true it makes a copy of the object and returns the copy.

Sharable objects are shared when passed to a ractor, meaning that a reference to them is
passed along and both the sender and the receiver are still able to access the object. Unsharable

report erratum • discuss

Understanding Ractors • 205

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

objects are copied, unless you pass move: true to either Ractor.send or Ractor.yield. If you move
the unsharable object, then it’s available to the new ractor but critically, it’s no longer available
to the Ractor that sent it, attempting to access that variable after it moves will raise an
exception.

Conditional Reception
A ractor can be made to be picky about what it lets in the front door by using the Rac-
tor.receive_if method, which takes a block argument. If another ractor tries to send to a ractor
that is waiting on receive_if, the receiving ractor will call the block argument on the objects
sent. If the block returns a truthy value, then recieve_if returns the object just the same way
that plain ordinary recieve does. If the block returns a falsey value, the ractor continues to
wait. But the failing object stays at the head of the line, so if the ractor ever does get an object
that passes the block, all the failed objects are still in the entrance queue and are able to get
picked up by future receive calls in the ractor.

Waiting on Multiple Ractors
If you have multiple ractors you might be waiting on, and you want to respond to
whichever of them yields a value on the outgoing port first , you can use Ractor.select. The
argument to Ractor.select is an arbitrary number of ractors, as in Ractor.select(r1, r2, r3). The
value returned is a two object array, the first of which is the ractor that has put the value on
the port, and the second is the value itself, so r, val = Ractor.select(r1, r2, r3).

Now, there are a couple of wierdnesses here. First off, one of the Ractors in the argument
could be the Ractor making the call, as in Ractor.select(r1, Ractor.current). If the current ractor
is somehow the one that emits the value, then the select call still returns the value, but instead
of returning the ractor, it returns :receive.

Also, you can use Ractor.select to deal with multiple other ractors that you expect to take rather
than yield, in which case, our call needs to provide the value for the take call, which you do
with a yield_value keyword argument: Ractor.select(r1, r2, yield_value: 37). In the yield case, the
return values are :yield and nil. It’s frankly not clear why those aren’t two different methods.

You can slam shut either the entrance or exit doors with the close_incoming and close_outgoing
methods. Attempts to access a closed port on a ractor return an exception, as do attempts to
access the outgoing port of a ractor that has ended and returned its last value.

What’s Next
That covers the basics of threading in Ruby. We’ve talked about basic threads, using system
processes, fibers, and ractors. Now let’s look at how we can use testing to help ensure that
our code does what we expect.

Chapter 12. Threads, Fibers, and Ractors • 206

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 13

Testing Ruby Code
Automated testing has long been an important part of how Ruby developers validate their
code. Not only does testing ensure that the code behaves as expected, but the process of
writing tests can also expose weaknesses in the structure of the code. Ruby provides a core
library called minitest to make it easy to write automated tests. However, a more complex
and fully-featured library, RSpec, is also in extremely common use. The two tools have dif-
ferent terminology and slightly different focus. In this chapter, we’ll look at how these tools
are used for unit testing, which is testing that focuses on small chunks of code, typically
individual methods or branches within methods.

Why Unit Test?
It’s important to be able to test individual units for many reasons, one of which is that being
able to isolate code into testable units is useful for ongoing change and maintenance. Code
in one unit often relies on the correct operation of the code in other units. If one unit turns
out to contain bugs, then all the code that depends on that unit are potentially affected. This
is a big problem.

When you unit test this code as you write it, two things can happen. First, you are more
likely to find the bug while the code was still fresh in your mind. Second, because the unit
test was only interacting with the code you just wrote, when a bug does appear, you only
have to look through a handful of lines of code to find it, rather than doing archaeology on
the rest of the code base.

Unit testing helps developers write better code. It helps before the code is actually written,
because thinking about testing leads you naturally to create better, more decoupled designs.
It helps as you’re writing the code, because it gives you instant feedback on how accurate
your code is. And it helps after you’ve written code, both because it gives you the ability to
check that the code still works and because it helps others understand how to use your code.

Unit testing is a Good Thing.

Unit testing and dynamic languages such as Ruby go hand in hand. The flexibility of Ruby
makes writing tests easy, and the tests make it easier to verify that your code is working.
Once you get into the swing of it, you’ll find yourself writing a little code, writing a test or
two, verifying that everything is copacetic, and then writing some more code. You may even
find yourself writing the test before you write a little code.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Testing With Minitest
If all that seems a little abstract, let’s look at an example of how you use the minitest library
to write automated testing. We’ll start with a Roman numeral class. Our first pass at the
code is pretty simple: it just lets us create an object representing a certain number and display
that object in Roman numerals:

unittesting/romanbug.rb
This code has bugs
class Roman
MAX_ROMAN = 4999

def initialize(value)
if value <= 0 || value > MAX_ROMAN
fail "Roman values must be > 0 and <= #{MAX_ROMAN}"

end
@value = value

end

FACTORS = [
["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 90], ["l", 50], ["xl", 40],
["x", 10], ["ix", 9], ["v", 5], ["iv", 4],
["i", 1]

]

def to_s
value = @value
roman = ""
FACTORS.each do |code, factor|
count, value = value.divmod(factor)
roman << code unless count.zero?

end
roman

end
end

We could test this without a framework code by writing another plain Ruby script, like this:

unittesting/manual_romanbug.rb
require_relative "romanbug"

r = Roman.new(1)
fail "'i' expected" unless r.to_s == "i"

r = Roman.new(9)
fail "'ix' expected" unless r.to_s == "ix"

However, as the number of tests in a project grows, this kind of ad hoc approach can get
complicated to manage. The Ruby standard library comes with minitest, a framework orig-
inally written by Ryan Davis and the seattle.rb user group, that makes tests easier to write,
run, and manage.

The minitest testing framework is three facilities wrapped into a neat package:

• It gives you a way of expressing individual tests.
• It provides a framework for structuring the tests.

Chapter 13. Testing Ruby Code • 208

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/unittesting/romanbug.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/manual_romanbug.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• It gives you flexible ways of invoking the tests.

Assertions == Expected Results
Rather than have you write series of individual if or unless statements in your tests, the testing
framework allows you to define assertions that achieve the same thing. Although a number
of different styles of assertion exist, they all follow basically the same pattern. Each gives
you a way of specifying an expected result and a way of passing in the actual outcome. If
the actual value doesn’t match the expected value, the assertion outputs a nice message and
records the failure.

For example, we could rewrite our previous test of the Roman class using minitest. For now,
ignore the scaffolding code at the start and end, and just look at the assert_equal method:

unittesting/test_romanbug1.rb
require_relative "romanbug"
require "minitest/autorun"

class TestRoman < Minitest::Test
def test_simple
assert_equal("i", Roman.new(1).to_s)
assert_equal("ix", Roman.new(9).to_s)

end
end

produces:

Run options: --seed 60814
Running:

.
Finished in 0.000316s, 3164.5570 runs/s, 6329.1140 assertions/s.
1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

The first assertion says that we’re expecting the Roman number string representation of 1
to be "i," and the second test says we expect 9 to be "ix."

We can run the test by just running the file as a Ruby file—the minitest/autorun module will
automatically load and run our tests, more on that in a bit. Luckily for us, both expectations
are met, and the tracing reports that our tests pass.

Let’s add a few more tests:

unittesting/test_romanbug2.rb
require_relative "romanbug"
require "minitest/autorun"

class TestRoman < Minitest::Test
def test_simple
assert_equal("i", Roman.new(1).to_s)
assert_equal("ii", Roman.new(2).to_s)
assert_equal("iii", Roman.new(3).to_s)
assert_equal("iv", Roman.new(4).to_s)
assert_equal("ix", Roman.new(9).to_s)

end
end

produces:

Run options: --seed 32864

report erratum • discuss

Testing With Minitest • 209

http://media.pragprog.com/titles/ruby5/code/unittesting/test_romanbug1.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/test_romanbug2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Running:

F
Failure:
TestRoman#test_simple [code/unittesting/test_romanbug2.rb:7]:
Expected: "ii"
Actual: "i"

rails test code/unittesting/test_romanbug2.rb:5

Finished in 0.000465s, 2150.5376 runs/s, 4301.0753 assertions/s.
1 runs, 2 assertions, 1 failures, 0 errors, 0 skips

Uh-oh! The second assertion failed. The error message uses the fact that the assert knows
both the expected and actual values: it expected to get “ii” but instead got “i.” Looking at
our code, you can see a clear bug in to_s. If the count after dividing by the factor is greater
than zero, then we should output that many Roman digits. The existing code outputs just
one. The fix is easy, change the line roman << code unless count.zero? to roman << (code * count):

unittesting/roman3.rb
def to_s
value = @value
roman = ""
FACTORS.each do |code, factor|
count, value = value.divmod(factor)
roman << (code * count)➤

end
roman

end

Now let’s run our tests again:

unittesting/test_roman3.rb
require_relative "roman3"
require "minitest/autorun"
class TestRoman < Minitest::Test
def test_simple
assert_equal("i", Roman.new(1).to_s)
assert_equal("ii", Roman.new(2).to_s)
assert_equal("iii", Roman.new(3).to_s)
assert_equal("iv", Roman.new(4).to_s)
assert_equal("ix", Roman.new(9).to_s)

end
end

produces:

Run options: --seed 62554
Running:

.
Finished in 0.000349s, 2865.3295 runs/s, 14326.6476 assertions/s.
1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

Looking good. You can see there’s some duplication in the test, and you might be tempted
to address it by running each expected and actual value pair in a loop. We recommend
avoiding loops in tests, they are often hard to read, and hard to debug if the tests fail. Instead,

Chapter 13. Testing Ruby Code • 210

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/unittesting/roman3.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/test_roman3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

we recommend making the assertions as clear as possible, so we might re-write the test like
this:

unittesting/test_roman4.rb
require_relative "roman3"
require "minitest/autorun"

class TestRoman < Minitest::Test
def assert_roman_value(roman_numeral, arabic_numeral)
assert_equal(roman_numeral, Roman.new(arabic_numeral).to_s)

end

def test_simple
assert_roman_value("i", 1)
assert_roman_value("ii", 2)
assert_roman_value("iii", 3)
assert_roman_value("iv", 4)
assert_roman_value("ix", 9)

end
end

produces:

Run options: --seed 29380
Running:

.
Finished in 0.000339s, 2949.8525 runs/s, 14749.2626 assertions/s.
1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

We think this does a good job separating the boilerplate action of the comparison from the
data values we are trying to compare.

What else can we test? Well, the constructor of our Roman class checks that the number we
pass in can be represented as a Roman number, throwing an exception if it can’t. Let’s test
the exception:

unittesting/test_roman5.rb
require_relative "roman3"
require "minitest/autorun"

class TestRoman < Minitest::Test
def assert_roman_value(roman_numeral, arabic_numeral)
assert_equal(roman_numeral, Roman.new(arabic_numeral).to_s)

end

def test_simple
assert_roman_value("i", 1)
assert_roman_value("ii", 2)
assert_roman_value("iii", 3)
assert_roman_value("iv", 4)
assert_roman_value("ix", 9)

end

def test_range
no exception for these two...
Roman.new(1)
Roman.new(4999)
but an exception for these
assert_raises(RuntimeError) { Roman.new(0) }

report erratum • discuss

Testing With Minitest • 211

http://media.pragprog.com/titles/ruby5/code/unittesting/test_roman4.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/test_roman5.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

assert_raises(RuntimeError) { Roman.new(5000) }
end

end

produces:

Run options: --seed 16448
Running:

..
Finished in 0.000409s, 4889.9755 runs/s, 17114.9144 assertions/s.
2 runs, 7 assertions, 0 failures, 0 errors, 0 skips

We could do more testing on our Roman class, but let’s move on. We’ve only scratched the
surface of the set of assertions available inside the testing framework. For example, for every
positive assertion, such as assert_equal, there’s a negative refutation (in this case refute_equal
).

The final parameter to every assertion is an optional message that will be output before any
failure message. This normally isn’t needed, because the failure messages are normally
pretty reasonable. The one exception is the assertion refute_nil, where the default message
“Expected nil to not be nil” doesn’t help much. In that case, you may want to add some
annotation of your own. (This code assumes the existence of some kind of User class.)

require 'minitest/autorun'
class ATestThatFails < Minitest::Test
def test_user_created
user = User.find(1)
refute_nil(user, "User with ID=1 should exist")

end
end

produces:

Run options: --seed 2995
Running:

F
Failure:
ATestThatFails#test_user_created [prog.rb:11]:
User with ID=1 should exist.
Expected nil to not be nil.

rails test tmp/prog.rb:9

Finished in 0.000401s, 2493.7656 runs/s, 2493.7656 assertions/s.
1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

Structuring Tests
Earlier we asked you to ignore the scaffolding around our tests. Now it’s time to look at it.

You include the testing framework facilities in your unit by including minitest/autorun.

require "minitest/autorun"

Theminitest/autorunmodule includesminitest itself, which is most of the features we’ve talked
about so far. It also includes an alternate minitest/spec syntax that is more like RSpec we’re
not going to talk about in this book (if you want that style of syntax, we recommend actually

Chapter 13. Testing Ruby Code • 212

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

using RSpec), and theminitest/mockmock object package. Finally, it callsMinitest.autorun, which
starts the test runner, and which is why our test files have been executing tests when invoked
just as plain Ruby files.

Unit tests are often combined into high-level groupings, called test cases. The test cases gen-
erally contain all the tests relating to a particular facility or feature—in Ruby, often each
application class will have one associated test case. Within the test case, you’ll typically want
to organize your assertions into separate test methods, where each method contains the
assertions for one type of test; one method could check regular number conversions, another
could test error handling, and so on. (We’ll see later that RSpec allows you to structure tests
a little bit differently.)

The classes that represent test cases must be subclasses of Minitest::Test. The methods that
hold the assertions must have names that start with test_. This is important: the testing
framework dynamically searches the test methods to find tests to run, and only methods
whose names start with test_ are eligible.

Quite often you’ll find all the test methods within a test case start by setting up a particular
scenario. Each test method then probes some aspect of that scenario. Finally, each method
may then tidy up after itself. For example, we could be testing a class that extracts jukebox
playlists from a database. (The playlist_builder file contains a DBI class that simulates a
database connection for our purposes here.)

unittesting/test_playlist_builder1.rb
require "minitest/autorun"
require_relative "playlist_builder"

class TestPlaylistBuilder < Minitest::Test
def test_empty_playlist
database = DBI.new("DBI:mysql:playlists")
playlist_builder = PlaylistBuilder.new(database)
assert_empty(playlist_builder.playlist)
playlist_builder.close

end

def test_artist_playlist
database = DBI.new("DBI:mysql:playlists")
playlist_builder = PlaylistBuilder.new(database)
playlist_builder.include_artist("krauss")
refute_empty(playlist_builder.playlist, "Playlist shouldn't be empty")
playlist_builder.playlist.each do |entry|
assert_match(/krauss/i, entry.artist)

end
playlist_builder.close

end

def test_title_playlist
database = DBI.new("DBI:mysql:playlists")
playlist_builder = PlaylistBuilder.new(database)
playlist_builder.include_title("midnight")
refute_empty(playlist_builder.playlist, "Playlist shouldn't be empty")
playlist_builder.playlist.each do |entry|
assert_match(/midnight/i, entry.title)

end
playlist_builder.close

end

report erratum • discuss

Structuring Tests • 213

http://media.pragprog.com/titles/ruby5/code/unittesting/test_playlist_builder1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

...
end

produces:

Run options: --seed 20064
Running:

...
Finished in 0.000439s, 6833.7130 runs/s, 104783.5992 assertions/s.
3 runs, 46 assertions, 0 failures, 0 errors, 0 skips

Each test starts by connecting to a database and creating a new playlist builder. Each test
ends by disconnecting from the database. The idea of using a real database in unit tests is
questionable, because unit tests are supposed to be fast running, context independent, and
easy to set up, but it illustrates a point. (And that said, Ruby on Rails makes database calls
in its unit tests all the time.)

We can extract all this common code into setup and teardown methods. Within a Minitest::Test
class, if a method called setup exists, it will be run before each and every test method, and if
a method called teardown exists, it will be run after each test method finishes. The setup and
teardown methods bracket each test, rather than being run only once for the entire test case.
This is shown in the code that follows:

unittesting/test_playlist_builder2.rb
require "minitest/autorun"
require_relative "playlist_builder"

class TestPlaylistBuilder < Minitest::Test
def setup
@database = DBI.new("DBI:mysql:playlists")
@playlist_builder = PlaylistBuilder.new(@database)

end

def teardown
@playlist_builder.close

end

def test_empty_playlist
assert_empty(@playlist_builder.playlist)

end

def test_artist_playlist
@playlist_builder.include_artist("krauss")
refute_empty(@playlist_builder.playlist, "Playlist shouldn't be empty")
@playlist_builder.playlist.each do |entry|
assert_match(/krauss/i, entry.artist)

end
end

def test_title_playlist
@playlist_builder.include_title("midnight")
refute_empty(@playlist_builder.playlist, "Playlist shouldn't be empty")
@playlist_builder.playlist.each do |entry|
assert_match(/midnight/i, entry.title)

end
end

...

Chapter 13. Testing Ruby Code • 214

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/unittesting/test_playlist_builder2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

produces:

Run options: --seed 16335
Running:

...
Finished in 0.000471s, 6369.4268 runs/s, 97664.5437 assertions/s.
3 runs, 46 assertions, 0 failures, 0 errors, 0 skips

Inside the teardown method, you can detect whether the preceding test succeeded with the
passed? method.

Creating Mock Objects in Minitest
Minitest has the ability to allow you to create mock objects, which are objects that simulate
the API of an existing object in the system, typically providing a canned response instead
of a more expensive or fragile real response. A minitest mock object can be verified, meaning
it will raise a failure if methods you expected to be called were not called during the test.
Using these mock object expectations allows for a style of testing where instead of testing
the result of a method by verifying its output, you test the behavior of the method by verifying
that it makes expected calls to other methods.

In minitest, a mock object is created like any other Ruby object; you then add the methods
you wish the mock to respond to via the expect method. At the end, you can optionally test
that all expected methods were called with verify.

For example, we can re-write our playlist builder test so that we don’t need to create a “real”
DBI instance (the word real is in scare quotes because for this contrived example, even the
DBI instance in the previous code was faked…). Behind the scenes, our playlist builder calls
connect and disconnect on the DBI instance. We can instead create a mock object:

unittesting/test_playlist_builder_mock.rb
require "minitest/autorun"
require_relative "playlist_builder"

class TestPlaylistBuilder < Minitest::Test
def setup
@database = Minitest::Mock.new
@database.expect(:connect, true)
@database.expect(:disconnect, false)
@playlist_builder = PlaylistBuilder.new(@database)

end

def teardown
@database.disconnect
@database.verify

end

def test_empty_playlist
assert_empty(@playlist_builder.playlist)

end

def test_artist_playlist
@playlist_builder.include_artist("krauss")
refute_empty(@playlist_builder.playlist, "Playlist shouldn't be empty")
@playlist_builder.playlist.each do |entry|

report erratum • discuss

Creating Mock Objects in Minitest • 215

http://media.pragprog.com/titles/ruby5/code/unittesting/test_playlist_builder_mock.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

assert_match(/krauss/i, entry.artist)
end

end

def test_title_playlist
@playlist_builder.include_title("midnight")
refute_empty(@playlist_builder.playlist, "Playlist shouldn't be empty")
@playlist_builder.playlist.each do |entry|
assert_match(/midnight/i, entry.title)

end
end

...
end

produces:

Run options: --seed 20654
Running:

...
Finished in 0.000457s, 6564.5514 runs/s, 100656.4555 assertions/s.
3 runs, 46 assertions, 0 failures, 0 errors, 0 skips

Now, the setup method is creating the @database as a Minitest::Mock and then setting the
expectation that the test will call connect and disconnect on the object (which is done behind
the scenes by the PlaylistBuilder). The second argument to each method is a value returned
when the mocked method is called. At the end of each test, in the teardown method we verify
the mock object, which raises a failure if both expectations are not met.

Minitest mock objects can get more complicated. A mock object can take an optional third
argument that is an array of arguments, and an optional block argument. If those arguments
are used, then the mock object only accepts the method call if the arguments match. If not,
it raises a MockExpectationError when called with arguments that don’t match. If you want to
call the mock object multiple times, you need to have multiple expect calls, which are used
in the order defined.

It’s common to want to override one method on an existing object rather than create an entire
mock object (this is not necessarily recommended, but it is common). In minitest, you can
do this with the stub method, which is added to Object, so it’s available to all objects.

The first argument to stub is the name of the method you want to intercept, as a symbol.
The second argument is the value you want returned, or you can pass a block argument.
The return value of the stub is either:

• The value returned by the block if there is a block.
• The result of second_arg.call if the second argument responds to call, usually meaning

that it is a Proc or lambda.
• The second argument itself if neither of the first two options are true.

So, we could re-write the setup of that test using stub as follows:

def setup
@database = DBI.new("DBI:mysql:playlists")
@database.stub(:connect, true)
@database.stub(:disconnect, true)
@playlist_builder = PlaylistBuilder.new(@database)

end

Chapter 13. Testing Ruby Code • 216

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

This version calls stub to make calls to connect or disconnect be handled by the stubbing func-
tionality to return true rather than making the actual method call.

Stubs don’t get verified, so they are most useful for replacing an expensive or flaky method
call with a canned value for use as part of larger logic.

If you want more complex mock object behavior, the longstanding Ruby library Mocha1 is
the next step up in using mock objects in minitest.

Organizing and Running Tests
The test cases we’ve seen so far are all runnable Ruby programs. If, for example, the test case
for the Roman class was in a file called test_roman.rb, we could run the tests from the command
line using this:

$ ruby test_roman.rb
Run options: --seed 45578
Running:
..
Finished in 0.000362s, 5524.8619 runs/s, 19337.0166 assertions/s.
2 runs, 7 assertions, 0 failures, 0 errors, 0 skips

Minitest is clever enough to run the tests even though there’s no main program. It collects
all the test case classes and runs each in turn.

If we want, we can ask it to run a particular set of test methods based on a naming pattern:

$ ruby test_roman.rb -n test_range
Run options: -n test_range --seed 50771
Running:
.
Finished in 0.000322s, 3105.5901 runs/s, 6211.1801 assertions/s.
1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

In this case, minitest will run test methods whose names exactly match the text passed to -n.
That’s pretty restrictive, so if you want to run more than one test based on a naming pattern,
if you include any regular expression punctuation in the argument, minitest will match the
test name against the regular expression:

$ ruby test_roman.rb -n /range/
Run options: -n /range/ --seed 8409
Running:
.
Finished in 0.000328s, 3048.7805 runs/s, 6097.5610 assertions/s.
1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

This last capability is a great way of grouping your tests. Use meaningful names, and you’ll
be able to run (for example) all the shopping-cart-related tests by running tests with -n /cart/.

Where to Put Tests
Once you get into unit testing, you may well find yourself generating as much test code as
production code. All of those tests have to live somewhere. The problem is that if you put

1. https://mocha.jamesmead.org

report erratum • discuss

Organizing and Running Tests • 217

https://mocha.jamesmead.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

them alongside your regular production code source files, your directories start to get
bloated—effectively you end up with two files for every production source file.

A common solution is to have a test/ directory where you place all your test source files. This
directory is then placed parallel to the directory containing the code you’re developing. For
example, for our Roman numeral class, we may have this:

roman/
lib/
roman.rb
OTHER FILES

test/
test_roman.rb
OTHER TESTS

OTHER STUFF

This works well as a way of organizing files but leaves you with a small problem: how do
you tell Ruby where to find the library files that are being tested? For example, if our
TestRoman test code is in a test/ subdirectory, how does Ruby know where to find the roman.rb
source file that we are trying to test?

An option that doesn’t work reliably is to build the path into require statements in the test
code and run the tests from the test/ subdirectory:

require 'test/unit'
require '../lib/roman'

class TestRoman < Minitest::Test
...

end

This doesn’t work in general because our roman.rb file may itself require other source files
in the library we’re writing. The roman.rb file will load them using require (without the leading
../lib/), and because they aren’t in Ruby’s $LOAD_PATH, they won’t be found. Our test just won’t
run. A second, less immediate problem is that we won’t be able to use these same tests to
test our classes once installed on a target system, because then they’ll be referenced simply
using require "roman".

You could do this using require_relative '../lib/roman', which would be more stable and doesn’t
assume anything about the load path. A better solution is to assume that your Ruby program
is packaged according to the conventions we’ll be discussing in Chapter 15, Ruby Gems, on
page 251. In this arrangement, the top-level lib directory of your application is assumed to be
in Ruby’s load path by all other components of the application. Your test code would then
be as follows:

require 'minitest/autorun'
require 'roman'

class TestRoman < Minitest::Test
...

end

And you’d run it using this:

$ ruby -I path/to/app/lib path/to/app/test/test_roman.rb

Chapter 13. Testing Ruby Code • 218

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The normal case, where you’re already in the application’s directory, would be as follows:

$ ruby -I lib test/test_roman.rb

This would be a good time to investigate using Rake to automate your testing (see Using
the Rake Build Tool, on page 245).

Test Suites
After a while, you’ll grow a decent collection of test cases for your application. You may
well find that these tend to cluster: one group of cases tests a particular set of functions, and
another group tests a different set of functions. If so, you can group those test cases together
into test suites, letting you run them all as a group.

This is easy to do—just create a Ruby file that requiresminitest/autorun and then requires each
of the files holding the test cases you want to group. This way, you build yourself a hierarchy
of test material.

• You can run individual tests by name.
• You can run all the tests in a file by running that file.
• You can group a number of files into a test suite and run them as a unit.
• You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that you control,
testing just one method or testing the entire application.

Most people seem to use test_ as the test-case filename prefix, a sample test suite file might
look like this.

require 'minitest/autorun'
require_relative 'test_connect'
require_relative 'test_query'
require_relative 'test_update'
require_relative 'test_delete'

Now, if you run Ruby on the this file, you execute the test cases in the four files you’ve
required.

Testing with RSpec
The minitest framework has a lot going for it. It is simple and it is compatible in style with
frameworks from other languages (such as JUnit for Java and pytest for Python).

RSpec has different things going for it. It’s feature-rich (which some would say is another
way of saying “complicated”), and it has a different vocabulary for discussing testing. It also
has a different syntax; although, it’s one that has influenced the design of other testing tools
including the Jasmine and Jest JavaScript testing frameworks.

In RSpec, the focus is not on assertions. Instead, you write expectations. RSpec is very much
concerned with driving the design side of things. As a result, the vocabulary of
RSpec—expectation, specification—are all associated with ways you might reason about
your code before you write it. A “spec” is something you’d write before coding, an “assertion”
is something you use to describe code that already exists.

report erratum • discuss

Testing with RSpec • 219

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

To be clear, you can write RSpec after you write your code, just as you can write minitest
before you write your code. The design goal of RSpec, however, is to encourage thinking
about tests as a way to influence the design of code yet to be written, and to express those
tests in a way that is closer to natural language. Then, as you fill in the code, the specs can
continue to act as tests that validate that your code meets your expectations.

Let’s start with a simple example of RSpec in action.

Starting to Score Tennis Matches
The scoring system used in lawn tennis originated in the Middle Ages. As players win suc-
cessive points, their scores are shown as 15, 30, and 40. The next point is a win unless your
opponent also has 40. If you’re both tied at 40, then different rules apply—the first player
with a clear two-point advantage is the winner. Some say the 0, 15, 30, 40 system is a corrup-
tion of the fact that scoring used to be done using the quarters of a clock face. Us, we just
think those medieval folks enjoyed a good joke.

We want to write a class that handles this scoring system. Let’s use RSpec specifications to
drive the process. We install RSpec with gem install rspec, or place it in our Gemfile (see Chapter
15, Ruby Gems, on page 251). We’ll then create our first specification file:

unittesting/bdd/1/ts_spec.rb
RSpec.describe "TennisScorer" do
describe "basic scoring" do
it "starts with a score of 0-0"
it "makes the score 15-0 if the server wins a point"
it "makes the score 0-15 if the receiver wins a point"
it "makes the score 15-15 after they both win a point"

end
end

This file contains nothing more than a description of the beginning of how a tennis scoring
class that we haven’t yet written should behave. Inside declaration of the class is a grouping
(describe "basic scoring"), and inside that is a set of four expectations, all of which start with it
. We can run this specification using the rspec command.

$ rspec ts_spec.rb

Pending: (Failures listed here are expected and do not affect your suite's status)
1) TennisScorer basic scoring starts with a score of 0-0

Not yet implemented
./ts_spec.rb:3

2) TennisScorer basic scoring makes the score 15-0 if the server wins a point
Not yet implemented
./ts_spec.rb:4

3) TennisScorer basic scoring makes the score 0-15 if the receiver wins a point
Not yet implemented
./ts_spec.rb:5

4) TennisScorer basic scoring makes the score 15-15 after they both win a point
Not yet implemented
./ts_spec.rb:6

Finished in 0.0023 seconds (files took 0.10149 seconds to load)
4 examples, 0 failures, 4 pending

Chapter 13. Testing Ruby Code • 220

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/1/ts_spec.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

That’s pretty cool. Executing the tests echoes our expectations back at us, telling us that each
has yet to be implemented. Fixing things is just a few keystrokes away. Let’s start by meeting
the first expectation—when a game starts, the score should be 0 to 0. We’ll start by fleshing
out the spec:

unittesting/bdd/2/ts_spec.rb
require_relative "tennis_scorer"

RSpec.describe TennisScorer do
describe "basic scoring" do
it "starts with a score of 0-0" do
ts = TennisScorer.new
expect(ts.score).to eq("0-0")

end

it "makes the score 15-0 if the server wins a point"
it "makes the score 0-15 if the receiver wins a point"
it "makes the score 15-15 after they both win a point"

end
end

Our tests assume that we have a class TennisScorer, both in the line of code that creates an
instance, but also in the top line of code RSpec.describe TennisScorer. Inside that, we have a
second call to describe that groups our expectations. Our first expectation now has a code
block associated with it. Inside that block, we create a TennisScorer and then use RSpec’s
expectation syntax to validate that the score starts out at “0-0”. This particular aspect of
RSpec syntax probably generates the most controversy—some people love it, others find it
awkward. Either way, expect(ts.score).to eq("0-0") is equivalent to assert_equal("0-0", ts.score).

We can run our tests at this point with the same command, and we’ll see the test fail because
the TennisScorer class doesn’t exist.

Before we create that class and pass the test, let’s take a moment to explain what RSpec is
doing here. RSpec is an example of a Domain Specific Language (DSL), an alternate syntax
built on Ruby with the goal of making it easier to express the intent of the test. Like a lot of
Ruby DSL’s, RSpec takes advantage of Ruby’s flexibility to result in code that doesn’t look
exactly like regular Ruby.

When trying to understand RSpec, it’s helpful to reinstate full parenthesis and implicit self
message receivers as a guide to what’s actually happening. Here’s what that looks like for
our current spec:

unittesting/bdd/2/ts_spec_paren.rb
require_relative "tennis_scorer"

RSpec.describe(TennisScorer) do
self.describe("basic scoring") do
self.it("starts with a score of 0-0") do
ts = TennisScorer.new
self.expect(ts.score).to(self.eq("0-0"))

end

self.it("makes the score 15-0 if the server wins a point")
self.it("makes the score 0-15 if the receiver wins a point")
self.it("makes the score 15-15 after they both win a point")

end
end

report erratum • discuss

Testing with RSpec • 221

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/2/ts_spec.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/2/ts_spec_paren.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

With all the parentheses, the structure of the code becomes more familiar. The top line shows
that describe is a method of an object named RSpec, and that the inner describe and it lines are
also methods with block arguments. There’s actually an important part of how this fits
together that we haven’t discussed (it’s a method called instance_eval, which is discussed in
Chapter 22, The Ruby Object Model and Metaprogramming, on page 371), but the basic idea
is that RSpec takes the blocks that are arguments to describe and it, holds on to them, and
then invokes them later in order to run the spec.

You can also see that the actual expectation is also just a set of method calls. The expect
method is called with an object as an argument. The result of that method is passed the to
method, which itself takes an argument that is generated by calling eq. The result of the call
to eq is a matcher, and RSpec defines a series of matchers that interact with the to method (or
its sibling method not_to) to determine whether the expectation is fulfilled or not.

We’ll set up our TennisScorer class, but only enough to let it satisfy this assertion:

unittesting/bdd/2/tennis_scorer.rb
class TennisScorer
def score
"0-0"

end
end

Now we can run our spec again:

$ rspec ts_spec.rb
.***
Pending: (Failures listed here are expected and do not affect your suite's status)
1) TennisScorer basic scoring makes the score 15-0 if the server wins a point

Not yet implemented
./ts_spec.rb:10

2) TennisScorer basic scoring makes the score 0-15 if the receiver wins a point
Not yet implemented
./ts_spec.rb:11

3) TennisScorer basic scoring makes the score 15-15 after they both win a point
Not yet implemented
./ts_spec.rb:12

Finished in 0.0032 seconds (files took 0.05054 seconds to load)
4 examples, 0 failures, 3 pending

Now we have only three pending specs; the first one has been satisfied.

Let’s write the next couple of specs (I’ve added a new one for an error case):

unittesting/bdd/3/ts_spec.rb
require_relative "tennis_scorer"

RSpec.describe TennisScorer do
describe "basic scoring" do
it "starts with a score of 0-0" do
ts = TennisScorer.new
expect(ts.score).to eq("0-0")

end

it "makes the score 15-0 if the server wins a point" do
ts = TennisScorer.new
ts.give_point_to(:server)

Chapter 13. Testing Ruby Code • 222

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/2/tennis_scorer.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/3/ts_spec.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

expect(ts.score).to eq("15-0")
end

it "raises an error if it doesn't know the player" do
ts = TennisScorer.new
expect { ts.give_point_to(:referee) }.to raise_error(RuntimeError)

end

it "makes the score 0-15 if the receiver wins a point"
it "makes the score 15-15 after they both win a point"

end
end

This won’t pass yet, because our TennisScorer class doesn’t implement a give_point_to method.
Let’s rectify that. Our code isn’t finished, but now the existing specs will pass:

unittesting/bdd/3/tennis_scorer.rb
class TennisScorer
PLAYERS = %i[server receiver]

def initialize
@score = {server: 0, receiver: 0}

end

def score
"#{@score[:server] * 15}-#{@score[:receiver] * 15}"

end

def give_point_to(player)
raise "Unknown player #{player}" unless PLAYERS.include?(player)
@score[player] += 1

end
end

Again, we’ll run the file:

$ rspec ts_spec.rb
...**
Pending: (Failures listed here are expected and do not affect your suite's status)
1) TennisScorer basic scoring makes the score 0-15 if the receiver wins a point

Not yet implemented
./ts_spec.rb:21

2) TennisScorer basic scoring makes the score 15-15 after they both win a point
Not yet implemented
./ts_spec.rb:22

Finished in 0.00292 seconds (files took 0.04996 seconds to load)
5 examples, 0 failures, 2 pending

We’re now meeting two of the four initial expectations. But, before we move on, note there’s
a bit of duplication in the specification: all of our expectations create a new TennisScorer object.
We can fix that by using a before method in the specification. This works a bit like the setup
method in minitest, allowing us to run code before expectations are executed. Let’s use this
feature and, at the same time, build out the last two expectations:

unittesting/bdd/4/ts_spec.rb
require_relative "tennis_scorer"

RSpec.describe TennisScorer do
describe "basic scoring" do

report erratum • discuss

Testing with RSpec • 223

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/3/tennis_scorer.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/4/ts_spec.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

before(:example) do
@ts = TennisScorer.new

end

it "starts with a score of 0-0" do
expect(@ts.score).to eq("0-0")

end

it "makes the score 15-0 if the server wins a point" do
@ts.give_point_to(:server)
expect(@ts.score).to eq("15-0")

end

it "raises an error if it doesn't know the player" do
expect { @ts.give_point_to(:referee) }.to raise_error(RuntimeError)

end

it "makes the score 0-15 if the receiver wins a point" do
@ts.give_point_to(:receiver)
expect(@ts.score).to eq("0-15")

end

it "makes the score 15-15 after they both win a point" do
@ts.give_point_to(:receiver)
@ts.give_point_to(:server)
expect(@ts.score).to eq("15-15")

end
end

end

Let’s run it:

$ rspec ts_spec.rb
.....
Finished in 0.00257 seconds (files took 0.0524 seconds to load)
5 examples, 0 failures

RSpec gives us an alternative, preferred, way of setting up variables that are conditions for
our tests. The letmethod creates what looks like a variable whose value is given by evaluating
a block. This lets us write the following:

unittesting/bdd/5/ts_spec.rb
require_relative "tennis_scorer"

RSpec.describe TennisScorer do
describe "basic scoring" do
let(:ts) { TennisScorer.new }

it "starts with a score of 0-0" do
expect(ts.score).to eq("0-0")

end

it "makes the score 15-0 if the server wins a point" do
ts.give_point_to(:server)
expect(ts.score).to eq("15-0")

end

it "raises an error if it doesn't know the player" do
expect { ts.give_point_to(:referee) }.to raise_error(RuntimeError)

end

Chapter 13. Testing Ruby Code • 224

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/5/ts_spec.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

it "makes the score 0-15 if the receiver wins a point" do
ts.give_point_to(:receiver)
expect(ts.score).to eq("0-15")

end

it "makes the score 15-15 after they both win a point" do
ts.give_point_to(:receiver)
ts.give_point_to(:server)
expect(ts.score).to eq("15-15")

end
end

end

The let block is only evaluated when the associated variable is used, and then the block is
evaluated once, and further uses of that variable use the stored value from the first evaluation.

We’re going to stop here, but I suggest that you might want to take this code and continue
to develop it. Write expectations such as these:

it "is 40-0 after the server wins three points"
it "is W-L after the server wins four points"
it "is L-W after the receiver wins four points"
it "is Deuce after each wins three points"
it "is Advantage-server after each wins three points and the server gets one more"

RSpec and Matchers
In the previous code, we kind of ran right past RSpec’s matchers—lines like expect(@ts.score).to
eq("15-0"). RSpec has a rich syntax of matchers to cover the same ground that minitest does
with different assertions.

We’ve already seen eq, but that matcher is a little unusual. Many of RSpec’s matchers start
with be, as with this set of matchers that cover basic logic:

expect(value).to be_truthy
expect(value).to be_falsey
expect(value).to be_an_instance_of(Product)
expect(value.price).to be > 10
expect(value.price).to be_between(5, 15)

You can substitute any Ruby comparison operator instead of the greater than symbol in be
>.

RSpec also provides matchers for structured data, like objects, arrays, hashes, and strings:

expect(array).to contain_exactly(:a, :b, :c)

expect(hash).to include(key: value)

expect(string).to start_with("abc")
expect(string).to end_with("xyz")

expect(instance).to have_attributes(color: "blue")

expect(array_string_or_hash).to include("value")

report erratum • discuss

Testing with RSpec • 225

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In addition, RSpec has a generic matcher match, which can be applied to arrays, strings, or
hashes. Typically the argument to match is a pattern and the expectation passes if the
expected value fits the pattern. You can use other RSpec matchers to fill part of the pattern.

Some examples:

expect(string).to match(/regex/)
expect(array).to match([3, 5])
expect(hash).to match(color: a_string_starting_with("b"))

The last example shows that RSpec offers aliases for most of its matchers so they read more
like natural language when used internally, so “a_string_starting_with” is an alias for “starts
_with”. This is where people’s opinions about RSpec start to split—some people find this
kind of linguistic wordplay elegant and clever, others find it confusing and overly compli-
cated.

Which is a great lead in to RSpec’s dynamic matcher syntax.

Often, an object has boolean methods that you want to test. In Ruby, the community standard
is to end boolean methods with a ? as in: paperback?.

class Book
def paperback?
type == :paper

end
end

You can test this method in RSpec using normal RSpec syntax, which would look something
like this:

expect(book.paperback?).to be_truthy

And that’s fine, it works. But if you read it out loud it sounds weird—more like how com-
puters talk and not like how people talk. What you might want is to be able to write this:

expect(book).to be_a_paperback

Read that out loud, and it sounds like natural language.

So, in order to make that work in RSpec, you need to do… nothing. It already works.

When RSpec sees a matcher that starts with be, be_a, or be_an, it does some parsing on the
name of the matcher and looks for a method in the object under test. If the matcher has no
arguments, it looks for a predicate method that ends in a question mark, so expect(book).to
be_a_paperback, looks for book.paperback? and failing that, book.paperbacks?. If the matcher has
arguments, it looks for a regular method, so expect(book).to be_published_at(Date.today), would
look for book.published_at(Date.today). RSpec will do the same thing with have and has. The
matcher expect(book).to have_cover will look for book.has_cover?, while expect(book).to
have_author("Dave"), will look for book.has_author("Dave").

There are also a set of matchers that take a block, the general structure is expect { SOMETHING
}.to MATCHER. The most common is probably expect { }.to raise_error(arg), where the argument
is usually a Ruby exception class and the matcher passes if the block raises the expected
error. The argument could also be a string or regular expression matching the error message.

Chapter 13. Testing Ruby Code • 226

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

There are also a series of matchers based on expect { BLOCK 1 }.to change { BLOCK 2 }. The way
this works is, RSpec runs block 2 and stores the value, then runs block 1, then checks block
2 again and the matcher passes if block 2’s value has changed. You can chain additional
methods to the end if you want to specify details, as in expect { book.publish! }.to change {
book.publication_date }.from(nil).to(Date.today).

There’s a lot more to RSpec matchers, including the ability to create your own. For more
information, see the book Effective Testing with RSpec 3 by Myron Marston and Ian Dees.

RSpec and Mocks
In addition to minitest, RSpec also allows you to create mock and stub objects, and has a lot
of features available by default. Here’s an overview of the most common.

In RSpec, the generic term for a fake object is test double, an object that stands in for another
object, by analogy to “stunt double.” The simplest way to create one is by using the method
double. You can create the double and assign it a method to respond to using the RSpec
method allow:

obj = double
allow(obj).to receive(:cost).and_return("cheap")
allow(obj).to receive(:name).and_return("banana")
obj.cost
obj.name

If you pass multiple arguments to and_return you specify responses for multiple times that
the method is called. You can limit the arguments under which the double is invoked by
chaining in .with, as in allow(obj).to receive(:availability).with("January").and_return(true).

You can define multiple responses at once with the receive_messages method, that takes a
hash—keys become the methods to respond to, values are the fake values returned:

obj = double
allow(obj).to receive_messages(cost: "cheap", name: "banana")
obj.cost
obj.banana

Or you can use a shortcut by passing keyword arguments directly to double:

obj = double(cost: "cheap", name: "banana")
obj.cost
obj.banana

In minitest, we talked about validating mock objects by having the test fail if the method
being faked is not called during the test. In RSpec, you manage this with the expect method.

You can call expect on a double before the main action of the spec, in this case expect is an
exact replacement for allow:

obj = double
expect(obj).to receive(:cost).and_return("cheap")
expect(obj).to receive(:name).and_return("banana")
obj.cost
obj.banana

report erratum • discuss

Testing with RSpec • 227

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The expect method behaves the same as allow except that at the end of the spec RSpec addi-
tionally and automatically validates whether the expected methods have been called. If not,
it fails the spec.

A downside of this mechanism is that the expectation happens at the beginning of the spec,
but the validation happens at the end, and only implicitly. This can make the spec hard to
read. An alternative is to use a slightly different form of expect at the end of the spec:

obj = double
allow(obj).to receive(:cost).and_return("cheap")
obj.cost
expect(obj).to have_received(:cost)

The allow and expect constructs in RSpec are powerful. You can even use them on objects that
are not test doubles to stub a particular method on an existing object:

kermit = Muppet.new
allow(kermit).to receive(:greeting).and_return("Hi ho")

A potential problem with test doubles is that the API of the underlying object might change,
but the test, with its stubbed method blissfully continues to pass. RSpec offers some protection
from that with the instance_double variation. An instance_double call takes a class as an argument:

fake_product = instance_double(Product)
allow(fake_product).to receive(:name).and_return("pretzel")

Now, when you call allow or expect with the instance double as an argument, RSpec checks
to see if the class in question actually defines the method you are stubbing. (There’s a similar
RSpec creator, class_double for class methods rather than instance methods.) If the method
doesn’t exist, RSpec raises an error at the point of the declaration.

This only scratches the surface of RSpec’s mock package.

What’s Next
In this chapter, we covered Ruby’s two most commonly used test frameworks: minitest and
RSpec. Which should you use? Well, if you are working on a project that already uses one
of them, we recommend sticking with that one. There’s not so much difference between the
two that its worth re-writing all your tests.

If you are starting a new project, consider whether you like RSpec’s syntax. RSpec is probably
more widely used, but there are still some very prominent Ruby projects that use minitest,
including Ruby on Rails. RSpec has a higher initial complexity, but is also more flexible and
has more available functionality out of the box. Ultimately, though, it’s a question of which
syntax you like better and will get you to write more tests.

We’ve finished our tutorial of the Ruby language, and now its time to widen our view and
take a look at the larger Ruby tool ecosystem.

Chapter 13. Testing Ruby Code • 228

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Part II

Ruby in Its Setting

Ruby isn’t just a programming language. It’s an entire ecosystem
of tools that enables you to leverage the language and make it
valuable for a variety of different tasks in a variety of different
contexts. These tools include the Ruby command-line program
itself, the Ruby Gems tool for including libraries, and tools for
interacting with and debugging Ruby. Ruby also has support for
documentation, use in various editors and in different operating
systems, and runtime versions that are optimized for performance
in different settings.

CHAPTER 14

Ruby from the Command Line
If you are using Ruby as a scripting language, you’ll be starting it from the command line.
In this chapter, we’ll look at how to use Ruby as a command-line tool, and how to interact
with your operating system environment. The two most common ways for a Ruby program
to kick off from the command line are with the Ruby interpreter itself and with Rake, a
utility that makes it easy to define a series of interrelated tasks. You also might want to create
your own command-line programs, and Ruby can help with that as well.

Please note that some of the details of this chapter only apply to Unix-based systems like
Linux, MacOS, and WSL.

Calling the Ruby Command
The most direct way to start the Ruby interpreter and run a Ruby program is by calling the
ruby command from the command line. Regardless of the system in which Ruby is deployed,
you have to start the Ruby interpreter somehow, and doing so gives us the opportunity to
pass in command-line arguments both to Ruby itself and to the script being run.

A Ruby command line consists of three parts: options to the Ruby interpreter, optionally
the name of a program to run, and optionally a set of arguments for that program, like this:

ruby ‹ options › ‹ – › ‹ programfile › ‹ arguments ›*

The simplest Ruby command is just ruby followed by a filename:

$ ruby my_code.rb

This command will cause the Ruby interpreter to load the my_code.rb file, parse it, and then
execute it.

If the file has a syntax error, Ruby will attempt to locate the error and suggest where the
problem is:

Given this:

rubyworld/syntax_error.rb
class HasAnError
def this_method_ends
p "it sure does"

end

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/rubyworld/syntax_error.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def this_doesnt_end
return "a thing"

def this_one_is_also_right
p "fine"

end
end

Ruby will do this:

sh: code/rubyworld/syntax_error.rb: No such file or directory

Ruby notices the error—a missing end—and attempts to locate the actual location of the item
missing the end. In this case, it gets it right.

Any options after the command ruby are sent to the Ruby interpreter. The Ruby options end
with the first word on the command line that doesn’t start with a hyphen or by the special
flag -- (two hyphens).

There are ways to invoke the Ruby interpreter without passing it a filename. One way is to
use the -e command-line option, which executes one line of script.

This lets us use Ruby as a powerful command-line calculator. Here’s a one liner that returns
the first five square numbers:

ruby -e "p (1..5).map { _1 ** 2 }"
[1, 4, 9, 16, 25]

When you do this, remember that the command you run needs to be a string, and that you
have to print it or you won’t see the result.

You can also pipe a file into the command using Unix standard input and then access that
file using Kernel#gets:

ruby -e 'puts "line: #{gets}"' < testfile

That works swimmingly, but it does only process the first line of the file. However, we can
use Ruby’s while expression clause to loop over the file in a single line:

$ ruby -e 'puts "line: #{$_}" while gets' < testfile
line: This is line one
line: This is line two
line: This is line three
line: And so on...

In this snippet, we’re not only taking advantage of the while clause, we’re also using a Ruby
global, $_, which contains the most recent text read in by a gets call. So, the while gets reads
the line and puts it in $_ and the body of the statement prints out the line.

Still, that while at the end seems kind of awkward for something you might do often. If only
there were some kind of shortcut:

$ ruby -ne 'puts "line: #{$_}"' < testfile
line: This is line one
line: This is line two
line: This is line three
line: And so on...

Chapter 14. Ruby from the Command Line • 232

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The -n command-line option wraps whatever else is sent to the Ruby interpreter in a while
gets; <INPUT>; end loop. This is frequently a single line passed in using -e, but it doesn’t have
to be, you could have a script file that processes a single line of input and use -n to apply
that script to an entire input.

Now, looking at it, that puts statement seems like boilerplate, and it turns out there’s a
shortcut for that as well…sort of:

ruby -pe '"line: #{$_}"' < testfile
This is line one
This is line two
This is line three
And so on...

The -p option behaves like n, but also prints the line as it is being input, not the line that we
are processing, which is sometimes helpful.

There’s one more twist to the looping input, which is -a, for auto-split mode. With -a set, the
incoming gets line is automatically split using String#split and the result goes into the global
$F. The default delimiter is space, but you can set a delimiter with the command-line option
-F, as in -F"\n". So:

$ ruby -nae 'puts "line: #{$F}"' < testfile
line: ["This", "is", "line", "one"]
line: ["This", "is", "line", "two"]
line: ["This", "is", "line", "three"]
line: ["And", "so", "on..."]

and:

$ ruby -F"i" -nae 'puts "line: #{$F}"' < testfile
line: ["Th", "s ", "s l", "ne one\n"]
line: ["Th", "s ", "s l", "ne two\n"]
line: ["Th", "s ", "s l", "ne three\n"]
line: ["And so on...\n"]

And just to clear one thing up—the options can be stacked if they don’t have any arguments,
so -nae is identical to -n -a -e.

If no filename is present on the command line or if the filename is a single hyphen, Ruby
reads the program source from standard input.

Arguments for the program itself follow the program name:

$ ruby -w - "Hello World"

In this snippet, -wwill enable warnings, then Ruby will read a program from standard input,
and pass that program the string "Hello World" as an argument. We’ll talk in a moment about
how to deal with incoming command-line arguments.

Ruby Command-Line Options
Following is a complete list of Ruby’s command-line options roughly organized by function-
ality.

report erratum • discuss

Ruby Command-Line Options • 233

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Options that Determine What Ruby Runs
-0[octal]

The 0 flag (the digit zero) specifies the record separator character (\0, if no digit follows).
-00 indicates paragraph mode: records are separated by two successive default record
separator characters. 0777 reads the entire file at once (because it is an illegal character).
Sets $/.

-a
Autosplit mode when used with -n or -p; equivalent to executing $F = $_.split at the top
of each loop iteration.

-c
Checks syntax only; does not execute the program.

--copyright
Prints the copyright notice and exits.

-e 'command'
Executes command as one line of Ruby source. Several -e’s are allowed, and the commands
are treated as multiple lines in the same program. If programfile is omitted when -e is
present, execution stops after the -e commands have been run. Programs run using -e
can use ranges and regular expressions in conditions—ranges of integers compare
against the current input line number, and regular expressions match against $_.

-F pattern
Specifies the input field separator ($;) used as the default for split (affects the -a option).

-h, --help
Displays a short help screen.

-l
Enables automatic line-ending processing; sets $\ to the value of $/ and chops every
input line automatically.

-n
Assumes a while gets; ...; end loop around your program. For example, a simple grep
command could be implemented as follows:

$ ruby -n -e "print if /wombat/" *.txt

-p
Places your program code within the loop while gets; ...; print; end.

$ ruby -p -e "$_.downcase!" *.txt

--version
Displays the Ruby version number and exits.

Options that Change the Way the Interpreter Works
--backtrace-limit=num

Sets a limit on the number of lines of backtrace that are sent to standard error when the
program sends a backtrace (when the program terminates unexpectedly, for example).
The default value is -1, meaning unlimited backtrace.

Chapter 14. Ruby from the Command Line • 234

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

-C directory
Changes working directory to directory before executing.

-d, --debug
Sets $DEBUG and $VERBOSE to true. This can be used by your programs to enable additional
tracing.

--disable={FEATURE}
Disable one of the features described in on page 236.

-Eex[:in], --encoding=ex[:in], external-encoding=encoding, internal-encoding=encoding
Specifies the default character encoding for data read from and written to the outside
world. This can be used to set both the external encoding (the encoding to be assumed
for file contents) and optionally the default internal encoding (the file contents are
transcoded to this when read and transcoded from this when written). The format of
the single encoding parameter is -E external, -E external:internal, or -E :internal.

-I directories
Specifies directories to be prepended to $LOAD_PATH ($:). Multiple -I options may be
present. Multiple directories may appear following each -I, separated by a colon on
Unix-like systems and by a semicolon on DOS/Windows systems.

-i [extension]
Edits ARGV files in place. For each file named in ARGV, anything you write to standard
output will be saved back as the contents of that file. A backup copy of the file will be
made if extension is supplied, as below.

$ ruby -pi.bak -e "gsub(/Perl/, 'Ruby')" *.txt

--jit, --mjit, --yjit
Enables one of the two Just In Time compilers available in Ruby. The C-based compiler
can be enabled with --jit or --mjit, while the experimental Rust-based version can be
enabled with --yjit. The JIT compilers are designed to improve program performance in
long-running Ruby applications. Both compilers have several of their own command-
line options.

-r library
Requires the named library or gem before executing.

-S
Looks for the program file using the RUBYPATH or PATH environment variable.

-s
Any command-line switches found after the program filename, but before any filename
arguments or before a --, are removed from ARGV and set to a global variable named for
the switch. In the following example, the effect of this would be to set the variable $opt
to "electric":

$ ruby -s prog -opt=electric ./mydata

-v, --verbose
Sets $VERBOSE to true, which enables verbose mode. Also prints the version number. In
verbose mode, compilation warnings are printed. If no program filename appears on
the command line, Ruby exits.

report erratum • discuss

Ruby Command-Line Options • 235

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

-w
Enables warning mode, which is like verbose mode, except it reads program from
standard input if no program files are present on the command line. We recommend
running your Ruby programs with -w.

-W level
Sets the level of warnings issued. With a level of two (or with no level specified),
equivalent to -w—additional warnings are given. If level is 1, runs at the standard (default)
warning level. With -W0, absolutely no warnings are given (including those issued using
Object.warn).

-x [directory]
Strips off text before #!ruby line and changes working directory to directory if given.

Other Options
--dump option…

Tells Ruby to dump various items of internal state. options… is a comma or space sepa-
rated list containing one or more of insns, insns_without_opt, parsetree, parsetree_with_comment,
and yydebug. This is intended for Ruby core developers.

Features that Can Be Enabled or Disabled
All of these features can be explicitly enabled or disabled from the command line, using an
option such as --enable=gems or --disable=did_you_mean.

did_you_mean
When enabled, a NameError will also show the results of a search of the recieving object
for similarly named messages that might have been the intended message. Helpful
when you can’t quite remember the name of the message you want. Enabled by default.

error_highlight
When enabled, error messages will have arrows highlighting the exact part of the line
where the error was triggered. Useful in tracking down errors in a long line of code that
chains multiple method calls. Enabled by default.

frozen-string-literal
When enabled, acts as if the magic comment # frozen_string_literal: true is placed at the
front of all Ruby files. This comment causes all string literals to be implicitly frozen
without freeze being called on them. Disabled by default.

gems
Stops Ruby from automatically loading RubyGems from require. Enabled by default

mjit
Enables the mjit compiler. Disabled by default.

rubyopt
Prevents Ruby from examining the RUBYOPT environment variable. You should probably
disable this in an environment you want to secure. Enabled by default.

yjit
Enables the yjit compiler. Disabled by default.

Chapter 14. Ruby from the Command Line • 236

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Making Your Code an Executable Program
It is a little clunky to have to call ruby my_code.rb when you want to run your code; it’d be
easier to just be able to say my_code.rb. This is more of an operating system tip than a Ruby
tip, but on Unix systems, this is doable with just a couple of steps.

First, you need to make the file executable by changing the mode of the file. To oversimplify
slightly, the mode of the file is metadata that determines if the current user can read from,
write to, or execute a given file. Typically on a Unix-based system, the command to make a
file executable is chmod +x <FILENAME>. The chmod command is Unix-speak for “change the
mode of the file” and +x means “make it executable”, and the FILENAME is the filename.
For more on the Unix command line, see Appendix 3, Command-Line Basics, on page 641.

Having made the file executable, we also need to tell Unix what it means for the file to be
executable. For a Ruby script, what we mean is “run this file through the Ruby runtime”.
And we tell that to the Unix system through a special comment on the first line of the file
that starts with #! and contains the name of an interpreter program that should be used to
run the file. (This comment is often referred to as “shebang” because the two characters that
make it up are the #, which is a musical sharp, and !, which coders often call “bang”.)

In most cases, the shebang command you use to invoke Ruby can look like this:

#!/usr/bin/env ruby

Ruby code goes here

The path /usr/bin/env is, for weird Unix reasons, a common cross-platform way to ensure you
are running the proper shell and ruby is the Ruby interpreter. (There are other ways to
specify the Ruby interpreter, but this is the most recommended way to have the script run
in most common Unix setups.)

Anyway, once you’ve done both these steps, you can invoke your script directly:

$ my_code.rb

If for some reason you want to send command-line options to Ruby itself (for example, you
might want to run in warning mode), you can do so by setting an environment variable
called RUBYOPTS, as in

RUBYOPTS="-w" my_code.rb

The Ruby interpreter will, by default, look in that environment variable for options before
it starts.

Any arguments after the file name are passed to the Ruby code itself, so this would be a
good time to show how to access those arguments…

Processing Command-Line Arguments to Your Code
Just as you can pass arguments to methods in your Ruby code, you can pass arguments from
the command line to the Ruby script itself. Ruby provides mechanisms for capturing argu-
ments passed to the script and allowing you to read and parse them as part of your script.

report erratum • discuss

Making Your Code an Executable Program • 237

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

ARGV
Any command-line arguments after the program filename are available to your Ruby program
in the global array ARGV. For instance, assume test.rb contains the following program:

ARGV.each { |arg| p arg }

If you invoke it with the following command line:

$ ruby -w test.rb "Hello World" a1 1.6180

It’ll generate the following output:

"Hello World"
"a1"
"1.6180"

There’s a gotcha here for all you C programmers. In Ruby, ARGV[0] is the first argument to
the program, not the program name. The name of the current program is available in the
global variable $0, which is aliased to $PROGRAM_NAME. All the values in ARGV are strings.

If your program reads from standard input (or uses the special object ARGF, described in the
next section), the arguments in ARGV will be taken to be filenames, and Ruby will read from
these files. If your program takes a mixture of arguments and filenames, make sure you
empty the nonfilename arguments from the ARGV array before reading from the files.

ARGF
It is common for a command-line program to take a list of zero or more file names to process.
It will then read through these files in turn, doing whatever it does. Imagine a command
that takes a list of log files and processes them line by line, like process.rb log1 log2 log3. It’d
be handy to be able to treat all the log file arguments as a single logical file object.

Ruby provides a convenience object, referenced by the name ARGF, that handles access to
these files, allowing you to treat the files as a single stream. The data for ARGF object is taken
from the values in ARGV. The assumption is that when you use ARGF all the elements in the
ARGV array are filenames. What this means is that any non filename arguments need to be
removed from the ARGV array before you start reading from them using ARGF. Conversely,
any filenames you add to ARGV in your code will be available to ARGF just as though they
were supplied in the command line. We recommend that you do any ARGV manipulation
before you start reading from ARGF.

The ARGF object defines most of the same read methods that IO does, including gets, read, and
readline. If you read from ARGF, Ruby will open the file whose name is the first element of
ARGV and perform the I/O on it. If, as you continue to read, you reach the end of that file,
Ruby closes it, shifts it out of the ARGV array, and then opens the next file in the list. At some
point, when you have finished reading from the last file, ARGF will return an end-of-file
condition (so gets will return nil, for example). If ARGV is initially empty, ARGF will read from
standard input.

You can get to the name of the file currently being read from using ARGF.filename, and you
can get the current File object as ARGF.file. ARGF keeps track of the total number of lines read
in ARGF.lineno—if you need the line number in the current file, use ARGV.file.lineno. Here’s a
program that uses this information:

Chapter 14. Ruby from the Command Line • 238

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

while (line = gets)
printf "%d: %10s[%d] %s", ARGF.lineno, ARGF.filename, ARGF.file.lineno, line

end

If we run it, passing a couple of file names, it will copy the contents of those files.

$ ruby copy.rb testfile otherfile
1: testfile[1] This is line one
2: testfile[2] This is line two
3: testfile[3] This is line three
4: testfile[4] And so on...
5: otherfile[1] ANOTHER LINE ONE
6: otherfile[2] AND ANOTHER LINE TWO
7: otherfile[3] AND FINALLY THE LAST LINE

In-Place Editing of ARGF Files
In-place editing is a hack inherited from Perl. It allows you to alter the contents of files passed
in on the command line, retaining a backup copy of the original contents.

To turn on in-place editing, give Ruby the file extension to use for the backup file, either
with the -i [_ext_] command-line option, or by calling ARGF.inplace_mode=_ext_ in your code.

Now, as your code reads through each file given on the command line, Ruby will rename
the original file by appending the backup extension. It will then create a new file with the
original name, and open it for writing on standard output. This all means that if you code
a program such as this:

while (line = gets)
puts line.chomp.reverse

end

and you invoked it using

$ ruby -i.bak reverse.rb testfile otherfile

You’d find that testfile and otherfile would now have reversed lines, and that the original files
would be available in testfile.bak and otherfile.bak.

For finer control over the I/O to these files, you can use the methods provided by ARGF.
They’re rarely used, so rather than document them here, we’ll refer you to the online docu-
mentation.

Option Parsing
It’s quite handy that Ruby packages up all the options into the ARGV array. If you have a
complex script, and you want your script to use conventional patterns of options, where
there’s something like -a true --database sqlite, then the ARGV array isn’t quite enough, you’d
also like to be able to respond to these options by running code in your script based on them.
Ruby provides the conveniently named class OptionParser to allow you to run code based on
command-line options, or to convert those options into a more convenient data object.

The API here is a little tricky, but the basic idea is:

• Create a new instance of OptionParser.

report erratum • discuss

Processing Command-Line Arguments to Your Code • 239

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Tell the instance about various options it should respond to and what it should do for
each one.

• Tell the instance to parse, and also to do something with the options as it parses.

Along the way, the OptionParser instance also does a few things for you, including automati-
cally generating a --help response based on the options. We’ll also note here that the Option-
Parser class has a couple of different ways to do the things we are discussing in this section,
we’re only going to talk about the main one but the official API reference has other options.

To create the parser, you can just use parser = OptionParser.new. Then you can define options
to match with the method on. For option parser purposes, an option is either:

• Short: A single dash and a single character, as in -x
• Long: A double dash and more than one characters, as in --database

The basic idea is the same either way, the on method is called with the option, an optional
string that defines it, and a block that is invoked if the option is in ARGV. You can also define
both a short and a long version of the same option.

rubyworld/option_1.rb
require "optparse"

parser = OptionParser.new

sort_type = nil
parser.on("-a", "Alphabetical") do
sort_type = :alphabetical

end

parser.on("--recent", "Most Recent") do
sort_type = :recency

end

parser.on("-s", "--size", "Size") do
sort_type = :size

end

parser.parse!

p "we are sorting by #{sort_type}"

In this example, each option is setting a sort type local variable. Options created with on are
invoked in the order they are defined, so if more than one of these is invoked, last one defined
wins. The parse! at the end is what actually triggers the parsing of the options, it’s also a
signal that you are done defining options.

At this point, if you call your script with a --help option (whether you do it via ruby or if you
make it a standalone executable script), you get a useful help message:

$ ruby code/rubyworld/option_1.rb --help
Usage: option_1 [options]

-a Alphabetical
--recent Most Recent

-s, --size Size

You can use the method banner to add a message to the top of this help listing as in parser.banner
= "Usage: option_1.rb [options]"

And if you call with one of the various options, the appropriate value is set:

Chapter 14. Ruby from the Command Line • 240

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/rubyworld/option_1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

$ ruby code/rubyworld/option_1.rb -a
"we are sorting by alphabetical"

Often, you want a command-line option to take an argument, as in -xSort or --database postgres.
You can specify those arguments using OptionParser as well. Generally, the idea is that you
add text in all caps after the option, like SORT. The actual text doesn’t matter, just that you
put some marker there. If the text marker is surrounded by square brackets, the argument
is optional, if not, the option is required. There’s one slight bit of weirdness here, which is
that a required argument is separated from a long option by a space but can be flush against
a short option, so -xTHING or -x THING but only --example THING. Optional arguments are sepa-
rated by a space in both cases. If you are specifying multiple options in the same on call—for
example both a long and short option–then the argument only needs to be specified once
and it applies to all the options in that call.

In any case, the argument to the option is then passed as an argument to the block:

rubyworld/option_2.rb
require "optparse"

parser = OptionParser.new

sort_type = nil

parser.on("-sSORT", "Sort Type") do |value|
sort_type = value

end

parser.on("-a [DIR]", "Alphabetical") do |value|
sort_type = :alphabetical

end

parser.on("--recent DATE", "Most Recent") do
sort_type = :recency

end

parser.on("-h", "--height [METRIC]", "Height") do
sort_type = :size

end

parser.parse!

p "we are sorting by #{sort_type}"

You can do a few more things with options to limit values or coerce types—be sure to check
out the official API documentation.

Once you’ve defined all the options, you need to tell the OptionParser to do something. Again,
the OptionParser class provides a few different mechanisms, but most of the time, we think
you’ll want to call parse!.

Calling parse! triggers a walk through the ARGV array, calling the blocks of any options that
it encounters and destructively removing those options and their arguments from ARGV.
Removing the options allows you to easily have a command line that mixes options and
non-options, so you can do something likemy_code.rb -x --database postgres other_file other_thing,
then the parse! removes the option switches, and you end up with ARGV equals ["other_file",
"other_thing"].

report erratum • discuss

Processing Command-Line Arguments to Your Code • 241

http://media.pragprog.com/titles/ruby5/code/rubyworld/option_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

You can also specify a keyword argument, into:, which takes an existing object (usually a
hash) and causes all the parsed options to be placed into that argument. The key is the option
itself, the value is either the return value of the block, the argument value if there is no block,
or true if there is neither a block nor an argument:

rubyworld/option_3.rb
require "optparse"

parser = OptionParser.new

parser.on("-x") do
puts "yep, do the x thing"
true

end

parser.on("-yTYPE", "--y") do |value|
puts "There's a y with #{value}"
value

end

options = {}
parser.parse!(into: options)

p ARGV
p options

If you want a more powerful framework for building CLI interfaces, you should check out
Thor,1 which uses a different API to attach subcommands and options to different parts of
your code.

Program Termination
The method exit terminates your program, returning a status value to the operating system.
However, unlike some languages, exit doesn’t terminate the program immediately—exit first
raises a SystemExit exception, which you may catch, and then performs a number of cleanup
actions, including running any registered at_exit methods and object finalizers.

Accessing Environment Variables
You can access operating system environment variables using the predefined variable ENV.
It responds to the same methods as Hash. Technically, ENV is not actually a hash—it’s a separate
class—but if you need to, you can convert it into a Hash using ENV#to_h.

ENV['SHELL']
ENV['HOME']
ENV['USER']
ENV.keys.size
ENV.keys[0, 4]

Standard Environment Variables
The values of some environment variables are read by Ruby when it first starts. These vari-
ables modify the behavior of the interpreter. Some of the environment variables used by
Ruby are listed in the following table.

1. http://whatisthor.com

Chapter 14. Ruby from the Command Line • 242

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/rubyworld/option_3.rb
http://whatisthor.com
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

DescriptionVariable Name

Specifies the search path for dynamically loaded modules.DLN_LIBRARY_PATH
Points to user’s home directory. This is used when expanding ~ in file
and directory names.

HOME

Specifies the fallback pointer to the user’s home directory if $HOME is
not set. This is used only by Dir.chdir.

LOGDIR

Specifies the location of OpenSSL configuration file.OPENSSL_CONF
The Unix list of places to look for files, Ruby uses it when calling Ker-
nel#system.

PATH

Enables the YJIT just-in-time compilerRUBY_YJIT_ENABLE
Specifies an additional search path for Ruby programs ($SAFE must be
0).

RUBYLIB

(Windows only) Mangles the RUBYLIB search path by adding this prefix
to each component.

RUBYLIB_PREFIX

Specifies additional command-line options to Ruby; examined after
real command-line options are parsed ($SAFE must be 0).

RUBYOPT

With -S option, specifies the search path for Ruby programs (defaults
to PATH).

RUBYPATH

Specifies shell to use when spawning a process under Windows; if not
set, will also check SHELL or COMSPEC.

RUBYSHELL

Table 4—Ruby environment variables

Other Ruby tools like Bundler or your Ruby version manager will also add environment
variables.

Ruby uses several environment variables to manage its garbage collector during runtime,
these variables all start with RUBY_GC, and you can find them in the man page for Ruby by
typingman ruby. Similarly, there are a few variables that start with RUBY_THREAD or RUBY_FIBER
that control the amount of size allocated for threads and fibers. These variables are generally
used to tweak performance for long-running Ruby programs.

Writing to Environment Variables
A Ruby program may write to the ENV object. On most systems, this changes the values of
the corresponding environment variables. However, this change is local to the process that
makes it and to any subsequently spawned child processes. This inheritance of environment
variables is illustrated in the code that follows. A subprocess changes an environment variable,
and this change is inherited by a process that it then starts. However, the change is not visible
to the original parent. (This just goes to prove that parents never really know what their
children are doing.)

rubyworld/envvar.rb
puts "In parent, term = #{ENV['TERM']}"
fork do
puts "Start of child 1, term = #{ENV['TERM']}"
ENV['TERM'] = "ansi"
fork do
puts "Start of child 2, term = #{ENV['TERM']}"

end
Process.wait

report erratum • discuss

Accessing Environment Variables • 243

http://media.pragprog.com/titles/ruby5/code/rubyworld/envvar.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

puts "End of child 1, term = #{ENV['TERM']}"
end
Process.wait
puts "Back in parent, term = #{ENV['TERM']}"

produces:

In parent, term = xterm-256color
Start of child 1, term = xterm-256color
Start of child 2, term = ansi
End of child 1, term = ansi
Back in parent, term = xterm-256color

Setting an environment variable’s value to nil removes the variable from the environment.

Where Ruby Finds Its Libraries
You use require to bring a library into your Ruby program. Some of these libraries are supplied
with Ruby, some may have been packaged as RubyGems, and some you may have written
yourself. How does Ruby find them?

Let’s start with the basics. When Ruby is built for your particular machine, it predefines a
set of standard directories to hold library stuff. Where these are depends on the machine in
question. You can determine this from the command line with something like this:

$ ruby -e 'puts $LOAD_PATH'

On our MacOs box, with rbenv installed, this produces the following list:

/opt/homebrew/Cellar/rbenv/1.2.0/rbenv.d/exec/gem-rehash
/Users/noel/.rbenv/versions/3.2.0/lib/ruby/site_ruby/3.2.0
/Users/noel/.rbenv/versions/3.2.0/lib/ruby/site_ruby/3.2.0/arm64-darwin22
/Users/noel/.rbenv/versions/3.2.0/lib/ruby/site_ruby
/Users/noel/.rbenv/versions/3.2.0/lib/ruby/vendor_ruby/3.2.0
/Users/noel/.rbenv/versions/3.2.0/lib/ruby/vendor_ruby/3.2.0/arm64-darwin22
/Users/noel/.rbenv/versions/3.2.0/lib/ruby/vendor_ruby
/Users/noel/.rbenv/versions/3.2.0/lib/ruby/3.2.0
/Users/noel/.rbenv/versions/3.2.0/lib/ruby/3.2.0/arm64-darwin22

The site_ruby directories are intended to hold modules and extensions that you’ve added.
The architecture-dependent directories (arm64-darwin21 in this case) hold executables and
other things specific to this particular machine. All these directories are automatically
included in Ruby’s search for libraries.

Sometimes this isn’t enough. Perhaps you’re working on a large project written in Ruby and
you and your colleagues have built a substantial library of Ruby code. You want everyone
on the team to have access to all this code. And, for some reason, you don’t want to package
it as a Ruby Gem, you just want it to be in a known location in the file tree.

You have a couple of options to accomplish this. You can set the environment variable RUBYLIB
to a list of one or more directories to be searched. (The separator between entries is a semicolon
on Windows; for Unix, it’s a colon.) If your program is not setuid, you can use the command-
line parameter -I to do the same thing.

The Ruby variable $: is an array of places to search for loaded files. As we’ve seen, this
variable is initialized to the list of standard directories, plus any additional ones you specified

Chapter 14. Ruby from the Command Line • 244

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

using RUBYLIB and -I. You can always add directories to this array from within your running
program. Prior to Ruby 1.9, this used to be a common idiom:

$: << File.dirname(__FILE__)
require 'other_file'

This added the directory of the running file to the search path, so other_file.rb could be found
there by the subsequent require. Now we use require_relative instead.

require_relative 'other_file'

Using the Rake Build Tool
Another way to structure code that can be easily invoked from the command line is with a
useful utility program called Rake. Written by Jim Weirich, Rake was initially implemented
as a Ruby version of Make, the Unix build utility. However, calling Rake a build utility is to
miss its true power. Really, Rake is an automation tool—it’s a way of putting all those tasks
that you perform in a project into one neat and tidy place.

Rake gives you a convenient way to define small tasks and task dependencies, allowing you
to say that a particular task requires a different task to run first. Rake also allows you to
automate transitions between files based on file extensions, for example, converting all your
.csv files to .json.

Let’s start with an example. As you edit files, you might accumulate backup files in your
working directories. On Unix systems, these files usually have the same name as the original
files, but with a tilde character appended. On Windows boxes, the files usually have a .bak
extension.

We could write a Ruby program that deletes these files. For a Unix box, it might look
something like this:

require "fileutils"
files = Dir["*~"]
FileUtils.rm(files, verbose: true)

The FileUtilsmodule defines methods for manipulating files and directories (see the description
in the library section on page 595). Our code uses its rmmethod. We use the Dir class to return
a list of filenames in the current directory matching the given pattern and pass that list to
rm.

Let’s package this code as a Rake task—a chunk of code that Rake can execute for us.

By default, Rake searches the current directory (and its parents) for a file called Rakefile. This
file contains definitions for the tasks that Rake can run.

So, put the following code into a file called Rakefile:

desc "Remove files whose names end with a tilde"
task :delete_unix_backups do
files = Dir["*~"]
rm(files, verbose: true) unless files.empty?

end

Although it doesn’t have an .rb extension, the Rakefile is actually just a file of Ruby code. Rake
defines an environment and methods including desc and task and then executes the Rakefile.

report erratum • discuss

Using the Rake Build Tool • 245

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The descmethod provides a single line of documentation for the task that follows it. The task
method defines a Rake task that can be executed from the command line. The parameter is
the name of the task (a symbol), and the block that follows is the code to be executed. Here
we can just use rm—all the methods in FileUtils are automatically available inside Rake files.

We can invoke this task from the command line:

$ rake delete_unix_backups

One quick note that if you are using Ruby on Rails, the rails command also searches for
available Rake tasks, so within a Rails application, you could execute this as rails
delete_unix_backups.

Okay, now let’s write a second task in the same Rakefile. This one deletes Windows backup
files.

desc "Remove files with a .bak extension"
task :delete_windows_backups do
files = Dir["*.bak"]
rm(files, verbose: true) unless files.empty?

end

We can run this with rake delete_windows_backups.

But let’s say that our application could be used on both platforms, and we wanted to let our
users delete backup files on either. We could write a combined task, but Rake gives us a
better way—it lets us compose tasks. Here, for example, is a new task:

desc "Remove Unix and Windows backup files"
task delete_backups: [:delete_unix_backups, :delete_windows_backups] do
puts "All backups deleted"

end

The task’s name is delete_backups, and it depends on the two other tasks. This isn’t some
special Rake syntax: we’re simply passing the task method a Ruby hash containing a single
entry whose key is the task name and whose value is the list of antecedent tasks. Rake
parses the hash to create the list of task dependencies, In this case Rake will execute the two
platform-specific tasks in the order they are listed before executing the delete_backups task:

$ rake delete_backups
rm entry~
rm index.bak list.bak
All backups deleted

If those dependent tasks have their own dependent tasks, then those tasks are run first, and
as a result, it’s possible to build complex trees of task execution while keeping each individ-
ual task relatively small.

Our current Rakefile contains some duplication between the Unix and Windows deletion
tasks. As it is just Ruby code, we can define a Ruby method to eliminate this:

def delete(pattern)
files = Dir[pattern]
rm(files, verbose: true) unless files.empty?

end

desc "Remove files whose names end with a tilde"

Chapter 14. Ruby from the Command Line • 246

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

task :delete_unix_backups do
delete("*~")

end

desc "Remove files with a .bak extension"
task :delete_windows_backups do
delete("*.bak")

end

desc "Remove Unix and Windows backup files"
task delete_backups: [:delete_unix_backups, :delete_windows_backups] do
puts "All backups deleted"

end

All these tasks as written use the current directory, but you might want to run the task on
an arbitrary directory passed via the command line. Something like rake delete_unix_backups
subdir. There is just one problem, though:

$ rake delete_unix_backups subdir
Don't know how to build task 'subdir'
(See the list of available tasks with `rake --tasks`)

Rake interprets a command-line argument as another task to run. (Rake doesn’t interpret
flag arguments like -d as tasks, but that doesn’t really help us here.)

If you do want to pass a command-line argument to Rake, you have a couple of options.
Rake has a mechanism to allow command-line arguments, but it’s a little convoluted.

First, you need to define the arguments in the task, the syntax sets them up as extra arguments
in the task definition:

def delete(dir, pattern)
files = Dir["#{dir}/#{pattern}"]
rm(files, verbose: true) unless files.empty?

end

desc "Remove files with a .bak extension"
task :delete_windows_backups, [:dir] do
delete(args[:dir], "*.bak")

end

desc "Remove files whose names end with a tilde"
task :delete_unix_backups, [:dir] do |t, args|
delete(args[:dir], "*~")

end

task :delete_backups, [:dir]: [:delete_unix_backups, :delete_windows_backups]

So, the second argument to the task is an array of the names of all the expected command-
line arguments. If the task has both dependencies and expected command-line arguments,
then the hash is keyed off the command-line arguments, as in task :delete_backups, [:dir]:
[:delete_unix_backups, :delete_windows_backups]. The block that defines the task takes a new
argument, which this code calls args. That argument is a hash, the keys are the names specified
in the task definition, in this case :dir and the values are the passed values from the command
line.

The command-line invocation is a little weird:

report erratum • discuss

Using the Rake Build Tool • 247

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

$ rake delete_backups[code]

The arguments go inside square brackets, and if there are multiple arguments they are sep-
arated by commas $ rake delete_backups[code,verbose]. As an extra syntax gotcha, you can’t
have spaces before the brackets or on either side of the comma. So this is a little awkward.

Making it more awkward is that if you are using Z shell, this flat-out doesn’t work, because
Z shell uses brackets for its own purposes. You can get around this by defining an alias alias
rake="noglob rake", which will turn off Z shell’s use of brackets for the command. (If you don’t
use Z shell or this paragraph doesn’t make sense, you can safely ignore it.)

So, while you can pass command-line arguments using Rake, the syntax isn’t exactly easy.
An alternative to consider is just using OptionParser. With OptionParser, you can pass
arguments after a -- and they will get passed to the task and parsed. It’s a little tricky, because
you want to make sure you don’t get the --, so you need to add an OptionParser call to clar-
ify:

def delete(dir, pattern)
files = Dir["#{dir}/#{pattern}"]
rm(files, verbose: true) unless files.empty?

end

desc "Remove files whose names end with a tilde"
task :delete_unix_backups do
dir = "."
parser = OptionParser.new
parser.on("-d DIR") { |opt| dir = opt }
args = parser.order!(ARGV) {}
parser.parse!(args)
delete(dir, "*~")

end

Then you’d call this with rake delete_unix_backups -- -d code. The parse! command removes the
options from ARGV, preventing Rake from considering them as their own tasks.

If a Rake task is named default, it will be executed if you invoke Rake with no parameters:
just $ rake. Most Ruby applications and gems set the default task to run tests. Rake also allows
you to set up two special variables called CLEAN and CLOBBER, which initially are an empty
list of files that you can add to, as in CLEAN << Dir["*.bak"]. If those lists are not empty, then
Rake automatically defines tasks named clean and clobber that delete all the files in the
respective file list. The terms “clean” and “clobber” are inherited from Make. Typically,
“clean” removes intermediate files but allows the end files to stick around, while “clobber”
removes intermediate and final files.

You can find a list of the tasks implemented by a Rakefile (or, more accurately, the tasks for
which there is a description) using this:

$ rake -T
(in /Users/dave/BS2/titles/ruby4/Book/code/rake)
rake delete_backups # Remove Unix and Windows backup files
rake delete_unix_backups # Remove files whose names end with a tilde
rake delete_windows_backups # Remove files with a .bak extension

This section only touches on the full power of Rake. It can handle dependencies between
files (for example, rebuilding an executable file if one of the source files has changed), it

Chapter 14. Ruby from the Command Line • 248

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

knows about running tests and generating documentation, and it can even package gems
for you. Martin Fowler has written a good overview of Rake2 if you’re interested in digging
deeper.

The Build Environment
When Ruby is compiled for a particular architecture, all the relevant settings used to build
it (including the architecture of the machine on which it was compiled, compiler options,
source code directory, and so on) are written to the module RbConfig within the library file
rbconfig.rb. After installation, any Ruby program can use this module to get details on how
Ruby was compiled:

require "rbconfig"
include RbConfig
CONFIG["host"] # => "arm64-apple-darwin22"
CONFIG["libdir"] # => "/Users/noel/.rbenv/versions/3.2.2/lib"

Extension libraries use this configuration file in order to compile and link properly on any
given architecture.

What’s Next
Now that we’ve seen how to run our Ruby files from the command line and use command-
line and environment options within Ruby, it’s time to go even wider and look at the entire
Ruby Gems system for packaging tools, managing dependencies, and organizing code.

2. http://martinfowler.com/articles/rake.html

report erratum • discuss

The Build Environment • 249

http://martinfowler.com/articles/rake.html
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 15

Ruby Gems
One of the tremendous benefits of being a Ruby developer is being able to take advantage
of the entire ecosystem of other Ruby developers who have written and shared useful tools
with the community. These tools are called gems, a term that means both the library itself,
and the packaging structure that is used to manage them. Ruby comes standard with
RubyGems, a command-line tool for installing and managing Ruby gems, and Bundler, a
tool for creating manifests of gem versions so that developers all use the same set of depen-
dencies.

Not only can you use existing gems, but also you can write your own. Even if you don’t
intend on sharing your gem, the basic structure of a Ruby gem is a good skeleton for your
application. And if you do want to share your gem, you can do that via the central repository
at http://www.rubygems.org.

Installing and Managing Gems
All the RubyGems tooling comes standard as a part of Ruby, including the command-line
application gem, which you can use for many of your RubyGem-related needs. Ruby gems
conform to a standardized format that provides metadata about the gems, and most impor-
tantly about any other gems that this gem might depend on. The gem command-line tool
knows to look in the central repository for gems, but you can also point it to look at other
sources. Using other sources allows you to maintain a private gem repository, for example
as a place to keep internal tooling that you don’t want made public.

In this section, we’ll talk about managing gems directly from the command line, which is
useful, but please keep in mind that on any application that is at all complex, much of the
installation and gem management will be handled by Bundler, which we’ll look at in Using
Bundler to Manage Groups of Gems, on page 253.

Searching for Gems
Let’s start by finding a gem to install. So far, the only gem we’ve discussed is RSpec, which
will be a suitable example for our purposes. In order to download a gem, we need to know
the exact name under which the gem is stored in the central gems repository. In this case,
which is fairly typical, the internal name of the gem, rspec, is just the lower case version of
the colloquial name, RSpec.

report erratum • discuss

http://www.rubygems.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Gem naming can be complicated, especially if the gem name is more than one word. There
are a couple of different ways to find out the official name of a gem.

If you go to the RubyGems website at rubygems.org, you will see a very prominently placed
search feature. Typing “RSpec” into the search bar gives us a list of search results that tells
us that, yes, rspec is the official name of the gem, and also that there are a lot of gems whose
names start with rspec- (RSpec is split among several smaller gems, and there are also
extensions to RSpec that use the same naming convention). Clicking on RSpec takes us to
the RubyGems page for RSpec.

This page has a lot of useful information including the name of the gem, its self-description
(“BDD for Ruby”), the current version (3.12.0, as this is written), a list of previous versions,
and a list of the owners of the gem. The right column includes the number of times the gem
has been downloaded, syntax for including the gem in a Gemfile or for installing from the
command line (we’ll get to that in a second), and links to a Homepage, a Source Code repo
(often those two are the same thing), and a few other links that for most gems will all link
back to the same GitHub page.

You can get some of this information from the command line:

$ gem search rspec -erd
rspec (3.12.0)

Authors: Steven Baker, David Chelimsky, Myron Marston
Homepage: http://github.com/rspec

rspec-3.12.0

The gem search command searches the local and remote gem repositories for the text argument.
The options used here are -e for “exact”, searching for an exact match rather than a partial
match (a partial match would give us a page or two of gems that contain the word “rspec”),
-r for “remote only”, and -d for details (otherwise we’d just get the names of the gems).

If we want to just list gems locally, the command is gem list. You can find a full description
of all the gem command-line commands at https://guides.rubygems.org/command-reference.

Installing a Gem
After identifying the gem, the next step is it install it locally, which you can do with gem
install:

$ gem install rspec
Successfully installed rspec-3.11.0
Parsing documentation for rspec-3.11.0
Installing ri documentation for rspec-3.11.0
Done installing documentation for rspec after 0 seconds
1 gem installed

The resulting text tells us that the most recent version of RSpec has been installed, as well
as documentation for RSpec via the ri tool that we’ll talk about in Chapter 19, Documenting
Ruby, on page 313. If there are uninstalled dependent gems, those would also be installed at
this time (the machine this is running on already has RSpec’s dependencies installed).

What does it mean to install a gem? First off, the gem tool interacts with your current Ruby
runtime to place the gem in a known location. We can find out where that is:

$ gem which rspec

Chapter 15. Ruby Gems • 252

report erratum • discuss

https://guides.rubygems.org/command-reference
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

/Users/noel/.rbenv/versions/3.2.0/lib/ruby/gems/3.2.0/gems/rspec-3.12.0/lib/rspec.rb

If you’re running gem install on a Unix platform and you aren’t using a Ruby version manager,
you’ll need to prefix the command with sudo, because by default the local gems are installed
into shared system directories.

The exact location will depend on the operating system you are using, plus which Ruby
version manager you are using. In this case, the Ruby version manager maintains a hidden
directory in my home directory for all the Ruby versions it is managing
(/Users/noel/.rbenv/versions), and a specific subdirectory for the currently running version (/3.2.0).
Inside that directory, the rest of the structure there is managed by Ruby gems, so there is a
general set of directories for the version (/lib/ruby/gems/3.2.0/gems) and then a specific directory
for this gem (/rspec-3.11.0) and then the path to the actual main script of the gem, which will
typically install everything needed to use the gem (lib/rspec.rb).

Gem Version Numbers

You might wonder why the path to a gem file contains two apparently redun-
dant folder names based on the version, in our case 3.2.0 and 3.2.0. The two
directories are managed by different parts of the system. The outer 3.2.0 is
managed by the Ruby version manager, and if you have multiple Ruby versions
installed, you’ll see that they each have different directories. This means that
each version of Ruby gets its own separate copy of each gem. (It also means
that you can reclaim some disc space by deleting versions of Ruby you don’t
use anymore.) The inner 3.2.0 is managed by Ruby itself and is the name of the
directory that Ruby knows to use to look for gems. Each version of Ruby should
have only one directory here.

Now the gem is ready to be used, which means that any Ruby program can require "rspec"
and the RSpec library will be usable just as if it was part of the Ruby standard library. You’ll
need to check out the documentation for each gem to see how to use it. Often that documen-
tation is accessible from the gem’s home page.

The gem command has a lot of options, but the one you are most likely to use is -v or --version.
When we installed RSpec, RubyGems installed the most recent version of the gem. Sometimes,
you actually need a different gem version, usually for compatibility with a specific version,
and you can specify the version string at the command line with -v "3.0.0" or whatever the
actual version you need. You can have multiple versions of the same gem installed locally,
but a general require statement will load the one with the highest version number. If you
need to use a different version number, we recommend using Bundler.

With the gem installed, you can browse the source code locally with gem open <GEMNAME>,
which opens the directory with that gem in your current system editor. You can edit the files
in the gem, and because Ruby is an interpreted language, those edits will be available to
other code that uses the gem, the interpreter will just load your changes. The most common
case here is to place logging statements to aid in debugging. If you get too tangled up in
your own edits, the command gem pristine <GEMNAME> will reinstall the original gem, and
gem uninstall <GEMNAME> will just remove the gem.

Using Bundler to Manage Groups of Gems
Gems are pretty great, and any reasonably sized Ruby program will likely depend on many
of them, each of which may have its own gem dependencies. This can easily become a

report erratum • discuss

Using Bundler to Manage Groups of Gems • 253

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

management problem in and of itself. How can you have multiple programs on one machine
that might use different versions of a gem? Or, because gems change all the time, how can
you guarantee that everybody working on the application will be using the same set of gems?

The answer to both of these questions and many more is Bundler.1 Bundler is itself a Ruby
gem, and it manages a manifest file of the gems and versions in use on a project. Bundler
allows you to specify the versions in use, and limit your Ruby programs to only find the
specific version of a gem endorsed by Bundler.

In order to use Bundler, you first must install it. It’s a Ruby gem, so gem install bundler will do
it for you. The installation gives you the bundler command-line program, which you then use
to manage your gems.

Building a Gemfile
To use Bundler effectively, you create a listing of all the gems in your application in a file
called Gemfile. The Gemfile should be in the root directory of your application.

Here’s a small sample, which happens to be the Gemfile in use for the code examples and
code management for this very book, at least, so far:

source "https://rubygems.org"

ruby "3.2.0"

gem "debug"
gem "i18n"
gem "nokogiri"
gem "rspec"
gem "solargraph"
gem "standardrb"

The Gemfile is made up of a series of different statements that describe the set of all the gems
being used by the project. The Gemfile is actually Ruby code, which means that each line is
actually a Ruby method call (without parentheses), and also means that Ruby syntax can be
used if the Gemfile gets more complicated.

The first line declares a source, we’re using "https://rubygems.org", which is the central reposi-
tory for RubyGems, but you could also create your own server and use that as a source.
Many companies use internal gem servers to distribute common internal code that is not
public. You can declare multiple sources, but the recommendation is to have one top-level
source and limit the scope of secondary sources. (You’ll see how to do that in a moment.)

The next line specifies the Ruby version that this application expects. As we saw in the pre-
vious section, Ruby Gems are matched to specific versions of Ruby and stored separately
for different versions. This line of code specifies an exact version of Ruby—unlike gem dec-
larations, the Ruby version must be exact.

After that, we declare gems. Each gem declaration is the word gem followed by the official
name of the gem. The order of the gem listings doesn’t matter, though it’s considered polite
to keep them alphabetical.

That’s a pretty basic Gemfile, as you’ll see shortly, they can get more complicated.

1. http://bundler.io

Chapter 15. Ruby Gems • 254

report erratum • discuss

http://bundler.io
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Using a Gemfile
Now that we have a Gemfile, there are three important things that we are most likely to do
with it:

• Install the listed gems.
• Run a program that has visibility to those gems, and only those gems.
• Update the gems when new versions are released.

Bundle Install
To install a set of gems, you use the command bundle install, which performs a gem install on
all the gems listed in the Gemfile. If you run the command, you’ll see something like this
(the exact output depends on what’s already installed):

$ bundle install
bundle install
Fetching gem metadata from https://rubygems.org/.........
Fetching ast 2.4.2
Installing ast 2.4.2
... MORE GEMS ...
Bundle complete! 6 Gemfile dependencies, 40 gems now installed.
Use `bundle info [gemname]` to see where a bundled gem is installed.

If you compare that output to the Gemfile for this book listed earlier, you’ll see that the first
gem that bundler installs is ast, which is interesting, because our Gemfile does not reference
ast.

What Bundler is doing is installing not just the gems listed in our Gemfile, but also their
dependencies and their transitive dependencies all the way down. Bundler downloads those
files to exactly the same place that regular gem install would, meaning it depends on your
operating system and Ruby version manager. Unless otherwise specified, Bundler installs
the most recent version of the gem.

When you install your Gemfile with Bundler, Bundler creates a new file, Gemfile.lock. The
lock file is important because that is where Bundler stores the actual versions of the gems
that have been installed.

GEM
remote: https://rubygems.org/
specs:
ast (2.4.2)
backport (1.2.0)
benchmark (0.2.0)
concurrent-ruby (1.1.10)
debug (1.5.0)
irb (>= 1.3.6)
reline (>= 0.2.7)

... THERE'S MORE, LOCK FILES CAN GET LONG ...

PLATFORMS
arm64-darwin-21

DEPENDENCIES
debug
i18n

report erratum • discuss

Using Bundler to Manage Groups of Gems • 255

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

nokogiri
rspec
solargraph
standardrb

RUBY VERSION
ruby 3.2.0p0

BUNDLED WITH
2.3.3

This shows the actual version loaded for each gem, and in the case of debug, it shows the
dependent gems (irb and reline) and the acceptable version range for each of them. It ends
with a list of platforms that the bundle has been built for (this information is used for gems
that include native code components and therefore need to be compiled locally by the
operating system), the Ruby version, and the version of Bundler.

The lock file is there to be an exact snapshot of the versions of all the gems in use by the
application. When bundle install is called again, if there is a Gemfile.lock, Bundler uses the
information in the lock file to determine which version of each gem to install. The lock file,
if it exists, is the most trusted source for which version of each gem should be installed.

If, after I install this bundle, there’s a new version of RSpec released, my bundle will continue
using the older version as listed in the lock file until I explicitly update RSpec’s version.

This is great because it means that any developer in the future who goes to work on this
code base will automatically use Bundler to install the exact same set of gem versions as
every other developer. (And of course, “any developer” doesn’t just mean other people, it
also means “you in six months.”)

Bundle Exec and Bundle.require
Being able to load a specific set of gem versions is a good start, but you also need to be able
to find those specific versions when you run your code. You might have multiple different
applications that use different versions of RSpec. RubyGems will store all those different
versions for you, but each individual application needs to be matched to the version it expects
given its lock file. How can we ensure that when we require a gem we get the expected version?

Bundler provides a command called bundle exec that manages this bookkeeping for us. You
use it by prepending bundle exec before whatever command you want to run, as in bundle
exec rspec spec/my_spec.rb.

The bundle exec command does some manipulation of your environment. Basically, it modifies
RubyGems itself to limit RubyGems to loading the gems in the bundle, and it also manages
the command-line environment so that normal command-line things work without surprise.
Calling rspec, for example, which is an executable script created by a gem, requires some
background environment management to make sure the correct version of RSpec is called.

Alternately, inside your code, before you use any gems, you can require "bundler/setup", which
will do the same RubyGems manipulation to manage references to gems, and will autoload
the gems so you don’t have to require them individually. Many frameworks, such as Ruby
on Rails, do the Bundler setup as part of their regular boot process. That said, if you bundle
exec code that also has a require "bundler/setup" that’s fine, the management work will only be
done once.

Chapter 15. Ruby Gems • 256

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If you get tired of typing bundle exec and you are using gems that don’t autoload when you
run them, like, say RSpec, Bundler offers binstubs, which are a way for Bundler to create a
wrapper program around a specific executable Ruby program defined by your gems that
invokes Bundler before it starts.

As you’ll see in Writing and Packaging Your Own Code Into Gems, on page 261, gems can
signal to their users that there are top-level executable commands that are part of the gem.
RSpec, the gem, offers rspec the command as its test runner. But if we don’t want to keep
typing bundle exec rspec, we can ask Bundler to create a binstub for us.

$ bundle binstubs rspec
rspec has no executables, but you may want one from a gem it depends on.
rspec-core has: rspec

Oops. Turns out the rspec gem itself has almost no code, it’s just a way to get all the dependent
pieces of RSpec in one place. Let’s try again:

$ bundle binstubs rspec-core

There’s no output here, but we now have a file at bin/rspec. (If you call bundle binstubs and
don’t specify a gem, it’ll run through all the gems in your bundle and create all their binstubs.)

The generated binary file has some boilerplate to make sure the environment is correct, but
the main part is at the end:

require "rubygems"
require "bundler/setup"

load Gem.bin_path("rspec-core", "rspec")

It requires bundler/setup and then loads the rspec script via RubyGems. As a result, you now
have a bin/rspec that behaves the same as bundle exec rspec.

If you don’t think that’s much better, what you can then do is set up your Unix shell’s $PATH
variable with something like export PATH="./bin:$PATH", and then you can just use $ rspec like
before and the version in ./bin will be found first and executed. If this paragraph doesn’t
make sense, check out Appendix 3, Command-Line Basics, on page 641 for context.

Be default, when you engage Bundler via Bundler.require or require "bundler/setup" each gem
will be autoloaded under the name of the gem. In other words, gem rspec implies require
"rspec". There are cases where this behavior is not helpful. Sometimes the gem actually has
a require file that is not the same as the name of the gem (this was much more common in
the past, but gems have tended to converge on the convention that makes using Bundler
easier). Sometimes the gem has undesirable behavior when loaded at the top of the program
and you only want to require it at a specific point—perhaps it does extra logging or something.

You can control the require behavior by augmenting the line of gem code with a require:
keyword option. If the option is false, then the gem is not auto required:

gem "rspec", require: false

If the option is a string, then the gem is auto-required, but using the name of the require
option rather than the name of the gem. More rarely, if the gem is an array of strings, each
of those names are required when Bundler autoloads.

report erratum • discuss

Using Bundler to Manage Groups of Gems • 257

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Bundle Update
Now that we’ve loaded our gems and we’ve made sure that we’re using the right versions,
things are great. For a while. But then, time passes, as it does, and new versions of gems are
released. And as great as it is that Bundler is keeping our gems stabilized, we’d really like
to upgrade.

The command for upgrading is bundle update. If it’s called without any arguments, it will
update all gems in the Gemfile to the most recent version, (or the most recent version allowed
by the version specifier—more on that later), and will update the entireGemfile.lock in response.
Normally, Bundler will attempt to resolve existing version dependencies before updating
but you can force it to reconsider the entire file with bundle update --all. You can get the same
functionality by deleting the Gemfile.lock and re-running bundle install, which is a fact that you
might want to keep in your back pocket for a day when Bundler’s dependency management
seems to be spinning its wheels.

You can update a subset of your Gemfile by listing those gems after the command, as in
bundle update rspec. The gems you list can either be gems that are explicitly in the Gemfile
itself or any dependency in the lock file. Bundler will update the listed gems to their most
recent versions (again bounded by version specifiers), and will also update all dependencies
of these gems. There may be some reason why you don’t want to update the downstream
dependencies, in which case you can attach the option --conservative to the end of the bundle
update command.

Gemfile Options
The Gemfile you saw earlier in Building a Gemfile, on page 254 is a minimal file. In particular,
each gem listing can have options that specify more information about where to get the gem
in question.

Versioning
The most important information to list about the gem is whether to restrict its version. If
you don’t specify a version, Bundler will load the most recent version. However, you often
don’t want a complete free-for-all. If you are depending on a feature that was added to the
gem along the way, you may want to specify a minimum version. If you know that a future
version of the gem breaks compatibility, you’d want to add a maximum version. Or, you
may just want to say “don’t update this gem without me explicitly saying so.”

When you add a gem to a Gemfile, you can add one or more optional version specifiers
(we’ll see in Writing and Packaging Your Own Code Into Gems, on page 261 that individual
gems also use version specifiers to manage their dependency lists). The simplest version
specifier is just an exact version number:

gem rspec, "3.11.0"

Specifying an exact version number means that Bundler won’t change the version behind
your back, but it also means that you lose some flexibility to respond to version changes or
requirements. If you want that version to be a minimum, you can use a greater than symbol.

gem rspec, ">= 3.11.0"

Similarly, a < or <= sets the version as a maximum. If you are setting a version ceiling, there’s
often a reason, and we recommend commenting the Gemfile to say what the reason is and

Chapter 15. Ruby Gems • 258

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

what to look for to be able to lift the ceiling. Otherwise over time, you’ll wind up with mul-
tiple gems in the Gemfile that you want to upgrade but are afraid of negative side effects.
Ask us how we know.

You can use the full set of Ruby operators for version specifiers—this table outlines what
they mean in context.

DescriptionOperator

Exact version match. Major, minor, and patch level must be identical.=
Any version that is not the one specified.!=
Any version that is greater (even at the patch level) than the one specified.>
Any version that is less than the one specified.<
Any version greater than or equal to the specified version.>=
Any version less than or equal to the specified version.<=
Pessimistic version constraint operator, officially. Somtimes called the "twiddle-
wakka" or "squiggle rocket" because the Ruby community contains multitudes.

~>

This operator allows updated versions if the new version differs from the current
version only in the last digit specified.

Table 5—Version operators

That last one (~>) could use a little explanation. The idea is to allow for patch updates that
are probably bug fixes but not to allow larger updates that might have breaking changes.
So, you might want to specify gem "rspec", "~> 3.11.0", and when RSpec releases a patch version
3.11.1 you will get that version with a bundle update, but when they update the minor version
to 3.12.0, you won’t get that version. The ~> operator is usually used with major, minor, and
patch versions specified, but you don’t have to do that, you could specify gem "rspec", "~>
3.11", in which case you’d get 3.11.1 and 3.12.0, but not 4.0.0.

There’s one other twist here, which is that sometimes you want to use a gem that has been
released in a beta version. Gem versioning assumes that a version number is a pre-release
version if it contains a letter character. You can get pre-release versions of gems by including
letters in your version specifier: gem "rspec", ">= 3.11.0.beta.1.

If you’ve specified a pre-release version, Bundler will look at all pre-release versions when
resolving its install or update, so >= 3.11.0.beta.1 would still receive the updated version
when 3.11.0.beta.2 is released because the operator is greater than and beta.2 is higher than
beta.1.

The sorting is alphabetical for sections that contain letters and numeric for sections that
don’t. Sometimes this can be confusing. RubyGems considers, say 7.0.0.pre.1 to be greater
than 7.0.0.beta.1 but Ruby on Rails (to pick one example) releases pre before beta so you can
get the wrong version if you are not careful. (Be sure to check the lock file to see what version
you are actually using.)

Sometimes you need to use a gem that is so far into pre-release that it hasn’t actually been
released as a gem and only exists in a git repo or even just in a local directory on your com-
puter. Often you need this to test gems that you are currently developing, or to help test
other people’s work before official release.

You can get access to unreleased gems via Bundler with different options in the Gemfile.
Generically, I can access any remote git server with the git: option, as in:

report erratum • discuss

Using Bundler to Manage Groups of Gems • 259

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

gem "rspec", git: "git@github.com:rspec/rspec-metagem.git"

Any of the Git access versions will work here, assuming that you have the appropriate access
to the remote Git server.

If the gem is hosted on GitHub, there’s a shortcut:

gem "rspec", github: "rspec/rspec"

And Bundler will use your GitHub access to install the gem. (There’s a similar option for
BitBucket.) In both cases, you can further specify which part of the repo you want with a
branch:, tag:, or ref: option.

When using a git source, you must bundle update to change the git commit that you are
pointing to.

If you are working on the gem yourself locally, you can specify a path option that points to
the top-level directory of the gem (specifically, the location of the .gemspec file) relative to
the location of the Gemfile:

gem "rspec", path: "../development/rspec"

Unlike a git source, when you use a path, Bundler executes the local source directly each
time, so you do not need to bundle update to get the newest version of a gem you are working
on locally.

Gemfile Groups
Another way to specify more information about a gem is with the groups feature. A group
is a collection of gems within a Gemfile that can be included or not-included together when
Bundler is used. Commonly, this feature is used to limit what gems are loaded based on
environment or context. You may have certain gems that are only useful in production, or
only needed when running tests.

There are two ways to attach gems to groups.

You can specify one or more groups for a gem by using the group: option inside the gemfile;
the argument is either a single symbol or an array of symbols representing the group or
groups that the gem is a part of:

gem "rspec", group: [:development, :test]

We’ve assigned RSpec to the :development, and :test groups. The group names are arbitrary,
but it’s conventional to match them to environment names when possible.

Alternately you can use the block form of group. This is shorter in the common case where
you have several gems belonging to the same group or groups.

group :development do
gem "standardrb"
gem "debug"

end

group :development, :test do
gem "rspec"

end

Chapter 15. Ruby Gems • 260

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If you have multiple group blocks with the same group name, the group adds the contents
of all of the blocks. In the above example, the :development group contains Standard, debug,
and RSpec, while the :test group contains only RSpec.

To use groups, you modify the Bundle setup, rather than require "bundle/setup", you just require
"bundler" and then explicitly call Bundler.setup with one or more group names.

require "bundler"
Bundler.setup(:development, :test)

Gems that are not a part of any group will always be installed, calling setup with arguments
additionally adds the gems that are in the specified groups.

If you are using bundle exec to load a program, the default will be to install all gems in all
groups, but you can modify this with the environment variables BUNDLE_WITH or BUNDLE_WITH-
OUT—BUNDLE_WITH creates a list of groups to include and ignores other groups, BUNDLE_WITHOUT
creates a list of groups to exclude and includes all other groups.

$ BUNDLE_WITH=test bundle exec rspec

If one of the environment variables is set, then groups will only be loaded if they conform
to the logic of the environment variables.

Writing and Packaging Your Own Code Into Gems
RubyGems is not just for downloading gems; you can also write and distribute your own
gems. Even if you don’t plan to distribute a gem, the default packaging for RubyGems can
help you plan the basic structure of your Ruby code. There used to be multiple sources for
how to structure a Ruby gem, but Bundler also provides a default template that has become
the basic standard.

As your programs grow (and they all seem to grow over time), you’ll find that you’ll need
to start organizing your code—simply putting everything into a single huge file becomes
unworkable (and makes it hard to reuse chunks of code in other projects). So, we need to
find a way to split our project into multiple files and then to knit those files together as our
program runs.

There are two major aspects to this organization. The first is internal to your code: how do
you prevent different things with the same name from clashing? The second area is related:
how do you conveniently organize the source files in your project?

Single File Projects
Small, self-contained scripts can be in a single file. However, if you do this, you won’t easily
be able to write automated tests for your program, because the test code won’t be able to
load the file containing your source without the program itself running. So, if you want to
write a small program that also has automated tests, split that program into a trivial driver
that provides the external interface (the command-line part of the code) and one or more
files containing the rest. Your tests can then exercise these separate files without actually
running the main body of your program.

Let’s try this for real. Here’s a simple program that finds anagrams in a dictionary. Feed it
one or more words, and it gives you the anagrams of each. Here’s an example:

$ ruby anagram.rb teaching ruby

report erratum • discuss

Writing and Packaging Your Own Code Into Gems • 261

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Anagrams of teaching: cheating, teaching
Anagrams of ruby: bury, ruby

If we were typing in this program for casual use, we might just enter it into a single file
(perhaps anagram.rb). It would look something like this:

gems/anagram.rb
#!/usr/bin/env ruby

require 'optparse'

dictionary = "/usr/share/dict/words"

OptionParser.new do |opts|

opts.banner = "Usage: anagram [options] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict|
dictionary = dict

end

opts.on("-h", "--help", "Show this message") do
puts opts
exit

end

begin
ARGV << "-h" if ARGV.empty?
opts.parse!(ARGV)

rescue OptionParser::ParseError => e
STDERR.puts e.message, "\n", opts
exit(-1)

end
end

convert "wombat" into "abmotw". All anagrams share a signature
def signature_of(word)
word.unpack("c*").sort.pack("c*")

end

signatures = Hash.new

File.foreach(dictionary) do |line|
word = line.chomp
signature = signature_of(word)
(signatures[signature] ||= []) << word

end

ARGV.each do |word|
signature = signature_of(word)
if signatures[signature]
puts "Anagrams of #{word}: #{signatures[signature].join(', ')}"

else
puts "No anagrams of #{word} in #{dictionary}"

end
end

You might be wondering about the line word.unpack("c*").sort.pack("c*"). This uses the function
unpack to break a string into an array of characters, which are then sorted and packed back
into a string.

Chapter 15. Ruby Gems • 262

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/gems/anagram.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Anyway, this is fine as far as it goes, it’s a small bit of code that does a small thing. We are
somewhat limited though, in that it is awkward to test a code in the same file (not impossible,
but generally the Ruby test libraries assume they will be in their own files). We’ve put a
bunch of variables in the global name space, which is not ideal, and generally, this code is
not well situated to manage complexity.

You might think that because Bundler requires a separate Gemfile, you can’t use it with a
standalone single-file Ruby script. Actually, however, you can, through the magic of
bundler/inline.

Here’s an admittedly contrived example where we want to print the date that we are
requesting an Anagram report, and we want to use the date_by_example gem to display the
date. By requiring bundler/inline we can then use a method called gemfile that takes a block,
like so:

gems/anagram_inline.rb
#!/usr/bin/env ruby

require "optparse"

require "bundler/inline"➤
➤

gemfile do➤

source "https://rubygems.org"➤

gem "date_by_example"➤

end➤

dictionary = "/usr/share/dict/words"

OptionParser.new do |opts|
opts.banner = "Usage: anagram [options] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict|
dictionary = dict

end

opts.on("-h", "--help", "Show this message") do
puts opts
exit

end

begin
ARGV << "-h" if ARGV.empty?
opts.parse!(ARGV)

rescue OptionParser::ParseError => e
warn e.message, "\n", opts
exit(-1)

end
end

convert "wombat" into "abmotw". All anagrams share a signature
def signature_of(word)
word.unpack("c*").sort.pack("c*")

end

signatures = {}

File.foreach(dictionary) do |line|
word = line.chomp
signature = signature_of(word)

report erratum • discuss

Writing and Packaging Your Own Code Into Gems • 263

http://media.pragprog.com/titles/ruby5/code/gems/anagram_inline.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

(signatures[signature] ||= []) << word
end

puts "Anagram Report for #{Date.today.by_example("Jan 02, 2006")}"➤

ARGV.each do |word|
signature = signature_of(word)
if signatures[signature]
puts "Anagrams of #{word}: #{signatures[signature].join(", ")}"

else
puts "No anagrams of #{word} in #{dictionary}"

end
end

Inside the gemfile block, we can do exactly the same things we can do in a Gemfile, here we
list a source and one dependent gem. When we run the file normally, Bundler ensures that
the gems are downloaded, and automatically requires them so that later in the script we can
just use the gems—in this case the by_example call later on comes from the gem.

The main limitation to using bundle/inline is because it’s meant to work on one file, it doesn’t
create a lock file, but other than that, it’s a great way to add a little depth to a simple script
before it becomes a full-fledged app.

Namespaces
One issue with our existing anagrams script right now is that it puts variable names in the
global scope. We don’t declare a class in the script (at least, not yet) but we do create dictionary
and signatures, and if we had created a class, that class would be in the global namespace,
meaning that any other code in the script could easily collide and overwrite it. This is, to put
it mildly, not a good feature for long-term growth. We need to be able to separate out different
parts of the code into different areas where they will not interfere with each other.

We’ve already encountered a way that Ruby helps you manage the names of things in your
programs. If you define methods or constants in a class, Ruby ensures that their names can
be used only in the context of that class (or its objects, in the case of instance methods):

class Triangle
SIDES = 3
def area
..

end
end

class Square
SIDES = 4
def initialize(side_length)
@side_length = side_length

end

def area
@side_length * @side_length

end
end

puts "A triangle has #{Triangle::SIDES} sides"

sq = Square.new(3)

Chapter 15. Ruby Gems • 264

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

puts "Area of square = #{sq.area}"

produces:

A triangle has 3 sides
Area of square = 9

Both classes define a constant called SIDES and an instance method area, but these names
don’t get confused. You access the instance method via objects created from the class, and
you access the constant by prefixing it with the name of the class followed by a double colon.
The double colon (::) is Ruby’s namespace resolution operator. The thing to the left must be
a class or module, and the thing to the right is a constant defined in that class or module.

So, putting code inside a module or class is a good way of separating it from other code.
Ruby’s Math module is a good example—it defines constants such as Math::PI and Math::E and
methods such as Math.sin and Math.cos. You can access these constants and methods via the
Math module object:

Math::E # => 2.718281828459045
Math.sin(Math::PI/6.0) # => 0.49999999999999994

(Modules have another significant use—they implement Ruby’s mixin functionality, which
we discussed in Mixins, on page 107.)

Ruby has an interesting little secret. The names of classes and modules are themselves just
constants. Remember that we said that most everything in Ruby is an object. Well, classes
and modules are, too. The name that you use for a class, such as String, is really just a Ruby
constant containing the object representing that class. And that means that if you define
classes or modules inside other classes and modules, the names of those inner classes are
just constants that follow the same namespacing rules as other constants:

module Formatters
class Html
MEDIA_TYPE = "text/html"
...

end

class Pdf
...

end
end

html_writer = Formatters::Html.new
html_media_type = Formatters::Html::MEDIA_TYPE

You can nest classes and modules inside other classes and modules to any depth you want
(although it’s rare to see them more than three deep).

So, now we know that we can use classes and modules to partition the names used by our
programs.

Organizing Your Source Code
We have two related problems to solve: how do we split our source code into separate files,
and where in the file system do we put those files?

report erratum • discuss

Organizing Your Source Code • 265

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Some languages, such as Java, make this easy. They dictate that each outer-level class should
be in its own file and that file should be named according to the name of the class. Other
languages, such as Ruby, have no rules relating source files and their content. In Ruby, you’re
free to organize your code as you like.

That said, you’ll find that some kind of consistency really helps. It will make it easier for
you to navigate your own projects, and it will also help when you read (or incorporate)
other people’s code.

The Ruby community has largely adopted a de facto standard. In many ways, it follows the
spirit of the Java model, in that each file is intended to have one top-level module or class
and the name of that class is based on the name of the file. (If you use Rails, the Zeitwerk2

auto-loader enforces this pattern. You can also use Zeitwerk to add auto-loading to your
own gems.)

Looking at the anagram code, there appear to be three sections. The first twenty-five or so
lines do option parsing, the next ten or so lines read and convert the dictionary, and the last
few lines look up each command-line argument and report the result. Let’s split our file into
four parts:

• An option parser
• A class to hold the lookup table for anagrams
• A class that looks up words given on the command line
• A small command-line interface

The first three of these are effectively library files, used by the fourth. We can turn this into
a gem, allowing access to anagram features for any program, plus the command-line interface.
The standard gem structure is given to us by Bundler, which doesn’t quite go with Bundler’s
other features but is a standard tool that you are extremely likely to have around.

All we need is to name the gem. As it happens, both “anagrams” and “anagram” are already
taken. Let’s go with “aaagmnr”, which is the “signature” of anagram given the code’s
implementation of signatures, and is somehow not taken in the RubyGems central listing
as I write this (there’s a note about changing the initial git branch that we elided from the
output):

$ bundle gem aaagmnr
Creating gem 'aaagmnr'...
MIT License enabled in config
Code of conduct enabled in config
Changelog enabled in config
Standard enabled in config
Initializing git repo in /Users/noel/projects/pragmatic/ruby5/Book/code/gems/aaagmnr

create aaagmnr/Gemfile
create aaagmnr/lib/aaagmnr.rb
create aaagmnr/lib/aaagmnr/version.rb
create aaagmnr/sig/aaagmnr.rbs
create aaagmnr/aaagmnr.gemspec
create aaagmnr/Rakefile
create aaagmnr/README.md
create aaagmnr/bin/console
create aaagmnr/bin/setup

2. https://github.com/fxn/zeitwerk

Chapter 15. Ruby Gems • 266

report erratum • discuss

https://github.com/fxn/zeitwerk
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

create aaagmnr/.gitignore
create aaagmnr/.rspec
create aaagmnr/spec/spec_helper.rb
create aaagmnr/spec/aaagmnr_spec.rb
create aaagmnr/.github/workflows/main.yml
create aaagmnr/LICENSE.txt
create aaagmnr/CODE_OF_CONDUCT.md
create aaagmnr/CHANGELOG.md
create aaagmnr/.standard.yml

Gem 'aaagmnr' was successfully created.
For more information on making a RubyGem visit
https://bundler.io/guides/creating_gem.html

The “config” referred to is the bundle config, which contains some global options for bundler,
and which you can update with bundle config set ci github or whatever the config variable and
setting you want. Anything in the configuration can also be set using command-line options
to the bundle gem command itself.

What has Bundler created for us?

• A aaagmnr.gemspec file. The gemspec file contains all the metadata that RubyGems uses
to manage this gem. We’ll talk about that in a second in Distributing and Installing Your
Code, on page 272. We’ve also got a regular Gemfile.

• A series of logistical files, including an open source license, a basic change log, a code
of conduct file, a readme, and a Rakefile. Some of these are managed by the configuration,
including the type of license and whether to include the code of conduct.

• The lib directory, which is where our code will go.
• The sig directory, which is where Ruby type info would go if we were using Ruby types.

See Chapter 7, Basic Types: Numbers, Strings, and Ranges, on page 117.
• A bin directory, with some useful pre-created setup scripts.
• We’ve been set up as a Git repo; you can choose other source control repositories in the

config.
• We’ve been set up with a spec directory and RSpec; you can choose a different testing

tool in the config.
• A linter file to enforce coding style; we’re using the Standard gem,3 the choice is a con-

figurable option.

That’s quite a lot of work already done for us. Now we can fit our code inside that structure.

Let’s look at the lib directory. This is where we put our source code. Right now it has two
files in it, aaagmnr.rb, which will be our top level access to the code, and aaagmnr/version.rb,
which contains a VERSION constant. We will see more of this later.

The intention is that our actual logic will go alongside that version.rb in the lib/aaagnmr direc-
tory. Why is that?

We know we’re going to be defining (at least) three classes. Right now, these classes will be
used only by our command-line program, but it’s conceivable that other people might want
to include one or more of our libraries in their own code. This means that we should be polite
and not pollute the top-level Ruby namespace with the names of all our classes and so on.
We’ll create just one top-level module, Aaagnmr, and then place all our classes inside this

3. https://github.com/testdouble/standard

report erratum • discuss

Organizing Your Source Code • 267

https://github.com/testdouble/standard
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

module. This means that the full name of (say) our options-parsing class will be Aaagn-
mr::Options.

This choice informs our decision on where to put the corresponding source files. Because
class Options is inside the module Aaagnmr, it makes sense to put the corresponding file,
options.rb, inside the lib/aaagnmr/directory. This helps people who read your code in the future;
when they see a name like A::B::C, they know to look for c.rb in the b/ directory in the a/
directory of your library. It also helps autoloaders find the file, when an autoloader sees a
reference to Aaagnmr::Options, it knows that the corresponding file is lib/aaagnmr/options.rb.

Let’s add the option parser. Its job is to take an array of command-line options and return
to us the path to the dictionary file and the list of words to look up as anagrams. The source,
in lib/aaagnmr/options.rb, looks like this:

gems/aaagmnr/lib/aaagmnr/options.rb
module Aaagmnr
class Options
DEFAULT_DICTIONARY = "/usr/share/dict/words"
attr_reader :dictionary, :words_to_find

def initialize(argv)
@dictionary = DEFAULT_DICTIONARY
parse(argv)
@words_to_find = argv

end

private def parse(argv)
OptionParser.new do |opts|
opts.banner = "Usage: anagram [options] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict|
@dictionary = dict

end

opts.on("-h", "--help", "Show this message") do
puts opts
exit

end

begin
argv = ["-h"] if argv.empty?
opts.parse!(argv)

rescue OptionParser::ParseError => e
warn e.message, "\n", opts
exit(-1)

end
end

end
end

end

Notice how we define the Options class inside a top-level Aaagnmr module.

Let’s write some unit tests. This should be fairly easy, because options.rb is self-contained—the
only dependency is to the standard Ruby OptionParser (note that it’s not explicitly required in
this file because we’ve moved the require to the top-level aaagnmr.rb, which we’ll show in a
little bit. We’re going to use RSpec here, because the gem library has already loaded it.

Chapter 15. Ruby Gems • 268

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/lib/aaagmnr/options.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

gems/aaagmnr/spec/aaagmnr/options_spec.rb
module Aaagmnr
RSpec.describe Options do
describe "without specifiying a dictionary" do
it "returns the default dictionary" do
opts = Options.new(["someword"])
expect(opts.dictionary).to eq(Options::DEFAULT_DICTIONARY)

end

it "should retain specified words" do
opts = Options.new(["word1", "word2"])
expect(opts.words_to_find).to eq(["word1", "word2"])

end
end

describe "when specifying a dictionary" do
it "should be able to reference the specified dictionary" do
opts = Options.new(["-d", "mydict", "someword"])
expect(opts.dictionary).to eq("mydict")

end

it "should retain specified words" do
opts = Options.new(["-d", "mydict", "word1", "word2"])
expect(opts.words_to_find).to eq(["word1", "word2"])

end
end

end
end

There are a few things to note in this file:

• You won’t be able to run this without also updating the .gemspec file (as shown later in
Distributing and Installing Your Code, on page 272). The gem system will block you
from running an incomplete .gemspec.

• We didn’t need to require anything in this file, not our code, and not the option parser.
That’s because the RSpec spec_helper.rb requires our main file at lib/aagmnr.rb (we’ll see
this code in a moment), which does all of those things.

• We’ve put the RSpec file inside our module Aaagmnr, meaning that we can refer to our
Options class directly rather than qualifying it as Aaagmnr::Options. Alternately, we could
have started the file with RSpec.describe Aaagmnr::Options, but that has the potential to be
flaky, we’re now depending on the Aaagmnr module to already exist.

These tests pass, after you update the .gemspec file, you need to run them from the root
directory of the gem:

$ rspec spec/aaagmnr/options_spec.rb
Aaagmnr::Options
without specifiying a dictionary
returns the default dictionary
should retain specified words

when specifying a dictionary
should be able to reference the specified dictionary
should retain specified words

Finished in 0.001 seconds (files took 0.05676 seconds to load)
4 examples, 0 failures

report erratum • discuss

Organizing Your Source Code • 269

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/spec/aaagmnr/options_spec.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The finder code (in lib/aaagmnr/finder.rb) is modified slightly from the original version. To
make it easier to test, we’ll have the default constructor take a list of words, rather than a
filename. We’ll then provide an additional factory method, from_file, that takes a filename
and constructs a new Finder from that file’s contents:

gems/aaagmnr/lib/aaagmnr/finder.rb
module Aaagmnr
class Finder
def self.from_file(file_name)
new(File.readlines(file_name))

end

def initialize(dictionary_words)
@signatures = {}
dictionary_words.each do |line|
word = line.chomp
signature = signature_of(word)
(@signatures[signature] ||= []) << word

end
end

def lookup(word)
signature = signature_of(word)
@signatures[signature]

end

def signature_of(word)
word.unpack("c*").sort.pack("c*")

end
end

end

Again, we embed the Finder class inside the top-level Aaagmnr module. And, again, this code
is self-contained, allowing us to write some simple unit tests:

gems/aaagmnr/spec/aaagmnr/finder_spec.rb
module Aaagmnr
RSpec.describe Finder do
describe "signature" do
subject(:finder) { Finder.new([]) }

specify { expect(finder.signature_of("cat")).to eq("act") }
specify { expect(finder.signature_of("act")).to eq("act") }
specify { expect(finder.signature_of("wombat")).to eq("abmotw") }

end

describe "lookup" do
subject(:finder) { Finder.new(["cat", "wombat"]) }

it "returns the word if the word is given" do
expect(finder.lookup("cat")).to eq(["cat"])

end

it "returns the word if an anagram is given" do
expect(finder.lookup("act")).to eq(["cat"])
expect(finder.lookup("tca")).to eq(["cat"])

end

it "returns nil if no word matches the anagram" do

Chapter 15. Ruby Gems • 270

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/lib/aaagmnr/finder.rb
http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/spec/aaagmnr/finder_spec.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

expect(finder.lookup("wibble")).to be_nil
end

end
end

end

$ rspec spec/aaagmnr/finder_spec.rb
Aaagmnr::Finder
signature
is expected to eq "act"
is expected to eq "act"
is expected to eq "abmotw"

lookup
returns the word if the word is given
returns the word if an anagram is given
returns nil if no word matches the anagram

Finished in 0.00251 seconds (files took 0.05375 seconds to load)
6 examples, 0 failures

We now have all the support code in place. We just need to run it. We’ll make the command-
line interface—the thing the end user actually executes—really thin. It’s in the exe/ directory
in a file called aaagmnr (no rbextension, because that would be unusual in a command). (If
you’re on Windows, you might want to wrap the invocation of this in a cmd file.

gems/aaagmnr/exe/aaagmnr
#!/usr/bin/env ruby
require_relative "../lib/aaagmnr"

runner = Aaagmnr::Runner.new(ARGV)
runner.run

The code that this script invokes (lib/anagram/runner.rb) knits our other libraries together:

gems/aaagmnr/lib/aaagmnr/runner.rb
module Aaagmnr
class Runner
def initialize(argv)
@options = Options.new(argv)

end

def run
finder = Finder.from_file(@options.dictionary)
@options.words_to_find.each do |word|
anagrams = finder.lookup(word)
if anagrams
puts "Anagrams of #{word}: #{anagrams.join(", ")}"

else
puts "No anagrams of #{word} in #{@options.dictionary}"

end
end

end
end

end

With all our classes created, we can finally see the entire top-level file that is required by
users of this gem:

report erratum • discuss

Organizing Your Source Code • 271

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/exe/aaagmnr
http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/lib/aaagmnr/runner.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

gems/aaagmnr/lib/aaagmnr.rb
frozen_string_literal: true

require_relative "aaagmnr/finder"
require_relative "aaagmnr/options"
require_relative "aaagmnr/runner"
require_relative "aaagmnr/version"
require "optparse"

module Aaagmnr
class Error < StandardError; end
Your code goes here...

end

It requires all our files and the version, plus optparse – the custom error is created by the gem
boilerplate, we don’t really have any reason to use it yet.

Now that all our files are in place, we can run our program from the command line (use
chmod to make the program executable).

$ exe/aaagmnr teaching ruby
Anagrams of teaching: cheating, teaching
Anagrams of ruby: bury, ruby

Distributing and Installing Your Code
There are a few parts of using RubyGems we haven’t discussed. We haven’t discussed the
metadata that allows the RubyGems ecosystem to know things about our gem. In particular,
we want to see how we can inject executables into code that uses our gem, and also how our
gem declares its dependencies.

RubyGems needs to know information about your project that isn’t contained in the directory
structure. Instead, you have to write a short RubyGems specification. Our gem creation tool
has already created one with most of the boilerplate at aaagmnr.gemspec. This comes with
some lines marked TODO which must be changed before the gem can be used. Here’s the
completed file:

gems/aaagmnr/aaagmnr.gemspec
frozen_string_literal: true

require_relative "lib/aaagmnr/version"

Gem::Specification.new do |spec|
spec.name = "aaagmnr"
spec.version = Aaagmnr::VERSION
spec.authors = ["Noel Rappin"]
spec.email = ["noel.rappin@pragprog.com"]

spec.summary = "A simple anagrams tool"
spec.homepage = "http://pragprog.com"
spec.license = "MIT"
spec.required_ruby_version = ">= 2.6.0"

spec.metadata["homepage_uri"] = spec.homepage
spec.metadata["source_code_uri"] = "http://pragprog.com"
spec.metadata["changelog_uri"] = "http://pragprog.com"

Specify which files should be added to the gem when it is released.

Chapter 15. Ruby Gems • 272

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/lib/aaagmnr.rb
http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/aaagmnr.gemspec
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The `git ls-files -z` loads the files in the RubyGem that have been added
into git.
spec.files = Dir.chdir(File.expand_path(__dir__)) do
`git ls-files -z`.split("\x0").reject do |f|
(f == __FILE__) ||
f.match(%r{\A(?:(?:test|spec|features)/|\.(?:git|travis|circleci)|appveyor)})

end
end
spec.bindir = "exe"
spec.executables = spec.files.grep(%r{\Aexe/}) { |f| File.basename(f) }
spec.require_paths = ["lib"]

spec.add_dependency "date_by_example", '~> 0.1'
end

The specification itself happens inside that Gem::Specification.new block, where the spec argu-
ment is the specification object and we’re setting all kinds of attributes on it. Most of these
are basically what they claim to be and are used, among other things, to populate the gem’s
page on rubygems.org should we submit it there.

The first line of the spec gives our gem a name. This is important—it will be used as part of
the package name, and it will appear as the name of the gem when installed. The convention
is for gem names to be all lower case, and to use underscores to separate words, as in
date_by_example but use a dash to mark an extension to another gem, as in rspec-mocks. The
dash indicates a submodule in the structure of the code, the main file of rspec-mocks would
be rspec/mocks.

We pull the version string from the file inside the gem itself. The version string is significant,
because RubyGems will use it both for package naming and for dependency management.
The required_ruby_version tells RubyGems what versions of Ruby the gem would be expected
to run with.

Eventually we get to spec.files which lists all the files that we want to be distributed when
the gem is downloaded. That boilerplate code basically says “everything in the git repository
that isn’t a test or part of source control or CI”. You can choose to change that if you want,
you just need a list of files.

The spec.executables line tells RubyGems where to look for command-line scripts to get mixed
in to users of the gem. The default is to include all files in the exe directory (because bin is
used for developer scripts).

Finally we’ve used add_dependency to include the date_by_example gem. This tells RubyGems
that any user of this gem must also install date_by_example. The second argument is a version
specifier using the same syntax as we used in Gemfile. If we wanted a dependency that was
only used for development, we’d use add_dev_dependency, but in practice, development
dependencies are just as often added to the Gemfile.

Speaking of Gemfile, here it is:

gems/aaagmnr/Gemfile
frozen_string_literal: true

source "https://rubygems.org"

Specify your gem's dependencies in aaagmnr.gemspec
gemspec

report erratum • discuss

Distributing and Installing Your Code • 273

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/Gemfile
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

gem "rake", "~> 13.0"
gem "rspec", "~> 3.0"
gem "standard", "~> 1.3"

The important bit here is the gemspec method, which pulls in all the dependencies and
development dependencies specified in the .gemspec and adds them as though they were
part of the Gemfile.

Packaging Your RubyGem
Once the gem specification is complete, you can create a packaged gem file for distribution.
This is as easy as navigating to the top level of your project and typing this:

$ gem build aaagmnr.gemspec
Successfully built RubyGem
Name: aaagmnr
Version: 0.1.0
File: aaagmnr-0.1.0.gem

You’ll find you now have a file called anagram-0.0.1.gem.

You can install it:

$ gem install aaagmnr-0.1.0.gem
Successfully installed aaagmnr-0.1.0
Parsing documentation for aaagmnr-0.1.0
Installing ri documentation for aaagmnr-0.1.0
Done installing documentation for aaagmnr after 0 seconds
1 gem installed

And check to see that it is there:

$ gem list aaagmnr -d

*** LOCAL GEMS ***

aaagmnr (0.1.0)
Author: Noel Rappin
Homepage: http://pragprog.com
License: MIT
Installed at: /Users/noel/.rbenv/versions/3.1.2/lib/ruby/gems/3.1.0

A simple anagrams tool

Now you can send your gem file to friends and colleagues or share it from a server—many
corporate environments use gem servers to share code. Or, you could go one better and
publish it to the central RubyGems server.

Serving Public RubyGems
RubyGems.org4 is the main repository for public Ruby libraries and projects. And, if you
create a RubyGems.org account, you can push your gem file to their public servers. We’re
not actually going to do that here, but the command is gem push.

And, at that point, any Ruby user in the world can use it with gem install aaagmnr.

4. http://rubygems.org

Chapter 15. Ruby Gems • 274

report erratum • discuss

http://rubygems.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

What’s Next
In this chapter, we looked at how to build Ruby programs and package them as gems. Now
it’s time to dig a little deeper into working with Ruby itself. In the next chapter, we’ll talk
about interacting with Ruby using irb, the interactive Ruby shell.

report erratum • discuss

What’s Next • 275

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 16

Interactive Ruby
If you want to play with Ruby, we recommend Interactive Ruby—irb, for short. irb is a Ruby
command-line “shell” similar in concept to an operating system shell (complete with job
control). It is sometimes called a REPL, which is an abbreviation for “Read, Evaluate, Print
Loop,” and provides an environment where you can play around with the language in real
time.

You launch irb at the command prompt:

$ irb

irb displays the value of each expression as you complete it. For instance:

$ irb
irb(main):001:0* a = 1 +
irb(main):002:0* 2 * 3 /
irb(main):003:0> 4 % 5
=> 2
irb(main):004:0> 2 + 2
=> 4
irb(main):005:0> x = _
=> 4
irb(main):006:0> x
=> 4
irb(main):007:1* def test
irb(main):008:1* puts "Hello, world!"
irb(main):009:0> end
=> :test
irb(main):010:0> test
Hello, world!
=> nil
irb(main):011:0>

A couple of things about that session. If you typed along with it in Ruby 3.1 or higher, you
may have noticed that irb tried to autocomplete text as you typed it. You may also have
noticed that it color-coded the text as you entered it, and even backdented the end line to
line up.

Also, irb always stores the result of the last expression in a special variable called _, as you
can see in lines 5 and 6, that can be a useful way to capture data and use it in the future.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

irb is a great learning tool. It’s very handy if you want to try an idea quickly and see whether
it works.

Using irb
irb is run from the command line:

irb ‹ irb-options › ‹ ruby_script › ‹ program arguments ›

The command-line options for irb are listed in Table 6, irb command-line options, on page
278. Typically, you’ll run irb with no options, but if you want to run a script and watch the
step-by-step description as it runs, you can provide the name of the Ruby script and any
options for that script.

DescriptionOption

Use or don’t use the autocomplete feature. The default is
--autocomplete.

--autocomplete, --noautocom-
plete

Displays backtrace information using the top n and last n
entries. The default value is 16.

--back-trace-limit n

Use or don’t use color syntax highlighting, --colorize is the
default.

--colorize, --nocolorize

:CONTEXT_MODE is described.--context-mode n
Sets $DEBUG and $VERBOSE to true (same as ruby -d).-d
Same as Ruby’s -E option, sets internal or external encodings
with in or ex.

-E enc

Echoes or doesn’t echo the result of each line, the default is
--echo

--echo, --noecho

Echoes, doesn’t echo, or partially echoes the result of an
assignment statement. Truncated is the default.

--echo-on-assignment, --noecho-
on-assignment, truncate-echo-
on-assignment

Specify an extra directory for documentation.--extra-doc-dir
Suppresses reading ~/.irbrc.-f
Displays usage information.-h, --help
Same as Ruby’s -I option, sets directories on the load path.-I directories
Sets up irb to run in inf-ruby-mode under Emacs. Same as --prompt
inf-ruby --nomultiline.

--inf-ruby-mode

Uses/doesn’t use Kernel#inspect to format output (--inspect is the
default).

--inspect, --noinspect

Use or don’t use multiline editor mode. The default is multi-
line. (The official docs say that nomultiline is the default, but

--multiline, --nomultiline

that seems not to be true in my experimentation). You can also
specify modes with --singleline or --nosingleline.
Does not display a prompt. Same as --prompt null.--noprompt
Switches prompt. Predefined prompt modes are null, default,
classic, simple, xmp, and inf-ruby.

--prompt prompt-mode

Same as --prompt.--prompt-mode prompt-mode
Requires module. Same as ruby -r.-r module

Chapter 16. Interactive Ruby • 278

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

DescriptionOption

Same as --prompt simple.--sample-book-mode
Nested irb sessions will all share the same context.--single-irb
Displays trace for execution of commands.--tracer
Same as Ruby’s -U option, sets encoding to UTF-8.-U
Prints the version of irb.-v, --version
Do or don’t show verbose details. The default is --noverbose--verbose, --noverbose
Set warning level, 0 is no warnings, 2 is verbose, one is in the
middle.

-W[level]

Suppress warning mode, like Ruby’s -w.-w

Table 6—irb command-line options

Once started, irb displays a prompt and waits for you to type Ruby code. irb understands
Ruby, so it knows when statements are incomplete. When this happens, irb will indicate
that status as part of the prompt.

irb(main):001:0> 1 + 2
=> 3
irb(main):002:0* 3 +
irb(main):003:0> 4
=> 7

That * on line two happened after the + sign was typed, and indicates that the statement is
incomplete. You get the same * if you type an open parenthesis. The first number between
the colons is the line number, the second number between the colon and the final prompt is
the indent level—you’ll see if you add an open parenthesis that number will increase.

You can leave irb by typing exit or quit or by entering an end-of-file character (usually com-
mand-d). The latter behavior can be blocked by setting IGNORE_EOF mode. We’ll talk about
configuration options in the next section.

During an irb session, the work you do is accumulated in irb’s workspace. Variables you
set, methods you define, and classes you create are all remembered and may be used subse-
quently in that session.

irb(main):001:1* def fib_up_to(n)
irb(main):002:1* f1, f2 = 1, 1
irb(main):003:2* while f1 <= n
irb(main):004:2* puts f1
irb(main):005:2* f1, f2 = f2, f1 + f2
irb(main):006:1* end
irb(main):007:0> end
=> :fib_up_to
irb(main):008:0> fib_up_to(4)
1
1
2
3
=> nil
irb(main):009:0>

report erratum • discuss

Using irb • 279

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In this session we defined a method in the irb session and then used it. Note that the irb
session handles indent and outdent automatically. Also that the method definition returns
the symbol name of the method, but the method call prints items and returns nil.

When in the middle of editing something over multiple lines, such as the internals of the
method definition and even the arithmetic expression that is split over multiple lines,
pressing the up and down arrows will move you through that expression to allow you to
edit across lines until the expression is complete. If you are not in the middle of a multi-line
expression, pressing the up or down arrows will move you through the command history.

A great use of irb is experimenting with code you’ve already written. Perhaps you want to
track down a bug, or maybe you just want to play. If you load your program into irb, you
can then create instances of the classes it defines and invoke its methods. For example, the
file code/irb/fibbonacci_sequence.rb contains the following method definition:

irb/fibonacci_sequence.rb
def fibonacci_sequence
Enumerator.new do |generator|
i1, i2 = 1, 1
loop do
generator.yield i1
i1, i2 = i2, i1 + i2

end
end

end

We can load this into irb and play with the method:

irb(main):001:0> load("code/irb/fibonacci_sequence.rb")
=> true
irb(main):002:0> fibonacci_sequence.first(10)
=> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

In this example, we use load, rather than require, to include the file in our session. We do this
as a matter of practice: load allows us to load the same file multiple times, so if we find a bug
and edit the file, we can reload it into our irb session.

Navigating irb
From the irb prompt if you are not in the middle of typing a multi-line expression, pressing
the up-arrow will move you through your command history, showing the previous command,
then the one before that and so on. The down-arrow will move you forward in the history
once you have started backward. The command history is persisted between sessions.

Unlike the way your shell might be set up, the up-arrow does not act as a partial search, if
you type a character and then the up-arrow, your typing will be replaced by the entire pre-
vious command regardless of whether the character you typed is the beginning of the previous
command. By default, irb stores 1000 commands in its history, this amount can be configured.

If you are in the middle of an expression, then pressing the arrow keys will move you through
that expression, allowing you to edit the expression before it is evaluated. This is relatively
hard to demonstrate in a static book, but if you open up irb and type def foo then press return,
then type 1 + 1 then press return, then an up arrow will allow you to navigate to change the

Chapter 16. Interactive Ruby • 280

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/irb/fibonacci_sequence.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

1 + 1 expression, until you eventually come back to where you started and type end to com-
plete the method expression.

Starting in Ruby 3.1, irb has its own native autocompletion functionality. When you press
Tab partway through a word, irb will look for possible completions that make sense at that
point. If there is only one, irb will fill it in automatically, and it will show you the beginning
of the documentation for that completion, if there is documentation.

If there are multiple completions, irb will display them in a list, pressing Tab again will move
you through the list of completions, each one displaying its documentation when selected,
and then pressing Return will complete the selected entry.

For example, the following image shows the middle of an irb session:

In this session, we assigned a string object to the variable a. Now we want to try the method
String#reverse on this object. The screenshot here comes from typing a.re and hitting Tab twice.

You can see that irb lists all the methods supported by the object in awhose names start with
re, and that reverse is now selected, and that irb has filled out our input line with reverse—all
we typed was a.re<tab><tab>. The documentation from the method is now also displayed.

irb responds to the Return key by expanding the name as far as it can go, in this case completing
the word reverse. If we keyed Tab twice at this point, it would show us the current options,
reverse and reverse!. However, because reverse is the one we want, we instead hit Return again,
and the line of code is executed.

Tab completion isn’t limited to built-in names. If we define a class in irb, then tab completion
works when we try to invoke one of its methods:

report erratum • discuss

Navigating irb • 281

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In this example, my_method is included in the autocomplete for the new object in the defined
class.

Subsessions
irb supports multiple concurrent sessions. One is always current; the others lie dormant
until activated. Entering the command irb within irb creates a subsession, entering the jobs
command lists all sessions, and entering fg activates a particular dormant session. This
example also illustrates the -r command-line option, which loads in the given file before irb
starts:

$ irb -r ./code/irb/fibonacci_sequence.rb
irb(main):001:0> result = fibonacci_sequence.first(5)
=> [1, 1, 2, 3, 5]
irb(main):002:0> # Creating nested irb session
=> nil
irb(main):003:0> irb
irb#1(main):001:0> result = %w[cat dog elk]
=> ["cat", "dog", "elk"]
irb#1(main):002:0> result.map(&:upcase)
=> ["CAT", "DOG", "ELK"]
irb#1(main):003:0> jobs
=>
#0->irb on main (#<Thread:0x00000001025e4d60 sleep_forever>: stop)
#1->irb#1 on main (#<Thread:0x000000010656caf0
/Users/noel/.rbenv/versions/3.1.2/lib/ruby/3.1.0/irb/ext/multi-irb.rb:192
run>: running)
irb#1(main):004:0> fg 0
=> #<IRB::Irb: @context=#<IRB::Context:0x00000001064ed9d0>,

@signal_status=:IN_EVAL, @scanner=#<RubyLex:0x000000010659e370>>
irb(main):004:0> result
=> [1, 1, 2, 3, 5]
irb(main):005:0> fg 1
=> #<IRB::Irb: @context=#<IRB::Context:0x000000010656c960>,

@signal_status=:IN_EVAL, @scanner=#<RubyLex:0x0000000106567258>>
irb#1(main):005:0> result
=> ["cat", "dog", "elk"]
irb#1(main):006:0>

Chapter 16. Interactive Ruby • 282

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In this example, we start a job and set result to the list of the first five Fibonacci numbers,
then use the irb command internally to start a second job, setting result to something else,
and then switch back and forth to show that the namespaces are independent.

Bindings
If you specify an object when you create a subsession, that object becomes the value of self
in that binding. This is a convenient way to experiment with objects. In the following
example, we create a subsession with the string “wombat” as the default object. Methods
with no receiver will be executed by that object.

irb
irb(main):001:0> self
=> main
irb(main):002:0> irb "wombat"
irb#1(wombat):001:0> self
=> "wombat"
irb#1(wombat):002:0> upcase
=> "WOMBAT"
irb#1(wombat):003:0> size
=> 6
irb#1(wombat):004:0> gsub(/[aeiou]/, '*')
=> "w*mb*t"
irb#1(wombat):005:0> irb_exit
=> #<IRB::Irb: @context=#<IRB::Context:0x0000000108fa9e80>,

@signal_status=:IN_EVAL, @scanner=#<RubyLex:0x00000001090be8e8>>
irb(main):003:0> self
=> main
irb(main):004:0> upcase
(irb):4:in `<main>': undefined local variable
or method `upcase' for main:Object (NameError)

Did you mean? case
from /[elided]/gems/irb-1.4.1/exe/irb:11:in `<top (required)>'

Configuring irb
irb is remarkably configurable. You can set configuration options with command-line options,
from within an initialization file, and while you’re inside irb itself.

irb uses an initialization file in which you can set commonly used options or execute any
required Ruby statements. When irb is run, it will try to load an initialization file from one
of the following sources in order: ~/.irbrc, .irbrc, irb.rc, _irbrc, and $irbrc.

Within the initialization file, you may run any arbitrary Ruby code. For example, you can
require any gem that you might want included in an irb session (for example, irbtools1 or
awesome-print2).

You can also set configuration values. The list of configuration variables is given in irb
Configuration Options, on page 285—the values that can be used in an initialization file are
the symbols (starting with a colon). You use these symbols to set values into the IRB.conf hash.

1. https://irb.tools
2. https://github.com/awesome-print/awesome_print

report erratum • discuss

Configuring irb • 283

https://irb.tools
https://github.com/awesome-print/awesome_print
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

For example, to make SIMPLE the default prompt mode for all your irb sessions, you could
have the following in your initialization file:

IRB.conf[:PROMPT_MODE] = :SIMPLE

For a dynamic twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc object. This proc
will be invoked whenever the irb context is changed and will receive the configuration for
that context as a parameter. You can use this facility to change the configuration dynamically
based on the context. For example, the following .irbrc file sets the prompt so that only the
main prompt shows the irb level, but continuation prompts and the result still line up:

IRB.conf[:IRB_RC] = lambda do |conf|
leader = " " * conf.irb_name.length
conf.prompt_i = "#{conf.irb_name} --> "
conf.prompt_s = leader + ' \-" '
conf.prompt_c = leader + ' \-+ '
conf.return_format = leader + " ==> %s\n\n"
puts "Welcome!"

end

An irb session using this .irbrc file looks like the following:

irb
Welcome!
irb --> 1 + 2

==> 3

\-+ 2 +
irb --> 6

==> 8

There’s some dynamic behavior where the prompts change when typing that this code listing
doesn’t quite capture.

Extending irb
Because the things you type into irb are interpreted as Ruby code, you can effectively extend
irb by defining new top-level methods. For example, you may want to time how long certain
things take. You can use the measure method in the Benchmark library to do this, but it’s
more convenient to use if you wrap it in a helper method.

Add the following to your .irbrc file:

def time(&block)
require 'benchmark'
result = nil
timing = Benchmark.measure do
result = block.()

end
puts "It took: #{timing}"
result

end

The next time you start irb, you’ll be able to use this method to get timings:

irb(main):001:0> time { 1_000_000.times { "cat".upcase } }
It took: 0.106198 0.000795 0.106993 (0.106986)

Chapter 16. Interactive Ruby • 284

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

=> 1000000

Another common thing to do is reopen the Object class and add some diagnostic methods.
Here’s one that looks up the source location of a method (via https://medium.com/simply-dev/do-
more-with-rails-console-by-configuring-irbrc-e5c25284305d).

class Object
def sl(method_name)
self.method(method_name).source_location rescue "#{method_name} not found"

end
end

We’ll see in Chapter 17, Debugging Ruby, on page 289 that the Pry tool also provides great
support for looking up source locations.

You can configure irb to remember the commands you enter between sessions. Simply add
the following to your .irbrc file, where the number indicates the amount of commands you
want to save:

IRB.conf[:SAVE_HISTORY] = 50

Interactive Configuration
Most configuration values are also available while you’re running irb. The list in irb Config-
uration Options, on page 285 shows these values as conf._xxx_. For example, to change your
prompt back to SIMPLE, you could use the following:

irb(main):001:0* 1 +
irb(main):002:0> 2
=> 3
irb(main):003:0> conf.prompt_mode = :SIMPLE
=> :SIMPLE
?> 1 +
>> 2
=> 3
>>

irb Configuration Options
In the descriptions that follow, a label of the form :XXX signifies a key used in the IRB.conf
hash in an initialization file, and conf.xxx signifies a value that can be set interactively.

:AUTO_INDENT / auto_indent_mode
If true, irb will indent nested structures as you type them. The default is true.

:BACK_TRACE_LIMIT / back_trace_limit
Displays n initial and n final lines of backtrace. The default is 16.

:EVAL_HISTORY / save_history
Stores the result of all ERB commands, you can use __ to retrieve this or __[line_no] to get a
specific line’s result. Default is nil

:IGNORE_EOF / ignore_eof
Specifies the behavior of an end of file received on input. If true, it will be ignored; otherwise,
irb will quit. Default is false.

report erratum • discuss

Configuring irb • 285

https://medium.com/simply-dev/do-more-with-rails-console-by-configuring-irbrc-e5c25284305d
https://medium.com/simply-dev/do-more-with-rails-console-by-configuring-irbrc-e5c25284305d
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

:IGNORE_SIGINT / ignore_sigint
If false, ^C (Ctrl+c) will quit irb. If true, ^C during input will cancel input and return to the
top level; during execution, ^C will abort the current operation. Default is true.

:INSPECT_MODE / inspect_mode
Specifies how values will be displayed: true or nil means use inspect, false uses to_s. Default is
nil.

:IRB_NAME / irb_name
The name of an irb session, defaults to irb.

:IRB_RC
Can be set to a proc object that will be called when an irb session (or subsession) is started.
Default is nil.

prompt_c
The prompt for a continuing statement (for example, immediately after an if).

prompt_i
The standard, top-level prompt.

:PROMPT_MODE / prompt_mode
The style of prompt to display. The default is :DEFAULT

prompt_s
The prompt for a continuing string. (depends)

:PROMPT
See Configuring the Prompt, on page 287.

:SAVE_HISTORY / save_history
The number of commands to save between irb sessions. The default is nil.

:USE_AUTOCOMPLETE
If true or nil use the autocomplete feature. Default is true.

:USE_COLORIZE
If true or nil colorize irb output. Default is true.

:USE_LOADER / use_loader
Specifies whether irb’s own file reader method is used with load/require. Default is false.

:USE_MULTILINE
If true or nil use multiline edit mode. Default is nil.

:USE_SINGLELINE
If true or nil use singleline edit mode. Default is nil.

:USE_TRACER / use_tracer
If true, traces the execution of statements. Default is false.

Commands
At the irb prompt, you can enter any valid Ruby expression and see the results. You can also
use any of the following commands to control the irb session: (For some inexplicable reason,
many of these commands have up to nine different aliases. We don’t bother to show all of
them.)

Chapter 16. Interactive Ruby • 286

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

help ClassName, string, or symbol
Displays the ri help for the given thing.

exit, quit, irb_exit, irb_quit
Quits this irb session or subsession. If you’ve used cb to change bindings (detailed in a
moment), exits from this binding mode.

conf, context, irb_context
Displays current configuration. Modifying the configuration is achieved by invoking
methods of conf. The list in irb Configuration Options, on page 285 shows the available
conf settings.

For example, to set the default prompt you could use this:

irb(main):001:0> conf.prompt_i = "Yes, Master? "
=> "Yes, Master? "
Yes, Master? 1 + 2

cb, irb_change_binding ‹obj ›
Creates and enters a new binding (sometimes called a workspace) that has its own scope
for local variables. If obj is given, it will be used as self in the new binding.

pushb obj, popb
Pushes and pops the current binding.

bindings
Lists the current bindings.

irb_cwws
Prints the object that’s the binding of the current workspace.

irb ‹obj ›
Starts an irb subsession. If obj is given, it will be used as self.

jobs, irb_jobs
Lists irb subsessions.

fg n, irb_fg n
Switches into the specified irb subsession. n may be any of the following: an irb subses-
sion number, a thread ID, an irb object, or the object that was the value of self when a
subsession was launched.

kill n, irb_kill n
Kills an irb subsession. n may be any of the values as described for irb_fg.

source filename
Loads and executes the given file, displaying the source lines.

Configuring the Prompt
You have a lot of flexibility in configuring the prompts that irb uses. Sets of prompts are
stored in the prompt hash, IRB.conf[:PROMPT].

For example, to establish a new prompt mode called MY_PROMPT, you could enter the
following (either directly at an irb prompt or in the .irbrc file):

IRB.conf[:PROMPT][:MY_PROMPT] = { # name of prompt mode

report erratum • discuss

Configuring irb • 287

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

:PROMPT_I => '-->', # normal prompt
:PROMPT_S => '--"', # prompt for continuing strings
:PROMPT_C => '--+', # prompt for continuing statement
:RETURN => " ==>%s\n" # format to return value

}

Once you’ve defined a prompt, you have to tell irb to use it. From the command line, you
can use the --prompt option. (Notice how the name of the prompt on the command line is
automatically converted to uppercase, with hyphens changing to underscores.)

$ irb --prompt my-prompt

If you want to use this prompt in all your future irb sessions, you can set it as a configuration
value in your .irbrc file:

IRB.conf[:PROMPT_MODE] = :MY_PROMPT

The symbols :PROMPT_I, :PROMPT_N, :PROMPT_S, and :PROMPT_C specify the format for each of
the prompt strings. In a format string, certain % sequences are expanded, as shown in the
following table:

DescriptionFlag

Current command.%N
to_s of the main object (self).%m
inspect of the main object (self).%M
Delimiter type. In strings that are continued across a line break,%lwill display the
type of delimiter used to begin the string, so you’ll know how to end it. The
delimiter will be one of ", ', /,], or `.

%l

Indent level. The optional number n is used as a width specification to printf, as
printf("%NNd").

%NNi

Current line number (n used as with the indent level).%NNn
A literal percent sign.%%

Table 7—irb prompt string substitutions

The default prompt mode is defined as:

IRB.conf[:PROMPT][:DEFAULT] = {
:PROMPT_I => "%N(%m):%03n:%i> ",
:PROMPT_N => "%N(%m):%03n:%i> ",
:PROMPT_S => "%N(%m):%03n:%i%l ",
:PROMPT_C => "%N(%m):%03n:%i* ",
:RETURN => "=> %s\n"

}

What’s Next
In this chapter, we looked at how to use Ruby interactively with irb. Debugging is a common
use case for irb. In the next chapter, we’ll dive into the official Ruby debugging tools.

Chapter 16. Interactive Ruby • 288

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 17

Debugging Ruby
Sometimes code doesn’t work as you expect. Ruby provides a lot of different ways to see
what’s happening as you execute your code to enable you to debug and determine what is
happening. From humble print statements to elaborate inline debugging tools, you can get
the visibility you need into your code.

Printing Things
If you want to debug code and you don’t want to use any fancy tools, then printing things
out to the console is the way to go. We don’t mean to make fun—we extensively use this
method. It’s quick and lends itself to faster cycle times than using a debugger to step through
code.

We’ve seen a few options for this already, like puts, which uses to_s to convert its argument
to a string, and p, which does the same thing but uses inspect. Ruby also provides print and
pretty-print via the pp method. Here’s a table of what they all look like for nil, a string, a
symbol, an array, a hash, and an array with a hash element:

ppputspprint

nilnil
"test"test"test"test
:testtest:testtest
[1, 2, 3]1[1, 2, 3][1, 2, 3]

2

3
{:a=>1, :b=>2}{:a=>1, :b=>2}{:a=>1, :b=>2}{:a=>1, :b=>2}
[1, 2, {:a=>1, :b=>2}]1[1, 2, {:a=>1, :b=>2}][1, 2, {:a=>1, :b=>2}]

2

{:a=>1, :b=>2}

Table 8—print Method

There are some differences here, but they are subtle. (This is, by the way, exactly the kind
of table an author puts in a book when the author can never remember the differences. It’s
now a convenient place for the author to look them up.)

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Ruby has some other print tools that do a better job with more complex structured data.
There is the jj method, which you need to require "json" to have access to, and which creates
pretty-printed JSON. It also has y, which comes when you require "yaml" and produces the
argument in YAML syntax. We also recommend the awesome-print gem, which when
loaded and required, gives you ap, a method that produces a very clear structure of complex
data.

You should find one of these tools useful when writing output; it’s often faster to put one
of these statements in, say, a test and run the test and inspect the output, than it is to use a
step debugger.

You can use Ruby’s reflection abilities quite powerfully for printing information to the console.
The caller method is part of Kernel and will always show you the current call stack. Aaron
Patterson has a lot of helpful output tips at https://tenderlovemaking.com/2016/02/05/i-am-a-puts-
debuggerer.html.

The Ruby Debugger
Debuggers can also be quite powerful, and Ruby 3.1 came with a big improvement to Ruby’s
standard debugger. The new debugger is distributed as a separate Ruby gem, rather than
part of the standard library:

$ gem install debug

Note that the gem is named debug and not debugger. The debugger gem is a separate tool that
hasn’t been maintained since 2015. Similarly, if you are using bundler, specify a version
constraint of ">= 1.0.0" or else you will get a different, older gem. Global, permanent
namespaces are fun!

After you have installed the debugger gem, there are a few different ways to start the
debugger.

You can start your script with the command rdbg rather than ruby, as in:

rdbg code/trouble/profileeg.rb

The script will start in debug mode, which we’ll talk about in a moment. If you want to run
the debugger on a Ruby process that’s invoked via a separate command like rake, then you
use rdbg -c --, as in:

rdbg -c -- rake test:load.

More commonly, you’d use the debugger by inserting the line binding.break into your code
(you must have done a require "debug" somewhere along the code path). The debugger is
invoked at that line.

Visual Studio Code also has a plugin1 that allows you to invoke the new Ruby debugger
using VS Code’s existing debugging interface. (To be clear, many editors support Ruby
debugging but may do so via a different tool.)

You can also use the debugger remotely against an application that is not running in your
terminal (often because it’s running in a Docker container, or is a background process, or is
not using the standard in and out ports). To connect to a remote process, you start with rdbg

1. https://marketplace.visualstudio.com/items?itemName=KoichiSasada.vscode-rdbg

Chapter 17. Debugging Ruby • 290

report erratum • discuss

https://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.html
https://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.html
https://marketplace.visualstudio.com/items?itemName=KoichiSasada.vscode-rdbg
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

--open SCRIPT_NAME, which starts your script as a background process. Then in a different
terminal you run rdbg --attach to connect to the running process in a debugger session.

Alternately, you can use require "debug/open" in the background process, which allows you
to skip the rdbg --open step and go straight to the attach step. Doing so stops the program on
the first line; if you want the program to run normally, use require "debug/open_nonstop".
However, don’t do that in production—it’ll leave the debug socket open waiting for a
debugger to attach.

Here’s a short sample program that we’ll use to demonstrate the Ruby debugger:

debugging/debugger_test.rb
require "debug"

class CashRegister
attr_accessor :tax_rate

def initialize(tax_rate)
@tax_rate = tax_rate
@items = []

end

def add_item(item, quantity, price_in_cents)
@items << {item:, quantity:, price_in_cents:}

end

def subtotals
@items.map {_1[:quantity] * _1[:price_in_cents]}

end

def pre_tax_total = subtotals.sum

def tax = pre_tax_total * tax_rate

def total = pre_tax_total + tax

def sale_price(price_in_cents, discount)
price_in_cents * (1.0 - discount)

end
end

register = CashRegister.new(0.05)
register.add_item("pen", 3, 499)
binding.break
register.add_item("paper", 2, register.sale_price(799, 25))
p register.total

We don’t think there’s a bug in here, but let’s trace through it via the debugger.

When you enter the debugging tool via either rdbg or binding.break, you are taken to the
command-line interface for the tool, which looks like this:

[27, 34] in code/debugger/debugger_test.rb
27| end
28| end
29|
30| register = CashRegister.new(0.05)
31| register.add_item("pen", 3, 499)

=> 32| binding.break
33| register.add_item("paper", 2, register.sale_price(799, 25))

report erratum • discuss

The Ruby Debugger • 291

http://media.pragprog.com/titles/ruby5/code/debugging/debugger_test.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

34| p register.total
=>#0 <main> at code/debugger/debugger_test.rb:32

The first line shows what file is being executed and what lines are being displayed. You then
see about 10 lines of code (fewer here because we hit the end of the file), with a pointer to
the line currently about to be executed. The final line, <main> at, shows the current self object
at the beginning of the line and again, the line you are at.

Below that is a prompt at which you can type commands. The full list is at https://github.com/
ruby/debug.

Control Flow
Most of what you will want to do is move through the program. The debugger will helpfully
give you comments as to what your commands do, so when I type s at the next prompt, I
also see # step command. The most common commands are:

• step or s. The step command moves to the next place the code can stop, even if that’s on
a different line than what is called from this line. If you put a number after the command
as in s 5, the command moves that number of steps before stopping. If I type s at this
prompt, I end up at the beginning of the next line; if I type s again, I jump to the sale_price
method because that’s the next thing invoked.

• next or n. The next command steps over or moves to the next line. It executes the entire
line of code then stops. Again, you can add a number argument if you want to go more
than one line at a time. If I type n at this prompt, I wind up at the beginning of the next
line. If I type n again, I wind up at the beginning of the following line; the sale_price
method already complete.

• continue or c. The continue command moves forward until the script ends or you hit a
breakpoint or a binding.debug line. If I type c at the prompt, the program runs until the
end because there are no other stopping points.

The difference between step and next is worth mentioning. If you have a line of code such as
this:

register.add_item("paper", 2, register.sale_price(799, 25))

typing s will take you to the sale_price method, and you’ll be able to walk through that.
Typing n will run the entire line of code and take you to the next one.

To exit the debugger, the command is q. CONTROL-D will also work. If you are remote
debugging and want to end the remote process without exiting the debugger, the command
is kill. Both of those commands prompt for a confirmation. If you want to skip that, you can
use q! or kill!, though it seems like the same number of characters typed either way.

Breakpoints
A breakpoint is a location in the code where the debugger stops execution and gives you
control at the debugger prompt to inspect or navigate through the code. As we saw, bind-
ing.break creates a breakpoint, but the debugger provides alternate ways to denote breakpoints
without adding lines to the code.

You can set a breakpoint from the debugger’s command prompt with break n or b n, where
n is the line number of the currently displayed file. There are a lot of other options including
break FILENAME:n, which lets you set a breakpoint on a different file, break CLASSNAME#METHOD

Chapter 17. Debugging Ruby • 292

report erratum • discuss

https://github.com/ruby/debug
https://github.com/ruby/debug
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

or break EXPRESSION.METHOD, both of which set a breakpoint at the beginning of the given
method. All of those options can add an if EXPRESSION such that the breakpoint only stops
the code if the expression is true. You also have the suffixes pre: COMMAND and do: COMMAND,
which run the command at the breakpoint—the difference being that pre stops the debugger,
and do runs the command and keeps going.

Typing b by itself with no other arguments will give you a numbered list of breakpoints,
which is useful because del NUM allows you to delete a specific breakpoint, and just del with
no numbers deletes them all.

A reasonable thing to do in a debugger is look for errors, and the Ruby debugger allows you
to catch ERROR as in catch ArgumentError, which stops execution when an exception of that type
is raised, at which point you can continue to navigate or query the system using the methods
in the next section. The catch command also takes the if, pre, and do suffixes just like break.

You can also cause the debugger to stop when a value is changed—in kind-of a limited way.
The watch command takes an instance variable name, as in watch @name, and stops execution
if that instance variable of the object in the current scope changes. The official docs do point
out that this is, and we quote, “super slow.” The watch command also takes if, pre, and do
suffixes.

Querying the System
When you are stopped via a breakpoint is a great time to look around and try to find out
what the code is doing.

Most generally, you can type eval EXPRESSION and evaluate an arbitrary expression in the
context of the current set of active variables. You can even use this to change the value of
variables, which means you can easily break things if you want, or you can explicitly set up
edge cases that are hard to place. You can also just p EXPRESSION or pp EXPRESSION that prints
or pretty-prints the result of the expression. And you can type irb, which will take you into
an irb session with the current set of variable values.

You can specifically see the current call stack with bt or backtrace. If you put a number after
the command, the debugger will only show that number of lines; if you put a regular
expression after the command, it will only show you lines that match the expression. The i
command will show you all the values active at the current point, and i i and i l will show
instance values and local values, respectively.

The debugger has the concept of a “tracer” where you can get a message from the debugger
when running code triggers an event. The command trace callwill show you all method calls
(and I mean all method calls). You can add a regular expression on the end to filter the calls
you see. You can use trace exception to see what exceptions get raised, and trace line to track
lines of code as the script bounces along.

There’s more to the debugger, you can see a full list of commands at https://github.com/ruby/
debug.

report erratum • discuss

The Ruby Debugger • 293

https://github.com/ruby/debug
https://github.com/ruby/debug
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Pry
There’s also a third-party alternative to the official Ruby debugger and the official irb client
called Pry.2 Pry predates the Ruby 3.1 debugger, and contains many overlapping features,
but with a slightly different command-line interface.

To install Pry, you need the Pry gem. Pry also has a plugin system that allows extensions,
and we’ll be adding the pry-byebug gem that gives debugger step control to Pry. You can
add them to a Gemfile:

gem "pry"
gem "pry-byebug"

The main way to use Pry is by adding the method call binding.pry into a code base. If we do
that with the same code we used for the debugger earlier, just replacing require "debug" with
require "pry" and the binding.break call with binding.pry, we get this:

From: /Users/noel/projects/pragmatic/ruby5/Book/code/debugging/pry_test.rb:32 :

27: end
28: end
29:
30: register = CashRegister.new(0.05)
31: register.add_item("pen", 3, 499)

=> 32: binding.pry
33: register.add_item("paper", 2, register.sale_price(799, 25))
34: p register.total

[1] pry(main)>

That certainly looks familiar. We’ve got the line of code we’re blocked at with a few lines of
context surrounding it, and then a command prompt below it.

This command prompt is a full REPL, similar to irb, and you can type in arbitrary Ruby
expressions within it, including the creation of new methods or classes. You can also type
commands (more on that in a bit), but one very important command to start with is exit,
which takes you out of the current frame. If you are at the top level, you exit the program.
You can also exit the program at any time by typing !!!.

For all Pry output, if the output runs longer then the current screen, it will act like a paging
reader (specifically the Unix less program), which is to say it will pause output at the bottom
of the screen with a : prompt and await navigation. The space bar will move you one screen
forward; the letter b will move you one page back. The enter key or j moves you one line
forward, and k moves you one line back. You need to type q to quit and go back to regular
input.

Like irb, Pry considers itself to be running inside a particular scope, which is self to anything
you type at the command prompt and is the target of other Pry commands. The Pry command
structure was based on Unix command shell syntax, so you can change the scope to a different
object with cd OBJECT. The object in question must be visible to Pry.

As with Unix, cd .. goes back to the previous scope, cd / takes you back to the original top
level scope of the session, and cd - toggles you between the last two scopes.

2. http://pry.github.io

Chapter 17. Debugging Ruby • 294

report erratum • discuss

http://pry.github.io
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

What does that look like in a session? Let’s pick up our Pry session, already in progress:

[1] pry(main)> self
=> main
[2] pry(main)> cd register
[3] pry(#<CashRegister>):1> self
=> #<CashRegister:0x000000010277ecc0
@items=[{:item=>"pen", :quantity=>3, :price_in_cents=>499}],
@tax_rate=0.05>
[4] pry(#<CashRegister>):1> cd @items
[5] pry(#<Array>):2> size
=> 1
[6] pry(#<Array>):2> cd first
[7] pry(#<Hash>):3> keys
=> [:item, :quantity, :price_in_cents]
[8] pry(#<Hash>):3> cd ..
[9] pry(#<Array>):2>

The session starts out with the scope pointed at main. On line 2, we change to register, a local
variable in scope. We can prove this on line 3 by checking the value of self. Note the number
after the colon in the prompt, which tells us how many levels deep we are. On line 4 we
change scope again, this time to @items, an instance variable that is part of register. Then on
line 5, we show that size is sent to the item in scope, effectively @items.size, giving us 1. Then
we cd again, this time to first, the first item of that array, and we show that keys is sent to that
hash. Then on line 9, we use cd .. to pop back up a level to the array scope.

At any time you can use the command nesting to see a list of the current stack of contexts,
and the jump-to n command to immediately go back up the stack to a particular point in that
stack. Intervening contexts are exited.

Pry gives you some ways to explore the context that it is currently embedded in. The main
way is with the ls method. The ls method gives you access to basically all of the ways Ruby
lets you learn things about an item. You can see a list of the instance variables of an object,
but also the methods available from that object.

If you type lswithout an argument, it will give you that list on the current context, but if you
give it an object argument, as in ls items, Pry will display the information for that object.
There are a number of options for how to limit the fire hydrant of information, see
https://github.com/pry/pry/wiki/State-navigation#Ls for a full list.

Pry also gives you a lot of ways to learn about the code you are looking at. You can type find-
methodwith a method name, and Pry will search the Ruby libraries to show you what classes
define methods that include that string in the name. In the following code we see that String
and Symbol both define the method upcase:

[2] pry(main)> find-method upcase
String
String#upcase
String#upcase!
Symbol
Symbol#upcase

Pry’s most distinctive feature is its ability to show you the source code for methods that you
might be looking at. The show-source command takes a method or class name, and if that
name is defined in the current context, shows you the source code:

report erratum • discuss

Pry • 295

https://github.com/pry/pry/wiki/State-navigation#Ls
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

> cd register
[2] pry(#<CashRegister>):1> show-source add_item

From: code/debugging/pry_test.rb:11:
Owner: CashRegister
Visibility: public
Signature: add_item(item, quantity, price_in_cents)
Number of lines: 3

def add_item(item, quantity, price_in_cents)
@items << {item:, quantity:, price_in_cents:}

end

If you type show-source without an argument, it will show the source of the current context’s
class, or if you are at the top level, the method you were in the middle of when you invoked
Pry.

The similar command show-doc will show the documentation of the method or class used as
the argument.

Another useful quirk of Pry is that you can easily treat it like a regular Unix command line.
Any command you start with a dot (.) is sent to the underlying terminal shell. By using this,
you can interact with the operating system directly without using Pry. Pry also overrides
the common file reading program cat, you can invoke cat FILENAMEwithout using a ., and Pry
will display the output paged and with the syntax highlighted.

Pry is a big program with a plugin-filled ecosystem of its own, and there’s more to it that
we can cover here. Check out http://pry.github.io for full details.

Debugging Performance Issues with Benchmark
Ruby is an interpreted, high-level language, and as such it may not perform as fast as a
lower-level language such as C. In the following sections, we’ll list some basic things you
can do to inspect performance.

Typically, slow-running programs have one or two performance graveyards—places where
execution time goes to die. Find and improve them, and suddenly your whole program
springs back to life. The trick is finding them—developers are notoriously bad at guessing
where performance hangups actually are. The Benchmark module can help.

You can use the Benchmark module to time sections of code. For example, we may wonder
what the overhead of method invocation is. You can use Benchmark.bm or Benchmark.bmbm to
find out.

require "benchmark"

LOOP_COUNT = 1_000_000

Benchmark.bmbm(12) do |test|
test.report("inline:") do
LOOP_COUNT.times do |x|
nothing

end
end

test.report("method:") do
def method

Chapter 17. Debugging Ruby • 296

report erratum • discuss

http://pry.github.io
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

nothing
end

LOOP_COUNT.times do |x|
method

end
end

end

produces:

Rehearsal --
inline: 0.021397 0.000022 0.021419 (0.021426)
method: 0.031036 0.000093 0.031129 (0.031136)
--------------------------------------- total: 0.052548sec

user system total real
inline: 0.020972 0.000078 0.021050 (0.021056)
method: 0.031926 0.000122 0.032048 (0.032052)

The bm or bmbm methods take a block and execute the block while calculating the time that
the block takes, and reporting that result in four columns:

• The time in seconds used by the CPU executing the user process.
• The time in seconds used by the CPU in system calls during the bock.
• The sum of the first two columns.
• The actual amount of elapsed time during the block, sometimes called “clock time” or

“wall time.”

Because the resulting value is in seconds, lower values are faster, which we only mention
because some timing tools give a “executions per second” measure, and that can be confusing.

The argument to bm or bmbm is the width of the columns of the output.

You may be wondering what the difference is between bm and bmbm. It has to do with trying
to make the output of the benchmarking test more consistent.

Ruby programs can run slowly because of the overhead of garbage collection. Because this
garbage collection can happen any time during your program’s execution, you may find
that benchmarking gives misleading results, showing a section of code running slowly when
in fact the slowdown was caused because garbage collection happened to trigger while that
code was executing. The bmbm method, therefore, runs the tests twice—once as a rehearsal
and once to actually measure performance—in an attempt to minimize the distortion intro-
duced by garbage collection. The official docs, we note, say “there’s only so much that bmbm
can do, and the results are not guaranteed to be isolated from garbage collection and other
effects.”

The benchmarking process itself is relatively well mannered—it won’t slow down your
program much.

What’s Next
In this chapter, we talked about different ways to debug Ruby, including printing information
to the console, using the official Ruby debugger, and using the popular third-party program,
Pry. We also looked at how to use Ruby’s benchmarking tools to identify slow spots in your
code.

report erratum • discuss

What’s Next • 297

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Type errors are a common source of bugs in Ruby, and there are some attempts to allow
developers to add type information to their Ruby code so that tooling can identify type
problems before they can become bugs. Let’s check it out.

Chapter 17. Debugging Ruby • 298

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 18

Typed Ruby
When programming, when you see a variable in your code, it is useful to know what values
can be assigned to that variable without the code breaking. For example, given the following
Ruby method:

def mystery_method(x)
x * 3

end

you would likely expect that x should be a number. But it’s also completely valid Ruby for
x to be a string ("a" * 3 resolves to “aaa”) or an array ([:a] * 3 resolves to [:a, :a, :a]).

In the fullness of time, people callmystery_methodwith strings, integers, floating point numbers,
and onward, until somebody changes the method and inadvertently changes what variables
it will accept. For example:

def mystery_method(x)
x.abs * 3

end

Now all of those string and array uses break because abs isn’t defined for strings and arrays.
If the original developer had been able to specify that xmust be numeric, then the string and
array uses would have found some other place to multiply by three and would not have
broken when the method changed.

Historically, Ruby has gotten along just fine without requiring or allowing developers to
augment code with this kind of information about the expected values of a variable, which
is often called the type of the variable.

Spurred by the increasing complexity of large Ruby projects and the possibility of improved
performance, Ruby 3.0 added a mechanism for allowing developers to specify type informa-
tion about classes and methods. In addition, a third-party tool called Sorbet provides a sep-
arate mechanism for type control in Ruby. In this chapter, we take a look at both the official
tool, called RBS, and at Sorbet.

What’s a Type?
The terminology around types in programming languages can be confusing because each
language community uses the terms slightly differently.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Most generally, setting the type of a variable, attribute, or method argument limits the set of
values that can be assigned to that variable, attribute, or method argument. The type also
determines the behavior of the variable within the program. For example, the result of x / y
depends on the type of x and y. In many languages the result will be different if the numbers
are integers than if they are floating point types.

Many programming languages have a set of “basic types” that can be used, often including
strings, boolean values, different kinds of numerical values, and so on. Ruby does not have
basic types; every variable in Ruby is an instance of a class, and that class determines the
behavior of the variable. In Ruby, x / y is equivalent to the method call x./(y) and the behavior
depends on what class x is.

In many typed programming languages, you must declare the type of a variable before it is
used, this is called explicit typing. Other programming languages can infer the type of a
variable from its first use, so if I say let x = 3 in TypeScript, TypeScript knows that x is a
number. This is called “type inference.”

In either case, there is usually a tool, often part of the compiler, that evaluates every variable
interaction to see if type information is followed. If, later in the TypeScript code, I try to say
x = "foo", TypeScript will give a compilation error because "foo" is a string. This is called static
typing.

Ruby, without type information, does not do this. In Ruby, the type of a variable is determined
while the code is running by the variables that are assigned to it, and Ruby determines if
the variable can receive a method only at runtime. This is called dynamic typing, and the
process of determining the behavior of the method at the last possible moment is called late
binding.

There’s another distinction here that isn’t as useful to us, where in some languages the type
barriers are more permeable, and if you type 3 + "3", the language will automatically coerce
the string to an integer and allow the addition to continue. This is called weak typing, and
languages that don’t do this have strong typing. You will sometimes see “strong typing”
incorrectly used as a synonym for “static typing,” but there are two different concepts and
it’s useful to keep them separate.

There are benefits to static typing and a compilation step that validates all assignments:

• If the compiler and runtime know information about what type to expect, they can often
optimize internal behavior and improve performance.

• A person reading the code can get more information about the intent and behavior of
the code if there is type information.

• A developer tool like an IDE or editor can use type information to provide information
to the developer as the code is being written.

There are also some drawbacks:

• Statically typed code is usually more verbose than dynamic code. Though type inferenc-
ing has improved this situation.

• Sometimes a developer has to spend time convincing the type system that the code that
has been written is correct.

• Statically typed code is often less flexible than dynamic code and harder to change. (To
be fair, lots of people would see this as an advantage.)

Chapter 18. Typed Ruby • 300

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The goal of the type systems in Ruby is to allow for as many of the benefits of typed languages
as we can get without giving up the flexibility that makes Ruby, Ruby.

Official Ruby Typing with RBS
The official Ruby typing system shipped with Ruby 3.0 is called RBS (which is short for Ruby
Signature). With RBS, you create a separate file that contains type signature information for
all or part of you code.

Writing RBS
To take a look at how RBS works, we’ll use the gem we created in Writing and Packaging
Your Own Code Into Gems, on page 261 and augment it with RBS typing. If you look at the
Aaagmnr gem code, you’ll see that it contains a directory named sig that we didn’t talk much
about. That directory is where you are supposed put the type information, and right now it
contains one file:

gems/aaagmnr/sig/aaagmnr.rbs
module Aaagmnr
VERSION: String
See the writing guide of rbs: https://github.com/ruby/rbs#guides

end

The only thing that file tells us is that the module Aaagmnr has a VERSON constant, which is a
String. True enough, but not very useful.

Here’s what an RBS file for the entire gem looks like:

typed_ruby/aaagmnr/sig/aaagmnr.rbs
module Aaagmnr
class Finder
@signatures: Hash[String, Array[String]]
def self.from_file: (String file_name) -> Finder
def initialize: (Array[String] dictionary_words) -> void
def lookup: (String word) -> Array[String]
def signature_of: (String word) -> String

end

class Options
attr_reader dictionary: Array[String]
attr_reader words_to_find: Array[String]

def initialize: (Array[String] argv) -> void
private def parse: (Array[String] argv) -> void

end

class Runner
@options: Array[String]
def initialize: (Array[String] argv) -> void
def run: () -> void

end

VERSION: String
end

report erratum • discuss

Official Ruby Typing with RBS • 301

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/sig/aaagmnr.rbs
http://media.pragprog.com/titles/ruby5/code/typed_ruby/aaagmnr/sig/aaagmnr.rbs
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The goal here is to describe the expected types of all the modules, constants, and methods
in the gem. The syntax is meant to be similar enough to Ruby to be readable, while still
providing for type information.

A full description of the syntax may be found at https://github.com/ruby/rbs/blob/master/docs/
syntax.md; we’ll talk about the most common usages here.

The .rbs file typically combines one or more entire modules into a single file, though, as with
typical Ruby, there’s nothing preventing you from splitting the file up as you please.

The basic structure ofmodule and class declarations has the same syntax as regular Ruby, and
has the side effect of allowing those constant names to be used as type names. In other words,
the same way we use String as a type name, after declaring class Finder, we could also use
Finder as a type in a method argument or return value or wherever.

Inside each class, this gem has two different kinds of declarations.

We declare attributes and constants, including VERSION: String. The Finder class declares @sig-
natures: Hash[String, Array[String]], meaning it expects to have an instance variable called @sig-
natures and the type of that variable is a Hash whose keys are of type String and whose values
are of type Array[String]. The general syntax is the name of the instance variable, followed by
a colon, followed by the type. The square bracket syntax here is called a generic (more on
this in a bit), but it allows us to define both the type of a container and the type of objects in
the container, so Array[String] is an Array container where each element is a String.

In general, any time you see a type in RBS, you can add a ? to the end of it to indicate that
the value can be nil. So @name: String means the name has to be a string, but @name: String?
means the name can be a string or can be nil.

The lines attr_reader dictionary: Array[String] and attr_reader words_to_find: Array[String] are also
attribute declarations. As it is in Ruby itself, attr_reader is a shortcut for declaring the type of
an instance variable, and a getter method. The related declaration attr_writer declares the type
of the instance variable and the setter method, and attr_accessor declares all three. The syntax
is the kind of declaration, the name of the attribute, a colon, and the type.

The rest of lines in the file are type signatures of methods. For example, def lookup: (String
word) -> Array[String] tells us that the lookup method takes a positional argument named word
of type String and returns an array of strings.

The general syntax here is def followed by the name of the method followed by a colon, fol-
lowed by the attributes inside parentheses, followed by the -> arrow followed by the return
type.

The attribute listing has a few variants. As that declaration shows, positional arguments
have type first followed by the variable name—the name is actually optional, and is not
checked against the name in the actual code. Keyword arguments, however, are in a different
order, name, then colon, then type, so def lookup: (word: String) -> Array[String] would indicate
that word is a keyword argument. Keyword arguments are checked against the actual Ruby
method signature.

An optional argument is denoted with a ? prefix, so def lookup: (?String) is a method with an
optional positional argument, but if the argument is specified, it can’t be nil. The two kinds
of optional can be combined: def lookup: (?String?) is a method that takes an argument that is
both optional and can take a nil value.

Chapter 18. Typed Ruby • 302

report erratum • discuss

https://github.com/ruby/rbs/blob/master/docs/syntax.md
https://github.com/ruby/rbs/blob/master/docs/syntax.md
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Before we talk about more complex RBS syntax, let’s take a look at how you can use RBS.

Using RBS
Having taken the effort to create these type annotations, what can we do with them? Well,
there are basically two answers:

• There are some command-line tools that will do static analysis of your Ruby code. For
example, based on the RBS files, a tool might find cases where the code does not match
the type information, indicating a potential bug.

• Depending on the editor or development environment you are using, the tool may be
able to use the RBS files to provide hints or real-time error analysis as you type. As this
is written, RubyMine provides significant support for RBS files.

The Ruby interpreter could also use RBS information to optimize code generation, it seems
as though more on that line of work is yet to come.

You may need to gem install rbs to get access to the RBS command line tools.

RBS offers its own command-line tools. These are generally proof of concept tools: rbs list
gives you a list of classes and modules used by the application. The rbs ancestors and rbs
methods tools both take the name of a class and provide what RBS knows about the ancestors
or methods of that class:

$ rbs ancestors String
::String
::Comparable
::Object
::Kernel
::BasicObject

And the rbsmethod call takes a class and a method name and provides what RBS knows about
that method:

rbs method String gsub
::String#gsub
defined_in: ::String
implementation: ::String
accessibility: public
types:

(::Regexp | ::string pattern, ::string replacement) -> ::String
| (::Regexp | ::string pattern, ::Hash[::String, ::String] hash) -> ::String
| (::Regexp | ::string pattern) { (::String match) -> ::_ToS } -> ::String
| (::Regexp | ::string pattern) -> ::Enumerator[::String, self]

There are other RBS commands that are not documented, and which presumably are either
not expected to be in use, or are not yet complete.

The entire Ruby standard library has RBS files, so you can get type information about any
method in that library.

Ruby also provides a tool called TypeProf, which can help you generate RBS files. To use it,
add gem "typeprof" to the gemfile of the application you are working on and then bundle install.

report erratum • discuss

Official Ruby Typing with RBS • 303

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

What TypeProf does is take a Ruby file, which should be the top level file of your gem or
application, and optionally an RBS file and it then spits out an RBS file. Here’s what running
TypeProf without the existing RBS file looks like for our gem:

$ typeprof lib/aaagmnr.rb
TypeProf 0.21.3

Classes
module Aaagmnr
VERSION: String

class Finder
@signatures: Hash[String, Array[String]]

def self.from_file: (untyped file_name) -> Finder
def initialize: (Array[String] dictionary_words) -> void
def lookup: (untyped word) -> Array[String]?
def signature_of: (String word) -> String

end

class Options
DEFAULT_DICTIONARY: String

attr_reader dictionary: String?
attr_reader words_to_find: untyped
def initialize: (untyped argv) -> void

private
def parse: (untyped argv) -> bot

end

class Runner
@options: bot

def initialize: (untyped argv) -> void
def run: -> untyped

end

class Error < StandardError
end

end

This is quite similar to the RBS file that we created by hand, with a few changes:

• We forgot a couple of constants, like DEFAULT_DICTIONARY and Error.
• In quite a few cases, TypeProf can’t determine a type and puts in untyped. We know that
Finder#lookup takes a String and returns an array of strings, but TypeProf returns def
lookup: (untyped word) -> Array[String]?, meaning that it can’t infer a type for the parameter,
and it’s also assuming that nil is a potential output (which, looking at the code as written,
is correct—that method can return nil if the word being looked up is not in the dictionary).

What you get from TypeProf, then, is a mix of items that we know about the code that
TypeProf can’t figure out, and items that TypeProf can figure out but that we, the developers,
didn’t necessarily see. This makes TypeProf a useful way to start with RBS, but not necessar-
ily the completed goal.

As an alternative to running TypeProf from the command line, an experimental plugin for
Visual Studio Code (https://marketplace.visualstudio.com/items?itemName=mame.ruby-typeprof) will
generate method type signatures as you write code.

Chapter 18. Typed Ruby • 304

report erratum • discuss

https://marketplace.visualstudio.com/items?itemName=mame.ruby-typeprof
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In order to generate these type signatures, TypeProf executes your Ruby code…kind of. The
phrase the documentation uses is “abstractly executes,” which means that it walks through
the code paths knowing the types of variables, but not their values.

In other words, TypeProf tracks type information through the code, using variable assign-
ments and what it knows about method calls.

For example, if you run the following code through TypeProf:

def approximate_word_count(sentence)
sentence.split(/\W+/).size

end

approximate_word_count("This is a sample word count")

TypeProf will infer that sentence is a string from the literal assignment, and then it will walk
through the known type signatures in the method. The split method takes a string and returns
an array of strings, the size method takes an array and returns an integer, therefore TypeProf
deduces that approximate_word_count takes a string argument and returns an integer.

TypeProf has some limitations. If there’s no call to a method in the code, or no assignment
in the code, then it’s limited in how much information it has and will only provide very
limited and probably overly general results. Metaprogramming will often confuse TypeProf,
especially if a lot of the data is unknown at load time (so it might be able to manage a
define_method over a known array, but send where the argument is a variable will confound
it).

TypeProf continues to be under active development, an up-to-date description of changes
can be found at https://github.com/ruby/typeprof/blob/master/doc/doc.md.

Advanced RBS Syntax
RBS syntax, for the most part, uses : CLASS after method names, argument names, and attribute
name, and the -> CLASS syntax for the return values of methods. There are some cases where
that’s not enough to capture the complexity of a Ruby program, so there’s some additional
syntax to be aware of. RBS syntax may yet change, and there are some complexities we don’t
get to here, so be sure to check out the final source of documentation at https://github.com/ruby/
rbs/blob/master/docs/syntax.md.

In general, the type of an object is its class name, but there are some special cases. You can
reflexively refer to the type of the receiver inside a class with self and to the singleton object
of the class with singleton. The class itself is accessible with class and instances of the class are
accessible as instance.

Sometimes a proc or method is used as a return value or argument. The syntax is ^(ARGLIST)
-> RETURN_TYPE, as in:

def apply_a_function: (^(String, Integer) -> String) -> String

In this case, the argument to apply_a_function is a function that takes a string and an integer
argument and returns a string.

You can use alias to give a new name to an existing name or pattern, so you could simplify
the above as:

alias func ^(String, Integer) -> String

report erratum • discuss

Official Ruby Typing with RBS • 305

https://github.com/ruby/typeprof/blob/master/doc/doc.md
https://github.com/ruby/rbs/blob/master/docs/syntax.md
https://github.com/ruby/rbs/blob/master/docs/syntax.md
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def apply_a_function: (func) -> String

In some cases, you might have a variable that is more than one type. For example, we
sometimes write methods that take either an ID pointing to an object in a database or an
object itself. RBS lets you create union types, which are one type or another, with the | character.
So a method that takes an ID or an object might have the signature def name: (Integer | User) -
> String.

Any Ruby literal (including nil) can be used as a RBS type, such as in the unusual example
where you want to limit a variable to a single value. That’s rare, but you can use it to build
up union types, such as the built-in type bool, which is defined as true | false. In Ruby, any
object has a truth value, not just the boolean literals. In RBS, if you want to mark that you
are taking in an arbitrary object to use it for its truth value, RBS provides the type boolish, as
in def name: (use_full: boolish) -> String.

Because any Ruby object can have a truth value, any Ruby object can be of type boolish, it’s
more a marker for the developers that the value is only being used for its truth value. RBS
has a couple of other defined ways to refer to a value that can be of any type. Generically,
if you want to really specify that an object is known to have any type, you use top, which is
a supertype of all types. If you are allowing any object, but only because you don’t know
any better about the type system, you should use untyped rather than top. And if you are
signaling that a value shouldn’t be used, as in a method whose return value is uninteresting,
you should use void.

You can specify the type of each element of a fixed-length array using something like array
syntax: [String, String]. Similarly, you can specify the type of a hash per key: {name: String, age:
Integer}. Note that Ruby does not enforce these at run time; they are currently used only for
static analysis and for hints when developing.

For methods, if the return value is overloaded, you can use union syntax to define multiple
versions of the method at once:

def name: (Integer) -> String
| (User) -> String

Somewhat unusually for Ruby, RBS allows you to define an interface, meaning a subset of
methods that might be implemented by more than one class. By convention, interface names
start with an underscore:

interface _Loggable
def log: (?String) -> String

end

You can then use _Loggable as an RBS type, and it will assume nothing about the underlying
object, other than that it defines a log method.

class LogManager
def generate_log: (_Loggable) -> String

end

RBS provides the & operator as an intersection operator, so you can define the intersection
of, say, multiple interfaces.

If you’ve used other type systems, like TypeScript or Java, you may be familiar with the
concept of a generic type. For example, in Ruby an array works basically the same whether

Chapter 18. Typed Ruby • 306

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

it is an array of strings, an array of numbers, or an array of arbitrary user objects. For many
purposes, which type makes up the array doesn’t matter (for example, the size method
behaves the same no matter what). But for other purposes it does matter (the find method
behaves the same but the type of the return value is the type of the elements of the array).

We’ve already seen the syntax for declaring a variable to be of type Array[String], this is the
RBS generic syntax, it’s a generic array with String elements.

You can declare your own class with a generic parameter:

class MyArray[T]
def first () -> T

end

class Classroom
attr_attribute students: MyArray[Student]

end

The MyArray has a generic type T (by cross-language convention, generic types are single
capital letters), and the first method takes no arguments and returns a value with type T,
whatever T turns out to be.

Later, we can use that definition to declare that Students is a MyArray[Student], meaning that
each element in the array is of type Student.

Ruby Typing with Sorbet
You may have noticed that while RBS is an interesting way to add type hints to your appli-
cation, the actual usage of it is still a little light. A third-party tool called Sorbet that is man-
aged by a team at Stripe, also provides type checking. At the moment Sorbet has more
powerful analysis tools.

As with some other third-party tools, we’re covering Sorbet here because there’s a good
chance you’ll see it out in the world, but third-party tools often change quickly, so we rec-
ommend https://sorbet.org/docs for the full scoop of Sorbet, so to speak.

Sorbet is different from RBS in that the type annotations generally go in the Ruby file, though
there is also an external file format. The type annotations are plain Ruby, and the type
analysis tools parse them to check the code. Sorbet can do static analysis and it can also do
type checking at run time.

Installing Sorbet
To set up Sorbet, we’ll start from a completely fresh copy of our Aaagmnr gem.

Step one is to add a few gems to our Gemfile:

sorbet/aaagmnr/Gemfile
frozen_string_literal: true

source "https://rubygems.org"

gemspec
gem "rake", "~> 13.0"
gem "rspec", "~> 3.0"
gem "standard", "~> 1.3"

gem "sorbet", group: :development

report erratum • discuss

Ruby Typing with Sorbet • 307

https://sorbet.org/docs
http://media.pragprog.com/titles/ruby5/code/sorbet/aaagmnr/Gemfile
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

gem "sorbet-runtime"
gem "tapioca", require: false, group: :development

We’ve added the sorbet and sorbet-runtime gems, which manage static and runtime checking,
and the tapioca gem, which manages external type information, which Sorbet puts in .rbi files.
The Sorbet gem gives us a runtime command called srb which we’ll do type checking with
momentarily.

To initialize Sorbet, we need to run tapioca init. This may take a bit and will generate a lot of
output:

$ bundle exec tapioca init

This should generate a folder called sorbet. It contains a top level sorbet/config file, a subdirec-
tory called rbi that has RBI type definitions for all the gems in the project, and a subdirectory
called tapioca that has configurations and settings for the tapioca tool.

The next step is to run static type checking analysis, the command is bundle exec srb tc. In
theory, because we’ve added no type checking this should pass, but in practice, if we’ve
done anything that Sorbet doesn’t like it will get flagged here. This might include dynamic
references to constants or included modules that would make static analysis difficult.

Let’s see what we get:

bundle exec srb tc
No errors! Great job.

That’s encouraging, and a testament to the Aaagmnr gem being somewhat simple.

Now let’s add the type checks.

Adding Type Checks
Type checks in Sorbet are written in the Ruby file, in—well, it’s probably not quite accurate
to say they are written in plain Ruby, but the Sorbet type checks are written as Ruby method
calls in valid Ruby syntax. They do take a little getting used to.

Here’s what the Finder class looks like with Sorbet annotations added:

sorbet/aaagmnr/lib/aaagmnr/finder.rb
typed: true

require "sorbet-runtime"

module Aaagmnr
class Finder
extend T::Sig

sig { params(file_name: String).returns(Aaagmnr::Finder) }
def self.from_file(file_name)
new(File.readlines(file_name))

end

sig { params(dictionary_words: T::Array[String]).void }
def initialize(dictionary_words)
@signatures = T.let({}, T::Hash[String, T::Array[String]])
dictionary_words.each do |line|
word = line.chomp
signature = signature_of(word)

Chapter 18. Typed Ruby • 308

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/sorbet/aaagmnr/lib/aaagmnr/finder.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

(@signatures[signature] ||= []) << word
end

end

sig { params(word: String).returns(T.nilable(T::Array[String])) }
def lookup(word)
signature = signature_of(word)
@signatures[signature]

end

sig { params(word: String).returns(String) }
def signature_of(word)
word.unpack("c*").sort.pack("c*")

end
end

end

There’s a lot to look at here, but it’s worth emphasizing that the basic idea is the same as
with RBS—we’re trying to explicitly denote the types of method arguments, return values,
and class attributes.

The file itself starts with two pieces of boilerplate: the magic comment # typed: true, which
tells Sorbet to pay attention to this file, and then the Finder class has extend T::Sig, which puts
Sorbet’s type signature methods in the class.

Each individual method gets its type signature specified by prefacing the method with a call
to sig. The sig method is provided by Sorbet, and it takes a block. Inside that block, you can
optionally specify the parameters to the method, and you must specify the return value of
the method.

The parameters are specified with the params method. The params method takes keyword
arguments, the keys of which are the names of each parameter of the actual method, and
the values of which are the type of the method.

For example, the from_file method has the sig call sig { params(file_name: String).returns(Aaagm-
nr::Finder) }. The params(file_name: String) part says that there is a parameter to the method
named file_name and its expected type is String. For Sorbet’s purpose, the params method has
the same structure—parameter name and type—no matter whether the parameter in the
actual method is positional or keyword, and no matter whether the argument is required or
optional (Sorbet can infer whether the argument is optional from the Ruby code).

One gotcha is that splat and double-splat types are annotated with the type of an individual
element of the resulting data structure, not the data structure as a whole:

sig { params(args: String, kwargs: String) }
def i_have_splats(*args, **kwargs)
end

In this snippet args is of type String, not an array of strings, and kwargs is also of type String
and not an array with Symbol keys and String values. Sorbet can infer the data structure
from the code.

The return value of the method is handled by chaining a call to returns. The argument to
returns is the type returned by the method. If the method’s return value isn’t used, call void
instead of returns—in the example, the initialize method uses void.

report erratum • discuss

Ruby Typing with Sorbet • 309

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Sorbet can infer the type of local variables from the initial assignment to the valuable. For
constants and for cases where the initial assignment is not enough information, Sorbet would
like you to replace the right hand of the initial assignment to the attribute or constant with
a call to the Sorbet method T.let. You can see an example in the intialize method: @signatures
= T.let({}, T::Hash[String, T::Array[String]]). The T.let method takes two arguments: the first is the
actual value being assigned, and the second is the type of the variable going forward. In this
case, the assignment to an empty hash is not enough information to tell Sorbet that the hash
actually has String keys and Array of String values.

Sorbet treats attr_reader and attr_writer like any other method, so they need to have sig annota-
tions. For attr_accessor, which defines both a reader and a writer, the sig annotation should
be for the reader, and Sorbet will infer the writer.

The type value is usually just the Ruby type name, with a couple of exceptions. As you can
see in this file, Arrays and Hashes are handled specially, through types defined in Sorbet’s
T module. Arrays are specified as T::Array[TYPE] and hashes are T::Hash[KEY TYPE, VALUE TYPE].
There’s also a special T::Boolean for true or false values.

If you want to specify that a value can optionally be nil, as with the return value to lookup,
then you wrap the value in a call to T.nilable. A union type is specified with T.any as in
T.any(String, Integer).

There’s more to the Sorbet type system; full documentation can be found at https://sorbet.org/
docs.

Using Sorbet
Sorbet allows for static type checking and runtime type checking. The static checking comes
from a command line:

$ bundle exec srb tc FILES

Usually you’ll want to run your entire project, which you can do like so:

$ srb tc .
No errors! Great job.

On the first pass, the T.nilable was missing, and Sorbet definitely noticed—the output
included errors like: aaagmnr/lib/aaagmnr/finder.rb:25: Expected T::Array[String] but found T.nil-
able(T::Array[String]) and aaagmnr/lib/aaagmnr/runner.rb:20: This code is unreachable.

Alternately you can list one or more specific paths (.rb or .rbi files after the tc) to limit checking,
or you can use the --ignore=PATTERN flag to take specific files out. The --autocorrect option will
give you a limited amount of autocorrect. The default sorbet/config file generated with Sorbet
includes the option --dir=.

Sorbet will also check code at runtime, which we can verify by going into the gem’s console
and trying to pass in a non-array of strings to the runner:

$ bin/console
irb(main):001:0> Aaagmnr::Runner.new(3)
/Users/noel/.rbenv/versions/3.1.2/lib/ruby/gems/3.1.0/gems/sorbet-runtime-0.5.10346/
lib/types/configuration.rb:296:in `call_validation_error_handler_default': \
Parameter 'argv':
Expected type T::Array[String], got type Integer with value 3 (TypeError)

Chapter 18. Typed Ruby • 310

report erratum • discuss

https://sorbet.org/docs
https://sorbet.org/docs
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Here Sorbet is telling us that if we pass the Runner a 3 instead of an array of words, that violates
the type signature of the runner. The advantage here, at least in theory, is that the error is
detected as soon as possible, even before some message is called that would trigger a different
error. Without the type checking, at some point we’d try to do something with the Integer
that expects a string—in this case, there’s no harm in letting the code go to that point, but
in a complex system there is some advantage in not letting code go any further than necessary.
Sorbet’s runtime checking can also catch dynamic method calls that would be challenging
for the static type checker to analyze.

What’s Next
To be honest, we’re a little conflicted about types in Ruby. We like the potential performance
benefit, and the tooling advantages are promising. There’s definitely a communication ben-
efit to being explicit with types. We do worry, though, that some of Ruby’s dynamic power
and flexibility is being traded for static typing, and for developers who came to Ruby for
that flexibility, that can be a hard tradeoff.

Some of that communication benefit can also come from documentation. In the next chapter,
we’ll discuss RDoc, the official Ruby documentation solution, and YARD, a commonly used
third-party extension.

report erratum • discuss

What’s Next • 311

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 19

Documenting Ruby
Documentation is a critical part of communicating across teams. Code comments can help
share the intent of the developer, or can be a way to explain constraints on the code that
might not be clear from just reading code. It’s not enough just to add comments to the code;
it’s also useful to be able to publish those comments onto the web or to be consumable by
your editor or command-line tools like ri or irb.

Two tools in the Ruby ecosystem are used for converting code comments into external doc-
umentation: RDoc and YARD. Ruby comes bundled with RDoc, which is used by Ruby itself
to document the built-in Ruby classes and modules. Those who like a more formal, tag-based
scheme might want to look at YARD (http://yardoc.org). We’ll cover both in this chapter. As
YARD is mostly a superset of RDoc, we’ll cover RDoc first, and then talk about YARD’s
extensions.

Documenting with RDoc
RDoc does two jobs. Its first job is to analyze source files. Ruby, of course, but it will also
analyze C files and Markdown files. Within those files, RDoc looks for information to docu-
ment. Its second job is to take this information and convert it into something readable—usu-
ally HTML or Ruby’s ri documentation format. Let’s look at an example.

Take the following simple file:

rdoc/example/counter.rb
class Counter
attr_reader :counter

def initialize(initial_value = 0)
@counter = initial_value

end

def inc
@counter += 1

end
end

Going into that directory and running rdoc will create an entire doc directory with HTML
files. Here’s what one of the files looks like:

report erratum • discuss

http://yardoc.org
http://media.pragprog.com/titles/ruby5/code/rdoc/example/counter.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Even though the source contains no internal documentation, RDoc manages to extract
interesting information from it. We have three panes at the top of the screen showing the
files, classes, and methods for which we have documentation. For class Counter, RDoc shows
us the attributes and methods (including the method signatures). And if we clicked a method
signature, RDoc would pop up a window containing the source code for the corresponding
method.

If our source code contains comments, RDoc can use them to spice up the documentation it
produces. For example, the following source code:

rdoc/example_with_comments/counter.rb
Implements a simple accumulator, whose
value is accessed via the attribute
counter. Calling the method Counter#inc
increments this value.
class Counter
The current value of the count
attr_reader :counter

create a new Counter with the given
initial value
def initialize(initial_value = 0)
@counter = initial_value

end

increment the current value of the count
def inc
@counter += 1

end
end

results in a similar RDoc page:

Chapter 19. Documenting Ruby • 314

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/rdoc/example_with_comments/counter.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Notice how the comments before each element now appear in the RDoc output, reformatted
into HTML. Less obvious is that RDoc has detected hyperlink opportunities in our comments:
In the class-level comment, the reference to Counter#inc is a hyperlink to the method
description, and in the comment for the newmethod, the reference to class Counter hyperlinks
back to the class documentation. This is a key feature of RDoc: It is designed to be unintrusive
in the Ruby source files and to make up for this by trying to be clever when producing output.

RDoc can also be used to produce documentation that can be read by the ri command-line
utility. For example, if we ask RDoc to document the code in the previous example into ri
format (with $ rdoc -r .), we can access the documentation from the command line:

$ ri Counter
= Counter < Object

(from /Users/noel/.local/share/rdoc)
--
Implements a simple accumulator, whose value is accessed via the
attribute counter. Calling the method Counter#inc
increments this value.
--
= Class methods:

new

= Instance methods:

counter, inc

= Attributes:

attr_reader counter

The documentation will even get picked up by irb:

report erratum • discuss

Documenting with RDoc • 315

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Ruby distributions document the built-in classes and modules this way. It’s the documentation
you’ll see at https://docs.ruby-lang.org/en/master.

Adding RDoc to Ruby Code
RDoc parses Ruby source files to extract the major elements (such as classes, modules,
methods, attributes, and so on). You can choose to associate additional documentation with
these by simply adding a comment block before the element in the file.

One of the design goals of RDoc was to leave the source code looking totally natural. In most
cases, there is no need for any special markup in your code to get RDoc to produce decent
looking documentation. For example, comment blocks can be written fairly naturally:

Calculate the minimal-cost path though the graph using Debrinkski's algorithm,
with optimized inverse pruning of isolated leaf nodes.
def calculate_path
. . .

end

You can also use Ruby’s block-comments by including the documentation in a =begin…=end
block. If you use this (which is not generally done), the =begin line must be flagged with an
rdoc tag to distinguish the block from other styles of documentation:

=begin rdoc
Calculate the minimal-cost path though the graph using Debrinkski's algorithm,
with optimized inverse pruning of isolated leaf nodes.
=end
def calculate_path

. . .
end

Within a documentation comment, paragraphs are lines that share the left margin. Text
indented past this margin is formatted verbatim.

Nonverbatim text can be marked up. To set individual words in italic, bold, or typewriter
fonts, you can use _word_, *word*, and +word+, respectively. If you want to do this to multiple
words or text containing nonword characters, you can usemultiple words,more
words, and<tt>yetmore words</tt>. Putting a backslash before inline markup stops it from
being interpreted.

Chapter 19. Documenting Ruby • 316

report erratum • discuss

https://docs.ruby-lang.org/en/master
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

RDoc stops processing comments if it finds a comment line starting with #--. This can be
used to separate external from internal comments or to stop a comment from being associated
with a method, class, attribute, or module. Documenting can be turned back on by starting
a line with the comment #++:

Extract the age and calculate the
date of birth.
#--
FIXME: fails if the birthday falls on February 29th, or if the person
was born before epoch and the installed Ruby doesn't support negative time_t
#++
The DOB is returned as a Time object.
#--
But should probably change to use Date.

def get_dob(person)
...

end

Hyperlinks
Names of classes, source files, and any method names containing an underscore or preceded
by a hash character are automatically hyperlinked from comment text to their description.

In addition, hyperlinks starting with http:, mailto:, ftp:, and www: are recognized. An HTTP
URL that references an external image file is converted into an inline img tag. Hyperlinks
starting with link: are assumed to refer to local files whose paths are relative to the --op
directory, where output files are stored.

Hyperlinks can also be of the form label[url], where the label is used in the displayed text and
url is used as the target. If the label contains multiple words, surround it in braces: {two
words}[url].

Lists
Lists are typed as indented paragraphs with the following:

• As asterisk (*) or hyphen (-) for bullet lists
• A digit followed by a period for numbered lists
• An uppercase or lowercase letter followed by a period for alpha lists

For example, you could produce something like the previous text with this:

Lists are typed as indented paragraphs with
* a * or - (for bullet lists),
* a digit followed by a period for
numbered lists,
* an uppercase or lowercase letter followed
by a period for alpha lists.

Note how subsequent lines in a list item are indented to line up with the text in the element’s
first line.

Labeled lists (sometimes called description lists) are typed using square brackets for the label:

[cat] Small domestic animal
[+cat+] Command to copy standard input

report erratum • discuss

Adding RDoc to Ruby Code • 317

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

to standard output

Labeled lists may also be produced by putting a double colon after the label. This sets the
result in tabular form so the descriptions all line up in the output:

cat:: Small domestic animal
+cat+:: Command to copy standard input
to standard output

For both kinds of labeled lists, if the body text starts on the same line as the label, then the
start of that text determines the block indent for the rest of the body. The text may also start
on the line following the label, indented from the start of the label. This is often preferable
if the label is long. Both of the following are valid labeled list entries:

<tt>--output</tt> <i>name [, name]</i>::
specify the name of one or more output files. If multiple
files are present, the first is used as the index.
#
<tt>--quiet:</tt>:: do not output the names, sizes, byte counts,
index areas, or bit ratios of units as
they are processed.

Headings
Headings are entered on lines starting with equals signs. The more equals signs, the higher
the level of heading:

= Level One Heading
== Level Two Heading
and so on...

Rules (horizontal lines) are entered using three or more hyphens:

and so it goes...

The next section...

Documentation Modifiers
Method parameter lists are extracted and displayed with the method description. If a method
calls yield, then the parameters passed to yield will also be displayed. For example, this code:

def fred
...
yield line, address

will be documented as follows:

fred() { |line, address| ... }

You can override this using a comment containing :yields: ... on the same line as the method
definition:

def fred # :yields: index, position
...
yield line, address

Chapter 19. Documenting Ruby • 318

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

which will be documented as follows:

fred() { |index, position| ... }

:yields: is an example of a documentation modifier. These appear immediately after the start
of the document element they are modifying. Other modifiers include:

:nodoc: ‹all ›
:nodoc: Don’t include this element in the documentation. For classes and modules, the
methods, aliases, constants, and attributes directly within the affected class or module
will also be omitted from the documentation. By default, though, modules and classes
within that class or module will be documented. This is turned off by adding the all
modifier. For example, in the following code, only class SM::Input will be documented:

module SM #:nodoc:
class Input
end

end

module Markup #:nodoc: all
class Output
end

end

:doc:
:doc: This forces a method or attribute to be documented even if it wouldn’t otherwise
be. This is useful if, for example, you want to include documentation of a particular
private method.

:notnew:
:notnew: This is applicable only to the initialize instance method. Normally RDoc assumes
that the documentation and parameters for #initialize are actually for the corresponding
class’s new method and so fakes out a new method for the class. The :notnew: modifier
stops this. Remember that #initialize is protected, so you won’t see the documentation
unless you use the -a command-line option.

Other Directives
Comment blocks can contain other directives:

:call-seq: lines...
:call-seq: Text up to the next blank comment line is used as the calling sequence when
generating documentation (overriding the parsing of the method parameter list). A line
is considered blank even if it starts with #. For this one directive, the leading colon is
optional.

:include: filename
:include: This includes the contents of the named file at this point. The file will be
searched for in the directories listed by the --include option or in the current directory by
default. The contents of the file will be shifted to have the same indentation as the : at
the start of the :include: directive.

:title: text
:title: This sets the title for the document. It’s equivalent to the --title command-line
parameter. (The command-line parameter overrides any :title: directive in the source.)

report erratum • discuss

Adding RDoc to Ruby Code • 319

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

:main: name
:main: This is equivalent to the --main command-line parameter, setting the initial page
displayed for this documentation.

:stopdoc: / :startdoc:
:stopdoc: and :startdoc: This stops and starts adding new documentation elements to
the current container. For example, if a class has a number of constants that you don’t
want to document, put a :stopdoc: before the first and a :startdoc: after the last. If you
don’t specify a :startdoc: by the end of the container, this disables documentation for the
entire class or module.

:enddoc:
:enddoc: This documents nothing further at the current lexical level.

Running RDoc
RDoc can be run from the command line, like this:

$ rdoc OPTIONS FILENAMES

Type rdoc --help for an up-to-date option summary.

Files are parsed, and the information they contain collected, before any output is produced.
This allows cross-references between all files to be resolved. If a name is a directory, it is
traversed. If no names are specified, all Ruby files in the current directory (and subdirectories)
are processed.

A typical use may be to generate documentation for a package of Ruby source (such as RDoc
itself):

$ rdoc

This command generates HTML documentation for the files in and below the current
directory. These will be stored in a documentation tree starting in the subdirectory doc/.

RDoc uses file extensions to determine how to process each file. Filenames with rb and rbw
extensions are assumed to be Ruby source. Filenames with c, h, or cpp extension are parsed
as C files. Files with md and markdown as Markdown. A file named ChangeLog will be parsed
as a change log. All other files are assumed to contain just markup (with or without leading
comment markers). If directory names are passed to RDoc, they are scanned recursively
for source files only. To include non-source files such as READMEs in the documentation
process, their names must be given explicitly on the command line.

When writing a Ruby library, you often have some source files that implement the public
interface, but the majority are internal and of no interest to the readers of your documentation.
In these cases, construct a .document file in each of your project’s directories. If RDoc enters
a directory containing a .document file, it will process only the files in that directory whose
names match one of the lines in that file. Each line in the file can be a filename, a directory
name, or a wildcard (a file system “glob” pattern). For example, to include all Ruby files
whose names start with main, along with the file constants.rb, you could use a .document file
containing this:

main*.rb
constants.rb

Chapter 19. Documenting Ruby • 320

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Some project standards ask for documentation in a top-level README file. You may find it
convenient to write this file in RDoc format and then use the :include: directive to incorporate
the README into the documentation for the main class.

RDoc has a lot of command line options for how the output is generated and styled that you
will likely use approximately never, use the command rdoc --help for a full rundown.

Using RDoc to Create Documentation for ri
RDoc is also used to create documentation that will be later displayed using ri or by the irb
inline documentation.

When you run ri, it by default looks for documentation in three places:

• The system documentation directory, which holds the documentation distributed with
Ruby and which is created by the Ruby install process

• The site directory, which contains sitewide documentation added locally
• The user documentation directory, which is stored under the user’s own home directory

You can find these three directories using ri --list-doc-dirs.

You can override the directory location using the --op option to RDoc and subsequently using
the --doc-dir option with ri.

To add documentation to ri, you need to tell RDoc which output directory to use. For your
own use, it’s easier to use the --ri option, which installs the documentation into ~/.rdoc:

$ rdoc --ri file1.rb file2.rb

If you want to install sitewide documentation, use the --ri-site option:

$ rdoc --ri-site file1.rb file2.rb

The --ri-system option is normally used only to install documentation for Ruby’s built-in
classes and standard libraries. You can regenerate this documentation from the Ruby source
distribution (not from the installed libraries themselves):

$ cd ruby source base/lib
$ rdoc --ri-system

Documenting with YARD
YARD (http://yardoc.org) is an extension of RDoc that uses tags to allow you to add metadata
to your comments. It then uses the metadata to create more interesting documentation.

Yet Another Aside

While YARD claims to be short for “Yay! A Ruby Documentation Tool,” it
likely was named in reference to the long standing open-source tradition of
starting acronyms with YA for “yet another.” We think the first tool to to this
was the Yacc parser-generator (for Yet Another Compiler Compiler), but there’s
also YAML (originally Yet Another Markup Language, now styled as YAML
Ain’t Markup Language, which is a whole other open-source tradition of
recursive acronyms), and some quick internet searching reveals YaST, YAF,
YAPM, YAPP, and who knows how many more.

Here’s our same minimal counter example with some YARD tags:

report erratum • discuss

Documenting with YARD • 321

http://yardoc.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

rdoc/example_with_yardoc/counter.rb
Implements a simple accumulator, whose
value is accessed via the attribute
counter. Calling the method Counter#inc
increments this value.
@author Dave Thomas
@note This is only a minimal example
@version 1.0
class Counter
The current value of the count
attr_reader :counter

create a new Counter with the given
initial value
@param initial_value [Integer] the initial value of the counter
def initialize(initial_value = 0)
@counter = initial_value

end

increment the current value of the count
@example Increment the counter
Counter.new.increment #=> counter.value == 1
@return [Integer] The new value of the counter
def inc
@counter += 1

end
end

The comments are basically the same, but we’ve augmented them with tags like @author,
@param, and @return.

To use YARD, we need to gem install yard or have it in our Gemfile, then the command to just
run the current directory is:

$ yard doc .

The resulting HTML documentation goes in a doc directory. (YARD also creates a .yardoc
directory with its own information.) As you can see, the HTML is more detailed and uses
the tags appropriately:

Chapter 19. Documenting Ruby • 322

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/rdoc/example_with_yardoc/counter.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

YARD Tags
YARD allows you to augment your documentation with tags (which start with @) and
directives (which start with !@). As you can see from the earlier example, some tags have a
little bit of syntax structure.

Here are the tags you are likely to use most often:

• @author – The name of the author or authors of the class, method, or module.
• @deprecated – Marks a method as deprecated in the docs, follow the tag with a description,

ideally one that shows how to work around the deprecated item.
• @example – The first line of the example tag is a title for the example. Subsequent lines

should be indented further in than the tag, and should contain code showing the item
in use.

• @note – A note that is placed at the top of the page for an item.
• @param – A parameter to a method. Follow with the name, the expected type in square

brackets, and a description.
• @raise – The method may raise an exception, follow with the name of the exception in

square brackets and a description, as in @raise [NoArgumentError] if the user does not exist.
• @since – A version number where the item was first added.
• @version – The version of the item being documented.
• @yield – Describes what the method would yield to a passed-in block. Consists of a list

of parameters in square brackets followed by a description string.

report erratum • discuss

Documenting with YARD • 323

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

You can find a full list of tags and directives at https://rubydoc.info/gems/yard/file/docs/Tags.md.

Using YARD
The YARD executable lets you generate a few different kinds of files.

The command yard doc, which is also aliased as yardoc, generates HTML documentation for
the current directory or for a list of given files or directories. It looks for a file named .yardopts
for options.

There is also a yard ri command, aliased as yri, which displays your documentation in an ri
style interface. The yri command doesn’t work on the core Ruby classes, only on your own
project’s YARD documentation.

The command yard graph spits out text in GraphViz format https://graphviz.org, that will generate
a class diagram of the documented code.

What’s Next
In this chapter, we talked about the two most commonly used tools for documenting Ruby:
RDoc and YARD. If you look around the web at documentation for Ruby gems, you’ll see
both of their distinctive HTML styles in regular use. Now let’s take a bit of a turn and talk
about Ruby’s tools for working with the web itself.

Chapter 19. Documenting Ruby • 324

report erratum • discuss

https://rubydoc.info/gems/yard/file/docs/Tags.md
https://graphviz.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Part III

Ruby Crystallized

Ruby is a sophisticated and flexible object-oriented language, and
using it effectively can mean exploring reflection, metaprogram-
ming, and other related ideas.

CHAPTER 20

Ruby and the Web
There’s a good chance that if you are reading this book, you are intending to use Ruby in
the context of some kind of Web application. Ruby is used as the language for a lot of web
tools, not just Ruby on Rails,1 but also many other web frameworks and third-party tools.

While the Ruby ecosystem is full of web tools, most of those tools are third-party gems and
not part of the core Ruby distribution. Core Ruby does provide an implementation of the
Common Gateway Interface (CGI), which was the original dynamic web standard, but as
we write this, you are unlikely to be writing CGI scripts directly, so we’re not going to spend
time on CGI scripts in this book. That said, for historical reasons, a lot of Ruby’s web-related
behavior is in a class called CGI, so we’ll be referencing that class throughout.

Many options are available for using Ruby to implement web applications, and a single
chapter can’t do them all justice. Instead, we’ll touch on some of the highlights and point
you toward libraries and resources that can help. In particular, we’ll focus on:

• The web-related utilities that are part of the Ruby Standard Library
• ERB, the most common third-party tool for templating
• Rack, a third-party standard for all behavior common to Ruby web frameworks
• Sinatra, perhaps the simplest of the powerful Ruby web frameworks
• Wasm, Web Assembly, a tool to run Ruby in a browser

Ruby’s Web Utilities
The Ruby standard distribution includes some core utilities as part of the CGI class and CGI::Util
module.

CGI Encoding
When dealing with URLs and HTML code, you must be careful to quote certain characters.
For instance, a slash character (/) has special meaning in a URL, so it must be “escaped” if
it’s not part of the path name. That is, any / in the query portion of the URL will be translated
to the string %2F and must be translated back to a / for you to use it. Space and ampersand
are also special characters.

To handle this, CGI provides the methods escape and unescape:

1. http://www.rubyonrails.org

report erratum • discuss

http://www.rubyonrails.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

require "cgi"
puts CGI.escape("Nicholas Payton/Trumpet & Flugel Horn")

produces:

Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

More frequently, you may want to escape HTML special characters:

web/escape_01.rb
require "cgi"
puts CGI.escapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

To get really fancy, you can decide to escape only certain HTML elements within a string:

web/escape_02.rb
require "cgi"
puts CGI.escapeElement("<hr>Click Here
", "A")

produces:

<hr>Click Here

Here only the <a...> element is escaped; other elements are left alone. Each of these methods
has an un- version to restore the original string:

web/escape_03.rb
require "cgi"
puts CGI.unescapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

Using the CGI Class to Handle Cookies
Cookies are a way of letting web applications store their state on the user’s machine. Frowned
upon by some, cookies are still a convenient (if unreliable) way of remembering session
information.

The Ruby CGI class handles the loading and saving of cookies for you, assuming you are
working within a web framework that receives cookies. You can access the cookies associated
with the current request using the cookies method, and you can set cookies back into the
browser by setting the cookie parameter of out to reference either a single cookie or an array
of cookies:

web/cookies.rb
#!/usr/bin/ruby
require "cgi"

COOKIE_NAME = "chocolate chip"

cgi = CGI.new
values = cgi.cookies[COOKIE_NAME]

msg = if values.empty?
"It looks as if you haven't visited recently"

else
"You last visited #{values[0]}"

end

Chapter 20. Ruby and the Web • 328

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/web/escape_01.rb
http://media.pragprog.com/titles/ruby5/code/web/escape_02.rb
http://media.pragprog.com/titles/ruby5/code/web/escape_03.rb
http://media.pragprog.com/titles/ruby5/code/web/cookies.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

cookie = CGI::Cookie.new(COOKIE_NAME, Time.now.to_s)
cookie.expires = Time.now + 30 * 24 * 3600 # 30 days
cgi.out("cookie" => cookie) { msg }

Using the CGI Class to Generate HTML
CGI contains a huge number of methods that can be used to create HTML—one method per
element. To enable these methods, you must create a CGI object by calling new and passing
in the required version of HTML. In this example, we’ll use html5.

To make element nesting easier, these methods take their content as code blocks. The code
blocks should return a String, which will be used as the content for the element.

require 'cgi'
cgi = CGI.new("html5")
cgi.out do
cgi.html do
cgi.head { cgi.title { "This Is a Test"} } +
cgi.body do
cgi.form do
cgi.hr +
cgi.h1 { "A Form: " } +
cgi.textarea("get_text") +
cgi.br +
cgi.submit

end
end

end
end

Although vaguely interesting, this method of generating HTML is fairly laborious and
probably isn’t used much in practice. Most people write HTML directly, use a templating
system, or use an application framework, such as Rails. Unfortunately, we don’t have space
here to discuss Rails—take a look at the online documentation at http://rubyonrails.org—so let’s
look at templating.

Templating with ERB
Templating systems let you separate the presentation and logic of your application.

So far we’ve looked at using Ruby to create HTML output, but we can turn the problem
inside out: we can actually embed Ruby in an HTML document. The embedded Ruby (or
ERB) library is included with Ruby’s standard distribution.

Embedding Ruby in HTML is a very powerful concept—it gives us the equivalent of a
scripting tool such as PHP, but with the full power of Ruby.

Using ERB
ERB is a filter. Input text is passed through untouched, with the following exceptions:

DescriptionExpression

This executes the Ruby code between the delimiters. Any resulting
value is not sent to the output.

<% ruby code %>

report erratum • discuss

Templating with ERB • 329

http://rubyonrails.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

DescriptionExpression

This evaluates the Ruby expression and places the resulting value
of the expression in the output.

<%= ruby expression %>

The Ruby code between the delimiters is ignored (useful for testing).<%# ruby code %>
A line that starts with a percent is assumed to contain just Ruby
code.

% line of ruby code

You can run ERB from the command line:

erb ‹ options › ‹ document ›

If document is omitted, ERB will read from standard input. The command-line options for
ERB are listed in the following table:

DescriptionOption

Sets $DEBUG to true-d
Sets the default external/internal encodings-E ext[:int]
Displays resulting Ruby script (with line numbers)-n
Loads the named library-r library
Doesn’t do erb processing on lines starting %-P
Sets the safe level-S level
Sets the trim mode-T mode
Sets default encoding to UTF-8-U
Enables verbose mode-v
Displays resulting Ruby script-x

Let’s look at some simple examples. We’ll run the ERB executable on the following input:

web/f1.erb
<% 99.downto(96) do |number| %>
<%= number %> bottles of beer...

<% end %>

The lines starting with the percent sign simply execute the given Ruby. In this case, it’s a
loop that iterates the line between them. The sequence <%= number %> in the middle line
substitutes in the value of number into the output:

$ erb f1.erb

99 bottles of beer...

98 bottles of beer...

97 bottles of beer...

96 bottles of beer...

ERB works by rewriting its input as a Ruby script and then executing that script. You can
see the Ruby code ERB generates using the -n or -x option—output here slightly edited for
spacing:

$ erb -x f1.erb
#coding:UTF-8
_erbout = +'';

Chapter 20. Ruby and the Web • 330

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/web/f1.erb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

99.downto(96) do |number| ;
_erbout.<< "\n".freeze;
_erbout.<< " ".freeze;
_erbout.<<((number).to_s);
_erbout.<< " bottles of beer...\n".freeze;
end;
_erbout.<< "\n".freeze;
_erbout

Notice how ERB builds a string, _erbout, that contains both the static strings from the template
and the results of executing expressions (in this case the value of number).

Embedding ERB in Your Code
So far we’ve seen ERB running as a command-line filter. However, the most common use
is to use it as a library in your own code. Many Ruby web frameworks automatically use
ERB templates for output.

web/erb.rb
require "erb"

source = <<~SOURCE
<% (min..max).each do |number| %>
The number is <%= number %>

<% end %>
SOURCE

erb = ERB.new(source)

min = 4
max = 6
puts erb.result(binding)

produces:

The number is 4

The number is 5

The number is 6

Notice how we can use local variables within the ERB template. This works because we pass
the current binding to the result method. ERB can use this binding to make it look as if the
template is being evaluated in the context of the calling code. Using bindings is sometimes
awkward, especially if you want to limit what values are available to the template. ERB also
provides result_with_hash, which, true to its name, takes a hash argument, and within the
template, variable names are resolved as keys to the hash.

Be aware that in the standard version of ERB, you can’t use the -%> trick to suppress blank
lines. (That’s why we have the extra blank lines in the output in the previous example.) You
can specify the way ERB handles blanks by passing a trim_mode: keyword argument to ERB.new

The values that trim_mode can take are:

• % – Allows you to have lines starting with % processed as Ruby coder
• > – Lines ending in %> don’t have a newline added to the result.
• <> – Same as above, but for lines starting with <% and ending with %>
• - – Blank lines ending in -%> are omitted. (This is the setting used in Rails.)

report erratum • discuss

Templating with ERB • 331

http://media.pragprog.com/titles/ruby5/code/web/erb.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

ERB comes with excellent documentation.2

Sending JSON
It’s also quite common for web tools to send responses formatted using JSON. The Ruby
JSON library is available with require "json" and provides a JSON.generate(object) that converts
a Ruby object into a JSON representation. Many Ruby classes define a to_jsonmethod as well.
There are also third-party libraries designed to handle more complex JSON serialization
patterns.

See JSON, on page 607 for more details on the Ruby library that manages JSON.

Serving Ruby Code to the Web
Ruby is commonly used as the back end of a web application. In this pattern, a request is
made to a web server, which executes Ruby code. The Ruby code returns HTML (usually),
which is sent back to the web browser as the response.

While you could do all this in plain Ruby that you write yourself, there’s no need for you
to do all that work. The Ruby ecosystem has multiple web servers, including Puma,3 Unicorn,4

Thin,5 and Falcon.6 And there are also multiple web frameworks, including Ruby on Rails,7

Sinatra,8 Roda,9 and Hanami.10

You might look at that incomplete list of web servers and frameworks and think that com-
patibility between servers and frameworks might be a nightmare of continually having to
adjust the framework code based on what server you are using or vice versa. In fact, though,
there is no nightmare here, and it’s even possible for behavior to be written once and shared
between multiple web servers. And the reason why this compatibility is not a problem is
because of a library called Rack.11

Rack and Web Servers
Rack is a minimal interface for the relationship between a web server and a web application
framework. Imagine you are writing a web server that wants to work with an application
framework. There are certain logistical details of the relationship between the server and
the framework that exist no matter the details of either tool’s internal structure.

A user request comes as a set of text defined by the HTTP specification. The web server’s
job is to convert that text into Ruby objects and pass them to the framework. The framework’s
job is take that object, do something with it, and return Ruby objects to the web server, which
converts them back to HTTP text or data to send to the browser.

Rack provides:

2. https://docs.ruby-lang.org/en/master/ERB.html
3. https://puma.io
4. https://yhbt.net/unicorn
5. https://github.com/macournoyer/thin
6. https://github.com/socketry/falcon
7. https://rubyonrails.org
8. https://sinatrarb.com
9. https://github.com/jeremyevans/roda
10. https://hanamirb.org
11. https://github.com/rack/rack

Chapter 20. Ruby and the Web • 332

report erratum • discuss

https://docs.ruby-lang.org/en/master/ERB.html
https://puma.io
https://yhbt.net/unicorn
https://github.com/macournoyer/thin
https://github.com/socketry/falcon
https://rubyonrails.org
https://sinatrarb.com
https://github.com/jeremyevans/roda
https://hanamirb.org
https://github.com/rack/rack
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• A standard structure for the environment data coming into the web server via the user
request. Specifically, a hash with a pre-defined set of keys.

• A standard structure for the response data coming back to the web server from the
frameworks. The response is an array with three elements: the return status, the headers,
and the body.

• A mechanism for the interface between the two. A rack app is a method or block that
takes the environment as input and returns the response as output. Rack provides the
method run, which takes rack apps, sends them environments, and returns the result.

Rack also provides a structure for chaining Rack applications together, so you might have
a series of small rack applications, one of which might do, say, authentication, another of
which might sanitize input, and another of which might clean up image sizing. Rack makes
it easy to create a pipeline of these middleware apps such that they can be integrated into any
Ruby web framework.

Here’s a minimal example of Rack in action (rack-tion?):

web/rack_01/config.ru
require "bundler/inline"

gemfile do
source "https://rubygems.org"
gem "rack"
gem "rackup"

end

run do |env|
[200, {"content-type" => "text/plain"}, ["Welcome to Rack"]]

end

This is a configuration file for Rack, often called a “rackup file.” This particular rackup file
is doing two things.

First, it’s using Bundler’s inline function (see Single File Projects, on page 261) to ensure that
the gems Rack and Rackup are installed. The Rack gem manages most of the Rack function-
ality; Rackup is the default command-line application for serving applications defined using
Rack.

Second, it’s creating a Rack app and running it using the Rack command run.

To make this work, in the directory with the code run this:

$ bundle install
$ rackup
[2022-09-25 10:04:10] INFO WEBrick 1.7.0
[2022-09-25 10:04:10] INFO ruby 3.1.2 (2022-04-12) [arm64-darwin21]
[2022-09-25 10:04:10] INFO WEBrick::HTTPServer#start: pid=31252 port=9292

This has started a web server called WEBrick and it is serving at port 9292, which you can
confirm by going into a browser and hitting http://localhost:9292. You will receive “Welcome
to Rack” as the response.

report erratum • discuss

Serving Ruby Code to the Web • 333

http://media.pragprog.com/titles/ruby5/code/web/rack_01/config.ru
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Rack Versions

If you are familiar with Rack, this example may look a little strange. This
example uses Rack 3.0, which is relatively new as this is being written. The
rackup gem was extracted from Rack in 3.0 in part because WEBrick is now a
separate project and is no longer part of the standard Ruby distribution. Also,
the run method taking a block argument is new in 3.0.

That shows that it works, but what is Rack doing?

The run method is part of Rack. Typically, a Rack application defined in a rackup file will
have one runmethod (though, as we’ll see, you can specify multiple run methods if each one
is matched to a different URL path). The run method takes as its argument either a block or
any Ruby object that can respond to the callmethod. Because lambdas and Procs both define
call, either of those can be arguments to run.

Here’s what our app would look like with a stabby lambda:

run -> (env) { [200, {"content-type" => "text/plain"}, ["Welcome to Rack"]] }

And here, with a custom object

class SmallRackApp
def call(env)
[200, {"content-type" => "text/plain"}, ["Welcome to Rack"]]

end
end

run SmallRackApp.new

In all these cases, the callable takes one argument—the environment—and returns three-ele-
ment array as the response. The structure of both the environment and response are defined
by the Rack Specification.12

The environment is a regular Ruby Hash. Because hash objects are mutable, a Rack app can
modify it, often to add new keys. The environment is required to have several specific keys
even if sometimes those keys are empty.

Those keys include the URL of the request, which is split into the keys SERVER_NAME,
SCRIPT_NAME, PATH_INFO, QUERY_STRING, and SERVER_PORT. The HTTP verb of the request is in
the key REQUEST_METHOD. Any HTTP request headers are placed in corresponding keys
starting with HTTP_. Rack puts information of whether the request uses HTTP or HTTPS in
the key rack.url_scheme and adds a raw input stream at rack.input and an error stream at
rack.errors.

The response is a three-element unfrozen array made up of:

• The HTTP status, which must be an integer greater than or equal to 100.
• The headers to be sent as part of the response, as an unfrozen Hash. Keys in this hash

that start with rack. are not sent back to the client browser.
• The body of the response. Most commonly, the body is an array of strings.

12. https://github.com/rack/rack/blob/main/SPEC.rdoc

Chapter 20. Ruby and the Web • 334

report erratum • discuss

https://github.com/rack/rack/blob/main/SPEC.rdoc
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The body element of the response can be more complicated. Rather than an array, the body
can be any Ruby enumerable that responds to the method each and results in a series of
strings.

Less commonly, the body can act as something that is streamed, rather than returned all at
once. In this case the body is Proc or anything that responds to call, in which case the result
of call should be something that behaves like an IO stream, where reading from the stream
returns data.

Where this starts to get really powerful is with the ability of these Rack applications to chain
together, allowing an application to act on the environment or response of a different
application. This is called Rack middleware. And while the middleware uses the same
environment and response objects, there’s a little bit more structure.

Here’s an example:

web/rack_02/config.ru
require "bundler/inline"

gemfile do
source "https://rubygems.org"
gem "rack"
gem "rackup"

end

class PrefixingMiddleware
def initialize(app)
@app = app

end

def call(env)
status, headers, body = @app.call(env)
new_body = ["<h2>This is a prefix</h2>"] + body
[status, headers, new_body]

end
end

class PostfixingMiddleware
def initialize(app)
@app = app

end

def call(env)
status, headers, body = @app.call(env)
new_body = body + ["<h2>This is a postfix</h2>"]
[status, headers, new_body]

end
end

class RackApplication
def call(env)
[
200,
{"content-type" => "text/html"},
["<h1>Welcome to Rack</h1>"]

]
end

end

report erratum • discuss

Serving Ruby Code to the Web • 335

http://media.pragprog.com/titles/ruby5/code/web/rack_02/config.ru
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

use PrefixingMiddleware
use PostfixingMiddleware
run RackApplication.new

This Rack application is built from three smaller applications, PrefixingMiddleware, PostfixingMid-
dleware, and RackApplication. Where our previous example just used the run command, this
example has the use command once for each of the middleware classes. The use command
takes as an argument the name of the middleware class, in contrast to the runmethod, which
takes an instance of a Rack app as its argument.

When you execute this file with rackup, the following things happen:

• Rack takes the instance passed to run as the first application.
• Then starting from the bottommost use call and working up, Rack creates an instance

of each middleware class, passing it the previous instance as the argument. In our case,
an instance of PostfixingMiddleware is created with the RackApplication instance as the argu-
ment, and then an instance of PrefixingMiddleware is created with that previous instance
as the argument.

• At this point, we have a chain of Rack apps, each of which knows the identity of the
next item in the chain. We trigger the chain by calling the call method on the topmost
element in the chain. As part of being a good Rack citizen, each middleware app is
expected to invoke the call method on its app argument. In this way, every Rack app is
invoked.

Let’s trace this through our sample Rack app. We start with run RackApplication.new, giving us
an instance of RackApplication. The code then goes up a line, to use PostfixingMiddleware, and it
creates an instance of PostfixingMiddleware, passing it the already created RackApplication instance.
We repeat the process going upward, creating a PrefixingMiddleware instance that has a rela-
tionship with the PostfixingMiddlware instance.

Now that we have an entire chain of objects that conform to the Rack standard and respond
to call, we invoke call on the object at the end of the chain, so our PrefixingMiddleware instance
gets called with the env environment directly from the web request. The first thing that
happens in that callmethod is status, headers, body = @app.call(env)—meaning we immediately
call the next app in the chain, which is PostfixingMiddleware. The first thing that happens in the
PostfixingMiddleware#call method is the same status, headers, body = @app.call(env), which takes
us down to the bottom Rack app, which responds to call and returns the three-element array
[200, {"content-type" => "text/html"},["<h1>Welcome to Rack</h1>"]].

At this point, we walk back up the chain. That return value is extracted by the call method
in PostfixingMiddleware which promptly takes the three values, appends some text to the body
and returns a new three-element array with the new body. That return value is, in turn,
extracted by PrefixingMiddleware, which takes the values, prefixes some text to the new body,
and returns the new three-element array, which is the final result of the call.

And, if you run rackup on this file and then hit http://localhost:9292 you will see all three lines
of text in your browser, correctly formatted as HTML.

Although our Rack middleware classes both do the similar things—retrieve the previous
call and adjust the body text, Rack middleware can do far more. You have complete freedom
to adjust the environment, status, headers, and response body. You can completely ignore
the work of other middleware and change the response to ["Never gonna give you up"]. More

Chapter 20. Ruby and the Web • 336

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

usefully, you can add API tokens to the environment, or perform external services like log-
ging, or filter the response body in some way. There’s a lot of power there.

And although we’ve been using rackup, Rack applications work with a variety of compatible
Ruby web servers. To use the popular Puma server, just:

$ gem install puma
$ puma

Puma will, by default, look for a config.ru file in the current directory and run it.

Every major Ruby web framework is structured as a Rack application that can be triggered
with Rack’s run. Not only can your middleware be run with any web server, it can be inte-
grated into any web framework. Any problem that can be solved with a Rack middleware
can be applied to any compatible framework.

Sinatra and Web Frameworks
While Rack is very powerful, it’s also a little low-level and writing more complex web
interactions with it is complicated. For more involved web applications, Ruby provides many
different web frameworks. The most popular is Ruby on Rails, which provides web features
along with database connectivity, and a complete grab bag of everything you’d need to build
a full-featured web applications.

Rails is great, but it’s also a lot to learn. In this book, we’re going to show a simpler framework
called Sinatra13, which is one of the fastest ways to get a basic web application up and running
in Ruby.

Here’s a minimal Sinatra file:

web/sinatra_01/sinatra.rb
require "bundler/inline"

gemfile do
source "https://rubygems.org"
gem "sinatra", require: false
gem "thin"

end

require "sinatra"

get "/" do
"<h1>Fly me to the moon!</h1>"

end

To start a web server, all you need to do is run this file like an ordinary Ruby program.

$ ruby sinatra.rb
== Sinatra (v3.0.0) has taken the stage on 4567
for development with backup from Thin
2022-10-15 08:48:20 -0500 Thin web server (v1.8.1 codename Infinite Smoothie)
2022-10-15 08:48:20 -0500 Maximum connections set to 1024
2022-10-15 08:48:20 -0500 Listening on localhost:4567, CTRL+C to stop

13. https://sinatrarb.com

report erratum • discuss

Serving Ruby Code to the Web • 337

http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra.rb
https://sinatrarb.com
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

From there, pointing a web browser at http://localhost:4567 will result in a web page being
served, with “Fly me to the moon”, just as specified at the end of the code.

How is this working? Logistically, the first ten lines or so of this example are using bundler/inline
to install gems as part of the script, which is a useful trick for simple Sinatra scripts. We’re
pulling in both Sinatra itself, and the Thin web server, when it runs, Sinatra will automati-
cally use Thin if it is available. (You can use other servers, but you need to create a Rackup
file to do so.) Because of the way Sinatra decides when to run, we need to explicitly require
"sinatra", which means we need Bundler not to require Sinatra, so the line in the gemfile section
for Sinatra needs to include require: false.

The actual web serving part is the last three lines. Generically, a Sinatra application is a col-
lection of routes. A route is an HTTP verb, followed by a path, followed by some optional
options and then a block. The HTTP verb, path and options tell Sinatra how to match requests
to routes, and the block tell Sinatra how to reply when the request matches the route.

In this case, we’ve defined one route, the HTTP verb is GET, it matches the root path of /, and
there are no other options. The return value of the block is the string "<h1>Fly me to the
moon!</h1>". And so, if we hit the root route, we get that response. Hitting any other URL
within that server triggers a 404 error page, since Sinatra has no routes matching the URL.

As you might imagine, you can build up considerably more advanced logic from there. A
full description is at https://sinatrarb.com/intro.html, we’ll cover some of the most important
parts here.

We can start with the return value of the block. In our example it’s a plain string. For more
complex output, you’ll likely want to use ERB or some other templating language. In Sinatra,
you can do that with the erb method:

web/sinatra_01/sinatra_with_erb.rb
get "/" do
erb(:root)

end

The first argument to erb is a symbol, and matches a filename, which is in a views subdirectory
by default. So the previous snippet will render an ERB template in views/root.erb. Less com-
monly, the first argument can be a string, in which case the string is expected to be an ERB
template itself, and is rendered as-is.

After the name of the template, you can pass in key/value pairs to erb as options. By default,
the ERB template has access to instance variables set in the route, but if you want local
variables to be visible you can set them with a locals: option. You can also set a layout with
a layout: option—the layout is an ERB template that includes a call to<%= yield %> somewhere,
at which point the actual template for the route is inserted. There are a few other options for
erb in the official docs, and a very wide range of other template tools that are supported with
their own similar helper methods.

The erb method also returns a string, you can also return an object that responds to each and
returns a series of strings, in which case you are streaming output to the browser. You can
also return a complete Rack response, meaning the entire three-element array, or you can
return an integer, which is assumed to be an HTTP status code over an otherwise-empty
response.

Chapter 20. Ruby and the Web • 338

report erratum • discuss

https://sinatrarb.com/intro.html
http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra_with_erb.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The route selectors can be made more flexible and complicated. You can match delete, get,
link, options, patch, post, put, and unlink. You cannot by default have multiple HTTP verbs con-
nected to the same route, though there are a couple of work-arounds for this including an
extension called sinatra/multi_route.

In the route name, you can have parameters or wild cards. Parameters are either available
in a hash called params or are passed as arguments to the block associated with the route.

web/sinatra_01/sinatra_with_param.rb
get "/user/:username" do |block_un|
[
"<p>Hello, #{params["username"]}</p>",
"<p>#{block_un} has the same value</p>"

]
end

A request to this route might look like “http://webhost.com/user/noelrap” and the resulting
output would be <p>Hello, noelrap</p><p>noelrap has the same value</p>. The block takes all
the parameters from the URL in positional order, rather than as a hash—we suspect that
using the hash will typically be more readable and flexible. In this example we are also taking
advantage of Sinatra’s ability to return an object that responds to each—an array—and return
a series of strings. We like this slightly better than concatnating the strings together in the
block.

The parameters are passed to the block in the order they are in the URL, and the block
parameters can be named arbitrarily, but the params hash will pick up the name used in the
path description. If the parameter name ends in a question mark, like :username?, then the
parameter is optional. Sinatra treats trailing slashes as full elements, so user and user/ are
different strings, but you can make the trailing slash optional with a question mark, as in
user/?

You can also include a *, which will match an arbitrary number of segments in the path, the
unnamed variable will either be a block parameter, or is accessible as params["splat"].

If multiple routes match the request, the first one defined and matched is taken. You can use
pass which tells Sinatra to move to the next matching route.

Instead of a string, the first argument to the path matcher can be a regular expression, in
which case any path string that matches the regular expression triggers the route. If you use
parenthesis to capture part of the regular expression, then the capture groups are available
as arguments to the block or as params["captures"], so our route with variable example could
have been written as:

web/sinatra_01/sinatra_with_regex.rb
get %r{/user/(\w+)} do |capture|
[
"<p>Hello, #{params["captures"].first}</p>",
"<p>#{capture} has the same value</p>"

]
end

Note the use of the %r for the regex literal since the string being matched contains slashes.

After the string or regex, there’re some optional keyword parameters you can also pass to
a route definition that act as a condition that the request must meet to trigger the route.

report erratum • discuss

Serving Ruby Code to the Web • 339

http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra_with_param.rb
http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra_with_regex.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Perhaps the most useful of these is provides: which compares against the Accept header to
match based on what media type the browser is expecting.

The Sinatra code we’ve seen so far is very powerful for being so short but as you build up
more complex Sinatra scripts, you will probably want to go beyond a top-level script and
add some classes or modularity.

Sinatra allows you to import a sinatra/base module which gives you a Sinatra::Application class
that you can use the same Sinatra DSL inside, like this:

web/sinatra_01/sinatra_class.rb
require "sinatra/base"

class SinatraApp < Sinatra::Application
get "/" do
"<h1>Fly me to the moon!</h1>"

end
end

There’s also a Sinatra::Base, which sets fewer defaults and allows you to have more control
over the Sinatra setup.

Once the Sinatra code is set up as a class, it won’t run as a script. There are a few ways to
get it to run, one of which is to just use Rack. We can run the file in a config.ru Rackup file as
just another Rack app:

web/sinatra_01/config.ru
require_relative "./sinatra_class"
run SinatraApp

Now we’ve got multiple files, we’ve moved all the gem requirements out of inline and into
a Gemfile:

web/sinatra_01/Gemfile
source "https://rubygems.org"
gem "rack", "~> 2.2"
gem "puma"
gem "sinatra", "> 3.0"

As this is being written, Sinatra does not support Rack 3.0, so we’ve needed to use the
Gemfile to ensure that we are using the most recent 2.2.x version of Rack.

At this point, we can run bundle install, and the Puma gem is installed. Then, running puma
from the command line, Puma will find the config.ru file and run the Sinatra app. Pointing
the browser at http://localhost:9292 will show that this works.

There’s a lot more to Sinatra, please check out https://sinatrarb.com for way more info. And if
Sinatra doesn’t meet your needs, there are many other Ruby web frameworks that might.

Ruby in the Browser with Web Assembly
Web Assembly (Wasm) is a virtual machine runtime engine that runs in a web browser,
allowing any Wasm-complient programming language to be used as a scripting language
in that browser.

Ruby 3.2 adds support for Wasm as a compilation target of Ruby. You can see full instructions
for creating your own Wasm build at https://github.com/ruby/ruby/blob/master/wasm/README.md,

Chapter 20. Ruby and the Web • 340

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra_class.rb
http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/config.ru
http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/Gemfile
https://sinatrarb.com
https://github.com/ruby/ruby/blob/master/wasm/README.md
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

but in most cases you’ll likely either pull in the Wasm build as a module in Node Package
Manager (NPM) or point to a source for the Wasm build in your web page.

So, you can do this in an HTML file:

web/wasm.html
<html>
<script
src="https://cdn.jsdelivr.net/npm/ruby-head-wasm-wasi@0.5.0/dist/browser.script.iife.js"

></script>
<script type="text/ruby">
puts "Welcome To Ruby!"

</script>
</html>

The first script tag downloads the Wasm-compliant Ruby build from a known CDN location.
This will take some time on first download at least, so it’s probably not quite production-
ready as we write this. The first script tag registers the Ruby build as the interpreter for Ruby
scripts, so subsequent text/ruby scripts will be interpreted by Ruby and their output sent to
the browser.

In this case, the subsequent script prints “Welcome to Ruby!” to the browser console.

You can do more complex things:

web/wasm_2.html
<html>
<head>
<script
src="https://cdn.jsdelivr.net/npm/ruby-head-wasm-wasi@0.5.0/dist/browser.script.iife.js"

></script>
<script type="text/ruby">
require "js"
document = JS.global[:document]
button = document.getElementById("button")
response = document.getElementById("response")
guess = document.getElementById("guess")
button.addEventListener("click") do |e|
real_number = (1..10).to_a.sample
result_text = "The number was #{real_number}. "
if guess[:value].to_i == real_number
result_text << "You were right!!"

else
result_text << "You were incorrect"

end
response[:innerText] = result_text

end
</script>

</head>
<body>
<p>Pick a number 1 through 10</p>
<input id="guess" />
<button id="button">Am I right?</button>
<div id="response"></div>

</body>
</html>

report erratum • discuss

Ruby in the Browser with Web Assembly • 341

http://media.pragprog.com/titles/ruby5/code/web/wasm.html
http://media.pragprog.com/titles/ruby5/code/web/wasm_2.html
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In this script, the HTML at the end has a button, a text field, and a placeholder for a response.
In the script, after we require a module called js, we then have access to the JavaScript docu-
ment object as JS.global[:document]. From there, we can use the DOM method getElementById
to retrieve DOM elements and access their values as though in a hash (not as attributes). We
can even call methods on them, as in addEventListener.

It all adds up to a button that causes a random number to be generated and compared to
the value in a text field, as shown here:

You don’t have to do this in the HTML script. You can grab the NPM package directly and
evaluate Ruby code, but you have to pass the Ruby code as a string. This is a little clunky
right now, but you can see an example at https://github.com/ruby/ruby.wasm/blob/main/packages/
npm-packages/ruby-wasm-wasi/example/index.node.js.

This is a very new project as we write this, and we look forward to further developments
on the coding experience here.

What’s Next
We’ve covered many different ways Ruby interacts with the web. We’ve seen Ruby’s own
utilities, the Rack framework for interactions between web servers and application frame-
works, and the Sinatra framework for building basic web applications. Next we look at Ruby
style.

Chapter 20. Ruby and the Web • 342

report erratum • discuss

https://github.com/ruby/ruby.wasm/blob/main/packages/npm-packages/ruby-wasm-wasi/example/index.node.js
https://github.com/ruby/ruby.wasm/blob/main/packages/npm-packages/ruby-wasm-wasi/example/index.node.js
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 21

Ruby Style
As you become familiar with Ruby and the Ruby community, you’ll see references to “Ruby
style” or “idiomatic Ruby.” These terms refer to the way in which developers who really
love Ruby tend to write Ruby code. Ruby is such a flexible language—demonstrated in the
range of allowed syntax, in the different ways it has to do similar tasks, and in the ways it
allows you to interact with existing code—that style and community standards of practice
go a long way toward keeping Ruby code readable from project to project.

There are two distinct kinds of Ruby style. The first is the kind that is syntax-based, governs
how you write individual lines and small blocks of code, and can (to some extent) be evalu-
ated by a linting program. In this chapter, we’ll discuss two tools that can check your code
to see if it matches style rules: RuboCop and Standard. Often, these tools can automatically
reformat your code to align with style guidelines.

The second kind of Ruby style is more nebulous, and it involves larger decisions than indi-
vidual lines and has to do more with how to use Ruby as a tool. We’ll discuss how to lean
into Ruby’s dynamism and support of dynamic typing (sometimes called “duck typing”) as
a way to make your code’s intent clearer and give you less code to maintain and change in
the future.

Before we say anything else about style in this chapter, it’s important to remember that style
is subjective, and nearly all of these guidelines are dependent on what you and your team
find clear and readable. Team style is a case where consistency is more important than per-
fection—any time spent arguing over where the square brackets go is time lost. You want
to avoid “bikeshedding”—spending inordinate time on trivial cosmetic issues like what
color to paint the bike shed, rather than the important issues of your project. We’ll offer some
advice, but our overall recommendation is to pick the tooling to support a common set of
practices and then spend your time on larger and more interesting code issues.

Written Ruby Style
The goal of having a written coding style is to make the intent and functionality of the code
clear and easy to maintain. When the physical layout of the file matches its logical layout
and the constructs are presented consistently, it’s easier for a reader of the code to understand
what the code is doing.

Programming languages tend to offer flexibility in how the code is actually laid out in the
file as written by the developer. Some languages arrange their syntax in such a way as to be

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

stricter about physical layout. For example, Python is known for enforcing the use of
indentation to denote logical blocks of code. Ruby, for better or worse, is not like that. Ruby
offers the developer tremendous flexibility.

However, in the face of that flexibility, various common practices have emerged. In some
cases, a particular style was found to have genuine clarity or modification benefits. In other
cases, the community picked from equally fine choices, but the consistency of going with
only one choice has its own benefit.

Currently, the two most commonly used Ruby style guides can be found at
https://rubystyle.guide, which is maintained by Bozhidar Batsov and the team that maintains
the RuboCop tool, and at https://ruby-style-guide.shopify.dev, which is a slightly different version
maintained by the team of Ruby developers at Shopify.

It is not our intention to litigate every element in those guides, but we do want to mention
a few of the most important or most widely observed features. (You’ll notice the features
we highlight have a strong correlation with the ones used by the Standard tool.)

Indentation and Spacing
Ruby code almost without exception uses two spaces for indentation—not tabs and not four
spaces:

module Game
class Team
def initialize
end

end
end

We could go on about how this is optimal, but honestly, it’s largely a question of consistency
(and to some extent, a preference for more compact code).

It’s important to note that a couple of things are not indented in Ruby that might be
indented in other languages. For example, in a case statement, the when clauses are not
indented relative to the case:

case name
when :superman
"Clark Kent"

when :batman
"Bruce Wayne"

end

Similarly, exception keywords like rescue and ensure are not indented relative to the blocks
they are inside:

def a_sample_method(name)
a_dangerous_call

rescue StandardError
return "Oops"

ensure
something_else

end

Chapter 21. Ruby Style • 344

report erratum • discuss

https://rubystyle.guide
https://ruby-style-guide.shopify.dev
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The rationale for this spacing is that if you squint hard enough, when and rescue aren’t really
subordinate blocks and shouldn’t be indented. In practice, like the two-space indenting, this
lack of indentation tends to make Ruby code more compact on the screen than code from
other languages.

If you use private as a keyword, typically methods below it are not indented, again because
private is a method call and does not create a logical block:

class Sample
def public_method
end

private

def private_method
end

end

As you’ve seen in the code samples in the book so far, Ruby code uses the end of a line to
end statements, so you don’t typically use a semicolon at the end of a line.

Ruby code style uses spaces around operators, around equals signs, and after commas, but
does not uses spaces inside square brackets or parentheses. For example:

def do_some_things(x, y = "default")
a = x + y
b = [1, 2, 3]

end

There are a few exceptions:

• Range literals generally don’t have spaces, as in 1..10.
• When ! is used as a negation operator it doesn’t have spaces, as in !foo.
• The &. safe navigation operator doesn’t get spaces so that it visually is just part of a

method chain as in user&.name&.first.
• Exponent operators don’t have spaces, as in x**2.
• Rational and complex literal markers don’t have spaces, as in 3/5r.

Curly braces are a little more complicated. The most common style is to put spaces inside
curly braces for block literals, but not for hash literals or string interpolation, with the idea
being that you use the spacing to give an immediate visual clue whether the braces enclose
a block or a hash:

def sample
data = {a: 1, b: 2}
data.each { |key, value| p "#{key}/#{value}" }

end

That said, you will see styles that put spaces inside hash literals as well.

As for block literals, the most common Ruby style is to use curly braces for single-line blocks
and do/end for multiline blocks:

def another_sample
[1, 2, 3].map { |x| x**2 }
[1, 2, 3].map do |x|
print "working on #{x}"

report erratum • discuss

Written Ruby Style • 345

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

x**2
end

end

However, there’s another convention, associated with Jim Weirich (the creator of Rake),
where braces are used for multiline blocks if the return value of the method is immediately
used in a method chain like this:

def another_sample
[1, 2, 3].map { |x|
do_something_with(x)

}.sort.first
end

In this example, the result of themap call is passed directly to sort, so the Weirich convention
uses braces because the feeling is that end.sort.first looks odd.

Typically we put blank lines between method and class definitions, and only inside methods
rarely. Ruby methods tend to be short, and needing internal space might be a sign that the
method should be split.

Parentheses, especially for method calls, also have a couple of popular styles. The most
common style is to use parenthesis for all method calls unless the method call is:

• A Kernel method like puts or p that is meant to look like a command.
• A class method being invoked as part of the definition of a class, like include or private.
• Used in a Ruby domain-specific language that doesn’t use parentheses, like RSpec’s it

or describe.

No matter what, method calls with no arguments in Ruby should not get empty parentheses
(except in the one case where super() has a different meaning than super).

You may sometimes see references to “Seattle Style” Ruby code, in which parentheses are
only included if they are needed to resolve ambiguity.

Naming and Calling
Local variables, symbols, method names, and file names in Ruby use underscores to separate
words, as in a_multi_word_name. Modules and classes that start with capital letters use intercaps
to separate words, as in AMultiWordName. Our preference is to lowercase acronyms in inter-
capped names—as in HttpReceiver, not HTTPReceiver—on the grounds that it’s easier to separate
the words, but this is an example where people’s opinion definitely varies.

Constants are typically written in all caps and use underscores to separate names, as in
A_MULTI_WORD_NAME.

Ruby tends not to prefix getters, setters, and predicate methods. Getters are typically the
name of the attribute, setters are the name of the attribute with an = suffix, and predicate
methods don’t typically start with is or a similar prefix. Instead, predicate methods in Ruby
end with ?, such as empty?.

The ! suffix on a method name indicates that the method is “dangerous,” which in Ruby-
speak means it either

• modifies the receiver of the message, or
• raises an exception or error.

Chapter 21. Ruby Style • 346

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

There is typically a “safe” version of the same method that does not end in ! and does not
modify the receiver or raise an exception.

Ruby style tends to avoid explicitly using self as the receiver of a method unless it is required
to avoid ambiguity, as in the left side of an assignment. Ruby style also avoids explicitly and
redundantly using return on the last line of a method where the return value is already
specified. Only explicitly use return when exiting early from a method.

Single-line method calls should only be used when the body of the method is a single
expression and has no side effects. Ideally, it also has no arguments. For example:

def price_in_dollars = price_in_cents * 1.0 / 100.

Also, you should use attr_reader, attr_writer, and attr_accessor when appropriate rather than
explicitly defining simple setters and getters.

Ruby allows parallel assignment between multiple left and right arguments. In general, use
parallel assignment to either:

• swap values: first, second = second, first or
• capture multiple return values from a method: user, count = post.user_with_most_comments.

Logical Flow
Ruby has a number of different looping and conditional flow constructs that control the
logical flow of the program through the code. Because these flow statements are usually the
most complex individual bits of logic, using consistent style for clarity is important in
keeping the code readable and maintainable. Following are a few suggestions.

Even though Ruby has a for keyword, it is better to use each for looping over an enumera-
tion—for is defined in terms of each, so you don’t gain speed and you lose some clarity by
using for.

In if and when statements, only use then where the condition and the result are on the same
line. Only use guard clauses at the end of the line like foo if x.nil? if the clause is simple. If the
clause is complex, consider breaking it out into its own method with a meaningful name.

It’s fine to use unless instead of if !, but please don’t use unless followed by else, that tends to
be very confusing.

The if and case statements return a value, and you should use this fact to make code clearer,
like this:

result = if a_thing
x

else
y

end

Note the indentation (you can also indent relative to the beginning of the line). Also note
that Ruby style does not put parentheses around the boolean condition in an if or while
statement.

For single-line conditional assignments, both of these styles are correct: result = if a_thing then
x else y end and result = a_thing ? x : y. They each have their fans.

report erratum • discuss

Written Ruby Style • 347

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

For equality, Ruby has a couple of different versions, though the one you want is almost
always ==. It’s the version that compares on the value of the object, not the identity of the
object.

Finally, avoid using assignment in the conditional, if x = gets (even though there are some
examples in this book that do this for compactness or clarity). If you do, it’s probably a good
idea to put parentheses around the conditional, like this: if (x = gets), to draw attention to the
unusual code.

Data
When creating an array or a hash, it is better to use the literal syntax [] or {} over Array.new
or Hash.new. If applicable, use %w for an array of short strings or %i for an array of symbols.

In general, prefer symbols as Hash keys, or at the very least, some other immutable object.
When using a symbol as a key, you should use the newer {foo: bar} syntax rather than {:foo
=> :bar}. (This is a declaration against interests; we personally love the way the Hashrocket
looks, but objectively, more people find the shorter syntax easier.)

Ruby has a handful of pre-existing methods that combine iteration functions, like flat_map
and reverse_each. These tend to be faster than chaining the two methods, so you should use
these when appropriate.

For Strings, use interpolation syntax rather than concatenating strings with bits of stuff, so
"#{last_name}, #{first_name}" not last_name + ", " + first_name. We prefer using double-quoted
strings in all cases on the grounds that it’s easier to modify if you later add interpolation to
the string—double-quoted strings are not appreciably slower than single-quoted strings. If
the string itself includes double quotes, use the %Q syntax. For long strings use heredocs,
especially the <<~SQUIGGLE syntax that manages indentation.

Similarly, use %r for regular expressions that contain / characters. Consider using x as a
modifier for complex regular expressions to allow for more expressive spacing. Use a com-
ment on regular expression literals to point to Rubular or something similar where a reader
can try the regular expression.

The Ruby style guides offer a lot of other suggestions; this is only some of what a full style
guide might include.

Using RuboCop
When you write Ruby code, you often don’t want to have to think about style. What you
want to do is write your code and solve your problem. However, what usually happens is
that once you have your team review your code, people on your team start to nit-pick your
minor style choices, sometimes contradicting each other. This is, to say the least, not compat-
ible with great team morale.

Enter Rubocop.1 RuboCop is a linter, which means that it automatically checks your code
for style and then either flags discrepancies or optionally auto-corrects them. (The name
“linter” comes from the first such program, lint, written in 1978 by Stephen C. Johnson for
C code and named by analogy to a lint trap as a thing that catches small issues.)

1. https://rubocop.org

Chapter 21. Ruby Style • 348

report erratum • discuss

https://rubocop.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

RuboCop is highly customizable. It ships with dozens of individual style rules, which it calls
“cops,” plus there’s a plugin system to add sets of rules and a mechanism for writing your
own rules. After adding RuboCop, in theory you have just one discussion among your team
to set RuboCop’s preferences, and then you let RuboCop handle the style-checking rather
than continually debating it in code review.

RuboCop’s documentation2 is thorough. It includes a description of every individual cop
with examples of code that passes and fails each one.

Getting Started with Rubocop
Let’s look at how to get started using RuboCop in your code. For demonstration purposes,
we’re going to go through the process of adding RuboCop to our Aaagmnr gem from
Chapter 15, Ruby Gems, on page 251. RuboCop is a Ruby gem, so you first need to add it to
the Gemfile as gem "rubocop". (If you are literally following along with a copy of Aaagmnr,
note that the previous version had Standard installed. Here, we’re replacing it with Rubocop
for sake of the demonstration.)

Next, run bundle install to have a command-line program called rubocop:

$ rubocop
Inspecting 14 files
CCCCCCCCCCCCCC

Offenses:
Gemfile:3:8: C: [Correctable] Style/StringLiterals:
Prefer single-quoted strings when you don't need
string interpolation or special symbols.
source "https://rubygems.org"

^^^^^^^^^^^^^^^^^^^^^^
<LOTS OF THOSE>

14 files inspected, 108 offenses detected, 102 offenses auto-correctable

Tip: Based on detected gems, the following RuboCop extension libraries
might be helpful:

* rubocop-rake (https://rubygems.org/gems/rubocop-rake)
* rubocop-rspec (https://rubygems.org/gems/rubocop-rspec)

You can opt out of this message by adding the following to your config
(see https://docs.rubocop.org/rubocop/extensions.html#extension-suggestions

for more options):
AllCops:
SuggestExtensions: false

If you are using the sample code that came with this book, you will only get these results if
you remove or rename the configuration files .rubocop.yml and .rubocop_todo.yml described
later in this chapter. Also, newer versions of RuboCop may change this output.

Let’s parse this. RuboCop first tells us how many Ruby files it found to inspect—14 in this
case. Then it gives us a running progress bar. If this was a live video and not a book, you’d
see those C’s coming in one at a time.

2. https://docs.rubocop.org/rubocop/1.38/index.html

report erratum • discuss

Using RuboCop • 349

https://docs.rubocop.org/rubocop/1.38/index.html
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

RuboCop and Editors

If you are using an integrated development environment (IDE) or coding editor,
there’s likely an extension that will read your RuboCop configuration and
display RuboCop issues in your editor as you type. You may even be able to
auto-correct from the editor without running the command line tool. (This goes
for Standard as well.)

Each file gets one character. If the file has no issues, it is represented with a dot. We have,
apparently, an issue in each file, so we have no dots. If RuboCop does flag something, the
file is represented by the most serious issue. Each individual cop specifies its own severity
level. Following are RuboCop’s severity levels in order of less serious to most serious:

• I is used for “info.” It’s rare for an “info” failure to be reported. Typically an “info”
failure will not be counted as a failure of the entire run as a whole.

• R is used for “refactor,” as in “something you might want to refactor.”
• C is used for “convention,” meaning a style issue that is part of your team’s conventions,

rather than something that might objectively be a problem for all teams. Cops whose
names don’t start with Lint default to this severity.

• W is used for “warning,” meaning the file is legal Ruby but has something that you
might consider an “objective” problem. The indentation is unbalanced, there’s some
ambiguity, something like that. Cops whose names start with Lintdefault to this severity.

• E is used for “error,” meaning the file is not legal Ruby.
• F is used for “fatal,” meaning the file has a syntax error that prevents it from being

parsed.

After the files comes a listing of all the offenses. The example code has a lot of basically
identical offenses; we’ve chosen to include the display of only one of them. The layout is:

• The location of the issue, Gemfile:3:8 gives the file name, line number, and character
where the issue begins.

• The severity of the issue, which in this case is level C.
• If RuboCop can autocorrect the issue, it says so with [Correctable].
• The name of the cop, which in this case is Style/StringLiterals, and a description of what

the cop shows.
• The line of code with the text at issue underlined.

After the list of all the offenses is a summary line: 14 files inspected, 108 offenses detected, 102
offenses auto-correctable. Plus, RuboCop helpfully tells us that we could also install plugins
for rubocop-rake and rubocop-rspec.

That’s a lot of offenses. We can get a sense for what’s going on by using a different formatter
from the command line:

rubocop --format offenses
14/14 files |=====| Time: 00:00:00

90 Style/StringLiterals
6 Style/FrozenStringLiteralComment
4 Style/WordArray
3 Style/Documentation
1 Gemspec/RequiredRubyVersion
1 Metrics/MethodLength
1 Style/AccessModifierDeclarations
1 Style/MutableConstant

Chapter 21. Ruby Style • 350

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

1 Style/StringLiteralsInInterpolation
--
108 Total

Most of these issues are that RuboCop’s default, for some reason, prefers single-quoted
strings. Most of the rest of these are other differences of opinion between the gem author
and RuboCop’s defaults. (To be honest, the RequiredRubyVersion and MutableConstant
cops are probably worth fixing.)

Anyway, at this point we have a couple of options for what we can do with RuboCop just
from the command line. As with many other command-line programs, we can pass directory
names, file names, or file name patterns to the CLI to limit RuboCop to the listed files: rubocop
lib, for example.

We can auto-correct all the correctable cops. This will change all the double-quoted strings
to single-quoted strings and various and sundry other things that RuboCop is currently
complaining about.

To do that, we’d use the -a option: rubocop -a, and RuboCop will apply auto-correct logic for
all the issues it identified. In this case, it would replace all double-quoted strings with single-
quoted strings. We don’t want to do that right now, but the auto-correct is a quick way to
fix many simple RuboCop issues. RuboCop is generally cautious about what it chooses to
autocorrect, and most of the corrections are simple, but “cautious” does not mean “perfect,”
and “most of” does not mean “all,” so when you do auto-correct, you want to check the
result to make sure the new code is functionally equivalent to the old code.

On the other hand, we could decide that the codebase is so gnarly that we don’t want to fix
old issues; we just want to start fresh and not create new issues. RuboCop allows us to create
a to-do list of existing issues that are excluded from being flagged by future runs with this:

$ rubocop --auto-gen-config

This will produce a lot of output and in the end it will create a minimal .rubocop.yml configu-
ration file and a .rubocop_todo.yml file. The .rubocop_todo.yml is an extension of the RuboCop
configuration that excludes files where existing issues have been found so that RuboCop
will ignore them in the future. After running the auto-configuration, we get this:

$ rubocop
A LOT OF OUTPUT ABOUT SPECIFIC COPS AND OUR CONFIGURATION BEING TOO MINIMAL

Inspecting 14 files
..............

14 files inspected, no offenses detected

To be clear, the offenses are still there, they are just being suppressed by the todo file.

Configuring RuboCop
Almost everything in RuboCop can be configured, and the file in which to make these changes
is .rubocop.yml. Here’s a sample configuration that clears most of the issues RuboCop identified
in our earlier code example:

ruby_style/aaagmnr/.rubocop.yml
#inherit_from: .rubocop_todo.yml

AllCops:

report erratum • discuss

Using RuboCop • 351

http://media.pragprog.com/titles/ruby5/code/ruby_style/aaagmnr/.rubocop.yml
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

TargetRubyVersion: 3.2
NewCops: enable
SuggestExtensions: false
Exclude:
- "bin/**/*"

Metrics/MethodLength:
Enabled: false

Style/AccessModifierDeclarations:
EnforcedStyle: inline

Style/Documentation:
Enabled: false

Style/FrozenStringLiteralComment:
Enabled: false

Style/StringLiterals:
EnforcedStyle: double_quotes

Style/StringLiteralsInInterpolation:
EnforcedStyle: double_quotes

Style/WordArray:
MinSize: 3

At the top, we commented out the line inherit_from: .rubocop_todo.yml. That line was generated
in the previous section when we ran the --auto-gen-config command. In general, RuboCop lets
you inherit from other configurations so as to modularize the configuration. If we wanted
to include separate projects like RuboCop’s Rails or RSpec cops, we’d use inherit_from: to
include them. The inherit_from mechanism is often used for an organization to specify a
common set of standards, and then individual projects use their own configurations to extend
or override those standards.

Below that is a section in which we set default values by using the AllCops name. In this case,
we’re telling RuboCop to treat the code as though it was being written for Ruby 3.2 and to
exclude any file in the bin directory. We’re also explicitly opting in to new cops and telling
RuboCop not to suggest extensions on the grounds that if we don’t, RuboCop complains
about both of those things in the output every time we run the command.

The settings for individual cops can be changed directly, as this configuration does. We don’t
need RuboCop to tell us about method length—we trust our team to only have long methods
when necessary—so we set Enabled: false for that cop. Any cop can have its Enabled setting set
to true or false. Most cops default to true.

If you look at the .rubocop_todo.yml file, notice that every cop also has an Exclude setting that
takes a list of files or file patterns that should not have that cop applied. This is helpful in
transitioning a codebase to RuboCop because it allows you to be judicious in switching
individual files, but in general, you wouldn’t use it in your main configuration.

Some cops have their own parameters to set—we set the Style/StringLiterals cop to double_quotes.
We still want this cop to work, we just want it to accept double quotes as the ideal and flag
single quotes. Similarly, the Style/WordArray cop, which wants us to change all our ["cat", "dog"]
tests to the word array syntax of %w[cat dog], has a parameter that sets the minimum size of
the array that it cares about. We don’t really mind the array syntax for two-element arrays,
so we set the minimum value to 3.

Chapter 21. Ruby Style • 352

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

With this configuration in place (and with the todo shut off), our RuboCop tells us there are
four problems:

• It wants us to set a config parameter for rubygems_mfa_required in the .gemspec, which sets
multi-factor security on the gem itself.

• The target ruby in RuboCop is different from the Ruby version specified in the .gemspec.
• There’s a single-quote string in the .gemspec.
• It wants us to freeze the constant DEFAULT_DICTIONARY = "/usr/share/dict/words".

Most of the problems are in the .gemspec. We can now fix these either by updating the con-
figuration or by running rubocop -a to auto correct, or rubocop -A to auto correct and include
some cops that might be unsafe to auto correct. Using rubocop -A will correct all but the first
issue.

You can also disable a cop inline in your file with a magic comment: # rubocop/disable
Style/WordArray or whatever the name of the cop you want to disable is. If the comment comes
at the end of a line, it merely disables for that line. If it stands on its own, it disables until
the end of the file or a matching # rubocop/enable comment, whichever comes first. This is
sometimes useful, but again is something you want to use sparingly. Frequent use of disabling
RuboCop suggests that the settings you have aren’t quite right.

There’s more to RuboCop, including a lot of extensions, and you can write your own cops
to identify whatever Ruby style options you want. See the RuboCop documentation3 for
more information.

Using Standard
RuboCop is powerful, but also quite complicated. If we’re being honest, we don’t like all
the defaults. As a result, our typical project winds up with a long configuration file that’s a
bit unwieldy and continually subject to argument. If only somebody would come up with
a more consensus-based Ruby style-checker.

Enter Standard,4 a default configuration of RuboCop created by Justin Searls that is minimally
configurable and conforms to a small, but commonly used, set of rules.

What rules? You can see the entire list in Standard’s RuboCop setup, but the gist is very
similar to the common rules we set out in the first part of this chapter:

• Two-space indentation
• Double-quoted strings
• No hash rockets for symbol hash keys
• Spaces inside curly braces for blocks and not for hashes
• Braces for single line blocks (Standard does not specify how you handle multiline blocks)

Installing Standard just requires putting gem "standard" in your gemfile. You don’t need a
configuration.

To run Standard, just enter standardrb from the command line and you’ll get RuboCop output.
Using standardrb --fix will autocorrect errors, and using standardrb --generate-todo will create a
.standard_todo.yml file just like the todo file RuboCop generates.

3. https://docs.rubocop.org
4. https://github.com/testdouble/standard

report erratum • discuss

Using Standard • 353

https://docs.rubocop.org
https://github.com/testdouble/standard
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

There is a minimal amount of configuration you can do to a .standard.yml file. The available
keys are:

• default_ignores:Defaults to true. If set to false, Standard will not ignore files that it would
normally ignore.

• extend_config: takes the name of additional RuboCop yaml files that can themselves
configure RuboCop. The idea is to allow you to run Standard and RuboCop extensions.
The default is an empty list.

• fix: If true, Standard will autocorrect on a regular run, which you can turn off with
standard --no-fix. The default is false.

• format: Sets the formatter for output. The default is the standard formatter.
• ignore: Takes a list of file patterns to ignore. The default is an empty list.
• parallel: If true, Standard will run in parallel. The default is false.
• ruby_version:: Sets the Ruby version to target; it defaults to the version of Ruby that is

running. The default is the value of RUBY_VERSION.

You can use Standard as a base for a RuboCop configuration, which you might want to do
if you want to use additional RuboCop extensions like the Rails or RSpec cops. In your
.standard.yml:

extend_config:
- test_cops.yml
- rails_cops.yml

Those additional files are regular RuboCop files and can do whatever a RuboCop config can
do, but the idea of the feature is that you would require and configure a RuboCop extension
that Standard does not cover.

Ruby Style in the Large
Ruby style is not just a matter of how you code line-by-line, it also manifests in how you
approach problems and how you build solutions. The goal of all of these style recommenda-
tions is to allow the code to clearly reflect the intent of the programmer. Taking advantage
of what Ruby does best and most simply will make it easier to read and modify your code
going forward.

Ruby code is often written with shorter methods and smaller classes than more strongly
typed languages. Not only do smaller methods give you more chances to give blocks of code
meaningful names, but also having small pieces of functionality made into methods makes
it easier to build functionality by combining methods using Ruby syntax such as blocks.

For example, let’s say we are sending an email to a user to confirm whether the user is eligible
for a promotion and that there are a few different facets to eligibility:

def send_promotion_email
if last_active_date <= 1.year.ago ||
%w[TX AZ FL].includes?(state) ||
opted_out?
return false

end
send_the_email

end

Chapter 21. Ruby Style • 354

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In this example, the intent of the if condition is somewhat obscured by the syntactic clutter
of the three boolean choices. Giving the combined boolean its own method with a meaningful
name clears that up. And while many programming languages will suggest extracting
methods, in Ruby you get the added bonus of making it possible to easily use the guard
clause syntax in a separated method:

def gets_promotion_email?
return false if last_active_date <= 1.year.ago
return false if %w[IL GA MA].includes?(state)
return false if opted_out?
true

end

def send_promotion_email
return false unless gets_promotion_email?
send_the_email

end

There are a few things to note about this:

• You could do the gets_promotion_email as a single boolean expression as it was done in
the first code snippet. We just find it easier to reason about each cause individually, and
breaking them into a method makes that easier to do.

• It’s also true that some of those clauses might be clearer with their own method. For
example, the middle clause might use a method name to say why those states are blocked.

• The send_promotion_email method is now shorter and the meaning of the initial if clause
is now clearer. The use of the end of line syntax, enabled by the fact that there’s now
just one method to call, is a signal that the first line is meant as a guard clause protecting
the rest of the method.

Blocks have a similar mechanism. Many commonly used Ruby methods use blocks, and
having the body of a block encapsulated in a method can enable you to use one of Ruby’s
shorter syntaxes, like this:

users.map { |user| user.convert_to_json }
users.map { _1.convert_to_json }
users.map(&:convert_to_json)

All three of these are equivalent, but they all depend on the body of the conversion being
broken out into its own method.

Duck Typing
You may have noticed that in Ruby, you don’t explicitly declare the types of variables or
methods. Whether the particular value of a variable is correct for the messages being passed
to it is evaluated at run time when the message is sent.

Folks tend to react to this in one of two ways. Some like this flexibility and feel comfortable
writing code with dynamically typed variables and methods. Others get nervous when they
think about all those objects floating around unconstrained. If you’ve come to Ruby from a
language such as C#, Java, or TypeScript, where you’re used to giving all your variables and
methods an explicit type, you may feel that Ruby is just too permissive to use to write “real”
applications.

It isn’t.

report erratum • discuss

Duck Typing • 355

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

We’d like to spend a couple of paragraphs trying to convince you that the lack of static typing
is not a problem when it comes to writing reliable applications. In fact, an important part of
Ruby style is trusting Ruby’s dynamic typing to help you and not hurt you. We’re not trying
to criticize other languages here. Instead, we’d just like to contrast approaches.

The reality is that the static type systems in most mainstream languages don’t help that much
in terms of program correctness. If Java’s type system were perfectly reliable, for example,
it wouldn’t need to implement ClassCastException. The exception is necessary, though, because
there is runtime type uncertainty in Java (as there is in TypeScript, C#, and others). Static
typing can be good for optimizing code, it can be useful for communicating intent, and it
can help IDEs do clever things with tooltip help, but we haven’t seen much evidence that it
promotes more reliable code.

Static typing also has costs. Statically typed languages are typically more verbose than
dynamic ones, which can cause the business logic to be obscured by the type declaration
clutter. It’s not unheard of to spend time convincing the type checking system that the thing
you know is right is actually also legal.

On the other hand, once you use Ruby for a while, you realize that dynamically typed vari-
ables add to your productivity in many ways. You’ll also be surprised to discover that your
worst fears about the type chaos were unfounded. Large, long-running Ruby programs run
significant applications and just don’t throw many type-related errors. Why is this?

Partly it’s a question of program structure. In many cases the structure of the program makes
type errors unlikely even if the language isn’t explicitly checking for them. You put Person
objects in, and few lines later the code sends Person objects out. Add in some reasonably
meaningful variable names and you’re already minimizing the possibility of type errors.

Good style techniques limit the possibility of type errors in Ruby. If you use a variable for
some purpose, chances are good you’ll be using it for the same purpose when you access it
again three lines later. Object-Oriented design and polymorphism lets you take advantage
of dynamic typing to limit type errors. The kind of chaos that could happen just doesn’t
happen.

On top of that, folks who code Ruby a lot tend to adopt a certain style of coding. They write
lots of short methods and tend to test as they go along. The short methods mean that the
scope of most variables is limited; there just isn’t that much time for things to go wrong with
their type. The testing catches the silly errors when they happen; typos and the like just don’t
get a chance to propagate through the code. As an added bonus, short, testable methods
tend to have other benefits for code quality in addition to limiting the possibility of type
errors.

The upshot is that the “safety” in “type safety” is often illusory and that coding in a more
dynamic language such as Ruby is both safe and productive. So, if you’re nervous about the
lack of static typing in Ruby, we suggest you try to put those concerns on the back burner
for a little while and give Ruby a try. We think you’ll be surprised how rarely you see errors
because of type issues and how much more productive you feel once you start to exploit the
power of dynamic typing.

Classes Aren’t Types
If you’ve coded in strongly typed languages, you may have been taught that the type of an
object is the same as its class—all objects are instances of some class, and that class is the

Chapter 21. Ruby Style • 356

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

object’s type. The class defines the operations (methods) the object can support, along with
the state (instance variables) on which those methods operate. Let’s look at some Java code:

Customer c;
c = database.findCustomer("dave"); /* Java */

This fragment declares the variable c to be of type Customer and sets it to reference the customer
object for Dave that we’ve created from some database record. So, the type of the object in
c is Customer, right?

Maybe. However, even in Java, the issue is slightly deeper. Java supports the concept of
interfaces. An interface is a list of methods that are supported together by classes that
implement the interface. A Java class can be declared as implementing multiple interfaces.
More to the point, a variable can be declared as being typed to an interface, rather than a
class. Using this facility, you may have defined your classes as follows:

public interface Customer {
long getID();
Calendar getDateOfLastContact();
// ...

}

public class Person implements Customer {
public long getID() { ... }
public Calendar getDateOfLastContact() { ... }
// ...

}

So, even in an explicitly typed language, the class is not always the type—sometimes the
type is a subset of the class, and sometimes objects implement multiple types.

In Ruby, the class is never (well, almost never) the type. Instead, the type of an object is
defined by what messages it responds to. The idea that typing is implicitly based on messages
defined rather than being explicitly declared is called duck typing. If an object walks like a
duck and quacks like a duck, then the interpreter is happy to treat it as if it were a duck,
even if it is just a duck-shaped puppet.

Earlier in the book, we said that a type defined both the values that could be assigned to a
variable and the expected behavior of those values. In Ruby (when not using RBS or Sorbet),
those values and behavior are both enforced only by the set of messages that are passed to
the value when the program runs.

Let’s look at an example to see why taking advantage of Ruby’s dynamic nature can be
helpful. Perhaps we’ve written a method to write our customer’s name to the end of an open
file:

ducktyping/add_customer.rb
class Customer
def initialize(first_name, last_name)
@first_name = first_name
@last_name = last_name

end

def append_name_to_file(file)
file << @first_name << " " << @last_name

end

report erratum • discuss

Duck Typing • 357

http://media.pragprog.com/titles/ruby5/code/ducktyping/add_customer.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

Being good programmers, we’ll write a unit test for this. Be warned, though—it’s messy
(and we’ll improve on it shortly):

ducktyping/test_add_customer_1.rb
require "minitest/autorun"
require_relative "add_customer"

class TestAddCustomer < Minitest::Test
def test_add
customer = Customer.new("Ima", "Customer")
File.open("tmpfile", "w") do |f|
customer.append_name_to_file(f)

end
File.open("tmpfile") do |f|
assert_equal("Ima Customer", f.gets)

end
ensure
File.delete("tmpfile") if File.exist?("tmpfile")

end
end

produces:

Run options: --seed 44110
Running:

.
Finished in 0.000822s, 1216.5450 runs/s, 1216.5450 assertions/s.
1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

We have to do all that work in the test to create a file to write to, then reopen it, and read in
the contents to verify the correct string was written. We also have to delete the file when
we’ve finished (but only if it exists).

Because Ruby is dynamic, we don’t actually have to do all that work on actual files to make
the test run. Instead, we could rely on duck typing. All we need is something that walks like
a file and quacks like a file that we can pass in to the method under test. And all that means
in this circumstance is that we need an object that responds to the << method by appending
something. Do we have something that does this? How about a humble String?

ducktyping/test_add_customer_2.rb
require "minitest/autorun"
require_relative "add_customer"

class TestAddCustomer < Minitest::Test
def test_add
customer = Customer.new("Ima", "Customer")
fake_file = ""
customer.append_name_to_file(fake_file)
assert_equal("Ima Customer", fake_file)

end
end

produces:

Run options: --seed 25873
Running:

Chapter 21. Ruby Style • 358

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ducktyping/test_add_customer_1.rb
http://media.pragprog.com/titles/ruby5/code/ducktyping/test_add_customer_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

.
Finished in 0.000371s, 2695.4178 runs/s, 2695.4178 assertions/s.
1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

The method under test thinks it’s writing to a file, but instead it’s just appending to a string.
Actually, even that statement is a little strong—the method under test thinks it’s sending
the message << to an object that will receive it and do something. Even though the method
may have been written with a file in mind, any object that responds to << will work. At the
end, we can then just test that the content is correct given what the receiver does with the
message <<.

We didn’t have to use a string; an array would work just as well for the purposes of the test:

ducktyping/test_add_customer_3.rb
require "minitest/autorun"
require_relative "add_customer"

class TestAddCustomer < Minitest::Test
def test_add
customer = Customer.new("Ima", "Customer")
fake_file = []
customer.append_name_to_file(fake_file)
assert_equal(["Ima", " ", "Customer"], fake_file)

end
end

produces:

Run options: --seed 58952
Running:

.
Finished in 0.000361s, 2770.0831 runs/s, 2770.0831 assertions/s.
1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

Indeed, this form may be more convenient if we wanted to check that the correct individual
elements were inserted.

You could at this point, make the argument that the original method append_name_to_file is
misnamed and that the method should be just append_name—especially because the argument
is also named file. We can see an argument either way on this point. On the one hand, file is
only a limited subset of what this method actually works on, on the other hand putting file
in the method name signals to users of the method what’s expected. The point here is to
make your intent clear so that future changes are not surprising, putting file in the message
name clearly sends an intent that other file functionality beyond << might be used in the
future. (Of course, using other file functionality means that we might have to rewrite the
test.)

So, duck typing is convenient for testing, but what about in the body of applications them-
selves? Well, it turns out that the same feature that made the tests easy in the previous
example also makes it easy to write flexible application code.

In fact, Dave once had an interesting experience where duck typing dug him (and a client)
out of a hole. He’d written a large Ruby-based web application that (among other things)
kept a database table full of details of participants in a competition. The system provided a
comma-separated value (CSV) download capability so administrators could import this
information into their local spreadsheets.

report erratum • discuss

Duck Typing • 359

http://media.pragprog.com/titles/ruby5/code/ducktyping/test_add_customer_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Just before competition time, the phone starts ringing. The download, which had been
working fine up to this point, was now taking so long that requests were timing out. The
pressure was intense, because the administrators had to use this information to build
schedules and send out mailings.

A little experimentation showed that the problem was in the routine that took the results of
the database query and generated the CSV download. The code looked something like this:

ruby_style/csv_from_row.rb
def csv_from_row(accumulator, row)
result = ""
until row.empty?
entry = row.shift.to_s
if /[,"]/.match?(entry)
entry = entry.gsub(/"/, '""')
result << '"' << entry << '"'

else
result << entry

end
result << "," unless row.empty?

end
accumulator << result << CRLF

end

result = ""
query.each_row { |row| csv_from_row(result, row) }

http.write(result)

When this code ran against moderate-size data sets, it performed fine. But at a certain input
size, it suddenly slowed right down. The culprit? Garbage collection. The approach was
generating thousands of intermediate strings and building one big result string, one line at
a time. As the big string grew, it needed more space, and garbage collection was invoked,
which necessitated scanning and removing all the intermediate strings.

The answer was simple and surprisingly effective. Rather than build the result string as it
went along, the code was changed to store each CSV row as an element in an array. This
meant that the intermediate lines were still referenced and hence were no longer garbage.
It also meant that we were no longer building an ever-growing string that forced garbage
collection. Thanks to duck typing, the change was trivial:

def csv_from_row(accumulator, row)
as before

end

result = []
query.each_row { |row| csv_from_row(result, row) }

http.write(result.join)

All that changed is that we passed an array into the csv_from_row method. Because it
(implicitly) used duck typing, and the only message passed to the accumulator was <<, the
csv_from_row method itself was not modified; it continued to append the data it generated to
its accumulator parameter, not caring what type that parameter was. After the method
returned its result, we joined all those individual lines into one big string. This one change
reduced the time to run from more than three minutes to a few seconds.

Chapter 21. Ruby Style • 360

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ruby_style/csv_from_row.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Coding Like a Duck
If you want to write your programs using the duck typing philosophy, you really need to
remember only one thing: an object’s type is determined by what it can do, not by its class.

What does this mean in practice? At one level, it simply means that there’s often little value
explicitly checking for the class of an object.

For example, you may be writing a routine to add song information to a string. If you come
from a C# or Java background, you may be tempted to write this:

def append_song(result, song)
unless result.kind_of?(String)
fail TypeError.new("String expected")

end
unless song.kind_of?(Song)
fail TypeError.new("Song expected")

end

result << song.title << " (" << song.artist << ")"
end

result = ""
append_song(result, song)

Embrace Ruby’s duck typing, and you’d write something far simpler:

def append_song(result, song)
result << song.title << " (" << song.artist << ")"

end

result = ""
append_song(result, song)

You don’t need to check the type of the arguments. If they support << (in the case of result)
or title and artist (in the case of song), everything will just work. If they don’t, your method
will throw an exception anyway (just as it would have done if you’d checked the types). But
without the check, your method is suddenly a lot more flexible. You could pass it an array,
a string, a file, or any other object that appends using <<, and it would just work.

Now sometimes you may want more than this style of laissez-faire programming. You may
have good reasons to check that a parameter can do what you need. Will you get thrown
out of the duck typing club if you check the parameter against a class? No, you won’t.The
duck typing club doesn’t check to see whether you’re a member anyway…. But you may
want to consider checking based on the object’s capabilities, rather than its class:

def append_song(result, song)
unless result.respond_to?(:<<)
raise TypeError.new("'result' needs `<<' capability")

end
unless song.respond_to?(:artist) && song.respond_to?(:title)
raise TypeError.new("'song' needs 'artist' and 'title'")

end
result << song.title << " (" << song.artist << ")"

end

result = ""
append_song(result, song)

report erratum • discuss

Duck Typing • 361

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

However, before going down this path, make sure you’re getting a real benefit—it’s a lot of
extra code to write and to maintain.

Standard Protocols and Coercions
Although not technically part of the syntax of the language, the Ruby interpreter and standard
library use various protocols to handle issues of type conversion that other languages would
deal with using the type system. That is to say that the Ruby interpreter looks for certain
standard method names and, if those names exist, uses the methods to convert an arbitrary
class to a standard type.

Some objects have more than one natural representation. For example, you may be writing
a class to represent Roman numbers (I, II, III, IV, V, and so on). This class would not be
implemented as a subclass of Integer, because its objects are representations of numbers, not
numbers in their own right. At the same time, they do have an integer-like quality. It would
be nice to be able to use objects of our Roman number class wherever Ruby was expecting
to see an integer.

To do this, Ruby has the concept of conversion protocols—an object may elect to have itself
converted to an object of another class. Ruby has two different ways of looking at this kind
of conversion.

An explicit conversion is triggered in the code deliberately by calling the conversion method.
The intent here is to say that the original type is not the same as the type being converted
to, but that the method gives a reasonable representation of the data in the new type. By
convention, explicit conversion methods have short names, like to_s for Strings, to_h for Hash,
and to_i for Integer.

These conversion methods are not particularly strict. If an object has any kind of decent
representation as a string, for example, it will probably have a to_smethod. Our RomanNumeral
class would probably implement to_s in order to return the string representation of a number
(“VII”, for instance).

An implicit conversion is triggered by the Ruby interpreter as part of using new objects in
the same context where standard types are expected. This form of conversion function uses
methods with longer names such as to_str and to_int (though there are some cases where
shorter names are used for implicit conversions for historical reasons).

The implicit conversions are stricter. You implement them only if your object can naturally
be used every place a string or an integer (or whatever the original type) could be used. For
example, our Roman number objects have a clear representation as an integer and so should
implement to_int. When it comes to stringiness, however, we have to think a bit harder.

Roman numbers clearly have a string representation, but are they strings? Should we be
able to use them wherever we can use a string itself? No, probably not. Logically, they’re a
representation of a number. You can represent them as strings, but they aren’t plug-and-
play-compatible with strings. For this reason, a Roman number won’t implement to_str—it
isn’t really a string. Just to drive this home, Roman numerals can be converted to strings
using to_s, but they aren’t inherently strings, so they don’t implement to_str.

To see how this works in practice, let’s look at opening a file. The first parameter to File.new
can be either an existing file descriptor (represented by an integer) or a filename to open.
However, Ruby doesn’t simply look at the first parameter and check whether its type is

Chapter 21. Ruby Style • 362

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Fixnum or String. Instead, it gives the object passed in the opportunity to represent itself as a
number or a string. If it were written in Ruby, it may look something like this:

class File
def self.new(file, *args)
if file.respond_to?(:to_int)
IO.new(file.to_int, *args)

else
name = file.to_str
call operating system to open file 'name'

end
end

end

So, let’s see what happens if we want to pass a file descriptor integer stored as a Roman
number into File.new. Because our class implements to_int, the first respond_to? test will succeed.
We’ll pass an integer representation of our number to IO.new, and the file descriptor will be
returned, all wrapped up in a new IO object.

A small number of strict conversion functions are built into the standard library:

to_ary→ Array
Used when the interpreter needs a parameter to a method to be an array and when
expanding parameters and assignments containing the *xyz syntax on the method defi-
nition side. In this case, puts does this conversion in its method definition.

class OneTwo
def to_ary
[1, 2]

end
end

ot = OneTwo.new
puts ot

produces:

1
2

to_a→ Array
Used when the interpreter needs to convert an object into an array for parameter passing
on the caller side of the method call or during parallel assignment.

class OneTwo
def to_a
[1, 2]

end
end

ot = OneTwo.new
a, b = *ot
puts "a = #{a}, b = #{b}"
printf("%d -- %d\n", *ot)

produces:

a = 1, b = 2
1 -- 2

report erratum • discuss

Duck Typing • 363

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

to_enum→ Enumerator
Converts an object (presumably a collection) to an enumerator. It’s never called internally
by the interpreter.

to_hash→ Hash
Used when the interpreter expects to see Hash, as in when converting a ** in a method
call.

to_int→ Integer
Used when the interpreter expects to see an integer value (such as a file descriptor or
as a parameter to Integer).

to_io→ IO
Used when the interpreter is expecting I/O objects (for example, as parameters to the
methods IO.reopen or IO.select).

to_open→ IO
Called (if defined) on the first parameter to IO.open.

to_path→ String
Called by the interpreter when it is looking for a filename (for example, by File.open)

to_proc→ Proc
Used to convert an object prefixed with an ampersand in a method call.

class OneTwo
def to_proc
proc { "one-two" }

end
end
def silly
yield

end

ot = OneTwo.new
silly(&ot) # => "one-two"

to_regexp→ Regexp
Invoked by Regexp#try_convert to convert its argument to a regular expression.

to_str→ String
Used pretty much any place the interpreter is looking for a String value. Except for string
interpolation, which uses to_s.

class OneTwo
def to_str
"one-two"

end
end

ot = OneTwo.new
puts("count: " + ot)
File.open(ot) rescue puts $!.message

produces:

count: one-two
No such file or directory @ rb_sysopen - one-two

Chapter 21. Ruby Style • 364

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

to_sym→ Symbol
Expresses the receiver as a symbol. This is used by the interpreter when compiling
instruction sequences. It’s rarely necessary in user code, because the most common
case—String to Symbol, is often handled in syntax as :"a weird symbol".

Note that Integer implements the to_int method, and String implements to_str. That way, you
can call the strict conversion functions polymorphically:

it doesn't matter if obj is a Fixnum or a
Roman number, the conversion still succeeds
num = obj.to_int

Separately, the Kernel module defines a handful of methods that are available anywhere and
act as general conversion methods, as listed in the following table. These methods are dis-
tinctive in Ruby because they begin with capital letters. These methods are generally meant
to be the definitive conversions to use when you are just using conversions, rather than
defining them.

DescriptionMethod

Attempts to call to_ary on the argument (this means that if the argu-
ment is already an array, it is returned as-is). If the argument doesn’t

Array(obj)

respond to to_ary, it calls to_a. If the argument responds to neither,
the argument is returned as the element in a one-element array.
If the argument is a string, calls to_c on the string. Otherwise, creates
a complex number that is real + imag * i. If either argument is nil and
ex is true, raises a TypeError, if ex is false, then returns nil.

Complex(real, imag,
ex: true)

If the obj is numeric, Ruby’s numeric conversion is performed. Oth-
erwise, to_f is called on the object. An invalid string will result in an

Float(obj, ex: true)

ArgumentError, while a nil object will generate a TypeError. Again, if ex
is false, nil is returned rather than throwing exceptions.
Calls obj.to_hash.Hash(obj)
If obj is numeric, Ruby’s numeric conversions are performed. Other
objects attempt to_int, then to_i. String behavior is slightly different

Integer(obj, base=0,
ex: true)

than String#to_i, in that if base is 0, then base prefixes, like 0x, will be
used to determine the base. Exception behavior is the same as Float.
If there’s only a string argument, calls to_r on the string. Otherwise
returns num/den as a rational. Exception behavior is the same as Float.

Rational(num, den=1,
ex: true)

Calls obj.to_str if it exists, then tries obj.to_s.String(obj)

Table 9—Kernel Module Conversion Methods

The Symbol.to_proc Trick
Ruby implements the to_proc method for objects of class Symbol. Say you want to convert an
array of strings to uppercase. You could write this:

names = %w[ant bee cat]
result = names.map { |name| name.upcase }

That’s fairly concise, right? Return a new array where each element is the corresponding
element in the original, converted to uppercase. But you can instead write this:

names = %w[ant bee cat]

report erratum • discuss

Duck Typing • 365

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

result = names.map(&:upcase)

Now that’s concise: apply the upcase method to each element of names.

How does it work? It relies on Ruby’s type coercions. Let’s start at the top.

When you say names.map(&xxx), you’re telling Ruby to pass the Proc object xxx to the map
method as a block. If xxx isn’t already a Proc object, Ruby tries to coerce it into one by sending
it a to_proc message.

Now :upcase isn’t a Proc object—it’s a symbol. So when Ruby sees names.map(&:upcase), the
first thing it does is try to convert the symbol :upcase into a Proc by calling to_proc. And, by
an incredible coincidence, Ruby implements just such a method. If it was written in Ruby,
it would look something like this:

def to_proc
proc { |obj, *args| obj.send(self, *args) }

end

This method creates a Proc, which, when called on an object, sends that object the symbol
itself. So, when names.map(&:upcase) starts to iterate over the strings in names, it’ll call the
block, passing in the first name and invoking its upcase method.

It’s an incredibly elegant use of coercion and of closures.

Numeric Coercion
In addition to implicit and explicit object conversion, Ruby has coercion logic specific to
Numeric types.

Here’s the problem. When you write 1 + 2, Ruby knows to call the + on the object 1 (an Intger),
passing it the Integer 2 as a parameter. However, when you write 1 + 2.3, the same + method
now receives a Float parameter. How can it know what to do (particularly because checking
the classes of your parameters is against the spirit of duck typing)?

The answer lies in Ruby’s coercion protocol, based on the method coerce. The basic operation
of coerce is simple. It takes one argument and returns a two-element array with the argument
first and the original receiver of coerce second. The coerce method guarantees that the two
numbers in the array will have the same class and therefore that they can be added or mul-
tiplied, compared, or whatever.

1.coerce(2) # => [2, 1]
1.coerce(2.3) # => [2.3, 1.0]
(4.5).coerce(2.3) # => [2.3, 4.5]
(4.5).coerce(2) # => [2.0, 4.5]

The trick is that the coerce call happens in the reverse of the original arithmetic method—the
right side of an arithmetic operation receives coerce with the left side of the operation as an
argument to generate this array.

In other words, 1 + 2 is equivalent to the method call 1.+(2) and Ruby calls 2.coerce(1) to
generate the array [1, 2] and perform the operation. This technique of calling a method on a
parameter is called double dispatch and it allows a method to change its behavior based not
only on its class but also on the class of its parameter. In this case, we’re letting the parameter
decide exactly what classes of objects should get added, compared, or whatever.

Chapter 21. Ruby Style • 366

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Let’s say that we’re writing a new class that’s intended to take part in arithmetic. To partici-
pate in coercion, we need to implement a coerce method. This takes some other kind of
number as a parameter and returns an array containing two objects of the same class, whose
values are equivalent to its parameter and itself.

For our Roman number class, it’s fairly easy. Internally, each Roman number object holds
its real value as an Integer in an instance variable, @value. The coerce method checks to see
whether the class of its parameter is also an Integer. If so, it returns its parameter and its
internal value. If not, it first converts both to floating point.

class Roman
def initialize(value)
@value = value

end

def coerce(other)
if Integer === other
[other, @value]

else
[Float(other), Float(@value)]

end
end

.. other Roman stuff
end

iv = Roman.new(4)
xi = Roman.new(11)

3 * iv # => 12
1.2 * xi # => 13.2

In the last two lines, the numeric left side of the argument calls coerce on the Roman
numeral, receives the coerced array of values, and multiplies them.

Class Roman as implemented doesn’t know how to do addition. You couldn’t have written
xi + 3 in the previous example, because Roman doesn’t have a + method. Let’s go wild and
implement addition for Roman numbers. The whole class might look like this:

ducktyping/roman3.rb
class Roman
MAX_ROMAN = 4999

attr_reader :value
protected :value

def initialize(value)
if value <= 0 || value > MAX_ROMAN
fail "Roman values must be > 0 and <= #{MAX_ROMAN}"

end
@value = value

end

def coerce(other)
if Integer === other
[other, @value]

else
[Float(other), Float(@value)]

end

report erratum • discuss

Duck Typing • 367

http://media.pragprog.com/titles/ruby5/code/ducktyping/roman3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

def +(other)
if Roman === other
other = other.value

end
if Integer === other && (other + @value) < MAX_ROMAN
Roman.new(@value + other)

else
x, y = other.coerce(@value)
x + y

end
end

FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 90], ["l", 50], ["xl", 40],
["x", 10], ["ix", 9], ["v", 5], ["iv", 4],
["i", 1]]

def to_s
value = @value
roman = ""
FACTORS.each do |code, factor|
count, value = value.divmod(factor)
roman << (code * count)

end
roman

end
end

iv = Roman.new(4)
xi = Roman.new(11)

iv + 3 # => vii
iv + 3 + 4 # => xi
iv + 3.14159 # => 7.14159
xi + 4900 # => mmmmcmxi
xi + 4990 # => 5001

Finally, be careful with coerce—try always to coerce into a more general type, or you may
end up generating coercion loops. This is a situation where A tries to coerce to B and when
B tries to coerce back to A.

Walk the Walk, Talk the Talk
Duck typing can generate controversy. Every now and then a thread flares on social media
or someone blogs for or against the concept. Many of the contributors to these discussions
have some fairly extreme positions.

Ultimately, though, duck typing isn’t a set of rules; it’s just a style of programming. Design
your programs to balance paranoia and flexibility. If you feel the need to constrain the types
of objects that the users of a method pass in, ask yourself why. Try to determine what could
go wrong if you were expecting a String and instead get an Array. Sometimes, the difference
is crucially important. Often, though, it isn’t. Try erring on the more permissive side for a
while, and see whether bad things happen. If not, perhaps duck typing isn’t just for the birds.

Chapter 21. Ruby Style • 368

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

What’s Next
In this chapter, we talked about Ruby style both in terms of the decisions you make when
writing individual lines and also in terms of the decisions you make when writing methods
and classes.

But we’ve only talked about part of Ruby’s dynamic toolkit. Ruby has a rich set of options
that make metaprogramming easier. These are often referred to as “magic,” so let’s take a
look behind the curtain and see how the magic is done.

report erratum • discuss

What’s Next • 369

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 22

The Ruby Object Model and
Metaprogramming

The Jacquard loom, invented more than 200 years ago, was the first device controlled using
punched cards—rows of holes in each card were used to control the pattern woven into the
cloth. But imagine if instead of churning out fabric, the loom could punch more cards, and
those cards could be fed back into the mechanism. The machine could be used to create new
programming that it could then execute. And that would be metaprogramming—writing
code that writes code.

Programming is all about building layers of abstractions. As you solve problems, you’re
building bridges from the unrelenting and mechanical world of silicon to the more
ambiguous and fluid world we inhabit. Some programming languages—such as C—are
close to the machine. The distance from C code to the application domain can be large.
Other languages—Ruby, perhaps—provide higher-level abstractions and hence let you start
coding closer to the target domain. For this reason, most people consider a higher-level
language to be a better starting place for application development (although they’ll argue
about the choice of language).

But when you metaprogram, you are no longer limited to the set of abstractions built in to
your programming language. Instead, you create new abstractions that are integrated into
the host language. In effect, you’re creating a new, domain-specific programming lan-
guage—one that lets you express the concepts you need to solve your particular problem.
Metaprogramming can be an excellent way to manage complex problems where the structure
of the underlying data drives the structure of the code.

Ruby makes metaprogramming easy. As a result, Ruby programmers will often use
metaprogramming techniques to simplify their code. This chapter shows how they do it. It
isn’t intended to be an exhaustive survey of metaprogramming techniques. Instead, we’ll
look at the underlying Ruby object model and structures that that make metaprogramming
possible. From there you’ll be able to invent your own metaprogramming idioms.

Understanding Objects and Classes
Classes and objects are central to Ruby, but at first sight they can be confusing. It seems like
there are a lot of concepts: classes, objects, class objects, instance methods, class methods,

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

singleton classes, and virtual classes. In reality, however, all these Ruby constructs are part
of the same underlying class and object structure.

Internally, a Ruby object has three components: a set of flags, some instance variables, and
an associated class. A Ruby class contains all the things an object has plus a set of method
definitions and a reference to a superclass (which is itself another class). A Ruby class is itself
an instance of the class Class. Let’s look at how that structure lends itself to metaprogramming
in Ruby.

Method Calling and “self”
Ruby has a concept of the current object. This current object is referenced by the built-in, read-
only variable self. The first time that Noel heard Dave Thomas speak in public, the topic was
Ruby metaprogramming and he said “understanding self is the key to Ruby. Also the key
to life.” Words to live by.

The value self has two significant roles in a running Ruby program. First, self controls how
Ruby finds instance variables. We already said that every object carries around a set of
instance variables. When you access an instance variable with the @ syntax, Ruby looks for
that variable in the object that is referenced by self in the context that instance variable has
been accessed.

Second, self plays a vital role in method calling. In Ruby, each method call is a message
passed to some object. This object is called the receiver of the call. When you make a call such
as items.size, the object on the left side of the dot—here referenced by the variable items—is
the receiver and size is the method to invoke.

Often, you will see a method call where there is no explicit receiver, such as puts "hi". In this
case, Ruby uses the current object, self, as the receiver. It goes to self’s class and looks up the
method (in this case, puts). If it can’t find the method in the class, it looks in the class’s
superclass and then in that class’s superclass, stopping when it runs out of superclasses
(which will happen after it has looked in BasicObject). If it can’t find the method in the object’s
class hierarchy, Ruby looks for a method called method_missing on the original receiver,
starting back at the class of self and then looking up the superclass chain. (In the case of puts,
Ruby will find the method defined in the Kernel module that is included in Object.)

When you make a method call with an explicit receiver (for example, invoking items.size),
the process is similar. The only change—but it’s a vitally important one—is that the value
of self is changed for the duration of the call. Before starting the method lookup process,
Ruby sets self to the explicit receiver (the object referenced by items in this case). Then, after
the call returns, Ruby restores self to the value it had before the call.

Let’s see how this works in practice. Here’s a simple program:

class Test
def one
@var = 99
two

end

def two
puts @var

end
end

Chapter 22. The Ruby Object Model and Metaprogramming • 372

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

t = Test.new
t.one

produces:

99

The call to Test.new on the second-to-last line creates a new object of class Test, assigning that
object to the variable t. Then, on the next line, we call the method t.one. To execute this call,
Ruby sets self to t and then looks in t’s class for the method one. Ruby finds the method
defined in the class and calls it.

Inside the method, we set the instance variable @var to 99. This instance variable will be
associated with the current object. What is that object? Since the call to t.one set self to t,
within that call of the one method, self will be that particular instance of class Test.

On the next line, the method one calls the method two. Because there’s no explicit receiver,
self is not changed. When Ruby looks for the method two, it looks in Test, the class of t.

The method two references an instance variable @var. Again, Ruby looks for this variable in
the current object and finds the same variable that was set by the method one.

The call to puts inside the two method works the same way. Again, because there’s no
explicit receiver, self will be unchanged. Ruby looks for the puts method in the class of the
current object but can’t find it. It then looks in Test’s superclass, class Object. Again, it doesn’t
find puts. However, Object mixes in the module Kernel. We’ll talk more about this later; for
now we can say that mixed-in modules act as if they were superclasses. The Kernel module
does define puts, so the method is found and executed.

After two and one return, Ruby resets self to the value it had before the original call to t.one.
The code is at the top level, the top level self is an object called main, which is placed there
by the Ruby runtime.

This explanation may seem labored, but understanding it is an important part of mastering
metaprogramming in Ruby.

Class Definitions and self
We’ve seen that calling a method with an explicit receiver changes self. Perhaps surprisingly,
self is also changed inside a class or module definition, but outside all the method definitions.
This is a consequence of the fact that class definitions are actually executable code in Ruby—if
we can execute code, we need to have a current object. A simple test shows what this object
is:

puts "Before the class definition, self = #{self}\n"
class Test
puts "In the definition of class Test, self = #{self}"
puts "Class of self = #{self.class}\n"

end
puts "After the class definition, self = #{self}"

produces:

Before the class definition, self = main
In the definition of class Test, self = Test
Class of self = Class
After the class definition, self = main

report erratum • discuss

Understanding Objects and Classes • 373

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Outside the class definition, self is set to an object called main, which is what Ruby uses as
the implicit top-level object. It’s also the object that holds on to method definitions that
happen outside of a class definition.

Inside a class or module definition, self is set to the object of the class or module being defined.
This means that instance variables set inside a class or module definition will be available
to class or module methods (because self will be the same when the variables are defined
and when the methods execute):

class Test
@var = 99
def self.value_of_var
@var

end
end

Test.value_of_var # => 99

The fact that self is set to the class during a class definition turns out to be a dramatically
elegant decision, but to see why, we’ll first need to have a look at singleton methods.

Defining Singleton Methods
Ruby lets you define methods that are specific to a particular object. These are called singleton
methods.

Here’s a simple string object and a regular, non-singleton method call:

animal = "cat"
puts animal.upcase

produces:

CAT

This call results in the object structure shown in the following illustration:

value: "cat"
class

animal

String

super
class
methods:

- downcase()
- upcase()
...

class

Object

super
class
methods:

- clone()
- dup()
...

class

Chapter 22. The Ruby Object Model and Metaprogramming • 374

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The animal variable points to an object containing (among other things) the value of the string
("cat") and a pointer to the object’s class, String.

When we call animal.upcase, Ruby checks the object referenced by the animal variable and then
looks up the method upcase in the class object referenced from the animal object. Our animal
is a string and so all the methods of class String are available.

Now let’s make it more interesting. We’ll define a singleton method on the string referenced
by animal. We’ve seen this syntax before, we use a method name that includes a reference to
a specific object:

animal = "cat"
def animal.speak
puts "The #{self} says miaow"

end

animal.speak
puts animal.upcase

produces:

The cat says miaow
CAT

The call to animal.speak is handled the same way as when we looked at how animal.upcase is
invoked. Ruby sets self to the string object "cat" that is referenced by animal and then looks
for a method called speak in that object’s class. Surprisingly, it finds it. This is initially sur-
prising because the class of "cat" is String, and String doesn’t have a speakmethod. The specific
object called animal, however, does have a speak method that we’ve defined for that object
and that object only.

So, does Ruby have some kind of special-case magic for these methods that are defined on
individual objects?

Not exactly.

When we defined animal.speak, the singleton method for the "cat" object, Ruby created a new
anonymous class and placed the speak method in that class. This anonymous class goes by
a couple of different names, but you’ll most likely see it called a singleton class (it’s sometimes
called an eigenclass). We prefer the former name, because it ties in to the idea of singleton
methods.

Every object in Ruby has the potential of having its own singleton class. When you define a
singleton class, Ruby creates that anonymous class and makes it the singleton class of that
object. You can access that singleton class via the singleton_class method, and you can get a
list of methods defined there with singleton_methods.

animal = "cat"
def animal.speak
puts "The #{self} says miaow"

end

animal.speak
puts animal.class
puts animal.singleton_class
puts animal.singleton_methods

report erratum • discuss

Defining Singleton Methods • 375

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

The cat says miaow
String
#<Class:#<String:0x00000001044a8f30>>
speak

If an object has a singleton class, that is the first place Ruby looks for object lookup. It is as
if Ruby makes String (which was the original class of "cat") the superclass of the singleton
class. The picture looks like this:

value: "cat"
class

animal

anon

super
class
methods:

-speak()

class

String

super
class
methods:

- downcase()
- upcase()
...

class

Object

super
class
methods:

- clone()
- dup()
...

class

Now let’s follow the call to animal.speak. Ruby goes to the object referenced by animal and
then looks in its singleton class class for the method speak. The singleton class of the animal
object is the newly created singleton class, and it contains the method we need.

What happens if we instead call animal.upcase? The processing starts the same way: Ruby
looks for the method upcase in the singleton class but fails to find it there. It then follows the
normal processing rules and starts looking up the chain of superclasses. The superclass of
the singleton is String, and Ruby finds the upcasemethod there. Notice that there is no special-
case processing here—Ruby method calls always work up the object chain in the same way.

Chapter 22. The Ruby Object Model and Metaprogramming • 376

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Singletons and Classes
Earlier, we said that inside a class definition, self is set to the class object being defined. It
turns out that this is the basis for one of the more elegant aspects of Ruby’s object model.

Recall that we can define class methods in Ruby using either of the forms def self.xxx or (more
rarely) def ClassName.xxx:

class Dave
def self.class_method_one
puts "Class method one"

end
def Dave.class_method_two
puts "Class method two"

end
end

Dave.class_method_one
Dave.class_method_two

produces:

Class method one
Class method two

Now we can explain why the two forms are identical: inside the class definition, self is set
to the class object Dave.

But now that we’ve looked at singleton methods, we also know that, in reality, there is no
such thing as a class method in Ruby. Both of the previous definitions define singleton
methods on the class object. As with all other singleton methods, we can then call them via
the object (in this case, the class Dave).

Before we created the two singleton methods in class Dave, the class pointer in the class object
pointed to class Class. (That’s a confusing sentence. Another way of saying it is “Dave is a
class, so the class of Dave is class Class,” but that’s pretty confusing, too.) The situation looks
like this:

Dave

super
class
methods:

class

Object

super
class
methods:

- clone()
- dup()
...

class

Class

super
class
methods:

- new()
...

class

Module

super
class
methods:

- clone()
- dup()
...

class

Dave

The object diagram for class Dave after the methods are defined looks like this:

report erratum • discuss

Defining Singleton Methods • 377

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Dave

super
class
methods:

class

Object

super
class
methods:

- clone()
- dup()
...

class

anon

super
class
methods:

-class_method_one()
-class_method_two()

class

Class

super
class
methods:

- new()
...

class

Module

super
class
methods:

- clone()
- dup()
...

class

Dave

Do you see how the singleton class is created, just as it was for the animal example? The
class is inserted as the singleton class of the class Dave, and the original class of Dave is made
this new singleton class’s parent.

We can now tie together the two uses of self, the current object. We talked about how instance
variables are looked up in self, and we talked about how singleton methods defined on self
become class methods. Let’s use these facts to access instance variables for class objects:

class Test
@var = 99

def self.var
@var

end

def self.var=(value)
@var = value

end
end

puts "Original value = #{Test.var}"
Test.var = "cat"
puts "New value = #{Test.var}"

produces:

Original value = 99
New value = cat

Newcomers to Ruby commonly try to set instance variables inline in the class definition (as
we did with @var in the previous code) and then attempting to access these variables from
instance methods. As the code illustrates, this won’t work, because instance variables are

Chapter 22. The Ruby Object Model and Metaprogramming • 378

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

associated with self in their current context. In the context of the instance variables defined
in the class body, self is the class, and therefore instance variables defined in the class body
outside of methods are associated with the class object, not with instances of the class.

Another Way to Access the Singleton Class
We’ve seen how you can create methods in an object’s singleton class by adding the object
reference to the method definition using something like def animal.speak.

You can also access the singleton class using Ruby’s class << an_object notation:

animal = "dog"
class << animal
def speak
puts "The #{self} says WOOF!"

end
end

animal.speak

produces:

The dog says WOOF!

Inside this kind of class definition, self is set to the singleton class for the given object (animal
in this case). Because class definitions return the value of the last statement executed in the
class body, we can use this fact to get the singleton class object:

animal = "dog"
def animal.speak
puts "The #{self} says WOOF!"

end

singleton = class << animal
def lie
puts "The #{self} lies down"

end
self # << return singleton class object

end

animal.speak
animal.lie
puts "Singleton class object is #{singleton}"
puts "It defines methods #{singleton.instance_methods - animal.methods}"
puts "You can also access it as #{animal.singleton_class}"
puts "And the list of methods as #{animal.singleton_methods}"

produces:

The dog says WOOF!
The dog lies down
Singleton class object is #<Class:#<String:0x0000000102b98838>>
It defines methods []
You can also access it as #<Class:#<String:0x0000000102b98838>>
And the list of methods as [:speak, :lie]

Note the notation that Ruby uses to denote a singleton class: #<Class:#<String:...>>.

Ruby goes to some trouble to stop you from using singleton classes outside the context of
their original object. For example, you can’t create a new instance of a singleton class:

report erratum • discuss

Defining Singleton Methods • 379

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

singleton = class << "cat"; self; end
singleton.new

produces:

from prog.rb:2:in `<main>'
prog.rb:2:in `new': can't create instance of singleton class (TypeError)

Let’s tie together what we know about instance variables, self, and singleton classes. We
could write class-level accessor methods to let us get and set the value of an instance variable
defined in a class object. Ruby already has attr_accessor, which defines getter and setter
methods. Normally, though, these are defined as instance methods and hence will access
values stored in instances of a class. To make them work with class-level instance variables,
we have to invoke attr_accessor in the singleton class:

class Test
@var = 99

class << self
attr_accessor :var

end
end

puts "Original value = #{Test.var}"
Test.var = "cat"
puts "New value = #{Test.var}"

produces:

Original value = 99
New value = cat

Inheritance and Visibility
There’s a wrinkle to when it comes to method definition and class inheritance, but it’s fairly
obscure. Within a class definition, you can change the visibility of a method in an ancestor
class. For example, you can do something like this:

class Base
def a_method
puts "Got here"

end
private :a_method

end

class MakeItPublic < Base
public :a_method

end

class KeepItPrivate < Base
end

In this example, you would be able to invoke a_method in instances of class MakeItPublic but
not via instances of Base or KeepItPrivate.

So, how does Ruby pull off this feat of having one method with two different visibilities?
Simply put, it cheats.

Chapter 22. The Ruby Object Model and Metaprogramming • 380

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If a subclass changes the visibility of a method in a parent, Ruby effectively inserts a hidden
proxy method in the subclass that invokes the original method using super. It then sets the
visibility of that proxy to whatever you requested. This means that the following code:

class MakeItPublic < Base
public :a_method

end

is effectively the same as this:

class MakeItPublic < Base
def a_method(*)
super

end
public :a_method

end

The call to super can access the parent’s method regardless of its visibility, so the rewrite
allows the subclass to override its parent’s visibility rules.

Modules and Mixins
As we saw in Mixins, on page 107, when you include a module into a Ruby class, the instance
methods in that module become available as instance methods of the class, like this:

module Logger
def log(msg)
STDERR.puts Time.now.strftime("%H:%M:%S: ") + "#{self} (#{msg})"

end
end

class Song
include Logger

end

s = Song.new
s.log("created")

produces:

18:22:11: #<Song:0x00000001049263a0> (created)

Ruby implements include very simply: The module you include is added as a ancestor of the
class being defined. It’s as if the module is the parent of the class that it is mixed in to. And
that would be the end of the description except for one small wrinkle. Because the module
is injected into the chain of superclasses, it must itself hold a link to the original parent class.
If it didn’t, there’d be no way of traversing the superclass chain to look up methods. How-
ever, you can mix the same module into many different classes, and those classes could
potentially have totally different superclass chains. If there were just one module object that
we mixed in to all these classes, there’d be no way of keeping track of the different super-
classes for each.

To get around this, Ruby uses a clever trick. When you include a module in class Example,
Ruby constructs a new class object, makes it the superclass of Example, and then sets the
superclass of the new class to be the original superclass of Example. It then references the
module’s methods from this new class object in such a way that when you look a method
up in this class, it actually looks it up in the module, as shown here:

report erratum • discuss

Modules and Mixins • 381

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Song

super
class
methods:

- ...

class

anon2

super
class
methods:

class

Object

super
class
methods:

- clone()
- dup()
...

class

Logger

class
methods:

- log()

module

Album

super
class
methods:

- ...

class

anon1

super
class
methods:

class

Object

super
class
methods:

- clone()
- dup()
...

class

A nice side effect of this arrangement is that if you change a module after including it in a
class, those changes are reflected in the class (and the class’s objects). In this way, modules
behave just like classes:

module Mod
def greeting
"Hello"

end
end

class Example
include Mod

end

ex = Example.new
puts "Before change, greeting is #{ex.greeting}"

module Mod
def greeting
"Hi"

end
end

puts "After change, greeting is #{ex.greeting}"

produces:

Before change, greeting is Hello
After change, greeting is Hi

If a module itself includes other modules, a chain of proxy classes will be added to any class
that includes that module, one proxy for each module that is directly or indirectly included.

Finally, Ruby will include a particular module only once in an inheritance chain—including
a module that is already included by one of your superclasses has no effect.

Chapter 22. The Ruby Object Model and Metaprogramming • 382

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Using prepend
Ruby enables you to place a module at a different point in the method lookup chain using
the prepend method. Logically, prepend behaves just like include, but the methods in the
prepended module take precedence over those in the host class. Ruby pulls off this magic
by inserting a dummy class in place of the original host class. Actually, it inserts the dummy
class above the original class, and then moves the methods from the original to the copy.
and then inserting the prepended module between the two.

If a method inside a prepended module has the same name as one in the original class, it
will be invoked instead of the original. The prepended method can then call the original
using super:

module VanityPuts
def puts(*args)
args.each do |arg|
super("Dave says: #{arg}")

end
end

end

class Object
prepend VanityPuts

end

puts "Hello and", "goodbye"

produces:

Dave says: Hello and
Dave says: goodbye

However, there is a problem with this—the change we just made to class Object is global.
We’ll see how to manage that shortly when we look at refinements.

Using extend
The include method effectively adds a module as a superclass of self. It is used inside a class
definition to make the instance methods in the module available to instances of the class.

However, it is sometimes useful to add the instance methods directly to a particular object
and not to its class. For example, you’d want to do this to add methods directly to a class
object that you want to be treated like class methods. You do this using Module#extend. Here’s
an example:

module Humor
def tickle
"#{self} says hee, hee!"

end
end

obj = "Grouchy"
obj.extend(Humor)
obj.tickle # => "Grouchy says hee, hee!"

Stop for a second to think about how this might be implemented.

report erratum • discuss

Modules and Mixins • 383

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

When Ruby executes obj.tickle in this code example, it does the usual trick of looking in the
class of obj for a method called tickle. For extend to work, it has to add the instance methods
in the Humor module into the superclass chain for the class of obj. So, just as with singleton
method definitions, Ruby creates a singleton class for obj and then includes the module Humor
in that class. To prove that this is all that happens, here’s the C implementation of extend in
the current Ruby 3.2 interpreter:

void
rb_extend_object(VALUE obj, VALUE module)
{

rb_include_module(rb_singleton_class(obj), module);
}

There is an interesting trick with extend. If you use it within a class definition, the module’s
methods become class methods. This is because calling extend is equivalent to self.extend, so
the methods are added to self, which in a class definition is the class itself.

Here’s an example of adding a module’s methods at the class level:

module Humor
def tickle
"#{self} says hee, hee!"

end
end

class Grouchy
extend Humor

end

Grouchy.tickle # => "Grouchy says hee, hee!"

Later, in Class Methods and Modules, on page 390, we’ll see how to use extend to add macro-
style methods to a class.

Using Refinements
We previously looked at applying a change to a builtin class by defining the altered version
of a method in a module, and then prepending that module in the class. When we subse-
quently call the method on instances of the class, it finds the version in the module first.
We’ve also seen that Ruby allows you to re-open an existing classes or module and add new
methods to it. When we subsequently use instances of the class, the new methods exist along
side the ones that were previously defined.

These techniques are time-honored, and frameworks such as Ruby on Rails rely on them.
But they come with a price. Any changes we make with prepend and monkey patches are
global to our running application. They apply not just to the code we wrote for our applica-
tion, but also to the code in all the libraries and gems we use while the application is running,
too.

It is possible that a change that made our code easier to write breaks someone else’s library
code that we rely on. This is clearly a problem in theory. Does it happen in practice? Actually,
surprisingly rarely. But you can never be sure that things will quite work as you expect.
Even if you don’t override these classes yourself, it is possible you’re using two separate
libraries whose patches to third-party classes clash.

Chapter 22. The Ruby Object Model and Metaprogramming • 384

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Ruby has a feature called refinements that allow you to make these changes locally without
affecting code outside the file you are writing. The goal of using refinements is to continue
to allow you to make changes to existing classes, but to only allow those changes to be in
effect when you explicitly say that they are. Not only does this mean that the changes are
no longer global, it also means that when one of the added methods is used, there’s an
explicit statement in the file they are used in saying where added methods are coming from.
This means a reader of the code has a better chance of finding the source more easily.

Now, before going any further, here is the mandatory warning. Refinements have been a
part of Ruby since 2.0, but their actual uptake has been minor. It is unusual to see refinements
in the wild. Even while it seems they solve a problem in theory, not very many teams seem
to have found them to solve a problem in fact.

A refinement is a way of packaging a set of changes to one or more classes. These refinements
are defined within a module. You can then elect to use this module with the refinements
within a source file, in which case the change will apply to the source in that module past
the point where the refinement is used. However, code outside this file is not affected. You
can alternately elect to use the module with refinements inside a module or class, in which
case the refinement applies inside that module or class, but not outside of it.

Let’s make this concrete. Here’s a vanity version of puts rewritten using refinements:

metaprogramming/vanity_puts.rb
module VanityPuts
refine Object do
private def puts(*args)
args.each do |arg|
Kernel.puts("Dave says: #{arg}")

end
end

end
end

The refinement is contained in the module VanityPuts. The line refine Object do starts the defi-
nition. What’s happening here is we are calling the method Module#refine, the receiver is the
VanityPuts module. The refine method takes an argument, which is a class or module and a
block. Within the block you define the methods that you would like to update in that class.
At this point, no change is made to the underlying class—you have defined a method, but
haven’t yet told Ruby to use it.

That’s what the using method does:

metaprogramming/use_in_class.rb
require_relative "vanity_puts"

class DavesStuff
using VanityPuts

def greet(msg)
puts msg

end
end

DavesStuff.new.greet("in DavesStuff")

produces:

Dave says: in DavesStuff

report erratum • discuss

Modules and Mixins • 385

http://media.pragprog.com/titles/ruby5/code/metaprogramming/vanity_puts.rb
http://media.pragprog.com/titles/ruby5/code/metaprogramming/use_in_class.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

You give it a module containing one or more refinements, and it marks the refined objects
to say “for the rest of the scope of this method, when you make a call to an instance of Object,
first check to see if the method can be found in the refinement. If so, invoke it, otherwise
invoke the original.”

The basic scoping rule is that a refinement is activated in a source file by calling using. If using
is called inside a module or class, the refinement is in effect for the duration of that definition.

You can also invoke using at the top level of a file, in which case for the rest of that source
file, the methods that are defined in that refinement are active inside any classes or methods
yet to be defined in the source file:

metaprogramming/use_in_file.rb
require_relative "vanity_puts"
using VanityPuts
puts "Hello", "world"

produces:

Dave says: Hello
Dave says: world

Let’s step it up a notch. We’ll define three source files. Here’s one that contains a refinement
definition:

metaprogramming/ref1/vanity_refinement.rb
module VanityPuts
refine Object do
private def puts(*args)
args.each do |arg|
Kernel.puts("Dave says: #{arg}")

end
end

end
end

And here’s a file that uses this refinement:

metaprogramming/ref1/file_using_refinement.rb
class VanityShouter
using VanityPuts

def shout(msg)
puts(msg.upcase)

end
end

VanityShouter.new.shout("I'm here!")

Finally, let’s run them from a third file:

metaprogramming/ref1/main_program.rb
require_relative "vanity_refinement"

puts "About to require file using refinement"
require_relative "file_using_refinement"
puts "Back from require"

VanityShouter.new.shout("finished")

Chapter 22. The Ruby Object Model and Metaprogramming • 386

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/metaprogramming/use_in_file.rb
http://media.pragprog.com/titles/ruby5/code/metaprogramming/ref1/vanity_refinement.rb
http://media.pragprog.com/titles/ruby5/code/metaprogramming/ref1/file_using_refinement.rb
http://media.pragprog.com/titles/ruby5/code/metaprogramming/ref1/main_program.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

About to require file using refinement
Dave says: I'M HERE!
Back from require
Dave says: FINISHED

Notice how the puts calls in the main program are unadorned, but the calls in the file that
uses the refinement has the vanity prefix.

Designing with Refinements
In general, refinements can be used any place you would want to extend or monkey-patch
a third-party tool. There are two main use cases.

The first is the case where a developer wants to make changes to a third-party class for the
developer’s own use. For example, Rake, which issues a lot of calls to run external programs
using the system method, might want to modify the built-in version of system so that it logs
errors differently. However, it does not want that logging to apply to other calls to system
that are not part of Rake. In this case, the code could use the refinement locally within its
own source files. The refinement would be an implementation detail, hidden from users of
the code.

The second use case is where a library writer offers the refinement as part of the external
interface. For example, the Rails Active Support gem defines methods such as hours,minutes,
and ago on numbers, allowing you to write 3.days.ago. Right now, those changes to numbers
are global. But, using refinements, the Rails team could code the new methods, but not add
them in to any system classes. Instead, their API would document how to add them for
yourself into just those source files that uses them. They might tell you to write

using Rails::Extensions::Durations

in any source file that needs to use them.

Obviously there are many more use cases. And the two we’ve mentioned are not mutually
exclusive. The Rails framework, for example, is likely to want to use these duration-related
methods itself, as well as making them available via a documented refinement.

Metaprogramming Class-Level Macros
If you’ve used Ruby for any time at all, you’re likely to have used attr_accessor, the method
that defines reader and writer methods for instance variables:

class Song
attr_accessor :duration

end

If you’ve written a Ruby on Rails application, you’ve probably used has_many:

class Album < ActiveRecord::Base
has_many :tracks

end

These are both examples of class-level methods that generate code behind the scenes. Because
of the way they expand into something bigger, folks sometimes call these kinds of methods
macros.

report erratum • discuss

Metaprogramming Class-Level Macros • 387

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Let’s create a trivial example and then build it up into something realistic. We’ll start by
implementing a simple method that adds logging capabilities to instances of a class. We
previously did this using a module—this time we’ll do it using a class-level method. Here’s
the first iteration:

metaprogramming/logging_0.rb
class Example
def self.add_logging
def log(msg)
$stderr.puts("#{Time.now.strftime("%H:%M:%S: ")} #{self} (#{msg})")

end
end

add_logging
end

ex = Example.new
ex.log("hello")

produces:

18:22:12: #<Example:0x00000001049b87f0> (hello)

This is a silly piece of code, because it includes a very general concern—logging—in a very
specific class. But bear with us—it’ll get better. And we can still learn from it. First, notice
that add_logging is a class method—it is defined in the class object’s singleton class. That means
we can call it later in the class definition without an explicit receiver, because self is set to
the class object inside a class definition.

Then, notice that the add_logging method contains a nested method definition. This inner
definition will get executed only when we call the add_logging method. The result is that log
will be defined as an instance method of class Example.

Let’s take one more step. We can define the add_logging method in one class and then use it
in a subclass. This works because the singleton class hierarchy parallels the regular class
hierarchy. As a result, class methods in a parent class are also available in the child class, as
the following example shows:

metaprogramming/logging_1.rb
class Logger
def self.add_logging
def log(msg)
$stderr.puts("#{Time.now.strftime("%H:%M:%S: ")} #{self} (#{msg})")

end
end

end

class Example < Logger
add_logging

end

ex = Example.new
puts ex.log("hello")

produces:

18:22:12: #<Example:0x00000001047b87c0> (hello)

Think back to the two examples at the start of this section. Both work in the same way as
our add_logging example. attr_accessor is an instance method defined in class Module and so is

Chapter 22. The Ruby Object Model and Metaprogramming • 388

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/metaprogramming/logging_0.rb
http://media.pragprog.com/titles/ruby5/code/metaprogramming/logging_1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

available in all module and class definitions. has_many is a class method defined in the Base
class within the Rails ActiveRecord module and so is available to all classes that subclass
ActiveRecord::Base.

This example is still not particularly compelling; it would still be easier to add the logmethod
directly as an instance method of our Logger class. But what happens if we want to construct
a different version of the log method for each class that uses it? For example, let’s add the
capability to add a short class-specific identifying string to the start of each log message. We
want to be able to say something like this:

class Song < Logger
add_logging "Song"

end

class Album < Logger
add_logging "CD"

end

To do this, let’s define the log method on the fly. We can no longer use a straightforward
def…end-style definition—doing so won’t allow us to dynamically determine method
behavior on the fly. Instead, we’ll use one of the cornerstones of Ruby metaprogramming,
define_method. This takes the name of a method and a block, defining a method with the given
name and with the block as the method body. Any arguments in the block definition become
parameters to the method being defined:

metaprogramming/logging_2.rb
class Logger
def self.add_logging(id_string)
define_method(:log) do |msg|
now = Time.now.strftime("%H:%M:%S")
$stderr.puts("#{now}-#{id_string}: #{self} (#{msg})")

end
end

end

class Song < Logger
add_logging "Tune"

end

class Album < Logger
add_logging "CD"

end

song = Song.new
puts song.log("rock on")

produces:

18:22:12-Tune: #<Song:0x00000001007b80d0> (rock on)

There’s an important subtlety in this code. The body of the log method contains this line:

$stderr.puts("#{now}-#{id_string}: #{self} (#{msg})")

The value now is a local variable, and msg is the parameter to the block. But id_string is the
parameter to the enclosing add_logging method. It’s accessible inside the block because block
definitions create closures, allowing the context in which the block is defined to be carried
forward and used when the block is used. In this case, we’re taking a value from a class-

report erratum • discuss

Metaprogramming Class-Level Macros • 389

http://media.pragprog.com/titles/ruby5/code/metaprogramming/logging_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

level method and using it in an instance method we’re defining. This is a common pattern
when creating these kinds of class-level macros.

In addition to passing parameters from the class method into the body of the method being
defined, we can also use the parameter to dynamically determine the name of the method
or methods to create. Here’s an example that creates a new kind of attr_accessor that logs all
assignments to a given instance variable:

metaprogramming/accessor_1.rb
class AttrLogger
def self.attr_logger(name)
attr_reader name

define_method(:"#{name}=") do |val|
puts "Assigning #{val.inspect} to #{name}"
instance_variable_set("@#{name}", val)

end
end

end

class Example < AttrLogger
attr_logger :value

end

ex = Example.new
ex.value = 123
puts "Value is #{ex.value}"
ex.value = "cat"
puts "Value is now #{ex.value}"

produces:

Assigning 123 to value
Value is 123
Assigning "cat" to value
Value is now cat

Again, we use the fact that the block defining the method body is a closure, accessing the
name of the attribute in the log message string. Notice we also make use of the fact that
attr_reader is simply a class method—we can call it inside our class method to define the
reader method for our attribute. There’s another bit of metaprogramming—we use
instance_variable_set to set the value of an instance variable. The argument to instance_variable_set
is possibly unexpected—it’s a string starting with@ containing the name of the variable you
want to set. There’s a corresponding instance_variable_get method that fetches the value of a
named instance variable.

Class Methods and Modules
You can define class methods in one class and then use them in subclasses of that class. But
it is often inappropriate to use subclassing for the kinds of metaprogramming we have been
showing, either because we already have to subclass some other class or because our design
aesthetic rebels against making Song a subclass of Logger.

In these cases, you can use a module to hold your metaprogramming implementation. As
we’ve seen, using extend inside a class definition will add the methods in a module as class
methods to the class being defined:

Chapter 22. The Ruby Object Model and Metaprogramming • 390

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/metaprogramming/accessor_1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

metaprogramming/accessor_2.rb
module AttrLogger
def attr_logger(name)
attr_reader name

define_method("#{name}=") do |val|
puts "Assigning #{val.inspect} to #{name}"
instance_variable_set("@#{name}", val)

end
end

end

class Example
extend AttrLogger
attr_logger :value

end

ex = Example.new
ex.value = 123
puts "Value is #{ex.value}"
ex.value = "cat"
puts "Value is now #{ex.value}"

produces:

Assigning 123 to value
Value is 123
Assigning "cat" to value
Value is now cat

Things get a little trickier if you want to add both class methods and instance methods into
the class being defined. Here’s one technique that is used extensively in the implementation
of Rails. It makes use of a Ruby hook method, included, which is called automatically by Ruby
when you include a module into a class. It is passed the class object of the class being defined:

metaprogramming/accessor_3.rb
module GeneralLogger
Instance method to be added to any class that includes us
def log(msg)
puts Time.now.strftime("%H:%M: ") + msg

end

module containing class methods to be added
module ClassMethods
def attr_logger(name)
attr_reader name

define_method("#{name}=") do |val|
log "Assigning #{val.inspect} to #{name}"
instance_variable_set("@#{name}", val)

end
end

end

extend host class with class methods when we're included
def self.included(host_class)
host_class.extend(ClassMethods)

end
end

report erratum • discuss

Metaprogramming Class-Level Macros • 391

http://media.pragprog.com/titles/ruby5/code/metaprogramming/accessor_2.rb
http://media.pragprog.com/titles/ruby5/code/metaprogramming/accessor_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

class Example
include GeneralLogger

attr_logger :value
end

ex = Example.new
ex.log("New example created")
ex.value = 123
puts "Value is #{ex.value}"
ex.value = "cat"
puts "Value is #{ex.value}"

produces:

18:22: New example created
18:22: Assigning 123 to value
Value is 123
18:22: Assigning "cat" to value
Value is cat

Notice how the included callback is used to extend the host class with the methods defined
in the inner module ClassMethods. Ruby on Rails uses this pattern extensively using the name
Concern for such a module that provides both class and instance functionality when mixed
in and providing shortcut methods so you don’t need to add the included hook yourself.

Now, as an exercise, try walking through the previous example in your head. For each line
of code, work out the value of self. Master this, and you’ve pretty much mastered this style
of metaprogramming in Ruby.

Struct and Subclassing Expressions
You can generalizate of the regular class definition syntax. You know that you can write
this:

class Parent
...

end

class Child < Parent
...

end

What you might not know is that the thing to the right of the < needn’t be just a class name;
it can be any expression that returns a class object. In this code example, we have the constant
Parent. A constant is a simple form of expression, and in this case the constant Parent holds
the class object of the first class we defined.

Ruby comes with a class called Struct, which allows you to define classes that contain simple
data attributes. For example, you could write this:

Person = Struct.new(:name, :address, :likes)

dave = Person.new('Dave', 'TX')
dave.likes = "Programming Languages"
puts dave

produces:

#<struct Person name="Dave", address="TX", likes="Programming Languages">

Chapter 22. The Ruby Object Model and Metaprogramming • 392

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The return value from Struct.new(...) is a class object. By assigning it to the constant Person, we
can thereafter use Person as if it were any other class.

But say we wanted to change the to_s method of our structure. We could do it by opening
up the class and writing the following method:

Person = Struct.new(:name, :address, :likes)
class Person
def to_s
"#{self.name} lives in #{self.address} and likes #{self.likes}"

end
end

However, we can do this more elegantly (although at the cost of an additional class object)
by writing this:

class Person < Struct.new(:name, :address, :likes)
def to_s
"#{self.name} lives in #{self.address} and likes #{self.likes}"

end
end

dave = Person.new('Dave', 'Texas')
dave.likes = "Programming Languages"
puts dave

produces:

Dave lives in Texas and likes Programming Languages

This mechanism is useful enough that Struct provides a shortcut by taking a block in which
you can define your own methods on the Struct, like this:

Person = Struct.new(:name, :address, :likes) do
def to_s
"#{self.name} lives in #{self.address} and likes #{self.likes}"

end
end

dave = Person.new('Dave', 'Texas')
dave.likes = "Programming Languages"
puts dave

produces:

Dave lives in Texas and likes Programming Languages

Using Data for Immutable Structs
Structs are often used to create small classes that represent constrained, encapsulated values
with minimal behavior, but where it’s useful to be able to treat the value as one thing, like
a point with an x and y coordinate. It’s also sometimes useful to have those values be
immutable, meaning that their values cannot be changed. Immutable objects can be easier to
reason about and share—they are much easier to manage sharing across threads.

True immutability in Ruby is hard, but you can achieve it with the Data class, new in Ruby
3.2. You use Data.define to create a new class with a particular set of attributes. Once you’ve
created the new class, you can construct instances using either positional or keyword argu-
ments.

report erratum • discuss

Metaprogramming Class-Level Macros • 393

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

LineItem = Data.define(:name, :price_in_cents, :count)
li_1 = LineItem.new("Apple", 105, 3)
li_2 = LineItem.new(name: "Orange", count: 2, price_in_cents: 75)

li_1.name # => "Apple"
li_2.price_in_cents # => 75

Once you have a Data instance, you can convert it to a hash with to_h.

Since the instances are immutable, you can’t directly set the attributes, but you can create a
new instance using with:

LineItem = Data.define(:name, :price_in_cents, :count)
li_1 = LineItem.new("Apple", 105, 3)
li_2 = li_1.with(name: "Orange")

The new instance is created using any keyword arguments passed to with and the values of
the original instance for the attributes that are not included. Including a keyword argument
that doesn’t match an attribute raises an error.

Creating Classes Dynamically
Let’s look at some Ruby code:

class Example
end

ex = Example.new

When we call Example.new, we’re invoking the method new on the class object Example. This
is a regular method call—Ruby looks for the method new in the class of the object (and the
class of Example is Class) and invokes it. So we can also invoke Class#new directly to create a
new class dynamically at runtime:

some_class = Class.new
puts some_class.class

If you pass Class.new a block, that block is used as the body of the class:

metaprogramming/class_new.rb
some_class = Class.new do
def self.class_method
puts "In class method"

end

def instance_method
puts "In instance method"

end
end

some_class.class_method
obj = some_class.new
obj.instance_method

produces:

In class method
In instance method

Chapter 22. The Ruby Object Model and Metaprogramming • 394

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/metaprogramming/class_new.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

By default, these classes will be direct descendants of Object. You can give them a different
parent by passing the parent’s class as a parameter:

some_class = Class.new(String) do
def vowel_movement
tr 'aeiou', '*'

end
end

obj = some_class.new("now is the time")
puts obj.vowel_movement

produces:

n*w *s th* t*m*

How Classes Get Their Names

You may have noticed that the classes created by Class.new have no name. However, if you assign the
class object for a class with no name to a constant, Ruby automatically names the class after the constant:

some_class = Class.new
obj = some_class.new
puts "Initial name is #{some_class.name}"
SomeClass = some_class
puts "Then the name is #{some_class.name}"
puts "also works via the object: #{obj.class.name}"

produces:

Initial name is
Then the name is SomeClass
also works via the object: SomeClass

We can use these dynamically constructed classes to extend Ruby in interesting ways. For
example, here’s a simple reimplementation of the Ruby Struct class:

def MyStruct(*keys)
Class.new do
attr_accessor *keys

def initialize(hash)
hash.each do |key, value|
instance_variable_set("@#{key}", value)

end
end

end
end

Person = MyStruct :name, :address, :likes
dave = Person.new(name: "dave", address: "TX", likes: "Stilton")
chad = Person.new(name: "chad", likes: "Jazz")
chad.address = "Berlin"

puts "Dave's name is #{dave.name}"
puts "Chad lives in #{chad.address}"

produces:

Dave's name is dave
Chad lives in Berlin

report erratum • discuss

Metaprogramming Class-Level Macros • 395

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Using instance_eval and class_eval
No matter where you are in a Ruby program, self always has a value determined by your
location in the code. Sometimes it’s useful to be able to manage that relationship and change
the value of self for a while.

The methods Module#instance_eval, Module#class_eval, and Module#module_eval let you set self to
be an arbitrary object, evaluate the code in a block with that object as self, and then reset self:

"cat".instance_eval do
puts "Upper case = #{upcase}"
puts "Length is #{self.length}"

end

produces:

Upper case = CAT
Length is 3

Inside the instance_eval block, self evaluates as the object that received the instance_evalmessage.

All the _evalmethods take a string instead of a block argument, where the string is evaluated
by Ruby with their receiver as self. However, the string version is considered dangerous,
and you shouldn’t use it. First, it is slow—calling eval effectively compiles the code in the
string before executing it. But, even worse, eval from a string can be dangerous. If there’s
any chance that external data—stuff that comes from outside your application—can wind
up inside the string argument to eval, then you have a security hole, because that external
data may end up containing arbitrary code that your application will blindly execute.

class_eval and instance_eval both set self for the duration of the block. However, they differ in
the way they set up the environment for method definition. This can make a big difference
when the receiver is a class. The method class_eval sets things up as if you were in the body
of a class definition, so when the receiver is a class, method definitions will define instance
methods in that class:

class MyClass
end

MyClass.class_eval do
def instance_method
puts "In an instance method"

end
end

obj = MyClass.new
obj.instance_method

produces:

In an instance method

In contrast, calling instance_eval acts as if you were working inside the singleton class of self.
Therefore, if the receiver is a class any methods you define will become singleton methods
of that class, which is to say that they become class methods:

class MyClass
end

MyClass.instance_eval do

Chapter 22. The Ruby Object Model and Metaprogramming • 396

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def class_method
puts "In a class method"

end
end

MyClass.class_method

produces:

In a class method

It might be helpful to remember that class_eval and instance_eval refer to the context in which
self is being replaced—and not the kind of method that is defined inside the block. For method
definition, class_eval defines instance methods, and instance_eval defines class methods.

Ruby has variants of these methods. instance_exec, class_exec, and module_exec behave identi-
cally to their _eval counterparts but only have the block version (that is, they do not take a
string). Any arguments given to the methods are passed to the block as block parameters.
This is an important feature. Using _eval, it is impossible to pass an instance variable into a
block given to one of the _eval methods—because self is changed by the call, these variables
go out of scope. With the _exec form, you can pass them in:

@animal = "cat"
"dog".instance_exec(@animal) do |other|
puts "#{other} and #{self}"

end

produces:

cat and dog

instance_eval and Constants
When using instance_eval, constants are looked up in the lexical scope in which they were
referenced. This (artificial) example shows the behavior:

module One
CONST = "Defined in One"
def self.eval_block(&block)
instance_eval(&block)

end
end

module Two
CONST = "Defined in Two"
def self.call_eval_block
One.eval_block do
CONST

end
end

end

Two.call_eval_block # => "Defined in Two"

instance_eval and Domain-Specific Languages
It turns out that instance_eval has a pivotal role to play in a certain type of domain-specific
language (DSL). For example, we might be writing a simple DSL for turtle graphics. In turtle
graphics systems, you imagine you have a turtle you can command to move forward n

report erratum • discuss

Using instance_eval and class_eval • 397

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

squares, turn left, and turn right. You can also make the turtle raise and lower a pen. If the
pen is lowered, a line will be drawn tracing the turtle’s subsequent movements. Very few
of these turtles exist in the wild, so we tend to simulate them inside computers. To draw a
set of three 5x5 squares, we might write the following:

3.times do
forward(8)
pen_down
4.times do
forward(4)
left

end
pen_up

end

Yes, the forward(4) is correct in this code. The initial point is always drawn.

Clearly, pen_down, forward, left, and pen_up can be implemented as Ruby methods. However,
this API has all the methods being called without receivers. For that to work we either have
to be within a class that defines those methods (or is a child of such a class) or we have to
make the methods global. Neither of those allows for the API to be as simple as we have
defined it here.

instance_eval to the rescue. We can define a class Turtle that defines the various methods we
need as instance methods. We’ll also define a walk method, which will execute our turtle
DSL, and a draw method to draw the resulting picture:

class Turtle
def left; ... end
def right; ... end
def forward(n); ... end
def pen_up; .. end
def pen_down; ... end
def walk(...); end
def draw; ... end

end

If we implement walk correctly, we can then write the code like this:

turtle = Turtle.new
turtle.walk do
3.times do
forward(8)
pen_down
4.times do
forward(4)
left

end
pen_up

end
end
turtle.draw

Chapter 22. The Ruby Object Model and Metaprogramming • 398

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Inside the walk block we want all the methods to have turtle as the receiver, but they have self
as the implicit receiver. And as written, self is based on the class or location where this whole
block is defined, and that is not the object named turtle.

So, what is the correct implementation of walk? Well, we clearly have to use instance_eval,
because we want the DSL commands in the block to call the methods in the turtle object. We
also have to arrange to pass the block given to the walk method to be evaluated by that
instance_eval call. Our implementation looks like this:

def walk(&)
instance_eval(&)

end

Notice how we use Ruby’s anonymous block syntax to grab the block passed to walk and
pass it as-is as a block to instance_eval.

Is this a good use of instance_eval? It depends on the circumstances. The benefit is that the
code inside the block looks simple—you don’t have to make the receiver explicit:

4.times do
turtle.forward(4)
turtle.left

end

There’s a drawback, though. Inside the block, scope isn’t what you might think it is, so this
code wouldn’t work:

@size = 4
turtle.walk do
4.times do
turtle.forward(@size)
turtle.left

end
end

Instance variables are looked up in self, and self in the block isn’t the same as self in the code
that sets the instance variable@size. Because of this kind of confusion, you may want to move
away from this style of instance_evaled block.

Using Hook Methods
In Class Methods and Modules, on page 390, we defined a method called included in our
GeneralLoggermodule. When this module was included in a class, Ruby automatically invoked
this included method, allowing our module to add class methods to the host class.

included is an example of a hook method (sometimes called a callback). A hook method is a
method that you write but that Ruby calls from within the interpreter when some particular
event occurs. The interpreter looks for these methods by name—if you define a method in
the right context with an appropriate name, Ruby will call it when the corresponding event
happens.

The methods that can be invoked from within the interpreter are:

report erratum • discuss

Using Hook Methods • 399

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Method-related hooks
method_added, method_missing, method_removed, method_undefined, singleton_method_added,
singleton_method_removed, singleton_method_undefined

Class and module-related hooks
append_features, const_missing, extend_object, extended, included, inherited, initialize_clone, initial-
ize_copy, initialize_dup

Object marshaling hooks
marshal_dump, marshal_load

Coercion hooks
coerce, induced_from, various to_xxx methods

We won’t discuss all of them in this chapter—instead, we’ll show just a few examples of use.

The inherited Hook
If a class defines a class method called inherited, Ruby will call that method whenever that
class is subclassed (that is, whenever any class inherits from the original).

This hook is often used in situations where a base class needs to keep track of its children.
For example, an online store might offer a variety of shipping options. Each might be repre-
sented by a separate class, and each of these classes could be a subclass of a single Shipping
class. This parent class could keep track of all the various shipping options by recording
every class that subclasses it. When it comes time to display the shipping options to the user,
the application could call the base class, asking it for a list of its children:

metaprogramming/shipping.rb
class Shipping # Base class
@children = [] # this variable is in the class, not instances

def self.inherited(child)
@children << child

end

def self.shipping_options(weight, international)
@children.select { |child| child.can_ship(weight, international) }

end
end

class MediaMail < Shipping
def self.can_ship(_weight, international)
!international

end
end

class FlatRatePriorityEnvelope < Shipping
def self.can_ship(weight, international)
weight < 64 && !international

end
end

class InternationalFlatRateBox < Shipping
def self.can_ship(weight, international)
weight < 9*16 && international

end
end

Chapter 22. The Ruby Object Model and Metaprogramming • 400

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/metaprogramming/shipping.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

puts "Shipping 16oz domestic"
puts Shipping.shipping_options(16, false)

puts "\nShipping 90oz domestic"
puts Shipping.shipping_options(90, false)

puts "\nShipping 16oz international"
puts Shipping.shipping_options(16, true)

produces:

Shipping 16oz domestic
MediaMail
FlatRatePriorityEnvelope

Shipping 90oz domestic
MediaMail

Shipping 16oz international
InternationalFlatRateBox

Command interpreters often use this pattern: the base class keeps a track of available com-
mands, each of which is implemented in a subclass.

The method_missing Hook
Earlier, we saw how Ruby executes a method call by looking for the method, first in the
object’s class, then in its superclass, then in that class’s superclass, and so on. If the method
call has an explicit receiver, then private methods are skipped in this search. If the method
is not found by the time we run out of superclasses (because BasicObject has no superclass),
then Ruby tries to invoke the hook method method_missing on the original object. Again, the
same process is followed—Ruby first looks in the object’s class, then in its superclass, and
so on. However, Ruby predefines its own version of method_missing in class BasicObject, so
typically the search stops there. The built-in method_missing basically raises an exception
(either a NoMethodError or a NameError depending on the circumstances).

The key here is that method_missing is simply a Ruby method. We can override it in our own
classes to handle calls to otherwise undefined methods in an application-specific way.

Themethod_missingmethod has a signature that includes the name of the method being sought
and the arguments:

def method_missing(name, *args, &block)

The name argument receives the name of the method that couldn’t be found. It is passed as
a symbol. The args argument is an array of the arguments that were passed in the original
call. And the oft-forgotten block argument will receive any block passed to the original
method.

def method_missing(name, *args, &block)
puts "Called #{name} with #{args.inspect} and #{block}"

end

wibble
wobble 1, 2
wurble(3, 4) { stuff }

report erratum • discuss

Using Hook Methods • 401

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

Called wibble with [] and
Called wobble with [1, 2] and
Called wurble with [3, 4] and #<Proc:0x00000001043688a0 prog.rb:7>

Before we get too deep into the details, we’ll offer a tip about etiquette. There are two main
ways that people use method_missing. The first intercepts every use of an undefined method
and handles it. The second is more subtle; it intercepts all calls but handles only some of
them. In the latter case, it is important to forward on the call to a superclass if you decide
not to handle it in your method_missing implementation.

In this snippet, imagine there is some method called name_handled_by_method_missing? that
determines if the name matches whatever criteria we are using for dynamic methods:

class MyClass < OtherClass
def method_missing(name, *args, &block)
if name_handled_by_method_missing?(name)
handle call

else
super # otherwise pass it on

end
end

def respond_to_missing?(name)
name_handled_by_method_missing?(name)

end
end

If you fail to pass on calls that you don’t handle, your application will silently ignore calls
to unknown methods in your class.

It’s also important to keep the respond_to_missing? method consistent with method_missing. As
we mentioned in Duck Typing, on page 355, respond_to? is used to query what messages an
instance expects. Using method_missing changes the list of expected messages, so there’s a
parallel to respond_to? called respond_to_missing? that is similarly invoked if respond_to? returns
false, as a final check on whether the class actually responds to the message.

Using method_missing to Simulate Accessors
The OpenStruct class is distributed with Ruby. It allows you to write objects with attributes
that are created dynamically by assignment. For example, you could write this:

require 'ostruct'
obj = OpenStruct.new(name: "Dave")
obj.address = "Texas"
obj.likes = "Programming"

puts "#{obj.name} lives in #{obj.address} and likes #{obj.likes}"

produces:

Dave lives in Texas and likes Programming

Let’s use method_missing to write our own version of OpenStruct:

metaprogramming/open_struct.rb
class MyOpenStruct < BasicObject
def initialize(initial_values = {})
@values = initial_values

Chapter 22. The Ruby Object Model and Metaprogramming • 402

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/metaprogramming/open_struct.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

def _singleton_class
class << self
self

end
end

def method_missing(name, *args, &block)
if name[-1] == "="
base_name = name[0..-2].intern
_singleton_class.instance_exec(name) do |name|
define_method(name) do |value|
@values[base_name] = value

end
end
@values[base_name] = args[0]

else
_singleton_class.instance_exec(name) do |name|
define_method(name) do
@values[name]

end
end
@values[name]

end
end

def respond_to_missing?(_)
true

end
end

obj = MyOpenStruct.new(name: "Dave")
obj.address = "Texas"
obj.likes = "Programming"

puts "#{obj.name} lives in #{obj.address} and likes #{obj.likes}"

produces:

Dave lives in Texas and likes Programming

Notice how we base our class on BasicObject. BasicObject is the root of Ruby’s object hierarchy
and contains only a minimal number of methods:

p BasicObject.instance_methods

produces:

[:!, :equal?, :__send__, :==, :!=, :instance_eval, :instance_exec, :__id__]

This is good, because it means that our MyOpenStruct class will be able to have attributes such
as display or class. If instead we’d based MyOpenStruct on class Object, then these names, along
with forty-nine others, would have been predefined and hence wouldn’t trigger
method_missing.

Notice also another common pattern inside method_missing. The first time we reference or
assign to an attribute of our object, we access or update the @values hash appropriately. But
we also use define_method to define the method that the caller was trying to access. This means
that the next time this attribute is used, it will use the method and not invokemethod_missing.

report erratum • discuss

Using Hook Methods • 403

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In theory this will make subsequent calls to the same accessor perform faster. This may or
may not be worth the trouble, depending on the access patterns to your object.

Also notice how we had to jump through some hoops to define the method. We want to
define the method only for the current object. This means we have to put the method into
the object’s singleton class. Ordinarily, we could do that via a Ruby method called
define_singleton_method, but that method is defined in Object, not BasicObject, so it’s not available
to us here.

So we hack it ourselves. We can do that using instance_exec and define_method. But that means
we have to use the class << self trick to get the object’s singleton class. Through an interesting
implementation subtlety, define_method will always define an instance method, independent
of whether it is invoked via instance_exec or class_exec.

However, this code reveals a dark underbelly of using method_missing and BasicObject:

metaprogramming/open_struct_flaw.rb
obj = MyOpenStruct.new(name: "Dave")
obj.address = "Texas"

o1 = obj.dup
o1.name = "Mike"
o1.address = "Colorado"

produces:

code/metaprogramming/open_struct_flaw.rb:41:in `<main>': undefined method `name='
for nil:NilClass (NoMethodError)

o1.name = "Mike"
^^^^^^^

The dup method is not defined by BasicObject; it appears in class Object. So when we called
dup, it was picked up by our method_missing handler, and we just returned nil (because we
don’t have an attribute called dup yet). We could fix this so that it at least reports an error:

def method_missing(name, *args, &block)
if name[-1] == "="
as before...

else
super unless @values.has_key? name
as before...

end
end

This class now reports an error if we call dup (or any other method) on it. However, we still
can’t dup or clone it (or inspect, convert to a string, and so on). Although BasicObject seems
like a natural fit for method_missing, you may find it to be more trouble than it’s worth.

Using method_missing as a Filter
As the previous example showed,method_missinghas some drawbacks if you use it to intercept
all calls. It is probably better to use it to recognize certain patterns of call, passing on those
it doesn’t recognize to its parent class to handle.

An example of this is the dynamic finder facility used to be found in the Ruby on Rails
ActiveRecord module. ActiveRecord is the object-relational library in Rails—it allows you to
access relational databases as if they were object stores. One particular feature allows you

Chapter 22. The Ruby Object Model and Metaprogramming • 404

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/metaprogramming/open_struct_flaw.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

to find rows that match the criteria of having given values in certain columns. For example,
if an Active Record class called Book were mapping a relational table called books and the
books table included columns called title and author, you used to be able write this (it’s since
been deprecated, but we kind of miss it):

pickaxe = Book.find_by_title("Programming Ruby")
daves_books = Book.find_all_by_author("Dave Thomas")

Active Record did not predefine all these potential finder methods. Instead, it uses our old
friendmethod_missing. Inside that method, it looks for calls to undefined methods that match
the pattern /^find_(all_)?by_(.*)/.It also looks for /^find_or_(initialize|create)_by_(.*)/. If the method
being invoked does not match this pattern or if the fields in the method name don’t corre-
spond to columns in the database table, Active Record calls super so that a genuine
method_missing exception will be generated.

A Metaprogramming Example
Let’s bring together all the metaprogramming topics we’ve discussed in a final example by
writing a module that allows us to trace the execution of methods in any class that mixes
the module in. This would let us write the following:

metaprogramming/trace_calls_example.rb
require_relative "trace_calls"

class Example
def one(arg)
puts "One called with #{arg}"

end
end

ex1 = Example.new
ex1.one("Hello") # no tracing from this call

class Example
include TraceCalls
def two(arg1, arg2)
arg1 + arg2

end
end

ex1.one("Goodbye") # but we see tracing from these two
puts ex1.two(4, 5)

produces:

One called with Hello
==> calling one with ["Goodbye"]
One called with Goodbye
<== one returned nil
==> calling two with [4, 5]
<== two returned 9
9

We can see immediately that there’s a subtlety here. When we mix the TraceCallsmodule into
a class, it has to add tracing to any existing instance methods in that class. It also has to
arrange to add tracing to any methods we subsequently add.

Let’s start with the full listing of the TraceCalls module:

report erratum • discuss

A Metaprogramming Example • 405

http://media.pragprog.com/titles/ruby5/code/metaprogramming/trace_calls_example.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

metaprogramming/trace_calls.rb
module TraceCalls
def self.included(klass)
klass.instance_methods(false).each do |existing_method|
wrap(klass, existing_method)

end

def klass.method_added(method) # note: nested definition
unless @trace_calls_internal
@trace_calls_internal = true
TraceCalls.wrap(self, method)
@trace_calls_internal = false

end
end

end

def self.wrap(klass, method)
klass.instance_eval do
method_object = instance_method(method)

define_method(method) do |*args, &block|
puts "==> calling #{method} with #{args.inspect}"
result = method_object.bind_call(self, *args, &block)
puts "<== #{method} returned #{result.inspect}"
result

end
end

end
end

When we include this module in a class, the included hook method gets invoked. It first uses
the instance_methods reflection method to find all the existing instance methods in the host
class (the false parameter limits the list to methods in the class itself, and not in its superclass-
es). For each existing method, the module calls a helper method, wrap, to add some tracing
code to it. We’ll talk about wrap shortly.

Next, the includedmethod uses another hook,method_added. This is called by Ruby whenever
a method is defined in the receiver. Note that we define this method in the class passed to
the included method. This means that the method will be called when methods are added to
this host class and not to the module. This is what allows us to include TraceCalls at the top
of a class and then add methods to that class—all those method definitions will be handled
by method_added.

Now look at the code inside the method_added method. We have to deal with a potential
problem here. As you’ll see when we look at the wrap method, we add tracing to a method
by creating a new version of the method that calls the old. Inside method_added, we call the
wrap function to add this tracing. But inside wrap, we’ll define a new method to handle this
wrapping, and that definition will invokemethod_added again, and then we’d call wrap again,
and so on, until the stack gets exhausted. To prevent this, we use an instance variable and
do the wrapping only if we’re not already doing it.

The wrap method takes a class object and the name of a method to wrap. It finds the original
definition of that method (using instance_method) and saves it. It then redefines this method.
This new method outputs some tracing and then calls the original, passing in the parameters

Chapter 22. The Ruby Object Model and Metaprogramming • 406

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/metaprogramming/trace_calls.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

and block from the wrapper. Note how we call the method by binding the method object to
the current instance and then invoking that bound method.

The key to understanding this code, and most metaprogramming code, is to follow the basic
principles we worked out at the start of this chapter—how self changes as methods are called
and classes are defined and how methods are called by looking for them in the class of the
receiver. If you get stuck, do what we do and draw little boxes and arrows. We find it useful
to stick with the convention used in this chapter: class links go to the right, and superclass
links go up. Given an object, a method call is then a question of finding the receiver object,
going right once, and then following the superclass chain up as far as you need to go.

Top-Level Execution Environment
Finally, there’s one small detail we have to cover to complete the metaprogramming envi-
ronment. Many times in this book we’ve claimed that everything in Ruby is an object.
However, we’ve used one thing time and time again that appears to contradict this—the
top-level Ruby execution environment:

puts "Hello, World"

Not an object in sight. We may as well be writing some variant of Fortran or Basic. But dig
deeper, and you’ll come across objects and classes lurking in even the simplest code.

We know that the literal "Hello, World" generates a Ruby String, so that’s one object. We also
know that the bare method call to puts is effectively the same as self.puts. But what is self?

self # => main
self.class # => Object

At the top level, we’re executing code in the context of a predefined object, calledmain. When
we define methods using def method_name at the top level, Ruby defines those as (private)
instance methods for class Object. This is why methods defined at the top level are available
inside all objects. In the following sample, the top-level be_politemethod is visible from inside
the introduce method of class Person:

metaprogramming/top_level.rb
def be_polite
"Why, if it isn't #{self.to_s}? So glad to see you."

end

class Person
attr_accessor :first_name, :last_name

def initialize(first_name, last_name)
@first_name = first_name
@last_name = last_name

end

def to_s = "#{first_name} #{last_name}"

def introduce
be_polite

end
end

clark = Person.new("Clark", "Kent")
p clark.introduce

report erratum • discuss

Top-Level Execution Environment • 407

http://media.pragprog.com/titles/ruby5/code/metaprogramming/top_level.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

"Why, if it isn't Clark Kent? So glad to see you."

This is fairly subtle—since they are defined in class Object, these methods are available
everywhere. And because we’re in the context of Object, we can use all of Object’s methods
(including those mixed in from Kernel) in function form. This explains why we can call Kernel
methods such as puts at the top level (and indeed throughout Ruby); it’s because these
methods are part of every object. Top-level instance variables also belong to this main, top-
level object.

What’s Next
Metaprogramming is one of Ruby’s sharpest tools. Don’t be afraid to use it to raise up the
level at which you program. But, at the same time, use it only when necessary—overly
metaprogrammed applications can become pretty obscure pretty quickly.

There’s one more piece of the Ruby metaprogramming puzzle: reflection, which is how Ruby
knows things about the runtime environment. Let’s take a look.

Chapter 22. The Ruby Object Model and Metaprogramming • 408

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 23

Reflection and Object Space
One of the advantages of dynamic languages such as Ruby is the ability to introspect—to
examine aspects of a program from within the program itself. This is also called reflection.

When people introspect, we think about our thoughts and feelings. This is interesting, because
we’re using thought to analyze thought. It’s the same when programs use introspection—a
program can discover the following information about itself:

• What objects it contains
• Its class hierarchy
• The attributes and methods of objects
• Information on methods

Armed with this information, we can look at particular objects and decide which of their
methods to call at runtime—even if the class of the object didn’t exist when we first wrote
the code. We can also start doing clever things, perhaps modifying the program while it’s
running. We’re going to look at Ruby’s ObjectSpace, which allows us to reflect on Ruby’s
internals. Later in this chapter we’ll look at distributed Ruby and marshaling, two reflection-
based technologies that let us send objects around the world and through time.

Looking at Objects
Have you ever craved the ability to traverse all the living objects in your program? We have!
Ruby has a global object called ObjectSpace that lets you do some fun tricks with the set of
objects Ruby is tracking (this means all the objects that have been created and not yet
destroyed by garbage collection).

What Is Garbage Collection?

Ruby is a dynamic language, and it does not require the programmer to manage
the memory the program uses during runtime. Instead, Ruby uses a process
called garbage collection. Garbage collection looks for objects that have been
allocated into memory but are no longer in scope or are otherwise not accessible.
Those objects are released back into the memory heap so that the space can be
reused.

We’re not going to go into the details of how Ruby handles garbage collecting
in this book. For one thing, the details change from version to version as newer
and better algorithms for identifying discarded objects are developed.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

To traverse live objects, Ruby provides the method ObjectSpace.each_object, which takes a
block and applies that block to every object ObjectSpace knows about. The method takes an
optional argument, which is a class or module, and filters the result to only objects that are
of that class or module or subclass of it.

For example, to iterate over all objects of type Complex, you’d write the following:

a = Complex(1, 2)
b = Complex(99, -100)
ObjectSpace.each_object(Complex) { |x| puts x }

produces:

99-100i
1+2i
0+1i

Where did that extra number, (0+1i), come from? We didn’t define it in our program. Well,
the Complex class defines a constant for I, the square root of -1. Because we are examining all
living objects in the system, this object turns up as well.

Let’s try the same example with different values. This time, they’re objects of type Integer:

a = 102
b = 95
ObjectSpace.each_object(Integer) { |x| p x }

produces:

9223372036854775807

Neither of the Integers objects we created showed up, although an other integer did. That’s
because ObjectSpace doesn’t know about objects with immediate values, which is to say the
value is small enough to be basically stored as part of the internal chip instructions rather
than a value that needs to be separately stored in memory. In Ruby, Symbol, true, false, and
nil are immediate, and Integer and Float values are also immediate if they are close enough to
zero (for machine-specific values of “close enough”). (Symbol is weird, actually, because if
you do this exercise with Symbol, you’ll see a lot of symbols with what seems to be internal-
facing names, but new ones you create won’t show up.)

For what it’s worth, 9223372036854775807 = 2 ** 63 - 1 (we did have to look that up), which
suggests it’s a memory-specific number being generated internally somewhere, possibly
being used as a boundary for integer values.

Looking Inside Objects
Once you’ve found an interesting object, you may be tempted to find out just what it can
do. Unlike static languages, where a variable’s type determines its class, and hence the
methods it supports, Ruby supports dynamic objects. You really cannot tell exactly what an
object can do until you look under its hood. Or under its bonnet, for objects created to the
east of the Atlantic. We talk about this in Duck Typing, on page 355.

For instance, we can get a list of all the methods to which an object will respond (these include
methods in an object’s class and that class’s ancestors) with this:

r = 1..10
list = r.methods
list.length # => 122

Chapter 23. Reflection and Object Space • 410

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

list[0..3] # => [:last, :hash, :step, :exclude_end?]

We can check to see whether an object responds to a particular method:

r = 1..10
r.respond_to?("frozen?") # => true
r.respond_to?(:key?) # => false
"me".respond_to?("==") # => true

We can get the method object for a particular method:

r = 1..10
method = r.method(:frozen?)
method.call # => true

And we can ask for an object’s class and unique object ID and test its relationship to other
classes:

num = 1
num.object_id # => 3
num.class # => Integer
num.kind_of? Integer # => true
num.kind_of? Numeric # => true
num.instance_of? Integer # => true
num.instance_of? Numeric # => false

Looking at Classes
Knowing about objects is one part of reflection, but to get the whole picture, you also need
to be able to look at classes—and the methods and constants that they contain.

Looking at the class hierarchy is easy. You can get the parent of any particular class using
Class#superclass, and its children using Class#subclasses. For classes and modules, the Mod-
ule#ancestors method lists both superclasses and mixed-in modules:

ospace/relatives.rb
klass = Integer
print "Inheritance chain: "
begin
print klass
klass = klass.superclass
print " < " if klass

end while klass
puts
p "Ancestors: #{Integer.ancestors}"
p "Subclasses: #{Integer.subclasses}"

produces:

Inheritance chain: Integer < Numeric < Object < BasicObject
"Ancestors: [Integer, Numeric, Comparable, Object, Kernel, BasicObject]"
"Subclasses: []"

If you want to build a complete class hierarchy, just run that code for every class in the system.
We can use ObjectSpace to iterate over all Class objects like this:

ObjectSpace.each_object(Class) do |klass|
...

report erratum • discuss

Looking at Classes • 411

http://media.pragprog.com/titles/ruby5/code/ospace/relatives.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end

Looking Inside Classes
We can find out a bit more about the methods and constants in a particular object. We can
ask for methods by access level, and we can ask for just singleton methods. We can also take
a look at the object’s constants, local, and instance variables:

class Demo
@@var = 99
CONST = 1.23

private def private_method
end

protected def protected_method
end

public def public_method
@inst = 1
i = 1
j = 2
local_variables

end

def Demo.class_method
end

end

Demo.private_instance_methods(false) # => [:private_method]
Demo.protected_instance_methods(false) # => [:protected_method]
Demo.public_instance_methods(false) # => [:public_method]
Demo.singleton_methods(false) # => [:class_method]
Demo.class_variables # => [:@@var]
Demo.constants(false) # => [:CONST]

demo = Demo.new
demo.instance_variables # => []
Get 'public_method' to return its local variables
and set an instance variable
demo.public_method # => [:i, :j]
demo.instance_variables # => [:@inst]

You may be wondering what all the false parameters were in the previous code. These
reflection methods will by default recurse into parent classes, their parents, and so on, up
the ancestor chain. Passing in false stops this kind of prying.

Given a list of method names, we may now be tempted to try calling them. Fortunately,
that’s easy with Ruby.

Calling Methods Dynamically
The Object#send method lets you tell any object to invoke a method by name. The first argu-
ment is a symbol or a string representing the name, and any remaining arguments are passed
along to the method of that name. For example:

"John Coltrane".send(:length) # => 13
"Miles Davis".send("sub", /iles/, '.') # => "M. Davis"

Chapter 23. Reflection and Object Space • 412

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

There are two twists to send. For example, your class might define its own send method if it
wanted to send something somewhere. Ruby provides the __send__ method, defined in Basi-
cObject, which is identical to send and meant to be used in cases where send might have been
overwritten.

The send method does not enforce method access, meaning that it will happily send to a
method that is private or protected. You might reasonably think that undermines the point of
having access control in the first place. Ruby provides the related method public_send, which
will only send to methods that are public. For most usages, public_send is preferred.

Another way of invoking methods dynamically uses Method objects. A Method object is like
a Proc object: it represents a chunk of code and a context in which it executes. In this case,
the code is the body of the method, and the context is the object that created the method.
Once we have our Method object, we can execute it sometime later by sending it the message
call:

trane = "John Coltrane".method(:length)
miles = "Miles Davis".method("sub")

trane.call # => 13
miles.call(/iles/, '.') # => "M. Davis"

You can pass the Method object around as you would any other object, and when you invoke
Method#call, the method is run just as if you had invoked it on the original object. It’s like
having a C-style function pointer but in a fully object-oriented style.

If you are familiar with JavaScript or Python, in those languages mentioning a method
without arguments returns the method itself, whereas in Ruby, mentioning the method
without arguments calls the method with no arguments, and if you want the method itself,
you need to call method.

You can use Method objects wherever you use proc objects. For example, they work with
iterators:

def double(a)
2 * a

end

method_object = method(:double)
[1, 3, 5, 7].map(&method_object) # => [2, 6, 10, 14]

Method objects are bound to one particular object and that object acts as the receiver when
the method object is invoked. You can create unbound methods (of class UnboundMethod) by
calling instance_method on a class with the name of the method. Then subsequently, you can
bind the method to one or more objects with bind. The binding creates a new Method object,
that is bound to the argument of bind. As with aliases, unbound methods are references to
the definition of the method at the time they are created and do not reflect later changes:

unbound_length = String.instance_method(:length)
class String
def length
99

end
end

str = "cat"

report erratum • discuss

Calling Methods Dynamically • 413

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

str.length # => 99

bound_length = unbound_length.bind(str)
bound_length.call # => 3

The pattern of binding a method and immediately calling it is common enough that Ruby
has a shortcut, bind_call. We can replace the last two lines of the above snippet with the single
line unbound_length.bind_call(str). The first argument to bind_call is the object to bind to, and any
subsequent arguments are passed to the call.

Because good things come in threes, here’s yet another way to invoke methods dynamically:
The evalmethod (and its variations such as class_eval,module_eval, and instance_eval) will parse
and execute an arbitrary string of legal Ruby source code:

trane = %q{"John Coltrane".length}
miles = %q{"Miles Davis".sub(/iles/, '.')}

eval(trane) # => 13
eval(miles) # => "M. Davis"

When using eval, it can be helpful to state explicitly the context in which the expression
should be evaluated, rather than using the current context. You obtain a context using Ker-
nel#binding at the desired point:

def get_a_binding
val = 123
binding

end

val = "cat"

the_binding = get_a_binding
eval("val", the_binding) # => 123
eval("val") # => "cat"

The first eval evaluates val in the context of the binding as it was when the method
get_a_binding was executing. In this binding, the variable val had a value of 123. The second
eval evaluates eval in the top-level binding, where it has the value "cat".

Performance Considerations
As we’ve seen in this section, Ruby gives us several ways to invoke an arbitrary method of
some object: Object#send, Method#call, and the various flavors of eval.

You may prefer to use any one of these techniques depending on your needs, but be aware
that, as the following benchmark shows, eval is significantly slower than the others (or, for
optimistic readers, send and call are significantly faster than eval).

require "benchmark"
include Benchmark

test = "Stormy Weather"
m = test.method(:length)
n = 100000

bm(12) do |x|
x.report("call") { n.times { m.call } }
x.report("send") { n.times { test.send(:length) } }

Chapter 23. Reflection and Object Space • 414

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

x.report("eval") { n.times { eval "test.length" } }
end

produces:

user system total real
call 0.004999 0.000004 0.005003 (0.005010)
send 0.006089 0.000297 0.006386 (0.007153)
eval 0.255813 0.006261 0.262074 (0.273123)

System Hooks
A hook is a technique that lets you trap some Ruby event, such as object creation. Let’s take
a look at some common Ruby hook techniques.

Intercepting Method Calls
The simplest hook technique in Ruby is to intercept calls to methods in core classes. Perhaps
you want to log all the operating system commands your program executes. You could
simply use alias_method to rename the system method and replace it with a system method of
your own that both logs the command and calls the original Kernel#system method, like this:

class Object
alias_method :old_system, :system

def system(*args)
old_system(*args).tap do |result|
puts "system(#{args.join(', ')}) returned #{result.inspect}"

end
end

end

system("date")
system("kangaroo", "-hop 10", "skippy")

produces:

Sun May 14 18:22:15 CDT 2023
system(date) returned true
system(kangaroo, -hop 10, skippy) returned nil

However, the problem with this technique is that you’re relying on there not being an
existing method called old_system. A better alternative is to make use of method objects, which
are effectively anonymous:

class Object
old_system_method = instance_method(:system)

define_method(:system) do |*args|
old_system_method.bind_call(self, *args).tap do |result|
puts "system(#{args.join(', ')}) returned #{result.inspect}"

end
end

end

system("date")
system("kangaroo", "-hop 10", "skippy")

produces:

Sun May 14 18:22:15 CDT 2023

report erratum • discuss

System Hooks • 415

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

system(date) returned true
system(kangaroo, -hop 10, skippy) returned nil

You can also achieve similar behavior by using prepend to insert a module with a method of
the same name earlier in the call chain. Within the module’s methods, calling super calls the
host’s method of the same name. This gives us:

module SystemHook
private def system(*args)
super.tap do |result|
puts "system(#{args.join(', ')}) returned #{result.inspect}"

end
end

end

class Object
prepend SystemHook

end

system("date")
system("kangaroo", "-hop 10", "skippy")

produces:

Sun May 14 18:22:15 CDT 2023
system(date) returned true
system(kangaroo, -hop 10, skippy) returned nil

Object Creation Hooks
Ruby lets you get involved when objects are created. If you can be present when every object
is born, you can do all sorts of interesting things: you can wrap them, add methods to them,
remove methods from them, and add them to containers to implement persistence—you
name it. We’ll show a simple example here. We’ll add a timestamp to every object as it’s
created. First, we’ll add a timestamp attribute to every object in the system. We can do this
by hacking class Object itself:

class Object
attr_accessor :timestamp

end

Then, we need to hook object creation to add this timestamp. One way to do this is to do
our method-renaming trick on Class#new—the method that’s called to allocate space for a
new object. The technique isn’t perfect—some built-in objects, such as literal strings, are
constructed without calling new—but it’ll work just fine for objects we write:

class Class
old_new = instance_method(:new)
define_method(:new) do |*args, **kwargs, &block|
result = old_new.bind_call(self, *args, **kwargs, &block)
result.timestamp = Time.now unless result.is_a?(Time)
result

end
end

Finally, we can run a test. We’ll create a couple of objects a few milliseconds apart and check
their timestamps:

Chapter 23. Reflection and Object Space • 416

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

class Test
end

obj1 = Test.new
sleep(0.002)
obj2 = Test.new
obj1.timestamp.to_f # => 1684106535.658647
obj2.timestamp.to_f # => 1684106535.660911

Tracing Your Program’s Execution
While we’re having fun reflecting on all the objects and classes in our programs, let’s not
forget about the humble expressions that make our code actually do things. It turns out that
Ruby lets us look at these expressions, too.

First, you can watch the interpreter as it executes code, using the TracePoint class. TracePoint
is used to execute a proc while adding all sorts of juicy debugging information whenever a
new source line is executed, methods are called, objects are created, and so on.

Here’s a bit of what TracePoint can do (run this in your own irb window, but be aware that
it will produce a lot of output):

class Test
def test
a = 1

end
end

TracePoint.trace(:line) do |trace_point|
p trace_point

end

t = Test.new
t.test

How Did We Get Here?
That’s a fair question…one we ask ourselves regularly. Mental lapses aside, in Ruby you
can find out “how you got there” using the method Kernel#caller, which returns an array of
strings representing the current call stack:

def cat_a
puts caller[0..2]

end

def cat_b
cat_a

end

def cat_c
cat_b

end

cat_c

produces:

prog.rb:6:in `cat_b'
prog.rb:10:in `cat_c'

report erratum • discuss

Tracing Your Program’s Execution • 417

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

prog.rb:13:in `<main>'

In this case, we’re limiting printing the first three elements of the call stack because beyond
that, we get into the depths of irb, which is unlikely to be useful for debugging purposes.

Ruby also provides the method __callee__, which returns the name of the current method.

Source Code
Ruby executes programs from plain old files. You can look at these files to examine the source
code that makes up your program using one of a number of techniques.

The special variable __FILE__ contains the name of the current source file. This leads to a fairly
short (if cheating) quine—a program that outputs its own source code:

print File.read(__FILE__)

produces:

print File.read(__FILE__)

As we saw in the previous section, the method Kernel#caller returns the call stack as a list.
Each entry in this list starts off with a filename, a colon, and a line number in that file. You
can parse this information to display source. In the following example, we have a main
program, main.rb, that calls a method in a separate file, sub.rb. That method in turns invokes
a block, where we traverse the call stack and write out the source lines involved. Notice the
use of a hash of file contents, indexed by the filename.

Here’s some code that dumps out the call stack, including source information:

ospace/caller/stack_dumper.rb
def dump_call_stack
file_contents = {}
puts "File Line Source Line"
puts "---------------+----+------------"
caller.each do |position|
match_data = position.match(/\A(.*?):(\d+)/)
next if match_data.nil?
file = match_data[1]
line = Integer(match_data[2])
file_contents[file] ||= File.readlines(file)
printf("%-15s:%3d - %s",
File.basename(file),
line,
file_contents[file][line - 1].lstrip)

end
end

The file sub.rb contains a single method:

ospace/caller/sub.rb
def sub_method(v1, v2)
main_method(v1 * 3, v2 * 6)

end

The following is the main program, which invokes the stack dumper after being called back
by the submethod:

Chapter 23. Reflection and Object Space • 418

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ospace/caller/stack_dumper.rb
http://media.pragprog.com/titles/ruby5/code/ospace/caller/sub.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

ospace/caller/main.rb
require_relative "sub"
require_relative "stack_dumper"

def main_method(arg1, arg2)
dump_call_stack

end

sub_method(123, "cat")

produces:

File Line Source Line
---------------+----+------------
main.rb : 5 - dump_call_stack
sub.rb : 2 - main_method(v1 * 3, v2 * 6)
main.rb : 8 - sub_method(123, "cat")

The SCRIPT_LINES__ constant is closely related to this technique. If a program initializes a
constant called SCRIPT_LINES__ with a hash, that hash will receive a new entry for every file
subsequently loaded into the interpreter using require or load. The entry’s key is the name of
the file, and the value is the source of the file as an array of strings.

Behind the Curtain: The Ruby VM
If you’d like to know what Ruby is doing with all that code you’re writing, you can ask the
Ruby interpreter to show you the intermediate code that it is executing.

You can ask it to compile the Ruby code in a string or in a file and then disassemble it and
even run it. You might wonder if it can dump the opcodes out and later reload them. The
answer is no—the interpreter has the code to do this, but it is disabled because there is not
yet an intermediate code verifier for YARV.

Here’s a trivial example of disassembly:

code = RubyVM::InstructionSequence.compile('a = 1; puts 1 + a')
puts code.disassemble

produces:

== disasm: #<ISeq:<compiled>@<compiled>:1 (1,0)-(1,17)> (catch: false)
local table (size: 1, argc: 0 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1,
kwrest: -1])
[1] a@0
0000 putobject_INT2FIX_1_ (1)[Li]
0001 setlocal_WC_0 a@0
0003 putself
0004 putobject_INT2FIX_1_
0005 getlocal_WC_0 a@0
0007 opt_plus <calldata!mid:+, argc:1,
ARGS_SIMPLE>[CcCr]
0009 opt_send_without_block <calldata!mid:puts, argc:1,
FCALL|ARGS_SIMPLE>
0011 leave

Maybe you want to know how Ruby handles #{...} substitutions in strings. Ask the VM:

code = RubyVM::InstructionSequence.compile('a = 1; puts "a = #{a}."')
puts code.disassemble

report erratum • discuss

Behind the Curtain: The Ruby VM • 419

http://media.pragprog.com/titles/ruby5/code/ospace/caller/main.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

== disasm: #<ISeq:<compiled>@<compiled>:1 (1,0)-(1,23)> (catch: false)
local table (size: 1, argc: 0 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1,
kwrest: -1])
[1] a@0
0000 putobject_INT2FIX_1_ (1)[Li]
0001 setlocal_WC_0 a@0
0003 putself
0004 putobject "a = "
0006 getlocal_WC_0 a@0
0008 dup
0009 objtostring <calldata!mid:to_s, argc:0,
FCALL|ARGS_SIMPLE>
0011 anytostring
0012 putobject "."
0014 concatstrings 3
0016 opt_send_without_block <calldata!mid:puts, argc:1,
FCALL|ARGS_SIMPLE>
0018 leave

For a full list of the opcodes, print out RubyVM::INSTRUCTION_NAMES.

Marshaling and Distributed Ruby
Ruby features the ability to serialize objects, letting you store them somewhere and reconstitute
them when needed. You can use this facility, for instance, to save a tree of objects that repre-
sent some portion of application state—a document, a CAD drawing, a piece of music, and
so on.

Ruby calls this kind of serialization marshaling (think of railroad marshaling yards where
individual cars are assembled in sequence into a complete train, which is then dispatched
somewhere). Saving an object and some or all of its components is done using the method
dump. Typically, you will dump an entire object tree starting with some given object. Later,
you can reconstitute the object using load.

Here’s a short example. We have a class Chord that holds a collection of musical notes. We’d
like to save away a particularly wonderful chord so we can e-mail it to a couple hundred of
our closest friends so they can load it into their copy of Ruby and savor it too. Let’s start
with the classes for Note and Chord:

ospace/chord.rb
Note = Struct.new(:value) do
def to_s
value.to_s

end
end

class Chord
def initialize(arr)
@arr = arr

end

def play
@arr.join("-")

end
end

Chapter 23. Reflection and Object Space • 420

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ospace/chord.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Now we’ll create our masterpiece and use dump to save a serialized version to disk:

ospace/chord.rb
c = Chord.new(
[
Note.new("G"),
Note.new("Bb"),
Note.new("Db"),
Note.new("E")

]
)

File.open("posterity", "w+") do |f|
Marshal.dump(c, f)

end

Finally, our friends read it in and are transported by our creation’s beauty:

chord = Marshal.load(File.open("posterity"))
chord.play # => "G-Bb-Db-E"

Custom Serialization Strategy
Not all objects can be dumped: bindings, procedure objects, instances of class IO, and singleton
objects cannot be saved outside the running Ruby environment (a TypeError will be raised if
you try). Even if your object doesn’t contain one of these problematic objects, you may want
to take control of object serialization yourself.

Marshal provides the hooks you need. In the objects that require custom serialization, simply
implement two instance methods: one called marshal_dump, which writes the object out to a
string, and one calledmarshal_load, which reads a string that you had previously created and
uses it to initialize a newly allocated object.

The instance methodmarshal_dump should return an object representing the state to be dumped.
When the object is subsequently reconstituted using load, the method marshal_load will be
called with this object and will use it to set the state of its receiver—it will be run in the
context of an allocated but not initialized object of the class being loaded.

For instance, here is a sample class that defines its own serialization. For whatever reasons,
Special doesn’t want to save one of its internal data members, @volatile. The author has
decided to serialize the two other instance variables in an array:

ospace/marshal_load.rb
class Special
def initialize(valuable, volatile, precious)
@valuable = valuable
@volatile = volatile
@precious = precious

end

def marshal_dump
[@valuable, @precious]

end

def marshal_load(variables)
@valuable = variables[0]
@precious = variables[1]

report erratum • discuss

Marshaling and Distributed Ruby • 421

http://media.pragprog.com/titles/ruby5/code/ospace/chord.rb
http://media.pragprog.com/titles/ruby5/code/ospace/marshal_load.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

@volatile = "unknown"
end

def to_s
"#{@valuable} #{@volatile} #{@precious}"

end
end

obj = Special.new("Hello", "there", "World")
puts "Before: obj = #{obj}"
data = Marshal.dump(obj)

obj = Marshal.load(data)
puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World
After: obj = Hello unknown World

Using YAML and JSON for Marshaling
The Marshal module is built into the interpreter and uses a binary format to store objects
externally. Although fast, this binary format has a couple of disadvantages: if the interpreter
changes significantly, the marshal binary format may also change and old dumped files may
no longer be loadable. Also, using Marshal assumes that the code on the other end loading
the object is also a Ruby program. You might be sending an object across the web on a remote
call to another server that might not be in Ruby, and in that case, you’ll want a more general
conversion format.

An alternative is to use a less fussy external format, preferably one using text rather than
binary files. One option, supplied as a standard library, is YAML.1 YAML stands for YAML
Ain’t Markup Language, but that hardly seems important. Another common option in the
standard library is JavaScript Object Notation, or JSON.2 In Ruby, the YAML module is an
alias for Psych, which is the name of the Ruby YAML parser.

We can adapt our previous marshal example to use YAML. Rather than implement specific
loading and dumping methods to control the marshal process, we define the method
encode_with, which explicitly sets the values to be saved into its parameter:

ospace/yaml_load.rb
require "yaml"

class Special
def initialize(valuable, volatile, precious)
@valuable = valuable
@volatile = volatile
@precious = precious

end

def encode_with(properties)
properties["precious"] = @precious
properties["valuable"] = @valuable

end

def to_s

1. http://www.yaml.org
2. https://www.json.org/json-en.html

Chapter 23. Reflection and Object Space • 422

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ospace/yaml_load.rb
http://www.yaml.org
https://www.json.org/json-en.html
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

"#{@valuable} #{@volatile} #{@precious}"
end

end

obj = Special.new("Hello", "there", "World")

puts "Before: obj = #{obj}"
data = YAML.dump(obj)
obj = YAML.load(data, permitted_classes: [Special])
puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World
After: obj = Hello World

For security purposes, YAML.load takes a list of classes that you expect to find in the incoming
YAML text and that you are willing to create instances of based on the contents of the YAML
text.

We can take a look at what YAML creates as the serialized form of the object—it’s pretty
simple:

obj = Special.new("Hello", "there", "World")
puts YAML.dump(obj)

produces:

Before: obj = Hello there World
After: obj = Hello World
--- !ruby/object:Special
precious: World
valuable: Hello

JSON is another very commonly used interchange format, and Ruby also has a JSON module
that provides JSON loading and dumping. But Ruby’s JSON module does not, by itself,
parse Ruby objects into Ruby objects, it converts Ruby objects to hash data. If we want to
restrict the attributes, or convert to and from actual objects, typically we need to do this
ourselves:

ospace/json_load.rb
require "json"

class Special
def initialize(valuable, volatile, precious)
@valuable = valuable
@volatile = volatile
@precious = precious

end

def self.from_json(json_string)
result = JSON.parse(json_string)
Special.new(result["valuable"], nil, result["precious"])

end

def to_json
JSON.dump(
{
precious: @precious,
valuable: @valuable

report erratum • discuss

Marshaling and Distributed Ruby • 423

http://media.pragprog.com/titles/ruby5/code/ospace/json_load.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

}
)

end

def to_s
"#{@valuable} #{@volatile} #{@precious}"

end
end

obj = Special.new("Hello", "there", "World")

puts "Before: obj = #{obj}"
data = obj.to_json
new_obj = Special.from_json(data)
puts "After: obj = #{new_obj}"

produces:

Before: obj = Hello there World
After: obj = Hello World

Notice that the new object no longer has the volatile attribute, since that was not marshaled.

Distributed Ruby
Because we can serialize an object or a set of objects into a form suitable for out-of-process
storage, we can transmit objects from one process to another. Couple this capability with
the power of networking, and voilà—you have a distributed object system. To save you the
trouble of having to write the code, we suggest using Masatoshi Seki’s Distributed Ruby
library, often abbreviated drb or dRuby, which is available as a standard Ruby library at
https://github.com/ruby/drb.

Using drb, a Ruby process may act as a server, as a client, or as both. A drb server acts as a
source of objects, while a client is a user of those objects. To the client, it appears that the
objects are local, but in reality the code is still being executed remotely.

A server starts a service by associating an object with a given port. Threads are created
internally to handle incoming requests on that port, so remember to join the drb thread
before exiting your program:

ospace/drb/drb_server.rb
require "drb"

class TestServer
def add(*args)
args.inject { |n, v| n + v }

end
end

server = TestServer.new
DRb.start_service("druby://localhost:9000", server)
DRb.thread.join

A simple drb client simply creates a local drb object and associates it with the object on the
remote server; the local object is a proxy:

ospace/drb/drb_client.rb
require "drb"
DRb.start_service

Chapter 23. Reflection and Object Space • 424

report erratum • discuss

https://github.com/ruby/drb
http://media.pragprog.com/titles/ruby5/code/ospace/drb/drb_server.rb
http://media.pragprog.com/titles/ruby5/code/ospace/drb/drb_client.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

obj = DRbObject.new(nil, "druby://localhost:9000")
Now use obj
puts "Sum is: #{obj.add(1, 2, 3)}"

The client connects to the server and calls the method add, which uses the magic of inject to
sum its arguments. It returns the result, which the client prints out. You can see that by
writing a script that loads the server and then the client.

require "code/ospace/drb/drb_server.rb"
require "code/ospace/drb/drb_client.rb"
sleep 1

produces:

Sum is: 6

The initial nil argument to DRbObject indicates that we want to attach to a new distributed
object. We could also use an existing object.

Yes, this is a functional distributed object mechanism—but it is written in a few hundred
lines of Ruby code. No C, nothing fancy, just plain old Ruby code. Of course, it has no
naming service, trader service, or anything like you’d see in a full-fledged distributed system,
but it is simple and faster than you might think.

What’s Next
The important thing to remember about Ruby is that there isn’t a big difference between
“compile time” and “runtime.” It’s all the same. You can add code to a running process. You
can redefine methods on the fly, change their scope from public to private, and so on. You
can even alter basic types, such as Class and Object. Once you get used to this flexibility, it is
hard to go back to a static language such as C++ or even to a half-static language such as
Java.

But then, why would you want to do that?

Now its time to take a look at Ruby’s syntax in a more structured way.

report erratum • discuss

What’s Next • 425

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Part IV

Ruby Language Reference

This part is a bottom-up look at the Ruby language. Most of what
appears here is the syntax and semantics of the Ruby language
itself. The extensive library of classes and modules will mostly be
covered in Part V. However, Ruby’s syntax and the library are
closely entangled—literal values are part of syntax, but they create
objects in the library, so we’ll cover parts of the library as needed
to explain the syntax.

CHAPTER 24

Language Reference: Literal Types and
Expressions

So far, we’ve given a narrative look at how Ruby works. In this chapter, we’re going to follow
more of a reference structure to discuss Ruby’s syntax as it concerns literal types and
expressions. In the next chapter, we’ll cover syntax relating to objects and classes.

Source Layout
Ruby is a line-oriented language. Ruby expressions and statements are terminated at the
end of a line unless the parser can determine that the statement is incomplete, such as if the
last token on a line is an operator or comma, or if there is still an open delimiter such as a
parenthesis, square bracket, or curly brace. A backslash at the end of a line also tells Ruby
to continue the expression onto the next line:

no backslash '\' needed -- ends with an operator
d = 4 + 5 +

6 + 7

no backslash '\' needed -- has an unclosed parenthesis
e = (4 + 5

+ 6 + 7)

backslash '\' needed -- ends with a number
f = 8 + 9 \

+ 10

A semicolon can be used to separate multiple expressions on a line:

a = 1
b = 2; c = 3

Comments start with# and run to the end of the physical line. Comments are ignored during
syntax analysis.

A line starting with =begin starts a multi-line comment, which ends with a line starting with
=end. Lines in-between are ignored by Ruby and may be used to comment out sections of
code or to embed documentation. The =begin and =end markers can not be indented, they
must start in the first column of a line, like this:

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

=begin
this is
all a
multiline comment
=end

Ruby uses comment syntax at the top of a file for directives that affect how a file is parsed.
These are often called “magic comments,” and they must appear in the file before the first
line of uncommented Ruby code. The syntax of these magic comments is # directive: value.

If you have more than one magic comment, you may put them on separate lines, as long as
all of them come before the first line of Ruby code:

frozen_string_literal: true
encoding: big5

You may also put them on a single line, delimited by semicolons and surrounded by -*-, like
this:

-*- frozen_string_literal: true; encoding: big5 -*-

This syntax is based on the file configuration syntax used by the Emacs editor.

The following table lists the magic comment directives Ruby supports:

DefinitionComment

Synonym of encodingcoding
The default encoding used for string literals in the file, and the encoding
of the source code as a whole. Default is utf-8

encoding

If true, when string literals are loaded during parsing, they are automati-
cally frozen to make them immutable. String literals with interpolation
are never frozen. The default is false.

frozen_string_liter-
al

This directive changes the behavior of immutable constants, to allow them
to be shared by Ractors. The default value is none, in which case constants

sharable_con-
stant_value

are not frozen and can not be shared with Ractors. With the value literal,
constants that are assigned literal values will be frozen and can be shared.
With the value experimental_copy, constants are automatically copied when
shared with Ractors, and with the value experimental_everything, all constant
values are sharable. This directive is experimental and likely to change.
Unlike the other magic comments this directive may be used multiple
times in a file, and is applicable until the next instance of this directive or
the end of the scope in which it is declared.
If true, mismatched indentation in the source code triggers a warning
when the file is loaded. The default is false, unless Ruby is run with the -w
switch, in which case the default is true.

warn_indent

Table 10—Magic Comment Directives

Ruby source files are assumed by default to be written with a UTF-8 encoding, but this can
be changed with the encoding magic comment.

You can pipe programs to the Ruby interpreter’s standard input stream:

$ echo 'puts "Hello"' | ruby

Chapter 24. Language Reference: Literal Types and Expressions • 430

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If Ruby comes across a line anywhere in the source containing just __END__ with no leading
or trailing whitespace, it treats that line as the end of the program—any subsequent lines
will not be treated as program code. Those subsequent lines are treated as data, and these
lines can be read into the running program using the global IO object DATA. The DATA object
only contains the subsequent lines from the main file of the program, lines after __END__ in
other files will be ignored.

DATA.each_line do |line|
p line

end

__END__
line one
line two

produces:

"line one\n"
"line two\n"

BEGIN and END Blocks
Every Ruby source file can declare blocks of code to be run as the file is being loaded (the
BEGIN blocks) and after the program has finished executing (the END blocks):

BEGIN {
 begin code
}

END {
 end code
}

A program may include multiple BEGIN and END blocks. BEGIN blocks are executed in the
order they are encountered. END blocks are executed in reverse order.

These blocks are admittedly a little obscure, and seem mostly to be used for command line
one-line commands to allow initialization or teardown around the actual one-line command.

$ ruby -ne "BEGIN { result = "" }; END { p result }; result << gets.upcase" testfile

With the -n acting as a while loop and the blocks, this code is equivalent to:

result = ""
while gets
result << gets.upcase

end
p result

Because the gets is used as the while condition, this code prints every other line of the file.

Unicode in Syntax
Ruby allows you to use Unicode characters as variable and method names. For example:

def ∑(*args)
args.sum

end

report erratum • discuss

Source Layout • 431

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

puts ∑(1, 3, 5, 9)

produces:

18

This can lead to some pretty obscure and hard-to-use code. (For example, is the summation
character in the previous code a real summation, \u2211, or a Greek sigma, \u03a3?) Just
because we can do something doesn’t mean we necessarily should.

Ruby Literals
Ruby has special syntax for scalar values that are booleans, numbers, lambdas, ranges, reg-
ular expressions, strings, symbols, and array and hash collections. Although all types in
Ruby are implemented as classes, these are the types that have syntax for creation of literal
values of these types. Lambda literals are covered in Proc Objects, on page 481; we’ll cover
the rest here.

Boolean Literals
Ruby provides the literal values true and false. The true value is the instance of the singleton
class TrueClass and represents a true value in logical expressions. The false value is the instance
of the singleton class FalseClass and represents a false value in logical expressions. The literal
value nil is the only instance of the singleton NilClass, and also represents a false value in
logical expressions.

The only logically false values in Ruby are false and nil. You will sometimes see the term
“falsey” used to cover both values. All other values, including empty strings and arrays, are
logically true. These are sometimes called the “truthy” values. There is currently no way in
Ruby to create a new value that will behave as logically false.

Integer and Floating-Point Numbers
Ruby integers are objects of class Integer. Integer objects hold integers that fit within the native
machine word minus 1 bit. The internal storage of integers changes depending on the size
of the number, but for nearly every purpose in Ruby, that internal detail is abstracted away
from you.

Integers are written using an optional leading sign and an optional base indicator (0 or 0o
for octal, 0d for decimal, 0x for hex, or 0b for binary), followed by a string of digits in the
appropriate base. Underscore characters are ignored in the digit string.

123456 => 123456
0d123456 => 123456
123_456 => 123456 # - underscore ignored
-543 => -543 # - negative number
0xaabb => 43707 # - hexadecimal
0377 => 255 # - octal
0o377 => 255 # - octal
-0b10_1010 => -42 # - binary (negated)
123_456_789_123_456_789 => 123456789123456789 # Big number internal storage

A numeric literal with a decimal point and/or an exponent is turned into a Float object, corre-
sponding to the native architecture’s double data type. You must follow the decimal point

Chapter 24. Language Reference: Literal Types and Expressions • 432

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

with a digit; if you write 1.e3, Ruby tries to invoke the method e3 on the Fixnum 1. You must
place at least one digit before the decimal point.

12.34 # => 12.34
-0.1234e2 # => -12.34
1234e-2 # => 12.34

Rational and Complex Numbers
Classes that support rational numbers (ratios of integers) and complex numbers are built
into the Ruby interpreter. Rational numbers have a literal syntax with an expression followed
by the letter r:

2r # => (2/1)
3/4r # => (3/4)
-2/5r # => (-2/5)
2/-5r # => (-2/5)
1.4r # => (7/5)
3/9r # => (1/3)

Complex numbers are integers with an i suffix for the complex part:

2i # => (0+2i)
4 + 3i # => (4+3i)

A number can be rational and imaginary, but the r needs to come before the i in the suffix
list.

Strings
Ruby provides a number of mechanisms for creating literal strings. Each generates objects
of type String. The different mechanisms vary in terms of how a string is delimited and how
much substitution is done on the literal’s content. Literal strings are encoded using the source
encoding of the file that contains them.

Single-quoted string literals ('_stuff_' and %q/_stuff_/) undergo the least substitution. They
convert the sequence \\ into a single backslash, and a backslash can be used to escape the
single quote or the string delimiter. All other backslashes appear literally in the string.

'hello' # => hello
'a backslash \'\\\'' # => a backslash '\'
%q/simple string/ # => simple string
%q(nesting (really) works) # => nesting (really) works
%q(escape a\) with backslash) # => escape a) with backslash
%q no_blanks_here ; # => no_blanks_here

Double-quoted strings ("_stuff_", %Q/_stuff_/, and %/_stuff_/) undergo additional substitutions;
refer to the following table.

Tab (0x09)\tBackspace (0x08)\bValue of code#{code}
Unicode character\uxxxxControl-x\cxOctal nnn\nnn
Unicode characters\u{xx xx xx}Escape (0x1b)\ex\x
Vertical tab (0x0b)\vFormfeed (0x0c)\fControl-x\C-x
Hex nn\xnnNewline (0x0a)\nMeta-x\M-x

Return (0x0d)\rMeta-control-x\M-\C-x

report erratum • discuss

Ruby Literals • 433

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Space (0x20)\sBell/alert (0x07)\a

Table 11—Substitutions in double-quoted strings

Here are some examples:

a = 123
"\123mile" # => Smile
"Greek pi: \u03c0" # => Greek pi: π
"Greek \u{70 69 3a 20 3c0}" # => Greek pi: π
"Say \"Hello\"" # => Say "Hello"
%Q!"I said 'nuts'\!," I said! # => "I said 'nuts'!," I said
%Q{Try #{a + 1}, not #{a - 1}} # => Try 124, not 122
%<Try #{a + 1}, not #{a - 1}> # => Try 124, not 122
"Try #{a + 1}, not #{a - 1}" # => Try 124, not 122
%{ #{ a = 1; b = 2; a + b } } # => 3

Last, and probably least (in terms of usage), you can get the string corresponding to an ASCII
character by preceding that character with a question mark, where “a” can represent any
ASCII character. Refer to the following table:

ASCII charactera?a
newline (0x0a)\n?\n
control a (0x65 & 0x9f) == 0x01\u0001?\C-a
meta sets bit 7\xE1?\M-a
meta and control a\x81?\M-\C-a
delete character\u007F?\C-?

Table 12—ASCII Character Expressions

Inside a double-quoted string, the sequence #{EXPR} will cause the expression inside the
curly braces to be evaluated, converted to a string, and interpolated into the string. If you
want to interpolate an instance, class, or global variable, you can do so without the braces,
just use #@var, #@@var, or #$var. However, the braces are recommended for consistency.

Strings can continue across multiple input lines, in which case they will contain newline
characters.

You can use here documents to express long string literals. When Ruby parses the sequence
<<IDENTIFIER or <<QUOTED_STRING, it replaces it with a string literal built from successive
logical input lines. It stops building the string when it finds a line that starts with identifier
or quoted string. You can put a minus sign immediately after the << characters, in which case
the terminator can be indented from the margin. If a quoted string was used to specify the
terminator, its quoting rules are applied to the here document; otherwise, double-quoting
rules apply.

reference/quoting.rb
print <<HERE
Double quoted
here document.
It is #{Time.now}
HERE

print <<-'THERE'
This is single quoted.
The above used #{Time.now}

Chapter 24. Language Reference: Literal Types and Expressions • 434

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/reference/quoting.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

THERE

produces:

Double quoted
here document.
It is 2023-05-14 18:22:18 -0500

This is single quoted.
The above used #{Time.now}

Putting a tilde ~ in front of the identifier removes all leading spaces from each line of the
here document, allowing the here doc to be indented for readability:

reference/heredoc.rb
print <<~HERE
This is indented.
But the result will not have
the indentation.

HERE

produces:

This is indented.
But the result will not have
the indentation.

A quirk of the heredoc syntax is that if you want to call a method on the resulting string,
you chain the method after the opening identifier, as in this example that calls upcase.

reference/heredoc_2.rb
print <<~HERE.upcase
This is indented.
But the result will not have
the indentation.

HERE

produces:

THIS IS INDENTED.
BUT THE RESULT WILL NOT HAVE
THE INDENTATION.

Adjacent single- and double-quoted strings are concatenated to form a single String object—in
fact, the parser considers them a single string:

'Con' "cat" 'en' "ate" # => "Concatenate"

A new String object is created every time a string literal is assigned or passed as a parameter.

3.times do
print "hello".object_id, " "

end

produces:

60 80 100

To avoid this behavior, Ruby has the concept of a frozen string. A frozen string is not mutable,
and is only allocated once. There’s one exception, strings with interpolation are never frozen.
Future attempts to allocate a frozen string will result in the same object. You can create a
frozen string by calling freeze on a string.

report erratum • discuss

Ruby Literals • 435

http://media.pragprog.com/titles/ruby5/code/reference/heredoc.rb
http://media.pragprog.com/titles/ruby5/code/reference/heredoc_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

3.times do
print "hello".freeze.object_id, " "

end

produces:

60 60 60

You can automatically freeze all non-interpolated literal strings in a file with the
frozen_string_literal magic comment.

String literals are always encoded using the encoding of the source file that contains them,
regardless of the content of the string:

encoding: utf-8
def show_encoding(str)
puts "'#{str}' (size #{str.size}) is #{str.encoding.name}"

end

show_encoding "cat" # latin 'c', 'a', 't'
show_encoding "∂og" # greek delta, latin 'o', 'g'

produces:

'cat' (size 3) is UTF-8
'∂og' (size 3) is UTF-8

Symbols and regular expression literals that contain only 7-bit characters are encoded using
US-ASCII. Otherwise, they will have the encoding of the file that contains them.

encoding: utf-8
def show_encoding(str)
puts "#{str.inspect} is #{str.encoding.name}"

end
show_encoding :cat
show_encoding :∂og

show_encoding /cat/
show_encoding /∂og/

produces:

:cat is US-ASCII
:∂og is UTF-8
/cat/ is US-ASCII
/∂og/ is UTF-8

You can create arbitrary Unicode characters in strings and regular expressions using the \u
escape. This has two forms: \uxxxx lets you encode a character using four hex digits, and the
delimited form \u{x... x... x...} lets you specify a variable number of characters, each with a
variable number of hex digits:

encoding: utf-8
"Greek pi: \u03c0" # => "Greek pi: π"
"Greek pi: \u{3c0}" # => "Greek pi: π"
"Greek \u{70 69 3a 20 3c0}" # => "Greek pi: π"

Literals containing \u will always be encoded UTF-8, regardless of the source file encoding.

The bytes method is a convenient way to inspect the bytes in a string object. Notice that in
the following code, the 16-bit codepoint is converted to a two-byte UTF-8 encoding:

Chapter 24. Language Reference: Literal Types and Expressions • 436

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

encoding: utf-8
"pi: \u03c0".bytes # => [112, 105, 58, 32, 207, 128]

Ranges
expression .. expression

expression ... expression

Outside the context of a conditional expression, EXPR..EXPR and EXPRESSION...EXPRESSION con-
struct Range objects. The two-dot form is an inclusive range; the one with three dots is a range
that excludes its last element.

If the range is being used for comparison purposes to identify objects that are inside the
range, then the objects defining the range only need to implement the <=> comparison
operator. If the range is being used to iterate over the values inside the range, then the ele-
ments on either side of the range can be any object that implements a method called succ
that returns the next object in the sequence, for example, integers and strings.

A range can be constructed without a start value, as in ..5 or without an end value, 5... In
these cases the range is an infinite sequence on the unbounded end. An unbounded range
can be useful in matching a set of values (as in using ...today to indicate days in the past).
Unbounded ranges can also be used when taking a subelement of an array or string, where
the infinite side is a stand in for the edge of the array:

["a", "b", "c", "d", "e"][..2] # => ["a", "b", "c"]
["a", "b", "c", "d", "e"][2..] # => ["c", "d", "e"]

Arrays
[expression, expression, ...]

Literals of class Array are created by placing a comma-separated series of object references
between square brackets. The objects can be of any type, and do not have to be of the same
type as each other. A trailing comma is ignored.

arr = [fred, 10, 3.14, "This is a string", barney("pebbles"),]

Arrays of strings can be constructed using the shortcut notations%w and%W. The lowercase
form extracts space-separated tokens into successive elements of the array. No substitution
is performed on the individual strings. The uppercase version also converts the words to an
array but performs all the normal double-quoted string substitutions on each individual
word. A space between words can be escaped with a backslash. The shortcut notation %i
creates an array of symbols, as in %i[a b c]. These are forms of general delimited input and
is described on page 444.

arr = %w(fred wilma barney betty great\ gazoo)
arr # => ["fred", "wilma", "barney", "betty", "great gazoo"]
arr = %w(Hey!\tIt is now -#{Time.now}-)
arr # => ["Hey!\tIt", "is", "now", "-#{Time.now}-"]
arr = %W(Hey!\tIt is now -#{Time.now}-)
arr # => ["Hey! It", "is", "now", "-2023-05-14 18:22:19 -0500-"]

report erratum • discuss

Ruby Literals • 437

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Hashes
{key expression => value expression, ...}

{key expression: value expression, ...}

{key and value expression:, ...}

A literal Ruby Hash is created by placing a list of key/value pairs between braces. Keys and
values can be separated by the sequence=>. A comma appears between each key/value pair:

colors = {"red" => 0xf00, "green" => 0x0f0, "blue" => 0x00f}

If the keys are symbols, you can use this alternative notation:

colors = {red: 0xf00, green: 0x0f0, blue: 0x00f}

The key syntax here exactly matches the symbol-literal syntax, except with the colon at the
end instead of the beginning, allowing for symbols with syntactically challenging names:
{"do-this": 3, "do that": 4}. The resulting keys will be symbols, not strings.

The keys and/or values in a particular hash need not have the same type. The keys and values
will be accessible in sequence in the same order in which they were added to the hash.

Requirements for a Hash Key
Hash keys must be objects that respond to the message hash by returning a hash code, and
the hash code for a given key must not change. The keys used in hashes must also be com-
parable using eql?. If eql? returns true for two keys, then those keys must also have the same
hash code. This means that you need to be careful when using certain classes (such as Array
and Hash) as keys, because their hash values can change based on their contents.

If you keep an external reference to an object that is used as a key and use that reference to
alter the object, thus changing its hash code, the hash lookup based on that key may not
work. You can force the hash to be reindexed by calling its rehash method.

arr = [1, 2, 3]
hash = {arr => "value"}
hash[arr] # => "value"
arr[1] = 99
hash # => {[1, 99, 3]=>"value"}
hash[arr] # => nil
hash.rehash
hash[arr] # => "value"

Because strings are very frequently used as hash keys and because string contents are often
changed, Ruby treats string keys as a special case. If you use a String object as a hash key, the
hash will duplicate the string internally and will use that copy as its key. The copy will be
frozen. Any changes made to the original string will not affect the hash.

If you write your own classes and use instances of them as hash keys, you need to make sure
that either (a) the hashes of the key objects don’t change once the objects have been created
or (b) you remember to call the rehash method to reindex the hash whenever a key hash is
changed.

Chapter 24. Language Reference: Literal Types and Expressions • 438

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Hash Shortcuts
Often, a hash key has the same name as a value in the current context, and you want to
assign that value to that key: {red: red, green: green, blue: blue}. If the value already exists in
the context where the hash is being created, then you can leave off the value and the existing
local value is used instead:

red = 0xf00
green = 0x0f0
blue = 0x00f
colors = {red:, green:, blue:}

The key can be a local variable or a method that takes no arguments.

Symbols
A Ruby symbol is an identifier similar to a string, but optimized for fast lookup. If the symbol
you want is an identifier—no spaces, no unusual characters–you construct the symbol for a
name by preceding the name with a colon. You can construct the symbol for any other
arbitrary string by preceding a string literal with a colon. Substitution occurs in double-
quoted strings. You can also use the %s delimited notation to create a symbol.

A particular name or string will always generate the same symbol and the same internal
object, regardless of how that name is used within the program.

:Object
:my_variable
:"Ruby rules"
a = "cat"
:'catsup' # => :catsup
:"#{a}sup" # => :catsup
:'#{a}sup' # => :"\#{a}sup"
%s{"symbol with quotes"} # => :"\"symbol with quotes\""

Other languages might use the term interning to refer to the process of having a single
internal representation for all objects with the same value. Those languages might call symbols
interned strings or atoms.

Regular Expressions
Regular expression literals are objects of type Regexp. They are created explicitly by calling
Regexp.new or implicitly by using the literal forms, /_pattern_/ and%r{_pattern_}. The%r construct
is a form of general delimited input (described on page 444).

/pattern/

/pattern/options

%r{pattern}

%r{pattern}options

Regexp.new("pattern" ‹ , options ›)

report erratum • discuss

Regular Expressions • 439

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

options is one or more of i (case insensitive), o (substitute once), m (. matches newline), and x
(allow spaces and comments). You can additionally override the default encoding of the
pattern with n (no encoding-ASCII), e (EUC), s (Shift_JIS), or u (UTF-8).

Within a regular expression, each entry in the following table matches the characters described
in its description. Most characters match themselves, but several special characters or patterns
have defined matches.

All except . | () [\ ^ { + $ * and ? match themselves. To match one
of these characters, precede it with a backslash.

characters

Match the character derived according to Table 11, Substitutions
in double-quoted strings, on page 433.

\a \cx \e \f \r \t \unnnn \v
\xnn \nnn \C-\M-x \C-x
\M-x

Match the beginning of a line.^
Match the end of a line.$
Match the beginning of the entire string.\A
Match the end of the entire string. \Z ignores trailing \n.\z, \Z
Match any decimal digit or hexadecimal digit ([0-9a-fA-F]). If Unicode
is set, matches a unicode decimal number.

\d, \h

Matches any whitespace character: tab, newline, vertical tab,
formfeed, return, and space. If Unicode is set, also matches

\s

[\t\n\r\x{000B}\x{000C}\x{0085}] plus Line_Separator, Paragraph_Sepa-
rator, Space_Separator
Matches any word character: alphanumerics and underscores. If
Unicode is set, matches Letter,Mark, Number ,Connector_Punctuation

\w

The negated forms of \d, \h, \s, and \w, matching characters that are
not digits, hexadecimal digits, whitespace, or word characters, per
whatever encoding is specified

\D, \H, \S, \W

Match word/nonword boundaries.\b, \B
The position where a previous repetitive search completed.\G
Discards the portion of the match to the left of the \K.\K
A generic end-of-line sequence. If Unicode is set, also matches
Unicode end of line characters.

\R

A Unicode grapheme. Generally only useful in Unicode encodings.\X
Match a character that is in/not in the given property.\p{property}, \P{property},

\p{!property}
Appearing outside brackets, matches any character except a new-
line. (With the /m option, it matches newline, too).

. (period)

Matches a single character from the specified set.[characters]
Matches zero or more occurrences of re.re*
Matches one or more occurrences of re.re+
Matches at least m and at most n occurrences of re.re{m,n}
Matches at least m occurrences of re.re{m,}
Matches at most n occurrences of re.re{,n}

Chapter 24. Language Reference: Literal Types and Expressions • 440

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Matches exactly m occurrences of re.re{m}
Matches zero or one occurrence of re.re?

The ?, *, +, and {m,n} modifiers are greedy by default. Append a
question mark to make them minimal, and append a plus sign to
make them possessive (that is, they are greedy and will not back-
track).
Matches either re1 or re2.re1 | re2
Parentheses group regular expressions and introduce extensions.(...)
Substitutes expression in the pattern, as with strings. By default,
the substitution is performed each time a regular expression literal
is evaluated. With the /o option, it is performed just the first time.

#{...}

Match the value matched by the nth grouped subexpression.\1, \2, ... \n
Inserts a comment into the pattern.(?# comment)
Makes re into a group without generating backreferences.(?:re)
Matches if re is/is not at this point but does not consume it.(?=re), (?!re)
Matches if re is/is not before this point but does not consume it.(?<=re), (?<!re)
Matches re but inhibits subsequent backtracking.(?>re)
Turn on/off the corresponding a, d, i,m, u, or x option. If used inside
a group, the effect is limited to that group.

(?adimux), (?-imx)

Turn on/off the i, m, or x option for re.(?adimux:re), (?-imx:re)
The nth captured subpattern.\n, \k'n', and \k<n>
Name the string captured by the group.(?<name>...) or

(?'name'...)
The contents of the named group.\k<name> or \k'name'
The contents of the named group at the given relative nesting level.\k<name>+/-n or

\k'name'+/-n
Invokes the named or numbered group.\g<name>or \g<number>

Table 13—Regular Expression Special Characters

Regular Expression Matching Variables
Ruby sets a number of variables after a successful regular expression match. Although these
variables start with $, they are scoped to the current thread, rather than being truly global.
These variables are set to nil after an unsuccessful regular expression match. Refer to the
following table:

The string matched (following a successful pattern match). This variable
is local to the current scope. [r/o, thread]

$& → String

The contents of the highest-numbered group matched following a success-
ful pattern match. Thus, in "cat" =~ /(c|a)(t|z)/, $+ will be set to “t.” This
variable is local to the current scope. [r/o, thread]

$+ → String

The string preceding the match in a successful pattern match. This variable
is local to the current scope. [r/o, thread]

$` → String

report erratum • discuss

Regular Expressions • 441

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The string following the match in a successful pattern match. This variable
is local to the current scope. [r/o, thread]

$' → String

The contents of successive groups matched in a pattern match. In "cat" =~
/(c|a)(t|z)/, $1 will be set to “a” and $2 to “t.” This variable is local to the
current scope. [r/o, thread]

$1...$n → String

An object that encapsulates the results of a successful pattern match. The
variables $&, $`, $', and $1 to $9 are all derived from $~. Assigning to $~

$~ → MatchData

changes the values of these derived variables. This variable is local to the
current scope. [thread]

Table 14—Regular Expression Match Variables

Character Classes
If you look at the table, you’ll see that some of the character classes have different interpre-
tations depending on the character set option defined for the regular expression. These
options tell the regexp engine whether (for example) word characters are just the ASCII
alphanumerics, or whether they should be extended to include Unicode letters, marks,
numbers, and connection punctuation. The options are set using the sequence (?_option_),
where the option is one of d for the default mode, a for ASCII-only support, and u for full
Unicode support. If you don’t specify an option, it defaults to (?d). There doesn’t seem to be
much difference between d and a.

show_regexp('über.', /\w+/) # => ü->ber<-.
show_regexp('über.', /(?a)\w+/) # => ü->ber<-.
show_regexp('über.', /(?d)\w+/) # => ü->ber<-.
show_regexp('über.', /(?u)\w+/) # => ->über<-.

show_regexp('über.', /\W+/) # => ->ü<-ber.
show_regexp('über.', /(?a)\W+/) # => ->ü<-ber.
show_regexp('über.', /(?d)\W+/) # => ->ü<-ber.
show_regexp('über.', /(?u)\W+/) # => über->.<-

The POSIX character classes, as shown in Table 15, POSIX character classes, on page 443,
correspond to the ctype(3) macros of the same names. They can also be negated by putting
an up arrow (or caret) after the first colon:

show_regexp('Price $12.', /[aeiou]/) # => Pr->i<-ce $12.
show_regexp('Price $12.', /[[:digit:]]/) # => Price $->1<-2.
show_regexp('Price $12.', /[[:space:]]/) # => Price-> <-$12.
show_regexp('Price $12.', /[[:^alpha:]]/) # => Price-> <-$12.
show_regexp('Price $12.', /[[:punct:]aeiou]/) # => Pr->i<-ce $12.

These versions are much rarer in actual Ruby code, in our experience. However, the POSIX
classes do match non-ASCII characters.

You can create the intersection of character classes using &&. So, to match all lowercase ASCII
letters that aren’t vowels, you could use this:

str = "now is the time"
str.gsub(/[a-z&&[^aeiou]]/, '*') # => "*o* i* **e *i*e"

The \p construct gives you an encoding-aware way of matching a character with a particular
Unicode property (shown in Table 16, Unicode character properties, on page 443):

Chapter 24. Language Reference: Literal Types and Expressions • 442

report erratum • discuss

http://www.freebsd.org/cgi/man.cgi?query=ctype&sektion=3
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

encoding: utf-8
string = "∂y/∂x = 2πx"
show_regexp(string, /\p{Alnum}/) # => ∂->y<-/∂x = 2πx
show_regexp(string, /\p{Digit}/) # => ∂y/∂x = ->2<-πx
show_regexp(string, /\p{Space}/) # => ∂y/∂x-> <-= 2πx
show_regexp(string, /\p{Greek}/) # => ∂y/∂x = 2->π<-x
show_regexp(string, /\p{Graph}/) # => ->∂<-y/∂x = 2πx

POSIX Character Classes (Unicode)
Text in parentheses indicates the Unicode classes. These apply if the regular expression’s encoding is one of the
Unicode encodings.

Alphanumeric (Letter | Mark | Decimal_Number)[:alnum:]
Uppercase or lowercase letter (Letter | Mark)[:alpha:]
7-bit character including nonprinting. This is a non-standard class supported by Ruby.[:ascii:]
Blank and tab (+ Space_Separator)[:blank:]
Control characters—at least 0x00–0x1f, 0x7f (Control | Format | Unassigned | Private_Use
| Surrogate)

[:cntrl:]

Digit (Decimal_Number)[:digit:]
Printable character excluding space (Unicode also excludes Control, Unassigned, and Sur-
rogate)

[:graph:]

Lowercase letter (Lowercase_Letter)[:lower:]
Any printable character (including space)[:print:]
Printable character excluding space and alphanumeric (Connector_Punctuation | Dash_
Punctuation |Close_Punctuation | Final_Punctuation | Initial_Punctuation |Other_Punctuation
| Open_Punctuation)

[:punct:]

Whitespace (same as \s)[:space:]
Uppercase letter (Uppercase_Letter)[:upper:]
Hex digit (0–9, a–f, A–F)[:xdigit:]
Alphanumeric, underscore, and multibyte (Letter | Mark | Decimal_Number | Connector_
Punctuation) This is a non-standard class supported by Ruby.

[:word:]

Table 15—POSIX character classes

Character Properties
Matches character with named property\p{name}
Matches any character except named property\p{^name}
Matches any character except named property\P{name}

Property names.
Spaces, underscores, and case are ignored in property names.

Alnum, Alpha, Blank, Cntrl, Digit, Graph, Lower, Print, Punct, Space, Upper,
XDigit, Word, ASCII

All encodings

Hiragana, KatakanaEUC and SJIS
Any, Assigned, C, Cc, Cf, Cn, Co, Cs, L, Ll, Lm, Lo, Lt, Lu, M, Mc, Me, Mn,
N, Nd, Nl, No, P, Pc, Pd, Pe, Pf, Pi, Po, Ps, S, Sc, Sk, Sm, So, Z, Zl, Zp, Zs,

UTF-n

Arabic, Armenian, Bengali, Bopomofo, Braille, Buginese, Buhid, Canadian
_Aboriginal, Cherokee, Common, Coptic, Cypriot, Cyrillic, Deseret,
Devanagari, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gur-
mukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada,
Katakana, Kharoshthi, Khmer, Lao, Latin, Limbu, Linear_B, Malayalam,
Mongolian, Myanmar, New_Tai_Lue, Ogham, Old_Italic, Old_Persian,
Oriya, Osmanya, Runic, Shavian, Sinhala, Syloti_Nagri, Syriac, Tagalog,

report erratum • discuss

Regular Expressions • 443

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Character Properties
Tagbanwa, Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic,
Yi

Table 16—Unicode character properties

General Delimited Input
In addition to the normal quoting mechanism, Ruby supports a generalized delimiter sequence
that allows you to write alternative forms of literal strings, arrays of strings and symbols,
regular expressions, and shell commands. All these literals start with a percent character
followed by a single character that identifies the literal’s type. These characters are summa-
rized in the following table; the actual literal values are described later in this chapter:

ExampleMeaningType

%q{\a and #{1+2} are literal}Single-quoted string%q
%Q{\a and #{1+2} are expanded}Double-quoted string%Q, %
%w[one two three]Array of strings%w, %W
%i[one two three]Array of symbols%i, %I
%r{cat|dog}Regular expression pattern%r
%s!a symbol!A symbol%s
%x(df -h)Shell command%x

Table 17—Literal Input Delimiters

Unlike their lowercase counterparts, %I, %Q, and %W will perform interpolation:

%i{one digit#{1+1} three} # => [:one, :"digit\#{1+1}", :three]
%I{one digit#{1+1} three} # => [:one, :digit2, :three]
%q{one digit#{1+1} three} # => "one digit\#{1+1} three"
%Q{one digit#{1+1} three} # => "one digit2 three"
%w{one digit#{1+1} three} # => ["one", "digit\#{1+1}", "three"]
%W{one digit#{1+1} three} # => ["one", "digit2", "three"]

Following the type character is a delimiter, which can be any nonalphanumericic or non-
multibyte character. If the delimiter is one of the characters (, [, {, or <, the literal consists of
the characters up to the matching closing delimiter, taking account of nested delimiter pairs.
For all other delimiters, the literal comprises the characters up to the next occurrence of the
delimiter character.

%q/this is a string/
%q-string-
%q(a (nested) string)

Delimited strings may continue over multiple lines; the line endings and all spaces at the
start of continuation lines will be included in the string:

meth = %q{def fred(a)
a.each {|i| puts i }

end}

Chapter 24. Language Reference: Literal Types and Expressions • 444

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Names
Ruby names are used to refer to constants, variables, methods, classes, and modules. The
first character of a name helps Ruby determine its intended use. Certain names, listed in the
following table, are keywords and should not be used as variable, method, class, or module
names. (Technically, many of these names are legal method or variable names, it’s just very
confusing to use them in that way.) Method names are described later on page 465.

beginandaliasENDBEGIN__LINE____FILE____ENCODING__

endelsifelsedodefined?defclasscasebreak

notnilnextmoduleinifforfalseensure

truethensuperselfreturnretryrescueredoor

yieldwhilewhenuntilunlessundef

Table 18—Reserved words

In these descriptions, uppercase letter a capital letter from any Unicode alphabet, and digit
means 0 through 9. Lowercase lettermeans any non-7-bit characters that are valid in the current
encoding, specifically including the underscore (_). Names using non-7-bit character names
will not be usable from other source files with different encoding.

A name is an uppercase letter, a lowercase letter, or an underscore, followed by name characters:
any combination of upper and lowercase letters, underscores, and digits.

A local variable name consists of a lowercase letter followed by name characters. It is conven-
tional to use underscores rather than camelCase to write multiword names, but the interpreter
does not enforce this.

fred anObject _x three_two_one

If the source file encoding is UTF-8, ∂elta and été are both valid local variable names.

An instance variable name starts with an “at” sign (@) followed by name characters. The gen-
eral practice is to use a lowercase letter after the @. The @ sign forms part of the instance
variable name.

@name @_ @size

A class variable name starts with two “at” signs (@@) followed by name characters.

@@name @@_ @@Size

A constant name starts with an uppercase letter followed by name characters. Class names
and module names are constants and follow the constant naming conventions.

By convention, constant object references are normally spelled using uppercase letters and
underscores throughout, while class and module names are MixedCase:

module Math
ALMOST_PI = 22.0/7.0

end
class BigBlob
end

Global variables and some special system values start with a dollar sign ($) followed by name
characters. In addition, Ruby defines a set of two-character global variable names in which

report erratum • discuss

Names • 445

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

the second character is a punctuation character. These predefined variables are listed Prede-
fined Values, on page 450. Finally, a global variable name can be formed using $- followed
by a single letter or underscore. These latter variables typically mirror the setting of the
corresponding command-line option (see Execution Environment Values, on page 450 for
details):

$params $PROGRAM $! $_ $-a $-K

Variable/Method Ambiguity
When Ruby sees a name such as a in an expression, it needs to determine whether it is a
local variable reference or a call to a method with no parameters. To decide which is the
case, Ruby uses a heuristic. As Ruby parses a source file, it keeps track of symbols that have
had values assigned to them. Ruby assumes that these symbols are variables. When it sub-
sequently comes across a symbol that could be a variable or a method call, it checks to see
whether it has seen a prior assignment to that symbol. If so, it treats the symbol as a variable;
otherwise, it treats it as a method call.

As a somewhat pathological case of this, consider the following code fragment, submitted
by Clemens Hintze:

def a
puts "Function 'a' called"
99

end

(1..2).each do |i|
if i == 2
puts "i==2, a=#{a}"

else
a = 1
puts "i==1, a=#{a}"

end
end

produces:

i==1, a=1
Function 'a' called
i==2, a=99

When parsing the file, Ruby sees the use of a in the puts statement in the main branch of the
if and, because it hasn’t yet seen any assignment to a, assumes that a is a method call. By the
time it gets to the puts statement in the else branch, though, it has seen an assignment and so
treats a as a variable.

Note that the assignment does not have to be executed—Ruby just has to have seen it. This
program does not raise an error.

a = 1 if false # => nil
a # => nil

Values, Variables and Constants
Ruby variables and constants hold references to objects. Variables themselves do not have
an intrinsic type. Instead, the type of a variable is defined solely by the messages to which

Chapter 24. Language Reference: Literal Types and Expressions • 446

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

the object referenced by the variable responds. (When we say that a variable is not typed,
we mean that any given variable can at different times hold references to objects of different
types.)

A Ruby constant is also a reference to an object. Constants are created when they are first
assigned to (normally in a class or module definition). Ruby, unlike less flexible languages,
lets you alter the value of a constant, although this will generate a warning message, which
gets sent to $stderr:

MY_CONST = 1
puts "First MY_CONST = #{MY_CONST}"

MY_CONST = 2 # generates a warning but sets MY_CONST to 2
puts "Then MY_CONST = #{MY_CONST}"

produces:

First MY_CONST = 1
Then MY_CONST = 2

Note that although constants should not be changed, you can alter the internal states of the
objects they reference (you can freeze objects to prevent this). This is because assignment
potentially aliases objects, creating two references to the same object.

MY_CONST = "Tim"
MY_CONST[0] = "J" # alter string referenced by constant
MY_CONST # => "Jim"

Scope of Constants and Variables
Constants defined within a class or module may be accessed anywhere within the class or
module without needing to reference the enclosing class or module. Outside the class or
module, the constant can be accessed using the scope operator, ::, prefixed by an expression
that returns the appropriate class or module object.

Constants defined outside any class or module may be accessed unadorned or by using the
scope operator with no prefix. Constants may not be defined in methods. Constants may be
added to existing classes and modules from the outside by using the class or module name
and the scope operator before the constant name.

OUTER_CONST = 99
class Const
def get_const
CONST

end
CONST = OUTER_CONST + 1

end

Const.new.get_const # => 100
Const::CONST # => 100
::OUTER_CONST # => 99
Const::NEW_CONST = 123

Global variables are available throughout a program. Every reference to a particular global
name returns the same object. Referencing an uninitialized global variable returns nil.

report erratum • discuss

Values, Variables and Constants • 447

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Class variables are available throughout a class or module body. Class variables must be ini-
tialized before use. A class variable is shared among all instances of a class and its subclasses
and is available within the class itself:

class Song
@@count = 0

def initialize
@@count += 1

end

def Song.get_count
@@count

end
end

Class variables belong to the innermost enclosing class or module at the point they are
defined. You can not use a class variables at the top level, you will receive a RuntimeError.

Class variables are inherited by children but propagate upward if first defined in a child:

class Top
@@A = "top A"
@@B = "top B"
def dump
puts values

end
def values
"#{self.class.name}: @@A = #@@A, @@B = #@@B"

end
end

class MiddleOne < Top
@@B = "One B"
@@C = "One C"
def values
super + ", C = #@@C"

end
end

class MiddleTwo < Top
@@B = "Two B"
@@C = "Two C"
def values
super + ", C = #@@C"

end
end

class BottomOne < MiddleOne; end

class BottomTwo < MiddleTwo; end

Top.new.dump
MiddleOne.new.dump
MiddleTwo.new.dump
BottomOne.new.dump
BottomTwo.new.dump

Chapter 24. Language Reference: Literal Types and Expressions • 448

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

Top: @@A = top A, @@B = Two B
MiddleOne: @@A = top A, @@B = Two B, C = One C
MiddleTwo: @@A = top A, @@B = Two B, C = Two C
BottomOne: @@A = top A, @@B = Two B, C = One C
BottomTwo: @@A = top A, @@B = Two B, C = Two C

Because of this behavior, class variables tend to be confusing, hard to debug, and hard to
reason about and we recommend avoiding them.

Instance variables are available within instance methods throughout a class body. Referencing
an uninitialized instance variable returns nil. Each object (instance of a class) has a unique
set of instance variables.

Local variables are unique in that their scopes are statically determined but their existence is
established dynamically. A local variable is created dynamically when it is first assigned a
value during program execution. However, the scope of a local variable is statically deter-
mined to be the immediately enclosing block, method definition, class definition, module
definition, or top-level program. Local variables with the same name are different variables
if they appear in disjoint scopes.

Method parameters are considered to be variables local to that method.

Block parameters are assigned values when the block is invoked. If a local variable is first
assigned in a block, it is local to the block. If a block uses a variable that is previously defined
in the scope containing the block’s definition, the block will share that variable with the
scope.

There are two exceptions to this rule. Block parameters are always local to the block. In
addition, variables listed after a semicolon at the end of the block parameter list are also
always local to the block:

a = 1
b = 2
c = 3

some_method do |b; c|
a = b + 1
c = a + 1
d = c + 1

end

In this example, the variable a inside the block is shared with the surrounding scope. The
variables b and c are not shared because they are listed in the block’s parameter list, and the
variable d is not shared because it occurs only inside the block.

A block takes on the set of local variables in existence at the time that it is created. This forms
part of its binding. Note that although the binding of the variables is fixed at this point, the
block will have access to the current values of these variables when it executes. The binding
preserves these variables even if the original enclosing scope is destroyed.

The bodies of while, until, and for loops do not act as blocks. They are part of the scope that
contains them; previously existing locals can be used in the loop, and any new locals created
will be available outside the bodies afterward.

report erratum • discuss

Values, Variables and Constants • 449

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Predefined Values
The following values are predefined in the Ruby interpreter. In these descriptions, the
notation [r/o] indicates that the variables are read-only; an error will be raised if a program
attempts to modify a read-only variable. After all, you probably don’t want to change the
meaning of true halfway through your program (except perhaps if you’re a politician). Entries
marked [thread] are thread local.

Many global variables look like comic book swearing: $_, $!, $&, and so on. This is for “his-
torical” reasons—most of these variable names come from Perl. If you find memorizing all
this punctuation difficult, you may want to take a look at the English library, which gives the
commonly used global variables more descriptive names.

In the tables of variables and constants that follow, we list the variable name, the type of the
referenced object, and a description.

Exception Information

The exception object passed to raise. [thread]$! → Exception
The stack backtrace generated by the last exception. [thread]$@ → Array

Input/Output Values

The input record separator (newline by default). This is the value
that routines such as Kernel#getsuse to determine record boundaries.
If set to nil, gets will read the entire file.

$/ → String

Synonym for $/.$-0 → String
The string appended to the output of every call to methods such
as Kernel#print and IO#write. The default value is nil.

$\ → String

The separator string output between the parameters to methods
such as print and join. Defaults to nil, which adds no text.

$, → String

The number of the last line read from the current input file.$. → Fixnum
The default separator pattern used by String#split. May be set using
the -F command-line option.

$; → String

Synonym for ARGF. See ARGF, on page 238.$< → ARGF.class
The destination stream for print and printf. The default value is STD-
OUT.

$> → IO

The last line read by gets or readline. Many string-related functions
in the Kernel module operate on $_ by default. The variable is local
to the current scope. [thread]

$_ → String

Synonym for $;.$-F → String
The current standard error, standard output, and standard input
streams.

$stderr, $stdout,
$stdin, → IO

Execution Environment Values

The name of the top-level Ruby program being executed. Typically
this will be the program’s filename. On some operating systems,

$0 → String

Chapter 24. Language Reference: Literal Types and Expressions • 450

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

assigning to this variable will change the name of the process
reported (for example) by the ‘ps(1)‘ command.
An array of strings containing the command-line options from the
invocation of the program. Options used by the Ruby interpreter
will have been removed. [r/o]

$* → Array

An array containing the filenames of modules loaded by require.
[r/o]

$" → Array

The process number of the program being executed. [r/o]$$ → Fixnum
The exit status of the last child process to terminate. [r/o, thread]$? → Process::Status
An array of strings, where each string specifies a directory to be
searched for Ruby scripts and binary extensions used by the load

$: → Array

and requiremethods. The initial value is the value of the arguments
passed via the -I command-line option, followed by an installation-
defined standard library location. This variable may be updated
from within a program to alter the default search path; typically,
programs use $: << dir to append dir to the path. [r/o]

True if the -a option is specified on the command line. [r/o]$-a → Object
The name of the lexically enclosing method.__callee__ → Symbol
Synonym for $DEBUG.$-d → Object
Set to true if the -d command-line option is specified.$DEBUG → Object
The encoding of the current source file. [r/o]__ENCODING__ → String
The name of the current source file. [r/o]__FILE__ → String
The array that receives the split input line if the -a command-line
option is used.

$F → Array

The name of the current input file. Equivalent to $<.filename. [r/o]$FILENAME → String
If in-place edit mode is enabled (perhaps using the -i command-
line option), $-i holds the extension used when creating the backup

$-i → String

file. If you set a value into $-i, enables in-place edit mode, as
described in the options descriptions on page 235.
Synonym for $:. [r/o]$-I → Array
Set to true if the -l option (which enables line-end processing) is
present on the command line. See the options description on page
234. [r/o]

$-l → Object

The current line number in the source file. [r/o]__LINE__ → String
A synonym for $:. [r/o]$LOAD_PATH → Array
Synonym for $". [r/o]$LOADED_FEA-

TURES → Array
The name of the lexically enclosing method.__method__ → Symbol
Alias for $0.$PROGRAM_NAME → String
Set to true if the -p option (which puts an implicit while gets...end
loop around your program) is present on the command line. See
the options description on page 234. [r/o]

$-p → Object

report erratum • discuss

Values, Variables and Constants • 451

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Set to true if the -v, --version, -W, or -w option is specified on the
command line. Set to false if no option, or -W1 is given. Set to nil if

$VERBOSE → Object

-W0 was specified. Setting this option to true causes the interpreter
and some library routines to report additional information. Setting
to nil suppresses all warnings (including the output of Object#warn).
Synonyms for $VERBOSE.$-v, $-w → Object
Return the value set by the -W command-line option.$-W → Object

Standard Objects

Provides access to a list of files. Used by command line processing. See
ARGF, on page 238.

ARGF → Object

A synonym for $*.ARGV → Array
A hash-like object containing the program’s environment variables. An
instance of class Object, ENV implements the full set of Hashmethods. Used

ENV → Object

to query and set the value of an environment variable, as in ENV["PATH"]
and ENV["term"]="ansi".
Singleton instance of class FalseClass. [r/o]false → FalseClass
The singleton instance of class NilClass. The value of uninitialized instance
and global variables. [r/o]

nil → NilClass

The receiver (object) of the current method. [r/o]self → Object
Singleton instance of class TrueClass. [r/o]true → TrueClass

Global Constants

If the main program file contains the directive __END__, then
the constant DATAwill be initialized so that reading from it will
return lines following __END__ from the source file.

DATA → IO

The interpreter copyright.RUBY_COPYRIGHT → String
Version number and architecture of the interpreter.RUBY_DESCRIPTION → String
The name of the Ruby interpreter. Returns "ruby" for Matz’s
version. Other active interpreters include jruby, ruby, opal,
and truffleruby.

RUBY_ENGINE → String

The patch level of the interpreter.RUBY_PATCHLEVEL → String
The identifier of the platform running this program. This string
is in the same form as the platform identifier used by the GNU
configure utility (which is not a coincidence).

RUBY_PLATFORM → String

The date of this release.RUBY_RELEASE_DATE → String
The revision of the interpreter.RUBY_REVISION → String
The version number of the interpreter.RUBY_VERSION → String
The actual standard error stream for the program. The initial
value of $stderr.

STDERR → IO

The actual standard input stream for the program. The initial
value of $stdin.

STDIN → IO

Chapter 24. Language Reference: Literal Types and Expressions • 452

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The actual standard output stream for the program. The initial
value of $stdout.

STDOUT → IO

If a constant SCRIPT_LINES__ is defined and references a Hash,
Ruby will store an entry containing the contents of each file it

SCRIPT_LINES__ → Hash

parses, with the file’s name as the key and an array of strings
as the value.
A Binding object representing the binding at Ruby’s top level—
the level where programs are initially executed.

TOPLEVEL_BINDING → Binding

The constant __FILE__ and the variable $0 can be used together to run code only if it appears
in the file run directly by the user. For example, library writers often use this to include tests
in their libraries that will be run if the library source is run directly, but not if the source is
required into another program.

library code ...

if __FILE__ == $0
tests...

end

Expressions, Conditionals, and Loops
Single terms in an expression may be any of the following:

• Literal. Ruby literals are boolean, numbers, strings, arrays, hashes, ranges, symbols, and
regular expressions. These are described in Ruby Literals, on page 432.

• Shell command. A shell command is a string enclosed in backquotes or in a general
delimited string starting with%x. The string is executed using the host operating system’s
standard shell, and the resulting standard output stream is returned as the value of the
expression. The execution also sets the $? variable with the command’s exit status:

filter = "*.c"
files = `ls #{filter}`
files = %x{ls #{filter}}

• Variable reference or constant reference. A variable is referenced by citing its name.
Depending on scope (see Scope of Constants and Variables, on page 447), you reference
a constant either by citing its name or by qualifying the name, using the name of the
class or module containing the constant and the scope operator (::):

barney # variable reference
APP_NAMR # constant reference
Math::PI # qualified constant reference

• Method invocation. The various ways of invoking a method are described in Invoking a
Method, on page 470.

Operator Expressions
Expressions may be combined using operators. The Ruby operators in precedence order are
listed in the following table. The operators with a ✓ in the Method column are implemented
as methods and may be overridden.

report erratum • discuss

Expressions, Conditionals, and Loops • 453

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

DescriptionOperatorMethod
Not, complement, unary plus (method name for unary
plus is +@)

! ~ + -✓

Exponentiation**✓

Unary minus (method names is -@)-✓

Multiply, divide, and modulo* / %✓

Plus and minus+ -✓

Right and left shift (<< is also the append operator)>> <<✓

“And” (bitwise for integers)&✓

Exclusive “or” and regular “or” (bitwise for integers)^ |✓

Comparison operators<= < > >=✓

Equality and pattern match operators<=> == === != =~ !~✓

Logical “and”&&
Logical “or”||
Range (inclusive and exclusive).. ...
Ternary if-then-else? :
When used as a modifier at the end of a linerescue
Assignment= %= /= -= += |= &=

>>= <<= *= &&=
||= **= ^=

Test for if a value is defined in current bindingdefined?
Logical negationnot
Logical compositionor and
Expression modifiers at the end of lineif unless while until
Block expression{ }
Block expressiondo end

Table 19—Ruby operators (high to low precedence)

More on Assignment
The assignment operator assigns one or more rvalues (the r stands for “right,” because rvalues
tend to appear on the right side of assignments) to one or more lvalues (“left” values). What
is meant by assignment depends on each individual lvalue.

As the following shows, if an lvalue is a variable or constant name, that variable or constant
receives a reference to the corresponding rvalue. Ruby will handle nested values on the left
if they match the values to the right:

a = /regexp/
b, c, d = 1, "cat", [3, 4, 5]
e, (f, g), h = [6, [7, 8], 9]

If the lvalue is an object attribute, the corresponding attribute-setting method will be called
in the receiver, passing as a parameter the rvalue:

class A
attr_writer :value

end

Chapter 24. Language Reference: Literal Types and Expressions • 454

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

obj = A.new
obj.value = "hello" # equivalent to obj.value=("hello")

If the lvalue is an array or string element reference, Ruby calls the element assignment
operator ([]=) in the receiver, passing as parameters any indices that appear between the
brackets followed by the rvalue. This is illustrated in the following table.

Actual Method CallElement Reference

var.[]=("one")var[] = "one"
var.[]=(1, "two")var[1] = "two"
var.[]=("a", /^cat/, "three")var["a", /^cat/] = "three"

Table 20—Element Assignment Method Calls

If you are writing an []= method that accepts a variable number of indices, it might be con-
venient to define it using this:

def []=(*indices, value)
...

end

The value of an assignment expression is its rvalue. This is true even if the assignment is to
an attribute method that returns something different.

In addition, an assignment expression may have one or more lvalues and one or more rvalues.
The following explains how Ruby handles assignment with different combinations of argu-
ments:

• If any rvalue is prefixed with an asterisk and implements to_a, the rvalue is replaced
with the elements returned by to_a, with each element forming its own rvalue.

• If the assignment contains one lvalue and multiple rvalues, the rvalues are converted
to an array and assigned to that lvalue.

• If the assignment contains multiple lvalues and one rvalue, the rvalue is expanded if
possible into an array of rvalues as described in (1).

• Successive rvalues are assigned to the lvalues. This assignment effectively happens in
parallel so that (for example) a,b=b,a swaps the values in a and b.

• If there are more lvalues than rvalues, the excess will have nil assigned to them.

• If there are more rvalues than lvalues, the excess will be ignored.

• At most one lvalue can be prefixed by an asterisk. This lvalue will end up being an array
and will contain as many rvalues as possible. If there are lvalues to the right of the
starred lvalue, these will be assigned from the trailing rvalues, and whatever rvalues
are left will be assigned to the splat lvalue.

• If an lvalue contains a parenthesized list, the list is treated as a nested assignment
statement, and then it is assigned from the corresponding rvalue as described by these
rules.

See Parallel Assignment, on page 148 for examples of parallel assignment. The value of a
parallel assignment is its array of rvalues.

report erratum • discuss

Expressions, Conditionals, and Loops • 455

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Rightward Assignment, or Single Pattern Matching
expression => pattern

expression in pattern

Ruby’s pattern matching allows for a single-line form that effectively works as “rightward”
assignment, where the existing value is on the left and the variables to be assigned are on
the right. Note that the delimiter around the right hand side can be omitted:

3 => x
puts x

{a: 1, b: 2} in {a:, b:}
puts a
puts b

{a: 1, b: 2} in a:, b:
puts a
puts b

produces:

3
1
2
1
2

The difference between the two forms is what happens if the pattern and the expression
don’t match.

The => form returns nil on a successful match and throws a NoMatchingPatternKeyError if it can
not match the pattern. The in form returns true if the pattern matches and false if the pattern
does not match. In the not-matching case, the behavior of the variables that would have been
matched is undefined—if the match returns false, you cannot depend on those values being
matched, unmatched, or anything else.

For the exact syntax of patterns, see Case Pattern Matching, on page 459. The definition of a
pattern is the same, and we’ll talk more about the semantics of patterns there.

Block Expressions
begin

body
end

Expressions may be grouped between begin and end. The value of the block expression is the
value of the last expression executed.

Block expressions also play a role in exception handling (see Exceptions, on page 484).

Boolean Expressions
Ruby predefines the values false and nil. Both of these values are treated as being false in a
boolean context. All other values are treated as being true. The constant true is available for
when you need an explicit “true” value.

Chapter 24. Language Reference: Literal Types and Expressions • 456

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

And, Or, Not
The and and && operators evaluate their first operand. If false, the expression returns the
value of the first operand; otherwise, the expression returns the value of the second operand:

expr1 && expr2
expr1 and expr2

The or and || operators evaluate their first operand. If true, the expression returns the value
of their first operand; otherwise, the expression returns the value of the second operand:

expr1 || expr2
expr1 or expr2

The not and ! operators evaluate their operand. If true, the expression returns false. If false,
the expression returns true.

The word forms of these operators (and, or, and not) have a lower precedence than the corre-
sponding symbol forms (&&, ||, and !). For details, see Table 19, Ruby operators (high to low
precedence), on page 454. When used, these versions are used for control flow more than
logical operations.

defined?
The defined? keyword returns nil if its argument, which can be an arbitrary expression, is not
defined. Otherwise, it returns a description of that argument. For examples, check out the
tutorial on page 151.

Comparison Operators
Ruby defines the generic comparison operator, <=>. This operator should return -1 if the
left operand is smaller, 1 if the right operand is smaller, and 0 if the two operands are equal.
Although the operators have intuitive meaning, it is up to the classes that implement them
to produce meaningful comparison semantics. The module Comparable allows a class to use
the definition of<=> to implement the operators==,<,<=,>, and>=, as well as the methods
between? and clamp. All these operators are implemented as methods (see Table 3, Common
comparison operators, on page 153).

By convention, the language also uses the standard methods eql? and equal? to test for
equality and the method =~ to test for a regular expression match. The operator === is used
in case expressions, as described in case Expressions, on page 459.

Both == and =~ have negated forms, != and !~. If an object defines these methods, Ruby will
call them. Otherwise, a != b is mapped to !(a == b), and a !~ b is mapped to !(a =~ b).

Ranges in Boolean Expressions

if expr1 .. expr2
while expr1 .. expr2

A range used in a boolean expression acts as a flip-flop: .. (two dots) or ... (three dots). It has
two states—set and unset—and is initially unset.

1. For the three-dot form of a range, if the flip-flop is unset and expr1 is true, the flip-flop
becomes set and the flip-flop returns true.

report erratum • discuss

Expressions, Conditionals, and Loops • 457

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

2. If the flip-flop is set, it will return true. However, if expr2 is not true, the flip-flop becomes
unset.

3. If the flip-flop is unset, it returns false.

The first step differs for the two-dot form of a range. If the flip-flop is unset and expr1 is true,
then Ruby only sets the flip-flop if expr2 is not also true.

The difference is illustrated by the following code:

a = (11..20).collect { |i| (i % 4 == 0)..(i % 3 == 0) ? i : nil }
a # => [nil, 12, nil, nil, nil, 16, 17, 18, nil, 20]

a = (11..20).collect { |i| (i % 4 == 0)...(i % 3 == 0) ? i : nil }
a # => [nil, 12, 13, 14, 15, 16, 17, 18, nil, 20]

Regular Expressions in Boolean Expressions
If Ruby has been invoked via the -e parameter in the command line, and only in that case,
a regular expression by itself without any other operator in a boolean expression matches
against the current value of the variable $_, the most recent line input by gets or readline:

$ ruby -ne 'print if /one/' testfile
This is line one

In regular code, the use of implicit operands and $_ has been largely phased out, so it is
better to use an explicit match against a variable.

if and unless Expressions
unless boolean-expression ‹ then ›

body
if boolean-expression ‹ then ›

body
‹ else‹ elsif boolean-expression ‹ then ›

body ›
end

body ›*

‹ else
body ›

end

The then keyword separates the body from the condition, and is not required if the body
starts on a new line. The value of an if or unless expression is the value of the last expression
evaluated in whichever body is executed.

if and unless Modifiers

expression if boolean-expression
expression unless boolean-expression

This evaluates expression only if boolean-expression is true (for if) or false (for unless).

Ternary Operator
boolean-expression ? expr1 : expr2

This returns expr1 if boolean-expression is true and expr2 otherwise.

Chapter 24. Language Reference: Literal Types and Expressions • 458

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

case Expressions
Ruby has two forms of conditional case expressions (and another pattern matching case
expression). The first allows a series of conditions to be evaluated, executing code correspond-
ing to the first condition that is true:

case
when ‹ boolean-expression ›+ ‹ then ›

body
when ‹ boolean-expression ›+ ‹ then ›

body
 ...
‹ else

body ›
end

The second form of a case expression takes a target expression following the case keyword.
It searches for a match starting at the first (top left) comparison, using the triple-equals
operator: _comparison_ === _target_ (as a performance optimization, comparisons between
literal strings and between numbers do not use ===):

case target
when ‹ comparison ›+ ‹ then ›

body
when ‹ comparison ›+ ‹ then ›

body
 ...
‹ else

body ›
end

A comparison can be an array reference preceded by an asterisk, in which case it is
expanded into that array’s elements before the tests are performed on each. When a compar-
ison returns true, the search stops, and the body associated with the comparison is executed
(nothing like a break statement is required). The case statement then returns the value of the
last expression executed. If no comparison matches and an else clause is present, the body
of that clause will be executed; otherwise, the case statement returns nil.

The then keyword separates the when comparisons from the bodies and is not needed if the
body starts on a new line.

Case Pattern Matching
case expression
in pattern

body
in pattern

body
else

body
end

Pattern matching is a powerful construct to extract values from complicated data structures.

The expression is an already existing piece of data, typically featuring nested hashes and
arrays. The case statement selects the first branch where the pattern matches the expression,

report erratum • discuss

Expressions, Conditionals, and Loops • 459

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

assigns any variables that are part of the pattern, executes the body associated with that
branch and exits the case. If no patterns match, the else branch is executed. If no patterns
match and there is no else branch, Ruby throws a NoMatchingPatternError.

Defining Patterns
The simplest pattern is just a Ruby object. The pattern matches an expression if the two
values are ===. This is useful for classes that define === for extended matching, like Class
and String, though there are also cases where you might just match against a regular literal
value.

Even so, it’s probably more useful matched with a data structure:

[pattern, pattern, ...]

[*variable, pattern, pattern, ..., *variable]

An array pattern matches if every element of the array expression matches, so [Integer, Integer]
matches [1, 2], but not [1]. But you can use the splat character as a wild card to match more
than one element at the beginning or ending of an array pattern. If you use a splat at both
the beginning and the end that’s called a find pattern:

case [1, 2, 3]
in [Integer, Integer, Integer]
puts "all integers"

in [*, Integer, *]
puts "contains an integer"

else
puts "no integers"

end

If the pattern is not a find pattern, the brackets around the array pattern in the in clause can
be omitted.

{key: pattern, key: pattern, ..., ‹ **nil ›+}

Hash patterns behave differently from array patterns. A hash pattern will match if all the
keys in the pattern match the target expression, even if there are additional keys in the target
expression. Appending **nil to the end of the pattern will change this behavior, then the
pattern will only match if the keys in the pattern are the only keys in the target expression.

case {first_name: "Ron", last_name: "Lithgow"}
in {first_name: String}
puts "this person has a first name"

else
puts "this data does not have a first name"

end

produces:

this person has a first name

Again, the curly braces around the hash in the pattern can be omitted.

The empty hash is an exception, it only matches other empty hashes.

pattern | pattern

Chapter 24. Language Reference: Literal Types and Expressions • 460

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The pipe character (|) can be used to specify multiple alternative patterns that might match,
Ruby will bind to the first of the multiples that matches.

Binding Variables in Patterns

pattern => variable

At any point in a pattern, you can bind a subpattern to a local variable by appending =>
VAR_NAME to the sub pattern:

case [1, 2, 3]
in [Integer, Integer => middle, Integer]
puts "all integers, the middle one is #{middle}"

in [*, Integer, *]
puts "contains an integer"

else
puts "no integers"

end

produces:

all integers, the middle one is 2

There are a couple of shortcuts. If you don’t need to pattern match the part of the pattern
with the local variable, you can just use the variable name without the hashrocket:

case [1, 2, 3]
in [Integer, middle, Integer]
puts "The middle one is #{middle}"

in [*, Integer, *]
puts "contains an integer"

else
puts "no integers"

end

produces:

The middle one is 2

In a hash, you can bind a variable to the same name as the key of the hash by just including
the key:

case {first_name: "Ron", last_name: "Lithgow"}
in {first_name:}
puts "this person's name is #{first_name}"

else
puts "this data does not have a first name"

end

produces:

this person's name is Ron

The splatted parts of an array or hash can be bound to a local variable by putting the variable
name after the splat, as in [Integer, Integer, *rest].

There is one limitation, if you use the | character to match multiple patterns, you can not
bind variables inside any of the multiple patterns, this is a limitation of the pattern matching
parser.

report erratum • discuss

Expressions, Conditionals, and Loops • 461

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If you want to reuse an existing variable, local, global, expression or instance, as part of a
pattern, or if you want to set a variable at the beginning of a pattern and use it later in the
pattern, a ^ caret in front of the variable name or expression means “use the existing value
for this variable”.

count = 2

case [1, 2, 3]
in [Integer, ^count, last]
puts "The middle one 2, the last one is #{last}"

in [*, Integer, *]
puts "contains an integer"

else
puts "no integers"

end

produces:

The middle one 2, the last one is 3

case [1, 2, 2]
in [*, value, ^value]
puts "This has a pair of the same value, #{value}"

else
puts "no pairs"

end

produces:

This has a pair of the same value, 2

Guard Clauses in Patterns

pattern if boolean_expression

You can limit the ability of a pattern to match by putting a guard clause after it. The match
only occurs if the pattern matches the target expression and the boolean expression in the
guard clause is true. The guard clause may used values bound in the pattern.

Loops
while boolean-expression ‹ do ›

body
end

This executes body zero or more times as long as boolean-expression is true.

until boolean-expression ‹ do ›
body

end

This executes body zero or more times as long as boolean-expression is false.

In both forms, the do separates boolean-expression from the body and can be omitted when the
body starts on a new line:

for ‹ name ›+ in expression ‹ do ›
body

end

Chapter 24. Language Reference: Literal Types and Expressions • 462

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The for loop is executed as if it were the following each loop, except that local variables defined
in the body of the for loop will be available outside the loop, and those defined within an
iterator block will not.

expression.each do | ‹ name ›+ |
body

end

loop, which iterates its associated block, is not a language construct—it is a method in module
Kernel.

loop do
print "Input: "
break unless line = gets
process(line)

end

while and until Modifiers

expression while boolean-expression
expression until boolean-expression

If expression is anything other than a begin/end block, executes expression zero or more times
while boolean-expression is true (for while) or false (for until).

If expression is a begin/end block, the block will always be executed at least one time.

break, redo, and next
break, redo, and next alter the normal flow through a while, until, for, or iterator-controlled loop.

The break keyword terminates the immediately enclosing loop—control resumes at the
statement following the block. redo repeats the loop from the start but without reevaluating
the condition or fetching the next element (in an iterator). The next keyword skips to the end
of the loop, effectively starting the next iteration.

break and next may optionally take one or more arguments. If used within a block, the given
argument(s) are returned as the value of the yield. If used within a while, until, or for loop, the
value given to break is returned as the value of the statement. If break is never called or if it
is called with no value, the loop returns nil.

match = for line in ARGF.readlines
next if line =~ /^#/
break line if line =~ /ruby/

end

report erratum • discuss

Expressions, Conditionals, and Loops • 463

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 25

Language Reference: Objects and Classes
In this second chapter of language reference, we’ll cover the syntax of Ruby Objects and
classes.

Method Definition

def defname ‹ (‹ , param ›*) ›
body

end

def defname ‹ (‹ , param ›*) › = expression

defname←methodname | expr.methodname

defname contains the name of the method and optionally an object defining context in which
the method valid, the most common expression here is self, as in def self.method_name, but the
expression can be any Ruby object.

A methodname is either a redefinable operator (see Table 19, Ruby operators (high to low
precedence), on page 454) or a name. If methodname is a name, it starts with a letter or
underscore optionally followed by uppercase and lowercase letters, underscores, and digits.
A method can start with an uppercase letter, but that is normally only done for the conversion
methods in Kernel. A methodname may optionally end with a question mark (?), exclamation
point (!), or equal sign (=). The question mark and exclamation point are simply part of the
name. The equal sign is also part of the name but additionally signals that this method may
be used as an lvalue (see the description of writeable attributes on page 38).

Most methods are written over multiple lines, in which case the method ends with a
matching end keyword.

A single expression method can be written with the method name and optional argument
list followed by a space, followed by an = followed by a single-expression body. Note that
the space before the equals sign is important to distinguish this from a method name ending
in =. Because this method form does not need a matching end it is sometimes referred to as
an “endless method.”

The statement which creates the method returns the method name as a symbol. This is useful
for interacting with Ruby methods that take a symbol expecting it to be a method name, for
example the access control methods, as in private def foo = 1 + 1.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Within a class or module definition, a method definition that does not have an expression
before the method name creates an instance method. An instance method defined in a class
may be invoked only by sending its name to a receiver that is an instance of the class that
defined it, or one of that class’s subclasses. An instance method defined in a module may
be invoked by a receiver that is an instance of a class that has included or prepended the
module somewhere in it’s ancestor list.

Outside a class or module definition, a definition without an expression before the method
name is added as a private instance method to class Object. It may be called in any context
without an explicit receiver.

A definition that does have an expression before the method name of the form expr.methodname
creates a method associated with the object that is the value of the expression; the method
will be callable only by supplying the object referenced by the expression as a receiver. This
style of definition creates per-object or singleton methods. You’ll find it most often inside class
or module definitions, where the expr is either self or the name of the class/module. This
effectively creates a class or module method (as opposed to an instance method).

class MyClass
def MyClass.method # definition
end

end

MyClass.method # call

obj = Object.new

def obj.method # definition
end

obj.method # call

def (1.class).fred # receiver may be an expression
end

Integer.fred # call

Method definitions may not contain class or module definitions. They may contain nested
instance or singleton method definitions. The internal method is defined when the enclosing
method is executed. The internal method does not act as a closure in the context of the
nested method—it is self-contained.

def toggle
def toggle
"subsequent times"

end
"first time"

end

toggle # => "first time"
toggle # => "subsequent times"
toggle # => "subsequent times"

The body of a method acts as if it were a begin/end block, in that it may contain exception-
handling statements (rescue, else, and ensure).

Chapter 25. Language Reference: Objects and Classes • 466

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Method Parameters
A method definition may list zero or more positional parameters, zero or more keyword
parameters, a optional splat parameter, an optional double splat parameter, and an optional
block parameter. Parameters are separated by commas and the parameter list may be (and
usually is) enclosed in parentheses. As described in Passing Parameters Through, on page
469, the parameter list may be replaced by one for more forwarding markers. The elements
of a method are called parameters when discussing the definition of the method, and argu-
ments when discussing calling the method

A positional parameter is a local variable name, optionally followed by an equals sign and
an expression defining a default value. The expression is evaluated at the time the method
is called. If there are multiple parameters with default expressions, the expressions are
evaluated from left to right. An expression may reference a paramter that precedes it in the
argument list.

def options(a = 99, b = a + 1)
[a, b]

end
options # => [99, 100]
options(1) # => [1, 2]
options(2, 4) # => [2, 4]

Parameters without default values may appear after parameters with defaults. When such
a method is called, Ruby will use the default values only if fewer arguments are passed to
the method call than the total number of parameters.

def mixed(a, b = 50, c = b + 10, d)
[a, b, c, d]

end
mixed(1, 2) # => [1, 50, 60, 2]
mixed(1, 2, 3) # => [1, 2, 12, 3]
mixed(1, 2, 3, 4) # => [1, 2, 3, 4]

As with parallel assignment, one of the parameters may start with an asterisk. If the method
call specifies any arguments in excess of the regular parameter count, all these extra arguments
will be collected into this newly created array.

def varargs(a, *b)
[a, b]

end
varargs(1) # => [1, []]
varargs(1, 2) # => [1, [2]]
varargs(1, 2, 3) # => [1, [2, 3]]

This parameter need not be the last in the parameter list. See the description of parallel
assignment to see how values are assigned to this parameter.

def splat(first, *middle, last)
[first, middle, last]

end
splat(1, 2) # => [1, [], 2]
splat(1, 2, 3) # => [1, [2], 3]
splat(1, 2, 3, 4) # => [1, [2, 3], 4]

report erratum • discuss

Method Definition • 467

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If an array parameter follows arguments with default values, parameters will first be used
to override the defaults. The remainder will then be used to populate the array.

def mixed(a, b = 99, *c)
[a, b, c]

end
mixed(1) # => [1, 99, []]
mixed(1, 2) # => [1, 2, []]
mixed(1, 2, 3) # => [1, 2, [3]]
mixed(1, 2, 3, 4) # => [1, 2, [3, 4]]

Keyword Parameters
Ruby methods may declare keyword parameters using the syntax <name>: <default_value>
for each. These arguments must follow any positional parameters in the list. The default
value is optional, in which case you just type <name>:.

reference/kwargs.rb
def header(name, level:, upper: false)
name = name.upcase if upper
"<h#{level}>#{name}</h#{level}>"

end

header("Introduction", level: 1) # => "<h1>Introduction</h1>"
header("Getting started", level:2) # => "<h2>Getting started</h2>"
header("Conclusion", upper: true, level: 1) # => "<h1>CONCLUSION</h1>"

When calling a method with keyword parameters, the keyword arguments do not need to
be in the same order in the method call as they are in the method definition. If you call a
method that has keyword parameters, you must provide values for each keyword that does
not have a default value. If you do not provide a value for a keyword with a default, the
default will be used.

If you pass keyword arguments that are not defined as arguments, an error will be raised
unless you also define a double splat parameter, **<arg>. The double splat argument will
be defined as a hash containing any undeclared keyword arguments passed to the method.

reference/kwargs_2.rb
def header(name, level: 1, upper: false, **attrs)
name = name.upcase if upper
attr_string = attrs.map { |k, v| %(#{k}="#{v}") }.join(" ")
"<h#{level} #{attr_string}>#{name}</h#{level}>"

end

puts header("TOC", class: "nav", level: 2, id: 123)

produces:

<h2 class="nav" id="123">TOC</h2>

Block Parameter
The optional block parameter must be the last in the list. Whenever the method is called,
Ruby checks for an associated block. If a block is present, it is converted to an object of class
Proc and assigned to the block parameter. If no block is present, the argument is set to nil.

def example(&block)
p block

end

Chapter 25. Language Reference: Objects and Classes • 468

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/reference/kwargs.rb
http://media.pragprog.com/titles/ruby5/code/reference/kwargs_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

example
example { "a block" }

produces:

nil
#<Proc:0x00000001031f4308 prog.rb:6>

Passing Parameters Through
Often in Ruby, we want to pass all the parameter from one method as arguments to another
method. Because a Ruby method can take three different kinds of parameters, simply doing
passthroughs can feel kind of cumbersome:

def outer(*args, **kwargs, &block)
other(*args, **kwargs, &block)

end

Ruby has some shortcuts if you aren’t actually using the parameters in the method. For all
three types, you can pass through the parameters of that particular kind by using the splat,
double-splat, or ampersand without a variable name:

def outer(*)
other(*)

end

def outer(**)
other(**)

end

def outer(&)
other(&)

end

These splats can not be assigned to variables directly, but they can be used in other assign-
ments where you might use a splat. So you can’t do x = *, but you can do x = [*].

If you are passing multiple types of variables, you can forward them all with ... (three dots).

def outer(...)
other(...)

end

You can even include leading positional parameters before the passthrough shortcuts:

def outer(first, ...)
other(first, ...)

end

Undefining a Method
The keyword undef allows you to undefine a method.

undef name | symbol ...

An undefined method still exists; it is simply marked as being undefined. If you undefine
a method in a child class and then call that method on an instance of that child class, Ruby
will immediately raise a NoMethodError—it will not look for the method in the child’s parents.

report erratum • discuss

Method Definition • 469

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Invoking a Method

‹ receiver. ›name‹ arguments › ‹ {block} ›
‹ receiver:: ›name‹ arguments › ‹ {block} ›

arguments← (‹ arg ›* ‹ , hashlist › ‹ *array › ‹ &a_proc ›)

block← { blockbody } or do blockbody end

When invoking a method, the parentheses around the arguments may be omitted if the
expression is otherwise unambiguous. So, foo 3, 4 as a line by itself is a legal call to foo with
two arguments. Usually, the ambiguity happens if there are method calls in the arguments.
If you had both foo and bar as methods then foo 3, bar 4, 5 would trigger an error because the
parser would attempt to resolve bar 4 as the second argument to foo. Fully parenthesizing as
foo(3, bar(4, 5)) is preferred, however foo 3, (bar 4, 5) would also be legal.

Positional arguments are assigned to the matching parameters of the method. Following
these arguments may be a list of _key_: _value_ pairs, which correspond to keyword parameters
of the method.

Any argument may be prefixed with an asterisk. If a starred argument responds to the to_a
method, that method is called, and the resulting array is expanded inline to provide arguments
to the method call. If a starred argument does not respond to to_a, the argument is simply
passed through unaltered.

def regular(a, b, *c)
"a = #{a}, b = #{b}, c = #{c}"

end
regular 1, 2, 3, 4 # => a = 1, b = 2, c = [3, 4]
regular(1, 2, 3, 4) # => a = 1, b = 2, c = [3, 4]
regular(1, *2, *3, 4) # => a = 1, b = 2, c = [3, 4]
regular(1, *[2, 3, 4]) # => a = 1, b = 2, c = [3, 4]
regular(1, *[2, 3], 4) # => a = 1, b = 2, c = [3, 4]
regular(1, *[2, 3], *4) # => a = 1, b = 2, c = [3, 4]
regular(*[], 1, *[], *[2, 3], *[], 4) # => a = 1, b = 2, c = [3, 4]

When a method defined with keyword parameters is called, Ruby matches the keys in the
passed hash with each parameter, assigning values when it finds a match.

def keywords(a, b: 2, c: 3)
"a = #{a}, b = #{b}, c = #{c}"

end

keywords(99) # => a = 99, b = 2, c = 3
keywords(99, c: 98) # => a = 99, b = 2, c = 98

args = {b: 22, c: 33}
keywords(99, **args) # => "a = 99, b = 22, c = 33"
keywords(99, **args, b: "override") # => "a = 99, b = override, c = 33"

If the passed hash contains any keys not defined as parameters, Ruby raises a runtime error
unless the method also declares a double splat parameter. In that case, the double splat
receives the excess key-value pairs from the passed hash. If the passed hash is missing keys
that are defined as required parameters without default values, Ruby raises a runtime error.

Chapter 25. Language Reference: Objects and Classes • 470

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def keywords1(a, b: 2, c: 3)
"a = #{a}, b = #{b}, c = #{c}"

end

keywords1(99, d: 22, e: 33)

produces:

from prog.rb:5:in `<main>'
prog.rb:1:in `keywords1': unknown keywords: :d, :e (ArgumentError)

def keywords2(a, b: 2, c: 3, **rest)
"a = #{a}, b = #{b}, c = #{c}, rest = #{rest}"

end

keywords2(99, d: 22, e: 33) # => a = 99, b = 2, c = 3, rest = {:d=>22, :e=>33}

Any argument may be prefixed with two asterisks (a double splat). Such arguments are
treated as hashes, using to_hash to convert if the parameter is not a hash, and their key-value
pairs are added as additional keyword arguments to the method call.

def regular(a, b)
"a = #{a}, b = #{b}"

end
regular(99, a: 1, b: 2) # => a = 99, b = {:a=>1, :b=>2}

others = { c: 3, d: 4 }
regular(99, a: 1, b: 2, **others) # => a = 99, b = {:a=>1, :b=>2,

.. :c=>3, :d=>4}
regular(99, **others, a: 1, b: 2) # => a = 99, b = {:c=>3, :d=>4,

.. :a=>1, :b=>2}

rest = {e: 5}

regular(99, **others, a: 1, b: 2) # => a = 99, b = {:c=>3, :d=>4,
.. :a=>1, :b=>2}

regular(99, **others, a: 1, b: 2, **rest) # => a = 99, b = {:c=>3, :d=>4,
.. :a=>1, :b=>2, :e=>5}

As with hash literals, if there is an existing local value with the same name as the keyword
argument, you can pass the argument without a value and the local value will be found and
used:

x = 10
y = 5
foo(x:, y:)

A block may be associated with a method call using either a literal block (which must start
on the same source line as the last line of the method call) or an argument containing a ref-
erence to a lambda, Proc, or Method object prefixed with an ampersand character. If the object
prefixed by an ampersand responds to to_proc, then to_proc is invoked and the resulting proc
passed to the method.

def some_method
yield

end

some_method { }
some_method do
end

report erratum • discuss

Invoking a Method • 471

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

a_proc = lambda { 99 }
some_method(&a_proc)

Ruby provides the method Kernel#block_given?, which is always available and reflects the
availability of a block associated with the call, regardless of the presence of a block parameter.
An explicit block parameter will be set to nil if no block is specified on the call to a method.

def other_method(&block)
puts "block_given = #{block_given?}, block = #{block.inspect}"

end
other_method { }
other_method

produces:

block_given = true, block = #<Proc:0x00000001025569c0 prog.rb:4>
block_given = false, block = nil

A method is called by passing its name to a receiver using reciever.method syntax. If no
receiver is specified, self is assumed. The receiver checks for the method definition in its own
class and then sequentially in its ancestor classes. The instance methods of included modules
act as if they were in anonymous superclasses of the class that includes them. If the method
is not found, Ruby invokes the method method_missing in the receiver. The default behavior
defined in method_missing is to report an error and terminate the program.

When a receiver is explicitly specified in a method invocation, it may be separated from the
method name using either a period (.) or, much, much, much more rarely, two colons (::).
The only difference between these two forms occurs if the method name starts with an
uppercase letter. In this case, Ruby will assume that receiver::Thing is an attempt to access a
constant called Thing in the receiver unless the method invocation has an argument list between
parentheses. Using :: to indicate a method call is soft-deprecated, because of its potential for
confusion with constant access.

Foo.Bar() # method call
Foo.Bar # method call
Foo::Bar() # method call
Foo::Bar # constant access

Safe Navigation
Ruby defines a safe navigation operator, &., as in receiver&.method. If the receiver is nil, then the
method is not called and the entire expression returns nil. If the receiver is not nil, then the
expression proceeds normally. So, safe navigation is roughly equivalent to receiver.nil? ? nil :
receiver.method, or, written more succinctly: receiver.nil? && receiver.method.

The safe navigation operator only works for the one method call, if you want to chain mul-
tiple methods safely, they all need the safe navigation operator.

post&.writer&.address&.country

You may sometimes see this referred to as the “lonely” operator, because Matz said that he
thought &. looks like a “someone sitting on the floor looking at a dot…by themself”.

Chapter 25. Language Reference: Objects and Classes • 472

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Return Value
The return value of a method is the value of the last expression executed. The method in the
following example returns the value of the if statement it contains, and that if statement
returns the value of one of its branches:

def odd_or_even(val)
if val.odd?
"odd"

else
"even"

end
end

odd_or_even(26) # => "even"
odd_or_even(27) # => "odd"

A return expression immediately exits a method with the value of the expression passed to
return:

return ‹ expr ›*

The value of a return is nil if it is called with no parameters, the value of its parameter if it is
called with one parameter, or an array containing all of its parameters if it is called with
more than one parameter.

A return expression can be used at the top level, outside of a method call, in which case it
stops execution of the current file being loaded. If the load was from a require statement, the
file which called require will continue to load.

super
super ‹ (‹ , param ›* ‹ , *array ›) › ‹ block ›

Within the body of a method, a call to super acts like a call to the original method, except that
the search for a method body starts one step after from the original method. In an inheritance
hierarchy with no included modules, this means the search will start in the parent class.
Using super gives you access to the method of the same name in a parent class.

If modules are mixed in, the search still starts one step after the original method, so a method
defined in a module added using include will be found by a call to super. Similarly, if super is
called from a method that has been prepended to the original class, then super starts its search
one step later, in the original class.

The arguments to super are a little unusual. If super is called with arguments, then those
arguments are passed to the next method up the chain. This allows you to specify a different
set of arguments in the case where the original method has a different parameter list than
the parent method. If no arguments are passed to super, the arguments to the original method
will be passed.

This is the only functionality in Ruby where a method call without parenthesis behaves
differently than a method call with empty parentheses. Calling super()with empty parentheses
explicitly passes an empty argument list to the next method up the lookup path, whereas
calling super with no arguments or parentheses passes the argument list from the original
method.

report erratum • discuss

Invoking a Method • 473

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Operator Methods
expr operator
operator expr
expr1 operator expr2

If the operator in an operator expression is marked as “method” in Table 19, Ruby operators
(high to low precedence), on page 454, then the operator can be treated like a method, and
Ruby will execute the operator expression as if it had been written like this:

(expr1).operator() or
(expr1).operator(expr2)

You can use dot syntax for operators in your own code, 1.+(2) is perfectly legal Ruby. Using
the dot syntax enables you to use other Ruby features specific to method calls, such as the
safe navigation operator 1&.+(2), and the ability to chain method calls. Operators not marked
as method cannot be called in this way.

Attribute Assignment
receiver.attrname = rvalue

When the form receiver.attrname appears as an lvalue in an assignment statement, Ruby
invokes a method named attrname= in the receiver, passing rvalue as a single parameter. The
value returned by this assignment is always rvalue—the return value of the method is dis-
carded. If you want to access the return value (in the unlikely event that it isn’t the rvalue),
send an explicit message to the method.

object_ref/attribute.rb
class Demo
attr_reader :attr

def attr=(val)
@attr = val
"return value"

end
end

d = Demo.new

In all these cases, @attr is set to 99
d.attr = 99 # => 99
d.attr=(99) # => 99
d.send(:attr=, 99) # => "return value"

Element Reference Operator
receiver[‹ expr ›+]
receiver[‹ expr ›+] = rvalue

When used as an rvalue, element reference invokes the method [] in the receiver, passing as
parameters the expressions between the brackets.

When used as an lvalue, element reference invokes the method []= in the receiver, passing
as parameters the expressions between the brackets, followed by the rvalue being assigned.
In the most common case, as in an Array, the expression foo[3] = 5 is equivalent to foo.[]=(3, 5).
But if the class allows it, comma separated expressions inside the brackets are passed to the

Chapter 25. Language Reference: Objects and Classes • 474

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/object_ref/attribute.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

method, so array slice access with foo[3, 2] = 5 is equivalent to foo.[]=(3, 2, 5). It’s up to the
receiving class what to do with the arguments or even if it accepts them at all (for example,
an extra argument to Array, as in foo.[]=(3, 2, 4, 5). is an ArgumentError.

Aliasing

alias new_name old_name

This creates a new name that refers to an existing method, operator, global variable, or reg-
ular expression backreference ($&, $“, $', and $+). Local variables, instance variables, class
variables, and constants may not be aliased. The parameters to aliasmay be names or symbols.

object_ref/alias_1.rb
class Integer
alias plus +

end
1.plus(3) # => 4

alias $prematch $`
"string" =~ /i/ # => 3
$prematch # => "str"

alias :cmd :`
cmd "date" # => "Sat Jul 8 10:55:18 CDT 2023\n"

When a method is aliased, the new name refers to a copy of the original method’s body. If
the original method is subsequently redefined, the aliased name will still invoke the original
implementation.

object_ref/alias_2.rb
def meth
"original method"

end

alias original meth

def meth
"#{original} is now new and improved"

end

original # => "original method"

meth # => "original method is now new and improved"

Note that the new version can call the old version.

You can also alias inside a module or class with the method Module.alias_method(new_name,
old_name), which has the same behavior as alias but acts as a method an not a keyword.

Defining Classes

class ‹ scope:: › classname ‹ < superexpr ›
body

end

class << obj
body

end

report erratum • discuss

Aliasing • 475

http://media.pragprog.com/titles/ruby5/code/object_ref/alias_1.rb
http://media.pragprog.com/titles/ruby5/code/object_ref/alias_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

A Ruby class definition creates or extends an object of class Class by executing the code in
body. In the first form, a named class is created or extended. The resulting Class object is
assigned to a constant named classname (keep reading for scoping rules). This name should
start with an uppercase letter. In the second form, an anonymous (singleton) class is associ-
ated with the specific object.

If present, superexpr should be an expression that evaluates to a Class object that will be the
superclass of the class being defined. If omitted, the superclass defaults to class Object.

Within body, most Ruby expressions are executed as the definition is read. However:

• Method definitions will register the methods in a table in the class object.

• Nested class and module definitions will be stored in constants within the class, not as
global constants. These nested classes and modules can be accessed from outside the
defining class using :: to qualify their names:

module NameSpace
class Example
CONST = 123

end
end

obj = NameSpace::Example.new

a = NameSpace::Example::CONST

• Calling the Module#include method with modules as arguments will add those modules
as anonymous superclasses of the class being defined.

The classname in a class definition may be prefixed by the names of existing classes or modules
using the scope operator (::). This syntax inserts the new definition into the namespace of
the prefixing module(s) and/or class(es) but does not interpret the definition in the scope of
these outer classes. A classname with a leading scope operator places that class or module in
the top-level scope.

In the following example, class C is inserted into module A’s namespace but is not interpreted
in the context of A. As a result, the reference to CONST resolves to the top-level constant of
that name, not A’s version. We also have to fully qualify the singleton method name, because
C on its own is not a known constant in the context of A::C.

CONST = "outer"

module A
CONST = "inner" # This is A::CONST

end

module A
class B
def self.get_const
CONST

end
end

end

A::B.get_const # => "inner"

class A::C

Chapter 25. Language Reference: Objects and Classes • 476

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def self.get_const
CONST

end
end

A::C.get_const # => "outer"

Remember that a class definition is executable code. Many of the directives used in class
definitions (such as attr and include) are actually private instance methods of class Module. The
value of a class definition is the value of the last executed statement.

Chapter 22, The Ruby Object Model and Metaprogramming, on page 371 describes in more
detail how Class objects interact with the rest of the environment and how the class << obj
syntax works.

Creating Objects from Classes
obj = classexpr.new ‹ (‹ , args ›*) ›

Class Class defines the instance method new, which creates an instance of the class of its
receiver (classexpr). This is done by calling the method classexpr.allocate. You can override the
allocate method, but your implementation must return an object of the correct class. The new
method then invokes initialize in the newly created object and passes it any arguments origi-
nally passed to new.

You can override new in your own classes, though we wouldn’t recommend it without a
good reason. If you want your override of new to have the same instance-creating behavior,
you usually would call super within the new override. If for some reason you need to do this
behavior manually, you can explicitly call the method Class.allocate inside your new method
and then call initialize on the result.

Like any other method, initialize should call super if it wants to ensure that parent classes have
been properly initialized. This is not necessary when the parent is Object, because class Object
does no instance-specific initialization.

Class Attribute Declarations
Class attribute declarations are not part of the Ruby syntax; they are simply methods defined
in class Module that create accessor methods automatically.

class name
 attr attribute ‹ , writable ›
 attr_reader ‹ attribute ›+

 attr_writer ‹ attribute ›+

 attr_accessor ‹ attribute ›+

end

All of these methods return an array of the symbols defined, so you can apply access control
to them, as in private attr_accessor :attribute, :other_attribute.

Defining Modules

module name
body

end

report erratum • discuss

Defining Modules • 477

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

A module is a collection of behavior that is grouped together. The grouping can be used to
include all the behavior in a different module or class as one unit, or it can be used for name
spacing. Like a class, the module body is executed during definition, and the resultingModule
object is stored in a constant. A module may contain both class and instance methods and
may define constants and class variables. (A module can also reference instance variables,
but those are dependent on the module being added to a class, see the next section.)

As with classes, a module’s own methods (called module methods) are invoked using the
Module object as a receiver, and constants are accessed using the :: scope resolution operator.
The name in a module definition may optionally be preceded by the names of enclosing
class(es) and/or module(s).

CONST = "outer"
module Mod
CONST = 1

def self.method1 # module method
CONST + 1

end
end

module Mod::Inner
def self.method2
CONST + " scope"

end
end

Mod::CONST # => 1
Mod.method1 # => 2
Mod::Inner::method2 # => "outer scope"

Mixins: Including Modules
class|module name
 include expr
end

A module may be included within the definition of another module or class using the include
method. The module or class definition containing the include gains access to the constants,
class variables, and instance methods of the module it includes.

If a module is included within a class definition, the module’s constants, class variables, and
instance methods are made available as if the module was an additional superclass for that
class. Objects of the class will respond to messages sent to the module’s instance methods.
Calls to methods not defined in the class will be passed to the modules mixed into the class
before being passed to any parent class. A module may define an initialize method, which
will be called upon the creation of an object of a class that mixes in the module if either the
class does not define its own initialize method or the class’s initialize method invokes super.

A module may also be included at the top level, in which case the module’s constants, class
variables, and instance methods become available at the top level.

class|module name
 prepend expr
end

Chapter 25. Language Reference: Objects and Classes • 478

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The method prepend behaves like include except that the prepended module’s methods are
placed in the lookup chain before the methods in the enclosing class or module.

class|module name
 extend expr
end

The method extend adds the module’s methods directly to the singleton class of self. In typical
usage, extend is at the top-level of a class, and so the new methods act as class or module
methods of the enclosing class or module. However, foo.extend Module also works, and adds
the methods of the module to the singleton class of foo.

Module Functions
Instance methods defined in modules can be mixed-in to a class using include. But what if
you want to call the instance methods in a module directly?

module Math
def sin(x)
#

end
end
include Math # The only way to access Math.sin
sin(1)

The method module_function solves this problem by taking module instance methods and
copying their definitions into corresponding module methods:

module Math
def sin(x)
#

end
module_function :sin

end
Math.sin(1)
include Math
sin(1)

The instance method and module method are two different methods: the method definition
is copied by module_function, not aliased.

You can also use module_function with no parameters, in which case all subsequent methods
will be module methods.

Access Control

private ‹ symbol ›*

protected ‹ symbol ›*

public ‹ symbol ›*

Ruby defines three levels of access protection for module and class constants and methods:

• Public – Accessible to anyone.
• Protected – Can be invoked only by objects of the defining class and its subclasses.

report erratum • discuss

Access Control • 479

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Private – Can be called only with self as the receiver, including both implicit and
explicit uses of self. Private methods therefore can be called in the defining class and by
that class’s descendents and ancestors, but only within the same object. See Specifying
Access Control, on page 45 for examples.

These levels are invoked with the methods public, protected, and private, which are defined in
class Module. Each access control function can be used in three different ways:

• If used with no arguments, the three functions set the default access control of subse-
quently defined methods.

• If passed arguments, the functions set the access control of the methods and constants
named in the arguments.

• Since def returns the method name as a symbol, the functions can be used to decorate a
method declaration, as in private def foo = 1 + 1.

Access control is enforced when a method is invoked.

Blocks, Closures, and Proc Objects
A code block is a set of Ruby statements and expressions between braces or a do/end pair.
The block may start with an argument list between vertical bars. A code block may appear
only immediately after a method invocation. The start of the block (the brace or the do) must
be on the same logical source line as the end of the invocation:

invocation do | a1, a2, ... |
end

invocation { | a1, a2, ... |
}

Braces have a high precedence; do has a low precedence. If the method invocation has
parameters that are not enclosed in parentheses, the brace form of a block will bind to the
last parameter, not to the overall invocation. The do form will bind to the entire invocation.

Within the body of the invoked method, the code block may be called using the yield keyword.
Parameters passed to yield will be assigned to arguments in the block. The return value of
the yield is the value of the last expression evaluated in the block or the value passed to a
next statement executed in the block.

A block is a closure; it remembers the context in which it was defined, and it uses that context
whenever it is called. The context includes the value of self, the constants, the class variables,
the local variables, and any captured block:

class BlockExample
CONST = 0
@@a = 3

def return_closure
a = 1
@a = 2
lambda { [CONST, a, @a, @@a, yield] }
end

def change_values
@a += 1
@@a += 1

Chapter 25. Language Reference: Objects and Classes • 480

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end
end

be = BlockExample.new
block = be.return_closure { "original" }

block.call # => [0, 1, 2, 3, "original"]
be.change_values
block.call # => [0, 1, 3, 4, "original"]

Here, the return_closuremethod returns a lambda that encapsulates access to the local variable
a, instance variable @a, class variable @@a, and constant CONST. We call the block outside
the scope of the object that contains these values, but they’re still available via the closure.
If we call the object to change some values, the values accessed via the closure also change.

Block Arguments
Block argument lists are very similar to method argument lists:

• You can specify default values.
• You can specify splat (starred) arguments.
• You can specify keyword arguments
• You can specify a double-splat argument
• The last argument can be prefixed with an ampersand, in which case it will collect any

block passed when the original block is called.
• Block-local variables are declared after a semicolon in the argument list.
• You can’t use the anonymous forwarding syntaxes, *, **, &, or ... (three dots).

Within a block you can avoid giving positional arguments names and instead refer to them
by their numerical position using _1, _2, and so on.

[1, 2, 3].map { _1.sqrt }

Using both named positional arguments and numerical ones is a syntax error. Naming a
local variable using the _1 pattern is also a syntax error.

Proc Objects
Ruby’s blocks are chunks of code attached to a method. Blocks are not objects, but they can
be converted into objects of class Proc. There are many ways to convert a block into a Proc
object.

• By passing a block to a method whose last parameter is prefixed with an ampersand.
That parameter will receive the block as a Proc object:

def meth1(p1, p2, &block)
puts block.inspect

end

meth1(1,2) { "a block" }
meth1(3,4)

produces:

#<Proc:0x0000000100568eb0 prog.rb:5>
nil

report erratum • discuss

Blocks, Closures, and Proc Objects • 481

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• By calling Proc.new, again associating it with a block. There’s also a built-in Kernel#proc
method, which is the same as Proc.new:

block = Proc.new { "a block" }
block # => #<Proc:0x0000000104946ab0 prog.rb:1>

• By calling the method Kernel#lambda and associating a block with the call:

block = lambda { "a block" }
block # => #<Proc:0x00000001042e6b48 prog.rb:1 (lambda)>

• Using the -> syntax:

lam = -> (p1, p2) { p1 + p2 }
lam.call(4, 3) # => 7

The first two styles of Proc object are identical in use. We’ll call these objects raw procs. The
third and fourth styles, generated by lambda and ->, add some functionality to the Proc object,
as we’ll see in a minute. We’ll call these objects lambdas.

Here’s the big thing to remember: raw procs are designed to work as the bodies of control
structures such as loops. Lambdas are intended to act like methods. So, lambdas are stricter
when checking the parameters passed to them, and a return in a lambda exits much as it
would from a method.

Calling a Proc
You call a proc by invoking its methods call, yield, or []. The three forms are identical. Each
takes arguments that are passed to the proc, just as if it were a regular method. If the proc
is a lambda, Ruby will check that the number of supplied arguments match the expected
parameters. You can also invoke a proc using the syntax name.(_args..._). This is mapped
internally into name.call(args...).

Procs, break, and next
Within both raw procs and lambdas, executing next causes the block to exit back to the caller
of the block. The return value is the value (or values) passed to next, or nil if no values are
passed.

def ten_times
10.times do |i|
if yield(i)
puts "Caller likes #{i}"

end
end

end

ten_times do |number|
next(true) if number ==7
end

produces:

Caller likes 7

Within a raw proc, a break terminates the method that invoked the block. The return value
of the method is any parameters passed to the break.

Chapter 25. Language Reference: Objects and Classes • 482

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Return and Blocks
A return from inside a raw block that is inside a scope acts as a return from that scope. A return
from a block whose original context is no longer valid raises an exception (LocalJumpError or
ThreadError depending on the context). The following example illustrates the first case:

def meth1
(1..10).each do |val|
return val # returns from meth1

end
end

meth1 # => 1

The following example shows a return failing because the context of its block no longer
exists:

reference/local_jump_error.rb
def meth2
proc { return }

end
res = meth2
res.call

produces:

code/reference/local_jump_error.rb:2:in `block in meth2': unexpected return
(LocalJumpError)

from code/reference/local_jump_error.rb:5:in `<main>'

And here’s a return failing because the block is created in one thread and called in another:

reference/local_jump_error_2.rb
def meth3
yield

end

t = Thread.new do
meth3 { return }

end

t.join

produces:

#<Thread:0x0000000102ce44d0 code/reference/local_jump_error_2.rb:5 run>
terminated with exception (report_on_exception is true):
code/reference/local_jump_error_2.rb:6:in `block (2 levels) in <main>':
unexpected return (LocalJumpError)

from code/reference/local_jump_error_2.rb:2:in `meth3'
from code/reference/local_jump_error_2.rb:6:in `block in <main>'

code/reference/local_jump_error_2.rb:6:in `block (2 levels) in <main>':
unexpected return (LocalJumpError)

from code/reference/local_jump_error_2.rb:2:in `meth3'
from code/reference/local_jump_error_2.rb:6:in `block in <main>'

The proc behavior still holds even if you create the raw proc using Proc.new:

reference/proc_new.rb
def meth4
p = Proc.new { return 99 }

report erratum • discuss

Blocks, Closures, and Proc Objects • 483

http://media.pragprog.com/titles/ruby5/code/reference/local_jump_error.rb
http://media.pragprog.com/titles/ruby5/code/reference/local_jump_error_2.rb
http://media.pragprog.com/titles/ruby5/code/reference/proc_new.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

p.call
puts "Never get here"

end

meth4 # => 99

A lambda behaves more like a free-standing method body—a return simply returns from the
block to the caller of the block:

reference/lambda.rb
def meth5
p = lambda { return 99 }
res = p.call
"The block returned #{res}"

end

meth5 # => "The block returned 99"

Because of this, if you use define_method with a pre-existing proc and use an explicit return,
you’ll probably want to pass it a proc created using lambda, rather than Proc.new. In the
lambda version return will work as expected, and return from the method in the former,
while the proc version will generate a LocalJumpError on return.

Exceptions
Ruby exceptions are objects of class Exception and its descendents.

Raising Exceptions
The raise method raises an exception:

raise
raise string cause: $!
raise thing ‹ , string ‹ , stack trace ›‹ , cause: $! › ›

When an exception is raised, Ruby places a reference to the Exception object in the global
variable $!. The first form reraises the exception in $! or creates a new RuntimeError if $! is nil.
The second form creates a new RuntimeError exception, setting its message to the given string.
The third form creates an exception object by invoking the method exception on its first
argument, setting this exception’s message and backtrace to its second and third arguments.
Class Exception and objects of class Exception contain a factory method called exception, so an
exception class name or instance can be used as the first parameter to raise.

Handling Exceptions
Exceptions may be handled in the following ways:

• Within the scope of a begin/end block:

begin
code...
code...

‹ rescue ‹ , parm ›* ‹ , => var › ‹ , then ›
error handling code... ›*

‹ else
no exception code... ›

‹ ensure

Chapter 25. Language Reference: Objects and Classes • 484

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/reference/lambda.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

always executed code... ›
end

• Within the body of a method or a block:

def method name and args
code...
code...

‹ rescue ‹ , parm ›* ‹ , => var › ‹ , then ›
error handling code... ›*

‹ else
no exception code... ›

‹ ensure
always executed code... ›

end

• After the execution of a single statement:

statement ‹ rescue statement ›*

A block or method may have multiple rescue clauses, and each rescue clause may specify zero
or more exception parameters. A rescue clause with no parameter is treated as if it had a
parameter of StandardError. Some lower-level exceptions will not be caught by a parameterless
rescue class. If you need to rescue those low-level exceptions, use this to explicitly set the
target of the rescue to Exception:

rescue Exception

When an exception is raised, Ruby scans the call stack until it finds an enclosing begin/end
block, method body, or statement with a rescuemodifier. For each rescue clause in that block,
Ruby compares the raised exception against each of the rescue clause’s parameters in turn;
each parameter is tested using _parameter_ === $!. If the raised exception matches a rescue
parameter, Ruby executes the body of the rescue and stops looking. If a matching rescue clause
ends with => and a variable name, the variable is set to $!.

Although the parameters to the rescue clause are typically the exception classes (not instances
of expression classes), they can be arbitrary expressions (including method calls) that return
an appropriate class or module.

If no rescue clause matches the raised exception, Ruby moves up the stack looking for a
higher-level begin/end block that matches. If an exception propagates to the top level of the
main thread without being rescued, the program terminates with a message.

If an else clause is present, its body is executed if the code reaches its end without returning
and without raising an exception. Exceptions raised during the execution of the else clause
are not captured by rescue clauses in the same block as the else.

If an ensure clause is present, its body is always executed as the block is exited (even if an
uncaught exception is in the process of being propagated). If an ensure clause is present, the
return value of the method is still the return value of the main block—the last expression of
the ensure block is never the return value of the method.

Within a rescue clause, raise with no parameters will reraise the exception in $!.

report erratum • discuss

Exceptions • 485

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Rescue Statement Modifier
A statement may have an optional rescue modifier followed by another statement (and by
extension another rescue modifier, and so on). The rescue modifier takes no exception
parameter and rescues StandardError and its children.

If an exception is raised to the left of a rescuemodifier, the expression on the left is abandoned,
and the value of the overall line is the value of the statement on the right:

values = ["1", "2.3", /pattern/]
result = values.map { |v| Integer(v) rescue Float(v) rescue String(v) }
result # => [1, 2.3, "(?-mix:pattern)"]

Retrying a Block
The retry statement can be used within a rescue clause to restart the enclosing begin/end block
from the beginning.

Catch and Throw
The method catch executes its associated block:

catch (object) do
code...

end

The method throw interrupts the normal processing of statements:

throw(object ‹ , obj ›)

When a throw is executed, Ruby searches up the call stack for the first catch block with a
matching object. If it is found, the search stops, and execution resumes past the end of the
catch’s block. If the throw is passed a second parameter, that value is returned as the value of
the catch. Ruby honors the ensure clauses of any block expressions it traverses while looking
for a corresponding catch.

If no catch block matches the throw, Ruby raises an ArgumentError exception at the location of
the throw.

Typed Ruby
RBS has its own syntax for defining Ruby types. The definitive source for the syntax reference
is found at https://github.com/ruby/rbs/blob/master/docs/syntax.md. We’ll go over the structure here.

RBS Declarations and File Structure
RBS syntax has a few main parts (we’re adopting the naming convention from the official
syntax file):

• Declarations are class, module, and interface structures that can be used as types in other
parts of the file.

• Members are things that are inside declarations that might have type information,
including instance variables, attributes, and methods.

• Types are the things that RBS uses to specify actual type information, including class
names, union of class names, or literal types, as well as a few RBS-specific keywords.

Chapter 25. Language Reference: Objects and Classes • 486

report erratum • discuss

https://github.com/ruby/rbs/blob/master/docs/syntax.md
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

An RBS file looks like the skeleton of a Ruby file. It declares classes and methods, but does
not include the body of methods. You would typically have more than one class in a single
RBS file (one namespace per file is common), and I’d say it’s rare for an RBS-using application
to have top-level methods included in the RBS file.

RBS Declarations
You can declare a class in RBS:

class ‹ namespace:: › classname module_types ‹ < superclass superclass_types ›
body

end

An RBS class definition looks like a Ruby class definition except that both the class name
and the superclass name can be augmented with type parameters. Those type parameters
are used for Generics, and we’ll talk about what those do and the syntax for them in RBS
Generics, on page 491.

A class definition with the type modifiers looks like this:

class LinkedList[I] < List[I]
body

end

A module definition is similar, but a module has an additional type definition, like this:

module ‹ namespace:: › module_name module_types ‹ < superclass superclass_types ›‹ : module-self-types ›
body

end

The module self type is type information about the kinds of classes that can include a module.
So, you might have a whole class hierarchy underneath a class named AbstractPolicy and a
module that you only want included within AbstractPolicy or one of its subclasses:

module PolicyPrinter : AbstractPolicy
end

Where this gets a little more interesting is with the inclusion of an interface. RBS allows you
to specify an interface that has a set of methods, and then any class that has those methods
also matches the interface.

For example (we’ll cover the method syntax in RBS Members, on page 488):

interface Postish
def title: () -> String
def description: () -> String

end

module Htmlable : Postish
end

In this case, the Htmlable module can only be included by classes that implement the Postish
interface, meaning they have methods called title and description.

An interface declaration is syntactically similar to a module:

report erratum • discuss

Typed Ruby • 487

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

interface ‹ namespace:: › module name module_types ‹ < superclass superclass_types ›
body

end

You can also declare aliases using the keyword type, which allows you to specify shortcuts:

type alias type-parameters = type

The type parameters are the same generics that modules and classes have, and the type at
the end is any RBS type as defined in RBS Types, on page 490.

In the RBS documentation, constants and globals are considered declarations, and they both
work the same way with the name followed by a colon followed by the type:

constant: type
$global: type

As in:

class Post
DEFAULT_TITLE: String

end

$ADMIN_EMAIL: String

RBS Members
An RBS member is most of what you would think of as the contents of a class. Unlike regular
Ruby, RBS expects you to declare the type of instance variables. Instance variables that are
not declared will be type errors as far as RBS tools are concerned:

@instance_variable: type

If you are using attr_accessor and its sibling methods, you can declare the type of the internal
variable. By default, this also declares an instance variable of the same name, but you can
override that by putting a different variable name in parentheses, or you can omit declaring
a variable name by including empty parenthesis (presumably because the variable name
has already been declared).

attr_attribute_type name : type
attr_attribute_type name (ivar) : type
attr_attribute_type name () : type

Any of the attr methods can be used here:

class Person
@id_number: String
attr_accessor name: String
attr_reader height (@height_in_inches): Integer
attr_writer id_number (): String

end

Most of the body of RBS classes are going to be method names where you are specifying the
types of the arguments and the type of the return value. This gets a little tangled because
Ruby has a lot of different ways to define method parameters, but the basic idea is that every
element of the method definition can have a type decoration.

Chapter 25. Language Reference: Objects and Classes • 488

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The simplest version of the syntax is the method name, followed by a colon, followed by all
the parameters, followed by a skinny arrow, followed by the return type:

def method_name: (params) -> type
def method_name: (params) -> type‹ | (params) -> type ›

If the method name starts with self that indicates a singleton method—in normal usage that
would be a class or module method. If the method name starts with self?, that makes it both
a public singleton method and a private instance method.

If the method has multiple type signatures, you can separate them with a pipe character.
Typically you’d do that on multiple lines:

def add_money: (Integer) -> Integer
| (RomanNumeral) -> RomanNumeral

You can have an arbitrary amount of overloads.

The parameter list can be empty, in which case you do include the empty parentheses:

def price_in_cents: () -> Integer

Take a deep breath here while we go through all the ways in which to specify parameters…

A required positional parameter is denoted just by the type optionally followed by the name
of the parameter:

def add(Integer)

def add(Integer other)

An optional positional parameter—meaning a parameter with a default value—is specified
with the same syntax, but with a ? prefix to the type:

def expand(?String)

def expand(?String delimeter)

A splat parameter is denoted with a splat before the type name, with or without the name
of the variable:

def join_all(*String)

Keyword parameter syntax is a little different. The keyword is followed by a colon, then by
the type. Optional keywords—again, meaning keywords with defaults—are prefixed with
a ?, and the type double-splats are preceded with ** (we’ll show how to specify hash types
in the next section):

def lots_of_args(arg1: String, ?arg2: Integer, **HashType)

A block argument has its own syntax:

{parameters ‹ [self: self_type] › -> return_type}

?{parameters ‹ [self: self_type] › -> return_type}

If the block is optional, the ? prefix is used. The parameters in the block have the same syntax
as we just described for method parameters, and the return type can be any type:

def each_users_posts { User -> Array[Post] }

report erratum • discuss

Typed Ruby • 489

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The optional “self type” is used when you expect the block to be a target of an instance_eval
call and limits the type of objects that can call instance_eval on this block:

def each_users_posts { (User) [self: Document] -> Array[Post] }

Proc objects have essentially the same syntax as blocks, except that they start with ^ rather
than having braces:

^parameters ‹ [self: self_type] › ‹ block › -> return_type

There are a couple of other things you can do with inside an RBS class or module definition:

• You can include, extend, or prepend modules just as you can in Ruby, and with the same
meaning.

• The private, protected, and public modifiers can be used on methods or attributes and
specify the access that the member will have in the actual class. They can either be
directly modifying individual methods or used on their own, as they can be in Ruby.

• You can use alias to declare that two methods are the same.

RBS Types
To this point, we’ve kind of hand-waved what goes into the place where RBS asks for a
“type.” A type can be several things in RBS.

A type can be a literal value, in which case the object of this type can only have that one lit-
eral value. This seems of little practical use, but you can do it.

A type can be a class, model, or interface name (or a declared alias to one of those things),
which declares that the member must be an instance of that class or a subclass of that class:

def height: () -> Integer

If you want to specify that your type is the singleton class, then you use singleton(type), so
singleton(User), for example would mean that your type is the the singleton class associated
with User.

In some cases, the type is a container of other objects, and you can specify the type of the
objects contained using square brackets, so Array[String] or Hash[Symbol, Integer]. We’ll see how
to implement this in RBS Generics, on page 491.

You can specify Hash objects with fixed keys with key: type syntax, as in {name: String, height:
Integer} and you can specify Array types with fixed lengths with Array syntax, as in [Integer,
String, Integer].

By default, types declared with RBS can not have nil values. To specify that nil is a potential
value, you append the type with a ?, as in String?. This is called an optional type. Note that if
you have an optional parameter that is also an optional type, you can have both leading and
trailing question marks: ?String?.

You can combine types. The pipe character indicates a union, meaning that the value can be
a member of one or more of the grouped types. A common use case is for a method to take
either a record or the ID of that record, which you could annotate as (id_or_record: User | Integer).
Somewhat more rarely, the & indicates an intersection, meaning the value has to match all
the types in the group, which you’d most commonly see as a set of interfaces: (admin: Customer
& Employee).

Chapter 25. Language Reference: Objects and Classes • 490

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

RBS defines a handful of keywords that stand in for various kinds of types, often in the
context of the class or method being defined:

• bool – an alias of true | false.
• boolish – an alias of top, which means you are expecting an arbitrary value here but

treating it as a boolean. It is recommended over bool for method arguments and return
values unless you are strictly limiting the values to true and false.

• bot – a subtype of all RBS types.
• class – equivalent to the singleton class of the class being defined.
• instance – the type of an instance of the class being defined.
• nil – means nil.
• self – indicates the type of the receiver of the method.
• top – a supertype of all RBS types, very similar to untyped.
• untyped – RBS does not care what this variable is. The equivalent of TypeScript’s any.
• void – equivalent to top. Use in cases where the return value of a method will not be used.

RBS Generics
A common problem in a type system is a container that behaves similarly no matter what
type of objects are inside it. So, an array of String has a lot of methods that return a String,
while an array of Integer has all the same methods, but they return an Integer. The container
doesn’t care what type the values are, but it does care that the values are consistent for any
particular container.

The term for this in typed languages is a generic. Typically, the container class or module or
interface defines one or more generic types as being part of the container, and then methods
within that container use those generics to represent the type as a parameter or return type.

In RBS, a class, interface, or module can define one or more generic types in square brackets
at the top of the definition. The type names are capitalized, and by convention, they are
usually a single letter.

In this case the Scheduler class defines a generic, the next method returns an element of that
type, and the perform method takes an element of that type as an argument:

class Scheduler[T]
def next: () -> T
def perform: (T) -> void

end

When you use Scheduler in other RBS definitions, you augment it with the type to be used as
a generic. So Scheduler[RedisJob] would imply that next will return an object of type RedisJob
and that perform will take an object of type RedisJob.

You might want to limit the input type going to the generic. You can specify a limiting parent
class to the generic:

class Scheduler[T < Job]
def next: () -> T
def perform: (T) -> void

end

So now when Scheudler[RedisJob] is declared, RBS ensures that RedisJob is a subclass of Job.

report erratum • discuss

Typed Ruby • 491

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

By default, the contained classes much match with their usages—if you declare that something
is of type Scheduler[RedisJob] and then try to pass that variable to something that expects
Scheduler[Job], RBS will consider that to be a type mismatch, even though Job is a superclass
of RedisJob.

In order to make this work, you can describe the scheduler generic as [out T]. If so described,
then Scheduler instances will type match with generics that are superclasses of the generic.
The technical term is covariant. A declaration can also be [unchecked out T], which means the
RBS type system doesn’t try to match the types of the generic class.

If you want to go the other way and have classes be type match with subclasses, then the
term is countervariant and you indicate that with [in T].

Chapter 25. Language Reference: Objects and Classes • 492

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Part V

Ruby Library Reference

Ruby gets much of its functionality from its extensive library.
That library is sometimes described as having two parts: the
"core," which is part of Ruby and is included as part of every
Ruby program, and the "standard library," which is shipped with
Ruby but must be explictly required in code to be used.

In this part, we cover a curated list of the most important classes
and their most useful methods in both the core and the standard
library. We didn’t separate the two. If a class in this list needs to
be explicitly required, we note that as part of the description of
that class. Note that we tried to keep related functionality together,
so when you browse for one method, you might find another one
that fits your needs more completely.

CHAPTER 26

Library Reference: Core Data Types
In this chapter, we’ll take a closer look at Ruby’s core data types. The goal is to give you
more information about what you can do with these classes, and also to discuss related
functions together so that you can browse and perhaps find a new feature that might help.
We’re presenting the topics in alphabetical order for easier browsing, and we’ll cross-reference
between topics as needed.

This is not intended to be a complete listing of every class, every method, or every option.
For that, please refer to the official Ruby documentation at https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide its complete name
and signature. The notation Foo.bar indicates a class or module method, while Foo#bar indicates
an instance method. Optional arguments are indicated with Ruby syntax and their default
value, as in Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with brace syntax and
indication of what the arguments to the block will be, as in Foo#bar { |object| block }. An
optional block argument will be surrounded by square brackets, Foo#bar [{block}]. Please
note that this description syntax is slightly different than the official documentation, and
that in some cases, what the official documentation shows as multiple method signatures,
we’ve chosen show as one signature with default values. Also, parameter names sometimes
differ from the official documentation to make the naming clearer.

Dates and Times
Ruby has three separate classes to represent date and time data: Time, Date, and DateTime.

• Time represents a specific moment in time, and you can retrieve both date and time
information based on that. The Time class is based on a library that is common to Unix
systems and is used by many programming languages.

• Date represents a date only with no time information attached. It is useful for calendar
arithmetic that does not depend on time of day. You need to require "date" to use the Date
class.

• DateTime also represents a specific moment in time but uses a different internal represen-
tation than Time. DateTime is now considered deprecated—at one point it had a more
complete API than Time, but that is no longer true. Currently the only recommended
use of DateTime is if you are dealing with dates in the distant past. You need to require
"datetime" to use the DateTime class.

report erratum • discuss

https://docs.ruby-lang.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Creating Time Instances
There are a few ways to create a new Time instance. The method you are most likely to see
is Time.new(in: nil), with no arguments, which is also aliased as Time.now, and which returns
the current time. For example, to see when this section was most recently executed when
building the book:

Time.new # => 2023-07-08 10:55:45.653911 -0500

By default, the resulting time is in the current time zone. To change the time zone, you use
an optional keyword argument, in, that takes the zone, as in Time.now(in: nil).

You will see a few time methods that allow you to specify a time zone. For those methods,
Ruby allows a time zone to be specified by:

• A string representing the offset from UTC in hours and minutes in the form “+HH:MM”
or “-HH:MM”.

• An integer representing the offset from UTC in seconds.
• A single letter representing military time zones, as specified here.1

• A custom object that responds to the methods local_to_utc and utc_to_local with logic that
performs the appropriate transition. (Time.new and Time.now can’t take an object like this,
but other time methods can.)

A different form of Time.new(string, precision: 9, in: nil) takes in a string in YYYY-MM-DD HH:MM:SS
format and returns that exact time. This version takes a keyword argument, precision, which
limits the number of decimal places kept for the seconds, and also takes an optional time
zone with the in: keyword argument, as above.

A more flexible way to create a new Time instance from a string is Time.parse(time_string, now
= Time.now) [{year}]. The parse method is not available by default. The parse method is not
part of the core library of Time, to use Time.parse you must call require "time" somewhere in
your code before use.

The Time.parse method takes a string and converts it to a Time object based on Ruby’s best
guess as to the underlying format. Missing parts of the time are set to 0, and missing parts
of the date will be filled in based on the current date. If you want to use a different date as
the baseline, you can pass in a date as the optional second positional argument.

You have some leeway in how you pass in the string and Ruby will try to do the right thing.
Here are some examples:

require "time"
Time.parse("2023-2-10") # => 2023-02-10 00:00:00

.. -0600
Time.parse("2023-10-2") # => 2023-10-02 00:00:00

.. -0500
Time.parse("2023-2-28") # => 2023-02-28 00:00:00

.. -0600
Time.parse("1:00") # => 2023-05-14 01:00:00

.. -0500
Time.parse("February 26, 2023, 3:00 America/Chicago") # => 2023-02-26 03:00:00

.. -0600

1. https://en.wikipedia.org/wiki/List_of_military_time_zones

Chapter 26. Library Reference: Core Data Types • 496

report erratum • discuss

https://en.wikipedia.org/wiki/List_of_military_time_zones
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Time.parse takes an optional block that accepts the year of the parsed time, and allows you
to return a different year. This functionality is specifically there to allow you to manage two-
digit year formats.

If you are using strings for dates as specified by HTTP protocol, you can use Time.httpdate(time)
to get the given date and time in the format used by HTTP requests. The output format is
day-of-week, DD month-name CCYY hh:mm:ss GMT. As I write this that corresponds to Sun, 26 Feb
2023 20:26:12 GMT. Similarly, you can use Time.rfc2822(time) to parse the very similar date format
specified by that RFC.

If the unspecified nature of Time.parse bothers you, you can use Time.strptime(time, format, now
= Time.now) (short for “string parse time”). The first argument to strptime is a string represen-
tation of a time. The second argument is a format string, and the third argument is an
optional date that fills in any missing date information. Like parse, an optional block can be
used to manage two-digit years.

The format string uses the same format characters as strftime, which are shown in Table 21,
directives, on page 498. The strptimemethod uses the format string to interpret the string and
convert it to a Time. To use Time.strptime you must have called require "time", as the strptime
method is not available by default. Some examples:

require "time"
Time.strptime("2023-2-10", "%Y-%m-%d") # => 2023-02-10 00:00:00 -0600
Time.strptime("2023-2-10", "%Y-%d-%m") # => 2023-10-02 00:00:00 -0500

Another way to create a Time instance is using the multi-argument form of Time.new. The
multi-argument form is:

Time.new(year, month = 1, day_of_month = 1, hour = 0, minute = 0, second = 0, time_zone = local, in:
nil)

All the positional arguments other than year are optional, and all the values can be of type
Integer, Float, Rational, or String instances that can be converted to integers. In addition:

• The month value range is 1 to 12, or it can be the three-letter English abbreviation of
the month (case-insensitive).

• The day of month is between 1 and 31. If the month in question has fewer than 31 days,
then Ruby will push forward into the next month, so Time.new(2023, 2, 31) returns 2023-
03-03 00:00:00 -0600.

• The hour ranges from 0 to 23, but you can use 24 if and only if the minute and second
are zero.

• Minute ranges from 0 to 59.
• Second ranges from 0 to 60, where 60 indicates a leap second. The second can also be a

float or rational number.

If any of the values are out of range, Ruby throws an ArgumentError.

The time zone can be specified via the last positional argument or the in: keyword argument
using the same timezone specifiers we saw earlier withTime.now.

A couple of variations on Time.new return output based on the time zone:

• Time.gm or Time.utc, which returns the time in UTC.
• Time.local or Time.mktime, which return the time in the local timezone.

report erratum • discuss

Dates and Times • 497

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

All of these methods take up to seven positional arguments that match the arguments to
Time.now but with an additional argument for microseconds. Alternately, the methods are
set up such that if they are called with exactly ten arguments, they assume the arguments
are in order as if they were generated by Time#to_a. So x = Time.now; Time.gm(*x.to_a)will work
as expected even though the order of the result of to_a does not match the order of positional
arguments in Time.now.

The method Time.at(time, subseconds = false, unit = :microseconds, in: nil) returns a new time object
given a number of seconds since the beginning of the Unix Epoch on Jan 1, 1970. It takes an
optional in: keyword argument to specify the time zone of the result using the time zone
specifiers discussed earlier. An optional second positional argument can specify subseconds,
and an optional third argument specifies the unit of the subseconds. The unit can be :millisec-
ond, :microsecond, or :nanosecond. The default is :microsecond.

MeaningFormat
Unless otherwise specified, numerical fields are padded with zeroes if the numbers are too small
to fit the width of the field. Prefixing any format code with%0, as in %0Y pads with zeros, prefixing
with %_, as in %_Y pads with blanks, and %-, as in %-Y, doesn’t pad.
Literal %%%
The abbreviated weekday name (“Sun”)%a
The full weekday name (“Sunday”)%A
The abbreviated month name (“Jan”)%b
The full month name (“January”)%B
The preferred local date and time representation%c
The two digit century (currently 20)%C
Day of the month (01..31)%d
Date (%m/%d/%y)%D
Day of the month, blank padded (␣1..31)%e
ISO8601 date (%Y-%m-%d)%F
Last 2 digits of ISO8601 week-based year%g
ISO8601 week-based year%G
The abbreviated month name (“Jan”)%h
Hour of the day, 24-hour clock (00..23)%H
Hour of the day, 12-hour clock (01..12)%I
Day of the year (001..366)%j
Hour of the day, 24-hour clock, blank padded (␣0..23)%k
Hour of the day, 12-hour clock, blank padded (␣1..12)%l
Milliseconds of the second%L
Month of the year (01..12)%m
Minute of the hour (00..59)%M
Newline%n
Fractional seconds, 9 digits in width, an optional width specifier changes the width, as in %3N%N
Meridian indicator, uppercase (“AM” or “PM”)%p
Meridian indicator, lowercase (“am” or “pm”)%P
12 hour time (%I:%M:%S %p)%r
24 hour time (%H:%M)%R
Number of seconds since 1970-01-01 00:00:00 UTC%s
Second of the minute (00..60)%S
Tab%t
24 hour time (%H:%M:%S)%T

Chapter 26. Library Reference: Core Data Types • 498

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

MeaningFormat
Day of the week (Monday is 1, 1..7)%u
Week number of the current year, starting with the first Sunday as the first day of the first week
(00..53)

%U

Day of the week (Sunday is 0, 0..6)%w
VMS date (%e-%^b-%4Y)%v
ISO8601 week number (01..53)%V
Week number of the current year, starting with the first Monday as the first day of the first week
(00..53)

%W

Preferred representation for the date alone, no time%x
Preferred representation for the time alone, no date%X
Year without a century (00..99)%y
Year with century, four digits.%Y
Time zone offset (+/-hhmm). Use %:z or %::z to format with colons%z
Time zone name%Z
Date and time, not supported by Time class.%+

Table 21—Time#strftime directives

Using Time Instances
Once you have a Time instance, you can extract all the various attributes. Every attribute that
might get passed in as part of a constructor call has an associated getter method: Time#year,
Time#month (aliased as Time#mon), Time#day (aliased as Time#mday), Time#hour, Time#min,
Time#sec, and Time#subsec. All of these methods return the integer value of that attribute
except for subsec, which returns either a Rational or integer zero.

A Time instance includes a few calculated attributes:

• Time#dst? returns true if the time zone is a daylight savings time zone.
• Time#nsec returns the subseconds in nanoseconds.
• Time#usec returns the subseconds in microseconds.
• Time#wday returns the day of the week as an integer with Sunday as 0, Monday as 1,

and so on.
• There are also a series of methods called sunday?, Time#monday? and so on that return

true if the day of the week matches that day.
• Time#yday returns the integer day of the year, so January 1st is 1, February 12th is 33,

and so on.
• Time#zone returns the name of the time zone.

A Time instance can be the left side of an addition operation and have a number added to it.
A new time object is returned with the number of seconds added to the time.

t = Time.now
t # => 2023-05-14 18:22:23.816053 -0500
t + 100 # => 2023-05-14 18:24:03.816053 -0500

A Time instance can be the left side of a subtraction operation. The right side can be a number,
in which case a new instance is returned with the number of seconds subtracted from the
time. Alternately, a second Time instance can be the right operand, in which case the result
is the number of seconds between the two times as a float:

t = Time.now
t # => 2023-05-14 18:22:23.888492 -0500

report erratum • discuss

Dates and Times • 499

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

t2 = t - 100
t2 # => 2023-05-14 18:20:43.888492 -0500
t - t2 # => 100.0

Time implements the Time#<=> operator and includes the Comparablemodule, so Time instances
can be sorted and compared using all the logical comparison operators.

Converting Time
You can convert a Time instance to a number with the methods Time#to_f, Time#to_i, and
Time#to_r. These return the number of seconds that have passed since the Unix Epoch date
as a float, integer, or rational, respectively.

A time instance can be converted to a time instance in a different time zone with Time#getutc
or Time#getlocal, both of which have corresponding methods Time#utc and Time#localtime,
which change the receiver in place. You can convert to a Date or DateTime with Time#to_date
or Time#to_datetime.

You can convert a Time instance to an Array using Time#to_a, which returns a 10-element
array made up of the attributes [sec, min, hour, day, month, year, wday, yday, dst?, zone]. This array
can be passed back to some of the Time constructors to create a new Time instance. Although
you cannot convert a Time to a hash directly, Time does implement Time#deconstruct_keys so
you can use a Time instance in pattern matching. For example:

require "time"
x = Time.parse("April 12, 2023")
case x
in {month: 3|4|5, day:}
puts "Spring is here and it's the #{day}th"

else
puts "It's not winter"

end

produces:

Spring is here and it's the 12th

You can convert a Time instance to a string in several ways. The most general is Time#strf-
time(format_string), which takes a format string as an argument. The format string uses the
characters shown in Table 21, directives, on page 498 to insert parts of the actual time in the
string. Following are specific string formatting methods:

• Time#asctime (also ctime) formats as %a %b %e %T %Y, which has a shortcut %c.
• Time#httpdate formats as %a, %d %b %Y %T GMT.
• Time#inspect formats as %Y-%m-%d %H:%M:%S %N %z.
• Time#rfc2822 formats as %a, %-d %b %Y %T %z.
• Time#to_s formats as %Y-%m-%d %H:%M:%S %z, which is the same as inspect except for the

subseconds.

For example:

require "time"
t = Time.now
t.strftime("%m/%d/%y") # => "05/14/23"
t.strftime("%a %b %e %H:%M:%S %Z %Y") # => "Sun May 14 18:22:24 CDT 2023"
t.ctime # => "Sun May 14 18:22:24 2023"

Chapter 26. Library Reference: Core Data Types • 500

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

t.httpdate # => "Sun, 14 May 2023 23:22:24 GMT"
t.inspect # => "2023-05-14 18:22:24.029188 -0500"
t.rfc2822 # => "Sun, 14 May 2023 18:22:24 -0500"
t.to_s # => "2023-05-14 18:22:24 -0500"

Creating Date and DateTime Instances
The date library implements classes Date and DateTime, which provide a comprehensive set
of facilities for storing, manipulating, and converting dates with or without time components.
The classes can represent and manipulate civil, ordinal, commercial, Julian, and standard
dates, starting January 1, 4713 BCE. The DateTime class extends Date with hours, minutes,
seconds, and fractional seconds, and it provides some support for time zones. The classes
also provide support for parsing and formatting date and datetime strings. To use them,
you need to require "date".

DateTime is a subclass of Date and is generally considered deprecated in favor of plain old
Time unless you specifically need its calendar calculation facilities. In this section we’ll talk
about Date mostly, since DateTime is a subclass, so you can assume anything about Date also
applies to DateTime.

Many methods of Date that create or compare dates take an optional positional argument at
the end, start = Date::ITALY. This is for Gregorian vs. Julian dates, and you are unlikely to need
this in regular work, so we’ve left it off of all the methods that use it.

The main method for creating a Date is with Date.today, which returns the current date as a
Date instance. You’ll also often see Date.new(year, month day), or Date.parse(string, current_century
= true, limit: 128)—the parsemethod uses similar logic to Time.parse. If the current_centry argument
is true a two-digit year is augmented with the current century, otherwise, it’s taken as
referring to a two-digit year. There’s also a Date.strptime(string, format = "%F") that takes a format
string, again, just like Time.strptime. The DateTime class has DateTime.now and also a DateTime.new
that takes in arguments similar to the multi-argument format of Time.new

Date can be the left side of an addition operation. The second operand is a number in days
to be added to the Date.

require "date"
d = Date.new(2023, 2, 12)
d # => #<Date: 2023-02-12 ((2459988j,0s,0n),+0s,2299161j)>
d + 25 # => #<Date: 2023-03-09 ((2460013j,0s,0n),+0s,2299161j)>

Date can be the left side of a subtraction operation. Subtraction either takes a numeric and
returns a new Date that many days earlier, or another Date and returns the number of days
in between the two of them.

Date also takes Date#<<, which adds a number of months to the date, as in Date.today << 3.

Date also supports <=> and Comparable.

You can get a following day with Date#next, Date#next_day(n = 1), Date#next_month(n = 1),
Date#next_year(n = 1). The last three take an optional argument for how may steps you want
to move forward. You also have Date#prev_day(n = 1), Date#prev_month(n = 1), and
Date#prev_year(n = 1).

Once you have a Date, the components are accessible as Date#year, Date#month (aliased as
Date#mon), and Date#day (aliased as Date#mday). All the weekday predicate methods like

report erratum • discuss

Dates and Times • 501

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Date#sunday? also exist, as do Date#wday (day of week), and Date#yday (day of year). The
DateTime class also adds DateTime#hour, DateTime#minute (aliased as DateTime#min), DateTime#sec-
ond (aliased as DateTime#sec), DateTime#second_fraction (aliased as DateTime#sec_fraction), and
DateTime#zone.

Date has most of the same string methods as Time, including Date#ctime and Date#strftime(format
= "%F"), and also implements Date#deconstruct_keys for pattern matching. There’s also
Date#to_datetime and Date#to_time.

Math
The Numeric class and its subclasses handle a lot of the basic arithmetic in Ruby. (For more
see Numbers, on page 502.) But sometimes you need to do more advanced math. The Math
module provides a couple dozen math functions, largely trigonometry, but it also handles
other branches of advanced math. The BigMathmodel recreates a subset of those methods for
BigDecimal arguments and values.

All of these methods are module methods, so they are all called with module syntax, as in:
Math.cos(value).

The Math module contains multitudes, especially if you like trigonometry. Specifically, it
contains:

• The constant values Math::Pi and Math::E.
• Math.sqrt(x) and Math.cbrt(x), which return the square and cube roots of the argument,

respectively.
• Logarithm functions, so Math.log(x, base = Math::E) returns the logarithm of the value and

has an inverse method Math.exp(x), which returns e raised to that value. The sibling log
methodsMath.log10(x) andMath.log2(x) are also available and return the log of the argument
in the base of the method name.

• A related method,Math.frexp(x), which returns a two-element array with the fraction and
exponent base two of that number, so the return value is [y, z], where x = y * 2**z. The
inverse method Math.ldexp(y, z), returns the x value in that equation.

• A method Math.hypot(x, y), which takes two arguments and returns sqrt(x**2, y**2)—in
other words, the hypotenuse of a right triangle with sides x and y.

• Error and gamma functions Math.erf(x), Math.erfc(x), Math.gamma(x), and Math.gammac(x).
We’re just going to assume that if you know what these are, you’ll know what they do.

• Lots of trig functions, including the basicMath.sin(x),Math.cos(x), andMath.tan(x). The input
value is in radians and for sin and cos must be between -1 and 1. There’s also the inverse
trig functionsMath.acos,Math.asin(x),Math.atan(x), andMath.atan2(x). Finally, the hyperbolic
and inverse hyperbolic functions Math.cosh(x), Math.sinh(x), Math.tanh(x), Math.acosh(x),
Math.asinh(x), and Math.atanh(x) are all also there, and all also take arguments in radians.
Some of these methods have their own range limits.

Numbers
We talked about numeric literals in Integer and Floating-Point Numbers, on page 432. Here,
let’s talk about the library methods for numbers.

Chapter 26. Library Reference: Core Data Types • 502

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Numeric Class
All number classes inherit from the class Numeric. If you want to define your own number
subclass, it is recommended that you also inherit from Numeric because Numeric does some
internal things about storing numbers in memory that are useful to have.

It might go without saying—but it’s our job to say it—that Numeric implements Numeric#<=>
and includes Comparable. As with other <=>, the return value is -1 if the left side is smaller,
1 if the left side is greater, and 0 if the two are equal. The equality test is also aliased as eql?.

It’s also our job to say that the actual arithmetic operators—Numeric#+(other), Numeric#-(other),
Numeric#*(other), Numeric#/(other), and Numeric#**(other)—are not defined by Numeric, but are
defined by the subclasses individually, presumably for performance reasons. The Numeric
class does define unary Numeric#@- for negating a number, and unary Numeric#@+, which is
basically a no-op. Numeric also defines Numeric#%(other), which does modular arithmetic,
though this is also overridden in most of the subclasses. And Numeric defines Numeric#abs for
the absolute value of the number.

The basic mechanism of converting between number types for the purposes of doing arith-
metic is Numeric#coerce(other). The coercemethod takes another numeric argument and returns
a two element array with the argument as the first element and the original receiver as the
second. The two numbers are in a common type—broadly, an integer and a non-integer
argument will both be converted to floats. A float receiver and pretty much any argument
will be converted to floats. A rational or complex receiver will convert an integer argument,
but will be converted to float by a float argument, see Numeric Coercion, on page 366 for
more examples.

Numeric defines Numeric#ceil(digits = 0), Numeric#floor(digits = 0), Numeric#round(digits = 0), and
Numeric#truncate(digits = 0) for the common mathematical definitions. All of these take an
optional argument that is the number of digits beyond the decimal point to keep; the default
is 0. So, ceil returns the smallest number above the receiver at that precision, floor returns the
largest number below, round returns whichever of floor or ceil is closer, halfway point rounds
up, and truncate cuts off the number.

Somewhat counterintuitively, Numeric does define a couple of division methods. It defines
Numeric#div(x) as integer division self / x using the self objects definition of /. If you want a
float result, then Numeric#fdiv(x) does the same division but returns a float. The method
Numeric#quo(x) does the same division, but returns a rational if the argument is an integer or
rational, or a float if the argument is a float. The method Numeric#divmod(x) returns a two-
element array such that self.divmod(x) = [(self / x).floor, self % x]. The mod value is also available
as Numeric#remainder(other).

Any number can be converted to an integer with Numeric#to_int, though the kernel method
Integer is probably preferred, and you can go to a complex number with Numeric#to_c. Although
it makes the most sense for rationals, Numeric#numerator and Numeric#denominator are defined
in Numeric.

Numericdefines a set of query methods that are valid for all number types. The set Numeric#pos-
itive?, Numeric#negative?, Numeric#nonzero?, and Numeric#zero? all return true or false based
exactly on the check in the name of the method. It’s fairly common to see x.zero? rather than
x == 0 as a condition. The Numeric#infinite?method checks against the -Infinity or +Infinity special
values; the inverse method is Numeric#finite?. If the number is an Integer, then Numeric#integer?

report erratum • discuss

Numbers • 503

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

returns true, and similarly Numeric#real?. Note that the check is based on the type of the
number, not the value; 1.0.integer? is false.

You can convert any number to a collection with the Numeric#step(to = nil, by = 1) [{ |n| block}]
or Numeric#step(to: nil, by: 1) [{ |n| block}] method, which takes a variety of arguments and a
block. It can take two positional arguments—to and by—in which case the block is called
with self as an argument. The by amount is added to self and the block is called again until
the to argument is crossed. If by is positive, it crosses by going higher; if by is negative, it
crosses by going lower. So it’s roughly equivalent to this implementation:

def step(to = nil, by = 1, &block)
counter = self
start_relationship = self <=> to
while (counter <=> to) == start_relationship
block.call(counter)
counter += by

end
end

As you can see, to defaults to nil, meaning an infinite sequence, and by defaults to 1. You can
also specify to: and by: as keyword arguments. If no block is given, the real method, unlike
our scratch implementation earlier, will return an Enumerator that will successively return
the values that would have been passed to the block.

Integer Class
The Integer class inherits from the Numeric class and implements a number of the methods
described earlier on its own for memory or speed performance purposes. It also adds some
additional functionality of its own.

In addition to implementing the regular arithmetic operators, Integer#+, Integer#-, Integer#*,
Integer#/ (which is integer division and truncates the result), Integer#% (also available as
Integer#modulo), and Integer#** (also available as Integer#pow), Integer also implements bitwise
arithmetic.

The bitwise AND (Integer#&) operator returns a new number with a 1 in each bit that is 1 in
the binary representation of both operands. The bitwise OR (Integer#|) operator returns a
new number with a 1 in the binary representation of either operand. The bitwise XOR (Inte-
ger#^) operator returns a new number with a 1 in each bit that is 1 in the binary representation
of one but not both operands. The Integer#<< shifts the bits of the left operand the number
in the right operand, and Integer#~ is the one’s complement—it flips all the bits. The Integer#[]
operator can be used to read (but not write) the bit at the given offset in the binary represen-
tation of the integer.

Ruby also provides Integer#allbits?(mask) which returns true if every bit that is set to 1 in the
mask is also set to 1 in the receiver. (In other words it is equivalent to self & mask == mask)).
The method Integer#anybits?(mask) returns true if any bit set to 1 in the mask is also set to 1
in the receiver, (so, equivalent to self & mask != 0). The method Integer#nobits?(mask) returns
true if no bit set to 1 in the mask is set to 1 in the receiver, so self & mask == 0.

0b0111 & 0b0100 # => 4
0b0111.allbits?(0b0100) # => true
0b0111.anybits?(0b0100) # => true
0b0111.nobits?(0b0100) # => false

Chapter 26. Library Reference: Core Data Types • 504

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

0b0111 | 0b0100 # => 7
0b0111 ^ 0b0100 # => 3
~0b0110 # => -7
1.even? # => false
2.odd? # => false

The method Integer#gcd(other) takes an integer argument and returns the greatest common
denominator of the two integers. The Integer#lcm(other) method returns the least common
multiple of the two integers. The Integer#gcdlcm(other) method returns a two element array
that returns the greatest common denominator and the least common multiple of the two
integers.

10.gcd(15) # => 5
10.lcm(15) # => 30
10.gcdlcm(15) # => [5, 30]

Integers can be used to iterate inside ranges, which means integers implement Integer#next
to return the next integer going upward and Integer#pred to return the previous integer going
downward.

Integers define the query methods Integer#even? and Integer#odd?, which return true or false
based on the value of the integer.

The Integer#chr(encoding = Encoding::UTF_8) method converts the integer to a single character
string represented by that integer in an particular encoding, the default is UTF-8, but you
can pass any encoding as an optional argument.

The Integer class also defines some base-transitioning methods. The Integer#digits(base = 10)
method returns an array of all the individual digits in the integer (but reversed, the ones
digit is the first digit of the array). An optional base argument puts the digits in whatever
base you want as long as the base is greater than two. The default is base ten.

You can use an integer to drive a loop using the Integer#times [{ |n| block }] method, which
takes a block and calls the block with every integer value from 0 to the receiving value minus
one. If you want to do this starting at the integer rather than ending at it, the Integer#upto [{
|n| block }] method takes a required limit that is higher and calls the block for each integer
from the receiver up to the limit, inclusive. To go the other direction, you can use the Inte-
ger#downto [{ |n| block }] method, which takes a required limit argument that is lower and
calls the block for each integer value from the receiver value down to the value of the limit,
inclusive. Without a block, all these methods return an Enumerator.

Integers are convertible to other objects with Integer#to_d for BigDecimal, Integer#to_f for Float,
Integer#to_i and Integer#to_int (which just returns the integer), Integer#to_r for Rational, and
Integer#to_s for String.

Float Class
The Float class implements several methods for performance purposes but doesn’t add a
whole lot to the functionality of Numeric. Float defines constants, some of which are:

• Float::DIG—Machine dependent; the number of significant digits in a double-precision
floating point. (DIG for digits, not for digging.) Usually 15 on most current Ruby imple-
mentations.

report erratum • discuss

Numbers • 505

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Float::EPSILON—Machine dependent, the smallest difference between two numbers that
can be represented. The documentation says it usually defaults to 2.2204460492503131e-
16.

• Float::INFINITY—The representation of infinity.
• Float::MAX—The largest possible value in a double-precision floating point.
• Float::MAX_EXP—The largest exponent in a double-precision floating point; should be
1024.

• Float::MIN—The smallest possible value in a double-precision floating point.
• Float::MIN_EXP—The smallest exponent in a double-precision floating point; should be
1021.

• Float::NAN—Represents not a number, usually the result of zero divided by zero.

Floats implement the basic arithmetic operators, Float#+, Float#-, Float#*, Float#/, Float#%, and
Float#**, and have a query operator for Float#nan?.

Floats can’t be in iterable ranges, but they do have Float#next_float and Float#prev_floatmethods
that return the adjacent representable float values.

Floats can be approximately converted to a rational with the Float#rationalize method, and
have Float#to_d, Float#to_f, Float#to_i and Float#to_int (both of which truncate the float to an
integer), Float#to_r and Float#to_s.

Beyond that, the Float class has the same features as a generic Numeric object.

Rational Class
The Rational class is a subclass of Numeric. Rationals can be created with the literal syntax, (see
Rational and Complex Numbers, on page 433) or with the Kernel method Rational, which
takes the numerator and denominator as arguments.

Nearly all the methods of Rational are performance improvements over methods that exist
in Numeric. The arithmetic methods Rational#+, Rational#-, Rational#*, Rational#/, and Rational#**
are defined. The conversion methods Rational#to_d, Rational#to_f, Rational#to_i, Rational#to_r,
and Rational#to_s are defined.

If the JSON add-on library has been included, then Rational#to_json, returns a JSON represen-
tation of the hash {"json_class" => "Rational", "n" => self.numerator, "d" => self.denominator}. (See
JSON, on page 607 for more information.) The JSON string can be deserialized with the class
method Rational.json_create(json_string).

Complex Class
The Complex class is a subclass of Numeric. Complex numbers can be created with the literal
syntax (see Rational and Complex Numbers, on page 433) or with the Kernel method Com-
plex(real, imaginary = 0), which takes the real and imaginary parts as arguments. The Complex
class also defines Complex.polar(magnitude, phase = 0) and Complex.rectangular(real, imaginary = 0)
methods that create complex objects in different formats.

The real part has a getter method Complex#real; the imaginary part has a getter Complex#imag-
inary, which is aliased as Complex#imag. The method Complex#rectangular or Complex#rect returns
a two-element array: [real, imaginary]. For complex numbers, the query method Complex#real?
always returns false, no matter the value of the imaginary part.

Chapter 26. Library Reference: Core Data Types • 506

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In polar form, the getters are Complex#magnitude (aliased as Complex#abs) and Complex#phase
(aliased as Complex#arg). The getter Complex#polar returns the two polar values as a two-element
array, [magnitude, phase].

The Complex#infinite? boolean will return true if either the real or imaginary part of the number
is infinite.

Nearly all the methods of Complex are performance improvements over methods that exist
in Numeric. The arithmetic methods Complex#+, Complex#-, Complex#*, and Complex#/, and
Complex#** are defined.

Complex does have its own feature of the Complex#<=> operator. A comparison involving a
complex number with an imaginary part that is not zero will return nil. In other cases it will
compare the real part of the complex number with the other operand. The Complex#==
method, however will compare the equality of complex numbers including their imaginary
dimension.

The conversion methods Complex#to_c, Complex#to_d, Complex#to_f, Complex#to_i, Complex#to_json,
Complex#to_r, and Complex#to_s are defined. The numeric methods will return a RangeError if
the imaginary part is not integer 0.

If the JSON additions library is included, the Complex#to_json method returns a JSON repre-
sentation of the hash {"json_class" => "Complex", "r" => self.real, "i" => self.imaginary}. (See JSON,
on page 607 for more information.) The JSON string can be deserialized with the class method
Complex.json_create(json_string).

BigDecimal
Ruby has a lot of literal numeric types: integers, floating-point numbers, rational numbers,
and complex numbers. There’s one common need that is not filled by Ruby’s literals and
which you need the standard library for: precise representation of decimal values.

What do we mean by precision? Well, here’s an example that you can replicate in your own
IRB session:

1.1 - 0.8 # => 0.30000000000000004

That seems…wrong? Your fourth grade math teacher would probably be appalled.

It is important that you are familiar with two important facts:

• Floating-point numbers are inherently imprecise—it’s not just a Ruby issue—and
shouldn’t be used for values like money, where exact precision is necessary. (Floating-
point numbers are used because they are smaller in memory and faster in calculation.)

• When you do need a precise number in Ruby, use BigDecimal.

Floating-point numbers are imprecise because they are trying to represent base-10 decimals
in a base-2 format, and there just isn’t a one-to-one match.

Internally, floating-point numbers are represented as a set of bytes (64 on most of the machines
you’ll be using) of which some are used for a base number and the rest are used for an
exponent, so 24.68 might be represented as 2468 x 10**-2. Without getting too deep into the
exact details of the representation, this also means that, as the floating-point numbers get
farther from zero, the worse the floating-point standard gets at matching floats to actual

report erratum • discuss

Numbers • 507

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

numbers. One implication is that floating-point number errors are worse if the two operands
of an operation are of vastly different magnitudes.

When you need precise decimal values, Ruby provides the BigDecimal class. Internally,
BigDecimal uses a decimal format that allows you to specify the number of digits used, and
then represents that value exactly in any future math operations you might perform.

To use BigDecimal, you must require "bigdecimal" in your application. Once you’ve required
bigdecimal, creating new instances of BigDecimal is a little odd. The BigDecimal class doesn’t
have a constructor; instead you use a Kernelmethod, also called BigDecimal(value, number_of_digits
= 0, exception: true), which makes it look like you are using one of the conversion methods:

require "bigdecimal"
BigDecimal("3.14") # => 0.314e1
BigDecimal(4.2, 2) # => 0.42e1

The first argument to BigDecimal is the value you are converting, and the second argument
is the number of digits of precision you want. Depending on what the first argument is to
BigDecimal, you may or may not be required to specify the second argument.

The number of digits of precision is the number of digits used regardless of what side of the
decimal point the digit is on. In these examples, you can see that the number of digits of
precision changes the value of the BigDecimal as it is converted to a float using BigDecimal#to_f:

require "bigdecimal"
BigDecimal(31.419, 5).to_f # => 31.419
BigDecimal(31.419, 4).to_f # => 31.42
BigDecimal(31.419, 3).to_f # => 31.4
BigDecimal(31.419, 2).to_f # => 31.0
BigDecimal(31.419, 1).to_f # => 30.0

If the first argument is a Complex, an Integer, a String, or another BigDecimal, the conversion
does not need to know the digits of precision. If the first argument is a Float or a Rational, then
you must include the digits of precision.

Strings are parsed and assumed to use the number of digits equivalent to characters in the
string:

require "bigdecimal"
BigDecimal("31.419").to_f # => 31.419

Any other type as the first value, and Ruby attempts to convert it to a string using to_str and
parses that string (per the documentation, it does not appear that Ruby attempts to convert
to a number). If the conversion fails, the method returns nil. An optional keyword argument,
exception: true, will cause BigDecimal to raise an exception in that case instead.

Once you have a BigDecimal, you can basically use it like any other numeric. If it’s the left
side of an operation, the result will also be a BigDecimal:

require "bigdecimal"
x = BigDecimal("31.419") + 5.3
x.class # => BigDecimal

BigDecimal defines the full range of numeric operators, BigDecimal#+, BigDecimal#-, BigDecimal#*,
BigDecimal#/, BigDecimal#**, BigDecimal#%, BigDecimal#@-, and BigDecimal#@+, as well as
BigDecimal#<=> and the Comparable module.

Chapter 26. Library Reference: Core Data Types • 508

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

You can convert out of BigDecimal with the usual suspects, BigDecimal#to_i, BigDecimal#to_f,
BigDecimal#to_s, and BigDecimal#to_r for Rational. There’s also a module called bigdeci-
mal/util—requiring that gives you a to_dmethod on Integer, Float, Rational, and String that converts
to a BigDecimal.

A few special values—Infinity, +Infinity, -Infinity, and NaN—are all valid values, which you
normally trigger by dividing by zero:

require "bigdecimal"
BigDecimal("1.0") / BigDecimal("0.0") # => Infinity
BigDecimal("0.0") / BigDecimal("0.0") # => NaN

BigDecimal also allows you to control how values are rounded to the number of significant
digits. If you are like us, you were taught in school to round to the closest digit, and that the
value in the middle—5—rounds up. It turns out that is just a convention, and other conven-
tions are also valuable. You can change the rounding mode globally with BigDeci-
mal.mode(BigDecimal::ROUND_MODE, [value]), where the value may be:

• BigDecimal:ROUND_CEILING—Always round toward the higher number.
• BigDecimal:ROUND_DOWN—Always round toward zero, so 8.2 rounds to 8.
• BigDecimal:ROUND_FLOOR—Always round toward the lower number.
• BigDecimal::ROUND_HALF_DOWN—Round to the nearest value; the midpoint rounds down.

So 8.5 rounds to 8, which is different than the normal default.
• BigDecimal::ROUND_HALF_EVEN—Round to the nearest value; the midpoint rounds to

whichever neighbor is an even number. So 8.5 rounds to 8, but 9.5 rounds to 10. This is
sometimes called “banker’s rounding.”

• BigDecimal::ROUND_HALF_UP—Round to the nearest value; the midpoint rounds up. This
is the default you were probably taught in school.

• BigDecimal:ROUND_UP—Always round away from zero, so 8.2 rounds to 9.

Why Do Bankers Round Differently?

If you are adding up a very large set of numbers, one thing you want is for the
sum to be essentially the same no matter where you round the value. Using
traditional rounding, the fact that the midpoint rounds up will tend to bias
rounded numbers to have a higher sum than the same set of numbers with the
values just truncated, making the sum less accurate when rounded. Using
banker’s rounding, the midpoint number tends to go up or down more or less
equally, so the rounded number does not have a biased sum relative to the
truncated sum.

Random and SecureRandom
Random numbers are an important part of games and cryptographic security, and Ruby has
a few different ways to get randomness. The easiest is the method Kernel#rand(max = 0).
Because it’s available in Kernel, you can call rand anytime. If you call rand with no arguments,
you get a pseudo-random float greater than or equal to zero and less than one. If you call
randwith an argument and the argument is an integer one or greater, then you get a pseudo-
random integer greater than or equal to zero and less than the argument. Note this means
that rand(1) will always equal 0.

report erratum • discuss

Random and SecureRandom • 509

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Non-integer arguments are converted using to_i.abs, meaning that negative arguments will
return positive values, and floating-point arguments will be truncated. If arg.to_i.abs is equal
to zero, then rand reverts to its no-argument behavior.

If the argument is a range, rand returns a value within that range. If both ends of the range
are integers, the result will be an integer. If either end is a float, the result will also be a float.

Often you may want to have a repeatable sequence of random numbers. In testing or in
debugging it can be useful to know that the random numbers are consistent from run to run.
You can do this in Ruby with the Kernel method Kernel#srand(number = Random.new_seed). If
you call srand without an argument, it generates a seed based on the operating system’s
randomizer, but if you call it with an integer argument, it uses that number as the seed, and
then it will provide a replicable stream of random numbers. Using the same seed later on
will result in the same set of numbers.

Ruby also provides an object-oriented interface to the random number generator. The Random
class provides basically the same features as rand, but allows you to have multiple streams.
The formatter module, which gets mixed in with require "random/formatter", gives you a set of
methods on Random to produce structured random output.

You use Random by creating a new instance with Random.new(seed = Random.new_seed), which
takes an optional argument, which is the seed, exactly as described in srand. You can then
get new random numbers with rand (and recover the seed with seed):

generator = Random.new(1234)
generator.rand # => 0.1915194503788923

another_generator = Random.new(generator.seed)
another_generator.rand # => 0.1915194503788923

The Random#rand(max_or_range = 0) method takes exactly the same arguments as Kernel#rand,
including a range give you a random number inside the range. You can also get a string of
random bytes with the Random#bytes(size) method, which takes one argument: the length of
the string.

With the line require "random/formatter", you get a number of useful methods mixed in to Random.
All of these methods are available as class methods, as in Random.alphanumeric, or as instance
methods, as in x.alphanumeric.

• Random#alphanumeric(length = nil)—Returns a randomly generated string with just the
characters A-Z, a-z, and 0-9. The argument is the length, and if left off, it defaults to 16.

• Random#base64(length = nil)—Returns a randomly generated base-64 string using the
characters in alphanumeric as well as +, /, and =. The length is the length in bytes, not in
characters, so the resulting string will be about ⅓ longer than n, since some characters
are less than one byte. A version of this method, called urlsafe_base64, uses - and _ instead
of + and /. That method also uses = as padding if a second argument is passed with the
value true.

• Random#hex(length = nil)—Returns a random hexadecimal string, so the characters are 0-
9 and a-f. The resulting string is twice as long as the argument (because the length is in
bytes and each character is half a byte), and the default is still 16 (meaning a 32 character
string).

• Random#random_bytes(length = nil)—Returns a random binary string. The length is in bytes,
and the default is 16.

Chapter 26. Library Reference: Core Data Types • 510

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Random#uuid—Generates a UUID, with 122 random bits. It corresponds to version 4 of
the UUID specification.

One downside of the main Random class is that it is not considered powerful enough for true
cryptographic uses. The cyptographically secure randomizers are a little slower, so Ruby
provides them in a separate class, called SecureRandom, which you must add to your app with
require "securerandom". The only default method of SecureRandom is called SecureRan-
dom#bytes(size), but SecureRandom automatically includes the methods in formatter, so all the
above methods are available on a SecureRandom instance. There is not a way to specify the
seed of a SecureRandom instance, presumably that would be insecure.

Regexp
The Regexp class is the Ruby representation of a regular expression. We discussed the basic
syntax of regular expressions at length in Chapter 8, Regular Expressions, on page 129; here
we focus on the API for the Regexp class itself and then cover some advanced regular
expression syntax.

You can create a regular expression using the literal syntax, which is two foreword slashes
with the regular expression in the middle, such as /.*rb/. (All the escape sequences and
whatnot inside the slashes are discussed in the earlier chapter.) The alternate delimiter%r{...}
will also create regular expressions.

The method, Regexp.new(string, options = 0, timeout: nil) creates a new regular expression with
the string argument as the pattern. The options argument is the equivalent of the i, m, n, or x
options that go at the end of a regular expression literal, and can be passed as a string of one
or more of those four letters. Alternately, each of those letters has a constant. In order they
are: Regexp::IGNORECASE, Regexp::MULTILINE, Regexp::NOENCODING, and Regexp::EXTENDED.

The constants are encoded as integers, and you can combine them with the bitwise OR
operator, so Regexp.new("*.foo", "im") or Regexp.new("*.foo", Regexp::IGNORECASE | Regexp::MULTILINE).
In practice, we think this might be one of the few cases in Ruby where the more compact
form might also be more legible. The optional timeout: argument allows you to override the
class-level timeout. If set, the regular expression engine throws an error if the time is reached
before a match resolves. More on that in a bit.

You an copy an existing regular expression with Regexp.new(regexp, timeout: nil). (You can pass
an options argument but it will be ignored.) This creates a new regular expression identical
to the old, but allows you to set a different timeout value. Regexp.new is also aliased as Reg-
exp.compile.

You can combine multiple regular expressions with Regexp.union(*patterns)—the patterns can
be an array of patterns or just a list of positional arguments. Each pattern can be an existing
Regexp object or a string, in which case the string is converted to a Regexp using Regexp.new.
The resulting pattern matches a string if any of the subpatterns matches the string. If the
patterns argument is empty, union produces a regular expression that can not match any
string (specifically, it returns /?!/). Per the official documentation, the behavior of parenthesized
capture groups in a union string is undefined, so you can only use a union string to determine
match or no match, not to capture partial matches.

We mentioned the timeout keyword parameter. The purpose of a timeout is to prevent a
regular expression match from stalling your application. This is potentially a vector for a
denial-of-service attack to force your application to match a complicated regular expression

report erratum • discuss

Regexp • 511

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

against long strings. You can get and set a global time out value in seconds with Regexp.timeout
and Regexp.timeout=(seconds). For an individual regex, you can override this value on creation
with the timeout: key of Regexp.new. There’s no individual setter (at least not yet); if you want
to change the timeout for an existing regexp, you need to convert it with the regex form of
Regexp.new. The default timeout is nil, meaning no timeout, but if the timeout is set, Ruby
will throw an exception if matching the regular expression to a string takes longer than the
timeout value.

The Regexp class provides a few different methods that match the regular expression against
a string. The most recommended ones are Regexp#match(string, offset = 0) [{|matchdata|}] and
Regexp#match?(string, offset = 0). In both cases the primary argument is the string to be matched
against, and the optional offset is the index of the string where the match algorithm should
begin. One difference between the two methods is the return value—match? returns boolean
true if there is a match and false otherwise, whereas match returns a MatchData object (see
MatchData, on page 513) if there is a match or nil otherwise. If a block is passed tomatch then
the block is invoked with the MatchData object and the result of the block is returned. Note
that because match returns nil on a negative result it can be used as a boolean clause, since
the nil will evaluate as falsey.

The =~ operator is implemented as Regex#=~(string) and returns the integer index of the
beginning of the match if there is a match and nil otherwise. The opposite operator, !~ does
not have a separate method definition, Ruby just reverses the boolean result of =~. Note that
=~ and match both update the set of Ruby global variables that hold the value of the last
matched regular expressions, but match? does not. You can also get the value of that last
matched regular expression with the class method Regexp.last_match.

The Regexp#=== case equality operator essentially behaves like match?. It returns true if the
string matches the regular expression and false otherwise. The difference is thatmatch? throws
an error if the argument isn’t a string and === just returns false in that case.

Regular expressions have an equality operator, Regexp#== or Regexp#eql?, which returns true
if both expressions have the same source, optional flags, and encoding.

A few methods of Regexp allow you to read some information about the regular expression.
You can recover the source string of the expression with Regexp#source, which returns the
string with regular expression escape characters intact, but typographical escape characters
evaluated. The methods Regexp#to_s and Regexp#inspect all return slightly different versions
of the source string. The to_s version is specifically designed to be passed back to Regexp.new.
The class method Regexp#escape(string), aliased Regexp#quote, returns a string that escapes
characters that have meaning in a regular expression:

r = /ru+by\x10\//ix
r.source # => "ru+by\\x10/"
r.inspect # => "/ru+by\\x10\\//ix"
r.to_s # => "(?ix-m:ru+by\\x10\\/)"
Regexp.escape("+*?") # => "\\+*\\?"

If your regular expression uses named captures, Regexp#names returns an array of the names
of the captures, which can then be used as the keys of any resulting MatchData objects. The
method Regexp#named_captures returns a hash where the key is the name of the named capture
and the value is an array of all the integer indexes in the regular expression that map to that
name, so the first named capture in the expression gets the value [1] and so on, with the

Chapter 26. Library Reference: Core Data Types • 512

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

array getting multiple elements if the named capture repeats in the regular expression. In
both of these methods if there are no named captures, the result is an empty data object.

You can get the option flags from your regular expression with Regexp#options, which returns
an integer of the combined bits of the option flag constants. Three constants are the most
important here: i,m, and x, with a couple other ones that match encodings or group behavior.
A partial method that converts those three options to a useful string might look like this:

built_in_data/options.rb
class Regexp
OPTION_MAP = {IGNORECASE => "i", EXTENDED => "x", MULTILINE => "m"}

def option_string
option_bits = options
OPTION_MAP.map do |bit, string|
((option_bits & bit) > 0) ? string : nil

end.compact.join
end

end

MatchData
The MatchData class is what is returned by a regular expression using match to compare to a
string, and the class contains all the data about the resulting match.

The most commonly used method of MatchData is probably square bracket access via Match-
Data[]. The argument inside the bracket is one of the following:

• An integer. The index 0 corresponds to the entire matched section of the string, the index
1 corresponds to the first captured part of the string, and higher numbers match subse-
quent captures. If the index is higher than the number of matches, then nil is returned.
Negative indexes work from the last capture toward the zero index.

• A string or symbol name. The returned value is a matching named capture in the
resulting match, or nil if there is no such named capture.

• Two integers separated by a comma, in which case you get the same start index and
length behavior that you get for strings and arrays. The starting index can be 0, and the
resulting value is no longer than the actual data (it’s not padded with nil or anything
like that).

• A range of integers. In which case you get the subset of indexes corresponding to the
indexes of the integers in the range, again, the result truncates at the length of the
actual data.

You can also get the integer or name behavior with MatchData#match(value), but negative
indexes, pairs of integers, and ranges don’t work with match. The method MatchDa-
ta#match_length(value) takes an integer, string, or symbol argument and returns the length of
the section of the match data corresponding to that argument, or nil if there is no such match.

The method MatchData#values_at(*indexes) is more flexible. It takes an arbitrary number of
indexes and returns an array of the matched values at each index. The arguments can be
strings, symbols, integers (including negative integers), and ranges. The final result is flat-
tened, meaning a range argument does not result in a sub-array in the output.

There are other ways to get at the data. MatchData#matches returns all the positional matches
as an array, meaning it’s equivalent tomatch[1..]. This method is aliasedMatchData#deconstruct,
which means you can use a MatchData object as the pattern in a pattern match expression.

report erratum • discuss

Regexp • 513

http://media.pragprog.com/titles/ruby5/code/built_in_data/options.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The other pattern match API method MatchData#deconstruct_keys also exists, and returns a
hash of all named captures as symbol keys and their matches as the values. The method
MatchData#to_a returns all the matches as an array including the entire match that would be
in index 0. The methodMatchData#size, aliasedMatchData#length, gives the length of the capture
array. The method MatchData#to_s gives the entire match, which means it is equivalent to
match[0]. You can get all the named captures in a hash with MatchData#named_captures—the
keys are the symbol names of each capture and the value is the associated part of the match.
If you just want the names of the captures, MatchData#names gives that list.

You can recreate the original match with MatchData#regexp, which returns the regular
expression used to create the match data, and MatchData#string, which returns the entire
original string in the match, including the non-matched parts. The non-match parts of the
original string can be retrieved with MatchData#pre_match, which returns the part of the
original string before the match, and MatchData#post_match, which returns the part of the
string after the match. Both methods return an empty string if match goes to the boundary
of the original string. So, for a given match data object,match.string =match.pre_match +match[0]
+ match.post_match.

The methodMatchData#begin(value= 0) returns the integer index of the beginning of the match
within the original string. If no argument is passed, it uses the entire match at index 0; oth-
erwise, it uses the sub match corresponding to the argument. The methodMatchData#end(value
= 0) returns the integer index of the end of the match within the original string.

Match data objects define == and eql? as aliases, and return true if the two match datas have
the same regular expression and string, and therefore presumably the same set of matches.

Regular Expression Extensions
Ruby uses the Onigmo regular expression library, which is an extension of the Oniguruma
regular expression engine.2,3 Onigmo offers a number of extensions beyond traditional Unix
regular expressions. Most of these extensions are written between the characters (? and).
The parentheses that bracket these extensions are groups, but they do not necessarily generate
backreferences—meaning that they do not necessarily set the values of \1, $1, and so on.

The sequence (?#COMMENT) inserts a comment into the pattern. The content is ignored during
pattern matching. Commenting complex regular expressions can be as helpful as commenting
other complex code.

The notation (?:EXPRESSION) makes the subexpression inside the parenthesis into a group
without generating backreferences. This may be useful when you need to group a set of
constructs but don’t want the group to set the value of $1 or whatever. In the example that
follows, both patterns match a date with either colons or slashes between the month, day,
and year. The first form stores the separator character (which can be a slash or a colon) in
$2 and $4, but the second pattern uses (?: to avoid storing the separator in an external variable:

date = "12/25/2022"

date =~ %r{(\d+)(/|:)(\d+)(/|:)(\d+)}
[$1,$2,$3,$4,$5] # => ["12", "/", "25", "/", "2022"]

date =~ %r{(\d+)(?:/|:)(\d+)(?:/|:)(\d+)}

2. https://github.com/k-takata/Onigmo
3. https://github.com/kkos/oniguruma

Chapter 26. Library Reference: Core Data Types • 514

report erratum • discuss

https://github.com/k-takata/Onigmo
https://github.com/kkos/oniguruma
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

[$1,$2,$3] # => ["12", "25", "2022"]

Using Dynamic Regular Expressions
You’ll sometimes want to match a pattern only if the matched substring is preceded by or
followed by some other pattern. That is, you want to set some context for your match but
don’t want to capture that context as part of the match.

For example, you might want to match every word in a string that is followed by a comma,
but you don’t want the comma to form part of the match. Here you could use the charmingly
named zero-width positive lookahead extension. (?=EXPRESSION) matches EXPRESSION at this
point but does not consume it—you can look forward for the context of a match without
affecting the magic match variables like $&. In this example, we’ll use String#scan to pick out
the words that are followed by a comma:

str = "red, white, and blue"
str.scan(/[a-z]+(?=,)/) # => ["red", "white"]

You can also match before the pattern using (?<=EXPRESSION) (zero-width positive lookbehind).
This lets you look for characters that precede the context of a match without affecting $&.
The following example matches the letters dog but only if they are preceded by the letters
hot:

show_regexp("seadog hotdog", /(?<=hot)dog/) # => seadog hot->dog<-

It’s worth noting that while these complex regular expressions are definitely powerful, they
can be very hard to read, and you can often get similar effects by combining simpler regular
expressions with filtering code.

For the lookbehind extension, EXPRESSION either must be a fixed length or consist of a set
of fixed-length alternatives. That is, (?<=aa) and (?<=aa|bbb) are valid, but (?<=a+b) is not.

Both forms have negated versions, (?!EXPRESSION) and (?<!EXPRESSION), which are true if the
context is not present in the target string.

The \K sequence is related to backtracking. If included in a pattern, it doesn’t affect the
matching process. However, when Ruby comes to store the entire matched string in $&, it
only stores the text to the right of the \K:

show_regexp("thx1138", /[a-z]+\K\d+/) # => thx->1138<-

Controlling Backtracking
Say you’re given the problem of searching a string for a sequence of X characters not
immediately followed by an O. You know that a string of X_s can be represented as X+, and
you can use a lookahead to check that it isn’t followed by an _O, so you code up the pattern
/(X+)(?!O)/. Let’s try it.

This matches:

re = /(X+)(?!O)/
re.match("test XXXY")[0] # => "XXX"

But, unfortunately, so does this, though with a slightly different match:

re = /(X+)(?!O)/

report erratum • discuss

Regexp • 515

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

re.match("test XXXO")[0] # => "XX"

Why did the second match succeed? Well, the regular expression engine saw the X+ in the
pattern and happily gobbled up all the Xs in the string. It then saw the pattern (?!O), saying
that it should not now be looking at an O. Unfortunately, it is looking at an O, so the match
doesn’t succeed. But the engine doesn’t give up. No sir! Instead it says, “Maybe I was wrong
to consume every single X in the string. Let’s try consuming one less and see what happens.”
This is called backtracking—when a match fails, the engine goes back and tries to match a
different way. In this case, by backtracking past a single character, it now finds itself looking
at the last X in the string (the one before the final O). And that X is not an O, so the negative
lookahead succeeds, and the pattern matches. Look at the output of the previous program:
there are three _X_s in the first match but only two in the second.

But this wasn’t the intent of our regexp. Once it finds a sequence of Xs, those Xs should be
considered as a unit. We don’t want the sequence to split to all but one of them, with the
last of them then being the terminator of the pattern. We can get that behavior by telling
Ruby not to backtrack once it finds a string of Xs. There are a couple of ways of doing this.

The sequence (?>EXPRESSION) nests an independent regular expression within the first regular
expression. This expression is anchored at the current match position when the expression
is encountered. If it consumes characters, these will no longer be available to the higher-
level regular expression. This construct, called atomic grouping therefore inhibits backtracking.

Let’s try it with our previous code, making the set of Xs an atomic grouping.

This one still works:

re = /((?>X+))(?!O)/
re.match("test XXXY")[0] # => "XXX"

But now this one doesn’t:

re = /((?>X+))(?!O)/
re.match?("test XXXO") # => false

And this finds the second string of Xs:

re = /((?>X+))(?!O)/
re.match("test XXXO XXXXY")[0] # => "XXXX"

You can also control backtracking by using a third form of repetition. We’ve already seen
greedy repetition, such as EXPRESSION+, and lazy repetition, EXPRESSION+?. The third form is
called possessive. You code it using a plus sign after the repetition character, as in EXPRESSION++
. It behaves just like greedy repetition, consuming as much of the string as it can. But once
consumed, that part of the string can never be reexamined by the pattern—the regular
expression engine can’t backtrack past a possessive qualifier. This means we could also write
our code as this:

re = /(X++)(?!O)/
re.match("test XXXY")[0] # => "XXX"
re.match?("test XXXO") # => false
re.match("test XXXO XXXXY")[0] # => "XXXX"

Chapter 26. Library Reference: Core Data Types • 516

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Backreferences and Named Matches
Within a pattern, the sequences \n (where n is a number), \k'n', and \k<n> all refer to the nth

captured subpattern. These references can be used later in the pattern. Thus, the expression
/(...)\1/ matches six characters with the first three characters captured by (...) being the same
as the last three referenced by \1.

Rather than refer to matches by their number, you can give them names and then refer to
those names. A subpattern is named using either of the syntaxes (?<name>...) or (?'name'...).
You then refer to these named captures using either \k<name> or \k'name'.

For example, the following shows different ways of matching a time range (in the form
hh:mm-hh:mm) where the hour is the same on both sides of the range:

tut_regexp/named_backreference_1.rb
same = "12:15-12:45"
differ = "12:45-13:15"

use numbered backreference
same =~ /(\d\d):\d\d-\1:\d\d/ # => 0
differ =~ /(\d\d):\d\d-\1:\d\d/ # => nil

use named backreference
same =~ /(?<hour>\d\d):\d\d-\k<hour>:\d\d/ # => 0
differ =~ /(?<hour>\d\d):\d\d-\k<hour>:\d\d/ # => nil

Negative backreference numbers count backward from the place they’re used, so they are
relative, not absolute, numbers. The following pattern matches four-letter palindromes
(words that read the same forward and backward):

tut_regexp/named_backreference_2.rb
"abab" =~ /(.)(.)\k<-1>\k<-2>/ # => nil
"abba" =~ /(.)(.)\k<-1>\k<-2>/ # => 0

You can invoke a named subpattern using \g<name> or \g<number>. Note that this reexecutes
the match in the subpattern, in contrast to \k<name>, which matches whatever is matched
by the subpattern:

tut_regexp/named_backreference_3.rb
re = /(?<color>red|green|blue) \w+ \g<color> \w+/
re =~ "red sun blue moon" # => 0
re =~ "red sun white moon" # => nil

You can use \g recursively, invoking a pattern within itself. The following code matches a
string in which braces are properly nested:

re = /
\A
(?<brace_expression>
{

(
[^{}] # anything other than braces

| # ...or...
\g<brace_expression> # a nested brace expression

)*
}

)

report erratum • discuss

Regexp • 517

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_backreference_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_backreference_2.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_backreference_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

\Z
/x

We use the x option to allow us to write the expression with lots of space, which makes it
easier to understand. We also indent it, just as we would indent Ruby code. And we can also
use Ruby-style comments to document the tricky stuff. You can read this regular expression
as follows: a brace expression is an open brace, then a sequence of zero or more characters
or brace expressions, and then a closing brace.

Nested Groups
The ability to invoke subpatterns recursively means that backreferences can get tricky. Ruby
solves this by letting you refer to a named or numbered group at a particular level of the
recursion—add a +n or -n for a capture at the given level relative to the current level.

Here’s an example from the Oniguruma cheat sheet. It matches palindromes:

/\A(?<a>|.|(?:(?.)\g<a>\k<b+0>))\z/

That’s pretty hard to read, so let’s spread it out:

tut_regexp/palindrome_re.rb
palindrome_matcher = /
\A
(?<palindrome>

nothing, or
| . # a single character, or
| (?: # x <palindrome> x

(?<some_letter>.)
\g<palindrome>
\k<some_letter+0>

)
)

\z
/x

palindrome_matcher.match "madam" # => madam
palindrome_matcher.match "m" # => m
palindrome_matcher.match "adam" # =>

A palindrome is an empty string, a string containing a single character, or a character followed
by a palindrome, followed by that same character. The notation \k<some_letter+0>means that
the letter matched at the end of the inner palindrome will be the same letter that was at the
start of it. Inside the nesting, however, a different letter may wrap the interior palindrome.

Conditional Groups
Say you were validating a list of banquet attendees:

"Mr Jones and Sally",
"Mr Bond and Ms Moneypenny",
"Samson and Delilah",
"Dr Jekyll and himself",
"Ms Hinky Smith and Ms Jones",
"Dr Wood and Mrs Wood",
"Thelma and Louise"

Chapter 26. Library Reference: Core Data Types • 518

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_regexp/palindrome_re.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The rule is that if the first person in the list has a title, then so should the second. This means
that the first and fourth lines in this list are invalid.

We can start with a pattern to match a line with an optional title and a name. We know we’ve
reached the end of the name when we find the word and with spaces around it. Since we’re
using the xmodifier the regex engine will ignore whitespace to allow us to change the layout
of the regex, we need to explicitly identify the spaces that we are matching.

re = %r{ (?:(Mrs | Mr | Ms | Dr)\s)? (.*?) \s and \s }x
"Mr Bond and Ms Monneypenny".match(re).captures # => ["Mr", "Bond"]
"Samson and Delilah".match(re).captures # => [nil, "Samson"]

Let’s try again. We’ve defined the regexp with the x (extended) option so we can include
whitespace. We also used the ?:modifier on the group that defines the optional title followed
by a space. This stops that group getting captured into $1. We do however use a nested
group to capture just the title part.

So now we need to match the second name. We can start with the same code as for the first:

re = %r{
(?:(Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(?:(Mrs | Mr | Ms | Dr)\s)? (.+)

}x
"Mr Bond and Ms Monneypenny".match(re).captures # => ["Mr", "Bond", "Ms",

.. "Monneypenny"]
"Samson and Delilah".match(re).captures # => [nil, "Samson", nil,

.. "Delilah"]

Before we go any further, let’s clean up the duplication using a named group:

tut_regexp/attendee_validator_1.rb
re = %r{
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(\g<title>\s)? (.+)

}x
match_data = re.match("Mr Bond and Ms Monneypenny")
match_data[0] # => "Mr Bond and Ms Monneypenny"
match_data[:title] # => "Ms"

second_match = re.match("Samson and Delilah")
second_match[0] # => "Samson and Delilah"
second_match[:title] # => nil

But this code also matches a line where the first name has a title and the second doesn’t:

tut_regexp/attendee_validator_2.rb
re = %r{
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(\g<title>\s)? (.+)

}x
match_data = re.match("Mr Smith and Sally")
match_data[0] # => "Mr Smith and Sally"
match_data[:title] # => "Mr"

report erratum • discuss

Regexp • 519

http://media.pragprog.com/titles/ruby5/code/tut_regexp/attendee_validator_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/attendee_validator_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

We need to make the second test for a title mandatory if the first test matches. That’s where
the conditional subpatterns come in.

The syntax (?(n)subpattern) will apply the subpattern match only if a previous group number
n also matched. You can also test named groups using the syntaxes (?(<name>)subpattern) or
(?('name')subpattern).

In our case, we want to apply a test for the second title if the first title is present. That first
title is matched by the group named title, so the condition group looks like (?<title>…):

tut_regexp/attendee_validator_3.rb
re = %r{
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(?(<title>)\g<title>\s) (.+)

}x
match_data = re.match("Mr Smith and Sally")
match_data[0] # => "Mr Smith and Sally"
match_data[:title] # => nil

This didn’t work—the match succeeded when we expected it to fail. That’s because the
regular expression applied backtracking. It matched the optional first name, the and, and then
was told to match a second title (because group 1 matched the first). There’s no second title,
so the match failed. But rather than stopping, the engine went back to explore alternatives.

It noticed that the first title was optional, and so it tried matching the whole pattern again,
this time skipping the title. It successfully matched Mr Smith using the (.*?) group, and
matched Sally with the second name group. So we want to tell it never to backtrack over the
first name—once it has found a title there, it has to use it. (?>…) to the rescue:

tut_regexp/attendee_validator_4.rb
re = %r{
^(?>

(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s

)
(?(<title>)\g<title>\s) (.+)

}x
match_data = re.match("Mr Smith and Sally")
match_data # => nil

successful_match = re.match("Mr Smith and Ms Sally")
successful_match[0] # => "Mr Smith and Ms Sally"
successful_match[:title] # => "Ms"

The match failed, as we expected, but when we add a title to Sally, it succeeds. Note that the
title named group only gets the last of the two values, for our purposes here, that’s not a big
deal, but it might cause an issue in other cases.

Let’s try this on our list:

tut_regexp/validate_attendees.rb
NAMES = [
"Mr Jones and Sally",
"Mr Bond and Ms Moneypenny",
"Samson and Delilah",
"Dr Jekyll and himself",

Chapter 26. Library Reference: Core Data Types • 520

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_regexp/attendee_validator_3.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/attendee_validator_4.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/validate_attendees.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

"Ms Hinky Smith and Ms Jones",
"Dr Wood and Mrs Wood",
"Thelma and Louise"

]

NAMES.each do |line|
re = %r{ ^(?>

(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?) \s and \s
)

(?(<title>)\g<title>\s) (.+)
}x

if line.match?(re)
puts("VALID: #{line}")

else
puts("INVALID: #{line}")

end
end

produces:

INVALID: Mr Jones and Sally
VALID: Mr Bond and Ms Moneypenny
VALID: Samson and Delilah
INVALID: Dr Jekyll and himself
VALID: Ms Hinky Smith and Ms Jones
VALID: Dr Wood and Mrs Wood
VALID: Thelma and Louise

Alternatives in Conditions
As they say in informercials, “But Wait! There’s More!” Conditional subpatterns can also
have an else clause.

(?(group_id) true-pattern | fail-pattern)

If the identified group was previously matched, the true pattern is applied. If it failed, the
fail pattern is applied.

Here’s a regular expression that deals with red or blue balls or buckets. The deal is that the
colors of the ball and bucket must be different.

re = %r{(?:(red)|blue) ball and (?(1)blue|red) bucket}

re.match?("red ball and blue bucket") # => true
re.match?("blue ball and red bucket") # => true
re.match?("blue ball and blue bucket") # => false

If the first group, the red alternative, matched, then the conditional subpattern is blue, oth-
erwise it is red.

Named Subroutines
There’s a trick that allows us to write subroutines inside regular expressions. Recall that we
can invoke a named group using \g<name>, and we define the group using (?<name>...).
Normally, the definition of the group is itself matched as part of executing the pattern.
However, if you add the suffix {0} to the group, it means “zero matches of this group,” so
the group is not executed when first encountered.

report erratum • discuss

Regexp • 521

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In this example, we use that trick to name all our subgroups up front, and then use the named
versions to build the final match:

tut_regexp/named_subroutines.rb
sentence = %r{
(?<subject> cat | dog | gerbil){0}
(?<verb> eats | drinks| generates){0}
(?<object> water | bones | PDFs){0}
(?<adjective> big | small | smelly){0}
(?<opt_adj> (\g<adjective>\s)?){0}

The\s\g<opt_adj>\g<subject>\s\g<verb>\s\g<opt_adj>\g<object>
}x

md = sentence.match("The cat drinks water")
puts "The subject is #{md[:subject]} and the verb is #{md[:verb]}"

md = sentence.match("The big dog eats smelly bones")
puts "The last adjective in the second sentence is #{md[:adjective]}"

sentence =~ "The gerbil generates big PDFs"
puts "And the object in the last sentence is #{$~[:object]}"

produces:

The subject is cat and the verb is drinks
The last adjective in the second sentence is smelly
And the object in the last sentence is PDFs

Setting Options
We saw earlier that you can control the characters matched by \b, \d, \s, and \w (along with
their negations). To do that, we embedded a sequence such as (?u) in our pattern. That
sequence sets an option inside the regular expression engine.

We also saw at the start of this chapter that you can add one or more of the options i (case
insensitive),m (multiline), and x (allow spaces) to the end of a regular expression literal. You
can also set these options within the pattern itself. They are set using (?i), (?m), and (?x). You
can also put a minus sign in front of these three options to disable them.

DescriptionOption

Turns on the corresponding option. If used inside a group, the effect is limited
to that group.

(?adimux)

Turns off the i, m, or x option.(?-imx)
Turns on the option for _re_.(?adimux:re)
Turns off the option for re.(?-imx:re)

Strings
Strings are probably the most commonly used data type in Ruby, and they have a powerful
and wide-ranging API to prove it. Here are some of the most useful and most interesting
String methods.

Finding Information about a String
The length of a string is accessible with the methods String#length or String#size (the two
methods are aliases). The length is in characters as determined by the current encoding. You

Chapter 26. Library Reference: Core Data Types • 522

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_subroutines.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

can get the length in bytes with the method String#bytesize. The method String#empty? returns
true if the length of the string is zero.

If you want to know how many times a given character is used in a string, you can use
String#count(*selectors). This works as you probably expect if you pass in a single character,
but gets a little confusing if you pass in a longer string or multiple strings. For example:

"Banana bread".count("b") # => 1
"Banana bread".count("ba") # => 5
"Banana bread".count("bad", "a") # => 4

The argument to count is called a character selector. A multi-character string selector matches
for any of the characters so included, so ba as an argument finds the counts for all characters
that are b or a. A character selector can use a hyphen to suggest a range of characters, and a
caret to invert the selection. For example:

"Banana bread".count("a-d") # => 6
"Banana bread".count("^ba") # => 7

The count method can take more than one of these selectors as arguments, in which case a
character needs to be a part of all the selectors in order to be counted. In our "Banana
bread".count("bad", "a") example, bad and a only overlap with a, so we get the count of a.

Testing the Content of Strings
The most generic way to determine if a string contains particular content is with the
String#index(substring_or_regex, offset = 0) method. The index method takes an argument that is
either a string or a regular expression and returns the index of the first position in the
receiver that matches the argument, returning nil if there is no match:

"The pickaxe book".index("ck") # => 6
"The pickaxe book".index(/\s/) # => 3
"The pickaxe book".index("z") # => nil

An optional second argument is an index. If the index is a positive integer, it returns the first
match after that index. If the index is a negative integer, index still returns the first match
after the index, but it counts the index from the end of the string:

"The pickaxe book".index("e") # => 2
"The pickaxe book".index("e", 4) # => 10
"The pickaxe book".index("e", -7) # => 10

In the last line, the search starts at index -7, which is seven characters from the end of the
string, but then moves to the end of the string and returns the index of the second e.

If you want the index of the last element of the string that matches, use the method
String#rindex(substring_or_regex, offset = self.length). The first argument to rindex behaves exactly
the same except the return value is based on the last match. In the case of a regular expression,
last match means “starts as late in the string as possible” not “ends as late in the string as
possible.” For example:

"The pickaxe book".index("e") # => 2
"The pickaxe book".rindex("e") # => 10
"The pickaxe book".rindex(/o.*/) # => 14

report erratum • discuss

Strings • 523

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The index arguments for rindex behave a little differently. They delimit the ending point for
the search, which is to say they indicate the maximum index the result can have before
returning nil. A positive argument indicates the maximum index directly, while a negative
argument implies the maximum index based on adding the negative offset to the length of
the string:

"The pickaxe book".rindex("e") # => 10
"The pickaxe book".rindex("e", 2) # => 2
"The pickaxe book".rindex("e", 4) # => 2
"The pickaxe book".rindex("e", 8) # => 2
"The pickaxe book".rindex("e", -7) # => 2

If all you want is a boolean yes/no about the substring, you can use String#include?(substring),
which only takes a string argument and returns true if the argument is in the string and false
otherwise. For regular expressions, you use String#match?(regex) for the same behavior:

"The pickaxe book".include?("e") # => true
"The pickaxe book".include?("z") # => false
"The pickaxe book".match?(/o{2}/) # => true

If you specifically want to test one end or another of a string, you can use
String#start_with?(*string_or_regex) or String#end_with?(*string). Somewhat weirdly, these methods
take different sets of arguments. The start_with? method takes one or more strings or regular
expressions and returns true if the start end of the string matches any of the arguments. The
end_with? is the same but does not take regular expression arguments:

"The pickaxe book".start_with?("e") # => false
"The pickaxe book".start_with?("T") # => true
"The pickaxe book".start_with?(/[A-Z]/) # => true
"The pickaxe book".end_with?("k") # => true
"The pickaxe book".end_with?("k", "q") # => true

Retrieving Substrings
In Ruby’s library, a substring of a string is sometimes called a slice. The most common way
to retrieve a slice from a string is to use square brackets. Five kinds of arguments may be
used inside the square brackets:

• A single integer index, as in "abcdefg"[3] or "abcdefg"[-3]. An index of zero will return the
first character of the string and a positive number will return the string at that index
from the left, so "abcdefg"[3] is d. A negative number will return the index from the right,
with -1 being the last character of the string, so "abcdefg"[-3] is e.

• A range, as in "abcdefg"[1..3]. This returns the substring that starts at the index of the
beginning of the range and ends at the index of the end of the range. If both parts of the
range are positive, that’s the same as the indexes that correspond to the numbers in the
range. But negative numbers correspond to indexes from the end of the string, so
"abcdefg"[4..-1] returns "efg", since e is the character at index 4, and g is the character at
index -1, the last character. Halfway ranges also work, so "abcdefg"[..-2] returns all but
the last character, and "abcdefg"[3..] returns everything from index 3 on. If both ends of
the range are outside the string, the result is an empty string. If the ends of the range
are in the wrong order relative to the string (like 4..2), you also get an empty string.

• Two arguments representing an index and a length, as in "abcdefg"[1, 3]. This gives you
the substring starting at the given index, for the given length, in this case bcd. There are

Chapter 26. Library Reference: Core Data Types • 524

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

a few special cases. If the length goes off the end of the string, you just get the characters
up to the end of the string—you don’t get a bunch of whitespace padding or anything
like that. If the length is zero or the index exactly matches the end of the string, you get
an empty string. If the length is negative or if the index is greater than the length of the
string, you get nil.

• The argument could be a regular expression, as in "abcdefg"[/d.*/]. In this case you get
the first match, so the bracket syntax is equivalent to "abcedfg".match(/d.*/), but the
brackets are way more confusing here. If there’s no match, the return value is nil. A
second argument is optional and it makes the expression return the capture group
associated with the argument, as though you had returned a match object and looked
up that value. If the second argument is a number that doesn’t have a corresponding
capture group, you get nil, if it’s a name that doesn’t have a corresponding named capture
group, you get an IndexError.

• The argument can be a string as in "abcdefg"["def"]. In this case you get the string in the
brackets if that substring exists in the receiving string, or you get nil. So, I guess equivalent
to "abcdefg.include?("def") ? "def" : nil.

If you don’t like the bracket syntax, the method is aliased as String#slice() and takes the same
arguments, so slice(1..3) or whatever. There’s a destructive version—String#slice!(args)—that
returns the substring and modifies the original string by removing that substring:

sample = "abcdefg"
sample.slice!(1..3) # => "bcd"
sample # => "aefg"

Other Substring Retrieval Methods
Some additional patterns of extracting substrings are common enough to have dedicated
methods. The method String#strip returns a new version of the string with leading and trailing
whitespace removed. The variant String#lstrip removes leading whitespace only, the variant
String#rstrip removes trailing whitespace only. All three methods have ! variants that modify
the string in place, so String#strip!, String#lstrip!, and String#rstrip!. The return values of all three
modifying methods are the newly modified string if the string changed or nil if the string
isn’t changed. That’s a common Ruby pattern for methods that mutate the original; however,
if you are using the ! variants, you normally aren’t using the return value, you’re just using
the receiving object later in the code.

For the purposes of the strip family of methods, Ruby defines whitespace as:

• A space character, unicode \x20 or " "
• A tab character, escaped as \t or unicode \x09
• A newline, or line feed, \n, or unicode \x0a
• A carriage return, \r or unicode \x0d
• A form feed, \f or unicode \x0c
• A vertical tab, \v or unicode \x0b
• Unicode null, x00 or \u0000

Removing the Last Character from a String
When doing text processing, especially from files or command-line input, a common task is
to remove the last character of a string if it is the end of line marker. Ruby adapted a couple
of versions of this feature from Perl.

report erratum • discuss

Strings • 525

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The method String#chop always removes the last character of a string, but if the last two
characters of the string are \r\n (the Windows end of line marker), chop removes both of them.

The similarly named but more useful in practice method called String#chomp(line_separator =
$/) removes the last character if it is a line separator. By default that means \r, \n, or \r\n but
not—the documentation clearly points out—\n\r.

You can pass an argument to chomp. If that argument is an empty string, chomp will remove
a series of \n or \r\n characters at the end of the string. If it’s any other character, chomp will
remove that character once if it is the last character of the string.

All these versions with arguments seem likely to be confusing. As such, we recommend
using chomp without arguments if you need this functionality and perhaps writing a more
explicit version of anything more complex that you need. Both chop and chomp have modifier
versions, String#chop! and String#chomp!. As with other versions we’ve seen, they return the
string if the string changed and nil otherwise.

Iterating within Strings
If you want to iterate over different parts of the string, you have a few options that allow
you to split a string up or to perform the iteration without actually splitting the string.

The method String#chars splits the string up into an array of characters. Ruby doesn’t actually
have a character class, so chars splits the string up into an array of one-length strings. The
method String#each_char [{ |c| block }] takes a block and calls the block with each character in
succession. As with other enumeration methods, if called without a block, the method returns
a Ruby enumerator that can be invoked later or chained to other enumerators.

Similar methods break the string down a little differently. The method String#bytes returns
an array of the numerical bytes that make up each character, where some characters might
be more than one byte long. The String#codepoints method returns the codepoint for each
character in the current encoding. That array produces one entry for each character. The
iterators String#each_byte [{ |byte| block }] and String#each_codepoint [{ |codepoint| block }] take
blocks or return enumerators and allow you to enumerate over the bytes or code points.
And the method String#each_grapheme_cluster [{ |cluster| block}] allows you to loop based in
Unicode grapheme clusters.

The method String#lines(line_separator = $/, chomp: false) splits the string into an array of strings
based on line separators. By default, the separator is $/, the global line separator, but you
can pass your own line separator as any character you want. If the argument is an empty
string, lines(''), then the method acts as a paragraph splitter and splits when there are two or
more line separators in a row. An optional second argument, chomp: true, removes the last
instance of the line separator from each element in the array. The related method
String#each_line(line_separator = $/, chomp: false) [{ |substring| block }] takes the same argument
and returns an enumerator, or takes a block argument and invokes the block ones for each
separated line.

The String#scan(string_or_regex) method takes a string or a regular expression argument and
returns an array of all the times the string matches the regular expression. If the regular
expression does not have groups, it’s an array of the entire matched string. If the regular
expression does have groups, it’s an array of arrays containing the matches. For example:

"The pickaxe book".scan(/w+/) # => []
"The pickaxe book".scan(/\s.{1}/) # => [" p", " b"]

Chapter 26. Library Reference: Core Data Types • 526

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

"The pickaxe book".scan(/(\s)(.{1})/) # => [[" ", "p"], [" ", "b"]]

Most generically, the String#split(separator = $; limit = nil) [{ |substring| block }] method allows
you to split a string on an arbitrary value. When called with no arguments, it splits based
on spaces. But you can call it with any string or regular expression argument. If the last
substrings are empty, they are not part of the output:

"The pickaxe book".split # => ["The", "pickaxe", "book"]
"The pickaxe book".split("e") # => ["Th", " pickax", " book"]
"The pickaxe book".split(/\b/) # => ["The", " ", "pickaxe", " ", "book"]
"The pickaxe book".split("k") # => ["The pic", "axe boo"]

An optional second argument is a limit. If the limit is greater than zero, the number of ele-
ments in the resulting array is limited to that number and the rest of the string comes
together at the end. If the limit is negative, it has no effect, except that trailing empty sub-
strings are part of the return value:

"The pickaxe book".split("e", 2) # => ["Th", " pickaxe book"]
"The pickaxe book".split("k", -1) # => ["The pic", "axe boo", ""]

The split method can take an optional block, in which case the block is called once with each
substring as an argument and the return values of the block calls are returned.

A special case of splitting is where you want to split the string exactly once. The String#parti-
tion(string_or_regex) method takes a string or regular expression as an argument and returns
an array with three elements: the part of the string before the match, the match, and the
remainder of the string. If the argument doesn’t appear in the string, then the result is [string,
"", ""]. The method String#rpartition(string_or_regex) does the same thing, but it finds the last
match in the string, rather than the first:

"The pickaxe book".partition("e") # => ["Th", "e", " pickaxe book"]
"The pickaxe book".rpartition("e") # => ["The pickax", "e", " book"]

Replacing Text in Strings
Ruby strings are mutable, meaning that the value of the string can change over time.

Partial String Assignment
The most general way to replace an arbitrary part of the string is by using square bracket
syntax, []=. If a string is being accessed with square brackets on the left side of an assignment
statement, the right side of the statement replaces the referenced part of the string, even if
the new part of the string is a different length than the substring. The return value of the
assignment is the right side of the assignment, but the string itself changes:

x = "the pickaxe book"
x[12..] = "podcast"
x # => "the pickaxe podcast"

This assignment works no matter which form you use inside the square brackets.

String Insertion
Several other methods change the text in strings, either in place or returning a new string.
The String#insert(index, other_string) method takes an index and another string and inserts the
new string at that index. This both returns the original string and mutates the original string:

report erratum • discuss

Strings • 527

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

x = "the pickaxe book"
x.insert(4, "new ") # => "the new pickaxe book"
x # => "the new pickaxe book"

String Deletion
If you just want to delete a known string from within a larger string, use the
String#delete(*selectors) method. The base method takes one or more character selectors, as
shown in Finding Information about a String, on page 522, and returns a copy of the string
with matching characters removed. The method String#delete!(*selectors)does the same thing,
but mutates the receiving string and returns the mutated string. Like other mutation string
methods, it returns nil if the string is unchanged:

"The pickaxe book".delete("k") # => "The picaxe boo"

You are also able to delete the prefixes and suffixes in strings with String#delete_prefix(prefix)
and String#delete_suffix(suffix). These methods take actual substrings (not selectors) and remove
them from the requested end of the string if that end of the string matches. They return a
copy of the string with the change. For example:

"The pickaxe book".delete_prefix("The") # => " pickaxe book"
"The pickaxe book".delete_prefix("Banana") # => "The pickaxe book"
"The pickaxe book".delete_suffix("book") # => "The pickaxe "
"The pickaxe book".delete_suffix("podcast") # => "The pickaxe book"

Mutator versions of these methods, String#delete_suffix!(suffix) and String#delete_prefix!(prefix)
return the mutated original string or nil.

String Replacement
It’s quite common to want to change a string by changing a specific character or pattern to
a different character or pattern. Ruby has a couple of different methods for this.

One family of methods is String#sub(pattern, replacement) , String#sub!(pattern, replacement),
String#gsub(pattern, replacement), and String#gsub!(pattern, replacement). gsub is the most general.
The gsub method takes two arguments: a pattern and a replacement. The pattern is a String
or a regular expression; the replacement is a String, a Hash, or a block, in which case the method
signature looks like String#sub(pattern) { |substring| block } for all four methods.

The gsubmethod returns a copy of the receiving string with all occurrences of pattern replaced
using the replacement value.

The patternwill typically be a Regexp; if it is a String, then no regular expression metacharacters
will be interpreted (that is, /\d/ will match a digit, but "\d" will match a backslash followed
by a d).

How the replacement value is created depends on the other arguments. If the replacement
is a string, the string is put in place of the pattern:

"The pickaxe book".gsub("e", "!") # => "Th! pickax! book"
"The pickaxe book".gsub(/[aeiou]/, "y") # => "Thy pyckyxy byyk"

If a string is used as the replacement, special variables from the match (such as $& and $1)
cannot be substituted into it, because substitution into the string occurs before the pattern
match starts. However, the sequences \1, \2, and so on, may be used to interpolate successive
numbered groups in the match, and \k<_name_> will substitute the corresponding named

Chapter 26. Library Reference: Core Data Types • 528

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

captures. There are a couple of other regular expression bits that can be included in the
replacement string, see the full Ruby documentation for details.

If the replacement is a block, the block is called with the matched part of the string and the
value of the block is the replacement:

"The pickaxe book".gsub(/[aeiou]/) { |str| str.upcase } # => "ThE pIckAxE bOOk"

If the replacement is a Hash, the keys should be strings, and each matched text is replaced
by the value associated with that key in the hash, or just removed if there is no matching
key – note that the keys have to be strings, so we need hashrocket syntax here.

"The pickaxe book".gsub(/[aeiou]/, {"a" => "b", "e" => "f"}) # => "Thf pckbxf
.. bk"

The gsub! method has the same behavior as gsub except that it mutates its receiver.

The submethod is like gsub except that it only replaces the first match in the string— the “g”
in gsub is for “global.” The sub! method is like sub except that it mutates its receiver.

When you want to replace a specific character with a specific other character, Ruby provides
the String#tr(selector, replacements) method, which should be faster than gsub for the cases in
which it applies. The tr method is probably most commonly used with two one character
strings as arguments, it converts all instances of the first string into the second.

But the method is actually more powerful: the first argument can be any character selector
(as in Finding Information about a String, on page 522) and the second argument is a string
of replacements. It returns a copy of the receiving string with the characters in the first
argument replaced by the corresponding characters in the second argument. If the second
argument is shorter than the first argument, it is padded with its last character. Both strings
may use all the character selector syntax. For example:

"hello".tr("l", "$") # => "he$$o"
"hello".tr("aeiou", "*") # => "h*ll*"
"hello".tr("^aeiou", "*") # => "*e**o"
"hello".tr("el", "ip") # => "hippo"
"hello".tr("a-y", "b-z") # => "ifmmp"

The related String#tr!(selector, replacements) method has the same behavior but changes the
receiving string in place.

The String#squeeze(*selectors)method takes a list of character selectors (as in Finding Informa-
tion about a String, on page 522) and replaces any case where more than one of the characters
happens in a row with a single instance. It’s most commonly used as squeeze(" ") to clean up
extra spaces. The String#squeeze!(*selectors) method changes the receiver in place.

Formatting Strings
A trio of methods pad a string inside a larger size: String#ljust(size, padding_string = " "), which
left justifies the string; String#rjust(size, padding_string = " "), which right justifies it; and
String#center(size, padding_string = " "), which places the receiving string inside a larger size.
All three take two arguments: the size of the larger string and an optional string to pad the
space. A space character is the default.

"book".center(15) # => " book "
"book".ljust(15) # => "book "

report erratum • discuss

Strings • 529

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

"book".rjust(15) # => " book"
"book".center(15, "0") # => "00000book000000"

If you want to change the case of a string, Ruby provides

• String#upcase(*options), which puts all the characters into uppercase.
• String#downcase(*options), which puts them all into lowercase.
• String#capitalize(*options), which capitalizes the first letter of every word.
• String#swapcase(*options), which swaps the case of every character in the string.

By default these methods all use Unicode case mapping, but all three take optional arguments
for :ascii (which limits case behavior to only ASCII a-z characters) or :turkic (which adapts to
the unique case mapping of Turkic languages). downcase, and downcase alone, takes :fold
(which uses Unix case folding instead of case mapping).

Using Strings and Binary Operators
Strings do respond to some other binary operators. A string plus a string is a new string
concatenating the two strings. Ruby will also concatenate strings with String#<<. Ruby will
even concatenate strings if you put two strings next to each other with no operator between
them:

"ab" + "cd" # => "abcd"
"ab" << "cd" # => "abcd"
"ab" "cd" # => "abcd"

The inverse of concatenation is prepending, if you need to for some reason Ruby provides
String#prepend(other), as in "ab".prepend("cd").

A string can be multiplied by a non-negative integer to produce a new string that is the string
that many times:

"ab" * 10 # => "abababababababababab"

Strings respond to the String#<=> and use Comparable, so all your comparison operators work.
The <=> comparison is case-sensitive. A case-insensitive version is String#casecmp(other). The
expression a.casecmp(b) is equivalent to a.downcase <=> b.downcase. The method casecmp?
returns true if the downcased versions of each string are equal. Strings also define String#===
as an alias for ==.

We’ve seen String#=~ and String#!~ for regular expression match and not-regular expression
match.

Finally, you can reverse a string with String#reverse, which returns a new string, or
String#reverse! which changes the receiving string in place.

Strings also define unary + and unary -. Unary + as in +"foo" returns the string itself if the
string is not frozen, or an unfrozen duplicate of the string if the string is frozen. Unary -, as
in -"foo" does the inverse, if the string is frozen it returns the string itself, if not, it returns a
frozen duplicate of the string. In the - case, the string will also be “deduped” (also know as
“interned”) meaning that the if the string is created multiple times all instances will point
to the same memory location, potentially saving memory. Unary - is also aliased as
String#dedup.

Chapter 26. Library Reference: Core Data Types • 530

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Unpacking Data
The method String#unpack(template, offset: 0) is the inverse of Array#pack (see Packing Data, on
page 565). It takes a template string and decodes the string (which may contain binary data)
according to the format string, and returns an array of the extracted values. The directives
are the same for the template can be found in Table 26, Template characters for packed data,
on page 566.

"abc \0\0abc \0\0".unpack('A6Z6') # => ["abc", "abc "]
"abc \0\0".unpack('a3a3') # => ["abc", " \x00\x00"]
"aa".unpack('b8B8') # => ["10000110", "01100001"]
"aaa".unpack('h2H2c') # => ["16", "61", 97]
"\xfe\xff\xfe\xff".unpack('sS') # => [-2, 65534]
"now=20is".unpack('M*') # => ["now is"]
"whole".unpack('xax2aX2aX1aX2a') # => ["h", "e", "l", "l", "o"]

Encoding
The encoding determines how Ruby converts the bytes making up a string into individual
characters. We can verify that Ruby correctly interprets π as a single character:

encoding: utf-8
pi = "π"
puts "The size of a string containing π is #{pi.size}"

produces:

The size of a string containing π is 1

Now, let’s get perverse. The two-byte sequence \xcf\x80 represents π in UTF-8, but it is not
a valid byte sequence in SJIS encoding. Let’s see what happens if we tell Ruby that this same
source file is SJIS encoded. (Remember, when we do this, we’re not changing the actual bytes
in the string—we’re just telling Ruby to interpret them with a different set of encoding rules.)

encoding: sjis
PI = "π"
puts "The size of a string containing π is #{PI.size}"

produces:

prog.rb: /tmp/prog.rb:2: invalid multibyte char (Windows-31J) (SyntaxError)
prog.rb:3: invalid multibyte char (Windows-31J)

This time, Ruby complains because the file contains byte sequences that are illegal in the
given encoding.

Ruby supports an encoding called ASCII-8BIT. Despite the ASCII in the name, this is really
intended to be used on data streams that contain binary data. It’s the default encoding that
Ruby uses for reading binary streams. (It also has an alias of BINARY}.) However, you can also
use this as an encoding for source files. If you do, Ruby interprets all characters with codes
below 128 as regular ASCII and all other characters as valid constituents of variable names.
This is basically a neat hack, because it allows you to compile a file written in an encoding
you don’t know—the characters with the high-order bit set will be assumed to be printable.

encoding: ascii-8bit
π = 3.14159
puts "π = #{π}"
puts "Size of 'π' = #{'π'.size}"

report erratum • discuss

Strings • 531

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

π = 3.14159
Size of 'π' = 2

The last line of output illustrates why ASCII-8BIT is a dangerous encoding for source files.
Because it doesn’t know to use UTF-8 encoding, the π character looks to Ruby like two sep-
arate characters.

Converting Encodings
Strings, symbols, and regular expressions are labeled with their encoding. You can convert
a string from one encoding to another using the encodemethod. For example, we can convert
the word olé from UTF-8 to ISO-8859-1:

ole_in_utf = "olé"
ole_in_utf.encoding # => #<Encoding:UTF-8>
ole_in_utf.bytes.to_a # => [111, 108, 195, 169]

ole_in_8859 = ole_in_utf.encode("iso-8859-1")
ole_in_8859.encoding # => #<Encoding:ISO-8859-1>
ole_in_8859.bytes.to_a # => [111, 108, 233]

You have to be careful when using encode—if the target encoding doesn’t contain characters
that appear in your source string, Ruby will throw an exception. For example, the π character
is available in UTF-8 but not in ISO-8859-1:

pi = "pi = π"
pi.encode("iso-8859-1")

produces:

from prog.rb:2:in `<main>'
prog.rb:2:in `encode': U+03C0 from UTF-8 to ISO-8859-1
(Encoding::UndefinedConversionError)

You can, however, override the exceptional behavior, for example supplying a placeholder
character to use when no direct translation is possible.

pi = "pi = π"
puts pi.encode("iso-8859-1", undef: :replace, replace: "??")

produces:

pi = ??

The String#encode(destination_encoding, source_encoding = nil, **encoding_options) method takes a
set of keyword options to specify encoding behavior, see Table 22, Options to encode and
encode!, on page 532. These options are also available when opening a file or I/O stream.

MeaningOption

If true, converts lf to cr. Only one of cr_newline, crlf_newline, and
universal_newline can be true.

cr_newline: true

If true, converts lf to crlf. Only one of cr_newline, crlf_newline, and
universal_newline can be true.

crlf_newline: true

A fallback value if if the replacement value is not set. This
allows a dynamic value ot be set based on the missing value.

fallback: nil | hash | method
| proc

Chapter 26. Library Reference: Core Data Types • 532

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

MeaningOption

If the missing value is foo then the replacement value is hash[foo]
or method(foo) or proc.call(foo).
Replaces invalid characters in the source string with the
replacement string. If :invalid is not specified or is set to nil,
raises an exception. The default value is nil.

invalid: nil | :replace

Replaces characters that are not available in the destination
encoding with the replacement string. If :undef is not specified
or nil, raises an exception. The default value is nil.

undef: nil | :replace

Specifies the string to use if :invalid or :undef options are present.
If not specified or set to nil, uFFFD is used for Unicode encodings
and ? for others. The default value is nil.

replace: nil | string

If true, converts crlf and cr line endings to lf. Only one of
cr_newline, crlf_newline, and universal_newline can be true.

universal_newline: true

If the value is nil, which is the default, then no special process-
ing takes place. Otherwise, after encoding, escape any charac-

xml: nil | :text | :attr

ters that would have special meaning in XML PCDATA or
attributes. In both cases, converts & to &, < to <, > to >,
and undefined characters to a hexadecimal entity (&#xhh;). For
:attr, also converts " to " and puts double-quotes around
the entire string.

Table 22—Options to encode and encode!

Sometimes you’ll have a string containing binary data and you want that data to be inter-
preted as if it had a particular encoding. You can’t use the encode method for this, because
you don’t want to change the byte contents of the string—you’re just changing the encoding
associated with those bytes. Use the String#force_encoding(encoding) method to do this:

encoding: ascii-8bit
str = "\xc3\xa9" # e-acute in UTF-8
str.encoding # => #<Encoding:ASCII-8BIT>
str.force_encoding("utf-8")
str.bytes.to_a # => [195, 169]
str.encoding # => #<Encoding:UTF-8>

Finally, you can use encode (with two parameters) to convert between two encodings if your
source string is ASCII-8BIT. This might happen if, for example, you’re reading data in
binary mode from a file and choose not to encode it at the time you read it. Here we fake
that out by creating an ASCII-8BIT string that contains an ISO-8859-1 sequence (our old
friend olé). We then convert the string to UTF-8. To do this, we have to tell encode the actual
encoding of the bytes by passing it a second parameter:

encoding: ascii-8bit
original = "ol\xe9" # e-acute in ISO-8859-1
original.bytes.to_a # => [111, 108, 233]
original.encoding # => #<Encoding:ASCII-8BIT>
new = original.encode("utf-8", "iso-8859-1")
new.bytes.to_a # => [111, 108, 195, 169]
new.encoding # => #<Encoding:UTF-8>

report erratum • discuss

Strings • 533

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Symbols
Symbols don’t have a lot of methods in Ruby. We’ve seen Symbol#to_proc as a shortcut for
creating a block. The to_procmethod creates a block that is effectively equivalent to { |receiver,
...| receiver.send(symbol, ...)}. You usually see it used implicitly with &, but it can be used
explicitly, too:

proc = :split.to_proc
proc.call("The pickaxe book") # => ["The", "pickaxe", "book"]
proc.call("The pickaxe book", "e") # => ["Th", " pickax", " book"]

You can also use Symbol#to_s to convert a symbol to a string; the Symbol#name and Sym-
bol#inspect methods perform basically the same conversion.

Symbols respond to the following string-like methods, which are effectively shortcuts for
calling to_s so that you don’t have to explicitly convert them to a string and then back to a
symbol.

• Symbol#<=>, and all Comparable methods
• Symbol#[]
• Symbol#=== and Symbol#==
• Symbol#=~
• Symbol#casecmp and Symbol#casecmp?
• Symbol#empty?
• Symbol#encoding
• Symbol#end_with?
• Symbol#length and Symbol#size
• Symbol#match and Symbol#match?
• Symbol#start_with?

The following string-like methods are shortcuts for converting to a string and then back to
a symbol, so :foo.to_s.METHOD.to_sym.

• Symbol#capitalize
• Symbol#downcase
• Symbol#swapcase
• Symbol#upcase

Ruby also gives you Symbol::all_symbols, which returns an array of all Symbols Ruby knows
about at the time of the call.

Chapter 26. Library Reference: Core Data Types • 534

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 27

Library Reference: Ruby’s Object Model
In this chapter, we’ll take a closer look at the classes that make up Ruby’s object model. The
goal is to give you more information about what you can do with these classes, and also to
discuss related functions together so that you can browse and perhaps find a new feature
that might help.

This is not intended to be a complete listing of every class, every method, or every option.
For that, please refer to the official Ruby documentation at https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide its complete name
and signature. The notation Foo.bar indicates a class or module method, while Foo#bar indicates
an instance method. Optional arguments are indicated with Ruby syntax and their default
value, as in Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with brace syntax and
indication of what the arguments to the block will be, as in Foo#bar { |object| block }. An
optional block argument will be surrounded by square brackets, Foo#bar [{block}]. Please
note that this description syntax is slightly different than the official documentation, and
that in some cases, what the official documentation shows as multiple method signatures,
we’ve chosen show as one signature with default values. Also, parameter names sometimes
differ from the official documentation to make the naming clearer.

BasicObject
For most purposes in Ruby, you can consider the Object class to be the root of Ruby’s class
hierarchy, and the Kernelmodule to be mixed in to all objects. But in some specialized classes,
you might want a Ruby object that does not have the basic functionality contained in Object
and Kernel. For example, you might want a very minimal data object, or you might want to
experiment with your own metaprogramming tools or object semantics.

For those cases, you want the class BasicObjectwhich is the real root of Ruby’s class hierarchy.
BasicObject deliberately has just a few methods, allowing it to be conveniently used as the
basis for a number of metaprogramming techniques.

If you write code in a direct descendent of BasicObject, you will not have unqualified access
to the methods in Kernel, which normally get mixed in to Object. This example illustrates how
to invoke Kernel methods explicitly as module-level methods:

ref_meta_ruby/basic_object.rb
class SimpleBuilder < BasicObject

report erratum • discuss

https://docs.ruby-lang.org
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/basic_object.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def initialize
@indent = 0

end

def __indented_puts__(string)
::Kernel.puts "#{" " * @indent} #{string}"

end

def respond_to_missing?
true

end

def method_missing(name, *args)
__indented_puts__("<#{name}>")
@indent += 2
__indented_puts__(args.join) unless args.empty?
yield if ::Kernel.block_given?
@indent -= 2
__indented_puts__("</#{name}>")

end
end

r = SimpleBuilder.new
r.person do
r.name("Dave")
r.address do
r.street("123 Main")
r.city("Pleasantville")

end
end

produces:

<person>
<name>
Dave

</name>
<address>
<street>
123 Main

</street>
<city>
Pleasantville

</city>
</address>

</person>

Because this class uses BasicObject, the method_missingmethod can respond to all the methods
that would be defined in Object, allowing them to be used as data in this case.

Here is a complete list of the methods defined by BasicObject, suitable for placing on a notecard:

• BasicObject::new returns a new BasicObject. Note that if you type BasicObject.new into irb,
you will get a message that the BasicObject doesn’t support inspect.

• BasicObject#! is boolean negation, returns false unless obj is false. Because it’s in BasicObject,
! is defined for all objects in Ruby.

• BasicObject#!=(other) is the inverse of equality.

Chapter 27. Library Reference: Ruby’s Object Model • 536

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• BasicObject#==(other) is equality. At the BasicObject level, == returns true only if obj and
other_obj are the same object. Typically, this method is overridden in descendent classes
to provide class-specific meaning.

• BasicObject#__id__ returns an integer ID specific to each individual object.
• BasicObject#__send__(method_name[, args]) sends the instance the method name and args

as a message.
• BasicObject#equal?(other) for BasicObject is equivalent to ==.
• BasicObject#instance_eval {block} executes block with self set to the object receiving
instance_eval. Has a rarer form where the argument is a string of Ruby code instead of a
block.

• BasicObject#instance_exec(args) {block} is similar to instance_eval except the arguments to
the method are passed through as arguments to the block.

• BasicObject#method_missing(method_name[, args]) is called when a method is not found. It
allows for additional processing based on the method name.

• BasicObject#singleton_method_added(method_name), BasicObject#single-
ton_method_removed(method_name), and BasicObject#singleton_method_undefined(method_name)
are all callback methods invoked when methods are added, removed, or undefined in
the receiver’s singleton object.

Some of these methods reflect very commonly used functionality.

The method BasicObject#instance_eval(string, filename = nil, line_number = nil) or BasicOb-
ject#instance_eval { |object| block } evaluates either a string containing Ruby source code, or
the given block, within the context of the receiver. To set the context, the variable self is set
to the receiver object while the code is executing, giving the code access to the receiver object’s
instance variables. In the version of instance_eval that takes a String, the optional second and
third parameters supply a filename and starting line number that are used when reporting
compilation errors:

ref_meta_ruby/instance_eval.rb
class Klass
def initialize
@secret = 99

end
end
k = Klass.new
k.instance_eval { @secret } # => 99

The BasicObject#instance_exec(...) method has the same feature of evaluating the block in the
receiver’s context, but it takes arbitrary arguments and passes them to the block.

BasicObject#method_missing(name, *args) is invoked by Ruby when obj is sent a message it cannot
handle. The name is the symbol for the unhandled method that was called, and args are any
arguments that were passed to it.method_missing can be used to implement proxies, delegators,
and forwarders. It can also be used to simulate the existence of methods in the receiver, as
the example at the start of this section shows. When invoked by a class that is a subclass of
Object, the method respond_to_missing? should also be defined (see Object, on page 554).

Class
Classes in Ruby are first-class objects—each is an instance of class Class. Since Class is a subclass
of Module, most of the behavior of Class is actually defined in the class Module (see Module, on
page 550). The Class class itself adds a very small number of new methods.

report erratum • discuss

Class • 537

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/instance_eval.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

You can create an anonymous class with Class.new and assign it to a variable and use it like
a regularly defined class. If you assign it to a variable whose name starts with a capital letter,
it’s treated as a constant and behaves exactly like a regularly defined class.

When a new class is defined (typically using class SomeName ... end), an object of type Class is
created and assigned to a constant (SomeName, in this case). When SomeName.new is called to
create a new object, the new instance method in Class is run by default, which in turn invokes
Class.allocate to allocate memory for the object, before finally calling the new object’s initialize
method.

Class has a private instance method called Class#inherited(subclass), that you can override in
your own classes. If defined, the method is automatically invoked by Ruby when a subclass
of the class is created. The new subclass is passed as a parameter. For example:

class Top
def self.inherited(sub)
puts "New subclass: #{sub}"

end
end

class Middle < Top
end

class Bottom < Middle
end

produces:

New subclass: Middle
New subclass: Bottom

The class Class also defines a method called Class#subclasseswhich returns a list of the known
subclass objects in an arbitrary order, and a method called Class#superclass, which returns
the superclass of the given Class or, if you happen to try this on BasicObject.superclass, returns
nil.

Comparable
If you want to be able to compare two objects of the same class in general, all you need to
do is implement the <=> operator and include the Comparable module, like so:

built_in_data/team.rb
class Team
include Comparable
attr_accessor :wins, :losses, :name

def initialize(name, wins, losses)
@name = name
@wins = wins
@losses = losses

end

def percentage = (wins * 1.0) / (wins + losses)

def <=>(other)
raise ArgumentError unless other.is_a?(Team)
percentage <=> other.percentage

end

Chapter 27. Library Reference: Ruby’s Object Model • 538

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/built_in_data/team.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def to_s = name
end

brewers = Team.new("Brewers", 73, 89)
cardinals = Team.new("Cardinals", 86, 76)
cubs = Team.new("Cubs", 103, 58)
pirates = Team.new("Pirates", 78, 83)
reds = Team.new("Reds", 68, 94)

puts cubs > cardinals
puts "\n"
puts cardinals.between?(cubs, reds)
puts "\n"
puts [brewers, cardinals, cubs, pirates, reds].sort

produces:

true

false

Reds
Brewers
Pirates
Cardinals
Cubs

In this case, we’re using the <=> to order teams based on their winning percentage, so using
sort on an array of teams gives you the standings, lowest to highest.

The comparable module defines<,<=,>,>=, and== as methods that can be used as operators.
It also defines Comprable#between?(low, high) as a boolean, and a method called Compara-
ble#clamp(low, high) or Comparable#clamp(range). The call obj.clamp(low, high) takes two values or
a range and returns the object if it is between the low and high values, but returns the border
value if the clamp is not between the two values. The range version does the same thing for
the endpoints of the range, but also allows for infinite ranges.

7.clamp(5..10) # => 7
3.clamp(5..10) # => 5
3.clamp(5..) # => 5
12.clamp(..10) # => 10
7.clamp(5, 10) # => 7
3.clamp(5, 10) # => 5
12.clamp(5, 10) # => 10

Kernel
The Kernel module is included by class Object, so its methods are available in every Ruby
object. One of the reasons for the Kernel module is to allow methods like puts and gets to be
available everywhere and even to look like global commands, but to still maintain Ruby’s
“everything is an object” semantics, since the methods are actually using the implicit
receiver, self.puts and self.gets and resolve like any other method.

Since Kernel is mixed into Object, there is no practical difference between a method defined
in Kernel and a method defined in Object. Logically, the distinction is that the methods in
Objectmanage the object-oriented semantics of Ruby, while the methods in Kernel are general

report erratum • discuss

Kernel • 539

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

functionality that Ruby wants to be available anywhere in the code. More on the distinction
at Object, on page 554.

In most cases, your code will be inside an object that includes Kernel and these methods can
be invoked like any other instance method. Kernelmethods are typically invoked without an
explicit receiver, which makes them look like commands, so require, not self.require.

Methods of Kernel that don’t refer to the self object are also made module methods by calling
module_method (see Module, on page 550). This is to support calling Kernel methods using the
syntax Kernel.puts, and is there to support calling Kernel methods inside BasicObject instances
that don’t include Kernel. There is an example of the module method usage in BasicObject,
on page 535.

Here’s a guide to the most useful or interesting methods of Kernel.

Conversion
In Standard Protocols and Coercions, on page 362, we listed the conversion methods defined
by Kernel for converting values to basic Ruby types—meaning types that have literal syntax.
Kernel also defines a few other conversions as outlined in the following table:

DescriptionMethod

Available after require "bigdecimal" is executed. If value is a numerical
object, it is converted to a BigDecimal. If value is a string, it is parsed to

BigDecimal(value,
digits = 0, excep-
tion: true) an integer or float and then converted. Other objects that implement

to_str call that method, and convert the resulting string. Any other
object raises an exception if the exception argument is true, otherwise
nil is returned. If the digits argument is not 0 and is less than the number
of significant digits in the value, then the resulting BigDecimal is
rounded to that number of significant digits.
If the object is a string or responds to to_str, then this assumes that you
want to convert a JSON string to Ruby, and it calls JSON.parse and

JSON(object, *args)

returns the resulting object. Otherwise, it assumes you have a Ruby
object and want JSON, so it calls JSON.generatewith the object. In either
case, the args is passed to the called method.
Available after you require "pathname". Creates a new Pathname object
from the given pathname.

Pathname(path)

Creates a URI object from the argument, which is a string or an existing
URI

URI(uri)

Table 23—More Kernel Module Conversion Methods

Control flow
The Kernel module has many methods that affect the control flow of a Ruby program.

Exiting a Program
One way to affect the control flow of a program is to end it. The method Kernel#abort(message
= nil) terminates execution immediately with an exit code of 1. The optionalmessage argument,
if it exists, is written to standard error before the program terminates.

Chapter 27. Library Reference: Ruby’s Object Model • 540

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The method Kernel#at_exit {block} takes the block object, converts it to a Proc object and holds
on to the object. The block is executed when the program ends. If multiple at_exit blocks are
declared, they are executed in reverse order—last declared, first executed.

You can also terminate a Ruby process with the methods exit and exit!. Kernel#exit(status =
true) ends a Ruby program and raises a SystemExit exception, which you can catch in your
code and handle. If the exception is not handled, the program runs any at_exit handlers and
then terminates. A true status is reported as successful to the operating system (typically
meaning 0), a false status is reported as unsuccessful (typically meaning 1), any integer status
is just returned out to be interpreted by the underlying operating system. Kernel#exit!(status
= false) behaves similarly except at_exit handlers are not called, and the default status is failure.

The difference here is that abort allows you to send a text message out, but always sends an
exit code of 1, while exit allows you to change the exit code, but does not allow you to send
out a message.

If you don’t want to end the program permanently, but just want it to rest a while, Ker-
nel#sleep(seconds= nil) suspends the current thread for the given number seconds, the argument
can be any numeric object, including a float or rational with partial seconds. It returns the
actual number of seconds slept, which may be less than that asked for if the thread was
interrupted by a SIGALRM or if another thread calls Thread#run. An argument of zero causes
sleep to return immediately. An argument of nil causes the thread to sleep forever unless
interrupted by another thread.

Exception Handling
A few methods of Kernel control exceptional behavior. The main way of raising an exception
is the method Kernel#raise(*args), which is aliased as Kernel#fail. There are a couple of different
argument patterns that can be passed to raise. With no arguments, raise raises the exception
in $! or, if $! is nil, raises a RuntimeError. If the argument is a String (or an object that responds
to to_str), raise raises a RuntimeError with the string as a message.

Otherwise, the first parameter should be the name of an Exception class (or an object that
returns an Exception when its exception method is called). The optional second parameter is
the message associated with the exception, and the third parameter is an array of callback
information, the default is the result of the method Exception#backtrace. An optional keyword
argument, cause: is the cause of the exception, it defaults to $! but you can set it to an arbitrary
Exception object or to nil. See Chapter 10, Exceptions, on page 171 for more detail on how
exceptions are managed in Ruby.

Control Flow
The Kernel#loop {block} method takes a block and invokes that block repeatedly, with no
argument, until the block is exited with break, return, or by raising a StopIteration error. If loop
is called without a block argument, then an Enumerator is returned.

The Kernel#tap { |x| block} method takes a block and just yields self to the block and returns
self. It took us a little while to see where this is useful. The tap method allows you to “tap
into” a chain of method calls without interfering.

For example, if you had dog.reverse.capitalize, but wanted to see the intermediate object for
debugging purposes, you could use tap right in the middle:

puts "dog"

report erratum • discuss

Kernel • 541

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

.reverse

.tap { |o| puts "Reversed: #{o}" }

.capitalize

produces:

Reversed: god
God

The similar method Kernel#then { |x| block }, aliased as yield_self also passes the receiver to the
block, but returns the result of the block, rather than the original receiver. This allows for
pipelining an object in a method chain. Here’s a slightly contrived example:

result = "testfile"
.then { |filename| File.readlines(filename) }
.then { |lines| lines.count }

puts result

produces:

4

The pair of methods Kernel#catch(tag) { |tag| block } and Kernel#throw(throw_tag, value) also allow
you manipulate control flow.

The catch method executes its block immediately, passing the tag argument as a parameter.
If a throw method is encountered, Ruby searches up its stack for a catch block with a tag
argument identical to the throw method’s tag argument. If found, that block is terminated,
and catch returns the value given as the second parameter to throw. If there is no matching
catch block, then Ruby raises a NameError.

If throw is not called, the block terminates normally, and the value of catch is the value of the
last expression evaluated. catch expressions may be nested, and the throw call need not be in
lexical scope.

ref_meta_ruby/catch_throw.rb
def routine(n)
print n, " "
throw :done if n <= 0
routine(n - 1)

end
catch(:done) { routine(4) }

produces:

4 3 2 1 0

If you want to send a warning, rather than raise an exception, the method Kernel#warn(*mes-
sages, uplevel: nil, category: nil)will send each message in its first argument toWarning.warn. This
does nothing if warnings have been disabled, but if warnings are enabled, it will behave like
a deprecation warning. If the uplevel argument is not nil, the warning string will have the file
and line location prepended to it. The category is either :deprecated or :experimental and if
included, allows the warning system to filter on whether to display warnings of that type.

Evaluation and Loading Code
The method Kernel#eval(string, binding = nil, filename = nil, line_number = nil) takes a Ruby
expression as its first argument and evaluates it. By default, the expression is evaluated in
the current context, but if a Binding object is passed as the second argument, the expression

Chapter 27. Library Reference: Ruby’s Object Model • 542

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/catch_throw.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

is evaluated in that context. If the filename and line_number arguments are passed, they will
be used to identify the code when reporting errors.

Local variables assigned within an eval are available after the eval only if they were defined
at the outer scope before the eval executed. In this way, eval has the same scoping rules as
blocks.

a = 1
eval("a = 98; b = 99")
puts a
puts b

produces:

puts b
^

98
prog.rb:4:in `<main>': undefined local variable or method `b' for main:Object
(NameError)

The method Kernel#require(path), which we have seen many times in this book, loads in a
Ruby file at the given path.

Ruby tries to load the file at path, returning true if successful. If the path is not an absolute
path, it will be searched for in the directories listed in $:. If the file has the extension rb, it is
loaded as a source file; if the extension is so, .o, or .dll, or whatever the default shared library
extension is on the current platform, Ruby loads the shared library as a Ruby extension.
Otherwise, Ruby tries adding rb, .so, and so on, to the name until found. The name of the
loaded file is added to the array in $". A file will not be loaded if its name already appears
in $".

If RubyGems is required, which will be true of most Ruby programs, if the file is not found
in the absolute path, the installed gems are also searched for a file that matches, and the gem
that matches the file is added to the load path.

The method Kernel#require_relative(path)works similarly, except that the path is resolved relative
to the file it is included in, rather than the root of the program. This also means that gems
can’t be installed via require_relative.

Ruby also provides Kernel#load(path, wrap = false), which loads and executes the Ruby program
in the file path. If the filename does not resolve to an absolute path, the file is searched for in
the library directories listed in $:. If the optional wrap parameter is true, the loaded script will
be executed under an anonymous module, protecting the calling program’s global namespace.
In no circumstance will any local variables in the loaded file be propagated to the loading
environment. The loadmethod differs from require in that if the same file is referenced again,
loadwill load it again, whereas requirewill note that it has already been loaded and not reload
the file.

Shortcuts
Several Kernel methods are shortcuts for full methods that exist in other classes. Here’s a
roundup:

• Kernel#chomp(string) is equivalent to String#chomp. If no argument is given, it uses $_ (the
result of the most recent line that was received as input). It is only available when Ruby
is invoked with -n or -p‘ looping command-line flags.

report erratum • discuss

Kernel • 543

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Kernel#chop takes no argument and is equivalent to $_.dup.chop(), except that if chop per-
forms no action, $_ is unchanged and nil is not returned. It is only available when Ruby
is invoked with -n or -p looping command-line flags.

• Kernel#gsub(pattern, replacement) or Kernel#gsub(pattern) { |...| block } is only available when
Ruby is invoked with -n or -p looping command-line flags. It is equivalent to $_.gsub.

• Kernel#j(*objects) and Kernel#jj(*objects) are both shortcuts to puts JSON.generate and are used
to output objects to the console. The j version prints on a single line, and is equivalent
to calling JSON::generate(obj, :allow_nan=> true, :max_nesting=> false) on each object argument.
The jj version prints on multi-lines and is equivalent to calling JSON::pretty_generate(obj,
:allow_nan => true, :max_nesting => false).

• Kernel#lambda { block } converts its block into a Proc object with lambda semantics as
described in Using Blocks as Objects, on page 73.

• Kernel#p(*objects) is a shortcut for $stdout.write(object.inspect, "\n") for each object passed as
an argument.

• Kernel.pretty_inspect is equivalent to PP.pp(self, "".dup), only works if require "pp" has been
called.

• Kernel#print(*objects) is a shortcut for $stdout.print(*objects).
• Kernel#proc { block } converts its block into a Proc object with proc semantics as described

in Using Blocks as Objects, on page 73.
• Kernel#pp(*objects) is shortcut for PP.pp(obj) and returns the pretty-printed form of the

object.
• Kernel#puts(*objects) is a shortcut for $stdout.puts(*objects).
• Kernel#rand(max = 0) is a shortcut for Random.rand(max).
• Kernel#srand(number = Random.new_seed) seeds the random number generator for future
rand usages.

• Kernel#sub(pattern, replacement) or Kernel#sub(pattern) { |...| block } is only available when
Ruby is invoked with -n or -p looping command-line flags. It is equivalent to $_.sub.

• Kernel#y(*objects) is equivalent to YAML.dump_stream(*objects) and is used for formatted
output, often in irb.

Formatting
The method Kernel#printf(format_string, *objects), which is aliased as sprintf and the methods
IO#printf and ARGF.printf, all return the string resulting from applying format_string to any
additional arguments. Within the format string, any characters other than format sequences
are copied to the result.

A format sequence consists of a percent sign; followed by optional flags, width, and precision
indicators; an optional name; and then terminated with a field type character. The field type
controls how the corresponding sprintf argument is to be interpreted, and the flags modify
that interpretation.

The flag characters are listed in the following table:

MeaningApplies ToFlag
Leaves a space at the start of positive numbers.bdEefGgiouXx␣ (space)
Specifies the absolute argument number for this field. Absolute and relative
argument numbers cannot be mixed in a sprintf string.

alldigit$

Uses an alternative format. For the conversions b, o, X, and x, prefixes the result
with b, 0, 0X, 0x, respectively. For E, e, f, G, and g, forces a decimal point to be
added, even if no digits follow. For G and g, does not remove trailing zeros.

beEfgGoxX#

Chapter 27. Library Reference: Ruby’s Object Model • 544

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

MeaningApplies ToFlag
Adds a leading plus sign to positive numbers.bdEefGgiouXx+
Left-justifies the result of this conversion.all-
Pads with zeros, not spaces.bdEefGgiouXx0 (zero)
Uses the next argument as the field width. If negative, left-justifies the result. If
the asterisk is followed by a number and a dollar sign, uses the indicated argu-
ment as the width.

all*

Table 24—Format String Flag Characters

The field width is an optional integer, followed optionally by a period and a precision. The
width specifies the minimum number of characters that will be written to the result for this
field. For numeric fields, the precision controls the number of decimal places displayed. The
number zero is converted to a zero-length string if a precision of 0 is given. For string fields,
the precision determines the maximum number of characters to be copied from the string.
Thus, the format sequence%10.10swill always contribute exactly ten characters to the result.

The field type characters are listed in the following table:

ConversionField

Same as %a, but uses uppercase X and P.A
Converts a float into hexadecimal representation 0xsignificandpdecimal-exp.a
Converts argument as a binary number (0B0101 if # modifier used).B
Converts argument as a binary number (0b0101 if # modifier used).b
Argument is the numeric code for a single character.c
Converts argument as a decimal number.d
Equivalent to e but uses an uppercase E to indicate the exponent.E
Converts floating point-argument into exponential notation with one digit before
the decimal point. The precision determines the number of fractional digits (default
six).

e

Converts floating-point argument as [|-]ddd.ddd, where the precision determines the
number of digits after the decimal point.

f

Equivalent to g but uses an uppercase E in exponent form.G
Converts a floating-point number using exponential form if the exponent is less
than -4 or greater than or equal to the precision, or in d.dddd form otherwise.

g

Identical to d.i
Converts argument as an octal number.o
The value of argument.inspect.p
Argument is a string to be substituted. If the format sequence contains a precision,
at most that many characters will be copied.

s

Treats argument as an unsigned decimal number.u
Converts argument to hexadecimal with uppercase letters. Negative numbers will
be displayed with two leading periods (representing an infinite string of leading
FFs).

X

Converts argument to hexadecimal. Negative numbers will be displayed with two
leading periods (representing an infinite string of leading FFs).

x

Table 25—Format String Field Characters

Here are some examples of sprintf in action:

report erratum • discuss

Kernel • 545

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

ref_meta_ruby/sprintf_1.rb
sprintf("%d %04x", 123, 123) # => "123␣007b"
sprintf("%08b '%4s'", 123, 123) # => "01111011␣'␣123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8) # => "␣␣␣hello␣8␣hello"
sprintf("%1$*2$s %2$d", "hello", -8) # => "hello␣␣␣␣-8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) # => "+1.23:␣1.23:1.23"

You can pass a hash as the second argument and insert values from this hash into the string.
The notation<name> can be used between a percent sign and a field-type character, in which
case the name will be used to look up a value in the hash, and that value will be formatted
according to the field specification. The notation {name} is equivalent to<name>s, substituting
the corresponding value as a string. You can use width and other flag characters between
the opening percent sign and the {. For example:

ref_meta_ruby/sprintf_2.rb
sprintf("%<number>d %04<number>x", number: 123) # => "123␣007b"
sprintf("%08<number>b '%5{number}'", number: 123) # => "01111011␣'␣␣123'"
sprintf("%6<k>s: %<v>s", k: "Dave", v: "Ruby") # => "␣␣Dave:␣Ruby"
sprintf("%6{k}: %{v}", k: "Dave", v: "Ruby") # => "␣␣Dave:␣Ruby"

Ruby Runtime Information
The Kernel module includes a bunch of methods that return various parts of internal Ruby
information. A few methods in Kernel can tell you where you are in the system and what’s
available.

A commonly used method is Kernel#block_given?, which returns true if the current method
was passed a block and therefore would execute that block if yield was invoked.

The method class, when called with an explicit receiver, returns the Class object of the class
of that object.

Kernel#__dir__ returns the path of the directory of the file from which it is called. It’s related
to __FILE__, which is a globally available value and not a method of Kernel. The value of __dir__
is equivalent to File.dirname(File.realpath(__FILE__)).

Kernel#__callee__ returns the name of the current method or nil outside the context of a method.
If a method is called by an aliased name, that alias is returned, not the original name. The
Kernel#__method__ returns the current method and calls the original name if the method is
called by an alias.

The flip side of __callee__ is Kernel#caller(start = 1, length = nil) also callable as Kernel#caller(range).
The callermethod returns the current execution stack, or backtrace. It returns strings formatted
as file:line: in method (the related method Kernel#caller_location takes the same arguments but
returns an array of Ruby objects). If it takes start and length arguments, the start parameter is
the index at which the returned array starts (you can think of this as the number of entries
at the top of the stack that are discarded). The length argument limits the number of entries
returned; otherwise’ the entire call stack is returned. A range argument indicates the subset
of the call stack that should be returned.

You can get an entire binding with the Kernel#binding method. The binding returns an object
of class Binding that contains all the local variable information at a current point.

Objects of class Binding encapsulate the execution context at some particular place in the code
and retain this context for future use. Access to the variables, methods, value of self, and

Chapter 27. Library Reference: Ruby’s Object Model • 546

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/sprintf_1.rb
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/sprintf_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

possibly an iterator block accessible in this context are all retained. The binding object
responds to the method local_variables and returns a list of symbols of defined local variables
in the binding. The method local_variable_get(symbol), returns the value of the local variable in
the binding along with local_variable_set(symbol, obj), which sets the value of the local variable
in the binding. The list of local variables is available directly as Kernel#local_variables as is a
list of global variables as Kernel#global_variables.

System Info
Several methods in Kernel allow you to interact with the underlying operating system.

Executing System Commands
There are several methods that allow you to execute operating system commands.

The use of backticks to send a system command, as seen in Command Expressions, on page
146 is defined as the method Kernel#`, which executes the command and returns a string
containing any output that would have gone to $stdout. It also sets the global variable $? to
the return status of the command.

The method Kernel#exec(command, *options) replaces the current process by running the given
external command, ending the current process. The behavior of the command depends on
the arguments. There are a few possibilities:

• The only argument is a single command string, which does not contain a new line or
or any of the meta characters ?*?{}[]<>()~&|$;'". In this case, Ruby invokes the com-
mand without loading an operating system shell.

• If the single command string does contain a newline or meta-character, it is executed
in the default shell, and is subject to shell expansion before being executed.On Unix
system, Ruby does this by prepending sh -c. Under Windows, it uses the name of a shell
in either RUBYSHELL or COMSPEC.

• If multiple arguments are given, the first argument is the command, and the second
and subsequent arguments are passed as parameters to commandwith no shell expansion.

• If the first argument is a two-element array rather than a string, the first element is the
command to be executed, and the second argument is used as the argv[0] value, which
may show up in process listings.

Any of these versions can have a prepended argument that is a hash (so the signature is
Kernel#exec(hash, command, *options)), and which adds to the environment variables in the
subshell. The keys must be strings. An entry with a nil value clears the corresponding envi-
ronment variable. Any version can have a final argument options, if present, it is a hash that
controls the setup of the subshell.

The method Kernel#fork [{ block }] takes an optional block. If the block is given it forks a sub-
process, executing the block in that subprocess, if a block is not given, fork is run in the
operating system twice, the parent process gets a return value of nil, the child process gets
a process id. See Blocks and Subprocesses, on page 199 for more uses.

The method Kernel#spawn(command, options = "") or Kernel#spawn(environment, command, options
= ""), executes the given command and returns it’s process id. The spawn method doesn’t
block the Ruby program, if you use it, you should call Process.wait(pid) if you need to wait for
the command to complete. The environment argument, if given, sets environment variables.

report erratum • discuss

Kernel • 547

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

There are a lot of somewhat edge-case options that can affect the execution, please check the
official documentation.

The similar method Kernel#system with the same argument patterns, executes the command
in a sub shell and waits for the command to complete, returning true if the command executes
successfully, false if it reports a non-successful exit status, and nil if the command fails without
reporting status.

I/O
The method Kernel#gets(sep = $/, limit = nil) or Kernel#gets(limit), when called without an argu-
ment, returns the next line of text from standard input, meaning all the text until it hits an
end of line character. In a program that has command line files specified and placed in ARGV
(or otherwise assigns to ARGV), gets will read the next line from ARGV instead. An optional
argument specifies a non-standard line separator. Like other I/O methods, if the argument
is nil it will read the entire content of the stream (or, the entire content of the current ARGV
file), and an empty string argument reads until it gets two consecutive line separators. If the
argument is an integer, it limits the number of bytes read. The method Kernel#readline with
the same argument signature is identical except that it raises an exception if the stream has
already ended, and it takes a keyword argument chomp: that determines if the separator
character is removed. The method Kernel#readlines (again, same argument signature) returns
an array of lines, reading until the end of the input stream is reached. It has the same argu-
ments as readline plus it takes the same encoding options as other methods described in
Chapter 29, Library Reference: Input, Output, Files, and Formats, on page 585.

The flipside of gets is Kernel#puts(*objects) which prints its objects to standard out, it’s the
same as calling $stdout.puts(objects), similarly equivalent to $stdout.print(*objects). The difference
between print and puts is covered in Printing Things, on page 289.

ARGV << "testfile"
print while gets

produces:

This is line one
This is line two
This is line three
And so on...

The method Kernel.open(path, mode = "r", permissions = 0666, **options) [{ |io| ...}], does a lot of
stuff. It has three modes:

• If the path is a normal string, that string is assumed to be a file path, and the behavior
is essentially as if you called File.open(path, mode, permissions, options).

• If the path argument is a pipe character followed by a shell command, then the shell
command is run in a new subprocess, and a stream is returned connected to that sub-
process. If there’s a block argument, then the stream is passed to the block and the stream
is closed at the end of the block.

• If the path argument is exactly |-, the process forks, the return value to the parent is a
stream connected to the child, and the return value to the child is nil, so you can tell the
two apart. Again, a block argument is passed the stream and the stream is automatically
closed at the end of the block.

Chapter 27. Library Reference: Ruby’s Object Model • 548

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The Kernel module does a lot, and some less-commonly used methods have been omitted. In
particular, if you are doing Unix-specific operating system interactions, you should check
out the official documentation.

Method
A Ruby Method object represents a method that is attached (the technical term is “bound”)
to a specific receiver. You create Method objects via Object#method(name), which returns the
method object for a given name.

Once you have a method object, you can call the method with call(*, **, &), which forwards
the arguments to the method and invokes it with the method object’s receiver. The callmethod
is aliased as [] and also as ===.

You can compose Ruby methods in a functional programming style withMethod#<<(other_proc),
which takes a proc or callable object as the right hand side and returns a new proc. The new
proc takes arguments, calls other_proc, then calls the given method with the result of the call
to other_proc. The flipside, Method#>>(other_proc), returns a new proc that calls this method
then passes the result to the other_proc. Here’s an example:

ref_meta_ruby/compose_methods.rb
class Foo
def triple(x)
x + x + x

end
end

squarer = proc { |x| x * x }
foo_instance = Foo.new
method = foo_instance.method(:triple)

pointing_left = (method << squarer)
pointing_right = (method >> squarer)

pointing_left.call(5) # => 75
pointing_right.call(5) # => 225

The number of arguments that a method takes is called the arity of the method and
Method#arity returns that value for the method. If the method has a variable number of
arguments, arity returns the number of required arguments * -1 - 1 so a method with a signature
of (a, b, *c) returns an arity of -3. All keyword arguments are treated as one argument, and
it’s a required argument if any of the keyword arguments are required. Internal methods
written in C that take variable arguments return -1.

Another functional programming thing you can do with a method is use Method#curry(arity
= nil). Currying a method is the term for creating a new method with a lower artity. The curry
method returns a new proc. Calling that proc with fewer than the required number of
arguments for the original method returns a new proc that holds on to those arguments,
which you can call again with more arguments until you finally have enough arguments to
match the original method at which time the original method is called. If the original method
takes a variable number of arguments, the arity argument is used to say how many arguments
you want the whole deal to take before the original method is invoked:

ref_meta_ruby/curry.rb
class Currier

report erratum • discuss

Method • 549

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/compose_methods.rb
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/curry.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

def add_four_things(a, b, c, d)
a + b + c + d

end
end

currier = Currier.new
add_two_things = currier.method(:add_four_things).curry.call(1, 2)
add_two_things.call(3, 4) # => 10

add_one_thing = add_two_things.call(5)
add_one_thing.call(7) # => 15

The Method class is very useful in debugging or investigating code, in irb or in code you can
acquire a Method object and learn about where it is defied and how to call it. You can get the
name of the method with Method#name and the original name of an aliased method with
Method#original_name. Method#reciever returns the object the method is bound to, and
Method#owner is the class or module where the method is defined. Method#source_location
returns an array of the filename and line number where the method is defined.Method#inspect
shows a lot of these details in one string.

You can unbind the method withMethod#unbindwhich returns an UnboundMethod, see Unbound
Method, on page 630.

Module
The Module class is the class of any module you declare with the module keyword. Each
module is an instance of the class Module. The class Class is a subclass of the class Module, and
so inherits all the functionality described here.

You can create an anonymous module with Module.new [{block}], the block body is the body
of the module. You can assign the module to a variable, if that variable name starts with a
capital letter, then it’s a constant and you can treat it exactly like a module created the more
common way.

Information about Modules
The Module class has a number of methods that allow you to dynamically access information
about a module or class.

Module (and Class) Hierarchy
You can compare two modules to determine the relationship between them. Modules define
the spaceship operator via inclusion, somodule <=> other_module returns -1 ifmodule includes
other_module, 0 if module is the same module as other_module, and +1 if module is included by
other_module or nil if module has no relationship with other_module.

As for the other comparison operators, <, <=, ==, >, and >=, they behave similarly as a
hierarchy query. One module is considered greater than another if it is included in (or is a
parent class of) the other module. The other operators are defined accordingly. If there is no
relationship between the modules, all operators return nil. For example:

ref_meta_ruby/module_comp.rb
module Mixin
end

module Parent

Chapter 27. Library Reference: Ruby’s Object Model • 550

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/module_comp.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

include Mixin
end

module Unrelated
end

Parent > Mixin # => false
Parent < Mixin # => true
Parent <= Parent # => true
Parent < Unrelated # => nil
Parent > Unrelated # => nil

Parent <=> Mixin # => -1
Parent <=> Parent # => 0
Parent <=> Unrelated # => nil

The triple-equal case equality operator, ===, as in User === u, returns true if the object on
the right is an instance of the module or one of the modules descendants. This is also useful
when the left side is a Class rather than a Module.

The method ancestors returns an array of all the modules included or prepended in this
module. For classes, ancestors also includes superclasses, so the result is the method lookup
sequence when this module or class is called.

Module (and Class) Attributes
Many Modulemethods give you access to components of the module. The name, for example,
is accessible with Module#name. The method Module#singleton_class? returns true if the module
is a singleton class, and false if it is a regular module.

Class variables are defined with @@, and you can get the list of all known class variables
with theModule#class_variablesmethod, the return value is a list of the names as symbols, with
the@@ prefix attached. You can get the value of a specific class variable withModule#class_vari-
able_get(name), which takes the name of the variable as a symbol or string, with the@@ prefix,
and returns the current value. The methodModule#class_variable_set(name, value) takes the same
name argument and sets its value to the value argument. The method Module#class_vari-
able_defined?(name), takes the same name argument and returns true if the variable is defined,
while the method Module#remove_class_variable(name) takes the same name argument and
undefines the variable at that name.

There is a similar pattern with constants defined in the module or class. The method Mod-
ule#constants(inherit = true) returns an array of the names of all constants defined in the module
as symbols. Constants also have getters and setters Module#const_get(name, inherit=true) takes
the name of the constant as a symbol or string and returns its current value or raises a
NameError if the constant isn’t defined. In both these methods, if the inherit argument is true,
the search for constants also includes constants defined in modules that have been included
in the current module.

The method Module#const_set(name, value) takes the name of a constant as a string or symbol
and sets its value to the new value. If the constant doesn’t exist, it’s created, if the name
doesn’t start with a capital letter or is otherwise not valid, a NameError is raised. If the constant
already has a value, the value will be changed but a warning will be raised.

Constants have two other interesting methods. The methodModule#const_source_location(name,
inherit=true) takes a constant name and returns a two element array [filename, line_number] of

report erratum • discuss

Module • 551

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

the location in the source where the constant is defined. If the constant doesn’t exist, it returns
nil, but if the constant exists, but doesn’t have a source location it returns an empty array—this
might happen if the constant is defined in Ruby’s internal C libraries rather than in Ruby
code. The inherit argument has the same meaning as above.

The method Module#const_missing(name) is similar tomethod_missing, it is a hook invoked when
a constant is looked for and not found, the name of the constant is passed as a symbol, and
the return value of the method is returned as the value of the constant.

You can also track down methods with, well, methods. Module#instance_methods(include_super
= true) returns an array of the names of all the non-private instance methods as symbols. If
include_super is false, then methods from super classes or other included modules are not
included.Module#instance_method(method_name) takes a method name as a symbol and returns
the method as an UnboundMethod object, or raises a NameError if the method doesn’t exist.
Module#method_defined?(method_name, inherit=true) returns true if the method exists in the
module as a public or protected method. If inherit is false then it only looks in the module
itself.

There are similar methods that explicitly only return methods of a particular security level:

• private_instance_methods, protected_instance_methods, and public_instance_methods all take an
optional argument include_super=true and behave the same as instance_method except only
returning methods at that given security level.

• private_method_defined?, protected_method_defined?, and public_method_defined? all take
(method_name, inherit=true) and behave the same asmethod_defined except they only return
true if the method is part of that security level.

Modifying Modules
Many methods of Module actually change the behavior of the module as it’s being loaded.
We’ve seen a lot of these before, they tend to look like commands, but are actually methods
of Module that are generally called inside a module’s definition with an implicit receiver.

The method Module#alias_method(new_name, old_name) makes the new name a copy of the
method referenced by the old name. The new name points to the existing method even if
the method at the old name is redefined.

We’ve seen the attr family of methods in Chapter 3, Classes, Objects, and Variables, on page
33. Module#attr_reader(*names) takes a list of names as symbol or strings and creates a getter
method for each name (aliased as just attr), while Module#attr_writer(*names) takes the list of
names and creates a setter method for each name, and Module#attr_accessor(*names) creates
both getter and setter for each name.

We’ve also seen include and prepend before in Chapter 6, Sharing Functionality: Inheritance,
Modules, and Mixins, on page 101, they are implemented as methods of the Module class that
take one or more modules as arguments. Internally, include calls a method named Mod-
ule#append_feautres(module) that actually adds the elements of the Module to the call chain.
Similarly, prepend calls a method named Module#prepend_features(module). There is also Mod-
ule#included_modules which returns an array of all the modules included or prepended in the
receiving module or one of its ancestor modules, and Module#included?(module)which returns
true if the argument module has been included or prepended in the receiving module or one
of its ancestor modules. The methodModule#extend_object(obj) is used internally byObject#extend
to handle extensions.

Chapter 27. Library Reference: Ruby’s Object Model • 552

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The refinement methods refine and using, as seen and more fully described in Using Refine-
ments, on page 384, are also defined as Module methods. Module#refine(module) {block} takes a
class or module as an argument and a block in which new methods are defined for that class
or module. Module#using(module) takes as an argument a module that does such a refinement
and applies the refinement in the current context.

We’ve also covered method access control, you can see the definitions of the various levels
in Specifying Access Control, on page 45. Those control features are implemented as methods
of Module: Module#private(*method_names), Module#protected(*method_names), and Module#pub-
lic(*method_names). All three of these methods work the same way. When called with no
arguments, they change the default access level for methods that are defined after the method
call. When called with one or more symbols, or an array of symbols, the symbols are treated
as the names of methods in the module and those methods access level is changed to match.
Since def returns a symbol, you can do this access setting inline with something like private
def foo or protected def bar.

Several additional methods of Module take one or more method or constant names and do
something to that method or constant. The names can be strings or symbols:

• Module#module_function(*names) makes an existing method that is defined as an instance
method into a module method, meaning it can be called with Module.method syntax. The
module method is a copy, so the original can change without affecting it. The instance
version becomes private. As with access control methods, ifmodule_function is called with
no arguments, it become the default for any methods defined later in the code.

• Module#private_class_method(*names) makes existing class methods private.
• Module#private_constant(*symbols) makes a existing constants private.
• Module#public_class_method(*names) makes existing class methods public.
• Module#public_constant(*symbols) makes existing constants public.
• Module#remove_method(symbol) removes the method from the module or class (one argu-

ment only).
• Module#remove_const(symbol) removes the constant from the module or class (one argument

only)
• Module#ruby2_keywords(*names) has the given methods manage positional and keyword

arguments using Ruby 2 semantics, rather than Ruby 3. Sometimes useful for compati-
bility with older code.

• Module#undef_method(name) removes the method from the module or class, but unlike
remove_method, subsequent calls to the method will not look for the method in superclasses
or included modules.

Executing Dynamic Code
Several methods of Module allow you to execute arbitrary code at runtime in the module’s
context.

The method Module#class_eval, aliased as module_eval has two different forms. The first form
is Module#class_eval(string, filename = nil, line_number = nil). This form evaluates the string in the
module’s context. If the filename and line number are given, those are used if any error is
raised while evaluate the text, and are also used as the source location of any method defined
in the string. You can use a heredoc as the string:

ref_meta_ruby/class_eval.rb
class EmptyClass

report erratum • discuss

Module • 553

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/class_eval.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end
EmptyClass.module_eval <<-STRING, __FILE__, __LINE__ + 1
def greeting()
"Hi There!"

end
STRING

puts EmptyClass.new.greeting

produces:

Hi There!

The second form takes a block argument Module#class_eval {|module|} and evaluates the block
in the context of the string, passing the module as an argument to the block. In both cases,
the return value of the executed code is the return value of the executed method.

The similar methodModule#class_exec(...), aliased asmodule_exec takes a block. Unlike class_eval,
arguments passed to class_exec will be passed to the block. The block will then be executed
in class context, and as with class_eval can be used to add class or module methods.

To add instance methods, you use Module#define_method(symbol) {block}. This method
dynamically creates an instance method in the receiving class or module. The block is the
body of the method, and any parameters that the block takes are expected to be arguments
to the new method when called. Instead of a block, a second argument that is a Proc, Method
or UnboundMethod can be passed.

Event Hooks
Ruby has several callback methods in Module that, if defined, are automatically called when
an event happens, typically but not necessarily when the code is loaded:

• Module#const_added(constant_name) is called after a new constant is added to the module.
The argument is the name of the new constant.

• Module#extended(other_module) is called with the extending module as the argument after
a module is used to extend another module or class with extend. So, given module Foo;
extend Bar; end, the method Bar#extended is called with Foo as an argument.

• Module#included(other_module) is called after the module is included in another module
with the including module as the argument. So, given module Foo; include Bar; end, the
method Bar#included is called with Foo as an argument.

• Module#method_added(method_name) is called after a method is added to the module or
class, with the name of the new method as an argument.

• Module#method_removed(method_name) is called after a method is removed from the module
or class, with the name of the method to be removed as an argument.

• Module#method_undefined(method_name) is called after a method is undefined from the
module or class, with the name of the method to be undefined as an argument.

• Module#prepended(other_module) is called after the module is prepended in another module
with the prepending module as the argument. So, given module Foo; prepend Bar; end, the
method Bar#prepended is called with Foo as an argument.

Object
Object is the parent class of (almost) all classes in Ruby, unless a class explicitly inherits from
BasicObject. Its methods are therefore available to all objects unless explicitly overridden.

Chapter 27. Library Reference: Ruby’s Object Model • 554

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Object mixes in the Kernel module, making the built-in kernel functions globally accessible,
Kernel, on page 539. The methods discussed here for the Object class mostly pertain to Ruby’s
Object-Oriented semantics.

An interesting fact about Ruby’s actual implementation is that even these methods that are
documented here (and in Ruby’s official documentation) as being part of Object are actually
all internally defined in Kernel. You can prove this by calling owner on any Method object in
Object, as in Object.instance_method(:itself).owner. The official documentation has a special case
to put some methods in the Object documentation, and we’ve maintained that distinction
here. By the time you read this, however, the documentation may have been changed.

Comparison
The Object class does not, by default include Comparable, but it does define the <=> operator,
which returns 0 if the two objects are the same and nil if they are not. This is not useful for
sorting or comparing, so your subclass should redefine <=> and include Comparable if you
want that behavior.

There are four different equality methods in Object: ==, ===, eql? and equal?. They all behave
slightly differently.

• ==, for Object, returns true if the two things being compared are the same object in
memory. This method is often overriden by subclasses to have behavior more similar
to eql?

• === is defined to be identical to == for Object, but it is expected that it will be overriden
by subclasses to provide matching behavior in case statements.

• eql? is equivalent to == for instances of Object. Subclasses that override eql? should also
override hash with the same value semantics.

• equal? returns true of the two things being compared are the same object in memory.
This should not be overridden by subclasses.

Ruby provides an Object#object_id or Object#__id__ that is used to determine if two objects are
the same in memory.

Methods and Variables
The Object class allows you access to instance variables and instance methods.

You can retrieve the value of any instance variable with Object#instance_variable_get(name) the
name is a symbol or string, and it does have to begin with the @ sign. If the variable hasn’t
been defined, it returns nil, if the name isn’t a valid name, it’ll raise a NameError. Otherwise,
it will return the current value of that instance variable. You can set the value with
Object#instance_variable_set(name, object), the name is as in the getter method, and the instance
variable will be created if it does not already exist. You can get an array of all the currently
defined instance variables with Object#instance_variables and you can get a boolean true/false
of whether a value is defined with Object#instance_variable_defined?(name), again, the name
must start with the@ sign. Notice that this means that even though instance variable methods
are technically private, they are accessible to external objects if the external object wants it
badly enough.

For method, you can get a list of the public and protected instance methods available to an
object with Object#methods(regular = true). If the regular parameter is false, you get a list of the
singleton methods instead of the, I guess you’d say, regular methods. You can search for a

report erratum • discuss

Object • 555

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

specific method with Object#method(name) which returns the method as a Method object, the
argument can be a string or a symbol.

You can limit methods by access type with Object#public_methods(all = true), Object#protect-
ed_methods(all = true), Object#private_methods(all = true), and Object#singleton_methods(all = true).
In each case, if the all parameter is false, then only methods in the receiving object itself are
returned as opposed to the receiving object and all its superclasses. The singleton_methods list
will exclude private singleton methods if, for some reason, you had one.

You can search for individual methods using Object#public_method(name), Object#protect-
ed_method(name), and Object#singleton_method(name). There does not seem to be an analogous
method that only returns private methods.

While we’re talking about singletons, there is also Object#singleton_class which returns the
singleton class of the object as an instance of type Class. And you can programmatically add
a method to the singleton class with Object#define_singleton_method(symbol) {block} or
Object#define_singleton_method(symbol, proc), the semantics are similar to Module#define_method,
the proc or block is the body of the method and the symbol is the name, and the method is
added to the object’s singleton class.

You can programmatically send a message to an object with Object#send(name, ...). The name
can be a symbol or string, and the method corresponding to that name is called with any
remaining arguments to send being passed through. The send method is aliased as __send__,
which is safer because some objects may have their own method named send. The sendmethod
can be used to call private methods, if you want to limit the feature to public methods, then
you can use Object#public_send(name, ...).

You can prevent the object from being modified by calling Object.freeze. Subsequent attempts
to modify the object will raise a FrozenError. You can tell if an object is frozen with Object.frozen?.

You can create a shallow copy of an object with Object#dup – a shallow copy means that a
new object is created, but any referenced objects are not copied.

Query
Some methods allow you to query the object in various ways. For example, Object#hash
returns the integer value that is used for hash comparisons. Actual Hash objects use this to
determine if two objects are identical for the purpose of being keys in the hash.

You need to override this method in your subclass such that two objects that are eql? also
have the same result when calling hash. Often, this is needed if your subclass has a definition
of equality that is different from “all the instance values of each object are the same”. (For
instance, you might have an instance value which is not relevant for equality). It is recom-
mended that if you override the method you use hash on the the class itself, and all the values
you are combining rather than roll your own function, so something like [self.class, first_name,
last_name, birth_date].hash.

You can get the internal string representation of an object with Object#inspect and the external
string representation of an object with Object#to_s.

There are several slightly different mechanisms for a boolean test of whether an object is
related to a class:

• Object#instance_of?(class) returns true if the object is exactly an instance of the class.

Chapter 27. Library Reference: Ruby’s Object Model • 556

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Object#is_a?(other_class), aliased as Object#kind_of?(other_class) returns true of the object is
an instance other_class, an instance of a subclass of other_class, or if other_class is a module
included in the class – in other words, if other_class is in the ancestors list of the object.

• Object#respond_to?(name, include_all = false) the name is a string or symbol representing a
method, and respond_to? returns true if the object will actually respond to the method.
Only public methods will be included, unless the include_allparameter is set to true. Before
a false result is returned, Ruby will call a respond_to_missing?(name, include_all = false) if it
exists. This method is supposed to match the behavior of method_missing for an object
such that an object with method_missing will have respond_to? behavior consistent with
how the object actually behaves.

Ruby also offers Object#nil?, which returns true if the object is nil, and Object#itself, which
returns the receiver. The itselfmethod can be useful as part of method chains or inside blocks.

Duplication
You can create a shallow copy of an object with Object#dup or Kernel#clone(freeze: nil). By
“shallow copy,” we mean that a new object is created. The instance variables of the new
object are new copies of the instance variables in the original object. However, any object
that those instance variables reference will not be duplicated; the new copy will continue to
point to the existing object. For example, if your object has an array of instances, the array
will be copied, but the instances in the array will not. Ruby does not have a deep copy
mechanism, though Ruby on Rails does add one.

The two methods behave slightly differently. The dup method copies the instance variables
representing the state of the object, while clone copies the instance variables plus the singleton
class of the object, plus the frozen state of the original object (though the freeze argument
will set the frozen state of the clone if the argument is set). One effect of this difference is
that a new object created using dup will not get any modules that were added to the original
object using extend, because those would be in the singleton class. If the new object is created
using clone, however, those module extensions would also be copied.

report erratum • discuss

Object • 557

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 28

Library Reference: Enumerators and
Containers

In this chapter, we’ll take a closer look at Ruby’s collection classes, especially those features
that are based on the Enumerable module, which is the basis for the functionality of all con-
tainer classes in Ruby. The goal is to give you more information about what you can do with
these classes, and also to discuss related functions together so that you can browse and
perhaps find a new feature that might help.

This is not intended to be a complete listing of every class, every method, or every option.
For that, please refer to the official Ruby documentation at https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide its complete name
and signature. The notation Foo.bar indicates a class or module method, while Foo#bar indicates
an instance method. Optional arguments are indicated with Ruby syntax and their default
value, as in Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with brace syntax and
indication of what the arguments to the block will be, as in Foo#bar { |object| block }. An
optional block argument will be surrounded by square brackets, Foo#bar [{block}]. Please
note that this description syntax is slightly different than the official documentation, and
that in some cases, what the official documentation shows as multiple method signatures,
we’ve chosen show as one signature with default values. Also, parameter names sometimes
differ from the official documentation to make the naming clearer.

Array
Arrays are ordered, integer-indexed collections which may contain any Ruby object, there
is no restriction that the objects be of the same type. They can be created using the literal
square bracket syntax discussed in Chapter 4, Collections, Blocks, and Iterators, on page 53.
The %w delimiter with a space-delimited list can create an array of strings, and %i can simi-
larly create an array of symbols. The method, Array.new(size, default = nil) creates a new array
with the given size and populated with the default object. The Kernel#Array(object) method
converts its argument into an array if the argument is not already an array.

Arrays implement Array#each [{ |element| block}], and mixes in the Enuemerable module, so all
methods of Enumerable described in Enumerable, on page 565, can be applied to arrays. In

report erratum • discuss

https://docs.ruby-lang.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

this section, we’ll focus on the things Array does above and beyond what it includes from
Enumerable.

Accessing Array Values
Arrays use square brackets for access, and the square brackets can contain one of four things:

• A single integer, as in array[3]. Zero returns the first element of the array and a positive
integer counts forward, so array[1] is the second element. A negative index counts from
the end, with -1 being the last element, -2 the next to last, and so on. If the index is outside
the actual array, it returns nil.

• Two integers separated by a comma, as in array[2, 3]. In this case you get the subarray
starting at the index represented by the first integer and the length indicated by the
second integer. The first integer is interpreted the way it would be if it was passed by
itself, meaning that negative numbers count from the end of the array. If the length goes
past the end of the array, you just get the end of the array, you don’t get blank elements
or anything like that. If the length is negative, you get nil, and if the first element is
exactly the length of the array, you get an empty array.

• A range, in which case you get the subarray starting at the index represented by the
first element of the range and ending at the index represented by the last element of the
range. Again, negative numbers are counted from the end of the array, meaning you
can get weird things like [0, 1, 2, 3][-3..2], which returns [1, 2] because -3 is the third element
from the end, and 2 is farther in the array than that. If the start of the range is outside
the array, you get nil. If the end of the range is outside the array, you get elements up
until the end of the array. Endless ranges work too, so [...-1] will give you everything
but the last element of the array.

• An arithmetic sequence, as returned by Range#step and Numeric#step, in which case the
return value is based on the entries in the sequence.

All the square bracket behavior is aliased as the method Array#slice. The single argument
behavior also works as the method Array#at(index). The behavior of both of these methods is
to return nil if you completely go outside the bounds of the array.

If you want different behavior, the Array#fetch(index, default_value = nil) or Array#fetch(index) {
|index| block } method behaves like at, taking a single index argument, but fetch takes an
optional second argument that can either be a positional argument or a block. If the index
is out of range, the behavior of fetch depends on which argument is used, either the positional
argument is returned or the block is called with the index argument and the block’s value
is returned.

Common use cases have shortcuts: Array#first(n = 1) and Array#last(n = 1) return the first or
last element of the array, respectively. An optional argument allows you to specify more
than one return value; if the optional argument is 0, you get an empty array in response. The
method Array#values_at(*indexes) takes an arbitrary number of index arguments and returns
a new array of the values at those indexes.

The method Array#dig(index, *more_indexes) takes an arbitrary number of arguments, takes the
value of the array at the first index, then sending to that result the message dig with the the
remainder of the arguments, and so on until we run out of arguments.

For example:

array = [1, 2, 3, 4, [5, 6], 7]

Chapter 28. Library Reference: Enumerators and Containers • 560

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

array[2] # => 3
array[-3] # => 4
array[1, 3] # => [2, 3, 4]
array[2..4] # => [3, 4, [5, 6]]
array.fetch(10, 100) # => 100
array.fetch(10) { |i| "No value at #{i}" } # => "No value at 10"
array.first # => 1
array.first(3) # => [1, 2, 3]
array.last # => 7
array.last(2) # => [[5, 6], 7]
array.values_at(2, 4, 6) # => [3, [5, 6], nil]
array.dig(-2, 1) # => 6

Ruby also allows you to search an array by value. The method Array#index(object) or Array#index
{ |element| block } takes an argument or a block. With an argument, it returns the index of the
first element that is equal to the argument, or nil if there is no element. With a block, index
returns the index of the first element that causes the block to return a truthy value. If you
want the last element, the method Array#rindex does the same thing, but starts from the end
of the array.

Changing Arrays
The Ruby array has lots of options for assigning new values or changing the array. As with
strings, the Array#[]= method replaces whatever subarray would be returned by the square
bracket lookup with the right side of the assignment, even if the two parts are different
lengths. It has three forms: Array#[]=(index), Array#[]=(range), and Array#[]=(start, length).

Ruby provides multiple methods for adding and removing elements from an array that are
specialized based on where in the array the change will be made:

• The beginning of the array—Items can be added to the beginning of the array using the
Array#prepend(*objects) method (aliased as unshift), which takes multiple arguments and
adds them to the front of the array. The method Array#shift(n = 1) returns the first element
of the array and removes it from the array. An optional argument allows you to return
and remove an arbitrary number of elements.

• The end of the array—Items can be added to the end of the array with the Array#<<(object)
operator, which takes one argument, or the Array#append(*objects) method (aliased as
push), which takes multiple arguments and adds them one by one to the end of the array.
To retrieve the last element of the array, the method Array#pop(n = 1) returns the last
element and removes it from the array. An optional argument allows you to return and
remove an arbitrary number of elements.

• An arbitrary location in the array—Items can be added at an arbitrary location with
Array#insert(index, *objects). The first argument to insert is the index, and then any addi-
tional arguments are added to the array one by one at that position. To remove an ele-
ment at a specific index, Array#delete_at(index) takes the index, returns the element at that
index, and removes it from the array. The method Array#delete(object) [{ |object| block }]
takes an object argument and removes that object from the array any time it appears.
The optional block argument is the return value if the object is not found in they array,
without a block, it will return nil in that case.

report erratum • discuss

Array • 561

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The combination of push and pop allows you to treat an array as a last-in-first-out stack,
whereas the combination of push and shift gives you a first-in-first-out queue.

The Array#rotate(count = 1) method, called with no arguments, returns a new array where the
first element of the original array is now the last element of the new array. With a positive
integer argument, it performs that amount of rotations. If the argument is greater than the
size of the array, the effective final number of elements rotated is argument % array.size. If the
argument is negative, the rotation reverses—the end moves to the beginning:

x = [1, 2, 3, 4, 5]
x.rotate # => [2, 3, 4, 5, 1]
x.rotate(2) # => [3, 4, 5, 1, 2]
x.rotate(-1) # => [5, 1, 2, 3, 4]
x.rotate(-2) # => [4, 5, 1, 2, 3]

The Array#flatten(level = nil) method returns a new array that converts the original array to a
one-dimensional array. That is, any subarray is replaced by inserting its original elements.
The optional level argument determines how many levels are flattened, if the argument is
nil or negative, all levels are flattened:

[1, [2, 3], 4, [5, 6, [7, 8]]].flatten # => [1, 2, 3, 4, 5, 6, 7, 8]
[1, [2, 3], 4, [5, 6, [7, 8]]].flatten(1) # => [1, 2, 3, 4, 5, 6, [7, 8]]

A convenient way to convert an array to a string is Array#join(delimiter = $,), which takes a
string delimiter and returns a string by converting each element of the array using to_s
(recursively flattening if the element is itself an array). If no argument is given for the
delimiter, the default is an empty string (well, the default is technically the global field sep-
arator value in $,):

[1, [2, 3], 4, [5, 6, [7, 8]]].join("|") # => "1|2|3|4|5|6|7|8"

Ruby offers two ways to access random elements of an array: the Array#sample(n = 1, random:
Random) method and the Array#shuffle(random: Random) method. The sample method returns a
random member of the array, with an optional argument of how many elements to return.
No matter how big the optional argument is, sample will not return the same element twice,
so the effective limit on the argument is the size of the array. The duplicate restriction is by
index, not value, so if the array contains duplicate values, so will the sample and in the same
proportion.

The shuffle method returns a new array with the elements in a random order; x.shuffle is
effectively equivalent to x.sample(x.size). Both methods take an optional keyword argument
random:, which is expected to contain a Random instance, or something that responds to rand,
that is used as the generator for the random ordering.

Unlike Enumerable but like String, Array implements versions of many of its methods that add
! suffix. In these cases the original method returns a new array, and the ! version has the
same logic but modifies the original array in place. In most of these cases, the return value
is the original array if it has been modified, or nil if it has not.

In general, the reason to use the ! version is for performance reasons. They don’t create a
new array and therefore, they might be faster or use less memory. They tend to be more
confusing, though, so we recommend you use only when needed.

Chapter 28. Library Reference: Enumerators and Containers • 562

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The following !methods related to methods we’ve discussed in this section or in Enumerable,
on page 565 are all defined:

• Array#compact!
• Array#filter! (and also Array#select!)
• Array#flatten!
• Array#map! (and also Array#collect!)
• Array#reject!
• Array#reverse!
• Array#rotate!
• Array#shuffle!
• Array#slice!
• Array#sort!
• Array#sort_by!
• Array#uniq!

Array Math
In addition to the count method, arrays define Array#length and Array#size, which are aliases
of each other, take no argument, and just return the raw element count. The Array#empty?
method returns true if the size of the array is zero.

Arrays are Comparable and define the Array#<=> operator. Array comparisons in Ruby are
managed element by element. So if a[0] <=> b[0] is not 0 return that value, otherwise test a[1]
<=> b[1] and so on until one array ends or there is a non-equal pair. The first non-equal pair
is the result of the comparison. If all the pairs are equal, the shorter array is “less than” the
larger array. So, equality for two arrays means that the arrays are the same size and all their
elements are equal. For example:

[1, 2, 3] <=> [2, 2, 3] # => -1
[1, 2, 3] <=> [1, 1, 3] # => 1
[1, 2, 3] <=> [1, 2, 3, 4] # => -1
[1, 2, 3, 4] <=> [1, 2, 3] # => 1
[1, 2, 3] <=> [1, 2, 3] # => 0

Some mathematical operators are defined for arrays. Adding two arrays returns a new array
concatenating the two operands:

[1, 2, 3] + [4, 5, 6] # => [1, 2, 3, 4, 5, 6]

Subtracting two arrays returns a new array with every element in the first array that is not
in the second array. This is aliased as Array#difference(*other_arrays):

[1, 2, 3, 4, 5, 4, 3, 2] - [2, 4] # => [1, 3, 5, 3]

You can multiply an array with an integer or string. The integer version returns that many
copies of the array concatenated together. The string version returns each element of the
array separated by the string—it’s the same as join. Multiplying two arrays together to get
the cross-product of all combinations of their elements is done with the Array#product(*oth-
er_arrays) method:

[2, 4, 6] * 3 # => [2, 4, 6, 2, 4, 6, 2, 4, 6]
[2, 4, 6] * ", " # => "2, 4, 6"
[2, 4, 6].product(["a", "b"]) # => [[2, "a"], [2, "b"], [4, "a"], [4, "b"], [6,

report erratum • discuss

Array • 563

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

.. "a"], [6, "b"]]

Arrays also can do set operations. The Array#intersection(*other_arrays)method takes an arbitrary
number of other arrays as arguments and returns a new array of all elements that are in the
original array and all the arguments. The resulting array will contain no duplicates, and will
preserve the order of the elements. If there is only one other array being compared, you can
use the Array#& operator as a shortcut:

[1, 2, 3, 4, 5].intersection([1, 2, 3, 6], [-2, 2, 4]) # => [2]
[1, 2, 3, 4, 5] & [1, 2, 3, 6] # => [1, 2, 3]

Similarly, the Array#union(*other_arrays)method takes an arbitrary number of array arguments
and returns all elements that are in any of the arrays. Duplicates are removed, and the order
of the elements remains the same. If there is only one other array, you can use Array#| as a
shortcut:

[1, 2].union([3, 5, 1], [12, -3, 2]) # => [1, 2, 3, 5, 12, -3]
[1, 2] | [3, 5, 1] # => [1, 2, 3, 5]

Ruby does combinatorics, too! The Array#combination(n) [{ |element| block }] method takes an
integer argument and returns an enumerator that will return every combination of elements
in the array that is the size of the argument. If passed a block, it will yield the block to each
combination. The Array#permutation(n) [{ |element| block }] method does the same thing for
every permutation—the difference being that order is significant in each permutation, but
not in each combination:

[1, 2, 3].combination(2).to_a # => [[1, 2], [1, 3], [2, 3]]
[1, 2, 3].permutation(2).to_a # => [[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3,

.. 2]]

Both methods have a form—Array#repeated_combination(n) [{ |element| block }] and
Array#repeated_permutation(n) [{ |element| block }]—that allows the elements of the array to be
repeated the values in the resulting array.

[1, 2, 3].repeated_combination(2).to_a # => [[1, 1], [1, 2], [1, 3], [2, 2], [2,
.. 3], [3, 3]]

[1, 2, 3].repeated_permutation(2).to_a # => [[1, 1], [1, 2], [1, 3], [2, 1], [2,
.. 2], [2, 3], [3, 1], [3, 2], [3, 3]]

Arrays and Binary Search
Ruby has a binary search feature built into arrays. It isn’t quite math, but it’s algorithmic,
and one day it will likely save you a great deal of time. The great thing about Ruby’s binary
search feature is that it’s fast and it handles the edge cases that make coding a binary search
hard. The tricky thing is that the setup might not be what you expect.

In order for this feature to work, the array has to be sorted, but exactly what Ruby means
by that is a little different from just a numerical sort.

The Array#bsearch { |element| block } method takes a block. The block takes an element and
returns a value. One of these two cases must be true of the block and the array:

• The block returns true or false. All elements of the array for which the block returns false
must come before any element of the array for which the block returns true. In this case,

Chapter 28. Library Reference: Enumerators and Containers • 564

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

bsearch returns the first element of the array for which the block returns true, or nil if
there aren’t any such elements.

• The block returns a numeric value. The numeric values don’t have to be in order, but
all the elements for which the block returns positive must come first, followed by all
elements for which the block returns zero, followed by all elements for which the block
returns negative. In this case, bsearch will return an element for which the block returns
zero, though it is not guaranteed to be the first such element. Again, it returns nil if there
are no elements for which the block returns zero.

Note that for speed purposes, bsearchdoes not check that the ordering matches the constraints
above (because the time to do so would defeat the purpose of the bsearch method). It’s on
you to guarantee the precondition.

The related method Array#bsearch_index { |element| block } does the same logic but returns the
index of the result rather than the value:

sample = (1 .. 10000).to_a
sample.bsearch { |i| i >= 512 } # => 512
sample.bsearch { |i| 512 <=> i } # => 512

The first search is an example of the first condition; the second search is an example of the
second condition.

Packing Data
Ruby has a mechanism for converting arrays into binary strings and back again, which can
be useful for compact custom encoding of data, or for decoding known binary data.

On the array side, the Array#pack(template, buffer: nil) method takes a template string as an
argument and packs the contents of the receiver into a binary sequence according to the
directives in template (see Table 26, Template characters for packed data, on page 566).
Directives A, a, and Z may be followed by a count, which gives the width of the resulting
field. The remaining directives also may take a count, indicating the number of array elements
to convert. If the count is an asterisk (*), all remaining array elements will be converted. The
integer directives i, I, l, L, q, Q, s, and S, may be followed by an underscore (_) or bang (!) to
use the underlying platform’s native size for the specified type; otherwise, they use a platform-
independent size. The integer directives i, I, l, L, q, Q, s, and S may be followed by a less than
sign to signify little endian or greater than sign for big endian. Spaces are ignored in the
template string. Comments starting with # to the next newline or end of string are also
ignored.

a = ["a", "b", "c"]
n = [65, 66, 67]
a.pack("A3A3A3") # => "a␣␣b␣␣c␣␣"
a.pack("a3a3a3") # => "a\x00\x00b\x00\x00c\x00\x00"
n.pack("ccc") # => "ABC"

See Unpacking Data, on page 531 for the inverse operation, String#unpack.

Enumerable
Ruby’s Enumerable module is the basis for the functionality of all container classes in Ruby.
The most common container classes in use are Array, Hash, and sometimes Set, but this func-

report erratum • discuss

Enumerable • 565

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

MeaningDirective
Move to absolute position@
Sequence of bytes, equivalent to a binary string (space padded, count is width), nil
indicates an empty string

A

Sequence of bytes, equivalent to a binary string (null padded, count is width)a
Bit string (most significant first)B
Bit string (least significant first)b
Unsigned byte integerC
Signed byte integerc
Double-precision float, native formatD, d
Double-precision float, little-endian byte orderE
Single-precision float, little-endian byte ordere
Single-precision float, native formatF, f
Double-precision float, network (big-endian) byte orderG
Single-precision float, network (big-endian) byte orderg
Hex string (high nibble, or two bytes, first)H
Hex string (low nibble, or two bytes, first)h
Platform default sized unsigned integer, native endian°I
Platform default sized signed integer, native endian°i
64-bit pointer-width unsigned integer, native endian°J
64-bit pointer-width signed integer, native endian°j
32-bit unsigned long integer, native-endian°L
32-bit signed integer, native-endian°l
Quoted printable, MIME encoding (see RFC2045)M
Base64-encoded string; count specifies bytes between newlines, to nearest multiple
of three; "m0" suppresses linefeeds

m

32-bit long integer, network (big-endian) byte orderN
16 bit short integer network (big-endian) byte ordern
Pointer to a structure (fixed-length string)P
Pointer to a null-terminated stringp
64-bit unsigned integer, native endian°Q
64-bit signed integer, native-endian°q
Unsigned 16-bit short integerS
Signed 16-bit short integer°s
UTF-8 characterU
UU-encoded stringu
32 bit long integer, little-endian byte orderV
16 bit short integer little-endian byte orderv
BER-compressed integer. The octets of a BER-compressed integer represent an
unsigned integer in base 128, most significant digit first, with as few digits as possible.

w

Bit eight (the high bit) is set on each byte except the last (Self-Describing Binary Data
Representation, MacLeod).
Back up a byteX
Null bytex

Chapter 28. Library Reference: Enumerators and Containers • 566

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

MeaningDirective
Same as “a,” except a null byte is appended if the * modifier is givenZ
° Directive can be modified by appending _ or ! to the directive to use the platform’s native
integer size, or with > to indicate a big-endian integer or < to indicate a little endian integer.

Table 26—Template characters for packed data

tionality applies to any other class that defines an each method and includes the Enumerable
module.

In this section, we will be talking about features common to all Enumerables. Other sections
in this chapter will talk about how the core implementations of Array, Hash, and Set add their
own features.

Iterating
The Enumerable module looks for a method called each as the building block for basically all
of its functionality. The Enumerable module doesn’t define each; instead, it depends on any
class that includes Enumerable to define each. The basic contract of each is that it accepts a
block and yields each element of the container in turn to that block. For most Enumerable
clients that’s straightforward—an Array or Set yields each element in the container in order.
Hash#each is slightly different; it yields each key/value pair as a two-element array in order.

Unless otherwise specified, every method in this section that take a block has an alternate
form that does not take a block and returns an Enumerator—we’ll talk about that form in
Enumerator, on page 575.

There are a handful of methods that are just slightly different structures of each, starting with
Enumerable#reverse_each [{ |element| block }], where foo.reverse_each is equivalent to
foo.to_a.reverse.each, but the single method version is a little faster because it only creates one
intermediate structure, not two.

If you want to call each element through the array more then once, you can use Enumer-
able#cycle(n = nil) [{ |element| block }], which takes one argument and executes that argument’s
amount of successive calls to each:

result = []
arr = ["a", "b", "c"]
arr.cycle(3) { |x| result << x } # => nil
result # => ["a", "b", "c", "a", "b", "c", "a", "b",

.. "c"]

If you want to call a block with multiple successive elements of the data structure, you can
do that with Enumerable#each_slice(n) [{ |slice| block }] or Enumerable#each_cons(n) [{ |cons| block
}]. Both of these methods take an argument that is the number of elements that each block
call gets. The methods differ in how they generate the list of successive elements.

The each_slice method yields non-overlapping lists. The second call starts with the element
after the end of the first call. The each_cons method yields overlapping lists, the second call
starts with the second element of the list, and so on:

elements = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

puts "each_slice"
elements.each_slice(3) { |x, y, z| puts "#{x} #{y} #{z}" }

report erratum • discuss

Enumerable • 567

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

puts
puts "each_cons"
elements.each_cons(3) { |x, y, z| puts "#{x} #{y} #{z}" }

produces:

each_slice
1 2 3
4 5 6
7 8 9
10

each_cons
1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 8
7 8 9
8 9 10

It’s quite common to need to hold on to what the index of each successive element is in the
block. You can do this using Enumerable#each_with_index [{ |element, index| block }], which takes
a two-element block, the second element of which is the index, starting at zero:

elements = ["a", "b", "c", "d"]
elements.each_with_index { |x, i| puts "#{x} is at index #{i}" }

produces:

a is at index 0
b is at index 1
c is at index 2
d is at index 3

Accessing
In general, the Enumerable interface is not used for arbitrary access—subclasses like Array and
Hash typically override the square bracket operator to enable this. However, a couple of
Enumerable methods do allow for access. The simplest is Enumerable#to_a (aliased to Enumer-
able#entries), which returns an array of the successive elements in the container, which you
can then treat like any other array.

You can get the first elements of an Enumerable with Enumerable#take(n), which takes one
argument and returns that many elements from the start of the array. There’s also Enumer-
able#first(n = 1), which behaves the same except you can call first with no arguments to get
the single first element.

On the other side, the Enumerable#drop(n) method takes an argument and returns all the ele-
ments after that many arguments from the start of the array:

ex = ["a", "b", "c", "d", "e", "f", "g"]
ex.first # => "a"
ex.take(2) # => ["a", "b"]
ex.drop(2) # => ["c", "d", "e", "f", "g"]

Chapter 28. Library Reference: Enumerators and Containers • 568

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Both take and drop have alternate forms: Enumerable#take_while [{ |element| block }] and Enumer-
able#drop_while [{ |element| block }]. Each method takes a block and applies the block to succes-
sive elements of the array until the block returns a falsey value. At that point, take_while
returns all the previously processed elements, while drop_while returns the failing element
and all subsequent elements. For example:

ex = [2, 4, 8, 16, 32, 64]
ex.take_while { |x| x < 10 } # => [2, 4, 8]
ex.drop_while { |x| x < 10 } # => [16, 32, 64]

Map and Reduce
A common pattern when dealing with data in containers is to process the data in two steps:
a map step, where each element of the container is transformed, and a reduce step, where the
entire container is combined to a single value. At large scale, the map-reduce pattern is a
way to structure big data manipulations such that they can be easily parallelized. At smaller
scale, map-reduce is just a clean, manageable way to structure data management. The Ruby
Enumerable module provides support for both parts of the pattern.

The Enumerable#map [{ |element| block }]method (which is aliased to collect for historical reasons,
namely that Smalltalk calls this function collect) takes a block and applies the block to each
element in turn, returning a new array with the block’s return value for each element:

x = [1, 2, 3, 4]
x.map { |element| element * 11 } # => [11, 22, 33, 44]

The Enumerable#reduce(initial = nil, symbol = nil) [{ |accumulator, element| block }] method (which
is aliased to inject, again for Smalltalk-related historical reasons) is a way to convert a collection
of values into a single value. There are a couple of different ways reduce works. The most
general takes an optional initial value as an argument and a block.

The block takes two arguments, the first of which is the accumulator, and the second of
which is each element in the list in turn. If the reduce method passed the initial value as an
argument, then that value is used as the value of the accumulator on the first call to the block.
If not, the first call to the block uses the first element of the list as the accumulator, and the
second element of the list as the element argument.

Inside the block, the idea is to do something to update the accumulator with the new value
and return the new accumulated value, which is then passed forward to the next iteration
of the block:

x = [2, 5, 9, 12]
x.reduce { |sum, element| sum + element } # => 28

words = %w(major league baseball)
words.reduce("") { |acronym, element| acronym << element[0].upcase } # => "MLB"

In the first example, there’s no starter value, so the block is called with arguments 2 and 5
from the array, resulting in 7. The block is then called with that 7 as the first argument and
the third element of the list—9—as the next argument. The result is 16 and the next call to
the block is 16 and 12, so the final result is 28.

In the second example, there is a starter value so the first block is called with "" and "major".
The result of that block is "M", so the next call is "M" and league, and so on until the final result
is "MLB".

report erratum • discuss

Enumerable • 569

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The reduce method also has a form that is somewhat unusual in the Ruby libraries. It takes
a second argument that is a symbol, where the symbol is a method that takes two arguments.
It then uses that method as if it was the body of the block. In other words, the following lines
are equivalent:

x = [2, 5, 9, 12]
x.reduce { |sum, element| sum + element } # => 28
x.reduce(0, :+) # => 28
x.sum # => 28

Here, + is a method that takes two arguments, and so the reduce method treats it as body of
a block. So, reduce(0, :+) is an older and reduce-specific way of writing reduce(0, &:+)—the
newer version that uses the to_proc trick is more common in current code.

In fact, the sum pattern is so common that Ruby eventually added a Enumerable#sum(initial_value
= 0) [{ |element| block }]method, as you can see in the final line. The summethod takes its own
optional block, in which case it sums the return values of the block. In other words, the fol-
lowing lines are equivalent:

x = %w[these are all words]
x.sum { |word| word.length } # => 16
x.map { |word| word.length }.sum # => 16

Another common pattern for reduce behavior is to build up a new container from the data
in an existing one, for example, a hash based on the data in an array. Ruby provides Enumer-
able#each_with_object(object) [{ |*args, accumulator| block }] as a shortcut for this pattern:

x = %w[bananas are the funniest fruit]
result = x.each_with_object({}) do |word, result|
initial = word[0]
result[initial] ||= []
result[initial] << word

end
puts result

produces:

{"b"=>["bananas"], "a"=>["are"], "t"=>["the"], "f"=>["funniest", "fruit"]}

The basic idea of each_with_object is the same as reduce but there are two differences: the order
of the block arguments is [element, accumulator] rather than [accumulator, element], and what is
passed from iteration to iteration is the accumulator itself, rather than the return value of
the block. In this case, the two are different, since the return value of the block is the return
value of result[initial] << word.

A few kinds of object creation techniques are common enough to get their own methods.
The Enumerable#group_by [{ |element| block }] method is a generalization of what we just did:
converting a list to a hash based on the value of some block. So we could write our initializer
like so:

x = %w[bananas are the funniest fruit]
result = x.group_by { |word| word[0] }
puts result

produces:

{"b"=>["bananas"], "a"=>["are"], "t"=>["the"], "f"=>["funniest", "fruit"]}

Chapter 28. Library Reference: Enumerators and Containers • 570

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

In this case, the existence of the resulting hash and the accumulation of the values is handled
by group_by.

The Enumerable#partition [{ |element| block }] method takes a block and returns a two-element
array of arrays. The first element of the result is an array of all entries in the initial list for
which the block returns a truthy value. The second is the elements for which this is not so:

x = [1, 2, 3, 4, 5]
x.partition { |z| z.even? } # => [[2, 4], [1, 3, 5]]

The Enumerable#zip(*other_enums) [{ |element| block }]method combines a list with one or more
other lists to create a new array of arrays, where each element it the result is made up of the
corresponding element of the original list and all the arguments, like this:

foo = [1, 2, 3, 4, 5]
bar = ["a", "b", "c", "d", "e"]
foo.zip(bar) # => [[1, "a"], [2, "b"], [3, "c"], [4, "d"], [5, "e"]]

Filtering
Ruby provides a wide variety of ways to find a particular object or objects in a collection
along with the related task of filtering a collection based on some arbitrary criteria.

The most basic method is Enumerable#find(proc = nil) [{ |element| block }], aliased as detect. The
find method takes a block and returns either the first object for which the block returns a
truthy value or nil if there is no such object. The find method takes as an optional argument
a proc that is called and its value returned in lieu of returning nil if no matching object is
found.

If you’d rather have the index of the object, you can call Enumerable#find_index(object = nil)
which can also be Enumerable#find_index() { |element| block } with the same behavior. The object
version returns the index of the first object in the list that is == to the argument. The block
version returns the index of the first object for which the block returns a truthy value. In
both cases, the method returns nil if there is no such object.

Often you may want to return all objects in a list that match a given block, and Enumerator
provides that behavior under three different aliases: Enumerator#select [{ |element| block }],
aliased as filter and find_all. These are all names for the same behavior: take a block and return
every element of the list for which that block returns a truthy value. The inverse is Enumera-
tor#reject [{ |element| block }], which returns every element of the block for which the block
returns a falsey value.

The similar method Enumerable#grep(pattern) [{ |element| block }] takes a pattern argument, not
a block, and returns every element of the array that is === the argument. It’s inverse, Enumer-
able#grep_v(pattern) [{ |element| block }] returns every element of the array that is not === the
argument. If there’s a block, then each matching element that would be returned by the
method is passed to the block and the return value of the block is used instead. So:

list = [1, 1, 2, 3, 5, 8, 13, 21]
list.find { |i| i.even? } # => 2
list.find(proc { "nope" }) { |i| i.zero? } # => "nope"

list.find_index { |i| i.even? } # => 2
list.find_index(5) # => 4

list.select { |i| i.even? } # => [2, 8]

report erratum • discuss

Enumerable • 571

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

list.reject { |i| i.even? } # => [1, 1, 3, 5, 13, 21]

list.grep(4..10) # => [5, 8]
list.grep_v(4..10) # => [1, 1, 2, 3, 13, 21]

list.grep(4..10) { |x| 10 ** x } # => [100000, 100000000]

Two common filter patterns have their own methods: Enumerable#compact and Enumerable#uniq.
compact removes all nil elements from an array, and is particularly useful to clean up arrays
before passing them forward to map or sum or something else that might break if passed a
nil.

The uniq method removes duplicate elements (based on eql?). Normally uniq is based on the
actual elements of a collection, but with a block, it will compare values based on the return
value of the block for each element:

[1, 2, nil, 3, nil, 4, 5].compact # => [1, 2, 3, 4, 5]
[1, 2, 3, 2, 3, 1].uniq # => [1, 2, 3]

You might want to split an enumerable into sub-lists based on some criteria, similar to the
way split works for strings. For Enumerable, you can do this with Enumerable#slice_after(pattern
= nil) [{ |element| block }], Enumerable#slice_before(pattern = nil) [{ |element| block }], and Enumer-
able#slice_when(pattern = nil) [{ |element| block }]. All three of these methods return Enumerator
instance rather than arrays.

The slice_aftermethod takes a pattern or a block. It tests each element of the collection in turn.
If the element is either === to the argument or causes the block to return a truthy value, then
that element is the end of a slice and a new slice begins with the next element.

The slice_before method performs the same test but if an element matches, then it ends the
slice before that element and the element is the first element of the next slice.

If those aren’t flexible enough, the slice_when method takes a block with two arguments,
applies it to overlapping pairs of the list in turn, and splits the slice between the two elements
if the block returns true. For example:

list = [1, 1, 2, 3, 5, 8, 13, 21]
list.slice_after { |i| i.even? }.to_a # => [[1, 1, 2], [3, 5, 8], [13, 21]]
list.slice_before { |i| i.even? }.to_a # => [[1, 1], [2, 3, 5], [8, 13, 21]]

list = [18, 17, 3, 11, 3, 10]
list.slice_when { |a, b| a > b }.to_a # => [[18], [17], [3, 11], [3, 10]]

Querying
The most basic query about a collection is “how big is it?” The Ruby method here is Enumer-
able#count [{ |element| block }], which without a block returns the size of the collection. With
a block argument, it returns the number of elements in the collection for which the block
returns a truthy value. With a positional argument, it returns the count of elements that are
equal to that argument.

The Enumerable#tally(hash = nil)method is a generalization of count. It returns a Hash, the keys
of which are values in the list, and the values of which are the count of how many times that
value appears in the list. If the optional argument is passed in, that’s the staring point of the
tally, new items are added to that.

sample = [1, 2, 3, 2, 3, 1, 3, 5]

Chapter 28. Library Reference: Enumerators and Containers • 572

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

sample.count # => 8
sample.count(2) # => 2
sample.count { |x| x.even? } # => 2
sample.tally # => {1=>2, 2=>2, 3=>3, 5=>1}

The Enumerable#include?(object) method (aliased as member?) takes an argument and returns
true if there is an element in the collection that is equal to that argument.

A series of methods returns true or false based on how many times a block or pattern is
matched by the collection. All of these methods behave the same way: they take a block or
a positional argument. With a positional argument, the method counts how many elements
of the list are === to that argument. With a block, the method counts how many elements
of the list cause the block to return true. Given that count:

• Enumerable#none? returns true if and only if the count is zero.
• Enumerable#one? returns true if and only if the count is one.
• Enumerable#any? returns true if the count is one or more.
• Enumerable#all? returns true if the count is the size of the list (all elements of the list

match).

Sorting and Comparing
When you create a new object, you often want to be able to sort a list of those objects or
compare two objects along some default criteria.

The most general feature in Ruby for sorting is the Enumerable#sort [{ |x, y| block }] method,
the receiver of sort is the item to be sorted, which can be any object that includes the Enumerable
module. For our purposes, the most important class that can respond to sort is Array.

If sort is called without a block, it calls <=> on each element, which is to say the following
two lines are identical:

list_of_users.sort { |a, b| a <=> b }
list_of_users.sort

Sort can also take a block. The block takes two elements and returns:

• A positive integer if the first argument is, for the purposes of the sort, greater than the
second argument.

• A negative integer if the first argument is less than the second argument.
• Zero, if the two elements are tied.

Assuming the objects have a numeric height element, both of these lines will return identical
sorts:

list_of_users.sort { |a, b| a.height <=> b.height }
list_of_users.sort { |a, b| a.height - b.height }

The first line takes advantage of the <=> operator’s behavior, matching the expected
behavior of the block, while the second line takes advantage of just plain subtraction having
the same result. (We’d consider the first line to be clearer in most contexts.)

Sorting elements in an array based on an attribute of each element is common enough that
Ruby provides Enumerable#sort_by [{ |element| block }] as a shortcut. The sort_by method takes
a block with a single argument and uses that argument to sort the list.

report erratum • discuss

Enumerable • 573

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Given all the ways in Ruby to write a one-expression block, the following are all equivalent:

list_of_users.sort { |a, b| a.height <=> b.height }
list_of_users.sort_by { |x| x.height }
list_of_users.sort_by { _1.height }
list_of_users.sort_by(&:height)

You’ll likely see the last form most frequently for simple cases like this, though we do kind-
of hope the next-to-last form catches on.

If you are just interested in the upper or lower most elements rather than the entire sorted
list, Ruby has you covered with Enumerable#min(n = 1) [{ |a, b| block }] and Enumerable#max(n
= 1) [{ |a, b| block }] and their related methods Enumerable#min_by(n = 1) [{ |element| block }] and
Enumerable#max_by(n = 1) [{ |element| block }].

When called without an argument, these methods treat the array exactly like sort and sort_by,
which is to say that min and max use <=> or take a two argument block, while min_by and
max_by take a one argument block. The difference is the return value—the min methods
return the lowest element of the list; the max elements return the highest element of the list.

If you want more than one element returned, you can pass the number of elements you want
to the method and you will receive an array of results rather than a single scalar result. The
method Enumerable#minmax [{ |a, b| block }] returns a two-element array with the lowest and
highest elements of the list using the same logic as sort. The related Enumerable#minmax_by [{
|element| block }] uses the same logic as sort_by. For example:

[4, 11, 2, 7] # => [4, 11, 2, 7]
[4, 11, 2, 7].min # => 2
[4, 11, 2, 7].max # => 11
[4, 11, 2, 7].min(2) # => [2, 4]
[4, 11, 2, 7].max(2) # => [11, 7]
[4, 11, 2, 7].minmax # => [2, 11]

["one", "three", "eleven", "four"].min_by(&:length) # => "one"
["one", "three", "eleven", "four"].max_by(&:length) # => "eleven"
["one", "three", "eleven", "four"].min_by(2, &:length) # => ["one", "four"]
["one", "three", "eleven", "four"].max_by(2, &:length) # => ["eleven", "three"]
["one", "three", "eleven", "four"].minmax_by(&:length) # => ["one", "eleven"]

Other Enumerables
Several other classes in Ruby core or the Ruby standard library respond to each and include
Enumerable in a useful way. Here’s a quick tour:

• ARGF is the combination of all files passed to a command-line tool. ARGF#each iterates
over each line in the concatenated set of files. Not each file, each line in the files one by
one.

• CSV implements each to iterate over each parsed row in the CSV file.
• Dir implements each for the files in the directory, passing each filename to the block one

by one.
• ENV, the repository for environment variables at runtime, behaves like a hash, and each

will pass each successive environment variable name and value as a pair.
• IO, the generic input/output class implements each to go line by line through the item

being read. Its subclasses, including File and StringIO behave similarly.

Chapter 28. Library Reference: Enumerators and Containers • 574

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Net::HTTPHeader contains the values in the header of an HTTP request, and each takes a
block for each entry in the headers as a key/value pair.

• Range responds to each as an array would, calling it once for every element inside the
range.

• Struct responds to each as a hash would, calling the block once for each attribute in the
struct as a key/value pair.

Enumerator
Nearly every Enumerable method that takes a block argument can also be called without a
block, in which case the method returns an Enumerator. (There are a few subclasses of Enumer-
ator that you wouldn’t create by hand but which implement some specialized logic.) In
addition to those Enumerable methods, you can create an enumerator in a few other ways.

Creating Enumerators
Any object can directly be converted to an Enumerator with the Object#to_enum(name) method
(aliased as enum_for). The argument to to_enum is a symbol that is the name of a method that
converts the object to something enumerable, and then any further arguments that might
be passed to the method. You can then treat that enumerator like any other enumerator. For
example:

x = "a string with lots of words"
enum = x.to_enum(:split)
enum.with_index.map { |word, index| [word.upcase, index] } # => [["A", 0],

.. ["STRING", 1],
.. ["WITH", 2],
.. ["LOTS", 3],
.. ["OF", 4],
.. ["WORDS", 5]]

You can create an infinite enumerator using the Enumerator#produce(initial_value = nil) [{ |previ-
ous_value| block}] method, which takes an optional initial value as an argument, and a block.
The block takes an argument, and each time the enumerator is invoked, the previous block
return value is passed to the block and a new value is returned. This is most useful when
combined with Enumerable#lazy or with some kind of find method. This uses map, select, and
take to return the first five even triangular numbers:

triangular_numbers = Enumerator.produce([1, 2]) do |number, count|
[number + count, count + 1]

end

triangular_numbers.lazy.map { _1.first }.select(&:even?).take(5).to_a # => [6,
.. 10,
.. 28,
.. 36,
.. 66]

An enumerator can be created for a series of enumerables with the Enumerator#product(*enu-
merables) method, which takes one or more enumerable objects as arguments and returns a
new Enumerator that is made up of the Cartesian product of all the arguments:

product = Enumerator.product("a".."c", -1..1, [:x, :y])
product.to_a # => [["a", -1, :x], ["a", -1, :y], ["a", 0, :x], ["a", 0, :y],

report erratum • discuss

Enumerator • 575

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

.. ["a", 1, :x], ["a", 1, :y], ["b", -1, :x], ["b", -1, :y], ["b",
.. 0, :x], ["b", 0, :y], ["b", 1, :x], ["b", 1, :y], ["c", -1,
.. :x], ["c", -1, :y], ["c", 0, :x], ["c", 0, :y], ["c", 1, :x],
.. ["c", 1, :y]]

Using Enumerators
There are a few things you can do with an enumerator. You can cause it to move though its
values externally by calling Enumerator#next. This will move through any chained logic, but
is not associated with a block, so it won’t invoke a block. The Enumerator#rewindmethod puts
the enumerator back to the beginning of the sequence.

You can also use Enumerator#peek to look at the next value in the enumerator without moving
the iterator forward—successive calls to peek will return the same object:

x = [1, 2, 3].to_enum.with_index
x.next # => [1, 0]
x.next # => [2, 1]
x.peek # => [3, 2]
x.peek # => [3, 2]
x.rewind # => #<Enumerator: #<Enumerator: [1, 2, 3]:each>:with_index>
x.next # => [1, 0]

As shown in this example, enumerators can be chained together. The Enumerator#with_index(off-
set = 0) [{ |*arguments, index| block}] method chains the iterator to a new iterator that includes
the index of each object as a second argument to the block. The related method Enumera-
tor#with_object(object) [{ |*arguments| block}] takes an object (usually a container like an array
or a hash) and creates a new enumerator that passes that object as a second argument.

You can also use Enumerator#+ to add another enumerable to the end of the current enumer-
ator, appending those values to the end of what’s already there.

Using Enumerator#each(*appending_args) [{ |element| block}] with a block causes the entire enu-
merator to be invoked. The each method also takes arguments that might have needed to be
passed to earlier parts of the enumerator. In this case, the string is converted to an enumer-
ator based on the split method, but the each call passes the argument that determines what
the string is split on:

x = "a string of words".to_enum(:split)
x.each("o").to_a # => ["a string ", "f w", "rds"]

Lazy Enumerators
A lazy enumerator is formed by calling the method Enumerable#lazy. Usually it’s the beginning
of a chain of enumerator methods, as shown in the produce example earlier. Once lazy is part
of the method chain, it changes the behavior of the entire chain so that values are passed
through the chain one at a time, rather than all at once.

In other words, if I have a chain of calls something like,
x.map(&:foo).select(&:bar).map(&:baz).take(5), the entire array is mapped, then the entire array is
filtered, then the entire array is mapped, and then the first five elements are retrieved. If the
original object x is very long, or indeed if it is infinite, this chain can be quite slow, especially
because we only want five elements. By making it lazy, as in
x.lazy.map(&:foo).select(&:bar).map(&:baz).take(5), the behavior changes. The first element of x is

Chapter 28. Library Reference: Enumerators and Containers • 576

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

mapped, then filtered through select, and if it passes, mapped through baz and added to the
list for take. This continues one by one only until the take(5) is completed, meaning that if x
is long, far fewer elements have been processed.

You can un-lazy an enumerator chain by calling eager, which allows you to convert the lazy
enumerator to something that can be returned from a method or used as an argument to a
method that expects an enumerator.

Hash
The Hash, which associates arbitrary indexes to arbitrary values, is the most flexible basic
class in Ruby. Although Hash does implement each and Enumerable, hashes behave slightly
differently than Arrays and Sets.

Creating Hashes
Hashes have a literal syntax that uses curly braces to associate keys with values. The original
form of separating keys from values uses the => symbol, often called a hash rocket:

hash = {"a" => 1, "b" => 2, "c" => 3}

In general, you want the hash keys to be immutable values, and symbols are commonly
used. If the key is a symbol, then you can use a colon to separate the key from a value. The
colon will also convert strings to symbols. The keys in this literal are :a, :b, and :c, all symbols:

hash = {a: 1, "b": 2, c: 3}

You can use both styles in a single hash literal, but if you use the colon style, the key must
be a string or a bare word. Anything else will result in a syntax error.

If the key is a symbol, and the symbol has a meaning in the current context, then you can
use just the key and the value will be assumed to be the local value. So, the following two
hashes are equivalent:

a = 1
b = 2
c = 3
{a: a, b: b, c: c}
{a:, b:, c:}

The class Hash also responds to [] to create new hashes, which is less-frequently-used alter-
native to the literal syntax, Hash[a: 1, b: 2]. The argument can be key/value pairs, another hash,
a list of two-element-arrays, or just a list of arguments, in which case Ruby assumes the keys
and values alternate.

The method Hash.new(default_value = nil) [{ |hash, key| block}] will create an empty hash. This
method takes an optional argument that acts as the default value for keys that are not in the
hash. In this usage, the default value is not duplicated each time it’s used, so you should use
an immutable value, like a scalar, and not a mutable value, like an empty array. So, this will
not do what you want:

sample = Hash.new([])
sample[:a] << "alpha" # => ["alpha"]
sample[:b] << "beta" # => ["alpha", "beta"]
sample[:a] # => ["alpha", "beta"]

report erratum • discuss

Hash • 577

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

sample[:b] # => ["alpha", "beta"]

The idea here is to bypass having to create an array for each new key and just use a default,
but in this version, only one array is used for the default so adding values to it in different
keys, just updates the single default value.

Alternately, you can pass a block, which is invoked when a key not in the hash is requested.
The block takes two arguments—the hash and the new key—and returns a default value for
the key. This enables you to create a new default object for each key:

sample = Hash.new { |hash, key| hash[key] = [] }
sample[:a] << "alpha" # => ["alpha"]
sample[:b] << "beta" # => ["beta"]
sample[:a] # => ["alpha"]
sample[:b] # => ["beta"]

Hash Values
Hash values are accessed using the Hash#[] method:

hash = {a: 1, "b": 2, c: 3}
hash[:a] # => 1

The value associated with the key is returned. Ruby uses eql? (or ==) to determine the key.
Symbol keys are not matched by string values (although you may see this in Ruby on Rails,
which has a popular extension to allow string and symbol keys to overlap).

If there is no matching key and the hash has a default value, Ruby will return the default.
If there is no matching key and the hash has a default block, Ruby will invoke the block and
return the resulting value. If the hash has no defaults, Ruby will return nil.

Ruby does have a way to retrieve values with different semantics. The Hash#fetch(key,
default_value = nil) [{ |key| block }] method takes a key and an optional default. The default is
either a second positional argument or a block that takes a single argument, the key. If fetch
is called with a key that is not in the hash, it returns the default. If there is no default, fetch
raises a KeyError.

So we could write our earlier example using fetch like this:

sample = {}
sample[:a] = sample.fetch(:a, []) << "alpha"
sample[:b] = sample.fetch(:b, []) << "beta"
sample[:a] # => ["alpha"]
sample[:b] # => ["beta"]

You can change the default value with the setter method Hash#default=(value), which takes
any arbitrary value on the right side and makes it the new default for missing keys. Similarly,
the Hash#default_proc=(proc) method takes a proc and makes it the new default. As with
Hash.new the proc takes two arguments, the receiving hash, and the key being sought. There
are getters, Hash#default and Hash#default_proc that return the current value of the defaults.

If you want to retrieve values from multiple keys at the same time, the Hash#values_at(*keys)
method takes multiple keys and returns an array of the values at those keys, in order,
returning nil or the default value for keys that don’t exist. The Hash#fetch_values(*keys) [{ |key|

Chapter 28. Library Reference: Enumerators and Containers • 578

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

block }] method does the same thing, except it takes a block that is invoked for missing keys,
and if there’s no block, it raises a KeyError:

hash = {a: 1, b: 2, c: 3, d: 4}
hash.values_at(:b, :g, :d) # => [2, nil, 4]
hash.fetch_values(:b, :g, :d) { |key| key.to_s } # => [2, "g", 4]

Hashes also respond to Hash#dig(key, *identifiers) by looking up the first argument in the hash
and then sending to that result the message dig with the the remainder of the arguments,
and so on until we run out of arguments.

If for some reason you want the key value pair, the Hash#assoc(key) method takes a key and
returns the matching key/value pair as a two-element array.

If you have the value and want the matching key, the Hash#key(value) method returns the
first key in order that has that value. The Hash#rassoc(value) method gives you the entire
key/value pair as an array (we’ll cover hash ordering in Iterating Hashes, on page 580 and
some boolean queries for hashes in Querying a Hash, on page 580):

hash = {a: 1, b: 2, c: 3, d: 4}
hash.assoc(:b) # => [:b, 2]
hash.key(2) # => :b
hash.rassoc(2) # => [:b, 2]

Setting Values
You set a value in a hash using the Hash#[]= method, which is aliased as the method
Hash#store(key, value). When you call []=, if the key in the brackets exists in the hash, the value
associated with that key is updated. If the key does not exist in the hash, it is added with the
value, and it is appended to the end of the hash for ordering purposes.

To completely remove a key from the hash, the Hash#delete(key) [{ |key| block }] method takes
the key. If the key is in the hash, it removes the key and returns the associated value, otherwise
it returns nil. An optional block is called with the key if the key is not in the hash, that value
is returned:

hash = {a: 1, b: 2, c: 3, d: 4}
hash[:b] = 700
hash[:e] = 5
hash.delete(:c) # => 3
hash # => {:a=>1, :b=>700, :d=>4, :e=>5}

A related method, Hash#delete_if [{ |key, value| block }] takes a block with a key and a value
and removes every element from the hash for which the block returns true:

hash = {a: 1, b: 2, c: 3, d: 4}
hash.delete_if { |key, value| value.even? } # => {:a=>1, :c=>3}
hash # => {:a=>1, :c=>3}

If you want to combine two or more hashes, the Hash#merge(*other_hashes) [{key, old_value,
new_value}] method is likely what you want. merge takes one or more hashes as arguments
and an optional block. It returns a new hash, starting with the original receiving hash, and
adds each key value pair from the arguments one by one. If it encounters a key that already
exists in the hash and there is no block argument, the new value overwrites the old. If there

report erratum • discuss

Hash • 579

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

is a block argument, then the block takes three arguments—the key, the existing value, and
the new value—and the result of the block is added to the hash.

The Hash#merge!(*other_hashes) [{key, old_value, new_value}] (also aliased as update) behaves the
same except it changes the receiving hash in place, and also returns that hash:

hash_1 = {a: 1, b: 2, c: 3}
hash_2 = {c: 5, d: 4, e: 6}
hash_1.merge(hash_2) # => {:a=>1, :b=>2, :c=>5,

.. :d=>4, :e=>6}
hash_1.merge(hash_2) { |key, old, new| old + new } # => {:a=>1, :b=>2, :c=>8,

.. :d=>4, :e=>6}

Querying a Hash
There are several ways to query a hash for information. The Hash#length method, aliased as
size, returns the number of key/value pairs in the hash. The Hash#empty?method returns true
if there are no key/value pairs in the hash.

If you want to find out if a particular key is in the hash, you’d use Hash#key?(key), which is
aliased as has_key?, include?, or member?, but key? is the most common. It takes one argument
and returns true if that argument is in the list of keys.

Going the other way, if you want to know whether a hash has a particular value no matter
what the key, you’d use the Hash#value?(value) method, aliased as has_value?.

Hashes also have a separate version of Hash#any?(key_value-array) [{ |key, value| block }]. The
version that does not take a block, takes a two-element array (that is, a key and a value) and
returns true if that key value pair is in the hash.

Iterating Hashes
When iterating over hashes in Ruby, it is important to remember that the order of the hash
is consistent and based on the order in which the key/value pairs were added to the hash.
So, the first element to be added will be first any time you iterate over the hash using any
of the hash iteration methods, the second element added will be second, and so on.

Hashes implement Hash#each [{ |key, value| block }] slightly differently than arrays in that the
block argument to each takes as an argument a two-element array: the key and the value. As
the method signature shows, you can dereference the array to have it look like two arguments
are being passed to the block. Then the block is called on each key/value pair in turn. This
method is also aliased as Hash#each_pair.

You can iterate with one-argument blocks using Hash#each_key [{ |key| block }], which iterates
over all the keys in order, or Hash#each_value [{ |value| block}], which iterates over all the values
in order. Or you can just get an array of all the keys in order with Hash#keys or all the values
in order with Hash#values.

Hashes respond to the same select, and rejectmethods as other classes that include Enumerable,
but as with each, the block takes an array with two elements: the key and the value. Also,
the Hash version returns a new Hash. Hashes also define select!, and reject!, which modify the
original argument in place rather than returning a new hash.

Chapter 28. Library Reference: Enumerators and Containers • 580

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Comparing Hashes
Two hashes are equal (Hash#==) if they have the same keys and the value at each key is
equal. The order of the keys does not matter; it only matters that the value matches.

Comparing two hashes is somewhat similar to sets, the Hash class defines Hash#< as true if
the left side is a proper subset of the right, meaning that every key value pair on the left side
must be on the right side, and the right side has more pairs. The Hash#<=method is a regular
subset method, so the two hashes can be equal. The Hash#> and Hash#>= methods work for
proper superset and superset.

Hashes do not implement their own implementation of <=>, taking the parent class (Object)
implementation. This appears to return true if the hashes are equal and nil otherwise, which
is to say that it’s probably not a useful way to compare Hashes.

Modifying Hashes
There are several methods that work to modify hashes. The Hash#clear method removes all
key/value pairs from the hash, while Hash#compact returns a new hash removing all pairs
where the value is nil, the Hash#compact! method does the same behavior but changes the
original argument in place.

Hashes also respond to Hash#shift, which removes and returns the first key/value pair.

If you want a subset of a hash, you can use the Hash#slice(*keys) method, which takes an
arbitrary number of arguments and returns a new hash containing only key/value pairs
whose keys are in the list of arguments. The inverse is Hash#except(*keys), which returns a
new hash for all the key/value pairs whose keys aren’t in the list of arguments.

Converting Hashes
Hashes can be converted or transformed in a variety of ways. The Hash#to_amethod converts
a hash to an array of two-element [key, value] arrays. If you want a single-dimensional array,
you can use Hash#flatten(level = 1), which is equivalent to hash.to_a.flatten(level). By default,
Hash#flatten does not recursively flatten values that happen to be arrays—you can do that
with an optional argument that specifies how many levels of sub-array values are flattened.
The default is 1 level of array flattening, and a negative argument flattens all values no
matter how deeply nested.

The Hash#to_s method converts to a string, and the only reason to mention it here is that the
string uses key => value syntax no matter which syntax was used to create the hash.

The Hash#invertmethod creates a new hash where all values are keys and all keys are values.
If values are shared across multiple keys, keys that are later in the hash sequence will replace
earlier keys.

A fun conversion is to_proc. Hash#to_proc returns a Proc that takes arguments and uses those
arguments as though they were keys to the hash, returning the associated value. A side effect
of the existence of to_proc means that the same & trick that we often use for symbols can also
be used for hashes:

hash = {a: 1, b: 2, c: 3}
hash.to_a # => [[:a, 1], [:b, 2], [:c, 3]]
hash.flatten # => [:a, 1, :b, 2, :c, 3]
hash.to_s # => "{:a=>1, :b=>2, :c=>3}"

report erratum • discuss

Hash • 581

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

hash.invert # => {1=>:a, 2=>:b, 3=>:c}
hash_proc = hash.to_proc
hash_proc.call(:a) # => 1
[:a, :b, :c].map(&hash) # => [1, 2, 3]

The Hash#transform_keys(hash = nil) [{ |key| block}] and Hash#transform_values [{ |value| block }]
methods are good alternatives tomap if you only want to change part of the hash. Each takes
a block, and transform_keys returns a new hash where each key/value pair has the same value
as the original, but the key is the result of the block. If the optional hash argument is passed,
keys are looked up there before trying the block. The transform_values method is similar, but
each resulting pair has the same key, and the value is the result of the block. Both methods
have ! forms: transform_keys! and transform_values! that modify the original hash in place rather
than return a new hash:

hash = {a: 1, b: 2, c: 3}
hash.transform_keys { |key| key.upcase } # => {:A=>1, :B=>2, :C=>3}
hash.transform_values { |value| value ** 3 } # => {:a=>1, :b=>8, :c=>27}

Set
A Ruby Set is somewhere between an Array and a Hash—it’s a collection of unique items. The
Set class is a subclass of Object and it defines each and includes Enumerable, so all Enumerable
methods described in this chapter apply to sets. The elements of a Set are ordered the way
that Hash keys are ordered—they preserve the sequence in which the elements were added
to the Set. In other words, iterating over a set multiple times will always result in the same
ordering, but you can’t access arbitrary elements of the set via an index.

To use Set in versions of Ruby before 3.2, you need to explicitly require "set".

Creating Sets
There are several ways to create a Set. The Enumerable class defines Enumerable#to_set, which
converts the collection into a set, removing duplicates along the way. The Set class has a
unique API, where Set.new(enumerable = nil) [{ |element| block }] takes an Enumerable and converts
it to a set. If you have just a bunch of objects and you want to make a set out of them, well
the Set class implements [], so:

Set.new([1, 2, 3]) # => #<Set: {1, 2, 3}>
Set[1, 2, 3] # => #<Set: {1, 2, 3}>

If you pass a value to Set.new that is not an Enumerable, you will get an ArgumentError. To be
honest, it takes a little getting used to the second form.

Set elements are unique and the unique value is based on Object#hash, which under normal
circumstances is the same as eql?. (It’s the same logic that Hash uses for unique keys.) You
can change that for an individual set with the compare_by_identity method, which changes to
compare on internal object ID.

Modifying Sets
You can add a single object to a Set with the Set#add(object) method, which is also aliased as
<<. If you want to add more than one item, you use Set#merge(*enumerables), which takes
one or more Enumerable objects as arguments and adds their elements one by one to the Set.
The Set#add?(object) method takes one argument. If that argument is not in the set, the argu-

Chapter 28. Library Reference: Enumerators and Containers • 582

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

ment is added and the set is returned. If the argument is already in the set, nothing happens
and the method returns nil. This is a deviation from the idiomatic Ruby practice of returning
literal true or false from a question mark method.

To remove an object from a set, the Set#delete(object) method removes the object from the set
and returns the updated set. The similar method Set#delete?(object) removes the object and
returns the set if the object is in the set, otherwise it does nothing and returns nil. If you want
to remove every element in an enumerable from the set then the method is subtract, which
is different from the arithmetic methods we’ll see in a bit because it changes the set in-place.
The clear method empties the set entirely.

For conditional deletion, sets define Set#delete_if { |object| block }, which takes a block and
deletes items for which the block returns a truthy value, and the inverse Set#keep_if { |object|
block }, which takes a block and deletes items for which the block returns a falsey value. (Sets
also define Set#select! { |object| block }, which is equivalent to keep_if, and Set#reject! { |object|
block }, which is equivalent to delete_if, except that the bang methods return nil if the set doesn’t
change.)

Comparing Sets
Set comparison is a little bit different than comparisons of other enumerable types. Two sets
are Set#eql?(other) or Set#==(other) if they contain the same elements and order doesn’t matter.
A set is Set#===(other) to an object if the object is in the set, making sets useful in case state-
ments. The === operator is aliased as both member?, and include?. Sets also define Set#length
as the number of elements in the set, and Set#empty? as true if the set has 0 elements.

Sets implement Comparable and the Set#<=> operator, but the implementation may not quite
what you may be expecting. The <=> mimics the behavior of eql?, meaning that it returns 0
if the two set have the same elements. The greater then/less than behavior is based only on
the logical relationship between the two sets, not the values of the elements. If the left set is
a proper subset of the right set, <=> returns -1. If the right set is a proper subset of the left
set, <=> returns 1. If the two sets do not have a subset/superset relationship, meaning that
each has elements not in the other set, than <=> returns nil.

So < is aliased as proper_subset? and <= is aliased as subset?, > is proper_superset? and >= is
superset?. Sets also define Set#disjoint?(other_set), which is true if the sets have no common
element and Set#intersect?(other), which is true if the sets have at least one common element.
For example:

a = Set[1, 2, 3]
b = Set[3, 2, 1]
c = Set[2, 1]
d = Set[1, 2, 3, 4]
e = Set[2, 3, 4, 5]

a == b # => true
b === 3 # => true
b === "3" # => false
c <=> b # => -1
d <=> c # => 1
d < c # => false
d > c # => true
d <=> e # => nil
d.disjoint?(e) # => false

report erratum • discuss

Set • 583

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

d.intersect?(e) # => true

Set Operations
Sets respond to arithmetic operators similar to the way arrays do:

• Set union returns a new set containing all elements from either operand, with no
duplicates. The method is Set#union(other), it’s aliased as + and | .

• Set intersection returns a new set containing all elements that are in both operands. The
method is Set#intersection(other), and it’s aliased as & .

• Set difference returns a new set with elements in the left operand that are not in the
right operand. The method is Set#difference(other), and it’s aliased as - .

• Set xor returns a new set containing all the elements that are in exactly one of the two
operands, the operator is Set#^ .

• You can split a set into subsets based on criteria with the Set#classify { |element| block }
method, which takes a block and returns a hash, the keys of which are unique values
of the block and the value of the hash is every element of the set that returns the same
value:

require "set"
d = Set[1, 2, 3, 4]
e = Set[2, 3, 4, 5]
d | e # => #<Set: {1, 2, 3, 4, 5}>
d.union(e) # => #<Set: {1, 2, 3, 4, 5}>
d & e # => #<Set: {2, 3, 4}>
d.intersection(e) # => #<Set: {2, 3, 4}>
d.difference(e) # => #<Set: {1}>
d - e # => #<Set: {1}>
d ^ e # => #<Set: {5, 1}>
d.classify { |x| x.even? } # => {false=>#<Set: {1, 3}>, true=>#<Set: {2, 4}>}

Chapter 28. Library Reference: Enumerators and Containers • 584

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 29

Library Reference: Input, Output, Files, and
Formats

In this chapter, we’ll take a closer look at Ruby’s input and output (I/O) classes, including
reading and writing from files, manipulating files, and managing file formats. We’ll investi-
gate their API and functionality in somewhat more detail than we did in Part I of this book.
The goal of this chapter is to give you more information about what you can do with these
classes, and also to discuss related functions together so that you can browse and perhaps
find a new feature that might help.

This is not intended to be a complete listing of every class, every method, or every option.
For that, please refer to the official Ruby documentation at https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide its complete name
and signature. The notation Foo.bar indicates a class or module method, while Foo#bar indicates
an instance method. Optional arguments are indicated with Ruby syntax and their default
value, as in Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with brace syntax and
indication of what the arguments to the block will be, as in Foo#bar { |object| block }. An
optional block argument will be surrounded by square brackets, Foo#bar [{block}]. Please
note that this description syntax is slightly different than the official documentation, and
that in some cases, what the official documentation shows as multiple method signatures,
we’ve chosen show as one signature with default values. Also, parameter names sometimes
differ from the official documentation to make the naming clearer.

CSV
Comma-separated data files are often used to transfer tabular information, and especially
for importing and exporting spreadsheet and database information. Ruby’s current CSV
library is based off James Edward Gray II’s FasterCSV gem. The CSV object has possibly the
best official documentation in the entire Ruby library, and it goes beyond what’s discussed
here.

Ruby’s CSV library deals with arrays (corresponding to the rows in the CSV file) and strings
(corresponding to the elements in a row). If an element in a row is missing, it will be repre-
sented as a nil in Ruby.

report erratum • discuss

https://docs.ruby-lang.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The generic CSV parsing method is CSV.parse(string_or_io, headers: nil, **options) [{|row|}] and
takes an optional block. The main argument is either a string or an IO object and potentially
a File, but not a filename. A string object is converted to a StringIO (see StringIO, on page 609).

If there is no block and no headers option, the CSV file is converted to an array of arrays
and returned. If there is no headers option and a block, the block is called once with the data
from each row parsed into an array.

If the headers option is set to an array of strings, then with no block the method returns the
data as a CSV::Table, which is a data structure that you can treat as an array of arrays or an
array of hashes, so you can reference an item by its header name or its position in the row.
If the headers option is set to true, then the header names will be inferred from the first row
of the CSV data. With a block, each row is converted to a CSV::Row object and passed to the
block.

The remaining options allow you to control the parsing, including row_sep, col_sep, and
quote_char.

Often you will have a filename for your object and won’t need to create a File object. The
method CSV.read(source, headers: nil, **options) opens the source argument to create an IO object,
and passes it to CSV.parse in one step returning an array of arrays or a CSV::Table. The method
CSV.foreach(source, mode = "r", **options) {block} takes a block and returns each row to the block
as an array or CSV::Row depending on whether the headers: option is set.

The files used in these examples are as follows:

sl_csv/csvfile.csv
12,eggs,2.89,
2,"shirt, blue",21.45,special
1,"""Hello Kitty"" bag",13.99

sl_csv/csvfile_with_header.csv
Count,Description,Price
12,eggs,2.89,
2,"shirt, blue",21.45,special
1,"""Hello Kitty"" bag",13.99

This example reads a file containing CSV data and processes it line by line:

sl_csv/sample_0.rb
require "csv"
CSV.foreach("#{__dir__}/csvfile.csv") do |row|
qty = row[0].to_i
price = row[2].to_f
printf "%20s: $%5.2f %s\n", row[1], qty * price, row[3] || " ---"

end

produces:

eggs: $34.68 ---
shirt, blue: $42.90 special

"Hello Kitty" bag: $13.99 ---

In this case, we process a CSV file that contains a header line. Notice that CSV automatically
converts fields that look like numbers:

sl_csv/sample_1.rb
require "csv"

Chapter 29. Library Reference: Input, Output, Files, and Formats • 586

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/sl_csv/csvfile.csv
http://media.pragprog.com/titles/ruby5/code/sl_csv/csvfile_with_header.csv
http://media.pragprog.com/titles/ruby5/code/sl_csv/sample_0.rb
http://media.pragprog.com/titles/ruby5/code/sl_csv/sample_1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

total_cost = 0
CSV.foreach(
"#{__dir__}/csvfile_with_header.csv",
headers: true, converters: :numeric

) do |data|
total_cost += data["Count"] * data["Price"]

end
puts "Total cost is #{total_cost}"

produces:

Total cost is 91.57

You can write to a CSV file by creating a new CSV with CSV.new(string_or_io, **options) or
CSV.open(path, mode = "rb", options) [{ |csv| block }]. The open method passes the new CSV object
to block. You can then add rows to the file by passing an array to the CSV object with the
<< operator (aliased as the method add_row).

This example writes CSV data to an existing open stream, standard out, using | as the column
separator:

sl_csv/sample_2.rb
require "csv"
csv = CSV.new($stdout, col_sep: "|")
csv << [1, "line 1", 27]
csv << [2, nil, 123]
csv << [3, "|bar|", 32.5]
csv.close

produces:

1|line 1|27
2||123
3|"|bar|"|32.5

This example reads and writes from a CSV file being treated as a two-dimensional table:

sl_csv/sample_3.rb
require "csv"

table = CSV.read(
"#{__dir__}/csvfile_with_header.csv",
headers: true, header_converters: :symbol

)
puts "Row count = #{table.count}"
puts "First row = #{table[0].fields}"
puts "Count of eggs = #{table[0][:count]}"
table << [99, "red balloons", 1.23]
table[:in_stock] = [10, 5, 10, 10]
puts "\nAfter adding a row and a column, the new table is:"
puts table

produces:

Row count = 3
First row = ["12", "eggs", "2.89", nil]
Count of eggs = 12

After adding a row and a column, the new table is:
count,description,price,,in_stock
12,eggs,2.89,,10

report erratum • discuss

CSV • 587

http://media.pragprog.com/titles/ruby5/code/sl_csv/sample_2.rb
http://media.pragprog.com/titles/ruby5/code/sl_csv/sample_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

2,"shirt, blue",21.45,special,5
1,"""Hello Kitty"" bag",13.99,10
99,red balloons,1.23,,10

Dir
The Dir class is used to interact with directories in the file system. Like many of Ruby’s file
manipulation classes, it has both a lot of class methods and a lot of instance methods, in
some cases duplicating functionality.

You create a Dir instance with Dir.new(path), where the path is a string or something that can
be implicitly converted to a string because it implements to_str (so Pathname objects can be
used here). The path is relative to the current system working directory. There’s an optional
keyword argument, encoding:, which specifies the encoding of the directory as you look at
it.

Directories can technically be opened and closed in Ruby; when open, they stream a list of
their children files. The class method Dir.open(path) {|dir|} takes a path and a block. It passes
the new directory as an argument to the block and closes the directory when the block has
completed.

Directory instances implement each, yielding once for each file in the directory, including
the special files . and ... They also include Enumerable, so all the methods discussed in Enu-
merable, on page 565 can be used on Dir instances.

Dealing with Files
Most of what you want to do with directory objects in Ruby is search their files. The most
flexible and probably most common method for doing so in Ruby is Dir.glob(pattern, *flags,
base: nil, sort: true) [{block}]. The glob method takes one required parameter: a pattern for
matching files. It returns an array of files in the current directory that match the pattern. The
pattern can be a string or an array of strings. If it’s an array, a file is returned if it matches
any of the elements of the array.

Optionally, glob can take a block argument, in which case, each matching filename is passed
to the block and the method returns nil.

There are three optional parameters to glob. The flags are a positional argument that can affect
the matching (see Table 30, File Pattern Match Flags, on page 595 for a list). An optional
keyword argument, base:, allows you to change the directory to be searched and pass it a
string relative to the current directory. An optional sort: keyword argument defaults to true;
if false, the resulting matches are not sorted.

The pattern matching is what you normally use glob for. It’s not a regular expression pattern,
it’s closer to, but not identical to, the glob pattern used by a Unix shell. Like a file glob, normal
characters match themselves, and special characters match specific patterns. The following
table describes the special characters.

MeaningPattern

Any sequence of characters in a filename: * will match all files, c* will match all
files beginning with c, *c will match all files ending with c, and *c* will match all
files that have c in their name.

*

Chapter 29. Library Reference: Input, Output, Files, and Formats • 588

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

MeaningPattern

Matches zero or more directories (so **/fred matches a file named fred in or below
the current directory).

**

Matches any one character in a filename.?
Matches any one of chars. If the first character in chars is ^, matches any character
not in the remaining set.

[chars]

Matches one of the patterns specified between braces. These patterns may contain
other metacharacters.

{patt,...}

Removes any special significance in the next character.\

Table 27—Glob Patterns

The glob method is also sort of aliased as []. The main difference is that the square bracket
method can take multiple partners, so Dir["*.x", "*.y"] is equivalent to passing an array to glob:
Dir.glob(["*.x", "*.y"]).

The directory used in the following examples contains two regular files (config.json and pick-
axe.rb), the parent directory (..), and the directory itself (.):

ref_io/dir.rb
Dir.chdir("testdir") # => 0

Dir.glob("config.?") # => []
Dir.glob("*.[a-z][a-z]") # => ["pickaxe.rb"]
Dir.glob("*.[^r]*") # => ["config.json"]
Dir.glob("*.{rb,json}") # => ["pickaxe.rb", "config.json"]
Dir.glob("*") # => ["config.json", "pickaxe.rb"]
Dir.glob(%w[*.rb *.json]) # => ["pickaxe.rb", "config.json"]
Dir.glob("*", File::FNM_DOTMATCH) # => [".", "config.json", "pickaxe.rb"]

Dir.chdir("..") # => 0
Dir.glob("code/**/fib*.rb") # => ["code/irb/fibonacci_sequence.rb",

.. "code/rdoc/fib_example.rb",
.. "code/tut_threads/fiber_word_count.rb"]

Dir.glob("**/rdoc/fib*.rb") # => ["code/rdoc/fib_example.rb"]

Dir["config.?"] # => []
Dir["*.json"] # => ["data.json"]
Dir["*.rb"] # => []
Dir["*.rb", "*.json"] # => ["data.json"]

There is no instance method equivalent for Dir.glob, though you could mostly manage with
Dir#filter.

If you just want a list of all the files in a directory, the class method Dir.children(path) takes a
path and returns an array of all the files in that directory, excluding the . and .. special file
markers. The Dir.entries(path) method does the same thing, but includes the special file
markers. The children method is available on instances, but entries is not.

To iterate over a directory, the class method Dir.each_child(path) {block} takes a block and exe-
cutes the block once for each entry in the directory as returned by children, so it is effectively
equivalent to Dir.children("foo").each. The iteration method Dir.foreach(path) {block} does the
same, but for the result of entries, so it’s effectively Dir.entries("foo").each. Instances of dir also
have Dir#each_child {block}, which skips the special dot file descriptors, and Dir#each {block},
which does not. Here’s an example:

report erratum • discuss

Dir • 589

http://media.pragprog.com/titles/ruby5/code/ref_io/dir.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

ref_io/dir_2.rb
Dir.children("testdir") # => ["pickaxe.rb",

.. "config.json"]
Dir.entries("testdir") # => [".", "..",

.. "pickaxe.rb",
.. "config.json"]

result = []
Dir.each_child("testdir") { |name| result << name } # => nil
result # => ["pickaxe.rb",

.. "config.json"]

instance = Dir.new("testdir")
instance.children # => ["pickaxe.rb",

.. "config.json"]
instance_result = []
instance.each { |name| instance_result << name } # => #<Dir:testdir>
instance_result # => [".", "..",

.. "pickaxe.rb",
.. "config.json"]

If the directory has no children, the class method Dir.empty? returns true; if it does have chil-
dren, the method returns false.

You can also externally iterate over a directory with Dir#read. For example:

ref_io/dir_3.rb
instance = Dir.new("testdir")
instance.read # => "."
instance.read # => ".."

Managing The File System with Dir
You can use the Ruby Dir class to manipulate the external environment.

The method Dir.exist?(pathname) returns true if the path already exists in the file system, relative
to where the Ruby code is executing.

The class method Dir.chdir(path) [{block}] takes a string and an optional block. The no-block
version of the method changes the current directory of the process running the Ruby code.
The block version changes the current directory, runs the block, and then changes the
directory back to its original setting. The instance method chdir changes the directory of the
process to the directory represented by the instance. It only has a no-block form.

The directory can be deleted from the current system’s file structure with the class method
Dir.delete(path), which is also aliased as Dir.rmdir(path) and Dir.unlink(path) (and, we’ll also see a
FileUtils version). Or the directory can be created with the class method Dir.mkdir(path). There’s
an optional second option, which is an integer that sets the Unix permissions of the new
directory. The method raises SystemCallError if the directory can’t be created for some reason.

The method Dir.tmpdir returns the system’s temporary file path, and you can create a temporary
directory inside with Dir.mktmpdir(prefix_suffix = nil, *rest, **options) [{ |dir| }]. This takes no
required arguments and returns the path of the temp directory. If it is passed a block, the
new directory is the argument to the block, the block is executed, and the temporary direc-
tory is removed at the end of the block.

Chapter 29. Library Reference: Input, Output, Files, and Formats • 590

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_io/dir_2.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/dir_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The class methods Dir.pwd or Dir.getwd return the current process working directory, and
Dir.home(username = nil) returns the current home directory of the given user (or the current
user if no argument is given). Instances will return their path with path—this will return the
path as it was given to the constructor; it won’t normalize the pathname in any way.

File
The File class in Ruby does two things. First, it’s a subclass of IO, meaning it handles reading
data from and writing data to files. Second, it adds a number of methods for manipulating
files as objects, similar to the Dir class. Since the reading and writing behavior is mostly
managed by methods defined IO, we’ll discuss it when we look at IO in IO, on page 598. Here,
we’ll look at file-specific manipulations.

Most File manipulation methods are class methods, while most of the read/write methods
are instance methods.

Opening a File
You create a File instance with File.new(filename, mode = "r", permissions = 0666, *options) or
File.open(filename, mode = "r", permissions = 0666, *options) [{block}] (note that this does not neces-
sarily create the file in the underlying system):

Both File.new and File.open take the same arguments: a filename, an optional mode (which
defaults to r), an optional Unix permission (which defaults to 0666), and some keyword
options.

Both methods open the file named by filename according tomode (the default is "r") and return
a new File object. Themode string contains information about the way the file is to be opened
and optionally on the encodings to be associated with the file data. Mode strings have the
form "file-mode[:external-encoding[:internal-encoding]]". The file-mode portion is one of the options
listed in the following table. The two encodings are the names (or aliases) of encodings
supported by your interpreter. See Encoding, on page 531 for more information about
encodings.

DescriptionString

Read-only, starts at beginning of file (default mode).r
Read/write, starts at beginning of file.r+
Write-only, truncates an existing file to zero length or creates a new file for writing.w
Read/write, truncates existing file to zero length or creates a new file for reading
and writing.

w+

Write-only, starts at end of file if file exists; otherwise, creates a new file for writing.a
Read/write, starts at end of file if file exists; otherwise, creates a new file for reading
and writing.

a+

Binary file mode (may appear with any of the key letters listed earlier). As of Ruby
1.9, this modifier should be supplied on all ports opened in binary mode (on Unix

b

as well as on DOS/Windows). To read a file in binary mode and receive the data
as a stream of bytes, use the modestring "rb:ascii-8bit".

Table 28—Mode values

The newmethod returns a File instance that you can then read or write from. The file remains
open until close is called on the instance.

report erratum • discuss

File • 591

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The openmethod takes a block and passes the new file instance to the block. Inside the block,
you can read, write, or manage the file however you want. The file is automatically closed
at the end of the block.

The read and write methods that you would use with a File are methods of the parent class
IO, and are discussed in IO, on page 598.

The options argument takes any of the follwing keyword options listed in the following
table:

DescriptionOption

If false, the underlying file will not be closed when this I/O object is
finalized.

autoclose:

Opens the IO object in binary mode if true (same as mode: "b").binmode:
Specifies both external and internal encodings as "external:internal" (same
format used in mode parameter.

encoding:

Specifies the external encoding.external_encoding:
Specifies file open flags. If mode: is also used, the two values are com-
bined using bitwise or.

flags

Specifies the internal encoding.internal_encoding:
Specifies what would have been the mode parameter (so File.open("xx",
"r:utf-8") is the same as File.open("xx", mode: "r:utf-8").

mode:

A string value is used in inspect and as a getter method called pathpath:
Open the file in text mode (the default).textmode:

Table 29—File and I/O open options

In addition, the options parameter can use these key/value pairs to control encoding. The
encoding pairs are also the same as used in String#encode. See Table 22, Options to encode
and encode!, on page 532.

If you want to change the operating system mode of the file, there is both a class and instance
method to do so, called File.chmod(mode_integer, *filenames) or File#chmod(mode_integer). The
class version takes the new mode as an integer (usually an octal integer, so something like
0644) and one or more file names (relative to where the Ruby program started) as the
remaining arguments. The instance method just takes the mode integer as an argument. In
both cases, the underlying system is invoked to change the file’s execution mode.

Similarly, you can change the owner of a file with the class method File.chown(owner_int,
group_int, *file_names) or the instance method File#chown(owner_int, group_int). The arguments to
the class method chown are the integer id of the new owner, the integer ID of the new group
and a list of filenames. The instance method, because it’s already attached to a file, takes just
the owner and group IDs.

You can delete one or more files with File.delete(*filenames) (aliased as unlink), which takes a
series of filenames and deletes them from the underlying file system.

You can create a symlink in the underlying operating system with File.symlink(old_name,
new_name). If the underlying operating system doesn’t have symbolic links, you get a NotIm-
plementedError.

Chapter 29. Library Reference: Input, Output, Files, and Formats • 592

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

File Names
The File class has methods that allow you to separate a file name into component parts. These
are all class methods of File; however, if you are doing more complicated name logic on a
file, you should check out the Pathname class, which provides a lot more functionality. (See
Pathname, on page 608 for more.)

The File.basename(file_name, suffix = nil) of a file is what you would casually call the “file name.”
It’s the last component of the entire path plus the extension. An optional second argument
is a suffix. If the argument is used and if it matches the end of the file name, the suffix is
removed from the result—the suffix does not need to be the same length as the extension,
only to match the end of the string. The special value .* matches any extension.

The File.dirname(file_name, level = 1) of a file is everything in the file name that is not the base-
name—so all the directory names in the path. An optional second argument is a level, signi-
fying the number of subdirectory names from the end of the file to be left off. The default is
1, which causes the filename to be left off. Using 0 returns the entire path name.

In both cases, the separator between components are the constants File::SEPARATOR and
File::ALT_SEPARATOR, which is operating system-dependent. (Not all systems will have an
alternate separator.)

The File.extname(file_name) method returns just the extension part of the filename, dot
included. If there are multiple extensions (like .rb.old), only the last one is returned. If the
filename starts with a dot (like .gitignore), the filename is not considered an extension; you
need to have another dot (like .my.zsh). If the filename ends with just a dot for some reason,
you get a dot on Windows platforms and an empty string on non-Windows platforms.

All these file names are just doing string manipulation, they are not dependent on the file
name being manipulated actually existing in the file system:

ref_io/filenames.rb
File.basename("/usr/pickaxe/ruby/code.rb") # => "code.rb"
File.basename("/usr/pickaxe/ruby/code.rb", ".rb") # => "code"
File.basename("/usr/pickaxe/ruby/code.rb", "e.rb") # => "cod"
File.basename("/usr/pickaxe/ruby/code.rb", ".*") # => "code"

File.dirname("/usr/pickaxe/ruby/code.rb") # => "/usr/pickaxe/ruby"
File.dirname("/usr/pickaxe/ruby/code.rb", 2) # => "/usr/pickaxe"
File.dirname("/usr/pickaxe/ruby/code.rb", 3) # => "/usr"

File.extname("/usr/pickaxe/ruby/code.rb") # => ".rb"

To go the other way, if you have a series of path names and you want an entire string, the
File.join(*partial_path)method connects the path names using /. Note that joinwill use the forward
slash no matter what operating system you are on, and that this will work just fine even on
Windows systems. Some people find join more readable than string interpolation when you
are building a file name dynamically:

File.join("usr", "pickaxe", "ruby", "code.rb") # => "usr/pickaxe/ruby/code.rb"

Paths
The File class can also do some manipulation based on the entire path name of the file.

report erratum • discuss

File • 593

http://media.pragprog.com/titles/ruby5/code/ref_io/filenames.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The class method File.absolute_path(file_name, directory_string = nil) method takes a presumably
partial file name and returns the absolute path. By default the file name is assumed to be
relative to the current working directory, but an optional second argument can be used as
the base point. The related method File.absolute_path?(file_name) returns true if the argument
is an absolute path.

The method File.expand_path(file_name, directory_string = nil) does the same as absoulute_path except
in the case where the file name argument starts with a tilde ~, such as ~noel, which would
indicate a home directory in a Unix system. In the tilde case, expand_path expands the ~ using
the Unix HOME environment variable, whereas absolute_path just treats that as a regular
directory that happens to start with a tilde.

The File.path(path) method will return the argument as a string, which is only interesting if
the argument is not a string, like it’s a Pathname or something.

The File.realpath(pathname, directory_string = nil) and File.realdirpath(pathname, directory_string = nil)
will return the absolute pathname—realpath will throw an error if the file does not exist,
while realdirpathwill allow the last component of the path to not exist, but any other component
of the path name must exist.

In other words, given a fictional file name nope.rb, the absolute_path and expand_path methods
will happily give you a full path to the nonexistent file, but realpath will throw an error. The
realdirpath will work fine, but if the argument adds a fictional subdirectory, like
File.realdirpath("fake/nope.rb") then that method will also throw an error.

The method File.identical?(file_one, file_two) takes two different path names or I/O objects and
returns true if they point to the same file.

Times
Files have a lot of time based stats associated with them. All of these methods are available
as class methods or instance methods:

• File.atime(file_name), File#atime: The time the file was last accessed.
• File.birthtime(file_name), File#birthtime: The time the file was created.
• File.ctime(file_name), File#ctime: The time the file was last changed or the directory was

last changed, (on windows this returns the creation time).
• File.mtime(file_name), File#mtime: The time the file was last modified.

The class method File.stat(file_name) or instance method File#stat returns an instance of a class
called File::Stat. The File::Stat instance also has instance methods for all those time attributes,
as well as several other attributes such as size. It’s also worth mentioning that File::Stat defines
<=> based on the modification time of the file, so it can be used to sort files based on most
recently changed.

Booleans
The File class has a lot of boolean predicate methods on files. These are all class methods:

• File.exist?(file_name) returns true if the file name argument is or resolves to a path that
actually exists in the underlying file system.

• File.directory?(file_name) returns true if the argument is or resolves to the path of a directory
or a symbolic link to a directory. If the path isn’t a directory or doesn’t exist, returns
false.

Chapter 29. Library Reference: Input, Output, Files, and Formats • 594

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• File.file?(file_name) returns true of the argument is or resolves to the path of a file or sym-
bolic link to an existing file. If the path doesn’t exist or isn’t a file, returns false.

• File.symlink?(file_name) returns true if the file path points to an existing symbolic link in
the underlying operating system.

• File.executable?(file_name) returns true if the effective user has permission to execute the
file named in the argument, File.executable_real?(file_name) is the same, but for the real
user. Note that Windows systems do not use permissions to determine whether a file
is executable.

• Similarly File.readable?(file_name), File.readable_real?(file_name), File.world_readable?(file_name),
File.writeable?(file_name), File.writeable_real?(file_name), and File.world_writable?(file_name) all
return true if the file exists and the permission described by the name of the method is
available. The method File.owned?(file_name) returns true if the file exists and is owned
by the user id of the calling process.

The size of a file is available via the class method File.size and the instance method size. The
boolean class method File.empty? aliased as zero? returns true if the file exists and has zero
size.

The class method File.fnmatch?(pattner, path, *flags) (aliased as just fnmatch) takes a pattern and
a path and optional flags. The pattern is a glob pattern using the rules we’ve seen in Table
27, Glob Patterns, on page 588, the path is the filename being matched, and the optional flags
control the pattern matching, and are listed in the following table.

Expand braces in the pattern.File::FNM_EXTGLOB
A backslash does not escape special characters in globs, and a back-
slash in the pattern must match a backslash in the filename.

File::FNM_NOESCAPE

Forward slashes in the filename are treated as separating parts of a
path and so must be explicitly matched in the pattern.

File::FNM_PATHNAME

If this option is not specified, filenames containing leading periods
must be matched by an explicit period in the pattern. A leading

File::FNM_DOTMATCH

period is one at the start of the filename or (if FNM_PATHNAME is speci-
fied) following a slash.
Filename matches are case insensitive.File::FNM_CASEFOLD

Table 30—File Pattern Match Flags

FileUtils
In addition to the functionality in File, Ruby has an entire module called FileUtils that defines
many many module level methods that are basically wrappers around operating system
features or Dir and File features.

To use these methods, you need to require "fileutils". All the methods here are defined as
module methods and as instance methods, though you would typically use them as module
method, as in FileUtils.mkdir.

Here’s a quick tour:

Methods in FileUtils that take paths expect either a string, an object with a to_path method, or
an object with a to_str method. Methods in FileUtils that are described as working recursively
can take directories as arguments and act on all files in the directory.

report erratum • discuss

FileUtils • 595

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Common Arguments
Several methods in FileUtils have arguments that mean the same thing. Rather than describe
what the arguments mean in each method that uses them, we’re just defining them here.
These descriptions are valid for any method that has an argument matching any of these
names.

• dereference_root, if true, allows the source argument to be a symbolic link.
• force controls how the method behaves if it has to override existing file system behavior.

If force is true, then the method’s change carries. If force is not true, then typically an
exception is raised.

• noop, if true, causes the method not to actually do anything, which is useful in testing.
For example, you can test with verbose: true, noop: true and see what the command is
doing without modifying the file system.

• preserve, if true, preserves the timestamp of a file when moving or changing it.
• remove_destination, if true, removes the destination argument before executing a move

or copy.
• secure for file removal, if true, securely removes a file buy ensuring that permissions do

not change during the removal process (see the official Ruby documentation for more
information).

• verbose, if true, outputs more information to standard out.

Directory Management
• FileUtils.mkdir(list, mode: nil, noop: nil, verbose: nil) creates a new entry for every path in list.

If mode is not nil, it sets permissions on each new directory. If multiple subdirectories
need to be created or if the directory already exists, it raises an error.

• FileUtils.mkdir_p(list, mode: nil, noop: nil, verbose: nil) is the same, but if elements in the list
require multiple subdirectories to be created, it will create all the subdirectories. Aliased
as FileUtils.makedirs and FileUtils.mkpath.

• FileUtils.remove_dir(path, force = false) removes the directory entry at path recursively.
• FileUtils.rmdir(list, parents: nil, noop: nil, verbose: nil) removes all directories in list. If parents is

true, it will remove parent directories that are made empty by the removal.

File Management
• FileUtils.copy(source, destination, preserve: nil, noop: nil, verbose: nil) copies the file at source to
destination if both the source and the destination are files. If the source is a file and the
destination is a directory, it copies the source to destination/source. If destination is a direc-
tory, source can be a list of files, in which case all are copied to the destination. It throws
an exception if source is a directory. Aliased as FileUtils.cp. The related method FileUti-
ls.copy_file(source, destination, preserve = false, dereference = false) allows the source to be a
symbolic link if dereference is true.

• FileUtils.cp_r(source, destination, preserve: nil, noop: nil, verbose: nil, dereference_root: nil,
remove_destination: nil) is the recursive version of copy, meaning that source can be a
directory, in which case the entries in source are recursively copied to destination. FileUti-
ls.copy_entry(source, destination, preserve = false, dereference_root.= false, remove_destination =
false) behaves similarly but with a slightly different argument pattern. FileUtils.cp_lr
behaves similarly but creates a Unix hard link rather than a copy using FileUtils.link_entry.

Chapter 29. Library Reference: Input, Output, Files, and Formats • 596

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• FileUtils.install(source, destination, mode: nil, owner: nil, group: nil, preserve: nil, noop: nil, verbose:
nil) behaves like copy but allows you to set the permissions and ownership on the desti-
nation file. It overwrites the destination if it already exists.

• FileUtils.copy_stream(source, destination) copies the source stream to the destination.
• FileUtils.mv(source, destination, force: nil, noop: nil, verbose: nil, secure: nil) moves the file at the

source path to the destination path if both paths are files. If the destination is a directory,
the source is one or more paths and they are all moved to destination/source. Aliased as
FileUtils.move.

• FileUtils.rm(list, force: nil, noop: nil, verbose: nil) removes all the files in list. Aliased as FileUti-
ls.remove. Also FileUtils.remove_file(path, force = false) and remove_entry_secure(path, force =
false), which is used by mv when secure is true. FileUtils.rm_f(list, noop: nil, verbose: nil) is like
rm but with force: true.

• FileUtils.rm_r(list, force: nil, noop: nil, verbose: nil, secure: nil) is the recursive version of rm,
meaning that elements in the list can be directories. FileUtils.rm_rf(list, noop: nil, verbose: nil)
is the same but with force: true.

• FileUtils.touch(list, noop: nil, verbose: nil, mtime: nil, nocreate: nil) touches each file in list,
updating its modification time. Ifmtime is nil, it uses the current time; otherwise, it uses
the value of mtime. If nocreate is true, it raises an exception if the path doesn’t exist.

• FileUtils.uptodate?(new, old) returns true if the element at new is newer than all the files in
the list of paths in old.

Symbolic Links
• FileUtils.ln(source, destination, force: nil, noop: nil, verbose: nil) creates a Unix hard link at desti-
nation pointing to source if both source and destination are files. If destination is a directory,
it creates the link at destination/source. If source is a list of paths, it creates links for all of
them in destination. Aliased as FileUtils.link.

• FileUtils.link_entry(source, destination, dereference_root = false, remove_destination = false) behaves
as FileUtils.ln, but with different arguments.

• FileUtils.ln_s(source, destination, force: nil, relative: false, target_directory: true, noop: nil, verbose:
nil) creates a Unix symbolic link. As with other copy methods, if both the source and
destination are files, it creates the link at destination pointing to source. If destination is a
directory, it creates the link at destination.source, and if source is a list, it creates links for
all the entries inside destination. If relative is true, the links are relative to the destination.
The target_directory argument appears to be unused. Aliased as FileUtils.symlink. FileUtils.ln_sf
is the same method but with force: true, and FileUtils.ln_sr is the same method but with
relative: true.

Changing Settings
• FileUtils.cd(dir, verbose: nil) changes the current directory to dir. Aliased as FileUtils.chdir.
• FileUtils.chmod(permissions, list, noop: nil, verbose: nil). Changes the permissions of all paths

to the new permissions. The permissions is an integer Unix permission number or a string
Unix permission string, and the list is one or more paths. The method FileUtils.chmod_R
does the same thing but works recursively and has a force: argument.

• FileUtils.chown(user, group, list, noop: nil, verbose: nil) changes the owner of each path in list to
the given user and group. If user or group is nil, the path is not changed. FileUtils.chown_R is
the recursive version, and also takes a force: argument.

report erratum • discuss

FileUtils • 597

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Queries
• FileUtils.compare_file(a, b) returns true if the contents of the two files at a and b are identical.

Aliased as FileUtils.identical? and FileUtils.cmp. The related method FileUtils.compare_streams(a,
b) works on streams.

• FileUtils.pwd or FileUtils.getwd return the current working directory.

IO
Class IO is the basis for all input and output in Ruby. An I/O stream may be duplexed (that
is, bidirectional) and so may use more than one native operating system stream. Many of
the examples in this section use class File, the only standard subclass of IO. The two classes
are closely associated.

As used in this section, portname may take any of the following forms:

• A plain string represents a filename suitable for the underlying operating system.
• A string starting with | indicates a subprocess. The remainder of the string following |

is invoked as a process with appropriate input/output channels connected to it.
• A string equal to |- will create another Ruby instance as a subprocess.

The IO class uses the Unix abstraction of file descriptors (fds), which are small integers that
represent open files. Conventionally, standard input has an fd of 0, standard output has an
fd of 1, and standard error has an fd of 2.

Ruby will convert path names between different operating system conventions if possible.
For instance, on Windows (non-WSDL) the filename /gumby/ruby/test.rb will be opened as
\gumby\ruby\test.rb. When specifying a Windows-style filename in a double-quoted Ruby
string, remember to escape the backslashes, as in "c:\\gumby\\ruby\\test.rb".

Note that our examples here use the Unix-style forward slashes; to get the platform-specific
separator character, use File::SEPARATOR.

I/O ports may be opened in any one of several different modes, which are shown in this
section as mode. This mode string must be one of the values listed in Table 28, Mode values,
on page 591. The mode may also contain information on the external and internal encoding
of the data associated with the port. If an external encoding is specified, Ruby assumes the
data it received from the operating system uses that encoding. If no internal encoding is
given, strings read from the port will have this encoding. If an internal encoding is given,
data will be transcoded from the external to the internal encoding, and strings will have that
encoding. The reverse happens on output.

Creating, Opening, and Closing Streams
You can create I/O streams with new or open. Unlike File objects, the first argument to IO.new(fd,
mode="r", **opts) or IO.open(fd, mode="r", **opts) is an integer file descriptor, not the name of a
file. Like the File methods, the second argument is a mode string, defined in Table 28, Mode
values, on page 591, the option list defined in Table 29, File and I/O open options, on page
592, and also the options defined in Table 22, Options to encode and encode!, on page 532.
Like File, the open method takes a block, passes the new IO object to the block, and opens the
stream for the duration of the block. The new method requires you to explicitly close the
string with the close method.

Chapter 29. Library Reference: Input, Output, Files, and Formats • 598

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

You can convert a filename or path to a file descriptor with File.sysopen(path, mode = "r", permis-
sions = 0666), which takes a file name, an optional mode string, and an optional Unix permis-
sions, and opens the file and returns the integer file descriptor. If the file does not exist, it is
created if the mode is for writing, or an error is thrown if the mode is for reading.

The method IO.pipe(external_encoding = nil, internal_encoding = nil, **options) [{ |read_io, write_io}
block] creates a pair of pipe endpoints that are connected to each other and returns them as
a two-element array of IO objects as in [read_io, write_io]. The write_io endpoint is automatically
placed into sync mode. It is not available on all platforms.

Encodings for the pipes can be specified as a string ("external" or "external:internal") or as two
arguments specifying the external and internal encoding names (or encoding objects). If both
external and internal encodings are present, keyword arguments specify conversion options
(see Table 22, Options to encode and encode!, on page 532).

The method takes an optional block, in which case the two I/O streams are opened and sent
to the block. The two streams are then closed at the end of the block and the method returns
the return value of the block.

The IO class also allows you to run arbitrary command-line commands and manage I/O via
the method IO.popen(environment = {}, command, mode = "r", **opts) with an optional block
argument.

The popen method runs the specified command string as a subprocess. In the non-block
version of the method, the subprocess’s standard input and output will be connected to the
returned IO object.

The parameter command may be a string or an array of strings. In the latter case, the array is
used as the argv parameter for the new process, and no special shell processing is performed
on the strings. In addition, if the array starts with a hash, it will be used to set environment
variables in the subprocess, and if it ends with a hash, the hash will be used to set execution
options for the subprocess.

See Kernel#spawn for more options. If command is a string, it will be subject to shell expansion.
If the command string starts with a minus sign (-) and the operating system supports fork, then
the current Ruby process is forked. The default mode for the new file object is r, but mode
may be set to any of the modes listed in Table 28, Mode values, on page 591.

If a block is given, Ruby will run the command as a child connected to Ruby with a pipe.
Ruby’s end of the pipe will be passed as a parameter to the block. In this case, popen returns
the value of the block.

If a block is given with a command of just "-", the block will be run in two separate processes:
once in the parent and once in a child. The parent process will be passed the pipe object as
a parameter to the block, the child version of the block will be passed nil, and the child’s
standard in and standard out will be connected to the parent through the pipe. It is not
available on all platforms.

For example:

ref_io/io_popen.rb
pipe = IO.popen("uname")
p(pipe.readlines)
puts "Parent is #{Process.pid}"
IO.popen("date") { |pipe| puts pipe.gets }

report erratum • discuss

IO • 599

http://media.pragprog.com/titles/ruby5/code/ref_io/io_popen.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

IO.popen("-") { |pipe| $stderr.puts("#{Process.pid} is here, pipe=#{pipe}") }
Process.waitall

produces:

["Darwin\n"]
Parent is 33539
Sun May 14 18:22:33 CDT 2023
33539 is here, pipe=#<IO:0x00000001002a8018>
33554 is here, pipe=

Here’s an example that merges standard error and standard output into a single stream (note
that buffering means that the error output comes back ahead of the standard output):

ref_io/io_popen_2.rb
pipe = IO.popen(["bc", {$stderr => $stdout}], "r+")
pipe.puts "1 + 3; bad_function()"
pipe.close_write
puts pipe.readlines

produces:

Runtime error: undefined function: bad_function()
Function: (main)

4

Reading and Writing Streams
The IO class has read and write methods at both the class level and the instance level.

Class Method Reading and Writing
You can read an entire I/O stream with the class method IO.read(command_or_path, length = nil,
offset = 0, **opts). If the first argument is a path string, it reads the file at the path and returns
the entire file as a string. If the first argument starts with a pipe character (|), the argument
is interpreted as a command. In that case, the command is executed in a subprocess and
anything the command sends to standard output is returned as a single string. If the length
argument is set, then only that number of bytes are read starting at the beginning of the
string, unless offset is also set, in which case the reading starts that many bytes into the string.
The keyword options are the same file opening and encoding options available for File.open
(Opening a File, on page 591).

The method IO.binread takes the same options but treats the result as a binary string encoded
with Ruby’s ASCII-8BIT binary encoding.

The method IO.readlines(command_or_path, separator = $/, limit = nil, **opts) takes similar arguments
plus an optional line separator and returns the string split into lines. The default line separator
is \n, the global Ruby line separator. In this method, the limit argument is the maximum
number of lines returned. The keyword options are the same as used in File.open. If the sepa-
rator is nil, no separation is performed. If the separator is an empty string, the separator is a
paragraph spacer, meaning two consecutive line separators.

You can write from a class method with IO.write, which has two forms: IO.write(path, data, offset
= 0, **opts) and IO.write(command, data, **opts). As with the read method, a command is denoted
because it starts with a pipe character (|). The optional arguments are the same as for File.new.

Chapter 29. Library Reference: Input, Output, Files, and Formats • 600

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_io/io_popen_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

By default, the path version replaces the contents of the file at path with the data. If the offset
argument is not zero, it starts writing the data an offset number of bytes from the beginning,
which results in the latter part of the file being overwritten. If the offset is bigger than the
file, Unicode null characters are used as padding.

The command version executes the command in a shell and writes the data argument to
standard input. In both cases the return value is the length of the data string in bytes.

The binwrite command has the same arguments but opens the stream in binary mode using
Ruby’s ASCII-8BIT encoding.

Instance Method Reading and Writing
Once you have an instance, either by using IO.new, or inside the block argument to IO.open,
you can read or write to that instance. These methods also work on files.

To read from an I/O stream or file, the file must have been opened in a read mode (see Table
28, Mode values, on page 591).

The most general method is IO#read(max_length = nil, out_string = nil). If themax_length argument
is nil, it reads all the remaining data in the stream. Otherwise, you get the next max_length
bytes of the stream and the stream remembers the position for the next read. If the out_string
argument is specified, that variable is also set to the same value that is returned by the read
method.

The following read methods just return the next available thing in the stream. These methods
all raise EOFError if the stream is at the end:

• IO#readbyte returns the integer of the next byte in the stream. The IO#getbyte method is
similar but returns nil at the end of the stream rather than raise an error.

• IO#readchar returns the next character in a text stream as a one character string. The
IO#getc method is similar but returns nil at the end of the stream rather than raise an
error.

• IO#readline(separator = $/, limit = 1, chomp: false), aliased as IO#gets, returns the next line. If
separator is specified, it uses that value as the separator (including the special values of
nil and empty string). If limit is specified, that number is the maximum number of bytes
returned in the line (not the number of lines), and if chomp is true, the line separator is
removed from the return value. IO#readlines with the same arguments returns an array
of all remaining lines in the stream.

• IO#readpartial(max_length, out_string = nil) returns the nextmax_length bytes both as a return
value and as the value of the variable passed in as out_string. The encoding is binary
ASCII-8BIT if out_string is not specified, or the encoding of out_string if it is. This method
blocks only when the stream is currently empty but not at the end of the stream. The
related method IO#read_nonblock takes the same options but is non-blocking.

• IO#pread(max_length, offset = 0, out_string = nil) has similar behavior to IO#readpartial, but
does not move the read position of the stream. It reads max_length bytes starting at the
offset position of the string. This method is thread-safe because it does not change the
read position of the stream.

The main instance method for writing to a stream that has been opened in writing mode is
IO#write(*objects), which takes an array of items, which are then converted to strings via the
to_s method and written one by one to the stream.

report erratum • discuss

IO • 601

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If you just want to write a single string, you can use the push operator << as in stream <<
"write this!". This will also convert the argument using to_s.

The related method IO#print(*objects) also writes each object to the string but separates the
objects with the global field separator, which is in the global variable $, or $OUTPUT_FIELD_SEP-
ARATOR. After the last object, the method adds the value of the global record separator, which
is the global variable $/ or $OUTPUT_RECORD_SEPARATOR. If there is no argument, it writes the
value of the global variable $_, which is the last variable assigned, as in:

File.open("foo.txt", "w+") do |f|
gets
f.print

end

When you are done reading or writing an instance, you call close to close the stream. If you
have been writing to the file, closing the file may be required to flush the operating systems
I/O buffer and send any remaining data over the stream.

The IO class also has a printf method that behaves the same as the Kernel#printf method.

Iteration
I/O streams implement each and import Enumerable. The eachmethod reads one line at a time
and passes it to the block argument. If no arguments are passed, lines are delimited by the
global line separator $/, which is usually \n. The each method takes arguments similar to
other line-based methods—you can pass a separator as an argument to be used instead of
$/, an integer argument limits the number of bytes returned in each line, and a keyword
argument chomp: removes the line delimiter if it is true. This method is aliased as each_line.

You can get similar behavior from the class method IO.foreach(command, separator = $/, limit =
nil, **options) [{ |line| block}], which takes an initial string argument that is either a path name
or a command starting with the pipe character. The remaining arguments are the same as
for IO#each. The class method, if called with a path, reads from that path and sends each line
to the block argument in turn. If called with a command, executes that command and passes
each line of the resulting output to the block.

You can iterate over a stream at a different level with the instance methods File#each_byte
[{byte}], File#each_char [{char}], and File#each_codepoint [{codepoint}], all of which pass one ele-
ment at a time to their associated block.

External File Encodings
Playing around with encodings within a program is all very well, but in most code we’ll
want to read data from and write data to external files. And often that data will be in a par-
ticular encoding.

Ruby’s I/O objects support both encoding and transcoding of data. What does this mean?

Every I/O object has an associated external encoding. This is the encoding of the data being
read from or written to the outside world. Through a piece of magic we’ll describe in Default
External Encoding, on page 605, all Ruby programs run with the concept of a default external
encoding. This is the external encoding that will be used by I/O objects unless you override
it when you create the object (for example, by opening a file).

Chapter 29. Library Reference: Input, Output, Files, and Formats • 602

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Now, your program may want to operate internally in a different encoding. For example,
some of my files may be encoded with ISO-8859-1, but we want our Ruby program to work
internally using UTF-8. Ruby I/O objects manage this by having an optional associated
internal encoding. If set, then input will be transcoded from the external to the internal
encoding on read operations, and output will be transcoded from internal to external
encoding on write operations.

Let’s start with the simple cases. On our MacOS box, the default external encoding is UTF-
8. If we don’t override it, all our file I/O will therefore also be in UTF-8. We can query the
external encoding of an I/O object using the external_encoding method:

ref_io/encoding_simple.rb
f = File.open("/etc/passwd")
puts "File encoding is #{f.external_encoding}"
line = f.gets
puts "Data encoding is #{line.encoding}"

produces:

File encoding is UTF-8
Data encoding is UTF-8

Notice that the data is tagged with a UTF-8 encoding even though it (presumably) contains
just 7-bit ASCII characters. Only literals in your Ruby source files have the “change encoding
if they contain 8-bit data” rule.

You can force the external encoding associated with an I/O object when you open it—simply
add the name of the encoding, preceded by a colon, to the mode string. Note that this in no
way changes the data that’s read; it simply tags it with the encoding you specify:

ref_io/encoding_external.rb
f = File.open("/etc/passwd", "r:ascii")
puts "File encoding is #{f.external_encoding}"
line = f.gets
puts "Data encoding is #{line.encoding}"

produces:

File encoding is US-ASCII
Data encoding is US-ASCII

You can force Ruby to transcode—change the encoding—of data it reads and writes by
putting two encoding names in the mode string, again with a colon before each. For example,
the file iso-8859-1.txt contains the word olé in ISO-8859-1 encoding, so the e-acute (é) character
is encoded by the single byte \xe9. I can view this file’s contents in hex using the od command-
line tool. (Windows users can use the d command in debug to do the same.)

0000000 6f 6c e9 0a
0000004

If we try to read it with our default external encoding of UTF-8, we’ll encounter a problem:

ref_io/encoding_transcode_problem.rb
f = File.open("#{__dir__}/iso-8859-1.txt")
puts f.external_encoding.name
line = f.gets
puts line.encoding
puts line

report erratum • discuss

IO • 603

http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_simple.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_external.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_transcode_problem.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

UTF-8
UTF-8
ol?

The problem is that the binary sequence for the e-acute isn’t the same in ISO-8859-1 and
UTF-8. Ruby just assumed the file contained UTF-8 characters, tagging the string it read
accordingly.

We can tell the program that the file contains ISO-8859-1:

ref_io/encoding_transcode_problem_2.rb
f = File.open("#{__dir__}/iso-8859-1.txt", "r:iso-8859-1")
puts f.external_encoding.name
line = f.gets
puts line.encoding
puts line

produces:

ISO-8859-1
ISO-8859-1
ol?

This doesn’t help us much. The string is now tagged with the correct encoding, but our
operating system is still expecting UTF-8 output.

The solution is to map the ISO-8859-1 to UTF-8 on input:

ref_io/encoding_transcode.rb
f = File.open("#{__dir__}/iso-8859-1.txt", "r:iso-8859-1:utf-8")
puts f.external_encoding.name
line = f.gets
puts line.encoding
puts line

produces:

ISO-8859-1
UTF-8
olé

If you specify two encoding names when opening an I/O object, the first is the external
encoding, and the second is the internal encoding. Data is transcoded from the former to the
latter on reading and the opposite way on writing.

Binary Files
If you want to open a file containing binary data in Ruby, you must now specify the binary
flag, which will automatically select the 8-bit clean ASCII-8BIT encoding. To make things
explicit, you can use “binary” as an alias for the encoding:

ref_io/encoding_binary.rb
f = File.open("#{__dir__}/iso-8859-1.txt", "rb")
puts "Implicit encoding is #{f.external_encoding.name}"
f = File.open("#{__dir__}/iso-8859-1.txt", "rb:binary")
puts "Explicit encoding is #{f.external_encoding.name}"
line = f.gets
puts "String encoding is #{line.encoding.name}"

Chapter 29. Library Reference: Input, Output, Files, and Formats • 604

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_transcode_problem_2.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_transcode.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_binary.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

Implicit encoding is ASCII-8BIT
Explicit encoding is ASCII-8BIT
String encoding is ASCII-8BIT

Default External Encoding
If you look at the text files on your computer, chances are they all use the same encoding,
probably UTF-8. But whatever encoding you use, chances are good that you’ll stick with it
for the majority of your work. In fact, you probably don’t think about it much.

On Unix-like boxes, including MacOS, you may find you have the LANG environment variable
set. These days MacOS has the value en_US.UTF-8 by default, which says that we’re using the
English language in the U.S. territory and the default code set is UTF-8. On startup, Ruby
looks for this environment variable and, if present, sets the default external encoding from
the last part of this value.

If instead we were in Japan and the LANG variable were set to ja_JP.sjis, the encoding would
be set to Shift JIS. We can look at the default external encoding by querying the Encoding class.
While we’re at it, we’ll experiment with different values in the LANG environment variable:

$ echo $LANG
en_US.UTF-8
$ ruby -e 'p Encoding.default_external.name'
"UTF-8"
$ LANG=ja_JP.sjis ruby -e 'p Encoding.default_external.name'
"Windows-31J"
$ LANG= ruby -e 'p Encoding.default_external.name'
"US-ASCII"

The encoding set from the environment does not affect the encoding Ruby uses for source
files—it affects only the encoding of data read and written by your programs.

Finally, you can use the -E command-line option (or the long-form --encoding) to set the default
external encoding of your I/O objects, as shown in the following commands:

$ ruby -E utf-8 -e 'p Encoding.default_external.name'
"UTF-8"
$ ruby -E sjis -e 'p Encoding.default_external.name'
"Windows-31J"
$ ruby -E sjis:iso-8859-1 -e 'p Encoding.default_internal.name'
"ISO-8859-1"

Encoding Compatibility
Before Ruby performs operations involving strings or regular expressions, it first has to
check that the operation makes sense. For example, it is valid to perform an equality test
between two strings with different encodings, but it is not valid to append one to the other.
The basic steps in this checking are as follows:

• If the two objects have the same encoding, the operation is valid.
• If the two objects each contain only 7-bit characters, the operation is permitted regardless

of the encodings.
• If the encodings in the two objects are compatible (which we’ll discuss next), the opera-

tion is permitted.

report erratum • discuss

IO • 605

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Otherwise, an exception is raised.

Let’s say you have a set of text files containing markup. In some of the files, authors used
the sequence &hellip; to represent an ellipsis. In other files, which have UTF-8 encoding,
authors used an actual ellipsis character (\u2026). We want to convert both forms to three
periods.

We can start off with a simplistic solution:

while (line = gets)
result = line.gsub(/…/, "...")

.gsub(/\u2026/, "...") # unicode ellipsis
puts result

end

In my environment, the content of files is by default assumed to be UTF-8. Feed our code
ASCII files and UTF-encoded files, and it works just fine. But what happens when we feed
it a file that contains ISO-8859-1 characters?

dots.rb:4:in `gsub': broken UTF-8 string (ArgumentError)

Ruby tried to interpret the input text, which is ISO-8859-1 encoded, as UTF-8. Because the
byte sequences in the file aren’t valid UTF, it failed.

There are three solutions to this problem. The first is to say that it makes no sense to feed
files with both ISO-8859 and UTF-8 encoding to the same program without somehow differ-
entiating them. That’s perfectly true. This approach means we’ll need some command-line
options, liberal use of force_encoding, and code to delegate the pattern matching to different
sets of patterns depending on the encoding of each file.

A second hack is to simply treat both the data and the program as ASCII-8BIT and perform
all the comparisons based on the underlying bytes. This isn’t particularly reliable, but it
might work in some circumstances.

The third solution is to choose a master encoding and to transcode strings into it before doing
the matches. Ruby provides built-in support for this with the default_internal encoding
mechanism.

Default Internal Encoding
By default, Ruby performs no automatic transcoding when reading and writing data.
However, two command-line options allow you to change this.

We’ve already seen the -E option, which sets the default encoding applied to the content of
external files. When you say -E _xxx_, the default external encoding is set to _xxx_. However,
-E takes a second option. In the same way that you can give open both external and internal
encodings, you can also set a default internal encoding using the option -E _external:internal_.

Thus, if all your files are written with ISO-8859-1 encoding but you want your program to
have to deal with their content as if it were UTF-8, you can use this:

$ ruby -E iso-8859-1:utf-8

You can specify just an internal encoding by omitting the external option but leaving the
colon:

Chapter 29. Library Reference: Input, Output, Files, and Formats • 606

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

$ ruby -E :utf-8

Indeed, because UTF-8 is probably the best of the available transcoding targets, Ruby has
the -U command-line option, which sets the internal encoding to UTF-8.

You can query the default internal encoding in your code with the default_internal method.
This returns nil if no default internal encoding has been set.

One last note before we leave this section: if you compare two strings with different encodings,
Ruby does not normalize them. Thus, "é" tagged with a UTF-8 encoding will not compare
equal to "é" tagged with ISO-8859-1, because the underlying bytes are different.

JSON
JSON1 is a language-independent data interchange format based on key/value pairs (hashes
in Ruby) and sequences of values (arrays in Ruby). JSON is frequently used to exchange
data between JavaScript running in browsers and server-based applications. JSON is not a
general-purpose object marshaling format.

Ruby makes JSON methods available with require "json".

Parsing JSON
The general Ruby method for parsing JSON is JSON.parse(source, options = {}). The source is a
JSON string. The output is a Ruby object. If the JSON is an object, you get a Ruby Hash; if
the JSON string is an array, you get a Ruby array; if the JSON is a scalar, you get a Ruby
object of the matching type, and that is true recursively of sub-objects in the JSON. The
commonly used option symbolize_names: true ensures that the keys in the returned hash are
symbols rather than strings, other options are less commonly used.

If you have a file name, then JSON.load_file(path, options={}) is a shortcut for
JSON.parse(File.read(path), options). More generally, if you have a file or other source for the
JSON rather than the JSON data, you can save yourself a step with JSON.load(source, proc = nil,
options = {}). A value based on the source argument is passed to parse. If source responds to
to_str, then that value is parsed. If source responds to to_io, then source.to_io.read is parsed. If
the source responds to open—meaning a file or a URI—then source.read is parsed.

Generating JSON
If you have a Ruby object and want to turn it into JSON, you can use the default Ruby
libraries. We note that there are many third-party alternatives here that may provide you
more flexibility or an easier API.

The method JSON.generate(object, options = nil) converts the object into JSON. The related method
fast_generate does the same thing but does not check for circular references. The method
pretty_generate returns a string that is formatted to be more human readable. Most objects in
Ruby will have a to_json method that does the same thing.

In all these cases, the resulting JSON string depends on the object:

• If the object is a Hash, it creates a JSON object, recursively generating JSON for all the
keys and values.

1. https://www.json.org

report erratum • discuss

JSON • 607

https://www.json.org
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• If the object is an array, it creates a JSON array, again recursively generating JSON for
all the values.

• A Ruby string is converted to a JSON string.
• An integer or float results in a string representing the number.
• Boolean or nil results in the corresponding JSON token: true, false, or null.
• Any other object can have a custom representation by defining the method to_json.

Note that many classes in Ruby have JSON extensions that must be explicitly required. The
file pattern is json/add/bigdecimal and the available extensions are for “bigdecimal”, “complex”,
“date”, “date_time”, “exception”, “ostruct”, “range”, “rational”, “regexp”, “set”, “struct”,
“symbol”, and “time”.

This sample writes JSON data to a file:

ref_io/write_json.rb
require "json"
data = {name: "dave", address: %w[tx usa], age: 17}
serialized = data.to_json
serialized # => {"name":"dave","address":["tx","usa"],"age":17}
File.open("data.json", "w") { |f| f.puts serialized }

This sample reads the serialized data from the file and reconstitutes it:

ref_io/read_json.rb
require "json"
data = JSON.load_file("data.json")
data # => {"name"=>"dave", "address"=>["tx", "usa"], "age"=>17}

Pathname
A Pathname represents the absolute or relative name of a file. It has two distinct uses. First,
it allows manipulation of the parts of a file path (extracting components, building new paths,
and so on). Second it acts as a facade for some methods in classes Dir, File, and module FileTest,
forwarding on calls for the file named by the Pathname object.

The class Pathname is part of the Ruby Standard Library, meaning it ships with Ruby but is
only available to code that explicitly requires it using require "pathname".

You create a pathname with Pathname.new(path), which takes a string argument. The method
Pathname.pwd returns the current working directory as a path, and the method Pathname.glob
is essentially a wrapper around Dir.glob.

Path instances have a limited ability to be treated like strings, like files, like I/O streams, or
like directories. You can append to a pathname with + (the right argument is converted to
a Pathname before it is added). The addition argument is aliased as /, which might seem odd
but lets you writes something like this, which looks a little like file manipulation:

ref_io/pathname_concat.rb
require "pathname"
dir_name = Pathname.new("/usr/bin")
dir_name / "ruby" # => #<Pathname:/usr/bin/ruby>

Most of the methods in Pathname are just wrappers around File, Dir, or IO. Here’s a sample
(check out the Ruby documentation for a complete list):

Chapter 29. Library Reference: Input, Output, Files, and Formats • 608

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_io/write_json.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/read_json.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/pathname_concat.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

ref_io/pathname_1.rb
require "pathname"

p1 = Pathname.new("/usr/bin")
p2 = Pathname.new("ruby")
p3 = p1 + p2
p4 = p2 + p1
p3.parent # => #<Pathname:/usr/bin>
p3.parent.parent # => #<Pathname:/usr>
p1.absolute? # => true
p2.absolute? # => false
p3.split # => [#<Pathname:/usr/bin>, #<Pathname:ruby>]

ref_io/pathname_2.rb
require "pathname"
p5 = Pathname.new("testdir")
puts p5.realpath
puts p5.children

produces:

/Users/noel/projects/pragmatic/ruby5/Book/testdir
testdir/pickaxe.rb
testdir/config.json

ref_io/pathname_3.rb
require "pathname"

p1 = Pathname.new("/usr/bin/ruby")
p1.file? # => true
p1.directory? # => false
p1.executable? # => true
p1.size # => 167952

p2 = Pathname.new("testfile") # => #<Pathname:testfile>

p2.read # => "This is line one\nThis is line two\nThis is
.. line three\nAnd so on...\n"

p2.readlines # => ["This is line one\n", "This is line two\n",
.. "This is line three\n", "And so on...\n"]

StringIO
In some ways, the distinction between strings and file contents is artificial: the contents of
a file are basically a string that happens to live on disk, not in memory. The StringIO class,
available by using require "stringio", aims to unify the two concepts, making strings act as if
they were opened IO objects. Once a string is wrapped in a StringIO object, it can be read from
and written to as if it were an open file. This can make unit testing a lot easier.

The StringIO class is not a subclass of IO, it just implements many of the same read/write
methods. Using StringIO lets you pass strings into classes and methods that were originally
written to work with files. StringIO objects take their encoding from the string you pass in—if
no string is passed the default external encoding is used.

You create a StringIOwith either the method StringIO.new(string = "", mode = "r+") or the method
StringIO.open(string = "", mode = "r+"). In both cases the string argument is the initial value of
the StringIO and the mode still controls whether you can read or write to the value the same
way it does for files (see Table 28, Mode values, on page 591). The openmethod takes a block

report erratum • discuss

StringIO • 609

http://media.pragprog.com/titles/ruby5/code/ref_io/pathname_1.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/pathname_2.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/pathname_3.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

and passes the new StringIO to the block. The new method returns the new StringIO. You can
then do most of your file or I/O processing on the new object. Here’s an example:

ref_io/string_io.rb
require "stringio"

sio = StringIO.new("time flies like an arrow")
sio.read(5) # => "time "
sio.read(5) # => "flies"
sio.pos = 19
sio.read(5) # => "arrow"
sio.rewind # => 0
sio.write("fruit") # => 5
sio.pos = 16
sio.write("a banana") # => 8
sio.rewind # => 0
sio.read # => "fruitflies like a banana"

And here’s an example of testing using a StringIO to test CSV processing:

ref_io/string_io_test.rb
require "stringio"
require "csv"
require "minitest/autorun"

class TestCSV < Minitest::Test
def test_simple
StringIO.open do |op|
CSV(op) do |csv|
csv << [1, "line 1", 27]
csv << [2, nil, 123]

end
assert_equal("1,line 1,27\n2,,123\n", op.string)

end
end

end

produces:

Run options: --seed 21858
Running:

.
Finished in 0.000341s, 2932.5513 runs/s, 2932.5513 assertions/s.
1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

Tempfile
Class Tempfile creates managed temporary files. Although they behave the same as any other
IO objects, temporary files are automatically deleted when the Ruby program terminates.
Once a Tempfile object has been created, the underlying file may be opened and closed a
number of times in succession.

Tempfile does not directly inherit from IO. Instead, it delegates calls to a File object. From the
programmer’s perspective, apart from the unusual new, open, and close semantics, a Tempfile
object behaves as if it were an IO object.

Chapter 29. Library Reference: Input, Output, Files, and Formats • 610

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_io/string_io.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/string_io_test.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

If you don’t specify a directory to hold temporary files when you create them, the Dir.tmpdir
location will be used to find a system-dependent location. For example:

ref_io/tempfile.rb
require "tempfile"
tf = Tempfile.new("afile")
tf.path # => "/var/folders/lw/ybl1dt397hn5t38r2f70_bv00000gn/T/afile20230514-3

.. 3767-6hc83k"
tf.puts("Cosi Fan Tutte")
tf.close
tf.open
tf.gets # => "Cosi Fan Tutte\n"
tf.close(true)
tf.unlink # => nil

If you create a Tempfile, it is deleted when the application ends. However, it’s useful to
explicitly close it with close and delete it with unlink, especially if you are creating a lot of
Tempfile objects, so as not to take up extra space.

The method Tempfile.create takes a block, passes the tempfile to the block, and closes and
removes the file at the end of the block. For example:

ref_io/tempfile_block.rb
require "tempfile"
Tempfile.create("afile") do |tf|
tf.path
tf.puts("Cosi Fan Tutte")
tf.gets

end

URI
URI encapsulates the concept of a Uniform Resource Identifier (URI), a way of specifying
some kind of (potentially networked) resource. URIs are a superset of URLs: URLs (such as
the addresses of web pages) allow specification of addresses by location, and URIs also allow
specification by name. The URI classes are available with require "uri".

The URI class can be used to do the following:

• Parse URIs into component parts.
• Open a stream to the network location referred to by the URI.
• Manage encoding and decoding of strings to be safe for use in URLs.

URIs consist of a scheme (such as http, mailto, ftp, and so on), followed by structured data
identifying the resource within the scheme.

Parsing is managed with the method URI.parse(string), which takes in a string URI and returns
a parsed object in a subclass of a URI specific to the scheme. The library explicitly supports
the file, ftp, http, https, ldap, mailto, ws, and wss schemes; others will be treated as generic URIs.

The class Net::HTTP accepts URI objects where a URL parameter is expected.

ref_io/uri.rb
require "uri"

uri = URI.parse("http://pragprog.com:1234/mypage.cgi?q=ruby")
uri.class # => URI::HTTP

report erratum • discuss

URI • 611

http://media.pragprog.com/titles/ruby5/code/ref_io/tempfile.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/tempfile_block.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/uri.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

uri.scheme # => "http"
uri.host # => "pragprog.com"
uri.port # => 1234
uri.path # => "/mypage.cgi"
uri.query # => "q=ruby"

uri = URI.parse("mailto:ruby@pragprog.com?Subject=help&body=info")
uri.class # => URI::MailTo
uri.scheme # => "mailto"
uri.to # => "ruby@pragprog.com"
uri.headers # => [["Subject", "help"], ["body", "info"]]

uri = URI.parse("ftp://dave@anon.com:/pub/ruby;type=i")
uri.class # => URI::FTP
uri.scheme # => "ftp"
uri.host # => "anon.com"
uri.port # => 21
uri.path # => "pub/ruby"
uri.typecode # => "i"

The module also has convenience methods to escape and unescape URIs.

The method URI.open(uri, *args, &block) opens a generic URI. The first argument is either an
object that responds to open, or a string that can be parsed by URI.parse and converts to an
object that responds to open—all URI subclasses do. That object is sent an open message with
any remaining args. The resulting I/O stream is sent to the block, and can be treated like any
I/O stream. The stream is then closed at the end of the block.

The module also has convenience methods to escape and unescape URIs. There are three
pairs of methods and they are similar. URI.encode_www_form_component(string, encoding = nil) and
URI.decode_www_form_component(string, encoding = nil) convert a string to URL formatting.
Characters in the ranges "a".."z", "A".."Z", "0".."9" are preserved as-is, along with the characters
"*", ".", "-", and "_". Spaces are converted to +. All other characters are converted to the format
"%" followed by the ord value of the character as a hexadecimal number. The resulting string
is in UTF-8 encoding unless an encoding is specified. The decode_www_form_component does the
reverse: It takes an encoded string, puts the spaces back and converts the % back to regular
characters.

The pair URI.encode_uri_component(string, encoding = nil) and URI.decode_uri_component(string,
encoding = nil) are exactly the same except that spaces are converted to "%20".

The method URI.encode_www_form(enumerable, encoding = nil) converts a list of items to a format
that can be used as HTTP form data in a query string. In the normal case, the enumerable is
a hash, and each element is converted to a string key=value. If the value is an array with
multiple elements, each element is matched to the key separately. The individual elements
are joined by an ampersand (&). For example:

ref_io/uri_encode_1.rb
require "uri"
URI.encode_www_form({first: "not", homes: ["earth", "other earth"]}) # => "first

.. =not&h
.. omes=e
.. arth&h
.. omes=o
.. ther+e

Chapter 29. Library Reference: Input, Output, Files, and Formats • 612

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_io/uri_encode_1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

.. arth"

Alternately, each element of the argument can be a two-element array[name, value] and that
element is converted into a string name=value:

ref_io/uri_encode_2.rb
require "uri"
URI.encode_www_form([%w[first jennifer], %w[last weaver]]) # => "first=jennifer&

.. last=weaver"

If the individual element is a one element array or just a single element, that name is just
used directly:

ref_io/uri_encode_3.rb
require "uri"
URI.encode_www_form([%w[first jennifer], ["admin"]]) # => "first=jennifer&admin"

The associated method URI.decode_www_form(string, encoding = UTF-8, separator: "&", use__charset_:
false, isindex: false) takes a string and converts it back to the set of key value pairs:

ref_io/uri_decode.rb
require "uri"
URI.decode_www_form("first=not&homes=earth&homes=other+earth") # => [["first",

.. "not"],
.. ["homes",
.. "earth"],
.. ["homes",
.. "other
.. earth"]]

Similar encoding and decoding is provided by the CGI module. CGI.escape(string) and
CGI.escapeURIComponent(sting) encodes an arbitrary string using the same rules as
URI.encode_www_form_component, and URI.encode_uri_component, while CGI.escapeHTML(string)
escapes the special HTML characters &, <, and >. The encodings can be reversed with
CGI.unescape, CGI.unescapeURIComponent and CGI.unescapeHTML.

YAML
The YAML library, available with require "yaml", serializes and deserializes Ruby object trees
to and from an external, readable, plain-text format. YAML can be used as a portable object
marshaling scheme, allowing objects to be passed in plain text between separate Ruby pro-
cesses. In some cases, objects may also be exchanged between Ruby programs and programs
in other languages that also have YAML support.

The YAML module in Ruby as an alias to Psych which is the name of the YAML parser being
used. We mention this because it may be easier to find further documentation searching for
Psych rather than YAML.

Writing YAML
YAML can be used to store an object tree in a string. The API call is YAML.dump(object, io = nil,
options = {}). The object is the object being converted to YAML. The io parameter is an
optional IO argument, potentially a File or StringIO. The options argument is a hash with the
following keys:

report erratum • discuss

YAML • 613

http://media.pragprog.com/titles/ruby5/code/ref_io/uri_encode_2.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/uri_encode_3.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/uri_decode.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• :cannonical, default false. If true, prints a more verbose and formal YAML structure.
• :header, default false. If true, adds %YAML <version> at the top of the document.
• :indentation, default 2. The number of spaces used for line indentation. Only values

between 0 and 9 can be used.
• :line_width, default 0. Maximum line width, if exceeded, the library will split lines. The

default of 0 is equivalent to 80.

If no io argument is provided, the resulting YAML is returned as a string, if an io argument
is provided, the IO object is returned. This code uses the io form to write the YAML directly
to an open file.

ref_io/yaml_store.rb
require "yaml"
tree = {
name: "ruby",
uses: %w[scripting web testing etc]

}

File.open("tree.yml", "w") { |f| YAML.dump(tree, f) }

The class Object defines Object#to_yaml(options = {}), which is a shortcut to YAML.dump(self,
options).

The similar method YAML.safe_dump(object, io = nil, options = {}) behaves almost identically but
limits the set of classes that can be dumped.

By default, the safe set of classes are: Array, Integer, FalseClass, Float, Hash, NilClass, String, and
TrueClass. You can add other classes to the safe list with the option permitted_classes:, any
classes in that list will be added to the list of safe classes, as in permitted_classes: [Symbol, Time].
If the data to be dumped contains an instance of a class that is not in the safe list, a
Psych::DisallowedClass exception is thrown.

Reading YAML
The YAML module provides methods to read from a string or a file, and also for safe and
unsafe reading.

Loading involves two steps, parsing the YAML file, and then converting YAML data struc-
tures to Ruby objects. The most generic method is load, which has a long method signature
with keyword options: YAML.load(yaml, permitted_classes: [Symbol], permitted_symbols: [], aliases:
false, filename: false, fallback: nil, symbolize_names: false, freeze: false, strict_integer: false). The return
value is a Ruby object loaded from the YAML data.

The yaml is a string of YAML or an I/O object containing YAML. The various keyword
arguments, in alphabetical order

• aliases: if true, then YAML alias syntax is allowed. If false, and the YAML contains
aliases, a Psych::AliasesNotEnabled error is raised.

• fallback: if the source yaml is empty, then the fallback value is returned.
• filename: not the source of the string, just used as a filename to report errors if there is a

parsing error.
• freeze: if true, then freeze is called on the resulting Ruby object before it is returned.
• permitted_classes: as with this option for dump, a list of classes that are allowed to be

loaded. The default list is the same as for dump plus load adds Symbol to that list.

Chapter 29. Library Reference: Input, Output, Files, and Formats • 614

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_io/yaml_store.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• permitted_symbols: if this list is not empty, then any symbol that is loaded is compared
against this list, if the symbol is not on the lest, then a Psych::DisallowedClass exception is
thrown.

• strict_integer: if true, the YAML parser uses a stricter definition of integer when parsing.
• symbolize_names: if true, any hash object in the YAML resolves to have symbols as keys

in instead of strings.

If there’s a syntax error in the YAML, a Psych::SyntaxError exception is raised.

ref_io/yaml_read.rb
require "yaml"
tree = YAML.load_file("tree.yml")
tree[:uses][1] # => "web"

There are a few variants of this method: YAML.load_file(filename, **kwargs) is a convenience
method that opens the file at filename, then calls YAML.load with the open file as the yaml
argument, the filename as the filename: argument, and passes along any of the other keyword
arguments. The method YAML.safe_load has the exact arguments as YAML.load except that it
does not include Symbol as a permitted class.

If you don’t want the safety of limiting classes (which, to be clear, is a protection against
malicious YAML documents), you can use YAML.unsafe_load(yaml, filename: nil, fallback: false,
symbolize_names: false, freeze: false, strict_integer: false), where all the arguments have the same
meaning as in load and safe_load, but there are no type checks. There’s also
YAML.unsafe_load_file(filename, **kwargs) which has the same behavior as load_file except for the
lack of type checks.

Using YAML
The YAML format is also a convenient way to store configuration information for programs.
Because it is readable, it can be maintained by hand using a normal editor and then read as
objects by programs. For example, a configuration file may contain the following:

ref_io/config.yml

username: dave
prefs:
background: dark
foreground: cyan
timeout: 30

We can use this in a program:

ref_io/yaml_config.rb
require "yaml"

config = YAML.load_file("#{__dir__}/config.yml")
puts config["username"]
puts config["prefs"]["timeout"] * 10

produces:

dave
300

report erratum • discuss

YAML • 615

http://media.pragprog.com/titles/ruby5/code/ref_io/yaml_read.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/config.yml
http://media.pragprog.com/titles/ruby5/code/ref_io/yaml_config.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

CHAPTER 30

Library Reference: Ruby on Ruby
In this chapter, we’ll take a closer look at some useful classes in Ruby that you might use for
metaprogramming or observation. We’ll investigate their API and functionality in somewhat
more detail than we did in Part I of this book. The goal of this chapter is to give you more
information about what you can do with these classes, and also to discuss related functions
together so that you can browse and perhaps find a new feature that might help.

This is not intended to be a complete listing of every class, every method, or every option.
For that, please refer to the official Ruby documentation at https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide its complete name
and signature. The notation Foo.bar indicates a class or module method, while Foo#bar indicates
an instance method. Optional arguments are indicated with Ruby syntax and their default
value, as in Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with brace syntax and
indication of what the arguments to the block will be, as in Foo#bar { |object| block }. An
optional block argument will be surrounded by square brackets, Foo#bar [{block}]. Please
note that this description syntax is slightly different than the official documentation, and
that in some cases, what the official documentation shows as multiple method signatures,
we’ve chosen show as one signature with default values. Also, parameter names sometimes
differ from the official documentation to make the naming clearer.

Benchmark
The Benchmark module allows code execution to be timed and the results tabulated. It is
easier to use if you include it in your top-level environment.

The most useful method of Benchmark is Benchmark.bm(label_width = 0, *labels) { |report| ...}. The
bmmethod passes a report object to the block. Inside the block, you call report(caption) on that
object one or more times, passing a block each time. Ruby will execute each block and emit
a table with an entry for each block listing the time spent by the CPU executing code (user
time), the CPU time spent by the system during the block (system time), the total of those
two (total), and the amount of clock time that passed during the block.

This example compares the costs of four kinds of method dispatch:

ref_meta_ruby/benchmark_1.rb
require "benchmark"
string = "Stormy Weather"

report erratum • discuss

https://docs.ruby-lang.org
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/benchmark_1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

m = string.method(:length)
Benchmark.bm(6) do |x|
x.report("direct") { 100_000.times { string.length } }
x.report("call") { 100_000.times { m.call } }
x.report("send") { 100_000.times { string.send(:length) } }
x.report("eval") { 100_000.times { eval("string.length") } }

end

produces:

user system total real
direct 0.002441 0.000003 0.002444 (0.002442)
call 0.004671 0.000001 0.004672 (0.004671)
send 0.005053 0.000002 0.005055 (0.005055)
eval 0.211069 0.002029 0.213098 (0.213146)

The Benchmark module offers the Benchmark#bmbm(width = 0) method, which does a test run
of all the blocks being benchmarked before doing the actual benchmark. The reason for this
is to attempt to ensure that the memory garbage collector is stable before the benchmark,
which can make the results more consistent and accurate.

Which is better: reading all of a dictionary and splitting it or splitting it line by line? This
example uses bmbm to run a rehearsal before doing the timing:

ref_meta_ruby/benchmark_2.rb
require "benchmark"
Benchmark.bmbm(6) do |x|
x.report("all") do
str = File.read("/usr/share/dict/words")
words = str.scan(/[-\w']+/)

end
x.report("lines") do
words = []
File.foreach("/usr/share/dict/words") do |line|
words << line.chomp

end
end

end

produces:

Rehearsal --
all 0.061760 0.007533 0.069293 (0.069697)
lines 0.040289 0.002250 0.042539 (0.044079)
--------------------------------- total: 0.111832sec

user system total real
all 0.059681 0.003550 0.063231 (0.063295)
lines 0.039664 0.001055 0.040719 (0.040720)

Data
Ruby provides the Data class to be used as an immutable data object. The intent of Data is to
create an object similar to a Struct, but whose attributes cannot be changed (see Struct, on
page 628).

You create new Data classes with the define method. As with Struct, you can then create new
instances with either positional or keyword arguments and you can read those arguments:

Chapter 30. Library Reference: Ruby on Ruby • 618

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/benchmark_2.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

ref_meta_ruby/data_1.rb
Classroom = Data.define(:name, :capacity)
auditorium = Classroom.new("auditorium", 1000)
math = Classroom.new(name: "X 206", capacity: 30)

auditorium.capacity # => 1000

Unlike Struct, you can not write the attributes of a Data object, but you can create new instances
using with. The with method takes keyword arguments and returns a new data object. That
data object is a copy of the original, but any attributes passed as arguments to with are set to
those new values. The original instance continues to exist unchanged. For example:

ref_meta_ruby/data_2.rb
LightBulb = Data.define(:brightness, :watts, :color)
cool_bulb = LightBulb.new(1600, 15, 4000)
warmer_bulb = cool_bulb.with(color: 2700)

cool_bulb.to_h # => {:brightness=>1600, :watts=>15, :color=>4000}
warmer_bulb.to_h # => {:brightness=>1600, :watts=>15, :color=>2700}

Objects created via Data respond to a minimal set of other methods, including== for equality,
and to_h to convert to a hash. Notably, Data objects do not respond to each or dig but they do
respond to deconstruct and deconstruct_keys, so they can be used in pattern matching:

ref_meta_ruby/data_3.rb
LightBulb = Data.define(:brightness, :watts, :color)
bulb = LightBulb.new(1600, 15, 5000)

case bulb
in {brightness:, color: 5000}
puts "a daylight bulb with #{brightness} lumens"

in {brightness:, color: 2700}
puts "a warm bulb with #{brightness} lumens"

else
puts "a different bulb"

end

produces:

a daylight bulb with 1600 lumens

Data objects can be created with a block, which allows for instance methods to be defined
for the data object:

ref_meta_ruby/data_4.rb
LightBulb = Data.define(:brightness, :watts, :color) do
def warmth
(color < 4500) ? "cool" : "warm"

end
end

bulb = LightBulb.new(1600, 15, 5000)
puts bulb.warmth

produces:

warm

report erratum • discuss

Data • 619

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/data_1.rb
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/data_2.rb
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/data_3.rb
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/data_4.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Delegator and SimpleDelegator
Object delegation is a way of composing objects—extending an object with the capabilities of
another—at runtime. The Ruby Delegator class implements a simple but powerful delegation
scheme, where requests are automatically forwarded from a master class to delegates or
their ancestors and where the delegate can be changed at runtime with a single method call.
The class SimpleDelegator is an implementation of Delegator that is good enough for most
purposes.

The typical use of SimpleDelegator is as a decorator. You create a class as a subclass of SimpleDel-
egator. You create new instances of the simple delegator class by passing it an existing instance
of another class. When you call a method on the delegator, it will automatically pass methods
that the delegator does not define over to the original object.

Here’s an example:

ref_meta_ruby/simple_delegator.rb
require 'delegate'

class User
attr_accessor :first_name, :last_name

def initialize(first_name, last_name)
@first_name = first_name
@last_name = last_name

end
end

class SortableUser < SimpleDelegator
def sort_name
"#{last_name}, #{first_name}"

end
end

fozzie = User.new("Fozzie", "Bear")
sortable_user = SortableUser.new(fozzie)

p sortable_user.first_name
p sortable_user.sort_name

produces:

"Fozzie"
"Bear, Fozzie"

In this case, the SortableUser defines sort_name but any other method called on a SortableUser
instance will be delegated to the original object.

You can get the underlying object from a SimpleDelegator with SimpleDelegator#__getobj__ and
change it with SimpleDelegator#__setobj__(new_object).

For simple cases where the class of the delegate is fixed, make the new class a subclass of
DelegateClass, passing the name of the class to be delegated as an argument in the class decla-
ration. In the new class’s initialize method, call super with the object that is being delegated,
which must be of the type passed in the class definition. For example:

ref_meta_ruby/delegate_class.rb
require "delegate"

Chapter 30. Library Reference: Ruby on Ruby • 620

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/simple_delegator.rb
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/delegate_class.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

class Words < DelegateClass(Array)
def initialize(list = "/usr/share/dict/words")
words = File.read(list).split
super(words)

end
end

words = Words.new
words[9999] # => "anticonscience"
words.size # => 235976
words.grep(/matz/) # => ["matzo", "matzoon", "matzos", "matzoth"]

In this case, the Words class will delegate any instance variables that it doesn’t know to Array.
This is extremely close to just subclassing from Array.

The Delegator class gives you more control over the delegation (SimpleDelegator and DelegateClass
are defined in terms of Delegator). To use Delegator you would create a class that inherits from
it, and which implements __getobj__ and __setobj__ to determine the object to delegate to.

Logger
Ruby has a Logger class, that is accessible with require "logger". It writes log messages to a file
or stream, and supports automatic time- or size-based rolling of log files. Messages can be
assigned severities, and only those messages at or above the logger’s current reporting level
will be logged.

A new logger is created with Logger.new(location, shift_age = 0, shift_size = 1048576, **options).

The location is one of the following:

• A string, which is interpreted as a file name, log entries are appended to the file.
• An IO stream, in which case log entries are written to the stream. The stream can be an

open File object or any of Ruby’s global streams, like $stdout, but any stream will work.
• nil (or File::NULL), in which case log entries are ignored.

Valid keyword arguments for the options hash include level to set the log’s severity level, and
progname to set the default program name. Entries that are less severe than the level are
ignored, the default is Logger::DEBUG, which is the lowest level.

Levels can be defined using the provided constants or by corresponding strings. In order
from least severe to most severe the defined logger severities are:

• Logger::DEBUG, aka debug
• Logger::INFO, aka info
• Logger::WARN, aka warn
• Logger::ERROR, aka error
• Logger::FATAL, aka fatal
• Logger::UNKNOWN, aka unknown

You add new entries to the log with Logger#add(severity, message = nil, progname = nil), aliased
as log. The severity is one of the seven constants or strings listed above, the message is what
is sent to the logger, and the program name is an optional prefix. The message is a string,
which is used as-is, an Exception, in which case the .message attribute of the exception is used,
or anything else, in which case inspect is called to convert it to a string.

report erratum • discuss

Logger • 621

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

For each severity level, there are three convenience functions:

• The level name, so debug, info, warn and so on, which take a message argument and add
a log entry at that severity.

• A predicate method, debug?, info? and so on, which returns true if the level of the logger
matches the method name. You can also get the level with Logger#level.

• A bang method, debug!, info!, which sets the level of the log going forward based on the
method name. You can also set the level with Logger#level=.

You can see the default message pattern in this code:

ref_meta_ruby/logger.rb
require "logger"

log = Logger.new($stdout, level: Logger::DEBUG)
log.info("Application starting")
3.times do |i|
log.debug("Executing loop, i = #{i}")
temperature = some_calculation(i) # defined externally
if temperature > 50
log.warn("Possible overheat. i = #{i}")

end
end

log.info("Application terminating")

produces:

I, [2023-05-14T18:22:37.412092 #34146] INFO -- : Application starting
D, [2023-05-14T18:22:37.412107 #34146] DEBUG -- : Executing loop, i = 0
D, [2023-05-14T18:22:37.412114 #34146] DEBUG -- : Executing loop, i = 1
D, [2023-05-14T18:22:37.412117 #34146] DEBUG -- : Executing loop, i = 2
W, [2023-05-14T18:22:37.412120 #34146] WARN -- : Possible overheat. i = 2
I, [2023-05-14T18:22:37.412122 #34146] INFO -- : Application terminating

Ruby will automatically rotate the log files based on the shift_size and shift_age parameters. If
both parameters are positive integers, then the rotation is based on file size. When the log
first reaches the shift_size, the file is closed and renamed with a .0 extension and a new log
file is opened. If there is an existing log with the .0 extension, it is moved to .1 and so on. The
shift_age parameter is the maximum number of files to keep, files over that number are
removed. If the shift_age is a string, then the rotation is based on time, the parameter can have
the value daily, weekly, monthly, everytime or now. When the time period ends, the existing file
is renamed based on the timestamp and a new file is opened (if the parameter is everytime
or now, a new file is created on each new log entry).

ObjectSpace
The ObjectSpacemodule contains a number of routines that interact with the garbage collection
facility and allow you to traverse all living objects with an iterator.

ObjectSpace also provides support for object finalizers. These are procs that will be called
when a specific object is about to be destroyed by garbage collection. Typically you either
call ObjectSpace methods as module methods as in ObjectSpace.count_objects or you include
ObjectSpace as a module in another class and call the methods directly.

This is just a glance at what ObjectSpace can do; there’s more in the official documentation.

Chapter 30. Library Reference: Ruby on Ruby • 622

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/logger.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

The method ObjectSpace.define_finalizer(object, proc = proc()) adds proc as a finalizer, called
automatically when object is about to be destroyed. If you use lambda to create the proc object,
you must remember to include a parameter with the block. If you don’t, the invocation of
the lambda will silently fail when the finalizer is called because of a mismatch in the
expected and actual parameter count. Finalization of an object is never guaranteed, and may
not happen until program exit.

The method ObjectSpace.each_object(module = nil) [{block}] calls the block once for each living
object in this Ruby process that is not an “immediate” object. An immediate object is an
object that is stored directly as its value, rather than as a pointer in memory to its value. In
Ruby, small enough Integer objects, symbols, true, false, and nil are considered immediate
objects, though the exact definition is implementation-dependent. If module is specified,
each_object calls the block for only those classes or modules that match (or are a subclass of)
module. The return value number of objects found. In the following example, each_object
returns the large integer we defined and several numeric constants defined elsewhere in
Ruby. If you don’t provide a block, an Enumerator is returned.

Here’s an example:

a = 98.6
b = "banana"
c = 123456789876543216723123412412341234124
d = 12
count = ObjectSpace.each_object(Numeric) {|x| p x }
puts "Total count: #{count}"

produces:

(0+1i)
9223372036854775807
NaN
Infinity
1.7976931348623157e+308
2.2250738585072014e-308
123456789876543216723123412412341234124
Total count: 7

Observable
The Observer pattern, also known as Publish/Subscribe, provides a simple mechanism for
one object (the source) to inform a set of interested third-party objects when its state changes.
In the Ruby implementation, the notifying class mixes in the module Observable, which pro-
vides the methods for managing the associated observer objects. The observers must
implement the update method to receive notifications.

The way this works is that the class that is sending the notifications adds include Observable.
To add subscribers to the notifications, you call Observable#add_observer(observer, method =
:update). The observer is an object that receives a notification, the method is the method that
is automatically called when a notification is triggered.

To send a notification, the publishing object calls Observable#changed(state=true) to mark that
the object has changed, then call Observable#notify_observers(*args), which goes through each
subscriber and calls the method registered when add_observer was invoked. You need to call
changed again before you call notify_observers again, you can see the status of that with

report erratum • discuss

Observable • 623

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Observable#changed?. Any arguments passed to notify_observers are passed through to the
update method.

Here’s an example:

ref_meta_ruby/observable.rb
class Temperature
@p = [83, 75, 90, 134, 134, 112, 79]
def self.fetch
exit if @p.empty?
@p.shift

end
end
require "observer"

class CheckWaterTemperature # Periodically check the water
include Observable

def run
last_temp = nil
loop do
temp = Temperature.fetch # external class...
puts "Current temperature: #{temp}"
if temp != last_temp
changed # notify observers
notify_observers(Time.now, temp)
last_temp = temp

end
end

end
end

class Warner
def initialize(&limit)
@limit = limit

end

def update(time, temp) # callback for observer
if @limit.call(temp)
puts "--- #{time}: Temperature outside range: #{temp}"

end
end

end

checker = CheckWaterTemperature.new
checker.add_observer(Warner.new { |t| t < 80 })
checker.add_observer(Warner.new { |t| t > 120 })
checker.run

produces:

Current temperature: 83
Current temperature: 75
--- 2023-07-10 22:27:26 -0500: Temperature outside range: 75
Current temperature: 90
Current temperature: 134
--- 2023-07-10 22:27:26 -0500: Temperature outside range: 134
Current temperature: 134
Current temperature: 112

Chapter 30. Library Reference: Ruby on Ruby • 624

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/observable.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Current temperature: 79
--- 2023-07-10 22:27:26 -0500: Temperature outside range: 79

The publishing object has access to Observable#count_observers which returns the number of
current observers, and Observable.delete_observer(object), which removes a specific observer.
You can remove all observers with Observable.delete_observers.

OpenStruct
If Data is the most immutable way to get a small object, OpenStruct is the most flexible. An
OpenStruct isn’t a class generator, rather, it’s more a way to allow you to have hash-like data
with attribute-like syntax.

You create an OpenStruct with new method, taking either a hash argument or an arbitrary set
of keyword arguments. After that, you can read, write, and create attributes just by using
them, you can also use hash syntax:

require "ostruct"

bulb = OpenStruct.new(brightness: 1600, watts: 15, color: 2500)
bulb.color # => 2500
bulb[:watts] # => 15
bulb.shape = "A19"
bulb.to_h # => {:brightness=>1600, :watts=>15, :color=>2500, :shape=>"A19"}

Internally OpenStruct uses method_missing, which means it’s very flexible, but also quite slow.
We’d recommend trying Struct or Data for production code, though OpenStruct is nice for test
data. It’s possible that you might overwrite existing Object or Kernel methods with your
attribute, in which case you can access the underlying method by appending it with a !.

The OpenStruct class defines == for equality tests, each_pair for use in loops, and it does
implement dig, but it does not implement the pattern matching methods.

PP
PP uses the PrettyPrint library to format the results of inspecting Ruby objects. In addition to
the methods in the class, it defines a global function, pp, which works like the existing p
method but formats its output.

PP has a default layout for all Ruby objects. However, you can override the way it handles
a class by defining the method pretty_print, which takes a PP object as a parameter. It should
use that PP object’s methods text, breakable, nest, group, and pp to format its output (see PrettyPrint
for details):

ref_meta_ruby/pretty_print.rb
require 'pp'

Customer = Struct.new(:first_name, :last_name, :dob, :country)
cust = Customer.new("Walter", "Wall", "12/25/1960", "Niue")

puts "Regular print"
p cust

puts "\nPretty print"
pp cust

report erratum • discuss

OpenStruct • 625

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/pretty_print.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

produces:

Regular print
#<struct Customer first_name="Walter", last_name="Wall", dob="12/25/1960",
country="Niue">

Pretty print
#<struct Customer
first_name="Walter",
last_name="Wall",
dob="12/25/1960",
country="Niue">

Ripper
The ripper library, available with require "ripper", gives you access to Ruby’s parser. It can
tokenize input, meaning convert a string of Ruby code into a series of semantic elements
called tokens. It can return a lexical analysis of those tokens and what they mean to Ruby.
And it can return a nested S-expression, which is a tree-like structure that represents the
relationship between the tokens in the code. Ripper also supports event-based parsing.

Here’s an example that shows the possibilities on a single string of Ruby code:

ref_meta_ruby/ripper_1.rb
require "ripper"

content = "a=1;b=2;puts a+b"

p "Tokens"
p Ripper.tokenize(content)
puts
p "Lexical analysis"
pp Ripper.lex(content)[0,5]
puts
p "S-Expressions"
pp Ripper.sexp(content)

produces:

"Tokens"
["a", "=", "1", ";", "b", "=", "2", ";", "puts", " ", "a", "+", "b"]

"Lexical analysis"
[[[1, 0], :on_ident, "a", CMDARG],
[[1, 1], :on_op, "=", BEG],
[[1, 2], :on_int, "1", END],
[[1, 3], :on_semicolon, ";", BEG],
[[1, 4], :on_ident, "b", CMDARG]]

"S-Expressions"
[:program,
[[:assign, [:var_field, [:@ident, "a", [1, 0]]], [:@int, "1", [1, 2]]],
[:assign, [:var_field, [:@ident, "b", [1, 4]]], [:@int, "2", [1, 6]]],
[:command,
[:@ident, "puts", [1, 8]],
[:args_add_block,
[[:binary,
[:var_ref, [:@ident, "a", [1, 13]]],
:+,
[:var_ref, [:@ident, "b", [1, 15]]]]],

Chapter 30. Library Reference: Ruby on Ruby • 626

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/ripper_1.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

false]]]]

The method signatures for tokenize, lex, and, sexp are all the same (source, filename = "-",
line_number = "1", **kwargs). They all basically ignore filename, but the line_number is used in the
output, and sexp has a keyword argument called raise_errors: false that, if true, raises a Syntax-
Error if the source has an error.

As an example of event-based lexical analysis, here’s a program that finds class definitions
and their associated comment blocks. For each, it outputs the class name and the comment.
It might be considered the zeroth iteration of an RDoc-like program.

The parameter to parse is an accumulator—it is passed between event handlers and can be
used to construct the result:

ref_meta_ruby/rdoc.rb
require "ripper"

This class handles parser events, extracting
comments and attaching them to class definitions
class BabyRDoc < Ripper::Filter
def initialize(*)
super
reset_state

end

def on_default(event, token, output)
reset_state
output

end

def on_sp(_token, output)
output

end
alias_method :on_nil, :on_sp

def on_comment(comment, output)
@comment << comment.sub(/^\s*#\s*/, " ")
output

end

def on_kw(name, output)
@expecting_class_name = (name == "class")
output

end

def on_const(name, output)
if @expecting_class_name
output << "#{name}:\n"
output << @comment

end
reset_state
output

end

private

def reset_state
@comment = ""
@expecting_class_name = false

report erratum • discuss

Ripper • 627

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/rdoc.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

end
end

BabyRDoc.new(File.read(__FILE__)).parse($stdout)

produces:

BabyRDoc:
This class handles parser events, extracting
comments and attaching them to class definitions

Singleton
The Singleton design pattern ensures that only one instance of a particular class may be
created for the lifetime of a program.

The Singleton module makes this simple to implement. Mix the Singleton module into each
class that is to be a singleton, and that class’s new method will be made private. In its place,
users of the class call the method instance, which returns a singleton instance of that class.

Ruby overrides a few other methods of the class when Singleton is mixed in: inherited, clone,
_load, and dup, all of which are changed to prevent multiple instances of the class from
existing.

In this example, the two instances of MyClass are the same object:

ref_meta_ruby/singleton.rb
require "singleton"

class MyClass
attr_accessor :data
include Singleton

end

a = MyClass.instance # => #<MyClass:0x00000001042c2d88>
b = MyClass.instance # => #<MyClass:0x00000001042c2d88>
a.data = 123 # => 123
b.data # => 123
a.object_id # => 60
b.object_id # => 60

Struct
Sometimes you want to create a small object to hold data, that has little to no behavior of its
own, and a Ruby class seems like too much structure to bother with.

Ruby has a few lightweight ways to create classes that have little to no behavior.

The most commonly used is probably Struct. You can use Struct to create instance-like objects
that have attributes and can respond to messages that you define.

The thing about Struct is that using Struct creates a class that you then create instances of.
Let’s say you want to represent a classroom that has a name and a capacity. You use Struct.new
to create a Classroom class, with the desired attribute names as arguments. You can then use
Classroom.new to create new classrooms. The positional arguments in new match the order of
the arguments to the original Struct call, or you can use keyword arguments. If you pass the
original Struct call the argument keyword_init: true, then the resulting class must use keyword
arguments in its constructor.

Chapter 30. Library Reference: Ruby on Ruby • 628

report erratum • discuss

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/singleton.rb
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Once the struct instance has been built, you can access the attributes to read and write, both
as attributes and as hashes:

Classroom = Struct.new(:name, :capacity)
small = Classroom.new("Room 203", 25)
small.name # => "Room 203"
small.name = "Room 205"

large = Classroom.new(name: "Auditorium", capacity: 1000)
large[:capacity] # => 1000

In other words, the Struct single line is more-or-less equivalent to this, except that the
resulting Struct version can take either positional or keyword arguments:

class Classroom
attr_accessor :name, :capacity
def initialize(name:, capacity:)
@name = name
@capacity = capacity

end
end

A Struct can even get instance methods. Passing a block to Struct.new gives you a chance to
define methods that can be called on the created instances of the struct—technically the new
struct class is passed to the block as an argument, so methods defined inside it are added as
instance methods:

Classroom = Struct.new(:name, :capacity) do
def full_name
"Classroom: #{name}, capacity: #{capacity}"

end
end
small = Classroom.new("Room 203", 25)
small.full_name # => "Classroom: Room 203, capacity: 25"

The main thing you can’t do is have an inheritance hierarchy of Structs, or include other
modules inside the block. The Struct class also gives the structs you create some default
behavior for free, of which the most useful are:

• ==: returns true if all the attributes are equal.
• to_a, to_h, and to_s.
• deconstruct and deconstruct_keys so that you can use pattern matching against a Struct as

though it were a Hash.
• each_pair, which takes a block with the name and value of each attribute and applies the

block in turn. Also each, which just passes the block each value.

Also, Struct objects respond to dig, so you can treat them like hashes or arrays in a dig call.

If all you have is some data and a couple of methods on that data, a Struct can be a very
succinct way of defining that data.

One potential downside of a Struct is that the data inside a struct can be changed. In some
situations, you want to be clear that on object’s value will not change—this can be particu-
larly important for applications sharing data across multiple threads.

report erratum • discuss

Struct • 629

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Unbound Method
An UnboundMethod is a method that is not currently attached to an instance, which means it
can not yet be called. UnboundMethod instances are created by Module methods such as
instance_method and can also be created by calling unbind on a Method object.

In order to use an UnboundMethod, you must bind it to an object using UnboundMethod#bind(object),
which returns a Method that can be called. The object must be a member of the class that the
unbound method came from, or a subclass of that class—you can get that class with
UnboundMethod#owner. It’s pretty common to call the method immediately so the shortcut
method UnboundMethod#bind_call(object, ...) is equivalent to bind(object).call(...) but with a perfor-
mance improvement because it does not create an intermediate Method object.

Otherwise, UnboundMethod has much the same attributes asMethod (see Method, on page 549),
including arity, name, original_name, and parameters.

Chapter 30. Library Reference: Ruby on Ruby • 630

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Part VI

Appendixes

Included in the appendixes is information on troubleshooting
misbehaving Ruby code, a collection of Ruby symbols and their
meanings that might be hard to look up, a more detailed introduc-
tion to using a command line, information about Ruby runtimes,
and a list of significant changes made to Ruby in each version
since 2.0.

APPENDIX 1

Troubleshooting Ruby
You’ve read through this entire book, you start to write your very own Ruby program,
and…it doesn’t work. Here’s a list of common gotchas and other tips to help get you back
up and running.

Common Issues
• In Ruby, unlike in JavaScript and Python, a method name with no parenthesis calls the

method with no arguments. It does not return the method as an object to be used later.
To get the method object, use the method named method.

• In Ruby, calling a class as if it were a method, as in Classname(), is an error. To create a
new instance you need to call Classname.new().

• If you happen to forget a comma (,) in an argument list—especially to print—you can
produce some very odd error messages.

• Ruby allows you to have a trailing comma at the end of an array or hash literal, method
call, or block method list, but not at the end of the parameter list of a method definition.

• If Ruby is telling you that the number of arguments being passed to a method is incorrect,
this is often due to a mismatch in which arguments are meant to be keyword arguments
and which are meant to be positional.

• If an attribute setter is not being called, it may be because within a class definition, Ruby
will parse setter = as an assignment to a local variable, not as a method call. Use the form
self.setter= to indicate the method call. For example:

class Incorrect
attr_accessor :one, :two
def initialize
one = 1 # incorrect - sets local variable
self.two = 2

end
end

obj = Incorrect.new
obj.one # => nil
obj.two # => 2

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Objects that don’t appear to be properly set up may have been victims of an incorrectly
spelled initialize method:

class Incorrect
attr_reader :answer
def initialise # <-- spelling error
@answer = 42

end
end

ultimate = Incorrect.new
ultimate.answer # => nil

• If you misspell an instance variable name, you do not get a runtime error; instead, the
uninitialized variable has a nil value:

class Incorrect
attr_reader :answer
def initialize
@anwser = 42 #<-- spelling error

end
end

ultimate = Incorrect.new
ultimate.answer # => nil

• A parse error at the last line of the source often indicates a missing end keyword, and
sometimes that missing keyword is quite a bit earlier. The Ruby interpreter will try to
make a good guess for where the actual issue is.

• This message—syntax error, unexpected $end, expecting keyword_end—means you have an
end missing somewhere in your code. (The $end in the message means end-of-file, so
the message means that Ruby hit the end of your code before finding all the end keywords
it was expecting.) Try running the file with the -w option, which will warn when it finds
ends that aren’t aligned with their opening if/while/class.

• Watch out for precedence issues, especially when using {...} instead of do…end. Use
parenthesis to remove potential parser ambiguity.

def one(arg)
if block_given?
"block given to 'one' returns #{yield}"

else
arg

end
end

def two
if block_given?
"block given to 'two' returns #{yield}"

end
end

result1 = one two {
"three"

}

Appendix 1. Troubleshooting Ruby • 634

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

result2 = one two do
"three"

end

result3 = one(two) { "three" }

result4 = one(two) do "three" end

puts "With braces, result = #{result1}"
puts "With do/end, result = #{result2}"
puts "With braces and parens, result = #{result3}"
puts "With do/end and parens, result = #{result4}"

produces:

With braces, result = block given to 'two' returns three
With do/end, result = block given to 'one' returns three
With braces and parens, result = block given to 'one' returns three
With do/end and parens, result = block given to 'one' returns three

The difference here is which method gets called if there are no parenthesis. In the result1 line,
the braces bind tightly and are considered an argument to the method two. In the do/end
line, the braces bind after a method call, so the parser interprets it as a call to the method one
with two and the block as arguments.

• If numbers don’t come out right, perhaps they’re strings. Text read from a file will be
a String and will not be automatically converted to a number by Ruby. A call to Integer
will work wonders (and will throw an exception if the input isn’t a well-formed integer).
The following is an example of the issue:

while line = gets
num1, num2 = line.split(/,/)
...

end

num1 and num2 are strings. You can rewrite this using map:

while line = gets
num1, num2 = line.split(/,/).map { |val| Integer(val) }
...

end

• Unintended aliasing—if you are using an object as the key of a hash, make sure it doesn’t
change its hash value (or arrange to call rehash if it does):

arr = [1, 2]
hash = {arr => "value"}
hash[arr] # => "value"
arr[0] = 99
hash[arr] # => nil
hash.rehash # => {[99, 2]=>"value"}
hash[arr] # => "value"

• Make sure your method names start with a lowercase letter and class and constant
names start with an uppercase letter.

report erratum • discuss

Common Issues • 635

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Make sure the open parenthesis of a method’s parameter list butts up against the end
of the method name with no intervening spaces. Otherwise, the parser will not interpret
the parenthesized list as the parameters to the method.

Debugging Tips
• Read the error message! Ruby error messages have a lot of information, including the

type of error, the location of the error, and the entire sequence of method calls that lead
to the error. If the error is because a method name wasn’t found, Ruby will suggest
similarly named methods that actually exist. If the error is potentially at several points
along a line, Ruby will attempt to show you where along the line the error happened.

• Running your scripts with warnings enabled (the -w command-line option), can give
you insight into potential problems.

• If you cannot figure out where a method is defined, you can access the source location
with obj.method(:method_name).source_location. This will return a two-element array with
the file name and line number where the method was defined. This works even if the
method was defined dynamically with define_method or implicitly with method_missing.

• Output written to a terminal may be buffered. This means you may not see a message
you write immediately. In addition, if you write messages to both STDOUT and STDERR,
the output may not appear in the order you were expecting. Always use nonbuffered
I/O (set sync=true) for debug messages.

• Make sure the class of the object you are using is what you think it is. If in doubt, check
with puts my_obj.class.

• Use irb and the debugger.

• Use freeze. If you suspect that some unknown portion of code is setting a variable to a
bogus value, try freezing the variable. The culprit will then be caught by raising an
exception during the attempt to modify the variable.

• Modern editors have increasingly powerful tools to identify Ruby errors in the editor.
Using YARD or RBS can increase the ability of these editors to infer issues from your
code.

• One major technique makes writing Ruby code both easier and more fun. Develop your
applications incrementally. Write a few lines of code, and then write tests . Write a few
more lines of code, and then exercise them. One of the major benefits of a dynamically
typed language is that things don’t have to be complete before you use them.

Appendix 1. Troubleshooting Ruby • 636

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

APPENDIX 2

I Can’t Look It up!
Ruby has a lot of notation and typography that is called by a name that is not necessarily
obvious, making it hard to search for the meaning of a particular line of code. Here are a
few particularly important symbols:

FunctionalityNameSymbol

Like other Ruby operate and assign operators. x ||= y is
equivalent to x = x || y. Because of Ruby’s short circuit of

or-equals||=

boolean operators, the expression means that if x is nil,
the new value is y, and if x is not nil, then x’s value
remains the same. Is often used as a shortcut to set a
default value.
With a string on one side of the operator, and a regular
epression on the other, =~ returns true if the string

Match operators=~ !~

matches the regular expression and !~ returns true if the
string doesn’t match the regular expression.
Takes a set of barewords and converts them to an array
of symbols, %i[a b c] becomes [:a, :b, :c]. The delimiter after

symbol delimiter,
symbol percent liter-
als.

%i()

the %i is arbitrary, the array continues until the matching
delimiter is encountered at the end of the expression.
Takes a set of barewords and converts them to an array
of strings, %w[a b c] becomes ["a", "b", "c"]. The delimiter

array delimiter,
array percent liter-
als.

%w()

after the %w is arbitrary, the array continues until the
matching delimiter is encountered at the end of the
expression.
Acts as a literal string delimiter, lower case q acts as a
single quote string, upper case Q acts as a double quote

string delimiter,
string percent liter-
als.

%q() or
%Q()

string. Usually used to avoid escaping if the quote mark
is part of the string. The delimiter is arbitrary, the string
continues until the matching delimiter is encountered.
Acts as a literal regular expression delimiter. Usually used
to avoid escaping if the / is part of the regular expression.

regular expression
delimiter, regular

%r()

The delimiter after the r is arbitrary, the string continues
until the matching delimiter is encountered.

expression percent
literals.

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

FunctionalityNameSymbol

Convert the argument to the stated type.Conversion meth-
ods or conversion
wrappers

Array(),
Integer()

Used by a lot of different classes, including String, Array,
and File, to append a value to the end of the existing value.

Shovel<<

Allows access to the singleton class of object foo. Most
often used with a class name to define class methods.

Singleton operatorclass <<
foo

In a method call such as foo&.bar, if the left side of the safe
navigation operator is nil, allows the method call to pro-
ceed and return nil rather than throw an error.

Safe Navigation or
Lonely Operator

&.

In x <=> y, if x is less than y, return -1, if x is greater than
y, return 1, if they are equal, return 0.

Spaceship operator<=>

Inside a double-quoted string, evaluates the expression,
converts it to a string, and inserts it in the string.

String interpolation#{EXPRES-
SION}

If x is true, return y else return zTernary operatorx ? y : z
Creates a lambda equivalent to lambda { |ARGS| EXPR }.Stabby Lambda(ARGS) ->

{ EXPR }
Looks up a constant value inside a module or class, as in
Foo::Bar. If there is nothing on the left of the operator, like

Scope resolution::

::Foo, forces a lookup in the top-level global scope, which
can be useful if you are doing a lookup from inside a
nested set of modules.
In a method call, as in thing(*[1, 2, 3]) converts an array to
a series of positional arguments in the method. In a

Splat*

method definition, converts an arbitrary number of
optional arguments to an array.
In a method call, converts a hash to a set of keyword
arguments in the method. In a method definition, converts
an arbitrary number of keyword arguments to a hash.

Double Splat**

In a method call, converts a proc or lambda passed as an
explicit argument to the implicit block argument of the

Proc operator&, specifi-
cally &:foo

method. If the parameter decorated with the & is not a
Proc, Ruby will try to convert it to one by calling the
method to_proc. So, thing(&:foo)will call to_proc on the sym-
bol :foo. In a method definition, captures the implicit block
argument and converts it to a Proc that can be referred to
in the method.
Passes all the arguments to a given method to a new
method, whether they are positional arguments, keyword

Argument Forward-
ing

...

arguments, or block arguments. The outer method needs
to define the arguments as something like def outer(...), and
the inner call has to also use the three dots: user.inner(...)
Adding a key/value pair to a hash literal by only referenc-
ing the key. The value will come from a value in the cur-

Hash shortcut syn-
tax, or shorthand

{x:, y:}

Appendix 2. I Can’t Look It up! • 638

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

FunctionalityNameSymbol

rent binding with the same name as the key. Also works
for keyword arguments in method calls.

hash syntax, or
"punning"

In the a block, _1 through _9 reference the positional
arguments passed to that block, with the first argument
being _1, the second being _2 and so on.

Numbered Block
Parameter

_1, _2

In a regular expression, can be used to refer to text cap-
tured by a parenthesized group elsewhere in the expres-
sion, \1 is the first group, \2 is the second, and so on.

Numbered Match
Captures

\1, \2

report erratum • discuss

Appendix 2. I Can’t Look It up! • 639

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

APPENDIX 3

Command-Line Basics
Although there’s great support for Ruby in IDEs, you’ll probably still end up spending a lot
time at your system’s command prompt, also known as a shell prompt or just plain prompt.
The most popular IDEs also provide their own shell prompts in another window right next
to your code.

The Command Prompt
If you’re a Linux user, you’re probably already familiar with the command prompt. If you
don’t already have a desktop icon for it, hunt around for an application called Terminal or
xterm.

On MacOS, run Applications → Utilities → Terminal.app. (Though we also recommend the
excellent iTerm21 on MacOS.)

On Windows, you can install Windows Subsystem for Linux2 and have a shell that behaves
like the Linux or MacOS shells, or you can use the default Windows Power Shell, which, as
we’ll see, behaves a little differently. On Windows, we recommend installing Windows
Terminal at https://docs.microsoft.com/en-us/windows/terminal/install, which makes it easier to use
other shell type.

When you run the application, a fairly empty window will pop up. It will contain a banner
and a prompt. Try typing echo hello at the prompt and hitting Enter (or Return, depending
on your keyboard). You should see hello echoed back, and another prompt should appear.

Folders, Directories, and Navigation
If you’re used to a GUI tool such as Explorer on Windows or Finder on MacOS for navigating
to your files, then you’ll be familiar with the idea of folders—locations on your hard drive
that can hold files and other folders.

When you’re at the command prompt, you have access to these same folders. But at the
prompt, these folders are usually called directories (because they contain lists of other direc-
tories and files). These directories are organized into a strict hierarchy. On Unix-based systems
(including Mac OS and WSL), there’s one top-level directory, called / (a forward slash). On

1. https://iterm2.com
2. https://learn.microsoft.com/en-us/windows/wsl/about

report erratum • discuss

https://docs.microsoft.com/en-us/windows/terminal/install
https://iterm2.com
https://learn.microsoft.com/en-us/windows/wsl/about
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

plain Windows, there is a top-level directory for each drive on your system, so you’ll find
the top level for your C: drive at C:\ (that’s the drive letter C, a colon, and a backslash).

The path to a file or directory is the set of directories that you have to traverse to get to it
from the top-level directory, followed by the name of the file or directory itself. Each compo-
nent in this name is separated by a forward slash (on Unix) or a backslash (on Windows).
For example, if you organized your projects in a directory called projects under the top-level
directory, and if the projects directory had a subdirectory for your time_planner project, the
full path to the README file would be /projects/time_planner/readme.txt on Unix and
C:\projects\time_planner\readme.txt on Windows.

Spaces in Directory Names and Filenames

Operating systems allow you to create folders with spaces in their names. This is great when you’re
working at the GUI level. However, from the command prompt, spaces can be a headache because
the shell that interprets what you type will treat the spaces in file and folder names as being parameter
separators and not as part of the name. You can get around this (typically by putting the entire file
name in quotation marks), but it generally isn’t worth the hassle. If you are creating new folders and
files, it’s easiest to avoid spaces in their names.

To navigate to a directory, use the cd command. (Because the Unix prompt varies from system
to system, we’ll just use a single dollar sign to represent it here.)

$ cd /projects/time_planner (on Unix)
C:\> cd \projects\time_planner (on Windows)

On Unix systems, the parent directory is represented as .. (two dots) and the current directory
is . (a single dot). So cd .. takes you up one level, and cd ..\.. takes you up two levels. (Some
Unix shell programs have more shortcuts available, for example, in ZShell, cd - takes you
back to the previous directory.)

On Unix systems, you usually don’t want to be creating top-level directories. Instead, Unix
gives each user their own home directory. So, if your username is dave, your home directory
might be located in /usr/dave, /home/dave, or /Users/dave. At the shell prompt, the special char-
acter ~ (a single tilde) stands for the path to your home directory. You can always change
directories to your home directory using cd ~.

To find out the directory you’re currently in, you can type pwd (on Unix) or cd on Windows.
So, for Unix users, you could type this:

$ cd /projects/time_planner
$ pwd
/projects/time_planner
$ cd
$ pwd
/Users/dave

On Windows, the commands are similar:

C:\> cd \projects\time_planner
C:\projects\time_planner> cd \projects
C:\projects> cd %userprofile%

In Unix, You can create a new directory under the current directory using themkdir command:

Appendix 3. Command-Line Basics • 642

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

$ cd /projects
$ mkdir expense_tracker
$ cd expense_tracker
$ pwd
/projects/expense_tracker

Notice that to change to the new directory, we could just give its name relative to the current
directory—we don’t have to enter the full path.

We suggest you create a directory called pickaxe to hold the code you write while reading
this book:

$ mkdir ~/pickaxe (on Unix)
C:\> mkdir \pickaxe (on Windows)

It’s helpful to get into the habit of changing into that directory before you start work:

$ cd ~/pickaxe (on Unix)
C:\> cd \pickaxe (on Windows)

report erratum • discuss

Folders, Directories, and Navigation • 643

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

APPENDIX 4

Ruby Runtimes
Ruby code is converted to executable code using an interpreter. The current default interpreter
is called YARV (Yet Another Ruby VM), and has been the standard since Ruby 1.9, replacing
the original interpreter, which was known as CRuby or MRI (Matz’s Ruby Interpreter). You’ll
actually still see the names CRuby and MRI used interchangeably with YARV for the current
version of the interpreter.

The interpreter makes dozens of choices about how to convert Ruby code to machine code:
choices about how to store objects, how to associate objects with their methods, and on and
on. Each of these choices has implications for the runtime performance of Ruby.

Not all uses of Ruby are equal. A one-off script could be optimized for quick startup even
if that might cause performance issues later—a short script might not have a later. Conversely,
a long-running web server may be willing to trade a longer start-up time for better perfor-
mance later on.

There are now several options for Ruby interpreters. Some, like the Just In Time compilers,
are options that ship with core Ruby. Some, like TruffleRuby, are third-party solutions with
different speed characteristics. And some, like JRuby, also give Ruby access to other runtime
libraries.

Let’s go on a tour of the various interpreters available.

Just In Time Compilers
Historically, computer languages are translated in two different ways. A language might
use a compiler to convert the program code directly to machine language. This compilation
happens in a separate step before the code is executed and produces machine-language
artifacts. When it’s time to run the code, the machine-language version is run, and the orig-
inal source code is not used.

Ruby typically uses a different tool called an interpreter. An interpreter converts the source
code to machine language at run time, generally without creating an intermediate machine-
language artifact. In an interpreted language, you typically use the original source code at
runtime.

That said, the line between compilers and interpreters is blurry. A common technique, used
by Java among others, is to compile to a machine-independent byte code and then use a
machine-specific runtime interpreter to execute the code. An advantage of this technique is

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

that the machine-specific part of the translation is minimized, making it easier to port the
languages to different operating systems. (In fact, YARV internally compiles to a byte code
at run time before interpreting it, but this byte code version is typically for internal use only.)

Another way of blurring the distinction is by using a Just-In Time compiler (JIT). A JIT
compiler operates at run time and starts as an interpreter, but can then compile frequently
used code as it executes from Ruby’s byte code to machine code. Typically, this increases
initial startup cost because of the extra compilation step, but if parts of the code are executed
repeatedly in a long-lived process, the machine-compiled versions will eventually be faster.

Ruby ships with two different JIT implementations: MJIT and YJIT.

MJIT
MJIT—the “m” stands for “method-based”—is the older of the two JIT compilers. You can
enable MJIT on your Ruby execution by using --mjit when you call Ruby:

$ ruby options.foo --mjit

MJIT will watch for methods that are called frequently in your code and will compile
methods that it sees as having high-use. That’s where the “method-based” name comes from,
the compiler works at the method level. MJIT’s logic is written in Ruby, and it is basically a
wrapper around the native GCC compiler, calling out to compile frequently used methods
and managing them so that the compiled versions are used in the future.

From your perspective as a Ruby developer, MJIT should run just like YARV, but with some
kind of performance boost. Exactly how much of a boost depends on your application
parameters (and as this is written, there’s not a lot of solid Ruby 3.2 benchmarks to choose
from), but one set of benchmarks had MJIT about 20% faster than Ruby 3.1.1 (For clarity,
these benchmarks come from the TruffleRuby team, but it’s also as comprehensive a com-
parison as we’ve seen.)

A handful of command-line options change how MJIT works; however, most of these are
for testing purposes if you were actually working on MJIT, rather than just writing Ruby:

Notes the number of calls to a method needed to trigger MJIT com-
pilation. The default is 10,000. You might lower this if you were
testing MJIT itself.

--mjit-call-threshold=num

Enables debugging mode, which is slow and something you’d do
only if you were working on MJIT itself.

--mjit-debug

Changes the maximum number of compiled methods MJIT stores
in a cache. The default is 100.

--mjit-max-cache=num

Causes temporary files to be saved to ‘tmp‘ or to the ‘$TMP‘ envi-
ronment variable if it exists.

--mjit-save-temps

Logs errors of the given level priority or lower to the standard error
stream. The default is 0, meaning critical errors only.

--mjit-verbose=num

If set, causes the code to wait until the MJIT compilation finishes.
This is another option for testing MJIT itself.

--mjit-wait

If enabled, prints MJIT warnings to the standard output stream.--mjit-warnings

1. https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.html

Appendix 4. Ruby Runtimes • 646

report erratum • discuss

https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.html
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

YJIT
A second JIT compiler ships with Ruby that takes a significantly different approach to
compilation. YJIT (yet another Yet Another acronym) is a complete compiler on its own, and
as of Ruby 3.2, it is also implemented in Rust. YJIT uses a mechanism called “lazy basic block
versioning” for compilation, which means it compiles sections of code based on chunks of
code that are smaller than methods, such as loops.

YJIT also takes advantage of runtime type information to optimize compilation for known
types—if it sees that a chunk of code is called with integer values, it will optimize the compiled
steps for integer values. If the chunk is called often enough with a different type of value,
then different compiled code is generated. That’s the “versioning” part of basic block ver-
sioning—YJIT creates different compiled versions of blocks based on input values. The “lazy”
part is that YJIT only generates versions for blocks that it sees on the fly during runtime. The
combination means that YJIT can generate fast compiled code without compromising on
Ruby’s flexibility.

YJIT is installed along with Ruby, provided that you have the Rust language version 1.58 or
higher installed on your computer when Ruby is installed. Rust installation instructions can
be found at https://www.rust-lang.org/tools/install.

YJIT can be executed as part of the ruby runtime by adding --yjit to the call:

ruby options.foo --yjit

YJIT can also be enabled by setting the environment variable RUBY_YJIT_ENABLE to true.

Using YJIT can provide a significant performance boost for long-running processes. Because
YJIT only compiles methods after they have been repeated several times—the default is
30—you likely won’t see a benefit in shorter scripts or in unit tests. As this is being written,
the Rust version of YJIT is brand new in the wild, so there aren’t a lot of use cases to check,
but one early test suggests that performance on benchmarks can double using YJIT.2

YJIT has some additional command-line options that tweak the behavior and allow for more
debugging information if you are actually working on YJIT itself. Note that some of the
debugging information depends on having a version of Ruby compiled to produce YJIT
stats.

The number of times a method is called before YJIT optimizes it by
compiling. The default is 30.

--yjit-call-threshold=num

The size, in MiB, of the memory dedicated to executable code. The
default is 128.

--yjit-exec-mem-size=num

If set, enables greedy versioning mode, which may increase the size
of the compiled code.

--yjit-greedy-versioning

The maximum number of versions of a compiled block YJIT will
generate for different type information. The default is 4.

--yjit-max-versions=N

If enabled, stats about YJIT usage are displayed at the end of the
program.

--yjit-stats

2. https://www.solnic.dev/p/benchmarking-ruby-32-with-yjit

report erratum • discuss

Just In Time Compilers • 647

https://www.rust-lang.org/tools/install
https://www.solnic.dev/p/benchmarking-ruby-32-with-yjit
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Produces a stack trace when YJIT exits compile mode. Also enables
--yjit-stats.

--yjit-trace-exits

TruffleRuby
Now we move away from runtime engines that ship with the Ruby virtual machine and
toward other Ruby implementations that run in various other environments. In general,
these implementations offer performance improvements at the cost of lagging behind new
features in Ruby and also limiting access to the Ruby ecosystem, since not all gems can run
in the other environments.

GraalVM3 is a virtual machine environment implemented in Java and designed to be a high-
performance cross-language virtual environment. TruffleRuby,4 created by Chris Seaton, is
a Ruby implementation built on top of GraalVM. TruffleRuby provides very high performance
relative to the standard Ruby implementations; however, it is not completely compatible
with standard Ruby.

If you use a Ruby version manager to install Ruby, it likely incudes TruffleRuby as one of
its downloadable options—this is true of rbenv, which is the recommended setup in this
book, as well as the other commonly used version managers such as RVM, asdf, and chruby.
As we write this, the current version is 22.3.0, but new versions come out on a regular
schedule, so the current version number is likely higher for you when you read this in the
future.

In rbenv, you can install TruffleRuby just as you would any other Ruby implementation
(rbenv install truffleruby-22.3.0 or rbenv install truffle ruby+graalvm-22.3.0). In the default version,
TruffleRuby has already been compiled to a native executable. The +graalvm version runs
inside the Graal Java virtual machine at runtime, just like any other Java application. The
GraalVM version gives you better compatibility with other language tools at the cost of some
short-term performance degredation. The TruffleRuby team recommends the native config-
uration for shorter-running programs, smaller memory use, or any situation where startup
time is important. The GraalVM version is recommended for better performance in a long-
lived process.

Once you have TruffleRuby installed, it runs just like regular Ruby. All the CLI commands
for normal Ruby apply, except for ones that cover, say, JIT compilers that don’t exist in
TruffleRuby.

A great feature of TruffleRuby is that it tries to re-implement the core library in Ruby (most
of the core library in the main runtime is written in C). The idea is that TruffleRuby is better
off having the core in Ruby where the same optimizations can be used, then having them
outsourced to a nominally faster language. You can find those definitions at https://github.com/
oracle/truffleruby/tree/master/src/main/ruby/truffleruby/core, and they can be helpful in understanding
how some of Ruby’s core methods work.

One downside of using a third-party Ruby runtime is that it is not guaranteed to be compat-
ible with the current versions of CRuby. TruffleRuby 22.3.0 is based on Ruby 3.1, and
according to one comparison of Ruby runtimes,5 it passes 97% of the ruby-spec test suite,

3. https://www.graalvm.org
4. https://www.graalvm.org/ruby
5. https://eregon.me/rubyspec-stats

Appendix 4. Ruby Runtimes • 648

report erratum • discuss

https://github.com/oracle/truffleruby/tree/master/src/main/ruby/truffleruby/core
https://github.com/oracle/truffleruby/tree/master/src/main/ruby/truffleruby/core
https://www.graalvm.org
https://www.graalvm.org/ruby
https://eregon.me/rubyspec-stats
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

with most of the failures being related to the CLI or edge cases in the language. If you are
going to try to use TruffleRuby in your application, you should have good test coverage and
make sure that TruffleRuby passes your tests.

TruffleRuby can offer a substantial performance improvement. One set of benchmarks6

suggests a 6x improvement over Ruby 3.1, and while Ruby 3.2 is somewhat faster, TruffleRuby
seems worth considering for long-running processes that are particularly performance
intensive and which are not dependent on those parts of Ruby that TruffleRuby doesn’t
handle.

JRuby
JRuby is the older and more established Java runtime version of Ruby. After several years
of falling behind core Ruby, the November 2022 release (JRuby 9.4) brings JRuby to parity
with Ruby 3.1, with Ruby 3.2 support expected later in 2023. There are some substantial
limitations in JRuby’s support as of this writing.

• Ruby’s threading constructs are not completely supported, specifically Ractors and the
thread scheduler aren’t supported yet. You can interoperate with Java thread-safe data,
however.

• The readme for this version says “Nearly all features from CRuby’s NEWS file have
been implemented.” Again, we recommend making sure your tests continue to run if
you are considering switching to JRuby.

• Rails support for most databases is incomplete.

Improvement on all these fronts is in progress, and by the time you read this, it’s possible
the situation has improved.

JRuby is also available via most Ruby version managers: rbenv install jruby-9.4.0.0 will do it if
you’ve been following along with this book’s defaults. You can also get standalone download
installers at https://www.jruby.org/download. You need to have a Java Standard Edition runtime
installed for the standalone versions,java7 but there’s a decent chance your computer already
has one installed.

With JRuby installed standalone, you can use it to run a file with jruby <filename>, and you
can run irb with jirb. If you install it using rbenv, then the regular ruby and irb commands
work. In the standalone mode, if you are running a ruby-based command line tool like rake
the recommendation is to use jruby -S <COMMAND> to ensure that JRuby is actually executing
the command.

Ruby gems that compile to C will not work with JRuby.

When using JRuby, you can import any Java library in your Java class path. If you add require
"java" to your file, you can access Java classes via their fully qualified class names. JRuby will
convert method names from Ruby-style underlines to Java-style camel case, so calling Java-
Class.do_a_thing will reference the Java method doAThing. Similarly, Java getters and setters
will be converted to Ruby getter and setter methods, so a JavaClass.getFoo() and JavaClass.setFoo()
will be accessible as instance.foo and instance.foo = value. JRuby will convert Ruby strings,
booleans, and numbers to the appropriate Java types and vice-versa. Arrays need to call the

6. https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.html
7. https://www.oracle.com/java/technologies/downloads

report erratum • discuss

JRuby • 649

https://www.jruby.org/download
https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.html
https://www.oracle.com/java/technologies/downloads
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

method to_java in order to be passed back and forth. See the JRuby8 documentation for full
details.

If you are able to use JRuby, meaning that your code is compliant with Ruby 3.1 and doesn’t
use gems that use native C code (like Nokogiri), you can get a significant (2x - 3x) performance
boost. If you are working in an environment that already has a Java backend, access to the
Java libraries and resources can be a big win. (Be careful, though: one of us once worked on
a JRuby project that had two User classes that both backed to the same database table, one
using Ruby and ActiveRecord, the other using Java and Hibernate. This was not helpful.)

mRuby
mRuby (Minimalist Ruby) is an offshoot of official Ruby, led by many of the same developers.
It implements a subset of Ruby, designed for a minimal memory footprint and for use
embedded inside C programs where memory might be tight, such as inside devices. The
idea is to allow hardware developers access to Ruby as a scripting language.

You can install mRuby via your ruby version manager (rbenv install mruby-3.1.0) or you can
install it standalone from the download site.9 If you install it via a version manager, you can
run it using ruby; if you install it standalone, the command is mruby.

Other Runtimes
There have been other attempts to create Ruby runtimes that are either in progress, not used
much, or have been abandoned.

Artichoke Ruby
Artichoke Ruby is an attempt to build a CRuby compliant Ruby runtime in Rust. It is cur-
rently in pre-production.

Opal
Opal is a Ruby to JavaScript compiler.

MagLev
MagLev is a Ruby runtime built on top of the GemStone Smalltalk runtime. It appears to
have had very little development since 2016.

Rubinius
Rubinius is an attempt to build a Ruby runtime in Ruby, partially for use as a reference
implementation. It appears to have had little development since 2020.

Iron Ruby
Iron Ruby was a .NET implementation of Ruby, that appears to have had little development
since 2011.

8. https://github.com/jruby/jruby/wiki/CallingJavaFromJRuby
9. https://mruby.org/downloads

Appendix 4. Ruby Runtimes • 650

report erratum • discuss

https://github.com/jruby/jruby/wiki/CallingJavaFromJRuby
https://mruby.org/downloads
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

APPENDIX 5

Ruby Changes
For most of this book, we assume you are using the most current Ruby version, which is
version 3.2 as this is written. With a couple of exceptions, we don’t specify when particular
features were added to Ruby, as we find that makes the main text more confusing.

This appendix covers changes to Ruby that involve features that are mentioned in this book.
There are many more changes in each version, many having to do with core library and gem
methods, that are not covered here. Ruby’s documentation1 contains a listing of what was
added to each version since 1.8.7. The Ruby Evolution site,2 maintained by Victor Shepelev,
contains more detail about the changes. This appendix is only here to tell you when major
changes first appeared, starting with version 2.0. (Older versions are covered by previous
versions of this book and were on a different numbering scheme.)

Version 2.0
• Module#prepend is introduced.
• Default source encoding changed to UTF-8.
• Refinements are added.
• Keyword arguments are added, but a default value is always required, and the internal

implementation still overlaps with positional arguments.
• %i is added as a delimiter for a list of symbols.
• Lazy enumerators are added.
• to_h and Kernel#Hash are added as the convention to convert to Hash objects.
• TracePoint is added.
• Numeric values are frozen.

Version 2.1
• Keyword arguments without a default are now allowed.
• def now returns the symbol name of the method.
• Literal syntax for rational and complex numbers is added.
• Array and Enumerable get a default to_h.

1. https://docs.ruby-lang.org/en
2. https://rubyreferences.github.io/rubychanges/evolution.html

report erratum • discuss

https://docs.ruby-lang.org/en
https://rubyreferences.github.io/rubychanges/evolution.html
http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Version 2.2
• The method Object#itself is added, returning the receiving object.
• Unusual symbols are allowed as Hash keys as a string with a trailing colon, as in
{"unusual symbol": 1}.

Version 2.3
• The safe navigation operator, &. is added.
• dig is added to Array, Hash, and Struct.
• Heredoc with ~ that removes leading spaces, allowing for indented text, is added.
• Hash#to_proc is added.

Version 2.4
• Using return at the top level exits the program.
• All integers are now of class Integer, previously smaller integers were Fixnum and bigger

ones were Bignum.
• Boolean methods for regular expression matches, match? are added.
• Refinements can be used in send and Symbol#to_proc.

Version 2.5
• Structs can be initialized with keywords.
• Exception rescue is allowed inside a block.

Version 2.6
• Object#then is added to allow chained functions.
• Ranges without ending values are allowed.

Version 2.7
• Experimental support for pattern matching is added.
• Blocks support numbered parameters to match positional arguments, as in [1, 2, 3].map
{ _1 * _1}.

• Safety concepts are deprecated. They aren’t covered in this book, but they were covered
in the previous edition.

• Private methods are now accessible with self as the receiver. Previously this had been
an error.

• Keyword and positional arguments differentiated internally, but old semantics are not
removed.

• Forwarding arguments with ... are added.
• Enumerator#produce method is added.
• Ranges without beginning values are allowed.

Version 3.0
• Class variables can no longer be overridden in subclasses or including modules.
• One-line “endless” syntax for method definition is added.

Appendix 5. Ruby Changes • 652

report erratum • discuss

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

• Keyword and positional arguments are now completely separated. Previously def foo(*arg)
would capture keyword arguments in arg.

• RBS is added for type definitions.
• Rightward assignment => is added via pattern matching. The in operator for pattern

matching becomes a boolean check.
• The pattern matching find pattern, [*start, pattern, *rest], is added.
• Argument forwarding with ... now allows specific arguments before the
• Non-blocking Fibers and the Fiber scheduling API are added.

Version 3.1
• Pattern matching pin operator ^ allows expressions and variables that have a sigil.
• Values in keyword and hashes where the key is already a name in the local binding can

be omitted. {x:} if x has a value.
• Block arguments can be received anonymously with &.
• Ractors are added.
• Major updates are made to IRB.
• Major updates are made to the internal debugging tool.

Version 3.2
• Set is added to the core library.
• Anonymous positional and keyword arguments can be passed through with * and **.
• Data object is added to the core library.
• Struct no longer requires keyword_init: true to be used with keyword arguments.

report erratum • discuss

Version 3.1 • 653

http://pragprog.com/titles/ruby5/errata/add
http://forums.pragprog.com/forums/ruby5

Index

SYMBOLS
! (in method names), 86
! (logical not), 151
!= (not equal), 152
!~ (does not match), 152
!~ (negative match operator), 131,

133
(comment), 31
(string interpolation for variables

), 120
#{...} (string interpolation), 120
#{...} (substitute in string), 21
$ (global variable prefix), 22
$ (in pattern), 135
$! variable, 173
$& variable, 134
$' variable, 134
$: variable, 244
$? variable, 146, 197, 199
$` variable, 134
$~ variable, 139
& (as anonymous parameter), 93
& (block argument), 68
& (block parameter), 73
& (in argument lists), 97
&& (as shortcut), 156
&& (logical and), 150
&. (safe navigation), 157
(...) (in pattern), 138
* (anonymous parameter), 90
* (array argument), 68
* (in argument lists), 96
* (in parallel assignment), 149
* (in parameter lists), 89
* (in pattern match), 164
* (in pattern), 27, 137

** (anonymous parameter), 91
** (in argument lists), 97
** (in parameter lists), 91
** (keyword argument), 68
**nil (in parameter lists), 91
**nil (in pattern match), 164
+ (in pattern), 27, 137
- (to fork processes), 197
-> (stabby lambda operator), 74, 76
. (in pattern), 27, 136
.. (as range operator), 125
... (as range operator), 125
... (in parameter lists), 93
.with method, 227
/.../ (regexp literal), 26
/.../ (regular expression literal), 129
: (hash key creation), 24, 57
: (hash shortcut syntax), 57
: (in parameter lists), 91
: (symbol literal), 24
:: (scope resolution), 107
; (as expression separator), 86
; (as separator), 172
; (in block local lists), 162
< (superclass), 102
< method, module Comparable, 108
<< (as heredoc starter), 121
<< method

class Array, 43, 144
class IO, 184

<<- (as heredoc starter), 121
<<~ (as heredoc starter), 121
<=method, module Comparable, 108
<=> (comparison operator), 153
<=> method, 110

class Object, 108

= (in endless methods), 86
= (in method names), 87, 94
== (equals), 153
==method, module Comparable, 108
=== (case equals), 153
=== (in case statement), 155
=== (in pattern matching), 163
=== method

class Module, 173
class Range, 126

=> (hash key creation), 23, 57
=> (in pattern match), 164
=~ (match operator), 130, 133
=~ (match), 153
=~ method

class Regexp, 27
class String, 27

> method, module Comparable, 108
>=method, module Comparable, 108
? (in method names), 86
? (in parameter lists), 89
? (in pattern), 137
? (ternary operator), 154
?<...> (in pattern), 139
@ (instance variable prefix), 22
@@ (class variable prefix), 22
[...] (array literal), 22, 53
[..] (character class), 135
[] method, 145

class Array, 22, 53–54
class Hash, 23, 57
class MatchData, 134
class Thread, 190

[]= method, 145
class Array, 55
class Hash, 57
class Thread, 190

\ (for string escaping), 120

\ (in pattern), 27, 130
^ (in pattern match), 167
^ (in pattern), 135–136
_ (as number separator), 117
$_ variable, 232
__ENCODING__ constant, 123
__FILE__ variable, 184
__dir__ method, module Kernel, 184
_n (numbered block parameter), 30,

67
` method, module Kernel, 146, 196
`%x{...}` (as command delimiter),

146
`...` (as command delimiter), 146
{...} (block literal), 28, 65
{...} (hash literal), 23, 57
{...} (in pattern), 137
| (in pattern), 27, 138
| (to spawn subprocesses), 198
|...| (block parameters), 29, 65
|| (logical or), 151
||= (conditional assignment), 151

DIGITS
-0 (Ruby option), 234
0 (as octal indicator), 117
$0 variable, 238
0b (as binary indicator), 117
0d (as decimal indicator), 117
0x (as hex indicator), 117
\1 (in pattern), 139
\1 (in substitution), 141
$1 variable, 134, 139
\2 (in pattern), 139
$2 variable, 139

A
-a (Ruby option), 233–234
\A (in pattern), 135
abort_on_exception method, class
Thread, 191

alias keyword, 144
alive? method, class Thread, 190
allow method, 227
ancestors method, class Module, 114
and keyword, 150
ap method, module Kernel, 290
ARGF class

file, 238
filename, 238
gets, 238
inplace_mode, 239
lineno, 238
read, 238
readline, 238

ARGF constant, 31
ARGF variable, 238
ArgumentError class, 91
ARGV constant, 30, 44
ARGV variable, 238
Array class, 22, 53, 69, 89

<<, 43, 144
[], 22, 53–54
[]=, 55
dig, 58
each, 60, 159
first, 56
last, 56, 60
map, 124
new, 53
pack, 183
pop, 56
product, 72
push, 56
reverse_each, 60
shift, 56
sum, 72
tally, 62
unshift, 56

assert_equal method
class MiniTest::Test, 60
class Minitest::Test, 209

at_exit method, module Kernel, 242
attr_accessor method, class Module,

39
attr_readermethod, class Module, 37,

112
attr_writer method, class Module, 39
autorun method, class Minitest, 213

B
\B (in pattern), 135
\b (in pattern), 135
--backtrace-limit (Ruby option), 234
banner method, class OptionParser,

240
BasicObject class, 103

method_missing, 114
BasicSocket class, 179
before method, 223
=begin ... =end (comment), 31
Benchmark class, measure, 284
between? method, module Compara-
ble, 108

BigDecimal class, 40, 117
BigDecimal method, module Kernel,

117
block_given? method, module Kernel,

73
break keyword, 161

C
-C (Ruby option), 235
-c (Ruby option), 234
call method, class Proc, 74
caller method, module Kernel, 176,

290
capitalize method, class String, 21
case keyword, 154, 166
catch method, module Kernel, 177
chomp method, class String, 123, 197
chr method, class Integer, 181
Class class, superclass, 102
class keyword, 33
Classes

ArgumentError, 91
Array, 22, 53, 69, 89
BasicObject, 103
BasicSocket, 179
BigDecimal, 40, 117
Complex, 118
CSV, 42
Enumerator, 78
Exception, 171
Fiber.new, 200
FiberError, 201
File, 179
Float, 40, 117
Hash, 22, 56
Integer, 117
IO, 179
MatchData, 134, 139
MiniTest::Test, 60
MockExpectationError, 216
Mutex, 194
NameError, 114
NoMatchingPatternError, 165–166
Object, 102, 108
OptionParser, 239
Proc, 73, 92
Range, 125
Rational, 118
RuntimeError, 175
StandardError, 171
StopIteration, 79
String, 120
StringIO, 185
Struct, 123
SystemExit, 242
Thread, 188

close method, class File, 180
close_incoming method, class Ractor,

206
close_outgoing method, class Ractor,

206
collect method, module Enumerable,

70
Comparable module, 108

<, 108
<=, 108
==, 108

Index • 656

>, 108
>=, 108
between?, 108

Complex class, 118
Complexmethod, module Kernel, 118
Constants

__ENCODING__, 123
ARGF, 31
ARGV, 30, 44

--copyright (Ruby option), 234
count method, module Enumerable,

81
cover? method, class Range, 126
CSV class, 42

foreach, 42
current method, class Thread, 190

D
-d (Ruby option), 235
--debug (Ruby option), 235
$DEBUG variable, 191
deconstruct method, 170
deconstruct_keys method, 169
def keyword, 20, 46, 85
defined? keyword, 151
describe method, 221
did_you_mean (Enable/Disable Ruby

option), 236
dig method

class Array, 58
class Hash, 58
class Struct, 58

__dir__ method, module Kernel, 184
--disable (Ruby option), 235
DLN_LIBRARY_PATH (environment

variable), 243
do keyword, 28, 65
double method, 227
downcase method, class String, 59
downtomethod, class Integer, 119, 159
--dump (Ruby option), 236
dump method, class String, 182
dup method, class String, 49

E
-e (Ruby option), 232, 234
each method, 110

class Array, 60, 159
class File, 159
class IO, 70
class Range, 30
module Enumerable, 63, 69

each_byte method, class IO, 181
each_char method, class String, 79
each_line method, class IO, 182

each_with_index method, module
Enumerable, 79

-Eex (Ruby option), 235
else keyword, 174
elsif keyword, 25, 154
--encoding (Ruby option), 235
encoding magic comment, 31, 123
end keyword, 20, 25, 28, 65, 86
ensure keyword, 174
enum_for method, class Object, 78
Enumerable module, 69, 78, 110, 159

collect, 70
count, 81
each, 63, 69
each_with_index, 79
find, 69
find_all?, 110
first, 81
grep, 159
include?, 110
inject, 71
lazy, 81
map, 63, 70, 80, 110
max, 110
min, 110
reduce, 71, 110
reverse_each, 63
select, 81
sort, 110

Enumerator class, 78
new, 80
next, 78
produce, 80
with_index, 70, 79

ENV class, to_h, 242
ENV variable, 242
Environment variables

DLN_LIBRARY_PATH, 243
HOME, 243
LOGDIR, 243
OPENSSL_CONF, 243
PATH, 243
RUBY_YJIT_ENABLE, 243
RUBYLIB, 243
RUBYLIB_PREFIX, 243
RUBYOPT, 243
RUBYPATH, 243
RUBYSHELL, 243

eq method, 222
eql? method, 153
equal? method, 153
error_highlight (Enable/Disable Ruby

option), 236
Exception class, 171
Exceptions, RuntimeError, 49
exec method, module Kernel, 198
exit method

class Thread, 190
module Kernel, 242

expect method, 221, 227
class Minitest::Mock, 215

extend method, class Object, 109
--external-encoding (Ruby option), 235

F
-F (Ruby option), 233–234
$F variable, 233
fail method, module Kernel, 175
false keyword, 69, 150
fdiv method, class Numeric, 119
Fiber class

resume, 200
set_scheduler, 202
transfer, 201
yield, 201

Fiber.new class, 200
FiberError class, 201
File class, 179

close, 180
each, 159
foreach, 182
gets, 180
new, 179, 198
open, 72, 180
realpath, 184
write, 183

file method, class ARGF, 238
filename method, class ARGF, 238
FileUtils module, 245

rm, 245
find method, module Enumerable, 69
find_all?method, module Enumerable,

110
first method

class Array, 56
module Enumerable, 81

Float class, 40, 117
Float method, module Kernel, 34
foreach method

class CSV, 42
class File, 182
class IO, 182

forkmethod, module Kernel, 198–199
frozen-string-literal (Enable/Disable

Ruby option), 236
frozen_string_literal magic comment,

31

G
gems (Enable/Disable Ruby option),

236
gets method

class ARGF, 238
class File, 180
module Kernel, 25, 30, 180

grep method, module Enumerable,
159

Index • 657

gsub method, class String, 27, 131,
140

gsub! method, class String, 131

H
-h (Ruby option), 234
Hash class, 22, 56

[], 23, 57
[]=, 57
dig, 58
new, 59
sort_by, 60

--help (Ruby option), 234
HOME (environment variable), 243

I
-I (Ruby option), 235, 239
i (for complex literals), 118
%I (symbol array literal), 55
if keyword, 25, 153–154
includemethod, classModule, 108, 113
include? method

class Range, 126
module Enumerable, 110

initialize method, 34
inject method, module Enumerable,

71
inplace_modemethod, class ARGF, 239
inspect method, class Object, 289
instance_double method, 228
Integer class, 117

chr, 181
downto, 119, 159
times, 119, 159
to_f, 119
upto, 119

Integer method, module Kernel, 40,
86, 119

Integr class, upto, 159
IO class, 179

<<, 184
each, 70
each_byte, 181
each_line, 182
foreach, 182
popen, 197–199
puts, 183
read, 182
readlines, 124, 182

it method, 220

J
--jil (Ruby option), 235
jj method, module Kernel, 290
join method, class Thread, 189, 193

K
\k<...> (in pattern), 139
Kernel module, 108, 179

__dir__, 184
`, 146, 196
ap, 290
at_exit, 242
BigDecimal, 117
block_given?, 73
caller, 176, 290
catch, 177
Complex, 118
exec, 198
exit, 242
fail, 175
Float, 34
fork, 198–199
gets, 25, 30, 180
Integer, 40, 86, 119
jj, 290
lambda, 74
loop, 79, 157
open, 198
p, 30, 35, 289
pipe, 198
pp, 289
print, 183, 289
proc, 74
puts, 11, 20, 35, 101, 183, 289
raise, 175
Rational, 118
require, 44, 106, 244
require_relative, 44, 106
spawn, 197–198
system, 196
tap, 64
throw, 177
trap, 199
y, 290

for keyword, 65, 160, 163
Keywords

alias, 144
and, 150
break, 161
case, 154, 166
class, 33
def, 20, 46, 85
defined?, 151
do, 28, 65
else, 174
elsif, 25, 154
end, 20, 25, 28, 65, 86
ensure, 174
false, 69, 150
for, 65, 160
if, 25, 153–154
in, 163
next, 161
nil, 22, 69, 86, 150
not, 151
or, 151
redo, 161
rescue, 172

retry, 175
return, 21, 70, 85, 96
self, 88, 93, 112, 145
super, 89, 110, 114
then, 153, 155
true, 69, 150
unless, 154
until, 157
when, 155
while, 25, 77, 157
yield, 28, 67, 92

kill method, class Thread, 190

L
-l (Ruby option), 234
lambda method, module Kernel, 74
last method, class Array, 56, 60
last_matchmethod, class Regexp, 134
last_statusmethod, class Process, 146
lazymethod, module Enumerable, 81
let method, 224
lineno method, class ARGF, 238
list method, class Thread, 190
LOGDIR (environment variable), 243
loop method, module Kernel, 79, 157

M
Magic comments

encoding, 31, 123
frozen_string_literal, 31
sharable_constant_value, 31
warn_indent, 31

main method, class Ractor, 202
make_sharable method, class Ractor,

205
map method

class Array, 124
module Enumerable, 63, 70, 80,

110
match (=~), 27
match method, class Regexp, 133
match? method

class Regexp, 27, 130, 133
class String, 27, 130

MatchData class, 134, 139
[], 134
post_match, 134
pre_match, 134

max method, module Enumerable,
110

measure method, class Benchmark,
284

method method, class Object, 98
method_missingmethod, class BasicOb-
ject, 114

minmethod, module Enumerable, 110
Minitest class, autorun, 213

Index • 658

Minitest::Mock class
expect, 215
verify, 215

MiniTest::Test class, 60
assert_equal, 60, 209
passed?, 215
refute_equal, 212
refute_nil, 212
setup, 214
teardown, 214

--mjit (Ruby option), 235–236
MockExpectationError class, 216
Module class

===, 173
ancestors, 114
attr_accessor, 39
attr_reader, 37, 112
attr_writer, 39
include, 108, 113
prepend, 110, 113
private, 45, 85
protected, 45
public, 45

Modules
Comparable, 108
Enumerable, 69, 78, 110, 159
FileUtils, 245
Kernel, 108, 179
RbConfig, 249

Mutex class, 194
sleep, 196
synchronize, 194
try_lock, 195

N
-n (Ruby option), 233–234
NameError class, 114
new method

class Array, 53
class Enumerator, 80
class File, 179, 198
class Hash, 59
class Object, 18
class Proc, 75
class Ractor, 202
class Regexp, 132
class Thread, 189

next keyword, 161
next method, class Enumerator, 78
nil keyword, 22, 69, 86, 150
NoMatchingPatternError class, 165–166
not keyword, 151
not_to method, 222
Numeric class

fdiv, 119
round, 40
step, 119, 159

O
Object class, 102, 108

<=>, 108
enum_for, 78
extend, 109
inspect, 289
method, 98
new, 18
stub, 216
to_a, 80, 96
to_enum, 78
to_h, 97
to_s, 36, 101, 289

on method, class OptionParser, 240
open method

class File, 72, 180
module Kernel, 198

OPENSSL_CONF (environment vari-
able), 243

OptionParser class, 239
banner, 240
on, 240
parse!, 240

or keyword, 151

P
-p (Ruby option), 233–234
pmethod, module Kernel, 30, 35, 289
pack method, class Array, 183
parse!method, class OptionParser, 240
pass method, class Thread, 193
passed? method, class Minitest::Test,

215
PATH (environment variable), 243
pipe method, module Kernel, 198
pop method, class Array, 56
popen method, class IO, 197–199
post_match method, class MatchData,

134
pp method, module Kernel, 289
pre_match method, class MatchData,

134
prepend method, class Module, 110,

113
print method, module Kernel, 183,

289
priority= method, class Thread, 190
private method, class Module, 45, 85
Proc class, 73, 92

call, 74
new, 75

proc method, module Kernel, 74
Process class, last_status, 146
producemethod, class Enumerator, 80
product method, class Array, 72
$PROGRAM_NAME variable, 238
protected method, class Module, 45

public method, class Module, 45
push method, class Array, 56
puts method

class IO, 183
module Kernel, 11, 20, 35, 101,

183, 289

Q
%Q (as string delimiter), 121
%q (as string delimiter), 121

R
-r (Ruby option), 235
r (for rational literals), 118
%r (regular expression delimiter),

130
Ractor class

close_incoming, 206
close_outgoing, 206
main, 202
make_sharable, 205
new, 202
receive, 203
receive_if, 206
select, 206
send, 202–203
take, 203
yield, 203

raise method, module Kernel, 175
Range class, 125

===, 126
cover?, 126
each, 30
include?, 126
to_a, 125

Rational class, 118
Rational method, module Kernel, 118
RbConfig module, 249
read method

class ARGF, 238
class IO, 182

readline method, class ARGF, 238
readlines method, class IO, 124, 182
realpath method, class File, 184
receive method, class Ractor, 203
receive_if method, class Ractor, 206
redo keyword, 161
reduce method, module Enumerable,

71, 110
refute_equal method, class
Minitest::Test, 212

refute_nil method, class Minitest::Test,
212

Regexp class
=~, 27
last_match, 134
match, 133

Index • 659

match?, 27, 130, 133
new, 132

require method, module Kernel, 44,
106, 244

require_relative method, module Ker-
nel, 44, 106

rescue keyword, 172
resume method, class Fiber, 200
retry keyword, 175
return keyword, 21, 70, 85, 96
reverse_each method

class Array, 60
module Enumerable, 63

rm method, module FileUtils, 245
round method, class Numeric, 40
RUBY_YJIT_ENABLE (environment

variable), 243
RUBYLIB (environment variable), 243
RUBYLIB_PREFIX (environment vari-

able), 243
rubyopt (Enable/Disable Ruby op-

tion), 236
RUBYOPT (environment variable),

243
RUBYPATH (environment variable),

243
RUBYSHELL (environment variable),

243
run method, class Thread, 193
RuntimeError class, 175
RuntimeError exception, 49

S
-S (Ruby option), 235
-s (Ruby option), 235
scan method, class String, 59, 124
select method

class Ractor, 206
module Enumerable, 81

self keyword, 88, 93, 112, 145
send method, class Ractor, 202–203
set_schedulermethod, class Fiber, 202
setupmethod, classMinitest::Test, 214
sharable_constant_value magic com-

ment, 31
shift method, class Array, 56
sleep method, class Mutex, 196
sortmethod, module Enumerable, 110
sort_by method, class Hash, 60
spawn method, module Kernel, 197–

198
split method, class String, 123, 233
squeeze method, class String, 124
StandardError class, 171
status method, class Thread, 190

step method, class Numeric, 119, 159
stop method, class Thread, 193
StopIteration class, 79
String class, 120

=~, 27
capitalize, 21
chomp, 123, 197
downcase, 59
dump, 182
dup, 49
each_char, 79
gsub, 27, 131, 140
gsub!, 131
match?, 27, 130
scan, 59, 124
split, 123, 233
squeeze, 124
sub, 27, 131
sub!, 131
succ, 70
to_c, 118
to_r, 118

StringIO class, 185
Struct class, 123

dig, 58
stub method, class Object, 216
sub method, class String, 27, 131
sub! method, class String, 131
succ method, class String, 70
sum method, class Array, 72
super keyword, 89, 110, 114
superclass method, class Class, 102
Symbol class, to_proc, 97
synchronize method, class Mutex, 194
system method, module Kernel, 196
SystemExit class, 242

T
take method, class Ractor, 203
tally method, class Array, 62
tap method, module Kernel, 64
teardown method, class Minitest::Test,

214
terminate method, class Thread, 190
then keyword, 153, 155
Thread class, 188

[], 190
[]=, 190
abort_on_exception, 191
alive?, 190
current, 190
exit, 190
join, 189, 193
kill, 190
list, 190
new, 189
pass, 193
priority=, 190

run, 193
status, 190
stop, 193
terminate, 190
thread_variable_get, 190
thread_variable_set, 190
value, 190, 193

thread_variable_get method, class
Thread, 190

thread_variable_set method, class
Thread, 190

throw method, module Kernel, 177
times method, class Integer, 119, 159
to method, 222
to_a method

class Object, 80, 96
class Range, 125

to_c method, class String, 118
to_enum method, class Object, 78
to_f method, class Integer, 119
to_h method

class ENV, 242
class Object, 97

to_proc method, class Symbol, 97
to_r method, class String, 118
to_s method, 183

class Object, 36, 101, 289
transfer method, class Fiber, 201
trap method, module Kernel, 199
true keyword, 69, 150
try_lock method, class Mutex, 195

U
unless keyword, 154
unshift method, class Array, 56
until keyword, 157
upto method

class Integer, 119
class Integr, 159

V
-v (Ruby option), 235
value method, class Thread, 190, 193
Variables

$!, 173
$&, 134
$', 134
$:, 244
$?, 146, 197, 199
$`, 134
$~, 139
$_, 232
__FILE__, 184
$0, 238
$1, 134, 139
$2, 139
ARGF, 238
ARGV, 238

Index • 660

$DEBUG, 191
ENV, 242
$F, 233
$PROGRAM_NAME, 238

--verbose (Ruby option), 235
verify method, class Minitest::Mock,

215
--version (Ruby option), 234

W
-W (Ruby option), 236
-w (Ruby option), 233, 236

%w (string array literal), 55
warn_indent magic comment, 31
when keyword, 155
while keyword, 25, 77, 157
with_index method, class Enumerator,

70, 79
write method, class File, 183

X
-x (Ruby option), 236

Y
y method, module Kernel, 290
yield keyword, 28, 67, 92
yield method

class Fiber, 201
class Ractor, 203

--yjit (Ruby option), 235–236

Z
\Z (in pattern), 135
\z (in pattern), 135

Index • 661

Thank you!
We hope you enjoyed this book and that you’re already thinking about what you want to
learn next. To help make that decision easier, we’re offering you this gift.

Head on over to https://pragprog.com right now, and use the coupon code BUYANOTHER2023
to save 30% on your next ebook. Offer is void where prohibited or restricted. This offer
does not apply to any edition of the The Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose a writing
idea to us? After all, many of our best authors started off as our readers, just like you. With
up to a 50% royalty, world-class editorial services, and a name you trust, there’s nothing
to lose. Visit https://pragprog.com/become-an-author/ today to learn more and to get started.

We thank you for your continued support, and we hope to hear from you again soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2023

https://pragprog.com
https://pragprog.com/become-an-author/

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue the
well-known Pragmatic Programmer style and continue to garner awards and rave reviews. As devel-
opment gets more and more difficult, the Pragmatic Programmers will be there with more titles and
products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/ruby5
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with our wiki,
and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are available
from your local independent bookstore and wherever fine books are sold.

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/book/ruby5
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Change History
	Beta 5–July 28, 2023
	Beta 4—May 18, 2023
	Beta 3—March 28, 2023
	Beta 2—January 24, 2023
	Beta 1—October 26, 2022

	Preface
	Why Ruby?
	A Word About Ruby Versions
	Notation Conventions
	Road Map
	Resources

	Acknowledgments
	Part I—Facets of Ruby
	1. Getting Started
	Installing Ruby
	Installing Ruby For Windows
	Running Ruby
	Creating Ruby Programs
	Getting More Information about Ruby
	What’s Next

	2. Ruby.new
	Ruby Is an Object-Oriented Language
	Some Basic Ruby
	Arrays and Hashes
	Symbols
	Control Structures
	Regular Expressions
	Blocks
	Reading and ‘Riting
	Command-Line Arguments
	Commenting Ruby
	What’s Next

	3. Classes, Objects, and Variables
	Defining Classes
	Objects and Attributes
	Classes Working with Other Classes
	Specifying Access Control
	Variables
	Reopening Classes
	What’s Next

	4. Collections, Blocks, and Iterators
	Arrays
	Hashes
	Digging
	Word Frequency: Using Hashes and Arrays
	Blocks and Enumeration
	What’s Next

	5. More About Methods
	Defining a Method
	Calling a Method
	What’s Next

	6. Sharing Functionality: Inheritance, Modules, and Mixins
	Inheritance and Messages
	Modules
	Inheritance, Mixins, and Design
	What’s Next

	7. Basic Types: Numbers, Strings, and Ranges
	Numbers
	Strings
	Ranges
	What’s Next

	8. Regular Expressions
	What Regular Expressions Let You Do
	Creating and Using Regular Expressions
	Regular Expression Patterns
	Regular Expression Syntax
	What’s Next

	9. Expressions
	Operator Expressions
	Command Expressions
	Assignment
	Conditional Execution
	Loops and Iterators
	Pattern Matching
	What’s Next

	10. Exceptions
	The Exception Class
	Handling Exceptions
	Raising Exceptions
	Using Catch and Throw
	What’s Next

	11. Basic Input and Output
	What Is an I/O Object?
	Opening and Closing Files
	Reading and Writing Files
	Talking to Networks
	What’s Next

	12. Threads, Fibers, and Ractors
	Multithreading with Threads
	Running Multiple External Processes
	Creating Fibers
	Understanding Ractors
	What’s Next

	13. Testing Ruby Code
	Why Unit Test?
	Testing With Minitest
	Structuring Tests
	Creating Mock Objects in Minitest
	Organizing and Running Tests
	Testing with RSpec
	What’s Next

	Part II—Ruby in Its Setting
	14. Ruby from the Command Line
	Calling the Ruby Command
	Ruby Command-Line Options
	Making Your Code an Executable Program
	Processing Command-Line Arguments to Your Code
	Accessing Environment Variables
	Where Ruby Finds Its Libraries
	Using the Rake Build Tool
	The Build Environment
	What’s Next

	15. Ruby Gems
	Installing and Managing Gems
	Using Bundler to Manage Groups of Gems
	Writing and Packaging Your Own Code Into Gems
	Organizing Your Source Code
	Distributing and Installing Your Code
	What’s Next

	16. Interactive Ruby
	Using irb
	Navigating irb
	Configuring irb
	What’s Next

	17. Debugging Ruby
	Printing Things
	The Ruby Debugger
	Pry
	Debugging Performance Issues with Benchmark
	What’s Next

	18. Typed Ruby
	What’s a Type?
	Official Ruby Typing with RBS
	Ruby Typing with Sorbet
	What’s Next

	19. Documenting Ruby
	Documenting with RDoc
	Adding RDoc to Ruby Code
	Running RDoc
	Documenting with YARD
	What’s Next

	Part III—Ruby Crystallized
	20. Ruby and the Web
	Ruby’s Web Utilities
	Templating with ERB
	Serving Ruby Code to the Web
	Ruby in the Browser with Web Assembly
	What’s Next

	21. Ruby Style
	Written Ruby Style
	Using RuboCop
	Using Standard
	Ruby Style in the Large
	Duck Typing
	What’s Next

	22. The Ruby Object Model and Metaprogramming
	Understanding Objects and Classes
	Defining Singleton Methods
	Inheritance and Visibility
	Modules and Mixins
	Metaprogramming Class-Level Macros
	Using instance_eval and class_eval
	Using Hook Methods
	A Metaprogramming Example
	Top-Level Execution Environment
	What’s Next

	23. Reflection and Object Space
	Looking at Objects
	Looking at Classes
	Calling Methods Dynamically
	System Hooks
	Tracing Your Program’s Execution
	Behind the Curtain: The Ruby VM
	Marshaling and Distributed Ruby
	What’s Next

	Part IV—Ruby Language Reference
	24. Language Reference: Literal Types and Expressions
	Source Layout
	Ruby Literals
	Regular Expressions
	Names
	Values, Variables and Constants
	Expressions, Conditionals, and Loops

	25. Language Reference: Objects and Classes
	Method Definition
	Invoking a Method
	Aliasing
	Defining Classes
	Defining Modules
	Access Control
	Blocks, Closures, and Proc Objects
	Exceptions
	Catch and Throw
	Typed Ruby

	Part V—Ruby Library Reference
	26. Library Reference: Core Data Types
	Dates and Times
	Math
	Numbers
	Random and SecureRandom
	Regexp
	Strings
	Symbols

	27. Library Reference: Ruby's Object Model
	BasicObject
	Class
	Comparable
	Kernel
	Method
	Module
	Object

	28. Library Reference: Enumerators and Containers
	Array
	Enumerable
	Enumerator
	Hash
	Set

	29. Library Reference: Input, Output, Files, and Formats
	CSV
	Dir
	File
	FileUtils
	IO
	JSON
	Pathname
	StringIO
	Tempfile
	URI
	YAML

	30. Library Reference: Ruby on Ruby
	Benchmark
	Data
	Delegator and SimpleDelegator
	Logger
	ObjectSpace
	Observable
	OpenStruct
	PP
	Ripper
	Singleton
	Struct
	Unbound Method

	Part VI—Appendixes
	A1. Troubleshooting Ruby
	Common Issues
	Debugging Tips

	A2. I Can't Look It up!
	A3. Command-Line Basics
	The Command Prompt
	Folders, Directories, and Navigation

	A4. Ruby Runtimes
	Just In Time Compilers
	TruffleRuby
	JRuby
	mRuby
	Other Runtimes

	A5. Ruby Changes
	Version 2.0
	Version 2.1
	Version 2.2
	Version 2.3
	Version 2.4
	Version 2.5
	Version 2.6
	Version 2.7
	Version 3.0
	Version 3.1
	Version 3.2

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

